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Abstract: Quantum generative models have shown promise in fields such as quantum chemistry,

materials science, and optimization. However, their practical utility is hindered by a significant

challenge: the lack of interpretability. In this work, we introduce model inversion to enhance both the

interpretability and controllability of quantum generative models. Model inversion allows for tracing

generated quantum states back to their latent variables, revealing the relationship between input

parameters and generated outputs. We apply this method to models generating ground states for

Hamiltonians, such as the transverse-field Ising model (TFIM) and generalized cluster Hamiltonians,

achieving interpretability control without retraining the model. Experimental results demonstrate

that our approach can accurately guide the generated quantum states across different quantum

phases. This framework bridges the gap between theoretical models and practical applications by

providing transparency and fine-tuning capabilities, particularly in high-stakes environments like

drug discovery and material design.

Keywords: quantum neural networks; explainable artificial intelligence; autoencoder

1. Introduction

Quantum generative models [1] have shown significant potential in fields such as
drug discovery and materials science [2], leveraging quantum mechanics to efficiently
generate complex quantum states or data samples [3]. However, these models face unique
interpretability challenges due to quantum properties like superposition and entanglement,
which contribute to high entropy in the state space and complicate output interpretation.

A primary challenge is the difficulty in interpreting the relationship between input
variables (e.g., Hamiltonian parameters) and output quantum states [4–8]. Unlike classical
models, where layers and parameters can often be directly analyzed, quantum models
operate within highly abstract quantum state spaces. The “black box” nature of quantum
models limits our understanding of their internal operations, making it challenging to
control or verify specific outcomes, especially in high-stakes applications.

This lack of interpretability has significant practical implications. In critical fields like
drug discovery and materials science, understanding how quantum states are generated
is vital for ensuring trustworthy results that meet stringent requirements. Without the
ability to interpret the relationships between input parameters and generated quantum
states, controlling these models to achieve desired outcomes becomes extremely difficult,
undermining their reliability and broader adoption.

While classical generative models also face interpretability challenges, various techniques—
such as visualization tools, simplified architectures, and model inversion—have been
developed to enhance understanding [9,10]. However, these methods are often insuffi-
cient or inapplicable to quantum models due to their probabilistic nature and complex
non-linearities, creating a critical gap in our ability to understand and control quantum
generative models.
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To address these challenges, we propose applying model inversion techniques to
quantum generative models. Model inversion maps generate quantum states back to their
latent variables, revealing the underlying relationships between inputs and outputs. This
approach allows users to trace how specific quantum states are produced, offering a mecha-
nism to control and fine-tune outputs by adjusting latent variables. Moreover, it enables the
identification of specific directions in the latent space that correlate with distinct features in
the generated samples, allowing for targeted interventions in the generative process.

By enhancing both interpretability and control, model inversion directly addresses
the critical gap in current research. It provides a way to understand and manipulate
the complex, probabilistic nature of quantum models, building trust and enabling more
precise control over outputs—being especially important in applications where fine-tuning
quantum states is essential.

In this study, we apply model inversion techniques to quantum generative models,
focusing on generating ground states for Hamiltonians such as the transverse-field Ising
model (TFIM) and generalized cluster Hamiltonians. Our approach not only enhances
interpretability but also provides a pathway for controlling outputs, making quantum
models more reliable and adaptable for practical applications.

By addressing interpretability and control challenges, this work contributes to bridging
the gap between the theoretical promise of quantum generative models and their practical
utility. With model inversion, we offer a method that allows researchers and practitioners
to explore the internal workings of quantum models more transparently, providing both
control and flexibility—critical elements for deploying quantum generative models in
real-world applications, where precision, reliability, and interpretability are paramount.

2. Preliminary

2.1. Quantum Generative Models

Quantum generative models have emerged as powerful tools for simulating and gen-
erating quantum states across various quantum systems. These models leverage quantum
computing’s inherent ability to handle complex, high-dimensional state spaces, offer-
ing a range of approaches for state generation. One such class is the Quantum Circuit
Born Machine (QCBM) [11,12], which uses quantum circuits to learn and represent prob-
abilistic distributions of quantum states. QCBMs are particularly effective at learning
quantum data distributions and can be applied to quantum state preparation and quantum
machine learning tasks. Another prominent class is Quantum Generative Adversarial
Networks (QGANs) [13,14], which apply a competitive learning process similar to classical
GANs, where a quantum generator creates states that a discriminator (classical or quantum)
evaluates, allowing for high-fidelity state generation.

Each of these quantum generative models has demonstrated success in tasks such
as quantum state preparation, quantum state tomography, and quantum simulations.
However, despite these advancements, significant challenges remain. In particular, under-
standing and controlling the generated quantum states pose serious difficulties due to the
complexity of quantum systems and the probabilistic nature of quantum mechanics. In
this context, studying specific quantum systems, such as the transverse-field Ising model
(TFIM) and generalized cluster Hamiltonian, provides a structured approach to evaluating
and understanding quantum generative models, as they represent well-known quantum
phase transition systems that can serve as benchmarks for state generation tasks.

2.2. Quantum Phase Transitions

Quantum phase transitions are phase transitions driven by quantum fluctuations,
which occur at absolute zero (0 Kelvin) as a parameter in the Hamiltonian changes [15].
Two prominent models in the study of quantum phase transitions are the transverse-field
Ising model (TFIM) and the generalized cluster Hamiltonian.

The Hamiltonian for the one-dimensional TFIM is given by
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H = −J ∑
i

σi
zσi+1

z − h ∑
i

σi
x, (1)

where J represents the interaction strength between neighboring spins, h denotes the
transverse magnetic field strength, and σi

x and σi
z are the Pauli-X and Pauli-Z operators

acting on the i-th spin, respectively. In the TFIM, quantum phase transitions occur at the
critical point where the relative strength between the transverse magnetic field h and the
spin–spin interaction J changes. Specifically, for the one-dimensional TFIM, the critical
point is reached at J = h, leading to a quantum phase transition from an ordered phase
(J > h) to a disordered phase (J < h). Experimental studies have demonstrated similar
transitions between thermalized (disordered) and localized (ordered) states, such as in the
work by Guo et al. [16], where entropy plays a critical role in characterizing these phases.

In contrast, the ground state of the generalized cluster Hamiltonian resides in a
symmetry-protected topological (SPT) phase, which exhibits greater complexity than the
TFIM. This model has been employed to evaluate the performance of quantum neural
networks [17]. The generalized cluster Hamiltonian is defined as

H = ∑
j

(

σ
j
z − J1σ

j
xσ

j+1
x − J2σ

j−1
x σ

j
zσ

j+1
x

)

, (2)

where J1 and J2 represent distinct interaction strengths. As demonstrated by [18], the
phase diagram for this Hamiltonian includes four distinct phases: the symmetry-protected
topological phase (I), ferromagnetic phase (II), antiferromagnetic phase (III), and trivial
phase (IV).

To investigate these models, we constructed a TFIM dataset, D = {(|ψi⟩ , yi)}, con-
sisting of 500 data points. Each data point corresponds to the ground state of a 4-qubit
TFIM, where yi is labeled as 1 (ordered phase) or 0 (disordered phase) depending on the
quantum state. Additionally, we developed a symmetry-protected topological state (SPTS)
dataset with four classifications, containing 300 data points, based on the 4-qubit cluster
Hamiltonian model.

3. Methodology

The study of quantum phase transitions highlights the intricate behavior of quantum
systems as they transition between different phases, which is often controlled by parameters
such as interaction strengths or external fields. Understanding and controlling these
quantum transitions is crucial in various applications, from condensed matter physics
to quantum computing. However, achieving precise control over the quantum states
involved in these transitions remains a significant challenge due to the complex, non-linear
relationships between the system’s parameters and the resulting quantum phases.

To address this challenge, our approach leverages a technique called model inversion.
At its core, model inversion provides a means to trace the path from generated quantum
states back to the latent variables that produced them. This approach offers a critical
advantage: it not only enables a deeper understanding of how specific quantum states—
such as those observed in quantum phase transitions—are generated but also provides a
pathway for controlling the generation process itself. By mapping output quantum states
back to their latent space, we can optimize these latent variables, allowing for precise
adjustments that produce specific, desired quantum states or properties. This is particularly
useful in navigating the complex landscape of quantum phases, where small changes in
parameters can lead to significant shifts in the system’s behavior.

Unlike classical models, quantum systems exhibit unique properties such as superpo-
sition and entanglement, where small changes in latent variables can lead to significant and
non-trivial transformations in the output quantum state. By applying model inversion, we
gain a level of precision that allows us to control specific attributes of the quantum states
being generated, such as energy levels or symmetry properties. The method also enables
the identification of specific latent directions associated with distinct quantum phenomena,
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such as different quantum phases, offering new avenues for practical manipulation and
refinement of quantum outputs.

3.1. Model Design

In this section, we present the design of a quantum generative model aimed at gen-
erating the ground state of generalized cluster Hamiltonians (SPTS) while offering inter-
pretability control through model inversion techniques. Currently, training a variational
quantum eigensolver [19] is limited to obtaining the ground state of a specific Hamiltonian.
The objective of this model design is to handle a class of Hamiltonians by encoding the
parameters J1 and J2 of the generalized cluster Hamiltonian using rotation gates, thereby
directly solving for the ground state of the Hamiltonian. Experimental results demonstrate
that this approach achieves a fidelity exceeding 80%. Further improvements to the gen-
erator can be achieved by employing meta-learning methods, enabling a single model to
generate ground states for a broader class of Hamiltonians [20].

The motivation behind this design is rooted in the challenges posed by quantum phase
transitions, where the relationship between Hamiltonian parameters and quantum phases
is often highly non-linear. Model inversion provides a critical mechanism for tracing this
relationship, allowing us to identify latent variables and adjust them to generate desired
quantum states. By offering this level of control, the quantum generative model becomes a
powerful tool for studying complex quantum systems, such as the TFIM and generalized
cluster Hamiltonians. Additionally, interpretability control enables researchers to fine-
tune quantum models without redesigning the entire architecture, which is particularly
advantageous for high-stakes quantum computing applications.

As depicted in Figure 1, the model comprises components: a generator and a classifier.
The generator takes Hamiltonian information or random vectors as input and generates
quantum states. The classifier is employed to guide the direction of model inversion.

Input

qubit

{ {
Output

qubit

Auxiliary

qubit

Generator Classifier

Figure 1. Quantum circuit diagram of the quantum generative model for interpretability control. The

red boxes represent parameterized rotation gates: the two marked red boxes use Pauli-X rotation

gates, while all other unmarked red boxes use Pauli-Y rotation gates. The green boxes denote

entanglement layers composed of CNOT gates applied in sequence according to qubit order.

The quantum bits in the system are divided into three categories: input qubits (i),
output qubits (o), and auxiliary qubits (a), with ni, no, and na qubits assigned to each,
respectively. The input qubits are used to encode the input data via rotation gates, the
output qubits are responsible for producing the reconstructed quantum state in the gen-
erator, and the auxiliary qubits are introduced to expand the model’s operational space,
thus enhancing its expressive power. In the context of the SPTS problem, we directly align
the latent space representation with J1 and J2. Consequently, after training, the generator
is capable of mapping J1 and J2 into the ground state of the corresponding generalized
cluster Hamiltonian.

The initial state of the generator is |0⟩i,o,a = |0⟩i ⊗ |0⟩o ⊗ |0⟩a, representing a state
of minimum entropy. The rotation gate encoding is applied to encode J1 and J2 into the
generator, increasing the system’s entropy as the superposition of states becomes more
complex. This process is carried out by the quantum circuit V(θ)′. The main structure of
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the generator is as follows: V(θ) = V(θ)′(Rx(θ1)⊗ Rx(θ2)⊗ I). The inputs J1 and J2 of the
generator take values in (−∞, ∞), while the parameters accepted by the rotation gates are
periodic, i.e., Rz(θ + 2π) = Rz(θ). Therefore, a sigmoid function is first applied to map
these values to the range (−π, π):

θ1 = (2 × σ(J1)− 1)× π (3)

θ2 = (2 × σ(J2)− 1)× π (4)

The output of the generator is the reconstructed ground state of the generalized cluster
Hamiltonian:

ρo = Tri,a[V(θ) |0⟩i,o,a ⟨0|i,o,a V(θ)†] (5)

Here, Tri,a represents the partial trace over the input and auxiliary qubits. ρo is the recon-
structed quantum state, which is stored in the output qubits.

The classifier is implemented using a hardware-efficient ansatz W(θ), which takes the
quantum state output from the generator as input and produces a probability distribution
p = (p1, . . . , pn). This distribution is obtained by measuring the probability of the |0⟩
state on the input qubits or by measuring the computational basis states of the first few
qubits. During model training, the generator is first trained to reconstruct the ground
state. Through supervised learning of the latent space variables, the generator can achieve
the conversion between the ground state of the generalized cluster Hamiltonian and the
Hamiltonian parameters J1 and J2.

For classifier training, the cross-entropy loss function is used. When control over the
generated sample is required to shift it in a specific direction, the gradient of the model’s
loss function with respect to the inputs J1, J2 is calculated. Perturbations are applied to
the latent space variables based on the gradient direction, thus providing control over the
quantum generative model.

In this study, the interpretability control experiment was conducted in a two-dimensional
latent space for a binary classification task. For multi-classification problems or higher-
dimensional latent spaces, the model can be appropriately adjusted. The classification
probabilities are computed by measuring the first qubit of the classifier, which is represented
as p = (p0, p1):

p0 = tr[W(θ)ρoW†(θ)(|0⟩ ⟨0| ⊗ I ⊗ · · · ⊗ I)], (6)

p1 = tr[W(θ)ρoW†(θ)(|1⟩ ⟨1| ⊗ I ⊗ · · · ⊗ I)] (7)

For interpretability control, if we aim to bias the generated sample toward the first class,
the loss function is defined as

L(p, q) = −
1

∑
i=0

p(i) log q(i) (8)

where q = (1, 0) represents the desired classification probability distribution. At this
point, the update direction of the latent space vector is ( ∂L

∂J1
, ∂L

∂J2
), and by adjusting the

latent space variables along this direction, interpretability control of the generated sample’s
classification can be achieved.

Data Re-Uploading Strategy

Data re-uploading is a technique that enhances the expressiveness and flexibility of
quantum models by iteratively encoding input data multiple times throughout the quantum
circuit [21]. In this process, the input data (such as Hamiltonian parameters) are applied to
the quantum state at various points in the circuit, often in conjunction with parameterized
rotation gates and entanglement layers. This allows the model to encode more complex
functions and relationships, which is particularly useful for capturing the intricate patterns
present in quantum datasets. By reintroducing the input data at multiple stages, the
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model can leverage the quantum state’s superposition and entanglement properties more
effectively, leading to improved representation capabilities and better control over the
generated outputs.

In our implementation, we applied data re-uploading by repeating the encoding of
Hamiltonian parameters J1 and J2 within each layer of the quantum circuit. The parameters
are first encoded using rotation gates, and as the data progresses through subsequent layers,
these parameters are re-encoded to reinforce their influence on the quantum state evolution.
This iterative approach enables the model to fine-tune the quantum state representation
more precisely, achieving higher fidelity in generating quantum states that correspond to
various Hamiltonian configurations. Additionally, the number of data re-uploading cycles
directly impacts the expressiveness of the model: increasing the cycles allows for deeper
exploration of the parameter space but may also require more computational resources
and training time. The effectiveness of the data re-uploading strategy is validated in our
subsequent experiments, where we observe that models employing this technique achieve
higher classification accuracy and improved interpretability control compared to those
without data re-uploading.

3.2. Model Inversion

In the context of a quantum state generated by a quantum generative model, the
goal of model inversion is to recover the corresponding latent variables from the latent
space of the model. Unlike traditional model evaluation techniques that focus solely on
performance metrics, our model inversion framework provides a novel mechanism to
understand the generation of quantum states by tracing the latent variables back to the
generated output. This enables researchers to gain insights into the quantum generative
process and provides a way to control the quantum states generated—an advancement
not previously explored in quantum machine learning research. By adjusting these latent
variables, specific modifications to the quantum state can be made. This method enables
the direct use of pre-trained quantum generative models without requiring re-design or
re-training for interpretability.

As illustrated in Figure 2, the model inversion process consists of several steps. The
significance of this approach lies in its practical applications. In fields such as quantum
chemistry, where precise quantum state manipulation is critical, model inversion enables
the generation of ground states with specific quantum properties. This method allows for
targeted interventions, guiding the quantum generative model toward desired outcomes,
which is essential for tasks like simulating material properties or chemical reactions. In
Figure 2a, a quantum state is generated by inputting latent variables z into the quantum
generative model. Through model inversion, the latent variables z∗ are obtained. In most
cases, z∗ is not exactly equal to z, as some approximation error is typically present due to
the complexity of the inversion process. When z∗ was input into the generative model, the
resulting quantum state, as seen in Figure 2b, usually showed slight differences from the
original quantum state due to these approximations.

The mathematical formulation of model inversion can be described as follows. A
quantum generative model learns a mapping G : Z → X , where Z represents the latent
space, and X is the space of generated quantum states. When z1, z2 ∈ Z are close in the
latent space, the corresponding quantum states |x1⟩ , |x2⟩ ∈ X are generally very similar.
The objective of model inversion is to map a quantum state |x⟩ back to its latent space
representation z∗. From the quantum state space perspective, this entails finding a state
|x∗⟩, which can be synthesized by a well-trained generator G and is as close as possible to
the real quantum state |x⟩. The inversion problem can be defined as

z∗ = arg min
z

L(G(z), |x⟩) (9)

where L(·) is a distance metric in either the quantum state space (quantum relative entropy
and quantum state fidelity) or feature space (norms such as the Manhattan norm ℓ1 or
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the Euclidean norm ℓ2 ). Utilizing entropy-based metrics allows us to quantify the differ-
ence between probability distributions of quantum states, providing a more informative
inversion process.

Model inversion

a)

b)

Figure 2. Example of model inversion method applied to quantum states. (a) A quantum state

is generated by inputting latent variables z into the quantum generative model; (b) The resulting

quantum state obtained when the inverted latent variables z∗ are input into the model, illustrating

the approximation differences.

In quantum generative models, the probabilistic nature of quantum mechanics plays a
central role. Quantum states generated by these models encode probability distributions
over measurement outcomes, where the probability of observing a specific outcome is
determined by the quantum state’s amplitude. To ensure that our method aligns with this
probabilistic framework, we used quantum relative entropy and quantum state fidelity.
Quantum relative entropy quantifies the divergence between the probability distributions
of two quantum states, while fidelity measures the similarity between states. These prob-
abilistic measures were integrated into our loss function L(G(z), |x⟩), ensuring that the
inversion process respects the probabilistic characteristics of the generated quantum states.

3.3. Analysis of Internal Representations

Instead of focusing solely on exploring the latent variable space, an alternative ap-
proach for interpreting the workings of quantum generative models is to analyze their
internal quantum representations. This method delves deeper into the internal quantum
states generated by the model, in contrast to model inversion, which focuses on the input–
output mapping. Model dissection aims to identify interpretable units that are closely
associated with certain physical properties or phases of the quantum state.

Let z ∈ R|z| represent the latent vector sampled from a low-dimensional distribution
and encoded onto the quantum model using data encoding, which is formally expressed as

|z⟩ = Uz |0⟩ (10)

Let |x⟩ = G(|z⟩) represent its corresponding generated quantum state. We focus on the
quantum state |r⟩ = U1 |z⟩ at an intermediate layer of the generator G, which we refer to as
the internal representation and represent it as

|x⟩ = G(|r⟩) = U2 |r⟩ = U2U1 |z⟩ (11)

Define the set of quantum properties or phases to be analyzed as C. Since |r⟩ contains
all the information necessary to generate the quantum state |x⟩, it also carries the informa-
tion needed to infer any high-level quantum property c from the state. The key question
is not whether information about c is present in |r⟩, but rather how this information is
encoded. More specifically, for any high-level quantum property c ∈ C, we seek to under-
stand whether |r⟩ represents c in a well-defined manner. This could involve computing
the gradients of the probability amplitudes of |r⟩ using model inversion methods, thereby
enabling control and adjustment of the output by manipulating these amplitudes.
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3.4. Controllability for Interpretability

To control and adjust the properties of generated quantum states, specific operations
must be applied to the latent vector z∗ obtained through model inversion. The control of
the quantum generative model’s output generally depends on two factors: first, identifying
semantically meaningful directions in the latent variable space that correspond to specific
quantum phases or properties, and second, performing appropriate operations in this space
to modify the generated quantum states accordingly.

For example, to fine-tune generated quantum states in the context of a quantum phase
transition, perturbations can be introduced to the latent variable z∗ obtained through model
inversion. This is achieved by inputting the quantum generative model’s output into a
quantum phase classifier D and calculating the direction of perturbation a⃗. The process is
described by the following equation:

a⃗ = ∇z∗L(D(G(z∗)), y), (12)

where D(G(z∗)) represents the classification result obtained from the quantum phase
classifier, and y denotes the target phase or property. The difference between these is
computed using the loss function L. Here, y represents the desired target phase for the
generated quantum state.

As demonstrated in Figure 3, this method can be used to transition a quantum state
between different phases, such as from a high-entropy disordered phase to a low-entropy
ordered phase, by adjusting the latent variables. The larger the step size, the more the
quantum state changes its phase characteristics, offering precise control over the quan-
tum generative model. This approach provides a powerful tool for exploring quantum
phase transitions and controlling quantum states in a generative model, without requiring
additional costly training.

Figure 3. Example of controllability applied to quantum phase transitions. To visualize the quantum

state, we use an illustrative analogy. (a) Initial quantum state; (b) Result after adjustment with a step

size ϵ; (c) Result after adjustment with a step size 2ϵ.

In our implementation, we used the gradient descent method, specifically the Adam
optimizer [22], to minimize Equation (12). This approach is effective for the relatively
low-dimensional latent space in our experiments. However, for higher-dimensional
latent spaces, more advanced techniques, such as gradient clipping or adaptive learn-
ing rate strategies, may be necessary to maintain stable convergence and manage the
increased complexity.

3.5. Significance of Model Inversion for Quantum Generative Models

The introduction of model inversion in quantum generative models provides a dual
benefit of interpretability and control. By mapping generated quantum states back to
their latent variables, this method allows for a deeper understanding of the generative
process and offers a unique capability to fine-tune the output. Unlike conventional tuning
methods, which adjust model parameters to improve accuracy or performance, model
inversion enables direct manipulation of quantum state properties, making it invaluable for
high-stakes applications like quantum chemistry or quantum phase transition simulations.
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Furthermore, the flexibility of this approach allows it to be applied to more complex
quantum systems where inputs are not easily described by Hamiltonian parameters or
where traditional methods fail to provide insight into the underlying quantum phenomena.
This makes our contribution a significant step forward in bridging the gap between the-
oretical advancements in quantum generative models and their practical applicability in
real-world quantum systems.

4. Experiments

4.1. Experimental Setup

We conducted experiments using datasets generated from the transverse-field Ising
model (TFIM) and the generalized cluster Hamiltonian model, each with 2000 samples.
Each sample consists of the Hamiltonian parameters (e.g., J1 and J2 for the SPTS dataset),
the corresponding ground state quantum wavefunction, and classification labels indicating
the phase.

We considered a 4-qubit TFIM Hamiltonian with varying transverse field strength
h and interaction strength J. The ground states were computed numerically for different
values of h and J, covering both ordered and disordered phases. Each ground state was
labeled as either ordered (label 1) or disordered (label 0) based on the phase. For the
generalized cluster Hamiltonian, we generated ground states for various combinations
of J1 and J2, covering the four distinct phases (I: symmetry-protected topological phase,
II: ferromagnetic phase, III: antiferromagnetic phase, and IV: trivial phase), as identified
in [18]. The ground states were computed for a 4-qubit system and labeled accordingly.

The generator is a parameterized quantum circuit designed to map latent variables
(Hamiltonian parameters J1 and J2) to quantum states approximating the ground states
of the Hamiltonians. The generator circuit comprises multiple layers, each consisting
of parameterized single-qubit rotation gates (Rx and Ry) and entangling gates (CNOT
gates). The latent variables are encoded into the circuit via rotation gates. The classifier is
another parameterized quantum circuit that takes the generated quantum states as input
and outputs probabilities corresponding to different phases. It uses a hardware-efficient
ansatz with layers of rotation gates and entangling gates. Key configuration details are
summarized in Table 1.

Table 1. Configuration of the generator for interpretability control experiments.

Parameter Value

Number of input qubits 2
Number of output qubits 3
Number of auxiliary qubits 1
Total number of qubits 6
Number of layers 30
Data re-uploading cycles 1 × 30, 3 × 10, 5 × 6
Encoding method Rotation gate encoding
Optimizer Adam
Learning rate 0.001
Batch size 8
Epochs 10

The models were implemented using the Pennylane quantum computing (version 0.39,
created by Xanadu, Toronto, ON, Canada) framework [23]. The loss function for the generator
includes a fidelity term measuring the similarity between the generated state and the true
ground state. The Adam optimizer was used for parameter updates, with hyperparameters
β1 = 0.9, β2 = 0.999, and ϵ = 1 × 10−8. Training was performed for 10 epochs, and model
parameters were updated to minimize the loss function. To assess the impact of data
re-uploading, we experimented with different configurations (1 × 30 layers, 3 × 10 layers,
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5 × 6 layers), where the total number of layers was kept constant, but the data re-uploading
frequency was varied.

To assess the effect of data re-uploading on the generator, various re-uploading strate-
gies were applied to the TFIM and SPTS datasets. The training dynamics are shown in
Figures 4 and 5. Key observations from the training process are as follows:

• Both the TFIM and SPTS datasets achieved fidelity levels exceeding 80%, demonstrat-
ing successful interpretability control of the generated samples.

• The final layer of the model should exclusively involve single-qubit rotation gates,
avoiding two-qubit entangling gates. Including entangling gates in the final layer
significantly affects convergence speed, as two-qubit gates introduce unnecessary
complexity if entanglement is not required. In contrast, single-qubit rotation gates
adjust individual qubits and, if no adjustment is needed, the rotation parameters are
set to zero during training. The presence of entangling gates, however, demands addi-
tional training steps to learn inverse unitary operations for unnecessary entanglement
introduced in earlier layers, which increases training difficulty.

• Data re-uploading, while increasing the complexity of training, can lead to a lower
final training loss if sufficient training is performed, even when the same number of
layers is used.

0 500 1000 1500 2000
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0.4

0.5
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0.7

0.8
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ss

1x30
3x10
5x6

Figure 4. Training loss curve of the quantum generative model on the TFIM dataset. The legend

represents (number of data re-uploadings × number of layers after each re-uploading).
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Figure 5. Training loss curve of the quantum generative model on the SPTS dataset.
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4.2. Experimental Validation of Interpretability Control

Our experiments demonstrate not just the evaluation of model performance but also
the ability to control the generated quantum states through latent variable manipulation.
This goes beyond typical hyperparameter tuning by offering a method to adjust the gen-
erative process itself, leading to the creation of targeted quantum states based on desired
properties such as phase transitions. We first analyzed the classification performance and
interpretability control results on the relatively simple TFIM dataset, as shown in Figure 6.
Five samples were randomly selected from each class. The classifier’s gradient was used
to guide the adjustment of disordered phase (I) samples toward the ordered phase (II)
and vice versa. Figure 6a shows the classification of different configurations of TFIM
Hamiltonian ground states by the trained classifier. While there were classification errors
near the decision boundary, increasing the number of quantum neural network layers and
re-uploading iterations managed to improve the classification accuracy. Figure 6b presents
the interpretability control results for generated samples in latent space, where all samples
from both classes were successfully guided toward the target classifications.

(a) (b)

Figure 6. Interpretability control on TFIM data of the 1 × 30 generator. (a) Classification of different

configurations of TFIM Hamiltonian ground states by the trained classifier, where blue and orange

represent data points classified as category one and category two, respectively. (b) Interpretability

control results for generated samples in latent space, where blue and orange indicate data points

trajectory controlled toward category one and category two, respectively.

Each trajectory in Figure 6 represents the path generated through interpretability
control. We set the step size to 0.5 and ran the process for 30 steps to obtain each curve. The
quality of the perturbation depends on the sample’s initial position relative to the decision
boundary; samples closer to the boundary generally require smaller perturbations to reach
the target classification.

For the more complex SPTS dataset, we analyzed different configurations of the data re-
uploading strategy, as shown in Figure 7. Four categories—symmetry-protected topological
phase (I), ferromagnetic phase (II), antiferromagnetic phase (III), and trivial phase (IV)—
were used, with five randomly selected samples from each category. Interpretability control
was applied to adjust samples from I to II, II to III, III to IV, and IV to I.

In the SPTS experiments, as shown in Figure 7a,c,e, we found that data re-uploading
helped manage complex classification tasks and addressed the multi-classification problem
more effectively. Figure 7a indicates that without data re-uploading, the classifier could
only divide the samples into two classes. Figure 7c shows that with the 3 × 10 configuration,
three classes of samples were identifiable, while Figure 7e demonstrates that the 5 × 6
configuration allowed the classifier to distinguish the intermediate IV phase.



Entropy 2024, 26, 987 12 of 15

Further analysis of interpretability control with the three classifiers is shown in
Figure 7b,d,f. In Figure 7b, the latent space vector changes reveal that the model did
not learn meaningful control information, as all samples moved outward from the origin.
However, in Figure 7d,f, where data re-uploading was applied, the classifier provided
effective guidance, directing the latent space representations toward the target regions:
I → I I, I I → I I I, I I I → IV, IV → I.

(a) Classification performance of the 1 × 30 classifier (b) Interpretability control of the 1 × 30 generator

(c) Classification performance of the 3 × 10 classifier (d) Interpretability control of the 3 × 10 generator

Figure 7. Cont.
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(e) Classification performance of the 5 × 6 classifier (f) Interpretability control of the 5 × 6 generator

Figure 7. Interpretability control of quantum generative models by altering the data re-uploading

strategy while keeping the number of neural network layers unchanged. In subfigures (a,c,e), blue,

orange, green, and red represent data points classified into categories one, two, three, and four,

respectively. In subfigures (b,d,f), red, blue, orange, and green indicate the trajectories of data points

being controlled toward categories one, two, three, and four, respectively.

5. Conclusions

In summary, our work presents a solution to one of the most pressing challenges in
the field of quantum generative models: interpretability. Through the development and
application of model inversion techniques, we provide a framework that enhances both
the understanding and control of quantum state generation. This method bridges the
gap between the theoretical promise of quantum generative models and their practical
applicability, especially in high-stakes fields where precise control is paramount.

By analyzing the latent and intermediate state spaces, we gain insights into how
quantum generative models learn and generate features. The high-dimensional latent
space encodes specific attributes of generated quantum states, and understanding how
movements in this space affect the output helps clarify the model’s learning process.
Furthermore, model inversion allows for the generation and fine-tuning of customized
samples based on specific attributes, enabling users to control the output to meet particular
requirements. This flexibility extends to tasks like style transfer or adjusting quantum state
phases, without the need for model re-training, making the approach applicable in fields
such as design, art, and media production.

While our experiments focus on a relatively simple and typical scenario, where the
inputs are set as Hamiltonian parameters and the phase diagram is well known, the pro-
posed model inversion technique is not limited to such cases. This algorithm is applicable
to a wider range of quantum systems, including those where the inputs cannot be easily
described by Hamiltonian parameters or where the phase diagram is unknown. It is also
robust for more complex systems with irreversible generative processes, where noise or
quantum coherence complicates the inversion process.

Moreover, the interpretability control framework extends to quantum tasks with non-
linear or probabilistic generative processes, such as quantum optimization or systems with
unknown properties. In scenarios where explicit parameters are unavailable or quantum
states undergo irreversible transitions, our algorithm still enables control and fine-tuning,
showcasing its versatility across diverse quantum systems.
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Looking ahead, we recognize that an alternative approach to enhancing interpretability
is to analyze the internal quantum representations within the generative models. Instead
of focusing solely on exploring the latent variable space, examining the internal quantum
states generated by the model can provide deeper insights into how the model processes
information. This method involves identifying interpretable units or intermediate quan-
tum states that are closely associated with certain physical properties or phases of the
quantum system.

For instance, by focusing on the quantum state at an intermediate layer of the
generator—referred to as the internal representation—we can investigate how high-level
quantum properties are encoded within the model. The key question is not whether in-
formation about a specific property is present in the internal state, but rather how this
information is encoded. Understanding this encoding could involve computing the gra-
dients of the probability amplitudes of the internal state using model inversion methods,
thereby enabling control and adjustment of the output by manipulating these amplitudes.

However, examining intermediate quantum states presents certain limitations in
the context of interpretability control. Specifically, while directly modifying artificially
constructed input states is feasible, editing or manipulating the quantum states produced
by intermediate layers of a QNN is challenging due to measurement constraints, quantum
decoherence, and the complexity of state reconstruction. Intermediate quantum states
within a QNN cannot be directly measured without disrupting the quantum computation,
owing to the no-cloning theorem and the collapse of the wavefunction upon measurement.
Additionally, reconstructing these states would require quantum state tomography, which
is resource-intensive and impractical for systems with more than a few qubits.

Given these limitations, focusing on input–output relationships through model inver-
sion offers a more practical and effective approach for enhancing interpretability and control
in quantum generative models at this stage. Nevertheless, we believe that exploring inter-
nal quantum representations remains a promising avenue for future research. Developing
methods to infer the properties of intermediate states without direct measurement or design-
ing architectures that facilitate better interpretability of internal processes could overcome
current challenges and further enhance the capabilities of quantum generative models.

As quantum computing continues to evolve, our approach to interpretability can serve
as a foundation for future research, potentially extending to other areas such as quantum
optimization, quantum discriminative machine learning, and beyond. The ability to both
interpret and control these models will open up new possibilities, driving advancements in
quantum technologies and their applications.
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