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Abstract

The study of solutions to open string field theory remains very much a work in progress, even
for the bosonic string. In this dissertation I consider in detail two of these solutions involving
marginal deformations of the original boundary conformal field theory. The first is a previously
unknown solution in which two D-branes are translated before tachyon condensation occurs.
This solution is studied in the level truncation scheme, in a sector which is larger than the
universal subspace, but still less than the whole string Fock space due to several symmetries
of the theory which take on a different content in the presence of two D-branes. This solution
brings us a step closer to a full understanding of the relationship between the magnitude of
a marginal deformation in BCFT and the strength of the corresponding marginal operator in
OSFT. The other solution I study was first written down formally by Kiermaier and Okawa, and
involves the renormalization of an exactly marginal operator. I consider the same solution with
a more general renormalization scheme and find a set of sufficient restrictions for the solution’s
validity. While this proceeds much as in the original work on this solution, I find some freedom
in the solution as well as additional algebraic structure for renormalization schemes. I also
present a collection of procedures written in Maple which define and manipulate wedge states
with insertions, as well as computing correlation functions for such states provided that all
inserted operators are sufficiently simple. Using this code I am able to calculate the tachyon
profile of this solution for the time-symmetric rolling tachyon at 6th order in λ and describe its
properties in comparison to previously known rolling tachyon profiles. I find the same unwanted
oscillations that were seen in previous work on the time-asymmetric rolling tachyon.
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Glossary

Acronyms

bcc : A “boundary condition changing” operator implements a change in conformal bound-
ary conditions. A pair of bcc operators is commonly used to change the boundary
condition on a finite segment of the boundary.

BCFT : Boundary Conformal Field Theory is a CFT on a surface with a boundary. The
boundary conditions imposed there must also be conformal.

BRST : Named for Becchi, Rouet, Stora, and Tyutin, the BRST operator, QB, is used to define
the physical states of string theory.

CFT : Conformal Field Theory.

OPE : The Operator Product Expansion. A pair of operators can be expanded as φi(0)φj(z) =∑
k C

k
ij(z)φk(0) provided there are no other operators closer to the pair than each other.

OSFT : Open String Field Theory.

SFT : String Field Theory. Since we will be focused on open strings this will be used inter-
changeably with OSFT.

Notation

: : Normal ordering as defined in Polchinski’s book [6]. This sorts raising and lower-
ing operators, or equivalently removes singular parts of expressions with operator
insertions.

◦
◦
◦
◦g Normal ordering using a specified subtraction, g. Occasionally g will be omitted,

in which case the subtraction is 1
(s1−s2)2

. Defined in section 4.3.2.

[x, y] , {x, y} The commutator and anti-commutator.

[. . .]r Renormalization of operators by a generic renormalization scheme assumed to
satisfy certain assumptions.

[. . .]G Renormalization of operators by a “big G” scheme which regulates distances be-
tween operators and then subtracts counterterms which depend on the regulator.
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Notation

[. . .]g Renormalization of operators by a “little g” scheme which subtracts off regulator-
independent functions which are to be integrated over the same (possibly regu-
lated) domain as the operators they renormalize.

◦ Function composition operator.

† Hermitian conjugation, also sometimes referred to as h.c..

‡ This conjugation is used to define the reality condition for a string field Ψ = Ψ‡,
which ensures that the action will be real-valued. It is defined by A‡ = bpz−1A†.
Unlike bpz and hermitian conjugation, this conjugation does not exchange bra
and ket states.

〈 , 〉 While this is treated like an inner product for string field theory, it is really a
symplectic bilinear form. It is used in the action to get a real number from a
pair of string fields.

〈. . .〉S This is the CFT expectation value defined on the Riemann surface S. Often the
surface S will be Wn, the wedge state of circumference n+ 1.

∗ The star-product of string field theory glues two worldsheets together, allowing
for string interactions.

b c Floor operator. The notation bn/2c will often appear in the limit of sums, when
the sum is over the number of pairs of operators to contract.

α′ The fundamental scale of the theory is determined by this constant with di-
mension length squared. The target space length scale is

√
α′. We will use the

convention α′ = 1 except where it is helpful to include it explicitly.

αn, bn, cn Raising and lowering operators for the matter and ghost sectors of the theory.
αn are matter operators, bn are anti-ghost operators, and cn are ghost operators.
The operator α0 is neither a creation or annihilation operator, as the vacuum is
an eigenvector.

β
(j)
n Coefficients of the rolling tachyon profile. The tachyon profile of the rolling

tachyon is defined by the series T (t) = 2
∑∞

n=0

∑bn/2c
j=0 λnβ

(j)
n cosh ((n− 2j)t).

bpz The bpz operator is defined by bpz(z) = −1
z , and has the effect of exchanging

the “in” and “out” states of a string.

c(t) The ghost operator, which is commonly inserted on the boundary of a worldsheet.
The cn operators are its modes.

d̂ The physical distance separating two D-branes in chapter 3. d = d̂
π
√

2α′
defines

simple units for this distance.

Γa,bε (x, y, . . .) The region (a, b) minus any places where two or more of the coordinates (x, y, . . .)
are within ε of each other. This regulates the region (a, b) so that divergences
due to operator collisions do not occur.
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Notation

h.c. Hermitian conjugation, also referred to with †.

Ln Virasoro raising and lowering operators. These are modes of the energy-momentum
tensor in some sector, which is normally indicated by a superscript.

λ Commonly used to parameterize the strength of a marginal deformation. Specif-
ically, in chapters 4 and 5 the marginal deformation V will always appear in the
combination λV .

Ω The twist operator which reverses the orientation of the string, σ → π − σ.

QB The BRST operator QB = 1
2πi

∮ (
dz jb + dz̃ j̃B

)
, where jB = cTm+: bc∂c : +3

2∂
2c

and Tm is the matter part of the energy tensor.

V (t) Commonly used to refer to a marginal operator which is inserted on the boundary
of a worldsheet. Throughout most of chapters 4 and 5 this will have the self-OPE
V (0)V (t) ∼ 1

t2
.

V (a, b) The marginal operator V (t) integrated between a and b:

V (a, b)n =
∫ b
a d

nt
∏n
i=1 V (ti).

Xa The coefficient of the marginal term representing translation for the solution of
chapter 3 on separated D-branes.
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Chapter 1

Introduction

The most basic objects in string theory are strings. These can be closed strings (loops) or open
strings (with ends), but in either case the worldsheet interpretation of string theory forms a
conformal field theory, or CFT. These are two dimensional CFT’s, as they describe dynamics
within the two dimensions of a string: length and time. In the case of closed strings, the CFT
can be taken on the plane R2, but for open strings the endpoints create a boundary for the space.
The boundary conditions placed on the string at its endpoints must be conformal, resulting in
a boundary conformal field theory, or BCFT. While for some time these boundary conditions
were viewed as nothing more than that, in [7] it was recognized that they could also be thought
of in terms of D-branes. D-branes are objects which the ends of strings are “attached” to, and
they can have varying size, shape, dimension, energy, and even other properties such as charge.
In this picture, the tachyon in the spectrum of the bosonic open string can be explained as
corresponding to the instability of the D-brane it is attached to. This is where open string field
theory is useful: while a given string theory only studies the strings allowed by a given D-brane
configuration, a single string field theory can describe many different D-brane configurations.

Classical solutions of open string field theory, or OSFT, describe the different conformal
boundary conditions available for a given conformal field theory. Since in the language of
string theory these boundary conditions are the D-brane configurations, finding these classical
solutions is an important tool for understanding D-branes. If we have such a solution we know
that an associated D-brane configuration is allowed, and we can easily find its energy. In
principle the structure of OSFT can also tell us about the configuration’s stability and any
moduli. Time-dependent solutions can even teach us about D-brane dynamics. Unfortunately,
the known solutions to OSFT only begin to scratch the surface of the entire space of D-brane
configurations. While recent developments describe a procedure for constructing a solution
from a desired boundary condition, the solutions which have been explicitly written down and
studied are a very small subset of all allowed D-brane configurations.

In the first part of this dissertation, we find a new solution using the level truncation
approximation scheme. One solution which is well known describes the decay of an existing
space-filling D-brane. When N of these D-branes are present, the solution for D-brane decay
gains an SU(N) symmetry, so linear combinations of the D-branes can decay. The solution
representing D-brane decay also exists when the initial D-brane is not space-filling, and in this
case we can still gain an SU(N) symmetry by duplicating the initial D-brane. In the case
of D-branes with non-zero codimension, however, we can break this symmetry by placing the
D-branes at different spatial locations. A non-trivial linear combination of D-branes cannot
decay if the D-branes are not in the same place, because the result — half a D-brane in one
place, and half somewhere else — would not be a valid D-brane configuration. We will examine
the set of solutions to the approximate theory in the case where the initial configuration is two
D-branes separated by a known distance which will parameterize our set of solutions.

1



Chapter 1. Introduction

Another solution of OSFT which should exist describes marginal deformations of the initial
BCFT. While such solutions have been constructed analytically in a number of cases, they do not
exist as solutions in the level truncated approximate theory. The truncation raises the marginal
direction in the string field space, and only points which are local extrema will be solutions
to the approximate theory. In practice this means that only the trivial solution survives from
the marginal set. One such marginal deformation is the massless string mode perpendicular
to a D-brane which is not space-filling. This marginal deformation causes translation of the
D-brane, and it is the one we study in the first part of this document.

We have seen that when two D-branes are initially separated either one can decay, but linear
combinations can only decay when they are coincident. In this case, the enhanced symmetry at
the point where the two D-branes coincide allows for the solution with a marginal deformation
and a decay to survive level truncation. Although level truncation breaks a continuous set
of solutions to a few discrete ones, by searching for an SU(2) of solutions to the full theory
we know that the level truncated action should have some extrema on that set, and solutions
will survive. We find such a solution and study its properties, parameterized by the initial
separation of the D-branes.

We take the first step towards a map between the OSFT marginal parameter and the
physical impact of the marginal deformation without performing CFT calculations. Previous
maps have involved calculating a quantity in OSFT for a marginal solution and comparing the
same quantity to a marginally deformed CFT, but we attempt to do this directly. We have
taken the first steps but require a better understanding of the field redefinition which takes place
when OSFT is reexpanded about one of its solutions. Even without the full mapping between
the OSFT marginal vev and the physical translation, however, we do find evidence that there
is a maximum physical translation that can be achieved through marginal solutions. While it
has long been known that there is a maximum value of the marginal vev in level truncated
OSFT, this maximum physical effect is unexpected and casts doubt on earlier explanations
of the maximum vev, in which the value of the marginal parameter was bounded but the
corresponding deformation of the BCFT was not.

In the second part of this dissertation we examine a previously known formal solution for
a class of marginal deformations. These marginal deformations are the more difficult case, in
which the OPE of two copies of the associated operator is singular: V (0)V (t) ∼ 1

t2
+ O(1).

The specific marginal deformation we are interested in is the so-called “rolling tachyon”, which
localizes a D-brane in the time direction. There are two different versions of the rolling tachyon.
The simpler version has regular self-OPE and is not our focus. That rolling tachyon solution
represents an unstable D-brane which exists in the infinite past and then decays at a finite
time. Our focus will be on the time-symmetric rolling tachyon which exists only for an interval
of time, decaying in the past and future. The marginal operator associated with such a decay

is V (t) =
√

2 cosh
(
X0(t)
α′

)
.

First we examine the mathematical framework necessary for that solution in detail. We
search for the most general renormalization scheme we can apply to properly cancel the singu-
larities arising from the OPE and satisfy the assumptions necessary for a formal solution. We
consider two different approaches to constructing general renormalization schemes, which we
call the “big G” and “little g” schemes. We rigorously prove that the trivially exponentiated
version of the little g scheme gives a two parameter family of finite operators satisfying all
of the necessary assumptions. The big G scheme fails to give finite operators when naively

2



Chapter 1. Introduction

exponentiated, but it offers an attractive framework for the construction of the most general
renormalization scheme allowed at any finite order. We also briefly examine the renormalization
scheme originally proposed for this solution and show that it is nearly identical to our little g
scheme. It is clear that there are at least two free parameters in the renormalization, and likely
infinitely many, so we ask what this implies for uniqueness of the solution. The free parameters
we have identified correspond to rescalings of the renormalized operators. Because of the way
the renormalized operators appear in the solution, such a rescaling changes the solution and we
expect that it corresponds to gauge transformations, but this is not proven.

Returning our focus from general marginal deformations with singular self-OPE to the case
of the rolling tachyon, I have written a computer program to explicitly construct this solution
at any order in the marginal deformation parameter λ. The program also computes arbitrary
tachyon correlation functions in the conformal frame we are using. As a result, in addition to
the formal solution the program can also produce the tachyon profile in the form of unevaluated
integrals. At moderate order in λ these integrals require numerical evaluation using 3rd party
integration routines. In addition to the tachyon profile of the solution, the program can also
compute the equation of motion and take its correlation function with any other string field
built from insertions of tachyon modes. Testing that such quantities vanish gives us evidence
that the formal solution does satisfy the equation of motion when explicitly constructed and
renormalized. The Maple procedures are designed to be flexible enough to manipulate many
wedge states, and can be used to find correlation functions for other wedge states involving
only the c ghosts and simple marginal operators. Adding more operators, however, should be
fairly straightforward provided the correlators with each other and with the operators already
considered can be written down in a closed form.

Examining the tachyon profile, we find that for small λ the solution looks very much like two
copies of the simple exponential rolling tachyon. In particular, the coefficients which control the
behaviour for small λ show the same asymptotic behaviour as the exponential rolling tachyon
solutions. When λ is increased, however, the rest of the coefficients must be included and the
free parameters in the renormalization scheme come into play. The tachyon profile is not a
gauge independent quantity so the fact that it depends on the parameters tells us very little,
aside from the fact that the solution really is affected by those rescalings. Whether they are
genuine gauge transformations is not known. It is known that the period of the tachyon field’s
oscillations is gauge dependent, so it is interesting that that period changes quite suddenly
as λ is increased to the point where all of the coefficients are important. This suggests that
a change in marginal parameter λ for the time-symmetric rolling tachyon has a similar effect
to a change of gauge in the time-asymmetric case. Finally, the presence of an approximately
constant period for small λ tells us that the coefficients responsible for that part of the tachyon
profile are a convergent series for any appropriate λ. Including additional coefficients is most
naturally done by considering “rows” with constant momentum deficit. While there is not a
great deal of data, it suggests that each row converges, but there is no suggestion yet that
the sum of rows is a convergent series. In the small λ limit, we show that only one row of
coefficients contributes to the tachyon profile, so there is no sum of rows. If this sum does not
converge for large λ it raises the interesting possibility that marginal deformations really do
have a maximum strength, as has been found in level truncation studies including our work on
separated D-branes.

This document is structured as follows. Chapter 2 discusses some of the work that has
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previously been done in string field theory, and describes the approaches that we will use.
Chapter 3 finds the level truncated solution representing a combination of translation and
decay for separated D-branes, and discusses the properties of that solution and difficulties
involved in writing down a precise correspondence between the marginal parameter Xa and the
translation distance d̂. The work on formal solutions for marginal deformations with singular
self-OPE is split over chapters 4 and 5. Chapter 4 expands on the work of Kiermaier and
Okawa by describing in detail the construction and properties of a renormalization scheme
compatible with a solution of OSFT, and chapter 5 deals with the numerical calculations using
the renormalization scheme we find. Appendix A contains the level truncated action used
for separated D-branes in chapter 3. Appendix B details the actual Maple program used to
construct the rolling tachyon solution and its tachyon profile, and gives sample C++ code for
numerically evaluating the resulting integrals.
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Chapter 2

Background

An obvious question in the study of boundary conformal field theories is exactly which boundary
conditions preserve the conformal symmetry. We refer to the collection of all CFT’s with all
such boundary conditions for each as the BCFT landscape. We will only be interested in two-
dimensional BCFT’s, since these are equivalent to string theories. In this context the boundary
conditions are identified with the D-brane configuration on which the open strings are allowed to
propagate. A background independent study of the BCFT landscape is therefore an important
tool in the study of D-branes and their dynamics.

The landscape of boundary conformal field theories contains all possible D-brane configu-
rations of string theory, so we use string field theory to study it. Open string field theory is an
interacting theory of off-shell open strings, with closed strings appearing only in loop diagrams.
It can be formulated using any BCFT as a starting point, and classical solutions of the equa-
tion of motion describe new BCFTs which the theory can in principle be re-expanded about.
The energy of a solution is the energy of the new D-brane configuration relative to the initial
one, and the cohomology of the modified BRST operator for a solution describes the physical
excitations of strings allowed on the configuration. While it is not at all clear that all BCFTs
should exist as possible solutions, every D-brane configuration for the starting string theory
should. In this context, OSFT is background independent. It may also be that there are exotic
solutions corresponding to D-branes for string theories with different field content, for example
finding an open superstring theory beginning with only bosonic strings. Such solutions, if they
exist, have not yet been found. The most well known solutions represent either the decay of a
D-brane or a marginal deformation of the boundary conditions. We will focus primarily on the
latter.

2.1 String Theory

We begin by describing the first quantized bosonic string theory. Once we have done that we
can construct OSFT by replacing each string mode with a classical field. Quantizing those
fields will result in a quantum string field theory, but that subject is well beyond the scope of
this dissertation.

A common parameterization of the open string has endpoints at <w = 0, π and time running
in the imaginary direction, where w is the worldsheet coordinate. A more useful parameteri-
zation is z = e−iw which has the string endpoints on the real axis, with time running radially
outward from the origin. The field content of bosonic string theory is a matter field for each
dimension of the target space and two anticommuting Fadeev-Popov ghost fields which are in-
troduced in gauge-fixing to the conformal gauge. All of these fields live in the two-dimensional
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space of the worldsheet. The action is

S =
1

2πα′

∫
d2z ∂Xµ∂̄Xµ +

1

π

∫
d2z b∂̄c . (2.1)

Our convention will be to set the constant α′ = 1, and we will only write it where it is useful for
explicitly dimensionful quantities. If we take Neumann boundary conditions at the endpoints
of the string (=z = 0), the solution to this system has the following mode expansion

Xµ(z, z̄) = xµ0 − iα
′pµ ln(zz̄) + i

√
α′

2

∑
n6=0

αµn
n

(
z−n + z̄−n

)
(2.2)

and
b(z) =

∑
n

bnz
−n−2, c(z) =

∑
n

cnz
−n+1. (2.3)

The modes αµ−n with n ≥ 1, b−n with n ≥ 2, and c−n with n ≥ −1 are raising operators,
while αµ0 is a constant proportional to pµ. All of the other modes are lowering operators, and
annihilate the vacuum. The commutation relations are

[αµm, α
ν
n] = mδm+n,0η

µ,ν , {bm, cn} = δm+n,0 , {bm, bn} = {cm, cn} = 0 . (2.4)

In addition, the holomorphic energy-momentum tensor T (z) has a Laurent expansion in terms
of the Virasoro operators

T (z) =

∞∑
m=−∞

Lm
zm+2

, (2.5)

where the Virasoro operators Lm obey the Virasoro algebra[
Ltotal
m , Ltotal

n

]
= (m− n)Ltotal

m+n +
c

12
(m3 −m)δm+n,0 . (2.6)

The central charge of the theory is set to c = 0 by choosing the matter content appropriately.
Specifically, for the bosonic string we can accomplish this by insisting on having D = 26 for our
target space. The anti-holomorphic part of the energy-momentum tensor has its own Virasoro
modes with an identical algebra, but since we are working with open strings, our Riemann
surface will always have a boundary and the boundary conditions mean that T (z) and its anti-
holomorphic partner T̃ (z̄) are not independent quantities. In terms of the fundamental matter
oscillators, the matter Virasoro modes are

Ln =

{ ∑∞
m=0 α

µ
−mαµm, m = 0

1
2

∑∞
m=−∞ α

µ
n−mαµm, m 6= 0 ,

(2.7)

and the Virasoro operators in the ghost sector are

L(g)
n =

∞∑
m=−∞

(2n−m) : bmcn−m :−δn,0 , (2.8)

where : : represents the standard normal ordering.
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The vacuum state |0; 0〉 with zero momentum is SL(2,R) invariant, meaning in the state
operator correspondence it is mapped to the identity operator in the upper half plane. This
vacuum is related to those in the notation of Polchinski [6] by

c1 |0; kµ〉 = |kµ〉m ⊗ |↓〉 , (2.9)

where |kµ〉m is the matter vacuum with momentum kµ and |↓〉 is one of the two ghost vacua.
The number of states in this theory is too large as we have not yet done anything to remove

null states and those with negative norm. This is done by identifying physical states as the
cohomology of the BRST operator. The BRST operator has the form

QB =
∑
n

cnL−n +
∑
n,m

m− n
2

: cmcnb−m−n :−c0 . (2.10)

Physical states are those satisfying QB |φ〉 = 0, but the nilpotency of QB means that states
of the form QB |χ〉 are null (orthogonal to all physical states including itself) as well as being
physical. The null states are identified with zero and removed from the spectrum. The lightest
physical state is the tachyon c1 |0; k〉 with mass given by m2 = − 1

α′ , and the first excited state
αµ−1c1 |0; kν〉 is massless. An infinite tower of more massive states is created by acting on the
tachyonic state with matter oscillators αµ−n and certain combinations of the ghost oscillators
b−n and c−n.

The state-operator correspondence allows us to view this theory in a different way. Instead
of operators such as αµn, cn, bn, and Ln acting on states such as the vacuum |0; kµ〉, we can
view it as the local operators Xµ(z, z̄), c(z), b(z), and the energy-momentum tensor T (z)
inserted in a Riemann surface. The canonical choice of Riemann surface is the infinite strip
with 0 ≤ <w ≤ π for an open string, as the string’s spatial coordinate is defined to run from
0 to π while the worldsheet time coordinate is clearly unbounded. This is a conformal field
theory, however, and as such we have the conformal transformations available to us. Local
conformal transformations are the holomorphic coordinate transformations z′ = f(z). The
conformal transformation z = e−iw maps the infinite strip to the upper half plane =z ≥ 0,
which is in many cases the simplest Riemann surface to consider for open strings. Slices of
constant worldsheet time are mapped to semicircular curves of constant radius, with the time
increasing radially outward. The string endpoints lie on the boundary =z = 0, and the infinite
past is mapped to the point z = 0. When changing conformal frames any correlation functions
in the new frame are given by

〈
φ1(z′1, z̄

′
1) . . . φn(z′n, z̄

′
n)
〉

=

n∏
i=1

(
dz′

dz

)−hi
z′=z′i

(
dz̄′

dz̄

)−h̄i
z̄′=z̄′i

〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉 . (2.11)

The exponents hi and h̄i here are called the conformal weights of the operators φi and define
how the operators transform under conformal mappings. The conformal weights can also be
defined in terms of an operator’s scaling dimension and spin [6][8]. An n-point function will be
computed by inserting operators at n distinct locations on the Riemann surface. Incoming or
outgoing open string states correspond to operators inserted on the boundary, and closed string
states correspond to operators inserted in the bulk. For the open strings we will be studying, we
must specify the locations of exactly three operator insertions in order to fix the three moduli
of the disc.
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2.2. String Field Theory

2.2 String Field Theory

While there were several attempts to formulate an off-shell theory of strings, it was Witten’s
model [9] that succeeded in providing the foundations of OSFT. His theory is based on a Z2

graded algebra satisfying several axioms.

deg(a ∗ b) = deg(a) + deg(b), Q(a ∗ b) = (Q(a)) ∗ b+ (−1)aa ∗Q(b), Q2 = 0 (2.12)

The nilpotent derivation Q turns out to be the BRST operator. The resulting theory is based
on a δ-function interaction of half-strings. It has a non-commutative star product that glues
the right half (σ > π

2 ) of one string to the left half (σ < π
2 ) of the other, effectively joining two

open-string worldsheets together. The ∗-product provides the interactions, but we still need a
map from the space of string fields to the complex numbers in order to construct an action.
The integration operation is introduced for this purpose. It glues the two halves of a string to
each other, also using a δ-function glue. Although actual calculations are not performed this
way, for the matter sector these operations are defined in [10] as∫

Ψ
def
=

∫ ∏
0≤σ≤π

dXµ(σ)
∏

0≤τ≤π
2

δ [Xµ(τ)−Xµ(π − τ)] Ψ [Xµ(τ)] , (2.13a)

(Ψ ∗ Φ) [Zµ(τ)]
def
=

∫ ∏
0≤τ̃≤π

2

dY µ(τ̃)dXµ(π − τ̃)×

∏
π
2
≤τ≤π

δ [Xµ(τ)− Y µ(π − τ)] Ψ [Xµ(τ)] Φ [Y µ(τ)] ,
(2.13b)

where

Zµ(τ) = Xµ(τ) for 0 ≤ τ ≤ π

2
, and Zµ(τ) = Y µ(τ) for

π

2
≤ τ ≤ π. (2.13c)

Given this, the action is

S = −1

2

∫
Ψ ∗QΨ− g

3

∫
Ψ ∗Ψ ∗Ψ , (2.14)

where g is a coupling constant and Q is the BRST operator. The first term is a kinetic term
which reproduces the free string theory spectrum due to its use of the same BRST operator,
while the second term introduces cubic interactions. Since a single string field is made up of
all possible string modes at all different momenta, the interaction mixes all of these infinitely
many fields. This action is valid even for string fields which are not on the mass shell.

Because the action is cubic, it does have the problem that the action is unbounded both
above and below. Quantum mechanically it is not a sound theory to study, but the classical
theory still has perfectly valid solutions at the action’s critical points. Superstring field theory
does not have this problem, so quantum superstring field theory should be a well defined thing
to study, but at present classical solutions are not fully understood. The cubic bosonic theory is
therefore a useful thing to study since many solutions have a similar structure, but are simpler in
the bosonic case. It is suggested in [11] that it may be possible to add higher order terms to the
action, but such terms would also appear as a violation of the associativity of the star-product.
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The ghost number of a string field can be defined as the number of c ghosts minus the
number of b antighosts acting on the vacuum. With this convention, the

∫
operation vanishes

unless the ghost number of its argument is 3. For string fields of definite ghost number, this
means that the action is only non-zero for ghost number one. All physical string fields such
as the tachyon and massless vector have ghost number 1, while some toy models involve string
fields of ghost number 0 for simplicity. The action (2.14) has a large gauge symmetry

δΨ = QΛ + Ψ ∗ Λ− Λ ∗Ψ , (2.15)

where Λ is any string field of ghost number 0. Since the BRST operator Q increases a string
field’s ghost number by 1, and ghost number is also additive under the ∗-product, the ghost
number is preserved under such transformations provided that the string field Ψ has ghost
number 1 and the gauge field Λ has ghost number 0.

The simplest way to think of the string field is as a sum over all possible open string states.

Ψ =

∫
d26p

∏
µ

∑
Iµ,J,K

φIµ,J,K(p)αµI bJcK |0; p〉 (2.16)

Here the upper case indices I, J,K represent multiple oscillator indices for products of operators,
so that a random example of a term in the sum would be

φ(−2,−1),(−2),(0,1)(p)α
25
−2α

25
−1b−2c0c1 |0; p〉 .

Each state in the open string Fock space comes with a spacetime field as its coefficient, but in
most practical situations we are only interested in translationally invariant solutions. In this
case the coefficient fields φ(p) are only non-zero for p = 0 and can be treated as simple constant
coefficients. The action (2.14) then has the form of a cubic polynomial in the infinitely many
coefficients.

Let us now turn to some common notation and computational tools used when the string
field is expressed in the open string Fock space. The integration operator and triple star product
used in the cubic term of the action are written as∫

A ∗B = 〈A,B〉 , 〈A,B ∗ C〉 = 〈A,B,C〉 . (2.17)

Absorbing a factor of the coupling constant into the string field, Φ = gΨ, the action becomes

S = − 1

g2

(
1

2
〈Ψ, QΨ〉+

1

3
〈Ψ,Ψ,Ψ〉

)
. (2.18)

The ∗-product of two string fields is not at all simple to write down in the basis (2.16). For-
tunately, Gross and Jevicky [12] found a state in the product of three SFT Hilbert spaces such
that

|Φ ∗Ψ〉3 = 〈Φ|1 〈Ψ|2 |V3〉 . (2.19)

Specifically, the cubic term in the action is easily written in terms of this 3-vertex.

〈Ψ,Ψ,Ψ〉 = 〈V3| |Ψ〉1 |Ψ〉2 |Ψ〉3 (2.20)
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Switching from ket states to bra states is done using bpz conjugation: 〈Ψ| = bpz |Ψ〉. In the
Fock space basis this is similar to hermitian conjugation with additional sign factors. It is
described in more detail in section 3.1.1 and the bpz conjugates of simple states are given in
equation (3.9). The action’s kinetic term is most easily calculated directly in terms of oscillators.

〈Ψ|Q |Ψ〉 (2.21)

The calculation of both terms in the action is explained in detail in section 3.1.
Using the state-operator correspondence, we can also represent the string field without

referring to oscillator modes. In this form, a string field can be defined by its inner product
with an arbitrary test state. Any open string state can be expressed as an operator inserted at
the origin in the upper half plane. For example, we might define a string field A by

〈φ,A〉 = 〈f1 ◦ φ(0)f2 ◦ OA(0)〉S (2.22)

where f1 and f2 are conformal maps from the upper half disc to disjoint regions making up
the Riemann surface S, and OA is the operator corresponding to the state |A〉. We will often
relax the assumption made here that the string field is expressed as a single operator inserted
at the origin of the upper half plane, and permit any number of operators inserted anywhere
in the portion of S associated with the image of the upper half disc under the function f2, or
equivalently, the portion of S which is the image of |z| > 1 under f1. The region f1(|z| < 1) is
sometimes referred to as the conformal patch and is reserved for the test state representing the
asymptotic future. We often think of the string field A as being the Riemann surface S with
operator insertions, but to be precise we should remember that it is really still a Fock space state
defined by its correlation function with an arbitrary test state |φ〉. Since the CFT correlation
function must saturate the ghosts in order to produce non-zero results, a physical string field
A requires a test state φ with ghost number 2. The test operator producing information about
the tachyon component of a string field is c∂c.

Since OSFT can be formulated for any open string boundary conditions and solutions rep-
resent D-brane configurations, there must be a new formulation of OSFT for every solution.
Taking the original OSFT action and expanding it about the string field Ψ gives an action with
the same form except that the BRST operator is modified as

QΨφ = Q0φ+ Ψ ∗ φ− (−1)(Ψ)(φ)φ ∗Ψ . (2.23)

Q0 is the BRST operator for the initial reference BCFT (corresponding to the solution Ψ = 0)
and φ is any string field. The sign factor in the last term uses the standard notation that when
a string field appears in the exponent of −1 it is taken to mean the ghost number of that string
field. This way the new terms in (2.23) combine to make a commutator for physical string
fields, but in general can be either a commutator or an anti-commutator. This is a significant
amount of background independence, as only the field content is still defined in terms of the first
reference BCFT. Schnabl has referred to this as being “half-way” to background independence
[13].

A surge of interest in OSFT began in 1999 when Sen predicted an explanation for the
tachyon in the spectrum of the bosonic open string and suggested that his conjectures could be
best tested in string field theory [14]. He suggested that any D-brane system with a tachyon
in its spectrum can decay to the vacuum with no D-branes. He claimed that at this point in
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the space of string fields, the negative value of the tachyon potential exactly cancels the initial
tension of the D-branes, indicating the true vacuum with 0 energy. He also provided some
evidence that there would be no dynamical degrees of freedom at that vacuum. This was a
necessary result in order to explain the absence of the brane-antibrane system’s U(1) gauge
field from the true vacuum. The existence of solutions to OSFT representing certain other
D-brane configurations was also considered, with the discussion focusing on the fact that these
configurations should also be unstable to decaying to the same tachyon vacuum. In time, these
conjectures were rewritten and presented in their best known form [10].

1. The tachyon potential has a locally stable minimum, whose energy density E , measured
with respect to that of the unstable critical point, is equal to minus the tension of the
D25-brane:

E = −T25.

2. Lower dimension D-branes are solitonic solutions of the string theory on the background
of a D25-brane.

3. The locally stable vacuum of the system is the closed string vacuum. In this vacuum the
D25-brane is absent and no conventional open string excitations exist.

These conjectures imply that the open string with purely Neumann boundary conditions actu-
ally lives on a space-filling D25-brane. The tachyon in the string spectrum is associated with
the instability of this D-brane.

2.2.1 Level Truncation

Early attempts to find the tachyon vacuum solution of OSFT used the oscillator basis for the
string field. The first challenge in solving the equations of motion in this approach is the infinite
number of fields. A suitable approximation scheme is needed to reduce the problem to a finite
number of variables. The level truncation scheme sorts the states in the string field (2.16)
according to their L0 eigenvalue [15]. It was initially used only for translationally independent
solutions so that the level essentially counted the indices on all of the oscillators acting on the
vacuum, but the method was later extended to include the whole L0 eigenvalue so that solutions
with p 6= 0 could be considered [16]. The difference between a term’s eigenvalue and that of the
zero momentum tachyon is called the level, and only terms in the string field with level up to a
fixed value are included. With a string field truncated to level L, it is sometimes helpful to also
truncate the action (which has level 3L) to a lower level M . Of course M must still be at least
2L in order to include the kinetic term for each field. Solutions to a level truncated system are
approximate solutions to the full OSFT equations of motion, with the approximation typically
improving as L is increased.

A number of solutions are known in level truncated OSFT, but the first is the solution
representing the tachyon vacuum. Sen and Zwiebach first found this solution for low levels [17],
and that was followed by calculations at higher levels [18]. The string field Sen and Zwiebach
used at level 2 had the form of (2.16) with constant coefficients:

|T 〉 = t c1 |0〉+ u c−1 |0〉+ v
1√
13
L−2c1 |0〉 . (2.24)
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Figure 2.1: The potential at level 0 as a function of the tachyon zero mode t.

This makes several simplifying assumptions about which fields to include. First is the obvious
choice of a spatially uniform solution, so that the infinite tower of momentum modes for each

string field can be dropped, keeping only the 0 momentum states based on |0〉 def
= |0; 0〉. Next

they imposed Siegel gauge, which is b0 |T 〉 = 0. This gauge choice is imposed level by level, and
it can be shown that this gauge choice is valid locally at |T 〉 = 0 for every level except level
1, where the necessary gauge transformations become singular. If any level 1 terms are to be
dropped from the string field, we must find a different justification. Fortunately, in this case
the twist symmetry of the theory allows us to consider only terms with even level. The twist
symmetry reverses the parameterization of the worldsheet space coordinate σ → π − σ. Of the
zero-momentum fields with Neumann boundary conditions that we are considering, all of the
odd level fields change sign under this symmetry while the even level ones do not. The action
is invariant under twist, so any twist-odd fields can only appear in pairs, and their equations of
motion will never be sourced by twist-even fields. It is consistent to set all twist-odd fields to
0, reducing the space of solutions which will be found, but in no way invalidating the solutions
which remain. Since the tachyon vacuum solution is in the twist-even subspace, imposing this
symmetry on the string field will greatly simplify calculations.

The energy of any solution will depend on the entire string field, but it is often useful to
consider it as a function of only the tachyon vev t in tc1 |0〉. This is achieved by using the
equations of motion to eliminate all of the fields except for the tachyon. This is not a unique
procedure since there are many different solutions, but for any given solution we can see a profile
which will have critical points at values of t which correspond to solutions on the branch under
consideration. Often the energy is rescaled to units where the tension of the initial D-brane is
1, and this is typically referred to as f(t). The simplest (level 0) tachyon potential V (t) has the
form of a cubic polynomial shown in figure 2.1. For the tachyon vacuum solution this profile
remains qualitatively the same when higher level fields are included. The trivial solution is at
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t = 0 and the tachyon vacuum solution appears at t ≈ 0.456 in this approximation. We also
notice that the potential is unbounded below for negative values of t. The physical interpretation
of this region is unknown, but there are no classical solutions in that region, corresponding to
no D-brane configurations. The energy of the tachyon vacuum solution was found to converge
quite quickly to the correct value of negative the D-brane tension. At level 0 it reaches ≈ 68%
of this energy, while by level 4 it is already ≈ 95%. It does pass the predicted asymptotic
value of the energy at level 14, but extrapolations show it turning around and approaching
the correct energy from the other side [18]. The spectrum of physical open strings about the
tachyon vacuum is expected to be empty, but verifying this with an approximate solution is a
difficult task. The modified BRST operator for the theory expanded about a solution obviously
has to depend on that solution, as seen in (2.23). By using an approximate solution we will
get an operator that is not the correct BRST operator. Additionally, by truncating the string
field, we have broken gauge invariance, so QΨ will not be nilpotent. Such an approximate
BRST operator will not have the correct cohomology. Attempts were made, however, such as
by Giusto and Imbimbo [19][20], to show that the tachyon vacuum has no physical excitations.
There the “modified kinetic operator” L̃0 = {QΨ, b0} is examined, with QΨ the BRST operator
for the theory expanded about the tachyon vacuum solution. At each ghost number n they

search for momenta where det L̃
(n)
0 = 0. Their assumption is that closely grouped zeros are the

result of a single degenerate zero being broken up by the level truncation approximation, and
they consider such a group as a single zero for the purposes of finding the cohomology of the
BRST operator QΨ. They found that the cohomology is indeed empty at ghost number one, up
to the limits imposed by level truncation. At other ghost numbers, however, the cohomology
they found was non-trivial. Since physical states all have ghost number 1, it is not at all clear
what these states represent.

While the vacuum solution confirms two of Sen’s conjectures, there is still the matter of
lower dimensional D-branes appearing as solitons. In the framework of OSFT, lower dimension
D-branes are solutions. The so-called “lump solutions” were studied by Moeller, Sen and
Zwiebach [16] for codimension 1. They are approximately zero where the D-brane is localized,
and take values approaching the tachyon vacuum far from the lump. This requires infinitely
many momentum modes, and is studied with a compactified direction so that the spectrum is
discrete and can be level truncated to a finite number of modes at any given level. The string
field analogous to (2.24) now has the form

|T 〉 =
1

2

...∑
n=0

(
tnc1 + unc−1 + vnc1L

X
−2 + wnL

′
−2 + znc1L

X
−1L

X
−1

)(∣∣∣0;
n

R

〉
+

∣∣∣∣0;
−n
R

〉)
. (2.25)

The vacuum state
∣∣0; nR

〉
is the n-th momentum mode in the compact direction. In the non-

compact directions the solution remains translationally invariant, so the momentum only has
one non-zero component. Here LXn are the Virasoro operators in the “lump” direction in
which the D-brane is to be localized, while L′n are the matter Virasoro operators in all of
the other directions. In principle the sum in (2.25) runs to ∞, but in the level truncated

calculation performed, it is noted that the level (L0 eigenvalue) receives a contribution n2

R2 from
the momentum, so that at any fixed level the number of modes to consider is finite. In fact,
the number of modes to consider decreases for terms which have a higher level at p = 0. By
examining the solution for a D-(p − 1) brane at different levels and radii, they found that the
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solution appears to converge quite quickly to a lump which is independent of the compactified
radius, so long as that radius is large enough that the lowest non-zero momentum tachyon has
a negative “kinetic” energy (the quadratic term in the action). For smaller radii they did not
find any solutions. While such solutions may well exist, this is an example of the phenomenon
that string field theory has a great deal of trouble finding solutions with higher energy than the
initial CFT ground state.

The third class of known solutions is those representing a marginal deformation of the initial
BCFT. In level truncated SFT these solutions are found by turning on a marginal conformal
primary operator by hand and allowing it to excite other fields through the interaction term.
Without including all of the infinitely many interactions, the resulting collection of fields will
not have the same energy as the exact string field, though it should be closer for higher levels.
Since level truncation breaks the marginality of such operators at the non-linear level, the result
is not actually a solution at all. For example, a flat one-parameter family of solutions in the
full theory is broken to a collection of string fields with nearly-flat potential, and the equations
of motion drive solutions back to the extremum of the family. Sen and Zwiebach [21] studied
such solutions with a Wilson line marginal deformation by ignoring the equation of motion for
the marginal field and imposing the rest. This way a single marginal parameter results in a
one-parameter family of string fields containing a single solution: the string field 0 at vanishing
marginal parameter. Since the action is close to flat, this family does represent string fields
which are almost solutions, and as the level of truncation was increased the action becomes
flatter.

Perhaps unexpectedly, Sen and Zwiebach found that these marginal string fields only re-
main real for a finite range of the marginal parameter. In addition to becoming flatter when
the level was increased, the action evaluated at the “solutions” of [21] remained real for pro-
gressively larger ranges of the marginal parameter. The expectation from BCFT, however, is
that marginal deformations by a Wilson line should exist for any vev of the Wilson line. Sev-
eral possibilities have been suggested. Since level truncation does give increasing values of the
maximum marginal parameter with increased level, it is possible that the maximum increases
without bound at infinite level. The values of the maximum at finite level, however, do not
increase very fast and lead us to be skeptical of this possibility. In [21] it was suggested that
the finite marginal parameter in SFT might correspond to an infinite marginal vev in the CFT.
An elaboration of this idea [22] claims that the map from the SFT parameter to the CFT one
is double valued. In a toy model, once the SFT parameter reaches its maximum it begins to
decrease on a different solution branch while the CFT parameter continues to increase. In
chapter 3 we will find evidence that the maximum SFT parameter does correspond to a finite
CFT parameter, and we will not see another solution branch corresponding to any higher value
of the CFT marginal parameter at the level which we do our calculations. Which explanation
is correct, if any, presently remains unknown.

More recently, a level truncated solution with positive energy was found [23] by constructing
a string field theory from the BCFT of the Ising model. This model simplified calculations by
reducing the number of conformal primaries, and that work was able to find solutions repre-
senting all expected boundary conditions. What is unexpected is that the solution representing
the higher energy D-brane was found using the lower energy D-brane as the starting BCFT.
Interestingly, that solution was complex until level 14 fields were considered, at which point it
suddenly became real and remained that way at higher levels. While it may be unlikely, this
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does present us with another possible explanation for the lack of marginal solutions beyond a
critical value of the deformation strength. They could be there as complex solutions waiting
for high level calculations to reveal them.

The issue of matching a marginal SFT parameter to the corresponding CFT parameter
was also examined in [24] for a different marginal deformation. While this is not directly
applicable, it is a good representative of the type of comparison that is typically attempted. A
physical quantity, in this case the energy momentum tensor, is calculated on both sides and the
correspondence is found by setting the two to be equal. We will take an alternative approach
to relating the marginal parameter to its physical effect. Rather than studying level truncated
string fields which are close to being solutions of the equations of motion, we will examine ones
which are solutions to all of the level truncated equations of motion, but involve a D-brane
decay in addition to the marginal deformation. This is possible because we use a pair of D-
branes. When two D-branes are coincident there is a continuous family of allowed decays, since
the action gains an SU(2) symmetry. Separating the D-branes breaks the symmetry, and in
principle a marginal deformation to restore the coincidence of the D-branes will also restore
the symmetry. In practice, however, level truncation prevents us from completely restoring the
symmetry (see section 3.2.6). This is why we want to have a continuous set of solutions. Despite
the hypothetical set of exact solutions being raised to have different values of the action, there
must still be some critical points in the set where the action has a maximum or a minimum, and
these will appear as solutions even in the level truncated model. We will try to then compare
the marginal parameter of the surviving solutions to the physical displacement which we can
adjust as a parameter of the theory. We will not claim a definitive correspondence, as there is a
contribution from the decay part of the solution, but the problem is reduced to understanding
this contribution.

2.2.2 Analytic Solutions

Going beyond level truncation, there are known analytical solutions to SFT. These are often
defined using the test state method for representing the string field, as in (2.22). Alternatively,
they are sometimes expressed as operators acting on known string fields such as the ∗-product
identity. This form of solution will simplify the theory provided the Riemann surface is chosen
so that the star product is easy to implement. The simplest choice is to take the conformal
map z ∝ arctan ξ of the upper half plane. This gives a semi-infinite cylinder called a wedge
state, with the boundary remaining on the real axis. This conformal frame is shown in figure
2.2b. A wedge state can be easily broken into any number of disjoint parts by changing the
scaling of the conformal map so that the |z| < 1 portion of the upper half plane gets mapped
to a vertical strip of any desired width, and then translating those strips along the real axis.
What is important about this frame is that the star product acts by cutting open two cylinders
and glueing them together to make a new cylinder with (typically) larger circumference. In the
process, a part of each string field’s conformal patch is removed, so that only one conformal
patch, or “future” worth of Riemann surface remains. A wedge state with circumference n+ 1
is denotedWn, and the star product acts on such states asWm ∗Wn =Wm+n. The wedge state
W0 with circumference 1, for example, is an identity string field, since it glues in to any string
field exactly the width that is removed. Wedge states with insertions consist of such cylinders
with operators inserted outside the conformal patch, often on the boundary.
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Figure 2.2: The Riemann surfaces used in the two common conformal frames of the upper half
plane (a) and the wedge (b). In each frame the infinite past is located at 0 and the τ = 0
line on the open string worldsheet is drawn separating two shades of grey. The two conformal
frames are related by z = tan−1 ξ. The coordinate ξ here is z in (2.2), since z is conventionally
used for the final coordinate being considered.

The first analytical solution to SFT was found by Schnabl [25], and was constructed using
wedge states with insertions. The solution contains two pieces.

Ψ = lim
N→∞

(
ψN −

∞∑
n=0

∂nψn

)
(2.26)

where the string field ψn is a Riemann surface with insertions which are defined for this con-
formal frame using straightforward notation. The c ghost field in the conformal frame of the
wedge is c̃, and the zero modes of the b ghost and virasoro operators in this conformal frame
are B0 and L0 respectively.

ψn =
2

π2
e−

n
2

(L0+L†0)
[(
B0 + B†0

)
c̃
(
−π

4
n
)
c̃
(π

4
n
)

+
π

2

(
c̃
(
−π

4
n
)

+ c̃
(π

4
n
))]
|0〉 (2.27)

The vacuum here is the Riemann surface for the conformal transformation z = arctan ξ: the
wedge state of circumference π with no insertions. Curiously, the first term does not contribute
to any of the coefficients in the standard level truncated basis. In that basis it appears to be 0,
but it is required in order for the string field to be a solution.

Remarkably, this term is responsible for all of the physical content of the solution, as ex-
plained by Erler and Maccaferri [26]. Given any two solutions Ψ and Φ of OSFT, they suggested
a method for splitting Ψ into two parts:

Ψ = Φ1(ε) + ψ12(ε) . (2.28)

This requires a “left gauge transformation” (Q+ Φ)U = UΨ which can always be constructed
as

U = Qb+ Φb+ bΨ , (2.29)
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for any string field b with ghost number −1. The first part

Φ1(ε) =
1

U + ε
(Q+ Φ) (U + ε) (2.30)

is a gauge transformation of Φ with finite gauge parameter U + ε. The second term

ψ12(ε) =
ε

U + ε
(Ψ− Φ) (2.31)

is simply the remainder in (2.28). In the limit as ε → 0, two things can happen. If the string
field U is invertible then it defines a gauge transformation relating Ψ and Φ, and the remainder
term ψ12(ε) goes to zero. If the two are not gauge equivalent then the operator in the remainder
is called the “boundary condition changing projector” and is denoted X∞ = limε→0

ε
U+ε . As far

as I am aware, there is no proof that the gauge parameter defined by (2.29) will give a vanishing
boundary condition changing projector if two solutions are gauge equivalent, but since Φ1(ε)
is a valid gauge transformation for all finite ε if two solutions differ then X∞ will capture the
physical distinction between the two.

In the case of Schnabl’s solution for the tachyon vacuum (2.26), the “phantom” term
limN→∞ ψN plays a role which is very similar to the boundary condition changing projec-
tor. The way the solution is written, the second term is not a solution by itself, so it cannot
have the form of ψ12 in (2.28). It was shown in [26] that the phantom term in Schnabl’s solution
is X∞Ψ rather than X∞(Ψ − Φ). The splitting of the solution is still into a part with all of
the physical content and a part which is gauge equivalent to the perturbative vacuum. What
is unusual in the case of Schnabl’s solution is that the phantom term is 0 when expanded in
the level truncation basis (2.16). While this seems to suggest that the phantom term is 0 and
that Schnabl’s solution is gauge equivalent to the perturbative vacuum, this is not the case,
and limN→∞ ψN contains important non-perturbative information about the solution.

The resolution to the seemingly vanishing phantom term most likely lies in the fact pointed
out by Ellwood [27] that the vector space of the string field does not have a norm. The operation
〈A,B〉 in OSFT is sometimes referred to as an inner product, but it is correctly identified as a
symplectic bilinear form [11]. This is because the operation 〈A,B〉 lacks the positivity condition
of an inner product, that 〈x, x〉 ≥ 0 with the bound saturated only for x = 0. For the bilinear
form itself this is trivial since two copies of a physical string field will not saturate the ghosts
and we will always find 0. Even if we were to consider non-physical ghost numbers, by definition
the bilinear form has the property that 〈x, y〉 = −〈y, x〉, so any string field at all will have zero
norm if we tried to use this as the inner product. A more reasonable choice to define a norm
would be the kinetic term of the action 〈x,Qx〉, but for terms in the string field such as c−1 |0〉
we find a kinetic term which is negative. The possibility 〈x, c0x〉 has similar problems. Without
a norm on the vector space, we cannot say if two string fields are equal or close to one another.
In many cases the coefficients in the level truncation basis provide a good indication of a string
field, but there is no guarantee that they give an accurate representation, especially since we
can never calculate all of the infinitely many coefficients appearing in that basis.

Schnabl’s analytic solution was initially shown to have energy of −1 in units of the D-brane
tension, cancelling the energy of the D-brane that the starting CFT lived on, but the other
two Sen conjectures were not immediately verified. The third conjecture, that the cohomology
at the tachyon vacuum is empty so that there are no physical open string degrees of freedom
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without a D-brane, was verified by Schnabl and Ellwood [28]. This is done by first proving the
lemma that Q has no cohomology if and only if there exists a string field A such that QA = I
with I the identity string field. The task of proving that QΨ has vanishing cohomology becomes
a matter of finding such a string field A satisfying QΨA = I. This was accomplished with the
string field A = 1

L0B0I.
Once the first solution was written down, a few variants on it appeared. One in particular

generalized the same approach as in [25] for conformal frames which are “special projectors” [29].
A projector of the star product is a string field P such that P ∗P = P . As the circumference of
a wedge state with no insertions is taken to infinity we can see that it becomes a projector, since
the star product with itself gives another cylinder with twice the already infinite circumference.
This limit is known as the “sliver” frame. Wedge states can be constructed by acting on the
identity string field with exponentials of the Virasoro zero-mode together with its hermitian
conjugate, L0 + L†0. The sliver state is called a “special projector” because the commutator
of L0 with its bpz conjugate bpzL0 satisfies [L0, bpzL0] = s (L0 + bpzL0) as well as some
regularity conditions. Using instead the zero-modes from the conformal frame of a different
special projector yields alternative sets of states with algebraic properties similar to the wedge
states, and Schnabl’s solution will still exist with all operators from the sliver frame replaced
by their counterparts in the new frame, because all of the necessary algebraic structure is
reproduced in the new frame.

A simpler form of the solution was found several years later [30]. This uses the so-called
KBc subalgebra generated by the three string fields K, B, and c which are defined by acting
on the identity wedge state with simple operators.

K =
π

2
(L1 + L−1)L |I〉 , B =

π

2
(b1 + b−1)L |I〉 , c =

1

π
c(1) |I〉 (2.32)

The subscript L indicates the part of the operator acting on the left half of the string. This
can be obtained by integrating the charges over the right half of the unit circle, from −i to i.
These string fields satisfy

[K,B] = 0, {B, c} = 1, B2 = c2 = 0, (2.33)

QBK = 0, QBB = K, QBc = cKc. (2.34)

Further details of the KBc subalgebra can be found in a number of places, for example [31] or
[32]. Two different solutions, both gauge equivalent to each other and to the original tachyon
vacuum solution, can be written down.

Ψ = c (1 +K)Bc
1

1 +K
(2.35)

Ψ =
1√

1 +K
c (1 +K)Bc

1√
1 +K

(2.36)

Both forms satisfy the equations of motion, and the second form satisfies the reality condition
on the string field which guarantees that the action will be real valued.

Since the tachyon vacuum, another class of analytic solution has been found, corresponding
to marginal deformations. These solutions are generally written as a taylor series in the marginal
parameter λ, but the string field can be written down explicitly at each order. If the marginal
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Figure 2.3: The λn term for the marginal solution of [5] for a marginal operator V (t) with regular
self-OPE. The ghost part drawn has fewer insertions than in (2.37) because the anticommutator
{B, c} = 1 can be used to simplify it.

deformation is regular, that is if its OPE with itself is regular, then solutions are quite well
known [33][5][34]. These solutions take the form of wedge states with insertions of the marginal
operator along the boundary, along with a few ghost insertions. The positions of the marginal
insertions are mostly integrated over regions which depend on the specific solution, since the
three moduli of the disc tell us that only one marginal operator should be inserted at a fixed
location, as the other two moduli are fixed by the ghost number 2 test state in (2.22). The
solution of [5] is given as Ψ =

∑∞
n=1 λ

nΨ(n) where

〈
φ,Ψ(n)

〉
=

∫ 1

0
dt1 . . .

∫ 1

0
dtn−1

〈
f ◦ φ(0)cV (1)

n−1∏
i=1

BcV (1 +
i∑

j=1

tj)

〉
W

1+
∑n−1
j=1

tj

. (2.37)

This solution can be seen in figure 2.3. The operator B =
∫

dz
2πib(z) here does not have a fixed

insertion location, as it only matters which ghost operators it is between.
One example of a marginal deformation with regular self-OPE is the exponential or time-

asymmetric rolling tachyon. Solutions involving this deformation represent placing a D-brane
in the infinite past and letting it decay at a finite time. This is intended to show the dynamics
of D-brane decay. The tachyon profile T (t) is the coefficient field of the tachyon in the level
truncation expansion, and for uniform decay it is only a function of time. The tachyon profile
was calculated for two analytical solutions in [5] and [34], as well as for level truncation in
[35]. In each case the tachyon profile shows oscillations with exponentially growing amplitude
beginning when the D-brane decays and continuing without bound. This is in contrast to the
expectation that the late time limit of the tachyon profile should be the tachyon vev of the
tachyon vacuum solution. A few possible explanations have been suggested. In [35] it was
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argued that a time-dependent field redefinition could be used to make the time dependence of
rolling tachyon solution a simple exponential, matching the BCFT result for the corresponding
marginal operator. In [27] this idea was reinterpreted as meaning that a time-dependent gauge
transformation of the rolling tachyon solution could be used to give a solution with the expected
time dependence. That same work claimed that the late time limit of the rolling tachyon solution
is in fact Schnabl’s solution, despite the numerical evidence of the tachyon profile.

If the marginal deformation has a singular self-OPE, then a detailed renormalization scheme
is required in order to prevent divergences from the places where integrated insertions collide
with fixed insertions or with each other. Such a renormalization scheme is constructed in [36].
This will be covered in detail and expanded on in chapter 4. An alternate approach was laid out
in [37], in which solutions are considered which are formally gauge equivalent to the perturbative
vacuum, but with a gauge parameter outside the Hilbert space. In [38], the regular-OPE solution
of [34] was extended to operators with singular OPE. This approach used integrals away from
the boundary of the worldsheet to find finite solutions which are equivalent to several previously
found solutions in different limits. Recently, another new approach was suggested in which a
Wilson line in the time direction is used to cancel the divergence of singular operators in the
matter direction [39]. This approach does not apply to the case of the rolling tachyon because
it requires that the time direction is left unused and free to soften the divergences. It also uses
boundary condition changing operators, rather than the bare marginal operators which the
solution of [36] was constructed from. However, given a boundary condition changing operator
which is trivial in the time direction, this approach apparently produces solutions for any new
boundary condition, not only marginally deformed ones. We will not be investigating solutions
of this type. We will further investigate the singular marginal deformations by finding explicit
numerical results for the tachyon profile in the renormalized approach. This will involve careful
examination of the renormalization scheme used, and a re-evaluation of the freedom involved
in doing so. We find that the renormalization must be chosen very carefully to guarantee that
the sufficient conditions for a solution are met, but that at least two free parameters remain.
The renormalization scheme cannot be further restricted by structural properties of the string
field, or by numerical evidence, and we believe the remaining freedom may represent residual
gauge transformations of the solution.

Simply constructing string fields which satisfy the equations of motion does not mean very
much if nothing is known about what the solutions represent, so gauge invariant quantities are
of particular interest. The simplest gauge invariant quantity is the energy of a solution, which
is easily calculated. For a second test, however, the most clearcut quantity to consider is the
boundary state. This is a state in the closed string Fock space which describes the D-brane in
the sense that all amplitudes for closed strings interacting with the D-brane are given by overlaps
with the boundary state. The task of calculating the boundary state was first accomplished in
[40], and more recently a different approach was taken in [41]. The first method of computing
the boundary state gives an exact closed string state as the result of inserting multiple copies of
the OSFT solution around the boundary of a disc. In practice this is transformed to the sliver
frame so that glueing in multiple copies of the solution is only a matter of considering larger
cylinders with more insertions on the boundary. The second method writes the boundary state
in a basis of Ishibashi states. For each bulk conformal primary operator Vα, the associated
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Ishibashi state is the closed string state ‖Vα〉〉 satisfying

(Ln − L̄−n) ‖Vα〉〉 = 0 . (2.38)

In this basis it is shown that the coefficient of each basis state can be simply calculated from
the string field in terms of BCFT amplitudes. Using this approach, the overlap of the boundary
state |BΨ〉 corresponding to a string field solution Ψ with any closed string insertion Vcl is given
by

〈Vcl| c−0 |BΨ〉 = −4πi 〈I| Vcl(i) |Ψ−ΨTV〉 . (2.39)

This method has the advantage that it can be applied to level truncated solutions as well as
analytic solutions. The disadvantage is that there are in principle infinitely many Ishibashi
coefficients to compute in order to find the whole boundary state. In practice there may be
only a finite number which are non-zero or are of interest, so the approach is still effective.
While the first approach, [40], was used to calculate the boundary state for Schnabl’s tachyon
vacuum solution and a few regular marginal deformation solutions, the other approach, [41],
has been applied to many recent solutions. Originally, it was applied to an analytical tachyon
vacuum solution and the numerical lump solution of [16]. After that, it was used to suggest
that for level truncated marginal solutions with a periodic marginal direction the marginal
parameter covers one fundamental domain [42]. Another level truncated solution representing
change of boundary conditions for the Ising model also included a discussion of boundary states
[23]. The recent analytical solutions of [38, 39] also include calculations of the boundary state
for marginal deformation and tachyon vacuum solutions respectively. I am not familiar with
any cases where the boundary state calculated from an OSFT solution does not agree with
the predictions of BCFT, so it appears to be a remarkably robust tool for the study of the
physical interpretation and properties of solutions to string field theory. In the case of this
work the boundary state could be helpful for identifying the physical meaning of new solutions
and determining which related solutions are gauge-equivalent, but calculation of the boundary
state for the solutions we study here will be left for future work.
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Chapter 3

Separated D-branes

Although string field theory is in principle a background independent theory, it still requires
an initial choice of BCFT to determine its field content. In the majority of studies, the initial
BCFT is chosen to be a single D-brane, often a space-filling one so that the full rotational
symmetry is preserved. In the event that multiple D-branes are considered, the initial BCFT
is almost always just the product of the single D-brane theory with a suitable gauge group,
so that the theory describes a collection of identical D-branes. In this chapter we consider a
situation where the starting locations of the D-branes are different so that the initial BCFT is
more complicated, since the off-diagonal sector consists of strings that are stretched between
the two D-branes and have a different spectrum than the diagonal sector.

One of the outstanding problems in OSFT is regarding solutions for marginal deformations.
As a simple example, consider a single D-brane which is not space-filling. One marginal de-
formation is the translation of this D-brane, and we would expect that we could position this
D-brane anywhere leading to an unbounded deformation. In string field theory, such configu-
rations would correspond to a continuous set of solutions with a marginal parameter. In level
truncation studies, however, this marginal parameter always has an upper bound which does
not appear to grow fast enough as the level is increased, leading to speculation that only a finite
range of marginal deformations are allowed. While several attempts have been made to explain
this [21][22][24], here we will use the separated D-brane system to gain a new perspective on
the problem by using the initial separation as a reference distance.

We will see that we are genuinely unable to find solutions corresponding to large D-brane
translations, and that this seems unlikely to change with the inclusion of more terms in the
string field. We will also use this reference distance to move one step closer to an alternative
calculation of the relationship between the marginal parameter in OSFT and the marginal
deformation of the BCFT. Previous methods have all compared quantities calculated in string
field theory to those calculated in the BCFT, but we are able to rephrase the problem entirely
in terms of OSFT calculations. The solution described here is the first step in this comparison,
and I will leave the analysis of necessary field redefinitions about a marginal solution to future
work.

The work presented in this chapter has been published in the Journal of High Energy Physics
[1] and presented at the conference String Field Theory and Related Aspects V, which took
place in 2012.

3.1 Preliminaries

Following a procedure similar to that of [17], we begin by defining the states in the expansion
of the string field

|Φ〉 = (tijc1 + xijα−1c1 + hijc0 + . . .) |ij〉 . (3.1)
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We are considering N parallel D-branes, so the state |ij〉 is the unexcited string beginning on
brane i and ending on j. The sum over brane indices is implied. The matter oscillator α−1

belongs to the CFT transverse to the branes. In principle we should have xµα
µ
−1, but we assume

that all of the oscillators parallel to the brane are unexcited as we will discuss later. Of course
there is an infinite set of higher level states such as α−2 |ij〉, but to begin we will truncate the
expansion here, at level (1,3). This means that the string field is truncated at level 1 and the
action is truncated at level 3. Level is determined by the L0 eigenvalue, counting from the
tachyon at level 0.

The embedding function for the coordinates tangent to the branes are the standard string
expansion with Neumann boundary conditions in (2.2). The transverse embedding functions
have Dirichlet boundary conditions and are

Xµ
D = d̂µi + i

d̂µj − d̂
µ
i

2π
ln
z

z̄
+ i

√
α′

2

∑
n 6=0

αµn
n

(
1

zn
− 1

z̄n

)
(3.2)

and we find the positions of the branes are d̂i. For the special case of codimension one branes
this is only the mode expansion for X25, so we can drop the target space index. The zero-modes
are

α25
0 |ij〉 = − d̂j − d̂i√

2α′π
|ij〉 def

= (di − dj) |ij〉 . (3.3)

Ignoring momentum parallel to the branes, the matter virasoro zero-mode is

L0 |ij〉 =
1

2
αµ0α0µ |ij〉 =

1

2
(dj − di)2 |ij〉 def

=
1

2
d2
ij |ij〉 (3.4)

By definition dii = 0, and for two branes we can always set d1 = 0 and d2
def
= d.

We will only need to focus on terms in the string field with zero-momentum. For these
modes, the potential of the string field is proportional to the action (2.18). If we divide out the
mass of the D-brane, essentially a choice of units, the potential is

V = 2π2

(
1

2
〈Φ|QB |Φ〉+

1

3
〈Φ,Φ,Φ〉

)
. (3.5)

Technically, since we are working in a non-compact space, the D-brane mass is infinite, but
we can still think of this as the limit of the potential as the spacetime volume goes to infinity.
Alternatively, we could calculate the potential energy density and work in units where the
D-brane energy density is 1, and we would find the same form.

3.1.1 Symmetries and the String Field

The string field is constructed by acting on the vacuum c1 |ij〉 with both matter and ghost
creation operators. We can group these operators into CFTX , CFT′, and CFTg representing
the X25 matter sector, the Xµ6=25 sector, and the ghost sector respectively. For our purposes
we only need the subspace with ghost number one. Of course there are as many ways to act
on a state with the composite operators LX−n, L′−n, and (Lg)−n as with the simple oscillators
α−n, b−n, and c−n while preserving ghost number, so the Virasoro basis is equally valid as long
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as all states are linearly independent. As discussed in [16][8], this is the case provided there
are no null states. When we find a null state we must replace it, and its descendants, with the
conformal family descended from another primary state.

At level 1 we find that L′−1c1 |ij〉 is a null state, so we must instead include the primary
states αµ−1c1 |ij〉. While LX−1c1 |ij〉 is not technically a null state for a stretched string vacuum,
LX−1c1 |ii〉 is, and in any case it is a simple rescaling of α25

−1c1 |ij〉 so we will use that state in both
cases to avoid having to consider different states in the different sectors. There are no other
null states at the levels we will consider. The states αµ−1 with µ 6= 25 can be dropped due to
rotational invariance. All matter oscillators in the brane-parallel directions must come in pairs
with their spacetime indices contracted. Any term with an odd number of matter oscillators
in these directions can be ruled out, which means we can drop the extra conformal primary
α′−1c1 |0〉 and its descendants in these directions.

The String Field Theory action is invariant under the twist operator Ω as discussed in
[10]. Twist is defined by reversing the parameterization of the worldsheet space coordinate,
σ → π − σ. Typically Ω acts on individual states as (−1)L0+1, with every odd-level state
also being twist odd. Since the action is twist-even we can never have a single twist-odd state
appearing coupled to twist-even states, so those states’ equations of motion are trivially satisfied
by setting all twist-odd states to zero. This is the justification used to drop the odd-level states
from the string field in analyses of D-brane decay. With Dirichlet boundary conditions, however,
the twist eigenvalue of the operator Xµ also changes sign so that every matter oscillator αn
contributes an extra sign to the twist eigenvalue. In addition we have the added complication
that the vacuum for stretched strings is not a twist eigenvalue. For a single D-brane the vacuum
|0〉 is twist-odd, but with multiple branes Ω(|ij〉) = − |ji〉, so we can construct twist-even and
twist-odd vacua as

|ij〉e =
1

2
(|ij〉 − |ji〉), |ij〉o =

1

2
(|ij〉+ |ji〉). (3.6)

Instead of simply acting on the twist-odd vacuum with a twist-odd collection of operators,
we must now also consider the possibility of acting on the twist-even vacuum with twist-even
operators.

We can drop any terms from the string field that are odd under (−1)L0+nαΩvac where nα is
the number of α25

n matter oscillators with dirichlet boundary conditions. While any operator
content can create a twist-even state by applying it to the correct choice of vacuum, this will
restrict each state to have either a symmetric or anti-symmetric coefficient matrix.

The string field can now be written down, and at level 3 it is

|Φ〉 =
(
tijc1 + hijc0 + uijc−1 + vijL

′
−2c1 + wijL

X
−2c1 + oij(b−2c−1c1 − 2c−2)

+ õij(b−2c−1c1 + 2c−2) + pijL
′
−3c1 + qijL

X
−3c1 + . . .

)
|ij〉

+
(
xijc1 + fijL

X
−1c1 + rijc−1 + sijL

′
−2c1 + yijL

X
−2c1 + zijL

X
−1L

X
−1c1 + . . .

)
αX−1 |ij〉 . (3.7)

In order to be twist-even the fields t, x, u, v, w, r, s, y, and z are symmetric matrices, while h,
f , o, õ, p, and q are anti-symmetric.

When dealing with the twist-even subspace on a single D-brane the coefficient of each state
is a single real number (or real-valued function). Little discussion is given to this point, as real
numbers seem a natural choice. Now that the coefficients are matrix-valued we must decide how
to correctly generalize this. In [11] it was shown that in order to guarantee the reality of the
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action we must impose the condition that the string field be invariant under the composition
of hermitian conjugation and inverse bpz conjugation.

|Φ〉 = bpz−1 ◦h.c. |Φ〉 = |Φ〉‡ (3.8)

As in [36], we denote this combined conjugation by ( )‡. For a generic single state constructed
from the ghost number one vacuum by applying operators α−n and L−n, we know that hermitian
conjugation simply switches the order of operators and the sign of each index. Bpz conjugation
has a similar effect, but introduces a sign factor.

bpz−1 〈0| = |0〉 , bpz−1 Ln = (−1)nL−n, bpz−1 φn = (−1)n+hφ−n (3.9)

for any primary field φ with conformal dimension h. For composite operators, we multiply their
bpz conjugates in the reverse order, but with an additional sign factor when there are multiple
ghosts. This additional factor depends on the number of fermionic operators as (−1)nf (nf−1)/2.
Since we are looking at ghost number one, this is equivalent to including an extra (−1) with
every b ghost. When we work out the action of bpz−1 ◦h.c. on any term, we can find the same
sign as the twist eigenvalue, ignoring the possibility of the twist-even vacuum. If the twist-even
vacuum is used then the sign factor from this conjugation is opposite the twist eigenvalue. We
can now say that for any state built on the twist-odd vacuum

aij |φ; ij〉 = (aij |φ; ij〉)‡ = bpz−1(a†ij 〈φ; ij|) = a†ijΩφ |φ; ij〉 (3.10)

will guarantee the reality of the action, where Ωφ represents the twist eigenvalue of the state
|φ; ij〉. This gives the result

aij = Ωφa
†
ij . (3.11)

For states built on the twist-even vacuum we similarly find

aij = −Ωφa
†
ij . (3.12)

Since all the states we are considering are twist-even, these conditions reduce to requiring the
coefficient matrices, which are already either symmetric or anti-symmetric, to be real-valued.
If we were to examine states with odd twist eigenvalues then we would need to assign them
imaginary coefficient matrices. However, since those terms must always appear quadratically
in the action, making their coefficient matrices real would introduce a factor of −1 multiplying
all such terms, and the action would remain real.

The term hijc0 |ij〉 is a special case. Level truncation calculations are typically done in
Siegel gauge, which is defined by setting b0 |Φ〉 = 0. This removes a number of terms including
hij , but the standard proof that Siegel gauge states are complete and distinct fails for level 1
states because the eigenvalue of L0 is 0. Since Siegel gauge can be imposed level by level, this is
not a problem for studies of tachyon condensation, where level 1 states are dropped completely.
While the standard proof fails this does not mean that Siegel gauge is necessarily invalid. In
any case, the matrix hij has already been reduced to a real anti-symmetric matrix by the reality
condition and twist symmetry. With the diagonal part of the matrix removed we can once again
impose Siegel gauge on the off-diagonal parts as long as the initial D-brane separation is non-
zero. Separating the D-branes gives L0 a non-zero contribution and rescues the proof of Siegel
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gauge’s validity. Even if we take d = 0 we can still use the exchange symmetry described next
to ensure that hij is consistently 0, but if we were to study solutions involving the twist-odd
sector then we should include h and Siegel gauge would be violated at level 1.

Once we restrict our attention to the case of two D-branes we will find another simple
symmetry related to exchanging the two D-branes. Consider any single cubic term in the
action and define the function f by

f(dij , djk, dki)AijBjkCki
def
= AijBjkCki 〈iAj , jBk, kCi〉 . (3.13)

Because all brane indices are summed, terms will appear in pairs like

f(0, d12, d21)A11B12C21 + f(0, d21, d12)A22B21C12. (3.14)

It is straightforward to see that for operators A, B, and C with a definite number of matter
oscillators in the dirichlet direction, the function f will transform under d → −d in the same
way as the product of the three operators does under X25 → −X25, picking up a factor of
(−1)nα . Now (3.14) will take the form

f(0, d12, d21)A11B12C21 + f(0,−d12,−d21)A22B21C12

= f(0, d12, d21) (A11B12C21 + (−1)nαA22B21C12) (3.15)

This part of the action is invariant under taking X25 → −X25 and swapping the D-brane
indices. Terms in the action which take place entirely on a single D-brane trivially satisfy the
same symmetry, as does the quadratic part of the action. We can then consistently restrict
ourselves to string fields which are even under this operation. There are solutions which are
not, such as the solution where one D-brane decays and the other does not, but it happens that
the solution we are interested in is exchange-even so we can focus on that part of the string
field. Choosing a parameterization of the matrices

Aij =

(
As −Aa as + aa
as − aa As +Aa

)
(3.16)

we see that if the operator A has an even number of dirichlet matter oscillators then we can
consistently set Aa = αa = 0. If, on the other hand, nα is odd then we can set As = αs = 0.
Because we will begin our solution by exciting only twist-even and exchange-even fields at level
0 we can restrict all higher levels to the same subspace. The most dramatic consequence of
this is to completely drop the fields h, o, õ, p, and q because they have an even nα but are
already restricted to have real anti-symmetric matrices through the twist symmetry and reality
condition.

Alternate basis

We have chosen to write the string field up to level 3 as the two primary fields c1 |ij〉 and
α−1c1 |ij〉 and their virasoro descendants, but we could have chosen an alternate form. It can
be useful to see the string field written in terms of the basic matter and ghost oscillators. In
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this basis we have

|Φ〉 =
(
tijc1 + hijc0 + xijα

25
0 c1 + uijc−1 + ṽijα−1 · α−1c1 + w̃ijα

25
−1α

25
−1c1 + f̃ijα

25
−2c1

+ oij(b−2c−1c1 − 2c−2) + õij(b−2c−1c1 + 2c−2) + pijα−1 · α−2c1 + q̃ijα
25
−1α

25
−2c1

+rijα
25
−1c−1 + s̃ijα−1 · α−1α

25
−1c1 + ỹijα

25
−1α

25
−1α

25
−1c1 + z̃ijα

25
−3c1 + . . .

)
|ij〉 . (3.17)

The terms were defined this way so that the new coefficients denoted with tildes have the same
properties under twist and exchange symmetries as their partners in (3.7). The fields and
their coefficients are related to the ones in (3.7). Defining states such as tijc1 |ij〉 = tij |t〉 for
notational convenience, we can state the relationships between the states themselves as

|v〉 =
1

2
|ṽ〉 , |s〉 =

1

2
|s̃〉 , |w〉 =

1

2
|w̃〉+ α0|f̃〉, |f〉 = |f̃〉+ α0 |w̃〉

|q〉 = |q̃〉+ α0 |z̃〉 , |y〉 =
1

2
|ỹ〉+ |z̃〉+ α0 |q̃〉 , |z〉 = 2 |z̃〉+ 3α0 |q̃〉+ α0α0 |ỹ〉 .

(3.18)

With this transformation known, it is simple to go from solutions in one basis to another using
the relationships between the coefficients. Let φI |φI〉 be an arbitrary state and its coefficient

(with brane indices suppressed), then for every change of states |φI〉 = CIJ

∣∣∣φ̃J〉 the coefficients

are related by φ̃J = φICIJ .
This change of variables becomes singular at specific separations. While we can still formally

work in the virasoro basis, we must bear in mind that it is only complete almost everywhere.
Off-diagonal components of the fields w and f are linearly dependent when the matter zero-
mode has eigenvalue α0 = 1√

2
, and the fields q, y, and z contain a linearly dependent part at

both α0 = 1√
2

and α0 =
√

2.

3.1.2 The Potential

With the initial brane configuration and string field defined, we can work out the string field
theory potential. The solutions we are looking for will be the critical points. For calculations,
the potential of (3.5) can be written using the 3-string vertex defined by

〈Ψ1,Ψ2,Ψ3〉 = 〈Ψ1|Ψ2 ∗Ψ3〉 = 〈V3|
∣∣∣Ψ(1)

1

〉 ∣∣∣Ψ(2)
2

〉 ∣∣∣Ψ(3)
3

〉
. (3.19)

This vertex can be written as

〈V3| =
34
√

3

26

∑
i,j,k

〈ij| 〈jk| 〈ki| c(1)
−1c

(2)
−1c

(3)
−1c

(1)
0 c

(2)
0 c

(3)
0 eΞ , (3.20a)

Ξ =
∑
r,s

∞∑
m,n=0

(
1

2
α(r)µ
m N rs

mnα
(s)
n,µ + c(r)

m Xrs
mnb

(s)
n

)
, (3.20b)

where the coefficients N rs
mn and Xrs

mn are known. The first few coefficients are given by table
3.1 and it will be useful to define Ñ rs

mn = N rs
mn +N sr

nm. The creation and annihilation operators
here have an extra upper index indicating which oscillator vacuum they act on. The Neumann
coefficients N rs

mn were derived in [12] with a minor correction to the matter coefficients appearing
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m n N rr
mn N

r(r+1)
mn N

r(r−1)
mn

0 0 ln 4
√

3/9 0 0

0 1 0 −2
√

3/9 2
√

3/9

1 0 0 2
√

3/9 −2
√

3/9

0 2 −2/27 1/27 1/27
1 1 −5/27 16/27 16/27
2 0 −2/27 1/27 1/27

0 3 0 22
√

3/729 −22
√

3/729

1 2 0 32
√

3/243 −32
√

3/243

2 1 0 −32
√

3/243 32
√

3/243

3 0 0 −22
√

3/729 22
√

3/729

m n Xrr
mn X

r(r+1)
mn X

r(r−1)
mn

0 0 0 0 0

0 1 0 0 0

1 0 0 4
√

3/9 −4
√

3/9

0 2 0 0 0
1 1 11/27 8/27 8/27
2 0 16/27 −8/27 −8/27

0 3 0 0 0

1 2 0 40
√

3/243 −40
√

3/243

2 1 0 −80
√

3/243 80
√

3/243

3 0 0 −68
√

3/243 68
√

3/243

Table 3.1: The first few Neumann coefficients appearing in (3.20b).

in [43]. The conventions introduced in (3.20b) are the same ones appearing in [44], though I
have included the zero-modes which did not appear there. The ghost coefficients Xrs

0n = 0 for
m = 0 are included here only for clarity, as those terms are typically omitted from the definition
of Ξ.

In order to calculate the cubic terms in (3.5) we use the Baker-Haussdorf formula

eXY =

(
Y + [X,Y ] +

1

2
[X, [X,Y ]] + . . .

)
eX (3.21)

which allows us to commute the exponential eΞ past each of the operators in our string field
and get a new set of operators in its place. The triple product can then be computed using
straight-forward commutator algebra. A number of useful commutation relations are given in
(3.22). [

α(r),µ
m , α(s),ν

n

]
= mδm+nδ

r,sδµ,ν (3.22a){
c(r)
m , b(s)n

}
= δm+nδ

r,s (3.22b)[
α(r),µ
m , L(s)

n

]
= mα

(r),µ
m+nδ

r,s (3.22c)[
(Lg)

(r)
m , b(s)n

]
= (m− n)bm+nδ

r,s (3.22d)[
(Lg)

(r)
m , c(s)

n

]
= −(2m+ n)cm+nδ

r,s (3.22e)[
Ξ, α

(q),µ
−k

]
=
k

2

∞∑
m=0

Ñ rq
mkα

(r),µ
m (3.22f)

[
Ξ, L

(q)
−k

]
=

∞∑
m,n=0

m

4
Ñ qr
mn

{
α(r)
n,µ, α

(q),µ
m−k

}
(3.22g)

[
Ξ,
[
Ξ, L

(q)
−k

]]
=

1

4

∞∑
i,j,m,n=0

inÑ rq
mnÑ

qs
ij α

(r),µ
m α

(s)
j,µδn+i−k (3.22h)
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[
Ξ, c

(q)
−k

]
=
∞∑
m=0

Xrq
mkc

(r)
m (3.22i)

[
Ξ, b

(q)
−k

]
= −

∞∑
n=0

Xqs
knb

(s)
n (3.22j)

[
Ξ, (Lg)

(q)
−k

]
=

∞∑
m,n=0

(2k +m)Xqs
mnc

(q)
m−kb

(s)
n −

∞∑
m,n=0

(n+ k)Xrq
mnc

(r)
m b

(q)
n−k (3.22k)

[
Ξ,
[
Ξ, (Lg)

(q)
−k

]]
= −

∞∑
i,j,m,n=0

(j + k)Xqs
mnX

tq
ij c

(t)
i b

(s)
n δm+j−k

−
∞∑

i,j,m,n=0

(2k + i)Xrq
mnX

qt
ij c

(r)
m b

(t)
j δn+i−k

(3.22l)

[
Ξ,
[
Ξ,
[
Ξ, L

(q)
−k

]]]
=
[
Ξ,
[
Ξ,
[
Ξ, (Lg)

(q)
−k

]]]
= 0 (3.22m)

The operator L(r) refers to the matter part of the Virasoro operator on the r-th string vacuum,
and the ghost part of the Virasoro operator is (Lg)

(r). The results shown include the entire

matter Virasoro operators L
(r)
n = (L′)

(r)
n + (LX)

(r)
n , so for commutators involving only a part

of that, the spacetime indices behave as expected. For example,
[
α

(r),25
m , (L′)

(s)
n

]
= 0 and[

Ξ, (LX)
(q)
−k

]
=
∑∞

m,n=0
m
4 Ñ

qs
mn

{
α

(s),25
n , α

(q),25
m−k

}
. It is useful to note that since the right hand

side of
[
Ξ,
[
Ξ, L

(q)
−k

]]
is summed over non-negative integers we can use the fact thatmnδm+n−2 =

δm−1δn−1 to simplify the case where k = 2. As an example, we can now show that

eΞL
(q)
−2 =

(
L

(q)
−2 +

m

4
Ñ qr
mn(α(r)µ

n α
(q)
m−2,µ + α

(q)µ
m−2α

(r)
n,µ) +

1

8
Ñ rq
m1Ñ

qs
1jα

(r)µ
m α

(s)
j,µ

)
eΞ. (3.23)

Once Ξ is all the way to the right, all of its operators except for the zero-modes will annihilate
the vacuum. Using the zero-mode Neumann coefficients we find

eΞ |0〉(1) |0〉(2) |0〉(3) =

(
4

3
√

3

) 1
2

((α
(1)
0 )2+(α

(2)
0 )2+(α

(3)
0 )2)

|0〉(1) |0〉(2) |0〉(3) . (3.24)

Throughout this we have assumed the rule (3.22b) despite the fact that for r 6= s the

operators act in different sectors. It could be argued that since c
(r)
m acts only on the r-sector, it

is bosonic in the s-sector and the commutator should be zero rather than the anti-commutator.
This, however, would only amount to some extra sign factors, which can be checked against
known results found by other methods. The use of anti-commutators with our form of the 3-
vertex gives a result for the coefficient of u3 which matches the coefficient in [17], which appears
to have been calculated directly from the disc amplitude. We chose the u3 term to consider
because if we were to change the sign on Xrs

mn with r 6= s we would not get the same result.
If one of the three fields is different than the others then there are three ways to order them.

Since the triple product 〈A,B, C〉 is invariant under cyclic permutations of fields with ghost
number one, though, we only need to calculate it in one order and then multiply the end result
by 3. If all three are different then there are six ways to order the fields. Again we can use
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cyclicity of the triple product to reduce the problem to two distinct orders, and then multiply
each by 3. The twist operator will tell us how the two distinct orderings are related to each
other. We know from [10] that

〈A,B〉 = 〈Ω(A),Ω(B)〉 (3.25a)

Ω(A ∗ B) = Ω(B) ∗ Ω(A) (3.25b)

for string fields with ghost number one. From this we can easily see that the reverse ordering
is

〈C,B,A〉 = 〈Ω(A),Ω(B),Ω(C)〉 . (3.26)

For the twist-even fields we are considering this results in 6 times the coefficient for one ordering
of the fields. In more generality, we can still use this result as long as we remember to include
the necessary signs and exchange the D-brane indices as Ω acts on each string field.

In order to check the vertex, we can use it to compute several couplings that are already
known. Since most work neglects the zero-modes we have to use [16], which contains a detailed
action for states with non-zero momentum. Because they use states which are eigenvalues of |p|
rather than the signed momentum, we must take care to include all the necessary combinatorics.
We should then be able to match their couplings. As an example, we will examine their coupling
for t0t1v1.1 We begin by using our 3-vertex to find the cubic term for two copies of the field

t and one field that we call w. We then choose α
(1)
0 = 0 and α

(2)
0 = −α(3)

0 =
√

2
R to match

the zero-modes to the momenta |p| = 1
R . To avoid complications due to conventions, we use

the value of α0 for which the L0 eigenvalue matches the contribution of the momentum to
the level in that work. There are two ways to pick which state has positive momentum; we

could have swapped α
(2)
0 and α

(3)
0 , so we pick up a combinatoric factor of 2, but each of the

cosines appearing with t1 and v1 has a factor of 1
2 when expressed in terms of the necessary

exponentials, contributing an additional 1
4 . The three fields in question are all distinct, so there

is a factor of 6 for the number of ways to order them. The cubic term in the action has a factor
of 1

3 in front which we must also remember to include. We then find exactly the same result as
in [16]: (

−3
√

3

8R2
− 15

√
3

128

)(
4

3
√

3

) 2
R2

.

The couplings for t0t1v1, t1t2v1, t0v1v1, t1v0v1, and t1w0v1 have all been checked this way.
Finally, we need to be concerned with the boundary conditions. The Neumann coefficients,

N rs
mn and Xrs

mn were derived for Neumann boundary conditions, and since we are starting with D-
branes that have codimension 1, we will also need to consider the vertex for Dirichlet boundary
conditions. Fortunately, T-duality guarantees that the vertex is identical. With Neumann
boundary conditions, the radius of a compact direction only appears through the allowed values
of α0. We can contract the radius to 0 while holding α0 = −d constant by giving the gauge field

the value A25;2,2 = −d̂
2πα′ = −d√

2α′
, A25;ij = 0 otherwise, equivalent to θ2 = Rd̂

α′ . When we then

T-dualize to get a non-compact Dirichlet theory we will have the same value of α0 we wanted,
and the same mass spectrum. Because the 3-vertex can be defined by the 3-point function
in (3.19) and the amplitude is the same with Neumann or Dirichlet boundary conditions by
T-duality, the 3-vertex will have the same form and the same coefficients in either case.

1 While several of the states we will use are also in [16], only t and u will be labeled the same.
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The quadratic term in (3.5) is much easier to compute. The only sums in this term appear
due to the BRST operator

QB = cnL−n +
m− n

2
: cmcnb−m−n : −c0. (3.27)

The other thing we need in order to calculate 〈Φ|QB |Φ〉 is the bra state. Conjugation is done
using the bpz conjugate which we already defined in (3.9).

The quadratic terms are verified similarly to the cubic ones. For the coefficient of v1v1 we
have a factor of 2

4 from the two cosines and the number of ways to make the momentum vanish.

Letting α0 =
√

2
R and including the 1

2 from the action we find that the coefficient is

1

8
+

9

8R2
+

1

R4

in perfect agreement again. The coefficients of t0t0, t1t1, t2t2, u0u0, u1u1, v0v0, v1v1, w0w0,
w1w1, and v1z1 have all been checked. The coefficient for z1z1 requires an additional detail.
While v1z1 can be easily matched by multiplying an extra α0 into the quadratic term to match
the normalization difference between our f and their z, when we calculate quadratic terms with
z on the left we must remember to multiply our coefficient of f by bpz(α0) = −α0. With this
additional overall sign, we agree with [16].

The potential of (3.5) can be evaluated, and at level (1, 3) it is

V = 2π2

[
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∆ij

2
)tijtji +
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)
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+
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t3
01α

r
0α

s
0α

t
0)xijxjkxki

+
16

9
tijhjkhki +

8

9
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0hijhjkxki

)(
4

3
√

3

) 1
2

(∆ij+∆jk+∆ki)
]

(3.28)

Here the states have already been removed by taking the inner product with the vertex, so the
αr0 should be taken to mean the eigenvalue of α0 against the r-th vacuum in the 3-string state

|ij〉 |jk〉 |ki〉. For example, α
(2)
0 = dj − dk. A full listing of the higher level couplings used in

this work is given in appendix A.

3.2 Solutions

Now once again restricting our attention to N = 2 branes, we can use the twist and exchange
symmetries to simplify the potential. First we will define the coefficient matrices such as tij
appearing in the string field expansion (3.1).

tij =

(
Ts − Ta τeiθt

τe−iθt Ts + Ta

)
=

(
Ts τ
τ Ts

)
, xij =

(
Xs −Xa χeiθx

χe−iθx Xs +Xa

)
=

(
−Xa 0

0 Xa

)
(3.29)
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Ts = t11+t22
2 and Ta = t22−t11

2 are the symmetric and anti-symmetric parts of the diagonal.
A complete list of terms which are even under both twist and exchange symmetries is now
relatively short at this level.

tij =

(
Ts τ
τ Ts

)
, xij =

(
−Xa 0

0 Xa

)
, uij =

(
Us υ
υ Us

)
vij =

(
Vs ν
ν Vs

)
, wij =

(
Ws ω
ω Ws

)
, fij =

(
0 φ
−φ 0

)
rij =

(
−Ra 0

0 Ra

)
, sij =

(
−Sa 0

0 Sa

)
, yij =

(
−Ya 0

0 Ya

)
, zij =

(
−Za 0

0 Za

) (3.30)

3.2.1 Level 0 Calculation

As a first approximation, we will include only the lowest level states in the string field expansion.
Setting xij and all higher level terms to zero and keeping only tij we can write down the
truncated potential.

V = 2π2

[
−T 2

s − T 2
a + (−1 +

d2

2
)τ2 +

27
√

3

32

(
T 3
s + 3TsT

2
a + 3

(
4

3
√

3

)d2
Tsτ

2

)]
(3.31)

This polynomial has 5 critical points. The trivial point Ts = Ta = τ = 0 corresponds to
the perturbative vacuum where neither D-brane has decayed. There are three other diagonal
solutions with Ts = ±Ta = T0

2 and Ta = 0, Ts = T0, where T0 is the tachyon value decaying a
single D-brane at level 0. These represent solutions where one or both D-branes have decayed
separately. These four solutions are all expected, since the presence of another brane does not
affect a brane’s ability to decay. This is the diagonal subset of the solutions found in [28].

There is a fifth solution, shown in figure 3.1, in which there is an off-diagonal tachyon τ 6= 0.
In the zero separation limit, it is the solution where a symmetric linear combination of the two
branes has decayed; an SU(2) rotation of the solution where one of the branes decays. As the
D-brane separation is increased the solution goes to zero at d =

√
2. This solution is only valid

for d ≤
√

2, as for larger separations it becomes complex and violates the condition that the
matrix tij must be hermitian. We can explore the physical interpretation of this solution at
higher levels.

3.2.2 Level 1 Calculation

Now that we have an approximation to the tachyon sector of the solutions we are looking for,
we can begin including more terms in the string field (3.7). The transverse scalars xij will be
of key interest, which is why we have explicitly included them in section 3.1. With the explicit
parameterization of the matrices tij and xij given in (3.29) as well as the Neumann coefficients
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3.2. Solutions

(a) (b)

Figure 3.1: The level 0 solution for separated D-branes which decays a non-trivial linear com-
bination of two D-branes. The energy is shown in (a) and the non-zero components Ts (solid
line) and τ (dashed line) of tij are in (b).

N rs
mn, we can rewrite the full level 1 potential of (3.28) as

V = 2π2
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√
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√

3TaXsXa

+
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)d2 (81
√
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32
Tsτ

2 +
27
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dXaτ
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dTaτχ−

3
√

3

2
Tsγ

2

+3
√

3(1− d2

2
)Xsτχ+

3
√

3

2
(1 +

d2

4
)Tsχ

2 +
d3

2
Xaχ

2 − 2dXaγ
2

)]
(3.32)

Here we find the first example of an unexpected quadratic term. The tachyon’s mass is

clearly −1 with an additional d2

2 if it’s stretched, and the level 1 vector has a mass of 0 +
d2ij
2

which makes perfect sense. The ghost term γ corresponding to the off-diagonal part of hij ,
however, has mass 2 and does not change at all when stretched. We will see at level 2 that the
second ghost term, c−1 |0〉, is actually tachyonic, despite being at level 2. It even becomes more
tachyonic as the string is stretched. Fortunately, this is a ghost mode, so in all likelihood it is
one of the non-normalizable modes that are not present in the cohomology.

As discussed in section 3.1.1 we do not need to consider the entire set of 6 fields. Using
the twist and exchange symmetries, only Ts, τ , and Xa are excited with the off-diagonal level
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(a) (b) (c)

Figure 3.2: The level 1 solution for separated D-branes which decays a non-trivial linear com-
bination of two D-branes. The energy (a) with the level 0 energy dotted for comparison, the
tachyon matrix (b) Ts (solid) and τ (dashed), and the transverse scalar Xa (c).

0 solution as our starting point, so we can remove all of the other variables, and get a model
for the effective potential of this solution.

V = 2π2

[
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2
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32
Tsτ

2 +
27

8
dXaτ

2

)]
(3.33)

This system is now simple enough that it can be solved exactly. Apart from the obvious cases
where either nothing happens or both branes decay, one solution is found. The physical branches
of this solution are shown in figure 3.2.

Since the field responsible for transverse fluctuations of a brane is α−1, the Xa field gives a
constant positive shift to the position of brane 2, and a negative shift to brane 1, representing
the first term in their separation. The negative value of Xa on this solution means that the
two branes have moved closer together. The correct sign can be easily verified by noting that
an increase to the value of Xa in (3.33) contributes a positive τ2 term. An increased effective
tachyon mass corresponds to increasing the brane separation felt by the tachyon.

There is every reason to expect that there are analytical solutions to string field theory
consisting of a marginal deformation followed by a Schnabl type decay. In fact an analytic
solution of this form was found for a single D-brane shortly after this work was published [45].
Since we know from [28] that any appropriate linear combination of two branes can decay as
long as they are coincident, any such linear combination of separated branes should be able to
decay as long as they first move to become coincident. We believe that the solution we have
found is one of these. That only one specific linear combination of the branes has been found
to decay like this is no surprise, since the SU(2) symmetry of two D-branes was broken by
separating them. In principle we expect this symmetry to be restored after the translation, but
since level-truncated solutions are approximate the symmetry has not been restored here.

In the limit as d → 0 we see that Xa goes to 0 as well, since the branes do not need to
move when they are already coincident. In fact, for small d the solution behaves as Xa =
− 4

27d + O
(
d3
)
, which is linear in the physical starting separation of the branes. To see if
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the magnitude is reasonable, we can find the value of Xa for which the SU(2) symmetry
of the tachyon is restored. We accomplish this by equating the eigenvalues of the Hessian
matrix for the three tachyon fields and solving. What we find is that χ = 0 and, remarkably,
Xa = − 4

27d+O(d3). Because of the severe level truncation approximation, we only expect this
to hold for small separations. xij is the leading term contributing to a translation, as shown in
[21]. Infinitely many other fields will contribute at higher orders in separation, and indeed the
O(d3) terms in the two calculations of Xa above do not even have the same sign.

At d >
√

2 this off-diagonal solution becomes double-valued, and the two branches meet and
cease to exist for d & 1.61. It is easy to see that d =

√
2 is the point where the stretched tachyon

becomes massless. While there is no proof that the level truncation scheme is a consistent
approximation, we can understand that the more massive modes tend to be less important
contributions to a solution. This was refined in [16] where they pointed out that the level-
truncation scheme should use the entire L0 eigenvalue, including the zero-modes. What this
means for us is that for d ≥

√
2 we should be including the diagonal fields before off-diagonal

fields from one level previous. While at level 1 this would not make a difference to our solution
since χ is already 0, we should bear in mind that our solutions are not necessarily valid for
large d. For larger distances we should still be able to translate D-branes, but we don’t know
if such solutions can be found from a level-truncated system.

We should note that the reality condition on the string field is a sufficient condition to
guarantee the reality of the action, but not a necessary condition. In fact, when the level 0
solution becomes complex the potential remains real for all separations. At level 1, however,
the potential has an imaginary part that grows polynomially for separations above the critical
distance dmax ≈ 1.61. As a result we will consider the reality condition on the string field rather
than the reality of the action when discussing the range of separations for which our solution
remains valid.

Direction of translation by T-dual method

I have claimed that the negative sign of xij indicates that the branes move towards each other
because of the effect it has on the mass of the stretched tachyon. We can also check that
the negative sign of Xa opposes the initial separation by considering the T-dual picture. The
position d̂i is dual to −2πα′Aii25 where Aii25 is the gauge flux on the i-th D-brane. The action
with this charge is

S =
1

2πα′

∫
M
dzdz̄∂Xµ∂̄X

µ + i

∫
∂M

AµdX
µ. (3.34)

A shift in the position of a D-brane by ε is a shift Aii25 → Aii25− ε
2πα′ , and under this perturbation

the action changes as

e−S = e−S0

(
1 +

iε

2πα′

∫
∂M

∂X25dz +O(ε2)

)
(3.35)

On the other hand, the state xijα
25
−1c1 |ij〉 corresponds to inserting the operators√

2
α′ ixij∂X

25(0)c(0) at the origin on the upper half plane. For any operator we can write

|A〉 =

∫
DXie

−S[Xi]A(0) (3.36)
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so we can see that for a translation of a single D-brane, we get

xα25
−1c1 |0〉 = ix

√
2

α′

∫
DXie

−S[Xi]∂X25(0). (3.37)

Splitting the solution into a classical piece Xcl and a perturbation X ′ so that DXi = DX ′,
(3.37) becomes

= ix

√
2

α′
e−S[Xcl]

(
∂X25

cl (0)

∫
DX ′e−S[X′] +

∫
DX ′e−S[X′]∂X ′25(0)

)
(3.38)

= ix

√
2

α′
e−S[Xcl]∂X25

cl (0)

∫
DX ′e−S[X′] (3.39)

= ix

√
2

α′
∂X25

cl (0)

∫
DXie

−S[Xi] (3.40)

where the second term in (3.38) vanished because the integrand is odd. The sign of the operator
insertion associated with a positive constant times the state α25

−1c1 |0〉 is clearly the same as the
sign associated with the operator insertions from a gauge field which induces a positive shift in
D-brane position in the T-dual picture. This is confirmation that when we find a solution with
Xa < 0 the D-branes have moved towards each other.

3.2.3 Level 3

We will now include all of the fields listed in (3.30). The full potential used can be found in
appendix A, and must then be simplified by dropping all fields which are not even under both
twist and exchange symmetries. Beyond level 1 we can only get numerical solutions for the
critical points of the potential, but we can do this for any initial separation d. We have plotted
each field in figures 3.3-3.5.

The tij and xij fields look similar to what we found at level 1. In fact, as seen in figure 3.6,
the Xa field has very nearly the same slope at d = 0 as it did before. The additional terms all
go to 0 at d =

√
2 just as the string field has at all lower levels. This appears to be related to

the fact that d =
√

2 is a special point where the tachyon is exactly massless, and that is not
affected by level. The maximum separation before solutions become complex is now d ≈ 1.92,
which is another increase beyond previous levels, but not a very large change. In physical units,
this separation is d̂ ≈ 8.55

√
α′.

3.2.4 Discussion

The level 3 slope of Xa at small separations is now Xa ≈ −0.1745d, which is slightly steeper
than the −0.1481 that we found at level 1. It is tempting to relate this to the marginal vev
required to translate a D-brane a distance d

2 . The translation induced by small values of the
marginal field would then be

xα−1 |0〉 → d ≈ 2.866x, d̂ ≈ 12.73
√
α′x, (3.41)

but this is not the whole story. We will consider a hypothetical exact solution Ψ corresponding
to the combination of translation and off-diagonal decay that we are studying. The solution
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(a) (b)

Figure 3.3: The potential of the off-diagonal solution at (a) level 3 and (b) levels 0 through 3
with the second branch omitted.

(a) (b)

Figure 3.4: The tachyon and marginal fields of the off-diagonal solution plotted at level 3 over
the allowed range of separations, d. In (a) we see the tachyons Ts (solid) and τ (dashed), while
in (b) we have the field Xa.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: The remaining components of the off-diagonal solution at level (3,9) plotted over
the allowed range of separations, d. When two fields are plotted together, the solid line is the
diagonal component, while the dashed line is off-diagonal. (a) Us and υ, (b) Vs and ν, (c) W̃s

and ω̃, (d) φ̃, (e) Ra, (f) Sa, (g) Ya, and (h) Za as defined in (3.30). The matrices wij and
fij were replaced by their alternate forms defined in (3.18) to avoid singularities. All other
component fields are 0 at level 3.

Figure 3.6: The slope of the field Xa for small separations. Level 3 is the solid line, with lower
levels having shallower slopes.
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should then be split into a part Ψ̄ which is a solution for the translation leaving the D-branes
coincident, and a part Ψ′ which represents the decay, but is not a solution about the perturbative
vacuum by itself. Each component of the string field can then be split in the same way, so that
we will write the marginal component of the string field as Xa = X̄a + X ′a. We will label all
other fields as φI = φ̄I + φ′I with I an index. Since Ψ̄ is a solution to the full OSFT, we can
expand the theory about that point and must find the same action we would expect for two
coincident D-branes, up to a field redefinition. We will write this field redefinition as

X̃a = cXXX
′
a +

∑
I

cXIφ
′
I , (3.42)

φ̃I = cIXX
′
a +

∑
J

cIJφ
′
j , (3.43)

where X̃a is the marginal field belonging to the new theory expanded about Ψ̄. The action will
have the form of the action on coincident D-branes, but in terms of the redefined fields:

Sd(X̄a +X ′a, φ̄I + φ′I) = Sd=0(X̃a, φ̃I) . (3.44)

Since this off-diagonal decay of the coincident D-branes is an SU(2) rotation of a single brane
decay, it will not involve the marginal field, so X̃a = 0.

It is clear that the action Sd has terms like X̄aX
′
aφ
′
I arising, for example, from the TsXaXa

term in the action of (3.33). Since for small separations we know X̄a ∝ d, the action has terms
like dX ′aφ

′
I . We then infer that for small separations

cXX → 1, cXI ∼ d→ 0 (3.45)

cIX → 0, cIJ → δIJ . (3.46)

The redefined marginal field X̃a = 0 together with our ansatz for the field redefinition then
gives us that for small separations

X ′a ≈ −
∑
I

cXIφ
′
I ≈ −

∑
I

cXI φ̃I . (3.47)

But for D-brane decay many of the fields φ̃I such as the tachyon are non-zero, so X ′a ∝ d.
Unless there is a cancellation, which we have no reason to expect, this correction to X̄a is the
same order of magnitude as X̄a itself. What we have accomplished is to remove any BCFT
calculations from the question of relating the two parameters. Using this method, the problem
has been reduced to one entirely within OSFT, to find the precise field redefinition. Finding
the redefinition, however, is beyond the scope of this work.

We have interpreted the solution as an off-diagonal D-brane decay after a translation makes
the two branes coincident, so we expect that as the level of approximation increases the inter-
pretation should be approximately valid for a larger range of separation d. From figure 3.3b
we can see that as each even level lowers the energy exactly as happens with a single D-brane
decay, both odd levels flatten out the preceding level somewhat. While it is surprising that
the level 1 curve is so flat, we can understand that it is flatter than the higher level curves
shown. In [21], they studied the behaviour of the potential near the single D-brane vacuum as
a marginal parameter was turned on, and they found that the leading quadratic term did not
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decrease monotonically as the level was increased. Instead the largest single increase in that
quadratic term came from level 1 to level 2, which may explain why we saw a similar increase
in our solution.

For d = 0 we see that the entire string field takes the value 1
2 ( 1 1

1 1 ) Φ0. It remains the same
symmetric SU(2) rotation of the string field Φ0 which describes the decay of a single D-brane.
All of the fields which are descended from the primary state α25

−1c1 |0〉 go to 0 as d→ 0, since no
translation is needed when the D-branes are initially coincident. We might also think that the
two tachyon curves in figure 3.4a should remain together longer as the level increases, but this is
not true. The approximate string field responsible for translating a D-brane without any decay
does include a tachyonic component. For our situation where we move both D-branes equally
in opposite directions, exciting Xa, the tachyon in question is Ts and the off-diagonal term is
not excited at all. This explains the separation between the two curves in each of the plots
for the tachyon tij , as well as uij , vij , and wij as the separation is increased and a translation
becomes necessary.

There is one new feature at level 3 which did not appear at level 1. The change of variables
described in (3.18) is singular at d = 1√

2
, and so we find a pole in the fields ω and φ at that

point. In the alternate basis, however, the fields ω̃ and φ̃ defined in (3.17) remain finite as d
approaches the singularity. We do not see any singularity in the level 3 fields rij , sij , yij , and zij
because their off-diagonal components are protected by exchange symmetry, and the diagonal
parts have α0 = 0 so that the transformation has no singularities there.

While the correspondence between the marginal parameter and the physical translation
remains unknown, the physical translation of the solution is known exactly in this case. That
the maximum translation remains finite is troubling. There is no reason why the translation of a
D-brane should be limited, but this and all previous marginal solutions have found a maximum
value of the deformation parameter. In previous cases there was still the possibility that the
physical translation was unbounded, either by a singular correspondence between the marginal
parameter and its physical effect, or through a second branch of the solution with decreasing
marginal parameter but increasing effect as was found in a toy model [22]. In our case, however,
we know exactly what the physical translation distance is, and we already see a second branch
which does not have a larger displacement. It seems unlikely that either of these hypotheses
could apply based on our solution. If D-brane translations are to be unbounded then we must
hope that the small increases in the maximum with each level do not shrink too quickly and
form a divergent series. One last possibility comes from recent work [23] where a level truncated
solution underwent a sudden change from complex to real at level 14. Perhaps certain levels
could have similar behaviour in our system and cause the solution to exist for a much larger
range of D-brane separations. It is not known how this problem is resolved.

We have not done anything with the second branch of the solution, which begins at d =
√

2.
The relatively flat energy of this branch suggests that it represents a truly marginal deformation,
and if it is a pure translation then we could use the slope of that branch to directly determine
a relationship. Unfortunately we do not know the physical interpretation of this branch, so we
cannot be sure that it is only a translation, or if it is how far the D-branes move.

It is worth mentioning that the boundary state was calculated for a level-truncated marginal
solution in [42], and that method should be applicable here too. We know that the first branch of
our solution represents a single D24-brane at the origin, so we would expect that the boundary
state constructed by the method of [41] should reflect this. It would be interesting to see if the
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Level X̄a X
(0)
a ās t̄1/

√
2 t

(0)
1 /
√

2

1 -0.1798 -0.1557 0.2963 0.296 0.286
2 -0.2464 -0.2431 0.3214 0.321 0.309
3 -0.2579 -0.2579 0.3301 0.330 0.316

Table 3.2: Values of maximum marginal parameters taken from four different cases and various
levels. X̄a is taken from this work, ās from [21], and t̄1 from [24]. For the situations where
it was considered, we have also included the value of the marginal parameter which has the

greatest physical effect, X
(0)
a and t

(0)
1 . The values from [24] are estimated from plots.

boundary state for the second branch corresponds to two D-branes at the origin, as we would
expect from the energy of the solution and the sign of Xa. We also do not know precisely
what happens near the maximum separation, but as we expect higher level terms to play a
larger role for such separations a boundary state based on an approximate solution is not likely
to give accurate results. While a calculation of the boundary state would not give results
independent of CFT (the boundary state must be compared to known CFT results), it is a
powerful gauge-independent tool for determining physical properties of a SFT solution.

3.2.5 Comparison to Previous Solutions

We can also examine the extremum of the Xa field at the three levels where it was computed.
At levels 1 and 2 we can see that the largest Xa is actually reached before the two branches
meet. At level 3 we see what appears to be a cusp, though it may actually be the beginnings
of a loop, based on one data point for the branch starting at d =

√
2 having an Xa value which

is slightly below the value at the other branch at that point. The extremum values themselves
are comparable to the maximum value of the marginal parameter found in [21] before their two
branches also meet and become complex. The difference between our methods is that they are
turning on a gauge field by itself, T-dual to translating a single D-brane without any decay,
while in our system the translation will combine with the off-diagonal decay which allows us to
get a true level truncated solution without dropping one equation of motion. While our values
of Xa are smaller than their ās, they are on the same order of magnitude, and are growing faster
as the level increases, going from 60% at level 1 to nearly 78% at level 3. Numerical values are
listed in table 3.2.

Another marginal deformation that has been studied numerically is the lump solution at
marginal radius [24]. Sen examined a very similar question to ours, attempting to match the
strength of the marginal parameter to the physical effect of that parameter on the CFT. In that
work, the energy-momentum tensor was used to link the two. Despite the fact that the marginal
deformation studied was different, the two should be dual to each other with the rescaling

λ = t1 ↔
√

2as (3.48)

where as is defined in [21] and is equivalent to our x on a single D-brane, and the parameters
on the left hand side of the duality are defined in [24]. In this way we were able to extend table
3.2 to include the value of the marginal parameter with the greatest physical effect. The rate of
growth with level is similar in both cases, and since the t1 marginal deformation is understood
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to be periodic with period 1, this suggests that our marginal deformation remains valid only
for a finite range of the marginal parameter even at arbitrarily high level. We also notice that
the value of the marginal parameter corresponding to the peak physical effect on the CFT side
is quite close to the maximum value of the parameter in all cases. In [24] it was speculated that

as the level increased the greatest effect t
(0)
1 might coincide with the maximum of the parameter

t̄1, which is actually occurring at a much lower level in our solution than in that work. However,
there is some suggestion that in our case the two points may begin moving apart again.

We can also use this relationship between the two marginal deformations to estimate a
value for the slope (3.41). For this we will assume the exact result proposed in [24], that as
the truncation level becomes large the lump marginal deformation causes the dimension of the
initial D-brane to reduce by one at precisely t1 = 1

2 . From [46] we see that this marginal
deformation is also dual to turning on a periodic gauge field on a circle of radius 1, and that
the value of the marginal parameter which reduces the D-brane dimension is exactly half the
period. This corresponds to a translation half way around the circumference of the circle, a
distance π. We also assume that the translation is a linear function of the marginal parameter.
It is this assumption of linearity that we cannot justify, and which means our comparison will
be rough at best. With all of this in mind, we can now say that

d̂ = π ←→ t1 =
1

2
←→ as =

1

2
√

2
(3.49)

asα−1 |0〉 → d̂ = 2
√

2πas ≈ 8.89as. (3.50)

This slope is the same order of magnitude as the one we found from our off-diagonal solution
combining a translation and a decay. In fact as we increased the level we saw our slope heading
in that direction, though we certainly do not expect perfect agreement at infinite level because
we had to assume a linear relationship between translation and marginal parameter in order
to extrapolate this slope from only two known positions on the circle, and because we have
seen that the presence of a D-brane decay will alter the slope of the marginal parameter in the
combined solution studied here.

3.2.6 Restoration of SU(2) Symmetry

Here we will attempt an alternate method of relating the marginal parameter to the physical
displacement of the D-branes. Without a D-brane decay, the marginal parameter is directly
related to the displacement, so we can consider other properties of the theory besides off-
diagonal decays which are special for coincident D-branes. An obvious choice is to look for the
SU(2) symmetry of the theory, which is only present for coincident branes.

We consider the SU(2) symmetry of a system of D-branes to be restored if the effective
quadratic terms of the potential for our fields can be written as CIφ

I
ijφ

I
ji with some mass CI .

Taking the tachyon as an example, the mass would be −π2 and the quadratic term in the action
would be −π2tijtji. This means that the eigenvalues of the second derivative matrix over the
coordinates Ts, Ta, and τ must all be equal. Allowing for field redefinitions, we search for the
more general condition that the second derivative eigenvalues come in degenerate sets of 3.
We hope that near such a degenerate point the masses of the fields would also show the same
splitting for stretched strings as we find with initially separated D-branes.
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In [21] Sen and Zwiebach found marginal “solutions” by dropping the one equation of
motion for the field that we call x. This gave them a one parameter family of string fields
which represent the marginal deformation of a D-brane. Due to level truncation, their string
field was not exactly marginal, but was a good approximation for small values of the parameter.
Taking the same approach, we can adjust the parameter to try to restore the SU(2) symmetry
which was broken by beginning with separated D-branes. With only one parameter we find it
impossible to restore the degeneracy for more than one cluster of fields.

We will plot the eigenvalues of the second derivative matrix expanded about such string
fields which are approximately marginal and approximately solutions to the level truncated
theory. In this case we have two parameters to adjust. We want to pick some value of the
initial separation and see if there is some value of the marginal parameter which restores the
degeneracy of the eigenvalue triplets. Focusing on the sextuplet of figure 3.7a formed by the
mixing of the tachyon and the level 2 ghost uij , which have the same mass on coincident D-
branes, we see three eigenvalues which are mostly unaffected by the marginal parameter, as
well as three eigenvalues which clearly are affected. The parabola opening upwards makes good
physical sense, as it has a minimum at Xa ≈ −0.022, which we can interpret as the symmetry-
restored point where the D-branes are once again coincident. As the marginal parameter moves
away from this point the stretched string becomes heavier. This point would correspond to

Xa ≈ −0.44d which is significantly steeper than the relationship at level 1, X
(1)
a = − 4

27d.
Since this is only the minimum of one eigenvalue it does not necessarily represent a restored
SU(2) symmetry. The stretched u ghost does become lighter as the D-branes separate, so a
downward-opening parabola is not unexpected, but this is a double eigenvalue with its maximum
at Xa = 0, which does not agree with either our expectation that a non-zero marginal parameter
is required to restore the symmetry and coincidence of the D-branes, or our expectation that
only the stretched u mode should become more tachyonic as the D-branes are separated.

We can also examine the other sets of eigenvalues which we hope to be degenerate. For
these fields the masses on a single D-brane tend not to be degenerate, so when we consider
two D-branes we need to look at sets of three eigenvalues unlike the tachyon case where the
uij field’s degeneracy with tij meant that we had to consider a set of six eigenvalues. What
happens in most cases is that two of the eigenvalues, corresponding to the diagonal fields, will
be degenerate and relatively flat, while the off-diagonal eigenvalue is quadratic in the marginal
parameter. We would hope to see an extremum that coincides with the diagonal values, all
located near the same value of the marginal parameter. Instead we see extrema beyond the
diagonal, so that the two sets of eigenvalues cross twice as in figure 3.7b, and while most of the
extrema are located at Xa = 0, some are not. Some sets of fields have no flat eigenvalue, either
similar to figure 3.7a without the constant modes, or having two parabolas opening in the same
direction.

This suggests that the level-truncated approach of [21] does not give accurate results even
for small separations. Note that while we focus on the matrix of second derivatives, in level
truncation, the first derivatives of the potential do not all vanish, since the equation of motion for
Xa is not satisfied. This effect decreases with increased truncation level. The computation used
twist-even fields only. The approximate solution is also exchange-even, and we included all twist-
even (both exchange-even and exchange-odd) fields in the computation of the second derivative
matrix. Unfortunately, the features we were looking for do not seem to be unambiguously
visible at level (3,9). Apparently, the cubic couplings to higher level fields with non-zero vev
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3.2. Solutions

(a) (b)

Figure 3.7: Masses of several particles in an effective theory expanded about a marginal string
field. Several eigenvalues of ∂φ(i)∂φ(j)V are plotted over the marginal parameter Xa and with an
initial separation of d = 0.05. The six eigenvalues in (a) have eigenvectors consisting primarily
of the components of tij and uij , while the three in (b) are primarily associated with sij . Single
eigenvalues are dashed lines, while degenerate pairs are solid.

contribute nontrivially to the masses of the lower modes when the D-branes are translated. It
would be interesting to see whether this can be improved at higher levels.
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Chapter 4

Renormalized Marginal Operators

In this chapter we will study the solution of [36] which represents a marginal deformation of
the conformal boundary condition in the initial BCFT. What sets this solution apart from
earlier marginal solutions in OSFT is that it still holds when the marginal operator V which
generates the deformation has a singular self-OPE, V (0)V (t) ∼ 1

t2
. This is done by using a

renormalization scheme for integrated operators, which must satisfy six assumptions in order for
the solution to satisfy the equation of motion. When this particular solution was first presented
in [36], a model renormalization scheme was included to demonstrate the process. Our purpose
is to examine the space of possible renormalization schemes compatible with the conditions
required for a real SFT solution.

Recently, an alternative method was given for constructing finite solutions to OSFT from
operators with singular OPE [39]. This solution, however, does not apply to our main focus, the
rolling tachyon, because it requires that the boundary condition changing operator σ acts as the
identity in the time direction. For the rolling tachyon, the time direction is the only matter field
which is affected by the boundary condition changing operator. Even in cases where the time
direction is untouched, the solution of [39] may not always be useful. It is based on the boundary
condition changing operator relating the desired solution to some known reference solution, and
this may not always be available. It may still be possible to use without knowing what that
boundary condition changing operator is, as long as some of their properties and three-point
functions are known, but the method we will study does not require the bcc operators at all.

The simplest renormalization scheme replaces every pair of marginal operators which can
collide with a counterterm which properly cancels the divergence, and then sums over all possible
pairwise replacements. The OPE completely determines the singular part of the counterterm,
but we can also ask whether the counterterm should have a finite part and if so what it should be.
For a pairwise counterterm, the six assumptions will restrict the finite part to an arbitrary linear
function of the length of boundary over which the operators are integrated. Considering more
general schemes, we allow for higher order counterterms beyond simple pairwise subtractions.
At each order in the marginal operator we will find new counterterms which can be added. The
singular part of each counterterm is once again determined by the OPE and the counterterms
at lower order, but the finite parts will each have some amount of freedom. This gives us an
infinite dimensional space of renormalization schemes which satisfy four of the six assumptions.
If we restrict this space to renormalization schemes which are linear, it may be a useful starting
point for future studies of renormalized marginal boundary operators.

The two assumptions which are not immediately satisfied by the space we have outlined
are also the most physically meaningful. The BRST conditions (4.5a) and (4.5b) represent
the conformality of the new boundary conditions corresponding to the OSFT solution. If they
do not hold then deforming the initial BCFT with a marginal operator renormalized in this
way will no longer give conformal boundary conditions. Unfortunately, the sheer size of the
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4.1. Setup

space of renormalization schemes makes a thorough examination of which schemes preserve
conformality of the boundary beyond our reach. Instead we consider the “little g” scheme
which closely resembles the model used in [36]. This choice is made because the integrands
which appear in the little g scheme are more clearly finite than what we see in more general
approaches. As a result, we will actually prove that the BRST conditions hold for this scheme
at all orders in the marginal parameter.

This examination of the space of renormalization schemes is really just a starting point,
as there are many unanswered questions which remain. Most obviously, is it possible to prove
finiteness and the BRST conditions for some larger subset of general renormalization schemes.
There is no reason to expect that only one renormalization scheme will satisfy the BRST
conditions, so there is a question of uniqueness. If we have two equally valid renormalization
schemes which are supposed to represent the same marginal boundary deformation, are they
related to each other by a nontrivial rescaling of the marginal parameter, or do they somehow
represent different deformations? Since the little g scheme is actually a two-parameter family
of valid renormalization schemes, we have infinitely many such schemes. We expect that they
are related by gauge transformations, but this will not be proven.

Another unanswered question pertains to the conformal properties of boundary condition
changing operators. For many boundary conditions, the boundary condition changing operator
is a conformal primary operator, and so it must behave in a given way when acted upon by
the BRST operator, but when we explicitly construct this for the little g scheme, there is an
extra term which behaves differently. It may be that this gives an additional constraint on
the counterterm, requiring such extra terms to vanish. Since solutions to OSFT correspond to
BCFT’s, however, we would expect such a constraint to appear without needing to consider
the BCFT side, for example as a violation of the equation of motion, but we have not seen
any evidence that the OSFT solution fails with the counterterm considered. Perhaps such
renormalization schemes correspond to non-primary boundary condition changing operators.

This chapter is structured as follows. In section 4.1 we begin by briefly reviewing the solution
of [36]. We then construct the most general renormalization scheme for two marginal operators
in section 4.2. Because the problem is simpler at this order, we will thoroughly examine the
properties of this scheme. Moving to higher orders in section 4.3, we use a third order example
to see how the addition of extra counterterms is allowed at each order. We then have to restrict
ourselves to the little g scheme in order to get useful results which hold at all orders. In section
4.3.8 we describe a simple method for defining general linear renormalization schemes, and then
give some evidence that the little g scheme can be described this way. Finally, in section 4.4
we will describe a few unanswered questions regarding the structure of general renormalization
schemes.

A version of the work presented in this chapter has been published in the Journal of High
Energy Physics [2].

4.1 Setup

Many analytical solutions to string field theory are constructed as wedge states with inser-
tions, as in (2.22). For the case of solutions representing marginal deformations of the starting
boundary CFT, the operators inserted on the boundary are generally the marginal operator
in question as well as some ghosts. While several such marginal solutions have been studied,
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[5][33][34], they have been limited to marginal deformations with regular self-OPE. The case
of singular self-OPE was examined in [36] in a more formal setting. Here we will review the
solution of [36]. More recently, an alternative solution has been proposed [38]. In that solution
the singular OPE of the marginal operators is handled by performing extra integrals into the
bulk of the worldsheet to soften the divergences until a finite result is achieved. The solution of
[37] also deals with singular marginal deformations, but its focus was on the photon marginal
deformation. It is likely that the same approach could be used for the rolling tachyon, but we
will not be examining this more closely. It has also been suggested [32] that that solution is
most likely equivalent to the one we study.

A few pieces of notation must be taken care of. The marginal operator is V (t), and is taken
to have self-OPE

V (t)V (0) ∼ 1

t2
+O(1) (4.1)

with no 1
t term. In CFT a deformed boundary condition on the interval (a, b) is achieved by

inserting an exponential of the marginal operator integrated between a and b, defined in terms
of a Taylor series in the deformation parameter λ:

eλV (a,b) =

∞∑
n=0

λn

n!
V (a, b)n , (4.2)

where

V (a, b)n =

(∫ b

a
dtV (t)

)n
=

∫
(a,b)n

dnt V (t1) . . . V (tn) . (4.3)

Since V (t) has a singular self-OPE, the above expressions need to be regulated. We will denote
the regulated (or renormalized) operators by enclosing them with [ ]r. The string field is
defined in terms of its inner product with an arbitrary test state φ. Such a definition would
typically appear as

〈φ,Λ〉 = 〈f ◦ φ(0) . . .〉Wn
. (4.4)

In this example the ellipsis represents the operator content to be inserted in order to define the
string field Λ, and Wn is the wedge state (of circumference n+ 1) on which the inner product
is to be taken. This example simplifies the typical case in which a string field theory solution is
the superposition of such states defined on wedges with many different circumferences. For our
purposes the function f will always be f(ξ) = 2

π arctan ξ which maps the upper half plane to
the wedge state W1. f ◦φ(0) is the conformal transformation of the operator φ(t) corresponding
to the state φ, inserted at 0.

The formal solution of [36] depends on six assumptions which must be satisfied by the renor-
malization procedure. If these conditions are satisfied, the formal solution constructed in [36]
will satisfy the SFT equations of motion and be real; however, different renormalization schemes
can possibly lead to different SFT solutions. These conditions are basically physical conditions
which ensure that when [eλV (a,b)]r is inserted on the boundary, the effect is a conformal change
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of boundary conditions on the interval (a, b), and nothing else. The conditions are

QB

[
eλV (a,b)

]
r

=
[
eλV (a,b)OR(b)

]
r
−
[
OL(a)eλV (a,b)

]
r
, (4.5a)

QB

[
OL(a)eλV (a,b)

]
r

= −
[
OL(a)eλV (a,b)OR(b)

]
r
, (4.5b)[

. . . eλV (a,c) . . .
]
r

=
[
. . . eλV (a,b)eλV (b,c) . . .

]
r
, (4.5c)[

. . . eλ1V (a,b)eλ2V (c,d) . . .
]
r

=
[
. . . eλ1V (a,b)

]
r

[
eλ2V (c,d) . . .

]
r
, b < c , (4.5d)[

eλV (a,b)
]
r

and
[
OL(a)eλV (a,b)

]
r

do not depend on the circumference of the wedge , (4.5e)[
eλ

∫ b
a dtV (t)

]
r

=
[
eλ

∫ b
a dtV (a+b−t)

]
r
. (4.5f)

The first two conditions ensure that the resulting boundary condition is conformal. The
first condition defines two local (unintegrated) operators OL and OR, which play an important
role in the solution. The first condition, (4.5a) requires the existence and finiteness of the
renormalized operators

[
OL(a)eλV (a,b)

]
r

and
[
eλV (a,b)OR(b)

]
r
, implying that the OPE of the

marginal operator V with OL,R is not so singular that it cannot be renormalized within the
scheme we choose. The second of these two assumptions, (4.5b) expresses the fact that QB
is anti-commuting. The third condition, (4.5c) ensures that changing the boundary condition
on the interval (a, b) and (b, c) using the same deformation parameter should be the same as
changing the boundary condition on the interval (a, c). In other words, renormalization should
not spoil factorization of exponentials. This condition was called the “replacement condition”
in [36] to differentiate it from the factorization condition (4.5d). We will continue to use this
term. The factorization condition guarantees that the insertion [eλV (a,b)]r does not modify
the boundary conditions away from the interval (a, b). In particular, it requires that when
products of operators that are inserted away from each other are renormalized, it is sufficient
to renormalize each term separately. In other words, the renormalized operator factorizes for
operators with disjoint support. Next, (4.5e) is a kind of locality condition: the assumption that
the subtractions involved in renormalizing operators depend only on the operators in question,
and not on the size of the wedge state on which they are inserted. Finally, in order to obtain a
real solution it is important not to violate the reflection symmetry of the operators, (4.5f). In
addition to these explicitly stated conditions, a very natural condition of translation invariance
was also implied in [36]. Counterterms may depend on the operator being renormalized as well
as its properties such as the size and shape of the region the operator is integrated over, but
should not depend on the location of the operator.

At this point, it is relevant to ask what classes of operators we need to provide a renormal-
ization scheme for. Clearly, we need to be able to renormalize exponentials and their products.
This is done order by order, so operators such as V (a, b)n must be renormalizable. Further, the
action of the BRST operator QB on V (a, b) (QBV (t) = ∂

∂t(cV (t))) immediately implies that
OL(a) = λcV (a) +O(λ2) and OR(b) = λcV (b) +O(λ2). Thus, we must be able to at least write
down such operators as

[
V (a)eλV (a,b)

]
r
. In fact, we will see that this is sufficient: we need to

renormalize products of exponentials of integrated operators with possible insertions of a single
unintegrated V on either the left, or the right, or both. These operators also arise naturally
when derivatives are taken, for example: ∂

∂a

[
eλV (a,b)

]
r
.
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Once we have decided on the renormalization scheme for
[
eλV (a,b)

]
r
, derivative operators

such as QB
[
eλV (a,b)

]
r

and ∂
∂a

[
eλV (a,b)

]
r

will be fixed. The choice of renormalization scheme

for such operators as
[
V (a)eλV (a,b)

]
r

can influence the explicit form of operators OR,L and the
existence of natural properties such as

∂

∂a

[
eλV (a,b)

]
r

?
= −

[
V (a)eλV (a,b)

]
r
, (4.6)

but it does not change QB
[
eλV (a,b)

]
r

or ∂
∂a

[
eλV (a,b)

]
r

themselves. In other words, our choice
of renormalization scheme for operators with unintegrated insertions will not affect the SFT
solution. However, it does affect the linearity of the renormalization scheme (for example,
property (4.6)). The implications of both this and the replacement condition for linearity will be
discussed in section 4.2.3, and a general procedure for constructing a fully linear renormalization
scheme order by order will be discussed in section 4.3.8.

With these assumptions on the renormalization scheme, a solution for regular marginal
operators can be generalized to operators with singular self-OPE. The solution is

Ψ =
1√
U
AL

1√
U

+
1√
U
QB
√
U, (4.7)

where the wedge states U and AL need to be defined.

U ≡ 1 +

∞∑
n=1

λnU (n), AL ≡
∞∑
n=1

λnA
(n)
L (4.8a)

where 1 is the ∗-product identity and the wedge states in the λ-expansion are given by〈
φ,U (n)

〉
=
〈
f ◦ φ

[
V (n)(1, n)

]
r

〉
Wn

, (4.8b)〈
φ,A

(n)
L

〉
=

n∑
l=0

〈
f ◦ φ

[
O

(l)
L (1)V (n−l)(1, n)

]
r

〉
Wn

, (4.8c)

〈
φ,A

(n)
R

〉
=

n∑
l=0

〈
f ◦ φ

[
V (n−l)(1, n)O

(l)
R (n)

]
r

〉
Wn

. (4.8d)

We should notice that with this definition U (1) = 0. The operator O
(l)
L/R is the l-th coefficient

when OL/R is expanded in powers of λ. In practice, we will show that

OL(t) = λcV (t)− 1

2
λ2∂c(t) + λ2C1c(t), OR(t) = λcV (t) +

1

2
λ2∂c(t) + λ2C1c(t) (4.9)

so only O
(1)
L and O

(2)
L are non-zero. This is explained in section 4.2.5 and generalizes the

argument of [36] which found the same form but with C1 = 0. Since everything has been
defined in terms of series in λ, we define powers of string fields using the appropriate power
series, with the star product implied whenever string fields are multiplied. For example

U−1 = 1−
∞∑
n=1

λnU (n) +

( ∞∑
n=1

λnU (n)

)
∗

( ∞∑
n=1

λnU (n)

)
− . . . (4.10)

= 1− λU (1) + λ2
(
U (1) ∗ U (1) − U (2)

)
− . . . . (4.11)
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The solution Ψ is a gauge transformation of the simpler solution

ΨL = ALU
−1, (4.12)

which is a solution that does not satisfy the reality condition already mentioned in chapter 3
guaranteeing reality of the string field theory action: Ψ = bpz ◦h.c.Ψ = Ψ‡. ΨL will not be the
focus of our study, but it is much simpler to show that this form is a solution to the equation
of motion.

Using (4.8b), (4.5a), and (4.8c) it is straightforward to show that QBU = AR−AL. We can
then compute

QBΨL = QB(AL ∗ U−1) (4.13a)

= (QBAL) ∗ U−1 +AL ∗ U−1 ∗ (QBU) ∗ U−1 (4.13b)

= (QBAL +AL ∗ U−1 ∗AR) ∗ U−1 −ΨL ∗ΨL (4.13c)

so the problem of showing that the equation of motion is satisfied is reduced to the problem of
showing that QBAL +AL ∗U−1 ∗AR = 0. This is accomplished by using (4.5b) to write QBAL
in terms of operators inserted on a wedge state, then showing the structural equivalence of the
two terms by applying (4.5c) and (4.5d). This is the topic of appendix A of [36], and we will
not repeat the details here.

While the purpose of this chapter is to give a detailed construction of renormalized operators
suitable for use in the solution (4.7), we will also study the general structure of allowed oper-
ators along the way. The operators we use will generalize the example renormalization scheme
provided by Kiermaier and Okawa in [36]. The formal approach they used for describing the
singularity structure of well regulated operator collisions (for example in equation (4.35)) can
be used to explicitly define a general renormalization scheme for quadratic operators, as we will
demonstrate in section 4.2. When renormalizing products of more than two operators, however,
this approach breaks down and we must resort to a less general approach in order to prove the
assumptions (4.5). This is the primary concern of section 4.3.

4.2 Quadratic Operators

The renormalization of operators discussed above is necessary whenever two operators with
singular OPE become arbitrarily close to one another. As we mentioned previously, the OPE
is assumed to be V (0)V (t) ∼ 1

t2
, but the finite part of the OPE can contain operators other

than the identity. In order for a relatively simple renormalization scheme to be possible, we
require that any divergences which appear when a marginal operator V approaches this OPE
are not too bad. More precisely, we require the finiteness condition which is equation (4.10) of
[36]. This condition can be restated as requiring that

◦
◦
∏
i

V (ti)
◦
◦ = exp

(
−1

2

∫
ds1ds2

1

(s1 − s2)2

δ

δV (s1)

δ

δV (s2)

)∏
i

V (ti) (4.14)

remains finite even when more than two of the coordinates ti collide simultaneously. This is a
condition on the marginal operator V and will not hold for all marginal operators.
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Since the solution (4.7) is given order by order in λ, the renormalized exponentiated inte-
grated operators such as

[
eλV (a,b)

]
r

should be interpreted as a series, and the renormalization
of powers of integrated operators is what we will need to define, rather than the exponentials.
To start with, we will see what counterterms are compatible with renormalizing two operators.
Even at this order the structure of renormalized operators differs from the regular case in a
number of ways.

We have seen that there are two ways for operators to collide in this solution: they can both
be integrated with overlapping regions, or one can be fixed at the end of an integration region.
The latter case is simpler so we will start there. Setting any other operator insertions aside,
the singularity we are studying appears in∫ b

a+ε
dt 〈V (a)V (t)〉Wn

=
1

ε
− π

n+ 1
cot

(
π

n+ 1
(b− a)

)
+O (ε) , (4.15)

where n + 1 is the circumference of the wedge state’s boundary. The renormalized operator
[V (a)V (a, b)]r can now be written as

[V (a)V (a, b)]G = lim
ε→0

[∫ b

a+ε
dt V (a)V (t)−GLab

]
, (4.16)

where the counterterm GLab is implicitly a function of ε. The subscript G on the renormalization
bracket indicates this approach to subtracting off counterterms which are given as functions G
of epsilon. Requiring finiteness means that the singular part must be the integral of the OPE,
but the finite part is not constrained by this, so

GLab =
1

ε
+O(ε0) . (4.17)

This cancels the divergence in (4.15). Similarly, we have

GRab =
1

ε
+O(ε0) . (4.18)

Next we will define the renormalization of the doubly integrated operator∫ b−ε

a
dt1

∫ b

t1+ε
dt2 〈V (t1)V (t2)〉Wn

=
b− a
ε

+ln ε−1+ln

 π

(n+ 1) sin
(
b−a
n+1π

)
+O(ε). (4.19)

For this operator we have the form

[
V (a, b)2

]
G

= 2 lim
ε→0

[∫ b−ε

a
dt1

∫ b

t1+ε
dt2V (t1)V (t2)−GDab

]
, (4.20)

where the counterterm is

GDab =
b− a
ε

+ ln ε+O(ε0) . (4.21)

The factor of 2 in (4.20) is due to the fact that the operators have been written in a specific order.
Instead of including integrals with t2 < t1, we used the indistinguishability of the operators and
doubled the result.
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Although it never appears in the solution of the form (4.7), we will need an additional
renormalized operator in order to prove the assumptions. When two integrated operators
collide only at a shared edge, we get the operator

[V (a, b)V (b, c)]G = lim
ε→0

[∫ b

a
dt1

∫ c

b∨(t1+ε)
dt2V (t1)V (t2)−GEabc

]
. (4.22)

Here the notation b ∨ (t1 + ε) represents the minimum of b and t1 + ε. In this case the only
divergence is logarithmic, and we get

GEabc = − ln ε+O(ε0) . (4.23)

4.2.1 The “Little g” Scheme

While the renormalization scheme we have just described is extremely useful at this order, when
more than two operators need to be renormalized, it is often useful to take a different approach.
While the “little g” scheme is not as useful at quadratic order, it is perfectly valid, so we will
introduce it here.

The critical problem which the “big G” scheme, [. . .]G, has is that the operators are inte-
grated and the counterterm is not. At higher orders this will mean that a renormalized operator
is the sum of terms with different numbers of integrals over different regions, which makes some
proofs intractable, and causes many other issues including for the finiteness of the scheme. Even
setting aside the analytical proofs, when performing numerical calculations the renormalization
scheme described so far is extremely cumbersome. The integrals over various regulated regions
must be evaluated repeatedly as the regulator ε approaches 0. Since each integral can generally
not be performed analytically and requires a numerical algorithm, this would be an extremely
time consuming process. In addition, since the limit only exists once all of the counterterms
are included, each integral itself will diverge as ε → 0, and the results will most likely not be
trustworthy due to large roundoff errors.

The solution is to combine the counterterms into the integrand. We want functions gD(t1, t2),
gL(a, t), and gE(t1, t2) which once integrated over the correct ε-regulated regions will give the
counterterms GDab, G

L
ab, and GEabc respectively. This can be accomplished by

gDab(t1, t2) =
1

(t1 − t2)2
+

2

(b− a)2
(1 + ln(b− a) + . . .) , (4.24a)

gLab(t1, t2) =
1

(t1 − t2)2
+

1

(b− a)2
+

. . .

b− a
, (4.24b)

gEabc(t1, t2) =
1

(t1 − t2)2
+

1

(c− b)(b− a)

(
1 + ln

(
(c− b)(b− a)

c− a

)
+ . . .

)
, (4.24c)

where the ellipsis in each right hand side is the finite part of the corresponding counterterm
G. These functions have no more dependence on ε; it has been shifted to the region over
which they are integrated. Additionally, we did not have to choose the functions we did. Any
function with the same integral over the appropriate regulated regions will produce an equivalent
renormalization scheme. In particular the constant terms appearing in each of these functions
could have been any function of t1 and t2 with the same integral, but we have chosen constant
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4.2. Quadratic Operators

values purely for simplicity. This will be examined in more detail in section 4.3.3. The left
counterterm gLab(t1, t2) is nearly always used with one insertion at a since that is the endpoint
of the interval. In this case we should feel free to use the shorthand

gLab(t)
def
= gLab(a, t) . (4.25)

Now if we define the renormalization by

[
V (a, b)2

]
g

= 2 lim
ε→0

∫ b−ε

a
dt1

∫ b

t1+ε
dt2
(
V (t1)V (t2)− gDab(t1, t2)

)
, (4.26a)

[V (a)V (a, b)]g = lim
ε→0

∫ b

a+ε
dt
(
V (a)V (t)− gLab(t)

)
, (4.26b)

[V (a, b)V (b, c)]g = lim
ε→0

∫ b

a
dt1

∫ c

b∨(t1+ε)
dt2
(
V (t1)V (t2)− gEabc(t1, t2)

)
, (4.26c)

then this renormalization scheme is identical to the “big G” scheme when renormalizing these
quadratic operators. The finiteness of these integrals stems from the fact that the integrands
are now completely finite. Whenever two operators approach each other, the counterterm has
a singular term which cancels the divergence and gives a finite quantity. This is apparent from
the finiteness condition (4.14) which we impose on the marginal operator V .

4.2.2 Small Integrated Operators

Here we will take a moment to briefly discuss one unusual feature of our renormalization scheme,
demonstrating that it may not be viable for all wedge states. It naively seems reasonable to
expect that a fully renormalized integrated operator over a set of measure 0 would be 0 itself.
Specifically, we will look at the equation

lim
b→a

[
V (a, b)2

]
r

= 0 (4.27)

and see if it can be satisfied.
The OPE for exponential operators on the boundary gives us the form we will be considering.

:V (t1) : :V (t2) : =
1

(t1 − t2)2
+O

(
(t1 − t2)0

)
(4.28)

The operator (4.27) is then

1

2
lim
b→a

[
V (a, b)2

]
G

= lim
b→a

lim
ε→0

[∫ b−ε

a
dt1

∫ b

t1+ε
dt2

(
1

(t1 − t2)2
+O

(
(t1 − t2)0

))
−b− a

ε
− ln ε+ . . .

] (4.29a)

= −1 + lim
b→a

[
− ln(b− a) +

∫ b−ε

a
dt1

∫ b

t1+ε
dt2 O

(
(t1 − t2)0

)
+ . . .

]
(4.29b)

= −1− lim
b→a

ln(b− a) . (4.29c)
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We see that the operator has a finite piece which could be cancelled by making a specific choice
of the finite piece of GDab similar to [36]. But there is also a divergent part which cannot be
cancelled without the finite piece having ln(b− a) and this would conflict with the assumptions
(4.5). Integrating over a smaller region has caused this operator to diverge, and we cannot
consistently set it to 0 despite our intuition. We will also see the necessity of this divergence
when we compute the derivative of a renormalized operator in section 4.2.3. The logarithmic
divergence of

[
V (a−∆, a)2

]
G

provides the counterterm that makes V (a)V (a, b) finite. The
structure of the renormalization scheme satisfying the replacement condition (4.5c) forces us to
accept a divergence for some integrated operators in order for others to remain finite.

What this has shown us is that some operators must be handled with care despite being
renormalized, if we wish to see finite results. Fortunately, the solution (4.7) is built entirely
out of operators with integer domains, so it is safe from this kind of divergence. This does
remain a concern for the possible future construction of renormalized solutions on wedge states
of continuous circumference, as in [34].

4.2.3 Linearity

The replacement condition (4.5c) as stated is trivially satisfied because eλV (a,c) = eλV (a,b)eλV (b,c)

holds for the bare operators. The implied condition, however, is for us to take the assumption
at each order in λ and bring the combinatoric sum outside of the renormalization.

λn

n!
[V (a, c)n]r =

n∑
j=0

λn

j!(n− j)!
[
V (a, b)jV (b, c)n−j

]
r

(4.30)

Repeated application of this means that operators of the form

V (a1)V n1(a1, b1) . . . V nk(ak, bk)V (bk) (4.31)

satisfy linearity provided a1 < b1 < a2 < . . . < bk so that the intervals are of finite length and
do not overlap. The replacement condition also does not provide linearity if the fixed operators
V (a1) and V (bk) are not inserted at the same place in each term of the sum. A stronger
condition is needed if we want full linearity, including the ability to perform derivatives and
integrals either before or after renormalization with equal results.2 We will return to this once
we have examined the consequences of the replacement condition alone.

Beginning with (4.5c) we will examine its consequences. The singular parts of GLab, G
D
ab and

GEabc are already known, so we will focus primarily on the finite parts. Imposing the obvious
requirement of translation invariance we will take the ansatz

GLab =
1

ε
+ CLb−a , (4.32a)

GDab =
b− a
ε

+ ln ε+ CDb−a , (4.32b)

GEabc = − ln ε+ CEc−b,b−a , (4.32c)

2Integration only commutes with renormalization if both sides are well defined and finite. For an example
where this does not work see the discussion of (4.73).
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where the functions CL/D/E have no more ε-dependence. This means that our renormalization
scheme is

[V (a)V (a, b)]G = lim
ε→0

[∫ b

a+ε
dt V (a)V (t)− 1

ε
− CLb−a

]
, (4.33a)

[
V (a, b)2

]
G

= 2 lim
ε→0

[∫ b−ε

a
dt1

∫ b

t1+ε
dt2 V (t1)V (t2)− b− a

ε
− ln ε− CDb−a

]
, (4.33b)

[V (a, b)V (b, c)]G = lim
ε→0

[∫ b

a
dt1

∫ c

b∨(t1+ε)
dt2 V (t1)V (t2) + ln ε− CEc−b,b−a

]
. (4.33c)

We now take (4.5c) and (4.5d) and explore some restrictions which we can impose on the
counterterms. The first quantity we see is

[V (a, c)]r = [V (a, b)]r + [V (b, c)]r , (4.34)

which is trivial as there is no renormalization involved. If we insert a fixed operator at a,
however, we find our first condition.

[V (a)V (a, c)]G = [V (a)V (a, b)]G + [V (a)]G [V (b, c)]G (4.35a)∫ c

a+ε
dtV (a)V (t)− 1

ε
− CLc−a =

∫ b

a+ε
dtV (a)V (t)− 1

ε
− CLb−a

+

∫ c

b
dtV (a)V (t)

(4.35b)

CLc−a = CLb−a
def
= CL (4.35c)

The finite part of the counterterm for collision of an integrated operator with a fixed operator
is in fact constant, and does not depend on the size of the integration region. In addition to
linearity, this result involved the assumption that there are no counterterms for the renormal-
ization of operators which do not meet. If we had allowed a finite part in the renormalization
of [V (a)V (b, c)]G even though it is not necessary, we could not say anything about the constant
CL. Fortunately, neglecting counterterms for any two operators which do not collide is clearly
equivalent to the assumption (4.5d), so this is not only permitted, but required.

This property is more general than just the case [V (a)V (a, b)]r. If we insert an arbitrary
local operator OA to the left of an integrated operator we get the same result.[

OA(a)

∫ c

a
dtOB(t)

]
r

=

[
OA(a)

∫ b

a
dtOB(t)

]
r

+

[
OA(a)

∫ c

b
dtOB(t)

]
r

(4.36a)

=

[
OA(a)

∫ b

a
dtOB(t)

]
r

+OA(a)

[∫ c

b
dtOB(t)

]
r

(4.36b)

OA(a)

∫ c

a+ε
dtOB(t)−G(AB)

ac = OA(a)

∫ b

a+ε
dtOB(t)−G(AB)

ab +OA(a)

∫ c

b
dtOB(t) (4.36c)

G(AB)
ac = G

(AB)
ab

def
= G(AB) (4.36d)

Using only the linearity of the renormalization and a generalization of assumption (4.5d) to
the operators being considered, we have shown that the counterterm for one fixed and one
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integrated operator must always be independent of the limits of integration. Using exactly
the same reasoning as the above two arguments, we apply linearity and factorization to the
renormalized operator

[V (a, b)V (b, d)]r = [V (a, b)V (b, c)]r + V (a, b)V (c, d) . (4.37)

This tells us that the counterterm for integrated operators colliding at an edge is also indepen-
dent of the integration ranges:

CEc−b,b−a = CE . (4.38)

We will rarely discuss the right handed counterterm GR because it is normally identical
to GL. The same argument applies that we used for CL, and we know that CRb−a = CR is a

constant. Strictly speaking, the condition (4.5c) does not imply any relationship between CL

and CR, but stronger linearity conditions such as (4.6) do. Even without the strong linearity
condition, a natural extension of the reflection condition (4.5f) would imply equality of the two

constants. If we require that
[∫ b
a dt2V (t1)V (t2)V (t3)|t1=a,t3=b

]
r

is invariant under the reflection

operation ti → b+ a− ti, then we get

V (a)V (a+ε, b−ε)V (b)−GRV (a)−GLV (b) = V (a)V (a+ε, b−ε)V (b)−GRV (b)−GLV (a) (4.39)

and immediately have GR = GL which implies CR = CL. This equation is not required,
however. In fact, because the solution is built out of the wedge state U and AL/R (which can

be obtained by acting on U with QB), it cannot have any dependence on the constants CL/R

which don’t appear in U . We will see an explicit CL dependence later on, but this is only
introduced to cancel the implicit dependence from the renormalization of the operators in AL.
Since CL and CR play no part in the solution, we should not expect any constraints on them.
The constraints imposed by (4.6) come about because that condition gives the renormalization
scheme a linear structure that goes beyond what is necessary for a solution.

Next we will examine the replacement condition (4.5c) for two integrated operators:[
V (a, c)2

]
r

=
[
V (a, b)2

]
r

+
[
V (b, c)2

]
r

+ 2 [V (a, b)V (b, c)]r . (4.40)

Our restriction on CDb−a can now be calculated.

[V (a, b)V (b, c)]G =
1

2

[
V (a, c)2

]
G
− 1

2

[
V (a, b)2

]
G
− 1

2

[
V (b, c)2

]
G

(4.41a)

∫ b

a
dt1

∫ c

b∨(t1+ε)
dt2 (V (t1)V (t2)) + ln ε− CE

=

(∫ c−ε

a
dt1

∫ c

t1+ε
dt2 −

∫ b−ε

a
dt1

∫ b

t1+ε
dt2 −

∫ c−ε

b
dt1

∫ c

t1+ε
dt2

)
(V (t1)V (t2))

− c− a+ b− c+ a− b
ε

+ ln ε− CDc−a + CDb−a + CDc−b (4.41b)

CDc−a − CDc−b − CDb−a − CE = 0 (4.41c)
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In order to satisfy this, the finite renormalization terms must be CD(∆t) = C0 + C1∆t, and
CE = −C0. Together with CL and CR this leaves us with four free parameters which are not
fixed. In chapter 5 we will reduce the number by one by fixing CR = CL and consider the
three remaining parameters to be free when we numerically check the validity of the solution
and examine the tachyon profile.

A stronger linearity condition

This is all that the weak version of linearity can tell us about the counterterms. Strong linearity,
however, gives us one additional restriction. We would naturally expect that the derivative of
a renormalized operator might behave in the same way as an unrenormalized operator. By this
I mean that we could choose to require that

∂a
[
V (a, b)2

]
r

?
= −2 [V (a)V (a, b)]r (4.42)

and consequently the related condition∫ b

a
dt [V (t)V (t, c)]r

?
=

[∫ b

a
dt V (t)V (t, c)

]
r

. (4.43)

This will also be relevant when we examine the boundary condition changing operator in section
4.4.2. The integral condition is simpler to study, so we write[∫ b

a
dt1

∫ c

t1

dt2 V (t1)V (t2)

]
G

=

∫ b

a
dt1

[∫ c

t1

dt2 V (t1)V (t2)

]
G

(4.44a)

= lim
ε→0

∫ b

a
dt1

(∫ c

t1+ε
dt2 V (t1)V (t2)− 1

ε
− CL

)
(4.44b)

= lim
ε→0

((∫ b−ε

a
dt1

∫ b

t1+ε
dt2 +

∫ b

a
dt1

∫ c

b∨(t1+ε)
dt2

)
V (t1)V (t2)

−b− a
ε
− (b− a)CL

)
.

(4.44c)

But we can also split the integral before renormalizing it, and write[∫ b

a
dt1

∫ c

t1

dt2 V (t1)V (t2)

]
G

=

[
1

2
V (a, b)2 + V (a, b)V (b, c)

]
G

(4.44d)

= lim
ε→0

(∫ b−ε

a
dt1

∫ b

t1+ε
dt2V (t1)V (t2)− b− a

ε
− ln ε− CDb−a

+

∫ b

a
dt1

∫ c

b∨(t1+ε)
dt2V (t1)V (t2) + ln ε− CE

)
.

(4.44e)

The singularities and ε-regulated operators cancel – as they must for a consistent theory – and
we find

CDb−a = −CE + (b− a)CL . (4.45)
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This has the same effect as the replacement condition but with an added constraint on CL:

CD∆ = C0 + ∆C1 , CE = −C0 , CL = C1 . (4.46)

Because a similar calculation gives CR = C1, the strong linearity condition also enforces the
extra reflection condition CR = CL which is convenient.

While the derivative must give the same condition, we will need the result later, so we derive
it here. Consider the expression ∂a

[
V (a, b)2

]
r

using the definition of a derivative.

∂a
[
V (a, b)2

]
G

= lim
∆→0

[V (a, b)2]G − [V (a−∆, b)2]G
∆

(4.47a)

= − lim
∆→0

[V (a−∆, a)2]G + 2[V (a−∆, a)V (a, b)]G
∆

(4.47b)

We saw in section 4.2.2 that when the renormalized product of two marginal operators is
integrated over a small region the result diverges as

lim
b→a

1

2

[
V (a, b)2

]
G

= −1− C0 − (b− a)C1 − lim
b→a

ln(b− a) . (4.48)

We have included the C1 term which vanishes because the overall 1
∆ will allow us to keep it.

The next corrections, however, are O((b − a)2) and can be safely dropped. We will use this
result to get

∂a
[
V (a, b)2

]
G

= 2 lim
∆→0

lim
ε→0

− (V (a−∆, a)V (a, b))ε − ln ε+ ln ∆ + 1 + C1∆

∆
. (4.49)

Here we make the observation that

(V (a−∆, a)V (a, b))ε + ln ε− ln ∆− 1

=

∫ ε

0
dz

(∫ b

a−z+ε
dt V (a− z)V (t)− 1

ε

)
+

∫ ∆

ε
dz

(∫ b

a
dt V (a− z)V (t)− 1

z

)
. (4.50)

The first term is small:∫ ε

0
dz

(∫ b

a−z+ε
dt V (a− z)V (t)− 1

ε

)
= ε

(∫ b

a+ε
dt V (a)V (t)− 1

ε

)
+O(ε2) . (4.51)

Without the factor of ε in front, the ε → 0 limit would give the renormalized operator
[V (a)V (a, b)]r, so this quantity must go to zero in that limit despite the 1

ε term. Since the
ε-dependence came from the renormalized operators inside the ∆ → 0 limit, the ε limit must
be taken first, so this operator vanishes despite the 1

∆ factor appearing in (4.49). The other
term is∫ ∆

ε
dz

(∫ b

a
dt V (a− z)V (t)− 1

z

)
=

∫ ∆

0
dz

(∫ b

a
dt V (a− z)V (t)− 1

z

)
+O(ε) (4.52a)

= ∆ lim
z→0

(∫ b

a
dt V (a− z)V (t)− 1

z

)
+O(ε) +O(∆2) (4.52b)

= ∆ [V (a)V (a, b)]G + ∆CL . (4.52c)
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So by applying (4.50), we get that

∂a
[
V (a, b)2

]
G

= −2 lim
∆→0

(
1

∆

(
∆ [V (a)V (a, b)]G + ∆(CL − C1) +O(∆2)

))
(4.53a)

= −2 [V (a)V (a, b)]G + 2
(
C1 − CL

)
. (4.53b)

Of course from (4.47a), if we are to require linearity to the extent that the limit ∆ → 0
commutes with renormalization along with the sum of two terms, then we would have

∂a
[
V (a, b)2

]
r

=

[
lim
∆→0

V (a, b)2 − V (a−∆, b)2

∆

]
r

(4.54a)

=
[
∂aV (a, b)2

]
r

(4.54b)

= −2 [V (a)V (a, b)]r . (4.54c)

So we once again see that strong linearity requires CL = C1.
We have found a condition on the counterterms that gives linearity for any operators we

have considered so far at quadratic order, but we would still like to prove that the full linearity
condition holds for all operators, given the condition CL = C1. To prove linearity, we can con-
struct a linear operator which acts on the singular operators to produce the renormalized ones.
This will be done as the composition of two linear operators: one to produce the counterterms,
and the other to properly regulate the integrals with ε separations. The two linear operators
will not commute with each other, so we must apply the one to produce counterterms first.
The operator

L =

∫
dxdy δ(x− y)GL

δ

δV (x)

δ

δV (y)

+
1

2
lim
∆→0

∫
dxdy

(
δ′(x− y + ∆)− δ′(x− y −∆)

)
GE

δ

δV (x)

δ

δV (y)

(4.55)

replaces a pair of operators which can collide with the appropriate counterterm. We will refer
to the first term as L1 and the second as L2. Taking the δ function to be the limit of symmetric
peaks at zero so that

∫∞
0 δ(x)dx = 1

2 , the following are straightforward to show.

L1 (V (a)V (a, b)) = 2

∫ b

a
dx GLδ(x− a) = GL (4.56a)

L2 (V (a)V (a, b)) =

∫ b

a
dx GE

(
δ′(x− a+ ∆)− δ′(x− a−∆)

)
= 0 (4.56b)

L1 (V (a, b)V (b, c)) = 2

∫ b

a
dx

∫ c

b
dy δ(x− y)GL = 0 (4.56c)

L2 (V (a, b)V (b, c)) =

∫ b

a
dx

∫ c

b
dy
(
δ′(x− y + ∆)− δ′(x− y −∆)

)
GE = GE (4.56d)

L1

(
V (a, b)2

)
= 2

∫ b

a
dx GL = 2(b− a)GL (4.56e)

L2

(
V (a, b)2

)
=

∫ b

a
dx

∫ b

a
dy
(
δ′(x− y + ∆)− δ′(x− y −∆)

)
GE = −2GE (4.56f)
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From the definitions of the counterterms, we know that GDab = −GE+(b−a)GL, so the operator
L correctly produces the counterterms for each operator being considered. In the event that
the two operators never meet, the δ functions will ensure that no counterterms are added, and
the factorization property (4.5d) will hold. To add in the appropriate counterterms for any
operator consisting of two (or less) marginal operators, we apply 1 − L. This proves that the
inclusion of these counterterms is a linear operation.

The full renormalization procedure must ε-regulate the operator insertions as well as in-
cluding the counterterms. We will define this order by order for all orders, so that we can use
the notation throughout the rest of this chapter. We apply different linear operators depending
on the number of V operators that are inserted. Let A be the most general operator with
n insertions of V , A =

∫
M V (t1) . . . V (tn) where M is some measure on Rn. For example,

V (a)V (a, b)2 is associated with a uniform measure on {a}× (a, b)× (a, b) (where {a} is a point
and (a, b) is an interval). When adding two such operators, we simply add the corresponding
measures. The map A → (A)ε acts on the measure M(A) associated with A by setting it
to zero for any point (t1, . . . , tn) such that |ti − tj | < ε and leaving it unchanged otherwise.
Denote this map by Uε so that Uε (M(A)) = M ((A)ε). Since the action of the map Uε on
any given point within a measure depends only on the coordinates of that point, we have that
Uε(M(A) + M(Ã)) = Uε(M(A)) + Uε(M(Ã)). A → (A)ε is a linear map for any operator,
which together with the existence of the linear operator L shows that renormalization defined
by

[A]r = ((1− L)A)ε (4.57)

is a linear map.
Now let us consider the operator

[
V (a, b)2

]
G

again. We already know from the definition

that this is
(
V (a, b)2

)
ε
− 2GDab, but we can also write it as

[
V (a, b)2

]
G

=

[∫ b

a
dt

(∫ t

a
ds+

∫ b

t
ds

)
V (t)V (s)

]
G

. (4.58a)

If we are to assume full linearity then we get

=

∫ b

a
dt ([V (a, t)V (t)]G + [V (t)V (t, b)]G) (4.58b)

= lim
ε→0

∫ b

a
dt
(
(V (a, t)V (t))ε + (V (t)V (t, b))ε −G

R −GL
)

(4.58c)

= lim
ε→0

[(
V (a, b)2

)
ε
− (b− a)

(
GR +GL

)]
. (4.58d)

This has only produced part of the necessary counterterm, as ln ε and C0 are both absent from
GL/R. This suggests that a fully linear renormalization scheme is impossible, but the existence
of the linear operators L and Uε tells us otherwise. The answer is that when L acts on the
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operators there is an extra term.

LV (t)V (t, b) =

∫ b

t
dx

(
2GLδ(x− t) + lim

∆→0+
GE

(
δ′(x− t+ ∆)− δ′(x− t−∆)

))
V (t)V (t, b)

(4.59a)

=

(
GL +GE lim

∆→0+
(δ(b− t+ ∆)− δ(b− t−∆))

)
V (t)V (t, b) (4.59b)

=

(
GL −GE lim

∆→0+
δ(b− t−∆)

)
V (t)V (t, b) (4.59c)

The last term vanishes when t is fixed (as in V (a)V (a, b)), but not when t is allowed to approach
b continuously. Infinite sums and infinitesimal regions are some of the differences between the
replacement condition and the stronger linearity we have been discussing, and this is an example
of that. To get a fully linear renormalization scheme the left counterterm should really be

GLab =
1

ε
+ C1 + (ln ε+ C0) lim

∆→0+
δ(b− a−∆) . (4.60)

4.2.4 Assumptions (4.5d), (4.5e), and (4.5f)

We did not discuss the factorization condition (4.5d) in much detail in the last section, but we
did effectively prove that it holds for the renormalization scheme discussed. The δ functions
appearing in every term of the operator L in (4.55) mean that there are no counterterms for
operators which do not meet at a point.

The assumption (4.5e) is trivial in our construction, since at no point in the renormalization
of the integrated operators have we considered the wedge state on which they are embedded.
By constructing the counterterms using the local OPE rather than the two-point functions, we
have avoided any difficulties that this assumption may have caused.

For the sixth assumption we will ask ourselves the same question we asked about linearity:
what does this condition really mean and what do we really require? The construction of the
simple solution (4.12) does not require a reflection condition at all. It is only when we wish
to impose the reality condition that we need the renormalized operators to preserve the bare
operators’ twist symmetry in a particular way. Looking at page 29 of [36], we see that the
precise condition required is

U ‡ = U, A‡L = AR, A‡R = AL . (4.61)

As before, the operator ‡ represents the composition of inverse bpz conjugation and hermitian
conjugation, which has the effect of reversing the orientation of all operators inserted in the
worldsheet.

For the string field U this is quite simple, as only the fully integrated operator [V (a, b)n]r
appears. By the definition, (4.33), the counterterms are constant in terms of the integration
variables. We must also consider the region of integration used for (V (a, b)n)ε, to ensure that it
is invariant under the reflection. This amounts to the understanding that we can parameterize
the region in a number of equivalent ways. For example,∫ b−(n−1)ε

a
dt1 . . .

∫ b

tn−1+ε
dtn

n∏
i=1

V (ti) =

∫ b

a+(n−1)ε
dtn . . .

∫ t2−ε

a
dt1

n∏
i=1

V (ti) . (4.62)
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The two regions are identical, as are many other similar parameterizations. If we perform the
change of variables ti → a+ b− tn−i+1 on the right hand side we get∫ b−(n−1)ε

a
dt1 . . .

∫ b

tn−1+ε
dtn

n∏
i=1

V (a+ b− ti) , (4.63)

which is precisely the effect of (4.5f) acting on the original integrated operator. In the last step
we changed the order in which the operators are written in order to make our equation look like
that of (4.5f), but since thy are bosonic operators we are free to do so. That the counterterms
are also invariant under taking ti → a+b− ti and then being rearranged is trivial since they are
not functions of the coordinates ti at all. The reparameterization of the integrals in (4.62) was
the important step, but it is an identity for the subsets of Rn in question, and would actually
hold for any integrand.

When we consider the other condition, A‡L = AR, we must now consider what happens when
fixed operators are inserted at the endpoints. With the argument that U is symmetric in mind,
the only thing left to show is that the operators inserted at the endpoints, OL/R are mapped
to each other by twist. This is guaranteed by the BRST operator having the property

(QBU)‡ = −(−1)UQBU
‡ , (4.64)

which since U is even means that AR −AL is odd under this conjugation. Now

A‡L −A
‡
R = AR −AL (4.65a)

naturally leads us to the conclusion

A‡L = AR , A‡R = AL . (4.65b)

This can also be viewed as a statement about the transformation property of OL/R, but that
approach would require consideration of each term separately.

4.2.5 Assumptions (4.5a) and (4.5b)

These two assumptions are easily proven at second order in λ. Here we will review the proof
of each at the lowest nontrivial order and discuss problems which can occur at higher orders as
they arise. We will also see what happens when we attempt an alternate form of the proof, and
resolve the apparent inconsistencies that arise. Throughout this section we will omit writing
the limit ε→ 0, and it should be inferred.

Recall that the first assumption is

QB

[
eλV (a,b)

]
r

=
[
eλV (a,b)OR(b)

]
r
−
[
OL(a)eλV (a,b)

]
r
. (4.5a)

At second order this statement reads as

1

2
QB

[
V (a, b)2

]
G

=

2∑
n=0

1

(2− n)!

([
V (a, b)2−nO

(n)
R (b)

]
G
−
[
O

(n)
L (a)V (a, b)(2−n)

]
G

)
(4.66)
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where OL/R =
∑

n λ
nO

(n)
L/R is a local operator to be determined. Since the counterterm is not

an operator, it vanishes when acted on by QB. The behaviour of the primitive operators when
acted on by the BRST charge is not difficult to determine by integrating the BRST current on
a contour about the operator in question. The results we will need are

QBV (t) = ∂t(cV (t)) , QB(cV (t)) = 0 ,

QBc(t) = c∂c(t) , QB∂c(t) = c∂2c(t) .
(4.67)

Using the first of these and the definition of the renormalization scheme, we can start working
out the left hand side of (4.66) explicitly.

1

2
QB

[
V (a, b)2

]
G

=
1

2
QB

(
V (a, b)2

)
ε

(4.68a)

= QB

∫ b−ε

a
dt1

∫ b

t1+ε
dt2V (t1)V (t2) (4.68b)

=

∫ b−ε

a
dt1

∫ b

t1+ε
dt2 (∂t1cV (t1)V (t2) + V (t1)∂t2cV (t2)) (4.68c)

The next step is to integrate by parts:

1

2
QB

[
V (a, b)2

]
G

=

∫ b−ε

a
dt V (t) (cV (b)− cV (t+ ε)) +

∫ b

a+ε
dt (cV (t− ε)− cV (a))V (t)

(4.69a)

= V (a, b− ε)cV (b)− cV (a)V (a+ ε, b) +

∫ b

a+ε
dt (cV (t− ε)V (t)− V (t− ε)cV (t))

(4.69b)

= V (a, b− ε)cV (b)− cV (a)V (a+ ε, b) +

∫ b

a+ε
dt V (t− ε)V (t) (c(t− ε)− c(t)) . (4.69c)

In the remaining integral we notice that the ghost factor is O(ε) and will suppress an finite
contributions from the matter part. Now when we rewrite the matter factor using the OPE,
we only need to keep the relatively simple divergent term.∫ b

a+ε
dt V (t− ε)V (t) (c(t− ε)− c(t)) =

∫ b

a+ε
dt

1

ε2

(
−ε∂c(t) +

ε2

2
∂2c(t)

)
(4.70a)

= −1

ε
(c(b)− c(a+ ε)) +

1

2
(∂c(b)− ∂c(a)) (4.70b)

= −1

ε
(c(b)− c(a)) +

ε∂c(a)

ε
+

1

2
(∂c(b)− ∂c(a)) (4.70c)

1

2
QB

[
V (a, b)2

]
G

= V (a, b− ε)cV (b)− c(b)

ε
+

1

2
∂c(b)− cV (a)V (a+ ε, b) +

c(a)

ε
+

1

2
∂c(a)

(4.71a)

= [V (a, b)cV (b)]G + CRc(b) +
1

2
∂c(b)− [cV (a)V (a, b)]G − C

Lc(a) +
1

2
∂c(a)

(4.71b)
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This has the form of (4.66) where

OR(b) = λcV (b) +
λ2

2
∂c(b) + λ2CRc(b) , OL(a) = λcV (a)− λ2

2
∂c(a) + λ2CLc(a) . (4.72)

The operators OL/R have an explicit dependence on CL/R, but this only serves to cancel

the dependence of the renormalization scheme so that the full operators
[
eλV (a,b)OR(b)

]
G

and[
OL(a)eλV (a,b)

]
G

are independent of CL/R. This has to be the case because in the left hand

side of (4.5a) neither of QB or
[
eλV (a,b)

]
G

has or introduces any dependence on those parame-
ters. It is because of this cancellation that the reflection condition (4.5f) does not impose any
restrictions on CL/R.

There is another approach which looks very simple but has a subtle difficulty. This approach
involves a less well-regulated expression which produces a part of the correct result without any
counterterms or higher order pieces of OL/R. To demonstrate, we will again consider the second
order calculation. We proceed as before to

1

2
QB

[
V (a, b)2

]
G

=

∫ b

a
dt (V (a, t− ε)∂(cV (t)) + ∂(cV (t))V (t+ ε, b)) (4.73a)

=

∫ b

a
dt (V (a, b)∂(cV (t)))ε . (4.73b)

Now the ε-bracket is a linear operator so we would normally expect it to commute with the
integral, and we would get

1

2
QB

[
V (a, b)2

]
G

=

(
V (a, b)

∫ b

a
dt ∂(cV (t))

)
ε

(4.73c)

= (V (a, b)(cV (b)− cV (a)))ε . (4.73d)

This has the correct first term, but no counterterms or ∂c terms. Where has this approach
failed? While the linearity of the ε-bracket implies that we should be able to bring the integral
over t inside, in practice this does not work. We have assumed that by thinking of the integral
as the limit of Riemann sums, the linearity of the ε-bracket justifies bringing the integral inside,
but this is not always the case. An integral such as

∫
dt
t3

is not finite itself and integrating by
parts ignores the singularity by using a principal value prescription in order to avoid getting
an undefined result. More accurately, this means introducing a small regulator to protect the
singularity. When the ε-bracket is taken first, there is no singularity in the integrand because ε
serves the role of regulator. When the integral is performed first, we must have two regulators,
and the direction of the limit in this two-dimensional plane has changed. It is this direction of
the limit which prevents principal value integrals from commuting with the ε-bracket.

Taking the form of OL/R found from the calculation above, the final assumption to prove
at quadratic order, (4.5b), is

QB

(
[cV (a)V (a, b)]G −

1

2
∂c(a) + CLc(a)

)
= −cV (a)cV (b) . (4.74)

This is relatively straightforward to show. We begin by expanding the left hand side, and then
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apply (4.67).

QB

(
[cV (a)V (a, b)]G −

1

2
∂c(a) + CLc(a)

)
= QB

(
cV (a)

∫ b

a+ε
dtV (t)− c(a)GLab −

1

2
∂c(a) + CLc(a)

)
= −cV (a) (cV (b)− cV (a+ ε))− c∂c(a)

ε
− CLc∂c(a)− 1

2
c∂2c(a) + CLc∂c(a)

(4.75)

As we did for the first BRST condition, we write V (a)V (a+ ε) = 1
ε2

+ O(ε0) and we now also
write c(a)c(a+ ε) = εc∂c(a) + 1

2ε
2c∂2c. Several terms cancel and we end up with

QB

(
[cV (a)V (a, b)]G −

1

2
∂c(a) + CLc(a)

)
= −cV (a)cV (b) (4.76)

Thus, the second BRST condition is satisfied at this order.

4.3 Renormalizing Higher Order Operators

When only two operators needed to be renormalized, the big G and little g schemes provided
identical results. At higher orders, however, the two approaches naturally extend in different
ways. We will carefully examine and compare these two schemes at third and fourth order, and
find that the big G scheme is incorrect at higher orders. Focusing on the little g scheme, we
will prove that it satisfies all of the assumptions (4.5) at any order. This proceeds similarly to
[36], but I will include all of the technical details necessary for more rigorous proofs.

While we do not know whether the BRST conditions can be proven for other renormalization
schemes, it seems likely that there is still some freedom to choose differing schemes. We will
briefly consider this question beginning with full linearity as a starting point. Considering
linearity first gives a relatively straightforward path to writing down a general renormalization
scheme order by order which is compatible with all of the assumptions except for the BRST
conditions. Those two assumptions, however, look extremely difficult with this approach, so we
will not pursue it any farther here.

4.3.1 Third Order Operators

Before we plunge into a computation at all orders, we will consider an extension of the big G
scheme to third order, i.e. the renormalization of a product of three V s.

At this order, we define a regularized operator involving a single cubic integrated operator
by following the same regularization pattern as we did for the quadratic operator:[

V (a, b)3
]
G

= lim
ε→0

[(
V (a, b)3

)
ε
− 6G

(3),D
ab V (a, b)

]
, (4.77)

where

G
(3),D
ab =

b− a
ε

+ ln ε+ C
(3),D
b,a . (4.78)
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The extra superscript (3) indicates that these are the counterterms at third order. We also
define a regularized operator involving two integrated operators:[

V (a, b)2V (b, c)
]
G

= lim
ε→0

[(
V (a, b)2V (b, c)

)
ε
− 2G

(3),DE
abc V (b, c)− 2G

(3),E
abc V (a, b)

]
, (4.79)

and three operators:

[V (a, b)V (b, c)V (c, d)]G = lim
ε→0

[
(V (a, b)V (b, c)V (c, d))ε −G

(3),EE
abcd V (a, b)−G(3),EE

abcd V (c, d)
]
,

(4.80)
where

G
(3),E
abc = − ln ε+ C

(3),E
abc , (4.81a)

G
(3),DE
abc =

b− a
ε

+ ln ε+ C
(3),DE
abc , (4.81b)

G
(3),EE
abcd = − ln ε+ C

(3),EE
abcd . (4.81c)

Notice that we have four new and potentially different finite constants. Using translation
invariance together with the factorization and replacement conditions in a way similar to that
presented in the quadratic case, we can show that

C
(3),E
abc = −C0 (4.82a)

C
(3),EE
abce = −C0 (4.82b)

C
(3),D
ab = (b− a)C1 + C

(3)
0 (4.82c)

C
(3),DE
abc = (b− a)C1 + C0 , (4.82d)

where the constants C0 and C1 are necessarily the same as the ones used at quadratic order

but C
(3)
0 is a new independent constant. One can check, by examining all combinations, that

the replacement condition at third order is satisfied for any value of this constant.
We also need to define renormalized operators involving fixed insertions at the endpoints.

Using factorization and replacement conditions, these can be constrained to

[V (a)V (a, b)2]G = lim
ε→0

[
(V (a)V (a, b)2)ε − 2V (a)G

(3),DL
ab − 2V (a, b)G

(3),L
ab

]
(4.83a)

[V (a)V (a, b)V (b)]G = lim
ε→0

[
(V (a)V (a, b)V (b))ε − V (a)G

(3),RL
ab − V (b)G

(3),LR
ab

]
(4.83b)

[V (a)V (a, b)V (b, c)]G = lim
ε→0

[
(V (a)V (a, b)V (b, c))ε − V (a)G

(3),EL
abc − V (b, c)G

(3),LE
abc

]
, (4.83c)
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where

G
(3),DL
ab =

b− a
ε

+ ln ε+ C
(3),DL
0 + (b− a)C1 , (4.84a)

G
(3),L
ab =

1

ε
+ CL , (4.84b)

G
(3),RL
ab =

1

ε
+ CR , (4.84c)

G
(3),LR
ab =

1

ε
+ CL , (4.84d)

G
(3),EL
abc = − ln ε− C0 , (4.84e)

G
(3),LE
abc =

1

ε
+ CL . (4.84f)

There are two new constants: C
(3),DL
0 and its partner, C

(3),DR
0 , along with C

(3)
0 from (4.82).

Just like CL and CR, however, the constants C
(3),DL
0 and C

(3),DR
0 cannot change the SFT

solution and can only affect the form of the BRST insertions OL and OR. Only C
(3)
0 and the

quadratic order constants C0 and C1 have a physical effect on the solution.
It is clear that if we were to continue our order-by-order approach to renormalization, we

would find new free parameters. However, at quartic and higher orders, this approach in un-
wieldy: it is hard to write down the most general renormalized operator that is demonstratively
finite. To study renormalization to all orders, we will no longer try to study the space of all
renormalizations and instead focus on a particular renormalization scheme. The scheme we
chose will have C0 and C1 as free parameters, however we will not add new constants at every
order. We will return to the question of classifying all renormalization schemes in sections 4.3.8
and 4.4.1.

4.3.2 Extension to All Orders

The big G scheme with strong linearity was defined in (4.57), and we would naturally want to
extend this by exponentiating it. We would define the scheme by

[A]G
def
= lim

ε→0

(
e−LA

)
ε
. (4.85)

The simplest exponentiation using the same L as in (4.55) would correspond at third order to

C
(3)
0 = C

(3),DL
0 = C

(3),DR
0 = C0 and CL = CR = C1 as before. In practice this would mean

[V (a, b)n]G = lim
ε→0

bn/2c∑
k=0

(−1)kn!

k!(n− 2k)!

(
GDab
)k (

V (a, b)n−2k
)
ε
. (4.86)

The little g scheme, on the other hand, does not have as simple an exponential form, but the
idea is the same. Since we were not focused on the little g scheme at quadratic order, we should
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restate the exact form of the counterterms we use:

gDab(t1, t2) =
1

(t1 − t2)2
+

2

(b− a)2
(1 + ln(b− a) + C0 + (b− a)C1) , (4.87a)

gLab(t1, t2) =
1

(t1 − t2)2
+

1

(b− a)2
+

CL

b− a
, (4.87b)

gEabc(t1, t2) =
1

(t1 − t2)2
− 1

(c− b)(b− a)

(
1 + ln

(
(c− b)(b− a)

c− a

)
+ C0

)
. (4.87c)

We require that for every pair of marginal operators which can meet, we subtract off a coun-
terterm defined with the appropriate range. For example,

[(V (a, b))n]g = lim
ε→0

∫
Γa,bε

dnt
∑
σ∈Sn

bn/2c∑
k=0

(−1)k

2kk!(n− 2k)!

k∏
i=1

gDab(tσ(i), tσ(i+k))

n∏
j=2k+1

V (tσ(j)) .

(4.88)

We define Γa,bε (t1, . . . , tn) to be the region (a, b)n minus the places where any two coordinates
are within ε of each other. This is the same region used in the definition of (V (a, b)n)ε but now
the counterterms are included in the integral. We will often suppress the coordinate list of Γabε
when it is unambiguously implied by the coordinates being integrated over. From this form of
[V (a, b)n]g there are two directions we can go. Since the region we integrate over is symmetric
we can remove the sum over the symmetric group to get the slightly more compact form

[(V (a, b))n]g = lim
ε→0

∫
Γa,bε

dnt
∑

0≤k≤n
2

(−1)kn!

2kk!(n− 2k)!

k∏
i=1

gDab(ti, ti+k)

n∏
j=2k+1

V (tj) . (4.89)

An alternative viewpoint is to write the integrand of (4.88) as a “normal ordered” operator
which subtracts a counterterm for every pair of operators:

◦

◦

∏
i

V (ti)
◦

◦g

def
= exp

(
−1

2

∫
ds1ds2 g(s1, s2)

δ

δV (s1)

δ

δV (s2)

)∏
i

V (ti) (4.90)

The subscript g on the normal ordering is our notation to indicate what counterterms to sub-
tract. When we normal order more complicated products including things like fixed marginal
operators at an endpoint, the normal ordering ◦◦ . . .

◦
◦g should be interpreted as meaning to sub-

tract whichever g counterterm, gD, gL/R, or gE is appropriate to the region the operators will
eventually be integrated over. So, for example, in the context of

[V (a)V (a, b)2]g =

∫ b

a
dt1dt2

◦

◦
V (a)V (t1)V (t2)

◦

◦g
, (4.91a)

our notation
◦

◦

◦

◦g
indicates

◦

◦
V (a)V (t1)V (t2)

◦

◦g
= V (a)V (t1)V (t2)−V (a)gDab(t1, t2)− gLab(t1)V (t2)− gLab(t2)V (t1) . (4.91b)
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It is useful to notice that all of the little g counterterms have the same divergent part,
1

(t1−t2)2
. This is the same function used in the finiteness condition (4.14), so we can represent

the little g normal ordering as

◦

◦

∏
i

V (ti)
◦

◦g
=
◦

◦
exp

(∫
dr1dr2 (finite terms)

δ

δV (r1)

δ

δV (r1)

)∏
i

V (ti)
◦

◦ 1
(s1−s2)2

(4.92)

which is clearly still finite as long as (4.14) holds. This demonstrates how using one counterterm
or another, or even different counterterms within a single normal ordered operator as is the case
when both gD and gL are needed, will always result in a finite operator as long as all of the
counterterms have the same singular term 1

(s1−s2)2
. Since the normal ordering gives finite

operators for any choice of coordinates, we can now remove the holes in the integral and write
(4.88) as

[V (a, b)n]g =

∫ b

a
dnt

◦

◦

n∏
i=1

V (ti)
◦

◦g
. (4.93)

It is possible to write the renormalization scheme in an exponential form as well:[
eλV (a,b)

]
g

=

∞∑
n=0

λn

n!

∫ b

a
dnt

◦

◦

n∏
i=1

V (ti)
◦

◦g
(4.94a)

=

∞∑
n=0

∫ b

a
dnt ◦◦ e

λV ◦
◦g . (4.94b)

The notation in the second line is similar to that commonly used, for example, for the Chern-
Simons action on a D-brane: under an n-dimensional integral, we include all the terms from
the Taylor expansion of the integrand that have the right number of variables to saturate the
integral. It is easy to see that this is the same definition as that in equation (4.88).

As long as the integrand is fully normal ordered, the limit ε → 0 can be used to simplify
the integration region to (a, b)n and the little g scheme seems to exponentiate quite cleanly.
Once we start separating terms and examining the structure in detail, however, the regulated
region Γa,bε (t1, . . . , tn) is highly nontrivial instead of being the product of lower dimensional
regions. One drawback of this is that linearity is not so clear for this scheme. By subtracting
off counterterms which depend on the region of integration in a non-trivial way, and specifying
that we only subtract off counterterms if the operators can meet, we make it unfeasible to write
down a linear operator like L for this scheme. We might ask whether the two schemes are still
identical, as they were at quadratic order, but it can be shown that they are not. The critical
difference between the big G and little g schemes is illustrated by considering

(2GDab)
k

∫
Γa,bε

dt1 . . . dti

i∏
j=1

V (tj) (4.95a)

=

∫
Γa,bε (t1,...,ti)×Γa,bε (s1,s2)×...×Γa,bε (s2k−1,s2k)

dt1 . . . dti ds1 . . . ds2k

i∏
j=1

V (tj)
k∏
j=1

gDab(s2j−1, s2j)

(4.95b)
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6=
∫

Γa,bε

dt1 . . . dti ds1 . . . ds2k

i∏
j=1

V (tj)
k∏
j=1

gDab(s2j−1, s2j) . (4.95c)

If n = 2k + i then the first line is a term in [V (a, b)n]G and the third line is the corresponding
term in [V (a, b)n]g. We might try to argue that since the integrand has no singularity where
one of the sj approaches a tj or an sj belonging to another counterterm, the difference vanishes
as ε→ 0 and the difference between the integration regions shrinks. The flaw in this reasoning
is that when, for example, s1 is within 2ε of some t, then the integrand does become large for
|s2 − t| < ε, which is one of the small regions of difference between the two integrals. As a
concrete example, it can be shown that for any finite function f ,

lim
ε→0

(∫ b

a
dt

∫
Γa,bε

ds1ds2 −
∫

Γa,bε

dt ds1ds2

)
f(t)g(s1, s2) = (6 + 2 ln 2)

∫ b

a
dt f(t) . (4.96)

This leads to a more severe issue. By comparing the big G and little g schemes at fourth
order, we can show that they are not both finite. From the form (4.89) we know that

1

24

[
V (a, b)4

]
g

= lim
ε→0

∫
Γabε

d4t

(
1

24

4∏
i=1

V (ti)−
1

4
V (t1)V (t2)gDab(t3, t4) +

1

8
gDab(t1, t2)gDab(t3, t4)

)
.

(4.97a)
For the last two terms we can add and subtract the same thing integrated over the factorized
regions used by the big G scheme:

= lim
ε→0

[
1

24

(
V (a, b)4

)
ε
− 1

2
GDab

(
V (a, b)2

)
ε

+
1

2

(
GDab
)2

+
1

4

(∫
Γabε

d2t

∫
Γabε

d2s−
∫

Γabε

d2t d2s

)
V (t1)V (t2)gDab(s1, s2)

−1

8

(∫
Γabε

d2t

∫
Γabε

d2s−
∫

Γabε

d2t d2s

)
gDab(t1, t2)gDab(s1, s2)

]
(4.97b)

=
1

24

[
V (a, b)4

]
G

+
1

4
lim
ε→0

(∫
Γabε

d2t

∫
Γabε

d2s−
∫

Γabε

d2t d2s

)(
V (t1)V (t2)− gDab(t1, t2)

)
gDab(s1, s2)

+
1

8
lim
ε→0

(∫
Γabε

d2t

∫
Γabε

d2s−
∫

Γabε

d2t d2s

)
gDab(t1, t2)gDab(s1, s2) . (4.97c)

We know that the two schemes are not the same beyond second order, so the appearance of
terms representing the difference is expected. The term with the integral of (V (t1)V (t2) −
gDab(t1, t2))gDab(s1, s2) is the equivalent of (4.96) at fourth order. It is the integral over a small
region of a divergent quantity giving a finite result, times the integral of the finite function
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V (t1)V (t2) − gDab(t1, t2). The last term, however, integrates two divergent quantities over this
region, and is itself infinite.(∫

Γabε

d2t

∫
Γabε

d2s−
∫

Γabε

d2td2s

)
gDab(t1, t2)gDab(s1, s2) = 4

(
4

3
+ 4 ln 2 +

5

3
ln 3

)
(b− a)

ε
+O(ln ε)

(4.98)
This proves that the two schemes are not only different, but cannot both be finite at fourth
order. We have already shown that the little g scheme is finite by demonstrating that the
integrand is finite. This confirms that the big G scheme must not properly renormalize all
operators, so the trivial exponentiation of the quadratic renormalization scheme is not correct.

To see exactly where the big G scheme has failed, consider the operator V (a, b)n. Each
term with k counterterms in the corresponding renormalized operator [V (a, b)n]G represents the
collision of 2k marginal operators, and subtracts k powers of the divergence for two colliding
operators. If each pair of operators which are colliding were integrated over the full range
(a, b)2 the counterterm would be correct, but the small differences due to avoiding the other
operators will give rise to subleading divergences. For k = 1 the worst divergence is O(ε−1) so
the subleading terms are finite, but for k ≥ 2 these subleading divergences need to be cancelled.
This is what the big G scheme fails to do. By integrating counterterms over the same regions as
the colliding operators, the little g scheme naturally produces the correct subleading divergences
at each k without having to explicitly write them down, or even know what they are.

4.3.3 Alternative Little g Schemes

Now we will consider a renormalization scheme with a different counterterm, g̃Dab(t1, t2) =
gDab(t1, t2) + ∆ab(t1, t2). The difference ∆ab is assumed to be a finite function of t1 and t2.
If the divergent parts of g and g̃ do not agree then g̃ will not properly renormalize simple
quadratic operators unless the extra divergences in g̃ integrate to a finite contribution, but we
will not consider this case.

The new renormalized operator is

[V (a, b)n]g̃
n!

def
=

∫ b

a
dnt

∑
σ∈Sn

∑
0≤k≤n

2

(−1)k

2kk!(n− 2k)!

k∏
i=1

g̃Dab(tσ(2i−1), tσ(2i))

n∏
j=2k+1

V (tσ(j)) (4.99a)

=

∫ b

a
dnt

∑
σ∈Sn

∑
0≤k≤n

2

(−1)k

2kk!(n− 2k)!

×
k∑

m=0

(
k

m

) m∏
l=1

∆D
ab(tσ(2l−1), tσ(2l))

k∏
i=m+1

gDab(tσ(2i−1), tσ(2i))
n∏

j=2k+1

V (tσ(j))

(4.99b)

=

∫ b

a
dnt

∑
σ∈Sn

∑
0≤m≤n

2

m∏
l=1

(−1)m

2mm!
∆D
ab(tσ(2l−1), tσ(2l))

×
∑

m≤k≤n
2

(−1)k−m

2k−m(k −m)!(n− 2k)!

k∏
i=m+1

gDab(tσ(2i−1), tσ(2i))

n∏
j=2k+1

V (tσ(j))

(4.99c)
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=

∫ b

a
dnt

∑
0≤m≤n

2

(−1)m

2mm!

m∏
l=1

∆D
ab(t2l−1, t2l)

×
∑

σ∈Sn−m

∑
m≤k≤n

2

(−1)k−m

2k−m(k −m)!(n− 2k)!

k∏
i=m+1

gDab(tσ(2i−1), tσ(2i))
n∏

j=2k+1

V (tσ(j))

(4.99d)

=
∑

0≤m≤n
2

(−1)m

2mm!

m∏
l=1

∫ b

a
dt2l−1dt2l∆

D
ab(t2l−1, t2l)

∫ b

a
dtm+1 . . . dtn

∑
σ∈Sn−m

∑
m≤k≤n

2

(−1)k−m

2k−m(k −m)!(n− 2k)!

k∏
i=m+1

gDab(tσ(2i−1), tσ(2i))
n∏

j=2k+1

V (tσ(j))

(4.99e)

=
∑

0≤m≤n
2

1

m!

(
−1

2

∫ b

a
d2s∆D

ab(s1, s2)

)m

×
∫ b

a
dn−2mt

∑
σ∈Sn−m

∑
0≤k≤n

2
−m

(−1)k

2k(k)!(n− 2m− 2k)!

×
k∏
i=1

gDab(tσ(2i−1), tσ(2i))
n−2m∏
j=2k+1

V (tσ(j))

(4.99f)

=
∑

0≤m≤n
2

1

m!(n− 2m)!

(
−1

2

∫ b

a
d2s∆D

ab(s1, s2)

)m
[V (a, b)n−2m]g . (4.99g)

While the exponential form would automatically make the combinatorial factors ‘work out’,
using this form makes it easier to ensure that the integrand stays finite at every step, a cru-
cial part of the proof. This result implies, in particular, that if

∫ b
a d

2s∆D
ab(s1, s2) = 0, then

the operator renormalized using g̃Dab is the same as that renormalized using gDab. However, if∫ b
a d

2s∆D
ab(s1, s2) 6= 0, then the new operator is different, but the difference exponentiates as[

eλV (a,b)
]
g̃

= e−
1
2
λ2

∫ b
a d

2s∆D
ab(s1,s2)

[
eλV (a,b)

]
g
. (4.100)

Extending this idea to include a fixed operator at the endpoint is not too difficult. It is
best done as a two step process, where only one counterterm is altered in each step. We define
g̃Lab(s1, s2) = gLab(s1, s2) + ∆L

ab(s1, s2). After a small calculation, we find the expected result[
V (a)eλV (a,b)

]
g̃

= e−
1
2
λ2

∫ b
a d

2s∆D
ab(s1,s2)

[(
V (a)− λ

∫ b

a
ds∆L

ab(a, s)

)
eλV (a,b)

]
g

. (4.101)

We will not have any need for an alternative edge counterterm g̃Eabc, so it is not included here.

4.3.4 Assumptions (4.5c), (4.5d), (4.5e), and (4.5f)

We have mentioned that linearity is more difficult to show for the little g scheme than for
the trivial (but divergent) exponentiation of the big G scheme. While an argument for the

72



4.3. Renormalizing Higher Order Operators

likelihood of strong linearity will be given in section 4.3.8, it remains beyond proof for now. We
can, however, prove that weak linearity (4.5c) holds at all orders.

Using the finiteness of the “normal ordered” operators, we extend the definition of the little
g scheme to multiple integrated operators:[

p∏
i=1

eλiV (ai,ai+1)

]
g

=
∞∑
k1=0

. . .
∞∑

kp=0

p∏
i=1

∫ ai+1

ai

dkit
◦

◦

p∏
i=1

eλiVai,ai+1
◦

◦g

(4.102a)

=

∞∑
k1=0

. . .

∞∑
kp=0

p∏
i=1

∫ ai+1

ai

dkit

(
p∏
i=1

e
− 1

2
λ2i g

D
ai,ai+1

p−1∏
i=1

e
− 1

2
λiλi+1g

E
ai,ai+1,ai+2

p∏
i=1

eλiVai,ai+1

)
.

(4.102b)

Here the operators Vai,ai+1 are interpreted as vanishing outside of their natural domain (ai, ai+1).
The normal ordering here will insert both gDai,ai+1

and gEai,ai+1,ai+2
counterterms depending on the

operators being replaced, and those functions should also be defined to vanish outside of their
natural domains. Instead of taking the operators and functions to vanish when appropriate, we
could have said that when we taylor expand the exponentials each operator can only be located
at one of the coordinates integrated between the correct endpoints. These two approaches are
obviously equivalent. The factor of 1

2 appearing with gEai,ai+1,ai+2
is due to the fact that we must

consider ~t in the region (ai+1, ai+2)× (ai, ai+1) in addition to the region (ai, ai+1)× (ai+1, ai+2)
which was used to relate gEai,ai+1,ai+2

to GE , just as the 1
2 appearing with gDai,ai+1

must also make
up for the fact that we consider t2 < t1.

For our study of the replacement condition we will only need to use two integrated operators,
and the ellipses representing operators inserted at the endpoints are not important for the proof.
We will focus on [

eλV (a,b)eλV (b,c)
]
g

=
∞∑
i=0

∞∑
j=0

∫ b

a
dit

∫ c

b
djt ◦◦ e

λV ◦
◦g . (4.103)

Now we will define an alternative little g scheme, as in the previous section. We choose

g̃Dac(t1, t2) =


gDab(t1, t2) , a < t1, t2 < b
gDbc(t1, t2) , b < t1, t2 < c
gEabc(t1, t2) , a < t1 < b < t2 < c, or a < t2 < b < t1 < c .

(4.104)

This is chosen so that the statement
[
eλV (a,b)eλV (b,c)

]
g

=
[
eλV (a,c)

]
g̃

is trivial. The replacement
condition holds as long as g̃ and g are equivalent renormalization schemes, and from the previous
section, we know that two little g schemes are equivalent as long as the difference ∆D

ac = g̃Dac−gDac
vanishes when integrated. Since this is only two-dimensional integration, up to corrections which
vanish as ε→ 0, we have

1

2

∫
Γa,cε

d2t
(
g̃Dac(t1, t2)− gDac(t1, t2)

)
= GDab +GDbc +GE −GDac . (4.105)

The divergent parts have to and do cancel, because both the g and g̃ schemes use the same
divergent part of the counterterms. This is why we are justified in freely swapping the domain of
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integration between (a, c)2 used in (4.100) and the Γa,cε shown here. We included the divergent
part of the counterterms simply to demonstrate that this is the same condition we found at
quadratic order. As a result the replacement condition (4.5c) holds for the little g scheme at
all orders with the same conditions that we found at quadratic order.

The factorization property (4.5d) is imposed by the fact that we defined the little g scheme
to include counterterms only for pairs of operators which are integrated over domains which
intersect at at least one point. By defining it this way, factorization is trivial. The locality and
reflection properties (4.5e) and (4.5f) can be shown using exactly the same arguments as we
used at quadratic order. The g counterterms are still independent of any global properties of
the Riemann surface in which they are inserted, and while not completely independent of the
insertion coordinates, they depend only on (t2 − t1)2. The fact that this dependence is even
and translationally invariant means that reflection will still go through without any problems.

4.3.5 Comparison to Kiermaier and Okawa

The renormalization scheme used by Kiermaier and Okawa [36] is nearly equivalent to the little
g scheme. We will construct an alternative little g scheme which is equal to ours up to O(ε)
corrections, and which is also equal to the renormalization scheme of [36] for all operators which
appear explicitly in the solution Ψ.

The renormalization of the operator
[
V (a, b)2

]
r

is performed using pair-wise subtractions,
as we did, but consists of two stages. The first stage gives a finite operator which does not obey
all of the assumptions (4.5). This operator is denoted by normal ordering.

◦
◦ V (t1)V (t2) ◦◦G = V (t1)V (t2)− Gm(t1, t2) (4.106)

where

Gm(t1, t2) = 〈V (t1)V (t2)〉Wm
=

π2

(m+ 1)2 sin2
(
π(t2−t1)
m+1

) (4.107)

is the two-point function in the matter BCFT. The two point function depends on the global
properties of the Riemann surface, and in this case is defined to use the semi-infinite cylinder
Wm, which has circumference m + 1. The wedge index m is only given a fixed value once the
full wedge state has been built and the correlation function is taken – it is not a fixed value for
the renormalization of a given wedge state. This presents the first obvious problem for such a
renormalization scheme: the counterterms are not local and violate (4.5e). This will be solved
by the second step in the renormalization process, but first we must define the normal ordering
of integrated operators.

Unlike the normal ordering we have defined, when acting on integrated operators they define
this operation to include an ε-regularization as well. In practice we can define this by applying
the ε-regularization and a limit in all cases, and similarly to equation (4.9) of [36] define 3

◦
◦
∏
i

V (ti)
◦
◦G

def
= lim

ε→0
exp

(
−1

2

∫
dt1dt2 Gm(t1, t2)

δ

δV (t1)

δ

δV (t2)

)(∏
i

V (ti)

)
ε

. (4.108)

3This is only valid for integrated operators and fixed operators with finite separation. In the case of ◦◦ V (t)n ◦◦G
as in equation (4.10) of [36], this definition fails, but we will not need to consider this case.
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Applying this to operators which actually appear in the solution, we have

◦
◦ V (a, b)2 ◦

◦G = lim
ε→0

∫ b−ε

a
dt1

∫ b

t1+ε
dt2 (V (t1)V (t2)− Gm(t1, t2))

+ lim
ε→0

∫ b

a+ε
dt1

∫ t1−ε

a
dt2 (V (t1)V (t2)− Gm(t1, t2))

(4.109a)

and

◦
◦ V (a)V (a, b) ◦◦G = lim

ε→0

∫ b

a+ε
dt (V (a)V (t)− Gm(a, t)) . (4.109b)

The renormalization of higher powers of operators as defined by (4.108) looks exactly as ex-
pected, subtracting off the two-point function for every pair of operators.

◦
◦(V (a, b))n ◦◦G = lim

ε→0

∫
Γa,bε

dnt
∑

0≤k≤n
2

(−1)kn!

2kk!(n− 2k)!

k∏
i=1

Gm(ti, ti+k)
n∏

j=2k+1

V (tj) (4.110)

Now that we have defined the normal ordering which gives a finite version of each inte-
grated operator in question, we need to repair the locality condition (4.5e). Kiermaier and
Okawa accomplished this by adding back in the finite part of the two-point function for each
counterterm. This is designed to cancel the m-dependence of the propagator. The finite pieces
which are used are

〈
V (a, b)2

〉
r

= ln

 π2

(m+ 1)2 sin2
(
π(b−a)
m+1

)
 = lnGm(a, b) , (4.111a)

〈V (a)V (a, b)〉r = − π

m+ 1
cot

(
π(b− a)

m+ 1

)
. (4.111b)

At quadratic order, the finished renormalized operators are[
(V (a, b))2

]
G = ◦

◦(V (a, b))2 ◦
◦G +

〈
V (a, b)2

〉
r
, (4.112a)

[V (a)V (a, b)]G = ◦
◦ V (a)V (a, b) ◦◦G + 〈V (a)V (a, b)〉r . (4.112b)

More useful for our purposes is the extension of this to all orders.[
eλV (a,b)

]
G

= e
1
2
λ2〈V (,b)2〉

r
◦
◦ e

λV (a,b) ◦
◦G , (4.113a)[

V (a)eλV (a,b)
]
G

= e
1
2
λ2〈V (,b)2〉

r
◦
◦ (V (a) + λ 〈V (a)V (a, b)〉r) e

λV (a,b) ◦
◦G . (4.113b)

At first glance, this may look quite different from the little g scheme, but by noticing the re-
sult of section 4.3.3 we can combine the finite term

〈
V (a, b)2

〉
r
, which acts like

∫
d2s∆D

ab(s1, s2),
with the counterterm containing the divergence Gm to get an alternate form of this renormal-
ization scheme which involves only one step. We need to decide what function we should use to
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get
〈
V (a, b)2

〉
r

once we integrate it. Fortunately, we notice that in [36] this function is defined
by equation (4.38):

〈
V (a, b)2

〉
r

def
= 2 lim

ε→0

(∫ b−ε

a
dt1

∫ b

t1+ε
dt2 Gm(t1, t2)− b− a− ε

ε
− ln ε

)
. (4.114)

Half of the needed function is already supplied by Gm. The rest can be easily found by inte-
grating our function gDab with the appropriate choice of constants, C0 = −1 and C1 = 0. The
little g scheme which is equivalent to the renormalization scheme of [36] uses the counterterm

ĝDab(t1, t2) = Gm(t1, t2)−
(
Gm(t1, t2)− gDab(t1, t2)

∣∣
C0=−1,C1=0

)
(4.115a)

= gDab(t1, t2)
∣∣
C0=−1,C1=0

. (4.115b)

Of course for the renormalization scheme of [36] to be completely equivalent to this ĝ
scheme, they must be equivalent for more operators than just

[
eλV (a,b)

]
ĝ
. The calculation for[

V (a)eλV (a,b)
]
ĝ

goes through exactly like the doubly integrated case and gives

ĝLab(a, t) = gLab(a, t)
∣∣
CL=0

. (4.116)

Together with the always-similar right handed operator, this shows equivalence for all operators
which appear explicitly in the solution. The remaining operator we are interested in is actually
treated slightly differently in [36]. The ε-bracket used in [36] for the edge collision operator
[V (a, b)V (b, c)]G is not the linear one we have been using. Instead they used

(V (a, b)V (b, c))KO
ε =

∫ b− ε
2

a
dt1

∫ c

b+ ε
2

dt2 V (t1)V (t2) . (4.117)

The difference between this and our ε-bracket is illustrated in figure 4.1. The finite term
associated with this operator is

〈V (a, b)V (b, c)〉r
def
= lim

ε→0

(∫ b− ε
2

a
dt1

∫ c

b+ ε
2

dt2 G(t1, t2) + ln ε

)
, (4.118)

which makes the total counterterm subtracted for that operator equivalent to

ĝEabc(t1, t2) = gEabc(t1, t2)
∣∣
C0=−1

. (4.119)

The choice of C0 exactly replaces the missing contribution from integrating 1
(t2−t1)2

over the

subregion where one of the coordinates is within ε
2 of b.

Whether or not this renormalization scheme satisfies replacement or even linearity at higher
orders is not a simple question. The ε-bracket is not linear because it sets the measure to zero
for coordinates like ( b+a2 , b) when the operator being renormalized is V (a, b)V (b, c) but leaves
the measure intact at the same location for V (a, b)V (b). This lack of linearity for this operator
suggests that the renormalization scheme built on it should fail to be linear as well, and with
the replacement condition being closely related to linearity it must be re-evaluated as well. If
we were to treat this as a big G scheme, subtracting off fixed counterterms from integrated
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a b c
a

b

c
c-ϵ

a+ϵ

(a)

a b c
a

b

c
c-ϵ

a+ϵ

b-ϵ/2

(b)

Figure 4.1: Comparison of the two choices of integration region used for the renormalization of
the integrated operators

(
V (a, b)2

)
ε

and
(
V (b, c)2

)
ε

(diagonal hatching), and (V (a, b)V (b, c))ε
(cross-hatched): (a) using our prescription for the renormalizations. (b) using the prescription
of [36]. The difference is the grey strips, which are not covered using the latter choice. The
dashed line indicates the singularity due to colliding operators.

operators, then in addition to finiteness failing as we know it must, the replacement condition
would fail as well. The non-linear ε-bracket would cause operators to exponentiate differently
from counterterms and the form of CDab would have to be different at each order to make up for it.
On the other hand, as long as we insist on using a little ĝ scheme to define the renormalization,
the fully symmetrized form of the renormalized integrand remains finite as the limit ε → 0 is
taken, so this combination of operators and counterterms does not care about alterations of
the region of integration which are O(ε). This means that the renormalization scheme of [36]
most likely satisfies replacement, and perhaps even strong linearity (when CL = CR = C1) as
a result of this insensitivity to holes. We will not dwell on proving this, however, as we have
already proven the replacement condition for our little g scheme with the linear ε-bracket.

Because our scheme is so similar to the Kiermaier and Okawa scheme, it is not surprising
that in the next sections when we prove the BRST assumptions (4.5a) and (4.5b) we will
take an approach very similar to the one they used. None of the steps they used to prove
those two conditions are wrong, but a few will need more justification than was originally
given. Specifically, the first BRST condition requires the lemma (4.132), and the second BRST
condition requires that we take great care to ensure that integrands are finite whenever small
changes are made to the integration region. We must also be clear about why the first BRST
condition can be safely applied without corrections even when multiplied by divergent factors
or other operators close to the integration region. These technical details, while they do not
change the structure of how we approach the proof, are certainly not trivial and will each be
explained as they are encountered.
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4.3.6 Proof of the First BRST Condition (4.5a)

Because the little g scheme is very similar to the example renormalization scheme from Kier-
maier and Okawa in [36], we will follow the proof of (4.5a) there quite closely. The renormalized
operator we start with this time is, as in (4.89),

1

n!
[(V (a, b))n]g =

∫
Γa,bε

dt1 . . . dtn

bn/2c∑
k=0

(−1)k

2kk!(n− 2k)!

k∏
i=1

gDab(ti, ti+k)

n∏
j=2k+1

V (tj) . (4.120)

As in section 4.2.5, we will omit the limit ε → 0 throughout this and the next section (where
we prove the second BRST condition). Because the counterterm gDab appears very frequently,
as long as there is no ambiguity we will also drop the indices and simply refer to it as g for this
section and the next only.

We wish to show that

1

n!
QB [V (a, b)n]g =

2∑
l=1

1

(n− l)!

([
V (a, b)n−lO

(l)
R (b)

]
g
−
[
O

(l)
L (a)V (a, b)n−l

]
g

)
. (4.121)

To begin with we use the well known action of the BRST operator on the marginal deformation
(4.67).

1

n!
QB [V (a, b)n]g = QB

bn/2c∑
k=0

(−1)k

2kk!(n− 2k)!

∫
Γa,bε

dnt

(
k∏
i=1

g(ti, ti+k)

) n∏
j=2k+1

V (tj)


(4.122a)

=

bn−1
2 c∑

k=0

(−1)k

2kk!(n− 2k − 1)!

∫
Γa,bε

dnt

(
k∏
i=1

g(ti, ti+k)

) n−1∏
j=2k+1

V (tj)

 ∂tn (cV (tn)) (4.122b)

=

bn/2c∑
k=0

(−1)k

2kk!(n− 2k)!

∫
Γa,bε

dnt ∂tn

(n− 2k)
k∏
i=1

g(ti, ti+k)
n∏

j=2k+1

V (tj)c(tn)

 (4.122c)

In the last line we have simply noticed that a term with k = n/2 vanishes, so we can include it
in the sum if n is even. We can now add and subtract the following quantity:

bn/2c∑
k=1

(−1)k

2kk!(n− 2k)!

∫
Γa,bε

dnt ∂tn

2k
n−2k∏
j=1

V (tj)

n−k∏
i=n−2k+1

g(ti, ti+k)c(tn)

 (4.123a)

=

bn/2c−1∑
k=0

(−1)k+1

2k+1(k + 1)!(n− 2k − 2)!

×
∫

Γa,bε

dnt ∂tn

2(k + 1)
n−2k−2∏
j=1

V (tj)
n−k−1∏

i=n−2k−1

g(ti, ti+k+1)c(tn)

 (4.123b)

= −
bn/2c−1∑
k=0

(−1)k

2kk!(n− 2k − 2)!

∫
Γa,bε

dnt ∂tn

 k∏
i=1

g(ti, ti+k)
n−2∏

j=2k+1

V (tj)g(tn−1, tn)c(tn)


(4.123c)
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In the first two lines, (4.123a) and (4.123b), the V (tj) insertions are listed before the g(ti, ti+k)
factors, but since the integration region is symmetric we can relabel any index except for tn.
As long as the number of factors of each type is the same and the combinatorics match up, the
expressions are equal. In this instance, we can go from (4.123b) to (4.123c) by relabelling the
indices as in table 4.1. Now we take (4.122c) and we add (4.123a) and subtract (4.123c). This

V g

t1 t2 tn−2k−2 tn−2k−1 tn−k−2 tn−k−1 tn−k tn−1 tn
↓ ↓ · · · ↓ ↓ · · · ↓ ↓ ↓ · · · ↓ ↓

t2k+1 t2k+2 tn−2 t1 tk tn−1 tk+1 t2k tn

Table 4.1: How to relabel the integration variables in going from (4.123b) to (4.123c).

gives us

1

n!
QB [V (a, b)n]g =

bn/2c∑
k=0

(−1)k

2kk!(n− 2k)!

∫
Γa,bε

dnt ∂tn(n− 2k)

k∏
i=1

g(ti, ti+k)

n∏
j=2k+1

V (tj)c(tn) + 2k

n−2k∏
j=1

V (tj)

n−k∏
i=n−2k+1

g(ti, ti+k)c(tn)


+

bn/2c−1∑
k=0

(−1)k

2kk!(n− 2k − 2)!

∫
Γa,bε

dnt ∂tn

 k∏
i=1

g(ti, ti+k)

n−2∏
j=2k+1

V (tj)g(tn−1, tn)c(tn)

 .

(4.124)

We will consider the two integrals separately, defining A and B for convenience.

A def
=

∫
Γa,bε

dnt

bn/2c∑
k=0

(−1)k

2kk!(n− 2k)!

∂tn

(n− 2k)
k∏
i=1

g(ti, ti+k)

n∏
j=2k+1

V (tj)c(tn) + 2k

n−2k∏
j=1

V (tj)

n−k∏
i=n−2k+1

g(ti, ti+k)c(tn)


(4.125a)

B def
=

bn/2c−1∑
k=0

(−1)k

2kk!(n− 2k − 2)!

∫
Γa,bε

dnt ∂tn

 k∏
i=1

g(ti, ti+k)

n−2∏
j=2k+1

V (tj)g(tn−1, tn)c(tn)


(4.125b)

By splitting the expression into A and B, we have given a precise implementation of the idea

[V (a, b)n]r ↔
[
V (a, b)n−1

]
r
V (a, b)− (n− 1)

[
V (a, b)n−2

]
r
GDab . (4.126)

We have taken a quantity with n−1 renormalized insertions and one insertion not renormalized
(inserted at tn), and broken it into A with n renormalized operators, and B with n− 2 of them
and an extra counterterm. Put another way, the BRST operator acts like a derivative hitting
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only the marginal operators and not the counterterms. By using (4.126) we can write this as a
derivative hitting the entire expression regardless of whether the coordinate has an operator or
a counterterm, plus a term where the derivative only hits the counterterm. It is this trick that
allows us to proceed.

While this has given us a longer expression, it is advantageous because we can make the
integrand of A finite and do the integral over tn. If we symmetrize all of the dummy coordinates
other than tn, we get an integrand

∂tn

c(tn)
1

(n− 1)!

∑
σ∈Sn

bn/2c∑
k=0

(−1)k

2kk!(n− 2k)!

k∏
i=1

g(tσ(i), tσ(i+k))
n∏

j=2k+1

V (tσ(j))


=

1

(n− 1)!
∂tn

(
c(tn)

◦

◦

n∏
i=1

V (ti)
◦

◦g

)
(4.127)

which is manifestly finite. In this form, it is safe to change the integration region to (a, b)n and
perform the trivial integral over tn using the fundamental theorem of calculus. We can then
change the region of integration to Γa+ε,b−ε

ε (t1, . . . , tn−1) and use the still-symmetric region of
integration to reorder the coordinate labels again and get the simpler expression

A =

∫
Γa+ε,b−εε

dn−1t

bn/2c∑
k=0

(−1)k

2kk!(n− 2k)!(n− 2k)

k∏
i=1

g(ti, ti+k)

n−1∏
j=2k+1

V (tj)(cV (b)− cV (a))

+2k
n−2k∏
j=1

V (tj)
n−k−1∏

i=2−2k+1

g(ti, ti+k)
(
gDab(tn−k, b)c(b)− gDab(tn−k, a)c(a)

) . (4.128)

This has localized tn at the boundary, turning
[
V (a, b)n−1

∫ b
a dtn∂tncV (tn)

]
r

into something

similar to
[
V (a, b)n−1(cV (b)− cV (a))

]
r
. The reason that the derivative does not do exactly

this is that when tn appears in a counterterm it gives c(a)gDab(a, ti), whereas in order to get
the correctly renormalized operator with a fixed insertion we need c(a)gLab(a, ti). Correcting for
this, we can write that

A =
1

(n− 1)!

[
V (a, b)n−1(cV (b)− cV (a))

]
g

+
1

(n− 2)!

[
V (a, b)n−2

]
g

(
c(b)

∫ b

a
dt(gRab(t, b)− gDab(t, b))− c(a)

∫ b

a
dt(gLab(a, t)− gDab(a, t))

)
.

(4.129)

While it is not normally correct to write a fully renormalized operator times a counterterm,
as in the second line here, in this case it is allowed because the counterterms’ divergent parts
cancel so that everything is finite and independent of ε. The limit does not prevent us from
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treating the two factors independently. From the definitions in (4.87) we know that

gLab(x, y)− gDab(x, y) =
1

(b− a)2
+

CL

b− a
+

2

(b− a)2
(1 + ln(b− a) + C0 + (b− a)C1) (4.130a)

=
1

(b− a)2
+

CL

b− a
+ fDab . (4.130b)

where fDab
def
= 2

(b−a)2
(1 + ln(b− a) + C0 + (b− a)C1) is the constant part of gDab. Then

A =
1

(n− 1)!

[
V (a, b)n−1(cV (b)− cV (a))

]
g

+
1

(n− 2)!

[
V (a, b)n−2

]
g

(
c(b)− c(a)

b− a
+ c(b)CR − c(a)CL − (c(b)− c(a))(b− a)fDab

)
.

(4.131)

Returning now to the other integral, B in (4.125), we notice that the integrand diverges
whenever tn−1 and tn approach each other, but not when these two variables approach any of
the others. This alone is not enough to factorize the region of integration, but with (4.126)
in mind we notice that the rest of the integrand (including the sum and combinatoric factors)
is what we would see for

[
V (a, b)n−2

]
g
, so there are no divergences due to ti approaching any

point for i < n− 1. We can show, as a lemma, that∫
Γa,bε

dnt

∫
Γa,bε

d2s f(~t) ∂s2
(
gDab(s1, s2)c(s2)

)
=

∫
Γa,bε

dnt d2s f(~t) ∂s2
(
gDab(s1, s2)c(s2)

)
(4.132)

for any function f(~t) which is finite on (a, b)n. The difference of the two regions can be written
in terms of three other regions.(∫

Γa,bε

dnt

∫
Γa,bε

d2s−
∫

Γa,bε

dnt d2s

)
f(~t) ∂s2

(
gDab(s1, s2)c(s2)

)
=

n∑
i=1

∫
Γa,bε

d2s

(∫
Γa,bε ∩|ti−s1|<ε

dnt+

∫
Γa,bε ∩|ti−s2|<ε

dnt

)
f(~t) ∂s2

(
gDab(s1, s2)c(s2)

)
−

n∑
i=1

∫
Γa,bε

d2s

∫
Γa,bε ∩|ti−s1|<ε∩|ti−s2|<ε

dnt f(~t) ∂s2
(
gDab(s1, s2)c(s2)

)
(4.133)

The first and second lines of the right hand side both vanish independently, so we will compute
them separately, starting with the first line.

Because the function f is finite and is integrated over a region with area of order ε, we
notice that each of those integrals over ~t is ε times a finite function of one of the two remaining
coordinates. Specifically, by defining

F (s) =
1

ε

n∑
i=1

∫
Γa,bε ∩|ti−s|<ε

dnt f(~t) , (4.134)
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the first line of (4.133) is

ε

∫
Γa,bε

d2s ∂s2
(
gDab(s1, s2)c(s2)

)
(F (s1) + F (s2)) . (4.135a)

We will not need to know the precise form of F (s) so long as it and its derivative are finite.
With the full expression having an ε factor out front from the small area of the ti integral, we
know that the finite part of gDab will not play any role, and we only need to consider the singular
term. Integrating by parts, we have

ε

∫ b−ε

a
ds

(
c(b)F (s) + c(b)F (b)

(b− s)2
− c(s+ ε)F (s)− c(s+ ε)F (s+ ε)

ε2

)
+ ε

∫ b

a+ε

(
c(s− ε)F (s) + c(s− ε)F (s− ε)

ε2
− c(a)F (s) + c(a)F (a)

(s− a)2

)
− ε
(∫ b−ε

a
ds1

∫ b

s1+ε
ds2 +

∫ b

a+ε
ds1

∫ s1−ε

a
ds2

)
c(s2)F ′(s2)

(s2 − s1)2
. (4.135b)

The integrals with 1
(b−s)2 and 1

(s−a)2
can be done explicitly by taylor expanding F (s) about the

appropriate endpoint. The integrals with 1
ε2

can be put over a common region by shifting the
coordinate s in one of them. For the double integrals, we will taylor expand the numerator
about s1 in order to perform the s2 integral.

2cF (b)− 2cF (a) +

∫ b

a+ε
ds

(c(s− ε)− c(s)) (F (s− ε) + F (s))

ε

− ε
(∫ b−ε

a
ds1

∫ b

s1+ε
ds2 +

∫ b

a+ε
ds1

∫ s1−ε

a
ds2

)(
cF ′(s1)

(s2 − s1)2
+
∂(cF ′)(s1)

s2 − s1
+ . . .

)
(4.135c)

Evaluating this further, we get

2cF (b)− 2cF (a)− 2

∫ b

a
ds ∂c(s)F (s)− ε

∫ b−ε

a
ds

(
cF ′(s)

ε
− cF ′(s)

b− s

)
−ε
∫ b

a+ε
ds

(
cF ′(s)

ε
− cF ′(s)

s− a

) (4.135d)

= 2cF (b)− 2cF (a)− 2

∫ b

a
ds ∂c(s)F (s)− 2

∫ b

a
ds cF ′(s) +O(ε ln ε) (4.135e)

= 2cF (b)− 2cF (a)− 2

∫ b

a
ds ∂s (cF (s)) +O(ε ln ε) (4.135f)

which goes to zero in the ε→ 0 limit.
Turning now to the last line in (4.133), where ti is close to both s1 and s2, we define

F2(s1, s2) =
1

ε

n∑
j=1

∫
Γa,bε ∩|ti−s1|<ε∩|ti−s2|<ε

dnt f(~t), F3(s1, s2) = F2(s1, s2)c(s2) . (4.136)
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Both of these functions are finite for the same reasons as F (s) above: they are finite operators
integrated over a region with area proportional to ε, and then divided by ε. The term we wish
to evaluate is

ε

(∫ b

a+2ε
ds1

∫ s1−ε

s1−2ε
ds2 +

∫ b−2ε

a
ds1

∫ s1+2ε

s1+ε
ds2 +

∫ a+2ε

a+ε
ds1

∫ s1−ε

a
ds2 +

∫ b−ε

b−2ε
ds1

∫ b

s1+ε
ds2

)
F2(s1, s2)∂s2

(
gDab(s1, s2)c(s2)

)
. (4.137a)

As with the other term, we will integrate this by parts.

ε

∫ b

a+2ε
ds

(
F3(s, s− ε)

ε2
− F3(s, s− 2ε)

4ε2

)
+ ε

∫ b−2ε

a
ds

(
F3(s, s+ 2ε)

4ε2
− F3(s, s+ ε)

ε2

)
+ ε

∫ a+2ε

a+ε
ds

(
F3(s, s− ε)

ε2
− F3(s, a)

(s− a)2

)
+ ε

∫ b−ε

b−2ε
ds

(
F3(s, b)

(b− s)2
− F3(s, s+ ε)

ε2

)
− ε
(∫ b

a+2ε
ds1

∫ s1−ε

s1−2ε
ds2 +

∫ b−2ε

a
ds1

∫ s1+2ε

s1+ε
+

∫ a+2ε

a+ε
ds1

∫ s1−ε

a
ds2 +

∫ b−ε

b−2ε
ds1

∫ b

s1+ε
ds2

)
∂s2(F2(s1, s2))c(s2)

(s2 − s1)2
(4.137b)

For the terms with a 1
ε2

we will gather like denominators, shifting the integration variable when
necessary to match intervals. For the other single integrals, the functions F3(s, a) and F3(s, b)
can be taylor expanded about the endpoints a and b and only the first term will contribute, with
the rest of the taylor series giving at most terms of order O(ε ln ε). For the double integrals, we
will also taylor expand ∂s2F2(s1, s2)c(s2) in s2 about s2 = s1 and again only the first term will
contribute. In addition, the last two double integrals will not contribute at all because the s1

integrals there provide extra suppression.∫ b

a+2ε
ds
F3(s− 2ε, s)− F3(s, s− 2ε)

4ε
+

∫ b

a+ε
ds
F3(s, s− ε)− F3(s− ε, s)

ε

+ εF3(b, b)

∫ b−ε

b−2ε

ds

(b− s)2
+ εF3(a, a)

∫ a+2ε

a+ε

ds

(s− a)2

− ε
(∫ b

a+2ε
ds1

∫ s1−ε

s1−2ε
ds2 +

∫ b−2ε

a
ds1

∫ s1+2ε

s1+ε
ds2

)
∂2(F2(s1, s1))c(s1)

(s1 − s2)2
(4.137c)

Here ∂2F2 is the derivative with respect to the second parameter, and ∂1 will be with respect
to the first. Now we taylor expand the numerators on the first line and evaluate an integral for
everything else.

1

2

∫ b

a
ds (∂1 − ∂2)F3(s, s) +

F3(b, b)− F3(a, a)

2
−
(∫ b

a+2ε
ds+

∫ b−2ε

a
ds

)
∂2F2(s, s)c(s)

2

(4.137d)

In order to remove the middle term, we would like to change (∂1 − ∂2) to − (∂1 + ∂2) = −∂s in
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the first term, which we can do by adding an extra ∂1 piece.

−1

2

∫ b

a
ds ∂sF3(s, s) +

F3(b, b)− F3(a, a)

2
+

∫ b

a
ds ∂1F3(s, s)−

∫ b

a
ds ∂2F2(s, s)c(s) (4.137e)

=

∫ b

a
ds (∂1F2(s, s)− ∂2F2(s, s)) c(s) (4.137f)

Now we look back at the definition of F2(s1, s2) and see that it is a symmetric function of its
two parameters, so that the two derivatives are equal when acting on the line s1 = s2. We thus
have zero for all of (4.133).

We can now finally evaluate B. This lemma tells us that the domain of integration is
equivalent to Γa,bε (t1, . . . , tn−2) × Γa,bε (tn−1, tn) and we evaluate the integrals with respect to
tn−1 and tn. The expression in question was

B =

bn/2c−1∑
k=0

(−1)k

2kk!(n− 2k − 2)!

∫
Γa,bε

dnt ∂tn

 k∏
i=1

g(ti, ti+k)
n−2∏

j=2k+1

V (tj)g(tn−1, tn)c(tn)


(4.138a)

=

bn/2c−1∑
k=0

(−1)k

2kk!(n− 2k − 2)!

∫
Γa,bε

dn−2t
k∏
i=0

g(ti, ti+k)
n−2∏

j=2k+1

V (tj)


×
(∫ b−ε

a
dt1

∫ b

t1+ε
dt2 +

∫ b

a+ε
dt1

∫ t1−ε

a
dt2

)
∂t2 (g(t1, t2)c(t2))

(4.138b)

=

[
V (a, b)n−2

]
g

(n− 2)!

(∫ b−ε

a
dt

(
c(b)

(t− b)2
− c(t+ ε)

ε2

)
+

∫ b

a+ε

(
c(t− ε)
ε2

− c(a)

(t− a)2

)
+

∫ b

a
dt (c(b)− c(t+ ε) + c(t− ε)− c(a)) fDab

) (4.138c)

=

[
V (a, b)n−2

]
g

(n− 2)!

(
c(b)− c(a)

ε
+
c(a)− c(b)
b− a

+

∫ b−ε

a
dt
c(t)− c(t+ ε)

ε2

+ (c(b)− c(a))(b− a)fDab

) (4.138d)

=

[
V (a, b)n−2

]
g

(n− 2)!

(
c(b)− c(a)

ε
+
c(a)− c(b)
b− a

− c(b− ε)
ε

− ∂c(b)

2
+
c(a)

ε
+
∂c(a)

2

+ (c(b)− c(a))(b− a)fDab

) (4.138e)

=

[
V (a, b)n−2

]
g

(n− 2)!

(
c(a)− c(b)
b− a

+
∂c(b)

2
+
∂c(a)

2
+ (c(b)− c(a))(b− a)fDab

)
. (4.138f)
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Putting the pieces back together, we get

A+ B =
1

(n− 1)!

[
V (a, b)n−1(cV (b)− cV (a))

]
g

+

[
V (a, b)n−2

]
g

(n− 2)!

(
c(b)− c(a)

b− a
+ c(b)CR − c(a)CL − (c(b)− c(a))(b− a)fDab

)
+

[
V (a, b)n−2

]
g

(n− 2)!

(
c(a)− c(b)
b− a

+
∂c(b)

2
+
∂c(a)

2
+ (c(b)− c(a))(b− a)fDab

)
(4.139a)

=

[
V (a, b)n−1cV (b)

]
g

(n− 1)!
+

[
V (a, b)n−2

]
g

(n− 2)!

(
∂c(b)

2
+ CRc(b)

)
−

[
cV (a)V (a, b)n−1

]
g

(n− 1)!
+

(
∂c(a)

2
− CLc(a)

) [V (a, b)n−2
]
g

(n− 2)!
.

(4.139b)

If we take (4.139b) and multiply it by λn and then sum over n, we arrive at the precise form
we wanted.

QB

[
eλV (a,b)

]
g

=
[
eλV (a,b)OR(b)

]
g
−
[
OL(a)eλV (a,b)

]
g

(4.140)

where

OL(a) = λcV (a) + λ2CLc(a)− λ2

2
∂c(a), OR(b) = λcV (b) + λ2CRc(b) +

λ2

2
∂c(b) . (4.141)

The first BRST condition is satisfied for the little g scheme without any higher order corrections
to OL/R.

4.3.7 Proof of the Second BRST Condition (4.5b)

To prove the second BRST condition, we want to evaluate

QB
(n− 1)!

[
cV (a)V (a, b)n−1

]
g
− QB

(n− 2)!

1

2
∂c(a)

[
V (a, b)n−2

]
g
. (4.142)

We have left off the CL term in OL because we know that the constants CL and CR are pure
gauge in that they never appear in the solution. We are free to make the choice to set them all
to zero, which we will do throughout this section in order to simplify the calculation.

Let’s take a moment to discuss some notation we will be using to simplify this section. We
have previously defined the little g scheme by

[V (a, b)n]g =

∫ b

a
dnt

◦

◦

n∏
i=1

V (ti)
◦

◦g
, (4.143)

but for a given interval (a, b) we could have chosen to write it as

[V (a, b)n]gDab
=

∫ b

a
dnt

◦

◦

n∏
i=1

V (ti)
◦

◦gDab
. (4.144)
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This notation will allow us to use a counterterm gDab whose parameters do not match the region
of integration of V exactly. For example

[V (a+ ε, b)n]gDab
=

∫ b

a+ε
dnt

◦

◦

n∏
i=1

V (ti)
◦

◦gDab
. (4.145)

Further, since the counterterms gD and gL/R will need to be modified independently, we will
use a notation [ · ]

gDab,g
L/R
ab

to list the appropriate counterterms and, when necessary, their

parameters.
Using the first BRST condition, is it straightforward to show that the second term in (4.142)

is

− QB
(n− 2)!

1

2
∂c(a)

[
V (a, b)n−2

]
g

= − 1

(n− 2)!

c∂2c(a)

2

[
V (a, b)n−2

]
g

+
1

(n− 3)!

∂c(a)

2

[
V (a, b)n−3cV (b)

]
g

+
1

(n− 3)!

c∂c(a)

2

[
V (a)V (a, b)n−3)

]
g

+
1

(n− 4)!

∂c(a)

2

[
V (a, b)n−4

]
g

∂c(b)

2
. (4.146)

In order to compute the other term, however, we will need to know how the first BRST condition
works for alternative little g schemes. Recalling the general rules for alternative schemes, (4.100)
and (4.101), we write

QB

[
eλV (a,b)

]
g̃

= e−
λ2

2

∫ b
a d

2s∆D
ab(s1,s2)QB

[
eλV (a,b)

]
g

(4.147a)

= e−
λ2

2

∫ b
a d

2s∆D
ab(s1,s2)

([
eλV (a,b)OR(b)

]
gD,gR

−
[
OL(a)eλV (a,b)

]
gD,gL

)
(4.147b)

=
[
eλV (a,b)OR(b)

]
g̃D,gR

−
[
OL(a)eλV (a,b)

]
g̃D,gL

. (4.147c)

Since OL/R are defined for the standard little g scheme, they have the simple form of (4.141).

To shift the counterterms from g
L/R
ab to g̃

L/R
ab = g

L/R
ab + ∆

R/L
ab we must use equation (4.101):

=

[
eλV (a,b)

(
OR(b) + λ2

∫ b

a
dt∆R

ab(t, b)

)]
g̃D,g̃R

−
[(
OL(a) + λ2

∫ b

a
dt∆L

ab(a, t)

)
eλV (a,b)

]
g̃D,g̃L

(4.147d)

=
[
eλV (a,b)OR(b)

]
g̃
−
[
OL(a)eλV (a,b)

]
g̃

+ λ2

∫ b

a
dt
(
∆R
ab(t, b)−∆L

ab(a, t)
) [
eλV (a,b)

]
g̃
.

(4.147e)

The BRST condition has the same form and the same operators OL/R provided that the left and

right differences ∆
L/R
ab are equal, or at least have the same integral. The specific alternative
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scheme we are interested in is the one where the counterterms are too big for the region of
integration by a small constant amount, ε. Since we are taking CL/R = 0 in this section, in
this case ∆R

ab(t1, t2) = ∆L
ab(t1, t2) = 1

(b−a+ε)2
− 1

(b−a)2
so the first BRST condition goes through

without any additional terms.
With the preliminaries out of the way, the main part of the proof of (4.5b) consists of

calculating the first term in (4.142).

QB
(n− 1)!

[
cV (a)V (a, b)n−1

]
g

=
QB

(n− 1)!

∫ b

a
dn−1t

◦

◦
cV (a)

n−1∏
i=1

V (ti)
◦

◦g
(4.148a)

At this point, we introduce a small parameter ε which is implicitly taken to zero. Since the
integrand is finite, we can modify the integration region. We make an ε-sized modification to
the integration region at a to examine the divergence there and write

=
QB

(n− 1)!

∫ b

a+ε
dn−1t

(
cV (a)

◦

◦

n−1∏
i=1

V (ti)
◦

◦gDab
−(n− 1)c(a)gLab(a, t1)

◦

◦

n−1∏
i=2

V (ti)
◦

◦gDab

)
,

(4.148b)

where the counterterms used in the normal ordering no longer match the integration region
due to the ε regulator. The lack of holes for the bulk of the integrated operators means we
can rewrite those as renormalized integrated operators, where the implicit regulator should be
taken to zero before ε. Also using the fact that QB(cV ) = 0, we find

= − cV (a)

(n− 1)!
QB

[
V (a+ ε, b)n−1

]
gab

+
c(a)

(n− 2)!

∫ b

a+ε
dt gLab(a, t)QB

[
V (a+ ε, b)n−2

]
gab

− c∂c(a)

(n− 2)!

∫ b

a+ε
dt gLab(a, t)

[
V (a+ ε, b)n−2

]
gab

.

(4.148c)
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The BRST operator can now act on these renormalized operators using (4.147e) since the
ε-regulator is holding the unintegrated insertion ‘away’, resulting in

= − cV (a)

(n− 2)!

([
V (a+ ε, b)n−2cV (b)

]
gab
−
[
cV (a+ ε)V (a+ ε, b)n−2

]
gab

)
− cV (a)

(n− 3)!

[
V (a+ ε, b)n−3

]
gab

(
1

2
∂c(b) +

1

2
∂c(a)

)
+

c(a)

(n− 3)!

∫ b

a+ε
dt gLab(a, t)

([
V (a+ ε, b)n−3cV (b)

]
gab
−
[
cV (a+ ε)V (a+ ε, b)n−3

]
gab

)
+

c(a)

(n− 4)!

∫ b

a+ε
dt gLab(a, t)

[
V (a+ ε, b)n−4

]
gab

(
1

2
∂c(b) +

1

2
∂c(a)

)
− c∂c(a)

(n− 2)!

∫ b

a+ε
dt gLab(a, t)

[
V (a+ ε, b)n−2

]
gab

.

(4.148d)

Rearranging and recombining some of the integrands into finite combinations, and in one place
using the fact that

∫ b
a+ε dt g

L
ab(t) = ε−1 +O(ε), we get

= − 1

(n− 2)!

∫ b

a+ε
dn−2t

◦

◦
cV (a)

n−2∏
i=1

V (ti)cV (b)
◦

◦gab

− 1

(n− 3)!

∫ b

a+ε
dn−3t

◦

◦
cV (a)

n−3∏
i=1

V (ti)
◦

◦gab

1

2
∂c(b)

− 1

(n− 3)!

∫ b

a+ε
dn−3t

1

2
c∂c(a)

◦

◦
V (a)

n−3∏
i=1

V (ti)
◦

◦gab

+
1

(n− 2)!

∫ b

a+ε
dn−2t

(
cV (a) ◦◦ cV (a+ ε)

n−2∏
i=1

V (ti)
◦
◦gab −

c∂c(a)

ε

◦

◦

n−2∏
i=1

V (ti)
◦

◦gab

−(n− 2)c(a)gLab(a, t1)
◦

◦
cV (a+ ε)

n−2∏
i=2

V (ti)
◦

◦gab

)
.

(4.148e)

Now that we have some finite integrands, we can once again heal the hole at the left endpoint.

= − 1

(n− 2)!

[
cV (a)V (a, b)n−2cV (b)

]
g
− 1

(n− 3)!

[
cV (a)V (a, b)n−3

]
g

1

2
∂c(b)

− c∂c(a)

2(n− 3)!

[
V (a)V (a, b)n−3

]
g

+
c∂2c(a)

2(n− 2)!

[
V (a, b)n−2

]
g

(4.148f)
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In the last term of (4.148e) we have used the expansion

◦
◦ cV (a)cV (a+ ε)V (a+ ε, b)n−2 ◦

◦gab = O(ε) (4.149a)

= cV (a) ◦◦ cV (a+ ε)V (a+ ε, b)n−2 ◦
◦gab −

c(a)c(a+ ε)

ε2
◦
◦ V (a+ ε, b)n−2 ◦

◦gab

− (n− 2)c(a)

∫ b

a+ε
dt gLab(a, t)

◦
◦ cV (a+ ε, b)V (a+ ε, b)n−3 ◦

◦gab

(4.149b)

= cV (a) ◦◦ cV (a+ ε)V (a+ ε, b)n−2 ◦
◦gab −

c∂c(a)

ε
◦
◦ V (a+ ε, b)n−2 ◦

◦gab

− 1

2
c∂2c(a) ◦◦ V (a+ ε, b)n−2 ◦

◦gab

− (n− 2)c(a)

∫ b

a+ε
dt gLab(a, t)

◦
◦ cV (a+ ε, b)V (a+ ε, b)n−3 ◦

◦gab

(4.149c)

to replace the parentheses in (4.148e) with c∂2c(a)
2

◦
◦
∏n−2
i=1 V (ti)

◦
◦gab . This requires defining

◦
◦ V (a)V (a + ε) . . . ◦◦gab , which should technically not have any counterterm for the two fixed

operators since they do not meet, but it is clear that including a 1
(t1−t2)2

counterterm for those

two operators gives a normal ordered operator which is finite as ε → 0. It is also clear that
which finite part we choose for that counterterm is irrelevant since the ghost factor will suppress
it anyways.

It is also worth mentioning that we can use explicit third order calculations to show that any
of these steps is correct at the order where the number of operators is manageable. Specifically,
I have checked that at third order (4.148c) and (4.148d) both match the expected result

1

2
QB

[
cV (a)V (a, b)2

]
g

= − [cV (a)V (a, b)cV (b)]g−
1

2
cV (a)∂c(b) +

1

2
c∂2c(a)V (a, b)− 1

2
c∂cV (a) .

(4.150)
Finally we add the two pieces (4.148f) and (4.146) together to see

QB
(n− 1)!

[
cV (a)V (a, b)n−1

]
g
− QB

(n− 2)!

1

2
∂c(a)

[
V (a, b)n−2

]
g

(4.151a)

= − 1

(n− 2)!

[
cV (a)V (a, b)n−2cV (b)

]
g
− 1

(n− 3)!

[
cV (a)V (a, b)n−3

]
g

1

2
∂c(b)

− c∂c(a)

2(n− 3)!

[
V (a)V (a, b)n−3

]
g

+
c∂2c(a)

2(n− 2)!

[
V (a, b)n−2

]
g

− c∂2c(a)

2(n− 2)!

[
V (a, b)n−2

]
g

+
1

(n− 3)!

1

2
∂c(a)

[
V (a, b)n−3cV (b)

]
g

+
c∂c(a)

2(n− 3)!

[
V (a)V (a, b)n−3

]
g

+
1

(n− 4)!

1

2
∂c(a)

[
V (a, b)n−4

]
g

1

2
∂c(b)

(4.151b)

= − 1

(n− 2)!

[
cV (a)V (a, b)n−2cV (b)

]
g
− 1

(n− 3)!

[
cV (a)V (a, b)n−3

]
g

1

2
∂c(b)

+
1

(n− 3)!

1

2
∂c(a)

[
V (a, b)n−3cV (b)

]
g

+
1

(n− 4)!

1

2
∂c(a)

[
V (a, b)n−4

]
g

1

2
∂c(b) .

(4.151c)
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Multiplying by λn and summing this over n gives

QB

[(
λcV (a)− λ2

2
∂c(a)

)
eλV (a,b)

]
g

= −
[(
λcV (a)− λ2

2
∂c(a)

)
eλV (a,b)

(
λcV (b) +

λ2

2
∂c(b)

)]
g

. (4.152)

This proves that the assumption (4.5b) holds for the little g scheme at all orders.

4.3.8 Linear Renormalization

For quadratic operators we were able to define a fully linear renormalization scheme by making
a specific choice for the constants CL = CR = C1. Since CL and CR do not affect the solution
in any way, this was like a gauge choice. Unfortunately, we saw that this big G scheme was
insufficient to get finiteness at fourth order and higher. The method we used to construct a
linear renormalization scheme is not particularly well suited to products of many operators, but
we can still sketch how it works and show that at least for third order the little g scheme with
the same choice of constants CL = CR = C1 can be defined in terms of linear operators.

We begin with a straightforward and general extension of the quadratic result to higher
orders, and define a renormalization scheme by

[O(t1, . . . , tn)]r
def
= lim

ε→0

(
e−Lr (O(t1, . . . , tn))

)
ε
. (4.153)

We know from section 4.2.3 that the simplest (but not finite) big G scheme can be found by
choosing

LG =

∫
dxdy δ(x− y)GL

δ

δV (x)

δ

δV (y)

+
1

2
lim
∆→0

∫
dxdy

(
δ′(x− y + ∆)− δ′(x− y −∆)

)
GE

δ

δV (x)

δ

δV (y)
. (4.154)

Since we have already thoroughly examined the allowed renormalization schemes at quadratic
order, we know that the action of Lr on any two marginal operators V (t1)V (t2) must match
LG. An appropriate choice of ansatz is then

Lr =
∞∑
n=2

∫
dnx Lrn(x1, . . . , xn)

n∏
i=1

δ

δV (xi)
, (4.155)

with

Lr2(x, y) = LG2 (x, y) = GLδ(x− y) +
1

2
lim
∆→0

GE
(
δ′(x− y + ∆)− δ′(x− y −∆)

)
. (4.156)

The higher order counterterms Lrn with n > 2 are not determined, giving us a huge space of
possible counterterms to consider. This is not unexpected, and is how this approach generates

new constants such as the C
(3)
0 and C

(3),DL
o that we saw in section 4.3.1. Obviously the space

of all functions Lrn is much larger than the free parameters which are allowed at each order, but
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this can be reduced somewhat by the assumptions (4.5). The assumptions give restrictions on
the functions, but at arbitrary order the space will remain too large for us to fully examine.

The first restriction we can find, which follows trivially from the factorization condition
(4.5d), is the need for δ-functions to put all of the operators being replaced at a single point.
A coefficient, L, which does not include some sort of δ-function would be non-zero even for
operators which never meet, and violate the factorization condition.

Since operators are renormalized pairwise, we expect only counterterms in which the number
of surviving operators is the same as the number we started with mod 2. At third order, the
obvious candidates are

Lr3(x, y, z) = A(3)V (x)δ(x− y)δ(x− z) +B(3)V (x)δ(x− y)δ(y − z) . (4.157)

Other permutations of the coordinates are redundant because the integrals in (4.155) sym-
metrize the result. At this point we might ask why we are not considering slightly more general
counterterms, such as the second line in (4.55), which contains derivatives of the δ function.
We know from the explicit third order calculations of section 4.3.1 that the only free param-

eters we expect at third order are C
(3)
0 , C

(3),DL
0 , and C

(3),DR
0 , and just as linearity enforced

CL = CR at quadratic order, we expect C
(3),DL
0 = C

(3),DR
0 , so there should not be more than

the two counterterms we already have in A(3) and B(3). A simple example of a counterterm we
have not included is L′3 = V (x)δ(x− y) (δ′(y − z + ∆)− δ′(y − z −∆)) which when applied to
the operator V (a, b)3 adds a fixed marginal operator at each endpoint, V (a) + V (b). This is
unwanted because it will not satisfy the BRST conditions.

Using the calculations of section 4.3.8 and comparing those results to the generic third order
renormalization scheme of section 4.3.1, we can show that the cubic linear operator of (4.157)
gives rise to

C
(3)
0 = C0 +A(3) +B(3), C

(3),DL
0 = C

(3),DR
0 = C0 +A(3) +

7

8
B(3) . (4.158)

What we have discussed so far at third order is only a shift in the finite part of the big G
scheme’s counterterms at third order. We saw from (4.97) that there are subleading divergences
at fourth order which are not cancelled by the quadratic counterterms of the big G scheme. As
a result, we will require an additional counterterm at fourth order. While explicitly performing
fourth order calculations can be quite difficult, the form of the difference between the big G
and little g schemes suggests that we need a counterterm like

Lr4(x1, x2, x3, x4) ∼ 1

ε
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4) +O(ln ε) . (4.159)

With this approach, we could in principle write down the most general finite scheme at quartic
order that satisfies conditions (4.5c) and (4.5d). Then, we would need to check that the BRST
conditions do not impose any extra restriction on the free parameters. This would allow us to
discover whether there are any free parameters at quartic order that affect the SFT solution in
a nontrivial way, without analyzing all possible restrictions due to the replacement condition
at this order. It is, of course, extremely likely that such free parameters do exist.
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Linearity of the little g scheme

The little g scheme was not defined as in (4.153), so we would like to show that it is in that space
of linear renormalization schemes. Although we do not have a proof that this is the case, we will
find the exact form of L up to third order. Because we have exhaustively studied renormalization
schemes at quadratic order, we know that linearity is only possible when CL = CR = C1, and
we must impose this condition on the constants of the little g scheme as well. Taking (4.157)
as our starting point, we define a new third order renormalization scheme using

Lg̃3(x, y, z) = A(3)V (x)δ(x− y)δ(x− z) +B(3)V (x)δ(x− y)δ(y − z) . (4.160)

We then find constants A(3) and B(3) such that [. . .]g̃ = [. . .]g at third order. We do this by

evaluating the distinct operators
[
V (a, b)3

]
r
,
[
V (a)V (a, b)2

]
r
, and

[
V (a, b)V (b, c)2

]
r

using both
renormalization schemes. For the first of these operators, it is obvious that∫

dxdydz Lg̃3(x, y, z)
δ

δV (x)

δ

δV (y)

δ

δV (z)
V (a, b)3 = 6

(
A(3) +B(3)

)∫ b

a
dt V (t) , (4.161)

and then[
V (a, b)3

]
g̃

=

lim
ε→0

[(
V (a, b)3

)
ε
− 3

(∫ b

a
dt

∫
Γa,bε (s1,s2)

d2s V (t)gDab(s1, s2) + 2
(
A(3) +B(3)

)∫ b

a
dt V (t)

)]
.

(4.162)

By comparing this to (4.96), we must choose A(3) + B(3) = −3 − ln 2 in order to get the little
g scheme. A full derivation of (4.96), as well as similar formulae for other regions, is not very
instructive. The important step is simply to write down an explicit form of the region to
integrate over, corresponding to the difference of the two integrals on the left hand side. The
most common case is that of (4.96), so here we will include that region:(∫ b

a
dt

∫
Γa,bε

ds1ds2 −
∫

Γa,bε

dtds1ds2

)
f(t, s1, s2)

=

[∫ b−ε

a+2ε
dt

∫ t+ε

t−ε
ds1

∫ s1−ε

a
ds2 +

∫ b−2ε

a+ε
dt

∫ t+ε

t−ε
ds1

∫ b

s1+ε
ds2 −

∫ b−2ε

a+2ε
dt

∫ t

t−ε
ds1

∫ t+ε

s1+ε
ds2

+

∫ a+2ε

a+ε
dt

∫ t−ε

a
ds1

∫ t+ε

s1+ε
ds2 +

∫ b−ε

b−2ε
dt

∫ b

t+ε
ds1

∫ s1−ε

t−ε
ds2

+

∫ a+ε

a
dt

∫ t+ε

a
ds1

∫ b

s1+ε
ds2 +

∫ b

b−ε
dt

∫ b

t−ε
ds1

∫ s1−ε

a
ds2 + s1 ↔ s2

]
f(t, s1, s2) . (4.163)

This holds for any function f(t, s1, s2), but we often have a symmetric function of s1 and s2,
in which case we can trade the exchanged indices s1 ↔ s2 for an overall factor of 2. (4.96) is
derived by explicitly performing all of the integrals over s1 and s2 in this formula, and then
series expanding in ε.
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For the second operator we wish to check,
[
V (a)V (a, b)2

]
g̃
, it is important that we distin-

guish the two terms in (4.160) because∫ b

a
dxdz V (x)δ(x− a)δ(x− z) =

3

8
V (a) , (4.164a)∫ b

a
dxdz V (x)δ(x− a)δ(a− z) =

1

4
V (a) . (4.164b)

With this in mind, the extra counterterms for this operator are given by∫
dxdydz Lg̃3(x, y, z)

δ

δV (x)

δ

δV (y)

δ

δV (z)

(
V (a)V (a, b)2

)
= A(3)

(
2

∫ b

a
dydz V (a)δ(a− y)δ(a− z) + 4

∫ b

a
dxdz V (x)δ(x− a)δ(x− z)

)
+B(3)

(
2

∫ b

a
dydz V (a)δ(a− y)δ(y − z) + 4

∫ b

a
dxdz V (x)δ(x− a)δ(a− z)

)
(4.165a)

=

(
2A(3) +

7

4
B(3)

)
V (a) . (4.165b)

This represents the difference between the g̃ scheme and the big G scheme. We compare this
to the little g scheme by explicitly finding the difference between the g and G schemes for this
operator. It is

lim
ε→0

[
2

(∫
Γa+ε,bε

dtds−
∫ b

a
dt

∫ b

a+ε
ds

)
gLab(a, s)V (t)

+

(∫
Γa+ε,bε

d2s−
∫

Γabε

d2s

)
gDab(s1, s2)V (a)

]
= −2 (3 + ln 2)V (a) . (4.166)

This tells us that 2A(3) + 7
4B

(3) = −2(3 + ln 2), which together with A(3) +B(3) = −(3 + ln 2)
means that in order for the g̃ and g schemes to match we must choose

A(3) = −(3 + ln 2), B(3) = 0 . (4.167)

The final condition to check, that
[
V (a, b)V (b, c)2

]
g̃

matches the corresponding operator
from the little g scheme, proceeds similarly. This time the delta functions are on regions which
can only touch at a point, so the correction to the pairwise renormalization is∫ b

a
dxdydz Lg̃3(x, y, z)

δ

δV (x)

δ

δV (y)

δ

δV (z)

(
V (a, b)V (b, c)2

)
= 0 . (4.168)

For the schemes to be equivalent we need to show that the corresponding little g calculation is

lim
ε→0

[(∫ b

a
dt

∫
Γbcε (s1,s2)

d2s−
∫ b

a
dt

∫
Γ
b∨(t+ε),c
ε (s1,s2)

d2s

)
V (t)gDbc(s1, s2)

+2

(∫ b

a
ds1

∫ c

b
dt

∫ c

b∨(s1+ε)
ds2 −

∫ b

a
ds1

∫
Γ
b∨(s1+ε),c
ε (t,s2)

ds2dt

)
V (t)gEabc(s1, s2)

]
= 0 . (4.169)
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For the first term, we can see that the region in the s1, s2 plane can be non-zero only when
b− ε < t < b. This further suppresses what would otherwise be a finite correction, and we find
zero. The second term requires some calculation to verify, but the largest surviving correction
there is O(ε ln ε).

At third order we needed only the one term

Lg3(x, y, z) = −(3 + ln 2)V (x)δ(x− y)δ(x− z) (4.170)

to correct the big G scheme and make it equivalent to the little g scheme. In the notation of
section 4.3.1 the little g scheme has

C
(3)
0 = C

(3),DL
0 = C

(3),DR
0 = C0 − (3 + ln 2) . (4.171)

At higher orders we know that the big G scheme is not finite so there will be additional
counterterms carrying the subleading divergences, and we expect additional finite contributions
at each order. At any given order, however, there are many possible counterterms to add, so I
expect that there will always be enough degrees of freedom to represent the little g scheme as
a linear operator. We will leave any attempts to prove this for future work.

4.4 Discussion

There are a number of open questions regarding the choice of renormalization schemes and their
properties. Here we briefly look at what we know and do not know about them.

4.4.1 Uniqueness

The little g scheme alone has two free parameters which alter the way operators are renor-
malized. The space of allowed linear renormalization schemes, while still not fully understood,
looks much larger, and the space of renormalization schemes satisfying the replacement con-
dition (4.5c) instead of full linearity is larger still. In contrast, the solutions built from these
renormalized operators represent BCFT’s in which the conformal boundary condition has been
deformed in the same way. The BCFT is parameterized by only one parameter, λ, so we are
left to wonder what the other renormalization parameters do.

We have already noticed that some of the extra parameters do not appear in the solution.

This is the case for CL and CR, as well as C
(3),DL
0 , C

(3),DR
0 and any other left- or right-

constants. The solution is built from the wedge states U and AL which only contain the fully
integrated operator [V (a, b)n]r and the operator [OL(a)V (a, b)n]r which is derived from the
BRST transformation of the fully integrated one. Only constants which appear in the fully
integrated operator will be in the solution. Constants such as CL which naively appear in
OL must cancel against the same constant in [cV (a)V (a, b)n]r. This does not deal with the
constants appearing in the fully integrated operator, however. By third order we already have

C0, C1, and C
(3)
0 which must be understood. Using the little g scheme as an example, we will

start with a renormalization scheme that chooses C0 = C1 = 0 and call it [. . .]g0 . Then the
result (4.100) tells us that these parameters are simply a rescaling of the renormalized operator[

eλV (a,b)
]
g

= e−λ
2(C0+(b−a)C1)

[
eλV (a,b)

]
g0
. (4.172)
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To see whether this rescaling changes the solution, consider the definition (4.8b) of the wedge
state U which the solution is primarily constructed from. While it may appear that C0 gives a
simple rescaling of U , the interval on which V is integrated is different at each order: b−a = n−1.
Including a λ-dependent rescaling factor, the width of the integration interval will no longer
match the number of marginal insertions, and the final expression for U will be changed. We
leave the question of whether SFT solutions given by different values of C1 and C0 are related
by a gauge transformations to future work, and offer only one more observation: introducing a
nonzero C1 is the same as replacing V (t) with V (t)− λC1. It is worth mentioning that the C1

dependence of the derivative in (4.53b) can be found from this rescaling. Clearly

∂a

(
e−λ

2(C0+(b−a)C1)
[
eλV (a,b)

]
g0

)
= e−λ

2(C0+(b−a)C1)∂a

[
eλV (a,b)

]
g0

+ λ2C1

[
eλV (a,b)

]
g

(4.173)

produces the C1 term in (4.53b), but the CL dependence must still be found separately in order
to make the result independent of that constant.

Leaving now the confines of the renormalization scheme defined in section 4.3, we can ask

whether changing C
(3)
0 changes the SFT solution. It is easy to see that generalizing the rescaling

in equation (4.172) to include higher order terms, as in[
eλV (a,b)

]
g̃

= e−(C0λ2+C
(4)
0 λ4+...)−(C1λ2+C

(4)
1 λ4+...)(b−a)

[
eλV (a,b)

]
g0
, (4.174)

does not result in a change of C
(3)
0 from the value it has in the scheme of section 4.3, C

(3)
0 =

−(3 + ln 2) + C0. There is, however, another simple change in the renormalization schemes

which does affect C
(3)
0 : a renormalization of the perturbation parameter λ. Specifically, we can

take [
eλV (a,b)

]
g̃

=
[
e(λ+6∆C

(3)
0 λ3+...)V (a,b)

]
g
, (4.175)

where ∆C
(3)
0 = C

(3)
0 + (3 + ln 2) − C0. The conclusion is then that changing C

(3)
0 away from

−(3 + ln 2) + C0 does affect the SFT solution, but in a benign and easy to understand way:
by reparameterizing the deformation flow. This observation also explains why there is no

independent parameter C
(3)
1 .

4.4.2 Boundary Condition Changing Operators

We might assume (as has been the focus of recent work [39]) that the point where the boundary
condition is changed behaves as if a boundary condition changing operator σ was inserted there.
Specifically, a BCFT with σL(a)σR(b) inserted on the boundary has a new boundary condition
between a and b and the original boundary condition elsewhere. In our case this is implemented
using

σL(a)σR(b) =
[
eλV (a,b)

]
r

(4.176)

without having to know an explicit form of the local operators σL/R. As a result we know that

QB (σL(a)σR(b)) =
[
eλV (a,b)OR(b)

]
r
−
[
OL(a)eλV (a,b)

]
r
, (4.177)
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but for any conformal primary operator φh with conformal weight h, we would expect that [47]

QBφh(t) = c(t)∂tφh(t) + h (∂c(t))φh(t) . (4.178)

These two results suggest that[
OL(a)eλV (a,b)

]
r

= −c(a)∂a

[
eλV (a,b)

]
r
− h(λ)∂c(a)

[
eλV (a,b)

]
r
. (4.179)

We saw in (4.53b) how the derivative acts on quadratic operators, so expanding (4.179) at order
λ2 we see

[cV (a)V (a, b)]r −
1

2
∂c(a) + CLc(a)

= [cV (a)V (a, b)]r − (C1 − CL)c(a)−
2∑
l=0

1

(2− l)!
h(l)∂c(a)

[
V (a, b)2−l

]
r
, (4.180)

where h(l) are the taylor coefficients of the conformal weight h(λ). This equation is only satisfied

if h(λ) = λ2

2 and C1 = 0. C1 was a free parameter in the construction of a SFT solution,
and can still take any value, but this suggests that the boundary condition changing operator
corresponding to the new boundary condition is only primary if the operators are renormalized
with C1 = 0.

As usual, at higher orders there is still more to consider, but in this case there may not be
any further restrictions. At third order, using the ansatzes of section 4.3.1 it is straightforward
to show that

∂a
[
V (a, b)3

]
r

= −3
[
V (a)V (a, b)2

]
r

+ 6V (a, b)
(
C1 − CL

)
+ 6V (a)

(
C

(3)
0 − C(3),DL

0

)
. (4.181)

The first BRST condition, (4.5a), can also be worked out at third order while including the

extra constants C
(3)
0 , C

(3),DL
0 , and C

(3),DR
0 . This results in slightly altered operators at the

endpoints.

OL(a) = λcV (a)− 1

2
λ2∂c(a) + λ2CLc(a) + λ3

(
C

(3),DL
0 − C(3)

0

)
cV (a) +O(λ4) (4.182a)

OR(b) = λcV (b) +
1

2
λ2∂c(b) + λ2CRc(b) + λ3

(
C

(3),DR
0 − C(3)

0

)
cV (b) +O(λ4) (4.182b)

This has the same extra terms as the derivative, so the condition C1 = 0 is still enough to give
a primary boundary condition changing operator with conformal weight h(λ) = λ2

2 .
In many works, when arbitrary boundary condition changing operators are considered, it is

assumed for simplicity that they are primary. Here we see a case where the boundary conditions
related to generic renormalization require non-primary bcc operators. It is surprising that a
change to the renormalization scheme, which we expect to correspond to a gauge transformation
or reparameterization of λ, can have such an impact on the associated bcc operator. We saw
in section 4.4.1 that the C1 dependence of the derivative comes from rescaling the exponential

operator. In this context it is natural that C
(3)
0 should not affect the primarity of the bcc

operator since that rescaling is simply a reparameterization of λ, while the other constants are
a more complicated rescaling. This represents a possible topic of further investigation.
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4.4. Discussion

We know that the BRST operator is similar to a derivative and a c ghost when acting on
the marginal operator V (a, b), so it should not be surprising that the additional terms at higher
orders are the same as those appearing in the derivative. If this relationship holds at all orders it
could greatly simplify the calculation of OL/R at arbitrary order, but any proof of such a claim
would likely entail the calculation of corrections to OL/R for arbitrary counterterms anyways.
Alternatively, similarities between QB and the derivative might lead to a better understanding
of how to prove the BRST conditions. This remains an open question.
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Chapter 5

Rolling Tachyon

Now that we have examined the algebraic structure of renormalized integrated marginal oper-
ators, we will apply this knowledge to a specific case: the rolling tachyon. This is particularly
instructive due to the existence of previously studied and related solutions with regular self-
OPE. We can use our renormalization scheme to examine how the presence of renormalized
operators affects the solution.

We will begin this chapter by summarizing our results and their relation to the literature.
This is followed by the details of the tachyon profile and a discussion of the results. We then
proceed to discuss how the calculations were performed. This begins in sections 5.3.1-5.3.6
with an explanation of the computer program written to construct the solution algebraically.
In section 5.3.7 we discuss how numerical integration was performed, and how floating point
roundoff errors due to the counterterms were handled. In this section we also examine the
equation of motion and the action in order to check the validity of our results and see how
accurate the numerical process is and whether the results converge as the precision of the
numerical process is increased.

Most of this chapter has been posted on the arXiv [3] and has recently been accepted for
publication by the Journal of High Energy Physics.

5.1 Rolling Tachyon Introduction and Conclusions

As we have seen, in a boundary CFT the boundary condition can be deformed on any section
of the boundary by exponentiating a marginal operator integrated along it, as in

eλ
∫
dt V (t) . (5.1)

The marginal parameter λ controls the strength of the deformation. In Open String Field
Theory, allowed D-brane configurations are in one to one correspondence with classical solutions.
The rolling tachyon is the time-dependent solution which corresponds to a decaying D-brane.
There are two rolling tachyon solutions obtained by different marginal deformations of the D-
brane CFT. The simpler case, the exponential rolling tachyon, involves the marginal operator
V (t) = eX

0(t) and represents a D-brane which exists in the infinite past and then decays at
a finite time. This case has been studied using level truncation methods [35, 48] as well as
analytically [5, 33, 34], and is relatively simple because the OPE of the marginal operator
with itself is finite. The more difficult case uses the time-symmetric marginal operator V =√

2 cosh(X0), which has the singular self-OPE V (0)V (x) ∼ 1
x2

. This rolling tachyon corresponds
to placing a D-brane at t = 0 and letting it decay at both t = −∞ and t = +∞. Notice that
this t is time and not the worldsheet boundary coordinate frequently referred to in chapter 4.

In SFT, the tachyon profile is the tachyon component of the string field as a function of
time. Higher level modes are, of course, part of the solution Ψ, but are not calculated. In the
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symmetric case, the tachyon profile has the form

T (t) = 2
∞∑
n=1

bn/2c∑
j=0

λnβ(j)
n cosh((n− 2j)t) , (5.2)

where β
(j)
n are coefficients which can be calculated numerically and bn/2c is the greatest integer

less than or equal to n/2, so that n − 2j ≥ 0. In this notation the deformation strength λ is
taken to be negative for physical solutions [5]. In the exponential case, λ controls the time at
which the D-brane decays, while for the time-symmetric case it determines the lifetime of the
D-brane, with longer lifetimes corresponding to λ closer to zero.

In BCFT studies of D-brane decay such as [49, 50] it was noticed that the point λBCFT = 1
2
√

2
should exhibit some kind of special behaviour with this normalization for V . The recent work
of [51] tells us that the parameter λ here is equivalent to the BCFT parameter for small λ
(up to the sign, which is a matter of convention), but that the precise relationship for stronger
deformations is in fact gauge-dependent. They also found that λSFT in string field theory has a
maximum which occurs close to, but not in general at, the critical value of the BCFT parameter.
This does not represent any limitation on λBCFT, as the relationship is not one-to-one, and it
does not necessarily limit our λ parameter either, as the relationship between it and λSFT of
[51] will also have higher order corrections. In any event, since the solution we study is written
as a taylor series about λ = 0, we should not expect such features at large λ to be evident.

In the regular OPE case, instead of the double sum and time-symmetric cosh functions,
energy conservation tells us that there is only a single sum of exponentials involving coefficients

with β
(0)
n :

Treg(t) =
∞∑
n=1

λnβ(0)
n ent . (5.3)

While the β
(j)
n are in general gauge-dependent, for one choice of gauge it was proven that the

sum in the regular OPE case converges for all λ, with the asymptotic behaviour β
(0)
n ∼ e−γn

2

[34]. Numerical data suggests that this is true in other gauges as well, as shown in figure
5.3b. The trouble with this is that the tachyon profile itself exhibits wild oscillations which
grow exponentially in magnitude, while the vacuum without any D-branes is a well defined
and finite point in string field space. How these two very different looking string fields are
reconciled has been the source of much speculation (see, for example, [27]). Both that work
and the calculation of the boundary state in [40, 41] indicate that these wild oscillations are not
physical. The boundary state appears to asymptotically approach the tachyon vacuum despite
the component fields taking values which are very different. This may imply that there is a
time-dependent gauge transformation relating the rolling tachyon solution to one where the
string field smoothly interpolates the perturbative and tachyon vacuum states. It has also been
suggested that the energy of the D-brane should be radiated away in the form of closed strings,
and the wild oscillations come from attempting to describe closed string physics using only open
strings. Our results confirm that the tachyon profile has the same growing oscillatory behaviour
in the time-symmetric case, and do not appear to exclude any of the current hypotheses.

When studying the marginal operator V =
√

2 cosh(X0) leading to the time-symmetric
rolling tachyon, we must be careful to avoid singularities arising from the operator’s OPE.
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Analytic solutions for marginal deformations require the insertion of many copies of the marginal
operator with separations that are integrated over, and there will be divergences when two
operators approach each other. Fortunately there are several solutions which are intended to
handle this issue [36, 37, 38, 39]. The most recent work, by Erler and Maccaferri, does not apply
to solutions which have a non-trivial time direction, so we cannot use it for the rolling tachyon.
Fuchs, Kroyter and Potting’s solution was designed with the photon marginal deformation in
mind, but it is possible that it could describe the rolling tachyon as well. The solution of [38] is
a generalization of [34] to operators with singular OPE, and it could be applied to the rolling
tachyon. In fact it has been suggested that this solution could give the tachyon profile in the
form (5.9), which would help settle the convergence issue.

Our focus, however, will be on the work of Kiermaier and Okawa. They proposed the general
construction dependent on the existence of a suitable renormalization scheme [36], which we
investigated and refined in chapter 4. We found a general renormalization scheme satisfying
the necessary conditions and showed that it has at least two free parameters, suggesting that
the tachyon profile could have free parameters as well. Here we will perform the first explicit
numerical calculations for the time-symmetric rolling tachyon solution, and we will show that
the tachyon profile is a finite function which does in fact depend on the free parameters.

When we implement the solution Ψ of [36] with our renormalization scheme we can find
the tachyon profile for the symmetric rolling tachyon. This involves algebraically constructing
the wedge states with insertions corresponding to the solution, taking expectation values, and
then performing the required integrals numerically. Here this is done up to 6th order in λ. It

will have the form (5.2), where now the function is symmetric in t and all the β
(j)
n are non-

zero. The marginal operator
√

2 cosh(X0) contains the operators e±X
0

with both signs, and

the coefficients β
(j)
n correspond to terms with n − j factors of one of the two operators and j

factors of the other. Since renormalization has the effect of adding counterterms for collisions
of operators with opposite sign, the j = 0 coefficients involve no counterterms and behave very

similarly to exponential solutions. These show the same β
(0)
n ∼ e−γn

2
asymptotic behaviour,

implying that the sum
∑∞

n=1 λ
nβ

(0)
n cosh(nt) converges absolutely for all λ. For |λ| � 1, as is

the case when the D-brane survives for a long time, the j > 0 coefficients are suppressed due
to extra factors of λ. This results in a decay process which looks very much like the regular
case, as the decay is well separated from the “anti-decay” by the D-brane’s lifetime. Once this
lifetime is long enough, further shrinking λ even has the same effect on the decay time as it
would with the exponential rolling tachyon, simply shifting the time of the decay.

For the β
(j)
n coefficients with j > 0, each coefficient is calculated using a number of coun-

terterms determined by j. The counterterms in turn are functions of the two parameters of the
renormalization scheme, C0 and C1. The bulk coefficients are therefore polynomial functions
of C0 and C1. Because these coefficients are not constants, patterns such as the asymptotic
behaviour for j = 0 could depend on the choice of C0 and C1. Considering only the j = 1

coefficients, with C0 = C1 = 0 they are quite a good fit to β
(1)
n ∼ e−γ1(n−2)3 . In fact there is

no choice of those constants for which the exponential quadratic behaviour β
(1)
n ∼ e−γ1(n−2)2

fits as closely. This suggests that the sum
∑∞

n=2 λ
nβ

(1)
n cosh((n− 2)t) also converges, but there

may still be some choices of C0 and C1 for which this is not the case, or for which the radius

of convergence in λ is finite. For example, choosing the constants so that β
(1)
n are a best fit

to the exponential cubic behaviour results in β
(2)
n which are increasing, at least for the three
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5.2. The Tachyon Profile

coefficients we can calculate with j = 2.

So how does the inclusion of all the β
(j)
n coefficients affect the shape of the tachyon profile?

We show that for |λ| � 1 these coefficients are negligible, but as the D-brane lifetime is decreased
there comes a point where more coefficients must be considered. Some terms cease to dominate
for any range of time, and the number of oscillations actually decreases. The missing oscillation
means that the effective “period” is significantly decreased. What this means physically is not
clear, since the period is a gauge dependent quantity related to the coefficient γ in the exponent
of the asymptotic behaviour. The tachyon profile for small λ is very similar to that of [5], while
for larger λ it has some features similar to the tachyon profile of [34], so perhaps the solution
is interpolating between regular-OPE solutions in different gauges as the marginal deformation
strength is changed. Understanding this phenomenon is left for future work.

While here we will only calculate the tachyon profile, it would be interesting in the future to
study the boundary state using the approach of [41]. Previous work on the boundary state for
time-asymmetric rolling tachyon solutions suggests that it is the same as predicted by BCFT,
and our results suggest that we can expect that that would hold true for the time-symmetric
rolling tachyon at weak deformation parameter as well. For larger λ, however, it would be
very interesting to see if the renormalization parameters really are gauge, or if they affect the
boundary state. In particular, C1 controls whether the boundary condition changing operator
is a conformal primary, and it is not at all clear what physical effect that will have.

5.2 The Tachyon Profile

The solution of [36] presents a promising framework for construction of a time-symmetric rolling
tachyon solution, but it was not applied to any specific marginal deformation. Taking that
approach and inserting the marginal deformation V =

√
2 cosh(X0) we are able to numerically

compute the tachyon profile up to 6th order in the deformation parameter λ. Since the tachyon
profile has previously been calculated for several exponential rolling tachyon solutions, we can
compare our results in order to determine what qualitative differences appear in the time-
symmetric case. It is also useful to have explicit numerical evidence that the renormalization
scheme we found in chapter 4 is effective and the solution remains finite despite the singular
OPE that the marginal operator has with itself.

The solution takes the form of a wedge state with insertions on the boundary. While
one insertion will always be at a fixed location, the rest are integrated. The renormalization
procedure replaces pairs of operators with appropriate counterterms under the integral. Each
operator V contains two terms carrying ±1 unit of “momentum” in the time direction, but the

counterterms are functions and carry no momentum. In (5.2) the coefficient β
(j)
n clearly contains

the part of the tachyon profile with n factors of λ and k = n− 2j units of this momentum, so it

follows that the coefficients β
(0)
n contain no counterterms. This is as it should be since operators

e±X
0

with the same sign have a regular OPE; the singular OPE of the cosh(X0) marginal
operator comes entirely from the collision of exponentials with opposite sign. The index j,
which counts the momentum deficit, also has the effect of counting the maximum number of

counterterm factors. For the coefficients β
(j)
n , table 5.1 shows their values as calculated by

the Cuhre algorithm, and with the exception of two terms we will use those coefficients. For
technical reasons explained in section 5.3.7, the two terms marked with asterisks will use values
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5.2. The Tachyon Profile

found by the Suave algorithm instead, and those are shown in table 5.2. Occasionally we will
want to think of the tachyon profile in terms of these timelike momentum modes, and write

T (t) =

∞∑
k=0

2 cosh(kt)

∞∑
n=k

λnβ
(n−k2 )
n . (5.4)

This form is equivalent to (5.2) as long as we define β
(j)
n to vanish for non-integer j, as well as

for n = j = 0.
The tachyon profile for several different solutions with regular OPE has been calculated

before. It has the simpler form of T (t) =
∑∞

n=0 λ
nβn
√

2
n
ent where the coefficients βn

def
= β

(0)
n

are only non-zero for maximal momenta. In table 5.3 we compare the coefficients for those
solutions to the ones we have found. We have changed the normalization of their coefficients
by 2−

n
2 for better comparison with our coefficients, due to the relative normalizations of the

marginal operators eX
0

and
√

2 cosh(X0). Our coefficients show very similar falloff to [5] as n
is increased, though we do not expect exact agreement between any of the sets of coefficients
because the tachyon profile is a gauge dependent quantity. We believe that each of these lists
is related to the others by such gauge transformations, but constructing them is beyond the
scope of this work.

As in [5], we take λ to be negative in order to study physical solutions. With this assumption,
the tachyon profile (5.2) can be rewritten as

T (t) =

∞∑
n=1

bn/2c∑
j=0

(−1)nβ(j)
n

(
en(ln |λ|+t)−2jt + en(ln |λ|−t)+2jt

)
, (5.5)

where in practice the sum over n only runs up to some cutoff N where the coefficients can be
computed. When only the j = 0 coefficients and the first term in parentheses are considered,
as in the regular OPE case, we can clearly see that a change of ln |λ| will only shift the time
of the D-brane decay. For the singular case, however, the tachyon profile will have a different
shape depending on the strength of the marginal deformation, controlled by ln |λ|. The renor-

malization scheme also contains the constants C0 and C1, which will appear nontrivially in β
(j)
n

with j > 0.

5.2.1 Small λ

We begin our analysis with the case |λ| � 1, where only the coefficients β
(0)
n need to be

considered. Following the notation of [5, 34], we will refer to these coefficients as βn
def
= β

(0)
n .

We will focus on (5.5), which receives significant contributions from the first term in parentheses
when t > 0 and from the second term when t < 0. Knowing that T (t) is an even function,
we will assume t > 0 and not need to consider the second term. Since we are considering
−1� λ < 0, each term in the sum of (5.5) will be suppressed by the exponential until t is large
compared to − ln |λ|. For a large fixed t, terms with j > 0 will be small relative to others, so
only the j = 0 coefficients need to be considered. Since this is the case, the tachyon profile does
not depend on the renormalization constants C0 and C1 at all. This had to be the case since
there is no renormalization when all of the marginal operators have momentum in the same
direction. We can then unambiguously plot the tachyon profile for small |λ|. In figure 5.1 we

102



5.2.
T

h
e

T
ach

yon
P

rofi
le

n j β
(j)
n

1 0 1√
2

2 1 (−1.29904 . . .± 3 · 10−11) + (0± 1 · 10−14)CL

2 0 (0.0760297 . . .± 8 · 10−16)
3 1 (−1.30572± 4.3 · 10−5)− (0.707107 . . .± 3 · 10−14)C1 − (0± 2 · 10−4)CL

3 0 (9.150± 0.019) · 10−4

4 2 (0.655579± 6 · 10−6) + (0± 3 · 10−4)CL + (3.2858± 0.0021)C1 + (4.9± 7.8) · 10−15CLC1

+(0± 1 · 10−3)C0 + (0± 1 · 10−14)CLC0

4 1 −(0.4488± 0.0031) + (0± 8 · 10−4)CL − (0.2349± 0.0023)C1 + (1.4± 0.7) · 10−7C0

4 0 (1.17222± 0.00013) · 10−6

5 2 (0.723± 0.011) + (0± 1 · 10−3)CL + (4.387± 0.041)C1 + (0± 0.02)CLC1 + (3.53553 . . .± 7 · 10−15)C2
1

+(0± 6 · 10−3)C0 + (0± 0.01)CLC0

5 1 (−0.01221± 1.2 · 10−4) + (0± 2 · 10−5)CL − (5.86± 0.34) · 10−3C1 − (1.27± 0.61) · 10−4C0

5 0 (1.598± 0.007) · 10−10

6 3 (−0.3± 0.4)∗ + (0± 3 · 10−3)CL − (2.572± 0.026)C1 + (0.3± 1.2) · 10−3CLC1 − (23.9401± 0.0013)C2
1

+(1.5± 3.1) · 10−14CLC2
1 + (0.0955± 0.0030)C0 + (0± 5 · 10−3)CLC0 − (0.135± 0.015)C0C1

−(1.2± 3.9) · 10−14CLC0C1 + (5.8± 1.5) · 10−6C2
0

6 2 (0.4991± 0.0050) + (0.4± 1.3) · 10−5CL + (1.912± 0.019)C1 + (0.8± 4.1) · 10−3CLC1 + (1.715± 0.024)C2
1

+(1.879± 0.025) · 10−2C0 + (0± 2 · 10−3)CLC0 + (4.77± 0.38) · 10−2C0C1 − (2.37± 0.09) · 10−7C2
0

6 1 (−2.686± 0.027) · 10−5 − (1.6± 5.9) · 10−8CL − (9.1± 2.2) · 10−6C1 − (7.3± 0.7) · 10−7C0

6 0 (2.18± 0.04) · 10−15 ∗

Table 5.1: Deterministic results for the non-zero coefficients β
(j)
n of the tachyon profile for the cosh rolling tachyon with singular

self-OPE. Results are calculated with the Cuhre and QAG algorithms. The constant CL is part of the renormalization scheme,
but it can not influence the solution, so we safely set it to zero in our analysis. CL was included in these numerical results only
to demonstrate that it does not contribute to the solution at all.
∗ These two coefficients found using the Cuhre algorithm appear to be unreliable, so the corresponding Suave results in table 5.2
will be used for analysis instead.
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5.2.
T

h
e

T
ach

yon
P

rofi
le

n j β
(j)
n

1 0 1√
2

2 1 −(1.2985± 0.0003)− (4.134± 0.007) · 10−6CL

2 0 (7.61± 0.07) · 10−2

3 1 −(1.301± 0.005)− (0.001± 0.010)CL − (0.707107 . . .± 7 · 10−18)C1

3 0 (8.99± 0.09) · 10−4

4 2 (0.659± 0.007) + (0.2± 2.6) · 10−3CL + (3.288± 0.003)C1 + (0± 1 · 10−17)C1C
L + (0.5± 3.4) · 10−3C0

+(0± 5 · 10−9)C0C
L

4 1 −(0.449± 0.004)− (0.1± 1.4) · 10−3CL − (0.235± 0.002)C1 + (1.39± 0.07) · 10−4C0

4 0 (1.163± 0.002) · 10−6

5 2 (0.722± 0.012) + (1.3± 1.3) · 10−3CL + (4.38± 0.04)C1 + (0.014± 0.034)C1C
L + (3.53553 . . .± 3 · 10−8)C2

1

+(0.1± 6.5) · 10−3C0 − (0.3± 1.3) · 10−2C0C
L

5 1 −(1.21± 0.01) · 10−2 + (2.2± 1.1) · 10−5CL − (5.81± 0.06) · 10−3C1 − (1.17± 0.01) · 10−4C0

5 0 (1.27± 0.01) · 10−10

6 3 −(0.307± 0.004)− (1.6± 2.9) · 10−3CL − (2.55± 0.05)C1 + (0.5± 3.6) · 10−2C1C
L − (23.943± 0.008)C2

1

+(0± 1 · 10−17)C2
1C

L + (9.5± 0.5) · 10−2C0 − (8.0± 6.6) · 10−3C0C
L − (0.12± 0.02)C0C1

+(0± 1 · 10−17)C0C1C
L + (5.0± 4.4) · 10−5C2

0

6 2 (0.497± 0.005)− (2.1± 1.1) · 10−4CL + (1.92± 0.02)C1 − (1.7± 2.6) · 10−3C1C
L + (1.718± 0.013)C2

1

+(1.774± 0.014) · 10−2C0 − (1.2± 2.3) · 10−3C0C
L + (4.71± 0.05) · 10−2C0C1 − (1.156± 0.016) · 10−4C2

0

6 1 −(2.54± 0.02) · 10−5 − (3.5± 0.3) · 10−8CL − (1.222± 0.012) · 10−5C1 − (7.618± 0.014) · 10−7C0

6 0 (2.3± 0.3) · 10−15

Table 5.2: Suave results for the non-zero coefficients β
(j)
n of the tachyon profile for the cosh rolling tachyon with singular self-OPE.

These Monte Carlo results are shown for comparison with the deterministic results of table 5.1.
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5.2. The Tachyon Profile

[5] [34] [35] Ψ here

n βn
1 1√

2
1√
2

1√
2

1√
2

2 0.0760295 0.290 0.0760297 0.0760297
3 7.59312 · 10−4 0.0506 7.732 · 10−4 9.149 · 10−4

4 6.54812 · 10−7 4.18 · 10−3 9.8145 · 10−7 1.173 · 10−6

5 4.93424 · 10−11 1.54 · 10−4 8.734 · 10−11 1.275 · 10−10

6 3.50136 · 10−16 2.45 · 10−6 7.903 · 10−13 2.26 · 10−15

7 2.41180 · 10−22 1.64 · 10−8

Table 5.3: Comparison of rolling tachyon profile for three previously calculated solutions with
regular self-OPE. Calculated from the solutions of [5], [34], and [35]. The n = k coefficients for
our calculations based on [36] are included for comparison.

see ln |T (t)| for ln |λ| = −4. Each “peak” represents the range of t for which T (t) is dominated
by a specific exponential in the sum. For different values of |λ| the shape of the oscillating part
of the tachyon profile remains unchanged, and the whole half-plot shifts horizontally, with the
size of the plateau in the middle changing as expected.

The size of the plateau which describes the time when the D-brane exists can be estimated
by the time of the first zero of the tachyon profile. This time is plotted in figure 5.2a, and
is linear for the region where |λ| � 1 is valid. The slope is −1 as it had to be from (5.5)
when t is significantly larger than 0. We can also examine the “period” of the oscillations.
The oscillations result from each exponential overtaking the one before, so we can calculate an
estimate of their spacing by setting adjacent terms to be equal.

βne
n(ln |λ|+tn) = βn+1e

(n+1)(ln |λ|+tn) (5.6a)

tn = − ln |λ|+ ln

(
βn
βn+1

)
(5.6b)

∆tn = ln

(
(βn)2

βn−1βn+1

)
(5.6c)

While there is no reason to expect this a priori, let us suppose that ∆t is a constant. In this
case we have

βn+1

βn
= e−∆t βn

βn−1
, (5.7a)

which is a recursion relation with the solution

βn ∝ ρne−
n2

2
∆t . (5.7b)

The factor ρn can always be removed by taking β
(j)
n → β

(j)
n
ρn and simultaneously λ → λρ,

which does not alter the tachyon profile. In one particular solution for the rolling tachyon with
regular OPE, Kiermaier, Okawa, and Soler [34] found that their solution’s coefficients had the
asymptotic behaviour

βn ∼ e−γn
2+O(n lnn) , (5.8)

and in [33] it was shown that a solution equivalent to the one in [5] has coefficients which closely
fit bn ∼ e−γn

2
without significant corrections. We have just shown that this same recurring
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(a) (b)

Figure 5.1: The tachyon profile T (t) with only the j = 0 coefficients considered. This is plotted
for ln |λ| = −4, where the approximation is valid. a) Black is for positive values of T (t) and red
is for negative values. b) The tachyon profile with all Suave coefficients from table 5.2 is also
shown in orange and grey, and where the Cuhre-only results deviate is indicated with a blue
line. We can see that the Suave results are qualitatively equivalent to the ones we use.

pattern can be derived from the assumption of exponentially growing oscillations with constant
period. In figure 5.3 we see the best fit lines for our j = 0 coefficients, as well as those of several
other known solutions, to the form βn ∼ e−γn

2
. This was only predicted to be a fit for one

solution at large n, but we see good agreement in all cases, even with n never rising past 6 or 7
for any of the solutions considered. In figure 5.3a the fit is to the deterministic results of table
5.1 for n ≤ 5 and the Suave result for n = 6, but the Suave results with smaller n are shown
as the red points for reference. It is curious that the coefficients fall so close to the e−γn

2
lines

without any correction, even such as choosing ρ 6= 1 in (5.7b). While this trend was derived in
our case from a constant period of oscillation, if it holds at higher n it guarantees that the edge
coefficients are a convergent series. The fact that all of the solutions appear to behave similarly
suggests that they are also all convergent.

5.2.2 Large λ

Once we loosen the |λ| � 1 restriction, we must consider all of the coefficients β
(j)
n and search

for patterns there. Due to the small number of coefficients, and particularly the small number
of rows with constant j, it is not possible to get a good understanding of any patterns or
asymptotics for these coefficients, but we can speculate as to possible trends. The first thing

we notice from table 5.1 is that the sign of the coefficients appears to alternate as (−1)
j
2 . This

is not strictly true even for the coefficients we have calculated, however, as choosing non-zero
C0 and especially C1 will alter many of the coefficients and can affect their sign. With only a
small number of the coefficients known, we do not know whether the large n asymptotics are
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(a) (b)

Figure 5.2: The time of the first zero of the rolling tachyon profile as a function of ln |λ|.
An approximation to the asymptotic behaviour is shown as a dashed line. a) Only the β

(0)
n

coefficients are considered, so the plot is not valid for large |λ|. b) The whole tachyon profile is
considered with coefficients from the fit of figure 5.4a.

fixed or can be changed by a choice of the two free parameters. We can, however, attempt to
force a few patterns and see which appear more naturally.

As a first choice we pick C0 = C1 = 0 and notice that the j = 1 coefficients appear to be a

good fit to β
(1)
n ∼ e−γ1k

3
with k = n−2j, which is shown in figure 5.4a. While this can be made

to fit even better by a choice of renormalization constants, this would lead to some of β
(2)
n being

less than zero or to that row having increasing magnitudes. On the other hand, if we attempt

to pick renormalization constants which are a fit to β
(1)
n ∼ eγ1k

2
, as shown in figure 5.4c, we do

not find as good a fit. The same is true of β
(1)
n ∼ eγ1n

2
using n instead of k in the exponent. It

appears that the j = 1 coefficients have a tendency towards the cubic exponential decay, while
for j = 2 we lack enough points to reach any conclusions. The red points in figure 5.4 again

represent the Suave coefficients, and we see that β
(2)
n have significantly different values once

the renormalization constants are changed, but a look at table 5.2 suggests that this is mainly
due to large errors in the Suave coefficients, so it is unlikely that the deterministic plots would
change significantly if more sample points were used.

While five points is not a lot of data, the β
(1)
n coefficients suggest that each row with constant

j may eventually be a convergent series for at least some choice of renormalization constants.
Showing that the full tachyon profile converges when these rows are added together, however,
remains impossible until much higher order calculations can be performed. In particular, the

large dependence of coefficients such as β
(3)
6 on C1 is troubling since it suggests that if that con-

stant is of order 1 then the sequence β
(n−k2 )
n with constant k could have increasing magnitudes.
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(a) (b)

Figure 5.3: The falloff of the j = 0 coefficients of the rolling tachyon profile shown as − lnβ
(0)
n

versus n2. A linear graph indicates that βn ∝ e−γn
2

holds, with γ given by the slope. The best
linear fit is also shown. a) The solution shown here, with slope 0.9599. Red points are Suave

values. b) Our solution as well as the other three presented in table 5.3. Square points are for
[5], crosses are for [34], and circles for [35].

Thinking of (5.4) as

T (t) = 2
∞∑
k=0

β
(k)
eff (λ) cosh(kt) , (5.9)

the effective coefficients β
(k)
eff (λ) would then be defined by series which do not converge for

non-zero renormalization constants. Looking at table 5.1, even with vanishing renormalization
constants, the magnitudes of the terms βj2j do not drop off very fast. We know that for small
λ the series is convergent, but this suggests that the radius of convergence in λ may be finite.
This could support either the claim of [22, 51] that there is a second branch with decreasing
marginal parameter, or our result from chapter 3 that the marginal deformation simply has an
unexpectedly finite maximum. Either case would be worth further investigation.

Now that we have seen what the bulk coefficients look like, we can begin examining the
tachyon profile for larger values of |λ|. Of course as we do this we must be aware that we

are missing all coefficients β
(j)
n with n ≥ 7, and as we increase the strength of the marginal

deformation those coefficients will begin to play a larger role, but we can still get a qualitative
idea of the impact of the bulk coefficients on the tachyon profile. Since none of the optimized
fits in figure 5.4 were significantly better than simply setting the renormalization constants to
zero, we will choose that from now on. Other reasonable choices will not give results that are
qualitatively different. For large negative λ we see a tachyon profile in figure 5.5 with fewer
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(a) (b)

(c) (d)

Figure 5.4: Several attempts to determine a trend for the j > 0 coefficients in the rolling

tachyon profile. ln |β(j)
n | is plotted vs. functions of k = n− 2j with several different choices for

C0 and C1. Black points are Cuhre values while red points are from the Suave algorithm. In
a) we set C0 = C1 = 0 and plot j = 1 coefficients on the left and j = 2 on the right. The j = 1
coefficients with C0 and C1 optimized for the best linear fit appear in b), and c) attempts the
same linear fit assuming a k2 horizontal axis rather than k3. d) attempts a linear fit to both
the j = 1 and j = 2 sets of coefficients assuming a k2 horizontal axis, with j = 1 coefficients on
the left and j = 2 on the right.
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oscillations than we had with just the edge coefficients from figure 5.1. As |λ| decreases, the
additional oscillation appears at ln |λ| ≈ −1.948. Once ln |λ| . −2.5 the profile has stabilized
and the plateau continues growing as |λ| shrinks, just as we know it should from our discussion of
the tachyon profile for small |λ|. The disappearance of this oscillation for large |λ| is because the
j > 0 coefficients cannot be neglected in this region, and they change the effective coefficients
in (5.9).

The behaviour we see for these large values of |λ| is not unprecedented; in [34] the tachyon
profile had coefficients (seen in table 5.3) which did not decrease as quickly as other time-
asymmetric solutions. Taking the asymptotic ansatz β ∼ e−γn

2
and decreasing γ beyond a

critical value causes some oscillations to vanish, which is what happens in [34] where some of
the exponentials did not dominate for any range of time. As λ is increased for our solution,
the effective coefficients in (5.9) change in a way that causes an oscillation to disappear. If we
keep increasing λ beyond this point, some of the coefficients will even change sign, but once the
tachyon profile has stabilized with the missing oscillation it does not change significantly. For
λ this large, however, we should not trust our results since coefficients with higher n will have
larger contributions.

Aside from the obvious, that the singular OPE case is a symmetric function where the
D-brane exists for a limited time while with regular OPE it exists until it decays at a finite
time, the qualitative difference between the tachyon profiles seems to be that the period and
number of oscillations can change this way. Because the strong deformation tachyon profile
we have found is similar to the profile of [34], it suggests that changing the strength of the
marginal deformation in the time-symmetric case is much like changing gauge in the time-
asymmetric case. If the late time behaviour is equivalent to the tachyon vacuum under a time-
dependent gauge transformation, as has been hypothesized [35], then in this case the gauge
transformation should depend on both time and the marginal parameter in a non-trivial way.
That our solution appears qualitatively like time-asymmetric ones for both weak and strong
deformation parameter suggests that such gauge transformations remain a valid explanation
of the oscillations in the time-symmetric case, although we are not aware of any examples of
gauges where coefficients have negative sign, so there may be a limit to the range of λ where
this approach is valid.

5.3 Technical Details

It takes a surprising amount of Maple and C++ code to fully construct the solution Ψ for a
marginal deformation with singular self-OPE and then evaluate the integrals corresponding to
its tachyon profile. This section describes what steps are necessary and why, as well as some
of the limitations that remain. Despite the limitations, this ends up being general enough
to calculate more than just the tachyon profile of the solution, so the action and equation of
motion are also considered. This section gives a rough description of the program used, with
a focus on what it is and is not able to do. To see precisely how these steps are accomplished,
appendix B contains the full commented code used. We then study a few tests of the validity
of the program by using it to calculate known quantities.
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(a) (b)

(c) (d)

Figure 5.5: The tachyon profile of the time-symmetric rolling tachyon solution. We plot the
log of the tachyon profile at a) ln |λ| = −0.5, b) ln |λ| = −1.92, c) ln |λ| = −1.98, and d)
ln |λ| = −2.5. Positive values represented by black, negative values by red. The renormalization
constants C0 and C1 are both set to zero.
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5.3.1 Conventions

The first step in writing a program to perform calculations on wedge states with operator
insertions is to decide how the mathematical objects will be represented. Maple has datatypes
for mathematical expressions, but in our case we need more. A wedge state is a semi-infinite
cylinder with a given circumference, and operators are inserted at varying locations which
for our purposes will always be on the boundary. We define the wedge datatype as a three-
part list containing the width of the wedge, a set of variables with their (possibly integrated)
positions in the wedge, and finally the list of operators to insert, along with any constants.
When we add wedges, we do not want a wedge with circumference equal to the sum of the two
wedges’ circumferences any more than we would want one with the arithmetic sum of two sets
attempting to describe the insertion locations. In order to avoid this, all wedge sums should be
written using the inert operator &+ to avoid Maple’s default behaviour of adding lists element
by element. &+ is treated as a binary operator and can be used infix, but has no evaluation
rules and will be left alone by Maple’s simplification routines.

When we eventually perform calculations, we will have to truncate to a finite number of
marginal operator insertions, or equivalently a finite order in the marginal parameter λ. As
the order increases, the number of terms will increase very quickly, and if we are not careful
the execution time for simple operations such as the star product will become a problem. To
help with this, we will define an alternative form of the wedge state datatype. This is called
wpoly and has the same first two items as the wedge type, but the third term representing the
operators to insert is replaced with a list representing the taylor series of those operators in
λ. When only a given order in λ is desired, parts of this list which give results at too high an
order can be skipped. We then define a few more labels for determining the type of an object
for conditional processing: wsing evaluates to either of wedge or wpoly, wsum is a sum of wsing
types added using &+, and wtype evaluates to either of wsing or wsum and so covers all wedge
state types.

Multiplication in Maple is naturally commutative, so keeping track of ghosts requires some
extra thought. I have chosen to represent the ghost operators using the functions c(t) and
dc(t) which are undefined and will never be evaluated. For most situations the order of ghost
insertions is defined by their ordering along the boundary. c(1)*c(2) means c(1)c(2), and
so does c(2)*c(1), while to get c(2)c(1) we would need to write -c(1)*c(2). A problem
arises, however, when two ghosts are coincident, as in c∂c(t). In this case I chose to break the
tie lexicographically using the name of the insertion location. This means that c∂c(0) must
be represented by something like c(t[1])*dc(t[2]) where the insertions will only be set to
0 once the expectation value has been taken and there are no more ghost operators in the
expression. Because of this, two ghosts should never be inserted using the same coordinate,
and care must be taken when creating wedge states to guarantee that the sign is correct for the
ghost insertions given.

5.3.2 Basic Functions

With our datatypes defined, we can now move on to begin writing routines to manipulate them.
The most obvious operation we will perform on wedge states is the star product, which we will
do with a function called star. This takes two or more wedge states or sums of wedge states
and multiplies them from left to right. The danger in this is apparent when we consider an
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example like A ∗ A, where both copies of the wedge state A would have their insertions at the
same locations. In addition to shifting all insertions in the second wedge state to the right by
the circumference of the first wedge state, we must ensure that the name of the coordinate used
to label those locations is unique. For this, I wrote a subroutine called newvar, which renames
variables to prevent conflicts. The star function must be careful to call this on the coordinates
in the second wedge state in lexicographic order so that the ordering is preserved and the ghost
factors will not inadvertently change sign. Our star product can take an additional named
parameter, LAMBDA MAX, which will truncate the resulting string field to the given power of λ.
This is especially efficient when all wedge states to be multiplied are given in the wpoly form.

At times it can also be very useful to be able to simplify expressions involving inert sums of
wedge states. For example, in a long sum many terms can become zero when acted on by the
BRST operator or truncated to a given order of λ, so the function plus0 will identify vanishing
wedge states and remove them. This function will also flatten sums, effectively removing extra
parentheses in what is an associative operation. When the operator content of a wedge state
can be expanded, there is wexpand to do this and make each term its own wedge state, and the
function wcombine attempts to perform the inverse operation. As with addition, multiplication
of a wedge state by a scalar should not be done with the standard Maple multiplication operator
because that would multiply each item of the list that represents the wedge state. Instead, there
is ctimesw to multiply the operator content of a wedge state by any expression and leave the
rest of the wedge unchanged. Finally, when we want to examine only one component of the
taylor series in λ, there is pickoff to return the taylor coefficient wedge state of its input at a
given order. Of course pickoff is extremely simple for wpoly types.

All of the basic operations we have seen in this section apply equally to all wedge datatypes.
There are alternative cases for the wedge and wpoly types, and they properly distribute over
the inert addition &+.

5.3.3 Known Wedge States

We now turn our attention away from the basic operations defined on wedge states, and towards
the computation of the specific solution found in [36] and reviewed in chapter 4. The first wedge
states which are defined are zero and the star product identity, each coming in both wedge and

wpoly versions. The solution is built from the string fields AL and U , as well as the powers U
1
2

and U−
1
2 . Each of these string fields is in turn defined as a sum of wedge states with insertions.

So far we have talked about manipulating wedge states with insertions, but we have not
discussed what those insertions are. The renormalized integrated operators we found in chap-
ter 4 are complicated constructions which will each need to be created before they can be
used in numerical calculations. The operators we will need are [V (a, b)n]r,

[
V (a)V (a, b)n−1

]
r
,[

V (a, b)n−1V (b)
]
r
, and

[
V (a)V (a, b)n−2V (b)

]
r
. Because the action of the BRST operator on all

but the last of these is well understood from the assumptions (4.5a) and (4.5b), expanding them
in terms of bare marginal operators and counterterms too early would be a mistake. Instead
we will make use of inert functions, as we did with addition, and name these renormalized
operators V ren, V L ren, V R ren, and V LR ren respectively. Each of these should be given
five parameters, representing the total number of marginal insertions, n, the left and right end-
points, a and b, a list of the variable names where the marginal operators are to be inserted, and
a name used for the total circumference of the wedge state the operator is inserted on. The last
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parameter is never used when the operators are defined by our little g renormalization scheme,
but the sample scheme of [36] which is discussed in section 4.3.5 requires it, so we will include
that parameter for backward compatibility. Once all operations which are simpler on the to-
tal renormalized operators have been performed, the inert functions representing them can be
replaced with active ones that use bare insertions of the marginal operator and counterterms.
The active functions are named V r, V Left, V Right, and V LR.

The active functions representing renormalized operators insert counterterms using the lit-
tle g scheme, which depend on the insertion coordinates. They are inserted for every pair of
coordinates, as in ◦◦

∏
V (ti)

◦
◦g, with the fully symmetrized integrand being finite at all coordi-

nates, as described in (4.88) of section 4.3.2. The counterterms to be inserted are the functions
G r, G Left, and G Right. The capitalization of the counterterms in the code goes back to the
use of the two-point function in [36], but the functions they represent are the correct little g
scheme terms. Finiteness of the integrand is important for numerical calculations. If we were to
try something like a big G scheme where the integrals of the marginal operators are regulated
by ε and the counterterms are explicit functions of ε, actual integration would be extremely
difficult. First we would have to implement the regulated integration regions, which are not
simple at all, and then we would have to perform the integrals many times so that the limit in
ε could be taken numerically. This is not practical, so instead we guarantee that the integrands
are always finite and then integrate over unregulated regions once. The minor disadvantage of
this approach is that we cannot integrate terms in the result separately, since they may have
cancelling singularities. The more serious related problem occurs when the divergent terms
being added to give a finite integrand have differing rounding errors. This will be considered
in more detail in section 5.3.7.

Once renormalized integrated operators are defined, we can begin using them to make
string fields. The string field U is given order by order as a wedge state with n fully integrated
operators inserted between 1 and n. The 0th order of U is defined to be the star product identity,
and this means that functions of U can be defined in terms of Taylor series of the function about
1. The first order term in U vanishes because it consists of a single (non-renormalized) operator
integrated over a vanishing region. The function Utail returns the string field U − 1 for use
in these Taylor expansions. Specifically, we need Uinv, Usqrt, and Uinvsqrt, which return the

string fields U−1, U
1
2 , and U−

1
2 in the wpoly type. Finally, we also define the functions A L

and A R to give the corresponding string fields in wpoly form. It is worth mentioning that
since the wedge states used for both U and AL/R have different circumferences at each order
in λ, each order must be its own wedge state and the lists representing the Taylor series of the
operator insertions will each have only one non-zero element.

The solutions Psi L real, Psi R real, Psi L, and Psi R all have simple definitions in terms
of the string fields defined so far. As in [36], they are

Ψ =
1√
U
AL

1√
U

+
1√
U
QB
√
U , (5.10a)

=
1√
U
AR

1√
U

+
√
UQB

1√
U
, (5.10b)

ΨL = AL
1

U
, (5.10c)

ΨR =
1

U
AR . (5.10d)
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The real solutions Ψ in the first two lines are equal, while ΨL and ΨR are related to Ψ by
gauge transformations. Having several forms of the solution is useful for debugging, since we
can compare calculations. The number of terms in each of these forms of the solution grows
very rapidly as the order in λ is increased, but it is still possible to do 6th order calculations in
a very reasonable amount of time.

The last string field we will need is the conformal patch. When we define string fields in
terms of wedge states with insertions, what we are really saying is that the string field Φ is
such that its overlap with an arbitrary test state is the same as the expectation value of the
operator corresponding to the test state φ inserted on the corresponding wedge state. See also
the discussion of (2.22). The test state we will be using is quite simple, having ghost number
two and no matter content except for an amount of momentum in the time direction. The
operator corresponding to this test state is, up to the conformal factor going from the upper
half plane to Schnabl frame,

φ(0) = ∂c(0)c(0)ekX
0(0) . (5.11)

We implement this by defining a wedge state with width 0 and the appropriate operator content,
so that when it is multiplied by a wedge state the result has all of the operators needed for the
expectation value in question, all inserted in the correct positions. The zero width is so that
this conformal patch does not alter the circumference of the resulting wedge state.

5.3.4 The BRST Operator

In the construction of the solution Ψ, the BRST operator is not terribly complicated. This is
because it only acts on U±

1
2 which has ghost number zero and no fixed operators. In this case

only an implementation of the first BRST condition (4.5a) is needed. Acting separately on each
term in a sum of wedge states, Q B goes through any product of renormalized operators and
replaces each one with the sum of terms representing the right hand side of

1

n!
QB [V (a, b)n]g =

1

(n− 1)!

[
V (a, b)n−1cV (b)

]
g
− 1

(n− 1)!

[
cV (a)V (a, b)n−1

]
g

+
1

(n− 2)!

(
O

(2)
R (b)−O(2)

L (a)
) [
V (a, b)n−2

]
g

(5.12a)

where

O
(2)
R (b) =

1

2
∂c(b) + CLc(b) , O

(2)
L (a) = −1

2
∂c(a) + CLc(a) . (5.12b)

As we have already mentioned, in this chapter we assume that CR = CL, but do not neglect
that constant.

While this is all we need in order to construct the solution, if we wish to test the equation
of motion we will need to implement the second BRST condition (4.5b). This raises a number
of additional issues for a clear definition of QB. One obvious difficulty is in the fact that QB is
a graded derivation satisfying QB(A ∗B) = (QBA) ∗B + (−1)GAA ∗ (QBB). For wedge states
with insertions of operators such as [cV (a)V (a, b)n1 ]g [V (c, d)n2 ]g we want to have QB act on
the first renormalized operator as a whole without picking up a sign change from acting on
operators to the right of a ghost until it gets to the second renormalized operator. This is an
issue whenever the fixed operator does not appear in the last renormalized group. To do this,
for the purposes of determining sign we view integrated operators as being inserted at their left
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endpoint, and ghosts as being inserted slightly to the right of where they actually are. Then
by considering the action of QB on all operators from left to right and changing sign whenever
we pass a ghost, the signs will be correct.

The other problem with applying the BRST operator to operators of ghost number one
comes from the fact that we are treating the matter and ghost parts separately, whereas in
section 4.3.6 we had to consider them together so that the ghosts could properly soften some of
the divergences. What we will do is assume that QB only acts on renormalized operators with
one fixed insertion in the form

[
cV (a)V (a, b)n−1

]
g

or the right handed version; there is always
a c ghost included with the fixed insertion. We then take the result

QB

([
cV (a)V (n−1)(a, b)

]
g
− 1

2

[
∂c(a)V (n−2)(a, b)

]
g

)
= −

[
cV (a)V (n−2)(a, b)cV (b)

]
g

− 1

2

[
cV (a)V (n−3)∂c(b)

]
g

+
1

2

[
∂c(a)V (n−3)(a, b)cV (b)

]
g

+
1

4

[
∂c(a)V (n−4)(a, b)∂c(b)

]
g

(5.13)

and rearrange it to get

QB

[
V (a)V (n−1)(a, b)

]
r

eff
= −

[
V (a)V (n−2)(a, b)V (b)

]
r
c(b)−

[
V (a)V (n−3)(a, b)

]
r
O

(2)
R (b)

− 1

c(a)
O

(2)
L (a)

[
V (n−3)(a, b)V (b)

]
r
c(b)− 1

c(a)
O

(2)
L (a)

[
V (n−4)(a, b)

]
r
O

(2)
R (b)

− 1

c(a)
O

(2)
L (a)

[
V (n−3)(a, b)V (b)

]
r
c(b)− 1

c(a)
O

(2)
L (a)

[
V (n−4)(a, b)

]
r
O

(2)
R (b)

−O(2)
L (a)

[
V (a)V (n−3)(a, b)

]
r
− 1

c(a)
(O2

L(a))2
[
V (n−4)(a, b)

]
r
. (5.14)

The notation used here is
[
V (n)(a, b)

]
r

def
= 1

n! [V (a, b)n]r, which is standard in [36] and is con-
venient for writing renormalized operators which have an exponential form. The right handed
version of this is

QB

[
V (n−1)(a, b)V (b)

]
g

= −c(a)
[
V (a)V (n−2)(a, b)V (b)

]
g
−O(2)

L (a)
[
V (n−2)(a, b)V (b)

]
g

−
[
V (n−4)(a, b)

]
g
O

(2)
R (b)O

(2)
R (b)

1

c(b)
−
[
V (n−3)(a, b)V (b)

]
g
O

(2)
R (b) . (5.15)

Obviously these cannot be used if they are not multiplied by c(a). We have also assumed that
QB does not act on the ghosts. In reality this is not true, but as long as ghosts appear only in
the specific combinations of OL/R produced by (4.5a) we can pretend that QB only acts on the
matter sector and combine the ghost part into those results. That is the approach taken here,
and while it is definitely a hack from the point of view of all allowed renormalized operators, it
is enough to produce correct results for the string fields we are interested in, namely those used
in the solution Ψ, as well as the equation of motion and the action evaluated on the solution
Ψ.

The BRST code which replaces one operator with another is quite dense so I will explain

one term in detail. The term − 1
c(a)O

(2)
L (a)

[
V (n−3)(a, b)V (b)

]
c(b) coming from the third and

fifth terms in (5.14) will be our example.
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877 grandterm[i]:= grassign*subsop (1=op(1,grand[i]) -2,4=[op(3..op(1,

grand[i]) -1,op(4,grand[i])),op(4,grand[i])[2]], V_R_ren(op(

grand[i]))):

878 outw:=outw &+ [expr[1], remove(has ,remainv ,op(4,grand[i])[op(1,

grand[i])]) union map((x->lhs(x)=op(2,rhs(x))),removev)

,‘*‘(-2,OL2(op(4,grand[i])[1]),c(op(4,grand[i])[2]),op(remove(

has ,grandterm ,c(op(4,grand[i])[1]))))]:

The first line alters the call to the inert function representing a renormalized integrated operator.
The maple function subsop performs substitutions which replace the operands of its argument.
In this case the first operand of V L ren is reduced by 2 since there are two fewer insertions of
the marginal operator, and the fourth operand is changed from [t1, . . . , tn] to [t3, . . . , tn−1, t2].
The operator itself is then changed from V L ren to V R ren without any further changes to its
arguments. In the second line we see the construction of the wedge state to be added to the
output. In the coordinate selection part, the integrated t2 coordinate is replaced with t2 = b
by removing it and then taking the union with the removed coordinate evaluated at its right
endpoint. Finally, the product ‘*‘(...) gives the operators inserted along the boundary. The
initial 2 comes from the sum of the third and fifth terms in (5.14), and then the ghost operators

O
(2)
L and c are inserted at the left and right hand endpoints respectively. The remainder of the

operators are inserted at the end, with the exception of c(t[1]), which is removed from the
product.

5.3.5 Expectation Values

The string fields we are interested in are defined by having the same overlap with an arbitrary
test state as a given collection of wedge states with insertions. We have now described everything
needed to produce those wedge states with insertions, and include an insertion for a useful class
of test states. This leaves us with the question of how to find those CFT expectation values.
This will be done in two steps, with the algebraic work to produce integrands done in Maple,
and the numerical integration done in C++.

The algebraic portion of the correlation functions is found with the function corr. The first
step is to replace all of the inert renormalized operators with active ones and then wexpand the
result so that each wedge state contains a single product of operators and functions. Next we
go through the operator content and collect each type of operator. Obviously, it is not possible
to handle every operator which exists in the CFT, but the only ones we need for our purposes
are ekX

0(t), c(t), and ∂c(t). If we want to see how other marginal deformations compare, the
deformation ∂X has the same self-OPE as the rolling tachyon

√
2 coshX0, so we also allow this

operator in addition to the previous three. In the matter sector this is implemented by going
to the upper half plane where we have

〈
n∏
i=1

eiki·X(ti)
m∏
j=1

∂sjX
µj (sj)

〉
= lim

α→0

〈(
n∏
i=1

eiki·X(ti)

) m∏
j=1

∂sj
α
eαX

µj (sj)

 e−α
∑m
j=1X

µj (u)

〉

= lim
α→0

m∏
j=1

∂sj
α

∏
i<i′

(ti − ti′)2α′ki·ki′
∏
i,j

(ti − sj)−2iα′αk
µj
i

∏
j<j′

(sj − sj′)−2α′α2δ
µj′
µj . (5.16)
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The ghost sector is easily represented in Schnabl frame, where we can use the result from
equation (D.11) of [25],

〈c(x)c(y)c(z)〉Wπ−1
= sin(x− y) sin(x− z) sin(y − z) . (5.17)

The matter sector result is only valid when
∑n

i=1 ki = 0 so that momentum is conserved, and
the ghost factor will be zero unless the ghost number is three. Both of these restrictions are
checked for, and zero is returned if either one is not satisfied.

So far, the correlators have been done on the operator content without using the second
element of the wedge datatype which says where the insertions really are. Now the list of
coordinates is separated into those which are integrated and those which are fixed. For each
integrated coordinate, the expectation value is wrapped in Maple’s inert integration function,
Int, so that excessive execution time is not wasted trying to evaluate the integrals at this stage.
For each fixed insertion, an attempt is made to substitute the insertion location for the variable
name. This may fail if, for example, diametrically opposed insertions on the wedge state cause
a divergence which is cancelled by the conformal factors. If direct substitution fails, a limit is
used instead, and if that still cannot be evaluated for whatever reason an inert limit function
is used. Fortunately, the solution is well enough behaved that the inert limit should never be
needed.

5.3.6 Handling and Exporting Integrands

As a result of the corr function, we now have a long sum of integrals, many of them multi-
integrals. Each integral represents one product of matter exponential and ghost operators
appearing in the quantity being evaluated. As we have mentioned, these integrals are unreg-
ulated because we are using the little g scheme which has finite integrands. At this point,
however, many of the integrands are still divergent because a single product of (unrenormal-
ized) operators is naturally divergent in this setup. Only when all of the terms associated with
a renormalized operator are added together do we have a finite integrand. Since the integrals
are unregulated we have to add the integrands before we can integrate. Some numerical inte-
gration routines require that the region of integration is the unit hypercube, (0, 1)n. Of course
it is a simple matter to rescale functions at the time of integration, but by making the change
of variables at this point, the process of adding integrands is simplified. Instead of searching
through all of the terms to identify which ones have matching integration domains, the function
to cube rescales every integrand to be integrated from 0 to 1, and then simply adds all terms
which are integrated over the same dimension. This gives sums with even more terms than we
needed for finiteness, and would only be an issue if we were interested in finding the values of
specific terms separately.

In order to perform the integrals using C++ routines, we need to output the integrands
that we have produced so far to a file. A single file containing a hundred integrands as C++
functions would require a great deal of work to incorporate into a working program, so we
include code to keep track of what should be done to each of those functions, and even what
output to print with descriptions of each term. The function tacconst is set up to do all of this.
First it constructs the solution at a given order in λ, and optionally the action and equation
of motion. Next it finds the tachyon profile of the solution, and if the equation of motion was
computed the overlap of that with several ghost number one test states, as unevaluated integrals.
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Now each of those quantities is still a function of the renormalization constants C0, C1, and
CL, but because of the structure of the renormalization scheme, they are actually polynomial
functions, so by differentiating we can separate the integrals into Taylor coefficients. Now by
treating each of these Taylor coefficients as a separate integral to be computed, the integrands
are entirely floating point functions which can be evaluated and integrated numerically. A line
is then written to a file to call a C++ function called CubeInt on each of these integrands,
since that is what we will call the function to integrate over the unit hypercube. After that,
printf statements are written to the file which will output a few characters describing what
quantity is being given, followed by the reconstructed Taylor series for that quantity with the
Taylor coefficient integrals replaced by their floating point results. Finally, each of the integrand
functions is written to the file. This is done at the end because they can often make up many
megabytes of text, and it is easier to separate them into a header file if they are all together.

5.3.7 Numerical Integration

The integration is handled by off-the-shelf C++ routines. The CUBA library appears to be
a good choice in most cases [52].4 It is a collection of four algorithms for multi-dimensional
numerical integration, three of which use pseudo-random sampling while the fourth is a deter-
ministic algorithm. Since we are working at sixth order in λ and the solution has ghost number
one (corresponding to the number of fixed moduli), there are never more than five integrated
coordinates in a given integral. While Monte Carlo algorithms do scale better as the dimension
rises, in five or less dimensions it appears that the deterministic algorithm, Cuhre, is slightly
more efficient. As we will see, Cuhre is also more reliable in most cases. Unfortunately, it
only integrates functions of more than one variable, so in the one-dimensional case we use the
QAG routine from the GNU scientific library.5 Each of the routines in the CUBA and GNU li-
braries provides its own error estimate, and the CUBA library routines also provide a chi-square
estimate of the probability that the error is sufficient.

A single quantity to be calculated numerically, such as an individual term in the tachyon
profile of table 5.1 or in one of the consistency checks of tables 5.6 and 5.7, generally consists
of a small number of integrals. Each integral contains all of the terms in the solution which are
integrated over a given number of coordinates, or equivalently all of the terms with the same
number of integrated operators. Most quantities are the sum of two integrals, but a few are
only a single integral, and quantities in the action can consist of more than two.

Convergence

In order to get as much data as possible, the collection of integrals we look at here will include all
of the ones used in calculating the tachyon profile as well as the action and several components
of the equation of motion. The action and equation of motion will be discussed as checks of
consistence later in this section.

It is difficult to study convergence of the one-dimensional integrals due to the fact that the
QAG algorithm does not report the number of samples used. We can, however, take several full
sets of data for these integrals and compare the different calculations of the same integrals. We

4The CUBA library is distributed from http://www.feynarts.de/cuba/.
5The GNU scientific library is found at https://www.gnu.org/software/gsl/.
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find that they all agree with each other well within the error estimates. The only troubling
one-dimensional case is that of a constant integrand. This can be seen in the kinetic energy of
the solution at fourth order in λ, which is the particularly simple quantity

∫ 1
0 dt

3
2 −

3
2 . The

integration algorithm performs operations on the constant causing tiny roundoff errors which,
when the constant value is subtracted, causes the result to differ from zero. This would not
be a problem except that error analysis in numerical integration is based on variation of the
integrand, and as such gives an estimated error which is extremely small. While in principle
error estimates should account for the roundoffs inherent in their algorithm, in practice this does
not seem to be the case. The error estimate becomes small enough that the reported result can
actually be incorrect, and even unstable with respect to changing the desired accuracy. Most
integrands worth using a numerical algorithm to integrate undoubtedly vary enough that this
is not normally an issue. This is the only instance of such a problem that we encounter, but
since the integral is trivial we do not need to rely on numerical integration for its value.

We now turn our attention to the Cuhre algorithm, so we will only be considering integrals
over two or more dimensions. The first question we will ask here is whether the error bars
reported by the integration algorithms are sufficient. Because we do not know the correct results
for most of the integrals, we evaluate each integral with at least three different choices for the
sample size, N . Making the assumption that the calculation with the largest N is “correct”, we
can compare the difference between each computed integral and the most accurate one to the
error estimate reported by that integral. This is shown in figure 5.6a, where blue points have
sufficient error bars and green points are within twice the error bars. The few red points are the
outliers which differ from their largest N partners by more than twice their error estimates. In
a moment we will compare every computed integral with other calculations of the same integral,
so the red points here will also have greater than 2σ difference in that comparison. Many of
these points come from the same integrals, so there are actually not very many integrals which
will need to be examined in detail. Our choice to prefer the Cuhre algorithm over the adaptive
Monte Carlo algorithm Suave is justified by figure 5.6b, where we see that the Suave algorithm
is as likely as not to underestimate the error. In its defence, Suave frequently reports a 100%
χ2 estimate that the reported error is insufficient, but this is not particularly helpful in finding
accurate values.

The Suave algorithm can still be useful for comparison, however. Its error bars are not
helpful, but if the same quantity computed in Cuhre and Suave differs by more than a few
percent it is worth closer examination. This is how the two terms marked with asterisks in
table 5.1 were identified. The integrals responsible for the troublesome behaviour of these two
quantities are plotted in figures 5.7a and 5.7b. There were some other terms which were flagged
by this test, but they converged reasonably well once the sample size was increased sufficiently.

With many integrals each calculated for several different values of N , we have a sizeable
collection of data to examine. Among the 848 Cuhre integrals, there is only one instance of
the error estimate increasing as the sample size was increased, so we can safely say that the
reported error bars decrease monotonically as N → ∞. We can then examine the quantity
|xi−xj |√
∆x2i+∆x2j

for every pair of calculations of the same integral. We find that 88% of pairs are

within σ of each other, while 94% are within 2σ. Those which disagree by more than 2σ can
be studied individually, since they correspond to only 15 different integrals. Of those, four only
disagree due to a single computation each with very low N (about 500 samples) that has a 50%
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(a) (b)

Figure 5.6: Plots showing the reliability of error estimates. The vertical axis is the difference of
two calculations relative to the more precise of the two, and the horizontal axis is the relative
error reported by the numerical integration. The Cuhre algorithm results are shown in a) and
Suave results are in b). Points with differences greater than twice the reported errors are red,
those with differences between one and two times the error are green, and those with error
estimates large enough to cover their difference from the “best” value are blue.

χ2 chance of being incorrect. One of the remaining 11 integrals is also the one responsible for

the tachyon profile coefficient β
(0)
6 , so adding in the integral responsible for the other flagged

term in table 5.1 we have 12 integrals to examine. These are plotted with various values of N
in figures 5.7 and 5.8. The values and their error bars are shown in blue, and when appropriate
to the scale of the plot the corresponding Suave results are also shown in green.

The first two plots represent the parts of the tachyon profile for which we used the Suave

results. In figure 5.7a the problem is not that the results are inconsistent, but that the errors are
so large that the results are meaningless. It looks likely that as N is increased the results will
continue to converge to something quite close to the Suave result. For the other integral, figure
5.7b shows that as N is made extremely large we finally find something like the much more
consistent Suave results. The slope, however, does not yet appear to be significantly slowing
down, so we cannot be sure that it is convergent. The rest of the plots in figures 5.7c-5.7e show
the other integrals that contribute to the tachyon profile and have more than a 2σ variation
between points. They all show signs that once N is sufficiently large they converge quite well.
Only for smaller N do the error estimates appear to be insufficient.

Moving on to integrals which contribute to consistency checks, in figure 5.8 we see that the
majority are fine. Only 5.8c does not appear to converge. As with the examples shown in figure
5.7, this may well be linear until some critical N where it begins to converge. In addition, while
only the quantities composed of small sums of these integrals are supposed to vanish, in many
cases each of the integrals will vanish independently. These seven examples all become closer
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(a) (b)

(c) (d) (e)

Figure 5.7: Several integrals from the tachyon profile calculated with different values of N . The
error bars are those reported by the Cuhre algorithm. When the Suave algorithm gives results
which fit on the same scale they are included as the green data.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.8: Several integrals from the consistency checks calculated with different value of N .
The error bars are those reported by the Cuhre algorithm. When the Suave algorithm gives
results which fit on the same scale they are included as the green data.
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to vanishing as N is increased, and only 5.8f is not getting very close to zero. Convergence of
these results does not appear to be very much of an issue, and I expect that if we continued to
increase N by another factor of ten they would all continue to approach zero.

Roundoff errors

Each integrand may contain a number of terms which are divergent either on the boundary
of the region, ti ∈ {a, b}, or on a diagonal, ti = tj . While the renormalization is designed
specifically so that these divergences will cancel, individual terms evaluated near these regions
can be very large. Because we are limited to the double precision floating point datatype, each
term has a relative precision of approximately 10−16. Any time an individual term is more
than 1016 times the theoretical value of the integrand evaluated at the same point, the machine
uncertainty coming from that term can dominate the result. We would hope that since this only
happens for a small subset of the points sampled the effect will be negligible as the number
of points increases, but this is not the case. If we take a random sample of N points, as is
done for Monte Carlo integration, we would expect the closest point to a given boundary (or
other codimension 1 subspace) to be ∼ 1

N away. Individual terms, however, often have a 1
t2

divergence from the OPE of the marginal operator, which would lead to ∼ N2 divergence for
the closest point. This grows faster than the denominator, N , so the roundoff error in the
resulting integral should increase linearly with the number of points. The deterministic case is
actually worse because some points are intentionally chosen near or even right on the boundary.
To combat this, whenever a sample point is close to a boundary or a diagonal, we can replace
it with a nearby point giving a decent approximation to the integrand. The integrand function
is effectively replaced by one where the value is held constant on small strips. While this
means that a perfect integration with no uncertainty would give an incorrect result, the errors
introduced this way are less problematic than the roundoff errors when we sample many points
without any regulation.

When we discussed the differences between the big G and little g renormalization schemes,
I mentioned that the lack of a regulator was an advantage of the little g scheme. Here we have
introduced another regulator, so we naturally ask why this is not a problem. The regulator in
the big G scheme was required by the theory in that scheme, and we wanted the limit as it
approached zero. This regulator is to prevent roundoff error, which is the unavoidable result
of using a floating point datatype. Since we are regulating the integration region anyway, we
might ask why (aside from issues regarding finiteness at higher orders) we did not use the
big G scheme. By using the little g scheme, the integrand is independent of the regulator,
which simplifies the integration process. There is not a different integrand for each value of the
regulator, and instead of a limit, we only use a small value of the regulator, namely 3 ·10−4, for
which the integrands always evaluate with negligible errors. The choice of regulator for these
roundoff errors is arbitrary, but we can estimate the error we have introduced by using the
same regulator to replace the value of the integrand with zero near boundaries and diagonals.
Fortunately, the differences are minor compared with the statistical errors which are accounted
for by the algorithms’ reported uncertainties.
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Consistency checks

Since the programs to construct wedge states with insertions and produce and evaluate integrals
corresponding to the tachyon profile are quite complicated, it is worth using them to evaluate
some known quantities. We will see that the numerical integration process gives results which
are consistent with expectations the majority of the time, despite the presence of counterterms
and the uncertain nature of numerical integration. An obvious choice for a quantity which we
know is the equation of motion, which should vanish. The equation of motion, however, has
ghost number two, which means that its expectation value by itself will trivially vanish because
the ghosts are not saturated. In order to test that QBΨ+Ψ∗Ψ vanishes we test that its overlaps
with various other string fields all vanish. Because the equation of motion is stronger than just
requiring that the equation of motion annihilates all states and actually tells us that it should
vanish exactly, as long as the string field is constructed properly these correlation functions
should work out to zero whether they themselves were computed correctly or not. In order
to test that a non-trivial result also gives the correct answer, we look to the action. Because
this is an exactly marginal solution, we expect the energy to vanish, and because the energy is
proportional to the action, the action should vanish as well. The action has ghost number three
and does not need any additional test states inserted. That this also vanishes is our first strong
test that non-trivial expectation values are computed successfully. A summary of these test
calculations and their results using the deterministic algorithms is found in tables 5.6 and 5.7 at
the end of this section, and all of them are expected to vanish. The majority of the results are
consistent with zero, but a few exceptions require detailed examination. These six examples are
in table 5.4, which restates their values using the deterministic algorithms and then includes the
corresponding results with Monte Carlo calculations and with deterministic calculations using
a vanishing integrand near borders and diagonals where cancelling singularities may occur.

The values in tables 5.6 and 5.7 all use a border with width ε = 3 ·10−4. When the integrand
is sampled within ε of a boundary or a diagonal, the closest point on the edge of this strip is
used instead. In the last column of table 5.4, when the integrand was sampled at points within
these strips, zero was returned instead. The difference between these results gives an estimate
of how important the regulated region is to the final result of the integral, and we can see that
in most cases it is small compared to the error estimates.

Looking at table 5.4, the first two quantities, 〈ceX(0)
,EOM(3)〉 and 〈Ψ(1),EOM(3)〉, have

very similar behaviours because the second integrand is
√

2 times the first. They are one
dimensional integrals, so we can do them analytically and find that the results are exactly
zero. The integrands for these two are increasing as they approach each of the boundaries,
which would suggest that the discrepancy comes from the regulated region, but the results
with 0 inserted near the boundaries are identical. In fact, the QAG algorithm always seems
to give identical results with either choice of regulation near the boundaries, suggesting that
that it does not pick points too close to the limits of integration. If we redo these integrals
requesting much higher accuracy, however, we find results which are less precise but consistent
with zero. Perhaps requesting a higher accuracy causes the algorithm to notice the cusp where
the regulated strips at the boundary are, and that increases the error estimate. The kinetic
energy at fourth order is a peculiar case of rounding errors, and it was already discussed in
the context of convergence. None of the integration algorithms is correct all of the time, and
we should not expect them to be, but QAG is problematic because it gives less control over the
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Quantity Cuhre/QAG Suave Cuhre/QAG with 0

〈ceX(0)
,EOM(3)〉 (−6.1± 0.6) · 10−11 (4.1± 0.4) · 10−4 (−6.1± 0.6) · 10−11

〈Ψ(1),EOM(3)〉 (−8.5± 0.8) · 10−11 (6.1± 0.7) · 10−4 (−8.5± 0.8) · 10−11

〈Ψ, QBΨ〉(4) (−8.7± 1.2) · 10−10 (−1.5± 1.3) · 10−2 (−8.7± 1.2) · 10−10

∂
∂CL
〈ce3X0

,EOM(5)〉 (6.2± 2.1) · 10−5 (−0.3± 1.1) · 10−6 (−0.4± 1.3) · 10−4

∂
∂C0
〈c,EOM(6)〉 (−2.2± 0.5) · 10−4 (8.7± 7.8) · 10−4 (0.1± 2.1) · 10−2

∂
∂C1
〈Ψ(3),EOM(3)〉 (−3.0± 0.2) · 10−8 (−5.1± 0.7) · 10−4 (0.8± 1.7) · 10−3

Table 5.4: Numerical results for consistency checks which require further analysis. Among the
results which are expected to vanish, these six have deterministic results which do not. They
are given using the standard deterministic algorithms Cuhre and QAG, using the adaptive Monte
Carlo algorithm Suave, and using the deterministic algorithms with the integrand replaced with
0 on the regulated strips near potential singularities instead of using the value of the integrand
at a safe nearby point.

sample size and does not report the total number of points it uses. We cannot show these
results with different sample sizes, as we do for other quantities of interest. Because these are
one-dimensional integrals, however, we can expect that the majority of them will be computed
very accurately.

For the other three quantities, the integrals are multidimensional so we can evaluate them
using the Cuhre algorithm with several different sample sizes and see if they become closer
to zero. This is shown in table 5.5. The first two of these both have error estimates that
decrease as the sample size is increased, and values that decrease even faster. For the first,
we see agreement once the sample size is large enough, and for the second we can suspect
that the result will continue to tend towards zero. The most important integrals in these two
quantities were shown in figures 5.8a and 5.8d respectively, where we can see the convergence
to 0 as N is increased. In the case of the final quantity, however, the result clearly does not
vanish. If we change the thickness of the regulating border, however, it causes a significant
fluctuation, and for extremely thin borders both the result and the uncertainty become much
larger. This suggests that it is a genuine case of the border region having a significant impact.
Unfortunately, the only way to resolve this issue would be to use higher precision floating point
datatypes.
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Algorithm Quantity Result Dimensions and Sample Sizes

Cuhre ∂
∂CL
〈ce3X0

,EOM(5)〉

(6.2± 2.1) · 10−5

2

16055

3

32131
(3.7± 1.6) · 10−5 18005 54229
(2.3± 1.3) · 10−5 25545 76581
(0.2± 1.7) · 10−6 81055 243205

Cuhre ∂
∂C0
〈c,EOM(6)〉

(−2.2± 0.5) · 10−4

3

32131

4

64107
(−7.1± 2.6) · 10−5 54229 162027
(−4.0± 1.7) · 10−5 76581 229347
(−9.1± 5.2) · 10−6 243205 729045

Cuhre ∂
∂C1
〈Ψ(3),EOM(3)〉

(−2.96± 0.19) · 10−8

3

32131
(−2.99± 0.13) · 10−8 54229
(−2.99± 0.11) · 10−8 76581
(−3.01± 0.06) · 10−8 243205

Table 5.5: Three of the consistency checks in table 5.4 are shown with different sample sizes.
The first two are computed as the sum of two integrals with different dimensions, while the
third is a single integral. We expect to see results which tend towards zero as the sample size
is increased.
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〈c,EOM(2)〉 0

〈ce2X0

,EOM(2)〉 0

〈ceX0

,EOM(3)〉 −(6.1± 0.6) · 10−11

〈ce3X0

,EOM(3)〉 0± 1.1 · 10−16

〈c,EOM(4)〉 −(0.6± 1.9) · 10−6 − (0.8± 1.3) · 10−6CL

〈ce2X0

,EOM(4)〉 (1.7± 2.5) · 10−6 + (9.2± 9.7) · 10−7CL

〈ce4X0

,EOM(4)〉 (2.8± 8.7) · 10−11

〈ceX0

,EOM(5)〉 (1.8 ± 2.5) · 10−5 − (1.3 ± 1.8) · 10−5CL − (0.2 ± 3.2) · 10−4(CL)2 + (2.1 ± 2.0) ·
10−5C1 + (0.6± 2.3) · 10−5C0

〈ce3X0

,EOM(5)〉 (0.2± 2.3) · 10−5 + (6.2± 2.1) · 10−5CL− (0.3± 2.7) · 10−5C1− (0.7± 6.6) · 10−6C0

〈ce5X0

,EOM(5)〉 (0.2± 3.8) · 10−11

〈c,EOM(6)〉 −(0.8± 2.0) · 10−3 + (0.7± 1.9) · 10−4CL − (1.6± 5.4) · 10−5(CL)2 − (1.8± 2.3) ·
10−4C1 + (0.2± 7.1) · 10−3CLC1 − (2.2± 0.5) · 10−4C0 + (1.9± 6.5) · 10−5C0C

L

〈ce2X0

,EOM(6)〉 −(0.1± 1.3) · 10−3 + (0.7± 3.7) · 10−4CL + (0.2± 1.9) · 10−3(CL)2 + (0.1± 2.1) ·
10−3C1 + (0± 1.5 · 10−2)CLC1 + (0.9± 5.1) · 10−4C0 − (0.1± 2.9) · 10−3CLC0

〈ce4X0

,EOM(6)〉 0± 1.1 · 10−5 + (1.4± 1.0) · 10−6CL − (0.2± 5.9) · 10−6C1 + (0.4± 8.9) · 10−7C0

〈ce6X0

,EOM(6)〉 −(0.6± 1.3) · 10−14

〈Ψ(1),EOM(2)〉 0

〈Ψ(2),EOM(2)〉 0

〈Ψ(3),EOM(2)〉 0

〈Ψ(4),EOM(2)〉 0

〈Ψ(5),EOM(2)〉 0

〈Ψ(1),EOM(3)〉 −(8.5± 0.8) · 10−11

〈Ψ(2),EOM(3)〉 0

〈Ψ(3),EOM(3)〉 −(0.5± 1.3) · 10−5 − (0.1± 3.4) · 10−6CL − (3.0± 0.2) · 10−8C1

〈Ψ(4),EOM(3)〉 0

〈Ψ(1),EOM(4)〉 0

〈Ψ(2),EOM(4)〉 −(0.3± 2.4) · 10−3 + (2.3± 5.2) · 10−5CL − (0.2± 1.8) · 10−5(CL)2

〈Ψ(3),EOM(4)〉 0

〈Ψ(1),EOM(5)〉 (2.4 ± 3.9) · 10−5 − (1.9 ± 2.5) · 10−5CL − (0.3 ± 4.5) · 10−4(CL)2 + (3.0 ± 2.8) ·
10−5C1 + (0.8± 3.2) · 10−5C0

〈Ψ(2),EOM(5)〉 0

〈Ψ(1),EOM(6)〉 0

Table 5.6: Deterministic tests of the equation of motion for the rolling tachyon. Superscripts
represent the order in λ of each quantity. Cuhre/QAG results shown.
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〈Ψ, QBΨ〉(2) 0
〈Ψ,Ψ ∗Ψ〉(2) 0
〈Ψ, QBΨ〉(3) 0
〈Ψ,Ψ ∗Ψ〉(3) 0
〈Ψ, QBΨ〉(4) −(8.7± 1.2) · 10−10 + (0± 4.2 · 10−14)CL

〈Ψ,Ψ ∗Ψ〉(4) 0
〈Ψ, QBΨ〉(5) 0
〈Ψ,Ψ ∗Ψ〉(5) 0
〈Ψ, QBΨ〉(6) (0.02± 0.30) + (0± 3.5 · 10−2)CL + (0± 0.11)(CL)2 + (0.5± 9.6) · 10−13(CL)3 + (0±

6.7 · 10−2)C1 − (0.1± 2.3) · 10−13CLC1 + (0± 1.1 · 10−2)C0 + (0.1± 1.5) · 10−14CLC0

〈Ψ,Ψ ∗Ψ〉(6) 0

Table 5.7: Deterministic evaluation of the action for the rolling tachyon. Kinetic and cubic terms
are found separately as a consistency check. Superscripts represent the order in λ. Cuhre/QAG
results shown.
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Chapter 6

Summary

This thesis consisted of three main projects. All three involved solutions to string field theory
with marginal deformations of the initial D-brane configuration, and two also had connections
to the tachyon condensation that represents D-brane decay. We saw both the level truncation
and analytical approaches to string field theory. While there are still unanswered questions,
progress has been made on each of these topics.

In chapter 3 we saw a new solution to level truncated string field theory. Building on known
solutions involving tachyon condensation and marginal deformations, this solution combined
those two phenomenon. The result is a solution where a pair of separated D-branes move to
become coincident and then a linear combination of the two decays. A combination of tachyon
decay after a marginal deformation has since been studied analytically in [45], finding that the
energy is independent of the marginal deformation without examining any limitations on the
presumably unbounded analytical marginal deformation, but at the time the system examined
here had only been seen in the context of separated brane-antibrane decay [53]. That system
lacked the enhanced symmetry when the D-branes are coincident, but otherwise had very similar
results.

We saw that the part of the string field primarily responsible for D-brane translation is
approximately a linear function of the separation as long as that separation is small. Unfor-
tunately, we are also able to show that a field redefinition mixes the terms, so that this linear
relationship is not by itself the correspondence between the marginal parameter and its physical
effect. We also saw that both the parameter and the physical deformation have finite maximum
values. This is in conflict with the natural expectation that translation of a D-brane should
be unbounded, but in agreement with all previous level-truncated results on marginal deforma-
tions. In fact, we found evidence that contradicts early explanations for this maximum which
involved either a singular correspondence or a second branch of the solution, since in our case
it is the physical translation distance that is known and bounded.

In chapter 4 we focused on the work of Kiermaier and Okawa [36]. For a class of marginal
deformations with the OPE V (0)V (t) ∼ 1

t2
they showed that it is possible to define a solution

using renormalized marginal operators. That work also provides an example of a renormaliza-
tion scheme which is compatible with the sufficient conditions for their solution. Here I have
carefully studied those conditions and proven that they are all satisfied for a slightly more gen-
eral family of renormalization schemes with two parameters. This also filled some gaps in the
original proofs. Considering the most general case, we saw that there are likely to be infinitely
many free parameters, but for our proofs we only included two. We hope that this freedom is
connected to gauge transformations, but that remains unproven. After studying two different
approaches to renormalizing the marginal operators, we saw that they are not equivalent be-
yond quadratic order, and that the more natural approach at quadratic order needs subleading
corrections in order to remain finite beyond cubic order.
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Chapter 6. Summary

One well known example of a marginal deformation is the rolling tachyon. Physically it
corresponds to the time-dependent process of D-brane decay. The time-asymmetric rolling
tachyon has been studied extensively, and no further calculations were necessary here. The
time-symmetric case, however, was not previously studied due to the fact that it has a singular
self-OPE of precisely the form that Kiermaier and Okawa’s solution was intended to renormalize.
In practice, the solution is difficult to construct, but we found in chapter 5 that it can be done
up to 6th order in λ by combining symbolic algebra and numerical integration programs. Such
a calculation to explicitly construct component fields of a renormalized marginal solution had
not previously been attempted. In this way we found that the tachyon profile for small λ is
qualitatively no different from what we would find if we took the tachyon profile of the time-
asymmetric case and symmetrized it. Unlike that simple case, however, when we increased
λ we found that the shape of the profile can change in ways that appear similar to gauge
transformations.

We found that the two free parameters we allowed in the renormalization scheme play no
part for small λ, but that they do affect the tachyon profile for larger λ. The part of the tachyon
profile responsible for the small λ behaviour is also quite clearly a convergent series for all times,
but it is not at all clear that the rest of the tachyon profile still converges when λ is increased.
This is especially true since the renormalization parameters could in principle take any value.
Whether the tachyon profile is finite for all λ and what consequences this has for the topic of
maximum marginal deformations remains an open question.
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Appendix A

Action For Separated D-branes

This appendix contains the details necessary to easily reproduce the action used in chapter 3.
A version of this apears on the arXiv as [4]. That work was intended as supplementary material
to [1], and is not intended for publication in a peer reviewed journal.

A.1 Level (3,9) Potential

In level-truncated studies of string field theory, the string field is expanded in a basis of con-
formal primaries and their descendants and then truncated at some eigenvalue of the virasoro
zero-mode operator. In this note we present the potential, proportional to the action, for all
terms in the string field up to level 3. Our intended theory is a collection of D-24 branes whose
transverse directions are all aligned, but which are not necessarily coincident. The choice of
D24-branes means that there should be one direction which is singled out, and this is the main
assumption we have made on our string field. Any system of bosonic D-branes with a rotational
symmetry in 25 of the 26 dimensions should be described at level 3 by this potential. The string
field we use will then be equivalent to (3.7) studied in chapter 3:

|Φ〉 =
∑
d

(
tdc1 + hdc0 + udc−1 + vdL

′
−2c1 + wdL

25
−2c1 + od(b−2c−1c1 − 2c−2)

+ õd(b−2c−1c1 + 2c−2) + pdL
′
−3c1 + qdL

25
−3c1 + . . .

)
|0; d〉

+
∑
d

(
xdc1 + fdL

25
−1c1 + rdc−1 + sdL

′
−2c1 + ydL

25
−2c1 + zdL

25
−1L

25
−1c1 + . . .

)
α25
−1 |0; d〉 . (A.1)

where LXn = L25
n are the virasoro operators in the transverse direction, and L′n contain the sum

over the other 25 directions of matter oscillators. The ghost CFT is handled explicitly in terms
of bn and cn operators.

Unlike in (3.7), in this case the vacuum states and the coefficients are not labeled with
D-brane indices. They are labeled only by d, the eigenvalue of α25

0 . The vacuum is defined by

α25
0 |0; d〉 = d |0; d〉, and αµ6=25

0 |0; d〉 = 0. This does not uniquely determine the vacuum state,
as there are many different ways to achieve a given zero-mode, but once a physical situation is
chosen the appropriate values can be inserted for d. In our case this meant replacing the sum
over d with a sum over brane indices and the eigenvalue with the separation. Since the action
is more general than the case we have considered the coefficients given here are in as general
a form as possible. While the case of non-zero α0 eigenvalues in the rotationally symmetric
directions has not been considered, the twist-odd states have been. The action in this appendix
does contain all of the necessary couplings to include twist-odd states in the string field.

With the string field defined, we can move on to writing down the action. The quadratic
term is a function of the zero-mode eigenvalue d, assuming that the vacuum states have been
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A.1. Level (3,9) Potential

put into a basis which is orthogonal. For every set of three fields there is a cubic term which is a
function of the three zero-modes of the strings. For the study of separated D-branes or non-zero
momentum states these zero-modes must sum to 0, but we will leave them unconstrained. The
action can be written as

S = −1

2

∑
l,m

∑
d

Alm(d)φ
(l)†
d φ

(m)
d −

∑
l,m,n

∑
d1,d2,d3

Blmn(d1, d2, d3)

(
4

3
√

3

) 1
2

(d21+d22+d23)

φ
(l)
d1
φ

(m)
d2

φ
(n)
d3
,

(A.2)
where l, m, and n run over the set of all fields we are considering. The cubic interaction term
is normally written with a factor of 1

3 , but I will define the coefficients Blmn to include it. This
action is equivalent to the potential of (3.5) after rescaling to the appropriate units V = −2π2S.
The purpose of this appendix is then to explicitly list the coefficient functions Alm and Blmn
for the first few levels. The quadratic coefficients Alm(d) are presented in table A.2, and the
cubic coefficients Blmn(d1, d2, d3) are in table A.3.

For our special case of separated D-branes, where the vacuum states are represented by
Chan-Paton factors, the cubic terms use d1 = di − dj , d2 = dj − dk, d3 = dk − di, and the field

associated with such a state has the appropriate indices such as φ
(t)
d1

= tij . For example, the
potential for only the fields tij and xij would contain the terms

S = −1

2
(Atttijtji +Axxxijxji)−(Bttttijtjktki + 3Bttxtijtjkxki + 3Btxxtijxjkxki +Bxxxxijxjkxki)

(A.3)
where the separation parameters of the coefficients were omitted for brevity. The other orderings
of fields, such as Btxttijxjktki, are equivalent to the ones shown once the D-brane indices are
summed over, which is why the factors of 3 appear.

There are in principle as many as six orderings for the cubic interaction of each set of three
fields, but we have shown in section 3.1.2 using the twist operator that we only need to calculate
one of them. Similarly we know from the properties of the inner product and the hermicity of
QB that Alm = ±Aml. Specifically, we know that

Alm(d)φ
(l)†
d φ

(m)
d = Aml(d)φ

(m)†
d φ

(l)
d , (A.4a)

Blmn(d1, d2, d3) = Bmnl(d2, d3, d1) = Bnlm(d3, d1, d2) , (A.4b)

Blmn(d1, d2, d3) = −ΩlΩmΩnBnml(−d3,−d2,−d1) , (A.4c)

where Ωl is the twist eigenvalue of the operator associated with the state
∣∣φ(l)

〉
. Since the

quadratic reordering rule involves the behaviour of the coefficient field under hermitian con-
jugation and not just the masses Alm, table A.2 includes both orderings for the few non-zero
off-diagonal quadratic terms.

The separation parameters d1, d2, and d3 in (A.2) are the eigenvalues of the operators
α25

0 acting on the vacua of the three string fields, so this allows our coefficients Blmn to be
useful in describing other situations, such as lump solutions. The same coefficients can be used
with a different choice of parameters. This is also true of the quadratic terms Alm. The first
terms Alm(0) and Blmn(0, 0, 0) were given in [21] and an action including terms with non-zero
momentum was given in [16], so for comparison a brief dictionary of fields is given in table A.1.
The couplings Alm and Blmn found here can then be used to reproduce the action in either of
those works up to level (3,9). An example of such a calculation was given in section 3.1.2.
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A.1. Level (3,9) Potential

Here t x h u v w f o p q r s y z

[21] t as NA u w v NA NA NA NA s r r̄ y

[16] t NA NA u w v z∗ NA NA NA NA NA NA NA

Table A.1: A comparison of our field definitions to those used in two other works on level
truncated solutions.
*There is a d-dependent difference in normalization for this field.

l m Alm(d)

t t 1/2 d2 − 1
x x 1/2 d2

h h −2
u u −1− 1/2 d2

v v 25
2

+ 25
4
d2

ww 1/4 (4 d2 + 1)(d2 + 2)
wf 3/2 d(d2 + 2)
f w −3/2 d(d2 + 2)
f f −(d2 + 2)(d2 + 1)
o o 8 + 2 d2

õ õ −8− 2 d2

p p −100− 25 d2

q q −1/2 (3 d2 + 2)(4 + d2)
q y −5/2 d(4 + d2)
y q 5/2 d(4 + d2)
q z −6 d(4 + d2)
z q 6 d(4 + d2)
r r −2− 1/2 d2

s s 25
4
d2 + 25

y y 1/4 (4 + d2)(4 d2 + 9)
y z 3/2 (3 d2 + 2)(4 + d2)
z y 3/2 (3 d2 + 2)(4 + d2)
z z 3 (4 + d2)(d2 + 2)(d2 + 1)

Table A.2: The quadratic coefficients for the fields in the action up to level 3. Off-diagonal
terms which are not shown are all 0.
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l mn Blmn(d1, d2, d3)

t t t 27
64

√
3

t t x 9
32

d1 − 9
32

d2
t t h 0

t t u 11
64

√
3

t t v − 125
128

√
3

t t w 1
128

√
3(4 d1

2 − 8 d1d2 + 4 d2
2 + 4 d3d1 + 4 d3d2 − 8 d3

2 − 5)

t t f 1
64

√
3(2 d2 + 4 d3d1

2 − 8 d3d2d1 + 4 d3d2
2 − 9 d3 + 2 d1)

t t o 0
t t õ 0
t t p 0
t t q 1

96
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

t t r 11
96

d1 − 11
96

d2
t t s − 125

192
d1 + 125

192
d2

t t y 1
192

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

t t z 1
96

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)

t x x −1/16
√

3(−4− d1d2 + d1
2 − d3d1 + d3d2)

t x h 0
t x u − 11

96
d1 + 11

96
d3

t x v 125
192

d1 − 125
192

d3
t xw −1/48 d1

3 − 1/6 d2 − 1/16 d3d2d1 − 1/24 d3
3 + 1/48 d3

2d2 + 1/48 d3d2
2 + 1/24 d1

2d2 + 1/16 d3
2d1 +

37
192

d1 + 59
192

d3 − 1/48 d1d2
2

t x f −1/24 d3d1
3 − 1/12 d3

2d2d1 − 1/24 d3d1d2
2 − 1/48 d1d2 + 1/24 d3

2d2
2 − 5

16
d3d2 + 1/24 d3

2d1
2 −

1/48 d1
2 − 3

32
d3

2 + 43
96

d3d1 + 1/12 d3d2d1
2 + 1/3

t x o 0
t x õ 0
t x p 0

t x q − 1
432

√
3(−17 d3d1

2+15 d3d2d1−15 d3
2d2+28 d3+2 d1

3+15 d3
2d1+2 d3d2

2−2 d1d2
2+24 d2−40 d1)

t x r − 11
432

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

t x s 125
864

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

t x y − 1
864

√
3(−4 d1d2

3 +84−8 d3
3d2 +8 d3

3d1 +133 d1d2 +8 d3
2d2d1 +12 d1

2d2
2−12 d3

2d1
2−12 d2d1

3 +
4 d3

2d2
2 + 4 d1

4 + 4 d3d2
3 + 32 d3

2 − 85 d1
2 − 48 d2

2 + 12 d3d2d1
2 − 43 d3d1 + 11 d3d2 − 16 d3d1d2

2)

t x z − 1
432

√
3(−4 d3

3d1
3 + 24 + 12 d3

3d2d1
2 − 27 d3

3d2 + 27 d3
3d1 + 22 d1d2 + 123 d3

2d2d1 − 81 d3
2d1

2 −
42 d3

2d2
2 − 4 d3

2d2
3d1 + 108 d3

2 − 22 d1
2 − 12 d3

3d2
2d1 + 4 d3

3d2
3 − 98 d3d1 + 50 d3d2 + 4 d3

2d1
4 +

6 d3d1
3 − 6 d3d1d2

2 − 12 d3
2d2d1

3 + 12 d1
2d2

2d3
2)

t h h 1/4
√

3
t h u 1/6
t h v 0
t hw 0
t h f 0

t h o −2/9
√

3

t h õ 4
27

√
3

t h p 0
t h q 0

t h r 1/27
√

3(d1 − d2)
t h s 0
t h y 0
t h z 0

t u u 19
576

√
3

t u v − 1375
3456

√
3

t uw 11
3456

√
3(4 d1

2 − 8 d1d2 + 4 d2
2 + 4 d3d1 + 4 d3d2 − 8 d3

2 − 5)

t u f 11
1728

√
3(2 d2 + 4 d3d1

2 − 8 d3d2d1 + 4 d3d2
2 − 9 d3 + 2 d1)

Table A.3: The cubic couplings for all of the fields in the action up to level 3.
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l mn Blmn(d1, d2, d3)

t u o 20
81

t u õ 0
t u p 0
t u q 11

2592
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

t u r 19
864

d1 − 19
864

d2
t u s − 1375

5184
d1 + 1375

5184
d2

t u y 11
5184

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

t u z 11
2592

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)

t v v 9475
2304

√
3

t v w − 125
6912

√
3(4 d1

2 − 8 d1d2 + 4 d2
2 + 4 d3d1 + 4 d3d2 − 8 d3

2 − 5)

t v f − 125
3456

√
3(2 d2 + 4 d3d1

2 − 8 d3d2d1 + 4 d3d2
2 − 9 d3 + 2 d1)

t v o 0
t v õ 0
t v p 400

81

t v q − 125
5184

(d1 − d2)(2 d1 − 15 d3 + 2 d2)
t v r − 1375

5184
d1 + 1375

5184
d2

t v s 9475
3456

d1 − 9475
3456

d2
t v y − 125

10368
(d1 − d2)(4 d1

2 + 4 d3d1 − 8 d1d2 − 37− 8 d3
2 + 4 d2

2 + 4 d3d2)
t v z − 125

5184
(d1 − d2)(4 d3

2d1
2 − 8 d3

2d2d1 + 6 d3d1 − 22− 27 d3
2 + 4 d3

2d2
2 + 6 d3d2)

t ww 1
6912

√
3(80 d1d2

3+537−16 d3
3d2+80 d3

3d1−236 d1d2−80 d3
2d2d1−48 d1

2d2
2−48 d3

2d1
2−16 d2d1

3+
96 d3

2d2
2 +16 d1

4−16 d3d2
3 +532 d3

2−296 d1
2 +532 d2

2 +112 d3d2d1
2−32 d2

4−32 d3
4−236 d3d1−

3368 d3d2 − 16 d3d1
3 − 80 d3d1d2

2)

t w f 1
3456

√
3(−32 d3

3d2d1 − 48 d3d2
2d1

2 + 80 d3d2
3d1 − 16 d3d2d1

3 + 80 d3
2d2d1

2 − 64 d3
2d1d2

2 −
260 d3d2d1 + 572 d3d2

2 − 284 d3
2d2 − 16 d2

3 − 328 d3d1
2 − 266 d1 − 1546 d2 + 8 d1

3 + 16 d3
3d2

2 +
16 d3

3d1
2+336 d3

2d1−8 d1d2
2+16 d1

2d2+16 d3
2d2

3−32 d3
2d1

3−32 d3d2
4+16 d3d1

4−36 d3
3+813 d3)

t w o 0
t w õ 0
t w p 0
t w q 1

648
d2d1

3− 55
864

d1
2+ 709

2592
d2

2− 7
162

d3
2+ 5

432
d3

3d2+ 49
1296

d3d1d2
2+ 619

5184
d3d1− 2891

5184
d3d2+ 2

81
d3

2d1
2−

19
1296

d3d1
3 − 23

81
d1d2 + 13

1296
d3

2d2
2 − 5

432
d3

3d1 − 1
216

d1
2d2

2 + 1
648

d3d2d1
2 − 5

144
d3

2d2d1 + 1
324

d2
4 +

1
648

d1
4 − 1

648
d1d2

3 − 2
81

d3d2
3 + 16

81

t w r − 11
648

d3d1
2 + 11

1296
d1

3− 11
432

d1d2
2 + 11

432
d3d2d1− 407

5184
d1− 11

1296
d3

2d2 + 11
648

d2
3 + 11

162
d3 + 11

1296
d3

2d1−
649
5184

d2 − 11
1296

d3d2
2

t w s 4625
10368

d1+ 7375
10368

d2− 125
324

d3− 125
864

d3d2d1− 125
2592

d3
2d1+ 125

2592
d3

2d2+ 125
2592

d3d2
2+ 125

1296
d3d1

2+ 125
864

d1d2
2−

125
2592

d1
3 − 125

1296
d2

3

t w y − 1
108

d3
3d2d1− 1

54
d3d2

2d1
2 + 1

162
d3d2

3d1 + 1
81

d3d2d1
3− 1

324
d3

2d2d1
2 + 11

648
d3

2d1d2
2− 1039

2592
d3d2d1 +

421
1296

d3d2
2+ 59

2592
d3

2d2− 29
288

d2
3+ 5

2592
d3d1

2+ 2393
10368

d1− 6521
10368

d2− 23
432

d1
3+ 1

648
d3

3d2
2+ 5

648
d3

3d1
2+

197
2592

d3
2d1 + 4

27
d1d2

2 + 5
864

d1
2d2 − 1

108
d3

2d2
3 − 1

216
d3

2d1
3 + 1

648
d3d2

4 − 1
648

d3d1
4 + 1

81
d1

2d2
3 −

7
648

d1d2
4 − 1

324
d1

4d2 − 1
324

d2
2d1

3 − 1
324

d3
4d1 + 1

324
d3

4d2 − 2
81

d3
3 + 43

324
d3 + 1

324
d2

5 + 1
648

d1
5

t w z − 91
432

d3
3d2d1− 1

72
d3d2

2d1
2− 1

216
d3d2

3d1+ 1
216

d3d2d1
3+ 7

432
d3

2d2d1
2+ 61

216
d3

2d1d2
2− 1

162
d3

2d1
4d2−

7
324

d3
2d1d2

4+ 1
108

d3
4d2

2d1+ 7
324

d3
3d2d1

3+ 2
81

d3
2d2

3d1
2− 1

162
d3

2d2
2d1

3+ 1
324

d3
2d1

5− 1
324

d3
3d2

4−
1

324
d3

4d2
3 − 1

162
d3

3d1
4 − 65

72
d3d2d1 + 1

162
d3

2d2
5 + 1

324
d3

4d1
3 + 2171

2592
d3d2

2 − 431
5184

d3
2d2 − 11

324
d2

3 −
407
2592

d3d1
2+ 151

2592
d1− 2935

2592
d2− 11

648
d1

3+ 13
144

d3
3d2

2+ 13
108

d3
3d1

2+ 3407
5184

d3
2d1+ 11

216
d1d2

2− 247
1296

d3
2d2

3−
35
324

d3
2d1

3 + 1
108

d3d2
4 + 1

216
d3d1

4 − 1/48 d3
4d1 + 1/48 d3

4d2 − 1/6 d3
3 + 5/9 d3 + 5

324
d3

3d2
3d1 −

1
108

d3
4d2d1

2 − 1/36 d3
3d2

2d1
2

t f f 1
1728

√
3(−768 + 320 d3

2d2d1 − 32 d3
2d2d1

3 − 32 d3d2
2d1

3 + 16 d3d2
3d1

2 − 18 d2
2 + 64 d1

2d2
2d3

2 −
32 d3

3d2
2d1+16 d3

3d2d1
2+16 d3d2d1

4−32 d3
2d2

3d1−360 d3d2d1
2+1109 d3d2+4 d1

2+320 d3d1d2
2−

36 d3
3d2 − 270 d1d2 − 18 d3

2 − 270 d3d1 + 8 d3
2d1

2 − 36 d3d2
3 − 240 d3

2d2
2 + 8 d1

2d2
2 + 8 d2d1

3 +
8 d3d1

3 + 16 d3
3d2

3)
t f o 0
t f õ 0
t f p 0

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

t f q − 26
81

d1 + 2/3 d2 − 41
81

d3 + 5
216

d3d2
2d1

2 + 709
2592

d3d2d1 + 1
162

d3d2
3d1 − 1

324
d3

2d2
3 − 1

324
d1

2d2
3 +

5
216

d3
3d2

2− 5
216

d3
3d2d1− 19

648
d3d2d1

3− 5
432

d3
2d1− 97

1296
d3

2d2− 331
2592

d3d2
2− 13

1296
d3d1

2+ 47
648

d1d2
2+

1
648

d1
3 + 1

324
d1

4d2 − 169
1296

d1
2d2 + 4

81
d3

2d2d1
2 + 1

144
d2

3 − 5
108

d3
2d1d2

2

t f r 11
648

d2d1
3− 11

648
d1

2d2
2− 11

648
d3

2d2
2 + 11

288
d2

2 + 11
324

d3d1d2
2 + 11

1296
d1

2− 11
324

d3d2d1
2− 11

81
− 473

2592
d1d2 +

55
432

d3d2 + 11
648

d3
2d2d1 + 11

1296
d3d1

t f s − 125
1296

d2d1
3 − 125

2592
d1

2 − 125
576

d2
2 − 125

648
d3d1d2

2 − 125
2592

d3d1 − 625
864

d3d2 + 5375
5184

d1d2 + 125
1296

d3
2d2

2 +
125
1296

d1
2d2

2 + 125
648

d3d2d1
2 − 125

1296
d3

2d2d1 + 125
162

t f y 209
1296

d3
2d2d1− 1

162
d3

4d2d1+ 1
162

d3d1d2
4− 1

108
d3

2d2d1
3+ 1

54
d3d2

2d1
3− 7

324
d3d2

3d1
2− 25

54
− 751

1728
d2

2−
1

324
d1

2d2
2d3

2− 1
81

d3
3d2

2d1 + 5
324

d3
3d2d1

2− 1
324

d3d2d1
4 + 5

324
d3

2d2
3d1− 5

1296
d3d2d1

2 + 1429
2592

d3d2−
229
2592

d1
2+ 1

324
d2d1

5+ 1
162

d3
4d2

2− 125
1296

d1d2
3− 83

648
d3d1d2

2− 1
324

d3
3d1+ 1

144
d2

4+ 1
648

d1
4+ 1

108
d2

3d1
3−

1
324

d3
2d2

4 − 1
108

d1
4d2

2 − 1
324

d1
2d2

4 − 5
108

d3
3d2 + 3383

5184
d1d2 + 4

81
d3

2 − 869
2592

d3d1 − 1
648

d3
2d1

2 +
103
1296

d3d2
3 − 79

1296
d3

2d2
2 + 131

648
d1

2d2
2 − 37

324
d2d1

3 + 1
324

d3d1
3 − 1

324
d3

3d2
3

t f z 4337
2592

d3
2d2d1 − 1/24 d3

4d2d1 − 25
108

d3
2d2d1

3 − 1
108

d3d2
3d1

2 + 1
54

d3
2d2

3d1
3 − 1

54
d3

4d2
2d1

2 +
1
81

d3
3d2

4d1 + 1
54

d3
4d2

3d1 + 1/27 d3
3d2

2d1
3 − 1/27 d3

3d2
3d1

2 + 1
162

d3
4d2d1

3 + 1
162

d3
2d2d1

5 −
1

162
d3

2d2
4d1

2− 1
81

d3
3d2d1

4− 1
54

d3
2d1

4d2
2− 11

144
d2

2 + 7
18

d1
2d2

2d3
2− 10

27
d3

3d2
2d1 + 25

108
d3

3d2d1
2 +

1
108

d3d2d1
4 − 113

648
d3

2d2
3d1 − 10

9
− 419

1296
d3d2d1

2 + 1259
648

d3d2 − 11
648

d1
2 + 1/24 d3

4d2
2 + 97

648
d3d1d2

2 −
1/48 d3

3d1 + 1
72

d3
2d2

4 − 5
16

d3
3d2 + 217

1296
d1d2 + 1/3 d3

2 − 635
648

d3d1 − 71
432

d3
2d1

2 − 1
162

d3
4d2

4 +
1/48 d3d2

3 − 2663
2592

d3
2d2

2 + 11
324

d1
2d2

2 − 11
324

d2d1
3 + 1

216
d3d1

3 + 11
81

d3
3d2

3 + 1
324

d3
2d1

4 + 1
324

d3
3d1

3

t o o 368
729

√
3

t o õ 0
t o p 0
t o q 0

t o r − 40
729

√
3(d1 − d2)

t o s 0
t o y 0
t o z 0

t õ õ 32
729

√
3

t õ p 0
t õ q 0
t õ r 0
t õ s 0
t õ y 0
t õ z 0

t p p − 6400
729

√
3

t p q 0
t p r 0

t p s − 800
729

√
3(d1 − d2)

t p y 0
t p z 0

t q q − 1
11664

√
3(30 d1d2

3 + 4096 − 30 d3
3d2 + 30 d3

3d1 − 504 d1d2 − 225 d3
2d2d1 − 4 d1

2d2
2 − 4 d3

2d1
2 −

30 d2d1
3 + 229 d3

2d2
2 + 4 d1

4 − 30 d3d2
3 + 1368 d3

2 − 912 d1
2 + 1368 d2

2 + 285 d3d2d1
2 − 504 d3d1 −

8532 d3d2 − 30 d3d1
3 − 225 d3d1d2

2)

t q r − 11
11664

√
3(28 d2+15 d3d2d1+2 d1

3−15 d3d2
2+24 d3−17 d1

2d2+2 d3
2d2−2 d3

2d1−40 d1+15 d1d2
2)

t q s 125
23328

√
3(28 d2 +15 d3d2d1 +2 d1

3−15 d3d2
2 +24 d3−17 d1

2d2 +2 d3
2d2−2 d3

2d1−40 d1 +15 d1d2
2)

t q y − 1
23328

√
3(−2139 d3d2d1+3579 d3d2

2−120 d3
3d2d1−554 d1

3−1707 d1d2
2+1898 d3

2d1−1610 d3
2d2+

1925 d1
2d2−144 d3

2d1d2
2+240 d3d2

3d1+128 d3
3d2

2−8 d3
3d1

2−1536 d3d1
2−52 d3

2d2
3−24 d3

2d1
3−

188 d1
2d2

3+336 d2
3+840 d1−19020 d2+220 d3

2d2d1
2+60 d1d2

4+204 d2
2d1

3+16 d3
4d1−16 d3

4d2−
60 d3d2

4 + 8 d3d1
4 − 84 d1

4d2 − 188 d3d2
2d1

2 + 10760 d3 + 8 d1
5 − 192 d3

3)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

t q z − 1
11664

√
3(−1842 d3d2d1 − 90 d3d2d1

3 − 84 d3
2d1

4d2 + 60 d3
2d1d2

4 − 24 d3
4d2

2d1 + 60 d3
3d2d1

3 −
188 d3

2d2
3d1

2 + 204 d3
2d2

2d1
3 + 180 d3

3d2
3d1 + 24 d3

4d2d1
2 − 180 d3

3d2
2d1

2 + 4434 d3d2
2 −

981 d3
3d2d1− 44 d1

3− 330 d1d2
2 + 6452 d3

2d1− 5840 d3
2d2 + 374 d1

2d2− 1557 d3
2d1d2

2− 8 d3
4d1

3 +
90 d3d2

3d1 + 705 d3
3d2

2 + 276 d3
3d1

2 − 2736 d3d1
2 + 246 d3

2d2
3 − 534 d3

2d1
3 − 2832 d1 − 15528 d2 +

1845 d3
2d2d1

2 + 54 d3
4d1 − 54 d3

4d2 + 12 d3d1
4 − 12 d3d2

2d1
2 − 60 d3

3d2
4 + 8 d3

4d2
3 + 8 d3

2d1
5 +

15216 d3 − 648 d3
3)

t r r − 19
3888

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

t r s 1375
23328

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

t r y − 11
23328

√
3(−4 d1d2

3+84−8 d3
3d2+8 d3

3d1+133 d1d2+8 d3
2d2d1+12 d1

2d2
2−12 d3

2d1
2−12 d2d1

3+
4 d3

2d2
2 + 4 d1

4 + 4 d3d2
3 + 32 d3

2 − 85 d1
2 − 48 d2

2 + 12 d3d2d1
2 − 43 d3d1 + 11 d3d2 − 16 d3d1d2

2)

t r z − 11
11664

√
3(−4 d3

3d1
3 + 24 + 12 d3

3d2d1
2− 27 d3

3d2 + 27 d3
3d1 + 22 d1d2 + 123 d3

2d2d1− 81 d3
2d1

2−
42 d3

2d2
2 − 4 d3

2d2
3d1 + 108 d3

2 − 22 d1
2 − 12 d3

3d2
2d1 + 4 d3

3d2
3 − 98 d3d1 + 50 d3d2 + 4 d3

2d1
4 +

6 d3d1
3 − 6 d3d1d2

2 − 12 d3
2d2d1

3 + 12 d1
2d2

2d3
2)

t s s − 9475
15552

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

t s y 125
46656

√
3(−4 d1d2

3 +84−8 d3
3d2 +8 d3

3d1 +133 d1d2 +8 d3
2d2d1 +12 d1

2d2
2−12 d3

2d1
2−12 d2d1

3 +
4 d3

2d2
2 + 4 d1

4 + 4 d3d2
3 + 32 d3

2 − 85 d1
2 − 48 d2

2 + 12 d3d2d1
2 − 43 d3d1 + 11 d3d2 − 16 d3d1d2

2)

t s z 125
23328

√
3(−4 d3

3d1
3 + 24 + 12 d3

3d2d1
2 − 27 d3

3d2 + 27 d3
3d1 + 22 d1d2 + 123 d3

2d2d1 − 81 d3
2d1

2 −
42 d3

2d2
2 − 4 d3

2d2
3d1 + 108 d3

2 − 22 d1
2 − 12 d3

3d2
2d1 + 4 d3

3d2
3 − 98 d3d1 + 50 d3d2 + 4 d3

2d1
4 +

6 d3d1
3 − 6 d3d1d2

2 − 12 d3
2d2d1

3 + 12 d1
2d2

2d3
2)

t y y − 1
46656

√
3(−38628 + 3944 d3

2d2d1 − 5688 d3d2d1
2 + 128 d3

4d2d1 + 160 d3d2d1
4 + 128 d3d1d2

4 −
160 d3d2

2d1
3−64 d3d2

3d1
2−5808 d2

2+368 d1
2d2

2d3
2−160 d3

2d2d1
3−160 d3

3d2
2d1−160 d3

2d2
3d1−

64 d3
3d2d1

2+32633 d3d2+96 d3
3d2

3+7993 d1
2−1876 d1d2

3+636 d2d1
3+1728 d1

2d2
2+3944 d3d1d2

2−
1876 d3

3d1 + 340 d3d2
3 + 340 d3

3d2− 6313 d1d2 + 384 d2
4 + 16 d1

6 + 384 d3
4− 5808 d3

2− 32 d3
2d1

4−
6313 d3d1 + 1728 d3

2d1
2 − 32 d1

4d2
2 − 32 d3d1

5 + 32 d3
5d1 − 112 d1

2d2
4 − 16 d3

2d2
4 − 32 d3

5d2 −
32 d2d1

5−3752 d3
2d2

2−872 d1
4−16 d3

4d2
2+636 d3d1

3+128 d3
3d1

3+32 d1d2
5−32 d3d2

5−112 d3
4d1

2+
128 d2

3d1
3)

t y z − 1
23328

√
3(−31224 + 3817 d3

2d2d1 − 4872 d3d2d1
2 + 1584 d3

4d2d1 + 24 d3d2d1
4 + 48 d3d1d2

4 −
72 d3d2

2d1
3 − 24 d3d2

3d1
2 − 192 d2

2 + 128 d3
2d2

3d1
3 + 192 d3

4d2
2d1

2 + 96 d3
3d2

4d1 − 96 d3
4d2

3d1 −
112 d3

3d2
2d1

3 − 48 d3
3d2

3d1
2 − 160 d3

4d2d1
3 − 32 d3

2d2d1
5 − 112 d3

2d2
4d1

2 − 48 d3
5d2

2d1 +
144 d3

3d2d1
4 + 32 d3

2d2
5d1 − 32 d3

2d1
4d2

2 + 1728 d1
2d2

2d3
2 + 636 d3

2d2d1
3 + 156 d3

3d2
2d1 −

1796 d3
2d2

3d1 − 2520 d3
3d2d1

2 + 48 d3
5d2d1

2 + 38950 d3d2 + 668 d3
3d2

3 + 1102 d1
2 − 176 d1d2

3 +
264 d1

2d2
2 +5518 d3d1d2

2−9551 d3
3d1−400 d3d2

3 +5087 d3
3d2−16 d3

5d1
3−6478 d1d2 +1296 d3

4−
17340 d3

2− 904 d3
2d1

4 + 1130 d3d1 + 10749 d3
2d1

2 + 24 d3d1
5 + 108 d3

5d1 + 336 d3
2d2

4− 108 d3
5d2−

10246 d3
2d2

2− 88 d1
4− 660 d3

4d2
2− 1398 d3d1

3 + 1696 d3
3d1

3 + 16 d3
5d2

3− 48 d3
3d1

5− 32 d3
3d2

5 +
16 d3

4d2
4 + 48 d3

4d1
4 + 16 d3

2d1
6 − 924 d3

4d1
2)

t z z − 1
11664

√
3(−30864 + 18186 d3

2d2d1− 8208 d3d2d1
2 + 144 d3

3d2
3d1

4 + 48 d3
5d2

3d1
2− 16 d3

2d2
5d1

3−
144 d3

4d2
3d1

3 + 16 d3
2d2

2d1
6 − 48 d3

3d2
2d1

5 + 48 d3
4d2

2d1
4 − 16 d3

5d2
2d1

3 + 48 d3
3d2

5d1
2 −

48 d3
4d2

5d1 + 144 d3
4d2

4d1
2 − 48 d3

2d2
3d1

5 + 48 d3
2d2

4d1
4 − 48 d3

5d2
4d1 − 144 d3

3d2
4d1

3 −
24 d3d2

4d1
3 +24 d3d2

2d1
5 +162 d3

4d2d1 +36 d3d2d1
4 +162 d3d1d2

4−1338 d3d2
2d1

3 +564 d3d2
3d1

2−
648 d2

2 + 1656 d3
2d2

3d1
3 − 852 d3

4d2
2d1

2 + 1404 d3
3d2

4d1 + 1404 d3
4d2

3d1 + 1656 d3
3d2

2d1
3 −

2952 d3
3d2

3d1
2 − 24 d3

4d2d1
3 + 24 d3

2d2d1
5 − 852 d3

2d2
4d1

2 + 108 d3
5d2

2d1 + 108 d3
2d2

5d1 −
936 d3

2d1
4d2

2 +13485 d1
2d2

2d3
2−1338 d3

2d2d1
3−10745 d3

3d2
2d1−10745 d3

2d2
3d1 +564 d3

3d2d1
2 +

54916 d3d2+6925 d3
3d2

3+484 d1
2−594 d1d2

3−132 d2d1
3+1014 d1

2d2
2+18186 d3d1d2

2−594 d3
3d1−

1350 d3d2
3 + 16 d3

5d2
5 − 1350 d3

3d2 − 8980 d1d2 − 648 d3
2 − 88 d3

2d1
4 − 8980 d3d1 + 1014 d3

2d1
2 −

88 d1
4d2

2+1134 d3
2d2

4−33084 d3
2d2

2+1134 d3
4d2

2−132 d3d1
3+88 d3

3d1
3−108 d3

5d2
3−108 d3

3d2
5−

528 d3
4d2

4 + 88 d2
3d1

3)
x x x −1/24 (d2 − d3)(d1 − d3)(d1 − d2)
x x h 0

x x u − 11
432

√
3(−4 + d1d2 + d3

2 − d3d1 − d3d2)

x x v 125
864

√
3(−4 + d1d2 + d3

2 − d3d1 − d3d2)

x xw − 1
864

√
3(4 d1d2

3− 108 + 12 d3
3d2 + 12 d3

3d1− 37 d1d2− 24 d3
2d2d1− 8 d1

2d2
2 + 4 d2d1

3− 4 d3d2
3 +

155 d3
2 + 16 d1

2 + 16 d2
2 + 8 d3d2d1

2 − 8 d3
4 − 75 d3d1 − 75 d3d2 − 4 d3d1

3 + 8 d3d1d2
2)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

x x f − 1
432

√
3(4 d3

3d1
2 − 40 d2 + 14 d3d1

2 − 45 d3d2d1 − 4 d3
2d2

3 − 8 d3
3d2d1 + 14 d3d2

2 + 4 d3d2d1
3 −

28 d3− 4 d3
2d1

3 + 2 d1
2d2 + 11 d3

2d2 + 11 d3
2d1 + 4 d3d2

3d1 + 4 d3
2d1d2

2 + 4 d3
2d2d1

2− 8 d3d2
2d1

2−
40 d1 + 2 d1d2

2 + 4 d3
3d2

2 − 9 d3
3)

x x o 0
x x õ 0
x x p 0
x x q − 1

648
(d1− d2)(2 d1

2d2− 2 d3d1
2 + 17 d3

2d1− 19 d3d2d1− 32 d1 + 2 d1d2
2− 2 d3d2

2 + 96 d3− 15 d3
3 +

17 d3
2d2 − 32 d2)

x x r − 11
648

(d2 − d3)(d1 − d3)(d1 − d2)
x x s 125

1296
(d2 − d3)(d1 − d3)(d1 − d2)

x x y − 1
1296

(d1 − d2)(4 d2d1
3 − 4 d3d1

3 − 8 d1
2d2

2 + 8 d3d2d1
2 + 32 d1

2 + 4 d1d2
3 + 12 d3

3d1 − 27 d3d1 −
101 d1d2 − 24 d3

2d2d1 + 8 d3d1d2
2 − 320 + 91 d3

2 − 8 d3
4 − 4 d3d2

3 + 32 d2
2 + 12 d3

3d2 − 27 d3d2)
x x z − 1

648
(d1− d2)(4 d3

2d2d1
3− 4 d3

3d1
3 + 26 d3

2d1
2 + 4 d3

4d1
2 + 6 d3d2d1

2 + 4 d3
3d2d1

2− 8 d1
2d2

2d3
2 +

4 d3
2d2

3d1−74 d3d1−8 d3
4d2d1−103 d3

2d2d1−22 d1d2+33 d3
3d1+6 d3d1d2

2+4 d3
3d2

2d1+33 d3
3d2+

4 d3
4d2

2 − 74 d3d2 − 214 d3
2 + 64 + 26 d3

2d2
2 − 27 d3

4 − 4 d3
3d2

3)
x h h 1/6 d2 − 1/6 d3
x h u 1/27

√
3(d2 − d3)

x h v 0
x hw 0
x h f 0
x h o − 4

27
d2 + 4

27
d3

x h õ 8
81

d2 − 8
81

d3
x h p 0
x h q 0
x h r 2

81
d1d2 − 2

81
d2

2 − 2
81

d3d1 + 2
81

d3d2 + 8
81

x h s 0
x h y 0
x h z 0
x u u 19

864
d2 − 19

864
d3

x u v − 1375
5184

d2 + 1375
5184

d3
x uw − 11

432
d3

2d2 + 11
1296

d1
2d2 + 11

1296
d2

3 + 11
162

d1 − 11
1296

d3
2d1 − 11

648
d1d2

2 + 11
432

d3d2d1 − 11
1296

d3d1
2 −

407
5184

d2 − 649
5184

d3 + 11
648

d3
3

x u f 11
648

d3d2d1
2 + 11

1296
d2

2 + 11
324

d3
2d2d1 + 55

432
d3d1 + 11

1296
d1d2 + 11

648
d3d2

3 − 11
324

d3d1d2
2 − 473

2592
d3d2 −

11
648

d3
2d1

2 − 11
648

d3
2d2

2 + 11
288

d3
2 − 11

81

x u o 40
729

√
3(d2 − d3)

x u õ 0
x u p 0

x u q 11
11664

√
3(17 d3d2

2−15 d3
2d2−2 d2

3−15 d3d2d1 +15 d3
2d1−2 d3d1

2−24 d1 +40 d2−28 d3 +2 d1
2d2)

x u r 19
3888

√
3(4 + d1d2 − d2

2 − d3d1 + d3d2)

x u s − 1375
23328

√
3(4 + d1d2 − d2

2 − d3d1 + d3d2)

x u y 11
23328

√
3(12 d1d2

3− 84− 8 d3
3d2 + 8 d3

3d1− 133 d1d2− 8 d3
2d2d1− 12 d1

2d2
2− 4 d3

2d1
2 + 4 d2d1

3 +
12 d3

2d2
2 − 32 d3

2 + 48 d1
2 + 85 d2

2 + 16 d3d2d1
2 − 4 d2

4 − 11 d3d1 + 43 d3d2 − 4 d3d1
3 − 12 d3d1d2

2)

x u z 11
11664

√
3(−4 d3

3d1
3 − 24 + 12 d3

3d2d1
2 − 27 d3

3d2 + 27 d3
3d1 − 22 d1d2 − 123 d3

2d2d1 + 42 d3
2d1

2 +
81 d3

2d2
2 +12 d3

2d2
3d1−6 d3d2

3−108 d3
2 +22 d2

2 +6 d3d2d1
2−12 d3

3d2
2d1 +4 d3

3d2
3−4 d3

2d2
4−

50 d3d1 + 98 d3d2 + 4 d3
2d2d1

3 − 12 d1
2d2

2d3
2)

x v v 9475
3456

d2 − 9475
3456

d3
x v w − 125

324
d1 + 4625

10368
d2 + 7375

10368
d3 − 125

864
d3d2d1 + 125

2592
d3

2d1 + 125
864

d3
2d2 + 125

2592
d3d1

2 + 125
1296

d1d2
2 −

125
2592

d1
2d2 − 125

1296
d3

3 − 125
2592

d2
3

x v f − 125
2592

d2
2 − 125

576
d3

2 + 125
648

d3d1d2
2 − 625

864
d3d1 + 5375

5184
d3d2 + 125

1296
d3

2d1
2 − 125

2592
d1d2 + 125

1296
d3

2d2
2 −

125
1296

d3d2d1
2 − 125

648
d3

2d2d1 + 125
162
− 125

1296
d3d2

3

x v o 0
x v õ 0

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

x v p 800
729

√
3(d2 − d3)

x v q − 125
23328

√
3(17 d3d2

2−15 d3
2d2−2 d2

3−15 d3d2d1+15 d3
2d1−2 d3d1

2−24 d1+40 d2−28 d3+2 d1
2d2)

x v r − 1375
23328

√
3(4 + d1d2 − d2

2 − d3d1 + d3d2)

x v s 9475
15552

√
3(4 + d1d2 − d2

2 − d3d1 + d3d2)

x v y − 125
46656

√
3(12 d1d2

3−84−8 d3
3d2 +8 d3

3d1−133 d1d2−8 d3
2d2d1−12 d1

2d2
2−4 d3

2d1
2 +4 d2d1

3 +
12 d3

2d2
2 − 32 d3

2 + 48 d1
2 + 85 d2

2 + 16 d3d2d1
2 − 4 d2

4 − 11 d3d1 + 43 d3d2 − 4 d3d1
3 − 12 d3d1d2

2)

x v z − 125
23328

√
3(−4 d3

3d1
3− 24 + 12 d3

3d2d1
2− 27 d3

3d2 + 27 d3
3d1− 22 d1d2− 123 d3

2d2d1 + 42 d3
2d1

2 +
81 d3

2d2
2 +12 d3

2d2
3d1−6 d3d2

3−108 d3
2 +22 d2

2 +6 d3d2d1
2−12 d3

3d2
2d1 +4 d3

3d2
3−4 d3

2d2
4−

50 d3d1 + 98 d3d2 + 4 d3
2d2d1

3 − 12 d1
2d2

2d3
2)

xww 1
10368

(d2−d3)(−32 d2
4+80 d1d2

3−16 d3d2
3−80 d3d1d2

2−48 d1
2d2

2+96 d3
2d2

2+1044 d2
2−16 d2d1

3+
112 d3d2d1

2− 2088 d3d2− 16 d3
3d2− 1260 d1d2− 80 d3

2d2d1 + 1044 d3
2 + 80 d3

3d1 + 16 d1
4− 2695−

48 d3
2d1

2 + 216 d1
2 − 32 d3

4 − 16 d3d1
3 − 1260 d3d1)

xw f − 319
1296

d3d1d2
2 + 7

216
d3d2d1

2 + 181
1296

d3
2d2d1 − 1/27 d1

2 + 2
81

d1
2d2

2d3
2 − 1

324
d3

2d2d1
3 − 205

5184
d3

2 +
1

162
d3

3d2
2d1−1/36 d3

2d2
3d1− 1

81
d3

3d2d1
2+ 1

162
d3

4d2d1+ 1
324

d3d2d1
4+ 5

324
d3d1d2

4− 1
324

d3d2
2d1

3−
1

108
d3d2

3d1
2− 1

648
d3d1

3− 581
2592

d2
2− 1

324
d2

4− 107
648

d3
2d2

2 + 25
648

d3
2d1

2 + 37
162

+ 1
648

d2d1
3− 1193

5184
d3d2 +

1
324

d1
2d2

2 − 13
324

d3
3d1 + 5

216
d3

3d2 + 1
108

d3
2d2

4 − 1
648

d1d2
3 + 1

162
d3

3d1
3 + 275

1296
d3d2

3 − 55
864

d1d2 +
1

144
d3

4 + 119
864

d3d1 − 1
324

d3
4d2

2 − 1
324

d3
2d1

4 − 1
162

d3d2
5 − 1

324
d3

4d1
2

xw o 0
xw õ 0
xw p 0

xw q 1
23328

√
3(120 d3

3d2d1 + 32 d3d2
2d1

2 + 123 d3d2d1 + 204 d3d2
3d1 − 84 d3d2d1

3 + 120 d3
2d2d1

2 −
376 d3

2d1d2
2 + 970 d2

3 − 160 d1
3 + 180 d3

2d2
3 + 3195 d3

2d2 − 3029 d3d2
2 + 1400 d1 − 4040 d2 −

128 d3
3d1

2 − 971 d3
2d1 + 954 d3d1

2 − 1056 d1d2
2 − 138 d1

2d2 + 76 d3
2d1

3 − 24 d1
2d2

3 − 8 d1d2
4 +

8 d1
4d2 +8 d2

2d1
3 +60 d3

4d1−144 d3d2
4−8 d3d1

4 +8 d3
3d2

2 +16 d2
5−1780 d3 +112 d3

3−60 d3
4d2)

xw r 11
23328

√
3(−12 d1d2

3 + 108 + 4 d3
3d2− 4 d3

3d1 + 75 d1d2− 8 d3
2d2d1 + 8 d3

2d1
2 + 4 d2d1

3− 12 d3d2
3−

16 d3
2 − 16 d1

2 − 155 d2
2 − 8 d3d2d1

2 + 8 d2
4 + 37 d3d1 + 75 d3d2 − 4 d3d1

3 + 24 d3d1d2
2)

xw s − 125
46656

√
3(−12 d1d2

3 +108+4 d3
3d2−4 d3

3d1 +75 d1d2−8 d3
2d2d1 +8 d3

2d1
2 +4 d2d1

3−12 d3d2
3−

16 d3
2 − 16 d1

2 − 155 d2
2 − 8 d3d2d1

2 + 8 d2
4 + 37 d3d1 + 75 d3d2 − 4 d3d1

3 + 24 d3d1d2
2)

xw y 1
46656

√
3(3876 − 5244 d3d1d2

2 + 920 d3d2d1
2 + 2832 d3

2d2d1 + 64 d3
4d2d1 + 160 d1

2d2
2d3

2 −
272 d3

3d2
2d1+112 d3

3d2d1
2+16 d3d2d1

4+176 d3d1d2
4+112 d3

2d2
3d1−176 d3

2d2d1
3+160 d3d2

2d1
3−

320 d3d2
3d1

2 + 32 d2
6 − 24 d3d1

3 − 104 d2d1
3 + 3580 d3d2

3 − 7159 d1d2 − 44 d3
3d2 − 980 d3

3d1 +
2967 d3d1−1684 d2

4−928 d1
2−4455 d3d2−2576 d3

2 +812 d3
2d1

2 +128 d3
4−32 d1

4d2
2 +16 d3

4d2
2−

16 d3d1
5+32 d3

5d1+128 d1
2d2

4−112 d3
2d2

4−32 d3
5d2+16 d2d1

5−112 d1d2
5+16 d3

2d1
4−80 d3

4d1
2+

112 d3
3d2

3 + 3392 d1d2
3 + 64 d1

4 − 1980 d3
2d2

2 − 16 d3d2
5 + 48 d3

3d1
3 − 1668 d1

2d2
2 − 32 d2

3d1
3 +

3959 d2
2)

xw z 1
23328

√
3(−648 − 3696 d3d1d2

2 − 238 d3d2d1
2 − 1849 d3

2d2d1 − 32 d3
2d2

3d1
3 + 96 d3

4d2
2d1

2 +
192 d3

3d2
4d1 − 32 d3

4d2
3d1 + 144 d3

3d2
2d1

3 − 272 d3
3d2

3d1
2 − 96 d3

4d2d1
3 + 16 d3

2d2d1
5 +

128 d3
2d2

4d1
2 − 48 d3

5d2
2d1 − 112 d3

2d2
5d1 − 32 d3

2d1
4d2

2 + 48 d3
5d2d1

2 + 600 d3
4d2d1 −

1572 d1
2d2

2d3
2 − 2940 d3

3d2
2d1 + 1116 d3

3d2d1
2 + 24 d3d2d1

4 − 24 d3d1d2
4 + 3344 d3

2d2
3d1 −

136 d3
2d2d1

3+24 d3d2
2d1

3−72 d3d2
3d1

2−392 d3d1
3−88 d2d1

3+3174 d3d2
3−1906 d1d2−2593 d3

3d2−
623 d3

3d1 + 3386 d3d1−176 d2
4 + 608 d1

2−5834 d3d2 + 252 d3
2 + 238 d3

2d1
2 +432 d3

4−168 d3
4d2

2 +
108 d3

5d1−1676 d3
2d2

4−108 d3
5d2+40 d3

2d1
4−432 d3

4d1
2+1520 d3

3d2
3+264 d1d2

3+5547 d3
2d2

2−
16 d3

5d1
3+16 d3

5d2
3−16 d3

3d1
5−48 d3

3d2
5+32 d3

4d1
4+32 d3

2d2
6+48 d3d2

5+304 d3
3d1

3−4270 d2
2)

x f f 1
2592

(d2 − d3)(608 + 192 d3d1d2
2 − 232 d3d2d1

2 + 192 d3
2d2d1 + 64 d1

2d2
2d3

2 − 32 d3
3d2

2d1 +
16 d3

3d2d1
2+16 d3d2d1

4−32 d3
2d2

3d1−32 d3
2d2d1

3−32 d3d2
2d1

3+16 d3d2
3d1

2+8 d3d1
3+8 d2d1

3−
36 d3d2

3−334 d1d2−36 d3
3d2−334 d3d1−188 d1

2+565 d3d2−18 d3
2+8 d3

2d1
2+8 d1

2d2
2+16 d3

3d2
3−

112 d3
2d2

2 − 18 d2
2)

x f o 0
x f õ 0
x f p 0

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

x f q 1
11664

√
3(−2048−279 d3d1d2

2+936 d3d2d1
2−1091 d3

2d2d1+60 d3
4d2d1+68 d1

2d2
2d3

2+60 d3
3d2

2d1−
128 d3

3d2d1
2 − 8 d3d2d1

4 + 16 d3d1d2
4 − 136 d3

2d2
3d1 + 76 d3

2d2d1
3 − 76 d3d2

2d1
3 + 68 d3d2

3d1
2 −

4 d3d1
3−156 d2d1

3−413 d3d2
3+744 d1d2+82 d3

3d2+30 d3
3d1+248 d3d1+18 d2

4+16 d1
2−3124 d3d2+

1256 d3
2+26 d3

2d1
2−178 d1

2d2
2−60 d3

4d2
2−8 d3

2d2
4+68 d3

3d2
3+252 d1d2

3+777 d3
2d2

2+8 d1
4d2

2−
8 d1

2d2
4 + 536 d2

2)

x f r 11
11664

√
3(28 d2 + 4 d2

2d1
3−2 d3d1

2 + 45 d3d2d1−4 d3
2d2

3 + 9 d2
3−4 d1

2d2
3−4 d3

3d2d1−11 d3d2
2−

4 d3d2d1
3 +40 d3−14 d1

2d2−14 d3
2d2−2 d3

2d1 +8 d3d2
3d1−4 d3

2d1d2
2 +8 d3

2d2d1
2−4 d3d2

2d1
2 +

40 d1 − 11 d1d2
2 + 4 d3

3d2
2)

x f s − 125
23328

√
3(28 d2+4 d2

2d1
3−2 d3d1

2+45 d3d2d1−4 d3
2d2

3+9 d2
3−4 d1

2d2
3−4 d3

3d2d1−11 d3d2
2−

4 d3d2d1
3 +40 d3−14 d1

2d2−14 d3
2d2−2 d3

2d1 +8 d3d2
3d1−4 d3

2d1d2
2 +8 d3

2d2d1
2−4 d3d2

2d1
2 +

40 d1 − 11 d1d2
2 + 4 d3

3d2
2)

x f y 1
23328

√
3(48 d3d2

3d1
3 + 32 d3d1d2

5 − 16 d3d2d1
5 + 16 d3

2d1
4d2 + 48 d3

2d1d2
4 + 32 d3d2

2d1
4 +

32 d3
4d2

2d1+48 d3
3d2d1

3+96 d3
2d2

3d1
2−96 d3d2

4d1
2−144 d3

2d2
2d1

3−144 d3
3d2

3d1−80 d3
4d2d1

2+
32 d3

5d2d1 + 96 d3
3d2

2d1
2 − 320 d3

3 − 364 d3d2
2d1

2 + 844 d3
2d2d1

2 + 220 d3
2d1d2

2 − 36 d3d2
3d1 +

32 d3d2d1
3−1044 d3

3d2d1+399 d3d2d1−3258 d3
2d2+36 d2

5−1277 d2
3+224 d1

3+935 d3d2
2−4424 d1+

6068 d2 + 8 d3
3d1

2 − 592 d2
2d1

3 + 586 d3d1
2 + 856 d1

2d2
3 − 2154 d1

2d2 + 1322 d3
2d1 + 3543 d1d2

2 +
652 d3

3d2
2 − 16 d3

2d1
3 − 372 d1d2

4 − 48 d2
3d1

4 + 48 d2
4d1

3 + 16 d3
4d1 + 112 d3

4d2 + 48 d3
4d2

3 +
248 d3d2

4−16 d3
2d2

5−32 d3
5d2

2−8 d3d1
4−16 d1

2d2
5 +16 d1

5d2
2−664 d3

2d2
3−1864 d3 +72 d1

4d2)

x f z 1
11664

√
3(48 d3

2d1
4d2− 324 d3

2d1d2
4 + 24 d3d2

2d1
4 + 468 d3

4d2
2d1 + 352 d3

3d2d1
3 + 840 d3

2d2
3d1

2−
24 d3d2

4d1
2−600 d3

2d2
2d1

3−508 d3
3d2

3d1−408 d3
4d2d1

2 +108 d3
5d2d1−24 d3

3d2
2d1

2−1080 d3
3−

446 d3d2
2d1

2 − 932 d3
2d2d1

2 + 3469 d3
2d1d2

2 + 580 d3d2
3d1 − 380 d3d2d1

3 − 1799 d3
3d2d1 +

1242 d3d2d1 +16 d3
2d2

2d1
5 +16 d3

4d2
4d1 +32 d3

3d2
5d1 +32 d3

4d2d1
4−16 d3

2d2
5d1

2−80 d3
4d2

2d1
3 +

48 d3
2d2

4d1
3−16 d3

3d2d1
5−48 d3

2d2
3d1

4−80 d3
3d2

4d1
2+48 d3

4d2
3d1

2+48 d3
3d2

3d1
3+16 d3

3d2
2d1

4+
48 d3

5d2
2d1

2−16 d3
5d2d1

3−48 d3
5d2

3d1 +3568 d3
2d2−198 d2

3 +2362 d3d2
2−8 d3

3d1
4 +16 d3

5d2
4−

8 d3
4d1

3 +188 d3
3d2

4−752 d1−2728 d2 +522 d3
3d1

2−88 d2
2d1

3 +92 d3d1
2 +88 d1

2d2
3 +564 d1

2d2−
1756 d3

2d1 − 270 d1d2
2 + 221 d3

3d2
2 − 16 d3

4d2
5 + 212 d3

2d1
3 + 54 d3

4d1 + 378 d3
4d2 − 52 d3

4d2
3 +

54 d3d2
4 + 36 d3

2d2
5 − 108 d3

5d2
2 − 1933 d3

2d2
3 − 3312 d3)

x o o 736
2187

d2 − 736
2187

d3
x o õ 0
x o p 0
x o q 0
x o r − 320

2187
+ 80

2187
d2

2 + 80
2187

d3d1 − 80
2187

d3d2 − 80
2187

d1d2
x o s 0
x o y 0
x o z 0
x õ õ 64

2187
d2 − 64

2187
d3

x õ p 0
x õ q 0
x õ r 0
x õ s 0
x õ y 0
x õ z 0
x p p − 12800

2187
d2 + 12800

2187
d3

x p q 0
x p r 0
x p s 1600

2187
d2

2 − 6400
2187

+ 1600
2187

d3d1 − 1600
2187

d3d2 − 1600
2187

d1d2
x p y 0
x p z 0
x q q − 1

17496
(d2−d3)(−30 d3d2

3 +30 d1d2
3−4 d1

2d2
2 +229 d3

2d2
2 +1312 d2

2−225 d3d1d2
2−7488 d3d2−

30 d3
3d2−1152 d1d2 + 285 d3d2d1

2−30 d2d1
3−225 d3

2d2d1 + 4 d1
4 + 1312 d3

2−4 d3
2d1

2−416 d1
2 +

30 d3
3d1 − 4096− 1152 d3d1 − 30 d3d1

3)
x q r − 11

17496
(d1−d3)(2 d1

2d2−2 d3d1
2 +32 d1 +19 d3d2d1−17 d1d2

2−2 d3
2d1−96 d2 +2 d3

2d2 +15 d2
3 +

32 d3 − 17 d3d2
2)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

x q s 125
34992

(d1− d3)(2 d1
2d2− 2 d3d1

2 + 32 d1 + 19 d3d2d1− 17 d1d2
2− 2 d3

2d1− 96 d2 + 2 d3
2d2 + 15 d2

3 +
32 d3 − 17 d3d2

2)
x q y 76

729
d3d1d2

2 + 47
1296

d3d2d1
2 − 1319

11664
d3

2d2d1 − 17
1458

d1
2d2

2d3
2 − 1

1458
d3

3d2
2d1 + 19

2916
d3

3d2d1
2 −

23
8748

d3d2d1
4 + 8

729
d3

2d2
3d1 + 1

1458
d3

2d2d1
3 + 17

2916
d3d2

2d1
3− 1

2187
d3

5d2− 14
2187

d2
4− 17

4374
d3

4d2d1−
5

972
d3d1d2

4 − 512
729
− 197

17496
d3d1

3 + 821
17496

d2d1
3 − 1337

11664
d3d2

3 − 530
2187

d1d2 − 229
17496

d3
3d2 − 184

2187
d3d1 +

34
243

d1
2 − 58

243
d3d2 + 406

2187
d3

2 − 64
2187

d3
2d1

2 − 3413
34992

d1
2d2

2 − 5
972

d3
3d2

3 − 16
2187

d3
4 + 3701

34992
d3

2d2
2 −

4
729

d1
4 + 7

2916
d1

4d2
2 + 1

243
d3

4d2
2 + 1

4374
d3d1

5 + 1
2187

d3
5d1 + 47

8748
d1

2d2
4− 1

4374
d3

2d2
4− 1

4374
d2d1

5−
5

2916
d1d2

5 + 1
4374

d3
2d1

4 + 5
2916

d3d2
5 − 1

4374
d3

4d1
2 − 1

1458
d3

3d1
3 − 17

2916
d2

3d1
3 + 1/16 d1d2

3 +
247
5832

d3
3d1 + 1292

2187
d2

2

x q z 16
81

d3d1d2
2 + 811

8748
d3d2d1

2 − 7627
8748

d3
2d2d1 − 17

1458
d3

2d2
3d1

3 − 17
1458

d3
4d2

2d1
2 − 5

729
d3

3d2
4d1 +

17
1458

d3
4d2

3d1 + 2
243

d3
3d2

2d1
3 − 1

2187
d3

3d2
3d1

2 + 17
4374

d3
4d2d1

3 − 1
2187

d3
2d2d1

5 + 47
4374

d3
2d2

4d1
2 −

1
729

d3
5d2

2d1 − 7
1458

d3
3d2d1

4 − 5
1458

d3
2d2

5d1 + 7
1458

d3
2d1

4d2
2 + 1

729
d3

5d2d1
2 + 1

1458
d3d2

3d1
2 −

1115
5832

d1
2d2

2d3
2 + 56

729
d3

3d2
2d1 + 41

1944
d3

3d2d1
2 − 1

1458
d3d2d1

4 + 709
5832

d3
2d2

3d1 + 383
4374

d3
2d2d1

3 +
5

972
d3d2

2d1
3 − 1

324
d3

5d2 − 409
5832

d3
4d2d1 − 5

972
d3d1d2

4 − 512
729
− 11

4374
d3d1

3 + 11
4374

d2d1
3 − 79

324
d3d2

3 +
320
2187

d1d2 + 13
4374

d3
3d2 − 464

2187
d3d1 + 8

243
d1

2 − 616
2187

d3d2 − 136
729

d3
2 + 92

729
d3

2d1
2 − 187

8748
d1

2d2
2 −

1339
17496

d3
3d2

3− 4
81

d3
4+ 5083

8748
d3

2d2
2+ 95

1944
d3

4d2
2+ 1

324
d3

5d1− 67
8748

d3
2d2

4− 5
486

d3
2d1

4+ 31
1458

d3
4d1

2−
187
8748

d3
3d1

3 − 1
2187

d3
5d1

3 + 1
2187

d3
5d2

3 + 1
2187

d3
3d1

5 + 5
1458

d3
3d2

5 − 17
4374

d3
4d2

4 + 55
2916

d1d2
3 +

731
4374

d3
3d1 + 1864

2187
d2

2

x r r − 19
5832

(d2 − d3)(d1 − d3)(d1 − d2)
x r s 1375

34992
(d2 − d3)(d1 − d3)(d1 − d2)

x r y − 11
34992

(d1 − d2)(4 d2d1
3 − 4 d3d1

3 − 8 d1
2d2

2 + 8 d3d2d1
2 + 32 d1

2 + 4 d1d2
3 + 12 d3

3d1 − 27 d3d1 −
101 d1d2 − 24 d3

2d2d1 + 8 d3d1d2
2 − 320 + 91 d3

2 − 8 d3
4 − 4 d3d2

3 + 32 d2
2 + 12 d3

3d2 − 27 d3d2)
x r z − 11

17496
(d1−d2)(4 d3

2d2d1
3−4 d3

3d1
3 +26 d3

2d1
2 +4 d3

4d1
2 +6 d3d2d1

2 +4 d3
3d2d1

2−8 d1
2d2

2d3
2 +

4 d3
2d2

3d1−74 d3d1−8 d3
4d2d1−103 d3

2d2d1−22 d1d2+33 d3
3d1+6 d3d1d2

2+4 d3
3d2

2d1+33 d3
3d2+

4 d3
4d2

2 − 74 d3d2 − 214 d3
2 + 64 + 26 d3

2d2
2 − 27 d3

4 − 4 d3
3d2

3)
x s s − 9475

23328
(d2 − d3)(d1 − d3)(d1 − d2)

x s y 125
69984

(d1 − d2)(4 d2d1
3 − 4 d3d1

3 − 8 d1
2d2

2 + 8 d3d2d1
2 + 32 d1

2 + 4 d1d2
3 + 12 d3

3d1 − 27 d3d1 −
101 d1d2 − 24 d3

2d2d1 + 8 d3d1d2
2 − 320 + 91 d3

2 − 8 d3
4 − 4 d3d2

3 + 32 d2
2 + 12 d3

3d2 − 27 d3d2)
x s z 125

34992
(d1−d2)(4 d3

2d2d1
3− 4 d3

3d1
3 + 26 d3

2d1
2 + 4 d3

4d1
2 + 6 d3d2d1

2 + 4 d3
3d2d1

2− 8 d1
2d2

2d3
2 +

4 d3
2d2

3d1−74 d3d1−8 d3
4d2d1−103 d3

2d2d1−22 d1d2+33 d3
3d1+6 d3d1d2

2+4 d3
3d2

2d1+33 d3
3d2+

4 d3
4d2

2 − 74 d3d2 − 214 d3
2 + 64 + 26 d3

2d2
2 − 27 d3

4 − 4 d3
3d2

3)
x y y − 1

69984
(d2 − d3)(24000 + 808 d3d1d2

2 − 1400 d3d2d1
2 + 808 d3

2d2d1 + 160 d3d2d1
4 + 128 d3d1d2

4 −
160 d3d2

2d1
3 − 64 d3d2

3d1
2 + 368 d1

2d2
2d3

2 − 160 d3
3d2

2d1 − 64 d3
3d2d1

2 − 160 d3
2d2

3d1 −
160 d3

2d2d1
3+128 d3

4d2d1+3072 d1
2d2

2+9543 d1d2+788 d3
3d2+9543 d3d1−5639 d1

2+10809 d3d2−
8032 d3

2+3072 d3
2d1

2−32 d1
4d2

2−32 d3d1
5+32 d3

5d1−112 d1
2d2

4−16 d3
2d2

4−32 d3
5d2−32 d2d1

5+
32 d1d2

5−32 d3
2d1

4−32 d3d2
5 +128 d2

3d1
3 +96 d3

3d2
3 +256 d3

4−2088 d3
2d2

2 +256 d2
4−296 d1

4 +
16 d1

6 − 964 d2d1
3 − 964 d3d1

3 − 2068 d1d2
3 − 16 d3

4d2
2 − 112 d3

4d1
2 + 128 d3

3d1
3 − 2068 d3

3d1 +
788 d3d2

3 − 8032 d2
2)

x y z 2
2187

d3
2d2

2d1
5+ 1

486
d3d2

3d1
3+1/6 d3

3d2d1+ 25
243

d3d2
2d1

2− 8
2187

d3d2d1− 1
729

d3d1d2
5− 1

1458
d3d2d1

5+
4

729
d3

4d2
4d1 − 4

2187
d3

3d2
5d1 − 2

2187
d3

2d2
6d1 + 2

729
d3

4d2d1
4 + 7

2187
d3

2d2
5d1

2 + 1
729

d3
4d2

2d1
3 −

1
729

d3
6d2

2d1 − 8
2187

d3
2d2

4d1
3 + 1

2187
d3

3d2d1
5 + 2

2187
d3

2d2
3d1

4 − 4
2187

d3
3d2

4d1
2 − 247

1944
d3d2

3d1 +
17
648

d3d2d1
3 + 22

2187
d3

2d1
4d2 − 311

11664
d3

2d2d1
2 + 509

8748
d3

2d1d2
4 − 1

1458
d3d2

2d1
4 − 151

2916
d3

4d2
2d1 −

4345
11664

d3
2d1d2

2 − 5
729

d3
4d2

3d1
2 − 185

8748
d3

3d2d1
3 − 43

486
d3

2d2
3d1

2 + 1
1458

d3d2
4d1

2 + 223
8748

d3
2d2

2d1
3 +

10
2187

d3
3d2

3d1 − 23
972

d3
4d2d1

2 + 5
729

d3
3d2

3d1
3 − 1

2187
d3

2d2d1
6 − 11

2187
d3

3d2
2d1

4 + 1
243

d3
5d2

2d1
2 +

91
2916

d3
5d2d1− 1

243
d3

5d2d1
3− 1

729
d3

5d2
3d1 + 97

1458
d3

3d2
2d1

2 + 1
729

d3
6d2d1

2− 32
2187

d2
3 + 527

34992
d3

4d2−
112
729

d3
3 + 1825

5832
d3

2d2
3− 1559

11664
d3

3d2
2− 1801

17496
d3

2d2− 20
729

d1
3 + 68

729
d1 + 100

729
d2− 12199

17496
d3d2

2 + 2
81

d3
5 +

856
729

d3+ 757
3888

d3
3d1

2+ 7561
17496

d3
2d1− 5881

17496
d3d1

2+ 989
5832

d1d2
2+ 553

17496
d1

2d2− 377
5832

d3
2d1

3− 11
1458

d1
2d2

3+
11

2187
d1d2

4 + 11
4374

d1
4d2 − 5231

34992
d3

4d1 + 82
2187

d3
4d1

3 − 259
8748

d3
3d2

4 + 83
2187

d3
4d2

3 − 89
4374

d3
3d1

4 +
37

2187
d3d2

4− 13
2187

d3
2d2

5− 5
486

d3
5d2

2+ 61
4374

d3d1
4+ 1

1458
d3

2d1
5− 61

2916
d3

5d1
2+ 1

324
d3

6d1− 1
324

d3
6d2+

1
729

d3
5d1

4 − 1
729

d3
4d2

5 + 2
2187

d3
3d2

6 + 1
2187

d3
6d2

3 − 1
729

d3
4d1

5 + 1
2187

d3
3d1

6 − 1
2187

d3
6d1

3

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

x z z − 1
17496

(d2 − d3)(6528 + 9714 d3d1d2
2 + 3744 d3d2d1

2 + 9714 d3
2d2d1 − 540 d3d2d1

4 + 162 d3d1d2
4 −

858 d3d2
2d1

3 + 852 d3d2
3d1

2 + 8877 d1
2d2

2d3
2 − 7001 d3

3d2
2d1 + 852 d3

3d2d1
2 − 7001 d3

2d2
3d1 −

858 d3
2d2d1

3 + 144 d3
3d2

3d1
4 + 48 d3

5d2
3d1

2 − 16 d3
2d2

5d1
3 − 144 d3

4d2
3d1

3 + 16 d3
2d2

2d1
6 −

48 d3
3d2

2d1
5 + 48 d3

4d2
2d1

4 − 16 d3
5d2

2d1
3 + 48 d3

3d2
5d1

2 − 48 d3
4d2

5d1 + 144 d3
4d2

4d1
2 −

48 d3
2d2

3d1
5 + 48 d3

2d2
4d1

4 − 48 d3
5d2

4d1 − 144 d3
3d2

4d1
3 + 1272 d3

2d2
3d1

3 − 660 d3
4d2

2d1
2 −

24 d3d2
4d1

3 + 1020 d3
3d2

4d1 + 1020 d3
4d2

3d1 + 1272 d3
3d2

2d1
3 − 2184 d3

3d2
3d1

2 − 24 d3
4d2d1

3 +
24 d3

2d2d1
5 − 660 d3

2d2
4d1

2 + 108 d3
5d2

2d1 + 24 d3d2
2d1

5 + 108 d3
2d2

5d1 − 744 d3
2d1

4d2
2 +

162 d3
4d2d1−108 d3

3d2
5−336 d3

4d2
4−42 d1

2d2
2−11428 d1d2−1998 d3

3d2−11428 d3d1−1244 d1
2+

868 d3d2 + 1728 d3
2 − 42 d3

2d1
2 − 88 d1

4d2
2 + 702 d3

2d2
4 − 88 d3

2d1
4 + 88 d2

3d1
3 − 108 d3

5d2
3 +

3949 d3
3d2

3−13032 d3
2d2

2 +828 d2d1
3 +828 d3d1

3−594 d1d2
3 +702 d3

4d2
2 +88 d3

3d1
3 +16 d3

5d2
5−

594 d3
3d1 − 1998 d3d2

3 + 1728 d2
2)

h h h 0

h h u 1/4
√

3

h h v − 125
216

√
3

h hw 1
216

√
3(4 d1

2 − 8 d1d2 + 4 d2
2 + 4 d3d1 + 4 d3d2 − 8 d3

2 − 5)

h h f 1
108

√
3(2 d2 + 4 d3d1

2 − 8 d3d2d1 + 4 d3d2
2 − 9 d3 + 2 d1)

h h o 0
h h õ 0
h h p 0
h h q 1

162
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

h h r 1/6 d1 − 1/6 d2
h h s − 125

324
d1 + 125

324
d2

h h y 1
324

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

h h z 1
162

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)
h u u 0
h u v − 125

324

h uw 1
81

d1
2 − 2

81
d1d2 + 1

81
d2

2 + 1
81

d3d1 + 1
81

d3d2 − 2
81

d3
2 − 5

324

h u f 1
81

d1 + 1
81

d2 − 1/18 d3 + 2
81

d3d1
2 − 4

81
d3d2d1 + 2

81
d3d2

2

h u o − 98
729

√
3

h u õ 172
729

√
3

h u p 0

h u q 1
729

√
3(d1 − d2)(2 d1 − 15 d3 + 2 d2)

h u r 0

h u s − 125
1458

√
3(d1 − d2)

h u y 1
1458

√
3(d1 − d2)(4 d1

2 + 4 d3d1 − 8 d1d2 − 37− 8 d3
2 + 4 d2

2 + 4 d3d2)

h u z 1
729

√
3(d1 − d2)(4 d3

2d1
2 − 8 d3

2d2d1 + 6 d3d1 − 22− 27 d3
2 + 4 d3

2d2
2 + 6 d3d2)

h v v 0
h v w 0
h v f 0

h v o 125
243

√
3

h v õ − 250
729

√
3

h v p 0
h v q 0

h v r 125
1458

√
3(d1 − d2)

h v s 0
h v y 0
h v z 0
hww 0
hw f 0

hw o − 1
243

√
3(4 d1d2 − 5 + 4 d3d2 − 8 d2

2 − 8 d3d1 + 4 d1
2 + 4 d3

2)

hw õ 2
729

√
3(4 d1d2 − 5 + 4 d3d2 − 8 d2

2 − 8 d3d1 + 4 d1
2 + 4 d3

2)
hw p 0

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

hw q 0

hw r − 1
1458

√
3(−8 d3d1

2 +4 d1
3−12 d1d2

2 +12 d3d2d1−37 d1−4 d3
2d2 +8 d2

3 +32 d3 +4 d3
2d1−59 d2−

4 d3d2
2)

hw s 0
hw y 0
hw z 0
h f f 0

h f o − 2
243

√
3(−8 d3d2d1 + 4 d3

2d2 + 4 d1
2d2 − 9 d2 + 2 d3 + 2 d1)

h f õ 4
729

√
3(−8 d3d2d1 + 4 d3

2d2 + 4 d1
2d2 − 9 d2 + 2 d3 + 2 d1)

h f p 0
h f q 0

h f r − 1
729

√
3(4 d2d1

3 + 2 d1
2 + 9 d2

2 + 8 d3d1d2
2 + 2 d3d1 + 30 d3d2− 43 d1d2− 4 d3

2d2
2− 32− 4 d1

2d2
2−

8 d3d2d1
2 + 4 d3

2d2d1)
h f s 0
h f y 0
h f z 0
h o o 0
h o õ 512

2187

h o p 0
h o q − 4

729
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

h o r − 196
2187

d1 + 196
2187

d2
h o s 250

729
d1 − 250

729
d2

h o y − 2
729

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

h o z − 4
729

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)
h õ õ 0
h õ p 0
h õ q 8

2187
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

h õ r 344
2187

d1 − 344
2187

d2
h õ s − 500

2187
d1 + 500

2187
d2

h õ y 4
2187

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

h õ z 8
2187

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)
h p p 0
h p q 0
h p r 0
h p s 0
h p y 0
h p z 0
h q q 0
h q r 4

2187
d3

2d2− 10
729

d3d2
2+ 10

729
d1d2

2+ 10
729

d3d2d1+ 56
2187

d2+ 4
2187

d1
3− 34

2187
d1

2d2+ 16
729

d3− 4
2187

d3
2d1−

80
2187

d1
h q s 0
h q y 0
h q z 0
h r r 0
h r s 125

2187
d1

2 − 125
2187

d3d1 + 125
2187

d3d2 − 125
2187

d1d2 − 500
2187

h r y 4
729

d2d1
3 + 85

2187
d1

2 + 16
729

d2
2− 32

2187
d3

2− 28
729

+ 8
2187

d3
3d2 + 16

2187
d3d1d2

2 + 43
2187

d3d1− 11
2187

d3d2 +
4

729
d3

2d1
2− 133

2187
d1d2− 4

2187
d3

2d2
2− 8

2187
d3

3d1− 4
729

d1
2d2

2− 4
729

d3d2d1
2− 8

2187
d3

2d2d1− 4
2187

d1
4+

4
2187

d1d2
3 − 4

2187
d3d2

3

h r z 8
2187

d3
2d2

3d1 + 8
729

d3
2d2d1

3 + 44
2187

d1
2 − 8

81
d3

2 − 8
729

d1
2d2

2d3
2 − 8

2187
d3

3d2
3 − 8

729
d3

3d2d1
2 +

2
81

d3
3d2 + 4

729
d3d1d2

2 + 196
2187

d3d1 − 100
2187

d3d2 + 2
27

d3
2d1

2 − 4
729

d3d1
3 − 44

2187
d1d2 + 28

729
d3

2d2
2 −

2
81

d3
3d1 + 8

729
d3

3d2
2d1 + 8

2187
d3

3d1
3 − 82

729
d3

2d2d1 − 16
729
− 8

2187
d3

2d1
4

h s s 0

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

h s y 0
h s z 0
h y y 0
h y z 0
h z z 0

u u u 1
192

√
3

u u v − 2375
31104

√
3

u uw 19
31104

√
3(4 d1

2 − 8 d1d2 + 4 d2
2 + 4 d3d1 + 4 d3d2 − 8 d3

2 − 5)

u u f 19
15552

√
3(2 d2 + 4 d3d1

2 − 8 d3d2d1 + 4 d3d2
2 − 9 d3 + 2 d1)

u u o 0
u u õ 0
u u p 0
u u q 19

23328
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

u u r 1
288

d1 − 1
288

d2
u u s − 2375

46656
d1 + 2375

46656
d2

u u y 19
46656

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

u u z 19
23328

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)

u v v 104225
62208

√
3

u v w − 1375
186624

√
3(4 d1

2 − 8 d1d2 + 4 d2
2 + 4 d3d1 + 4 d3d2 − 8 d3

2 − 5)

u v f − 1375
93312

√
3(2 d2 + 4 d3d1

2 − 8 d3d2d1 + 4 d3d2
2 − 9 d3 + 2 d1)

u v o 1250
2187

u v õ 0
u v p 4400

2187

u v q − 1375
139968

(d1 − d2)(2 d1 − 15 d3 + 2 d2)
u v r − 2375

46656
d1 + 2375

46656
d2

u v s 104225
93312

d1 − 104225
93312

d2
u v y − 1375

279936
(d1 − d2)(4 d1

2 + 4 d3d1 − 8 d1d2 − 37− 8 d3
2 + 4 d2

2 + 4 d3d2)
u v z − 1375

139968
(d1 − d2)(4 d3

2d1
2 − 8 d3

2d2d1 + 6 d3d1 − 22− 27 d3
2 + 4 d3

2d2
2 + 6 d3d2)

uww 11
186624

√
3(80 d1d2

3 + 537 − 16 d3
3d2 + 80 d3

3d1 − 236 d1d2 − 80 d3
2d2d1 − 48 d1

2d2
2 − 48 d3

2d1
2 −

16 d2d1
3 +96 d3

2d2
2 +16 d1

4−16 d3d2
3 +532 d3

2−296 d1
2 +532 d2

2 +112 d3d2d1
2−32 d2

4−32 d3
4−

236 d3d1 − 3368 d3d2 − 16 d3d1
3 − 80 d3d1d2

2)

uw f 11
93312

√
3(−260 d3d2d1 − 32 d3

3d2d1 − 48 d3d2
2d1

2 + 80 d3d2
3d1 − 16 d3d2d1

3 + 80 d3
2d2d1

2 −
64 d3

2d1d2
2+8 d1

3−284 d3
2d2−36 d3

3+572 d3d2
2−328 d3d1

2−266 d1−1546 d2+16 d3
3d2

2−16 d2
3+

813 d3 + 16 d3
3d1

2 + 336 d3
2d1 − 8 d1d2

2 + 16 d1
2d2 + 16 d3

2d2
3 − 32 d3

2d1
3 − 32 d3d2

4 + 16 d3d1
4)

uw o − 40
2187

d1d2 + 80
2187

d2
2 − 40

2187
d1

2 − 40
2187

d3
2 + 80

2187
d3d1 − 40

2187
d3d2 + 50

2187

uw õ 0
uw p 0
uw q 11

17496
d2d1

3− 605
23328

d1
2+ 7799

69984
d2

2− 77
4374

d3
2+ 55

11664
d3

3d2+ 539
34992

d3d1d2
2+ 6809

139968
d3d1− 31801

139968
d3d2+

22
2187

d3
2d1

2 − 209
34992

d3d1
3 − 253

2187
d1d2 + 143

34992
d3

2d2
2 − 55

11664
d3

3d1 − 11
5832

d1
2d2

2 + 11
17496

d3d2d1
2 −

55
3888

d3
2d2d1 + 11

8748
d2

4 + 11
17496

d1
4 + 176

2187
− 11

17496
d1d2

3 − 22
2187

d3d2
3

uw r − 19
11664

d3
2d2 + 19

3888
d3d2d1− 19

3888
d1d2

2− 19
5832

d3d1
2− 703

46656
d1− 19

11664
d3d2

2 + 19
5832

d2
3− 1121

46656
d2 +

19
11664

d1
3 + 19

1458
d3 + 19

11664
d3

2d1
uw s 50875

279936
d1 + 81125

279936
d2− 1375

8748
d3− 1375

23328
d3d2d1− 1375

69984
d3

2d1 + 1375
69984

d3
2d2 + 1375

69984
d3d2

2 + 1375
34992

d3d1
2 +

1375
23328

d1d2
2 − 1375

69984
d1

3 − 1375
34992

d2
3

uw y − 11429
69984

d3d2d1 + 55
23328

d1
2d2 − 11

2916
d3

2d2
3 − 11

5832
d3

2d1
3 + 11

2187
d1

2d2
3 − 77

17496
d1d2

4 − 11
8748

d2
2d1

3 −
11

8748
d3

4d1+ 11
8748

d3
4d2+ 11

17496
d3d2

4+ 121
17496

d3
2d1d2

2− 11
2916

d3
3d2d1− 11

1458
d3d2

2d1
2+ 11

4374
d3d2

3d1+
11

2187
d3d2d1

3 − 11
8748

d3
2d2d1

2 + 4631
34992

d3d2
2 + 44

729
d1d2

2 + 55
69984

d3d1
2 + 2167

69984
d3

2d1 − 253
11664

d1
3 −

319
7776

d2
3− 11

8748
d1

4d2− 11
17496

d3d1
4+ 26323

279936
d1− 71731

279936
d2+ 11

8748
d2

5+ 11
17496

d1
5− 22

2187
d3

3+ 649
69984

d3
2d2+

473
8748

d3 + 11
17496

d3
3d2

2 + 55
17496

d3
3d1

2

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

uw z − 715
1944

d3d2d1 − 2717
34992

d3
2d2

3 − 385
8748

d3
2d1

3 − 11
1296

d3
4d1 + 11

1296
d3

4d2 + 11
2916

d3d2
4 + 671

5832
d3

2d1d2
2 −

1001
11664

d3
3d2d1 − 11

1944
d3d2

2d1
2 − 11

5832
d3d2

3d1 + 11
5832

d3d2d1
3 + 77

11664
d3

2d2d1
2 + 23881

69984
d3d2

2 +
121
5832

d1d2
2 − 4477

69984
d3d1

2 − 11
4374

d3
2d1

4d2 − 77
8748

d3
2d1d2

4 + 11
2916

d3
4d2

2d1 + 77
8748

d3
3d2d1

3 +
22

2187
d3

2d2
3d1

2 − 11
4374

d3
2d2

2d1
3 + 55

8748
d3

3d2
3d1 − 11

2916
d3

4d2d1
2 − 11

972
d3

3d2
2d1

2 + 37477
139968

d3
2d1 −

121
17496

d1
3− 121

8748
d2

3 + 11
5832

d3d1
4 + 1661

69984
d1− 32285

69984
d2− 11

162
d3

3− 4741
139968

d3
2d2 + 55

243
d3 + 143

3888
d3

3d2
2 +

143
2916

d3
3d1

2 + 11
8748

d3
4d1

3 − 11
8748

d3
3d2

4 − 11
8748

d3
4d2

3 − 11
4374

d3
3d1

4 + 11
4374

d3
2d2

5 + 11
8748

d3
2d1

5

u f f 11
46656

√
3(−768+320 d3d1d2

2−360 d3d2d1
2+64 d1

2d2
2d3

2−32 d3
3d2

2d1+16 d3
3d2d1

2+16 d3d2d1
4−

32 d3
2d2

3d1−32 d3
2d2d1

3−32 d3d2
2d1

3+16 d3d2
3d1

2+1109 d3d2−18 d3
2−270 d1d2+4 d1

2−270 d3d1+
16 d3

3d2
3 + 8 d3

2d1
2 − 240 d3

2d2
2 + 8 d1

2d2
2 − 36 d3d2

3 + 8 d3d1
3 − 18 d2

2 + 8 d2d1
3 + 320 d3

2d2d1 −
36 d3

3d2)
u f o − 80

2187
d3

2d2 − 40
2187

d3 − 80
2187

d1
2d2 + 160

2187
d3d2d1 − 40

2187
d1 + 20

243
d2

u f õ 0
u f p 0
u f q − 286

2187
d1 + 22

81
d2− 451

2187
d3 + 55

5832
d3d2

2d1
2 + 7799

69984
d3d2d1 + 11

4374
d3d2

3d1− 11
8748

d3
2d2

3− 11
8748

d1
2d2

3 +
55

5832
d3

3d2
2 − 55

5832
d3

3d2d1 − 209
17496

d3d2d1
3 − 55

11664
d3

2d1 − 1067
34992

d3
2d2 − 3641

69984
d3d2

2 − 143
34992

d3d1
2 +

517
17496

d1d2
2 + 11

17496
d1

3 + 11
8748

d1
4d2 − 1859

34992
d1

2d2 + 44
2187

d3
2d2d1

2 + 11
3888

d2
3 − 55

2916
d3

2d1d2
2

u f r 19
5832

d2d1
3− 19

5832
d3

2d2
2− 19

5832
d1

2d2
2− 817

23328
d1d2 + 95

3888
d3d2 + 19

5832
d3

2d2d1 + 19
2916

d3d1d2
2− 19

729
+

19
2592

d2
2 − 19

2916
d3d2d1

2 + 19
11664

d3d1 + 19
11664

d1
2

u f s − 1375
34992

d2d1
3 − 1375

69984
d1

2 − 1375
15552

d2
2 − 1375

17496
d3d1d2

2 − 1375
69984

d3d1 − 6875
23328

d3d2 + 59125
139968

d1d2 +
1375
34992

d3
2d2

2 + 1375
4374

+ 1375
34992

d1
2d2

2 + 1375
17496

d3d2d1
2 − 1375

34992
d3

2d2d1
u f y − 913

17496
d3d1d2

2− 11
4374

d3
4d2d1+ 11

4374
d3d1d2

4− 55
34992

d3d2d1
2− 275

1458
− 11

8748
d1

2d2
2d3

2− 11
2187

d3
3d2

2d1+
55

8748
d3

3d2d1
2 − 11

8748
d3d2d1

4 + 55
8748

d3
2d2

3d1 − 11
2916

d3
2d2d1

3 + 11
1458

d3d2
2d1

3 − 77
8748

d3d2
3d1

2 +
15719
69984

d3d2+ 44
2187

d3
2+ 37213

139968
d1d2− 2519

69984
d1

2− 9559
69984

d3d1− 11
8748

d3
3d2

3− 11
17496

d3
2d1

2− 869
34992

d3
2d2

2+
1441
17496

d1
2d2

2 + 1133
34992

d3d2
3 + 11

8748
d3d1

3 − 8261
46656

d2
2 − 11

8748
d3

3d1 − 1375
34992

d1d2
3 − 11

2916
d1

4d2
2 +

11
4374

d3
4d2

2 − 11
8748

d1
2d2

4 − 11
8748

d3
2d2

4 + 11
8748

d2d1
5 + 11

2916
d2

3d1
3 + 11

17496
d1

4 − 407
8748

d2d1
3 +

2299
34992

d3
2d2d1 − 55

2916
d3

3d2 + 11
3888

d2
4

u f z 1067
17496

d3d1d2
2 − 110

243
− 11

648
d3

4d2d1 − 4609
34992

d3d2d1
2 + 77

486
d1

2d2
2d3

2 − 110
729

d3
3d2

2d1 + 275
2916

d3
3d2d1

2 +
11

2916
d3d2d1

4 − 1243
17496

d3
2d2

3d1 − 275
2916

d3
2d2d1

3 − 11
2916

d3d2
3d1

2 + 11
1458

d3
2d2

3d1
3 − 11

1458
d3

4d2
2d1

2 +
11

2187
d3

3d2
4d1 + 11

1458
d3

4d2
3d1 + 11

729
d3

3d2
2d1

3 − 11
729

d3
3d2

3d1
2 + 11

4374
d3

4d2d1
3 + 11

4374
d3

2d2d1
5 −

11
4374

d3
2d2

4d1
2 − 11

2187
d3

3d2d1
4 − 11

1458
d3

2d1
4d2

2 + 13849
17496

d3d2 + 11
81

d3
2 + 2387

34992
d1d2 − 121

17496
d1

2 −
6985
17496

d3d1 + 121
2187

d3
3d2

3 − 781
11664

d3
2d1

2 − 29293
69984

d3
2d2

2 + 121
8748

d1
2d2

2 + 11
1296

d3d2
3 + 11

5832
d3d1

3 −
121
3888

d2
2+ 11

8748
d3

2d1
4+ 11

8748
d3

3d1
3− 11

4374
d3

4d2
4− 11

1296
d3

3d1+ 11
648

d3
4d2

2+ 11
1944

d3
2d2

4− 121
8748

d2d1
3+

47707
69984

d3
2d2d1 − 55

432
d3

3d2
u o o 4304

19683

√
3

u o õ 0
u o p 0

u o q 40
19683

√
3(d1 − d2)(2 d1 − 15 d3 + 2 d2)

u o r 0

u o s − 2500
19683

√
3(d1 − d2)

u o y 20
19683

√
3(d1 − d2)(4 d1

2 + 4 d3d1 − 8 d1d2 − 37− 8 d3
2 + 4 d2

2 + 4 d3d2)

u o z 40
19683

√
3(d1 − d2)(4 d3

2d1
2 − 8 d3

2d2d1 + 6 d3d1 − 22− 27 d3
2 + 4 d3

2d2
2 + 6 d3d2)

u õ õ 6496
19683

√
3

u õ p 0
u õ q 0
u õ r 0
u õ s 0
u õ y 0
u õ z 0

u p p − 70400
19683

√
3

u p q 0
u p r 0

u p s − 8800
19683

√
3(d1 − d2)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

u p y 0
u p z 0

u q q − 11
314928

√
3(30 d1d2

3 + 4096− 30 d3
3d2 + 30 d3

3d1 − 504 d1d2 − 225 d3
2d2d1 − 4 d1

2d2
2 − 4 d3

2d1
2 −

30 d2d1
3 + 229 d3

2d2
2 + 4 d1

4 − 30 d3d2
3 + 1368 d3

2 − 912 d1
2 + 1368 d2

2 + 285 d3d2d1
2 − 504 d3d1 −

8532 d3d2 − 30 d3d1
3 − 225 d3d1d2

2)

u q r − 19
104976

√
3(28 d2+15 d3d2d1+2 d1

3−15 d3d2
2+24 d3−17 d1

2d2+2 d3
2d2−2 d3

2d1−40 d1+15 d1d2
2)

u q s 1375
629856

√
3(28 d2+15 d3d2d1+2 d1

3−15 d3d2
2+24 d3−17 d1

2d2+2 d3
2d2−2 d3

2d1−40 d1+15 d1d2
2)

u q y − 11
629856

√
3(−120 d3

3d2d1−188 d3d2
2d1

2+240 d3d2
3d1+220 d3

2d2d1
2−144 d3

2d1d2
2−2139 d3d2d1−

554 d1
3 + 336 d2

3 − 1610 d3
2d2 − 16 d3

4d2 + 8 d1
5 + 1925 d1

2d2 + 840 d1 − 19020 d2 + 128 d3
3d2

2 −
8 d3

3d1
2 − 1536 d3d1

2 − 52 d3
2d2

3 − 24 d3
2d1

3 − 188 d1
2d2

3 + 60 d1d2
4 − 84 d1

4d2 + 204 d2
2d1

3 +
16 d3

4d1 − 60 d3d2
4 + 8 d3d1

4 − 192 d3
3 + 10760 d3 + 3579 d3d2

2 + 1898 d3
2d1 − 1707 d1d2

2)

u q z − 11
314928

√
3(−981 d3

3d2d1−12 d3d2
2d1

2+90 d3d2
3d1+1845 d3

2d2d1
2−1557 d3

2d1d2
2−1842 d3d2d1−

90 d3d2d1
3−84 d3

2d1
4d2 +60 d3

2d1d2
4−24 d3

4d2
2d1 +60 d3

3d2d1
3−188 d3

2d2
3d1

2 +204 d3
2d2

2d1
3 +

180 d3
3d2

3d1 + 24 d3
4d2d1

2− 180 d3
3d2

2d1
2− 44 d1

3− 5840 d3
2d2− 54 d3

4d2 + 374 d1
2d2− 2832 d1−

15528 d2 + 705 d3
3d2

2 + 276 d3
3d1

2 − 2736 d3d1
2 + 246 d3

2d2
3 − 534 d3

2d1
3 + 54 d3

4d1 + 12 d3d1
4 −

8 d3
4d1

3−60 d3
3d2

4 +8 d3
4d2

3 +8 d3
2d1

5−648 d3
3 +15216 d3 +4434 d3d2

2 +6452 d3
2d1−330 d1d2

2)

u r r − 1
1296

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

u r s 2375
209952

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

u r y − 19
209952

√
3(−4 d1d2

3+84−8 d3
3d2+8 d3

3d1+133 d1d2+8 d3
2d2d1+12 d1

2d2
2−12 d3

2d1
2−12 d2d1

3+
4 d3

2d2
2 + 4 d1

4 + 4 d3d2
3 + 32 d3

2 − 85 d1
2 − 48 d2

2 + 12 d3d2d1
2 − 43 d3d1 + 11 d3d2 − 16 d3d1d2

2)

u r z − 19
104976

√
3(−4 d3

3d1
3 +24+12 d3

3d2d1
2−27 d3

3d2 +27 d3
3d1 +22 d1d2 +123 d3

2d2d1−81 d3
2d1

2−
42 d3

2d2
2 − 4 d3

2d2
3d1 + 108 d3

2 − 22 d1
2 − 12 d3

3d2
2d1 + 4 d3

3d2
3 − 98 d3d1 + 50 d3d2 + 4 d3

2d1
4 +

6 d3d1
3 − 6 d3d1d2

2 − 12 d3
2d2d1

3 + 12 d1
2d2

2d3
2)

u s s − 104225
419904

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

u s y 1375
1259712

√
3(−4 d1d2

3+84−8 d3
3d2+8 d3

3d1+133 d1d2+8 d3
2d2d1+12 d1

2d2
2−12 d3

2d1
2−12 d2d1

3+
4 d3

2d2
2 + 4 d1

4 + 4 d3d2
3 + 32 d3

2 − 85 d1
2 − 48 d2

2 + 12 d3d2d1
2 − 43 d3d1 + 11 d3d2 − 16 d3d1d2

2)

u s z 1375
629856

√
3(−4 d3

3d1
3 + 24 + 12 d3

3d2d1
2 − 27 d3

3d2 + 27 d3
3d1 + 22 d1d2 + 123 d3

2d2d1 − 81 d3
2d1

2 −
42 d3

2d2
2 − 4 d3

2d2
3d1 + 108 d3

2 − 22 d1
2 − 12 d3

3d2
2d1 + 4 d3

3d2
3 − 98 d3d1 + 50 d3d2 + 4 d3

2d1
4 +

6 d3d1
3 − 6 d3d1d2

2 − 12 d3
2d2d1

3 + 12 d1
2d2

2d3
2)

u y y − 11
1259712

√
3(−38628 − 32 d3

2d1
4 + 3944 d3d1d2

2 + 368 d1
2d2

2d3
2 − 160 d3

2d2d1
3 − 160 d3

3d2
2d1 −

160 d3
2d2

3d1−64 d3
3d2d1

2 +128 d3
4d2d1 +160 d3d2d1

4 +128 d3d1d2
4−160 d3d2

2d1
3−64 d3d2

3d1
2−

5688 d3d2d1
2 + 96 d3

3d2
3 + 32633 d3d2−5808 d3

2−6313 d1d2 + 7993 d1
2−6313 d3d1 + 1728 d3

2d1
2−

3752 d3
2d2

2 + 384 d3
4 + 1728 d1

2d2
2 + 340 d3d2

3 + 384 d2
4 − 16 d3

4d2
2 + 636 d3d1

3 − 1876 d1d2
3 −

5808 d2
2−32 d1

4d2
2−32 d3d1

5 +32 d3
5d1−112 d1

2d2
4−16 d3

2d2
4−32 d3

5d2−32 d2d1
5 +32 d1d2

5−
32 d3d2

5−112 d3
4d1

2 +128 d2
3d1

3 +128 d3
3d1

3−1876 d3
3d1 +636 d2d1

3 +3944 d3
2d2d1 +340 d3

3d2−
872 d1

4 + 16 d1
6)

u y z − 11
629856

√
3(−31224− 904 d3

2d1
4 + 5518 d3d1d2

2 + 1728 d1
2d2

2d3
2 + 636 d3

2d2d1
3 + 156 d3

3d2
2d1 −

1796 d3
2d2

3d1 − 2520 d3
3d2d1

2 + 128 d3
2d2

3d1
3 + 192 d3

4d2
2d1

2 + 96 d3
3d2

4d1 − 96 d3
4d2

3d1 −
112 d3

3d2
2d1

3 − 48 d3
3d2

3d1
2 − 160 d3

4d2d1
3 − 32 d3

2d2d1
5 − 112 d3

2d2
4d1

2 − 48 d3
5d2

2d1 +
144 d3

3d2d1
4 + 32 d3

2d2
5d1− 32 d3

2d1
4d2

2 + 48 d3
5d2d1

2 + 1584 d3
4d2d1 + 24 d3d2d1

4 + 48 d3d1d2
4−

72 d3d2
2d1

3−24 d3d2
3d1

2−4872 d3d2d1
2+668 d3

3d2
3+38950 d3d2−17340 d3

2−6478 d1d2+1102 d1
2+

1130 d3d1+10749 d3
2d1

2−10246 d3
2d2

2+1296 d3
4−16 d3

5d1
3+264 d1

2d2
2−400 d3d2

3−660 d3
4d2

2−
1398 d3d1

3 − 176 d1d2
3 − 192 d2

2 + 24 d3d1
5 + 108 d3

5d1 + 336 d3
2d2

4 − 108 d3
5d2 − 924 d3

4d1
2 +

16 d3
5d2

3−48 d3
3d1

5−32 d3
3d2

5 +48 d3
4d1

4 +16 d3
2d1

6 +1696 d3
3d1

3−9551 d3
3d1 +3817 d3

2d2d1 +
5087 d3

3d2 − 88 d1
4 + 16 d3

4d2
4)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

u z z − 11
314928

√
3(−30864 + 24 d3d2

2d1
5− 88 d3

2d1
4 + 18186 d3d1d2

2 + 13485 d1
2d2

2d3
2− 1338 d3

2d2d1
3−

10745 d3
3d2

2d1 − 10745 d3
2d2

3d1 + 564 d3
3d2d1

2 + 144 d3
3d2

3d1
4 + 48 d3

5d2
3d1

2 − 16 d3
2d2

5d1
3 −

144 d3
4d2

3d1
3 + 16 d3

2d2
2d1

6 − 48 d3
3d2

2d1
5 + 48 d3

4d2
2d1

4 − 16 d3
5d2

2d1
3 + 48 d3

3d2
5d1

2 −
48 d3

4d2
5d1 + 1656 d3

2d2
3d1

3 − 852 d3
4d2

2d1
2 + 1404 d3

3d2
4d1 + 1404 d3

4d2
3d1 + 1656 d3

3d2
2d1

3 −
2952 d3

3d2
3d1

2 − 24 d3
4d2d1

3 + 24 d3
2d2d1

5 − 852 d3
2d2

4d1
2 + 108 d3

5d2
2d1 + 108 d3

2d2
5d1 −

936 d3
2d1

4d2
2 + 144 d3

4d2
4d1

2 − 48 d3
2d2

3d1
5 + 48 d3

2d2
4d1

4 − 48 d3
5d2

4d1 − 144 d3
3d2

4d1
3 −

24 d3d2
4d1

3+162 d3
4d2d1+36 d3d2d1

4+162 d3d1d2
4−1338 d3d2

2d1
3+564 d3d2

3d1
2−8208 d3d2d1

2+
6925 d3

3d2
3 + 54916 d3d2− 648 d3

2− 8980 d1d2 + 484 d1
2− 8980 d3d1 + 1014 d3

2d1
2− 33084 d3

2d2
2 +

1014 d1
2d2

2−1350 d3d2
3 +1134 d3

4d2
2−132 d3d1

3−594 d1d2
3−648 d2

2−88 d1
4d2

2 +1134 d3
2d2

4 +
88 d2

3d1
3−108 d3

5d2
3−108 d3

3d2
5+88 d3

3d1
3−594 d3

3d1−132 d2d1
3+18186 d3

2d2d1−1350 d3
3d2+

16 d3
5d2

5 − 528 d3
4d2

4)

v v v − 219775
13824

√
3

v v w 9475
124416

√
3(4 d1

2 − 8 d1d2 + 4 d2
2 + 4 d3d1 + 4 d3d2 − 8 d3

2 − 5)

v v f 9475
62208

√
3(2 d2 + 4 d3d1

2 − 8 d3d2d1 + 4 d3d2
2 − 9 d3 + 2 d1)

v v o 0
v v õ 0
v v p 0
v v q 9475

93312
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

v v r 104225
93312

d1 − 104225
93312

d2
v v s − 219775

20736
d1 + 219775

20736
d2

v v y 9475
186624

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

v v z 9475
93312

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)

v ww − 125
373248

√
3(80 d1d2

3 + 537− 16 d3
3d2 + 80 d3

3d1 − 236 d1d2 − 80 d3
2d2d1 − 48 d1

2d2
2 − 48 d3

2d1
2 −

16 d2d1
3 +96 d3

2d2
2 +16 d1

4−16 d3d2
3 +532 d3

2−296 d1
2 +532 d2

2 +112 d3d2d1
2−32 d2

4−32 d3
4−

236 d3d1 − 3368 d3d2 − 16 d3d1
3 − 80 d3d1d2

2)

v w f − 125
186624

√
3(−32 d3

3d2d1 − 48 d3d2
2d1

2 − 260 d3d2d1 + 80 d3d2
3d1 − 16 d3d2d1

3 + 80 d3
2d2d1

2 −
64 d3

2d1d2
2 − 16 d2

3 − 36 d3
3 + 572 d3d2

2 − 328 d3d1
2 − 8 d1d2

2 + 16 d1
2d2 + 16 d3

2d2
3 − 32 d3

2d1
3 −

32 d3d2
4 +16 d3d1

4−284 d3
2d2 +16 d3

3d2
2 +16 d3

3d1
2 +336 d3

2d1 +8 d1
3−266 d1−1546 d2 +813 d3)

v w o 0
v w õ 0
v w p − 800

2187
d1

2 + 1600
2187

d2
2 − 800

2187
d3

2 + 1600
2187

d3d1 − 800
2187

d3d2 − 800
2187

d1d2 + 1000
2187

v w q − 125
34992

d2d1
3 + 6875

46656
d1

2 − 88625
139968

d2
2 + 875

8748
d3

2 − 625
23328

d3
3d2 − 6125

69984
d3d1d2

2 − 77375
279936

d3d1 +
361375
279936

d3d2 − 125
2187

d3
2d1

2 + 2375
69984

d3d1
3 + 2875

4374
d1d2 − 1625

69984
d3

2d2
2 + 625

23328
d3

3d1 + 125
11664

d1
2d2

2 −
125

34992
d3d2d1

2 + 625
7776

d3
2d2d1 − 125

17496
d2

4 − 125
34992

d1
4 + 125

34992
d1d2

3 + 125
2187

d3d2
3 − 1000

2187

v w r 50875
279936

d1 + 81125
279936

d2− 1375
8748

d3− 1375
23328

d3d2d1− 1375
69984

d3
2d1 + 1375

69984
d3

2d2 + 1375
69984

d3d2
2 + 1375

34992
d3d1

2 +
1375
23328

d1d2
2 − 1375

69984
d1

3 − 1375
34992

d2
3

v w s − 350575
186624

d1− 559025
186624

d2+ 9475
5832

d3+ 9475
15552

d3d2d1+ 9475
46656

d3
2d1− 9475

46656
d3

2d2− 9475
46656

d3d2
2− 9475

23328
d3d1

2−
9475
15552

d1d2
2 + 9475

46656
d1

3 + 9475
23328

d2
3

v w y 125
5832

d3
3d2d1 + 125

2916
d3d2

2d1
2 + 129875

139968
d3d2d1 − 125

8748
d3d2

3d1 − 125
4374

d3d2d1
3 + 125

17496
d3

2d2d1
2 −

1375
34992

d3
2d1d2

2 + 3625
15552

d2
3 + 125

2187
d3

3 − 52625
69984

d3d2
2 − 625

139968
d3d1

2 − 250
729

d1d2
2 − 625

46656
d1

2d2 +
125
5832

d3
2d2

3 + 125
11664

d3
2d1

3− 125
34992

d3d2
4 + 125

34992
d3d1

4− 7375
139968

d3
2d2− 125

34992
d3

3d2
2− 625

34992
d3

3d1
2−

24625
139968

d3
2d1 − 125

4374
d1

2d2
3 + 875

34992
d1d2

4 + 125
17496

d1
4d2 + 125

17496
d2

2d1
3 + 125

17496
d3

4d1 − 125
17496

d3
4d2 +

2875
23328

d1
3 − 299125

559872
d1 + 815125

559872
d2 − 125

17496
d2

5 − 125
34992

d1
5 − 5375

17496
d3

v w z 11375
23328

d3
3d2d1 + 125

3888
d3d2

2d1
2 + 8125

3888
d3d2d1 + 125

11664
d3d2

3d1 − 125
11664

d3d2d1
3 − 875

23328
d3

2d2d1
2 −

7625
11664

d3
2d1d2

2 + 1375
17496

d2
3 + 125

8748
d3

2d1
4d2 + 875

17496
d3

2d1d2
4 − 125

5832
d3

4d2
2d1 − 875

17496
d3

3d2d1
3 −

125
2187

d3
2d2

3d1
2 + 125

8748
d3

2d2
2d1

3 − 625
17496

d3
3d2

3d1 + 125
5832

d3
4d2d1

2 + 125
1944

d3
3d2

2d1
2 + 125

324
d3

3 −
271375
139968

d3d2
2 + 50875

139968
d3d1

2 − 1375
11664

d1d2
2 + 30875

69984
d3

2d2
3 + 4375

17496
d3

2d1
3 − 125

5832
d3d2

4 − 125
11664

d3d1
4 +

53875
279936

d3
2d2 − 1625

7776
d3

3d2
2 − 1625

5832
d3

3d1
2 − 425875

279936
d3

2d1 + 125
2592

d3
4d1 − 125

2592
d3

4d2 + 1375
34992

d1
3 −

125
17496

d3
4d1

3 − 18875
139968

d1 + 366875
139968

d2 + 125
17496

d3
3d2

4 + 125
17496

d3
4d2

3 + 125
8748

d3
3d1

4 − 125
8748

d3
2d2

5 −
125

17496
d3

2d1
5 − 625

486
d3

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

v f f − 125
93312

√
3(−768+64 d1

2d2
2d3

2−32 d3
3d2

2d1+16 d3
3d2d1

2+16 d3d2d1
4−32 d3

2d2
3d1−32 d3

2d2d1
3−

32 d3d2
2d1

3 + 16 d3d2
3d1

2 + 320 d3d1d2
2− 360 d3d2d1

2 + 16 d3
3d2

3 + 1109 d3d2− 18 d3
2− 270 d1d2 +

4 d1
2−270 d3d1+8 d3

2d1
2−240 d3

2d2
2+8 d1

2d2
2−36 d3d2

3+8 d3d1
3−18 d2

2+8 d2d1
3+320 d3

2d2d1−
36 d3

3d2)
v f o 0
v f õ 0
v f p − 800

2187
d1 + 400

243
d2 − 800

2187
d3 + 3200

2187
d3d2d1 − 1600

2187
d3

2d2 − 1600
2187

d1
2d2

v f q 1625
2187

d1− 125
81

d2+ 5125
4374

d3− 625
11664

d3d2
2d1

2− 88625
139968

d3d2d1− 125
8748

d3d2
3d1+ 125

17496
d3

2d2
3+ 125

17496
d1

2d2
3−

625
11664

d3
3d2

2+ 625
11664

d3
3d2d1+ 2375

34992
d3d2d1

3+ 625
23328

d3
2d1+ 12125

69984
d3

2d2+ 41375
139968

d3d2
2+ 1625

69984
d3d1

2−
5875
34992

d1d2
2 − 125

34992
d1

3 − 125
17496

d1
4d2 + 21125

69984
d1

2d2 − 250
2187

d3
2d2d1

2 − 125
7776

d2
3 + 625

5832
d3

2d1d2
2

v f r − 1375
34992

d2d1
3 − 1375

69984
d1

2 − 1375
15552

d2
2 − 1375

17496
d3d1d2

2 − 1375
69984

d3d1 − 6875
23328

d3d2 + 59125
139968

d1d2 +
1375
34992

d3
2d2

2 + 1375
4374

+ 1375
34992

d1
2d2

2 + 1375
17496

d3d2d1
2 − 1375

34992
d3

2d2d1
v f s 9475

23328
d2d1

3 + 9475
46656

d1
2 + 9475

10368
d2

2 + 9475
11664

d3d1d2
2 − 9475

2916
+ 9475

46656
d3d1 + 47375

15552
d3d2 − 407425

93312
d1d2 −

9475
23328

d3
2d2

2 − 9475
23328

d1
2d2

2 − 9475
11664

d3d2d1
2 + 9475

23328
d3

2d2d1
v f y 125

17496
d1

2d2
2d3

2 + 125
4374

d3
3d2

2d1− 625
17496

d3
3d2d1

2 + 125
17496

d3d2d1
4− 625

17496
d3

2d2
3d1 + 125

5832
d3

2d2d1
3−

125
2916

d3d2
2d1

3 + 875
17496

d3d2
3d1

2 + 10375
34992

d3d1d2
2 + 625

69984
d3d2d1

2 + 125
17496

d3
3d2

3 + 3125
2916
− 178625

139968
d3d2−

250
2187

d3
2 − 422875

279936
d1d2 + 28625

139968
d1

2 + 108625
139968

d3d1 + 125
34992

d3
2d1

2 − 125
8748

d3d1d2
4 + 9875

69984
d3

2d2
2 +

125
8748

d3
4d2d1 − 16375

34992
d1

2d2
2 − 12875

69984
d3d2

3 − 125
7776

d2
4 − 125

17496
d3d1

3 + 15625
69984

d1d2
3 + 93875

93312
d2

2 −
125
8748

d3
4d2

2 + 125
17496

d3
3d1 + 4625

17496
d2d1

3 − 26125
69984

d3
2d2d1 + 625

5832
d3

3d2 + 125
5832

d1
4d2

2 + 125
17496

d1
2d2

4 +
125

17496
d3

2d2
4 − 125

17496
d2d1

5 − 125
5832

d2
3d1

3 − 125
34992

d1
4

v f z − 875
972

d1
2d2

2d3
2 + 625

729
d3

3d2
2d1 − 3125

5832
d3

3d2d1
2 − 125

5832
d3d2d1

4 + 14125
34992

d3
2d2

3d1 + 3125
5832

d3
2d2d1

3 +
125
5832

d3d2
3d1

2 − 12125
34992

d3d1d2
2 − 125

2916
d3

2d2
3d1

3 + 125
2916

d3
4d2

2d1
2 − 125

4374
d3

3d2
4d1 − 125

2916
d3

4d2
3d1 −

125
1458

d3
3d2

2d1
3 + 125

1458
d3

3d2
3d1

2 − 125
8748

d3
4d2d1

3 − 125
8748

d3
2d2d1

5 + 125
8748

d3
2d2

4d1
2 + 125

4374
d3

3d2d1
4 +

125
2916

d3
2d1

4d2
2 + 52375

69984
d3d2d1

2 − 1375
4374

d3
3d2

3 − 157375
34992

d3d2 − 125
162

d3
2 − 27125

69984
d1d2 + 1375

34992
d1

2 +
79375
34992

d3d1+ 625
243

+ 8875
23328

d3
2d1

2+ 332875
139968

d3
2d2

2+ 125
1296

d3
4d2d1+ 125

8748
d3

4d2
4− 1375

17496
d1

2d2
2− 125

2592
d3d2

3−
125

11664
d3d1

3 + 1375
7776

d2
2 − 125

1296
d3

4d2
2 + 125

2592
d3

3d1 + 1375
17496

d2d1
3 − 542125

139968
d3

2d2d1 + 625
864

d3
3d2 −

125
3888

d3
2d2

4 − 125
17496

d3
2d1

4 − 125
17496

d3
3d1

3

v o o − 23000
19683

√
3

v o õ 0
v o p 0
v o q 0

v o r 2500
19683

√
3(d1 − d2)

v o s 0
v o y 0
v o z 0

v õ õ − 2000
19683

√
3

v õ p 0
v õ q 0
v õ r 0
v õ s 0
v õ y 0
v õ z 0

v p p 348800
19683

√
3

v p q 800
19683

√
3(d1 − d2)(2 d1 − 15 d3 + 2 d2)

v p r 8800
19683

√
3(d1 − d2)

v p s 0

v p y 400
19683

√
3(d1 − d2)(4 d1

2 + 4 d3d1 − 8 d1d2 − 37− 8 d3
2 + 4 d2

2 + 4 d3d2)

v p z 800
19683

√
3(d1 − d2)(4 d3

2d1
2 − 8 d3

2d2d1 + 6 d3d1 − 22− 27 d3
2 + 4 d3

2d2
2 + 6 d3d2)

v q q 125
629856

√
3(30 d1d2

3 + 4096 − 30 d3
3d2 + 30 d3

3d1 − 504 d1d2 − 225 d3
2d2d1 − 4 d1

2d2
2 − 4 d3

2d1
2 −

30 d2d1
3 + 229 d3

2d2
2 + 4 d1

4 − 30 d3d2
3 + 1368 d3

2 − 912 d1
2 + 1368 d2

2 + 285 d3d2d1
2 − 504 d3d1 −

8532 d3d2 − 30 d3d1
3 − 225 d3d1d2

2)

v q r 1375
629856

√
3(28 d2+15 d3d2d1+2 d1

3−15 d3d2
2+24 d3−17 d1

2d2+2 d3
2d2−2 d3

2d1−40 d1+15 d1d2
2)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).

153



A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

v q s − 9475
419904

√
3(28 d2+15 d3d2d1+2 d1

3−15 d3d2
2+24 d3−17 d1

2d2+2 d3
2d2−2 d3

2d1−40 d1+15 d1d2
2)

v q y 125
1259712

√
3(−2139 d3d2d1 + 3579 d3d2

2 − 120 d3
3d2d1 − 188 d3d2

2d1
2 + 240 d3d2

3d1 + 336 d2
3 −

1610 d3
2d2 + 1898 d3

2d1 − 1707 d1d2
2 − 554 d1

3 + 1925 d1
2d2 + 128 d3

3d2
2 − 8 d3

3d1
2 − 1536 d3d1

2 −
52 d3

2d2
3 − 24 d3

2d1
3 − 188 d1

2d2
3 + 60 d1d2

4 − 84 d1
4d2 + 204 d2

2d1
3 + 16 d3

4d1 − 16 d3
4d2 +

220 d3
2d2d1

2 + 840 d1 − 19020 d2 − 60 d3d2
4 + 8 d3d1

4 − 144 d3
2d1d2

2 + 8 d1
5 − 192 d3

3 + 10760 d3)

v q z 125
629856

√
3(−1842 d3d2d1 − 90 d3d2d1

3 − 84 d3
2d1

4d2 + 60 d3
2d1d2

4 − 24 d3
4d2

2d1 + 60 d3
3d2d1

3 −
188 d3

2d2
3d1

2 + 204 d3
2d2

2d1
3 + 180 d3

3d2
3d1 + 24 d3

4d2d1
2 − 180 d3

3d2
2d1

2 + 4434 d3d2
2 −

981 d3
3d2d1− 12 d3d2

2d1
2 + 90 d3d2

3d1− 5840 d3
2d2 + 6452 d3

2d1− 330 d1d2
2− 44 d1

3 + 374 d1
2d2 +

705 d3
3d2

2+276 d3
3d1

2−2736 d3d1
2+246 d3

2d2
3−534 d3

2d1
3+54 d3

4d1−54 d3
4d2+1845 d3

2d2d1
2−

8 d3
4d1

3−60 d3
3d2

4 +8 d3
4d2

3 +8 d3
2d1

5−2832 d1−15528 d2 +12 d3d1
4−1557 d3

2d1d2
2−648 d3

3 +
15216 d3)

v r r 2375
209952

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

v r s − 104225
419904

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

v r y 1375
1259712

√
3(−4 d1d2

3+84−8 d3
3d2+8 d3

3d1+133 d1d2+8 d3
2d2d1+12 d1

2d2
2−12 d3

2d1
2−12 d2d1

3+
4 d3

2d2
2 + 4 d1

4 + 4 d3d2
3 + 32 d3

2 − 85 d1
2 − 48 d2

2 + 12 d3d2d1
2 − 43 d3d1 + 11 d3d2 − 16 d3d1d2

2)

v r z 1375
629856

√
3(−4 d3

3d1
3 + 24 + 12 d3

3d2d1
2 − 27 d3

3d2 + 27 d3
3d1 + 22 d1d2 + 123 d3

2d2d1 − 81 d3
2d1

2 −
42 d3

2d2
2 − 4 d3

2d2
3d1 + 108 d3

2 − 22 d1
2 − 12 d3

3d2
2d1 + 4 d3

3d2
3 − 98 d3d1 + 50 d3d2 + 4 d3

2d1
4 +

6 d3d1
3 − 6 d3d1d2

2 − 12 d3
2d2d1

3 + 12 d1
2d2

2d3
2)

v s s 219775
93312

√
3(−4− d1d2 + d1

2 − d3d1 + d3d2)

v s y − 9475
839808

√
3(−4 d1d2

3+84−8 d3
3d2+8 d3

3d1+133 d1d2+8 d3
2d2d1+12 d1

2d2
2−12 d3

2d1
2−12 d2d1

3+
4 d3

2d2
2 + 4 d1

4 + 4 d3d2
3 + 32 d3

2 − 85 d1
2 − 48 d2

2 + 12 d3d2d1
2 − 43 d3d1 + 11 d3d2 − 16 d3d1d2

2)

v s z − 9475
419904

√
3(−4 d3

3d1
3 +24+12 d3

3d2d1
2−27 d3

3d2 +27 d3
3d1 +22 d1d2 +123 d3

2d2d1−81 d3
2d1

2−
42 d3

2d2
2 − 4 d3

2d2
3d1 + 108 d3

2 − 22 d1
2 − 12 d3

3d2
2d1 + 4 d3

3d2
3 − 98 d3d1 + 50 d3d2 + 4 d3

2d1
4 +

6 d3d1
3 − 6 d3d1d2

2 − 12 d3
2d2d1

3 + 12 d1
2d2

2d3
2)

v y y 125
2519424

√
3(−38628 − 5688 d3d2d1

2 + 3944 d3d1d2
2 + 128 d3

4d2d1 + 160 d3d2d1
4 + 128 d3d1d2

4 −
160 d3d2

2d1
3 − 64 d3d2

3d1
2 + 368 d1

2d2
2d3

2 − 160 d3
2d2d1

3 − 160 d3
3d2

2d1 − 160 d3
2d2

3d1 −
64 d3

3d2d1
2 + 340 d3d2

3 + 32633 d3d2 − 5808 d3
2 − 6313 d1d2 + 7993 d1

2 − 6313 d3d1 − 5808 d2
2 +

1728 d3
2d1

2−3752 d3
2d2

2+384 d2
4+16 d1

6+384 d3
4−32 d3

2d1
4+636 d3d1

3+128 d3
3d1

3−32 d1
4d2

2−
16 d3

4d2
2−32 d3d1

5 +32 d3
5d1−112 d1

2d2
4−16 d3

2d2
4−32 d3

5d2−32 d2d1
5 +32 d1d2

5−32 d3d2
5−

112 d3
4d1

2+1728 d1
2d2

2−1876 d3
3d1−1876 d1d2

3+3944 d3
2d2d1−872 d1

4+340 d3
3d2+128 d2

3d1
3+

96 d3
3d2

3 + 636 d2d1
3)

v y z 125
1259712

√
3(−31224 − 4872 d3d2d1

2 + 5518 d3d1d2
2 + 1584 d3

4d2d1 + 24 d3d2d1
4 + 48 d3d1d2

4 −
72 d3d2

2d1
3 − 24 d3d2

3d1
2 + 1728 d1

2d2
2d3

2 + 636 d3
2d2d1

3 + 156 d3
3d2

2d1 − 1796 d3
2d2

3d1 −
2520 d3

3d2d1
2 + 128 d3

2d2
3d1

3 + 192 d3
4d2

2d1
2 + 96 d3

3d2
4d1 − 96 d3

4d2
3d1 − 112 d3

3d2
2d1

3 −
48 d3

3d2
3d1

2−400 d3d2
3−160 d3

4d2d1
3−32 d3

2d2d1
5−112 d3

2d2
4d1

2−48 d3
5d2

2d1+144 d3
3d2d1

4+
32 d3

2d2
5d1−32 d3

2d1
4d2

2+48 d3
5d2d1

2+38950 d3d2−17340 d3
2−6478 d1d2+1102 d1

2+1130 d3d1−
192 d2

2 + 10749 d3
2d1

2− 10246 d3
2d2

2 + 1296 d3
4− 904 d3

2d1
4− 16 d3

5d1
3 + 16 d3

5d2
3− 48 d3

3d1
5−

32 d3
3d2

5− 1398 d3d1
3 + 1696 d3

3d1
3− 660 d3

4d2
2 + 24 d3d1

5 + 108 d3
5d1 + 336 d3

2d2
4− 108 d3

5d2−
924 d3

4d1
2 + 264 d1

2d2
2− 9551 d3

3d1− 176 d1d2
3 + 3817 d3

2d2d1− 88 d1
4 + 5087 d3

3d2 + 16 d3
4d2

4 +
48 d3

4d1
4 + 16 d3

2d1
6 + 668 d3

3d2
3)

v z z 125
629856

√
3(−30864− 8208 d3d2d1

2 + 144 d3
3d2

3d1
4 + 48 d3

5d2
3d1

2 − 16 d3
2d2

5d1
3 − 144 d3

4d2
3d1

3 +
16 d3

2d2
2d1

6 − 48 d3
3d2

2d1
5 + 48 d3

4d2
2d1

4 − 16 d3
5d2

2d1
3 + 48 d3

3d2
5d1

2 − 48 d3
4d2

5d1 +
144 d3

4d2
4d1

2 − 48 d3
2d2

3d1
5 + 48 d3

2d2
4d1

4 − 48 d3
5d2

4d1 − 144 d3
3d2

4d1
3 − 24 d3d2

4d1
3 +

18186 d3d1d2
2+24 d3d2

2d1
5+162 d3

4d2d1+36 d3d2d1
4+162 d3d1d2

4−1338 d3d2
2d1

3+564 d3d2
3d1

2+
13485 d1

2d2
2d3

2−1338 d3
2d2d1

3−10745 d3
3d2

2d1−10745 d3
2d2

3d1+564 d3
3d2d1

2+1656 d3
2d2

3d1
3−

852 d3
4d2

2d1
2 + 1404 d3

3d2
4d1 + 1404 d3

4d2
3d1 + 1656 d3

3d2
2d1

3 − 2952 d3
3d2

3d1
2 − 1350 d3d2

3 −
24 d3

4d2d1
3+24 d3

2d2d1
5−852 d3

2d2
4d1

2+108 d3
5d2

2d1+108 d3
2d2

5d1−936 d3
2d1

4d2
2+54916 d3d2−

648 d3
2 − 8980 d1d2 + 484 d1

2 − 8980 d3d1 − 648 d2
2 + 1014 d3

2d1
2 − 33084 d3

2d2
2 − 88 d3

2d1
4 −

108 d3
5d2

3−108 d3
3d2

5−132 d3d1
3+88 d3

3d1
3−88 d1

4d2
2+1134 d3

4d2
2+1134 d3

2d2
4+1014 d1

2d2
2−

594 d3
3d1−594 d1d2

3+18186 d3
2d2d1−1350 d3

3d2−528 d3
4d2

4+88 d2
3d1

3+16 d3
5d2

5+6925 d3
3d2

3−
132 d2d1

3)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

www − 1
373248

√
3(−24963− 6384 d3d2d1

2 − 6384 d3d1d2
2 + 1152 d3

4d2d1 + 1152 d3d2d1
4 + 1152 d3d1d2

4 −
960 d3d2

2d1
3 − 960 d3d2

3d1
2 + 2688 d1

2d2
2d3

2 − 960 d3
2d2d1

3 − 960 d3
3d2

2d1 − 960 d3
2d2

3d1 −
960 d3

3d2d1
2 + 15600 d3d2

3 − 384 d3
4d1

2 − 27392 d3d2 + 44800 d3
2 − 27392 d1d2 + 44800 d1

2 −
27392 d3d1+44800 d2

2−18432 d3
2d1

2−18432 d3
2d2

2−6384 d1
4−6384 d3

4−384 d3
2d1

4+15600 d3d1
3+

128 d2
6+128 d3

6+128 d1
6+896 d3

3d1
3−192 d3d1

5−192 d3
5d1−384 d1

2d2
4−192 d3

5d2−192 d2d1
5−

192 d1d2
5−192 d3d2

5−384 d1
4d2

2−384 d3
4d2

2−384 d3
2d2

4−18432 d1
2d2

2−6384 d2
4+15600 d3

3d1+
15600 d1d2

3 − 6384 d3
2d2d1 + 15600 d3

3d2 + 896 d2
3d1

3 + 896 d3
3d2

3 + 15600 d2d1
3)

wwf − 1
186624

√
3(3032 d2

3 + 144 d3
5 − 832 d3

3d2
3d1 − 64 d3

4d2d1
2 + 128 d3

5d2d1 + 1280 d3
3d2

2d1
2 +

896 d3d2
3d1

3 + 6896 d3
3d2d1 − 17728 d3d2

2d1
2 − 33776 d3d2d1 − 192 d3d1d2

5 − 192 d3d2d1
5 +

15536 d3d2
3d1 + 15536 d3d2d1

3 + 960 d3
2d1

4d2 − 9984 d3
2d2d1

2 + 960 d3
2d1d2

4 − 384 d3d2
2d1

4 −
64 d3

4d2
2d1−9984 d3

2d1d2
2−832 d3

3d2d1
3−640 d3

2d2
3d1

2−384 d3d2
4d1

2−640 d3
2d2

2d1
3+64 d2

5−
616 d3

3 + 1576 d1
2d2 + 9952 d3

2d1
3 − 160 d1

2d2
3 + 96 d1d2

4 + 96 d1
4d2 − 160 d2

2d1
3 − 176 d3

4d1 +
64 d3

4d1
3 + 192 d3

3d2
4 + 64 d3

4d2
3 + 192 d3

3d1
4−6672 d3d2

4−320 d3
2d2

5−64 d3
5d2

2−6672 d3d1
4−

320 d3
2d1

5 − 64 d3
5d1

2 + 128 d3d2
6 + 128 d3d1

6 + 3032 d1
3 − 1842 d1 − 1842 d2 − 15868 d3

2d2 −
3312 d3

3d1
2−15868 d3

2d1+37160 d3d1
2+1576 d1d2

2−3312 d3
3d2

2+37160 d3d2
2+64 d1

5−3871 d3+
9952 d3

2d2
3 − 176 d3

4d2)
ww o 0
ww õ 0
ww p 0
ww q − 1

279936
(d1− d2)(2008 d2

3 + 240 d3
5 + 1744 d3

3d2d1 + 1760 d3d2
2d1

2− 79528 d3d2d1− 240 d3d2
3d1−

240 d3d2d1
3 − 1328 d3

2d2d1
2 − 1328 d3

2d1d2
2 + 64 d2

5 − 15192 d3
3 − 2008 d1

2d2 + 1296 d3
2d1

3 −
160 d1

2d2
3 + 96 d1d2

4 + 96 d1
4d2 − 160 d2

2d1
3 − 272 d3

4d1 − 640 d3d2
4 − 640 d3d1

4 + 2008 d1
3 −

15858 d1−15858 d2+21628 d3
2d2−688 d3

3d1
2+21628 d3

2d1−8444 d3d1
2−2008 d1d2

2−688 d3
3d2

2−
8444 d3d2

2 + 64 d1
5 + 40215 d3 + 1296 d3

2d2
3 − 272 d3

4d2)
ww r − 11

279936
(d1 − d2)(32 d1

4 − 80 d3d1
3 + 16 d2d1

3 + 80 d3d2d1
2 − 1044 d1

2 + 48 d3
2d1

2 − 96 d1
2d2

2 +
1260 d3d1−112 d3

2d2d1+16 d3
3d1+2088 d1d2+16 d1d2

3+80 d3d1d2
2−216 d3

2+32 d2
4+48 d3

2d2
2−

80 d3d2
3 − 1044 d2

2 − 16 d3
4 + 2695 + 1260 d3d2 + 16 d3

3d2)
ww s 125

559872
(d1−d2)(32 d1

4−80 d3d1
3+16 d2d1

3+80 d3d2d1
2−1044 d1

2+48 d3
2d1

2−96 d1
2d2

2+1260 d3d1−
112 d3

2d2d1 +16 d3
3d1 +2088 d1d2 +16 d1d2

3 +80 d3d1d2
2−216 d3

2 +32 d2
4 +48 d3

2d2
2−80 d3d2

3−
1044 d2

2 − 16 d3
4 + 2695 + 1260 d3d2 + 16 d3

3d2)
ww y − 1

559872
(d1 − d2)(−149379 − 20208 d3d2d1

2 − 20208 d3d1d2
2 + 1152 d3

4d2d1 + 1152 d3d2d1
4 +

1152 d3d1d2
4 − 960 d3d2

2d1
3 − 960 d3d2

3d1
2 + 2688 d1

2d2
2d3

2 − 960 d3
2d2d1

3 − 960 d3
3d2

2d1 −
960 d3

2d2
3d1 − 960 d3

3d2d1
2 + 20208 d3d2

3 − 384 d3
4d1

2 − 80384 d3d2 + 44800 d3
2 − 158720 d1d2 +

97792 d1
2−80384 d3d1+97792 d2

2−13824 d3
2d1

2−13824 d3
2d2

2−9456 d1
4−1776 d3

4−384 d3
2d1

4+
20208 d3d1

3+128 d2
6+128 d3

6+128 d1
6+896 d3

3d1
3−192 d3d1

5−192 d3
5d1−384 d1

2d2
4−192 d3

5d2−
192 d2d1

5− 192 d1d2
5− 192 d3d2

5− 384 d1
4d2

2− 384 d3
4d2

2− 384 d3
2d2

4− 9216 d1
2d2

2− 9456 d2
4 +

4848 d3
3d1 + 14064 d1d2

3 + 19728 d3
2d2d1 + 4848 d3

3d2 + 896 d2
3d1

3 + 896 d3
3d2

3 + 14064 d2d1
3)

ww z − 1
279936

(d1−d2)(23142−7784 d3d2d1
2−7784 d3d1d2

2+13136 d3
4d2d1+288 d3d2d1

4+288 d3d1d2
4−

480 d3d2
2d1

3 − 480 d3d2
3d1

2 + 128 d3
6d2d1 + 896 d3

2d2
3d1

3 + 1280 d3
4d2

2d1
2 + 960 d3

3d2
4d1 −

832 d3
4d2

3d1 − 640 d3
3d2

2d1
3 − 640 d3

3d2
3d1

2 − 832 d3
4d2d1

3 − 192 d3
2d2d1

5 − 384 d3
2d2

4d1
2 −

64 d3
5d2

2d1 + 960 d3
3d2d1

4 − 192 d3
2d2

5d1 − 384 d3
2d1

4d2
2 − 64 d3

5d2d1
2 − 9216 d1

2d2
2d3

2 +
14224 d3

2d2d1
3 − 15776 d3

3d2
2d1 + 14224 d3

2d2
3d1 − 15776 d3

3d2d1
2 + 7784 d3d2

3 − 6160 d3
4d1

2 −
9758 d3d2−114605 d3

2−164720 d1d2−9800 d1
2−9758 d3d1−9800 d2

2+95904 d3
2d1

2+95904 d3
2d2

2−
704 d1

4 + 12328 d3
4 + 64 d3

5d1
3 − 9616 d3

2d1
4 + 7784 d3d1

3 + 432 d3
6 + 15680 d3

3d1
3 + 192 d3d1

5 −
528 d3

5d1−528 d3
5d2+192 d3d2

5−6160 d3
4d2

2−9616 d3
2d2

4+2112 d1
2d2

2−704 d2
4−78676 d3

3d1−
352 d1d2

3+16960 d3
2d2d1+64 d3

5d2
3+128 d3

2d2
6−64 d3

6d2
2−78676 d3

3d2−320 d3
3d1

5−320 d3
3d2

5+
192 d3

4d1
4 + 128 d3

2d1
6 − 64 d3

6d1
2 + 192 d3

4d2
4 + 15680 d3

3d2
3 − 352 d2d1

3)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

wf f − 1
93312

√
3(4352 + 29744 d3d2d1

2 − 22276 d3d1d2
2 − 112 d3

4d2d1 − 6960 d3d2d1
4 − 112 d3d1d2

4 +
9984 d3d2

2d1
3 − 3056 d3d2

3d1
2 − 704 d3

2d2
3d1

3 − 192 d3
3d2

4d1 − 192 d3
4d2

3d1 − 704 d3
3d2

2d1
3 +

768 d3
3d2

3d1
2 + 64 d3

4d2d1
3 − 320 d3

2d2d1
5 + 128 d3

5d2
2d1 + 192 d3

3d2d1
4 + 128 d3

2d2
5d1 +

896 d3
2d1

4d2
2−64 d3

5d2d1
2+128 d3d2d1

6+64 d3d2
4d1

3+192 d3d2
3d1

4−320 d3d2
2d1

5−64 d3d2
5d1

2−
13248 d1

2d2
2d3

2 + 9984 d3
2d2d1

3 + 3248 d3
3d2

2d1 + 3248 d3
2d2

3d1 − 3056 d3
3d2d1

2 − 2456 d3d2
3 −

32 d3
4d1

2 + 14249 d3d2 − 9050 d3
2 − 1862 d1d2 + 20 d1

2 − 1862 d3d1 − 9050 d2
2 + 1472 d3

2d1
2 +

7304 d3
2d2

2+32 d1
4+72 d3

4+32 d3
2d1

4+2984 d3d1
3−64 d3

3d1
3+64 d3d1

5−32 d1
2d2

4+144 d3
5d2+

64 d2d1
5 + 144 d3d2

5 + 32 d1
4d2

2 − 352 d3
4d2

2 − 352 d3
2d2

4 + 1472 d1
2d2

2 + 72 d2
4 + 1664 d3

3d1 +
1664 d1d2

3−22276 d3
2d2d1−64 d3

5d2
3−2456 d3

3d2−64 d3
3d2

5+128 d3
4d2

4−64 d2
3d1

3+496 d3
3d2

3+
2984 d2d1

3)
wf o 0
wf õ 0
wf p 0
wf q 5

2916
d3

5d2
2− 623

23328
d2

3− 7
4374

d3d2
3d1

3+ 221
1944

d3
3d2d1+ 827

17496
d3d2

2d1
2− 8081

15552
d3d2d1+ 1

2187
d3d1d2

5+
10

2187
d3d2d1

5 − 92
2187

d3d2
3d1 + 1889

34992
d3d2d1

3 − 1
108

d3
2d1

4d2 − 5363
34992

d3
2d2d1

2 − 10
2187

d3
2d1d2

4 −
53

8748
d3d2

2d1
4 + 5

2916
d3

4d2
2d1 − 995

34992
d3

2d1d2
2 + 43

8748
d3

3d2d1
3 − 11

4374
d3

2d2
3d1

2 + 23
8748

d3d2
4d1

2 +
145
8748

d3
2d2

2d1
3 + 31

4374
d3

3d2
3d1 + 17

8748
d3

4d2d1
2 − 5

2916
d3

5d2d1 − 31
2187

d3
3d2

2d1
2 − 1

4374
d3

2d2
5 +

1
1944

d2
5− 25

729
d3

3 + 19
8748

d3
3d2

4 + 5
5832

d3
4d2 + 187

34992
d1

3− 761
17496

d3
3d2

2 + 119
2187

d3
2d2

3− 8
2187

d3
4d2

3−
55

3888
d3d2

4 + 9367
139968

d3d2
2 − 7

243
d1 − 29

729
d2 + 7

4374
d3d1

4 − 1
4374

d1
2d2

5 − 1
2187

d2d1
6 + 1

4374
d1

5d2
2 −

1
4374

d1
5 + 143

1458
d3 + 1223

23328
d3

2d2− 7
4374

d3
3d1

2 + 83
7776

d3
2d1 + 16321

69984
d3d1

2 + 1349
34992

d1d2
2 + 2671

23328
d1

2d2 +
19

17496
d3

2d1
3 − 7

2187
d1

2d2
3 + 167

17496
d1d2

4 + 1
1458

d2
3d1

4 − 1
4374

d2
4d1

3 − 241
17496

d1
4d2 + 317

17496
d2

2d1
3 −

5
5832

d3
4d1

wf r − 3509
34992

d3d2d1
2 + 1991

34992
d3d1d2

2 + 11
8748

d3
4d2d1 + 55

8748
d3d2d1

4 + 11
4374

d3d1d2
4 − 11

972
d3d2

2d1
3 +

11
4374

d3d2
3d1

2+ 407
4374

+ 22
2187

d1
2d2

2d3
2− 11

2916
d3

2d2d1
3− 11

8748
d3

3d2
2d1− 11

2187
d3

2d2
3d1− 11

8748
d3

3d2d1
2−

143
8748

d3d2
3 + 1309

23328
d3d2 − 11

729
d3

2 − 13123
139968

d1d2 − 6391
69984

d1
2 − 605

23328
d3d1 − 2255

139968
d2

2 + 11
8748

d3
2d1

2 +
275

17496
d3

2d2
2 − 11

8748
d1

4 − 11
17496

d3d1
3 − 11

8748
d1

2d2
4 − 11

4374
d2d1

5 + 11
2916

d1
4d2

2 − 11
8748

d3
4d2

2 −
11

8748
d3

2d2
4 − 1177

17496
d1

2d2
2 + 11

3888
d2

4 + 11
17496

d3
3d1 + 55

5832
d1d2

3 + 77
5832

d3
2d2d1 − 11

17496
d3

3d2 +
11

4374
d3

3d2
3 + 3025

34992
d2d1

3

wf s 39875
69984

d3d2d1
2 − 22625

69984
d3d1d2

2 − 125
17496

d3
4d2d1 − 625

17496
d3d2d1

4 − 125
8748

d3d1d2
4 + 125

1944
d3d2

2d1
3 −

125
8748

d3d2
3d1

2 − 125
2187

d1
2d2

2d3
2 + 125

5832
d3

2d2d1
3 + 125

17496
d3

3d2
2d1 + 125

4374
d3

2d2
3d1 + 125

17496
d3

3d2d1
2 +

1625
17496

d3d2
3 − 14875

46656
d3d2 + 125

1458
d3

2 + 149125
279936

d1d2 + 72625
139968

d1
2 + 6875

46656
d3d1 + 25625

279936
d2

2 − 4625
8748

−
125

17496
d3

2d1
2 − 3125

34992
d3

2d2
2 + 125

17496
d1

4 + 125
34992

d3d1
3 + 125

17496
d1

2d2
4 + 125

8748
d2d1

5 − 125
5832

d1
4d2

2 +
125

17496
d3

4d2
2 + 125

17496
d3

2d2
4 + 13375

34992
d1

2d2
2 − 125

7776
d2

4 − 125
34992

d3
3d1 − 625

11664
d1d2

3 − 875
11664

d3
2d2d1 +

125
34992

d3
3d2 − 125

8748
d3

3d2
3 − 34375

69984
d2d1

3

wf y 3809
11664

d3d2d1
2 − 20989

69984
d3d1d2

2 + 5
648

d3
4d2d1 − 1253

17496
d3d2d1

4 + 157
8748

d3d1d2
4 + 2555

17496
d3d2

2d1
3 −

1439
17496

d3d2
3d1

2 − 5
729

d3
2d2

3d1
3 − 7

2187
d3

3d2
4d1 + 2

729
d3

4d2
3d1 + 4

729
d3

3d2
2d1

3 + 1
1458

d3
3d2

3d1
2 +

1
729

d3
4d2d1

3 + 1
729

d3
2d2d1

5 + 1
2187

d3
5d2

2d1 − 7
2187

d3
3d2d1

4 + 2
2187

d3
2d1

4d2
2 + 1

1458
d3

5d2d1
2 +

1
1458

d3d2d1
6 − 2

729
d3d2

4d1
3 + 14

2187
d3d2

3d1
4 − 1

243
d3d2

2d1
5 − 1

1458
d3d2

5d1
2 − 313

4374
d1

2d2
2d3

2 +
5

108
d3

2d2d1
3 + 413

17496
d3

3d2
2d1 + 31

17496
d3

2d2
3d1 − 103

5832
d3

3d2d1
2 − 895

69984
d3d2

3 − 1
2916

d3
4d1

2 − 611
2916
−

16729
139968

d3d2+ 19
486

d3
2+ 38765

279936
d1d2+ 27065

139968
d1

2+ 15385
139968

d3d1+ 5387
93312

d2
2− 773

34992
d3

2d1
2+ 2165

34992
d3

2d2
2−

1
2187

d3
6d2d1 − 7

1458
d3

4d2
2d1

2 + 7
1458

d3
2d2

4d1
2 − 41

11664
d1

4 + 1
2187

d3d1d2
6 + 4

729
d3

4 − 1
4374

d3
2d2

6 +
5

8748
d3

2d1
4− 5

34992
d3d1

3 + 1
1944

d2
6− 1

4374
d1

6 + 5
8748

d3
3d1

3− 1
2916

d3d1
5− 1

4374
d3

5d1− 25
4374

d1
2d2

4 +
1

4374
d3

5d2 + 613
17496

d2d1
5 − 13

4374
d1d2

5 + 7
5832

d3d2
5 − 1391

17496
d1

4d2
2 − 107

5832
d3

4d2
2 − 175

17496
d3

2d2
4 +

34345
69984

d1
2d2

2 − 143
11664

d2
4 − 443

34992
d3

3d1 − 5797
69984

d1d2
3 − 74

729
d3

2d2d1 − 5
4374

d3
5d2

3 − 133
34992

d3
3d2 +

1
2187

d2
5d1

3 + 1
4374

d3
3d2

5 + 1
1458

d3
4d2

4 + 925
17496

d2
3d1

3 + 1
2187

d2
4d1

4 + 77
2916

d3
3d2

3 + 1
2187

d3
6d2

2 −
4

2187
d1

5d2
3 − 1

2187
d1

7d2 − 1
4374

d1
2d2

6 + 7
4374

d2
2d1

6 − 1943
5832

d2d1
3

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

wf z 1769
23328

d3d2d1
2 + 577

34992
d3d1d2

2 − 803
17496

d3
4d2d1 − 943

17496
d3d2d1

4 + 413
17496

d3d1d2
4 + 449

5832
d3d2

2d1
3 −

32
2187

d3d2
3d1

2 + 883
8748

d3
2d2

3d1
3 + 137

8748
d3

3d2
4d1 + 110

2187
d3

4d2
3d1 + 121

486
d3

3d2
2d1

3 − 1339
8748

d3
3d2

3d1
2 +

365
8748

d3
4d2d1

3 + 623
8748

d3
2d2d1

5 + 11
2916

d3
5d2

2d1 − 245
2187

d3
3d2d1

4 − 10
2187

d3
2d2

5d1 − 1385
8748

d3
2d1

4d2
2 +

1
324

d3
5d2d1

2 + 2
2187

d3
3d2

6d1 + 1
2187

d3
6d2d1

3 + 25
2187

d3
3d2

3d1
4 − 1

2187
d3

5d2d1
4 + 1

729
d3

5d2
3d1

2 −
1

729
d3d2d1

6 − 1
729

d3
6d2

2d1
2 − 1

1458
d3d2

4d1
3 + 2

2187
d3

2d2
5d1

3 − 23
2187

d3
4d2

3d1
3 + 7

2187
d3

2d2
2d1

6 −
19

2187
d3

3d2
2d1

5 + 14
2187

d3
4d2

2d1
4 + 1

2187
d3

5d2
2d1

3 + 1
486

d3d2
3d1

4 − 2
2187

d3
3d2

5d1
2 + 1

1458
d3d2

2d1
5 −

1
2187

d3
2d2

6d1
2 − 1

729
d3

4d2d1
5 − 2

2187
d3

4d2
5d1 + 5

729
d3

4d2
4d1

2 − 8
2187

d3
2d2

3d1
5 + 2

2187
d3

2d2
4d1

4 −
5

2187
d3

5d2
4d1− 11

2187
d3

3d2
4d1

3− 1
1458

d3d2
5d1

2 + 26833
34992

d1
2d2

2d3
2− 1895

2916
d3

2d2d1
3− 17909

34992
d3

3d2
2d1−

6931
34992

d3
2d2

3d1 + 22255
34992

d3
3d2d1

2 + 1
729

d3
6d2

3d1 − 85
2592

d3d2
3 + 43

729
− 14

729
d3

4d1
2 − 2

2187
d3

2d2d1
7 +

5
2187

d3
3d2d1

6− 167
34992

d3d2− 19
54

d3
2− 49085

69984
d1d2 + 17143

34992
d1

2− 1465
34992

d3d1 + 325
23328

d2
2− 9863

69984
d3

2d1
2 +

32939
139968

d3
2d2

2 − 1
324

d3
6d2d1 − 139

1458
d3

4d2
2d1

2 − 43
4374

d3
2d2

4d1
2 + 11

4374
d1

4 + 1/27 d3
4 + 1

972
d3

2d2
6 +

1
2187

d3
4d1

4 − 149
17496

d3
2d1

4 + 605
34992

d3d1
3 − 95

8748
d3

3d1
3 − 1

1458
d3d1

5 − 1
648

d3
5d1 + 11

4374
d1

2d2
4 +

1
648

d3
5d2+ 11

2187
d2d1

5+ 1
648

d3d2
5− 11

1458
d1

4d2
2− 157

17496
d3

4d2
2− 110

2187
d3

2d2
4+ 1177

8748
d1

2d2
2− 11

1944
d2

4+
13775
69984

d3
3d1 − 293

8748
d1d2

3 + 95075
139968

d3
2d2d1 − 31

4374
d3

5d2
3 − 20111

69984
d3

3d2 + 1
1458

d3
3d2

5 + 25
8748

d3
4d2

4 +
395
5832

d3
3d2

3 − 1
2187

d3
6d2

4 − 1
2187

d3
4d2

6 + 1
4374

d3
5d1

3 − 1
4374

d3
3d1

5 − 1
2187

d3
2d1

6 + 2
2187

d3
5d2

5 +
1

324
d3

6d2
2 + 119

1944
d2d1

3

w o o − 184
19683

√
3(5− 4 d1d2 − 4 d3

2 + 8 d1
2 − 4 d2

2 − 4 d3d1 + 8 d3d2)
w o õ 0
w o p 0
w o q 0

w o r 20
19683

√
3(−4 d3d1

2−4 d3
2d1−8 d3d2

2 +12 d3d2d1−12 d1
2d2 +4 d3

2d2 +4 d2
3−59 d1−37 d2 +32 d3 +

8 d1
3)

w o s 0
w o y 0
w o z 0

w õ õ − 16
19683

√
3(5− 4 d1d2 − 4 d3

2 + 8 d1
2 − 4 d2

2 − 4 d3d1 + 8 d3d2)
w õ p 0
w õ q 0
w õ r 0
w õ s 0
w õ y 0
w õ z 0

w p p 3200
19683

√
3(5− 4 d1d2 − 4 d3

2 + 8 d1
2 − 4 d2

2 − 4 d3d1 + 8 d3d2)
w p q 0
w p r 0

w p s 400
19683

√
3(−4 d3d1

2−4 d3
2d1−8 d3d2

2 +12 d3d2d1−12 d1
2d2 +4 d3

2d2 +4 d2
3−59 d1−37 d2 +32 d3 +

8 d1
3)

w p y 0
w p z 0

w q q 1
629856

√
3(−45056 + 58801 d3d2d1

2− 40661 d3d1d2
2 + 1260 d3

4d2d1 + 2552 d3d2d1
4 + 1260 d3d1d2

4−
3044 d3d2

2d1
3 − 632 d3d2

3d1
2 + 5944 d1

2d2
2d3

2 − 3044 d3
2d2d1

3 − 1816 d3
3d2

2d1 − 1816 d3
2d2

3d1 −
632 d3

3d2d1
2 + 35674 d3d2

3 − 104 d3
4d1

2 − 91172 d3d2 + 44984 d3
2 + 82216 d1d2 + 20528 d1

2 +
82216 d3d1+44984 d2

2+34764 d3
2d1

2−60455 d3
2d2

2−1644 d1
4−5024 d3

4+72 d3
2d1

4−30230 d3d1
3+

32 d1
6 + 376 d3

3d1
3 − 256 d3d1

5 − 120 d3
5d1 − 104 d1

2d2
4 + 120 d3

5d2 − 256 d2d1
5 − 120 d1d2

5 +
120 d3d2

5+72 d1
4d2

2−1156 d3
4d2

2−1156 d3
2d2

4+34764 d1
2d2

2−5024 d2
4+7126 d3

3d1+7126 d1d2
3−

40661 d3
2d2d1 + 35674 d3

3d2 + 376 d2
3d1

3 + 2072 d3
3d2

3 − 30230 d2d1
3)

w q r 11
629856

√
3(123 d3d2d1 − 84 d3

3d2d1 − 376 d3d2
2d1

2 + 120 d3d2
3d1 + 204 d3d2d1

3 + 32 d3
2d2d1

2 +
120 d3

2d1d2
2− 3029 d1

2d2− 971 d3d2
2− 138 d3

2d1− 1056 d3d1
2 + 954 d3

2d2− 128 d3
2d2

3 + 112 d2
3 +

8 d3
3d1

2 +3195 d1d2
2−24 d3

2d1
3 +8 d1

2d2
3−60 d1d2

4−144 d1
4d2 +180 d2

2d1
3 +8 d3

4d1 +60 d3d2
4−

8 d3d1
4 + 970 d1

3 − 4040 d1 − 1780 d2 − 160 d3
3 − 8 d3

4d2 + 76 d3
3d2

2 + 16 d1
5 + 1400 d3)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

w q s − 125
1259712

√
3(123 d3d2d1 − 84 d3

3d2d1 − 376 d3d2
2d1

2 + 120 d3d2
3d1 + 204 d3d2d1

3 + 32 d3
2d2d1

2 +
120 d3

2d1d2
2− 3029 d1

2d2− 971 d3d2
2− 138 d3

2d1− 1056 d3d1
2 + 954 d3

2d2− 128 d3
2d2

3 + 112 d2
3 +

8 d3
3d1

2 +3195 d1d2
2−24 d3

2d1
3 +8 d1

2d2
3−60 d1d2

4−144 d1
4d2 +180 d2

2d1
3 +8 d3

4d1 +60 d3d2
4−

8 d3d1
4 + 970 d1

3 − 4040 d1 − 1780 d2 − 160 d3
3 − 8 d3

4d2 + 76 d3
3d2

2 + 16 d1
5 + 1400 d3)

w q y 1
1259712

√
3(111689 d3d2d1−2000 d3

2d2
2d1

3+672 d3
5d2d1+4624 d3

3d2
2d1

2−448 d2
5+5056 d3d2

3d1
3−

240 d3d1d2
5 + 368 d3d2d1

5 + 2256 d3
2d1

4d2 + 2704 d3
2d1d2

4 − 3024 d3d2
2d1

4 − 896 d3
4d2

2d1 −
2000 d3

3d2d1
3−2432 d3

2d2
3d1

2−2432 d3d2
4d1

2 +27404 d3
3d2d1 +106348 d3d2

2d1
2 +7960 d3d2

3d1−
81468 d3d2d1

3 + 54572 d3
2d2d1

2 − 114280 d3
2d1d2

2 + 129817 d1
2d2 − 2713 d3d2

2 + 5010 d3
2d1 +

60576 d3d1
2+64 d1

7+1280 d3
5+17182 d3

2d2+27708 d3
2d2

3+76128 d2
3+560 d3

3d1
2−98631 d1d2

2+
6784 d3

2d1
3− 36628 d1

2d2
3 + 20120 d1d2

4 + 2860 d1
4d2 + 14392 d2

2d1
3− 4440 d3

4d1− 18968 d3d2
4−

3888 d3d1
4−53650 d1

3−272 d3
2d2

5−640 d3
5d2

2−256 d3
2d1

5−32 d3
5d1

2−240 d1d2
6 +512 d1

2d2
5−

704 d2d1
6 + 1936 d1

5d2
2 − 1936 d3

3d2
3d1 + 129896 d1 − 278012 d2 − 24224 d3

3 − 3368 d3
4d2 −

6204 d3
3d2

2 − 64 d3
6d1 + 64 d3

6d2 + 240 d3d2
6 + 32 d3d1

6 − 656 d3
4d2d1

2 − 296 d1
5 + 55592 d3 −

1984 d2
3d1

4 + 416 d2
4d1

3 + 256 d3
4d1

3 − 688 d3
3d2

4 + 1296 d3
4d2

3)

w q z 1
629856

√
3(144870 d3d2d1 + 15160 d3

2d2
2d1

3 + 6108 d3
5d2d1 + 33972 d3

3d2
2d1

2 + 1128 d3d2
3d1

3 −
360 d3d1d2

5 − 768 d3d2d1
5 + 2596 d3

2d1
4d2 + 20600 d3

2d1d2
4 + 216 d3d2

2d1
4 − 19920 d3

4d2
2d1 −

18920 d3
3d2d1

3−38084 d3
2d2

3d1
2−312 d3d2

4d1
2 + 1936 d3

2d2
2d1

5 + 1504 d3
4d2

4d1−240 d3
2d2

6d1 +
320 d3

4d2d1
4 + 512 d3

2d2
5d1

2 + 128 d3
4d2

2d1
3 + 96 d3

6d2
2d1 + 416 d3

2d2
4d1

3 + 880 d3
3d2d1

5 −
1984 d3

2d2
3d1

4−2224 d3
3d2

4d1
2−1344 d3

4d2
3d1

2+4304 d3
3d2

3d1
3−704 d3

2d2d1
6−3168 d3

3d2
2d1

4+
1008 d3

5d2
2d1

2 − 400 d3
5d2d1

3 − 944 d3
5d2

3d1 − 96 d3
6d2d1

2 + 81567 d3
3d2d1 + 112564 d3d2

2d1
2 +

18738 d3d2
3d1 − 95178 d3d2d1

3 + 133801 d3
2d2d1

2 − 252969 d3
2d1d2

2 + 68686 d1
2d2 + 15514 d3d2

2 −
77820 d3

2d1 + 128336 d3d1
2 + 4320 d3

5 − 106416 d3
2d2 + 43006 d3

2d2
3 + 57184 d2

3 − 43244 d3
3d1

2 +
11886 d1d2

2 + 19618 d3
2d1

3 − 176 d1
2d2

3 + 1320 d1d2
4 + 3168 d1

4d2 − 3960 d2
2d1

3 + 4894 d3
4d1 −

16392 d3d2
4 − 4756 d3d1

4 − 65372 d1
3 − 88 d3

2d2
5 − 4020 d3

5d2
2 − 184 d3

2d1
5 − 2088 d3

5d1
2 −

5140 d3
3d2

3d1 + 189104 d1 − 148040 d2 + 6168 d3
3 − 28846 d3

4d2 + 22877 d3
3d2

2 − 824 d3
3d1

4 −
216 d3

6d1 + 216 d3
6d2 + 96 d3d1

6 + 5520 d3
4d2d1

2 − 352 d1
5 + 32 d3

5d1
4 − 512 d3

4d2
5 + 304 d3

5d2
4 +

240 d3
3d2

6 − 32 d3
6d2

3 − 96 d3
4d1

5 − 32 d3
3d1

6 + 32 d3
6d1

3 + 64 d3
2d1

7 − 29904 d3 + 1680 d3
4d1

3 −
9088 d3

3d2
4 + 12720 d3

4d2
3)

w r r 19
209952

√
3(4 d1d2

3 + 108 − 4 d3
3d2 + 4 d3

3d1 + 75 d1d2 − 8 d3
2d2d1 − 12 d2d1

3 + 8 d3
2d2

2 + 8 d1
4 −

4 d3d2
3 − 16 d3

2 − 155 d1
2 − 16 d2

2 + 24 d3d2d1
2 + 75 d3d1 + 37 d3d2 − 12 d3d1

3 − 8 d3d1d2
2)

w r s − 1375
1259712

√
3(4 d1d2

3 + 108− 4 d3
3d2 + 4 d3

3d1 + 75 d1d2 − 8 d3
2d2d1 − 12 d2d1

3 + 8 d3
2d2

2 + 8 d1
4 −

4 d3d2
3 − 16 d3

2 − 155 d1
2 − 16 d2

2 + 24 d3d2d1
2 + 75 d3d1 + 37 d3d2 − 12 d3d1

3 − 8 d3d1d2
2)

w r y 11
1259712

√
3(3876−5244 d3d2d1

2+920 d3d1d2
2+64 d3

4d2d1+176 d3d2d1
4+16 d3d1d2

4−320 d3d2
2d1

3+
160 d3d2

3d1
2+160 d1

2d2
2d3

2+112 d3
2d2d1

3+112 d3
3d2

2d1−176 d3
2d2

3d1−272 d3
3d2d1

2−24 d3d2
3+

16 d3
4d1

2 + 2967 d3d2 − 2576 d3
2 − 7159 d1d2 + 3959 d1

2 − 4455 d3d1 − 928 d2
2 − 1980 d3

2d1
2 +

812 d3
2d2

2−1684 d1
4+128 d3

4−112 d3
2d1

4+3580 d3d1
3+32 d1

6+112 d3
3d1

3−16 d3d1
5−32 d3

5d1−
32 d1

2d2
4 + 32 d3

5d2 − 112 d2d1
5 + 16 d1d2

5 − 16 d3d2
5 + 128 d1

4d2
2 − 80 d3

4d2
2 + 16 d3

2d2
4 −

1668 d1
2d2

2 + 64 d2
4 − 44 d3

3d1 − 104 d1d2
3 + 2832 d3

2d2d1 − 980 d3
3d2 − 32 d2

3d1
3 + 48 d3

3d2
3 +

3392 d2d1
3)

w r z 11
629856

√
3(−648−3696 d3d2d1

2−238 d3d1d2
2+600 d3

4d2d1−24 d3d2d1
4+24 d3d1d2

4−72 d3d2
2d1

3+
24 d3d2

3d1
2 − 32 d3

2d2
3d1

3 + 96 d3
4d2

2d1
2 − 96 d3

4d2
3d1 − 272 d3

3d2
2d1

3 + 144 d3
3d2

3d1
2 −

32 d3
4d2d1

3−112 d3
2d2d1

5−32 d3
2d2

4d1
2+48 d3

5d2
2d1+192 d3

3d2d1
4+16 d3

2d2
5d1+128 d3

2d1
4d2

2−
48 d3

5d2d1
2 − 1572 d1

2d2
2d3

2 + 3344 d3
2d2d1

3 + 1116 d3
3d2

2d1 − 136 d3
2d2

3d1 − 2940 d3
3d2d1

2 −
392 d3d2

3−168 d3
4d1

2+3386 d3d2+252 d3
2−1906 d1d2−4270 d1

2−5834 d3d1+608 d2
2+5547 d3

2d1
2+

238 d3
2d2

2 − 176 d1
4 + 432 d3

4 − 1676 d3
2d1

4 + 3174 d3d1
3 + 1520 d3

3d1
3 − 16 d3

5d2
3 − 48 d3

3d1
5 −

16 d3
3d2

5 + 32 d3
4d2

4 + 32 d3
2d1

6 + 48 d3d1
5 − 108 d3

5d1 + 108 d3
5d2 − 432 d3

4d2
2 + 40 d3

2d2
4 −

2593 d3
3d1 − 88 d1d2

3 − 1849 d3
2d2d1 − 623 d3

3d2 + 16 d3
5d1

3 + 304 d3
3d2

3 + 264 d2d1
3)

w s s 9475
839808

√
3(4 d1d2

3 + 108 − 4 d3
3d2 + 4 d3

3d1 + 75 d1d2 − 8 d3
2d2d1 − 12 d2d1

3 + 8 d3
2d2

2 + 8 d1
4 −

4 d3d2
3 − 16 d3

2 − 155 d1
2 − 16 d2

2 + 24 d3d2d1
2 + 75 d3d1 + 37 d3d2 − 12 d3d1

3 − 8 d3d1d2
2)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

w s y − 125
2519424

√
3(3876 − 5244 d3d2d1

2 + 920 d3d1d2
2 + 64 d3

4d2d1 + 176 d3d2d1
4 + 16 d3d1d2

4 −
320 d3d2

2d1
3 + 160 d3d2

3d1
2 + 160 d1

2d2
2d3

2 + 112 d3
2d2d1

3 + 112 d3
3d2

2d1 − 176 d3
2d2

3d1 −
272 d3

3d2d1
2 − 24 d3d2

3 + 16 d3
4d1

2 + 2967 d3d2 − 2576 d3
2 − 7159 d1d2 + 3959 d1

2 − 4455 d3d1 −
928 d2

2−1980 d3
2d1

2+812 d3
2d2

2−1684 d1
4+128 d3

4−112 d3
2d1

4+3580 d3d1
3+32 d1

6+112 d3
3d1

3−
16 d3d1

5−32 d3
5d1−32 d1

2d2
4+32 d3

5d2−112 d2d1
5+16 d1d2

5−16 d3d2
5+128 d1

4d2
2−80 d3

4d2
2+

16 d3
2d2

4 − 1668 d1
2d2

2 + 64 d2
4 − 44 d3

3d1 − 104 d1d2
3 + 2832 d3

2d2d1 − 980 d3
3d2 − 32 d2

3d1
3 +

48 d3
3d2

3 + 3392 d2d1
3)

w s z − 125
1259712

√
3(−648 − 3696 d3d2d1

2 − 238 d3d1d2
2 − 32 d3

2d2
3d1

3 + 96 d3
4d2

2d1
2 − 96 d3

4d2
3d1 −

272 d3
3d2

2d1
3 + 144 d3

3d2
3d1

2 − 32 d3
4d2d1

3 − 112 d3
2d2d1

5 − 32 d3
2d2

4d1
2 + 48 d3

5d2
2d1 +

192 d3
3d2d1

4 + 16 d3
2d2

5d1 + 128 d3
2d1

4d2
2− 48 d3

5d2d1
2 + 600 d3

4d2d1− 24 d3d2d1
4 + 24 d3d1d2

4−
72 d3d2

2d1
3 + 24 d3d2

3d1
2 − 1572 d1

2d2
2d3

2 + 3344 d3
2d2d1

3 + 1116 d3
3d2

2d1 − 136 d3
2d2

3d1 −
2940 d3

3d2d1
2 − 392 d3d2

3 − 168 d3
4d1

2 + 3386 d3d2 + 252 d3
2 − 1906 d1d2 − 4270 d1

2 − 5834 d3d1 +
608 d2

2 + 5547 d3
2d1

2 + 238 d3
2d2

2 − 176 d1
4 + 432 d3

4 − 1676 d3
2d1

4 + 3174 d3d1
3 − 48 d3

3d1
5 −

16 d3
5d2

3 + 1520 d3
3d1

3 + 16 d3
5d1

3 + 48 d3d1
5 − 108 d3

5d1 + 108 d3
5d2 − 432 d3

4d2
2 + 40 d3

2d2
4 +

32 d3
2d1

6− 2593 d3
3d1− 88 d1d2

3− 1849 d3
2d2d1 + 32 d3

4d2
4− 623 d3

3d2 + 304 d3
3d2

3− 16 d3
3d2

5 +
264 d2d1

3)

w y y 1
2519424

√
3(195084 + 703936 d3d2d1

2 − 244800 d3d1d2
2 − 3648 d3

2d2
3d1

3 − 1536 d3
4d2

2d1
2 −

1472 d3
4d2

3d1−3648 d3
3d2

2d1
3 +5504 d3

3d2
3d1

2 +3392 d3
4d2d1

3−1920 d3
2d2d1

5−1536 d3
2d2

4d1
2 +

1728 d3
5d2

2d1 − 1280 d3
3d2d1

4 + 1728 d3
2d2

5d1 + 5760 d3
2d1

4d2
2 − 1536 d3

5d2d1
2 − 5904 d3

4d2d1 −
88512 d3d2d1

4 − 5904 d3d1d2
4 + 67056 d3d2

2d1
3 − 528 d3d2

3d1
2 + 1664 d3d2d1

6 − 128 d3
6d2d1 +

3392 d3d2
4d1

3 − 1472 d3
3d2

4d1 − 1280 d3d2
3d1

4 − 1920 d3d2
2d1

5 − 128 d3d1d2
6 − 1536 d3d2

5d1
2 −

65808 d1
2d2

2d3
2 + 67056 d3

2d2d1
3 + 9504 d3

3d2
2d1 + 9504 d3

2d2
3d1 − 528 d3

3d2d1
2 − 28096 d3d2

3 −
6624 d3

4d1
2 + 157821 d3d2 − 285952 d3

2 + 718979 d1d2 − 860035 d1
2 + 718979 d3d1 − 285952 d2

2 +
275712 d3

2d1
2 + 73472 d3

2d2
2 − 192 d3

6d2
2 + 231616 d1

4 − 192 d3
2d2

6 + 22464 d3
4 + 192 d2

5d1
3 +

1280 d1
5d2

3−1280 d2
4d1

4−1280 d3
4d1

4+320 d1
2d2

6−320 d1
7d2+128 d3

7d2−128 d3
7d1−320 d3d1

7−
192 d2

2d1
6−128 d1d2

7+128 d3d2
7+320 d3

6d1
2−21744 d3

2d1
4−455616 d3d1

3−512 d2
6+1280 d3

3d1
5+

128 d1
8 − 512 d3

6 − 13040 d1
6 − 384 d3

5d2
3 + 4336 d3

3d1
3 + 192 d3

5d1
3 + 31968 d3d1

5 + 5616 d3
5d1 −

6624 d1
2d2

4 − 4080 d3
5d2 + 31968 d2d1

5 + 5616 d1d2
5 − 4080 d3d2

5 − 21744 d1
4d2

2 + 10992 d3
4d2

2 +
10992 d3

2d2
4+275712 d1

2d2
2+22464 d2

4−192 d3
2d1

6−74176 d3
3d1−74176 d1d2

3−244800 d3
2d2d1+

896 d3
4d2

4 − 28096 d3
3d2 + 4336 d2

3d1
3 − 12800 d3

3d2
3 − 384 d3

3d2
5 − 455616 d2d1

3)

w y z 1
1259712

√
3(−176856 + 377992 d3d2d1

2 − 203946 d3d1d2
2 + 4496 d3

2d2
3d1

3 − 37728 d3
4d2

2d1
2 −

12240 d3
4d2

3d1 + 53648 d3
3d2

2d1
3 − 2736 d3

3d2
3d1

2 + 61760 d3
4d2d1

3 + 32192 d3
2d2d1

5 −
7712 d3

2d2
4d1

2 + 17520 d3
5d2

2d1 − 80128 d3
3d2d1

4 + 5872 d3
2d2

5d1 − 21136 d3
2d1

4d2
2 −

15456 d3
5d2d1

2−108136 d3
4d2d1−15536 d3d2d1

4−14728 d3d1d2
4+17888 d3d2

2d1
3+7664 d3d2

3d1
2+

96 d3d2d1
6−1968 d3

6d2d1+768 d3d2
4d1

3+3808 d3
3d2

4d1−768 d3d2
2d1

5−192 d3d1d2
6−96 d3d2

5d1
2+

96608 d1
2d2

2d3
2 − 278480 d3

2d2d1
3 − 46348 d3

3d2
2d1 − 76208 d3

2d2
3d1 + 407648 d3

3d2d1
2 −

78760 d3d2
3 + 130748 d3

4d1
2 − 192 d3

7d1
2d2 − 320 d3

2d2d1
7 + 1600 d3

3d2d1
6 − 128 d3

2d2
7d1 +

320 d3
6d2d1

3 − 1280 d3
3d2

3d1
4 + 896 d3

5d2d1
4 + 2240 d3

5d2
3d1

2 − 192 d3
6d2

2d1
2 + 192 d3

2d2
5d1

3 −
2112 d3

4d2
3d1

3−192 d3
2d2

2d1
6−1408 d3

3d2
2d1

5+3712 d3
4d2

2d1
4−2112 d3

5d2
2d1

3−1472 d3
3d2

5d1
2+

320 d3
2d2

6d1
2− 2304 d3

4d2d1
5 + 1088 d3

4d2
5d1− 576 d3

4d2
4d1

2 + 1280 d3
2d2

3d1
5− 1280 d3

2d2
4d1

4−
1088 d3

5d2
4d1 + 2880 d3

3d2
4d1

3 + 192 d3
7d2

2d1 − 64 d3
6d2

3d1 + 168830 d3d2 − 68364 d3
2 +

385754 d1d2 + 62150 d1
2 + 289906 d3d1 − 36256 d2

2 − 690639 d3
2d1

2 − 99166 d3
2d2

2 + 240 d3
6d2

2 +
2232 d1

4 − 320 d3
2d2

6 + 96 d3
4 − 24144 d3

4d1
4 + 432 d3

7d2 − 432 d3
7d1 + 192 d3d1

7 + 1728 d3
6d1

2 +
231800 d3

2d1
4 − 132150 d3d1

3 + 32208 d3
3d1

5 + 64 d3
6d2

4 + 128 d3
3d2

7 − 320 d3
4d2

6 − 64 d3
7d2

3 +
192 d3

5d2
5 − 448 d3

3d1
7 + 64 d3

7d1
3 + 512 d3

4d1
6 − 128 d3

6d1
4 − 128 d3

5d1
5 − 1728 d3

6 − 704 d1
6 −

5904 d3
5d2

3 − 376436 d3
3d1

3 + 3840 d3
5d1

3 + 1576 d3d1
5 − 1768 d3

5d1 − 352 d1
2d2

4 + 5992 d3
5d2 +

352 d2d1
5 + 704 d1d2

5 + 3136 d3d2
5 + 2464 d1

4d2
2 − 25876 d3

4d2
2 + 26280 d3

2d2
4 + 135720 d1

2d2
2 −

4864 d2
4− 13392 d3

2d1
6 + 446781 d3

3d1 + 32712 d1d2
3 + 109357 d3

2d2d1 + 12352 d3
4d2

4 + 99 d3
3d2−

2464 d2
3d1

3 + 128 d3
2d1

8 + 15904 d3
3d2

3 − 6800 d3
3d2

5 − 165800 d2d1
3)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

w z z 1
629856

√
3(−149712 + 596880 d3d2d1

2 − 628238 d3d1d2
2 − 346172 d3

2d2
3d1

3 + 128276 d3
4d2

2d1
2 −

127212 d3
4d2

3d1 − 346172 d3
3d2

2d1
3 + 446544 d3

3d2
3d1

2 + 5744 d3
4d2d1

3 + 1912 d3
2d2d1

5 +
128276 d3

2d2
4d1

2 + 9560 d3
5d2

2d1 − 6696 d3
3d2d1

4 + 9560 d3
2d2

5d1 + 231632 d3
2d1

4d2
2 −

5208 d3
5d2d1

2 − 4662 d3
4d2d1 − 13740 d3d2d1

4 − 4662 d3d1d2
4 + 88710 d3d2

2d1
3 − 71196 d3d2

3d1
2 +

288 d3d2d1
6 − 648 d3

6d2d1 + 5744 d3d2
4d1

3 − 127212 d3
3d2

4d1 − 6696 d3d2
3d1

4 + 1912 d3d2
2d1

5 −
648 d3d1d2

6 − 5208 d3d2
5d1

2 − 256 d3
5d2

6d1 − 448 d3
2d2

3d1
7 + 64 d3

2d2
7d1

3 + 96 d3d2
6d1

3 −
192 d3

3d2
7d1

2 + 192 d3
4d2

7d1 − 970623 d1
2d2

2d3
2 + 88710 d3

2d2d1
3 + 527771 d3

3d2
2d1 +

527771 d3
2d2

3d1 − 71196 d3
3d2d1

2 + 39890 d3d2
3 + 6768 d3

4d1
2 − 448 d3

3d2
2d1

7 + 192 d3
2d2d1

7 −
96 d3

3d2d1
6 − 432 d3

2d2
7d1 + 96 d3

6d2d1
3 − 77424 d3

3d2
3d1

4 + 96 d3
5d2d1

4 − 10896 d3
5d2

3d1
2 +

1440 d3
6d2

2d1
2 + 3520 d3

2d2
5d1

3 + 57024 d3
4d2

3d1
3 − 13744 d3

2d2
2d1

6 + 32208 d3
3d2

2d1
5 −

23184 d3
4d2

2d1
4+3520 d3

5d2
2d1

3−10896 d3
3d2

5d1
2+1440 d3

2d2
6d1

2−288 d3
4d2d1

5+7488 d3
4d2

5d1−
40752 d3

4d2
4d1

2 + 32208 d3
2d2

3d1
5 − 23184 d3

2d2
4d1

4 + 7488 d3
5d2

4d1 + 57024 d3
3d2

4d1
3 −

432 d3
7d2

2d1 − 1248 d3
6d2

3d1 − 64 d3
7d2

5 + 256 d3
3d2

6d1
3 − 128 d3

2d2
6d1

4 + 512 d3
2d2

4d1
6 −

128 d3
6d2

2d1
4 + 256 d3

6d2
3d1

3−2112 d3
4d2

3d1
5−9964 d3d2−127464 d3

2 + 561628 d1d2 + 8948 d1
2 +

561628 d3d1 − 128 d3
5d2

2d1
5 − 288 d3d2

4d1
5 − 1248 d3

3d2
6d1 − 96 d3d2

3d1
6 + 1664 d1

6d3
3d2

3 −
1664 d3

5d2
4d1

3 + 96 d3d1
4d2

5 − 127464 d2
2 + 512 d3

4d2
2d1

6 − 128 d3
2d2

5d1
5 + 832 d3

5d2
3d1

4 +
832 d3

3d2
5d1

4−1664 d3
4d2

5d1
3−2112 d3

3d2
4d1

5+1280 d1
2d3

5d2
5+3072 d1

4d3
4d2

4+245838 d3
2d1

2+
128 d3

2d1
8d2

2 + 192 d3d1
7d2

2 − 9676 d3
2d2

2 + 64 d3
7d2

2d1
3 − 256 d3

6d2
5d1 + 192 d3

7d2
4d1 −

192 d3
7d2

3d1
2 − 1080 d3

6d2
2 + 3872 d1

4 − 1080 d3
2d2

6 + 128 d3
6d2

6 − 16416 d3
4 − 352 d2

5d1
3 +

1056 d1
5d2

3 − 704 d2
2d1

6 + 2056 d3
2d1

4 − 201924 d3d1
3 + 1056 d3

3d1
5 − 64 d3

5d2
7 − 288 d3

6d2
4 +

432 d3
3d2

7 − 288 d3
4d2

6 + 432 d3
7d2

3 − 208 d3
5d2

5 − 8416 d3
5d2

3 − 32416 d3
3d1

3 − 352 d3
5d1

3 −
1056 d3d1

5 + 2376 d3
5d1 + 6768 d1

2d2
4 + 10584 d3

5d2 − 1056 d2d1
5 + 2376 d1d2

5 + 10584 d3d2
5 +

2056 d1
4d2

2−32826 d3
4d2

2−32826 d3
2d2

4 + 245838 d1
2d2

2−16416 d2
4−704 d3

2d1
6 + 59350 d3

3d1 +
59350 d1d2

3 − 628238 d3
2d2d1 + 21416 d3

4d2
4 + 39890 d3

3d2 − 32416 d2
3d1

3 − 7855 d3
3d2

3 −
8416 d3

3d2
5 − 201924 d2d1

3)

f f f 1
46656

√
3(−1576 d3

2d1
3 − 1576 d1

2d2
3 + 9094 d1

2d2 − 1576 d3
2d2

3 + 9094 d3d1
2 + 64 d3

5d2
3d1 +

192 d3
3d2

2d1
2− 128 d3d1

4d2
4 + 64 d3

3d2
5d1− 128 d3

4d2d1
4− 36 d3

3− 128 d3
2d2

5d1
2 + 64 d3d2

5d1
3 +

128 d3
4d2

2d1
3 + 128 d3

2d2
4d1

3 + 64 d3d2
3d1

5 + 64 d3
3d2d1

5 + 128 d3
2d2

3d1
4 + 128 d3

3d2
4d1

2 +
4264 d3d2

3d1 + 4264 d3d2d1
3 + 288 d3

2d1
4d2 − 968 d3

2d2d1
2 + 288 d3

2d1d2
4 + 288 d3d2

2d1
4 +

288 d3
4d2

2d1 − 968 d3
2d1d2

2 + 128 d3
4d2

3d1
2 − 688 d3

3d2d1
3 + 192 d3

2d2
3d1

2 + 288 d3d2
4d1

2 +
192 d3

2d2
2d1

3 − 688 d3
3d2

3d1 + 288 d3
4d2d1

2 − 384 d3
3d2

3d1
3 + 128 d3

3d2
2d1

4 − 128 d3
5d2

2d1
2 −

144 d3
5d2d1 +64 d3

5d2d1
3−36 d1

3−128 d3
4d2

4d1−36 d2
3−144 d3d2d1

5−72 d3d1
4 +4264 d3

3d2d1−
968 d3d2

2d1
2 − 29493 d3d2d1 − 144 d3d1d2

5 − 72 d3d2
4 − 128 d3

2d2
2d1

5 − 688 d3d2
3d1

3 + 32 d3
4d2

3 +
32 d3

3d1
4 + 32 d3

3d2
4 + 9094 d1d2

2 + 32 d3
4d1

3 − 72 d3
4d2 + 9094 d3

2d1 − 72 d3
4d1 + 9094 d3d2

2 −
1576 d3

3d1
2 − 1576 d2

2d1
3 + 32 d2

3d1
4 + 32 d2

4d1
3 − 72 d1

4d2 − 72 d1d2
4 − 1576 d3

3d2
2 − 4352 d1 −

4352 d2 + 9094 d3
2d2 − 4352 d3)

f f o 0
f f õ 0
f f p 0
f f q 1

69984
(d1 − d2)(16 d3

2d1
3 − 1320 d1

2d2
3 + 3910 d1

2d2 + 16 d3
2d2

3 + 114 d3d1
2 − 1088 d3

3d2
2d1

2 −
4860 d3

3 + 1948 d3d2
3d1 + 1948 d3d2d1

3 + 32 d3
2d1

4d2− 7424 d3
2d2d1

2 + 32 d3
2d1d2

4− 64 d3d2
2d1

4 +
512 d3

4d2
2d1 − 7424 d3

2d1d2
2 − 304 d3

3d2d1
3 + 640 d3

2d2
3d1

2 − 64 d3d2
4d1

2 + 640 d3
2d2

2d1
3 −

304 d3
3d2

3d1 + 512 d3
4d2d1

2 − 240 d3
5d2d1 − 36 d1

3 − 36 d2
3 + 6584 d3

3d2d1 + 7568 d3d2
2d1

2 −
9555 d3d2d1−368 d3d2

3d1
3+3910 d1d2

2−120 d3
4d2+1562 d3

2d1−120 d3
4d1+114 d3d2

2−104 d3
3d1

2−
1320 d2

2d1
3+32 d2

3d1
4+32 d2

4d1
3−72 d1

4d2−72 d1d2
4−104 d3

3d2
2−3648 d1−3648 d2+1562 d3

2d2+
30048 d3)

f f r 11
69984

(d1 − d2)(608 + 16 d3
4d2d1 − 232 d3

2d2d1 + 64 d1
2d2

2d3
2 − 32 d3

3d2
2d1 − 32 d3

3d2d1
2 +

16 d3
2d2

3d1 + 16 d3
2d2d1

3 − 32 d3d2
2d1

3 − 32 d3d2
3d1

2 + 192 d3d2d1
2 − 18 d1

2 − 188 d3
2 − 18 d2

2 +
192 d3d1d2

2 + 8 d3
3d2−36 d2d1

3−334 d3d1 + 8 d3
2d1

2 + 8 d3
3d1−36 d1d2

3 + 565 d1d2−112 d1
2d2

2 +
16 d2

3d1
3 + 8 d3

2d2
2 − 334 d3d2)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

f f s − 125
139968

(d1 − d2)(608 + 16 d3
4d2d1 − 232 d3

2d2d1 + 64 d1
2d2

2d3
2 − 32 d3

3d2
2d1 − 32 d3

3d2d1
2 +

16 d3
2d2

3d1 + 16 d3
2d2d1

3 − 32 d3d2
2d1

3 − 32 d3d2
3d1

2 + 192 d3d2d1
2 − 18 d1

2 − 188 d3
2 − 18 d2

2 +
192 d3d1d2

2 + 8 d3
3d2−36 d2d1

3−334 d3d1 + 8 d3
2d1

2 + 8 d3
3d1−36 d1d2

3 + 565 d1d2−112 d1
2d2

2 +
16 d2

3d1
3 + 8 d3

2d2
2 − 334 d3d2)

f f y 1
139968

(d1 − d2)(−40416 + 5424 d3
4d2d1 − 7344 d3

2d2d1 + 8128 d1
2d2

2d3
2 − 7424 d3

3d2
2d1 −

7424 d3
3d2d1

2 + 2544 d3
2d2

3d1 + 2544 d3
2d2d1

3 − 1200 d3d2
2d1

3 − 1200 d3d2
3d1

2 + 12804 d3d2d1
2 −

128 d3
6d2d1 − 768 d3

2d2
3d1

3 − 896 d3
4d2

2d1
2 + 192 d3d2

4d1
3 − 64 d3

3d2
4d1 − 192 d3

4d2
3d1 +

704 d3
3d2

2d1
3 + 704 d3

3d2
3d1

2 − 192 d3
4d2d1

3 + 64 d3
2d2d1

5 + 192 d3d2
3d1

4 + 320 d3
5d2

2d1 −
128 d3d2

2d1
5−64 d3

3d2d1
4+64 d3

2d2
5d1+320 d3

5d2d1
2−400 d3d2d1

4−400 d3d1d2
4−128 d3d2

5d1
2+

17178 d1
2+9260 d3

2+17178 d2
2+12804 d3d1d2

2−1920 d3d2
3−3496 d3

3d2+64 d3
3d2

3+5528 d2d1
3+

31686 d3d1−2752 d3
2d1

2−3496 d3
3d1+5528 d1d2

3−71849 d1d2−14344 d1
2d2

2−2032 d2
3d1

3−72 d1
4+

32 d3
2d1

4 − 64 d3
5d2 + 1504 d3

4 − 1920 d3d1
3 + 864 d1

4d2
2 − 64 d3

5d1 − 2752 d3
2d2

2 − 32 d3
4d2

2 +
864 d1

2d2
4 + 32 d3

2d2
4 − 144 d2d1

5 − 144 d1d2
5 − 32 d3

4d1
2 + 64 d3

3d1
3 + 64 d2

5d1
3 + 64 d1

5d2
3 −

128 d2
4d1

4 + 31686 d3d2 − 72 d2
4)

f f z 1
69984

(d1−d2)(42432+128 d3
4d2

2d1
4+4440 d3

4d2d1−71247 d3
2d2d1−4328 d1

2d2
2d3

2−904 d3
3d2

2d1−
904 d3

3d2d1
2 + 9040 d3

2d2
3d1 + 9040 d3

2d2d1
3 − 3256 d3d2

2d1
3 − 3256 d3d2

3d1
2 + 5458 d3d2d1

2 +
128 d3

5d2
2d1

3 − 128 d3
3d2

5d1
2 + 64 d3

4d2d1
5 + 64 d3

4d2
5d1 + 128 d3

4d2
4d1

2 + 64 d3
2d2

3d1
5 −

128 d3
2d2

4d1
4 − 128 d3

5d2
4d1 + 128 d3

3d2
4d1

3 + 672 d3
2d2

4d1
2 + 672 d3

2d1
4d2

2 + 64 d3
6d2

3d1 +
64 d3

6d2d1
3 + 128 d3

3d2
3d1

4 − 128 d3
5d2d1

4 + 128 d3
5d2

3d1
2 − 128 d3

6d2
2d1

2 + 64 d3
2d2

5d1
3 −

384 d3
4d2

3d1
3 − 128 d3

3d2
2d1

5 − 432 d3
6d2d1 − 2256 d3

2d2
3d1

3 − 2240 d3
4d2

2d1
2 + 96 d3d2

4d1
3 −

160 d3
3d2

4d1 − 592 d3
4d2

3d1 + 1600 d3
3d2

2d1
3 + 1600 d3

3d2
3d1

2 − 592 d3
4d2d1

3 − 144 d3
2d2d1

5 +
96 d3d2

3d1
4+928 d3

5d2
2d1−160 d3

3d2d1
4−144 d3

2d2
5d1+928 d3

5d2d1
2−216 d3d2d1

4−216 d3d1d2
4+

396 d1
2+32 d3

5d1
3+32 d3

5d2
3+32 d3

4d1
4−67576 d3

2+32 d3
4d2

4+396 d2
2+5458 d3d1d2

2−108 d3d2
3+

27682 d3
3d2 − 1800 d3

3d2
3 + 792 d2d1

3 − 4620 d3d1 + 16354 d3
2d1

2 + 27682 d3
3d1 + 792 d1d2

3 −
8846 d1d2 + 4512 d1

2d2
2 − 352 d2

3d1
3 − 72 d3

2d1
4 − 216 d3

5d2 + 5076 d3
4 − 108 d3d1

3 − 216 d3
5d1 +

16354 d3
2d2

2 − 2456 d3
4d2

2 − 72 d3
2d2

4 − 2456 d3
4d1

2 − 1800 d3
3d1

3 − 4620 d3d2)

f o o 368
19683

√
3(4 d3

2d1 + 4 d1d2
2 − 8 d3d2d1 − 9 d1 + 2 d2 + 2 d3)

f o õ 0
f o p 0
f o q 0

f o r − 40
19683

√
3(4 d3

2d1
2 − 2 d3d2 + 4 d1

2d2
2 − 30 d3d1 − 4 d3

2d2d1 + 8 d3d1d2
2 − 8 d3d2d1

2 − 4 d1d2
3 +

32− 2 d2
2 + 43 d1d2 − 9 d1

2)
f o s 0
f o y 0
f o z 0

f õ õ 32
19683

√
3(4 d3

2d1 + 4 d1d2
2 − 8 d3d2d1 − 9 d1 + 2 d2 + 2 d3)

f õ p 0
f õ q 0
f õ r 0
f õ s 0
f õ y 0
f õ z 0

f p p − 6400
19683

√
3(4 d3

2d1 + 4 d1d2
2 − 8 d3d2d1 − 9 d1 + 2 d2 + 2 d3)

f p q 0
f p r 0

f p s − 800
19683

√
3(4 d3

2d1
2 − 2 d3d2 + 4 d1

2d2
2 − 30 d3d1 − 4 d3

2d2d1 + 8 d3d1d2
2 − 8 d3d2d1

2 − 4 d1d2
3 +

32− 2 d2
2 + 43 d1d2 − 9 d1

2)
f p y 0
f p z 0

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

f q q − 1
314928

√
3(62804 d3d2d1 + 120 d3d2

2d1
4 + 1156 d3

4d2
2d1 + 58639 d3

2d1d2
2 + 1172 d3

3d2d1
3 +

1020 d3
2d2

3d1
2 − 1140 d3d2

4d1
2 − 2312 d3

2d2
2d1

3 − 2072 d3
3d2

3d1 − 1140 d3
4d2d1

2 − 120 d3
5d2d1 +

1020 d3
3d2

2d1
2 + 1172 d3d2

3d1
3 − 35944 d3

3d2d1 + 9787 d3d2
2d1

2 − 120 d3d1d2
5 − 32 d3d2d1

5 −
35944 d3d2

3d1−3325 d3d2d1
3 +16168 d3

2d2 +398 d3
3d2

2−3312 d1
3 +120 d3

2d1
4d2 +9787 d3

2d2d1
2 +

1156 d3
2d1d2

4+112 d3
3−36 d1

5+112 d2
3+36864 d1−51200 d2+120 d1

2d2
5+16 d1

5d2
2−62536 d3

2d1−
62536 d1d2

2 − 60 d3
4d2 − 51200 d3 − 7478 d3

3d1
2 + 16168 d3d2

2 + 35224 d3d1
2 + 35224 d1

2d2 +
398 d3

2d2
3+296 d3

2d1
3−7478 d1

2d2
3+5084 d1d2

4−120 d2
3d1

4−16 d2
4d1

3+278 d1
4d2+296 d2

2d1
3+

5084 d3
4d1 − 16 d3

4d1
3 − 120 d3

3d1
4 − 60 d3d2

4 + 278 d3d1
4 + 16 d3

2d1
5 + 120 d3

5d1
2)

f q r − 11
314928

√
3(2048 − 18 d1

4 + 8 d3
4d2d1 − 936 d3

2d2d1 − 68 d1
2d2

2d3
2 − 76 d3

3d2
2d1 + 76 d3

3d2d1
2 −

16 d3d2d1
4 − 60 d3d1d2

4 + 128 d3
2d2

3d1 − 68 d3
2d2d1

3 + 136 d3d2
2d1

3 − 60 d3d2
3d1

2 + 279 d3d2d1
2 +

1091 d3d1d2
2−536 d1

2+8 d3
2d1

4+413 d2d1
3+4 d3

3d2−744 d3d1+178 d3
2d1

2−252 d3d1
3−82 d1d2

3−
30 d3d2

3+8 d1
4d2

2+60 d1
2d2

4−8 d3
4d1

2+3124 d1d2−777 d1
2d2

2−68 d2
3d1

3−248 d3d2−1256 d2
2+

156 d3
3d1 − 16 d3

2 − 26 d3
2d2

2)

f q s 125
629856

√
3(2048 − 18 d1

4 + 8 d3
4d2d1 − 936 d3

2d2d1 − 68 d1
2d2

2d3
2 − 76 d3

3d2
2d1 + 76 d3

3d2d1
2 −

16 d3d2d1
4 − 60 d3d1d2

4 + 128 d3
2d2

3d1 − 68 d3
2d2d1

3 + 136 d3d2
2d1

3 − 60 d3d2
3d1

2 + 279 d3d2d1
2 +

1091 d3d1d2
2−536 d1

2+8 d3
2d1

4+413 d2d1
3+4 d3

3d2−744 d3d1+178 d3
2d1

2−252 d3d1
3−82 d1d2

3−
30 d3d2

3+8 d1
4d2

2+60 d1
2d2

4−8 d3
4d1

2+3124 d1d2−777 d1
2d2

2−68 d2
3d1

3−248 d3d2−1256 d2
2+

156 d3
3d1 − 16 d3

2 − 26 d3
2d2

2)

f q y − 1
629856

√
3(−43008+11130 d1

4 +3224 d3
4d2d1−43096 d3

2d2d1 +44324 d1
2d2

2d3
2 +5164 d3

3d2
2d1−

18268 d3
3d2d1

2+11704 d3d2d1
4+19808 d3d1d2

4−27308 d3
2d2

3d1−3672 d3
2d2d1

3−13812 d3d2
2d1

3−
19700 d3d2

3d1
2 + 97021 d3d2d1

2 − 42975 d3d1d2
2 − 64 d3d2d1

6 − 64 d3
6d2d1 + 1632 d3

2d2
3d1

3 +
448 d3

4d2
2d1

2 + 752 d3d2
4d1

3 + 688 d3
3d2

4d1 − 1296 d3
4d2

3d1 − 2544 d3
3d2

2d1
3 + 1632 d3

3d2
3d1

2 +
944 d3

4d2d1
3 − 400 d3

2d2d1
5 − 2256 d3

2d2
4d1

2 − 1632 d3d2
3d1

4 + 640 d3
5d2

2d1 + 704 d3d2
2d1

5 +
192 d3

3d2d1
4+272 d3

2d2
5d1+720 d3

2d1
4d2

2−608 d3
5d2d1

2−240 d3d1d2
6+480 d3d2

5d1
2−4576 d2

4+
128 d3

4 − 22536 d1
2 − 72 d1

6 − 704 d3
2d1

4 + 224 d3
4d2

2 − 752 d2
5d1

3 − 72705 d2d1
3 − 4116 d3

3d2 −
92920 d3d1−25050 d3

2d1
2 +16812 d3d1

3−68086 d1d2
3 +5014 d3d2

3−12924 d1
4d2

2−11584 d1
2d2

4 +
4104 d3

4d1
2 + 248252 d1d2 + 70253 d1

2d2
2 + 21704 d2

3d1
3 − 86952 d3d2 + 13576 d2

2 + 24948 d3
3d1 −

1592 d3d1
5−224 d3

2d2
4−32 d3

5d2 +2308 d2d1
5 +568 d1d2

5−120 d3d2
5 +152 d3

3d2
3−2024 d3

3d1
3−

32 d3
5d1

3 + 32 d3
3d1

5 − 336 d1
5d2

3 − 96 d3
4d1

4 + 816 d2
4d1

4 + 32 d3
2d1

6 + 240 d1
2d2

6 + 32 d2
2d1

6 +
64 d3

6d1
2 − 1248 d3

5d1 + 8528 d3
2 + 35298 d3

2d2
2)

f q z − 1
314928

√
3(−110592+396 d1

4+28744 d3
4d2d1+68916 d3

2d2d1+114695 d1
2d2

2d3
2−32309 d3

3d2
2d1−

23833 d3
3d2d1

2 +1186 d3d2d1
4 +16572 d3d1d2

4−34124 d3
2d2

3d1−61029 d3
2d2d1

3−2104 d3d2
2d1

3−
21114 d3d2

3d1
2 + 136910 d3d2d1

2 − 70810 d3d1d2
2 − 64 d3

3d2d1
6 − 240 d3

3d2
6d1 + 96 d3

6d2d1
3 −

1392 d3
3d2

3d1
4 + 304 d3

5d2d1
4 + 912 d3

5d2
3d1

2 − 96 d3
6d2

2d1
2 − 752 d3

2d2
5d1

3 + 784 d3
4d2

3d1
3 +

32 d3
2d2

2d1
6 + 672 d3

3d2
2d1

5 + 304 d3
4d2

2d1
4 − 912 d3

5d2
2d1

3 + 240 d3
3d2

5d1
2 + 240 d3

2d2
6d1

2 −
336 d3

4d2d1
5 + 512 d3

4d2
5d1 − 1296 d3

4d2
4d1

2 − 336 d3
2d2

3d1
5 + 816 d3

2d2
4d1

4 − 304 d3
5d2

4d1 −
216 d3

6d2d1 + 21480 d3
2d2

3d1
3 + 18636 d3

4d2
2d1

2 − 48 d3d2
4d1

3 + 9808 d3
3d2

4d1 − 12440 d3
4d2

3d1 −
13860 d3

3d2
2d1

3−4984 d3
3d2

3d1
2−5308 d3

4d2d1
3+2212 d3

2d2d1
5−11704 d3

2d2
4d1

2−360 d3d2
3d1

4+
3972 d3

5d2
2d1 + 48 d3d2

2d1
5 + 10628 d3

3d2d1
4 + 208 d3

2d2
5d1 − 12124 d3

2d1
4d2

2 − 5844 d3
5d2d1

2 +
360 d3d2

5d1
2 + 784 d3

3d2
4d1

3 + 32 d3
6d2

3d1 + 432 d3
4 + 64656 d1

2 + 10798 d3
2d1

4 − 32 d3
6d1

4 +
534 d3

4d2
2 − 8062 d2d1

3 − 26896 d3
3d2 − 30352 d3d1 − 97268 d3

2d1
2 − 5416 d3d1

3 − 57844 d1d2
3 +

996 d3d2
3 − 176 d1

4d2
2 − 1320 d1

2d2
4 − 6190 d3

4d1
2 + 116936 d1d2 − 5434 d1

2d2
2 + 1496 d2

3d1
3 −

117296 d3d2 − 2192 d2
2 + 9520 d3

3d1 − 108 d3d1
5 − 4756 d3

2d2
4 − 108 d3

5d2 + 4334 d3
3d2

3 +
13024 d3

3d1
3 + 1856 d3

5d1
3 − 1472 d3

3d1
5 − 784 d3

4d1
4 − 72 d3

2d1
6 + 216 d3

6d1
2 − 4212 d3

5d1 −
120 d3

3d2
5 − 104 d3

4d2
4 + 32 d3

4d1
6 + 79968 d3

2 + 68132 d3
2d2

2 + 16 d3
5d2

3)

f r r − 19
104976

√
3(−4 d3

3d1
2 − 40 d2 + 4 d2

2d1
3 + 11 d3d1

2 − 45 d3d2d1 − 9 d1
3 − 4 d1

2d2
3 + 4 d3

3d2d1 +
2 d3d2

2 − 8 d3d2d1
3 − 40 d3 + 4 d3

2d1
3 + 11 d1

2d2 + 2 d3
2d2 + 14 d3

2d1 + 4 d3d2
3d1 − 8 d3

2d1d2
2 +

4 d3
2d2d1

2 + 4 d3d2
2d1

2 − 28 d1 + 14 d1d2
2)

f r s 1375
629856

√
3(−4 d3

3d1
2−40 d2+4 d2

2d1
3+11 d3d1

2−45 d3d2d1−9 d1
3−4 d1

2d2
3+4 d3

3d2d1+2 d3d2
2−

8 d3d2d1
3 − 40 d3 + 4 d3

2d1
3 + 11 d1

2d2 + 2 d3
2d2 + 14 d3

2d1 + 4 d3d2
3d1 − 8 d3

2d1d2
2 + 4 d3

2d2d1
2 +

4 d3d2
2d1

2 − 28 d1 + 14 d1d2
2)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

f r y − 11
629856

√
3(−48 d3d2

3d1
3 + 16 d3d1d2

5 − 32 d3d2d1
5 − 48 d3

2d1
4d2 − 16 d3

2d1d2
4 + 96 d3d2

2d1
4 +

80 d3
4d2

2d1+144 d3
3d2d1

3+144 d3
2d2

3d1
2−32 d3d2

4d1
2−96 d3

2d2
2d1

3−48 d3
3d2

3d1−32 d3
4d2d1

2−
32 d3

5d2d1− 96 d3
3d2

2d1
2− 399 d3d2d1− 844 d3

2d1d2
2 + 1044 d3

3d2d1 + 364 d3d2
2d1

2− 32 d3d2
3d1 +

36 d3d2d1
3 − 1322 d3

2d2 + 1277 d1
3 − 220 d3

2d2d1
2 − 8 d3

3d2
2 + 16 d3

2d2
3 − 72 d1d2

4 − 48 d2
3d1

4 +
48 d2

4d1
3+372 d1

4d2−112 d3
4d1−48 d3

4d1
3+8 d3d2

4−248 d3d1
4+16 d3

2d1
5+32 d3

5d1
2−16 d1

2d2
5+

16 d1
5d2

2 − 16 d3
4d2 − 224 d2

3 − 6068 d1 + 4424 d2 − 36 d1
5 + 3258 d3

2d1 + 2154 d1d2
2 + 320 d3

3 +
1864 d3 − 652 d3

3d1
2 − 586 d3d2

2 − 935 d3d1
2 − 3543 d1

2d2 + 664 d3
2d1

3 + 592 d1
2d2

3 − 856 d2
2d1

3)

f r z − 11
314928

√
3(324 d3

2d1
4d2−48 d3

2d1d2
4+24 d3d2

2d1
4+408 d3

4d2
2d1+508 d3

3d2d1
3+600 d3

2d2
3d1

2−
24 d3d2

4d1
2 − 840 d3

2d2
2d1

3 − 352 d3
3d2

3d1 − 468 d3
4d2d1

2 − 108 d3
5d2d1 + 24 d3

3d2
2d1

2 +
16 d3

2d2
2d1

5−32 d3
4d2

4d1+16 d3
3d2

5d1−16 d3
4d2d1

4−16 d3
2d2

5d1
2−48 d3

4d2
2d1

3+48 d3
2d2

4d1
3−

32 d3
3d2d1

5−48 d3
2d2

3d1
4−16 d3

3d2
4d1

2+80 d3
4d2

3d1
2−48 d3

3d2
3d1

3+80 d3
3d2

2d1
4−48 d3

5d2
2d1

2+
48 d3

5d2d1
3+16 d3

5d2
3d1−1242 d3d2d1+932 d3

2d1d2
2+1799 d3

3d2d1+446 d3d2
2d1

2+380 d3d2
3d1−

580 d3d2d1
3+1756 d3

2d2+198 d1
3−3469 d3

2d2d1
2−522 d3

3d2
2−212 d3

2d2
3−378 d3

4d1+52 d3
4d1

3−
54 d3d1

4− 36 d3
2d1

5 + 108 d3
5d1

2− 54 d3
4d2− 16 d3

5d1
4 + 8 d3

4d2
3− 188 d3

3d1
4 + 2728 d1 + 752 d2 +

8 d3
3d2

4+16 d3
4d1

5−3568 d3
2d1−564 d1d2

2+1080 d3
3+3312 d3−221 d3

3d1
2−92 d3d2

2−2362 d3d1
2+

270 d1
2d2 + 1933 d3

2d1
3 + 88 d1

2d2
3 − 88 d2

2d1
3)

f s s − 9475
419904

√
3(−4 d3

3d1
2 − 40 d2 + 4 d2

2d1
3 + 11 d3d1

2 − 45 d3d2d1 − 9 d1
3 − 4 d1

2d2
3 + 4 d3

3d2d1 +
2 d3d2

2 − 8 d3d2d1
3 − 40 d3 + 4 d3

2d1
3 + 11 d1

2d2 + 2 d3
2d2 + 14 d3

2d1 + 4 d3d2
3d1 − 8 d3

2d1d2
2 +

4 d3
2d2d1

2 + 4 d3d2
2d1

2 − 28 d1 + 14 d1d2
2)

f s y 125
1259712

√
3(−48 d3

2d1
4d2−16 d3

2d1d2
4 +96 d3d2

2d1
4 +80 d3

4d2
2d1 +144 d3

3d2d1
3 +144 d3

2d2
3d1

2−
32 d3d2

4d1
2 − 96 d3

2d2
2d1

3 − 48 d3
3d2

3d1 − 32 d3
4d2d1

2 − 32 d3
5d2d1 − 96 d3

3d2
2d1

2 − 224 d2
3 −

399 d3d2d1 − 48 d3d2
3d1

3 + 16 d3d1d2
5 − 32 d3d2d1

5 − 844 d3
2d1d2

2 + 1044 d3
3d2d1 + 364 d3d2

2d1
2 −

32 d3d2
3d1 + 36 d3d2d1

3− 1322 d3
2d2 + 1277 d1

3− 220 d3
2d2d1

2− 8 d3
3d2

2 + 16 d3
2d2

3− 112 d3
4d1−

48 d3
4d1

3 − 248 d3d1
4 + 16 d3

2d1
5 + 32 d3

5d1
2 − 16 d3

4d2 − 6068 d1 + 4424 d2 − 36 d1
5 − 16 d1

2d2
5 +

16 d1
5d2

2+3258 d3
2d1+2154 d1d2

2+320 d3
3+1864 d3−72 d1d2

4−48 d2
3d1

4+48 d2
4d1

3+372 d1
4d2+

8 d3d2
4 − 652 d3

3d1
2 − 586 d3d2

2 − 935 d3d1
2 − 3543 d1

2d2 + 664 d3
2d1

3 + 592 d1
2d2

3 − 856 d2
2d1

3)

f s z 125
629856

√
3(16 d3

2d2
2d1

5 − 32 d3
4d2

4d1 + 16 d3
3d2

5d1 − 16 d3
4d2d1

4 − 16 d3
2d2

5d1
2 − 48 d3

4d2
2d1

3 +
48 d3

2d2
4d1

3−32 d3
3d2d1

5−48 d3
2d2

3d1
4−16 d3

3d2
4d1

2+324 d3
2d1

4d2−48 d3
2d1d2

4+24 d3d2
2d1

4+
408 d3

4d2
2d1 + 508 d3

3d2d1
3 + 600 d3

2d2
3d1

2 − 24 d3d2
4d1

2 − 840 d3
2d2

2d1
3 − 352 d3

3d2
3d1 −

468 d3
4d2d1

2 − 108 d3
5d2d1 + 24 d3

3d2
2d1

2 + 80 d3
4d2

3d1
2 − 48 d3

3d2
3d1

3 + 80 d3
3d2

2d1
4 −

48 d3
5d2

2d1
2+48 d3

5d2d1
3+16 d3

5d2
3d1−1242 d3d2d1+932 d3

2d1d2
2+1799 d3

3d2d1+446 d3d2
2d1

2+
380 d3d2

3d1−580 d3d2d1
3 +1756 d3

2d2 +198 d1
3−3469 d3

2d2d1
2 +8 d3

3d2
4 +8 d3

4d2
3−188 d3

3d1
4−

522 d3
3d2

2 − 212 d3
2d2

3 − 378 d3
4d1 + 52 d3

4d1
3 − 54 d3d1

4 − 36 d3
2d1

5 + 108 d3
5d1

2 − 54 d3
4d2 +

16 d3
4d1

5−16 d3
5d1

4 + 2728 d1 + 752 d2−3568 d3
2d1−564 d1d2

2 + 1080 d3
3 + 3312 d3−221 d3

3d1
2−

92 d3d2
2 − 2362 d3d1

2 + 270 d1
2d2 + 1933 d3

2d1
3 + 88 d1

2d2
3 − 88 d2

2d1
3)

f y y − 1
1259712

√
3(−1536 d3

2d2
2d1

5 − 896 d3
4d2

4d1 + 384 d3
3d2

5d1 − 1664 d3
4d2d1

4 − 1536 d3
2d2

5d1
2 +

1536 d3
4d2

2d1
3+1536 d3

2d2
4d1

3+896 d3
3d2d1

5+1152 d3
2d2

3d1
4+1152 d3

3d2
4d1

2+11952 d3
2d1

4d2−
10992 d3

2d1d2
4+11952 d3d2

2d1
4−10992 d3

4d2
2d1−23264 d3

3d2d1
3+2320 d3

2d2
3d1

2+7264 d3d2
4d1

2+
8272 d3

2d2
2d1

3 + 11776 d3
3d2

3d1 + 7264 d3
4d2d1

2 + 4528 d3
5d2d1 + 2320 d3

3d2
2d1

2 − 6112 d2
3 +

1152 d3
4d2

3d1
2− 3456 d3

3d2
3d1

3 + 1152 d3
3d2

2d1
4− 1536 d3

5d2
2d1

2 + 640 d3
5d2d1

3 + 384 d3
5d2

3d1 +
128 d3

2d2d1
6 − 128 d3

7d2d1 + 256 d3
6d2d1

2 − 534533 d3d2d1 − 23264 d3d2
3d1

3 + 4528 d3d1d2
5 −

3808 d3d2d1
5 − 45760 d3

2d1d2
2 − 128 d3d2d1

7 − 128 d3d1d2
7 − 1664 d3d1

4d2
4 + 192 d3

2d2
6d1 +

640 d3d2
5d1

3 + 192 d3
6d2

2d1 + 896 d3d2
3d1

5 + 256 d3d2
6d1

2 + 128 d3d2
2d1

6 + 40088 d3
3d2d1 −

39540 d3d2
2d1

2 + 40088 d3d2
3d1 + 95264 d3d2d1

3 + 122642 d3
2d2 − 56577 d1

3 − 39540 d3
2d2d1

2 +
160 d3

3d2
4 + 160 d3

4d2
3 − 11472 d3

3d1
4 − 5288 d3

3d2
2 − 5288 d3

2d2
3 − 28264 d3

4d1 + 18928 d3
4d1

3 +
9428 d3d1

4 +1344 d3
2d1

5−9552 d3
5d1

2−1112 d3
4d2−96 d3

2d2
5−96 d3

5d2
2 +576 d1d2

6 +320 d2d1
6 +

576 d3
6d1 − 64 d3

6d2 − 64 d3d2
6 + 320 d3d1

6 − 128 d1
5d2

4 − 128 d2
3d1

6 − 448 d2
6d1

3 − 128 d3
3d1

6 −
448 d3

6d1
3 + 128 d1

2d2
7 + 64 d1

7d2
2 + 64 d3

2d1
7 + 128 d3

7d1
2 − 128 d3

4d1
5 − 144 d1

7 + 512 d2
5d1

4 +
512 d3

5d1
4+205764 d1−286440 d2+1792 d2

5+4776 d1
5−9552 d1

2d2
5+1344 d1

5d2
2+200174 d3

2d1+
200174 d1d2

2 + 1792 d3
5 − 6112 d3

3 − 286440 d3 − 28264 d1d2
4 − 11472 d2

3d1
4 + 18928 d2

4d1
3 +

9428 d1
4d2−1112 d3d2

4 +89680 d3
3d1

2 +122642 d3d2
2 +68963 d3d1

2 +68963 d1
2d2−93924 d3

2d1
3 +

89680 d1
2d2

3 − 93924 d2
2d1

3)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

f y z − 1
629856

√
3(−192 d3

5d2
5d1 + 64 d3

2d2
2d1

7 + 32 d3
6d2

3 + 704 d3
4d2

4d1
3 − 64 d3

3d2
6 + 64 d3

5d2
4 −

32 d3
4d2

5 + 1024 d3
2d2

2d1
5 − 12416 d3

4d2
4d1 + 7184 d3

3d2
5d1 − 3568 d3

4d2d1
4 − 9616 d3

2d2
5d1

2 −
400 d3

4d2
2d1

3+19120 d3
2d2

4d1
3−272 d3

3d2d1
5−10896 d3

2d2
3d1

4−1360 d3
3d2

4d1
2+23668 d3

2d1
4d2−

31632 d3
2d1d2

4 − 1056 d3d2
2d1

4 + 44284 d3
4d2

2d1 + 28360 d3
3d2d1

3 + 85608 d3
2d2

3d1
2 +

13016 d3d2
4d1

2−63748 d3
2d2

2d1
3−4960 d3

3d2
3d1−27388 d3

4d2d1
2+896 d3

5d2d1−45816 d3
3d2

2d1
2−

6016 d2
3+192 d3

6d1
5+19024 d3

4d2
3d1

2−64 d3
7d1

4−192 d3
5d1

6−18928 d3
3d2

3d1
3+12880 d3

3d2
2d1

4−
10704 d3

5d2
2d1

2 + 1136 d3
5d2d1

3 + 5552 d3
5d2

3d1 + 64 d3
4d1

7 + 128 d3
2d2d1

6 − 432 d3
7d2d1 +

2496 d3
6d2d1

2 − 128 d3
2d2

4d1
5 − 512 d3

6d2d1
4 + 768 d3

5d2
2d1

4 + 192 d3
5d2d1

5 + 512 d3
2d2

5d1
4 −

1024 d3
4d2

5d1
2 + 128 d3

2d2
7d1

2 + 64 d3
7d2

3d1 + 256 d3
4d2d1

6 + 128 d3
3d2

6d1
2 + 832 d3

3d2
3d1

5 +
768 d3

4d2
3d1

4 + 192 d3
7d1

3d2 − 1088 d3
4d2

2d1
5 − 376734 d3d2d1 − 9240 d3d2

3d1
3 − 3040 d3d1d2

5 −
4072 d3d2d1

5 + 87780 d3
2d1d2

2 − 192 d3
7d2

2d1
2 + 960 d3

5d2
4d1

2 + 320 d3
4d2

6d1 − 128 d3
3d2

7d1 −
64 d3

6d2
4d1 + 64 d3

3d2
2d1

6 − 128 d3
3d2d1

7 − 1536 d3
5d2

3d1
3 − 128 d3

2d2
3d1

6 + 704 d3
3d2

5d1
3 −

448 d3
2d2

6d1
3 + 384 d3

6d2
2d1

3 − 1472 d3
3d2

4d1
4 − 288 d3d1

4d2
4 + 384 d3

2d2
6d1 − 96 d3d2

5d1
3 −

336 d3
6d2

2d1 + 96 d3d2
3d1

5 + 192 d3d2
6d1

2 + 96 d3d2
2d1

6 − 198187 d3
3d2d1 − 678 d3d2

2d1
2 +

79524 d3d2
3d1 + 47596 d3d2d1

3 + 40628 d3
2d2 − 31422 d1

3 − 71247 d3
2d2d1

2 − 1576 d3
3d2

4 −
3056 d3

4d2
3−24968 d3

3d1
4+29618 d3

3d2
2−3244 d3

2d2
3−73534 d3

4d1+29360 d3
4d1

3+23158 d3d1
4+

9368 d3
2d1

5 − 14144 d3
5d1

2 + 53470 d3
4d2 + 1696 d3

2d2
5 − 3072 d3

5d2
2 + 1944 d3

6d1 − 216 d3
6d2 −

216 d3d1
6 + 560 d3

3d1
6 − 2192 d3

6d1
3 − 144 d3

2d1
7 + 432 d3

7d1
2 − 2608 d3

4d1
5 + 3952 d3

5d1
4 +

160824 d1−230832 d2 + 792 d1
5−704 d1

2d2
5−352 d1

5d2
2 + 442192 d3

2d1−24316 d1d2
2 + 6048 d3

5−
234840 d3

3 − 103344 d3 + 4512 d1d2
4 + 1056 d2

4d1
3 + 7504 d1

4d2 + 736 d3d2
4 + 215465 d3

3d1
2 +

98188 d3d2
2 − 29086 d3d1

2 + 154970 d1
2d2 − 174233 d3

2d1
3 − 19448 d1

2d2
3 − 15632 d2

2d1
3)

f z z − 1
314928

√
3(−48 d3

5d2
5d1−144 d3

2d2
2d1

7−216 d3
6d2

3+5712 d3
4d2

4d1
3−216 d3

3d2
6−2808 d3

5d2
4−

2808 d3
4d2

5+13672 d3
2d2

2d1
5−4472 d3

4d2
4d1+14944 d3

3d2
5d1−2000 d3

4d2d1
4−24680 d3

2d2
5d1

2+
25032 d3

4d2
2d1

3 + 25032 d3
2d2

4d1
3 − 3712 d3

3d2d1
5 − 10304 d3

2d2
3d1

4 − 1960 d3
3d2

4d1
2 +

23218 d3
2d1

4d2 − 37420 d3
2d1d2

4 + 23218 d3d2
2d1

4 − 37420 d3
4d2

2d1 + 27896 d3
3d2d1

3 +
152019 d3

2d2
3d1

2 − 2130 d3d2
4d1

2 − 228813 d3
2d2

2d1
3 − 191849 d3

3d2
3d1 − 2130 d3

4d2d1
2 −

10260 d3
5d2d1+152019 d3

3d2
2d1

2−20304 d2
3−1960 d3

4d2
3d1

2−10272 d3
3d2

3d1
3−10304 d3

3d2
2d1

4−
24680 d3

5d2
2d1

2 + 4512 d3
5d2d1

3 + 14944 d3
5d2

3d1−216 d3
2d2d1

6 + 648 d3
6d2d1

2−2736 d3
2d2

4d1
5−

96 d3
6d2d1

4 + 3984 d3
5d2

2d1
4 + 3984 d3

2d2
5d1

4 − 1296 d3
4d2

5d1
2 + 432 d3

2d2
7d1

2 − 432 d3
7d2

3d1 +
96 d3

4d2d1
6 + 1776 d3

3d2
6d1

2 + 2928 d3
3d2

3d1
5−1968 d3

4d2
3d1

4−2736 d3
4d2

2d1
5−281716 d3d2d1 +

27896 d3d2
3d1

3−10260 d3d1d2
5−324 d3d2d1

5 +549796 d3
2d1d2

2 +432 d3
7d2

2d1
2−1296 d3

5d2
4d1

2 +
192 d3

4d2
6d1 − 432 d3

3d2
7d1 + 192 d3

6d2
4d1 + 368 d3

3d2
2d1

6 − 2672 d3
5d2

3d1
3 + 368 d3

2d2
3d1

6 −
2672 d3

3d2
5d1

3−1904 d3
2d2

6d1
3−1904 d3

6d2
2d1

3−1968 d3
3d2

4d1
4−2000 d3d1

4d2
4+1296 d3

2d2
6d1+

4512 d3d2
5d1

3 + 1296 d3
6d2

2d1 − 3712 d3d2
3d1

5 + 648 d3d2
6d1

2 − 216 d3d2
2d1

6 − 15626 d3
3d2d1 −

170942 d3d2
2d1

2 − 15626 d3d2
3d1 − 6560 d3d2d1

3 + 371384 d3
2d2 − 4356 d1

3 − 170942 d3
2d2d1

2 +
51062 d3

3d2
4 + 192 d3

3d2
5d1

5 + 64 d3
4d2

2d1
7 + 192 d3

6d2
2d1

5 + 64 d3
7d2

5d1 + 192 d3
6d2

5d1
2 +

64 d3
2d2

4d1
7 + 512 d3

4d2
5d1

4 − 448 d3
6d2

3d1
4 − 192 d3

7d2
4d1

2 + 192 d3
5d2

6d1
2 + 192 d3

2d2
6d1

5 −
64 d3

2d2
7d1

4 + 96 d3d2
4d1

6 + 512 d3
5d2

4d1
4 + 51062 d3

4d2
3 + 192 d3

3d2
7d1

3 + 192 d3
4d2

6d1
3 +

192 d3
7d2

3d1
3 + 192 d3

3d2
4d1

6 + 6184 d3
3d1

4 − 96 d3d2
6d1

4 − 64 d3
7d2

2d1
4 − 448 d3

3d2
6d1

4 +
64 d3

5d2
7d1 + 1776 d3

6d2
3d1

2 − 254820 d3
3d2

2 − 254820 d3
2d2

3 + 192 d3
4d2

3d1
6 − 192 d3

4d2
7d1

2 +
192 d3

5d2
3d1

5 + 192 d3
6d2

4d1
3 − 192 d3

2d2
5d1

6 − 192 d3
5d2

2d1
6 − 768 d3

4d2
4d1

5 − 128 d3
3d2

3d1
7 −

128 d3
6d2

6d1− 768 d3
5d2

5d1
3 + 15228 d3

4d1− 4216 d3
4d1

3 + 1188 d3d1
4 + 792 d3

2d1
5− 2376 d3

5d1
2 +

2484 d3
4d2+5724 d3

2d2
5+5724 d3

5d2
2−352 d1

5d2
4−352 d3

4d1
5+352 d2

5d1
4+352 d3

5d1
4+146448 d1−

330144 d2−2376 d1
2d2

5+792 d1
5d2

2+25312 d3
2d1+25312 d1d2

2−20304 d3
3+32 d3

5d2
6+32 d3

6d2
5−

330144 d3 + 15228 d1d2
4 + 6184 d2

3d1
4 − 4216 d2

4d1
3 + 1188 d1

4d2 + 2484 d3d2
4 − 5890 d3

3d1
2 +

371384 d3d2
2 + 199292 d3d1

2 + 199292 d1
2d2 − 42782 d3

2d1
3 − 5890 d1

2d2
3 − 42782 d2

2d1
3)

o o o 0
o o õ 0
o o p 0
o o q 736

59049
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

o o r 8608
59049

d1 − 8608
59049

d2
o o s − 46000

59049
d1 + 46000

59049
d2

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

o o y 368
59049

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

o o z 736
59049

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)
o õ õ 0
o õ p 0
o õ q 0
o õ r 0
o õ s 0
o õ y 0
o õ z 0
o p p 0
o p q 0
o p r 0
o p s 0
o p y 0
o p z 0
o q q 0
o q r − 400

19683
d3d2d1+ 3200

59049
d1− 2240

59049
d2− 640

19683
d3+ 160

59049
d3

2d1− 160
59049

d3
2d2+ 400

19683
d3d2

2− 400
19683

d1d2
2+

1360
59049

d1
2d2 − 160

59049
d1

3

o q s 0
o q y 0
o q z 0
o r r 0
o r s 5000

59049
d3d1 − 5000

59049
d3d2 + 20000

59049
− 5000

59049
d1

2 + 5000
59049

d1d2
o r y 160

59049
d3

2d2
2 + 160

59049
d3d2

3 + 320
59049

d3
3d1 + 160

19683
d1

2d2
2 + 320

59049
d3

2d2d1 − 1720
59049

d3d1 + 1120
19683

+
160

19683
d3d2d1

2− 160
59049

d1d2
3− 160

19683
d3

2d1
2+ 160

59049
d1

4+ 1280
59049

d3
2+ 5320

59049
d1d2+ 440

59049
d3d2− 3400

59049
d1

2−
320

59049
d3

3d2 − 160
19683

d2d1
3 − 640

19683
d2

2 − 640
59049

d3d1d2
2

o r z − 1760
59049

d1
2 − 320

59049
d3

3d1
3 + 80

2187
d3

3d1 + 160
19683

d3d1
3 + 320

59049
d3

2d1
4 + 320

59049
d3

3d2
3 − 7840

59049
d3d1 −

80
2187

d3
3d2− 80

729
d3

2d1
2+ 1760

59049
d1d2+ 3280

19683
d3

2d2d1+ 4000
59049

d3d2+ 320
2187

d3
2+ 640

19683
+ 320

19683
d1

2d2
2d3

2−
320

59049
d3

2d2
3d1 + 320

19683
d3

3d2d1
2 − 160

19683
d3d1d2

2 − 320
19683

d3
2d2d1

3 − 320
19683

d3
3d2

2d1 − 1120
19683

d3
2d2

2

o s s 0
o s y 0
o s z 0
o y y 0
o y z 0
o z z 0
õ õ õ 0
õ õ p 0
õ õ q 64

59049
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

õ õ r 12992
59049

d1 − 12992
59049

d2
õ õ s − 4000

59049
d1 + 4000

59049
d2

õ õ y 32
59049

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

õ õ z 64
59049

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)
õ p p 0
õ p q 0
õ p r 0
õ p s 0
õ p y 0
õ p z 0
õ q q 0
õ q r 0
õ q s 0
õ q y 0
õ q z 0

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

õ r r 0
õ r s 0
õ r y 0
õ r z 0
õ s s 0
õ s y 0
õ s z 0
õ y y 0
õ y z 0
õ z z 0
p p p 0
p p q − 12800

59049
(d1 − d2)(2 d1 − 15 d3 + 2 d2)

p p r − 140800
59049

d1 + 140800
59049

d2
p p s 697600

59049
d1 − 697600

59049
d2

p p y − 6400
59049

(d1 − d2)(4 d1
2 + 4 d3d1 − 8 d1d2 − 37− 8 d3

2 + 4 d2
2 + 4 d3d2)

p p z − 12800
59049

(d1 − d2)(4 d3
2d1

2 − 8 d3
2d2d1 + 6 d3d1 − 22− 27 d3

2 + 4 d3
2d2

2 + 6 d3d2)
p q q 0
p q r 0
p q s 64000

59049
d1− 44800

59049
d2− 12800

19683
d3− 8000

19683
d3d2d1 + 3200

59049
d3

2d1− 3200
59049

d3
2d2 + 8000

19683
d3d2

2− 8000
19683

d1d2
2−

3200
59049

d1
3 + 27200

59049
d1

2d2
p q y 0
p q z 0
p r r 0
p r s − 17600

59049
d1

2 + 17600
59049

d3d1 − 17600
59049

d3d2 + 17600
59049

d1d2 + 70400
59049

p r y 0
p r z 0
p s s 0
p s y − 3200

19683
d2d1

3− 68000
59049

d1
2− 12800

19683
d2

2+ 25600
59049

d3
2− 6400

59049
d3

3d2− 12800
59049

d3d1d2
2− 34400

59049
d3d1+ 8800

59049
d3d2−

3200
19683

d3
2d1

2+ 106400
59049

d1d2+ 3200
59049

d3
2d2

2+ 6400
59049

d3
3d1+ 3200

19683
d1

2d2
2+ 3200

19683
d3d2d1

2+ 6400
59049

d3
2d2d1+

3200
59049

d1
4 − 3200

59049
d1d2

3 + 3200
59049

d3d2
3 + 22400

19683

p s z − 6400
59049

d3
2d2

3d1 − 6400
19683

d3
2d2d1

3 − 35200
59049

d1
2 + 6400

2187
d3

2 + 6400
19683

d1
2d2

2d3
2 + 6400

59049
d3

3d2
3 +

6400
19683

d3
3d2d1

2 − 1600
2187

d3
3d2 − 3200

19683
d3d1d2

2 − 156800
59049

d3d1 + 80000
59049

d3d2 − 1600
729

d3
2d1

2 + 3200
19683

d3d1
3 +

35200
59049

d1d2− 22400
19683

d3
2d2

2+ 1600
2187

d3
3d1− 6400

19683
d3

3d2
2d1− 6400

59049
d3

3d1
3+ 65600

19683
d3

2d2d1+ 6400
59049

d3
2d1

4+
12800
19683

p y y 0
p y z 0
p z z 0
q q q 1

472392
(d2−d3)(d1−d3)(d1−d2)(60 d1

3−398 d1
2d2−398 d3d1

2+3539 d3d2d1−18144 d1−398 d3
2d1−

398 d1d2
2 + 60 d2

3 − 398 d3d2
2 + 60 d3

3 − 18144 d3 − 18144 d2 − 398 d3
2d2)

q q r 11
472392

(d1 − d2)(30 d2d1
3 − 30 d3d1

3 + 225 d3d2d1
2 − 1312 d1

2 − 229 d1
2d2

2 + 4 d3
2d1

2 + 1152 d3d1 +
30 d3

3d1 + 7488 d1d2 + 30 d1d2
3−285 d3

2d2d1 + 225 d3d1d2
2 + 416 d3

2−1312 d2
2 + 4096−30 d3d2

3−
4 d3

4 + 4 d3
2d2

2 + 1152 d3d2 + 30 d3
3d2)

q q s − 125
944784

(d1−d2)(30 d2d1
3−30 d3d1

3 + 225 d3d2d1
2−1312 d1

2−229 d1
2d2

2 + 4 d3
2d1

2 + 1152 d3d1 +
30 d3

3d1 + 7488 d1d2 + 30 d1d2
3−285 d3

2d2d1 + 225 d3d1d2
2 + 416 d3

2−1312 d2
2 + 4096−30 d3d2

3−
4 d3

4 + 4 d3
2d2

2 + 1152 d3d2 + 30 d3
3d2)

q q y 1
944784

(d1−d2)(4096+2552 d3
4d2d1+1260 d3d2d1

4+1260 d3d1d2
4−1816 d3d2

2d1
3−1816 d3d2

3d1
2−

3044 d3
3d2

2d1 − 632 d3
2d2d1

3 − 3044 d3
3d2d1

2 − 632 d3
2d2

3d1 + 5944 d1
2d2

2d3
2 + 2072 d2

3d1
3 −

54405 d3d2d1
2 − 71968 d3

2 + 85425 d3
2d2d1 − 4800 d2

4 − 4800 d1
4 + 376 d3

3d1
3 + 10902 d3d1

3 −
104 d3

2d1
4 + 376 d3

3d2
3 − 33024 d3d1 − 160768 d1d2 − 33024 d3d2 + 30090 d2d1

3 − 44327 d1
2d2

2 +
67616 d2

2 + 32 d3
6 + 30090 d1d2

3 − 1156 d1
4d2

2 + 72 d3
4d2

2 − 120 d3d1
5 − 256 d3

5d1 − 1156 d1
2d2

4 −
104 d3

2d2
4−256 d3

5d2+120 d2d1
5+120 d1d2

5−120 d3d2
5+72 d3

4d1
2−54405 d3d1d2

2+34796 d3
2d1

2+
34796 d3

2d2
2 − 38358 d3

3d2 + 2452 d3
4 + 10902 d3d2

3 + 67616 d1
2 − 38358 d3

3d1)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).

166



A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

q q z 1
472392

(d1−d2)(53248+12663 d3
4d2d1+180 d3d2d1

4+180 d3d1d2
4−1194 d3d2

2d1
3−1194 d3d2

3d1
2−

17553 d3
3d2

2d1+31560 d3
2d2d1

3−17553 d3
3d2d1

2+31560 d3
2d2

3d1−43917 d1
2d2

2d3
2+32 d3

6d2d1+
2072 d3

2d2
3d1

3+2312 d3
4d2

2d1
2+1140 d3

3d2
4d1−1172 d3

4d2
3d1−1020 d3

3d2
2d1

3−1020 d3
3d2

3d1
2−

1172 d3
4d2d1

3 + 120 d3
2d2d1

5 − 1156 d3
2d2

4d1
2 − 120 d3

5d2
2d1 + 1140 d3

3d2d1
4 + 120 d3

2d2
5d1 −

1156 d3
2d1

4d2
2 − 120 d3

5d2d1
2 − 59382 d3d2d1

2 − 167616 d3
2 − 15106 d3

2d2d1 + 10626 d3
3d1

3 +
660 d3d1

3 − 4980 d3
2d1

4 + 10626 d3
3d2

3 + 37248 d3d1 − 33984 d1d2 + 37248 d3d2 − 660 d2d1
3 +

5038 d1
2d2

2 − 960 d2
2 + 108 d3

6 − 16 d3
6d2

2 + 120 d3
5d1

3 + 120 d3
5d2

3 − 120 d3
3d1

5 − 120 d3
3d2

5 +
16 d3

4d2
4 + 16 d3

4d1
4− 16 d3

6d1
2− 660 d1d2

3− 2232 d3
4d2

2− 834 d3
5d1− 4980 d3

2d2
4− 834 d3

5d2−
2232 d3

4d1
2−59382 d3d1d2

2+124360 d3
2d1

2+124360 d3
2d2

2−126804 d3
3d2+23416 d3

4+660 d3d2
3−

960 d1
2 − 126804 d3

3d1)
q r r 19

157464
(d2−d3)(2 d1d2

2−2 d3d2
2 +19 d3d2d1 +32 d2−17 d1

2d2−2 d3
2d2 +15 d1

3−96 d1 +2 d3
2d1 +

32 d3 − 17 d3d1
2)

q r s − 1375
944784

(d2−d3)(2 d1d2
2−2 d3d2

2+19 d3d2d1+32 d2−17 d1
2d2−2 d3

2d2+15 d1
3−96 d1+2 d3

2d1+
32 d3 − 17 d3d1

2)
q r y 187

118098
d3

4d2d1 + 55
26244

d3d2d1
4 + 253

236196
d3d1d2

4 − 187
78732

d3d2
3d1

2 + 154
59049

d1
4 − 209

78732
d3

3d2
2d1 −

88
19683

d3
2d2d1

3+ 11
39366

d3
3d2d1

2− 11
39366

d3
2d2

3d1+ 187
39366

d1
2d2

2d3
2+ 5632

19683
− 836

19683
d3d2d1

2− 4466
59049

d3
2+

14509
314928

d3
2d2d1+ 55

26244
d3

3d1
3+ 14707

314928
d3d1

3+ 11
118098

d3
2d1

4+ 11
39366

d3
3d2

3+ 187
78732

d2
3d1

3+ 638
6561

d3d1+
5830
59049

d1d2+ 2024
59049

d3d2− 11
432

d2d1
3+ 37543

944784
d1

2d2
2− 374

6561
d2

2+ 44
19683

d2
4− 517

236196
d1

4d2
2− 77

78732
d1

2d2
4+

55
78732

d2d1
5+ 11

118098
d1d2

5− 11
118098

d3d2
5− 9031

472392
d1d2

3+ 11
118098

d3
4d2

2+ 11
59049

d3
5d1− 11

118098
d3

2d2
4−

11
59049

d3
5d2− 11

6561
d3

4d1
2− 517

34992
d3d1d2

2− 40711
944784

d3
2d1

2 + 704
59049

d3
2d2

2− 2717
157464

d3
3d2 + 176

59049
d3

4 +
2167

472392
d3d2

3 − 14212
59049

d1
2 − 55

78732
d3d1

5 + 2519
472392

d3
3d1

q r z 4499
157464

d3
4d2d1 + 55

26244
d3d2d1

4 + 11
39366

d3d1d2
4− 55

26244
d3d2

3d1
2 + 187

39366
d3

2d2
3d1

3 + 187
39366

d3
4d2

2d1
2 +

77
39366

d3
3d2

4d1− 187
118098

d3
4d2

3d1+ 11
59049

d3
3d2

2d1
3− 22

6561
d3

3d2
3d1

2− 187
39366

d3
4d2d1

3+ 55
39366

d3
2d2d1

5−
77

39366
d3

2d2
4d1

2 − 11
19683

d3
5d2

2d1 + 55
19683

d3
3d2d1

4 + 11
59049

d3
2d2

5d1 − 517
118098

d3
2d1

4d2
2 +

11
19683

d3
5d2d1

2− 11
39366

d3d2
2d1

3− 451
52488

d3
3d2

2d1− 7799
157464

d3
2d2d1

3− 616
19683

d3
3d2d1

2− 4213
118098

d3
2d2

3d1+
12265
157464

d1
2d2

2d3
2 + 5632

19683
− 11

59049
d3

3d2
5− 55

39366
d3

3d1
5 + 11

59049
d3

5d2
3− 11

59049
d3

5d1
3− 176

2187
d3d2d1

2 +
1496
19683

d3
2 + 83897

236196
d3

2d2d1 + 14729
472392

d3
3d1

3 + 869
8748

d3d1
3 + 737

236196
d3

2d1
4 + 2057

236196
d3

3d2
3 + 6776

59049
d3d1−

3520
59049

d1d2 + 5104
59049

d3d2 − 605
78732

d2d1
3 + 2057

236196
d1

2d2
2 − 88

6561
d2

2 − 121
118098

d1d2
3 − 341

39366
d3

4d2
2 +

11
8748

d3
5d1+ 55

13122
d3

2d2
4− 11

8748
d3

5d2− 1045
52488

d3
4d1

2+ 187
118098

d3
4d1

4− 8921
236196

d3d1d2
2− 55913

236196
d3

2d1
2−

1012
19683

d3
2d2

2 − 8041
118098

d3
3d2 + 44

2187
d3

4 + 121
118098

d3d2
3 − 20504

59049
d1

2 − 143
118098

d3
3d1

q s s 9475
629856

(d2−d3)(2 d1d2
2−2 d3d2

2 +19 d3d2d1 +32 d2−17 d1
2d2−2 d3

2d2 +15 d1
3−96 d1 +2 d3

2d1 +
32 d3 − 17 d3d1

2)
q s y − 2125

236196
d3

4d2d1 − 625
52488

d3d2d1
4 − 2875

472392
d3d1d2

4 + 2125
157464

d3d2
3d1

2 − 875
59049

d1
4 + 2375

157464
d3

3d2
2d1 +

500
19683

d3
2d2d1

3− 125
78732

d3
3d2d1

2+ 125
78732

d3
2d2

3d1− 2125
78732

d1
2d2

2d3
2− 32000

19683
+ 4750

19683
d3d2d1

2+ 25375
59049

d3
2−

164875
629856

d3
2d2d1− 625

52488
d3

3d1
3− 167125

629856
d3d1

3− 125
236196

d3
2d1

4− 125
78732

d3
3d2

3− 2125
157464

d2
3d1

3− 3625
6561

d3d1−
33125
59049

d1d2 − 11500
59049

d3d2 + 125
864

d2d1
3 − 426625

1889568
d1

2d2
2 + 2125

6561
d2

2 − 250
19683

d2
4 + 5875

472392
d1

4d2
2 +

875
157464

d1
2d2

4− 625
157464

d2d1
5− 125

236196
d1d2

5+ 125
236196

d3d2
5+ 102625

944784
d1d2

3− 125
236196

d3
4d2

2− 125
118098

d3
5d1+

125
236196

d3
2d2

4 + 125
118098

d3
5d2 + 125

13122
d3

4d1
2 + 5875

69984
d3d1d2

2 + 462625
1889568

d3
2d1

2 − 4000
59049

d3
2d2

2 +
30875
314928

d3
3d2 − 1000

59049
d3

4 − 24625
944784

d3d2
3 + 80750

59049
d1

2 + 625
157464

d3d1
5 − 28625

944784
d3

3d1
q s z − 2125

78732
d3

2d2
3d1

3 − 2125
78732

d3
4d2

2d1
2 − 875

78732
d3

3d2
4d1 + 2125

236196
d3

4d2
3d1 − 51125

314928
d3

4d2d1 −
125

118098
d3

3d2
2d1

3+ 125
6561

d3
3d2

3d1
2+ 2125

78732
d3

4d2d1
3− 625

78732
d3

2d2d1
5− 625

52488
d3d2d1

4− 125
78732

d3d1d2
4+

875
78732

d3
2d2

4d1
2 + 125

39366
d3

5d2
2d1 − 625

39366
d3

3d2d1
4 + 625

52488
d3d2

3d1
2 − 125

118098
d3

2d2
5d1 +

5875
236196

d3
2d1

4d2
2 − 125

39366
d3

5d2d1
2 + 125

78732
d3d2

2d1
3 + 5125

104976
d3

3d2
2d1 + 88625

314928
d3

2d2d1
3 +

3500
19683

d3
3d2d1

2+ 47875
236196

d3
2d2

3d1− 139375
314928

d1
2d2

2d3
2− 32000

19683
+ 1000

2187
d3d2d1

2− 8500
19683

d3
2− 953375

472392
d3

2d2d1−
167375
944784

d3
3d1

3 − 9875
17496

d3d1
3 − 8375

472392
d3

2d1
4 − 23375

472392
d3

3d2
3 − 38500

59049
d3d1 + 20000

59049
d1d2 − 29000

59049
d3d2 +

6875
157464

d2d1
3 − 23375

472392
d1

2d2
2 + 500

6561
d2

2 + 1375
236196

d1d2
3 + 125

118098
d3

3d2
5 + 3875

78732
d3

4d2
2 − 125

17496
d3

5d1 −
625

26244
d3

2d2
4 + 125

17496
d3

5d2 + 11875
104976

d3
4d1

2 + 101375
472392

d3d1d2
2 + 635375

472392
d3

2d1
2 + 5750

19683
d3

2d2
2 +

91375
236196

d3
3d2 + 125

118098
d3

5d1
3 − 250

2187
d3

4 − 1375
236196

d3d2
3 + 625

78732
d3

3d1
5 − 125

118098
d3

5d2
3 + 116500

59049
d1

2 +
1625

236196
d3

3d1 − 2125
236196

d3
4d1

4

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

q y y 1
1889568

(d2 − d3)(424251 d3d2d1 − 800 d3d1d2
5 + 2528 d3d2d1

5 − 10748 d3d2
3d1 − 182520 d3d2d1

3 −
2656 d3

2d1
4d2 + 135240 d3

2d2d1
2− 176 d3

2d1d2
4− 2656 d3d2

2d1
4− 176 d3

4d2
2d1− 93944 d3

2d1d2
2−

896 d3
3d2d1

3 − 3008 d3
2d2

3d1
2 + 2272 d3d2

4d1
2 + 6160 d3

2d2
2d1

3 + 2080 d3
3d2

3d1 + 2272 d3
4d2d1

2 −
800 d3

5d2d1 − 3008 d3
3d2

2d1
2 − 896 d3d2

3d1
3 − 10748 d3

3d2d1 + 135240 d3d2
2d1

2 − 54066 d3
2d2 +

43328 d3
3 − 54066 d3d2

2 + 43328 d2
3 − 25390 d1d2

2 − 25390 d3
2d1 − 173897 d3d1

2 − 173897 d1
2d2 +

102295 d1
3 − 160 d3

4d2
3 − 24408 d1

5 + 472 d3
4d2 + 64 d3

6d2 + 64 d3d2
6 − 512 d3d1

6 + 240 d1
7 −

15480 d3
2d1

3−15660 d1
2d2

3 +9512 d1d2
4 +1984 d2

3d1
4−1936 d2

4d1
3 +47572 d1

4d2−15480 d2
2d1

3 +
9512 d3

4d1−1936 d3
4d1

3+1984 d3
3d1

4+472 d3d2
4+47572 d3d1

4+96 d3
2d2

5−416 d3
2d1

5+704 d3
5d1

2−
64 d1d2

6 + 704 d1
2d2

5 − 512 d2d1
6 − 416 d1

5d2
2 − 64 d3

6d1 + 434912 d1 − 240224 d2 − 160 d3
3d2

4 +
1064 d3

2d2
3 − 15660 d3

3d1
2 + 96 d3

5d2
2 − 240224 d3 − 1536 d2

5 − 1536 d3
5 + 1064 d3

3d2
2)

q y z 5
13122

d3d2d1
6 + 2

19683
d3

7d1
2d2 + 5

19683
d3

2d2d1
7− 5

19683
d3

3d2d1
6 + 197

26244
d3

6d2d1− 14
19683

d3
3d2

6d1−
4

59049
d3

2d2
7d1− 65

59049
d3

6d2d1
3− 1

243
d3

3d2
3d1

4+ 17
6561

d3
5d2d1

4+ 11
19683

d3
5d2

3d1
2+ 23

19683
d3

6d2
2d1

2−
121

59049
d3

2d2
5d1

3 + 29
6561

d3
4d2

3d1
3 − 32

59049
d3

2d2
2d1

6 + 19
6561

d3
3d2

2d1
5 − 55

59049
d3

4d2
2d1

4 −
49

19683
d3

5d2
2d1

3 + 22
19683

d3
3d2

5d1
2 + 44

59049
d3

2d2
6d1

2 − 94
59049

d3
4d2d1

5 + 61
59049

d3
4d2

5d1 −
218

59049
d3

4d2
4d1

2 − 26
59049

d3
2d2

3d1
5 + 124

59049
d3

2d2
4d1

4 + 2
6561

d3
5d2

4d1 + 74
59049

d3
3d2

4d1
3 −

2
19683

d3
7d2

2d1− 35
2187

d3
2d2

3d1
3+ 979

78732
d3

4d2
2d1

2− 1
4374

d3d2
4d1

3− 1283
78732

d3
3d2

4d1− 2327
118098

d3
4d2

3d1−
12007
118098

d3
3d2

2d1
3 + 506

6561
d3

3d2
3d1

2 + 3221
78732

d3
4d2d1

3 − 526
19683

d3
2d2d1

5 − 1265
78732

d3
2d2

4d1
2 −

47
39366

d3d2
3d1

4 + 613
39366

d3
5d2

2d1 + 13
39366

d3d2
2d1

5 + 587
26244

d3
3d2d1

4 + 1079
118098

d3
2d2

5d1 +
12179
236196

d3
2d1

4d2
2− 337

8748
d3

5d2d1
2− 82351

944784
d3

4d2d1− 109015
472392

d3
2d2d1− 33271

314928
d1

2d2
2d3

2− 1
2187

d3
6d2

3d1+
124823
314928

d3
3d2

2d1− 14659
39366

d3
3d2d1

2− 1597
52488

d3d2d1
4− 1091

236196
d3d1d2

4− 5171
26244

d3
2d2

3d1+ 292651
944784

d3
2d2d1

3−
9403
78732

d3d2
2d1

3 + 19267
157464

d3d2
3d1

2− 2
19683

d3d1d2
6 + 4408

19683
d3d2d1

2 + 124471
472392

d3d1d2
2 + 16

19683
d3d2

5d1
2−

256
2187
− 380

6561
d1

4+ 3188
6561

d3
2− 782

6561
d3

4− 6284
59049

d2
2− 22

59049
d3d2

5+ 1996
6561

d1
2− 103

39366
d3

6d2
2− 2

59049
d3

4d2
6+

2
59049

d3
6d2

4 − 10
6561

d3
2d2

6 + 32
6561

d2
4 + 4

59049
d3

3d2
7 + 5321

236196
d3

5d1
3 + 25

59049
d3

5d2
3 + 71

4374
d3

3d1
5 +

265
118098

d3
3d2

5− 2
19683

d3
5d2

5− 5
19683

d3
3d1

7 + 47
59049

d3
4d1

6+ 7
19683

d3
6d1

4− 17
19683

d3
5d1

5− 1
4374

d3
7d2+

371
157464

d2d1
3 + 49511

236196
d3

3d2 − 9668
19683

d3d1 − 760
6561

d3d2 − 101657
472392

d3
2d1

2 − 2593
52488

d3d1
3 − 2858

19683
d3

2d2
2 +

24289
236196

d3
3d1+ 15575

236196
d1d2

3− 19031
236196

d3d2
3+ 11

59049
d1

4d2
2− 5339

236196
d3

4d2
2+ 655

39366
d3d1

5− 31871
472392

d3
5d1−

22
6561

d1
2d2

4+ 9835
236196

d3
2d2

4+ 13871
472392

d3
5d2− 55

39366
d2d1

5+ 22
59049

d1d2
5+ 13997

472392
d3

2d1
4+ 22691

104976
d3

4d1
2−

3605
157464

d3
3d2

3− 43253
314928

d3
3d1

3 + 12752
59049

d1d2− 43399
472392

d1
2d2

2 + 55
13122

d2
3d1

3 + 2
59049

d3
7d2

3 + 1
4374

d3
7d1−

5
13122

d3
2d1

6 + 1
13122

d3
4d2

4 − 1991
59049

d3
4d1

4 + 4
729

d3
6 − 385

78732
d3

6d1
2 − 2

59049
d3

7d1
3

q z z 1
472392

(d2 − d3)(256876 d3d2d1 − 324 d3d1d2
5 + 14940 d3d2d1

5 − 45138 d3d2
3d1 − 212496 d3d2d1

3 −
27742 d3

2d1
4d2 + 401154 d3

2d2d1
2 + 59920 d3

2d1d2
4 − 27742 d3d2

2d1
4 + 59920 d3

4d2
2d1 −

666816 d3
2d1d2

2 + 2032 d3
3d2d1

3 − 198201 d3
2d2

3d1
2 + 3030 d3d2

4d1
2 + 208779 d3

2d2
2d1

3 +
172487 d3

3d2
3d1+3030 d3

4d2d1
2−324 d3

5d2d1−198201 d3
3d2

2d1
2+2032 d3d2

3d1
3−45138 d3

3d2d1+
401154 d3d2

2d1
2 − 206600 d3

2d2 + 15552 d3
3 − 206600 d3d2

2 + 15552 d2
3 + 184136 d1d2

2 +
184136 d3

2d1+180124 d3d1
2+180124 d1

2d2+4380 d1
3−31958 d3

4d2
3−96 d3

6d2
3d1

2−96 d3
3d2

6d1
2+

37884 d3
4d2

3d1
2+2352 d3

3d2
3d1

5−62424 d3
3d2

3d1
3−2544 d3

4d2
3d1

4+816 d3
4d2

2d1
5+360 d3

2d2d1
6+

31320 d3
3d2

2d1
4 + 4476 d3

5d2
2d1

2 + 48 d3
5d2d1

3− 6948 d3
5d2

3d1− 1104 d3
4d2

5d1
2− 752 d3

3d2
2d1

6−
216 d3

2d2
6d1 − 360 d3

4d2d1
4 + 4476 d3

2d2
5d1

2 + 1040 d3
5d2

3d1
3 + 48 d3d2

5d1
3 − 20076 d3

4d2
2d1

3 −
216 d3

6d2
2d1 − 752 d3

2d2
3d1

6 − 20076 d3
2d2

4d1
3 + 1040 d3

3d2
5d1

3 + 32 d3
2d2

6d1
3 + 32 d3

6d2
2d1

3 −
48 d3d2

3d1
5 − 48 d3

3d2d1
5 − 2544 d3

3d2
4d1

4 + 31320 d3
2d2

3d1
4 + 37884 d3

3d2
4d1

2 + 816 d3
2d2

4d1
5 +

360 d3d2
2d1

6 − 336 d3
5d2

2d1
4 − 336 d3

2d2
5d1

4 + 432 d3
5d2

5d1 − 15864 d3
2d2

2d1
5 + 240 d3

2d2
2d1

7 +
2736 d3

4d2
4d1

3 − 19872 d3
4d2

4d1 − 1104 d3
5d2

4d1
2 + 96 d3

4d2
6d1 − 360 d3d1

4d2
4 − 6948 d3

3d2
5d1 +

96 d3
6d2

4d1 − 1188 d3
4d2 + 3090 d3

2d1
3 − 17274 d1

2d2
3 + 1188 d1d2

4 + 1496 d2
3d1

4 − 176 d2
4d1

3 −
56700 d1

4d2 + 3090 d2
2d1

3 + 1188 d3
4d1 − 176 d3

4d1
3 + 1496 d3

3d1
4 − 1188 d3d2

4 − 56700 d3d1
4 −

4860 d3
2d2

5 − 1320 d3
2d1

5 − 1320 d1
5d2

2 + 165120 d1 − 273024 d2 − 31958 d3
3d2

4 + 136140 d3
2d2

3 −
17274 d3

3d1
2 − 4860 d3

5d2
2 − 273024 d3 + 2424 d3

4d2
5 + 2424 d3

5d2
4 + 216 d3

3d2
6 + 216 d3

6d2
3 −

32 d3
5d2

6 − 32 d3
6d2

5 + 136140 d3
3d2

2)
r r r − 1

1944
(d2 − d3)(d1 − d3)(d1 − d2)

r r s 2375
314928

(d2 − d3)(d1 − d3)(d1 − d2)
r r y − 19

314928
(d1 − d2)(4 d2d1

3 − 4 d3d1
3 − 8 d1

2d2
2 + 8 d3d2d1

2 + 32 d1
2 + 4 d1d2

3 + 12 d3
3d1 − 27 d3d1 −

101 d1d2 − 24 d3
2d2d1 + 8 d3d1d2

2 − 320 + 91 d3
2 − 8 d3

4 − 4 d3d2
3 + 32 d2

2 + 12 d3
3d2 − 27 d3d2)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

r r z − 19
157464

(d1−d2)(4 d3
2d2d1

3−4 d3
3d1

3+26 d3
2d1

2+4 d3
4d1

2+6 d3d2d1
2+4 d3

3d2d1
2−8 d1

2d2
2d3

2+
4 d3

2d2
3d1−74 d3d1−8 d3

4d2d1−103 d3
2d2d1−22 d1d2+33 d3

3d1+6 d3d1d2
2+4 d3

3d2
2d1+33 d3

3d2+
4 d3

4d2
2 − 74 d3d2 − 214 d3

2 + 64 + 26 d3
2d2

2 − 27 d3
4 − 4 d3

3d2
3)

r s s − 104225
629856

(d2 − d3)(d1 − d3)(d1 − d2)
r s y 1375

1889568
(d1 − d2)(4 d2d1

3 − 4 d3d1
3 − 8 d1

2d2
2 + 8 d3d2d1

2 + 32 d1
2 + 4 d1d2

3 + 12 d3
3d1 − 27 d3d1 −

101 d1d2 − 24 d3
2d2d1 + 8 d3d1d2

2 − 320 + 91 d3
2 − 8 d3

4 − 4 d3d2
3 + 32 d2

2 + 12 d3
3d2 − 27 d3d2)

r s z 1375
944784

(d1−d2)(4 d3
2d2d1

3−4 d3
3d1

3 +26 d3
2d1

2 +4 d3
4d1

2 +6 d3d2d1
2 +4 d3

3d2d1
2−8 d1

2d2
2d3

2 +
4 d3

2d2
3d1−74 d3d1−8 d3

4d2d1−103 d3
2d2d1−22 d1d2+33 d3

3d1+6 d3d1d2
2+4 d3

3d2
2d1+33 d3

3d2+
4 d3

4d2
2 − 74 d3d2 − 214 d3

2 + 64 + 26 d3
2d2

2 − 27 d3
4 − 4 d3

3d2
3)

r y y − 11
1889568

(d2−d3)(24000−160 d3
3d2

2d1+128 d3
4d2d1−160 d3

2d2
3d1+368 d1

2d2
2d3

2−64 d3
3d2d1

2−
160 d3

2d2d1
3+808 d3d1d2

2+808 d3
2d2d1−1400 d3d2d1

2+160 d3d2d1
4+128 d3d1d2

4−160 d3d2
2d1

3−
64 d3d2

3d1
2−32 d3

2d1
4 +128 d2

3d1
3−32 d3d2

5−964 d2d1
3 +3072 d1

2d2
2−2068 d1d2

3 +9543 d3d1 +
9543 d1d2 +788 d3

3d2 +10809 d3d2−5639 d1
2−964 d3d1

3 +256 d2
4−296 d1

4 +16 d1
6−2068 d3

3d1−
8032 d3

2 + 256 d3
4 + 788 d3d2

3 + 128 d3
3d1

3 + 3072 d3
2d1

2 − 112 d3
4d1

2 − 8032 d2
2 − 16 d3

4d2
2 −

2088 d3
2d2

2 + 96 d3
3d2

3 − 32 d1
4d2

2 − 32 d3d1
5 + 32 d3

5d1 − 112 d1
2d2

4 − 16 d3
2d2

4 − 32 d3
5d2 −

32 d2d1
5 + 32 d1d2

5)
r y z 22

59049
d3

2d2
2d1

5 + 11
13122

d3d2
3d1

3 + 11
162

d3
3d2d1 + 275

6561
d3d2

2d1
2 − 88

59049
d3d2d1 − 11

19683
d3d1d2

5 −
11

39366
d3d2d1

5+ 44
19683

d3
4d2

4d1− 44
59049

d3
3d2

5d1− 22
59049

d3
2d2

6d1+ 22
19683

d3
4d2d1

4+ 77
59049

d3
2d2

5d1
2+

11
19683

d3
4d2

2d1
3 − 11

19683
d3

6d2
2d1 − 88

59049
d3

2d2
4d1

3 + 11
59049

d3
3d2d1

5 + 22
59049

d3
2d2

3d1
4 −

44
59049

d3
3d2

4d1
2− 2717

52488
d3d2

3d1+ 187
17496

d3d2d1
3+ 242

59049
d3

2d1
4d2− 3421

314928
d3

2d2d1
2+ 5599

236196
d3

2d1d2
4−

11
39366

d3d2
2d1

4 − 1661
78732

d3
4d2

2d1 − 47795
314928

d3
2d1d2

2 − 55
19683

d3
4d2

3d1
2 − 2035

236196
d3

3d2d1
3 −

473
13122

d3
2d2

3d1
2 + 11

39366
d3d2

4d1
2 + 2453

236196
d3

2d2
2d1

3 + 110
59049

d3
3d2

3d1 − 253
26244

d3
4d2d1

2 +
55

19683
d3

3d2
3d1

3− 11
59049

d3
2d2d1

6− 121
59049

d3
3d2

2d1
4+ 11

6561
d3

5d2
2d1

2+ 1001
78732

d3
5d2d1− 11

6561
d3

5d2d1
3−

11
19683

d3
5d2

3d1+ 1067
39366

d3
3d2

2d1
2+ 11

19683
d3

6d2d1
2− 134189

472392
d3d2

2− 19811
472392

d3
2d2− 220

19683
d1

3− 352
59049

d2
3+

22
2187

d3
5− 11

59049
d3

6d1
3+ 11

59049
d3

3d1
6− 11

19683
d3

4d1
5+ 11

59049
d3

6d2
3− 11

19683
d3

4d2
5+ 748

19683
d1+ 1100

19683
d2−

17149
314928

d3
3d2

2+ 8327
104976

d3
3d1

2+ 83171
472392

d3
2d1+ 11

19683
d3

5d1
4− 64691

472392
d3d1

2+ 10879
157464

d1d2
2+ 6083

472392
d1

2d2+
20075
157464

d3
2d2

3− 4147
157464

d3
2d1

3− 121
39366

d1
2d2

3+ 121
59049

d1d2
4+ 121

118098
d1

4d2− 57541
944784

d3
4d1+ 5797

944784
d3

4d2+
902

59049
d3

4d1
3− 2849

236196
d3

3d2
4+ 913

59049
d3

4d2
3− 979

118098
d3

3d1
4+ 407

59049
d3d2

4− 143
59049

d3
2d2

5− 55
13122

d3
5d2

2+
671

118098
d3d1

4+ 11
39366

d3
2d1

5− 671
78732

d3
5d1

2+ 11
8748

d3
6d1− 11

8748
d3

6d2+ 22
59049

d3
3d2

6− 1232
19683

d3
3+ 9416

19683
d3

r z z − 11
472392

(d2−d3)(6528+144 d3
3d2

3d1
4+48 d3

5d2
3d1

2−16 d3
2d2

5d1
3−144 d3

4d2
3d1

3+16 d3
2d2

2d1
6−

48 d3
3d2

2d1
5 + 48 d3

4d2
2d1

4 − 16 d3
5d2

2d1
3 + 48 d3

3d2
5d1

2 − 48 d3
4d2

5d1 + 144 d3
4d2

4d1
2 −

48 d3
2d2

3d1
5 + 48 d3

2d2
4d1

4 − 48 d3
5d2

4d1 − 144 d3
3d2

4d1
3 + 1272 d3

2d2
3d1

3 − 660 d3
4d2

2d1
2 −

24 d3d2
4d1

3 + 1020 d3
3d2

4d1 + 1020 d3
4d2

3d1 + 1272 d3
3d2

2d1
3 − 2184 d3

3d2
3d1

2 − 24 d3
4d2d1

3 +
24 d3

2d2d1
5 − 660 d3

2d2
4d1

2 + 108 d3
5d2

2d1 + 24 d3d2
2d1

5 + 108 d3
2d2

5d1 − 744 d3
2d1

4d2
2 −

7001 d3
3d2

2d1 + 162 d3
4d2d1 − 7001 d3

2d2
3d1 + 8877 d1

2d2
2d3

2 + 852 d3
3d2d1

2 − 858 d3
2d2d1

3 +
9714 d3d1d2

2 + 9714 d3
2d2d1 + 3744 d3d2d1

2 − 540 d3d2d1
4 + 162 d3d1d2

4 − 858 d3d2
2d1

3 +
852 d3d2

3d1
2−88 d3

2d1
4 +88 d2

3d1
3−108 d3

3d2
5 +828 d2d1

3−42 d1
2d2

2−594 d1d2
3−11428 d3d1−

11428 d1d2 − 1998 d3
3d2 + 868 d3d2 − 1244 d1

2 + 828 d3d1
3 − 594 d3

3d1 + 1728 d3
2 − 1998 d3d2

3 −
108 d3

5d2
3 +88 d3

3d1
3−42 d3

2d1
2 +1728 d2

2 +702 d3
4d2

2−13032 d3
2d2

2 +3949 d3
3d2

3 +16 d3
5d2

5−
336 d3

4d2
4 − 88 d1

4d2
2 + 702 d3

2d2
4)

s s s 219775
139968

(d2 − d3)(d1 − d3)(d1 − d2)
s s y − 9475

1259712
(d1− d2)(4 d2d1

3− 4 d3d1
3− 8 d1

2d2
2 + 8 d3d2d1

2 + 32 d1
2 + 4 d1d2

3 + 12 d3
3d1− 27 d3d1−

101 d1d2 − 24 d3
2d2d1 + 8 d3d1d2

2 − 320 + 91 d3
2 − 8 d3

4 − 4 d3d2
3 + 32 d2

2 + 12 d3
3d2 − 27 d3d2)

s s z − 9475
629856

(d1−d2)(4 d3
2d2d1

3−4 d3
3d1

3+26 d3
2d1

2+4 d3
4d1

2+6 d3d2d1
2+4 d3

3d2d1
2−8 d1

2d2
2d3

2+
4 d3

2d2
3d1−74 d3d1−8 d3

4d2d1−103 d3
2d2d1−22 d1d2+33 d3

3d1+6 d3d1d2
2+4 d3

3d2
2d1+33 d3

3d2+
4 d3

4d2
2 − 74 d3d2 − 214 d3

2 + 64 + 26 d3
2d2

2 − 27 d3
4 − 4 d3

3d2
3)

s y y 125
3779136

(d2 − d3)(24000 + 256 d2
4 − 160 d3

3d2
2d1 + 128 d3

4d2d1 − 160 d3
2d2

3d1 + 368 d1
2d2

2d3
2 −

64 d3
3d2d1

2 − 160 d3
2d2d1

3 + 808 d3d1d2
2 + 808 d3

2d2d1 − 1400 d3d2d1
2 − 296 d1

4 + 160 d3d2d1
4 +

128 d3d1d2
4 − 160 d3d2

2d1
3 − 64 d3d2

3d1
2 − 32 d3

2d1
4 + 128 d2

3d1
3 − 112 d3

4d1
2 − 964 d2d1

3 +
3072 d1

2d2
2 − 2068 d1d2

3 + 9543 d3d1 + 9543 d1d2 + 788 d3
3d2 + 10809 d3d2 + 256 d3

4 − 5639 d1
2 −

964 d3d1
3−2068 d3

3d1−8032 d3
2+788 d3d2

3+16 d1
6+128 d3

3d1
3+3072 d3

2d1
2−8032 d2

2−16 d3
4d2

2−
2088 d3

2d2
2+96 d3

3d2
3−32 d3d1

5+32 d3
5d1−112 d1

2d2
4−32 d3

5d2−32 d2d1
5+32 d1d2

5−32 d3d2
5−

32 d1
4d2

2 − 16 d3
2d2

4)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).

169



A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

s y z 125
78732

d3d2d1
5− 250

19683
d3

4d2
4d1+ 250

59049
d3

3d2
5d1+ 125

59049
d3

2d2
6d1− 125

19683
d3

4d2d1
4− 875

118098
d3

2d2
5d1

2−
125

39366
d3

4d2
2d1

3 + 125
39366

d3
6d2

2d1 + 500
59049

d3
2d2

4d1
3 − 125

118098
d3

3d2d1
5 − 125

59049
d3

2d2
3d1

4 +
250

59049
d3

3d2
4d1

2+ 30875
104976

d3d2
3d1− 2125

34992
d3d2d1

3− 1375
59049

d3
2d1

4d2+ 38875
629856

d3
2d2d1

2− 63625
472392

d3
2d1d2

4+
125

78732
d3d2

2d1
4 + 18875

157464
d3

4d2
2d1 + 543125

629856
d3

2d1d2
2 + 625

39366
d3

4d2
3d1

2 + 23125
472392

d3
3d2d1

3 +
5375
26244

d3
2d2

3d1
2 − 125

78732
d3d2

4d1
2 − 27875

472392
d3

2d2
2d1

3 − 625
59049

d3
3d2

3d1 + 2875
52488

d3
4d2d1

2 −
625

39366
d3

3d2
3d1

3 + 125
118098

d3
2d2d1

6 + 1375
118098

d3
3d2

2d1
4 − 125

13122
d3

5d2
2d1

2 − 11375
157464

d3
5d2d1 +

125
13122

d3
5d2d1

3+ 125
39366

d3
5d2

3d1− 12125
78732

d3
3d2

2d1
2− 125

39366
d3

6d2d1
2− 125

59049
d3

2d2
2d1

5− 125
26244

d3d2
3d1

3−
125
324

d3
3d2d1+ 2000

59049
d2

3− 3125
13122

d3d2
2d1

2+ 500
59049

d3d2d1+ 125
39366

d3d1d2
5+ 225125

944784
d3

2d2− 94625
209952

d3
3d1

2+
735125
944784

d3d1
2− 123625

314928
d1d2

2− 69125
944784

d1
2d2+ 47125

314928
d3

2d1
3+ 1375

78732
d1

2d2
3− 1375

118098
d1d2

4− 1375
236196

d1
4d2+

653875
1889568

d3
4d1 − 5125

59049
d3

4d1
3 + 32375

472392
d3

3d2
4 − 10375

118098
d3

4d2
3 + 11125

236196
d3

3d1
4 − 4625

118098
d3d2

4 +
1625

118098
d3

2d2
5 + 625

26244
d3

5d2
2 − 7625

236196
d3d1

4 − 125
78732

d3
2d1

5 + 7625
157464

d3
5d1

2 − 125
17496

d3
6d1 +

125
17496

d3
6d2− 125

39366
d3

5d1
4+ 125

39366
d3

4d2
5− 125

59049
d3

3d2
6− 125

118098
d3

6d2
3+ 125

39366
d3

4d1
5− 125

118098
d3

3d1
6+

125
118098

d3
6d1

3 + 1250
19683

d1
3 + 7000

19683
d3

3− 65875
1889568

d3
4d2− 4250

19683
d1− 6250

19683
d2− 125

2187
d3

5 + 1524875
944784

d3d2
2 +

194875
629856

d3
3d2

2 − 945125
944784

d3
2d1 − 228125

314928
d3

2d2
3 − 53500

19683
d3

s z z 125
944784

(d2−d3)(6528−744 d3
2d1

4d2
2−7001 d3

3d2
2d1+162 d3

4d2d1−7001 d3
2d2

3d1+8877 d1
2d2

2d3
2+

852 d3
3d2d1

2 − 858 d3
2d2d1

3 + 9714 d3d1d2
2 + 9714 d3

2d2d1 + 3744 d3d2d1
2 + 144 d3

3d2
3d1

4 +
48 d3

5d2
3d1

2 − 16 d3
2d2

5d1
3 − 144 d3

4d2
3d1

3 + 16 d3
2d2

2d1
6 − 48 d3

3d2
2d1

5 + 48 d3
4d2

2d1
4 −

16 d3
5d2

2d1
3 + 48 d3

3d2
5d1

2 − 48 d3
4d2

5d1 + 144 d3
4d2

4d1
2 − 48 d3

2d2
3d1

5 + 48 d3
2d2

4d1
4 −

48 d3
5d2

4d1 − 144 d3
3d2

4d1
3 + 1272 d3

2d2
3d1

3 − 660 d3
4d2

2d1
2 − 24 d3d2

4d1
3 + 1020 d3

3d2
4d1 +

1020 d3
4d2

3d1 + 1272 d3
3d2

2d1
3 − 2184 d3

3d2
3d1

2 − 24 d3
4d2d1

3 + 24 d3
2d2d1

5 − 660 d3
2d2

4d1
2 +

108 d3
5d2

2d1+24 d3d2
2d1

5+108 d3
2d2

5d1−540 d3d2d1
4+162 d3d1d2

4−858 d3d2
2d1

3+852 d3d2
3d1

2−
108 d3

5d2
3 − 88 d3

2d1
4 + 88 d2

3d1
3 − 108 d3

3d2
5 − 336 d3

4d2
4 + 16 d3

5d2
5 + 828 d2d1

3 − 42 d1
2d2

2 −
594 d1d2

3 − 11428 d3d1 − 11428 d1d2 − 1998 d3
3d2 + 868 d3d2 − 1244 d1

2 + 828 d3d1
3 − 594 d3

3d1 +
1728 d3

2−1998 d3d2
3 +88 d3

3d1
3−42 d3

2d1
2 +1728 d2

2 +702 d3
4d2

2−13032 d3
2d2

2 +3949 d3
3d2

3−
88 d1

4d2
2 + 702 d3

2d2
4)

y y y 1
3779136

(d2 − d3)(d1 − d3)(d1 − d2)(665213 − 960 d3
3d2

2d1 + 1152 d3
4d2d1 − 960 d3

2d2
3d1 +

2688 d1
2d2

2d3
2−960 d3

3d2d1
2−960 d3

2d2d1
3−7920 d3d1d2

2−7920 d3
2d2d1−7920 d3d2d1

2−7920 d3
4+

1152 d3d2d1
4 + 1152 d3d1d2

4 − 960 d3d2
2d1

3 − 960 d3d2
3d1

2 − 7920 d1
4 − 384 d3

2d1
4 + 896 d2

3d1
3 −

192 d3d2
5 + 128 d2

6 + 7920 d2d1
3 + 7920 d1d2

3−70144 d3d1−70144 d1d2 + 7920 d3
3d2−70144 d3d2−

7920 d2
4 + 53504 d1

2 + 7920 d3d1
3 + 128 d3

6 + 7920 d3
3d1 + 128 d1

6 + 53504 d3
2 + 7920 d3d2

3 +
896 d3

3d1
3 + 53504 d2

2− 384 d3
4d2

2 + 896 d3
3d2

3− 192 d3d1
5− 192 d3

5d1− 384 d1
2d2

4− 192 d3
5d2−

192 d2d1
5 − 192 d1d2

5 − 384 d3
4d1

2 − 384 d1
4d2

2 − 384 d3
2d2

4)
y y z 1

1889568
(d1−d2)(146496+128 d1d3

8d2 +192 d3d2d1
6−128 d3

7d1
2d2 +128 d3

2d2d1
7−256 d3

3d2d1
6 +

11552 d3
6d2d1 − 256 d3

3d2
6d1 + 128 d3

2d2
7d1 − 896 d3

6d2d1
3 − 1152 d3

3d2
3d1

4 + 1664 d3
5d2d1

4 −
1152 d3

5d2
3d1

2+1536 d3
6d2

2d1
2−384 d3

2d2
5d1

3+3456 d3
4d2

3d1
3−192 d3

2d2
2d1

6+1536 d3
3d2

2d1
5−

1536 d3
4d2

2d1
4 − 1152 d3

5d2
2d1

3 + 1536 d3
3d2

5d1
2 − 192 d3

2d2
6d1

2 − 640 d3
4d2d1

5 − 640 d3
4d2

5d1 −
1536 d3

4d2
4d1

2 − 384 d3
2d2

3d1
5 + 896 d3

2d2
4d1

4 + 1664 d3
5d2

4d1 − 1152 d3
3d2

4d1
3 − 128 d3

7d2
2d1 +

960 d3
2d2

3d1
3+23184 d3

4d2
2d1

2−480 d3d2
4d1

3+6752 d3
3d2

4d1+15840 d3
4d2

3d1−18192 d3
3d2

2d1
3−

18192 d3
3d2

3d1
2+15840 d3

4d2d1
3−8560 d3

2d2d1
5+8272 d3

2d2
4d1

2−480 d3d2
3d1

4−21744 d3
5d2

2d1+
288 d3d2

2d1
5 + 6752 d3

3d2d1
4 − 8560 d3

2d2
5d1 + 8272 d3

2d1
4d2

2 − 21744 d3
5d2d1

2 − 896 d3
6d2

3d1 +
192 d3d1d2

6+288 d3d2
5d1

2−128 d3
3d2

7+448 d3
4d2

6−143132 d3
3d2

2d1+128 d3
7d2

3+51984 d3
4d2d1+

55872 d3
2d2

3d1 + 83280 d1
2d2

2d3
2 − 143132 d3

3d2d1
2 + 55872 d3

2d2d1
3 + 77786 d3d1d2

2 +
318879 d3

2d2d1+77786 d3d2d1
2−103469 d3

4−4096 d3
6d2

2+128 d3
6d2

4−192 d3
2d2

6+20304 d3
5d2

3−
960 d3

7d2 − 512 d3
5d2

5 − 128 d3
3d1

7 + 448 d3
4d1

6 + 128 d3
6d1

4 + 4232 d3d2d1
4 + 4232 d3d1d2

4 −
328 d3d2

2d1
3 − 328 d3d2

3d1
2 + 7680 d1

4 + 128 d3
7d1

3 − 4096 d3
6d1

2 − 192 d3
2d1

6 − 26832 d3
4d1

4 −
960 d3

7d1−26832 d3
4d2

4−170864 d1
2d2

2+20304 d3
5d1

3+11344 d3
3d1

5+11344 d3
3d2

5−512 d3
5d1

5−
64 d3

8d1
2+432 d3

8−64 d3
8d2

2+6872 d3
2d1

4+2112 d2
3d1

3−3904 d3d2
5−14408 d2d1

3−14408 d1d2
3−

967174 d3d1 + 519398 d1d2 − 12081 d3
3d2 − 967174 d3d2 + 7680 d2

4 + 30912 d1
2 + 112136 d3d1

3 +
1576 d3

6− 12081 d3
3d1 + 1063270 d3

2 + 112136 d3d2
3− 181098 d3

2d2
2− 139704 d3

3d1
3 + 30912 d2

2−
181098 d3

2d1
2+227316 d3

4d2
2−139704 d3

3d2
3−3904 d3d1

5−75644 d3
5d1−352 d1

2d2
4−75644 d3

5d2−
704 d2d1

5 − 704 d1d2
5 + 227316 d3

4d1
2 − 352 d1

4d2
2 + 6872 d3

2d2
4)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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A.1. Level (3,9) Potential

l mn Blmn(d1, d2, d3)

y z z 1
944784

(d2−d3)(−109440−4320 d3d2d1
6 +192 d3

2d2d1
7−96 d3

3d2d1
6−648 d3

6d2d1 +288 d3
3d2

6d1−
432 d3

2d2
7d1 + 96 d3

6d2d1
3 − 62064 d3

3d2
3d1

4 + 96 d3
5d2d1

4 − 9360 d3
5d2

3d1
2 + 672 d3

6d2
2d1

2 +
3776 d3

2d2
5d1

3 + 43968 d3
4d2

3d1
3 − 11696 d3

2d2
2d1

6 + 26832 d3
3d2

2d1
5 − 19344 d3

4d2
2d1

4 +
3776 d3

5d2
2d1

3−9360 d3
3d2

5d1
2 +672 d3

2d2
6d1

2−288 d3
4d2d1

5 +3648 d3
4d2

5d1−26928 d3
4d2

4d1
2 +

26832 d3
2d2

3d1
5 − 19344 d3

2d2
4d1

4 + 3648 d3
5d2

4d1 + 43968 d3
3d2

4d1
3 − 432 d3

7d2
2d1 −

202940 d3
2d2

3d1
3 + 82772 d3

4d2
2d1

2 + 1904 d3d2
4d1

3 − 74028 d3
3d2

4d1 − 74028 d3
4d2

3d1 −
202940 d3

3d2
2d1

3 + 250704 d3
3d2

3d1
2 + 1904 d3

4d2d1
3 + 8824 d3

2d2d1
5 + 82772 d3

2d2
4d1

2 −
4008 d3d2

3d1
4+12056 d3

5d2
2d1+8824 d3d2

2d1
5−4008 d3

3d2d1
4+12056 d3

2d2
5d1+123536 d3

2d1
4d2

2−
6360 d3

5d2d1
2 + 288 d3

6d2
3d1 − 648 d3d1d2

6 − 6360 d3d2
5d1

2 + 432 d3
3d2

7 − 1056 d3
4d2

6 +
9739 d3

3d2
2d1 + 432 d3

7d2
3 + 55434 d3

4d2d1 + 9739 d3
2d2

3d1− 229887 d1
2d2

2d3
2− 19356 d3

3d2d1
2 +

9894 d3
2d2d1

3 + 4954 d3d1d2
2 + 4954 d3

2d2d1 − 197760 d3d2d1
2 + 1280 d1

2d3
5d2

5 − 25920 d3
4 +

3072 d1
4d3

4d2
4 + 256 d3

3d2
6d1

3 − 128 d3
2d2

6d1
4 + 512 d3

2d2
4d1

6 − 128 d3
6d2

2d1
4 + 648 d3

6d2
2 +

256 d3
6d2

3d1
3 − 2112 d3

4d2
3d1

5 − 128 d3
5d2

2d1
5 − 288 d3d2

4d1
5 − 448 d3

3d2
2d1

7 − 256 d3
5d2

6d1 −
448 d3

2d2
3d1

7+64 d3
2d2

7d1
3+96 d3d2

6d1
3−1056 d3

6d2
4−192 d3

3d2
7d1

2+648 d3
2d2

6+192 d3
4d2

7d1−
96 d3d2

3d1
6 + 1664 d1

6d3
3d2

3 − 1664 d3
5d2

4d1
3 + 96 d3d1

4d2
5 + 512 d3

4d2
2d1

6 − 128 d3
2d2

5d1
5 +

832 d3
5d2

3d1
4 + 832 d3

3d2
5d1

4 − 1664 d3
4d2

5d1
3 − 2112 d3

3d2
4d1

5 + 128 d3
2d1

8d2
2 + 192 d3d1

7d2
2 +

64 d3
7d2

2d1
3 − 256 d3

6d2
5d1 + 192 d3

7d2
4d1 − 192 d3

7d2
3d1

2 − 15712 d3
5d2

3 + 1840 d3
5d2

5 +
87828 d3d2d1

4 + 55434 d3d1d2
4 + 9894 d3d2

2d1
3 − 19356 d3d2

3d1
2 − 9952 d1

4 − 704 d3
2d1

6 +
25064 d3

4d2
4 + 476142 d1

2d2
2 − 352 d3

5d1
3 + 1056 d3

3d1
5 − 15712 d3

3d2
5 − 13048 d3

2d1
4 −

29216 d2
3d1

3 + 13176 d3d2
5 − 64 d3

5d2
7 − 64 d3

7d2
5 − 161796 d2d1

3 − 26954 d1d2
3 − 488884 d3d1 −

488884 d1d2− 216406 d3
3d2 + 1286260 d3d2− 25920 d2

4 + 330292 d1
2− 161796 d3d1

3− 26954 d3
3d1−

9792 d3
2 − 216406 d3d2

3 − 2728 d3
2d2

2 − 29216 d3
3d1

3 − 9792 d2
2 + 476142 d3

2d1
2 − 94074 d3

4d2
2 +

236977 d3
3d2

3 − 352 d2
5d1

3 + 1056 d1
5d2

3 − 704 d2
2d1

6 + 128 d3
6d2

6 + 6624 d3d1
5 + 2376 d3

5d1 +
10992 d1

2d2
4 + 13176 d3

5d2 + 6624 d2d1
5 + 2376 d1d2

5 + 10992 d3
4d1

2−13048 d1
4d2

2−94074 d3
2d2

4)
z z z − 1

472392
(d2 − d3)(d1 − d2)(d1 − d3)(−404632 + 576 d3

3d2
3d1

4 + 96 d3
5d2d1

4 + 864 d3
5d2

3d1
2 −

432 d3
6d2

2d1
2 + 864 d3

2d2
5d1

3 + 576 d3
4d2

3d1
3 − 432 d3

2d2
2d1

6 + 864 d3
3d2

2d1
5 − 2064 d3

4d2
2d1

4 +
864 d3

5d2
2d1

3 + 864 d3
3d2

5d1
2 − 432 d3

2d2
6d1

2 + 96 d3
4d2d1

5 + 96 d3
4d2

5d1 − 2064 d3
4d2

4d1
2 +

864 d3
2d2

3d1
5− 2064 d3

2d2
4d1

4 + 96 d3
5d2

4d1 + 576 d3
3d2

4d1
3− 7560 d3

2d2
3d1

3 + 22344 d3
4d2

2d1
2−

6568 d3d2
4d1

3−6568 d3
3d2

4d1−6568 d3
4d2

3d1−7560 d3
3d2

2d1
3−7560 d3

3d2
3d1

2−6568 d3
4d2d1

3−
648 d3

2d2d1
5 + 22344 d3

2d2
4d1

2 − 6568 d3d2
3d1

4 − 648 d3
5d2

2d1 − 648 d3d2
2d1

5 − 6568 d3
3d2d1

4 −
648 d3

2d2
5d1 + 22344 d3

2d1
4d2

2 − 648 d3
5d2d1

2 − 648 d3d2
5d1

2 + 80130 d3
3d2

2d1 + 14580 d3
4d2d1 +

80130 d3
2d2

3d1 − 300231 d1
2d2

2d3
2 + 80130 d3

3d2d1
2 + 80130 d3

2d2d1
3 − 351344 d3d1d2

2 −
351344 d3

2d2d1 − 351344 d3d2d1
2 − 128 d1

2d3
5d2

5 − 384 d1
4d3

4d2
4 − 128 d3

3d2
6d1

3 + 64 d3
2d2

6d1
4 +

64 d3
2d2

4d1
6 + 64 d3

6d2
2d1

4 − 128 d3
6d2

3d1
3 + 128 d3

4d2
3d1

5 − 128 d3
5d2

2d1
5 + 96 d3d2

4d1
5 −

352 d3
4d1

4−352 d2
4d1

4−128 d1
6d3

3d2
3+128 d3

5d2
4d1

3+96 d3d1
4d2

5+64 d3
4d2

2d1
6−128 d3

2d2
5d1

5+
128 d3

5d2
3d1

4 + 128 d3
3d2

5d1
4 + 128 d3

4d2
5d1

3 + 128 d3
3d2

4d1
5 + 14580 d3d2d1

4 + 14580 d3d1d2
4 +

80130 d3d2
2d1

3 + 80130 d3d2
3d1

2 + 64 d3
4d2

6d1
2 − 352 d3

4d2
4 − 97630 d1

2d2
2 + 64 d3

6d2
4d1

2 +
2376 d3

2d1
4 +10464 d2

3d1
3−22356 d2d1

3−22356 d1d2
3 +592176 d3d1 +592176 d1d2−22356 d3

3d2 +
592176 d3d2 + 33588 d1

2 − 22356 d3d1
3 − 22356 d3

3d1 + 33588 d3
2 − 22356 d3d2

3 − 97630 d3
2d2

2 +
10464 d3

3d1
3 + 33588 d2

2−97630 d3
2d1

2 + 2376 d3
4d2

2 + 10464 d3
3d2

3 + 2376 d1
2d2

4 + 2376 d3
4d1

2 +
2376 d1

4d2
2 + 2376 d3

2d2
4)

Table A.3: The cubic couplings for all of the fields in the action up to level 3 (continued).
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Appendix B

Rolling Tachyon Code

In section 5.3 I described what was necessary in order to programmatically construct the
marginal solution of [36] and then compute some simple quantities based on that solution.
This appendix contains the code that was used to actually perform these tasks.

B.1 Maple Code

The Maple portion of the program does all of the algebraic work necessary to build the solution
and compute expectation values. This is not designed to do the significant amount of numerical
work in actually evaluating the quantities found here; that is done in C++.

For those not familiar with the Maple language, it is the built-in language of the com-
puter algebra system Maple. As such it has built-in functions for many common tasks such as
summing terms, finding taylor coefficients, or integrating functions. Most of these should be
relatively straightforward, but I will try to explain a few of the less intuitive commands.

Functions are defined using the arrow operator, so f(x) = x2 would be written as
f:=x->x^2;. While standard operators such as addition, multiplication, and the exponenti-
ation just used are often written infix, they are interpreted as functions so 1+2+3 is the same
thing as ‘+‘(1,2,3), at least for associative operators. A comma separated list is known as
a sequence and can be generated with the seq function, so that the previous example is also
equivalent to ‘+‘(seq(n,n=1..3)). The function op is quite powerful and nuanced and since
I will use it quite often it deserves some explanation. The command op(i,expr) returns the
i-th operand of the expression in its second argument. This is useful for parsing the arguments
of an unevaluated function, and can even return the function itself as the 0th operand. op also
works with constructs which are not really functions, such as lists and sets. If i is omitted, op
returns a sequence of all operands (except the 0th), and if a range is specified instead then that
subsequence of operands is returned. Negative indices are interpreted as counting backwards
from the last operand (or element in a list).

Due to the program being written before we finalized our conventions for renormalization
schemes, there are a few notational differences. The renormalization constants C0 and C1 are
referred to in the code as RC2 and RCk respectively. The constant CL not appearing in the
solution is RCL. Despite the fact that the counterterms are defined using the little g scheme,
as in sections 4.2.1 and 4.3.2, the notation uses capital G. In describing functions such as V r

I have occasionally used the useful shorthand notation
[
V (n)(a, b)

]
r

def
= 1

n! [V (a, b)n]r which is
standard in [36]. We should now be ready to see the Maple portion of the program. Comments
are prefixed with # and will appear in green.
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B.1. Maple Code

Program B.1: These Maple procedures define wedge states with insertions and the operations
used on them. Correlation functions of wedge states with known insertions can also be calculated
and simplified. A description of this program appears in section 5.3.

1 # -*-mapl-*- (nowrap)
2 restart:

4 #a wedge is [width, {variable=range or point}, V(1)*V(t1)*...] leave out integrals, as those will
be implied by specifying ranges for variables

5 ‘type/wedge ‘:=[ algebraic ,set(name={ nonnegint ..posint ,algebraic }),

algebraic ]:

6 #a wpoly is the same as a wedge, but with the operator content replaced by a list representing taylor
coefficients in λ

7 ‘type/wpoly ‘:=[ algebraic ,set(name={ nonnegint ..posint ,algebraic }),list(

algebraic)]:

9 ‘type/wsing ‘:={ wedge ,wpoly}: #one wedge state
10 ‘type/wsum ‘:= specfunc ({wsing ,wsum},‘&+‘): #a sum of wedge states
11 ‘type/wtype ‘:={ wsing ,wsum}:

13 #some constants
14 wId :=[0 ,{} ,1]:

15 wzero :=[0 ,{} ,0]:

16 wpId :=[0 ,{} ,[1]]:

17 wpzero :=[0 ,{} ,[0]]:

19 #define the marginal operator, assumed to have 1
z2 self-OPE

20 #V bare:=t->dX(t)/sqrt(alphaprime): #use this version for the translation operator
21 V_bare :=t->(E(1,t)+E(-1,t))/sqrt (2): #use this version of the rolling tachyon

23 #convert a wpoly to a wedge
24 ##A the wedge state (or sum) to convert
25 to_wedge :=proc(A::wtype)::wtype:

26 if type(A,wsum) then

27 return map(to_wedge ,A);

28 elif type(A,wedge) then

29 return A;

30 else

31 return [A[1],A[2],add(lambda ^(n-1)*A[3][n],n=1.. nops(A[3]))]:

32 fi:

33 end proc:

35 #convert a wedge to a wpoly, truncating to O(λn)
36 ##A the wedge state (or sum) to convert
37 ##n the truncation order
38 to_wpoly :=proc(A::wtype ,n:: nonnegint)::wtype:

39 if type(A,wsum) then

40 return map(to_wpoly ,A,n);

41 elif type(A,wpoly) then #might want to truncate to n here, currently left as is
42 return A;

43 else
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B.1. Maple Code

44 return [A[1],A[2],[seq(coeftayl(A[3], lambda=0,k),k=0..n)]]:

45 fi:

46 end proc:

48 #the star product, takes arbitrarily many operands which should be of type wtype

49 ##the name parameter LAMBDA MAX truncates the result to O(λLAMBDA MAX) to avoid excess computation
50 star:=proc(A,B,{ LAMBDA_MAX :: nonnegative := infinity })

51 local ret , i, C, vars , bdom , bins , bsrt , cins , nm, lm, subslist:

52 if type(A,wsum) then

53 ret:=map(star ,A,B,’:-LAMBDA_MAX ’= LAMBDA_MAX);

54 elif type(B,wsum) then

55 ret:=map2(star ,A,B,’:-LAMBDA_MAX ’= LAMBDA_MAX);

56 elif type(A,wpoly) and type(B,wpoly) then

57 if A[3]=[ seq(0,n=1.. nops(A[3]))] or B[3]=[ seq(0,n=1.. nops(B[3]))]

then

58 return wpzero;

59 fi:

60 vars:=map(lhs ,A[2]):

61 bdom :={}:

62 bins:=B[3]:

63 subslist :=[]:

64 bsrt:=sort([op(B[2])],((a,b)->lexorder(lhs(a),lhs(b)))): #ensure
lexicographical ordering of coordinates is preserved

65 for i from 1 to nops(bsrt) do

66 nm:= newvar(vars ,lhs(bsrt[i])): #ensure variable names are unique
67 bdom:=bdom union {nm=map((x->x+A[1]),rhs(bsrt[i]))}: #shift

insertion locations in B

68 subslist :=[op(subslist),lhs(bsrt[i])=nm]: #add to the list of variables
to rename

69 vars:=vars union {nm}:

70 od:

71 bins:=eval(bins ,subslist): #perform the change of variables in the operators
72 lm:=min(LAMBDA_MAX ,nops(A[3])+nops(B[3]) -2):

73 cins :=[ seq(add(piecewise(k>=nops(A[3]) ,0,A[3][k+1])*piecewise(n-k

>=nops(bins),0,bins[n-k+1]),k=0..n),n=0..lm)]: #multiply
operators

74 C:=[A[1]+B[1],A[2] union bdom ,cins]:

75 ret:=C;

76 elif type(A,wedge) and type(B,wedge) then

77 if A[3]=0 or B[3]=0 then

78 return wzero;

79 fi:

80 vars:=map(lhs ,A[2]):

81 bdom :={}:

82 bins:=B[3]:

83 subslist :=[]:

84 bsrt:=sort([op(B[2])],((a,b)->lexorder(lhs(a),lhs(b)))): #ensure
lexicographical ordering of coordinates is preserved

85 for i from 1 to nops(bsrt) do

86 nm:= newvar(vars ,lhs(bsrt[i])): #ensure variable names are unique
87 bdom:=bdom union {nm=map((x->x+A[1]),rhs(bsrt[i]))}: #shift

174



B.1. Maple Code

insertion locations in B

88 subslist :=[op(subslist),lhs(bsrt[i])=nm]: #add to the list of variables
to rename

89 vars:=vars union {nm}:

90 od:

91 cins:=A[3]* eval(bins ,subslist): #perform changes of variables and multiply the
operators for both wedge states

92 if LAMBDA_MAX < infinity then #for efficiency, truncate to fixed power of λ
93 cins:= convert(taylor(cins ,lambda ,trunc(LAMBDA_MAX)+1),polynom)

:

94 fi:

95 C:=[A[1]+B[1],A[2] union bdom ,cins]:

96 ret:=C;

97 elif type(A,wsing) and type(B,wsing) then

98 ret:=star(to_wedge(A),to_wedge(B),’:-LAMBDA_MAX ’= LAMBDA_MAX);

99 else

100 ret:=A &* B;

101 fi:

102 if _nrest =0 then #if there are no more operands
103 return ret;

104 else

105 #A ∗B ∗ C ∗D = ((A ∗B) ∗ C) ∗D etc.
106 return star(ret ,_rest ,’:-LAMBDA_MAX ’= LAMBDA_MAX);

107 fi:

108 end proc:

110 #adjust variable names to avoid conflict when using star

111 ##used is a set of names already taken
112 ##oldvar should be an indexed symbol which will have its index adjusted for uniqueness
113 newvar :=proc(used::set(name),oldvar ::name)

114 local i:

115 if type(oldvar ,indexed) and nops(oldvar)=1 then

116 i:=op(oldvar):

117 while op(0,oldvar)[i] in used do

118 i:=i+1:

119 od:

120 return op(0,oldvar)[i];

121 elif type(oldvar ,symbol) then

122 print("support for renaming simple symbols has been removed",

oldvar);

123 return oldvar;

124 i:=1:

125 while oldvar ||i in used do

126 i:=i+1:

127 od:

128 #return oldvar||i;
129 else

130 print("variable of unknown type , not handled",oldvar);

131 return oldvar;

132 fi:

133 end proc:
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135 #multiply a wedge B by a scalar a
136 ctimesw :=proc(a::algebraic ,B)

137 local acol , ins , i, j, d:

138 if type(B,wedge) then

139 return [B[1],B[2],a*B[3]];

140 elif type(B,wpoly) and type(a,polynom(anything ,lambda)) then #wpoly

types cannot be multiplied by non-polynomial λ
141 acol:= collect(a,lambda):

142 ins:=[seq(0,n=1.. nops(B[3])+degree(acol ,lambda))]:

143 if type(acol ,‘+‘) then

144 acol :=[op(acol)]:

145 else

146 acol :=[ acol]:

147 fi:

148 for i from 1 to nops(acol) do

149 d:= degree(acol[i],lambda):

150 for j from 1 to nops(B[3]) do

151 ins[j+d]:=ins[j+d]+B[3][j]*acol[i]/ lambda^d:

152 od:

153 od:

154 return [B[1],B[2],ins];

155 elif type(B,wsum) then

156 return map2(ctimesw ,a,B);

157 else

158 print("Warning: ctimesw called with wrong type.",a,B);

159 return a*B;

160 fi:

161 end proc:

163 #takes a wsum and removes wedge states with 0 amplitude
164 #this also flattens sums by removing parentheses: (A+B) + C → A+B + C
165 plus0:=proc(expr)

166 local newexpr , term , i:

167 if type(expr ,wsum) then

168 newexpr :=[]:

169 for i from 1 to nops(expr) do

170 term:= plus0(op(i,expr)):

171 if type(term ,wsum) then #A+ (B + C) = A+B + C
172 if nops(term) <> 1 or op(1,term) <> wzero then

173 newexpr :=[op(newexpr),op(term)]:

174 fi:

175 elif type(term ,wedge) then

176 if term[3]<>0 then

177 newexpr :=[op(newexpr),term]:

178 fi:

179 elif type(term ,wpoly) then

180 if term[3]<>[seq(0,n=1.. nops(term [3]))] then

181 newexpr :=[op(newexpr),term]:

182 fi:

183 else
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184 newexpr :=[op(newexpr),term]:

185 fi:

186 od:

187 if nops(newexpr) = 0 then

188 newexpr :=[ wzero]:

189 fi:

190 return &+(op(newexpr));

191 else

192 return expr;

193 fi:

194 end proc:

196 #act on the operator content of a wedge (or wpoly) with expand

197 #return a separate wedge (wpoly) for each term in the result
198 ##expr is the wedge, wpoly, or wsum to expand
199 wexpand :=proc(expr)

200 local ins , outw , i:

201 if type(expr ,wsum) then

202 return map(wexpand ,expr);

203 elif type(expr ,wedge) then

204 ins:= expand(expr [3]):

205 if type(ins ,‘+‘) then

206 ins :=&+(op(ins)):

207 return map((x->[expr[1],expr[2],x]),ins);

208 else

209 return [expr[1],expr[2],ins];

210 fi:

211 elif type(expr ,wpoly) then

212 outw :=[]:

213 for i from 1 to nops(expr [3]) do

214 ins:= expand(expr [3][i]):

215 if type(ins ,‘+‘) then

216 ins:=[op(ins)]:

217 else

218 ins:=[ins]:

219 fi:

220 if ins <>[0] then

221 outw :=[op(outw),seq([expr[1],expr [2],[seq(0,k=1..i-1),ins[j

]]],j=1.. nops(ins))]:

222 fi:

223 od:

224 if nops(outw)=0 then

225 return wpzero;

226 elif nops(outw)=1 then

227 return op(outw);

228 else

229 return ‘&+‘(op(outw));

230 fi:

231 else

232 print("Warning: wexpand on unhandled type.");

233 return expr;
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234 fi:

235 end proc:

237 #merges wedges with the same circumference and operator insertion locations
238 #operator content is added for matching wedges in a wsum

239 ##expr should be a sum of wedges. wpolys may work (untested), but mixing the two will likely fail
240 wcombine :=proc(expr)

241 local i, j, tosort , sorted , res , term:

242 if type(expr ,wsum) then

243 tosort := plus0(varsort(expr)):

244 if type(tosort ,wsum) then

245 tosort :=[op(tosort)]:

246 sorted :={}:

247 res:= wzero:

248 for i from 1 to nops(tosort) do

249 if not i in sorted then

250 term:= tosort[i]:

251 sorted := sorted union {i}:

252 for j from i+1 to nops(tosort) do

253 if not j in sorted then

254 if tosort[i][1]= tosort[j][1] and tosort[i][2]=

tosort[j][2] then

255 term:= subsop (3= term [3]+ tosort[j][3], term):

256 sorted := sorted union {j}:

257 fi:

258 fi:

259 od:

260 res:=res&+term:

261 fi:

262 od:

263 return plus0(res);

264 else

265 return tosort;

266 fi:

267 else

268 return expr;

269 fi:

270 end proc:

272 #renames the dummy variables appearing in the second element of wedges
273 #variable names are sorted so that if i < j then t[i] is to the left of t[j]
274 #variables which are at fixed location (unintegrated) but do not appear anywhere in the operator

content are removed
275 varsort :=proc(expr)

276 local i, j, splitdom , found , orderproc , sublist , varoot , remlist ,

inw:

277 if type(expr ,wsum) then

278 return map(varsort ,expr);

279 elif type(expr ,wsing) then

280 remlist :={}:

281 for i from 1 to nops(expr [2]) do
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282 if type(rhs(op(i,expr [2])),numeric) and not has(expr[3],lhs(op

(i,expr [2]))) then

283 remlist := remlist union {op(i,expr [2])}:

284 fi:

285 od:

286 inw:= subsop (2= expr [2] minus remlist ,expr):

287 splitdom :={}:

288 #the local function orderproc contains rules for breaking ties
289 #our convention is to preserve order of indices when two insertions are coincident
290 #orderproc currently assumes that all insertions are at (or integrated between) integer

locations
291 orderproc :=(x,y)->piecewise(type(rhs(x),range),op(1,rhs(x))+1/2,

rhs(x))

292 +piecewise(type(lhs(x),indexed),op(1,lhs(x))/1000 ,0) <

293 +piecewise(type(rhs(y),range),op(1,rhs(y))+1/2,rhs(y))

294 +piecewise(type(lhs(y),indexed),op(1,lhs(y))/1000 ,0):

295 for i from 1 to nops(inw [2]) do

296 found:= false:

297 for j from 1 to nops(splitdom) while not found do

298 if op(0,lhs(op(i,inw [2])))=op(0,lhs(op(j,splitdom)[1]))

then

299 found:=true:

300 splitdom := subsop(j=[op(op(j,splitdom)),op(i,inw [2])],

splitdom):

301 fi:

302 od:

303 if not found then

304 splitdom := splitdom union {[op(i,inw [2]) ]}:

305 fi:

306 od:

307 splitdom :=map(sort ,splitdom ,orderproc):

308 sublist :=[]:

309 for i from 1 to nops(splitdom) do

310 varoot :=op(0,lhs(op(i,splitdom)[1])):

311 for j from 1 to nops(op(i,splitdom)) do

312 sublist :=[op(sublist),lhs(op(i,splitdom)[j])=varoot[j]]:

313 od:

314 od:

315 return eval(inw ,sublist);

316 else

317 print("calling varsort on non -wedge");

318 return expr;

319 fi:

320 end proc:

322 #find the wedge state taylor coefficient of λn

323 ##A the wedge state or sum
324 ##lambda should normally be ’lambda’ for our purposes (must be for wpoly types)
325 ##n the truncation order
326 pickoff :=proc(A,lambda ::name ,n:: nonnegint)

327 local ins:
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328 if type(A,function) and op(0,A)=‘&+‘ then

329 return plus0(map(pickoff ,A,lambda ,n));

330 elif type(A,wpoly) then

331 if lambda <>’lambda ’ then

332 print("don ’t use pickoff on polynomial wedges without lambda")

;

333 fi:

334 if n+1>nops(A[3]) then

335 return [A[1],A[2] ,0];

336 else

337 return [A[1],A[2],A[3][n+1]];

338 fi:

339 elif type(A,wedge) then

340 ins:= coeftayl(A[3], lambda=0,n):

341 return [A[1],A[2],ins];

342 else #unhandled type
343 return PICKOFF(A,lambda ,n);

344 fi:

345 end proc:

347 #star product removing a unit width from the left edge to make the first argument act as a bra state
348 starip :=proc()

349 local interws:

350 interws :=star([-1,{},1],args):

351 return interws;

352 end proc:

354 #the integrated b ghosts, B, can be inserted anywhere and will only change the wedge state if they
cross a c ghost

355 #move all B insertions to the right end of the wedge
356 #b ghosts are not needed for the solution of [36]
357 #this function is a schematic for how b ghost functionality could be added, but it is not presently used
358 sortB:=proc(expr)

359 local grand , dom , i, j, m, n, opins , orderproc;

360 if not hasfun(expr ,B) then

361 return expr;

362 fi:

363 if type(expr ,wsum) then

364 return map(sortB ,expr);

365 elif type(expr ,wsing) then

366 grand:=expr [3]:

367 dom:=expr [2]:

368 if type(grand ,‘+‘) then

369 return sortB(plus0(wexpand(expr)));

370 elif type(grand ,‘*‘) then

371 opins :=[]:

372 for i from 1 to nops(grand) do

373 if type(op(i,grand),function) and op(0,op(i,grand)) in {B,c

,dc} then

374 opins :=[op(opins) ,[op(0,op(i,grand)),op(1,op(i,grand)),’

unknown ’]]:
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375 for j from 1 to nops(dom) do

376 if lhs(op(j,dom))=opins [ -1][2] then

377 opins [ -1][3]:= rhs(op(j,dom)):

378 break:

379 fi:

380 od:

381 fi:

382 od:

383 orderproc :=(x,y)->x[3]+ piecewise(has(x[1],dc) ,1/100,0) < y[3]+

piecewise(has(y[1],dc) ,1/100,0):

384 opins :=sort(opins ,orderproc):

385 for i from 1 to nops(opins) do

386 if opins[i][1]=B then

387 break;

388 fi:

389 od:

390 if i = nops(opins) then

391 return expr;

392 elif opins[i+1][1] = B then

393 return wzero;

394 elif opins[i+1][1] in {c,dc} then

395 for m from 1 to nops(grand) do

396 if op(m,grand)=B(opins[i][2]) then

397 break;

398 fi:

399 od:

400 for n from 1 to nops(grand) do

401 if op(n,grand)=opins[i+1][1]( opins[i+1][2]) then

402 break;

403 fi:

404 od:

405 for j from 1 to nops(dom) do

406 if lhs(op(j,dom))=opins[i][2] then

407 break;

408 fi:

409 od:

410 return sortB(ctimesw (-1,[expr[1], subsop(j=( opins[i][2]=

opins[i+1][3]+ piecewise(has(opins[i+1][1] ,dc)

,1/50 ,1/200)),dom),grand])) &+

411 sortB([expr[1],dom ,subsop(m=1,n=1,grand)]);

412 fi:

413 fi:

414 fi:

415 end proc:

417 #define the renormalization used for V (a, b)2

418 #gDab(t1, t2) is G r(t1,t2,wdth,a,b)

419 ##t1,t2 the variables which will be integrated
420 ##wdth an inert placeholder for the wedge width
421 ##a,b the endpoints of the integration
422 #not all of these parameters will be needed depending on the renormalizing function
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424 #renormalization function from (4.22) and (4.39) of [36], normally overwritten
425 G_r :=(t1 ,t2 ,wdth ,a,b)->-Pi^2/( wdth +1)^2/sin(Pi*(t2 -t1)/(wdth +1))^2+ln(

Pi^2/( wdth +1) ^2/ sin(Pi*(b-a)/(wdth +1))^2)/(b-a)^2:

426 #my version satisfying assumptions (4.5)
427 G_r :=(t1 ,t2 ,wdth ,a,b) ->-1/(t2 -t1)^2 -2*(1+ln(b-a)+RC2+RCk*(b-a))/(b-a)

^2:

428 #RC2:=0: RCk:=0: #if we wish to choose the simplest values we can uncomment this line

430 #the operator [V (n)(a, b)]r is first represented by the inert function V ren(n,a,b,vars,wdth)

431 #this is later replaced by V r(n,a,b,vars,wdth) which evaluates to the appropriate operators and
renormalizing subtractions

432 #V ren should not be evaluated too soon, as Q B will not act correctly on V r

434 ##n the number of integrated operators to use
435 ##a,b the limits of integration
436 ##vars a list of symbols (normally indexed) to use as the locations of the insertions
437 ##wdth an inert name representing the width of the final wedge
438 #note that n should match nops(vars)

439 V_r:=proc(n::nonnegint ,a,b,vars::list(name),wdth)

440 local pairs , removals , usedvars , keeppair , i, j, k, res , term:

441 if nops(vars) <> n then

442 print("Warning: in V_r n is barely used , make sure number of vars

is correct instead",n,vars);

443 fi:

444 if n = 0 then

445 return 1;

446 elif n < 0 then

447 return 0;

448 fi:

449 pairs := combinat[choose ](vars ,2):

450 removals := combinat[choose ](pairs):

451 pairs :=[]:

452 for i from 1 to nops(removals) do

453 usedvars :={}: keeppair :=true:

454 for j from 1 to nops(removals[i]) while keeppair do

455 for k from 1 to nops(removals[i][j]) do

456 if removals[i][j][k] in usedvars then

457 keeppair :=false:

458 else

459 usedvars := usedvars union {removals[i][j][k]}:

460 fi:

461 od:

462 od:

463 if keeppair then

464 pairs :=[op(pairs),removals[i]]:

465 fi:

466 od:

467 res :=0:

468 for i from 1 to nops(pairs) do

469 term :=1/n!: usedvars :={}:
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470 for j from 1 to nops(pairs[i]) do

471 term:=term*G_r(pairs[i][j][1], pairs[i][j][2],wdth ,a,b):

472 usedvars := usedvars union {pairs[i][j][1], pairs[i][j][2]}:

473 od:

474 for j from 1 to nops(vars) do

475 if not vars[j] in usedvars then

476 term:=term*V_bare(vars[j]):

477 usedvars := usedvars union {vars[j]}:

478 fi:

479 od:

480 res:=res+term:

481 od:

482 return res;

483 end proc:

485 #gLab(t) is G Left(t,wdth,a,b)

486 #renormalization function from (4.22) and (4.31) of [36], normally overwritten
487 G_Left :=(t,wdth ,a,b)->-Pi^2/( wdth +1) ^2/ sin(Pi*(t-a)/(wdth +1))^2-Pi/(

wdth +1)*cot(Pi*(b-a)/(wdth +1))/(b-a):

488 #my version satisfying assumptions (4.5)
489 G_Left :=(t,wdth ,a,b) ->-1/(t-a)^2-1/(b-a)^2-RCL/(b-a):

490 #RCL:=0: #simplest value chosen, commented out

492 #[V (a)V (n−1)(a, b)]r is represented by the inert function V L ren(n,a,b,vars,wdth)

493 #it is evaluated by the function V Left(n,a,b,vars,wdth)

494 #the first variable, vars[1], is the insertion held fixed
495 #n should match nops(vars)

496 V_Left :=proc(n::nonnegint ,a,b,vars::list(name),wdth)

497 local pairs , removals , usedvars , keeppair , i, j, k, res , term:

498 if nops(vars) <> n then

499 print("Warning: in V_Left n is barely used , make sure number of

vars is correct instead",n,vars);

500 fi:

501 if n < 1 then

502 return 0;

503 fi:

504 pairs := combinat[choose ](vars ,2):

505 removals := combinat[choose ](pairs):

506 pairs :=[]:

507 for i from 1 to nops(removals) do

508 usedvars :={}: keeppair :=true:

509 for j from 1 to nops(removals[i]) while keeppair do

510 for k from 1 to nops(removals[i][j]) do

511 if removals[i][j][k] in usedvars then

512 keeppair :=false:

513 else

514 usedvars := usedvars union {removals[i][j][k]}:

515 fi:

516 od:

517 od:

518 if keeppair then
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519 pairs :=[op(pairs),removals[i]]:

520 fi:

521 od:

522 res :=0:

523 for i from 1 to nops(pairs) do

524 term :=1/(n-1)!: usedvars :={}:

525 for j from 1 to nops(pairs[i]) do

526 if pairs[i][j][1] = vars [1] then

527 term:=term*G_Left(pairs[i][j][2],wdth ,a,b):

528 elif pairs[i][j][2] = vars [1] then

529 term:=term*G_Left(pairs[i][j][1],wdth ,a,b):

530 else

531 term:=term*G_r(pairs[i][j][1], pairs[i][j][2],wdth ,a,b):

532 fi:

533 usedvars := usedvars union {pairs[i][j][1], pairs[i][j][2]}:

534 od:

535 for j from 1 to nops(vars) do

536 if not vars[j] in usedvars then

537 term:=term*V_bare(vars[j]):

538 usedvars := usedvars union {vars[j]}:

539 fi:

540 od:

541 res:=res+term:

542 od:

543 return res;

544 end proc:

546 #these are equivalent to the left-handed versions above, but with the rightmost insertion held fixed
547 G_Right :=(t,wdth ,a,b)->-Pi^2/( wdth +1) ^2/ sin(Pi*(b-t)/(wdth +1))^2-Pi/(

wdth +1)*cot(Pi*(b-a)/(wdth +1))/(b-a): #(4.22) and
(4.37)

548 G_Right :=(t,wdth ,a,b) ->-1/(t-b)^2-1/(b-a)^2-RCR/(b-a):

549 RCR:=RCL: #seems like a very safe assumption

550 #[V (n−1)(a, b)V (b)]r is V Right(n,a,b,vars,wdth), inert form is V R ren

551 #last variable, vars[n], is held fixed
552 V_Right :=proc(n::nonnegint ,a,b,vars::list(name),wdth)

553 local pairs , removals , usedvars , keeppair , i, j, k, res , term:

554 if nops(vars) <> n then

555 print("Warning: in V_Right n is barely used , make sure number of

vars is correct instead",n,vars);

556 fi:

557 if n < 1 then

558 return 0;

559 fi:

560 pairs := combinat[choose ](vars ,2):

561 removals := combinat[choose ](pairs):

562 pairs :=[]:

563 for i from 1 to nops(removals) do

564 usedvars :={}: keeppair :=true:

565 for j from 1 to nops(removals[i]) while keeppair do

566 for k from 1 to nops(removals[i][j]) do

184



B.1. Maple Code

567 if removals[i][j][k] in usedvars then

568 keeppair :=false:

569 else

570 usedvars := usedvars union {removals[i][j][k]}:

571 fi:

572 od:

573 od:

574 if keeppair then

575 pairs :=[op(pairs),removals[i]]:

576 fi:

577 od:

578 res :=0:

579 for i from 1 to nops(pairs) do

580 term :=1/(n-1)!: usedvars :={}:

581 for j from 1 to nops(pairs[i]) do

582 if pairs[i][j][1] = vars[n] then

583 term:=term*G_Right(pairs[i][j][2],wdth ,a,b):

584 elif pairs[i][j][2] = vars[n] then

585 term:=term*G_Right(pairs[i][j][1],wdth ,a,b):

586 else

587 term:=term*G_r(pairs[i][j][1], pairs[i][j][2],wdth ,a,b):

588 fi:

589 usedvars := usedvars union {pairs[i][j][1], pairs[i][j][2]}:

590 od:

591 for j from 1 to nops(vars) do

592 if not vars[j] in usedvars then

593 term:=term*V_bare(vars[j]):

594 usedvars := usedvars union {vars[j]}:

595 fi:

596 od:

597 res:=res+term:

598 od:

599 return res;

600 end proc:

602 #[V (a)V (n−2)(a, b)V (b)]r
603 #the first and last elements of vars are held fixed at the left and right respectively
604 V_LR:=proc(n::nonnegint ,a,b,vars::list(name),wdth)

605 local pairs , removals , usedvars , keeppair , i, j, k, res , term:

606 if nops(vars) <> n then

607 print("Warning: in V_LR n is barely used , make sure number of

vars is correct instead",n,vars);

608 fi:

609 if n < 2 then

610 return 0;

611 fi:

612 pairs := combinat[choose ](vars ,2):

613 removals := combinat[choose ](pairs):

614 pairs :=[]:

615 for i from 1 to nops(removals) do

616 usedvars :={}: keeppair :=true:
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617 for j from 1 to nops(removals[i]) while keeppair do

618 for k from 1 to nops(removals[i][j]) do

619 if removals[i][j][k] in usedvars then

620 keeppair :=false:

621 else

622 usedvars := usedvars union {removals[i][j][k]}:

623 fi:

624 od:

625 od:

626 if keeppair then

627 pairs :=[op(pairs),removals[i]]:

628 fi:

629 od:

630 res :=0:

631 for i from 1 to nops(pairs) do

632 term :=1/(n-2)!: usedvars :={}:

633 for j from 1 to nops(pairs[i]) do

634 if {pairs[i][j][1], pairs[i][j][2]}={ vars[1],vars[n]} then

635 term :=0:

636 elif pairs[i][j][1] = vars [1] then

637 term:=term*G_Left(pairs[i][j][2],wdth ,a,b):

638 elif pairs[i][j][2] = vars [1] then

639 term:=term*G_Left(pairs[i][j][1],wdth ,a,b):

640 elif pairs[i][j][1] = vars[n] then

641 term:=term*G_Right(pairs[i][j][2],wdth ,a,b):

642 elif pairs[i][j][2] = vars[n] then

643 term:=term*G_Right(pairs[i][j][1],wdth ,a,b):

644 else

645 term:=term*G_r(pairs[i][j][1], pairs[i][j][2],wdth ,a,b):

646 fi:

647 usedvars := usedvars union {pairs[i][j][1], pairs[i][j][2]}:

648 od:

649 for j from 1 to nops(vars) do

650 if not vars[j] in usedvars then

651 term:=term*V_bare(vars[j]):

652 usedvars := usedvars union {vars[j]}:

653 fi:

654 od:

655 res:=res+term:

656 od:

657 return res;

658 end proc:

660 #find the wedge state U (n) defined in (2.47) of [36]

661 #this is only the state U (n), it is 0-th order in λ by definition
662 Ucoeff :=proc(n:: nonnegint)

663 local i, vars , ins:

664 global wedgewidth:

665 if n=0 then

666 return wId;

667 elif n=1 then
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668 return wzero;

669 else

670 vars :=[]:

671 for i from 1 to n do

672 vars :=[op(vars),t[i]=1..n]:

673 od:

674 ins:= V_ren(n,a[1],b[1],map(lhs ,vars),wedgewidth):

675 return [n,{a[1]=1,b[1]=n,op(vars)},[ins ]];

676 fi:

677 end proc:

679 #all of U =
∑

n λ
nU (n)

680 #“option system, remember” allows Maple to store the result for faster reexecution
681 ##cutoff is the order in λ to stop the taylor series
682 U:=proc(cutoff) option system , remember:

683 return &+( seq(ctimesw(lambda^n,Ucoeff(n)),n=0.. cutoff));

684 end proc:

686 #like U above but excluding the term U (0)

687 #since U = 1 + x, we expand f(U) about U = 1 using this
688 Utail :=proc(cutoff) option system , remember:

689 return &+( seq(ctimesw(lambda^n,Ucoeff(n)),n=1.. cutoff));

690 end proc:

692 # 1
U defined by its taylor series for small lambda, see [36] equation (2.58)

693 Uinv:=proc(cutoff) option system , remember:

694 return plus0 (&+(wpId ,seq(star(wpId ,seq(ctimesw(-1,Utail(cutoff)),i

=1..n),LAMBDA_MAX=cutoff),n=1.. cutoff)));

695 end proc:

697 #
√
U defined by its taylor series for small lambda, see [36] equation (2.58)

698 Usqrt:=proc(cutoff) option system , remember:

699 return plus0 (&+(wpId ,seq(ctimesw(coeftayl(sqrt (1+x),x=0,n),star(wpId

,seq(Utail(cutoff),i=1..n),LAMBDA_MAX=cutoff)),n=1.. cutoff)));

700 end proc:

702 # 1√
U

defined by its taylor series for small lambda, see [36] equation (2.58)

703 Uinvsqrt :=proc(cutoff) option system , remember:

704 return plus0 (&+(wpId ,seq(ctimesw(coeftayl (1/ sqrt (1+x),x=0,n),star(

wpId ,seq(Utail(cutoff),i=1..n),LAMBDA_MAX=cutoff)),n=1.. cutoff)))

;

705 end proc:

707 #the wedge state AL defined in (3.22) and (4.57) of [36]
708 ##cutoff is the order in λ to stop the taylor series
709 A_L:=proc(cutoff)

710 local n, vars , ret:

711 global wedgewidth:

712 ret:= wpzero:

713 for n from 1 to cutoff do
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714 vars :=[t[1]=1, seq(t[i]=1..n,i=2..n)]:

715 ret:=ret &+ [n,{a[1]=1 ,b[1]=n,op(vars)},[seq(0,i=1..n),c(t[1])*

V_L_ren(n,a[1],b[1],map(lhs ,vars),wedgewidth)]]:

716 if n>1 then

717 vars :=[t[1]=1, seq(t[i]=1..n,i=2..n-1)]:

718 ret:=ret &+ [n,{a[1]=1 ,b[1]=n,op(vars)},[seq(0,i=1..n),(RCL*c(

t[1]) -(1/2)*dc(t[1]))*V_ren(n-2,a[1],b[1],map(lhs ,vars [2..n

-1]),wedgewidth)]]:

719 fi:

720 od:

721 return ret;

722 end proc:

724 #the wedge state AR defined in (3.22) and (4.57) of [36]
725 A_R:=proc(cutoff)

726 local n, vars , ret:

727 global wedgewidth:

728 ret:= wpzero:

729 for n from 1 to cutoff do

730 vars :=[ seq(t[i]=1..n,i=1..n-1),t[n]=n]:

731 ret:=ret &+ [n,{a[1]=1 ,b[1]=n,op(vars)},[seq(0,i=1..n),c(t[n])*

V_R_ren(n,a[1],b[1],map(lhs ,vars),wedgewidth)]]:

732 if n>1 then

733 vars :=[ seq(t[i]=1..n,i=1..n-2),t[n-1]=n]:

734 ret:=ret &+ [n,{a[1]=1 ,b[1]=n,op(vars)},[seq(0,i=1..n),(RCL*c(

t[n-1]) +(1/2)*dc(t[n-1]))*V_ren(n-2,a[1],b[1],map(lhs ,vars

[1..n-2]),wedgewidth)]]:

735 fi:

736 od:

737 return ret;

738 end proc:

740 #a simple tachyonic conformal patch, or future

741 #used to find the inner product of a wedge with the state generated by the operator ekX

742 #ghost number here is 2 in order to saturate ghosts with a string field of ghost number 1
743 confpatch :=proc(k:: integer)

744 return [0,{tL[0]=0,tL [1]=0} ,[(2/ Pi)^(k^2-1)*dc(tL[0])*c(tL[1])*E(-k,

tL[1]) ]];

745 end proc:

747 #the ”left” solution defined in [36] equation (3.45)
748 ##n is the order in λ at which the solution should be calculated
749 ##if keep is specified then the solution is calculated for all orders in λ up to and including n

750 ##if keep is not specified (the default) then only the n-th order is calculated
751 Psi_L:=proc(n,{keep:: boolean :=false })

752 local PSI:

753 PSI:=star(A_L(n),Uinv(n),LAMBDA_MAX=n):

754 if not keep then

755 return pickoff(PSI ,lambda ,n);

756 else

757 return plus0(PSI);
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758 fi:

759 end proc:

761 #the ”right” solution defined in [36] equation (3.48)
762 Psi_R:=proc(n,{keep:: boolean :=false })

763 local PSI:

764 PSI:=star(Uinv(n),A_R(n),LAMBDA_MAX=n):

765 if not keep then

766 return pickoff(PSI ,lambda ,n);

767 else

768 return plus0(PSI);

769 fi:

770 end proc:

772 #the solution satisfying the reality condition
773 #as defined on line 1 of [36] equation (3.51)
774 Psi_L_real :=proc(n,{keep:: boolean :=false }) option system , remember:

775 local PSI:

776 PSI:=star(Uinvsqrt(n),A_L(n),Uinvsqrt(n),LAMBDA_MAX=n) &+ star(

Uinvsqrt(n),Q_B(Usqrt(n)),LAMBDA_MAX=n):

777 if not keep then

778 return pickoff(PSI ,lambda ,n);

779 else

780 return plus0(PSI);

781 fi:

782 end proc:

784 #same as above, but this time as defined on line 2 of [36] equation (3.51)
785 Psi_R_real :=proc(n,{keep:: boolean :=false }) option system , remember:

786 local PSI:

787 PSI:=star(Uinvsqrt(n),A_R(n),Uinvsqrt(n),LAMBDA_MAX=n) &+ star(Usqrt

(n),Q_B(Uinvsqrt(n)),LAMBDA_MAX=n):

788 if not keep then

789 return pickoff(PSI ,lambda ,n);

790 else

791 return plus0(PSI);

792 fi:

793 end proc:

795 #the BRST operator, acts on wedge states or their sums
796 #this is described in section 5.3.4
797 Q_B:=proc(inexpr)

798 local expr , i, j, k, grandlist , grand , dom , remainv , removev ,

grandterm , outw , orderproc , grassign , OL2 , OR2:

799 expr:= wexpand(inexpr):

800 if type(expr ,wsum) then

801 return map(Q_B ,expr);

802 elif type(expr ,wpoly) then #wpoly not handled separately, convert to wedge

803 return to_wpoly(Q_B(to_wedge(expr)),nops(expr [3]) -1);

804 elif type(expr ,wedge) then

805 OL2:=t->RCL*c(t)-dc(t)/2:
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806 OR2:=t->RCL*c(t)+dc(t)/2:

807 expr:= varsort(expr):

808 grand :=expr [3]:

809 dom:=expr [2]:

810 outw:=wzero:

811 if type(grand ,‘*‘) then

812 grand :=[op(grand)]:

813 #sort operators according to position on the boundary
814 #ghosts shifted right slightly to prevent early sign factors
815 #ghost shift must be smaller than minimum separation between operators from different

wedges, assumes a non-zero minimum
816 #this is a bit of a hack
817 orderproc :=(x,y)->piecewise(type(x,function),min(op(eval(map(

lhs ,dom) intersect indets(x),map((z->piecewise(type(rhs(z),

range),lhs(z)=(op(1,rhs(z))+op(2,rhs(z)))/2,z)),dom))))+

piecewise(evalb(op(0,x) in {c,dc}) ,1/100,0) ,0)

818 < piecewise(type(y,function),min(op(eval(map(lhs ,dom)

intersect indets(y),map((z->piecewise(type(rhs(z),range)

,lhs(z)=(op(1,rhs(z))+op(2,rhs(z)))/2,z)),dom))))+

piecewise(evalb(op(0,y) in {c,dc}) ,1/100,0) ,0):

819 grand:=sort(grand ,orderproc):

820 grassign :=1:

821 for i from 1 to nops(grand) do #find the integrated wedge insertion to
replace with a fixed insertion

822 if type(grand[i],function) and op(0,grand[i])=V_ren and op

(1,grand[i]) >0 then

823 grandterm :=grand:

824 remainv :=dom: removev :={}:

825 #we could always choose t[1] as the insertion to fix, but for clarity we will use
t[n] when it is fixed at the right

826 for j from 1 to nops(dom) do

827 if lhs(op(j,dom))=op(4,grand[i])[op(1,grand[i])] then

828 remainv := remainv minus {op(j,dom)}:

829 removev := removev union {op(j,dom)}:

830 fi:

831 od:

832 grandterm[i]:= grassign*c(op(4,grand[i])[op(1,grand[i])])

*V_R_ren(op(grand[i])): #the subsop puts the first variable name
last (on the right)

833 outw:=outw &+ [expr[1], remainv union map((x->lhs(x)=op

(2,rhs(x))),removev) ,‘*‘(op(grandterm))]:

834 if op(1,grand[i]) >1 then #repeat the process with cV endpoint
replaced by ∂c

835 for j from 1 to nops(remainv) do

836 if lhs(op(j,remainv))=op(4,grand[i])[1] then

837 removev := removev union {op(j,remainv)}:

838 fi:

839 od:

840 remainv := remainv minus removev:

841 grandterm[i]:= grassign*OR2(op(4,grand[i])[op(1,grand[

i])])*subsop (1=op(1,grand[i]) -2,4=[op(2..op(1,
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grand[i]) -1,op(4,grand[i]))],V_ren(op(grand[i]))):

842 outw:=outw &+ [expr[1], remainv union map((x->lhs(x)=

op(2,rhs(x))),removev) ,‘*‘(op(grandterm))]:

843 fi:

844 remainv :=dom: removev :={}:

845 for j from 1 to nops(dom) do

846 if lhs(op(j,dom))=op(4,grand[i])[1] then

847 remainv := remainv minus {op(j,dom)}:

848 removev := removev union {op(j,dom)}:

849 fi:

850 od:

851 grandterm[i]:= grassign*c(op(4,grand[i])[1])*V_L_ren(op(

grand[i])):

852 outw:=outw &+ [expr[1], remainv union map((x->lhs(x)=op

(1,rhs(x))),removev) ,‘*‘(-1,op(grandterm))]:

853 if op(1,grand[i]) >1 then #repeat the process with cV endpoints
replaced by ∂c

854 for j from 1 to nops(remainv) do

855 if lhs(op(j,remainv))=op(4,grand[i])[2] then

856 removev := removev union {op(j,remainv)}:

857 fi:

858 od:

859 remainv := remainv minus removev:

860 grandterm[i]:= grassign*OL2(op(4,grand[i])[1])*subsop

(1=op(1,grand[i]) -2,4=[op(3..op(1,grand[i]),op(4,

grand[i]))],V_ren(op(grand[i]))):

861 outw:=outw &+ [expr[1], remainv union map((x->lhs(x)=

op(1,rhs(x))),removev) ,‘*‘(-1,op(grandterm))]:

862 fi:

863 elif type(grand[i],function) and op(0,grand[i])=V_L_ren and

op(1,grand[i]) >1 then

864 grandterm :=grand:

865 remainv :=dom: removev :={}:

866 for j from 1 to nops(dom) do #find the integrated wedge insertion to
replace with a fixed insertion

867 if lhs(op(j,dom))=op(4,grand[i])[2] then #first insertion
already fixed, use [2] instead

868 remainv := remainv minus {op(j,dom)}:

869 removev := removev union {op(j,dom)}:

870 fi:

871 od:

872 #term 1 in (5.14)
873 grandterm[i]:= grassign*subsop (4=[op(4,grand[i])[1],op

(3..op(1,grand[i]),op(4,grand[i])),op(4,grand[i])

[2]], V_LR_ren(op(grand[i]))):

874 outw:=outw &+ [expr[1], remainv union map((x->lhs(x)=op

(2,rhs(x))),removev) ,‘*‘(-1,c(op(4,grand[i])[2]),op(

grandterm))]:

875 if op(1,grand[i]) >= 3 then #a cV at one end and a ∂c at the other
876 #terms 3 and 5 in (5.14)
877 grandterm[i]:= grassign*subsop (1=op(1,grand[i]) -2,4=[
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op(3..op(1,grand[i]) -1,op(4,grand[i])),op(4,grand[

i])[2]], V_R_ren(op(grand[i]))):

878 outw:=outw &+ [expr[1], remove(has ,remainv ,op(4,grand[

i])[op(1,grand[i])]) union map((x->lhs(x)=op(2,rhs

(x))),removev) ,‘*‘(-2,OL2(op(4,grand[i])[1]),c(op

(4,grand[i])[2]),op(remove(has ,grandterm ,c(op(4,

grand[i])[1]))))]:

879 #term 2 in (5.14)
880 grandterm[i]:= grassign*subsop (1=op(1,grand[i]) -2,4=[

op(4,grand[i])[1],op(3..op(1,grand[i]) -1,op(4,

grand[i]))],V_L_ren(op(grand[i]))):

881 outw:=outw &+ [expr[1], remove(has ,remainv ,op(4,grand[

i])[op(1,grand[i])]) union map((x->lhs(x)=op(2,rhs

(x))),removev) ,‘*‘(-1,OR2(op(4,grand[i])[2]),op(

grandterm))]:

882 if op(1,grand[i]) >= 4 then #∂c at both ends
883 #terms 4 and 6 in (5.14)
884 grandterm[i]:= grassign*subsop (1=op(1,grand[i])

-4,4=[op(3..op(1,grand[i]) -2,op(4,grand[i]))],

V_ren(op(grand[i]))):

885 outw:=outw &+ [expr[1], remove(has ,remainv ,{op(4,

grand[i])[op(1,grand[i])],op(4,grand[i])[op(1,

grand[i]) -1]}) union map((x->lhs(x)=op(2,rhs(x)

)),removev) ,‘*‘(-2,OL2(op(4,grand[i])[1]),OR2(

op(4,grand[i])[2]),op(remove(has ,grandterm ,c(op

(4,grand[i])[1]))))]:

886 #term 8 in (5.14)
887 outw:=outw &+ [expr[1], remove(has ,remainv ,{op(4,

grand[i])[op(1,grand[i])],op(4,grand[i])[op(1,

grand[i]) -1]}) union map((x->lhs(x)=op(1,rhs(x)

)),removev) ,‘*‘(1,OL2(op(4,grand[i])[1]),OL2(op

(4,grand[i])[2]),op(remove(has ,grandterm ,c(op

(4,grand[i])[1]))))]:

888 fi:

889 #term 7 in (5.14)
890 grandterm[i]:= grassign*subsop (1=op(1,grand[i]) -2,4=[

op(4,grand[i])[2],op(3..op(1,grand[i]) -1,op(4,

grand[i]))],V_L_ren(op(grand[i]))):

891 outw:=outw &+ [expr[1], remove(has ,remainv ,op(4,grand[

i])[op(1,grand[i])]) union map((x->lhs(x)=op(1,rhs

(x))),removev) ,‘*‘(1,OL2(op(4,grand[i])[1]),c(op

(4,grand[i])[2]),op(remove(has ,grandterm ,c(op(4,

grand[i])[1]))))]:

892 fi:

893 elif type(grand[i],function) and op(0,grand[i])=V_R_ren and

op(1,grand[i]) >1 then #this section behaves very similarly to
V L ren

894 grandterm :=grand:

895 remainv :=dom: removev :={}:

896 for j from 1 to nops(dom) do

897 if lhs(op(j,dom))=op(4,grand[i])[1] then
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898 remainv := remainv minus {op(j,dom)}:

899 removev := removev union {op(j,dom)}:

900 fi:

901 od:

902 #term 1 in (5.15)
903 grandterm[i]:= grassign*V_LR_ren(op(grand[i])):

904 outw:=outw &+ [expr[1], remainv union map((x->lhs(x)=op

(1,rhs(x))),removev) ,‘*‘(-1,c(op(4,grand[i])[1]),op(

grandterm))]:

905 if op(1,grand[i]) >= 3 then

906 #term 2 in (5.15)
907 grandterm[i]:= grassign*subsop (1=op(1,grand[i]) -2,4=[

op(2..op(1,grand[i]) -2,op(4,grand[i])),op(4,grand[

i])[op(1,grand[i])]],V_R_ren(op(grand[i]))):

908 outw:=outw &+ [expr[1], remove(has ,remainv ,op(4,grand[

i])[op(1,grand[i]) -1]) union map((x->lhs(x)=op(1,

rhs(x))),removev) ,‘*‘(-1,OL2(op(4,grand[i])[1]),op

(grandterm))]:

909 if op(1,grand[i]) >= 4 then

910 #term 3 in (5.15)
911 grandterm[i]:= grassign*subsop (1=op(1,grand[i])

-4,4=[op(2..op(1,grand[i]) -3,op(4,grand[i]))],

V_ren(op(grand[i]))):

912 outw:=outw &+ [expr[1], remove(has ,remainv ,{op(4,

grand[i])[op(1,grand[i]) -1],op(4,grand[i])[op

(1,grand[i]) -2]}) union map((x->lhs(x)=op(2,rhs

(x))),removev) ,‘*‘(-1,OR2(op(4,grand[i])[1]),

OR2(op(4,grand[i])[op(1,grand[i])]),op(remove(

has ,grandterm ,c(op(4,grand[i])[op(1,grand[i])])

)))]:

913 fi:

914 #term 4 in (5.15)
915 grandterm[i]:= grassign*subsop (1=op(1,grand[i]) -2,4=[

op(2..op(1,grand[i]) -2,op(4,grand[i])),op(4,grand[

i])[op(1,grand[i])]],V_R_ren(op(grand[i]))):

916 outw:=outw &+ [expr[1], remove(has ,remainv ,op(4,grand[

i])[op(1,grand[i]) -1]) union map((x->lhs(x)=op(2,

rhs(x))),removev) ,‘*‘(-1,c(op(4,grand[i])[1]),OR2(

op(4,grand[i])[op(1,grand[i])]),op(remove(has ,

grandterm ,c(op(4,grand[i])[op(1,grand[i])]))))]:

917 fi:

918 elif type(grand[i],function) and op(0,grand[i]) in {c,dc}

then

919 #introduce a sign factor for QB(A ∗B)
920 grassign:=-grassign:

921 elif type(grand[i],function) and not type(grand[i],trig)

then

922 userinfo(1,Q_B ,"Warning: Q may be called on an unhandled

function. Assume ",Q(grand[i])=0);

923 fi:

924 od:
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925 return outw;

926 elif type(grand ,‘+‘) then

927 userinfo(1,Q_B ,"Warning , ‘+‘ integrand shouldn ’t happen at

this point.");

928 return wexpand(expr);

929 elif type(grand ,numeric) then

930 return wzero;

931 else

932 userinfo(1,Q_B ,"Warning , operator insertions not handled by

Q_B:",grand);

933 return Q(expr);

934 fi:

935 else

936 print("Warning , Q_B only acts on wedges:",expr);

937 return Q(inexpr);

938 fi:

939 end proc:

941 corr:=proc(expr ,{ww:= wedgewidth },{domout := false})

942 local i, j, k, grand , uhp , Ematter , otherfacts , Cghosts , Cdiff , conf

, Xmatter , Xpairs , Xdoubles , Corder ,

943 used , keep , Xcorr , netE , netC , pow , var , Mcorr , Gcorr , dom ,

fixedpts , outgrand , dfcts , indfcts , tempgrand , wdth:

944 if type(expr ,wsum) then #if domout then change + to &+, not yet implemented
945 return ‘+‘(op(map(corr ,plus0(wexpand(eval(expr ,[ V_ren=V_r ,V_L_ren

=V_Left ,V_R_ren=V_Right ,V_LL_ren=V_LL ,V_RR_ren=V_RR ,V_LR_ren=

V_LR]))),’:-ww ’=ww ,’:-domout ’= domout)));

946 elif type(expr ,wpoly) then

947 return corr(to_wedge(expr),’:-ww ’=ww ,’:-domout ’= domout);

948 elif type(expr ,wedge) then

949 #finally substitute in the operators’ renormalizations
950 grand:=eval(expr [3],[ V_ren=V_r ,V_L_ren=V_Left ,V_R_ren=V_Right ,

V_LL_ren=V_LL ,V_RR_ren=V_RR ,V_LR_ren=V_LR]):

951 wdth:=expr [1]:

952 uhp:= unapply(tan(Pi*x/(wdth +1))/2,x): #transform coordinates to UHP
953 Ematter :=[]: Cghosts :=[]: Cdiff :=[]: Xmatter :=[]: otherfacts :=1:

954 netE :=0: netC :=0:

955 conf :=1:

956 if type(grand ,‘+‘) or type(expand(grand) ,‘+‘) then

957 return corr(plus0(wexpand(eval(expr ,[ V_ren=V_r ,V_L_ren=V_Left ,

V_R_ren=V_Right ,V_LL_ren=V_LL ,V_RR_ren=V_RR ,V_LR_ren=V_LR])

)),’:-ww ’=ww ,’:-domout ’= domout);

958 elif type(grand ,‘*‘) then #we have a single product of operators, so we can
compute this term

959 for i from 1 to nops(grand) do

960 if type(op(i,grand),function) and op(0,op(i,grand)) = E

then #epow∗X(var)

961 pow:=op(1,op(i,grand)):

962 var:=op(2,op(i,grand)):

963 netE:=netE+pow:

964 #transform to UHP with weight pow2
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965 conf:=conf*(Pi/2/( wdth +1))^(pow ^2)*sec(Pi*var/(wdth +1))

^(2* pow ^2):

966 Ematter :=[op(Ematter),[pow ,var ]]:

967 elif type(op(i,grand),function) and op(0,op(i,grand)) = c

then #c(var)
968 netC:=netC +1:

969 var:=op(op(i,grand)):

970 #transform to schnabl frame with weight -1
971 conf:=conf*(wdth +1)/Pi:

972 Cghosts :=[op(Cghosts),var]:

973 elif type(op(i,grand),function) and op(0,op(i,grand)) = dc

then #∂c(var)
974 netC:=netC +1:

975 #no conformal factor, weight 0
976 Cghosts :=[op(Cghosts),op(op(i,grand))]:

977 Cdiff :=[op(Cdiff),op(op(i,grand))]:

978 elif type(op(i,grand),function) and op(0,op(i,grand)) = dX

then #∂X(var)
979 var:=op(op(i,grand)):

980 #transform to UHP with weight 1
981 conf:=conf*(Pi/2/( wdth +1))*sec(Pi*var/(wdth +1))^2:

982 Xmatter :=[op(Xmatter),var]:

983 #additional operators to be handled can go here
984 elif type(op(i,grand),function) and op(0,op(i,grand)) = b

then

985 print("Warning: b-ghosts not handled yet , this will be

wrong.");

986 else #functions and numerical factors, not operators
987 otherfacts := otherfacts*op(i,grand):

988 fi:

989 od:

990 #must conserve momentum and saturate ghosts
991 if netE <> 0 or netC <> 3 then

992 Mcorr :=0:

993 return 0;

994 else

995 Mcorr :=1:

996 Corder :=proc(a,b):: boolean:

997 local sep:

998 sep:=eval(b-a,expr [2]):

999 if sep >0 then return true;

1000 elif sep <0 then return false;

1001 else return lexorder(a,b);

1002 fi:

1003 end proc:

1004 #put the ghost insertions in order so the sign is consistent
1005 Cghosts :=sort(Cghosts ,Corder):

1006 for i from 1 to nops(Cghosts) do

1007 Cdiff:=eval(Cdiff ,Cghosts[i]=i);

1008 od:

1009 fi:
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1010 #construct matter correlator on UHP, this part only handles exponentials, equation
(6.2.35) of [6]

1011 for i from 1 to nops(Ematter) do

1012 for j from i+1 to nops(Ematter) do

1013 Mcorr:= Mcorr*(uhp(Ematter[i][2]) -uhp(Ematter[j][2]))^(2*

Ematter[i][1]* Ematter[j][1]):

1014 od:

1015 od:

1016 #∂X part of matter correlator
1017 #first make a list of pairs of ∂X operators to contract with each other
1018 Xpairs := combinat[choose ](Xmatter ,2):

1019 Xdoubles := combinat[choose ]( Xpairs):

1020 Xpairs :=[]:

1021 for i from 1 to nops(Xdoubles) do

1022 used :={}: keep:=true:

1023 for j from 1 to nops(Xdoubles[i]) while keep do

1024 for k from 1 to nops(Xdoubles[i][j]) while keep do

1025 if Xdoubles[i][j][k] in used then

1026 keep:= false:

1027 else

1028 used:=used union {Xdoubles[i][j][k]}:

1029 fi:

1030 od:

1031 od:

1032 if keep then

1033 Xpairs :=[op(Xpairs),Xdoubles[i]]:

1034 fi:

1035 od:

1036 Xcorr :=[]:

1037 for i from 1 to nops(Xpairs) do

1038 Xcorr :=[op(Xcorr) ,1]:

1039 #purely ∂X part of mater correlator
1040 for j from 1 to nops(Xpairs[i]) do

1041 Xcorr[i]:= Xcorr[i]*2* alphaprime /(uhp(Xpairs[i][j][1]) -

uhp(Xpairs[i][j][2]))^2:

1042 od:

1043 #cross terms for ekX and ∂X
1044 for j from 1 to nops(Xmatter) do

1045 keep:=true:

1046 for k from 1 to nops(Xpairs[i]) while keep do

1047 if Xmatter[j]= Xpairs[i][k][1] or Xmatter[j]= Xpairs[i

][k][2] then

1048 keep:=false:

1049 fi:

1050 od: k:=’k’:

1051 if keep then

1052 Xcorr[i]:= Xcorr[i]*add(2* Ematter[k][1]* sqrt(

alphaprime)/(uhp(Xmatter[j])-uhp(Ematter[k][2])),k

=1.. nops(Ematter)):

1053 fi:

1054 od:

196



B.1. Maple Code

1055 od:

1056 Xcorr:=‘+‘(op(Xcorr)):

1057 #construct the ghost correlator in Schnabl frame, no b ghosts
1058 #use equation (D.11) of [25]
1059 Gcorr:=D[op(Cdiff)]((x,y,z)->sin(x-y)*sin(x-z)*sin(y-z))(op(

map((x->Pi*x/(wdth +1)),Cghosts))):

1060 outgrand := otherfacts*conf*Mcorr*Xcorr*Gcorr:

1061 outgrand :=eval(outgrand ,ww=wdth):

1062 elif type(grand ,numeric) then #wedge contains no operators
1063 outgrand :=grand:

1064 else

1065 print("some other kind of integrand ... not handled",op(0,grand

),grand);

1066 outgrand :=grand:

1067 fi:

1068 #determine which variables are fixed and which are integrated
1069 dom :=[]: fixedpts :=[]:

1070 for i from 1 to nops(expr [2]) do

1071 if type(op(i,expr [2]),name=range) then

1072 dom:=[op(dom),op(i,expr [2])]:

1073 else

1074 fixedpts :=[op(fixedpts),op(i,expr [2])]:

1075 fi:

1076 od:

1077 fixedpts :=eval(fixedpts ,ww=wdth): #in case insertion locations are given in
terms of the wedge circumference

1078 dom:=eval(dom ,ww=wdth):

1079 if nops(dom) > 0 then #there are integrated insertions
1080 try

1081 #always use inert integrals, since they usually can’t be done exactly
1082 return Int(eval(outgrand ,fixedpts),dom);

1083 catch: #if fixed insertions alone give rise to singularities
1084 #fix the insertions one at a time to single out the problem ones
1085 for i from 1 to nops(fixedpts) do

1086 try

1087 outgrand :=eval(outgrand ,fixedpts[i]):

1088 catch:

1089 if type(outgrand ,‘*‘) then

1090 #separate out the factors that depend on the variable
1091 dfcts :=1: indfcts :=1:

1092 for j from 1 to nops(outgrand) do

1093 if depends(op(j,outgrand),lhs(fixedpts[i]))

then

1094 dfcts :=dfcts*op(j,outgrand):

1095 else

1096 indfcts := indfcts*op(j,outgrand):

1097 fi:

1098 od:

1099 else

1100 indfcts :=1:

1101 dfcts:= outgrand:
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1102 fi:

1103 #indfcts:=simplify(indfcts,trig): #not worth the execution time
1104 #dfcts:=simplify(dfcts,trig):

1105 #try a limit, if that still fails use Limit instead
1106 userinfo(2,corr ,"switching from eval to limit",dfcts ,

fixedpts[i]);

1107 tempgrand := indfcts*limit(dfcts ,fixedpts[i]):

1108 if has(tempgrand ,{undefined ,infinity }) then

1109 outgrand := indfcts*Limit(dfcts ,fixedpts[i]):

1110 else

1111 outgrand := tempgrand:

1112 fi:

1113 userinfo(2,corr ,"done limit");

1114 end try:

1115 od:

1116 return Int(outgrand ,dom);

1117 end try:

1118 else #same as above but without any integrals required
1119 try

1120 return eval(outgrand ,fixedpts);

1121 catch:

1122 for i from 1 to nops(fixedpts) do

1123 try

1124 outgrand :=eval(outgrand ,fixedpts[i]):

1125 catch:

1126 #if no integration then this is usually a simple function, so don’t bother
separating the factors

1127 userinfo(2,corr ,"switching from eval to limit",

outgrand ,fixedpts[i]);

1128 tempgrand := limit(outgrand ,fixedpts[i]):

1129 if has(tempgrand ,{undefined ,infinity }) then

1130 outgrand :=Limit(outgrand ,fixedpts[i]):

1131 else

1132 outgrand := tempgrand:

1133 fi:

1134 userinfo(2,corr ,"done limit");

1135 end try:

1136 od:

1137 return outgrand;

1138 end try:

1139 fi:

1140 else

1141 print("some other kind of expr ... not handled",op(0,expr),expr);

1142 return expr;

1143 fi:

1144 end proc:

1146 #rescale variables to put all integrals over the unit hypercube
1147 #also combines integrals with the same dimension so that singularities can cancel between terms
1148 to_cube :=proc(expr)

1149 local i, j, k, grand , dom , newdom , ab, nm, csum , othterms , lims ,
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limnm , limvars , newlim , limterms , nonlimterms:

1150 if type(expr ,constant) then

1151 return expr;

1152 elif type(expr ,‘+‘) then

1153 grand :=[]: dom :=[]: othterms :=0:

1154 csum:=map(to_cube ,[op(expr)]): #first rescale each integral separately
1155 #now join integrals with same dimension
1156 for i from 1 to nops(csum) do

1157 if type(csum[i],function) and op(0,csum[i])=Int then

1158 if op(2,csum[i]) in dom then

1159 for j from 1 to nops(dom) do

1160 if dom[j]=op(2,csum[i]) then

1161 grand := subsop(j=grand[j]+op(1,csum[i]),grand):

1162 fi:

1163 od:

1164 else

1165 grand :=[op(grand),op(1,csum[i])]:

1166 dom:=[op(dom),op(2,csum[i])]:

1167 fi:

1168 else

1169 othterms := othterms+csum[i]:

1170 fi:

1171 od:

1172 #now similarly merge any inert limits in the integrand
1173 #for our purposes this shouldn’t be needed
1174 for i from 1 to nops(grand) do

1175 lims:= selectfun(grand[i],Limit):

1176 limvars :={}:

1177 for j from 1 to nops(lims) do

1178 if type(op(2,op(j,lims)),equation) then

1179 limvars := limvars union {op(2,op(j,lims))}:

1180 else

1181 limvars := limvars union {op(op(2,op(j,lims)))}:

1182 fi:

1183 grand[i]:= subs(op(j,lims)=op(1,op(j,lims)),grand[i]):

1184 od:

1185 for j from 1 to nops(limvars) do

1186 if type(grand[i],‘+‘) then

1187 limterms :=0:

1188 nonlimterms :=0:

1189 for k from 1 to nops(grand[i]) do

1190 if has(op(k,grand[i]),lhs(op(j,limvars))) then

1191 limterms := limterms+op(k,grand[i]):

1192 else

1193 nonlimterms := nonlimterms+op(k,grand[i]):

1194 fi:

1195 od:

1196 grand[i]:= nonlimterms+limit(limterms ,op(j,limvars)):

1197 else

1198 grand[i]:= limit(grand[i],op(j,limvars)):

1199 fi:
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1200 od:

1201 od:

1202 return ‘+‘(seq(Int(grand[x],dom[x],param3),x=1.. nops(dom)),

othterms);

1203 elif type(expr ,‘*‘) then #typically a constant times an integral
1204 if type(op(1,expr),function) or nops(expr) > 2 then

1205 print("warning , could be mixing up integrals ... but probably

not:",expr);

1206 fi:

1207 csum:=map(to_cube ,[op(expr)]):

1208 othterms :=1: grand :=[]: dom :=[]:

1209 for i from 1 to nops(csum) do

1210 if type(op(i,csum),constant) then

1211 othterms := othterms*op(i,csum):

1212 elif type(op(i,csum),function) and op(0,op(i,csum))=Int then

1213 grand :=[op(grand),op(1,op(i,csum))]:

1214 dom:=[op(dom),op(2,op(i,csum))]:

1215 else

1216 print("Warning: ‘*‘ has a non -constant , non -Int factor.");

1217 othterms := othterms*op(i,csum):

1218 fi:

1219 od:

1220 if nops(grand)=0 then

1221 return othterms;

1222 else

1223 grand [1]:= grand [1]* othterms:

1224 return ‘*‘(seq(Int(grand[x],dom[x],param3),x=1.. nops(grand)));

1225 fi:

1226 elif type(expr ,function) and op(0,expr)=Int then #rescale a single integral to
the unit hypercube

1227 grand:=op(1,expr):

1228 dom:=op(2,expr):

1229 newdom :=[]:

1230 for i from 1 to nops(dom) do

1231 ab:=[op(1,rhs(dom[i])),op(2,rhs(dom[i]))]:

1232 nm:= newvar(map(lhs ,{op(newdom)}),s[1]):

1233 grand :=subs(lhs(dom[i])=ab[1]+( ab[2]-ab[1])*nm,grand *(ab[2]-ab

[1])):

1234 newdom :=[op(newdom),nm =0..1]:

1235 od:

1236 if hasfun(grand ,{limit ,Limit}) then #shift any remaining limits to 0
1237 lims:= selectfun(grand ,{limit ,Limit}):

1238 limvars :={}:

1239 for i from 1 to nops(lims) do

1240 nm ,ab:=lhs(op(2,op(i,lims))),rhs(op(2,op(i,lims))):

1241 limnm := newvar(limvars union map(lhs ,{op(newdom)}),s[1]):

1242 limvars := limvars union {limnm}:

1243 newlim :=subs(nm=limnm -ab ,op(1,op(i,lims))):

1244 grand :=subs(op(i,lims)=Limit(newlim ,limnm =0),grand):

1245 od:

1246 fi:
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1247 if type(grand ,numeric) then

1248 return grand;

1249 else

1250 return Int(grand ,newdom ,param3); #param3 is any extra parameters for
numerical evaluation, normally set to NULL

1251 fi:

1252 else

1253 print("Warning: not handled by to_cube");

1254 return expr;

1255 fi:

1256 end proc:

1258 #create a function or sum of functions representing the integrals
1259 #these functions are suitable for exporting to C
1260 to_funcs :=proc(expr)

1261 local i, grand , dom:

1262 global Fnms:

1263 if type(expr ,constant) then

1264 if expr=0 then

1265 return 0;

1266 fi:

1267 i:=1:

1268 while type(‘F‘||i,procedure) do #skip to an unused name
1269 i:=i+1:

1270 od:

1271 ‘F‘||i:= unapply(subs(Pi=PI ,expr),x):

1272 Fnms :=[op(Fnms),evaln(‘F‘||i)]:

1273 return (‘F‘||i);

1274 elif type(expr ,‘+‘) or type(expr ,‘*‘) then

1275 return map(to_funcs ,expr);

1276 elif type(expr ,function) and op(0,expr)=Int then

1277 grand:=op(1,expr):

1278 #grand:=simplify(grand): #this could help with rounding errors, but at a large
performance cost

1279 grand:=subs(Pi=PI ,grand):

1280 if grand=0 then

1281 return 0;

1282 fi:

1283 dom:=op(2,expr):

1284 i:=1:

1285 while type(‘F‘||i,procedure) do #skip to an unused name
1286 i:=i+1:

1287 od:

1288 ‘F‘||i:= unapply(grand ,op(map(lhs ,dom))):

1289 Fnms :=[op(Fnms),evaln(‘F‘||i)]:

1290 #the C++ syntax to integrate over the unit hypercube will be
CubeInt(dimension,function,result,standard deviation,chi squared);

1291 return CubeInt(nops(dom),(‘F‘||i),res[i],sig[i],chi[i]);

1292 else #if unsure what type, just treat it similarly to a constant
1293 i:=1:

1294 while type(‘F‘||i,procedure) do
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1295 i:=i+1:

1296 od:

1297 ‘F‘||i:= unapply(subs(Pi=PI ,expr),x):

1298 Fnms :=[op(Fnms),evaln(‘F‘||i)]:

1299 return (‘F‘||i);

1300 fi:

1301 end proc:

1303 #converts the inert integrals to a form which can be evaluated symbolically
1304 #useful for low dimension only
1305 #resulting integrals can be evaluated with the value command
1306 vints:=proc(expr)

1307 local i, dom , grand:

1308 if type(expr ,‘+‘) or type(expr ,‘*‘) then

1309 return map(vints ,expr);

1310 elif type(expr ,function) and op(0,expr)=Int and type(op(2,expr),list

) then

1311 dom:=op(2,expr):

1312 grand:=op(1,expr):

1313 for i from 1 to nops(dom) do

1314 grand :=Int(grand ,dom[i]):

1315 od:

1316 return grand;

1317 else

1318 return expr;

1319 fi:

1320 end proc:

1322 #take the derivative of an inert integral which should not have the differentiation variable as an
integration variable

1323 #this is for constructing taylor series with respect to the renormalization constants
1324 #the builtin function diff is supposed to handle this, but can fail for the special inert

multidimensional integration syntax
1325 ##x can be a list, in which case a derivative is taken with respect to each element
1326 diffint :=proc(f,x)

1327 if type(x,list) then

1328 if x=[] then

1329 return f;

1330 else

1331 return diffint(diffint(f,x[1]),x[2.. -1]);

1332 fi:

1333 else

1334 if type(f,‘+‘) or type(f,wsum) then

1335 return map(diffint ,f,x);

1336 elif type(f,function) and op(0,f)=‘Int ‘ and not x in op(2,f) then

1337 return Int(diff(op(1,f),x),op(2..-1,f));

1338 elif type(f,‘*‘) then

1339 return add(subsop(i=diffint(op(i,f),x),f),i=1.. nops(f)):

1340 else

1341 return diff(f,x);

1342 fi:
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1343 fi:

1344 end proc:

1346 #the main function to construct the solution at order λn and find tachyon modes
1347 #this is done for Nmin < n < Nmax

1348 #finds a taylor series in the renormalization constants RCk, RC2, and RCL

1349 ##out is the filename the C++ output is written to
1350 ##eom and action, if set, will also produce the necesary integrands to test the equation of motion and

the action
1351 tacconst :=proc(Nmax ,{out:= terminal},{Nmin :=2},{ eom:=false},{action :=

false })

1352 local n, k, i, j, m, nkpart , csum , rsget , sgget , RCstrget , oR2 , oRk ,

oRL , outf , eomnkpart , ceomsum , eomnPsiLkpart , ceomPsiLsum ,

eomnPsirkpart , ceomPsirsum , kineticparts , cubicparts , ckineticsum

, ccubicsum;

1353 global Fnms , RC2 , RCk , RCL:

1354 Fnms :=[]:

1355 oR2:=RC2: oRk:=RCk: oRL:=RCL:

1356 RC2:=’RC2 ’: RCk:=’RCk ’: RCL:=’RCL ’:

1357 #functions to get the variables holding the result and standard deviation for an integral
1358 rsget :=(fn)->piecewise(type(fn ,‘+‘),map(rsget ,fn),type(fn,function)

and op(0,fn)=CubeInt ,subsop (1=op(1,op(3,fn))-1,op(3,fn)),evalf(fn

)):

1359 sgget :=(fn)->piecewise(type(fn ,‘+‘),map(sgget ,fn),type(fn,function)

and op(0,fn)=CubeInt ,subsop (1=op(1,op(4,fn))-1,op(4,fn)),evalf (0)

):

1360 #function to get a string for C0i ∗ C1j ∗ CLm

1361 RCstrget :=(i,j,m)->cat("(%%G+/-%%G)",piecewise(i=0,"","C0^"||i),

piecewise(j=0,"","C1^"||j),piecewise(m=0,"","CL^"||m));

1362 #construct the solution
1363 for n from Nmin to Nmax do

1364 print("Building ",Psi[n]);

1365 (psi||n):= Psi_L_real(n):

1366 save psi||n, "reCpsi"||n||".txt"; #save the solution to a file for reference
1367 if eom then

1368 print("Building ",EOM[n]);

1369 #construct the equation of motion with ghost number 2
1370 (eom||n):=‘&+‘(seq(star(Psi_L_real(l),Psi_L_real(n-l)),l=0..n)

,Q_B(Psi_L_real(n))):

1371 #find the tachyon component with k units of momentum
1372 for k from n mod 2 to n by 2 do

1373 print("Building functions for ",EOM[n],exp(k*X));

1374 eomnkpart[n,k]:= corr(star ([0,{tL [0]=0} ,[(2/ Pi)^(k^2-1)*c(tL

[0])*E(-k,tL[0])]],(eom||n))):

1375 for i from 0 to floor(n/2) do

1376 for j from 0 to floor(n/2)-i do

1377 for m from 0 to floor(n/2)-i-j do #taylor expand in
renormalization constants

1378 ceomsum[n,k,i,j,m]:= to_funcs(to_cube(eval(diffint(

eomnkpart[n,k],[RC2$i ,RCk$j ,RCL$m ]) ,[RC2=0,RCk

=0,RCL =0]))):
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1379 od:

1380 od:

1381 od:

1382 od:

1383 #find the overlap of the equation of motion with the solution for two gauge choices
1384 for k from 1 to Nmax -n+1 do

1385 print("Building functions for ",EOM[n],Psi_L[k]);

1386 eomnPsiLkpart[n,k]:= corr(starip(Psi_L(k) ,(eom||n))):

1387 for i from 0 to floor((n+k)/2) do

1388 for j from 0 to floor((n+k)/2)-i do

1389 for m from 0 to floor((n+k)/2)-i-j do

1390 ceomPsiLsum[n,k,i,j,m]:= to_funcs(to_cube(eval(

diffint(eomnPsiLkpart[n,k],[RC2$i ,RCk$j ,RCL$m])

,[RC2=0,RCk=0,RCL =0]))):

1391 od:

1392 od:

1393 od:

1394 print("Building functions for ",EOM[n],Psi[k]);

1395 eomnPsirkpart[n,k]:= corr(starip(Psi_L_real(k) ,(eom||n))):

1396 for i from 0 to floor((n+k)/2) do

1397 for j from 0 to floor((n+k)/2)-i do

1398 for m from 0 to floor((n+k)/2)-i-j do

1399 ceomPsirsum[n,k,i,j,m]:= to_funcs(to_cube(eval(

diffint(eomnPsirkpart[n,k],[RC2$i ,RCk$j ,RCL$m])

,[RC2=0,RCk=0,RCL =0]))):

1400 od:

1401 od:

1402 od:

1403 od:

1404 fi:

1405 if action then

1406 #find the kinetic and cubic terms of the action separately
1407 print("Building ",kinetic[n]);

1408 (kineticact ||n):=‘&+‘(seq(starip(Psi_L_real(l),Q_B(Psi_L_real(

n-l))),l=0..n));

1409 print("Building ",cubic[n]);

1410 (cubicact ||n):= pickoff(starip(Psi_L_real(n-2),Psi_L_real(n-2),

Psi_L_real(n-2),LAMBDA_MAX=n),lambda ,n):

1411 print("Building functions for ",kinetic[n]);

1412 kineticparts[n]:= corr(kineticact ||n): #the kinetic term’s expectation
value

1413 for i from 0 to floor(n/2) do

1414 for j from 0 to floor(n/2)-i do

1415 for m from 0 to floor(n/2)-i-j do

1416 ckineticsum[n,i,j,m]:= to_funcs(to_cube(eval(diffint(

kineticparts[n],[RC2$i ,RCk$j ,RCL$m]) ,[RC2=0,RCk=0,

RCL =0]))):

1417 od:

1418 od:

1419 od:

1420 print("Building functions for ",cubic[n]);
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1421 cubicparts[n]:= corr(cubicact ||n): #the cubic term’s expectation value
1422 for i from 0 to floor(n/2) do

1423 for j from 0 to floor(n/2)-i do

1424 for m from 0 to floor(n/2)-i-j do

1425 ccubicsum[n,i,j,m]:= to_funcs(to_cube(eval(diffint(

cubicparts[n],[RC2$i ,RCk$j ,RCL$m ]) ,[RC2=0,RCk=0,

RCL =0]))):

1426 od:

1427 od:

1428 od:

1429 fi:

1430 od:

1431 for n from Nmin to Nmax do

1432 for k from n mod 2 to n by 2 do

1433 #find the tachyon profile itself
1434 print("Building functions for "||beta[n,k]);

1435 nkpart[n,k]:= corr(star(confpatch(k),(psi||n))):

1436 for i from 0 to floor(n/2) do

1437 for j from 0 to floor(n/2)-i do

1438 for m from 0 to floor(n/2)-i-j do

1439 csum[n,k,i,j,m]:= to_funcs(to_cube(eval(diffint(nkpart

[n,k],[RC2$i ,RCk$j ,RCL$m ]) ,[RC2=0,RCk=0,RCL =0]))):

1440 od:

1441 od:

1442 od:

1443 od:

1444 od:

1445 if out <> terminal then

1446 print("Writing C code to file.");

1447 fi:

1448 #write lines of C++ code to compute each of the necessary integrals
1449 #each line has all integrals which should be added together as a single number
1450 #resultname is only for clarity, as the true output is stored in the arrays res and sig

1451 for n from Nmin to Nmax do

1452 if eom then

1453 for k from n mod 2 to n by 2 do

1454 for i from 0 to floor(n/2) do

1455 for j from 0 to floor(n/2)-i do

1456 for m from 0 to floor(n/2)-i-j do

1457 if ceomsum[n,k,i,j,m] <> 0 then

1458 CodeGeneration[C]( ceomsum[n,k,i,j,m],resultname

=eomtac ,output=out);

1459 fi:

1460 od:

1461 od:

1462 od:

1463 od:

1464 for k from 1 to Nmax -n+1 do

1465 for i from 0 to floor((n+k)/2) do

1466 for j from 0 to floor((n+k)/2)-i do

1467 for m from 0 to floor((n+k)/2)-i-j do
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1468 if ceomPsiLsum[n,k,i,j,m] <> 0 then

1469 CodeGeneration[C]( ceomPsiLsum[n,k,i,j,m],

resultname=eomPsiL ,output=out);

1470 fi:

1471 if ceomPsirsum[n,k,i,j,m] <> 0 then

1472 CodeGeneration[C]( ceomPsirsum[n,k,i,j,m],

resultname=eomPsir ,output=out);

1473 fi:

1474 od:

1475 od:

1476 od:

1477 od:

1478 fi:

1479 if action then

1480 for i from 0 to floor(n/2) do

1481 for j from 0 to floor(n/2)-i do

1482 for m from 0 to floor(n/2)-i-j do

1483 if ckineticsum[n,i,j,m] <> 0 then

1484 CodeGeneration[C]( ckineticsum[n,i,j,m],resultname=

kineticaction ,output=out);

1485 fi:

1486 if ccubicsum[n,i,j,m] <> 0 then

1487 CodeGeneration[C]( ccubicsum[n,i,j,m],resultname=

cubicaction ,output=out);

1488 fi:

1489 od:

1490 od:

1491 od:

1492 fi:

1493 for k from n mod 2 to n by 2 do

1494 for i from 0 to floor(n/2) do

1495 for j from 0 to floor(n/2)-i do

1496 for m from 0 to floor(n/2)-i-j do

1497 if csum[n,k,i,j,m] <> 0 then

1498 CodeGeneration[C](csum[n,k,i,j,m],resultname=

tacprofile ,output=out);

1499 fi:

1500 od:

1501 od:

1502 od:

1503 od:

1504 od:

1505 if out <> terminal then #CodeGeneration won’t share its file handle, have to close and
reopen

1506 fclose(out):

1507 outf:= fopen(out ,APPEND):

1508 else

1509 outf:=out:

1510 fi:

1511 #write C++ code to output a summary of all results
1512 if eom then
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1513 for n from Nmin to Nmax do

1514 for k from n mod 2 to n by 2 do

1515 fprintf(outf ,cat("printf(""e^",k," EOM(",n,") = ",op

(2..-1,[seq(seq(seq(op([" + ",RCstrget(i,j,m)]),m=0..

floor(n/2)-i-j),j=0.. floor(n/2)-i),i=0.. floor(n/2))]),"

\\n"""

1516 ,seq(seq(seq(cat(",",convert(rsget(ceomsum[n,k,i,j,m]),

string),",",convert(sgget(ceomsum[n,k,i,j,m]),string)),m

=0.. floor(n/2)-i-j),j=0.. floor(n/2)-i),i=0.. floor(n/2)),

");\n"));

1517 od:

1518 od:

1519 for n from Nmin to Nmax do

1520 for k from 1 to Nmax -n+1 do

1521 fprintf(outf ,cat("printf(""Psi_L[",k,"]EOM(",n,") = ",op

(2..-1,[seq(seq(seq(op([" + ",RCstrget(i,j,m)]),m=0..

floor((n+k)/2)-i-j),j=0.. floor ((n+k)/2)-i),i=0.. floor ((n

+k)/2))]),"\\n"""

1522 ,seq(seq(seq(cat(",",convert(rsget(ceomPsiLsum[n,k,i,j,m]),

string),",",convert(sgget(ceomPsiLsum[n,k,i,j,m]),string

)),m=0.. floor ((n+k)/2)-i-j),j=0.. floor ((n+k)/2)-i),i=0..

floor((n+k)/2)),");\n"));

1523 fprintf(outf ,cat("printf(""Psi_real[",k,"]EOM(",n,") = ",op

(2..-1,[seq(seq(seq(op([" + ",RCstrget(i,j,m)]),m=0..

floor((n+k)/2)-i-j),j=0.. floor ((n+k)/2)-i),i=0.. floor ((n

+k)/2))]),"\\n"""

1524 ,seq(seq(seq(cat(",",convert(rsget(ceomPsirsum[n,k,i,j,m]),

string),",",convert(sgget(ceomPsirsum[n,k,i,j,m]),string

)),m=0.. floor ((n+k)/2)-i-j),j=0.. floor ((n+k)/2)-i),i=0..

floor((n+k)/2)),");\n"));

1525 od:

1526 od:

1527 fi:

1528 if action then

1529 for n from Nmin to Nmax do

1530 fprintf(outf ,cat("printf(""kinetic(",n,") = ",op(2..-1,[seq(

seq(seq(op([" + ",RCstrget(i,j,m)]),m=0.. floor(n/2)-i-j),j

=0.. floor(n/2)-i),i=0.. floor(n/2))]),"\\n"""

1531 ,seq(seq(seq(cat(",",convert(rsget(ckineticsum[n,i,j,m]),

string),",",convert(sgget(ckineticsum[n,i,j,m]),string)),m

=0.. floor(n/2)-i-j),j=0.. floor(n/2)-i),i=0.. floor(n/2)),")

;\n"));

1532 fprintf(outf ,cat("printf(""cubic(",n,") = ",op(2..-1,[seq(seq(

seq(op([" + ",RCstrget(i,j,m)]),m=0.. floor(n/2)-i-j),j=0..

floor(n/2)-i),i=0.. floor(n/2))]),"\\n"""

1533 ,seq(seq(seq(cat(",",convert(rsget(ccubicsum[n,i,j,m]),string)

,",",convert(sgget(ccubicsum[n,i,j,m]),string)),m=0.. floor(

n/2)-i-j),j=0.. floor(n/2)-i),i=0.. floor(n/2)),");\n"));

1534 od:

1535 fi:

1536 for n from Nmin to Nmax do
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1537 for k from n mod 2 to n by 2 do

1538 fprintf(outf ,cat("printf(""beta[",n,",",k,"] = ",op(2..-1,[seq

(seq(seq(op([" + ",RCstrget(i,j,m)]),m=0.. floor(n/2)-i-j),j

=0.. floor(n/2)-i),i=0.. floor(n/2))]),"\\n"""

1539 ,seq(seq(seq(cat(",",convert(rsget(csum[n,k,i,j,m]),string),",

",convert(sgget(csum[n,k,i,j,m]),string)),m=0.. floor(n/2)-i

-j),j=0.. floor(n/2)-i),i=0.. floor(n/2)),");\n"));

1540 od:

1541 od:

1542 if out <> terminal then #give CodeGeneration back its file handle
1543 fclose(out):

1544 fi:

1545 #write out all of the integrands to the file
1546 map(CodeGeneration[C],Fnms ,digits=round(evalhf (16)),output=out ,

deducetypes=false);

1547 RC2:=oR2: RCk:=oRk: RCL:=oRL:

1548 print("Done.");

1549 end proc:

1551 #interface(prettyprint=0):

1552 #tacconst(6,out="all-RC.mapleout.txt",eom,action);

B.2 Sample C++ Program

Once the contents of section B.1 have been loaded into Maple, the simplest quantity to calculate
with it is the solution satisfying the reality condition at order λ2. To do this we run the command
tacconst(2,out="tacRC-brief.txt"); which will produce two files as output. The first is
reCpsi2.txt meaning the solution Ψ satisfying the reality condition, with the renormalization
constants C, at order λ2. The wedge states are stored as plain text and can be read back into
Maple for future use to avoid extra calculations. The second file, tacRC-brief.txt, was named
in the command and contains the correlation functions to be integrated along with commands
to do so. The first few lines of the file should be copied and pasted into the C++ file being used.
Constant functions which are not integrated will need to have parentheses added manually in
order to comply with C syntax, so F2 below will become F2(). In addition, in order to provide
clearer output I have added an additional parameter to the CubeInt function which repeats the
function number. This can be seen near the end of program B.6. There is one more notational

difference here. In the output, the coefficients are listed as βkn instead of the β
(j)
n notation we

used in chapter 5. This makes it more convenient to write T (t) =
∑∞

n=1

∑n
k=−n λ

nβkne
kt, but

less obvious which coefficients naturally form the “rows” we studied. The two are simply related

by β
(j)
n = βn−2j

n and β−kn = βkn.

Program B.2: Sample C++ command lines as output by Maple

1 tacprofile = CubeInt(1, F1, res[0], sig[0], chi [0]) + F2;

2 tacprofile = CubeInt(1, F3, res[2], sig[2], chi [2]) + F4;

3 tacprofile = CubeInt(1, F5, res[4], sig[4], chi [4]);

4 printf("beta [2,0] = (%G+/-%G) + (%G+/-%G)CL^1 + (%G+/-%G)C1^1 + (%G+/-%

G)C0^1\n",res [0]+F2,sig[0],res [2]+F4,sig [2] ,0. ,0. ,0. ,0.);
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5 printf("beta [2,2] = (%G+/-%G) + (%G+/-%G)CL^1 + (%G+/-%G)C1^1 + (%G+/-%

G)C0^1\n",res[4],sig [4] ,0. ,0. ,0. ,0. ,0. ,0.);

The rest of the file tacRC-brief.txt contains the function definitions that will be integrated.
For the case of Ψ(2) in our example, this is fairly short.

Program B.3: Sample C++ functions before they are edited in preparation for use. These
are to be integrated in order to find the tachyon profile of Ψ(2). The constant functions have
parameter x because Maple does not consider functions without parameters to be functions at
all.

6 #include <math.h>

8 double F1 (double s_1)

9 {

10 return (-0.27e2 / 0.16e2 / PI * pow(s_1 - 0.1e1 , -0.2e1) - 0.27e2 /

0.16e2 / PI * pow(s_1 , -0.2e1) - 0.27e2 / 0.8e1 / PI + 0.3e1 /

0.16e2 * PI * pow (0.1e1 / cos(PI * (0.1e1 + s_1) / 0.3e1), 0.2e1)

* pow(sqrt (0.3e1) / 0.2e1 - tan(PI * (0.1e1 + s_1) / 0.3e1) / 0.2

e1, -0.2e1) + 0.3e1 / 0.16e2 * PI * pow (0.1e1 / cos(PI * (0.1e1 +

s_1) / 0.3e1), 0.2e1) * pow(tan(PI * (0.1e1 + s_1) / 0.3e1) / 0.2

e1 + sqrt (0.3e1) / 0.2e1 , -0.2e1));

11 }

12 #include <math.h>

14 double F2 (double x)

15 {

16 return (-0.3e1 / 0.8e1 * sqrt (0.3e1));

17 }

18 double F3 (double s_1)

19 {

20 return (-0.27e2 / 0.8e1 / PI);

21 }

22 double F4 (double x)

23 {

24 return (0.27 e2 / 0.8e1 / PI);

25 }

26 #include <math.h>

28 double F5 (double s_1)

29 {

30 return (0.8e1 / 0.243e3 * PI * pow (0.1e1 / cos(PI * (0.1e1 + s_1) /

0.3e1), 0.2e1) * pow(tan(PI * (0.1e1 + s_1) / 0.3e1), -0.4e1) *

pow(sqrt (0.3e1) / 0.2e1 - tan(PI * (0.1e1 + s_1) / 0.3e1) / 0.2e1 ,

0.2e1) + 0.8e1 / 0.243e3 * PI * pow (0.1e1 / cos(PI * (0.1e1 + s_1

) / 0.3e1), 0.2e1) * pow(tan(PI * (0.1e1 + s_1) / 0.3e1), -0.4e1)

* pow(tan(PI * (0.1e1 + s_1) / 0.3e1) / 0.2e1 + sqrt (0.3e1) / 0.2

e1, 0.2e1));

31 }

As shown here, this is not really usable so a series of simple replacements must be performed.
The include statements which Maple insists on putting before each integrand need to be

209



B.2. Sample C++ Program

removed, and numerical integration routines typically expect their integrands to take a single
array rather than individual components of a coordinate. For a few short functions like these it
is simplest to do this by hand, but when the functions become much longer at higher orders the
Unix command sed is useful for quickly performing several find and replace operations. When
we are done, the example above should look like program B.4.

Program B.4: Sample C++ header file with function definitions to be integrated by C++ in
order to find the tachyon profile of Ψ(2).

1 double F1 (double s[]) { double s_1 = s[0];

2 return (-0.27e2 / 0.16e2 / PI * pow(s_1 - 0.1e1 , -0.2e1) - 0.27e2 /

0.16e2 / PI * pow(s_1 , -0.2e1) - 0.27e2 / 0.8e1 / PI + 0.3e1 /

0.16e2 * PI * pow (0.1e1 / cos(PI * (0.1e1 + s_1) / 0.3e1), 0.2e1)

* pow(sqrt (0.3e1) / 0.2e1 - tan(PI * (0.1e1 + s_1) / 0.3e1) / 0.2

e1, -0.2e1) + 0.3e1 / 0.16e2 * PI * pow (0.1e1 / cos(PI * (0.1e1 +

s_1) / 0.3e1), 0.2e1) * pow(tan(PI * (0.1e1 + s_1) / 0.3e1) / 0.2

e1 + sqrt (0.3e1) / 0.2e1 , -0.2e1));

3 }

5 double F2 () {

6 return (-0.3e1 / 0.8e1 * sqrt (0.3e1));

7 }

8 double F3 (double s[]) { double s_1 = s[0];

9 return (-0.27e2 / 0.8e1 / PI);

10 }

11 double F4 () {

12 return (0.27 e2 / 0.8e1 / PI);

13 }

15 double F5 (double s[]) { double s_1 = s[0];

16 return (0.8e1 / 0.243 e3 * PI * pow (0.1e1 / cos(PI * (0.1e1 + s_1) /

0.3e1), 0.2e1) * pow(tan(PI * (0.1e1 + s_1) / 0.3e1), -0.4e1) *

pow(sqrt (0.3e1) / 0.2e1 - tan(PI * (0.1e1 + s_1) / 0.3e1) / 0.2e1 ,

0.2e1) + 0.8e1 / 0.243e3 * PI * pow (0.1e1 / cos(PI * (0.1e1 + s_1

) / 0.3e1), 0.2e1) * pow(tan(PI * (0.1e1 + s_1) / 0.3e1), -0.4e1)

* pow(tan(PI * (0.1e1 + s_1) / 0.3e1) / 0.2e1 + sqrt (0.3e1) / 0.2

e1, 0.2e1));

17 }

This header file, which we will call tacRC-brief.h, can be included in a main C++ program
to provide the integrands. The file can contain many more integrands, describing the solution
at higher orders in λ, and only the portion produced by Maple and described in program B.2
will need to be changed. To see how quickly the size of the integrand functions increases, in

program B.5 we look at a function representing β
(0)
3 . This is the third order analogue of F5 in

the above code fragment, and it is already much larger. By 6th order, individual integrands
can involve several megabytes of text.
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Program B.5: The C++ function to be integrated in order to find the β
(0)
3 component of the

tachyon profile.

1 double F160 (double s[]) { double s_1 = s[0]; double s_2 = s[1];

2 return(-PI * PI * sqrt (0.2e1) * pow (0.1e1 / cos(PI * (0.2e1 + s_1) /

0.4e1), 0.2e1) * pow (0.1e1 / cos(PI * (0.2e1 + s_2) / 0.4e1), 0.2

e1) * pow(tan(PI * (0.2e1 + s_1) / 0.4e1), -0.6e1) * pow(tan(PI *

(0.2e1 + s_2) / 0.4e1), -0.6e1) * pow (0.1e1 / 0.2e1 - tan(PI *

(0.2e1 + s_1) / 0.4e1) / 0.2e1 , 0.2e1) * pow (0.1e1 / 0.2e1 - tan(

PI * (0.2e1 + s_2) / 0.4e1) / 0.2e1 , 0.2e1) * pow(tan(PI * (0.2e1

+ s_1) / 0.4e1) / 0.2e1 - tan(PI * (0.2e1 + s_2) / 0.4e1) / 0.2e1,

0.2e1) / 0.1024 e4 + PI * PI * sqrt (0.2e1) * pow (0.1e1 / cos(PI *

(0.1e1 + 0.2e1 * s_1) / 0.4e1), 0.2e1) * pow (0.1e1 / cos(PI * (0.1

e1 + 0.2e1 * s_2) / 0.4e1), 0.2e1) * pow(tan(PI * (0.1e1 + 0.2e1 *

s_1) / 0.4e1), -0.6e1) * pow(tan(PI * (0.1e1 + 0.2e1 * s_2) / 0.4

e1), -0.6e1) * pow(tan(PI * (0.1e1 + 0.2e1 * s_1) / 0.4e1) / 0.2e1

- tan(PI * (0.1e1 + 0.2e1 * s_2) / 0.4e1) / 0.2e1 , 0.2e1) * pow(

tan(PI * (0.1e1 + 0.2e1 * s_1) / 0.4e1) / 0.2e1 + 0.1e1 / 0.2e1 ,

0.2e1) * pow(tan(PI * (0.1e1 + 0.2e1 * s_2) / 0.4e1) / 0.2e1 + 0.1

e1 / 0.2e1, 0.2e1) / 0.256e3 + PI * PI * sqrt (0.2e1) * pow (0.1e1 /

cos(PI * (0.1e1 + 0.2e1 * s_1) / 0.4e1), 0.2e1) * pow (0.1e1 / cos

(PI * (0.1e1 + 0.2e1 * s_2) / 0.4e1), 0.2e1) * pow(tan(PI * (0.1e1

+ 0.2e1 * s_1) / 0.4e1), -0.6e1) * pow(tan(PI * (0.1e1 + 0.2e1 *

s_2) / 0.4e1), -0.6e1) * pow (0.1e1 / 0.2e1 - tan(PI * (0.1e1 + 0.2

e1 * s_1) / 0.4e1) / 0.2e1 , 0.2e1) * pow (0.1e1 / 0.2e1 - tan(PI *

(0.1e1 + 0.2e1 * s_2) / 0.4e1) / 0.2e1 , 0.2e1) * pow(tan(PI * (0.1

e1 + 0.2e1 * s_1) / 0.4e1) / 0.2e1 - tan(PI * (0.1e1 + 0.2e1 * s_2

) / 0.4e1) / 0.2e1, 0.2e1) / 0.256 e3 - PI * PI * sqrt (0.2e1) * pow

(0.1e1 / cos(PI * (s_1 + 0.1e1) / 0.4e1), 0.2e1) * pow (0.1e1 / cos

(PI * (s_2 + 0.1e1) / 0.4e1), 0.2e1) * pow(tan(PI * (s_1 + 0.1e1)

/ 0.4e1), -0.6e1) * pow(tan(PI * (s_2 + 0.1e1) / 0.4e1), -0.6e1) *

pow(tan(PI * (s_1 + 0.1e1) / 0.4e1) / 0.2e1 - tan(PI * (s_2 + 0.1

e1) / 0.4e1) / 0.2e1, 0.2e1) * pow(tan(PI * (s_1 + 0.1e1) / 0.4e1)

/ 0.2e1 + 0.1e1 / 0.2e1, 0.2e1) * pow(tan(PI * (s_2 + 0.1e1) /

0.4e1) / 0.2e1 + 0.1e1 / 0.2e1 , 0.2e1) / 0.1024 e4);

3 }

Returning to the second order example, we now look at the body of the C++ program
to perform the numerical integration. The three functions worth noting are safety shifter,
CubeInt, and of course main. The main function simply contains the statements to evaluate
each integral, store the results, and then print them in a formatted list. It evaluates the integrals
by repeatedly calling the CubeInt function. It sets all of the various parameters of integration,
such as the maximum number of samples to use, and then calls library routines to perform the
integrals. In between the library routines and the integrands is the safety shifter function,
which prevents the integrands from being evaluated at points where some of the terms might be
divergent. The reason for this regularization is discussed in section 5.3.7. Compiling this sample
program requires linking the GSL and CUBA libraries with the -lgsl and -lcuba command
line options. If the libraries are not part of the standard search path then the locations of them
and their header files must also be specified with the -L and -I options respectively.
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Program B.6: Sample C++ program for the numerical evaluation of integrals representing the
tachyon profile at order λ2.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <time.h>

4 #include <cmath >

5 #include "cuba.h"

6 #include <gsl/gsl_integration.h>

7 #include <gsl/gsl_errno.h>

9 #define PI 3.1415926535897932385

10 #include "tacRC -brief.h"

12 //we introduce a small regulator (eps) to keep test points away from the boundary of the integration
region and diagonals

13 //this process reduces roundoff errors from adding divergent terms
14 int safety_shifter(const int *ndim , const double xx[],

15 const int *ncomp , double ff[], void* fnName) {

16 double feval , startstack , eps = 0.0003;

17 double x[*ndim];

18 double (*fxn)(double []) = (double (*)(double []))fnName;

19 int i, j, k, samepoints , adjusted = 1, nAdjusted = 0;

20 for (i=0; i<*ndim; i++) {x[i] = xx[i];}

21 while (adjusted) {

22 adjusted = 0;

23 //check for coordinates on the boundary
24 samepoints = 0;

25 for (i=0; i<*ndim; i++) {

26 if (x[i] < .99* eps) {

27 samepoints += 1;

28 }

29 }

30 if (samepoints > 0) {

31 k = 0;

32 for (i=0; i<*ndim; i++) {

33 if (x[i] < .99* eps) {

34 k+=1;

35 x[i] = eps*k;

36 adjusted = 1;

37 }

38 }

39 }

40 samepoints = 0;

41 for (i=0; i<*ndim; i++) {

42 if (x[i] > 1 - .99* eps) {

43 samepoints += 1;

44 }

45 }

46 if (samepoints > 0) {

47 k = 0;
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48 for (i=0; i<*ndim; i++) {

49 if (x[i] > 1 - .99* eps) {

50 k+=1;

51 x[i] = 1 - eps*k;

52 adjusted = 1;

53 }

54 }

55 }

56 for (i=0; i<*ndim; i++) {

57 //check for coordinates which have hit x[i]
58 samepoints = 0;

59 for (j=i+1; j<*ndim; j++) {

60 if (fabs(x[i]-x[j]) < (.99 * eps * (samepoints +1))) {

61 samepoints +=1;

62 }

63 }

64 if (samepoints > 0) {

65 startstack = x[i] - eps*( samepoints /2.);

66 x[i] = startstack;

67 adjusted = 1;

68 k = 1;

69 for (j=i+1; j<*ndim; j++) {

70 if (fabs(x[i]-x[j]) < (.99 * eps * (samepoints))) {

71 x[j] = startstack + k*eps;

72 k++;

73 }

74 }

75 }

76 }

77 if (! adjusted) {

78 break;

79 }

80 nAdjusted += 1;

81 if (nAdjusted > 15) {

82 break;

83 }

84 }

85 feval = fxn(x);

86 ff[0] = feval;

87 return 0;

88 }

90 double gslevaluator(double x, void* fnName) {

91 double s[1];

92 double r[1];

93 const int one = 1;

94 s[0] = x;

95 safety_shifter (&one ,s,&one ,r,fnName);

96 return r[0];

97 }
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100 void gsl_error_printer (const char * reason , const char * file , int

line , int gsl_errno) {

101 printf ("GSL ERROR: ERROR NO ", gsl_errno , file , line , reason);

103 fflush (stdout);

105 return;

106 }

108 double CubeInt(int dim , double fxn(double []), int fNum , double &res ,

double &sdev , double &chi) {

109 double integral[dim], error[dim], prob[dim];

110 int nregions , neval , fail;

111 int ncomp = 1; //dimension of evaluated f (1 because f is a scalar function)
112 int nvec = 1; //number of inputs function can take at once
113 double epsrel = 1E-2; //relative error goal is 1%
114 double epsabs = 0.; //absolute error goal
115 int flags = 0; //flags: verbose=0, combine all passes
116 int seed = time(NULL); //random seed
117 int MCminevals = 0, MCmaxevals = 50000* pow(2,dim); //minimum and

maximum number of function calls for monte carlo algorithms
118 int CUminevals = 0, CUmaxevals = 4000* pow(2,dim); //minimum and

maximum number of function calls for Cuhre
119 int key = 0; //cubature rule for Cuhre, use default
120 int nstart = 1000, nincrease = 500, nbatch = 1000, gridno = 0; //

some Vegas-specific arguments, defaults
used

121 int nnew = 1000, flatness = 25; //some Suave-specific arguments, defaults used
122 char *statefile = NULL; //file to save intermediate calculations
123 gsl_integration_workspace *gslw; //“workspace” for QAG
124 gsl_function gslF; //“function” for QAG to call
125 int QAGkey = 3; //integration rule for QAG, 3 is 31 point Gauss-Kronrod
126 res = 0; sdev = 0; chi = 0;

128 if (0) { //set to 1 to try Vegas

129 printf("VEGAS algorithm used in %d dimensions to evaluate F%d\n

",dim ,fNum);

130 Vegas(dim , //number of dimensions
131 ncomp ,

132 safety_shifter , //function for Vegas to call
133 (void*) fxn , //function for safety shifter to call
134 nvec , epsrel , epsabs , flags , seed , MCminevals , MCmaxevals

, nstart , nincrease , nbatch , gridno , statefile ,

135 &neval , //OUTPUT number of function calls that were actually used
136 &fail , //OUTPUT 0 if target accuracy was reached
137 integral , //OUTPUT result of the integral
138 error , //OUTPUT error estimate for integral
139 prob); //OUTPUT probability that error is inaccurate
140 res = integral [0];

141 sdev = error [0];
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142 chi = prob [0];

143 printf("VEGAS used %d function calls with fail=%d\n",neval ,fail

);

144 printf("VEGAS returned (%G +/- %G) with p=%.3f\n", res , sdev ,

chi);

145 printf("\n");

146 }

147 if (0) { //set to 1 to try Suave

148 printf("SUAVE algorithm used in %d dimensions to evaluate F%d\n

",dim ,fNum);

149 Suave(dim , //number of dimensions
150 ncomp ,

151 safety_shifter , //function for Suave to call
152 (void*) fxn , //function for safety shifter to call
153 nvec , epsrel , epsabs , flags , seed , MCminevals , MCmaxevals

, nnew , flatness , statefile ,

154 &nregions , //OUTPUT number of subregions used
155 &neval , //OUTPUT number of function calls that were actually used
156 &fail , //OUTPUT 0 if target accuracy was reached
157 integral , //OUTPUT result of the integral
158 error , //OUTPUT error estimate for integral
159 prob); //OUTPUT probability that error is inaccurate
160 res = integral [0];

161 sdev = error [0];

162 chi = prob [0];

163 printf("SUAVE used %d function calls in %d regions with fail=%d

\n",neval ,nregions ,fail);

164 printf("SUAVE returned (%G +/- %G) with p=%.3f\n", res , sdev ,

chi);

165 printf("\n");

166 }

167 if (dim > 1 && 1) { //set to 1 to try Cuhre

168 printf("CUHRE algorithm used in %d dimensions to evaluate F%d\n

",dim ,fNum);

169 Cuhre(dim , //number of dimensions
170 ncomp ,

171 safety_shifter , //function for Cuhre to call
172 (void*) fxn , //function for safety shifter to call
173 nvec , epsrel , epsabs , flags , CUminevals , CUmaxevals , key ,

statefile ,

174 &nregions , //OUTPUT number of subregions used
175 &neval , //OUTPUT number of function calls that were actually used
176 &fail , //OUTPUT 0 if target accuracy was reached
177 integral , //OUTPUT result of the integral
178 error , //OUTPUT error estimate for integral
179 prob); //OUTPUT probability that error is inaccurate
180 if (std:: isfinite(integral [0])) {

181 res = integral [0];

182 sdev = error [0];

183 chi = prob [0];

184 }
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185 printf("CUHRE used %d function calls in %d regions with fail=%d

\n",neval ,nregions ,fail);

186 if (fail > -1) {

187 printf("CUHRE returned (%G +/- %G) with p=%.3f\n", integral

[0], error[0], prob [0]);

188 }

189 if (!std:: isfinite(integral [0])) {

190 printf("CUHRE is being ignored\n");

191 }

192 printf("\n");

193 }

194 if (dim == 1 && 1) { //set to 1 to try QAG

195 printf("QAG algorithm used in %d dimension to evaluate F%d\n",

dim ,fNum);

196 gslw = gsl_integration_workspace_alloc(CUmaxevals); //this should
limit the runtime of QAG

197 gslF.function = &gslevaluator;

198 gslF.params = (void*) fxn;

199 gsl_integration_qag (&gslF , //function to call
200 0, 1, //limits of integration
201 1E-6, //epsabs replaced because QAG doesn’t like failure
202 epsrel ,

203 CUmaxevals , QAGkey , gslw ,

204 &integral [0], //OUTPUT result of the integral
205 &error [0]); //OUTPUT error estimate for integral
206 res = integral [0];

207 sdev = error [0];

208 chi = 0; //hopefully QAG is “never wrong”
209 printf("QAG used ?? function calls in %d regions\n" ,0,(int)(

gslw ->size));

210 gsl_integration_workspace_free(gslw);

211 printf("QAG returned (%G +/- %G)\n", res , sdev);

212 printf("\n");

213 }

214 return res;

215 }

217 int main() {

218 int n;

219 double res [242], sig [242], chi [242];

220 double tacprofile , eomtac , eomPsiL , eomPsir , kineticaction ,

cubicaction;

222 gsl_set_error_handler (& gsl_error_printer);

224 tacprofile = CubeInt(1, F1, 1, res[0], sig[0], chi [0]) + F2();

225 tacprofile = CubeInt(1, F3, 3, res[2], sig[2], chi [2]) + F4();

226 tacprofile = CubeInt(1, F5, 5, res[4], sig[4], chi [4]);

227 printf("beta [2,0] = (%G+/-%G) + (%G+/-%G)CL^1 + (%G+/-%G)C1^1 + (%G

+/-%G)C0^1\n",res [0]+F2(),sig[0],res [2]+F4(),sig [2] ,0. ,0. ,0. ,0.)

;

216



B.2. Sample C++ Program

228 printf("beta [2,2] = (%G+/-%G) + (%G+/-%G)CL^1 + (%G+/-%G)C1^1 + (%G

+/-%G)C0^1\n",res[4],sig [4] ,0. ,0. ,0. ,0. ,0. ,0.);

230 printf("\n------------------------------\n");

231 return 0;

232 }
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