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We show that a topological Nambu monopole exists as a regular solution for a large range of parameters 
in two Higgs doublet models, contrary to the standard model admitting only non-topological Nambu 
monopoles. We analyze a Higgs potential with a global U (1) symmetry and a discrete symmetry Z2. The 
monopole is attached by two topological Z strings (Z flux tubes) from both sides. Despite of a trivial 
second homotopy group, the discrete symmetry Z2 together with a non-trivial first homotopy group 
for Z strings topologically ensures the topological stability. After analytically constructing an asymptotic 
form of such a configuration, we explicitly construct a solution of the equation of motion based on 
a 3D numerical simulation, in which magnetic fluxes spherically emanating from the monopole at large 
distances are deformed in the vicinity of the monopole. Since the monopoles are expected to be abundant 
in the present universe, they might be observed in the current monopole searches.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Magnetic monopoles have attracted great interests from both 
experimental and theoretical physicists since the seminal work by 
Dirac [1], which was motivated to improve the asymmetry be-
tween electric and magnetic charges in the Maxwell equations, 
providing an explanation for the electric charge quantization. In 
field theoretical models, they have been theoretically realized as 
a regular solution [2,3] and have played crucial roles to study 
non-perturbative aspects of (non-)supersymmetric field theories 
[4–6]. However, except for condensed-matter analogues [7,8], such 
monopoles have never been found in reality; for instance, such 
magnetic monopoles are predicted by all grand unified theories 
(GUTs) [9–12], and their search have been extensively conducted. 
Nevertheless, no GUT monopoles have been found probably be-
cause the cosmological inflation diluted them. To avoid dilution, 
monopoles should be produced below the inflation scale such as 
the electroweak scale. In fact, a monopole configuration in the 
Standard Model (SM) was first considered by Nambu [13]. How-
ever, it is unstable because it must be attached from one direction 
by a string and the tension of the string pulls the monopole to 
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infinity, although they were suggested to produce primordial mag-
netic fields before disappearance [14,15].

In this paper, we predict an existence of a topologically sta-
ble1 and magnetic monopole without singularity in a quite sim-
ple extension of the SM, two Higgs doublet model (2HDM), in 
which one more Higgs doublet is added to the SM (for reviews, 
see, e.g., Refs. [19,20]). They might be observed in the current 
monopole searches since they are expected to be abundant in 
the present universe. Apart from cosmological production, our 
monopoles might also be produced and detected by the MoEDAL 
experiment [21] at LHC with masses of the order of a few TeV. 
Their discovery would not only be a realization of Dirac’s hypoth-
esis but also yield a solid evidence of new physics beyond the SM, 
since there are no stable and regular magnetic monopoles in the 
SM.

The reason of the non-existence of stable monopoles in the SM 
is its trivial topology, that is, the vacuum manifold is S3 having a 
trivial second homotopy group π2, as well as trivial π0 for domain 
walls and π1 for cosmic strings. Nevertheless, (non-topological) 
electroweak Z -strings (or magnetic Z -fluxes) [22–26] have been 
studied, but they were shown to be unstable in realistic parame-

1 In this paper, the terminology “stable” is used for the stability of a single soliton 
put in the system. In the context of cosmology, such a situation should be realized 
after the scaling regime is achieved as is known in the axion strings [16–18].
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ter region [27,28]. Nambu monopoles are the end points of these 
strings [13].

2HDM is one of the most popular extensions of the SM with a 
potential to solve problems that are unanswered by the SM. It has 
four additional scalar degrees of freedom in addition to 125 GeV 
Higgs boson (h), which are charged Higgs bosons (H±), CP-even 
Higgs boson (H) and CP-odd Higgs boson (A). These additional 
scalars can be directly produced at LHC, though there is no signal 
so far today, placing lower bounds on masses of those additional 
scalar bosons. Those lower bounds highly depend on parameter 
choices of 2HDM as well as how SM fermions couple to the two 
doublets. For more detailed phenomenological studies, see, e.g., 
Refs. [29–33] and references therein. Moreover, 2HDM has a much 
richer vacuum structure than the SM, therefore allowing a vari-
ety of topologically stable solitons, in addition to non-topological 
solitons [34–42] analogous to the SM; domain walls [43–46], mem-
branes [47,48], and cosmic strings such as topological Z strings 
[45,46,49,50] (see also Ref. [51]). However, magnetic monopoles 
were not examined because of a trivial second homotopy group π2
as in the SM. Instead, the stability of our monopole is topologically 
protected by a combination of the following two symmetries of the 
Lagrangian; One is a global U (1) symmetry that ensures the sta-
bility of the topological Z strings. The other is a discrete symmetry 
Z2 exchanging the topological strings. Consequently, our monopole 
is attached by two topological Z strings on both sides, where a 
Z flux is confined on each string and the string tensions pulling 
the monopole are balanced due to the Z2 symmetry. We explicitly 
construct such a solution of the equation of motion based on a 3D 
full numerical simulation, in which magnetic fluxes emanate from 
the monopole.

2. The model

We introduce two SU (2) doublets, �1 and �2, both with 
the hypercharge Y = 1. The Lagrangian which describes the elec-
troweak and the Higgs sectors is written as

L = −1

4

(
Yμν

)2 − 1

4

(
W a

μν

)2 + ∣∣Dμ�i
∣∣2 − V (�1,�2). (1)

Here, Yμν and W a
μν describe field strength tensors of the hyper-

charge and the weak gauge interactions with μ (ν) and a being 
Lorentz and weak iso-spin indices, respectively. Dμ represents the 
covariant derivative acting on the Higgs fields, and the index i
runs i = 1, 2. V (�1, �2) is the potential for the two Higgs dou-
blets. In this paper, we assume that both Higgs fields develop real 
vacuum expectation values (VEVs) as �1 = (0, v1)

T , �2 = (0, v2)
T . 

Then the electroweak scale, vEW (� 246 GeV), can be expressed 
by these VEVs as v2

EW = 2v2
1 + 2v2

2.
For later use, we introduce the Higgs fields in a two-by-two 

matrix form [52], H , defined by H = (
iσ2�

∗
1, �2

)
. The field H

transforms under the electroweak SU (2)L × U (1)Y symmetry as 
H → exp

[
i
2 αa(x)σa

]
H exp

[
− i

2 β(x)σ3

]
, and therefore the covari-

ant derivative on H is expressed as DμH = ∂μH − i g
2 σa W a

μH +
i g′

2 Hσ3Yμ . The VEV of H is expressed by a diagonal matrix 〈H〉 =
diag(v1, v2), and the potential can be written by using H as fol-
lows:

V (H) = − m2
1 Tr|H|2 − m2

2 Tr
(
|H|2σ3

)
−

(
m2

3 det H + h.c.
)

+ α1 Tr|H|4 + α2

(
Tr|H|2

)2 + α3 Tr
(
|H|2σ3|H|2σ3

)
+ α4 Tr

(
|H|2σ3|H|2

)
+

(
α5 det H2 + h.c.

)
, (2)
where |H |2 ≡ H† H and we have imposed a (softly-broken) Z2
symmetry, H → Hσ3 (or �1 → +�1, �2 → −�2), in order to sup-
press Higgs-mediated flavor-changing neutral current processes. In 
this paper, to make the discussion simpler, we take the five param-
eters m2, m3, α3, α4, α5 to 0. The potential thus reduces to the fol-

lowing simple form: V (H) = −m2
1Tr|H |2 +α1Tr|H |4 +α2

(
Tr|H |2)2

.
The custodial transformation acting on the matrix H [52,53] is 

defined as the following global SU (2) transformation: H → U HU †, 
U ∈ SU (2)C.2 In addition, the SU (2)W gauge field also transforms 
as an adjoint representation. The potential V (H) has a symmetry 
under this transformation, which we call as the custodial sym-
metry. However, the presence of the U (1)Y gauge field explicitly 
breaks the symmetry down to U (1)EM � (Z2)C, where (Z2)C trans-
forms H to iσ1 H(iσ1)

† and “�” denotes the semidirect product 
because (Z2)C acts on U (1)EM. Note that the symmetry (Z2)C fol-
lows from m2 = α4 = 0, and yields tan β ≡ v2/v1 = 1.

In addition, since m3 = α5 = 0, the Lagrangian (not only the 
potential) is invariant under a global U (1)a transformation, which 
rotates the relative phase of the two doublets: H → eiα H (or 
�1 → e−iα�1, �2 → eiα�2) (0 ≤ α < π ). After H gets a VEV, this 
U (1)a symmetry is spontaneously broken and the corresponding 
Nambu-Goldstone boson appears.

3. Electroweak strings

In Refs. [45,46,49,50], it is pointed out that, unlike in the SM 
case, 2HDM allows topologically stable strings to exist thanks to 
the global U (1)a symmetry. First, consider topological strings with 
the Z flux (topological Z strings). There are two types of topologi-
cal Z strings corresponding to which one of the two Higgs doublets 
is to be wound. To see that, let us take W ±

μ = Aμ = 0. Here we 
have defined as Zμ ≡ W 3

μ cos θW − Yμ sin θW , Aμ ≡ W 3
μ sin θW +

Yμ cos θW .
The solution called a (1, 0)-string3 is given by

H (1,0) = v diag
(

f (ρ)eiϕ,h(ρ)
)

, (3)

Z (1,0)
i = −cos θW

g

ε3i jx j

ρ2 (1 − w(ρ)) , (4)

where v ≡ m/
√

2α1 + 4α2 (= v1 = v2), ρ ≡ √
x2 + y2 and ϕ is 

the rotation angle around the z-axis. The boundary conditions 
imposed on the profile functions are f (0) = h′(0) = w(∞) = 0, 
w(0) = f (∞) = h(∞) = 1. Thus the asymptotic form of H (1,0) at 
infinity is ∼ v exp[ iϕ

2 ] exp[ iϕ
2 σ3]. On the other hand, the solu-

tion called a (0, 1)-string is given by H (0,1) = iσ1 H (1,0)(iσ1)
† and 

Z (0,1)
i = −Z (1,0)

i . Both the (1, 0)- and (0, 1)-strings have winding 
number 1/2 for the global U (1)a and thus they are topological vor-
tex strings. Note that both of them have logarithmically divergent 
tension due to the kinetic term of the Higgs field:

2π

∫
dρρ tr|Di H (1,0)|2 ∼ 2π

∫
dρρ tr|Di H (0,1)|2 ∼ π v2

∫
dρ

ρ

(for ρ → ∞), (5)

which is a quarter of that for a global U (1)a integer vortex because 
of the half winding number for U (1)a [45]. On the other hand, the 
contribution from the half winding in the gauge orbit is canceled 
by the gauge fields Z (0,1)

i or Z (1,0)
i and exponentially suppressed, 

2 Note that this SU (2)C transformation is different from the U (2) basis transfor-

mation: �i → ∑2
j=1 Mij� j (i = 1, 2).

3 (1, 0) means that the phase of �1 winds once around the circle at spatial infin-
ity but that of �2 does not.
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Fig. 1. Tension of the one-parameter family of the strings made with U (ζ ). ζ =
0, π/2, π correspond to the north pole, the equatorial point and the south pole on 
the moduli space S2, respectively. Although this value itself depends on the infra-
red cut off, the difference between the maximum and minimum values does not.

and as a consequence, the Z flux is squeezed into the flux tube, 
which exponentially vanishes as a usual Abrikosov-Nielsen-Olesen 
vortex [54,55]. In addition, the Z fluxes flowing inside them are 
±2π cos θW /g along the z-axis, respectively, which are half of that 
of a non-topological Z string in the SM.

Our potential has the custodial SU (2)C symmetry. When 
sin θW = 0, this symmetry is the actual symmetry of the La-
grangian. However, the presence of the topological string solutions 
spontaneously break it down to U (1)C, and thus they have S2

(� SU (2)C/U (1)C) moduli. Each point on the S2 moduli space cor-
responds to a physically different string solution having a common 
winding number 1/2 for the global U (1)a . We parametrize the S2

moduli space by two parameters 0 ≤ ζ ≤ π , 0 ≤ χ < 2π , where 
ζ and χ correspond to the zenith and azimuth angles, respec-
tively. We identify the (1, 0)-string, Eq. (4), as the one associated 
with the south pole of the S2 moduli space, ζ = π . On the other 
hand, the (0, 1)-string corresponds to the north pole, ζ = 0. String 
solutions on a generic point of the S2 moduli space can be ob-
tained by acting an SU (2)C transformation on the (1, 0)-string. In 
particular, we can construct a one-parameter family on S2 con-
necting a (0, 1)-string (north pole) and a (1, 0)-string (south pole) 
using the σ 2-axis rotation U (ζ ) = exp( i

2 ζσ2) (0 ≤ ζ ≤ π), which 
corresponds to the one-parameter path on S2: 0 ≤ ζ ≤ π , χ = 0. 
This fact will be important in the construction of the magnetic 
monopole solution later.

We should note that in our case, sin θW �= 0 and the cus-
todial symmetry is not exact. As a consequence, almost all the 
points of the S2 moduli space are energetically lifted. As studied 
in Refs. [45,46], the two Z strings, (1, 0)-string and (0, 1)-string, 
are the most stable with degenerate among the topological strings. 
On the other hand, solutions on the equatorial points of the mod-
uli space, which contain a W flux and are called as W strings, are 
the most unstable. Fig. 1 shows a plot of the string tension of the 
one-parameter family U (ζ )H (1,0)U (ζ )†. As we stated above, the 
(Z2)C symmetry remains, which corresponds to flipping the upper 
and lower half spheres of the moduli space S2 (or ζ → π − ζ ).4

Thus, the presence of one of the Z strings spontaneously breaks 
the (Z2)C symmetry.

4. Magnetic monopole configuration

Let us make a magnetic monopole configuration in 2HDM as 
follows. First, prepare a (0, 1)-string and a (1, 0)-string, cut both in 
half and connect them smoothly. In other words, make a configu-
ration where the upper half (z > 0) is a (0, 1)-string, but the lower 
half (z < 0) is a (1, 0)-string. Such a smooth connection is realized 
by the one-parameter path on the moduli space made with U (ζ )

(0 ≤ ζ ≤ π ). Since (0, 1)-string and (1, 0)-string have the Z fluxes 
in the opposite directions, Z fluxes of 4π cos θW /g in total flows 
from the connection. This is the same as the amount of a Z flux 

4 The symmetry under rotations around the σ 3-axis also remains as U (1)EM.
that a Nambu monopole discharges. Thus, the same argument for 
the conservation of a U (1)Y flux ensures that 4π sin θW /g mag-
netic flux spreads from the connection, and thus it is a magnetic 
monopole. Interestingly, this can be regarded as one in which the 
non-topological Z string attached to a Nambu monopole is divided 
in two topological Z strings and these two fractions are pulled to 
the opposite directions to each other.

Let us discuss the stability of such a configuration. In the 
present case tan β = 1 and thus the tensions of the two Z strings 
are equal. Therefore, the monopole will not be pulled to one side, 
and such configuration is expected to be stable. This argument is 
intuitive and easy to understand, but we give a more rigorous dis-
cussion. The stability is ensured by the following two reasons. First, 
the whole of this configuration (both the strings and monopole) 
has a topological charge 1/2 for the global U (1)a symmetry in any 
cross sections with z = const.. In other words, concentrating on the 
U (1)a charge, the configuration is an infinitely long global string. 
Therefore, it cannot be broken into pieces as usual global strings, 
and thus (1, 0)- and (0, 1)-strings must always be connected by a 
path on the lifted moduli space S2. Second, the string tensions on 
S2 has a degenerate double-well structure (Fig. 1), where (1, 0)-
and (0, 1)-strings are the most stable, and thus the above connec-
tion can be regarded as a topological kink interpolating between 
the two minima of the (Z2)C symmetric potential. Therefore, the 
stability of the monopole is topologically ensured as in the case of 
a Z2 kink. These arguments can be summarized in the statement 
that the stability is ensured by the U (1)a symmetry and the (Z2)C
symmetry.

We construct such a configuration concretely in the limit where 
we treat vortices as infinitesimally small (delta-function like) topo-
logical defects. This limit corresponds to those far enough from 
vortices. The actual regular solution will be constructed numeri-
cally by the relaxation later.

The Higgs matrix H (0,1) of a (0,1)-string at large distance 
(ρ → ∞) is expressed as H (0,1) → H0 ≡ v diag(1, eiϕ). Let us in-

troduce a function ζ̂ (r, θ) and a unitary matrix U (ζ̂ ) = e
i
2 ζ̂ σ2 , and 

then acting a “local custodial transformation” on H0, we obtain 
H

ζ̂
= U (ζ̂ )H0U (ζ̂ )†. Here, r and θ are the distance from the origin 

and the zenith angle from the z-axis, respectively, and ζ̂ (r, θ) is as-
sumed to be a monotonically increasing function with respect to θ
and ζ̂ (r, 0) = 0, ζ̂ (r, π) = π . We should note that H

ζ̂
has a wind-

ing number 1/2 for U (1)a on any planes with z = const. and hence 
describes a global string along the z-axis. In fact, its kinetic energy 
behaves as tr|Di H

ζ̂
|2 ∼ v2/ρ2 for ρ → ∞ and hence the tension 

on z = const. is logarithmically divergent independently of ζ̂ (or z), 
where the tension from the winding in the gauge orbit is canceled 
by ζ̂ -dependent gauge fields and remains finite (see Appendix A). 
Furthermore, the string behaves as (0, 1)- and (1, 0)-strings around 
the positive and negative sides of the z-axis (θ ∼ 0, π ), respec-
tively, while it behaves locally as the W -string in a region in which 
ζ̂ ∼ π/2.5 The two Z -strings connect at the origin, and thus the Z
flux flows upward and downward from the origin as we see later. 
In addition, the electromagnetic flux emanates from the connec-
tion and it behaves as a magnetic monopole.

5. Z flux and magnetic flux

The gauge fields induced from the Higgs field H
ζ̂

are deter-

mined to minimize the kinetic energy :
∫

d3x Tr|Di H
ζ̂
|2. After min-

imizing, we obtain asymptotic forms of the field strengths of the Z

5 The localized W -string carries a U (1) modulus corresponding to points on the 
equator of the S2 moduli space.



4 M. Eto et al. / Physics Letters B 802 (2020) 135220
Fig. 2. Plots for the numerical solution constructed by the relaxation. In all plots, v is normalized to unity. (a): Energy density. The color represents its value, where red is the 
largest and blue is the smallest. There is a string-like object that contains the energy density along the z axis. (b): Magnetic flux. The direction of the arrows indicates that 
of the flux. Also, the color and size of the arrows indicate the flux density, where red is the strongest, blue is the weakest. We can see the existence of a magnetic monopole 
at the center from which the magnetic flux emanates. The flux is spherical at large distances, but not in the vicinity of the monopole. (c): Z flux. The direction, color and 
size of the arrows are the same as those for the magnetic flux. The Z flux flows upward and downward along the string from the monopole.
field and the electromagnetic field (see Appendix A for the deriva-
tion). The former is given by

F Z
12 = 2π cos θW

g

z

|z| δ(x)δ(y) (6)

and F Z
23 = F Z

31 = 0. From Eq. (6), it can be seen that Z flux 
2π cos θW /g flows on the z-axis toward z = ±∞ from the origin.

For the electromagnetic field, we obtain

F EM
i j = − sin θW

g
sin ζ̂ (∂[i ζ̂ )(∂ j]ϕ), (7)

where t[i j] ≡ ti j − t ji for any tensor t . From Eq. (7), it is clear 
that there is a magnetic flux in a region where ∂i ζ̂ �= 0, and that 
it is coming out of the connection at the origin. The total mag-
netic flux �B can be obtained by integrating the flux density 
Bi ≡ − 1

2 εi jk F E M
jk on an infinitely large sphere covering the system 

and using the Gauss’s theorem:

�B = 2π sin θW

g

∞∫
−∞

dz ∂3 cos ζ̂ = 4π sin θW

g
, (8)

where we have used ζ̂ (r, 0) = 0 and ζ̂ (r, π) = π in the last equal-
ity. Therefore, there is a magnetic monopole at the origin with a 
magnetic charge 4π sin θW /g . This monopole carries a U (1) mod-
ulus coming from that of the localized W -string.

Interestingly, the above analysis does not rely on details in 
the form of ζ̂ (r, θ). The existence of magnetic monopole is deter-
mined only by the information of the end points that ζ̂ = 0, π for 
θ = 0, π , respectively. This property is similar to that of topological 
kinks. On the other hand, the “shape” of the magnetic flux spread-
ing from the monopole depends on the functional form of ζ̂ (r, θ). 
By minimizing the magnetic energy, it is determined to be ζ̂ = θ

and we obtain the magnetic flux density Bi = (sin θW /g) xi/r3, 
which means that the magnetic flux is distributed spherically at 
large distances from the monopole.
6. Numerical simulation

Here we show a stable regular magnetic monopole solution nu-
merically constructed by relaxation. The procedure is as follows. 
We smear out the infinitely small defects (singularities) in the 
configuration discussed above using some profile functions with 
a typical scale ∼ v−1. The smeared configuration is regular any-
where and approaches at large distances to the asymptotic form 
constructed above. Then, we evolve it by the relaxation until it 
sufficiently approaches the solution of the equation of motion. We 
have taken the parameters g, g′, m1, α1, α2 so that the physical 
parameters are given by sin2 θW = 0.23, mW = 80 GeV, vEW =
246 GeV, mh = 125 GeV, mH = mH± = 400 GeV, where mW and 
mh are masses of the W boson and the SM Higgs, respectively. In 
addition, mH and mH± are the masses of the heavier CP-even Higgs 
and the charged Higgs bosons, respectively.

To carry out the numerical computation, we have used a length 
unit in which v is normalized to unity. We have computed the 
relaxation in a 3D box with the size Lx = L y = 8, Lz = 12 and 
adopted the Dirichlet boundary conditions such that the field val-
ues on the boundaries are fixed to the asymptotic ones constructed 
above. After the relaxation time t = 20, the variation of the energy 
density per time is O(10−5), thus we have regarded the con-
vergence achieved. We also have confirmed that the field values 
converged up to the same order.

Fig. 2 shows plots of the energy density, magnetic flux and Z
flux of the solution. The energy is localized in the form of a string. 
Also, the magnetic flux is rising from the center, and it is clear 
that the magnetic monopole exists. Note that the flux is spherically 
symmetric at large distances but not near the monopole. The Z
flux flows upward and downward on the string, which indicates 
that the two Z strings are attached to the monopole.

We would like to emphasize that the energy density at any 
cross sections with z = const. includes the power-law tail leading 
to the logarithmic divergence, but it is only related to the global 
U (1)a winding. Therefore, neither the Z -fluxes at the both sides 
of the configuration, which decay exponentially fast, nor the elec-
tromagnetic monopole suffer from the logarithmic divergence. We 
define the total energy of the monopole (monopole mass) as the 
difference between the energy of the configuration and that of the 
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Z -string without the monopole, which has no divergence and is 
well-defined because the energy density of the monopole (the dif-
ference of their energy densities) is exponentially localized. In our 
numerical computation, the monopole mass is typically O(1) TeV.

7. Conclusion and outlook

We have constructed a stable magnetic monopole solution in 
2HDM under a potential with the U (1)a symmetry and the (Z2)C
symmetry, which yields tan β = 1, based on full 3D numerical sim-
ulation. In the solution, the magnetic flux 4π sin θW /g emanates 
from the monopole, and the Z strings are attached to its both 
sides. The stability is ensured by the fact that the monopole can 
be regarded as a topological (Z2)C kink interpolating between the 
two degenerate vacua on the lifted moduli space S2.

We should note that our monopole is essentially different from 
monopoles confined in vortices, which are put in the Higgs phase 
[56–64].6 In those cases, the magnetic flux and the physical de-
grees of freedom are confined in the string. On the other hand, 
our monopole is not in the Higgs phase since U (1)EM is not bro-
ken. Consequently, while the Z flux is confined, the magnetic flux 
is not confined but emanates spherically at large distances.

In this paper, we have assumed the U (1)a symmetry, and thus 
the corresponding NG boson appears after H gets a VEV. Since 
such massless modes are severely constrained by experiments, we 
should introduce explicit U (1)a breaking terms by switching on m3
and α5, which give a mass to the NG boson (the CP-odd Higgs bo-
son). This effect makes the topological strings attached by domain 
walls [45,46]. The same is expected to happen with the string-
monopole complex that we have considered above. As a result, our 
monopole (and string) are pulled by the wall and cannot be static. 
There is another option to avoid the NG boson, which is gauging 
the U (1)a symmetry [67]. In such models, the monopoles are not 
attached by domain walls because the U (1)a symmetry is exact. 
Therefore, their evolution is easier to study.

Let us comment on phenomenological properties of our
monopole. Interestingly, they did not be diluted by the cosmolog-
ical inflation because it is produced at the electroweak symmetry 
breaking. This raises a question of whether our monopole causes 
the so-called cosmological monopole problem [68]. A naive answer 
is no, because our monopole has a much lighter mass O(1) TeV
than that of GUT monopoles, and thus it would not dominate 
the energy density of the universe at any epoch assuming that 
a few monopoles per horizon volume were produced at the sym-
metry breaking. Another famous bound on monopoles is the Parker 
bound [69,70]. Again, our monopole would not conflict the bound 
because of its lightness. Of course, these arguments are quite naive. 
Therefore, it would be interesting to investigate the evolution of 
our monopoles (and strings) in the early universe and the abun-
dance in the present universe. Such studies provide predictions for 
the current and nearly future monopole searches, and enable us 
to impose bounds on 2HDM. To this end, it will also be important 
to consider whether the monopoles can be generated, not only by 
the Kibble-Zurek mechanism [71,72], but also by the reconnection 
between the Z strings.

Another phenomenological application of our result may be 
baryogenesis. In Ref. [73], a sphaleron-like configuration is made 
from a Nambu monopole-antimonopole pair (dumbbell) in the SM. 
It is interesting to find out whether the same argument is applica-

6 In particular, confined monopoles in dense QCD [65,66] are quite similar to our 
monopole in the sense that they are accompanied by both the color flux tubes 
and global vortices, although they have no magnetic flux spreading spherically from 
them.
ble to our monopole. In addition, it is also interesting to consider 
the direct detection of the monopoles by collider experiments.

Finally, let us briefly comment on the case without the (Z2)C
symmetry, in which the Z fluxes of the two Z strings are not 
equal, and a difference occurs in the finite parts of those ten-
sions. Therefore, the monopole is pulled to one side, resulting in 
the instability. A quantitative study of the instability will be done 
elsewhere.
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Appendix A. Gauge field induced by H

In the presence of the Higgs configuration H
ζ̂

, the electromag-
netic flux and the Z flux are induced. In this section, we derive 
them in the limit where we treat the strings and the monopole as 
infinitesimally small (delta-function like) defects.

To make it easy to see the correspondence with a Nambu 
monopole, in the following, we consider an alternative Higgs field,

Hmon = U (ζ̂ )† H
ζ̂

= v

(
cos ζ̂

2 − sin ζ̂
2

eiϕ sin ζ̂
2 eiϕ cos ζ̂

2

)
, (A.1)

which is SU (2)W gauge equivalent to H
ζ̂

.
Let us minimize the kinetic energy of Hmon:∫
d3x Tr|Di Hmon|2 =

∫
d3x

(
|Di�1|2 + |Di�2|2

)
. (A.2)

If Hmon would be a local string, we can take the gauge field to sat-
isfy Di�1 = Di�2 = 0, but now since Hmon has a global winding 
1/2, its kinetic energy cannot be completely canceled by the gauge 
fields. Therefore, it is minimized by the following:

Di�1 = − i

2
(∂iϕ)�1, (A.3)

Di�2 = + i

2
(∂iϕ)�2. (A.4)

Since �1 and �2 are given by

�1 = ve−i ϕ
2

(
− sin ζ̂

2 e−i ϕ
2

cos ζ̂
2 ei ϕ

2

)
, (A.5)

�2 = vei ϕ
2

(
− sin ζ̂

2 e−i ϕ
2

cos ζ̂
2 ei ϕ

2

)
, (A.6)

Eqs. (A.3) and (A.4) are equivalent. Thus, it is sufficient to consider 
only Eq. (A.3). Following the procedure in Ref. [13], we obtain the 
gauge fields

gW a
i = −(

−→n × ∂i
−→n )a + hin

a, (A.7)

g′Yi = ai(r, θ,ϕ), (A.8)
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with

hi ≡ ∂iϕ − iv−2(�
†
1

↔
∂i �1) − ai . (A.9)

Here, ai(r, θ, ϕ) is an arbitrary function at present, and na is a 
unit vector defined by na ≡ (�

†
1σ

a�1 +�
†
2σ

a�2)/(�
†
1�1 +�

†
2�2), 

which indicates the orientation of the vacuum within SU (2)W . It 
has the hedgehog structure and plays the same role as the normal-
ized adjoint scalar in the presence of a ’t Hooft-Polyakov monopole 
[2,3].

Using Eqs. (A.7) and (A.8), we can obtain the field strengths, 
W a

ij and Yij , as follows:

gna W a
ij =

(
2 sin2 ζ̂

2
− 1

)
∂[i∂ j]ϕ − ∂[ia j] (A.10)

g′Yij = ∂[ia j]. (A.11)

In our notation, t[i j] ≡ ti j − t ji for any tensor t .
Let us define the field strengths of the Z field and the electro-

magnetic field as follows7

F Z
i j ≡ − cos θW na W a

ij − sin θW Yij, (A.12)

F EM
i j ≡ − sin θW na W a

ij + cos θW Yij . (A.13)

Substituting Eqs. (A.10) and (A.11) into Eq. (A.12), we obtain

F Z
12 = 2π cos θW

g

z

|z| δ(x)δ(y) (A.14)

and F Z
23 = F Z

31 = 0, where ai -dependence has been canceled. On 
the other hand, F EM

i j depends on ai :

F E M
ij = − sin θW

g

(
1 − 2 sin2 ζ̂

2

)
∂[i∂ j]ϕ + ∂[ia j]

g sin θW
. (A.15)

To determine ai , we require it to minimize the electromagnetic en-
ergy 

∫
d3x (F EM

i j )2, which leads to

ai = sin2 θW

(
1 − 2 sin2 ζ̂

2

)
∂iϕ + b ∂i ζ̂ , (A.16)

with b being a constant. The second term in Eq. (A.16) does not 
appear in the field strength, and we obtain the following expres-
sion:

F EM
i j = − sin θW

g
sin ζ̂ (∂[i ζ̂ )(∂ j]ϕ). (A.17)
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