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Abstract

In this thesis we aim at studying hadron resonances with explicit mesonic degrees of
freedom. We work in the framework of relativistic quantum mechanics and develop
a coupled-channels formalism. This allows to include mesonic degrees of freedom by
coupling to specific hadronic decay channels.

The present work focusses on baryons, more specifically on the nucleon N and the
∆(1232) resonance. In particular, we investigate pionic effects in the masses and hadronic
structures of these baryon states.

First we study the influence of π degrees of freedom by coupling theN and ∆ to chan-
nels with explicit pions on the macroscopic/hadronic level. We employ the coupled-
channels formalism to construct a Poincaré-invariant mass operator in matrix form.
Thereby we achieve the dressing of a bare N and a bare ∆ by π loops. We obtain the
pionic effects on the N and ∆ masses, where the latter becomes complex and produces
a finite decay width. The results depend on πNN and πN∆ vertex form factors and
corresponding coupling constants, for which we use in the first instance model pre-
scriptions from the literature. While one-π loop effects in the N mass turn out to be
similar, namely, of the order of about 100 MeV, for all cases, they vary a lot for the ∆

resonance mass and decay width. Two-π channels produce only minor effects.
An analogous study is then carried out on the microscopic quark level. For this

purpose a relativistic coupled-channels constituent-quark model is constructed that
couples three-quark states to a channel with an additional π. This allows to calculate
explicit pionic effects consistently in both the masses as well as vertex form factors and
coupling constants. In this attempt we arrive at results for the strong decay width of
the ∆ in good agreement with experiment and obtain the hadronic structures of both
the N and the ∆ similar to phenomenological models.
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8.5.3. Strong π∆̃Ñ Vertex Form Factor . . . . . . . . . . . . . . . . . . . . 82
8.5.4. Strong π∆̃ ∆̃ Vertex Form Factor . . . . . . . . . . . . . . . . . . . . 83

8.6. Kinematical Considerations for the Vertex Form Factors on the Micro-
scopic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



Contents

9. Vertex From Factors and Masses from the Microscopic CC Approach 87

9.1. πQ Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2. Solution of the Microscopic CC Problem . . . . . . . . . . . . . . . . . . . 87
9.3. Results for the N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.4. Results for the ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.4.1. Improved Description of the ∆→ πN Decay . . . . . . . . . . . . . 93
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Introduction

1





1. Hadron Resonances

1.1. Motivation

With regard to the strong interaction hadron physics is governed by quantum chromo-
dynamics (QCD). Due to a running coupling constant, which gets smaller and smaller
towards higher energies, it can be solved accurately in the high-energy regime by per-
turbative methods. At low energies alternative approaches have to be followed. All
of them, however, require either approximations or model assumptions. While lattice
QCD in principle leads to correct solutions, it is still limited, e. g., due to finite lattice
spacings, volume size restrictions, and large quark masses. Often one resorts to effec-
tive methods. They rely on assumptions about the active degrees of freedom and on the
type of dynamics. A traditional effective approach consists in the constituent-quark
model (CQM). Modern versions are set up in a relativistic framework, assume con-
stituent quarks as quasiparticles with dynamical masses, and design their interactions
according to the low-energy properties of QCD, such as dynamical breaking of chiral
symmetry (sbχs). While mesons are considered as quark-antiquark systems, baryons
are viewed to consist of three quarks. The spectra of both types of hadrons are calcu-
lated from confined systems. Therefore excited states are described as excited bound
states rather than as true resonances. This leads to shortcomings in the hadronic decay
widths, even though the spectra of the resonance energies can be largely reproduced,
see e. g. Ref. [Sen06].

In the present thesis the pertinent limitations should be removed. We aim at a rela-
tivistic theory in combination with a coupled-channels (CC) approach. This will allow
to take mesonic degrees of freedom into account by coupling to decay channels. The
final result will be a CC relativistic constituent-quark model (RCQM). It should pro-
vide for a more appropriate description of hadron resonances. These states will then
be represented by complex poles in the (unphysical sheet) of the energy plane rather
than as poles on the negative real axis, namely, excited bound states.

1.1.1. Short Account of Hadron-Resonance Phenomenology

Resonances are observed in all fields of the quantum world such as atomic, nuclear,
and particle physics. In their simplest form they show up as sharp peaks in scattering
cross sections as a function of energy. If so and if the peak is isolated, all the desired
properties of a resonance may be extracted, for instance, via employing a Breit-Wigner
parametrization. However, if the peaks are highly overlapping, more refined methods
have to be applied to extract the resonance information, see Ref. [P+16].
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1. Hadron Resonances

Figure 1.1.: Peaks in the π−p total cross sections as presented in Ref. [Kam12]. The first
peak is known to be produced by the ∆(1232), while the second and third
peaks contain more than 10 excited nucleon states. As can be seen, they are
highly overlapping in energy.

Since in the following chapters we shall mainly focus on the ∆ resonance, we give
in Fig. 1.1 the example of the total cross section of the π−p reaction. The first peak
is an isolated one, namely the ∆(1232), and a standart Breit-Wigner parametrization
can be applied to extract information about it, in particular the resonance energy and
the decay width. The second and third peaks are an example for highly overlapping
resonances, since they contain more than 10 excited N ∗ states.

One may wonder, how one first got aware of hadron resonances and in particular the
∆(1232). Resorting to a standard text book of particle physics [CG09], we learn that
most of the discovered resonances before 1952 had lifetimes of about 10−10 sec and
traveled a distinctive distance in bubble chambers before decaying. Due to following
developments of particle accelerators and measurement procedures, more and more
new resonances have been determined experimentally. Such resonances may have life-
times of down to ~

100 MeV ∼ 10−25 sec corresponding to decay widths Γ of a few hun-
dreds of MeV and less. They are often also termed "particles" even though they are
unstable.

The first resonance in hadron physics was observed due to striking differences be-
tween the π+p and π−p total cross sections. The one for the π+p → π+p scattering
was much larger than the one for the π−p→ π−p case as is depicted in Fig. 1.2. Many
more measurements of similar type had subsequently been performed, and one associ-

4



1.1. Motivation

Figure 1.2.: Detection of the first resonance in hadronic physics due to strong dis-
tinctions in comparing total cross sections of π+p → π+p (crosses) and
π−p→ π−p (boxes) scattering processes. Figure taken from Ref. [AFLN52]

ated the resonance with a new "particle", the ∆(1232). A final answer was reached in
Ref. [ABFS56].

1.1.2. Theoretical Description of Resonances

In theory there are various ways, how resonances can be defined and understood. For
the beginning let us follow the guiding thread in Ref. [Tay83].

As already indicated, resonances are very striking phenomena in the field of quan-
tum scattering. They are correlated to (metastable) states of a system that has a suffi-
ciently large energy to break up into two or more subsystems. An example for such an
event of a collision process, where the lifetime of the system of particle and target is
larger than the collision time, may be pictured as in Fig. 1.3.

However, as stated in Ref. [EL07] there are several formal ways in which the problem
can be approached. The two most common concepts are so-called "scattering reso-
nances" and "resolvent resonances".

The concept of scattering resonances is connected with the definition of time delay
as in Ref. [KNKJ04]: There time delay is a measure of the collision time in a scattering
reaction that can be calculated directly from the phase shift or the scattering-matrix.
It has a close connection to the appearance of an unstable intermediate state – a reso-
nance – which, due to its finite lifetime, "delays" the reaction process. Using this kind
of approach to extract resonances, usually a partial-wave analysis of scattering data
is performed and by fitting the cross section data one obtains the energy-dependent
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1. Hadron Resonances

Figure 1.3.: Enhanced time delay in a scattering process due to the formation of a
metastable state according to Ref. [Moi98].

amplitude, i. e. the transition matrix T .
The complex T -matrix contains all the information of the resonant and non-resonant

scattering. Locating the poles of the latter on the unphysical energy sheet and studying
the Argand diagrams of the complex T -matrix leads to the determination of resonance
parameters.

In contrast, in extracting resolvent resonances one is performing an analytical con-
tinuation of the resolvent to the unphysical sheets of the complex energy plane and
searching for poles there. The two approaches are, of course, related to each other and
are even shown to be identical in certain regimes; for more details see Ref. [EL07].

There are several techniques for locating such poles, a very common one being the
method of complex scaling [Moi98]. It consists of rotating the poles from the lower
half-plane of the unphysical energy sheet beyond the cut of scattering energies, so that
the imaginary part of the resonance location becomes positive.

1.2. Mesons and Baryons as QQ and QQQ Systems

Before proceeding to the essentials of our work, namely, considering a CC theory for
a more appropriate description of hadron resonances, let us shortly review what has
so far been achieved regarding excited hadrons. While all approaches to QCD have

6



1.2. Mesons and Baryons as QQ and QQQ Systems

encountered shortcomings in dealing with resonances, we shall here only exemplify
the case of CQMs, since we shall later on focus only on the extension of this type of
approach to include additional mesonic (decay) channels.

For the CQM the original degrees of freedom of QCD, namely the quarks and glu-
ons, are replaced by effective ones and one tries to take over only those properties of
the full theory that are assumed to be the most relevant ones. The interaction between
Q respectivelyQ constituent quarks consists of a potential that is confining them inside
the hadron. Some additional interaction is assumed to provide the proper hyperfine
splittings in the spectra as observed experimentally. Two types of hyperfine interac-
tions have mostly been investigated, namely, the one-gluon exchange (OGE) and the
Goldstone-boson exchange (GBE) interactions. Contrary to OGE, the latter is medi-
ated by the exchange of pseudoscalar mesons, which are assumed to be the Goldstone
bosons of spontaneous breaking of chiral symmetry.

In CQMs mesons are viewed as QQ and baryons as QQQ systems. Due to the con-
fining interaction such a theory, in principle, can only provide for (bound) ground
and excited states and in principle no decay of such states to hadronic decay channels
can explicitly be foreseen. Still, one has tried to extract resonance decay widths, e. g.
Ref. [Sen06]. However, they may only be seen as transitions among excited states or
from an excited to a ground state. The calculated decay widths have to be viewed with
this caution. In the following we summarize the main features of meson and baryon
spectra as well as their decay characteristics, mainly following the works of the Graz
goup as in Refs. [Tho98], [Wag98] and, [Sen06].

The Graz group has considered the GBE RCQM both for mesons and baryons. In or-
der to get familiar with this approach, I have first recalculated within this thesis all the
meson and baryon spectra using the stochastic variational method (SVM) Ref. [SV98].

1.2.1. Meson Spectra

While the GBE hyperfine interaction was first designed for baryons as QQQ systems
(Refs. [GPVW98] and [GPP+98]), one was interested, if the same dynamical concept
worked also for mesons as QQ systems. Therefore a G-parity transformation was em-
ployed to the GBE pseudoscalar meson-exchange interaction. This should allow to
transfer the GBE dynamics already fixed by baryon spectroscopy also to QQ mesonic
systems. In addition to adapting the confinement to QQ all parameters were kept the
same except for the V0, which determines the ground state of the spectra, in case of
mesons, the ρ mass.1

I have taken the GBEQQpotential as defined in [Tho98] and recalculated the spectra
of various mesons. The results are shown Fig. 1.4. As can be seen, the vector mesons
are described quite well, but in the case of pseudoscalar mesons further improvements
are called for.

1Note that in the concept of GBE dynamics the π as the meson with the lowest mass is considered as a
fundamental particle (Goldstone boson) rather than a QQ state.
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1. Hadron Resonances

Figure 1.4.: Meson spectra for the GBE RCQM [Tho98]. The states are characterized
by JP with J the total angular momentum and P the parity. The solid lines
represent the theoretical levels. The dashed boxed are the experimental
data with their uncertainties as taken from Ref. [A+08].

1.2.2. Baryon Spectra

In the same way I recalculated the baryon spectra as QQQ systems with the original
GBE interaction ([GPVW98], [GPP+98]). Considering the baryon excitations with u, d,
and s flavors I could well reproduce the spectra already known in particular from the
PhD theses of Refs. [Wag98] and [Sen06] using the SVM. The results are summarized
in Fig. 1.5. In addition in Tabs. 1.1 and 1.2 I quote the numerical values of the GBE
RCQM for N and ∆ excitations. There a comparison is also given to a variant ot the
relativistic OGE RCQM as parametrized in Ref. [TWDP01]. Since we shall later on, in
the work with the CC theory, be concerned especially with the N and ∆, a comparison
to experiment is given here too.
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1.2. Mesons and Baryons as QQ and QQQ Systems

Theory Experiment

Baryon JP L,S GBE [MeV] OGE [MeV] Mass [MeV] JP

N 1
2

+
0, 1

2 939 939 938− 940 1
2

+

N (1440) 1
2

+
0, 1

2 1459 1577 1420− 1470 1
2

+

N (1520) 3
2
−

1, 1
2 1519 1521 1515− 1525 3

2
−

N (1535) 1
2
−

1, 1
2 1519 1521 1525− 1545 1

2
−

N (1650) 1
2
−

1, 3
2 1647 1690 1645− 1670 1

2
−

N (1675) 5
2
−

1, 3
2 1647 1690 1670− 1680 5

2
−

N (1700) 3
2
−

1, 3
2 1647 1690 1650− 1750 3

2
−

N (1710) 1
2

+
0, 1

2 1776 1859 1680− 1740 1
2

+

Table 1.1.: Ground and excited N states from the GBE RCQM [GPVW98, GPP+98] in
comparison to the OGE RCQM in a variant of Ref. [TWDP01] and to exper-
iment.

Theory Experiment

Baryon JP L,S GBE [MeV] OGE [MeV] Mass [MeV] JP

∆ 3
2

+
0, 3

2 1240 1231 1231− 1233 3
2

+

∆(1600) 3
2

+
0, 3

2 1718 1854 1550− 1700 3
2

+

∆(1620) 1
2
−

1, 1
2 1642 1621 1600− 1660 1

2
−

∆(1700) 3
2
−

1, 1
2 1642 1621 1670− 1750 3

2
−

Table 1.2.: Ground and excited ∆ states. Same description as in Tab. 1.1.
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Figure 1.5.: Energy levels (solid lines) of all light and strange baryons from the GBE
RCQM [GPVW98, GPP+98] in comparison to experimental data with their
uncertainties (shaded boxes).
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1.3. Synopsis

1.3. Synopsis

After this introduction about hadron resonances, we shall first discuss in Part. II, how
hadron resonances may be treated within a relativistic CC approach. Particularly, we
shall discuss the point form of relativistic quantum mechanics and its advantages for or
our purposes in Ch. 2. In Ch. 3 the CC framework will be introduced and the benefits
of treating resonances within a CC approach will be emphasized.

Part III contains the practical application of the CC framework to dynamically cou-
pling pionic channels to the N and to the ∆, respectively. First, in Ch. 4 this is done for
the N , and the π effects on its mass are discussed. In Ch. 5 we consider further pionic
channels and their effects on the N mass.

The coupling of the ∆ to the πN channel is treated in Ch. 6, where the pionic effects
on the bare ∆ mass as well as on the naturally appearing resonance decay width are
discussed. Further pionic effects are considered in Ch. 7.

In Part IV the framework introduced in Part II is applied on the microscopic quark
level to extract in a consistent manner strong vertex form factors and corresponding
coupling constants within a CC approach. An analytical expression of the optical po-
tential in terms of constituent-quark degrees of freedom is given in Ch. 8. In Ch. 9
the CC form factors are used as input to consistently obtain the π loop effects on the
N mass. Furthermore the effects on the ∆ mass and the ∆→ πN decay width are dis-
cussed.

We summarize in Part V and also present an outlook to possible further investiga-
tions.

The final Part VI contains the appendix, with specifying the notation and giving basic
relations, a list of figures, the bibliography, and an acknowledgment.
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Part II.

Hadron Resonances in a

Coupled-Channels Approach

13





2. Point-Form Relativistic Quantum

Mechanics

In this chapter we present the basic framework of our theory and discuss its benefits as
well as possible drawbacks.

With relativistic quantum mechanics (RQM) we mean a quantum theory with a finite
number of degrees of freedom (particles) that is invariant under Poincaré transforma-
tions. It can be rigorously formulated on a Hilbert space.

Dirac in his paper Forms of Relativistic Dynamics [Dir49] defined three forms of RQM
with maximal invariant subgroups (stability groups) in the Poincaré group. He called
them instant form (IF), front form (FF), and point form (PF) conferring to the hypersur-
faces in Minkowski space that are left invariant under certain Poincaré transformations.
Each of this forms have particular operators that may be kept free of interactions. They
are called kinematical and correspond to the transformations in the stability group.
The interaction-dependent ones are called Hamiltonians. For our work we adhere to
point-form RQM (PFRQM). For details not discussed here we refer, for instance, to
Refs. [KP91], [Kra01], and [BKSZ08].

2.1. The Poincaré Group

In the framework of RQM the symmetry transformations connecting different inertial
systems form the Lorentz group. These transformations preserve the proper time be-
tween two events in Minkowski space. In particular they are called Lorentz transfor-
mations Λ

µ
ν with det Λ = 1, consisting of three-dimensional spatial rotations together

with the three-dimensional rotation-less canonical boosts. Adding the continuous four-
dimensional space-time translations aµ they lead to the proper, orthochronous Poincaré
group (Λ, a). Hence, a general Poincaré transformation can be written as

xµ→ x′µ = Λ
µ
νx
ν + aµ. (2.1)

They define the Poincaré transformation in Minkowski space with aµ being a constant
four-vector and Λ

µ
ν being a constant (4×4)-matrix.

Every element of the Poincaré group can be exponentially expressed in terms of its
generators. There are the four-momentum operator P µ with µ = 0,1,2,3 as generator of
space-time translations, the K j with j = 1,2,3 as generators of the Lorentz-boosts and
the total angular momentum operator J j as generators of spatial rotations again with
j = 1,2,3. All these generators satisfy the algebra of the corresponding Lie group by the

15



2. Point-Form Relativistic Quantum Mechanics

following commutation relations[
J i , J j

]
= iεijkJk ,

[
K i ,K j

]
= iεijkJk ,

[
J i ,K j

]
= iεijkKk , [P µ, P ν] = 0,[

K i , P j
]

= iδijP 0,
[
J i , P j

]
= iεijkP k ,

[
K i , P 0

]
= −iP i ,

[
J i , P 0

]
= 0 (2.2)

with εijk the Levi-Civita symbol and δij the Kronecker delta.
The relations in Eq. (2.2) can be reformulated by using J0i := K i and J ij := εijkJk to

end up with [
Pµ, Pν

]
= 0, (2.3)[

Jµν , Pκ
]

= i
(
gνκPµ − gµκPν

)
, (2.4)[

Jµν , Jκλ
]

= −i
(
gµκJνλ − gνκJµλ + gνλJµκ − gµλJνκ

)
, (2.5)

see among others also [Bie11], [Kra01], and [Sen06]. Details about the definition of the
metric tensor gµν can be found in App. A.

2.2. Point Form and the Bakamjian-Thomas Construction

The stability group in PF is the Lorentz group. It leaves the hyperboloid xµxµ = τ2 and
in particular the point xµ invariant. The four-momentum operator P µ is interaction-
dependent and all the components of the latter may all be called Hamiltonians. Hence,
the Schrödinger equation can also be generalized by replacing the Hamiltonian by the
four-momentum operator leading to the following eigenvalue equation

P µ|Ψ 〉 = pµ|Ψ 〉. (2.6)

As discussed in Ref. [Kli03], with a given unitary operator UΛ serving as representa-
tion for a Lorentz transformation Λ the four-momentum operator Pµ has to satisfy the
following point-form equations [

Pµ, Pν
]

= 0, (2.7)

UΛPµU
−1
Λ =

(
Λ−1

)ν
µ
Pν (2.8)

whith PµP µ =M2.
We are now aiming at multi-particle momentum eigenstates and their Lorentz trans-

formation properties. First, we start with considering single-particle momentum states
defined as

P µ|p,σ〉 = pµ|p,σ〉 (2.9)

for a spin-1
2 particle with four-momentum p and spin projection σ . These states have

the following Lorentz transformation properties

UΛ|p,σ〉 =
∑
σ ′=± 1

2

|Λp,σ ′〉D
1
2
σ ′σ [RW (p,Λ)] (2.10)
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2.3. Velocity States

where RW (p,Λ) is a Wigner rotation defined as

RW (p,Λ) = B−1 (Λv)ΛB (v) . (2.11)

The four-velocity appearing in Eq. (2.11) is given as

v =
p

m
=

(
v0

~v

)
, v0 =

√
1 + ~v2 (2.12)

and B(v) is a Lorentz boost defined as

B(v) =
(
v0 ~vT

~v 13 + v0−1
v2 ~v ⊗ ~vT

)
. (2.13)

D
1
2
σ ′σ are the standard Wigner D-functions, and more information on them can be

found, for example, in Ref. [VMK88].
In order to generalize from single-particle states to multi-particle states it is conve-

nient to use velocity states instead of usual multi-particle momentum states. In the
latter, each D-function happens to depend on a different Wigner rotation. Therefore
the coupling of spins and orbital angular momenta cannot be done like in the stan-
dard nonrelativistic case. The construction of velocity states and their properties will
be discussed in Sec. 2.3.

Now we shall consider the Bakamjian-Thomas construction, [BT53]. It is a conve-
nient way to introduce interactions. One steps out from a free mass operator and re-
places it by an interacting one. In PF it means that through the relation

P µ = V µM (2.14)

all the four-momentum operators get interaction-dependent. Still they satisfy Eqs. (2.7)
and (2.8). The interacting mass operator is expressed as

M =Mf ree +Mint . (2.15)

Its eigenvalue equation
M |Ψ 〉 =m|Ψ 〉 (2.16)

is equivalent to Eq. (2.6), due to the vanishing commutator between M and P µ.

2.3. Velocity States

In the previous section the PF of relativistic quantum mechanics was presented and
one of its most prominent features is its stability group, the Lorentz group. Hence we
are interested in a basis for multi-particle momentum states that have simple Lorentz-
transformation properties. In this section velocity states (VS), simultaneously eigen-
states of the four-velocity operator and the free n-particle mass operator M will be
introduced, since they fulfill these requirements, see also [Kli98], [Kli03], and [Bie11].
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2. Point-Form Relativistic Quantum Mechanics

General Definitions

As stated in the last section, a Lorentz transformation applied to a multi-particle state
leads to difficulties by coupling all momenta and spins together to total spin or orbital
angular momentum states. By defining velocity states as

|v;~kiµi〉 := UB(v)|k1µ1, . . . , knµn〉

=
∑
σi

|p1σ1, . . . ,pnσn〉
n∏
i

Dσi ,µi
(
RWi

)
(2.17)

it can be shown that velocity states have more convenient Lorentz transformation prop-
erties:

UΛ|v;~kiµi〉 = UΛUB(v)|k1µ1, . . . , knµn〉
= UB(Λv)URW |k1µ1, . . . , knµn〉

=
∑
σi

|Λv;RW~kiµ
′
i〉

n∏
i

Dµ′i ,µi (RW ). (2.18)

Here, all appearing Wigner rotations in theD-functions are the same and thus spin and
orbital angular momentum can be coupled just as is done nonrelativistically.

Summarizing, velocity states are multi-particle states in their overall center of mo-
mentum (CM) frame boosted to a four-velocity v. They are specified by the overall
four-velocity of the n-particle system

v =
p

m
(2.19)

and the individual four-momenta ki , i = 1, . . . ,n. The occurring momenta are now inter-
nal momenta defined in the CM frame, which satisfy

n∑
i=1

~ki = 0 (2.20)

and consequently only n − 1 are linearly independent. The CM momenta ki are con-
nected to the paticle momenta pi via the following relation

pi = B(v)ki (2.21)

with B(v) being a Lorentz boost as defined in Eq. (2.13).

Completeness and Orthogonality Relations

The completeness and orthogonality relations for velocity states with an arbitrary num-
ber of particles n read

1n=
∑

µ1,µ2,...,µn

∫
d3v

(2π)3v0

n−1∏
i=1

d3ki
(2π)32ωi

 (
∑n
i=1ωi)

3

2ωn

× |v;~k1µ1,~k2µ2, . . . ,~knµn〉〈v;~k1µ1,~k2µ2, . . . ,~knµn| (2.22)
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2.3. Velocity States

and

〈v;~k1µ1,~k2µ2, . . . ,~knµn|v′;~k′1µ
′
1,~k
′
2µ
′
2, . . . ,~k

′
nµ
′
n〉

=
(2π)32ωn
(
∑n
i=1ωi)

3 v
0δ3(~v − ~v′)

n−1∏
i=1

(2π)32ωiδ
3(~ki −~k′i )

 n∏
i=1

δµiµ′i (2.23)

with

ωi =
√
m2
i +~k2

i . (2.24)

For more details see, e. g., Ref. [Bie11].
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3. Relativistic Coupled-Channels

Formalism

As discussed in Ch. 1, until now a proper description of hadronic resonances and the
corresponding decay widths within the framework of RCQM has not yet been achieved,
see, e.g., Ref. [SCPS17] and references therein. Likewise, other models and theories too
struggle with describing resonances in a proper manner. The CC framework will help
in describing hadron resonances and in particular hadronic decays within the frame-
work of RCQM in a more realistic way.

3.1. Coupled-Channels Mass Operator and Eigenvalue

Equation

Originally the CC approach was developed and applied, e.g., for nuclear reactions,
such as nucleon-nucleus scattering, in order to take into account the effects of open
channels over a wider range of scattering energies [Fes62]. In his concluding remarks,
Feshbach stated that, among other applications, the formalism should be useful in few-
body physics.

If a single-channel treatment with a fixed number of degrees of freedom is not enough
to describe the system under investigation, one may introduce the effects of further
channels by a generalized formalism still defined on a Hilbert space but now extended
by additional contributing degrees of freedom.

In order to describe resonances in RQM we aim at solving the eigenvalue equation
for the interaction-dependent mass operator. This operator will now be defined in the
CC framework to allow the description of resonances, in particular the description of
hadronic decays in taking the additional degrees of freedom (decay channels) explicitly
into account.

Our starting point is the multi-channel mass operator that is defined on a Hilbert
space that is a direct sum of the single-channel Hilbert spaces. The most general CC
mass-eigenvalue equation according to this multi-channel mass operator is written in
the following form 

M1 K12 · · ·
K†12 M2 · · ·
...

...
. . .



Ψ1
Ψ2
...

 =m


Ψ1
Ψ2
...

 (3.1)

where "1" denotes channel one, "2" channel two and so on. On the diagonal, the mass
operator in the first channel describes, for example, a baryon, e. g., the nucleon or it
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3. Relativistic Coupled-Channels Formalism

may describe a two- or three-quark cluster. The one in the second channel describes,
for example, the nucleon plus an additional particle but it may also describe a two- or
three-quark cluster and an additional particle and so forth.

The off-diagonal entries of the mass operator are vertex operators providing the cou-
pling between the different channels. In the next section it will be shown, how these
operators can be identified with Lagrangian densities taken from quantum field theory
to describe particle production and absorption.

The m appearing in Eq. (3.1) corresponds to the mass eigenvalues of the system. The
CC problem is a Hermitian one with real eigenvalues.

Feshbach Reduction

A Feshbach reduction may be applied in order so solve the mass-eigenvalue equa-
tion (3.1). In the first step of the procedure, the CC equation has to be multiplied out
to end up with a system of equations, which are of course coupled to each other. These
equations have to be reduced such that one finally ends up with one single equation,
which will in general no longer represent a Hermitian eigenvalue problem

M1|ψ1〉+K12 (m −M2 − . . . )−1K†12|ψ1〉 = m |ψ1〉. (3.2)

If the considered particle is a resonance (above a decay threshold) then it may decay into
a lower lying state and an additional particle. Hence, the resulting mass eigenvalue m
will assume complex values as soon as m reaches some model-dependent threshold. Its
real part is describing the position of the resonance and two times its imaginary part
can be identified with the resonance decay width.

3.2. Vertex Interaction

Our central interest is the description of hadron resonances and in particular their
decays. Thus we have to consider the transition from an n- to an (n+1)-particle system.
It will be furnished by a vertex operator K sandwiched between n- and (n+ 1)-particle
states

〈v;~k1µ1,~k2µ2, . . . ,~knµn|K |v′;~k′1µ
′
1,~k
′
2µ
′
2, . . . ,~k

′
nµ
′
n,~k
′
n+1µ

′
n+1〉. (3.3)

Its dynamics can be deduced from a Lagrangian density LI (x) taken from quantum
field theory. It describes the coupling of an additional particle to the already existing
ones.

Since LI (x) is a product of free fields it transforms under Lorentz transformations as

UΛLI (x)U−1
Λ = LI (Λx), (3.4)

while LI (0) is a Lorentz scalar and obeys the following transformation properties

UΛLI (0)U−1
Λ = LI (0). (3.5)
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3.3. Previous Works Using the Coupled-Channels Approach

Due to this property Eq. (3.3) can be written as

〈v;~k1µ1,~k2µ2, . . . ,~knµn|K |v′;~k′1µ
′
1,~k
′
2µ
′
2, . . . ,~k

′
nµ
′
n,~k
′
n+1µ

′
n+1〉

∝v0δ3(~v′ − ~v)〈v;~k1µ1,~k2µ2, . . . ,~knµn|LI (0)|v;~k′1µ
′
1,~k
′
2µ
′
2, . . . ,~k

′
nµ
′
n,~k
′
n+1µ

′
n+1〉. (3.6)

If one considers composite particles as, e. g., a baryon that is assumed to consist of
three consituent quarks, the inner structure can be taken into account via multiply-
ing the matrix element with appropriate strong vertex form factors FI (~κ 2). The latter
depend on the three-momentum squared of the additional particle, here denoted by ~κ.

The final vertex matrix elements we have to consider are given in general form as

〈v,~k1µ1,~k2µ2, . . . ,~knµn|K |v′ ,~k′1µ
′
1,~k
′
2µ
′
2, . . . ,~k

′
nµ
′
n,~k
′
n+1µ

′
n+1〉

=v0δ3(~v′ − ~v)FI (~κ 2)
(2π3)√(∑n+1

i=1 ωk′i

)3 (∑n
i=1Eki

)3

×〈~k1µ1,~k2µ2, . . . ,~knµn|LI (0)|~k′1µ
′
1,~k
′
2µ
′
2, . . . ,~k

′
nµ
′
n,~k
′
n+1µ

′
n+1〉. (3.7)

3.3. Previous Works Using the Coupled-Channels Approach

ARelativistic Point-FormApproach toQuark-Antiquark Systems. In order to achieve
a more realistic description of resonances within a PF relativistic constituent-quark
model for mesons, Krassnigg applied the CC formalism to mimic the hyperfine inter-
action due to GBE dynamics, Ref. [Kra01]. Within this model the lightest pseudoscalar
mesons – meant to be GB of spontaneous chiral symmetry breaking – couple directly
to quarks and antiquarks while the latter are assumed to be clustered by instantaneous
confinement. In particular he considered a CC mass-operator eigenvalue equation on
the microscopic level consisting of a bound QQ̄ channel and a bound QQ̄ + GB chan-
nel. This treatment allows for the decay of a resonance to a lower lying state and an
additional GB.

In his thesis, Krassnigg applied an approximation to solve the final microscopic com-
plex mass-operator eigenvalue equation. The contributions of GB emission and reab-
sorption by the same quark have been neglected due to constituent-quark mass renor-
malization arguments. Still, the CC treatment led to decay widths that were larger as
compared to a corresponding calculation with a nonrelativistically reduced potential
performed in the same work. Anyhow, it was argued that due to the applied approx-
imation the resulting widths were still underestimating the experimentally measured
ones by two orders of magnitude.
Resonances and Decay Widths Within a Relativistic Coupled Channels Approach.
The attempt in Ref. [Kle10] was to apply the above-mentioned formal CC setup to a
simple scalar toy model for mesons in order to check the contribution of the loop dia-
grams neglected in Ref. [Kra01]. It was found that, in taking all possible GB exchange
contributions into account, the optical potential at microscopic level can be reinter-
preted such that one ends up with the latter at the macroscopic level. This idea is
pictorially shown in Fig. 3.1.

23



3. Relativistic Coupled-Channels Formalism

π

 
 MM
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M
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Figure 3.1.: Combining various π-exchange possibilities of the microscopic optical-
potential to end up with the latter on the macroscopic level by taking the
quark structure via vertex form factors (VFF) into account.

The microscopic structure is transcribed to strong form factors that show up at the
vertices, when solving the macroscopic mass-eigenvalue equation. Strong vertex form
factors can consistently be extracted by assuming on the one hand the mass eigenvalue
equation at the microscopic level and on the other hand at the macroscopic level. In
comparing the respective expressions at the vertices, strong vertex form factors can be
extracted.

It was found that the simple scalar toy model leads to finite decay widths and thus
made us interested in further studying this kind of ansatz to investigate hadronic reso-
nances in a relativistic manner.
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Part III.

The N and ∆ Coupled to π Channels
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The central aim in this thesis is a realistic description of the N ground state and the
∆ resonance. In particular we want to include pionic effects and investigate, how well
we can then describe the masses and decay width of the N and ∆, respectively, in good
agreement with the experimental data summarized in the following figures.

Experimental information about the N ground state from Ref. [P+16]
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Experimental information about the ∆ resonance from Ref. [P+16]
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4. The Nucleon with Explicit One-π
Contributions

4.1. Eigenvalue Equation

The first step to take into account π degrees of freedom in the nucleon consists in
considering a bare nucleon Ñ dressed with a π loop. To calculate the corresponding
mass renormalization we start with the CC eigenvalue equation for the mass operator(

MÑ K
K† MÑ+π

) ( ∣∣∣ψN 〉∣∣∣ψN+π
〉 )

=m
( ∣∣∣ψN 〉∣∣∣ψN+π

〉 )
. (4.1)

Here, MÑ is the mass operator of the bare nucleon Ñ and MÑ+π the mass operator of
the interaction-free πÑ system. The operators K and K† furnish the coupling to the
πÑ channel. They will rely on a Lorentz-scalar Lagrangian density LI (0) (see Sec. 4.2
below).

Eq. (4.1) represents two coupled equations, one for the physical nucleon state |ψN 〉
and one for the πN system |ψN+π〉:

I : MÑ |ψN 〉+K |ψN+π〉 =m|ψN 〉,
(4.2)

II : K†|ψN 〉+MÑ+π|ψN+π〉 =m|ψN+π〉.
(4.3)

In order to calculate the dressed N eigenstate |ψN 〉, we can eliminate |ψN+π〉 in I by
using

|ψN+π〉 =
(
m−MÑ+π

)−1
K†|ψN 〉 (4.4)

and obtain
MÑ |ψN 〉+K

(
m−MÑ+π

)−1
K†|ψN 〉 =m|ψN 〉. (4.5)

Alternatively, by eliminating |ψN 〉 in II by

|ψN 〉 =
(
m−MÑ

)−1
K |ψN+π〉 (4.6)

we can also calculate |ψN+π〉 through

MÑ+π|ψN+π〉+K†
(
m−MÑ

)−1
K |ψN+π〉 =m|ψN+π〉. (4.7)
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4. The Nucleon with Explicit One-π Contributions

Both of these Eqs. (4.5) and (4.7) have the property that the searched eigenvalue m
occurs also on the l.h.s.

Continuing with first calculating |ψN 〉 we use the velocity states |Ñ : v〉 and
|Ñ ,π : v,~kπ〉 which are eigenstates of the mass operators MÑ and MÑ+π, respectively

MÑ |Ñ : v〉 =mÑ |Ñ : v〉, (4.8)

MÑ+π|Ñ ,π : v,~kπ〉 =
(
ωÑ +ωπ

)
|Ñ ,π : v,~kπ〉. (4.9)

They fulfill the following orthonormality and completeness relations

〈Ñ : v′ |Ñ : v〉 = (2π)3 v0δ3 (~v ′ − ~v)
2

m2
Ñ

, (4.10)

1Ñ =
∫

d3v

(2π)3 v0

m2
Ñ

2
|Ñ : v〉〈Ñ : v|, (4.11)

〈Ñ ,π : v′ ,~k′π|Ñ ,π : v,~kπ〉 = (2π)3 v0δ3 (~v ′ − ~v)
2ωÑ2ωπ(
ωÑ +ωπ

)3 (2π)3 δ3
(
~k′π −~kπ

)
, (4.12)

1Ñ+π =
∫

d3v

(2π)3 v0

∫
d3kπ

(2π)3 2ωπ

(
ωπ +ωÑ

)3

2ωÑ
|Ñ ,π : v,~kπ〉〈Ñ ,π : v,~kπ| (4.13)

with ωi =
√
mi +~k2

i

(
i = π,Ñ

)
. More details about this special basis of velocity states

can be found in Sec. 2.3.
By representing (4.5) with 〈Ñ : v| we thus have:

mÑ 〈Ñ : v|ψN 〉+ 〈Ñ : v|K
(
m−MÑ+π

)−1
1′′
Ñ+π

K†1′
Ñ
|ψN 〉 =m〈Ñ : v|ψN 〉 (4.14)

⇒mÑ 〈Ñ : v | ψN 〉+
∫

d3v′

(2π)3 v0′

∫
d3v′′

(2π)3 v0′′

∫
d3k′′π

(2π)3 2ω′′π

(
ω′′π +ω′′

Ñ

)3

2ω′′
Ñ

m
′2
Ñ

2

× 〈Ñ : v | K | Ñ ,π : v′′ ,~k′′π〉
1

m−ω′′
Ñ
−ω′′π

〈Ñ ,π : v′′ ,~k′′π | K† |N : v′〉〈Ñ : v′ | ψN 〉

=m〈Ñ : v | ψN 〉. (4.15)

This can shortly be written as

mÑ 〈Ñ : v | ψN 〉+
∫

d3v′

(2π)3 v0′
〈Ñ : v | Vopt (m) | Ñ : v′〉〈Ñ : v′ | ψN 〉 =m〈Ñ : v | ψN 〉, (4.16)

where the matrix element of the so-called optical potential Vopt (m) is

〈Ñ : v | Vopt (m) | Ñ : v′〉 =
∫

d3v′′

(2π)3 v0′′

∫
d3k′′π

(2π)3 2ω′′π

(
ω′′π +ω′′

Ñ

)3

2ω′′
Ñ

m
′2
Ñ

2

× 〈Ñ : v | K | Ñ ,π : v′′ ,~k′′π〉
1

m−ω′′
Ñ
−ω′′π

〈Ñ ,π : v′′ ,~k′′π | K† |N : v′〉. (4.17)

30



4.2. Vertex Matrix Elements

4.2. Vertex Matrix Elements

Next we specify the πÑÑ couplings in K . At the vertices we consider both pseudovec-
tor (PV) and pseudoscalar (PS) type couplings. Thus we identify K with the Lorentz-
scalar Lagrangian density LP V ,P SI and the corresponding elements are defined by (cf.
Sec. 3.2)

〈Ñ : v|K |Ñ ,π;v′ ,~k′π〉 =

v0δ3 (~v − ~v ′)
(2π)3√(

ω′π +ω′
Ñ

)3
m3
Ñ

FπÑÑ
(
~k
′2
π

)
〈Ñ |LI (0) |Ñ ,π :~k′π〉, (4.18)

where we have used the velocity-states property ~k′
Ñ

+~k′π = 0. Since LI (0) as a Lorentz
scalar is relativistically invariant, we may consider the matrix element in the rest frame
of the nucleon and thus v = v′ = 0. Therefore we have written the velocity states as |Ñ 〉
and |Ñ ,π : ~kπ〉. Here, the extended structure of πÑÑ vertex is taken into account by
the form factor FπÑÑ

(
~k
′2
π

)
, which we consider and term as a bare form factor.

4.2.1. Pseudovector Coupling

We now discuss the two vertex matrix elements

〈Ñ |LP VI (0) |Ñ ,π :~kπ〉, (4.19)

〈Ñ ,π :~kπ|LP V †I (0) |Ñ 〉, (4.20)

in detail. In the case of PV coupling we have [EW88]

LP VI (x) = −
fπÑÑ
mπ

ψ̄ (x)γµγ5~Tψ (x) ·∂µ ~φ (x) , (4.21)

where fπÑÑ is the bare PV πÑÑ coupling constant, ψ is the nucleon Dirac field and ~φ

is the π field. ~T is the isospin operator at the vertex.

Field operator for spin-0 particle: π

We express the π field operator by the plane-wave expansion

φ (x) =
∫

d3κ

(2π)3 2ωκ

(
e−iκxc (κ) + eiκxc† (κ)

)
. (4.22)

The plane waves can then be expanded in terms of partial waves. Since we consider
the field at x = 0 we take all possibillities for angular excitations into account. The
commutator relations for the creation and annihilation operators read

[c (κ) , c† (κ′)] = (2π)3 2ωκδ
3 (~κ − ~κ′). (4.23)
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Dirac field operator for spin-1
2 particles: Ñ

Analogously, we write nucleon field operators as

ψ (x) =
1

(2π)3

∫
d3p

2p0

∑
σ=± 1

2

(
e−ipxu (p,σ )a (~p,σ ) + eipxv (p,σ )b† (~p,σ )

)
, (4.24)

ψ̄ (x) =
1

(2π)3

∫
d3p

2p0

∑
σ=± 1

2

(
eipxū (p,σ )a† (~p,σ ) + e−ipxv̄ (p,σ )b (~p,σ )

)
, (4.25)

where u (p,σ ) and v (p,σ ) are Dirac spinors with momentum p and spin σ (cf. A.2) and
the operators a

(
a†

)
and b

(
b†

)
are the annihilation (creation) operators of particles and

antiparticles, respectively. The corresponding anti-commutator relations read

{a (p,σ ) , a† (p′ ,σ ′)} = (2π)3 δσσ ′2p0δ
3 (~p − ~p′) . (4.26)

After inserting the field expansions into Eqs. (4.19) and (4.20) and combining the
terms with creation and annihilation operators one ends up with a whole bunch of
terms. Since the numbers of creation and annihilation operators always have to be
equal, only two will give a nonzero contribution. One of these describes the π together
with a particle in the intermediate state, the other one a π and an antiparticle. The
latter will not contribute here.

By using Wick’s theorem in combination with the (anti)commutation properties of
creation and annihilation operators one ends up with the final expressions for the ver-
tex matrix elements

〈Ñ |LP VI (0) |Ñ ,π :~kπ〉 = −i
∑ fπÑÑ

mπ
ū
(
kÑ ,σ

)
γµγ5I

(
τÑ , τ

′
Ñ
, τπ

)
u
(
k′
Ñ
,σ ′

)
(kπ)µ , (4.27)

〈Ñ ,π :~kπ|LP V †I (0) |Ñ 〉 = i
∑ fπÑÑ

mπ
ū
(
k′
Ñ
,σ ′

)
γµγ5I

(
τ ′
Ñ
, τÑ , τπ

)
u
(
kÑ ,σ

)
(kπ)µ . (4.28)

The isospin matrix element I
(
τÑ , τ

′
Ñ
, τπ

)
= 〈Ñ |~T ·~π|Ñ ′〉 occurring here will be discussed

in Sec. (4.2.3) below.

4.2.2. Peudoscalar Coupling

Instead of PV coupling one can also use PS coupling [EW88] in Eq. (4.19) and Eq. (4.20)

LP SI (x) = −igπÑÑ ψ̄ (x)γ5~Tψ (x) · ~φ (x) . (4.29)

Here, gπÑÑ is the PS πÑÑ coupling constant and the fields are defined as above in
Sec. 4.2.1. After following the same procedure as for PV coupling, the final expressions
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4.2. Vertex Matrix Elements

for the matrix elements read

〈Ñ |LP SI (0) |Ñ ,π :~kπ〉 = −i
∑

gπÑÑ ū
(
kÑ ,σ

)
γ5I

(
τÑ , τ

′
Ñ
, τπ

)
u
(
k′
Ñ
,σ ′

)
, (4.30)

〈Ñ ,π :~kπ|LP S†I (0) |Ñ 〉 = i
∑

gπÑÑ ū
(
k′
Ñ
,σ ′

)
γ5I

(
τ ′
Ñ
, τÑ , τπ

)
u
(
kÑ ,σ

)
. (4.31)

4.2.3. Spin and Isospin Considerations

The isospin matrix element I
(
τÑ , τ

′
Ñ
, τπ

)
= 〈Ñ |~T · ~π|Ñ ′〉 appearing in Eqs. (4.27), (4.28),

(4.30) and (4.31) will now discussed in great detail. It describes the isospin behavior at
the vertex.
~π =

(
π1,π2,π3

)
has isospin T = 1 and τ = 1,0,−1 and so the isospin triplet is defined

as

~π =


π+

π0

π−

 , (4.32)

while the isospin operator ~T is built by the three Pauli matrices

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (4.33)

The nucleon spinor is written as N =
(
p
n

)
.

For the case of a proton incoming and outgoing the intermediate state can be a proton
and a π0 or a neutron and a π+ as shown in Fig. (4.1).

π

p pp

0 π

p pn

+

Figure 4.1.: Two possible intermediate states for an incoming and outgoing proton.

Spherical Representation

In this representation the isospin operator ~T is defined to have the following compo-
nents,

• τ± = ∓1
2 (τ1 ± iτ2),

• τ0 = τ3,
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4. The Nucleon with Explicit One-π Contributions

namely

τ+ = −
(

0
√

2
0 0

)
, τ− =

(
0 0√

2 0

)
, τ0 =

(
1 0
0 −1

)
, (4.34)

where τ+ and τ− are usually called ladder operators.
An analogous relation holds for the ~π

• π± = ∓ 1
√

2
(π1 ± iπ2) ,

(4.35)

• π0 = π3.

(4.36)

Using the definition of the scalar product for arbitrary vectors ~v and ~w in spherical
representation [Car71]

~v · ~w = −v+w− − v−w+ + v0w0, (4.37)

we calculate the scalar product ~T · ~π in I
(
τÑ , τ

′′
Ñ
, τ ′′π

)
and obtain

~T · ~π = (−) (−)
(

0
√

2
0 0

)
π− −

(
0 0√

2 0

)
π+ +

(
1 0
0 −1

)
π0. (4.38)

The ladder operators appearing in Eq. (4.38) obey

τµ† = (−1)µ τ−µ, (4.39)

which is the hermiticity condition in spherical representation. More detailes can be
found in Ref. [Car71]. The following three possible matrix elements

〈n|~T · ~π|p〉, 〈p|
(
~T · ~π

)†
|n〉, 〈p|~T · ~π|p〉 (4.40)

have to be considered. Keeping in mind the characteristics of the isospin ladder opera-
tors

τ−|p〉 = |n〉, τ+|n〉 = |p〉, τ−|n〉 = τ+|p〉 = 0 (4.41)

we get for the first matrix element in Eq. (4.40) a factor −
√

2, since the only contribution
is the one with the π+. For the second matrix element the term with the π− is surviv-
ing and gives again −

√
2. This is true due to the minus appearing in the hermiticity

condition. The third matrix element gives 1.
Eventually the diagram on the l.h.s. of Fig. (4.1) gives an isospin factor 2, the diagram

on the r.h.s gives a factor 1 and in sum the isospin contribution gives an overall factor
of 3.
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4.2. Vertex Matrix Elements

Calculation with Clebsch-Gordan coefficients

Concerning the l.h.s. diagram of Fig. (4.1), we have to consider the matrix element

〈1
2

1
2
|τ0|1

2
1
2
〉 (4.42)

at each vertex. However, for the r.h.s. diagram the following matrix elements

〈1
2

1
2
|τ+|1

2
− 1

2
〉,

(
〈1
2

1
2
|τ+|1

2
− 1

2
〉
)†

(4.43)

occur. They can be evaluated with the following formula (see, e.g. Refs. [DST65]
and [KNLS13])

〈sms|τm|sm′s〉 = 〈s1m′sm|sms〉〈s||τ ||s〉/
√

2s+ 1, (4.44)

where 〈s1m′sm|sms〉 is a usual Clebsch-Gordon coefficient with m = ±1,0 and
〈s||τ ||s〉 =

√
6 is the reduced matrix element.

The Clebsch-Gordan coefficients are defined in spherical representation and so we
again have to take into account the corresponding hermiticity condition for the corre-
sponding operators.

The matrix element describing the process shown on the l.h.s. in Fig. (4.1) leads to

〈1
2

1
2
|τ0|1

2
1
2
〉 =

(
〈1
2

1
2
|τ0|1

2
1
2
〉
)†

= 〈1
2

1
1
2

0|1
2

1
2
〉
√

6/
√

2 = 1. (4.45)

The second possibility shown on the r.h.s. of Fig. (4.1) leads to

〈1
2

1
2
|τ+|1

2
− 1

2
〉 = 〈1

2
1− 1

2
1|1

2
1
2
〉
√

6/
√

2 = −
√

2,(
〈1
2

1
2
|τ+|1

2
− 1

2
〉
)†

= (−)〈1
2
− 1

2
|τ−|1

2
1
2
〉

= (−)〈1
2

1
1
2
− 1|1

2
− 1

2
〉
√

6/
√

2 = −
√

2. (4.46)

Summing the contributions of the two possibilities one ends up with an overall isospin
factor of 3.

Pseudospherical Representation

The isospin operator ~T in pseudospherical representation has the following compo-
nents,

• τ± = 1
2

(
τ1 ± iτ2

)
• τ0 = τ3,
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4. The Nucleon with Explicit One-π Contributions

namely

τ+ =
(

0
√

2
0 0

)
, τ− =

(
0 0√

2 0

)
, τ0 =

(
1 0
0 −1

)
. (4.47)

An analogous relation holds for the ~π,

• π± = 1√
2

(
π1 ± iπ2

)
,

• π3 = π0.

Using the definition of the scalar product in pseudosherical representation

~v · ~w = +v+w− + v−w+ + v0w0, (4.48)

we can calculate ~T · ~π and get

~T · ~π =
(

0
√

2
0 0

)
π− +

(
0 0√

2 0

)
π+ +

(
1 0
0 −1

)
π0. (4.49)

Now the matrix elements of Eq. (4.42) and Eq. (4.43) are evaluated in pseudospherical
representation. Matrix multiplication leads to

•
(
p†τ0p

)
= (1 0)

(
1 0
0 −1

)(
1
0

)
= 1,

(4.50)

•
(
p†τ+n

)
= (1 0)

(
0
√

2
0 0

)(
0
1

)
=
√

2,

(4.51)

•
(
p†τ+n

)†
= n†τ−p = (0 1)

(
0 0√

2 0

)(
1
0

)
=
√

2.

(4.52)

Again an overall isospin factor of 3 results.

4.3. Solution of the Eigenvalue Equation

Now we turn to the solution of the eigenvalue equation (4.16) with the optical potential
given in Eq. (4.17).

In our frame-independent theory we may assume the incoming and outgoing Ñ to
be at rest, so its four-momentum without the presence of the π is given by

kÑ =


mÑ
0
0
0

 . (4.53)
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4.3. Solution of the Eigenvalue Equation

In the intermediate region, where there is a Ñ and a π, due to three-momentum con-
servation, we have

k′′π =


ω′′π
k′′π sinθ′′ cosφ′′

k′′π sinθ′′ sinφ′′

k′′π cosθ′′

 , k′′
Ñ

=


ω′′
Ñ
−k′′π sinθ′′ cosφ′′

−k′′π sinθ′′ sinφ′′

−k′′π cosθ′′

 (4.54)

with ωi =
√
m2
i +~k2

i .
As already mentioned in Sec. 4.1, the eigenvalue equation (4.16) contains in the term

for the optical potential Eq. (4.17) also the searched mass eigenvalue m. It means that
the dynamics governing the dressed mass m also occurs in the propagator of the inter-
mediate πÑ state. By solving this eigenvalue equation we therefore take into account
all one-π loops including their iterations. In the view of an iterative method we can
thus represent the optical potential like in Fig. 4.2.

π

~ 
 ~  NN ~N +

π

~ 
 ~  NN ~N

π

~ 
  N~N + ...

Figure 4.2.: Pictorial representation of the first- and second-order iterations of the op-
tical potential in Eq. (4.17).

The fact that the eigenvalue m also occurs on the l. h. s. of Eq. (4.16) requires also a
particular method for its practical solution. We adhere to the following procedure:

We begin by setting the dressed (physical) mass eigenvalue to m = 939 MeV and
search for the bare mass mÑ dictated by the eigenvalue equation. In order to find the
corresponding value of mÑ we use an iterative procedure. We start with an arbitrary
value for mÑ in the optical potential and solve Eq. (4.16). The resulting value for mÑ
from the first step is then reinserted into the equation and so on. When mÑ becomes
stable, we know that the final solution is achieved and all orders of one-π loops are
included.

4.3.1. Input Vertex Form Factors

Eq. (4.16) consists of bare macroscopic quantities only. Nevertheless they have an ex-
tended structure. In order to account for them we employ vertex form factors FπÑÑ .
They are here taken from the literature. Corresponding works sometimes do not clearly
distinguish between bare and dressed vertex form factors. In order to make our calcu-
lations consistent and clear-cut, we assume for the present purposes (to get an idea of
the magnitudes of the π dressing effects in the N ) all of the employed vertex form fac-
tors to be bare ones. In some cases [SL96] and [KNLS13] the FπÑÑ are definitely stated
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4. The Nucleon with Explicit One-π Contributions

as such, in other cases [MCP09] and [PR05b] we just assume them as bare ones.1

RCQM:

In Ref. [MCP09] one deduced a πÑÑ form factor microscopically from a relativistic
constituent-quark model. In fact, the matrix element of a PV transition operator for the
process of Fig. 4.2 was evaluated with refined three-quark wave functions. The result
was parametrized by the multipole function

FπÑÑ
(
~k2
π

)
=

1

1 +
(
~kπ
Λ1

)2
+
(
~kπ
Λ2

)4
(RCQM, SL and PR Multipole) (4.55)

with parameters given in Tab. 4.1. The same type of parametrization is used for SL and
PR Multipole form factors form factors described below.

SL and KNLS:

The form factors by Sato and Lee (SL) Ref. [SL96] and by Kamano, Nakamura, Lee
and Sato (KNLS), Ref. [KNLS13], were introduced and parametrized within a phe-
nomenological meson-baryon model, where the fπÑÑ coupling constant is taken to be
the canonical phenomenological one as is given in Tab. 4.1.

For the reason of comparison the authors of Ref. [MCP09] cast the form factor of SL
into the form of Eq. (4.55) with parameters given in Tab. 4.1. We adopt this parametriza-
tion of the SL form factor also in our work, while for the KNLS form factor we use their
original form

FπÑÑ
(
~k2
π

)
=

(
Λ2

~k2
π +Λ2

)2

(KNLS), (4.56)

again with parameters given in Tab. 4.1.

Polinder Rijken (PR):

In Ref. [PR05a] form factors of a Gaussian type were introduced. The cut-off parame-
ters were fixed in Ref. [PR05b] by fitting the Nijmegen soft-core (NSC) πN model to the
energy-dependent SM95 partial wave analysis [ASWP95]. As can be seen in Tab. 4.1,
the πÑÑ coupling constant differs very much from the other parametrizations and also
the dependence on ~k2

π is much different, see Fig. 4.3.
Here, we consider the PR form factors according to two different parametrizations,

the original Gaussian one

FπÑÑ
(
~k2
π

)
= exp−

~k2
π/Λ

2
(PR Gauss), (4.57)

1In the 8th chapter below we shall produce vertex form factors ourselves consistently with a microscopic
CC constituent-quark model.
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4.3. Solution of the Eigenvalue Equation

and the multipole reparametrization with formula (4.55) by [MCP09]. The correspond-
ing parameters are again given in Tab. 4.1.

The dependences of the various vertex form factors on the three-momenutm ~k2
π can

be seen from Fig. 4.3.

RCQM SL KNLS PR Gauss PR Multipole
f 2
πÑÑ
4π 0.0691 0.08 0.08 0.013 0.013
λ1 0.451 0.453 0.940
λ2 0.931 0.641 1.102
Λ 0.656 0.665

Table 4.1.: Coupling constants and parameters for the πÑÑ vertex form factors accord-
ing to different models in the literature. Here and everywhere throughout
this thesis the dimensions of the cut-off parameters are GeV. For the abbre-
viations see the text.

RCQM

SL

KNLS

PR Gauss

PR Multipole

0.0 0.5 1.0 1.5 2.0 2.5
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0.2
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1.0

k

π
2
[GeV2]

ℱ
π
N~
N~
(k

π
2
)

πN
˜
N
˜
Form Factor

Figure 4.3.: πÑÑ form factor parametrizations as functions of the three-momentum
squared from various models in the literature.
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4.4. Results and Discussion

We now give the results for the one-π loop effects on the N mass from our CC theory
using the πÑÑ vertex form factor models discussed above.

RCQM SL KNLS PR Gauss PR Multipole
mN 939 939 939 939 939
mÑ 1067 1031 1037 1025 1051
mN −mÑ -128 -92 -98 -86 -112

Table 4.2.: π loop effects on the nucleon massmN from coupling to the πN channel (mÑ
being the bare mass and mN the dressed (physical) one). All values given in
MeV. The π mass is always assumed to be mπ=139 MeV.

As can be seen from Tab. 4.2 the obtained values for the bare N masses vary between
mÑ = 1025 MeV, for the PR Gauss form-factor parametrization, and mÑ = 1067 MeV,
for the RCQM case. This leads to one-π loop effects between 86 and 128 MeV. Note that
the mass of the N dressed in this manner is always resulting as mN = 939 MeV, i. e. the
mass of the physical N . We observe that the one-π loop dressing effect, which always
reduces the mass from the bare to the physical N , is of the same order of magnitude of
about 100 MeV, varying up and down by approximately 20%. The differences are due
to the different momentum dependences of the πÑÑ vertex form factors (see Fig. 4.3)
and the different sizes of the πN coupling constants (cf. Tab. 4.1). Consequently, the
results are more or less the same for the SL and KNLS cases. In corresponding form-

factor models the same value for the πN coupling constant of f 2
πN∆

4π = 0.08, as extracted
from phenomenology, is assumed and the form-factor dependences on the momentum
are very similar. The RCQM form factor falls off slower, while the coupling constant
is about the same. As a result the dressing effect is bigger by about 20%. The form
factor dependences of the PR model are quite distinct with a very slow fall-off towards
higher momenta. Still, the dressing effects are smaller especially for the PR Gaussian
parametrization. This is caused by a rather small πN coupling constant.

We note that the dressing effect on the N mass was also investigated by Polinder and
Rijken in Ref. [PR05b], however, in a completely different, nonrelativistic approach.
They obtained a rather large dressing effect of mN −mÑ = −248 MeV.

On the other hand, π effects on the N mass were also studied by Pascalutsa and Tjon
in Ref. [PT00]. They employed a relativistic theory and produced a π dressing effect of
−151 MeV, i. e. about 18% higher than the RCQM.

Having established the one-π loop effects on theN mass by our relativistic CC theory,
we may ask, if additional pionic effects influence the N dressing. In this regard we my
think of two-π loops or interactions in the πN channel.
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Contributions

The CC model considered in the previous chapter is only the simplest way of includ-
ing explicit π degrees of freedom. Here we investigate the possible role of further π
effects. In particular, we first add an additional interaction-free ππÑ channel and sub-
sequently we consider also interactions in the πÑ and ππÑ channels.

5.1. Additional ππÑ Channel

The extended CC mass operator with an additional interaction-freeππÑ channel reads:
MÑ K 0
K† MÑ+π K
0 K† MÑ+π+π




∣∣∣ψN 〉∣∣∣ψN+π
〉∣∣∣ψN+π+π

〉
 =m


∣∣∣ψN 〉∣∣∣ψN+π

〉∣∣∣ψN+π+π
〉

 . (5.1)

We first attempt to reduce the three coupled equations to calculate the dressed mass of
the N corresponding to the state |ψN 〉. From the third equation

K†|ψN+π〉+MÑ+π+π|ψN+π+π〉 =m|ψN+π+π〉 (5.2)

we obtain
|ψN+π+π〉 = (m−MÑ+π+π)−1K†|ψN+π〉. (5.3)

Inserting the latter into the second equation following from Eq. (5.1) we end up with

K†|ψN 〉+MÑ+π|ψN+π〉+K |ψN+π+π〉 =m|ψN+π〉
→ |ψN+π〉 = (m−MÑ+π −K(m−MÑ+π+π)−1K†)−1K†|ψN 〉. (5.4)

Finally we insert this into the first equation following from Eq. (5.1) to obtain

MÑ |ψN 〉+K (m−MÑ+π −K(m−MÑ+π+π)−1K†)−1︸                                           ︷︷                                           ︸K†|ψN 〉 =m|ψN 〉. (5.5)

Assuming the expression marked by the brace to represent only a minor contribution
we may expand it in the following way

(m−MÑ+π −K(m−MÑ+π+π)−1K†)−1 (5.6)

≈(m−MÑ+π)−1

+(m−MÑ+π)−1K(m−MÑ+π+π)−1K†︸                     ︷︷                     ︸(m−MÑ+π)−1 + . . .
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In order to obtain the latter result we have used the operator expansion

(A+ εB)−1 = A−1 − εA−1BA−1 +O(ε2) (5.7)

for small ε > 0. Finally we have the following eigenvalue equation[
MÑ +K(m−MÑ+π)−1K†

+ K(m−MÑ+π)−1K(m−MÑ+π+π)−1K†(m−MÑ+π)−1K†︸                                                                 ︷︷                                                                 ︸
 |ψN 〉 =m|ψN 〉. (5.8)

As compared to Eq. (4.17) the optical potential now contains an additional term,
which we have marked by the brace. Its first-order contribution is pictorially shown
in Fig. 5.1. The corresponding dynamics is usually viewed as stemming from so-called
crossed two-π loops.

π π

N N N N N
~ ~ ~~ ~

Figure 5.1.: Pictorial representation of the first-order term of the crossed two-π loop
contributions.

Among others corresponding contributions have already been considered in the lit-
erature by [GS93], [PT00], and [KNLS13].

In order to solve Eq. (5.8), one-, two- or three-particle velocity state completeness
relations have to be inserted at appropriate places. In addition to the one- and two-
particle ones defined in the previous chapter we need the velocity states corresponding
to the interaction-free ππÑ mass operator

MÑ+π+π|Ñ ,π1,π2 : v,~kπ1
,~kπ2
〉 =

(
mÑ +mπ1

+mπ2

)
|Ñ ,π1,π2 : v,~kπ1

,~kπ2
〉. (5.9)

Their completeness and orthogonality relations read

1Ñ+π1+π2
=

∫
d3v

(2π)3v0

∫
d3kπ1

(2π)32ωπ1

∫
d3kπ2

(2π)32ωπ2

(ωπ1
+ωπ2

+ωÑ )3

2ωÑ

×|Ñ ,π1,π2 : v,~kπ1
,~kπ2
〉〈Ñ ,π1,π2 : v,~kπ1

,~kπ2
| (5.10)

and

〈Ñ ,π1,π2 : v′ ,~k′π1
,~k′π2
|Ñ ,π1,π2 : v,~kπ1

,~kπ2
〉

=(2π)3v′0δ
3(~v ′ − ~v)

2ωÑ2ωπ1
2ωπ2

(ωÑ +ωπ1
+ωπ2

)3 (2π)3δ3(~k′π1
−~kπ1

)(2π)3δ3(~k′π2
−~kπ2

), (5.11)
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where now ~kÑ +~kπ1
+~kπ2

= 0.
By considering the second term in Eq. (5.8) and extracting the matrix element

〈Ñ ,π : v,~kπ1
|K(m−MÑ+π+π)−1K†|Ñ ,π : v′ ,~k′π2

〉 (5.12)

we now have to use Eq. (5.10) to end up with two vertex matrix elements:

〈Ñ ,π : v,~kπ1
|K(m−MÑ+π+π)−11′′

Ñ+π1+π2
K†|Ñ ,π : v′ ,~k′π2

〉

=
∫

d3v′′

(2π)3v′′0

∫
d3k′′π1

(2π)32ω′′π1

∫
d3k′′π2

(2π)32ω′′π2

(ω′′π1
+ω′′π2

+ωÑ )3

2ωÑ
×〈Ñ ,π :~kπ1

|K |Ñ ,π1,π2 :~k′′π1
,~k′′π2
〉(m−MÑ+π+π)−1

×〈Ñ ,π1,π2 :~k′′π1
,~k′′π2
|K†|Ñ ,π :~k′π2

〉. (5.13)

The vertex matrix-element of the type 〈Ñ ,π :~k′π1
|K |Ñ ,π1,π2 :~kπ1

,~kπ2
〉 and the complex

conjugated one are obtained by following the procedure described in Sec. 4.2.1.
The final expressions are given here

• 〈Ñ ,π :~k′π1
|LP Vπ2

(0)|Ñ ,π1,π2 :~kπ1
,~kπ2
〉

= −i
f

mπ
ū(kÑ ,σ )γµγ5I(τÑ , τ

′
Ñ
, τπ2

)u(k′
Ñ
,σ ′)

(
kπ2

)
µ

2ω′kπ1
δ3(~k′π1

−~kπ1
),

(5.14)

• 〈Ñ ,π1,π2 :~kπ1
,~kπ2
|LP V †π1

(0)|Ñ ,π :~k′π2
〉

= i
f

mπ
ū(~k′

Ñ
,σ ′)γµγ5I(τ

′
Ñ
, τÑ , τπ1

)u(~kÑ ,σ )
(
kπ1

)
µ

2ω′kπ2
δ3(~k′π2

−~kπ2
)

(5.15),

where in each matrix element there appears an additional delta function for the spec-
tator π. For further information about the Dirac spinors see App. A.2.

Isospin Considerations

We exemplify the case of an incoming and outgoing proton and consequently three
different πN transitions. The numbers at the vertices in Fig. 5.2 denote the isospin
contributions that are obtained by calculating I(τ ′

Ñ
, τÑ , τπ) at each vertex. The calcula-

tion has been done as described in Sec. 4.2.3 and consequently the final overall isospin
factor is -3.

5.1.1. Solution and Results

The eigenvalue Eq. (5.8) has again the property that the searched eigenvalue m occurs
also on the l.h.s. and so it can be solved in the same way as described in Sec. 4.3.
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π π

p p n n p
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0

1 1

0

11
pp

Figure 5.2.: Different possible πN transitions for the case of an incoming and outgoing
p.

Kinematics

We may again assume that the incoming and outgoing Ñ is at rest, so its four-momentum
is given by

kÑ =


mÑ
0
0
0

 . (5.16)

In the region where there is a Ñ and a π, due to momentum conservation, we have

k′π =


ω′π
k′π sinθ′ cosφ′

k′π sinθ′ sinφ′

k′π cosθ′

 , k′
Ñ

=


ω′
Ñ
−k′π sinθ′ cosφ′

−k′π sinθ′ sinφ′

−k′π cosθ′

 (5.17)

and

k′′π =


ω′′π
k′′π sinθ′′ cosφ′′

k′′π sinθ′′ sinφ′′

k′′π cosθ′′

 , k′′
Ñ

=


ω′′
Ñ
−k′′π sinθ′′ cosφ′′

−k′′π sinθ′′ sinφ′′

−k′′π cosθ′′

 . (5.18)
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5.2. Interactions in the πÑ Channel

Further, due to momentum conservation, ~kÑ +~k′π +~k′′π = 0, in the crossed-terms region
we end up with

k′π =


ω′π
k′π sinθ′ cosφ′

k′π sinθ′ sinφ′

k′π cosθ′

 , k′′π =


ω′′π
k′′π sinθ′′ cosφ′′

k′′π sinθ′′ sinφ′′

k′′π cosθ′′

 ,

kÑ =


ωÑ
−(k′π sinθ′ cosφ′ + k′′π sinθ′′ cosφ′′)
−(k′π sinθ′ sinφ′ + k′′π sinθ′′ sinφ′′)
−(k′π cosθ′ + k′′π cosθ′′)

 . (5.19)

These are all definitions of energies and momenta that are needed. Detailed informa-
tion on how to treat the products of spinors appearing in Eqs. (5.14) and (5.15) can be
found in App. A.2.

In analogy to Sec. 4.3 at the vertices various input form factors have been used to
solve the nonlinear eigenvalue Eq. (5.8). The particular form factors used are the same
as discussed in Sec. 4.3 and shown in Fig. 4.3 while the associated parameters are pre-
sented in Tab. 4.1.

Results

By using the inputs as specified above we find that the contribution of the crossed
two-π loops in Eq. (5.8) is very small, namely, only of the order of ∼1 MeV in the
dressedN mass. Therefore the effects of this kind of two-π contributions are practically
negligible.

We may think of even other two-π effects, namely, by including an interaction among
the two pions. This is considered in the following section.

5.2. Interactions in the πÑ Channel

In this section an additional πÑ interaction potential is added to the free πÑ mass
operator. The starting point is Eq. (4.14), but we assume the mass operator MÑ+π to be

an interacting one composed of Mf ree

Ñ+π
+VπÑ . Thus we obtain for the state |ψN 〉

mÑ 〈Ñ : v|ψN 〉+ 〈Ñ : v|K(m−MÑ+π)−1K†|ψN 〉︸                                 ︷︷                                 ︸ =m〈Ñ : v|ψN 〉,

→ 〈Ñ : v|K(m−Mf ree

Ñ+π
−VπÑ )−1K†|ψN 〉. (5.20)

which is formally equivalent to the eigenvalue Eq. (4.14). Only the optical potential
contains a πÑ interaction, which can be diagrammatically depicted as in Fig. 5.3. In-
cluding the πÑ interaction only to the first order, we can expand the propagator term
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π π' ''

N N N N N
~ ~ ~'''

π π1 2

 VπN~
Figure 5.3.: Pictorial representation of the first-order term of the optical potential ac-

cording to Eq. (5.20).

in Eq. (5.20) as

(
m−Mf ree

Ñ+π
−VπÑ

)−1
≈

(
m−Mf ree

Ñ+π

)−1
+
(
m−Mf ree

Ñ+π

)−1
VπÑ

(
m−Mf ree

Ñ+π

)−1
, (5.21)

where we have again used the operator expansion in Eq. (5.7).
The final eigenvalue equation then reads:

mÑ 〈Ñ : v|ψN 〉+ 〈Ñ : v|K(m−Mf ree

Ñ+π
−VπÑ )−1K†|ψN 〉

≈mÑ 〈Ñ : v|ψN 〉+ 〈Ñ : v|K

×
(

(m−Mf ree

Ñ+π
)−1 + ε(m−Mf ree

Ñ+π
)−1VπÑ (m−Mf ree

Ñ+π
)−1

)
×K†|ψN 〉 =m〈Ñ : v|ψN 〉

⇒mÑ 〈Ñ : v|ψN 〉+ 〈Ñ : v|K(m−Mf ree

Ñ+π
)−1K†|ψN 〉 (5.22)

+ 〈Ñ : v|K(m−Mf ree

Ñ+π
)−1VπÑ (m−Mf ree

Ñ+π
)−1K†|ψN 〉︸                                                          ︷︷                                                          ︸ =m〈Ñ : v|ψN 〉.

In the following we discuss possible choices for the interaction potential VπÑ .
Eq. (5.22) is formally equivalent to Eq. (5.8), if we choose

VπÑ = K
(
m−MÑ+π+π

)−1
K†, (5.23)

where in the first case a third (interaction-free) ππÑ channel was considered, whereas
in the second case a specific πÑ interaction is foreseen. In the following we discuss the
so-called contact interactions in πÑ s-wave.
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5.2. Interactions in the πÑ Channel

5.2.1. Contact Interaction in πÑ S-Wave

The contact interactions are represented by σ and ρ terms in s-wave, respectively.

Thus

VπÑ = −4π
λI (~k′π,~kπ)

m2
π

ψ̄γµ~τψ · [~φ×∂µ ~φ]︸                                     ︷︷                                     ︸
VρπÑ

−4π
λ0(~k′π,~kπ)

mπ
ψ̄ψ[~φ · ~φ]︸                         ︷︷                         ︸

VσπÑ

, (5.24)

which is taken from Ref. [CS00]. The first term denotes the coupling to the isovector
nucleonic current and the second is the πÑ coupling in the isoscalar channel.

Pictorially the additional term in Eq. (5.22) is shown in Fig. 5.4 with the individual
σ and ρ contact terms depicted in Fig. 5.5.

π π' ''

N N N N N
~ ~ ~'''

π π1 2

 

N πρ σ
+

N
VV ~~π

Figure 5.4.: Pictorial representation of the first-order term in the optical potential ac-
cording to the contact interactions in s- and p-waves.

π π '

N N N N
~ ~'''

' '

~ ~

ρ

π π '

N N N N
~ ~'''

' '

~ ~

σ

Figure 5.5.: Pictorial representation of the first-order term in the optical potential ac-
cording to ρπÑ and σπÑ contact terms
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5. The Nucleon with Additional Pionic Contributions

The ρπÑ Contact Term

Let us first examine the ρπÑ contact-term contribution shown on the l.h.s. of Fig. 5.5:

〈Ñ ,π :~k′π1
|VρπÑ |Ñ ,π :~kπ2

〉

=〈Ñ ,π :~k′π1
| − 4π

λI (~k′π,~kπ)

m2
π

ψ̄γµ~Tψ · [~φ×∂µ ~φ]|Ñ ,π :~kπ2
〉. (5.25)

Using the field expansions given in Eqs. (4.22)-(4.25) one ends up with

〈Ñ ,π :~k′π1
|VρπÑ |Ñ ,π :~kπ2

〉 = i4π
λI
m2
π
ū(kÑ ,σ )γµu(k′

Ñ
,σ ′)kπµ . (5.26)

Isospin Considerations

The isospin part of the ρπÑ potential is given by

V
isospin

ρπÑ
= ~T · [~φ× ~̇φ] (5.27)

with

~T =


τ1
τ2
τ3

 , ~φ =


π1
π2
π3

 and ~̇φ =


π̇1
π̇2
π̇3

 (5.28)

given in Cartesian representation. The relation between Cartesian and spherical repre-
sentations is given in Eq. (4.2.3) and it has to be applied two times such that one ends
up with the vector product [~φ× ~φ′] in spherical coordinates [Car71]

(~φ× ~̇φ) =


(~φ× ~̇φ)+

(~φ× ~̇φ)−

(~φ× ~̇φ)0

 = i


π0π̇+ −π+π̇0

π−π̇0 −π0π̇−

π−π̇+ −π+π̇−

 . (5.29)

After using the definition of the scalar product in spherical representation, the final
result for V isospinρπN reads

V
isospin
ρπN = −τ+(~φ× ~̇φ)− − τ−(~φ× ~̇φ)+ + τ0(~φ× ~̇φ)0. (5.30)

As in the previous descussions, we assume a proton to be the incoming and outgoing
particle and so the only possible process is given in Fig. 5.6. We have to multiply with
2 since this process can also happen the other way around.
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π π

VρπN

p p

0+

n p

~

Figure 5.6.: ρ contact term in isospin space.

To calculate the isospin contribution at the ρπÑ vertex, the matrix element

〈n|V isospin
ρπÑ

|p〉 (5.31)

has to be considered. Looking at the definitions in Eq. (4.41), the only term surviving

in this matrix element is −τ−(~φ× ~̇φ)+. Taking a closer look at

〈n| − τ−(~φ× ~̇φ)+|p〉 = −i〈n|τ−|p〉π0π̇+ + i〈n|τ−|p〉π+π̇0, (5.32)

we observe that only the second part is contributing, since the first one would describe
a neutron together with a π0 and the proton with a π+, which is not possible. The
isospin matrix element i〈n|τ−|p〉π+π̇0 gives i

√
2 multiplied with −

√
2 coming from the

pπ+n vertex.
The form factor λI (~k′′π,~k

′′′
π ) is given as stated in Ref. [CS00] by

λI (~k
′′
π,~k
′′′
π ) =

m2
ρ

m2
ρ − (k′′π − k′′′π )2

(5.33)

and the corresponding coupling constant has a value of

λI
m2
π

=
f 2
ρ

8πm2
ρ

= 0.045, (5.34)

where the mass of the ρ is
mρ = 775 MeV. (5.35)

The σπÑ Contact Term

The σπÑ contact term contribution shown on the r.h.s. of Fig. 5.5 is expressed as

〈Ñ ,π :~k′π|VσπÑ |Ñ ,π :~kπ〉

=〈Ñ ,π :~k′π| − 4π
λ0

mπ
ψ̄ψ[~φ · ~φ]|Ñ ,π :~kπ〉. (5.36)

First the scalar product of the π field expansion, Eq. (4.22), will be treated separately

~φ(0) · ~φ(0) =
∑
λ

(−)λφ(0)λφ(0)−λ, (5.37)
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λ denoting the three possible isospinstates of the π. Multiplying creation and annihi-
lation operators∫

d3k

(2π)32ωk

∫
d3k′

(2π)3ω′k

∑
λ

(−)λ
[
c−λ(~k′) + cλ†(~k′)

] [
cλ(~k) + c−λ†(~k)

]
(5.38)

one ends up with one surviving term∫
d3k

(2π)32ωk

∫
d3k′

(2π)3ω′k

∑
λ

(−)λcλ†(~k′)cλ(~k). (5.39)

By inserting the nucleon field expansions, Eqs. (4.24) and (4.25) by only considering
the particle terms, Eq. (5.36) becomes

〈Ñ ,π :~k′π|VσπÑ |Ñ ,π :~kπ〉 = −4π
λ0

mπ
〈0|a(~k′

Ñ
,σ ′)cα(~k′π) :∫

d3p′

(2π)33ω′p

∑
s′=± 1

2

ū(p′ , s′)a†(~p′ , s′)
∫

d3p

(2π)3

∑
s=± 1

2

u(p,s)a(~p,s)

∫
d3k

(2π)32ωk

∫
d3k′

(2π)3ω′k

∑
λ

(−)λcλ†(~k′)cλ(~k)

:a†(~kÑ ,σ )c†β(~kπ)|0〉 (5.40)

and for the final result we obtain

−4π
λ0(k′π, kπ)

mπ
ū(k′

Ñ
,σ ′)u(kÑ ,σ )δαβ . (5.41)

The δαβ tells us that the isospin component of the π outgoing and incoming is the same
although the momenta may be different. So two different processes have to be taken
into account, these are shown in Fig. 5.7. In the end we obtain an overall isospin factor

π π

V
πN

p p

σ

√ √

+ +

22- -n n

~

π π

V
πN

p p

σ

0 0

1 1p p

~

Figure 5.7.: σ contact term in isospin space.

of 3.
The function λ0(k′π, kπ) is given by

λ0(k′π, kπ) = −1
2

(1 + ε)mπ

(
aSR + aσ

m2
σ

m2
σ − (k′π − kπ)2

)
(5.42)

with
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• mσ=550 MeV,

• aσ=0.22 m−1
π ,

• aSR=-0.233 m−1
π ,

• ε = mπ
mÑ

.

The input parameters are again the ones proposed in Ref. [CS00].

5.2.2. Solution and Results

Kinematics and Solution Method

It is assumed that the incoming and outgoing N is at rest, so its four-momentum is
given as

kÑ =


mÑ
0
0
0

 . (5.43)

In the region where there is a N and a π, due to momentum conservation, we have

k′π =


ω′π
k′π sinθ′ cosφ′

k′π sinθ′ sinφ′

k′π cosθ′

 , k′
Ñ

=


ω′
Ñ
−k′π sinθ′ cosφ′

−k′π sinθ′ sinφ′

−k′π cosθ′

 (5.44)

and

k′′π =


ω′′π
k′′π sinθ′′ cosφ′′

k′′π sinθ′′ sinφ′′

k′′π cosθ′′

 , k′′
Ñ

=


ω′′
Ñ
−k′′π sinθ′′ cosφ′′

−k′′π sinθ′′ sinφ′′

−k′′π cosθ′′

 . (5.45)

These are all definitions of energies and momenta that are needed while, detailed in-
formation how to treat the products of spinors appearing in Eqs. (5.14) and (5.15) can
be found in App. A.2.

In analogy to Sec. 4.3 various input form factors have been used to solve the nonlin-
ear eigenvalue Eq. (5.22) together with the input Eq. (5.26) for the ρ and Eq. (5.41) for
the σ . The used πÑÑ vertex form factors are shown in Fig. 4.3 and the associated pa-
rameters are given in Tab. 4.1. We emphasize that thereby the model is completely fixed
with regard to the vertex form factors, the coupling constants and the πN interaction
employed.

Results

With the VπN interaction as specified above we find again only a minor contribution to
the mass of the dressed N , according to two-π contact forces. At most an effect of a few
MeV, e. g. , ∼1 MeV in case of the RCQM is obtained.
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5.3. Summary

In this chapter we have investigated the contributions of different variants of an addi-
tional ππN channel on top of coupling the bare N to the πN channel. We found that
both crossed-term as well as contact-term two-π contributions produce only small ef-
fects in the mass of the dressed N . In practice both of them are negligible in the CC
approach followed here. Of course, one could alter some input parameters, such as
vertex form factors, coupling constants or specifically the πN potential. However, here
we content ourselves with the insight gained so far into the π dressing effects on the N
mass. Later on in Part. IV we shall anyway focus on a microscopic description of the
vertex form factors and dressed masses of the N and ∆, where both of these properties
can be dealt with consistently.
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6. The ∆ Coupled to the πN Channel

6.1. Eigenvalue Equation

In this section, the CC framework is used to describe the one-π effects in the ∆ and also
the ∆→ πN decay. To this aim we start with the following CC eigenvalue equation(

M
∆̃

K
K† MÑ+π

) ( ∣∣∣ψ∆

〉∣∣∣ψN+π
〉 )

=m
( ∣∣∣ψ∆

〉∣∣∣ψN+π
〉 )

, (6.1)

where M
∆̃

is representing the mass operator of the bare ∆̃ and MÑ+π the mass operator
of the interaction-free πÑ system, as already considered in Sec. 4.1, Eq. (4.8). m is the
∆ mass eigenvalue we are interested in.

In order to go on, we first consider the eigenstates of M
∆̃

and their completeness and
orthonormality relations:

M
∆̃
|∆̃ : v〉 =m

∆̃
|∆̃ : v〉, (6.2)

〈∆̃ : v′ |∆̃ : v〉 = (2π)3v0δ
3(~v ′ − ~v)

2

m2
∆̃

, (6.3)

1
∆̃

=
∫

d3v

(2π)3v0

m2
∆̃

2
|∆̃ : v〉〈∆̃ : v|. (6.4)

The calculation is done along the same lines as in Ch. 4. Finally one obtains a similar
eigenvalue equation as in Eq. (4.14), namely:

m
∆̃
〈∆̃ : v|ψ∆〉+ 〈∆̃ : v|K

(
m −MÑ+π

)−1
1′′
Ñ+π

K†1′
∆̃
|ψ∆〉 = m〈∆̃ : v|ψ∆〉 (6.5)

⇒m
∆̃
〈∆̃ : v | ψ∆〉+

∫
d3v′

(2π)3 v′0

∫
d3v′′

(2π)3 v′′0

∫
d3k′′π

(2π)3 2ω′′π

(
ω′′π +ω′′

Ñ

)3

2ω′′
Ñ

m
′2
∆̃

2

× 〈∆̃ : v | K | Ñ ,π : v′′ ,~k′′π〉
1

m −ω′′
Ñ
−ω′′π

〈Ñ ,π : v′′ ,~k′′π | K† | ∆̃ : v′〉〈∆̃ : v′ | ψN 〉

= m〈∆̃ : v | ψ∆〉. (6.6)

Again the eigenvalue m is appearing on the l.h.s. and on the r.h.s. of the equation, and
it will now adopt complex values, if the eigenvalue becomes larger than the threshold
mass mÑ +mπ. The real part is describing the resonance position and two times the
imaginary part gives the ∆ decay width.
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6. The ∆ Coupled to the πN Channel

In short, Eq. (6.5) reads

m
∆̃
〈∆̃ : v | ψ∆〉+

∫
d3v′

(2π)3 v′0
〈∆̃ : v | Vopt (m) | ∆̃ : v′〉〈∆̃ : v′ | ψ∆〉 = m〈∆̃ : v | ψ∆〉 (6.7)

where the matrix element of the so-called optical potential Vopt (m) is given as

〈∆̃ : v | Vopt (m) | ∆̃ : v′〉 =
∫

d3v′′

(2π)3 v′′0

∫
d3k′′π

(2π)3 2ω′′π

(
ω′′π +ω′′

Ñ

)3

2ω′′
Ñ

m
′2
∆̃

2

× 〈∆̃ : v | K | Ñ ,π : v′′ ,~k′′π〉
1

m −ω′′
Ñ
−ω′′π

〈Ñ ,π : v′′ ,~k′′π | K† | ∆̃ : v′〉. (6.8)

It is diagrammatically represented in Fig.6.1.

π

N~
Δ

~ ~
Δ

Figure 6.1.: Pictorial representation of the first-order term of the optical potential ac-
cording to Eq. (6.8).

6.2. Vertex Matrix Elements

We now evaluate the two vertex matrix elements

〈∆̃ : v|K |Ñ ,π : v′ ,~k′π〉, 〈Ñ ,π : v′ ,~k′π|K†|∆̃ : v〉. (6.9)

They are obtained by following the same procedure as in Sec. 4.2.
In using Eq. (3.7), the matrix elements containing the Lagrangian densities have to

be considered. The latter is taken as suggested in Ref. [BD64]

LπÑ ∆̃
(x) = −

fπÑ ∆̃

mπ
ψ̄(x)~Tψµ(x) ·∂µ ~φ(x) + h.c., (6.10)

where ~φ(x) is the π field operator given in Eq. (4.22) and ψ(x) is the Dirac field operator
for the spin-1

2 Ñ given in Eq. (4.24). ψµ(x) is the Rarita-Schwinger field operator for the
spin-3

2 ∆̃. Details about the ∆̃ Rarita-Schwinger spinors and the Ñ Dirac spinors can be
found in App. A.2.
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6.3. Solution of the Eigenvalue Equation

The final results are

〈∆̃|LπÑ ∆̃
(0)|Ñ ,π :~kπ〉 = −i

∑ fπÑ ∆̃

mπ
ūµ(k

∆̃
,σ

∆̃
)I

(
τ
∆̃
, τ ′
Ñ
, τπ

)
u(k′

Ñ
,σ ′
Ñ

)(kπ)µ,

〈Ñ ,π :~kπ|L†πÑ ∆̃
(0)|∆̃〉 = i

∑ fπÑ ∆̃

mπ
ū′(kÑ ,σ

′
Ñ

)I
(
τ ′
Ñ
, τ

∆̃
, τπ

)
uµ(k

∆̃
,σ

∆̃
)(kπ)µ. (6.11)

However, the Lagrangian given in Eq. (6.10) is not the only possibility to describe the
πÑ ∆̃ coupling at the vertex. Additionally we checked the Lagrangian density proposed
by Pascalutsa and Tjon in Ref. [PT00]

LGI
πÑ ∆̃

(x) =
fπÑ ∆̃

mπm∆̃

εµναβ
(
∂µψ̄ν(x)

)
γ5γαTaψ(x)∂βφ

a(x) + h.c., (6.12)

where the (GI) refers to a gauge-invariant πÑ ∆̃ coupling. It is invariant under the
Rarita-Schwinger gauge transformation:

ψµ(x)→ ψµ(x) +∂µε(x) (6.13)

with ε(x) being a spinor field. The advantage of this coupling is that the spin-1
2 com-

ponents of the ∆ field do not appear, thus the spin-1
2 background is totally absent from

the corresponding ∆-exchange amplitudes.
The calculation has been repeated in using the gauge invariant Lagrangian density

and although the analytical structure is different, the final numerical result is the same.

6.2.1. Spin and Isospin Considerations

As in Sec. 4.2, we have to fix the incoming and outgoing particle properties and sum
over all intermediate possibilities. In the process actually under investigation we have
four different possibilities for the spin projection of the incoming ∆̃. The result must
be the same for all of them and must not depend on a particular choice.

Considering the isospin degrees of freedom it can easily be verified that the isospin
contribution is the same for either the ∆++, ∆+, ∆0 or the ∆− to be the incoming and
outgoing particle. All the different possibilities are shown in Fig. 6.2 and each choice
gives an isospin factor of 1.

6.3. Solution of the Eigenvalue Equation

We now turn to the solution of the eigenvalue Eq. (6.7) with the optical potential writ-
ten in Eq. (6.8) and pictorially shown in Fig.6.1.

Again, it is assumed that the incoming particle, the ∆̃ is at rest and so its four-
momentum is given as

k
∆̃

=


m

∆̃

0
0
0

 . (6.14)
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6. The ∆ Coupled to the πN Channel
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Figure 6.2.: Different possibilities of incoming and outgoing ∆̃ states in isospin space.

In the intermediate region where there is a Ñ and a π, due to momentum conserva-
tion, we have

k′π =


ω′π
k′π sinθ′ cosφ′

k′π sinθ′ sinφ′

k′π cosθ′

 and k′
Ñ

=


ω′
Ñ
−k′π sinθ′ cosφ′

−k′π sinθ′ sinφ′

−k′π cosθ′

 . (6.15)

6.3.1. Input Vertex Form Factors

As stated before, in solving Eq. (6.7), eventually we obtain a complex eigenvalue. Tak-
ing a closer look at the propagator in Eq. (6.8) we notice that the integrand has a pole
for some ~k′′π > 0, namely, if m becomes larger than the πÑ threshold mÑ +mπ. As in the
preceding chapter, the eigenvalue equation will be solved via iteration, only now we
start with an arbitrary complex eigenvalue in the optical potential Eq. (6.8).
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6.4. Results and Discussion

To account for the extended structure at the πÑ ∆̃ vertices, again form factors from
different models are employed, namely from Refs. [MCP09], [PR05b], and [KNLS13]
which come with the following parametrizations:

FπÑ ∆̃

(
~k2
π

)
=

1

1 +
(
~kπ
Λ1

)2
+
(
~kπ
Λ2

)4 (RCQM, SL and PR Multipole), (6.16)

FπÑ ∆̃

(
~k2
π

)
=

(
Λ2

~k2
π +Λ2

)2

(KNLS), (6.17)

and
FπÑ ∆̃

(
~k2
π

)
= exp−

~k2
π/Λ

2
(PR Gauss). (6.18)

The different form factors are shown in Fig. 6.3 and the associated parameters occur-
ring in the form-factor parametrizations are given in Tab. 6.1 together with the πÑ ∆̃

coupling constants.

RCQM SL KNLS PR Gauss PR Multipole
f 2
πÑ ∆̃

4π 0.188 0.334 0.126 0.167 0.167
λ1 0.594 0.458 0.853
λ2 0.998 0.648 1.014
Λ 0.709 0.603

Table 6.1.: Coupling constants and parameters for the πÑ ∆̃ vertex form factors.

6.4. Results and Discussion

We now give the results for the one-π loop effects on the ∆ mass from our CC theory
using the πÑ ∆̃ vertex form factor models discussed above.

In Tab. 6.2 we have collected the results for the π dressing of the ∆̃ by coupling to an
explicit πÑ channel. The effects on the real part of the ∆ mass scatter between 27 MeV
and 103 MeV, depending on the model employed for the πÑ ∆̃ vertex. The smallest
value is obtained in case of the KNLS form factor, whose dependence on ~k2

π is similar
to the one of SL (see Fig. 6.3), but it comes with a much weaker πÑ ∆̃ coupling constant
(see Tab. 6.2). Although SL and KNLS start out with the same model, the latter one
is more advanced in the sense that more channels were taken into account and so the

coupling constant was reduced to less than half of its original value.
f 2
πÑ ∆̃

4π given by
KNLS compares well with the couplings given by the other models but the effect on the
mass is in comparison to the others much smaller due to the different ~k2

π dependence
of the form factor. The two parametrizations of the PR model reveal the largest effects
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6. The ∆ Coupled to the πN Channel
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Figure 6.3.: πÑ ∆̃ form factor parametrizations as functions of the three-momentum
squared from various models in the literature.

RCQM SL KNLS PR Gauss PR Multipole

mÑ 1067 1031 1037 1025 1051

Re[m∆] 1232 1232 1232 1232 1232

m
∆̃

1300 1290 1259 1321 1335

Re[m∆]−m
∆̃

-68 -58 -27 -89 -103

2 Im[m∆] = Γ 4 23 7 16 8

Γexp(∆→ πN ) ∼ 117

Table 6.2.: π loop effects on the ∆ mass m∆ from coupling to the πN channel. m
∆̃

and
mÑ are the bare ∆̃ and Ñ masses, respectively. The latter is the same as in
the π dressing of the Ñ in Ch. 4, cf. Tab. 4.2. All values given in MeV. The π
mass is assumed to be mπ = 139 MeV.

on the real part of the ∆ mass. The coupling is similar as in the other models but the

58



6.4. Results and Discussion

PR form factors differ among each other and in comparison to the others.
With regard to the ∆, the most interesting result concerns the resonance decay widths

Γ given in Tab. 6.2. As mentioned before, in solving the eigenvalue Eq. (6.7) for a
resonance above the decay threshold the mass eigenvalue m becomes complex. Two
times the imaginary part of the complex mass eigenvalue m yields the resonance decay
width, Γ = 2 Im m . The different values for Γ vary between 4 MeV and 23 MeV. They are
much smaller than the experimentally measured value of Γexp(∆→ πN ) ∼ 117 MeV. In
the CC approach the magnitude of the obtained resonance decay width depends on the
coupling strength to the decay channel and of course on the phase space. In calculating
the Γ values given in Tab. 6.2 we used as input the bare Ñ masses calculated in Ch. 4 and
presented in Tab. 4.2 and again quoted in Tab. 6.2. The values mÑ +mπ now determine
the thresholds, which vary between 1206 MeV for the RCQM and 1164 MeV for the
PR Gauss parametrization. The RCQM threshold is thus very close to the physical ∆
mass m∆ = 1232 MeV and so the decay width results in Γ = 4 MeV because of the small
phase space. Due to the comparatively large phase space in the PR Gauss model, Γ
assumes a value four times larger than the RCQM. The SL model comes along with a
similar threshold as the PR Gauss parametrization but its coupling to the decay channel
appears to be larger which obviously leads to a bigger decay width of Γ = 23 MeV.

Improvement

π

N~ ~
Δ Δ

Figure 6.4.: Pictorial representation of the first-order term of the optical potential with
assuming a physical N in the intermediate state.

As already mentioned above, within the CC approach the resulting decay widths are
depending essentially on two ingredients: the strength of the coupling to the decay
channel (due to the vertex form factors and corresponding coupling constants) and
the size of the phase space allowed by the decay threshold. For the results given in
Tab. 6.2 the ∆ decay goes to a bare N and a π. Consequently the decay threshold lies
too high and there is no chance to produce a realistic decay width. We may now assume
a physical N of mN = 939 MeV as a decay product. This situation then corresponds to
an optical potential as shown in Fig. 6.4. In this case we obtain the results quoted in
Tab. 6.3. We observe that the effects of the coupling to the πN channel on the real part
of the ∆ mass vary between 29 MeV and 114 MeV. This is not so much different from
the values given in Tab. 6.2. Since the decay threshold mN +mπ is now much lower
in all cases, namely 1078 MeV, the resulting resonance decay widths are considerably
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6. The ∆ Coupled to the πN Channel

RCQM SL KNLS PR Gauss PR Multipole

mN 939 939 939 939 939

Re[m∆] 1232 1232 1232 1232 1232

m
∆̃

1309 1288 1261 1328 1347

Re[m∆]−m
∆̃

-77 -56 -29 -96 -114

2 Im[m∆] = Γ 47 64 27 51 52

Γexp(∆→ πN ) ∼ 117

Table 6.3.: One-loop effects on the ∆ mass m from coupling to the πN channel, where
now a physical N is assumed in the intermediate state, according to Fig. 6.4.
All values are given in MeV. The π mass is assumed to be mπ = 139 MeV.

larger and vary between 27 MeV and 63 MeV. At least in the SL model, due to the large
coupling constant and the enlarged phase space half of the experimentally measured
resonance decay width has already been obtained.

Summary

In this chapter we have treated the ∆ resonance in our relativistic CC approach fore-
seeing a coupling to a πN channel. In this way we have produced the dressing effect by
one-π loops on the ∆ resonance energy and the strong ∆ decay width. We have consid-
ered two variants of this type of calculation, where the decay products are either a πÑ
or a πN . The dressing effects on the real part of the ∆ mass are not much affected by the
position of the decay threshold, they turn out to range between 27 MeV and 114 MeV
depending on the vertex form factor model employed. However, the sizes of the de-
cay widths are much enhanced in case of the lower threshold dictated by the πN exit
channel. Still the experimental value of Γ ∼ 117 MeV is not reached. This may appear
surprising as the ∆ width is to more than 99% governed by the πN decay. Obviously
the approach followed so far is either deficient and/or requires further ingredients. In
the following we shall first consider additional pionic contributions.
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7. The ∆ with Additional Pionic

Contributions

As stated above, the particular version of the CC approach considered in the previous
chapter is only the simplest way of including explicit π degrees of freedom into the
πN∆ system. Here we investigate the possible role of further π effects.

7.1. Additional ππÑ Channel

In analogy to Sec 5.1, we are interested, if an additional interaction-free ππÑ channel
will help to improve the results obtained in the previous chapter. Therefore we assume
a CC mass operator eigenvalue equation of the form:

M
∆̃

K 0
K† MÑ+π K
0 K† MÑ+π+π




∣∣∣ψ∆

〉∣∣∣ψN+π
〉∣∣∣ψN+π+π

〉
 =m


∣∣∣ψ∆

〉∣∣∣ψN+π
〉∣∣∣ψN+π+π

〉
 . (7.1)

It results in an equation analogous to Eq. (5.8) with only the incoming and outgoing Ñ
replaced by ∆̃:[

M
∆̃

+K(m−MÑ+π)−1K†

+ K(m−MÑ+π)−1K(m−MÑ+π+π)−1K†(m−MÑ+π)−1K†︸                                                                 ︷︷                                                                 ︸
 |ψ∆〉 =m|ψ∆〉. (7.2)

The optical-potential term marked by the brace is pictorially shown in first order in
Fig. 7.1. To solve Eq. (7.2) we proceed in the same iterative way as explained in Sec. 5.1.

7.1.1. Solution and Results

Kinematics

For the kinematics, beyond what is already specified in Ch. 5, Eq. (5.17)-(5.19), we need
in addition the four-momentum of the bare incoming and outgoing ∆ as rest:

k
∆̃

=


m

∆̃

0
0
0

 . (7.3)
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7. The ∆ with Additional Pionic Contributions

π π

N N N ΔΔ
~ ~~ ~~

Figure 7.1.: Pictorial representation of the first-order term in the optical potential of
two-π loop contributions according to Eq. (7.2)

The occurring vertex form factors and coupling constants are used as specified in the
previous chapters 4 and 6.

For the additional ππÑ channel now included, we arrive at the ∆ results given in
Tab. 7.1. It is immediately seen that the crossed-term two-π loops do not alter much
neither the dressed ∆ mass nor the decay width shown in Tab. 6.2. In practice the cor-
responding effects are negligible. This result parallels the one for the N case obtained
in Ch. 5.

RCQM SL KNLS PR Gauss PR Multipole

mÑ 1067 1031 1037 1025 1051

Re[m∆] 1232 1232 1232 1232 1232

m
∆̃

1302 1291 1260 1323 1337

Re[m∆]−m
∆̃

-70 -59 -28 -91 -105

2 Im[m∆] = Γ 5 26 8 17 8

Γexp(∆→ πN ) ∼ 117

Table 7.1.: Effects on the ∆ mass m from taking an additional ππÑ channel into ac-
count. The assumed masses for the bare Ñ in the intermediate state are the
same as in Tab. 4.2 and Tab. 6.2. All values are given in MeV. The π mass is
assumed to be mπ = 139 MeV.

7.2. Summary

In this chapter we have investigated dressing of the ∆ resonance in its most obvious
manner, namely, by coupling to the πN as well as ππN channels. Considering the fact
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7.2. Summary

that the ∆ decays almost exclusively (with a probability of > 99%) into πN already
coupling to a πN channel should have turned out as sufficient. This expectation is
obviously not met with a theory on the macroscopic level, if one employs form factor
inputs as existing in the literature.

In the next part we shall therefore develop a CC approach on the microscopic quark
level. It will allow us to produce the vertex form factors as well as the dressing effects
on the N and ∆ masses in a consistent manner.
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Part IV.

Coupled-Channels Theory on the

Quark Level
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8. {QQQ} System Coupled to π Channels

In the previous chapters we have considered π dressing of the N and ∆, where we have
used πÑÑ and πÑ ∆̃ vertex form factors from models in the literature. In particular we
calculated the effects due to π loop diagrams of the types shown in Figs. 4.2, 5.1, 5.5, 6.1
and 6.4.

In this part of the thesis we put the same kind of investigation on the quark level.
Thereby we shall construct a relativistic constituent-quark model with explicit cou-
pling to one-π channels. It will allow us to develop in a consistent manner both the
vertex form factors, including coupling constants, and the dressing effects on masses
of ground and excited states, here in particular of the N and the ∆. There will be no
longer a need to resort to form factor models foreign to our π dressing procedures.

8.1. Microscopic Mass Eigenvalue Equation

In order to study explicit π degrees of freedom in a microscopic model we consider an
eigenvalue equation coupling a bare cluster of three confined quarks to a channel with
an additional π: (

Mc̃l K
K† Mc̃l+π

)(
|ψcl〉
|ψcl+π〉

)
=m

(
|ψcl〉
|ψcl+π〉

)
. (8.1)

Here Mc̃l is the mass operator of the bare three-quark cluster, whereas Mc̃l+π is the
mass operator of the channel with the bare cluster plus one π without (final-state) π
interaction. K and K† are the operators that account for the πQQ coupling; they will be
identified with a proper Lagrangian density. Both |ψcl〉 and |ψcl+π〉 contain effects from
the π coupling.

Here we emphasize that in our model theπ couples directly to the constituent quarks,
as it is considered as the Goldstone boson resulting from the spontaneous breaking of
chiral symmetry in low-energy QCD, like the constituent quarks acquire their dynam-
ical mass. This is completely in line with so-called chiral models in the literature and
in particular with the GBE RCQM. The πQQ vertex is considered as pointlike.

After a Feshbach reduction eliminating the (c̃l+π)-channel we end up with the eigen-
value equation

Mc̃l |ψcl〉+K(m −Mc̃l+π)−1K†|ψcl〉 = m |ψcl〉 (8.2)

for the π-dressed QQQ cluster.
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8. {QQQ} System Coupled to π Channels

Mass Operators and Eigenstates

For the practical solution of Eq. (8.2), we need eigenstates of the bare-cluster mass
operator Mc̃l as well as Mc̃l+π. The former is defined as the sum of the mass operators
of three free quarks and a confinement potential

Mc̃l =MQQQ +Vconf , (8.3)

where Vconf will be of harmonic oscillator (h.o.) type; it is specified in detail in Sec. 8.2.1
below. Eigenstates and eigenvalues corresponding to Mc̃l are defined as

Mc̃l |v;nJΣ〉 =mc̃l |v;nJΣ〉 (8.4)

with n denoting the principal quantum number of the system, J the spin (total angular
momentum) and Σ its z-projection.

The mass operator of the second channel contains an additional (interaction-free) π
and is defined as

Mc̃l+π =Mc̃l +Mπ (8.5)

with corresponding eigenstates and eigenvalues from the equation

Mc̃l+π|v;nJΣ;~kπ〉 =
(
ωc̃l +ωπ

)
|v;nJΣ;~kπ〉 (8.6)

with ωc̃l =
√
m2
c̃l

+~k2
π the energy of the cluster and ωπ =

√
m2
π +~k2

π the π energy.

The completeness relations and normalization conditions for velocity states accord-
ing to the two mass operators in Eq. (8.3) and (8.5) are

1c̃l =
∑
n

∫
d3v

(2π)3v0

mc̃l
2

2
|v;nJΣ〉〈v;nJΣ|, (8.7)

〈v′;n′J ′Σ′ |v;nJΣ〉 = (2π)3v0δ3(~v ′ − ~v)
2

m2
c̃l

δn′nδJ ′JδΣ′Σ, (8.8)

1c̃l+π =
∑
n

∫
d3v

(2π)3v0

∫
d3kπ

(2π)32ωπ

(ωc̃l +ωπ)3

2ωc̃l
|v;nJΣ;~kπ〉〈v;nJΣ;~kπ|, (8.9)

〈v′;n′J ′Σ′;~k′π|v;nJΣ;~kπ〉

=(2π)3v0δ3(~v ′ − ~v)
2ωc̃l2ωπ

(ωc̃l +ωπ)3 (2π)3δ3(~k′π −~kπ)δn′nδJ ′JδΣ′Σ. (8.10)
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8.1. Microscopic Mass Eigenvalue Equation

In treating of the eigenvalue Eq. (8.2) we additionally need free QQQ and QQQ + π
velocity states with orthonormality relations as follows

1QQQ =
∑
µ1µ2µ3
τ1τ2τ3

∫
d3v

(2π)3v0

∫
d3k1

(2π)32ω1

∫
d3k2

(2π)32ω2

(ω1 +ω2 +ω3)3

2ω3

×|v;~k1µ1τ1,~k2µ2τ2,~k3µ3τ3〉〈v;~k1µ1τ1,~k2µ2τ2,~k3µ3τ3|, (8.11)

〈v′;~k′1µ
′
1τ
′
1,~k
′
2µ
′
2τ
′
2,~k
′
3µ
′
3τ
′
3|v;~k1µ1τ1,~k2µ2τ2,~k3µ3τ3〉

=(2π)3v0δ3(~v ′ − ~v)
2ω12ω22ω3

(ω1 +ω2 +ω3)3 (2π)3δ3(~k′1 −~k1)(2π)3δ3(~k′2 −~k2)

×δµ′1µ1
δµ′2µ2

δµ′3µ3
δτ ′1τ1

δτ ′2τ2
δτ ′3τ3

, (8.12)

where 1, 2, 3 indicate the three quarks and the sum of their three-momenta fulfill the
relation ~k1 +~k2 +~k3 = 0.

The states of the free QQQ plus the π system fulfill the following orthonormality
relations

1QQQ+π =
∑
µ1µ2µ3
τ1τ2τ3

∫
d3v

(2π)3v0

∫
d3k1

(2π)32ω1

∫
d3k2

(2π)32ω2

∫
d3kπ

(2π3)2ωπ

× (ω1 +ω2 +ω3 +ωπ)3

2ω3
(8.13)

×|v;~k1µ1τ1,~k2µ2τ2,~k3µ3τ3;~kπ〉〈v;~k1µ1τ1,~k2µ2τ2,~k3µ3τ3;~kπ|,

〈v′;~k′1µ
′
1τ
′
1,~k
′
2µ
′
2τ
′
2,~k
′
3µ
′
3τ
′
3;~k′π|v;~k1µ1τ1,~k2µ2τ2,~k3µ3τ3;~kπ〉

=(2π)3v0δ3(~v ′ − ~v)
2ω12ω22ω32ωπ

(ω1 +ω2 +ω3 +ωπ)3

×(2π)3δ3(~k′1 −~k1)(2π)3δ3(~k′2 −~k2)(2π)3δ3(~k′π −~kπ)

×δµ′1µ1
δµ′2µ2

δµ′3µ3
δτ ′1τ1

δτ ′2τ2
δτ ′3τ3

, (8.14)

where now ~k1 +~k2 +~k3 +~kπ = 0.
Now Eq. (8.2) can be represented with 〈v;nJΣ|, and inserting 1c̃l one obtains

〈v;nJΣ|Mc̃l |ψcl〉+ 〈v;nJΣ|K(m −Mc̃l+π)−1K†1c̃l |ψcl〉 = 〈v;nJΣ|m |ψcl〉, (8.15)

which finally leads to an eigenvalue equation of the form

〈v;nJΣ|Mc̃l |ψcl〉

+
∑
n

∫
d3v

(2π)3v0

mc̃l
2

2
〈v;nJΣ|K(m −Mc̃l+π)−1K†︸                 ︷︷                 ︸

Vopt

|v;nJΣ〉

× 〈v;nJΣ|ψcl〉 = 〈v;nJΣ|m |ψcl〉, (8.16)
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8. {QQQ} System Coupled to π Channels

where we have marked the optical potential with the brace.
In dealing with Eq. (8.16) we expand |ψcl〉 in h.o. eigenstates of Mc̃l as

|ψcl〉 =
∑
n

|v;nJΣ〉〈v;nJΣ|ψcl〉 =
∑
n

AnJΣ|v;nJΣ〉. (8.17)

8.2. Quark Wave Function

Next we discuss the N and ∆ wave functions ΨXSTC where X is taken for spatial, S for
the spin, T for the isospin and C for the color degrees of freedom. In general, baryon
wave functions are totally antisymmetric and the mentioned parts have to be combined
in a proper way.

All baryons are color singlets, i. e. the color part is totally antisymmetric, and there-
fore ΨXST has to be totally symmetric. In the following two subsections we will specify
the spatial and the spin-isospin parts of this totally symmetric three-quark wave func-
tion.

8.2.1. Harmonic-Oscillator Wave Function

Quarks have not been observed as free particles. They always appear confined. For
confinement we assume a h.o. potential between the quarks. Furthermore we restrict
ourselves to states with total orbital angular momentum L = 0.

With this assumptions the spatial O(3) part is symmetric. Therefore also the SU (6)
spin-isospin part must be symmetric. Its representaion is a 56plet. This 56plet contains
∆ with S = 3

2 and N with S = 1
2 . For the ground state with L = 0 and positive parity T

we find for the lowest mass states in the spectrum a decuplet and an octet:

10, JP =
3
2

+
; 8, JP =

1
2

+
. (8.18)

In the following we will choose for the spatial part of the ground state wave function
with LP = 0+

ψX = exp[−1
2
α2(~k2

1 +~k2
2 +~k2

3)]. (8.19)

8.2.2. Spin-Isospin Wave Function

Here we specify the spin-isospin part of ΨXST for the N and the ∆. Both consist of u
and d quarks only and their isospin functions are given in Tab. 8.1.

The N is a T = 1
2 particle, while the ∆ has isospin T = 3

2 . The isospin projections τ
run in unity steps from −T to T . T and τ are quoted in the third column of Tab. 8.1.

For the spin S and its z-projection µ an analogous table can be given, and the coupling
scheme is the same for quark spins and isospins. First the isospin (spin) of quark one
and two are coupled to an intermediate isospin (spin) s, which can assume the values
0 or 1, with corresponding projection τs (µs). Then the third quark is added to end up
with the total isospin (spin) T and corresponding z-projections τ .
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Baryon ΨF T , τ S/A

p 1√
2

(uud −udu) 1
2 , 1

2 A

p − 1√
6

(uud +udu − 2duu) 1
2 , 1

2 S

n 1√
2

(dud − ddu) 1
2 , −1

2 A

n 1√
6

(dud + ddu − 2udd) 1
2 , −1

2 S

∆++ uuu 3
2 , 3

2 S
∆+ 1√

3
(uud +udu + duu) 3

2 , 1
2 S

∆0 1√
3

(udd + dud + ddu) 3
2 , −1

2 S

∆− ddd 3
2 , −3

2 S

Table 8.1.: Isospin functions for N and ∆ corresponding to total isospin T and z-
projection τ with inherent symmetries.

As can be seen from Tab. 8.1 the isospin (spin) part for theN can either be symmetric
(S) or antisymmetric (A). In order to obtain a totally symmetric N spin-isospin wave
function we have to treat spin and isospin in the same manner. That is the reason why
in each one of the intermediate Clebsch-Gordan coefficients there appears the same
s, respectively. The symmetric and antisymmetric parts have to be combined in the
following way

1
√

2

∑
s

∑
µ1,µ2,µ3,µs
τ1,τ2,τ3,τs

C
sµs
1
2µ1

1
2µ2
C

1
2µN
1
2µ3sµs

Csτs1
2τ1

1
2τ2
C

1
2τN
1
2τ3sτs

, (8.20)

where the factor 1√
2

is the normalization due to summing over the intermediate s from
0 to 1.

To define the totally symmetric ∆ spin-isospin wave function the intermediate isospin
(spin) quantum number s has to be 1 to finally end up with the total isospin (spin) of 3

2
as is described by the following product of Clebsch-Gordan coefficients∑

µ1,µ2,µ3,µs
τ1,τ2,τ3,τs

C
sµs
1
2µ1

1
2µ2
C

3
2µ∆
1
2µ3sµs

Csτs1
2τ1

1
2τ2
C

3
2τ∆
1
2τ3sτs

. (8.21)

8.3. Microscopic Optical Potential

Inserting the completeness relations Eq. (8.11) and Eq. (8.13) into the optical potential
Vopt defined in the eigenvalue equation (8.16) one obtains

〈v;nJΣ|1̄QQQK1ivQQQ+π(m −Mc̃l+π)−11′′
c̃l+π

1′′′QQQ+πK
†1̄′QQQ|v

′;n′J ′Σ′〉, (8.22)

whose first-order terms can pictorially be represented as shown in Fig. 8.1.
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π

~
B

~
B

π

~
B

~
B

π

~
B

~
B

Figure 8.1.: Pictorial representation of the first-order term of the optical potential at the
quark level. The possibilities how the first Q on the l. h. s. can couple to
the ones on the r. h. s. are shown. Incoming and outgoing is a bare baryon
B̃ taken as a confined QQQ cluster. In the intermediate region a confined
QQQ cluster and a free π are propagating.

In treating this optical potential we have to deal with individual quark and π mo-
menta as well as their spins in different reference frames. The quantities referring to
the QQQ system are marked with a bar, the ones belonging to the QQQ+π system not.
The corresponding momenta and spins are related by Lorentz transformations. They
result in changes of the momentum dependencies and rotations of the spins. We work
in the point form of RQM, which allows to operate the latter in a simpler and more
transparent way as the angular-momentum operators are not affected by iterations (see
also Sec. 2.2 and references given there).

We now continue by inserting the full expressions for the completeness relations
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8.3. Microscopic Optical Potential

〈v;nJΣ|1̄QQQK1ivQQQ+π(m−Mc̃l+π)−11′′
c̃l+π

1′′′QQQ+πK
†1̄′QQQ|v

′;n′J ′Σ′〉

=
∑
µ̄1µ̄2µ̄3
τ̄q1τ̄q2τ̄q3

∫
d3v̄

(2π)3v̄0

∫
d3k̄1

(2π)32ω̄1

∫
d3k̄2

(2π)32ω̄2

(ω̄1 + ω̄2 + ω̄3)3

2ω̄3

×〈v;nJΣ|v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3〉

×
∑

µiv1 µ
iv
2 µ

iv
3

τ iv1 τ
iv
2 τ

iv
3

∫
d3viv

(2π)3viv0

∫
d3kiv1

(2π)32ωiv1

∫
d3kiv2

(2π)32ωiv2

∫
d3kivπ

(2π3)2ωivπ

×
(ωiv1 +ωiv2 +ωiv3 +ωivπ )3

2ωiv3

×〈v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3|K |viv ;~kivq1µ
iv
1 τ

iv
1 ,
~kiv2 µ

iv
2 τ

iv
2 ,
~kiv3 µ

iv
3 τ

iv
3 ;~kivπ 〉

×
∑
n′′

∫
d3v′′

(2π)3v′′0

∫
d3k′′π

(2π)32ω′′π

(ω′′
c̃l

+ω′′π)3

2ω′′
c̃l

×〈viv ;~kivq1µ
iv
1 τ

iv
1 ,
~kiv2 µ

iv
2 τ

iv
2 ,
~kiv3 µ

iv
3 τ

iv
3 ;~kivπ |(m−Mc̃l,π)−1|v′′;n′′J ′′Σ′′;k′′π〉

×
∑

µ′′′1 µ
′′′
2 µ
′′′
3

τ ′′′1 τ
′′′
2 τ
′′′
3

∫
d3v′′′

(2π)3v′′′0

∫
d3k′′′1

(2π)32ω′′′1

∫
d3k′′′2

(2π)32ω′′′2

∫
d3k′′′π

(2π3)2ω′′′π

×
(ω′′′1 +ω′′′2 +ω′′′3 +ω′′′π )3

2ω′′′3

×〈v′′;n′′J ′′Σ′′;k′′π |v′′′;~k′′′1 µ
′′′
1 τ
′′′
1 ,~k

′′′
2 µ
′′′
2 τ
′′′
2 ,~k

′′′
3 µ
′′′
3 τ
′′′
3 ;~k′′′π 〉

×
∑
µ̄′1µ̄

′
2µ̄
′
3

τ̄ ′1τ̄
′
2τ̄
′
3

∫
d3v̄′

(2π)3v̄′0

∫
d3k̄′1

(2π)32ω̄′1

∫
d3k̄′2

(2π)32ω̄′2

(ω̄′1 + ω̄′2 + ω̄′3)3

2ω̄′3

×〈v′′′;~k′′′1 µ
′′′
1 τ
′′′
1 ,~k

′′′
2 µ
′′′
2 τ
′′′
2 ,~k

′′′
3 µ
′′′
3 τ
′′′
3 ;~k′′′π |K†|v̄′;~̄k′1µ̄

′
1τ̄
′
1,~̄k
′
2µ̄
′
2τ̄
′
2,~̄k
′
3µ̄
′
3τ̄
′
3〉

×〈v̄′;~̄k′1µ̄
′
1τ̄
′
1,~̄k
′
2µ̄
′
2τ̄
′
2,~̄k
′
3µ̄
′
3τ̄
′
3|v
′;n′J ′Σ′〉. (8.23)

8.3.1. Matrix Elements

In this section we will take a closer look at all different kinds of matrix elements ap-
pearing in Eq. (8.23).

Vertex Matrix Elements:

The vertex matrix elements

73



8. {QQQ} System Coupled to π Channels

• 〈v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3|K |viv ;~kivq1µ
iv
1 τ

iv
1 ,
~kiv2 µ

iv
2 τ

iv
2 ,
~kiv3 µ

iv
3 τ

iv
3 ;~kivπ 〉,

(8.24)

• 〈v′′′;~k′′′1 µ
′′′
1 τ
′′′
1 ,~k

′′′
2 µ
′′′
2 τ
′′′
2 ,~k

′′′
3 µ
′′′
3 τ
′′′
3 ;~k′′′π |K†|v̄′;~̄k′1µ̄

′
1τ̄
′
1,~̄k
′
2µ̄
′
2τ̄
′
2,~̄k
′
3µ̄
′
3τ̄
′
3〉,

(8.25)

describe the coupling of the π to one of the quarks, while the other two quarks are left
as spectators, i. e. we assume a spectator approximation.

As in the previous chapters, the matrix elements containing the vertex operators K
and K† can be identified with matrix elements resulting from PV or PS Lagrangian
densities as given in Eq. (3.7), and so we have

〈v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3|K |viv ;~kivq1µ
iv
1 τ

iv
1 ,
~kiv2 µ

iv
2 τ

iv
2 ,
~kiv3 µ

iv
3 τ

iv
3 ;~kivπ 〉

=v̄0ivδ3(~v iv − ~̄v)
(2π)3√

(ωiv1 +ωiv2 +ωiv3 +ωivπ )3(ω̄1 + ω̄2 + ω̄3)3

×〈~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3|LP VπQQ(0)|~kiv1 µ
iv
1 τ

iv
1 ,
~kiv2 µ

iv
2 τ

iv
2 ,
~kiv3 µ

iv
3 τ

iv
3 ;~kivπ 〉. (8.26)

The PV Lagrangian density at the quark level is given as

LP VπQQ = −
fπQQ
2mQ

ψ̄(x)γµγ5~Tψ(x)∂µ · ~φ(x) (8.27)

with fπQQ the PV πQQ coupling constant, ψ̄(x) and ψ(x) the quark fields and ~φ(x)
the π field. ~T denotes the isospin operator, which is responsible for the correct isospin
treatment at the vertices. In the following we write instead of the product 〈Q|~T · ~φ(x)|Q〉
the abbreviation I(τi , τ ′i , τ

′
π). The appearing field expansions in the Lagrangian density

are given in Eqs. (4.22), (4.24) and (4.25), with the Dirac fields for the N replaced by
the ones for the quarks.

Following the procedure given in Sec. 4.2 the final expressions for the vertex matrix
elements read

〈~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3|LP VπQQ(0)|~kiv1 µ
iv
1 τ

iv
1 ,
~kiv2 µ

iv
2 τ

iv
2 ,
~kiv3 µ

iv
3 τ

iv
3 ;~kivπ 〉

=
fπQQ
2mQ

ū(~̄k1, µ̄1)γµγ5I(τ̄1, τ
iv
1 , τ

iv
π )u(~kiv1 ,µ

iv
1 ) · kivπµ

× (2π)32ωiv2 δ
3(~kiv2 − ~̄k2)δµiv2 µ̄2

δτ iv2 τ̄2
(2π)32ωiv3 δ

3(~kiv3 − ~̄k3)δµiv3 µ̄3
δτ iv3 τ̄3

(8.28)

and

〈~k′′′1 µ
′′′
1 τ
′′′
1 ,~k

′′′
2 µ
′′′
2 τ
′′′
2 ,~k

′′′
3 µ
′′′
3 τ
′′′
3 ;~k′′′π |LP V †πQQ(0)|~̄

′
k1µ̄
′
1, τ̄
′
1
~̄ ′k2µ̄

′
2τ̄
′
2,~̄
′
k3µ̄
′
3τ̄
′
3〉

=
fπQQ
2mQ

k
′′′†
πµ ū(~k′′′1 µ

′′′
1 )γµγ5I(τ̄

′
1, τ
′′′
1 , τ

′′′
π )u(~̄k′1, µ̄

′
1)

× (2π)32ω̄′2δ
3(~̄k′2 −~k

′′′
2 )δµ̄′2µ′′′2

δτ̄ ′2τ ′′′2
(2π)32ω̄′3δ

3(~̄k′3 −~k
′′′
3 )δµ̄′3µ′′′3

δτ̄ ′3τ ′′′3
, (8.29)
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where it is assumed that the π is coupling only to quark 1, while quarks 2 and 3 are
left as spectators. Since the πQQ interaction is taken as pointlike, we foresee no vertex
form factors.

8.3.2. Overlaps of States

Overlaps of Cluster States and Free Three-Particle States:

To obtain the final expressions for the overlaps of cluster states (of the confined QQQ
system) and free three-particle states

• 〈v;nJΣ|v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3〉,
(8.30)

• 〈v̄;~̄k′1µ̄
′
1τ̄
′
1,~̄k
′
2µ̄
′
2τ̄
′
2,~̄k
′
3µ̄
′
3τ̄
′
3|v
′;n′J ′Σ′〉,

(8.31)

we make use of the h.o. wave functions ψnJΣ(|~̄k1|, |~̄k2|),

〈v;nJΣ|v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3〉

=N v0δ3(~v − ~̄v)ψnJΣ(|~̄k1|, |~̄k2|)

×CJΣlmlSµS
C
SµS
sµs

1
2 µ̄3
C
T τS
sτs

1
2 τ̄3
C
sµs
1
2 µ̄1

1
2 µ̄2
Csτs1

2 τ̄1
1
2 τ̄2

(8.32)

and determine the normalization factorN . The appearing Clebsch-Gordan coefficients
are coupling the three individual quark spin and isospin components to total ones. De-
pending on the considered process an additional normalization factor has to be added.
This is due to the fact that the spin-isospin part of the wave function has to be fully
symmetric which has been discussed in detail in Sec. 8.2.2.

To obtainN , we start with the normalization condition for the cluster states

〈v′;n′J ′Σ′ |v;nJΣ〉 = 2v0δ3(~v − ~v ′) (2π)3

m2
c̃l

δnn′δJJ ′δΣΣ′ (8.33)

and insert the completeness relation for the QQQ state

1̄QQQ =
∑
µ̄1µ̄2µ̄3
τ̄1τ̄2τ̄3

∫
d3v̄

(2π)3v̄0

∫
d3k̄1

(2π)32ω̄1

∫
d3k̄2

(2π)32ω̄2

(ω̄1 + ω̄2 + ω̄3)3

2ω̄3

×|v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3〉〈v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3| (8.34)

leading to

〈v′;n′J ′Σ′ |1̄QQQ|v;nJΣ〉. (8.35)
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After some calculation the result forN reads

N =
(2π)6

mc̃l

√
2

√
2ω̄12ω̄22ω̄3

(ω̄1 + ω̄2 + ω̄3)3 (8.36)

and so the final expressions for the two overlaps are

〈v;nJΣ|v̄;~̄k1µ̄1τ̄1,~̄k2µ̄2τ̄2,~̄k3µ̄3τ̄3〉 = (2π)6
√

2
mc̃l

√
2ω̄12ω̄22ω̄3

(ω̄1 + ω̄2 + ω̄3)3 (8.37)

× v0δ3(~v − ~̄v)ψ∗nJΣ(|~̄k1|, |~̄k2|)
1
√

2
CJ,Σ∗lmlSmS

C
SmS∗
sms

1
2 µ̄3
C
SτS∗
sτs

1
2 τ̄3
Csms∗

1
2 µ̄1

1
2 µ̄2
Csτs∗1

2 τ̄1
1
2 τ̄2
,

〈v̄;~̄k′1µ̄
′
1τ̄
′
1,~̄k
′
2µ̄
′
2τ̄
′
2,~̄k
′
3µ̄
′
3τ̄
′
3|v
′;n′J ′Σ′〉 = (2π)6

√
2

m′
c̃l

√
2ω̄′12ω̄′22ω̄′3

(ω̄′1 + ω̄′2 + ω̄′3)3 (8.38)

× v′0δ
3(~v ′ − ~̄v′)ψn′J ′Σ′ (|~̄k′1|, |~̄k

′
2|)

1
√

2
CJ
′ ,Σ′

l′m′lS
′m′S
C
S ′m′S
s′m′s

1
2 µ̄
′
3
C
S ′τ ′S
s′τ ′s

1
2 τ̄
′
3
C
s′m′s
1
2 µ̄
′
1

1
2 µ̄
′
2
C
s′τ ′s
1
2 τ̄
′
1

1
2 τ̄
′
2
.

Overlaps of States with an Additional π:

To obtain the final expressions for the overlaps of cluster states and free three-particle
states with an additional π

• 〈viv ;~kiv1 µ
iv
1 τ

iv
1 ,
~kiv2 µ

iv
2 τ

iv
2 ,
~kiv3 µ

iv
3 τ

iv
3 ;~kivπ |v′′;n′′J ′′Σ′′;~k′′π〉,

(8.39)

• 〈v′′;n′′J ′′Σ′′;~k′′π |v′′′;~k′′′1 µ
′′′
1 τ
′′′
1 ,~k

′′′
2 µ
′′′
2 τ
′′′
2 ,~k

′′′
3 µ
′′′
3 τ
′′′
3 ;~k′′′π 〉

(8.40)

we again make use of the h.o. wave functions ψnJΣ(|~̄k1|, |~̄k2|) and determine the normal-
izationN ′

〈viv ;~kiv1 µ
iv
1 τ

iv
1 ,
~kiv2 µ

iv
2 τ

iv
2 ,
~kiv3 µ

iv
3 τ

iv
3 ;~kivπ |v′′;n′′J ′′Σ′′;~k′′π〉

=N ′
∑
µ̄1µ̄2µ̄3
τ̄1τ̄2τ̄3

(2π)6
√

2
m′′
c̃l

√
2ωiv1 2ωiv2 2ωiv3

(ωiv1 +ωiv2 +ωiv3 )3
v0ivδ3(~v ′′ − ~v iv)

× (2π)32ωivπ δ
3(~kivπ −~k′′π)

1
√

2
CJ
′′Σ′′

l′′m′′l S
′′m′′S

C
SmS

s′′m′′s
1
2 µ̄

iv
3
C
s′′m′′s
1
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Contrary to Eq. (8.32) there appear Wigner D-functions rotating the spin projections
given in the QQQ + π frame into the QQQ frame. Here it is important to notice that
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the appearing wave functions and the corresponding bared momenta ~̄ki refer to the
reference frame of the QQQ state, whereas the momenta ~ki belong to the QQQ + π
system. It is therefore nessesary to know the transformation of the momenta ki to k̄i . In
Ref. [Kra01] this transformation procedure is given for an arbitrary number of particles.
For our case the transformation reads

d3ki = d3k̄i
2ω12ω22ω3

2ω̄12ω̄22ω̄3

(2ω̄1 + 2ω̄2 + 2ω̄3)
(2ω1 + 2ω2 + 2ω3)

. (8.42)

In analogy to the previous discussion we start with the normalization condition of
eigenstates of Mcl+π
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where the completeness relation of the eigenstates of the free mass operator MQQQ+π,
Eq. (8.13), has to be inserted

〈v′′;n′′J ′′Σ′′;~k′′π |1QQQ+π|v′′′;n′′′J ′′′Σ′′′;~k′′′π 〉. (8.44)

This leads to the final expression
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Using the latter, we finally express the overlaps as
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and

〈v′′;n′′J ′′Σ′′;~k′′π |v′′′;~k′′′1 µ
′′′
1 τ
′′′
1 ,~k

′′′
2 µ
′′′
2 τ
′′′
2 ,~k

′′′
3 µ
′′′
3 τ
′′′
3 ;~k′′′π 〉

=
∑

µ̄′′′1 ,µ̄
′′′
2 ,µ̄

′′′
3

√√
2ω̄′′

c̃l

(ω′′π +ω′′
c̃l

)3

√
ω′′′1 +ω′′′2 +ω′′′3

(ω′′′1 +ω′′′2 +ω′′′3 +ω′′′π )3

√
2ω̄′′′1 2ω̄′′′2 2ω̄′′′3

(ω̄′′′1 + ω̄′′′2 + ω̄′′′3 )

× (2π)6v0′′′δ3(~v ′′ − ~v ′′′)(2π)32ω′′′π δ
3(~k′′′π −~k′′π)

× 1
√

2
CJ
′′Σ′′∗
l′′m′′l S

′′m′′S
C
S ′′m′′S ∗
s′′m′′s

1
2 µ̄
′′′
3
C
s′′m′′s ∗
1
2 µ̄
′′′
1

1
2 µ̄
′′′
2
C
S ′′τ ′′S ∗
s′′τ ′′s

1
2 τ̄
′′′
3
C
s′′τ ′′s ∗
1
2 τ̄
′′′
1

1
2 τ̄
′′′
2

×D
1
2 ∗
µ′′′1 µ̄

′′′
1
D

1
2 ∗
µ′′′2 µ̄

′′′
2
D

1
2 ∗
µ′′′3 µ̄

′′′
3
ψ∗n′′J ′′Σ′′ (|~̄k

′′′
1 |, |~̄k

′′′
2 |). (8.47)

8.4. Final Optical Potential

Inserting all the detailed expressions obtained above into Eq. (8.23) the optical poten-
tial at the quark level finally reads
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We note again that the calculation was done within the point-form spectator model
(PFSM). Within this model it is assumed that the π couples to one quark, while the
others are left as spectators. For symmetry reasons we have to multiply each vertex
with a factor 3 according to the three possibilities of the π exchange in Fig. 8.1. This
leads to the factor 6 in Eq. (8.48) above.

8.5. Strong Vertex Form Factors

The optical potential in Eq. (8.48) derived along the microscopic CC approach allows
us to access various πB̃B̃ vertex form factors, if we compare it with the corresponding
expression on the macroscopic level:

〈B̃|Vopt |B̃′〉 =
f 2
πB̃B̃

4π

∫
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2ω′′π2ω′′
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−ω′′π)−1FπB̃′B̃′′ (|~k

′′
π |)〈B̃′′ ,π :~k′′π | L†πB̃B̃(0) | B̃′〉. (8.49)

This expression is just a generalization of the optical potential as in Eq. (4.17), where
now the vertex operator K has already been identified with the ones from the La-
grangian density, Eq. (3.7), and the coupling constants as well as vertex form factors
have been written out explicitly.

Assuming Ñ , ∆̃ and π degrees of freedom we can specifically deduce from a micro-
scopic theory the vertex form factors FπÑÑ and FπÑ ∆̃

as employed in Part III in investi-
gating the N and ∆ with explicit pions on the hadronic level. However, in addition we
have now access to the vertex form factors Fπ∆̃Ñ as well as Fπ∆̃∆̃. In the following we
give their explicit expressions by comparing Eqs. (8.49) and (8.48).
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8.5.1. Strong πÑÑ Vertex Form Factor

We start with the expression of the πÑÑ vertex form factor FπÑÑ according to Fig. 8.2

Figure 8.2.: Pictorial representation of the πÑÑ vertex.

The vertex form factor FπÑÑ follows from comparing the expression (8.48) for an
incoming and outgoing Ñ with Eq. (8.49):
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The factor 3 in the beginning of Eq. (8.50) is due to our assumption of the PFSM. The
factor 2 in the denominator appears due to the normalization of the Clebsch-Gordan
coefficients, as in Eq. (8.20).

In Eq. (8.50) there occur two three-dimensional integrations over spectator-quark
momenta in the kinematical factors, the three-quark wave functions, the spinor prod-
ucts, and Wigner-D functions. In the last line of Eq. (8.50) there appears the macro-
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scopic spinor structure, which is left from the comparison of Eq. (8.48) with Eq. (8.49)
for the Ñ case. It stems from the Lagrangian density for the πÑÑ system on the
hadronic level. We note that the same type of PV coupling is also used on the quark
level as evident from Eq. (8.50).

8.5.2. Strong πÑ ∆̃ Vertex Form Factor

In the same way we proceed with the strong form factor for the πÑ ∆̃ vertex. Here a ∆

is incoming and in the intermediate state the N is propagating together with the π and
the dynamics is governed by the Lagrangian density given in Eq. (6.12).

Figure 8.3.: Pictorial representation of the πÑ ∆̃ vertex.

The final analytical function of the πÑ ∆̃ vertex form factor according to the vertex
shown in Fig. 8.3 reads:
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It is of similar form as the πÑÑ form factor given in Eq. (8.50). However, instead of the
2 in the denominator there appears a

√
2 due the normalization of the Clebsch-Gordan

coefficients, Eq. (8.20). The term in the last line now remains from the πÑ ∆̃ Lagrangian
on the hadronic level, while the πQQ coupling is of PV type as in Eq. (8.50).

8.5.3. Strong π∆̃Ñ Vertex Form Factor

The strong form factor for the π∆̃Ñ vertex is extracted just in the same manner only an
incoming Ñ and an intermediate state ∆̃ appears together with the π. The dynamics is
now governed by the Hermitian conjugate of the Lagrangian density in Eq. (6.12).

Figure 8.4.: Pictorial representation of the π∆̃Ñ vertex.

The final analytical expression for the strong π∆̃Ñ vertex form factor according to
Fig. 8.4 reads
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Again, there appears the
√

2 in the denominator due to normalization of the Clebsch-
Gordan coefficients. The term in the last line stems from the π∆̃Ñ coupling at hadronic
level, while in the πQQ case PV type coupling has been used.

8.5.4. Strong π∆̃ ∆̃ Vertex Form Factor

To extract the strong form factor for the π∆̃ ∆̃ vertex, the Lagrangian density

Lπ∆̃∆̃ =
fπ∆̃∆̃
m

∆̃

εµναλψ̄µT a(Dαψν)Dabλ φ
b (8.53)

proposed in Ref. [LMCPV12] is used. fπ∆̃∆̃ is the π∆̃∆̃ coupling constant, φb is denot-
ing the π-field coupling to the two ∆̃ Rarita-Schwinger fields ψ̄µ and ψν . The isospin
operator T a accounts for the correct isospin behavior at the vertex.

Using the general formula Eq. (8.49) for the π∆̃ ∆̃ optical potential

〈∆̃|Vopt |∆̃′〉 =
f 2
π∆̃ ∆̃

m2
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∫
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. (8.54)

and comparing with the corresponding expression on the microscopic level (8.48) we
arrive at the π∆̃∆̃ vertex form factors as diagrammatically represented in Fig. 8.5:

Figure 8.5.: Pictorial representation of the π∆̃∆̃ vertex.
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The expression for the π∆̃∆̃ form factor is again very similar to the ones presented
formerly, only that the normalization factor for the Clebsch- Gordan coefficients is now
1. A PV type coupling is used for the πQQ coupling and the π∆̃∆̃ one is given in
Eq. (8.53).

8.6. Kinematical Considerations for the Vertex Form Factors

on the Microscopic Level

The four-momentum of the two spectator quarks in spherical coordinates is written as

k̄qi =


√
~̄k2
qi +m2

qi
k̄qi sinθi cosφi
k̄qi sinθi sinφi
k̄qi cosθi

 , (8.56)

where i = 1,2. The bar denotes particles defined in the reference frame of the three-
particle system shown in the outside boxes in Fig. 8.6. There the following relation
holds

~̄kq1
+ ~̄kq2

+ ~̄kq3
= 0. (8.57)

Particles defined in the four-particle reference frame corresponding to the inner box of
Fig. 8.6 fulfill the following relation

~k′q1
+~k′q2

+~k′q3
+~k′π = 0, (8.58)
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8.6. Kinematical Considerations for the Vertex Form Factors on the Microscopic Level

Figure 8.6.: Various three-momenta at an interaction vertex referring to different refer-
ence frames.

where k′π is defined as

k′π =


√
~k′2π +m2

π

k′π sinθ′ cosφ′

k′π sinθ′ sinπ′

k′π cosθ′

 . (8.59)

Assuming a spectator model for the interaction with the π the individual momenta of
the spectator quarks are connected by

~̄kq2
=~k′q2

, and ~̄kq3
=~k′q3

(8.60)

Accordingly, k′q2
and k′q3

have to be boosted from the reference frame of four-particle
system to the three-particle one via an inverse Lorentz boost, see Eq. (2.13)

k̄′qi = B(−v′)k′qi (8.61)

with i = 2,3. ~̄k′q1
can then be obtained via the relation:

~̄k′q1
+ ~̄k′q2

+ ~̄k′q3
= 0. (8.62)

With these relations we have defined the kinematics.
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9. Vertex From Factors and Masses from

the Microscopic CC Approach

We are now ready to perform the calculation of the vertex form factors and π dressed
masses on the microscopic quark level. We begin with specifying the input with regard
to the πQ dynamics and then proceed with the treatment of theQQQ+π system on the
microscopic level.

9.1. πQ Dynamics

There are three ingredients in the optical potential Eq. (8.48) that have to be fixed,
before we start with treating the eigenvalue equation (8.16). The first one is the con-
stituent mass of the u and d quarks. In order to be consistent with the GBE RCQM of
the Graz group [GPVW98, GPP+98] we take it to be mQ = 340 MeV, which may also be
considered as a canonical value for the dynamical mass of the light quarks.

The second one is the parameter α in the h.o. wave function (8.19). It is determined

by the strength of the confinement. We fix it to α = 3.66
(

GeV
c

)−2
.

Finally the third ingredient is the strength of the πQQ coupling in the PV Lagrangian
density as appearing in Eq. (8.49). Its value may be related to the phenomenological
πNN coupling constant via the Goldberger Traiman relation (see, e. g., Ref. [GPP+98]).

It may thus vary in a range of 0.028 ≤ f 2
πQQ

4π ≤ 0.05. In the calculation we took the

value
f 2
πQQ

4π = 0.037, which in our setting is consistent with a πÑÑ coupling constant
f 2
πÑÑ
4π = 0.071, i. e. close to the phenomenological value of 0.08 [EW88]. We note that

the values of these three parameters follow from educated guesses. They are partic-
ularly chosen such that the size of the πQQ coupling together with the fall-off of the
h.o. wave function leads to the correct splitting of the physical N and ∆ masses and
πÑÑ as well as πÑ ∆̃ vertex form factors, whose momentum dependences resemble
phenomenological ones.

9.2. Solution of the Microscopic CC Problem

For the solution of the microscopic {QQQ} system coupled to pion channels we proceed
in the way as described here below.
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9. Vertex From Factors and Masses from the Microscopic CC Approach

Nucleon
We start out form an arbitrary value for the bare N mass mÑ (optimally of the size of
∼ 1070 MeV, like in case of the GBE RCQM in Ch. 4, cf. Tab. 4.2) and calculate the ver-
tex form factor FπÑÑ after Eq. (8.50). The resulting πÑÑ form factor is then employed
in the eigenvalue equation (4.16) to obtain the physical N mass mN = 939 MeV and a
corresponding bare N mass mh

Ñ
on the hadronic level. The latter value is then used to

produce the next iteration to the vertex form factor FπÑÑ . This process is continued
until the bare N input mass mÑ coincides with mh

Ñ
.

∆

Once we have determined the bare N mass mÑ and the physical N mass mN , we may
proceed to the ∆ case. Again we start with an arbitrary bare ∆ mass m

∆̃
to calculate

the vertex form factors FπÑ ∆̃
after Eq. (8.52), where the bare N mass mÑ is used as

determined above. The resulting πÑ ∆̃ form factor is then employed in the eigenvalue
equation (6.7) to obtain the physical ∆ mass m∆ and the corresponding bare ∆ mass mh

∆̃
on the hadronic level. The latter value is then used to produce the next iteration to the
vertex form factor FπÑ ∆̃

. Again the process is continued until m
∆̃

and mh
∆̃

coincide.
Up to now the vertex form factors FπÑÑ and FÑ ∆̃

are fixed and the bare and dressed
N and ∆ masses are known.
Fπ∆̃Ñ and Fπ∆̃∆̃ Vertex From Factors

Now, when we have determined the πÑÑ and the πÑ ∆̃ form factors as well as the N
and ∆ bare and physical masses, also the Fπ∆̃Ñ and Fπ∆̃∆̃ form factors according to the
diagrams in Figs. 8.4 and 8.5 from Eqs. (8.52) and (8.55) can be obtained, respectively.

We emphasize that by following the procedure as described here, we have consis-
tently obtained, starting from a microscopic CC theory, the various bare vertex form
factors FπB̃B̃ for the N and the ∆ as well as the dressing effects on their masses. The
pertinent results are presented and discussed in the following sections.

9.3. Results for the N

This section contains the results for the bare vertex form factor FπÑÑ , including the
πÑÑ coupling constant, as well as the consistent evaluation of the bare and π-dressed
N masses.

The vertex form factor as extracted via Eq. (8.50) depends on the three-momentum
|~kπ| and we obtain it numerically. The resulting data are shown in Fig. 9.1. In order to
ease the practical use of this form factor we parametrize it according to the following
multipole formula

FπÑÑ
(
|~kπ|

)
=

a

1 +
(
~kπ
Λ1

)2
+
(
~kπ
Λ2

)4 , (9.1)

where a is a parameter reflecting its size at |~kπ| = 0 and Λ1 as well as Λ2 are so-called
cut-off parameters. Normalizing the form factors to 1 at |~kπ| = 0 yields the bare πÑÑ
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9.3. Results for the N
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Figure 9.1.: Bare πÑÑ form factor resulting from the CC approach at the microscopic
quark level together with its parametrization according to Eq. (9.1).

coupling constant. The pertinent parameters are listed in Tab. 9.1.

a 1.393
f 2
πÑÑ
4π 0.071
λ1 0.632
λ2 0.735

Table 9.1.: Parameters of the bare πÑÑ form factor fitted with Eq. (9.1).

In Fig. 9.2 we compare our bare FπÑÑ with the form-factor models already consid-
ered in Ch. 4. They are now plotted as functions of ~k2

π. Apparently, the CC form
factor as well as the corresponding coupling constant compare well with the RCQM,
the SL and the KNLS ones. However, the form factor of both PR parametrizations are
in comparison decreasing way too slowly and their coupling constant is almost 5 times
smaller.

Finally, we show in Tab. 9.3 the effect on theN mass by taking the CC form factor into
account. We obtain a reasonable bare mass that is only slightly higher than the other
ones. Consequently the extracted CC form factor leads to a similar result in taking
one-π loop effects into account.
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RCQM

SL

KNLS

PR Gauss

PR Multipole

CC

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

k

π
2
[GeV2]

ℱ
π
N~
N~
(k

π
2
)

πN
˜
N
˜
Form Factor

Figure 9.2.: CC πÑÑ form factor compared to other models used before.

RCQM SL KNLS PR Gauss PR Multipole CC
f 2
πÑÑ
4π 0.0691 0.08 0.08 0.013 0.013 0.071
λ1 0.451 0.453 0.945 0.632
λ2 0.931 0.641 1.102 0.735
Λ 0.656 0.665

Table 9.2.: Coupling constants and parameters for the πÑÑ vertex form factors accord-
ing to different models in the literature compared to the CC one.

9.4. Results for the ∆

This section contains results for the bare πÑ ∆̃ form factor, the πÑ ∆̃ coupling constant
as well as the bare and π-dressed ∆ masses. We first show the numerical data of the
bare πÑ ∆̃ form factor in Fig. 9.3 together with its parametrization after Eq. (9.1), whose
parameters are quoted in Tab. 9.4.

In Fig. 9.4 we compare our πÑ ∆̃ form factor with the form factor models already
considered in Ch. 6 .

We again observe that the CC form factor is quite similar to the RCQM one, where

90



9.4. Results for the ∆

RCQM SL KNLS PR Gauss PR Multipole CC
mN 939 939 939 939 939 939
mÑ 1067 1031 1037 1025 1051 1096
mN −mÑ -128 -92 -98 -86 -112 -157

Table 9.3.: π loop effects on the nucleon massmN from coupling to the πN channel (mÑ
being the bare mass and mN the dressed (physical) one). All values given in
MeV. The π mass is always assumed to be mπ=139 MeV.

Data points
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Figure 9.3.: Bare πÑ ∆̃ form factor resulting from the CC approach at the microscopic
quark level together with its parametrization according to Eq. (9.1).

a 2.547
f 2
πÑ ∆̃

4π 0.239
λ1 0.72
λ2 0.784

Table 9.4.: Parameters of the bare πÑ ∆̃ form factor fitted with Eq. (9.1).

the two fall more or less between the SL respectively KNLS and PR models.
Next we consider the π-dressing effect on the ∆ mass, see Tab. 9.6, where also a

comparison is given with the other models. Due to the relatively high bare N mass of
1096 MeV the threshold mπ +mÑ = 1235 MeV and thus lies above the real part of the
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Figure 9.4.: CC πÑ ∆̃ form factor compared to other models used before.

RCQM SL KNLS PR Gauss PR Multipole CC
f 2
πÑ ∆̃

4π 0.188 0.334 0.126 0.167 0.167 0.239
λ1 0.594 0.458 0.853 0.72
λ2 0.998 0.648 1.014 0.784
Λ 0.709 0.603

Table 9.5.: Coupling constants and parameters for the πÑ ∆̃ vertex form factors accord-
ing to different models in the literature compared to the CC one.

∆ mass, preventing its decay according to the diagram in Fig. 6.1.

The dressing effect on the N and ∆ masses depends among others on the size of

the πQQ coupling. Its influence is shown in Fig. 9.5. When the
f 2
πQQ

4π is turned on
from 0 to the value of 0.037, marked by the vertical blue line, used in our practical
calculation the N and ∆ masses result as the physical ones. However, the threshold for
the ∆ → πÑ decay shown by the horizontal dashed line, happens to be above the ∆

mass of 1232 MeV.

92



9.4. Results for the ∆

RCQM SL KNLS PR Gauss PR Multipole CC

mÑ 1067 1031 1037 1025 1051 1096

Re[m∆] 1232 1232 1232 1232 1232 1232

m
∆̃

1300 1290 1259 1321 1335 1309

Re[m∆]−m
∆̃

-68 -58 -27 -89 -103 -77

2 Im[m∆] = Γ 4 23 7 16 8 0

Γexp(∆→ πN ) ∼ 117

Table 9.6.: π loop effects on the ∆ mass m∆ from coupling to the πN channel. m
∆̃

and
mÑ are the bare ∆̃ and Ñ masses, respectively. The latter is the same as in
the π-dressing of the Ñ in Ch. 4, cf. Tab. 4.2. All values given in MeV. The
π mass is assumed to be mπ = 139 MeV.

9.4.1. Improved Description of the ∆→ πN Decay

A more realistic description of the ∆→ πN decay is achieved according to the diagram
in Fig. 6.4, i. e. when the decay products are the π and a physicalN . The corresponding
results are given in Tab. 9.7.

RCQM SL KNLS PR Gauss PR Multipole CC

mN 939 939 939 939 939 939

Re[m∆] 1232 1232 1232 1232 1232 1232

m
∆̃

1309 1288 1261 1329 1347 1327

Re[m∆]−m
∆̃

-77 -56 -29 -96 -115 -95

2 Im[m∆] = Γ 47 64 27 52 52 67

Γexp(∆→ πN ) ∼ 117

Table 9.7.: π loop effects on the ∆ mass m∆ from coupling to the πN channel. m
∆̃

and
mN are the bare ∆̃ and the physical N masses, respectively. All values given
in MeV. The π mass is assumed to be mπ = 139 MeV.

If one now compares Tab. 9.6 to Tab. 9.7 one can immediately see the consequences
on the decay width by lowering the decay threshold to (mπ +mN ). Now the obtained
decay width is also finite for the CC case, in fact it is already half of the experimen-
tally measured value. In Tab. 9.6 the dressing effect on the bare ∆ masses was between
27 MeV for the KNLS parametrization and 103 MeV for the PR multipole parametriza-
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Figure 9.5.: Dependence of the N and ∆ masses on πQQ coupling constant using the
CC input. The horizontal dashed (blue) line marks the decay threshold.
The vertical (blue) line indicates the size of the πQQ coupling constant
used in our model.

tion, respectively. Now from Tab. 9.7 we observe that this range remains practically
unaltered, namely between 29 MeV for the KNLS parametrization and 115 MeV for the
PR multipole parametrisation. Therefore lowering the threshold seems to mostly affect
the imaginary part of the eigenvalue and its real part is barely changed.

As in the previous discussion, the mass eigenvalues can again be plotted against the
πQQ coupling, see Fig. 9.6. Now the decay threshold is lowered to 1078 MeV indicated
by the horizontal dashed line. Thus the ∆(1232) can decay into πN and the obtained
decay width for the process ∆(1232)→ πN is indicated by the band between the highest
and lowest red line, the line in the middle specifying the ∆ mass. If the πQQ coupling is
zero, the decay width is zero and as the coupling is turned on, the decay width becomes
larger until the coupling becomes too large and finally, when the decay threshold is
reached, the decay width is vanishing again.

Further Improvement in Describing the ∆→ πN Decay

Now one can argue that in addition to using the dressed (physical) N mass in the in-
termediate state one should also use a dressed coupling constant instead of the bare
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Figure 9.6.: Mass dependence on πQQ coupling constant. Same description as in
Fig. 9.5. The decay width of the ∆ is shown by the breadth of the red band
(see also the text).

one. In Ref. [SL96] it is found that the dressed coupling constant, fπN∆, is 1.3 times
the bare one: fπN∆ = 1.3 fπÑ ∆̃

. Using this result we may now also assume the dressed
coupling constants 1.3 times larger than the bare ones. The corresponding results for
bare masses and decay widths are given in Tab. 9.8. If one compares Tab. 9.8 with
Tab. 9.7 one recognizes that now the dressing effect on both the real part and on the
imaginary part of the ∆ mass eigenvalue is increased. The experimental value for the
resonance decay width is well reached by the CC parametrization and the results for Γ
are also much enhanced in the other cases. The dressing effects for the KNLS model re-
mains still small, because the πÑ ∆̃ coupling constant is small from the very beginning
(cf. Tab. 9.5).

As in the previous discussions, the mass eigenvalues can again be plotted against the
πQQ coupling, see Fig. 9.7. The threshold is the same as before but the coupling to the
decay channel is 1.3 times larger. Consequently, the decay width, indicated by the band
between the highest and lowest red line, is larger as compared to the one in Fig. 9.6.

At the assumed πQQ coupling of
f 2
πQQ

4π = 0.037, indicated by the vertical blue line, the
experimentally measured ∆ decay width Γ ∼ 117 MeV is obtained. Again, when the
coupling becomes too strong and consequently the decay threshold is reached, the de-
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cay width is vanishing.
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Figure 9.7.: Mass dependence on πQQ coupling constant. Same description as in
Fig. 9.5. The decay width of the ∆ is shown by the breadth of the red band
(see also the text). Now fπN∆ = 1.3fπÑ ∆̃

is used.

9.5. Fπ∆̃Ñ and Fπ∆̃∆̃ Vertex Form Factors

Finally we present the results for the bare Fπ∆̃Ñ and Fπ∆̃∆̃ vertex form facotrs defined
in Eqs. (8.52) and (8.55), respectively. The numerical data of the Fπ∆̃Ñ are shown in
Fig. 9.8 together with the parametrization after Eq. (9.1). The correspronding parame-
ters are collected in Tab. 9.9.

It is interesting to compare Fπ∆̃Ñ to the FπÑ ∆̃
form factor from Sec. 9.4 above, see

Fig. 9.9. Obviously neither the bare coupling constants nor the momentum depen-
dences of the bare form factors are the same for π∆̃Ñ and πÑ ∆̃ (cf. also Tabs. 9.9 and
9.4). This is a direct consequence of the definitions in Eqs. (8.52) and (8.55).

The Fπ∆̃∆̃ form factor is plotted in Fig. 9.10 together with its parameterization after
Eq. (9.1). The corresponding parameters are quoted in Tab. 9.10.

We compare theπ∆̃∆̃ form factor extracted in the CC model to the KNLS parametriza-
tion in Fig. 9.11 and they agree very well. However, the coupling constants differ a
lot. The CC one is about a factor six higher than the KNLS one as can be seen in
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RCQM SL KNLS PR Gauss PR Multipole CC

mN 939 939 939 939 939 939

Re[m∆] 1232 1232 1232 1232 1232 1232

m
∆̃

1356 1319 1279 1387 1418 1381

Re[m∆]−m
∆̃

-124 -87 -47 -155 -186 -149

2 Im[m∆] = Γ 83 106 45 94 97 118

Γexp(∆→ πN ) ∼ 117

Table 9.8.: π loop effects on the ∆ mass m∆ from coupling to the πN channel where
dressed coupling constants, fπN∆ = 1.3 fπÑ ∆̃

, have been used. m
∆̃

and mN
are the bare ∆̃ and physical N masses, respectively. All values given in MeV.
The π mass is assumed to be mπ = 139 MeV.
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Figure 9.8.: Bare π∆̃Ñ form factor resulting from the CC approach at the microscopic
quark level together with its parametrization according to Eq. (9.1).

Tab. 9.10. The small coupling constant of the KNLS model obviously comes about,
because therein many more coupled channels are taken into account.
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9. Vertex From Factors and Masses from the Microscopic CC Approach

a 2.25
f 2
π∆̃Ñ
4π 0.186
λ1 0.581
λ2 0.66

Table 9.9.: Parameters of the bare CC π∆̃Ñ form factor fitted with Eq. (9.1).
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Figure 9.9.: Comparison of FπÑ ∆̃
and Fπ∆̃Ñ vertex form factors from the CC approach.

RCQM KNLS
a 1.586

f 2
π∆̃ ∆̃

4π 0.093 0.014
λ1 0.57
λ2 0.656
Λ 0.703

Table 9.10.: Parameters of the bare CC π∆̃ ∆̃ form factor fitted with Eq. (9.1). For
reasons of comparison, the parameters of the KNLS parametrization,
Eq. (4.56) are given here too.
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9.5. Fπ∆̃Ñ and Fπ∆̃∆̃ Vertex Form Factors
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Figure 9.10.: Bare π∆̃ ∆̃ form factor resulting from the CC approach at the microscopic
quark level together with its parametrization according to Eq. (9.1).
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Figure 9.11.: Comparison of the Fπ∆̃ ∆̃
form factor extracted in the CC approach and

the Fπ∆̃ ∆̃
form factor obtained in the phenomenological KNLS model.
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In this thesis we have presented a coupled-channels aproach for baryon ground and
resonant states within the point form of relativistic quantum mechanics. It has been
applied in particular to the N and ∆ states with π degrees of freedom.

The CC treatment makes it feasible to take mesonic effects in baryon states explic-
itly into account. The theory relies on a Poincaré-invariant CC mass operator, which
provides for the coupling to channels with additional mesons. A Feshbach reduction
is applied to reduce the CC eigenvalue equation in matrix form to finally end up with
a non-Hermitian problem. The corresponding eigenvalue equation is no longer lin-
ear, since the eigenvalue appears also in the optical potential. The latter describes the
meson dressing of the baryon.

This type of approach had already been applied before to a simplified (spinless)
model for mesons with promising results [Kle10]. Here we were interested, if coupling
mesonic channels to baryons led also to a more realistic description of three-quark
ground and resonant states.

First, the approach has been applied at the hadronic level to the N and the ∆. There,
the CC mass-operator eigenvalue equations have been set up, such that a bare baryon,
either a N or a ∆, is explicitly coupled to an interaction-free πN channel. For the
coupling to the latter a pseudovector Lagrangian density has been applied. To take
the microscopic structure at the vertex into account, strong vertex form factors have
been employed from different models in the literature. The eigenvalue equations have
then been solved to produce the bare and the dressed (physical) masses of the N and ∆.
These quantities result in agreement with phenomenology.

The bare masses of the N turned out to lie about 100 MeV higher than the dressed
masses more or less for all form-factor models considered. The dressing effects on the
real part of the ∆ mass vary in a broader range. A finite ∆ decay width is naturally
produced. Since the ∆ is to almost 100% decaying into a πN system, we assumed its
CC mass operator to consist of a ∆ channel and a πN channel only. In the first instance,
when we considered a bareN in the exit channel the decay width resulted unreasonably
small, because of the threshold mπ +mÑ lying much too high due to the relatively big
mass of the bare N .

In a next step we have thus replaced the bareN masses by the physical one and so the
threshold has been lowered. Thereby the bare ∆ masses have only been slightly altered,
but already half of the experimentally measured decay width has been obtained. In
this way we have achieved a more realistic description of the ∆ decaying into πN .

In addition, π degrees of freedom beyond one-loop contributions have been consid-
ered both for the N and ∆ in order to check, if the results for dressing the masses and
producing the decay widths will alter. In all cases higher π contributions caused only
minor effects of at most a few MeV, and they can readily be considered as negligible.

To be able to study in a consistent way pionic effects in the N and ∆ masses as well
as in the ∆ decay width, we set up a microscopic CC mass operator on the quark level.
In this way vertex form factors have been extracted from the quark dynamics at the mi-
croscopic level. With regard to the πNN and πN∆ vertices they are compared together
with the corresponding coupling constants to the form-factor models from the litera-

103



ture used before. In addition, our approach has also allowed to consistently produce
the strong form factors for the π∆N and π∆∆ vertices. As a result all (bare) strong form
factors and the pertinent coupling constants occurring in a setting with N , ∆ and π are
now available from a microscopic theory.

Applying the CC form factors and corresponding couplings at the πNN and πN∆

vertices, the dressing effects on the N and ∆ have then been studied. We have obtained
quite similar results as before with the new form factors derived here. Only the ∆ decay
width remained zero, if the threshold was set to mπ +mÑ , the reason lying in the bare
N mass being too high. The situation has been remedied by assuming a physical N in
the πN decay channel, and more than half of the experimental decay width has then
been achieved.

The result for the decay width is further improved, if a dressed coupling constant is
used for the πN coupling instead of a bare one. Following suggestions in the literature,
for instance, in Ref. [SL96] we have thus assumed a dressed coupling constant 1.3 times
stronger. This has finally led to results, where the dressing effect on the real part of the
∆ mass is enhanced and the π decay width also becomes larger. In fact, in case of the CC
model a decay width completely compatible with the experimental value is generated.

By the present work we have laid the basis for explicitly taking into account meson
degrees of freedom for baryons in a relativistic CC theory. The framework is suitable
for application on a macroscopic (hadronic) as well as a microscopic (quark) level and
for an arbitrary number of particles and channels. Beyond the concrete studies pre-
sented here for the cases of the N and the ∆ it would be very interesting to investigate
further baryon resonances, such as N ∗ states or resonances with strangeness, notably
the Λ(1405). For some resonances it will not be sufficient to consider couplings to
channels with only one additional meson. However, as proven already here with eval-
uating two-π degrees of freedom, our approach will be mighty enough to account also
for such situations, where several mesonic channels and/or interactions among them
will be needed.
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A. Basic Relations and Notation

In this chapter we are summarizing all the relations and basic tools that are needed for
the theoretical framework of the present work.

A.1. Minkowski Space Relations

Since we are working in Minkowski space an arbitrary four-vector is given by

xµ = (x0,x1,x2,x3) = (x0, ~x ). (A.1)

This contravariant version corresponds to the following covariant one

xµ = (x0,x1,x2,x3) = (x0,−~x ) = gµνx
ν (A.2)

with gµν being the metric tensor defined as

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.3)

Hence, the invariant scalar product between two four-vectors is defined as

x · y = xµyν = xµgµνy
ν = x0y0 − ~x ~y. (A.4)

A.2. Dirac and Rarita-Schwinger Spinors

Dirac Spinors for Spin-1
2 Particles

The standard representation of the Dirac matrices is given by

γ0 =
(
12 0
0 −12

)
, γ =

(
0 ~σ
−~σ 0

)
, and γ5 =

(
0 12
12 0

)
(A.5)

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
(A.6)
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being the common forms of the Pauli matrices. In using this standard representations a
canonical boost in the (4 × 4) matrix representation of the group SL(2,C) can be written
as

S[Bc(~v)] =

√
k0 +m

2m

 12
~σ ·~k
k0+m

~σ ·~k
k0+m 12

 with ~v =
~k
m
. (A.7)

The SL(2,C) is the covering group of the Pioncaré group and a detailed discussion
thereof can be found in Ref. [Bie11].

In the rest frame of a massive spin-1
2 particle with mass m, the solutions of the Dirac

equation, namely the Dirac spinors for spin up and spin down are given as, Ref. [IZ06]

u
(
~0, s = +

1
2

)
=


1
0
0
0

 and u
(
~0, s = −1

2

)
=


0
1
0
0

 . (A.8)

These can be boosted by a canonical boost, given in Eq. (A.7), from rest up to a certain
velocity ~v,

u(~k,s) =
kµγ

µ +m
√
m+ k0

u(~0, s) =


√
k0 +m χs

~σ ·~k√
m+k0

χs

 with s = ±1
2

(A.9)

with s denoting either spin up or spin down. The conjugate spinors are defined as

ū(~k,s) = ū(~0, s)
kλγ

λ +m
√
k0 +m

(A.10)

with χs being the so called Pauli spinors

χs=+ 1
2 =

(
1
0

)
(A.11)

and

χs=−
1
2 =

(
0
1

)
. (A.12)

Rarita-Schwinger Spinors for Spin-3
2 Particles

To construct Rarita-Schwinger spinors for spin-3
2 particles one has to combine the Dirac

spinors for spin-1
2 particles and spin-1 polarization vectors.

The spin-1
2 spinors at rest are given in Eq. (A.8) and the ones that are boosted up to

a velocity ~v are given in Eqs. (A.9) and (A.10).
Spin-1 rest frame polarization vectors are defined in spherical representation, [Pil79],

as

εµ(0,M) = (0, e(M)), (A.13)
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A.2. Dirac and Rarita-Schwinger Spinors

where for different M = 0,±1 they read as

e(+1) := − 1
√

2
(1, i,0), (A.14)

e(−1) :=
1
√

2
(1,−i,0), (A.15)

e(0) := (0,0,1). (A.16)

Polarization vectors with arbitrary momentum ~k are obtained from the rest-frame vec-
tors by applying a canonical boost

εµ(~k,M) = Bc(~v )
µ
νε
ν(0,M), (A.17)

with

Bc(~v ) =

 v0 ~v T

~v 1 + (v0−1)~v·~v T

~v 2

 , v0 =
√

1 + ~v 2 and ~v =
~k
m
. (A.18)

After performing the calculation the boosted polarization four-vector reads

εµ(~k,M) =

~e (M) ·~k
m

, ~e (M) +
~k(~e (M) ·~k)
m(ωk +m)

 (A.19)

with ~k the momentum of the particle under consideration, m its mass and ωk the cor-
responding energy.

The Rarita-Schwinger spinors for spin-3
2 particles can be described as products of

spin-1
2 spinors u

(
±1

2

)
and polarization vectors εµ(±1) of spin-1 particles with 1+ 1

2 →
3
2

Clebsch-Gordan coefficients [Pil79]

uµ
(
±3

2

)
= u

(
±1

2

)
εµ (±1) ,

uµ
(
±1

2

)
= 3−

1
2u

(
∓1

2

)
εµ (±1) +

(2
3

) 1
2
u
(
±1

2

)
εµ (0) . (A.20)

109





List of Figures

1.1. Peaks in the π−p total cross sections as presented in Ref. [Kam12]. The
first peak is known to be produced by the ∆(1232), while the second and
third peaks contain more than 10 excited nucleon states. As can be seen,
they are highly overlapping in energy. . . . . . . . . . . . . . . . . . . . . 4

1.2. Detection of the first resonance in hadronic physics due to strong dis-
tinctions in comparing total cross sections of π+p → π+p (crosses) and
π−p→ π−p (boxes) scattering processes. Figure taken from Ref. [AFLN52] 5

1.3. Enhanced time delay in a scattering process due to the formation of a
metastable state according to Ref. [Moi98]. . . . . . . . . . . . . . . . . . . 6

1.4. Meson spectra for the GBE RCQM [Tho98]. The states are characterized
by JP with J the total angular momentum and P the parity. The solid
lines represent the theoretical levels. The dashed boxed are the experi-
mental data with their uncertainties as taken from Ref. [A+08]. . . . . . . 8

1.5. Energy levels (solid lines) of all light and strange baryons from the GBE
RCQM [GPVW98, GPP+98] in comparison to experimental data with
their uncertainties (shaded boxes). . . . . . . . . . . . . . . . . . . . . . . 10

3.1. Combining various π-exchange possibilities of the microscopic optical-
potential to end up with the latter on the macroscopic level by taking the
quark structure via vertex form factors (VFF) into account. . . . . . . . . 24

4.1. Two possible intermediate states for an incoming and outgoing proton. . 33
4.2. Pictorial representation of the first- and second-order iterations of the

optical potential in Eq. (4.17). . . . . . . . . . . . . . . . . . . . . . . . . . 37
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