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By applying the covariant Taylor expansion method of the heat kernel, Einstein anomaly
associated with the Weyl fermion of spin—% interacting with nonabelian vector and axial-
vector fields in six-dimensional curved space are manifestly given. From the relation
between Einstein and Lorentz anomalies, which are the gravitational anomalies, all terms
of the Einstein anomaly should form total derivatives. It is shown before the trace
operation of the gamma-matrices that the anomaly is expressed by the form expected.

Motivated by the quantum effects in supergravity, we study gravitational anomalies
in higher dimensional curved space. In supergravity coupled with super Yang-Mills
theory,? the Lagrangian contains four-fermion interactions, which are regarded
as some two-fermion interactions with bosonic background fields expressed by odd-
order tensors. The completely antisymmetric part of the highest order tensor should
be rewritten as an axial-vector by contracting its tensor with the Levi-Civita symbol.
The (polar-)vector and the axial-vector parts in the two-fermion interactions can
be absorbed in the vector and the axial-vector gauge fields. The concrete form of
the gravitational anomalies in the model may directly be calculated by using the
heat kernel.?

The heat kernel K" (2,2") for a fermion of spin-1 in d dimensions defined by

0

&K(d)(:v,:v’;t) = —HKY(z,2';t), (1)

KD (z,2";0) = 1|h(z)| "% |h(z)| " 26D (z, "), (2)
where 6(9(z,2') is the d-dimensional invariant d-function, 1 = {545} the unit

matrix for the spinor, and h = det h*,, in which h®, is a vielbein. Here H is the

o
second order differential operator, corresponding to the square of the Dirac operator
D in the case of the fermion 1,
1
H:lDQZDuDHJFX» lD:'YHV,quyv D,u:v,u+Qua Quzi{'ﬁuy}a
1
X=7Z- V“QH - Q#QH’ VMD = 3u¢ + Z wab# Yab wv Yai--a; = Va; ~ " Vay]»

1
7= 57" Vi Vil +9"9,Y + Y2, (D Do = A ¥, 3)
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where w?

u is the Ricci’s coefficient of rotation. When in d = 2n dimensions the
fermion interacts with vector and axial-vector fields which do not commute each

other, the Dirac operator contains the coupling of these bosons in Y,
Y ="V, + Yo 17 Ay, Vi = VITY, Ay = ALT?, yonpr =i"y'92 %" (4)

Here the representation matrix 7 of a gauge group, and V¢ (AZ) is pure imaginary
(real), because of the hermiticity of the Dirac operator. The quantities @, X and
A, in (3) are expressed in the following tensorial form,

Qﬂ = V[L — V2n+1 ")/#pAp, FIW = 6‘uVl, — &,V,L + [Vl“ Vy],
2n -3

1 1
X =- 1 R+2(n—1) A A" — g, AP+ (5 F+ 5 [A,UJAU]) )

1 loa
A = 1 Y Rpgpw + Fuu — [Ap, Av] = 27 Ap AP + 27[u|p{A|V]’ Ay}
+ 2 72n+1 Fy[u|pAp;|u] - 2 ’Y,u,l/pa'ApAav (5)

where R,5,,, denotes the curvature tensor, and the semi-colon ’; 4" means the Rie-
mannian covariant differentiation V, 4 V,, with respect to the vector gauge field.
The completely antisymmetric product 7, s of y-matrices in the last term of A,
is rewritten by — €,.,075 and f%—em,pm Ay7y" in 4 and 6 dimensions, respectively.

The differential equation (1) of the heat kernel for the fermion interacting with
the general boson fields is not solvable strictly. Therefore the heat kernel is usually
calculated by using De Witt’s ansatz*, automatically satisfying (2),

1/2 / / oo
where o (z,2’) is a half of square of the geodesic distance between x and 2/,
A(z,2") = |h(x)| 7 h(z")| " det {V, Vo (z,2')}, and a,4(x,2’) are bispinors. Note
that the metric tensor in curved space is g,, = h“uhbynab with 74, = — 0gp in flat
tangent space, and that the coincidence limit of ag is limg/—,, ag(x, ') = [ag](z) = 1.
The products of o,, (= V,0) construct orthonormal bases |n) being the eigenfunc-

tions for o D,,, and the bispinor a, can be expanded by the bases,?

> -n" 0 e
0= 3" yinlag) = 5 C g s tim, [Dyy, Dy a).
n=0 n ’

aq (@,a") = (Olag) (&) = (plag) (z') o (w,a') +--- . (7)

The gravitational anomalies are obtained in the case of a massless Weyl fermion
1r, in 2n dimensions. The formal expressions of two gravitational anomalies, i.e.
the general coordinate anomaly ALM) and the Lorentz anomaly Aff,,n), are given
from the path integral measure.® They are expressed by using the heat kernel
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K@) (z,2';t) after the Gaussian cut-off regularization,

n 1 n
DM(Ty) = AP, (Tu)a = 5 (D) = (To)) = A,
1
AP () = —Zlim lim Tr {72n+1 (D, — D) K@ (z w’,t)} :
t—0z’'—x
1
2n _ . . 2n .
AR (@) =~ i Jim, Te {1 KO (22730 ®

where Tr runs over both indices of y-matrices and representation matrices of the
gauge group. Since these anomalies simultaneously appear and are related to each
other, A(2") D“.Ag,n),7 it seems that both general covariance and local Lorentz
symmetry break down.

We consider the “pure” general coordinate anomaly G, is given by redefining the
energy-momentum tensor density so that the local Lorentz symmetry is preserved,

n n 1 n
DI(T,,) = DA, )s = GE) = DRARD = SAPY, - (Ti)a=0  (9)

with (T},,) = (Tjw) — ALQI," ) where (T},,)s is the symmetric part of the expectation
value of the energy-momentum tensor. The “pure” general coordinate anomaly in
(9) is called as the Einstein anomaly. The “pure” Lorentz anomaly is also obtained
by redefining the energy-momentum tensor density so that the general covariance
is preserved,

<T[/L/l/> = <T > - 2"4(2n) DM<T;/L/U> =0, <T;/L/U>A = _AEFVH)' (10)

(2

In order to perform the concrete calculation in 2n dimensions, the Einstein
anomaly is rewritten by the expansion coefficients of a,, in (7) and its derivatives,

GO (z) = —@n {32n+1(2(v]an) = (Olan)n) (@)} . (11)

where the exclamation mark ‘!2’ means the modified covariant differentiation D, .
The anomaly in 4-dimensional curved space had already been derived, 8

Gl = ~oin Tf{% (v|az) — (Olaz)i,) } = 192 2TYV5 (A X)™"
1 1
— ~ ppo KX po = PO

647T2tr[eu,,pg(6R AP = ZRE 3F \
4 8

+ S {AL AP 4 gAPAC’AMAP)
4 - o g7

— S (A% g + 2FupANy) + 84y, 4,4 o] (12)

where “tr” means a trace over the representation matrices of the gauge group. A
derivative term in G before the trace operation of y-matrices becomes some terms
in tensorial form after the operatlon and the Lorentz anomaly .AW may easily be
given from the resultant form of G by the relation (9). Such properties of G )
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is succeeded in the case of GE,G). Indeed, the straightforward calculation gives the
concrete form of Gl(,ﬁ) as expected,

1
G = ~sepma Tr{1r(2(vlas) — (Olash)}

1 1 1 2
- _25671'3Tr{77[6AMU (€R+X) i 45J[uX'v1 60J[wu]X

1 2 1
+ _AWX!pp + _AW! X' EAW!pp [A#mA ’1X
17
360

91—0AW| JP +45Ap ) } }

i afBydkA 1
= 327T3 tr {E By {%RuyaﬁF,ﬂ;F,{)\ +

1
R A X + o= Ryuwpe A7 X + —AWAMAP"

+ EA[MPAV]UAPG -

2304 R,uuaﬁ Rpa’yS Rpgn)\

1

R[ulpaﬁRlu]Mt?R m\}+ F AP ol F)p — BA’);MUFMV

2880

1 .

_RAP;P[ALFV]U + Apv TFu + _A ol ) — _A P Fluvip
29

4 « Hea (e
+ EA ;[#ﬁFl’]a;ﬁ A pv;p + A Fo, pp ~ 90
1 o e o
- %AP;J[FP 7F;W] + %Ao’ [F[upv FV]p] + %AP;J[F[HP7FU] ]
1 g 4 log
74_5AP[F#V;U7FP ]7£AP[FP JaF;w]*
4 - o 1 wo B 1
+ _A [Fu\a’ 7ﬂu] ]+ @RyuaﬁA R —R
1 1

JF Rp[u Ao = 180Ra/3uu pA” RS %RPU A )

*%R[u\p“’Aawu]p - @R[mp;a A% + R[ulop A%

1

90
1

360

IR
—@RP ’BRaﬂHVA + —
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2 (07
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1 1
APT 4+ —R R, “APP — —R RoPo AP,
plusvlo + 90 aBplpttv] 180 aBplp v]

(3 leg 1 (3
RapguvipR be Aie — @R pRaﬂW;pAﬂ - ﬁR RPUI“’A

1 apo N 1
120 (Raﬁp[#R 7 V])'pAU + %(Raﬁp[ ) » AP

1 (e} [ea o
ERFP[#AP;V] + %RHV@BF FA o ERP[#FV]PA o

1 e L, 4 o
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1
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1 N 2 . 4 .
+ 4—5Ra[#F b oAs + ER B Fap p AP — 4—5R B wFap®Ag
1 (0% 1 (0%
+%R(¥BMV§PF Par - BRQ[MV]F ﬁAB
4 4
= 5 R Fads + 2 R F, g Ao

1 ., 1., _
_Euuaﬁyé{EA ABFVé;pp — %[A ,A’B”Y]Fép;p

1 . 1 o 1. . .
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1 1 1
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_ a;pf o ipB Yo

1 1 1
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+ (GRAAP + SROVIAP A+ TRV, A, ) F
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1 1 1
_ T APT pAsB | paip ABio | pApi OB
+( SG AT AT 4 S AP AR 4 g

5 oas L : 1 o
RA®B AV ER“PA’MA‘SW - ERaﬂAﬂﬂApvé

1 ] ] K
— %AQ*PA‘”’>R75M}] + O(A?) (13)

where J? = A°?\,. Some total derivative terms in GE,G) before the trace operation
yield many terms in tensorial form, by using (5), and the derivation is still in
progress. The third order terms of A in (13) are 157 terms, of which some terms
contain the vector field strength and the curvature tensor, though these terms may
be rewritten by the Bianchi and Jacobi identities and by symmetries of the curvature
tensor and the vector field strength.

If all A, are abelian in (12), then G,(j4) corresponds to the anomaly in space
with torsion, which is originally expressed by the third order antisymmetric tensor.
The dual vector of the tensor in four dimensions behaves as the axial-vector.® Note
that the dual tensor of torsion in six or higher dimensions is the third or higher
order antisymmetric tensor. In supergravity, there appear the contributions of the
vector, the axial-vector and the third order antisymmetric tensor fields, together,
which do not commute. The anomaly with the vector and the axial-vector fields in
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six-dimensional space with nonabelian torsion may have the new terms containing

the third order torsion tensor.
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