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ABSTRACT Tensor networks are a popular and computationally efficient approach to simulate general
quantum systems on classical computers and, in a broader sense, a framework for dealing with high-
dimensional numerical problems. This paper presents a broad but not exhaustive literature review of
state-of-the-art applications of tensor networks and related topics across many research domains, including:
machine learning, mathematical optimization, materials science, quantum chemistry and quantum circuit
simulation. This review aims to clarify which classes of relevant applications have been proposed for which
class of tensor networks, as well as to highlight main application results and limitations compared with other
classical or quantum simulation methods. We intend this review to be a high-level tour on tensor network
applications that is easy to read by non-experts, so basic technical details of tensor networks are summarized.

INDEX TERMS Applications, machine learning, materials science, mathematical optimization, quantum

chemistry, quantum circuit simulation, tensor network.

I. INTRODUCTION

Many computational applications have been developed
based on the simulation of quantum physical systems and
inspired others outside the field of quantum computing. In a
seminal lecture in the 1980s, Richard Feynman [1] already
discussed the simulation of subatomic-scale physical systems
by means of computations based on Turing machines [2]
and questioned the extent to which these machines can
really simulate quantum physical systems. This motivated
the proposal of quantum Turing machines by Deutsch [3],
from which quantum complexity theory [4] and quantum
computing [5] developed into their present form.

Can classical computers efficiently simulate quantum
physical systems? This question is problematic because
quantum mechanical theory represents quantum physical
systems by vectors in a (finite) Hilbert space, which are
called state vectors [5], [6]. Due to the quantum mechanical
principle of superposition, state vectors are represented as
linear combinations of a given basis in Hilbert space. That is,
two complex numbers are needed to represent state vectors of
any two-state quantum physical system, or qubit; however, 2"
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complex numbers are needed to represent state vectors of any
composite system with n qubits. Therefore, just representing
the states of quantum systems in a classical computer quickly
becomes unfeasible for an increasing number of qubits, let
alone simulating their behavior over time.

A different but related question, which is a key open chal-
lenge in quantum computing, asks instead if classical Turing
machines can efficiently simulate quantum circuits [7], [8].
Quantum circuits, originally called quantum computational
networks [5], [9], are one of the most common models of
quantum computation to simulate quantum physical systems.
Indeed, there exist quantum circuits which classical Turing
machines can efficiently simulate: quantum circuits where all
quantum gates are Clifford gates, as shown by Gottesman in
1998 [10]; and, quantum circuits based on “matchgates,” as
shown later by Valiant [11].

Another approach to efficiently simulate quantum circuits,
not based on restricting the type of quantum gates, consists in
representing quantum circuits as tensor networks (TNs) [12],
[13]. TNs can operationally represent a quantum circuit by
decomposing it into simpler circuit elements as tensors [14].
That is, quantum states, quantum gates, and the operations
between them, are defined in terms of tensors and tensor
algebra. A simple definition of tensor is that of an ordered
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sequence of values indexed by zero, one, or more indices;
scalars, vectors, and matrices, are all specific cases of the
general notion of tensor. (Other mathematical notions and
related historical remarks of tensors can be found in [14].)
Thus, a TN representing a given quantum circuit does not
change what the circuit computes but how such computation
is performed.

TNs made it possible to mathematically characterize
classes of quantum circuits that can be efficiently simulated
on classical computers. One such class are quantum circuits
with low entanglement [13]; that is, where the number of
entangled qubits grows at most polynomially with the total
number of qubits. Another example is the class of quantum
circuits where the number of gates grows polynomially, depth
grows logarithmically, and all qubit interactions are spatially
localized [12]. In fact, localized qubit interactions and low
entanglement are properties of well-known antiferromagnetic
material models in condensed matter physics [15] that have
been described via TNs [16].

A. MOTIVATION AND CONTRIBUTION
Many literature reviews have been published over the last
decade discussing:

o theory of TN methods [16], [17], [18], [19], [20],
of which the most widely used is the density-matrix
renormalization group algorithm [21], [22];

« software for TN methods as standalone packages [23] or
part of larger software projects [24], [25], [26];

« partly theory and software of TNs [27], [28], [29];

« TN applications for a specific research domain, such as:
data analysis in machine learning [30], [31], numerical
analysis of continuous multivariate functions [32],
molecular orbitals in quantum chemistry [33], [34],
variational quantum algorithms in computational fluid
dynamics [35], or open quantum systems [36]; and,

o simulation of quantum physical systems by means of
classical or quantum computers though not specifically
using TN [8], [37], [38].

Unlike the previous reviews, this paper presents a broad
review on state-of-the-art computational applications of
TNs across many different research domains, including:
machine learning, mathematical optimization, materials sci-
ence, quantum chemistry, and large-scale simulation of
quantum circuits. However, we do not intend to review all
TN applications (whether classical or quantum) in those
research domains. Our choice of topics is motivated by
the aforesaid literature reviews, most of which concern
TN in quantum-based and quantum-inspired computing. For
instance, open quantum systems [36] are a fruitful research
area, but we exclude them from this review since many
TN applications still consider closed quantum systems based
on quantum circuits with unitary dynamics. The overall
aim of this paper is to clarify what kind of applications
have been proposed for which TNs, their major application
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results, and their limitations, compared with other classical
or quantum simulation methods. This review touches upon
certain performance! aspects of TNs, but this review does not
aim to discuss TNs computational complexity (e.g., runtime
analysis), which would make our review harder to follow,
deviate from our focus, and require separate experimental
research. We believe this will make it easier for readers
who are not familiar with TNs but are interested in TN
applications.

This paper is organized as follows: Section II highlights
related state-of-the-art methods and applications in quan-
tum circuit simulation and other areas outside quantum
computing. Section III summarizes fundamental notions
of TNs which are used in subsequent sections. We then
review applications based on well-known classes of TNs:
image classification (Section I'V), mathematical optimization
(Section V), materials science and quantum chemistry
(Section VI), and other emerging applications of TN simula-
tions (Section VII). Section VIII presents a general discussion
of the TNs applications reviewed and some future work
directions. Finally, Section IX concludes this paper, including
a handy summary table of the TNs applications reviewed.

Il. RELATED WORK

This section contextualizes our review by highlighting other
popular methods and applications related to tensor-network
simulation.

A. CLASSICAL SIMULATION OF QUANTUM CIRCUITS

Two general methodologies for classically simulating quan-
tum circuits are commonly used, based on two well-known
formulations of quantum mechanics: Schrodinger’s state-
vector formulation [5] and Feynman’s sum-over-paths (or
path integral) formulation [39]. Schrédinger’s formulation is
followed by most quantum-circuit simulators [26]. Therein,
a simulation consists in state-vector transformations defined
by the unitary operations of quantum gates [5]. By contrast,
simulations under Feynman’s formulation focus on com-
puting single probability amplitudes (one for each possible
measurement outcome) associated with the final quantum
state of a given circuit. Although both methodologies incur
a computational time complexity that grows exponentially in
the worst case, Feynman’s formulation requires a computa-
tional space complexity that only grows polynomially in the
number of qubits and quantum gates [7].

These two methodologies set a basis for a range of specific
and more efficient techniques developed to classically
simulate quantum circuits. Briefly:

e Massively parallel computing made it possible in

2018 to sample up to 28 probability amplitudes from
a state-vector simulation of quantum circuits with

IWe use the phrase ‘“‘computationally intractable” to refer indifferently
to any decision problem or analogous optimization problem for which
no known classical or quantum algorithm solves it and the computational
time/space complexity of the algorithm is polynomially upper-bounded.
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64 qubits and circuit depth of 22 [40] at a notably
lower computational cost than before [41]. Such a
number of qubits is already beyond the 50-qubit scale
that others in 2019 [42] and 2022 [8] thought to be
the limit. To surpass it, however, required remarkable
advances in parallel computer hardware with CPUs and
GPUs, distributed/shared memory management, as well
as quantum circuit partitioning techniques to distribute
the entries of state vectors and quantum gates’ matrices
across cluster nodes.

o Efficient data compression techniques for floating-
point data [42] have been recently integrated into
Intel-QS [43] distributed, full state-vector, classical
simulator of quantum circuits. This enabled a leap in
full state-vector simulations from 45 up to 61 qubits
for Grover’s quantum search algorithm and, at the
same time, reduce memory usage from 32 - 10'8 bytes
(without data compression) down to 768- 1012 bytes [42].
Benchmarks up to 45 qubits across random circuit sam-
pling, quantum approximate optimization algorithm,
and quantum Fourier transform, show that memory
usage can be reduced by approximately 4-21 times
the original thanks to such data compression while
maintaining 97.6% qubit simulation fidelity [42].

e Decision diagrams and TNs are the most popular
techniques to represent quantum circuits in a com-
putationally more efficient way than using full state
vectors [44]. Both use data structures allowing quantum
circuits to be conveniently decomposed: TNs use
tensors [14], whereas decision diagrams use directed
acyclic graphs similar to binary decision diagrams [45].
However, the simulation performance achieved by these
data structures is rather dependent on the class of
quantum circuits. On the one hand, TN’ are not expected
to perform well for deep and highly-entangled quantum
circuits [12]. On the other hand, decision diagrams are
not expected to perform well if the original state vectors
and quantum gates’ matrices contain few redundant
entries (e.g., if most amplitudes are distinct) [46],
[47], [48]. There is also significantly more quantum
circuit simulators available for TNs than for decision
diagrams [23]. However, making an informed choice
between simulators is challenging because the software
is often redundantly developed, and there is a lack
of common standards for development as well as
documentation.

o Hybrid techniques have been proposed to exploit the
relative successes and computational performance trade-
offs of the above techniques. For example: Schrodinger-
Feynman simulations hybridized with massively parallel
computing [49] or decision diagrams [50], tensor-
based circuit cutting [51], and tensor-based deci-
sion diagrams [52]. Despite their promising results,
these hybrid techniques are at preliminary research
stage, and their true performance advantages over
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the well-established techniques above are yet to be
clarified.

B. CLASSICAL EMULATION OF QUANTUM CIRCUITS

In contrast with classical simulation techniques, in 2016 the
Institute of Theoretical Physics in Zurich, Intel, and
Microsoft Research [53] proposed a classical emulator of
quantum circuits. Such an emulator allows, in principle,
to test and debug quantum circuits at a comparatively lower
computational cost than classical simulators. However, this
involves a fundamental change of paradigm: the proposed
classical emulator is required to compute the same output
from a given quantum circuit as performed by a quantum
computer but, unlike classical simulators, it is not limited
to do so by performing quantum gate operations. This
means quantum-gate logic can be replaced by faster and
functionally equivalent classical subroutines to avoid the
overhead costs of simulating reversible gates as well as
associated ancillary qubits. Benchmarks [53] for arithmetical
operations, quantum Fourier transform, and quantum phase
estimation show that running times of the classical emulator
are significantly lower than some state-of-the-art classical
simulators of quantum circuits.

C. TENSOR NETWORKS BEYOND QUANTUM COMPUTING
TNs encompass a vast number of methods and applications
for dealing with high-dimensional numerical problems which
are not limited to quantum circuit simulation or the field of
quantum computing more generally [28], [29], [30].

Besides classical problems in machine learning like super-
vised image classification, which we review in Section IV,
there exist challenging problems in unsupervised machine
learning where tensor-based methods are widely used. One
such problem is subspace clustering [54], [55]. It consists
in finding low-dimensional representations that approximate
a given set of unlabeled data samples well, where the data
can be high-dimensional, heterogeneous (e.g., text, image,
video, or sound), and contain errors due to random noise,
corrupt or missing information. Several TN algorithms [56],
[57] have been proposed for subspace clustering which,
in essence, remove irrelevant and redundant features from the
initial dataset to achieve an approximate yet computationally
efficient representation. This computational advantage is
achieved by carefully integrating other techniques [58], [59],
[60]: low-rank tensors, self-representation learning, sample
diversity learning, certain assumptions about linearity and
sparsity of the data, as well as generalizations of singular
value decomposition (SVD), which is similar but not identical
to principal component analysis or the Karhunen-Loeve
transform [61].

Other classical computing applications have benefited
from the computational efficiency and adaptability of TNs
and low-rank tensors to compactly represent different types
of complex data. Some examples are: improving token
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prediction in large language models [62], automated reason-
ing in knowledge graphs and ontologies [63], [64], reducing
the number of parameters to train deep neural networks [65],
and code generation for fast tensor algebra operations [66],
[67], [68].

IlIl. TENSOR NETWORKS OVERVIEW

This section defines the key notions of a tensor, tensor
contraction, and TN representations of state vectors, recalled
in later sections.

An arbitrary tensor of complex numbers is an element v
in a set Clv<xla where I, ...1; are index sets such that
I = {1,...,mj} for all j € {1,...,d} given any fixed
natural numbers m; and d. Such tensor v is called an order-d
tensor because d indices must be specified to retrieve a single
complex number from v. For example, an arbitrary matrix
with two rows and three columns is specified as an order-
2 tensor v, where the rows are indexed by I1 = {1, 2} with
m; = 2 and the columns are indexed by I, = {I, 2, 3} with
my = 3. The element in the first row and third column is
specified as v[1, 3] with indices denoted in square brackets
rather than subscripts. We use subscripts to label different
tensors (e.g., vi and v; are two different tensors).

Every state vector of a n-qubit composite system can be
represented by a linear combination of basis state vectors in
a product Hilbert space as follows:

W)= D it il (i) @ @) . (D)

for all iy € Iy and k € {1, ..., n}. The operator ® denotes
the Kronecker product, each I is an index set, ¢ is an order-n
tensor, and each c[iy, ..., iy] is a complex number coefficient
given by indices iy, . . ., i,. To use computational basis states,
one may choose l; = {0, 1} so that |i) is either [0) = (1, 0)
or [1) = (0, 1). For the case of a two-qubit system where
n=2,

)= > clit, idl i1, ia) )
{i1,in}
expands into
l¥)
= [0, 0]/0, 0) + ¢[0, 11]0, 1) + ¢[1, 01|1, 0) + ¢[1, 1]]1, 1)
3

using the shorthand notation |i1, i2) = |i1) ® [i2).

TN representations of |1) consist in expressing an order-
n tensor ¢, see (1), in terms of a network of lower-order
tensors that use fewer indices. That is, TNs are a natural
way to efficiently represent and computationally exploit the
underlying structures in high-dimensional data [69].

A contraction operation over a certain index linking two
or more tensors within a tensor network is the summation
over all elements involved under such index. The order in
which we contract those tensors is called a contraction path.
Different contraction paths may require a different number
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of operations, so their respective computational complexity
will also be different in general. A TN can be depicted
as a graph diagram with nodes and edges displaying the
different contractions over the indexed tensors building up the
network. For example, let us consider a quantity Q of the form

Q= > Ali.jlBIi k] Clj, k, €] D£], “)
{i.j.k, L}
whose TN representation is given in Fig. 1 (a). Contractions
over indices £ and j are depicted in Fig. 1 (b) and Fig. 1 (c),
respectively. Q is finally obtained after contracting indices i
and k (in practice, both can be flattened to a single index).

LB Q
(a) (b) (o) (d)

FIGURE 1. Step-by-step contraction of a TN with four tensors (a) to obtain
a single scalar Q. The contraction path is defined by the sequence of
indices ¢ — j — i, k.

The simplest TN representation is called the matrix product
state (MPS) [13], [16]. A general MPS representation of |ir)

is defined by expressing each coefficient ¢[iy, ..., i,] in (1)
as a summation of tensor products
clit,....isl= > Clan....ap1) . (5)
{og,ees0tp—1}
where
Clay,...,ay—1) = cilir, a1] e2[iz, a1, az]

X oo X € lin—1, 0p—2, ay—1] eulin, an_1l,

(6)

¢ and ¢, are order-2 tensors (i.e. matrices), and ¢, through
¢,_1 are order-3 tensors. The indices «j, ..., a,_1 shared
between tensors are called virtual or bond indices, which
are mathematical artifacts of the representation and do not
have a physical meaning per se. By analogy, indices i are
called physical indices because they relate to the physical
degrees of freedom of a quantum state. Each o takes values
in {1,..., x}, where x is a natural number called bond
dimension. The bond dimension y is normally considered
as a parameter of the TN representation: increasing x will
increase the size of the corresponding tensor (i.e. number of
elements it contains). The expression in (5) is a tensor con-
traction over such virtual indices. Note that the multiplication
of two matrices is a form of tensor contraction when any
two given order-2 tensors, say a and b, are contracted over
a single shared index: c[u, v] = ZW alu, wlb[w, v], where
c[u, v] is the element at row u and column v of c¢. Fig. 2
illustrates a MPS representation for a five-qubit system in
diagrammatic form, and Fig. 3 illustrates a quantum circuit
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layout for such MPS representation by using two-qubit gates
that act on consecutive pairs of qubits.

FIGURE 2. Diagram of a MPS representation (bottom) of an order-5
tensor (top). Every node corresponds to one tensor, every edge to one
virtual index and every edge incident to only one node corresponds to
one physical index.

FIGURE 3. Quantum circuit diagram (right), consisting of two-qubit gates
(‘square boxes’), for a MPS of an order-5 tensor (left).

State vectors (1) require 2" numbers to fully describe
them (or more precisely, 2" — 1 numbers taking into account
normalization). The MPS representation can be obtained
by applying consecutive SVD operations to the state-vector
matrix. For example, for a state vector with n = 2 qubits

Y11 Y2
Y21 Y2

where U, V are unitary matrices (also referred to as isometric
in the literature) and S is a vector storing the singular values.
The structure of the singular values is fundamental to the
optimization of the tensor network. Usually, only a few
are significant enough to contribute, and we can include
only those singular values in the contraction to retrieve [v/).
In other words, we can truncate the TN representation of |y)
by truncating the bond dimension, and this plays a crucial
role in the scalability of TNs. As we can see in (6), the
amount of data scales as O(np Xz), where n is the number of
qubits (equal to the number of tensors ¢ in the representation),
x is the bond dimension, and p is the physical dimension.
Therefore, an MPS representation of state vectors can reduce
an exponentially-scaling number of amplitudes to polynomial
scaling as long as the bond dimension is truncated to a
“sufficiently small” number based on the quantum system
or problem at hand.

The configuration of the singular values in the vector
S of the SVD dictates the precision in the approximation
performed by truncating the bond dimension, and it is closely
related to the quantum entanglement of the decomposition.

lY) = '(ﬂ{/ = ( ) = UiXSXV/Xﬂ (N
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Let us illustrate the relationship with a two-qubit product state
|00), whose qubits are not entangled:

1

0 10
0 Z(oo)' ®)
0

[00) = |0) ® |0) =

After applying SVD to this matrix, we obtain the singular-

value vector
1
Sy = (0) . )

Thus, restricting the bond dimension to x = 1 in this simple
unentangled case makes the approximation exact since only
one singular value contributes to the contraction as seen in (7).
However, if we apply SVD to a maximally-entangled Bell

state
01
= (1 O)’ (10)

) o

In this case, any truncation in the bond dimension results in
a poor approximation of the state vector since all singular
values contribute equally. Thus, TN representations exploit
the low entanglement exhibited in certain parts of the state
vector to make a well-controlled approximation, where only
the most significant partitions of the system contribute. This
extends from quantum mechanics to classical systems by
analogy, where instead of entanglement between partitions
of the system, there are appropriate correlation functions or
couplings [30], [70].

The previous example illustrates why TN representations
are inherently limited in the sense that they are not
necessarily convenient nor computationally efficient for
accurately describing highly-entangled systems (e.g., deep
quantum circuits involving a large number of entangling
gates). Highly-entangled systems need tailored TN repre-
sentations based on a careful analysis of their entanglement
distribution [16].

If one thinks of each tensor in a MPS as a “particle,” then
Fig. 2 clearly shows why MPS is a convenient representation
of a quantum physical system where particles only interact
with their nearest neighbors, as in the Affleck-Kennedy-Lieb-
Tasaki model [15], [16]. Other quantum physical systems
with more intricate interaction patterns can be represented
and simulated by TNs that generalize MPS via higher order
tensors. Well-known generalizations of MPS include: tree
tensor network (TTN) [71], [72], projected entangled-pair
state (PEPS) [73], a form of PEPS called isometric tensor
network (isoTNS) [74] where tensors are similar to uni-
tary matrices, and multiscale entanglement renormalization
ansatz (MERA) [20]. Fig. 4 illustrates examples of these in

1

+y
WB>_ﬁ

(101) + [10)) =

S = = O

we obtain

S, =
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diagrammatic form. Details about their formulations can be
found in the aforementioned references.

| | |/ |/ |/ _/ SN
TS S S =N

(a) (b) ()

FIGURE 4. Diagrams of generalized tensor networks: tree tensor network
(a), projected entangled-pair state (b), multiscale entanglement
renormalization ansatz (c).

The computational time and space complexities of TN
representations generally depend on several factors, includ-
ing: the magnitude of the tensors’ order involved, the
magnitude of the bond dimension, the order in which
tensor products are performed during a contraction, and
whether one truncates some of the tensors to approximately
(rather than exactly) represent the original state vector |y).
Finding an optimal way to contract a TN is a NP-hard
problem in general [12], [75]. This is proved by reduction
from the NP-completeness of the tree-width problem [76],
[77] or subset-sum problem [78]. Sometimes it is possible
to efficiently find tensor decompositions using low-order
tensors to make a ‘“good” approximation [79], [80] and
heuristic methods are often used to find contraction paths in
TNs [27], [75], [81], [82], [83], [84].

Nevertheless, TNs can be adapted to describe different
quantum or classical systems. Once a suitable TN repre-
sentation is chosen, TN parameters are straightforward to
change. Moreover, once a contraction path is known (whether
optimal or not), it can be reused in other TNs with the same
structure but different tensors. This inherent flexibility of
TN representations makes them ideal for studying the time
evolution of Hamiltonian models [85] and characterizing
phase transitions [86].

IV. IMAGE CLASSIFICATION

Many machine-learning applications have been developed
between 2019 and 2023 for classifying 2D digital images
based on different TN representations:

o Classification of handwritten digits taken from the mod-
ified National Institute of Standards and Technology
(MNIST) database [87], which is a subset of the NIST
Special Database 19 [88], by means of MPS [89] or
TTN [90], [91].
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o Classification of clothes taken from the Fashion-MNIST
database [92], by means of MPS [89], TTN [90] or
PEPS [93].

o Classification of vehicles and animals taken from the
ten-class Canadian Institute for Advanced Research
(CIFAR-10) database [94], by means of TTN [91].

« Classification of COVID-19 pneumonia in X-ray chest
images [95], by means of PEPS [93].

« Classification of top quarks and discrimination of quan-
tum chromodynamics background noise in calorimeter
images, by means of MPS [96], [97], TTN [97],
or MERA [97].

The seminal work of Stoudenmire and Schwab in 2016 [98]
introduced TNs for supervised machine learning. Their model
consists in finding an optimal weight tensor w for a real-
valued decision function f(x) = w - ®(x) that classifies
any input image x = (xi,...,X,) given by n grey-scale
pixels x; € (R N [0, 1]). The weight tensor encodes the
strength of correlations between pixel values, and a MPS
tensor network was proposed to represent it. The function
®(x) is called feature map and transforms each pixel into a
point with coordinates (cos (xj w/ 2) , sin (xj b4 /2)) in a unit
circle, meaning that white pixels x; = 0 map to the vector
(1, 0) and black pixels x; = 1 map to the vector (0, 1).
These two vectors can be interpreted as qubits |0) and |1),
respectively.

All the image-classification applications reviewed in this
section build upon Stoudenmire and Schwab’s work, using
different TN representations of the weight tensor w. The
main performance metric used to benchmark these TN
models is the classification accuracy achieved on unseen data
samples (i.e., test accuracy). Other relevant aspects, such as
training time, tensor-contraction time or memory usage are
not benchmarked.

TNs have also been proposed for image generation, but
this research is rather scarce and preliminary compared with
image classification. Two examples are image generation for
MNIST handwritten digits using TTN [99] and generation
of phase diagram images for a 2D frustrated Heisenberg
Hamiltonian by means of PEPS [100]. A general quantum
machine learning model [101] was also proposed using a
PEPS tensor network algorithm [102], which in theory can
be applied to both classify and generate images.

A. MNIST, FASHION-MNIST, AND CIFAR-10
Novel TN representations may not always improve test
accuracy on certain benchmarks. For the MNIST dataset [87],
low-rank TTNs [90] achieve 98.3% test accuracy (for bond
dimension x = 8 or higher), whereas hierarchical TTNs [91]
achieve almost 95% test accuracy (for bond dimension
x = 10). Yet both scores are lower than the 99% test accuracy
already achieved by Stoudenmire and Schwab [98] for an
MPS with xy = 120.

In fact, achieving a test accuracy of 99% on MNIST is
not challenging, as demonstrated by a convolutional neural
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network called LeNet-5 [87] in 1998. Also, MNIST is not as
computationally challenging for machine-learning methods
as benchmarks like Fashion-MNIST [92] and CIFAR-10 [94]
proposed more recently. On these benchmarks, the test
accuracy achieved by TN models is lower: multilayered
PEPS [93] obtain 90.44% on Fashion-MNIST (for x = 5);
low-rank TTNs with tensor dropout [90] obtain 90.3% on
Fashion-MNIST (for x = 16); and, hierarchical TTNs [91]
obtain 75% on CIFAR-10 (for x = 6 or higher). For MPS
with x = 5, an average classification accuracy of 92.2% can
be achieved on Fashion-MNIST [89] at a lower computational
cost than the aforementioned TTN and PEPS variants. This
accuracy, however, was measured via the AUROC? metric:
it is no longer recommended and can lead to overoptimistic
results [103].

B. COVID-19 PNEUMONIA

Regarding the COVID-19 radiography dataset [95], multi-
layered PEPS® can achieve a test accuracy up to 91.63%,
which is above the 87.08% test accuracy by standard
PEPS [93]. This shows higher-dimensional TNs can achieve
an image classification accuracy that is higher than TNs with
simpler structures. However, the same authors [93] show that
image classification models based on multilayered PEPS will
also require more training parameters than those based on
simpler TNs like PEPS, TTN, or MPS. The authors report,
for instance, that PEPS requires 1064964 parameters for
bond dimension y = 4, but a two-layer PEPS requires
1394102 parameters for x = 3 and 10750902 parameters
for x = 5. The convolutional neural network GoogleLeNet
(Inception v1) [105] requires 6 797 700 palrametelrs4 in total
and achieves a 92.75% test accuracy on the COVID-19
radiography dataset [93]. Therefore, GoogleLeNet can
achieve higher classification accuracy using fewer training
parameters than a multilayered PEPS. Also, GoogleLeNet
was released in 2015 [105] and has been superseded by newer
convolutional neural networks [106], so the performance
trade-offs between multilayered PEPS and simpler TNs or
convolutional neural networks for classifying images are not
clear yet.

C. TOP QUARKS

In contrast to the purely classical models above, Araz
and Spannowsky [97] propose a quantum machine-learning
model to classify the heaviest known elementary particles,
called top quarks, in images produced by calorimeters at
CERN’s Large Hadron Collider. The ATLAS detector is used
to generate such images, based on energy measurements from
particles’ collisions. In this model, input images are first

2AUROC stands for “area under the receiver operating characteristic
curve” [103].

3Multilayered PEPS [93] are a generalized class of TN representations
based on PEPS. It should not be confused with the use of the term ‘“‘two-
layer PEPS” in [104] that refers to the contraction of two PEPS.

4 Authors [93] incorrectly report 5 604 004 as GoogleLeNet’s total number
of parameters.
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encoded into an initial quantum state and then classified by
a quantum circuit, with gates arranged in a TN topology,
according to a decision function similar to Stoudenmire and
Schwab’s proposal [98]. Araz and Spannowsky [97] showed
that image classification by quantum circuits with MPS,
TTN, or MERA topologies involves notably fewer training
parameters to achieve approximately the same or higher
classification accuracy than a corresponding simulation on a
classical computer (see Table 1). However, the accuracy was
measured via the not-so-reliable AUROC metric [103] and
therefore the validity of Araz and Spannowsky’s benchmark
results needs clarification.

One challenge faced by machine-learning models, partic-
ularly those based on gradient-descent methods, are barren
plateaus or flat regions associated with the loss function
used for training the model (see Section V-A). However,
Araz and Spannowsky [97] also argue that their classification
model is unlikely to suffer from barren plateaus if simulated
on a quantum circuit whether using MPS, TTN, or MERA
topologies. To show this, the authors analyse the eigenvalue
distribution of the empirical Fisher information matrix [107]
for the quantum TN and their corresponding simulation on a
classical computer. Such eigenvalue distribution can be used
as an indirect measure of flatness in the loss function [107]: a
model suffering from barren plateaus will have an increasing
number of these eigenvalues around zero as the number of
qubits of the model increases.

TABLE 1. Classification accuracy by tensor networks for top quark
discrimination from background radiation noise in 2D calorimeter images.

Simulation Tensor # Training Best
Network Parameters Accuracy (%)
MPS 2150 89.4
Classical TTN 14 800 89.6
MERA 18200 90.1
Quantum MPS 9 88.6
ot TTN 9 89.3
MERA 17 91.4

V. OPTIMIZATION AND LOCAL HAMILTONIANS

A class of optimization problems that is central to quantum
computing consists in finding a minimum eigenvalue A and
associated eigenvector |v) of a given Hamiltonian operator
H : H® — H®" on a Hilbert space ‘H of n-qubit states,
so that H|y) = A|Y) holds [5], [108], [109]. H represents
the energy function of a physical system, mapping a given
ground state |i) to its corresponding ground-state energy
value \. Usually, the Hamiltonian can be expressed as a sum
of sub-functions H = Z;:l Hj, where each sub-function H;
is locally defined on k qubits at most (given a fixed k < n)
and the number of terms r is polynomial in z. In other words,
one often can expand Hamiltonians as a finite series without
exponentially many terms and limit the maximum number
of interacting qubits to k. This refers to the class of k-local
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Hamiltonians [109], which is a generalization of maximum
k-satisfiability problems for the quantum complexity class
of QMA-complete problems (analogous to the NP-complete
complexity class).

The subclass of 2-local Hamiltonians is noteworthy for
two reasons. First, this subclass suffices to prove that
any adiabatic quantum computation, performed by quantum
annealers [110] for instance, can be efficiently simulated
by the quantum circuit model and vice versa [109]. This
equivalence suggests that, for all k-local Hamiltonians with
k > 2, TN simulations of a quantum circuit can probably
be performed by an adiabatic quantum computer (though
this review focuses on quantum circuits). Second, 2-local
Hamiltonians include popular Hamiltonian models such as
the Lenz-Ising model of spin glasses based on Sherrington
and Kirkpatrick’s work [111]. This model has applications
in physics, chemistry, biology, and combinatorial optimiza-
tion [112]. In fact, many constrained optimization problems
can be reformulated as spin-glass models or quadratic
unconstrained binary optimization (QUBO) problems [112],
[113], [114].

In the following, we cover TN applications in QUBO
and related methods for dynamic portfolio problems in
finance [115], a variational quantum algorithm for QUBO
problem solving [116], and analysis of barren plateaus
in variational quantum optimization [117]. Additionally,
one can find spin-glass models for the so-called “dose
optimization problem” in cancer radiotherapy, which can
be solved via a TTN algorithm [118]. This is preliminary
research, and we exclude it for the lack of clear performance
advantages over state-of-the-art algorithms and comparison
with alternative TN representations.

A. VARIATIONAL QUANTUM OPTIMIZATION AND BARREN
PLATEAUS

Variational quantum algorithms (VQAs) are hybrid quantum-
classical methods that iteratively approximate an opti-
mal solution to QUBO problems, spin-glass models or
k-local Hamiltonian problems more generally [108], [119].
In essence, VQAS use a parametrized quantum circuit to first
generate an initial quantum state and compute its energy for
a given Hamiltonian as an expectation value. This estimated
value is used as an upper-bound of the ground-state energy
or optimal solution. Based on this guess, a separate search
algorithm run on a classical computer will heuristically
update the circuit parameter values to generate an improved
guess in the next VQA iteration until some convergence
criteria are satisfied.

Unfortunately, convergence of VQAs towards an optimal
solution can fail because of barren plateaus [120] among other
major issues such as quantum noise, parameter initialization,
and quantum state initialization [108], [119], [121]. Put
simply, a barren plateau occurs when the expectation value
of the energy or cost function resembles a flat surface,
which leaves the VQA with no useful heuristic information
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(e.g., gradients) to update the circuit parameters, possibly
leading to random search behavior [120].

Nevertheless, recent research [122] strongly suggests that
barren plateaus can be avoided for certain VQAs if the:

1) circuit depth is restricted to grow no faster than
logarithmically in the number of qubits (i.e., shallow
circuits); and,

2) maximum number of qubit interactions at any one time
is fixed to a finite and preferably ‘“small” number
(e.g., nearest neighbors), thus restricting the class of
cost functions and associated optimization problems
that the VQA can possibly solve.

These conditions were assumed by separate research to
prove the absence of barren plateaus in TN representations
of quantum circuits with MPS [123], [124], TTN, and
MERA topologies [117], [123]. Moreover, shallow quantum
circuits with local interactions can be efficiently simulated
on classical computers by means of TN contractions [12],
[13]. In short, the topology of TNs and the computational
complexity of contractions can provide valuable analytic
insight about the presence of barren plateaus in VQAs.

There are specific examples of VQAs, like “QuEnc” [116],
designed to solve binary optimization problems with simple
linear equality constraints by reformulating them as QUBO
problems. Using a MPS representation, the authors show
that the running time of classically simulating a shallow
five-layer QuEnc circuit scales linearly as the number of
qubits increases, taking no more than one second on a regular
laptop for 300 qubits [116]. In terms of QUBO problem
solving, the same authors also benchmarked QuEnc on a
quantum computer (IBM’s five-qubit ibmg manila) and
compared it against simulated annealing (SA) and Goemans-
Williamson’s (GW) algorithm. Based on randomized
256-node graph instances of the maximum cut problem,
QuEnc’s solution quality improves as its circuit depth is
increased from 5 to 20. However, even with a 20-layer QuEnc
circuit, the solution quality is still worse than SA and GW.

B. DYNAMIC PORTFOLIO OPTIMIZATION

The mean-variance model introduced by Markowitz [125]
is the basis of many quantitative approaches to portfolio
selection used in finance. It is a constrained optimization
problem where the goal is to find a portfolio, that is a vector
of proportions of a given capital for investment across assets,
maximizing the expected return on the investment while
minimizing financial risk. Optimal solutions in Markowitz’s
model can be found efficiently with classical solvers, but
newer realistic models based on discrete formulations with
additional constraints turn portfolio optimization into a
mixed-integer programming problem that is computationally
intractable [126], [127].

One example is dynamic portfolio optimization models,
where portfolios are generalized from single-period to multi-
period investments over a series of consecutive trading days.
Researchers from Multiverse Computing [115] benchmarked
a MPS-based algorithm as well as state-of-the-art quantum
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and classical solvers against dynamic portfolio problems
formulated as QUBO with up to 1272 variables and all-
to-all interaction pattern. The benchmark results show that
the MPS algorithm achieved the best Sharpe ratios. Sharpe
ratios measure solution quality as the proportion of expected
return per unit of risk. The MPS algorithm also outperformed,
regarding problem size scalability, a classical solver provided
by Python’s GEKKO library and two VQAs (implemented
by the authors using IBM’s quantum platform and Xanadu’s
PennyLane library). However, the MPS algorithm performed
worse than GEKKO'’s classical solver in terms of solution
quality measured via total profit (i.e., returns minus trans-
action costs) and worse than D-Wave’s 2000Q quantum
annealer in terms of running time. Overall, the best trade-
off between Sharpe ratios and speed for solving dynamic
portfolio optimization problems is attained by the MPS
algorithm and D-Wave’s 2000Q quantum annealer.

VI. MATERIALS SCIENCE AND QUANTUM CHEMISTRY
This section covers several applications proposed between
2013 and 2023 for analysis and discovery of materials, all
of which are based on computing ground states of local
Hamiltonians via classical TN simulations.

A. ARTIFICIAL GRAPHENE

Graphene is a prime example of nanomaterial that is made
of a single layer of carbon atoms forming a 2D hexagonal
structure. Graphene has many applications in energy storage,
steel coating, and biomedical sensors [128] despite posing
risks to biological systems [129]. The so-called “artificial
graphenes’ are materials with graphene-like properties that
can be manufactured using alternative substrates such as
aluminum gallium arsenide [130].

A quantum circuit was recently proposed to find the ground
state of artificial graphene [131] based on a 2-local Hamil-
tonian model proposed by Hubbard [132]. The proposed
circuit’s depth grows linearly with the number of qubits,
which suggests the circuit is not unreasonably deep even
though TNs are more efficient on shallow circuits where
depth grows logarithmically [12], [116], [117]. Finding the
exact ground state by diagonalizing the Hamiltonian exceeds
the memory limitations of the MareNostrum 4 supercomputer
for circuits beyond 20 qubits or graphene lattices with more
than two hexagons [131]. However, the same authors also
show that approximating the ground state via full state-vector
simulation is possible up to 32 qubits and, if using a MPS
representation of the circuit, up to 36 qubits with 1% accuracy
error relative to the true ground state. This result demonstrates
that high-accuracy classical simulations of Hubbard’s model
are possible beyond the 24-qubit limit reached in past
experiments with VQAs using no TN representation [133].

B. HYDROGEN CHAINS, ETHANE, AND ATAZANAVIR
China’s fastest supercomputer, Sunway TaihuLight
(SW26010 Pro), has been recently used to classically
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simulate a MPS-based VQA [134] for finding ground states
of the following molecules: hydrogen, ethane, hydrogen
chain of 500 atoms, and atazanavir. Atazanavir is a
prescription medicine to treat the human immunodeficiency
virus. The authors [134] claim these are the largest quantum-
circuit simulations reported to date for a quantum-chemistry
problem in terms of the total number of qubits (n) or CNOT
gates (ncnor) involved:

e hydrogen Hy, n = 92, ncnor = 1.4 - 10°;

o ethane CoHe, n = 32, ncnor = 4.4 - 10%;

o hydrogen chain (H3)250, n = 1000, ncnoT = 10°; and,

o atazanavir C3gHs5pNgO7,n = 16, ncnor = 1.8 - 10°.

The benchmarks for hydrogen and hydrogen chain
molecules [134] show that MPS-VQA achieves enough
chemical accuracy to match exact reference values of ground
energies (i.e., full configuration interaction) obtained via
Python’s PySCF library. However, such level of chemical
accuracy is not reported for neither ethane nor atazanavir
molecules; in fact, the same authors suggest that improved
accuracies can be achieved by using other VQA designs.
Moreover, a single iteration of their proposed MPS-VQA
takes more than 30 minutes to complete, using 512 cores of
Sunway’s supercomputer, for a hydrogen chain of 500 atoms.
Taking more than 30 minutes for only one MPS-VQA
iteration is arguably a long running time, and it aligns
with the fact that TNs like MPS are not adequate for such
deep VQA circuits (see Section V-A). More importantly,
the benchmarks do not show what performance advantages
does the proposed MPS-VQA provide over other state-of-the-
art methods (whether classical, quantum, based on TNs or
not). Full state-vector simulations of many useful quantum
circuits, including VQAs, with 45 qubits and more have been
successfully demonstrated in 2019 [42].

C. TREE-SHAPED MOLECULES

MPS is the most common representation used in TN
algorithms to find the ground states of quantum-chemistry
Hamiltonians [33], [34]. However, the electronic interaction
pattern in certain tree-shaped molecules is not accurately
described by the linear structure characteristic of MPS.
Performance advantages of TTNs, in terms of lower running
times or lower energy estimation errors during simulation,
have been demonstrated using toy examples including:
crystalline salts like lithium fluoride [135], Cayley trees
formed by hydrogen atoms [136], as well as more realistic
examples using nitrogen dimers and stilbenoid dendrimers
(naturally occurring in plants) with up to 110 electrons and
110 active orbitals [136].

A decade later, research still continues to characterize
the classes of quantum circuits where TTN can outperform
MPS [137]. Using a single CPU (AMD Ryzen 7 3700)
and 32 GB of RAM, it has been shown experimentally [137]
up to 37 qubits that TTN scales exponentially better than MPS
in terms of wall-clock time and bond dimension provided
that: the circuits exactly match a well defined tree layout,
are shallow, and have limited entanglement. However, this
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result was obtained on artificial and carefully chosen quantum
circuits that were an ideal fit for TTN. Itis far from clear if and
how such TTN performance advantage can be extrapolated to
other problems involving approximately the same number of
qubits, like artificial graphene with 36 qubits (Section VI-A)
or ethane with 32 qubits (Section VI-B), for which top-class
supercomputers were needed.

D. DISCOVERY OF PHYSICAL PHASES

Finding the ground state of a physical system can be
a challenging task. One main reason is that it entails
solving a local Hamiltonian problem [108], [109], which is
computationally intractable in general. Another reason is that
the ground state itself can vary depending on whether the
physical system at hand undergoes sudden phase transitions
according to changes in pressure, temperature, or a magnetic
field force for example. Therefore, analyzing such phase
transitions is a fundamental part of research in quantum
computing and quantum physics at large. In fact, the existence
of exotic phases, like topological quantum phases [138],
provides a theoretical foundation to build universal quantum
computers that are intrinsically and fully fault-tolerant at
hardware level [139].

Quantum Monte Carlo (QMC) algorithms have been used
to find phase transitions of Hamiltonian models but certain
shortcomings of QMC recently motivated the use of TN,
such as PEPS for the Shastry-Sutherland model [140] and 2D
isometric TNs (similar to PEPS) for the transverse-field Ising
model [141]. These TN applications are part of fundamental
research to develop new technologies. For instance, the
Shastry-Sutherland model [142], with spins arranged on a
2D lattice with next-nearest neighbor interactions, is the
only known model for which it is possible to find the exact
ground states of an alkaline earth oxide material known
as strontium copper borate SrCu;(BO3),. This material is
relevant because it is thought to be a Mott-Hubbard insulator
that can exhibit superconductivity [143], [144], and unknown
phases of SrCu(BOs3), have been discovered thanks to
PEPS [140], [145].

VIi. OTHER TRENDS IN TENSOR-NETWORK SIMULATION
This section covers emerging TN applications, proposed
between 2014 and 2024, for other selected topics: compu-
tational fluid dynamics (Section VII-A), quantum advantage
experiments (Section VII-B), and quantum error correction
(Section VII-C).

A. COMPUTATIONAL FLUID DYNAMICS

The Navier-Stokes equations are nonlinear partial differential
equations that have been traditionally used to model the
time-dependent behavior of fluids. Except when simplifying
assumptions are made, obtaining solutions to such equations
by traditional methods, like direct numerical simulation
(DNS), is computationally inefficient for classical computers.
This becomes particularly evident if one considers realistic
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turbulent flows with complex geometries characterized by
high Reynolds numbers [146].

A promising alternative to DNS methods was introduced
in 2022 to solve the incompressible Navier-Stokes equations,
by solving an associated linear optimization problem with a
VQA-inspired MPS algorithm [147]. This new TN approach
assumes that the local interactions featured in MPS can
approximate well the local behavior of turbulent flows and
that any correlations between spatially distant points are
negligible.

A follow-up work by Kiffner and Jaksch [148] extends said
TN approach to simulate flows with nonperiodic boundary
conditions. Here, a MPS representation is also used to encode
the flow velocities, but the algorithm is based on a classical
DNS method instead. As a benchmark problem, Kiffner and
Jaksch consider the lid-driven cavity model, a toy model
for solving the incompressible Navier-Stokes equations: the
flow is confined to a (discrete) square lattice in two spatial
dimensions, and the flow density does not change over time.
To justify the computational efficiency of this approach,
the authors empirically show that the number of parameter
variables describing the flow grows proportionally to the
bond dimension of MPS. Also, the bond dimension grows
logarithmically with simulation time. This leads to faster
runtimes compared with DNS for high Reynolds numbers
(Re): it achieves up to a 17-fold speedup for Re = 60.5 -
103. All benchmarks comparing DNS and their MPS-based
method are implemented using MATLAB and run on a single
CPU node (Intel Xeon Platinum 8268) of Oxford’s Advanced
Research Computing facility. However, authors warn that the
performance advantage of MPS may degrade if simulation
time or bond dimension increases significantly.

B. QUANTUM ADVANTAGE EXPERIMENTS
Quantum computers are expected to perform tasks that are
computationally intractable for classical computers, even
though it remains unclear which task is most appropriate to
benchmark such quantum advantage as well as what quantum
computer implementation can achieve it in practice and at
what cost. Over two decades of research advances towards
fault-tolerant quantum computation [149] elapsed, yet all
current physical realizations of quantum computers perform
noisy and error-prone quantum computations [8], [108].
These are often called noisy intermediate-scale quantum
(NISQ) computers, without a commonly agreed and exact
definition of how noisy or large.

One benchmark task for demonstrating quantum advantage
is sampling fixed-length bitstrings from the output of a
pseudo-random quantum circuit. This was popularized by
an experiment in 2019 on Google’s Sycamore supercon-
ducting quantum processor with 54 qubits arranged on a
rectangular grid with nearest-neighbor interactions [150]. For
classical computers, this task is regarded as computationally
intractable principally due to the highly-entangled quantum
states output by such random quantum circuits. Google
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researchers [150] estimated that it would take 10000 years
for state-of-the-art supercomputers to compute one million
samples from a random quantum circuit with 53 qubits and a
depth of 20. However, such claim was conclusively refuted in
2022 [151] after several advances on massively parallel and
efficient TN simulators [152], [153]. A TN algorithm, called
sparse-state contraction, classically simulated and solved the
sampling problem of Google’s Sycamore quantum circuit
within approximately 15 hours of wall-clock time using a
cluster of 512 NVIDIA Tesla V100 GPUs [151]. There is also
theoretical evidence arguing that random-circuit sampling
can be approximately simulated by a classical algorithm
running in polynomial time [154].

Another attempt to demonstrate a quantum advantage
was conducted in 2023 for computing expectation values
of the energy of a 2D transverse-field Ising Hamiltonian
model [155]. Here, IBM’s Eagle 127-qubit superconducting
processor is benchmarked against MPS and 2D isoTNS
classical simulators run on a single 64-core processor
and 128 GB of memory. The transverse-field Ising model
is chosen because it matches the IBM Eagle processor’s
topology. The authors [155] argue that running quantum
circuits of that many qubits, with up to 60 layers of two-
qubit gates and 2880 CNOT gates, is out of reach for
classical simulators. Once again, however, a remarkable
follow-up work [156] showed for the same Ising model that
a PEPS-based classical simulator not only can efficiently and
accurately simulate IBM’s Eagle processor but also IBM’s
Osprey and Condor newer quantum processors with 433 and
1 121 qubits respectively. Similar experiments demonstrating
efficient simulations of TNs for the same transverse-field
Ising model on 127 qubits have been conducted indepen-
dently by other research groups [157], [158], [159].

By contrast, other experiments on practical quantum
advantage conducted in 2024 suggest that state-of-the-art
classical simulations of MPS and PEPS cannot match,
by far, the same energy estimation accuracy or running
time achieved by a quantum computer. This was shown
by D-Wave [160] in quantum annealing experiments for
a transverse-field Ising model (in two or more dimen-
sions) [160] and, independently, by Fujitsu together with
Osaka University [161] for quantum phase estimation using
a 2D Hubbard model.

Nevertheless, the above unprecedented results provide
evidence for the utility of TN-based simulators and refine
the current benchmark baselines that future experiments will
have to surpass to show quantum advantage.

C. QUANTUM ERROR CORRECTION

Performing quantum computations at an arbitrarily large
scale beyond what classical computers can -efficiently
simulate is key to show a practical quantum advantage.
Demonstrating this, however, is challenging: quantum noise
easily destroys information encoded in quantum states and
thus corrupts the result of quantum computations. Quantum
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error correction (QEC) methods enable fault-tolerant quan-
tum computing at the expense of using many redundant
physical qubits to implement a single, error-corrected, logical
qubit [5], [8], [108], [149].

Recently, a general framework called Gleipnir [162] was
proposed to analyze and quantify the presence of quantum
errors in quantum circuits. The framework relies on MPS with
truncated bond dimension to efficiently represent quantum
states and to compute a certain distance metric, specifically
a diamond norm, for estimating quantum errors in quantum
states. To compute such diamond norm, Gleipnir solves an
associated semi-definite programming (SDP) problem whose
size scales exponentially with the maximum number of
qubits used by quantum gates in a given circuit. However,
all quantum gates are assumed to have two input qubits
at most, as NISQ computers are unlikely to support more.
Therefore, Gleipnir assumes such SDP is constant-sized so
that the diamond norm can be computed efficiently. It also
assumes that the noiseless quantum state (used as reference
to compute said diamond norm) is known in advance. Under
a simple bit-flip noise model, Gleipnir can provide error
bounds 15% to 30% tighter than known diamond norm
estimates, as shown by benchmarks [162] on: a quantum
approximate optimization algorithm (i.e., a form of VQA, see
Section V-A) and a Lenz-Ising model with up to 100 qubits
and 2265 quantum gates. Furthermore, using said diamond
norm, Gleipnir can guide quantum program compilers on
how to best map physical qubit to logical qubits for noise
reduction given a specific quantum hardware architecture.
An example of this is shown for three-qubit and five-qubit
GHZ states on IBM’s Boeblingen 20-qubit superconducting
quantum computer [162].

TN simulators improved the scalability of QEC methods as
well. In particular, exact and approximate PEPS simulations
of error correction via surface codes, with more than 100 data
qubits, have been demonstrated [163] under two realistic
noise models: amplitude-damping and systematic-rotation
noise models. QEC methods based on other TN topologies
including MERA were already formulated in 2014 [164].

VIil. DISCUSSION

TNs can speed up and reduce memory usage of classical
simulations for certain quantum circuits, while sacrificing
accuracy by approximately rather than exactly representing
quantum states. Their computational efficiency, the expres-
siveness to represent general quantum physical systems, and
scalability via massively parallel hardware, are well-known
advantages of TN methods that make them a viable alternative
to full state-vector representations. This is reflected in the
wide range of TN applications developed, particularly during
the last decade, as reviewed in this paper.

In practice, however, whether a TN shows performance
advantages depends on many different factors including: the
specific TN structure, choice of TN contraction algorithm,
critical TN parameters like bond dimension, performance
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metrics benchmarked, and properties of the quantum circuit
itself being simulated such as circuit depth or entanglement.

TABLE 2. Tensor network applications.

Research ~ Tensor L o
Area Network Application Description Ref.
One-class linear classifier
Machine for anomaly detection in
learning MPS MNIST and Fashion-MNIST [89]
greyscale images
Machine Binary classifier for MNIST
. TTN greyscale and CIFAR-10  [91]
learning .
coloured images
Machin MPS, Multiclass  classifier  for
achine -y, MNIST and Fashion-MNIST  [90]
learning .
PEPS greyscale images
Machine Classification of quarks in
learnin MPS calorimeter images generated  [96]
& at the Large Hadron Collider
. MPS, Classification of quarks in
Machine . .
learning TTN, calorimeter images gengrated [97]
MERA at the Large Hadron Collider
. Multiclass  classifier  for
Machine - MPS, Fashion-MNIST and COVID-  [93]
earning PEPS

19 X-ray chest images

For example, compared with TTN and PEPS, image
classification models based on MPS require fewer training
parameters, especially if implemented on quantum computers
instead of classically simulating them (see Section IV).
Yet novel models based on MPS, TTN or PEPS, struggle
to outperform or even match state-of-the-art convolutional
neural networks in terms of classification test accuracy.
Nevertheless, there exist applications in quantum many-body
physics where certain TNs outperform others generally, for
example: TTN for finding ground states of certain tree-
shaped molecules (Section VI-C); and, PEPS for finding
ground states of transverse-field Ising models with spins
arranged on a 2D lattice as shown in quantum advantage
experiments (Section VII-B). By contrast, TN applications
based on MERA are scarce across all research domains
reviewed, arguably due to: the lack of efficient contraction
algorithms for MERA and the fact that already many high-
dimensional quantum physical systems can be represented
via TTN or PEPS at a lower computational cost.

Not surprisingly, one of the main current challenges is
designing standardized benchmark suites and good practices
to rigorously evaluate the performance of TN applications.
This is especially important given the vast number of
quantum circuit simulators available [23], [26]. In fact,
this challenge is not specific to TN software but common
to quantum-computing software in general [165]. Some
pitfalls in experiment settings we found are, for example:
benchmarking only one aspect of the application (e.g., test
accuracy for applications in image classification); using
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TABLE 3. Tensor network applications (continued).

Research ~ Tensor L o
Arca Network Application Description Ref.
Machine MPS, Image generation of MNIST [99]
learning TTN handwritten digits
Generation of phase diagram
Machine images for a two-dimensional,
learning PEPS frustrated, bilayer, Heisenberg [100]
Hamiltonian model
. Multiperiod mean-variance
Optim. MPS portfolio optimization [115]
Dose optimization in
Optim. TTN intensity-modulated radiation  [118]
therapy for cancer treatment
Analysis of a variational
Optim. MPS classical-quantum  algorithm  [116]
for solving QUBO problems
MPS, Analysis of barren plateaus in [117]
Optim. TTN, cost functions in variational [123]’
MERA  quantum optimization
. Energy function minimization
Materials  \ipg for 3 Hubbard Hamiltonian  [131]
science i s
model of artificial graphene
Analysis of energy ground
Materials PEPS states for strontium copper  [140],
science borate, described by the [145]
Shastry-Sutherland model
Materials MPS, Computing thermal states for
science ) 2D a 2D transverse-field Ising [141]
isoTNS  Hamiltonian model
Analysis of hydrogen chains,
QuanFum MPS torsw_nal_ bamer. of ethgne aqd [134]
chemistry protein-ligand interactions in
SARS-CoV-2
Quantum  MPS, Energy function minimization

for a Hubbard Hamiltonian [135]

chemistry  TTN model of lithium fluoride

Energy function minimization
for a Hubbard model of tree- [136]
shaped molecules

Quantum  MPS,
chemistry TTN

Reducing simulation time for
certain quantum circuits with a ~ [137]
tree-shaped layout

Quantum  MPS,
simulation TTN

Approximate simulation of
random  quantum  circuits
including Google’s Sycamore

[152],
[153]

Quantum

< . PEPS
simulation

unreliable metrics for classification like AUROC [103]; and,
measuring wall-clock time but not number of cost/energy
function evaluations, which is a more robust hardware-
agnostic metric and often used in runtime algorithm analysis.
We expect that future TN applications will benefit from recent
developments [166], [167], [168], [169] in benchmark suites
for quantum-computing applications and related software.
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TABLE 4. Tensor network applications (continued).

Research Tensor o .
Area Network Application Description Ref.
Benchmark the IBM Eagle

MPS, -
Quantum 127-qubit  processor for a
) . 2D . . [155]
simulation 2D transverse-field  Ising

isoTNS e

Hamiltonian model

MPS, Benchmark the IBM Eagle
Quantum PEPS, 127-qubit  processor for a [156]
simulation 2D 2D  transverse-field  Ising

isoTNS  Hamiltonian model
Comp. . . .
fluid MPS Solv_mg the 1ncompr§ss1ble [147],
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The rapid growth of TN applications and related software
during the last decade has been enabled by the wealth of TN
algorithms in the literatures [16], [17], [18], [19], [20], [21],
[27], [28], and [29]. However, one notably less explored yet
promising direction for future research is the application of
hybrid methods based on TNs and other known approaches
to quantum-circuit simulation. Two potential candidates that
we found are tensor-based decision diagrams [52] and tensor-
based circuit cutting [51]. Another topic unexplored in this
review is TNs applications in open quantum systems [36].
TTN-based algorithms have been proposed, for example,
for solving the ‘“hierarchical equations of motion™ [170]
describing how quantum many-body systems interact with
a surrounding environment and the effect of quantum
errors (e.g., due to quantum decoherence). Since this paper
focused on TN applications, a third valuable piece of future
work is to carry a separate in-depth review focusing on
TN performance based on those applications, in terms of
their theoretical computational complexity as well as a
comparative experimental analysis. Therefore, our survey
serves as a starting point for said future work as well as a
good opportunity for addressing the pitfalls that we identified
in some experimental settings and incorporate the advances in
benchmarking standards mentioned earlier.

IX. CONCLUSION

TNs constitute a well-established research area in both
classical and quantum computing. However, it is challenging
to keep track and have a general view of TNs’ latest
advances due to the wide range of existing TN methods
and applications. Although some previous works review the
theory of TN methods and certain applications, there has
been a clear lack of reviews dedicated to TN applications
across research domains. Overall, this review provides a
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representative and up-to-date account of many state-of-the-
art TN applications across many fields of interest. We believe
this work is useful not just to quickly grasp major trends and
hot topics about TNs but also reach to readers from other
research communities that may be unfamiliar with TNs.

The following Tables 2—4 summarize key TN applications
in this review. Applications are separated by rows with the
column fields: bibliographic reference that introduces the
application; research domain where the application focuses as
presented by the authors; brief description of the application;
and, TN class (or classes) used in such application.
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