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Abstract

Quantum machine learning researchers often rely on incorporating tensor networks (TN) into deep neural networks (DNN) and
variational optimization. However, the standard optimization techniques used for training the contracted trainable weights
of each model layer suffer from the correlations and entanglement structure between the model parameters in classical
implementations. To address this issue, a multi-layer design of a tensor ring optimized variational quantum learning classifier
(Quan-TR) comprising cascading entangling gates replacing the fully connected (dense) layers of a TN is proposed, and it is
referred to as tensor ring optimized quantum-enhanced tensor neural networks (TR-QNet). TR-QNet parameters are optimized
using the stochastic gradient descent algorithm on qubit measurements. The proposed TR-QNet is evaluated on three distinct
datasets, namely Iris, MNIST, and CIFAR-10, to demonstrate the enhanced precision achieved for binary classification. In
quantum simulations, the proposed TR-QNet achieves promising precision of 94.5%, 86.16%, and 83.54% on the Iris, MNIST,
and CIFAR-10 datasets. Benchmark studies have been conducted on state-of-the-art quantum and classical implementations
of TN models to show the efficacy of the proposed TR-QNet. Moreover, the scalability of TR-QNet highlights its potential
for exhibiting in deep learning applications on a large scale. The PyTorch implementation of TR-QNet is available on Github

https://github.com/konar1987/TR-QNet/.

Keywords Quantum computing - Tensor networks - IBM quantum computer - Qubit

1 Introduction

Deep learning is a very effective and widely used machine
learning method, which has shown remarkable performance
in various tasks, including recognition, classification, regres-
sion, and clustering (Lathuiliére et al. 2020; Li et al. 2019; He
et al. 2016; Peng et al. 2020). Recent years have witnessed
the exploitation of quantum machine learning (Biamonte
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etal. 2017), anew computational paradigm that blends quan-
tum computing and machine learning. It employs quantum
parallelism and non-classical connections, such as quantum
entanglement, to possibly speed up or revolutionize exist-
ing classical algorithms (Arute et al. 2019). Notably, the
convergence of these disciplines can result in synergistic
improvements and new views on a wide range of difficult
challenges (Xiao et al. 2022). Combining physics principles
and classical machine learning approaches has shown sig-
nificant promise in tackling quantum computing issues (Qiu
et al. 2022). The researchers demonstrated that the trainable
weights of neural networks strongly correlate with many-
body wave functions (Gutiérrez and Mendl 2022; Pescia et al.
2022). Furthermore, ideas for identifying phase transitions
in quantum many-body systems using fully connected neural
networks (FCNN) and convolutional neural networks (CNN)
have been examined, with encouraging results (Carrasquilla
and Melko 2017; Rem et al. 2019; Zhang et al. 2019).

Deep neural networks (DNN) have extremely high spatial
and temporal complexity levels owing to densely stacked
layers containing large-scale matrix multiplications. Hence,
DNN often suffers from a long training time, which requires
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considerable memory to infer. Furthermore, substantial
weight redundancy in DNN has been demonstrated (Zeiler
and Fergus 2014), demonstrating the possibility of condens-
ing DNN while preserving performance. As aresult, a variety
of compression approaches have been devised, including
pruning (Molchanov et al. 2019), quantization (Yang et al.
2019), and low-rank decomposition (Pan et al. 2019). Apply-
ing tensor networks (TN) to DNN to generate tensor neural
networks (TNN) is one of them since TNN retains outstand-
ing potential to approximate original weights with fewer
parameters (Panagakis et al. 2021), particularly involving
reconstruction of convolutional and fully connected layers
using arange of tensor decomposition (TD) formats (Hayashi
et al. 2019). However, the scalability of DNN is hindered
when a substantial number of neurons are taken into account,
thereby restricting the feasible number of layers. This is pri-
marily due to the time-consuming training process and the
need for a lot of memory to store the large-weight matrices.
The accuracy and effectiveness of the DNN model will suf-
fer with an increase in the hidden layers if the parameters
for such large-weight matrices are not optimized. Therefore,
decreasing the number of model parameters is imperative to
maintain accuracy. However, the present hardware used to
train neural networks significantly restricts their scale and
usefulness. These concerns have gained significance due to
the imminent approach of physical limitations to impede the
progress of performance enhancements in deep classical neu-
ral networks.

In contemporary times, a correlation has been established
between TN and FCNN, by which the former serves as an
effective ansatz for representing quantum many-body wave
functions (Verstraete et al. 2008; Oris 2014). As aresult, it is
possible to substitute TN for these weights and rely on vari-
ational optimization techniques to train them (Stoudenmire
and Schwab 2016). In recent times, a multitude of efficient
TN-based algorithms for classification (Convy and Whaley
2022), anomaly detection (Fanaee-T and Gama 2016; Li
et al. 2011), segmentation (Konar et al. 2024), and cluster-
ing (Stoudenmire 2018) have been proposed. In addition to
their capacity for effective expression, TN offers streamlined
methodologies to compress data through tensor factorization
techniques (Panagakis et al. 2021; Bahri et al. 2019). For
example, it is possible to significantly reduce the number
of parameters in neural network models by retaining only
the most significant degrees of freedom and discarding those
that exhibit lower correlations. TNN (Konar et al. 2024) and
variational tensor deep neural networks (Hayashi et al. 2019;
Phan et al. 2020) are instances of neural networks that rely
on the structures of the tensor network to replace the weight
tensors of the hidden layers. This is achieved by apply-
ing singular value decomposition (SVD) methods. Recent
research studies have validated that TNN exhibits superior
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performance and precision despite having a limited parame-
ter space compared to conventional artificial neural networks
(ANN) (Panagakis et al. 2021; Novikov et al. 2015). The
low-rank tensor approximation has been extensively studied
in the literature for effective model reduction, low genera-
tive error, and high prediction speed (Peddireddy et al. 2023;
Wang et al. 2018; Song et al. 2020).

Recently, quantum neural networks (QNN) have emerged
as a potential contender to circumvent problems and facili-
tate the training of DNN (Konar et al. 2016; Zhao and Gao
2021; Rebentrost et al. 2018; Konar et al. 2020; Li et al. 2020;
Konar et al. 2022a, b; Cerezo et al. 2021; Abbas et al. 2021;
Beeretal. 2020). Quantum states are mathematical entities of
quantum systems compatible with higher-order tensors (Orts
2019). Thus, traditional computers may use TNN as simu-
lators to emulate genuine quantum circuits (Pan and Zhang
2022; Huggins et al. 2019). Some particular TNN can be real-
ized on compact, near-term quantum devices using quantum
computing’s parallelism (Cohen and Shashua 2016). Rather
than the more broad paradigm of TN-based quantum cir-
cuit modeling, quantum circuit simulation on TNN focuses
on the functions of TN as bridges between traditional ANN
and QNN. The authors recently proposed a similar tensor
ring parameterized variational quantum circuit (TR-VQC)
(Peddireddy et al. 2023). However, TR-VQC suffers from
directly reduced input features due to a few available qubits
and the limited entanglement between the parameters, result-
ing in barren plateaus (McClean et al. 2018).

1.1 Motivation

Most contemporary advances in tensor neural networks
(TNN) involve tensorization solely at the level of hidden
layers about trainable weights (Kossaifi et al. 2017; Hayashi
et al. 2019; Phan et al. 2020; Huang et al. 2021; Jahromi and
Orus 2023). Training a model typically involves optimizing
each layer’s contracted trainable weights using established
optimization techniques like gradient descent (Konar et al.
2024; Wang et al. 2018). The outcome of this is an adapt-
able architecture for TNN that can be effectively trained for
a substantial number of neurons and layers. Furthermore,
in TNN, the standard optimization techniques used to train
the contracted trainable weights of each model layer suffer
from correlations and the structure of entanglement between
model parameters in classical implementations. To address
this issue, a multi-layer design of a tensor ring optimized
variable quantum learning classifier (Quan-TR) is proposed
comprising cascading entangling gates that replace the fully
connected (dense) layers of a TN. The variational algorithm
employs a method of local gradient descent, incorporating
tensor gradients. This motivates us to propose hybrid TNN
models incorporating both the tensor and quantum layers.
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The training algorithm used in our study offers valuable
insight into the entanglement structure of trainable weights
for fully connected layers of TNN. Nevertheless, it helps to
clarify the expressive power of a quantum neural state.

1.2 Primary contributions and novelty

Considering the neural network’s entanglement structure, a
novel multi-layer design of a tensor ring-optimized varia-
tional quantum learning classifier (Quan-TR) with cascading
entanglement gates is introduced in the proposed hybrid
quantum-enhanced TNN model (TR-QNet). Furthermore,
the accuracy and efficiency of our TR-QNet model are evalu-
ated using numerical data and image classification on various
datasets. The present study exhibits a tripartite novelty, sum-
marized as follows:

1. Our study presents for the first time a novel tensor-ring
approximated quantum-enhanced tensor neural network
(TR-QNet) comprising classical tensor layers followed
by TR-approximated quantum layers for data and image
classification. The proposed TR-QNet incorporates the
novel multi-layer design of Quan-TR, replacing the fully
connected Soft-max layers in TNN, distinguishing it from
the state-of-the-art TN models (Hayashi et al. 2019; Phan
et al. 2020; Huang et al. 2021; Jahromi and Orus 2023).

2. In addition, the quantum layers (Quan-TR) of the pro-
posed TR-QNet model incorporate a cascading of quan-
tum entangling gates, leading to the elimination of barren
plateaus. This is demonstrated by the convergence of the
training loss of the proposed TR-QNet model.

3. Compared with the classical TN model, the binary
class classification accuracy of TR-QNet is improved
by 10.53%, 7.28%, and 12% on the Iris (Fisher 1936),
MNIST (LeCun et al. 1998), and CIFAR-10 (Krizhevsky
etal. 2012) datasets, respectively. This approach presents
a distinctive and innovative effort towards expedit-
ing advancements in resolving computer vision issues
through deep quantum learning.

The subsequent sections of this manuscript are organized
as follows: The basic notations of TN are introduced
in Section 2. Section 3 explains the proposed quantum-
enhanced tensor neural network architecture, which includes
an overview of classical TNN and tensor ring optimized
variational quantum circuit (Quan-TR). Section 4 contains
the datasets, simulation settings, and simulation results.
Section 5 elucidates the efficacy of the TR-QNet model and
underscores its constraints. Finally, the concluding remarks
and future research directions are discussed in Section 6.
Appendix section provides the convergence of the proposed
TR-QNet.

2 Tensor networks: notations and definitions

Tensor networks are a series of tensor factorization mod-
els that use several sparsely linked lower-order tensors,
such as the TT decomposition (Oseledets 2011; Dian et al.
2019), TR decomposition (Asante-Mensah1 et al. 2021; Yuan
et al. 2020; Yu et al. 2021), and the Hierarchical Tucker
(HT) decomposition (Uschmajew and Vandereycken 2013;
Grasedyck and Hackbusch 2011), to represent a high-order
tensor. The topics most pertinent to this article, TR decom-
position and the contraction operator, are briefly introduced
in the following subsections.

2.1 Tensor ring

The circular multi-linear product over a succession of third-
order core tensors, as shown in Fig. 1, is defined as follows:

Tr (]‘[ X<u>xvxv+l>

v=1

T(1,y2, Y1)

Ly, L

-y HX(U»UM.

X1, xf—lvl

= Z XMy X (@i (D

cxr=1

where X (v) € REv<LorixTu 4 e [7] and Liv1 = L.
The TR decomposition expresses a /" order tensor 7 €
RZ<*Ze (Qju et al. 2022).

Using 7 tensors, each with bond dimension B, indicated
by X (v), the parameterization of the tensor ring describes a
quantum state |y) as follows Wang et al. (2018):

Z >

L ye=0x1,- ,x=1

"X(T)xrx1|ylv"'yr) @

h”) = X(l)xlxzx(z)xzm

The physical indices y, € {0, 1} span the 27 -dimensional
Hilbert space, while the bond indices x,, € {1, - - - B,,} control
the maximum amount of entanglement captured by the tensor
ring, also known as tensor rank.

2.2 Tensor ring contraction
Tensor ring (TR) contraction, or the multi-linear product, is a
basic operation in the TR decomposition process represented

by alinked edge connecting two nodes. More specifically, the
contraction of two TR-cores, X' (v) and X' (v+ 1), with a size
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Fig.1 Illustration of tensor ring (TR) structure

Xy+1 common mode, may be computed using Yuetal. (2021)
as follows:

£v+l
Qv+ Dxthy = D X X+ Dillx,

Xy41=1

3

where Q is the contracted tensors of X'(v) and X' (v + 1).

Similarly, the contraction of three TR cores, X' (v — 1),
X (v), and X (v + 1), with common modes x,, and x,41,
may be computed as follows:

Qv — Lv, v+ Dy
vaﬁv+l

— Z X(U _ 1))’1}71 X(U) X(U + 1))’v+1

- Xy—1Xy XuXu+1 Xu+1Xv42
Xy, Xy1=1

“

Moreover, TR-core contraction along common modes x, X7,
, X7 can also depict TR decomposition as follows:

o) =Q(1L2, - g

—ZZMMW~

v=1 x,=1

, X (1) xex

}:meww )

xp=1v=I1

T(y1, y2, -

Xy

Xu+12

Three states, namely super-critical (Z, < £,L,+1), critical
(Zy = Ly Ly+1), and sub-critical (Z, > L,L,+1), can be
distinguished via TR decomposition. The full Tucker rank
tensor data have critical or supercritical TR states (Qiu et al.
2022).

@ Springer

Definition 2.1 (Canonical mode-v unfolding of a tensor
7T Kolda and Bader 2009) Suppose 7 € RZ1<*Zr jg g 7th-
order tensor. Its canonical mode-v unfolding is represented
as Ju) € RZ Xz T , matrixed the tensor 7 by placing
the v’ mode in the rows of the matrix and the other modes
in the columns, keeping the original order as follows:

) X7)

(6)

%(xuv-xlv-x2s sy Xu—1Xu4l, 9xf)=T(-xlv-x21 e

X =x1+ (xo — DI + (x3 — D111 +

where X7, x3, - - -,
o+ (e = DIy, ,Zr—1and xy, € [Z,], v € [T].

Definition 2.2 (First-v mode unfolding of a tensor 7
Oseledets 2011) Suppose 7 € RZ < *Ie s a t'"-order
tensor. Its first-u mode unfolding is represented as 7, €

RIT=1ZixTTi=011Z) a6 follows:

‘%('xlax27 tte 7-xU7-xU+17 e ,Xr)
v—1
=x1+ - DI+ - DOh+-+ - D[] %
i=1
+xp41 + (Xp42 — I)IU-H + (Xp43 — I)IU+IIU+2
T—1
toot =D [] Zi=T@ x5 (D)
j=v+1

Definition 2.3 (Twofold unfolding: left and right Holtz et al.
2012) Assuming 73y € REv*Lo+1xLu (o be a third-order
tensor, the matrix resulting from assigning row indices to the
first two modes and column indices to the third modes is the
left unfolding.

c R(Ev XZTy)x Ly+1 (8)

L(T) = T3]
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Similarly, right unfolding is defined as follows:

R(T) =T € RELv*x@vxLyt1) 9)

Definition 2.4 (Circular Mode Unfolding Yuan et al. 2020)
Suppose 7 € RZ1<*Tr s a t'"_order tensor. Its circular
mode-(v, i) unfolding is a matrix designated as J, ;) €
Rﬂ}f;'ﬂ LixTj=vZi gpd

+i—1, ifv+i<r
r=1""" l. (10)
v+i—1—1, otherwise.
Also,
i)y Fr 1, X2, Xo—1, X, X)) = T (x1, X2, -+, X7)
i indexes
(I

Lemma 2.5 Full-Tucker-rank tensor data have critical or
supercritical TR approximated quantum states.

Proof of Lemma 2.5: Considering a given t/"-order ten-
sor, 7 € RZ1<xTr with TR decomposition as follows:
Ty, y2, 5 ye) = TREX(Diix, -+ X (Dxin).

If7Z, > L,Ly+1,SVD is performed on a resultant tensor
Q and onreshaping itas (y], X x,) X (yl/JJrl X Xy+1) as follows:

!
YuYu+i i Yu+1
SVDQ, v+ Dyxi,) = § Vioxpr1Sxonn Mo 1212
Xy

12)

where V and M comprise orthogonal vectors, and Sy, .,
is composed of singular values of matrix Q. The resultant
matrix is called S’y . We then trim the S, matrix to retain
just the N biggest singular values out of 2N. The sole rea-
son for truncating V and M is to preserve the orthogonal
vectors corresponding to the N biggest singular values. We
can reconstruct the core tensors using a canonical mode-2
folding operation fold, (.) (Qiu et al. 2022) as follows:

Yo
Q(U)))C)ZXU+1 = fOle(vaxu+18/xU+1) (13)
Here, Q(v) € REv*LoLorixLutt o e [1].
v, Yy
If y, < LyLyg1, letus assume MT e = LT -

Consequently, one can write each core tensor equivalently as
follows:

v v y:)
X(U);)Y/UXU+] = Q(U).;U)CU+1 X2 Mxvi:xv+2a v € [7]. (14)

and 7'(y1, y2, -+, y) = TRQ(Dx1xys -+ Qi) €
RPvxDuxDr Here, Dy, = L, Log1 if LoLot1 < Ly; Ly
otherwise. Also,

T Y2 y0) =T 1, y2, -+ 5 ye) X1 My,
X MLy, (15)

Since the factor matrix Qiﬁﬂxv ., represents the identity
matrix, the tensor data with a supercritical or critical quantum
state estimated by TR is a full Tucker rank tensor.

3 Quantum-enhanced tensor neural network
architecture

The TR-QNet model is a novel proposed framework that
combines classical TN and quantum layers (Quan-TR) with
tensor ring-parameterized inputs and cascading of entangling
gates. Our hybrid TR-QNet model exhibits a relationship
between the TNN and VQC frameworks optimized by a TR
structure, as shown in Fig. 2, allowing the full input fea-
tures to be fed through TNN layers with minimal loss of
information. Our TR-QNet model architecture incorporates
a TNN with multiple hidden layers. It introduces a multi-layer
tensor-ring optimized variational quantum learning classifier
with cascading entangling gates to efficiently address quan-
tum entanglement among model parameters. This approach
replaces the conventional soft-max layer typically employed
at the end of TNN models. A classical pooling layer is incor-
porated in integrating the TNN model and Quan-TR of the
proposed TR-QNet architecture to match the dimension of
the input of TNN and the input of Quan-TR.

The VQC-based training algorithm resembling DMRG
(White 1992) enables a straight-forward entanglement of the
entanglement spectrum of the MPO’s (Panagakis et al. 2021)
trainable weights, thereby facilitating a lucid comprehension
of the correlations within the parameters of our TR-QNet
model. One can evaluate the MPOs’ entanglement struc-
ture and capacity as a quantum neural state through standard
quantum information measures.

3.1 Tensor neural networks

A tensor neural network (TNN) is obtained after the ten-
sorization of an ANN, enabling it to align with the size and
dimensions of MPO weights (Verstraete et al. 2008; Orts
2014). The hidden layers of the proposed TR-QNet model can
be reshaped into a rank-dr tensor, possessing a dimension of
Nr, which can subsequently be contracted to form a TN

@ Springer
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(f) 2-layer Tensor Ring optimized variational Quantum learning classifier (Quan-TR)

Fig. 2 A tensor ring optimized quantum-enhanced tensor neural net-
work (TR-QNet) architecture with 4-qubits Quan-TR for tensorizing an
a ANN with two hidden layers and two fully connected dense layers.
The network prediction, yy, is derived by feeding the model the input
feature vectoraas yy = o W?e W'e WOa+wg)+w)+ws), where
wo, wi, wy are bias vectors, and o is the ReLU activation function; b
the ANN’s TN representation using matrix product states (MPS) and
matrix product operators (MPO); ¢ the resulting TNN with MPO train-
able weights; d MPO decomposition of the weight matrix JV performing
singular value decomposition (SVD) and truncating the inconsequen-

layer. This TN layer comprises six matrix product operators
(MPO) (Panagakis et al. 2021) weights, each having an input
size of m. Features that cannot be factored to align with
MPOs in the TN layers are transformed during the prepro-
cessing stage of the training TNN to conform to the input
size of the TN layer. A dense, non-trainable layer is added
as a connecting layer preceding the tensor ring optimized
variational quantum learning classifier (Quan-TR) layer to
address the issue of reduction in the size of input data in the
classical TNN model. The length of the input feature vector of
Quan-TR is denoted by N, while the output size of the con-
tracted TNN layer is represented by ;. The contraction of
two rank-2 tensors, S;; and Vjy, can be represented schemat-
ically by connecting the two tensors along their shared index

@ Springer

tial singular values includes MPO factorization for a matrix W,,3,,,3
followed by reshaping VV into a rank-6 tensor and using a suitable SVD,
matrix YV may be represented as a 3-site MPO; e 2-layer TNN tensoriz-
ing the ANN using part b, ¢, and d; and f low-rank Quan-TR component
employed in this proposed TR-QNet has three parts: TR encoding (X),
variational learning parameters, and quantum measurement. The cas-
cading CNOT gates are preserved through the TR approximation relying
on SVD. Ry (w) and R;(w) are used for data encoding and measure-
ments

Jj. Mathematically, the contraction operation is described as
follows:

Tk = TR(S;j Vi) = Y _ SijVik (16)
J

Here, Tr designates the trace over shared indices j.

A viable approach to intelligent data compression tech-
niques that rely on TN and MPO decomposition to enhance
the representation of weight matrices involves substituting
weights with MPOs. The MPO form of the weight matrix of
a hidden layer can be derived from the JV matrix by applying
SVD consecutively, as demonstrated in Fig. 2. The TN layers
comprise a set of trainable weights denoted w; represented
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by MPO. A bond tensor B; ;1 is obtained by contracting a
pair of neighboring MPO tensors w; and w1, along their
shared virtual dimension. Adjusting the input feature vector
« to align with the dimensions of the MPO allows the network
output O7p to be derived through contraction of the result-
ing tensor network. The activation function oty is applied
to the result of a tensor contraction operation (Jahromi and
Orus 2023) as follows:

Ory =orn(Tr(oy, aj, , - wi, wj, W, -+ +) + wp)
(17)

The tensor contraction operation between the input tensor
« and the weight tensor w and i, j, k, represents the tensor
indices. It may be noted that the activation function o7y is
applied element-wise to the matrix obtained from the tensor
contraction, and it cannot be directly applied to individual
MPO tensors separately due to the non-linearity introduced
by the activation function. In the proposed TR-QNet, one
approach involves contracting the features and tensor net-
work layers (MPOs) before applying the activation function
and reshaping the resulting tensor to match the inputs of the
next layer. This process is repeated until the entire TNN net-
work is contracted.

The concept of a TN layer involves using tensorization
to adapt feature vectors to match MPO weights. When the
feature vector can be factorized into integers, it allows for
reshaping into a tensor that matches the dimensions required
by the MPO weights, facilitating the creation of a TN layer
with the appropriate input sizes. An illustration of a feature
vector o with 64 entries is depicted in Fig. 2, showcasing its
potential to be transformed into a rank-3 tensor each with a
dimension of 4 that can be contracted to a TN layer with
3 MPO weights, each with an input size of 4. This pro-
cess aligns the feature vector with the requirements of the
TN layers, enabling seamless integration within the network
architecture. In cases where features are not directly factor-
izable to align with the MPOs, preprocessing steps have been
employed to adjust their sizes to match the TN layer input
requirements. We introduce a non-trainable dense layer with
dimensions Nr x N7 preceding the TNN. Here, Np repre-
sents the size of the feature vector, while N7 corresponds to
the input size required by the contracted TN layers. By incor-
porating this dummy dense layer, the network can effectively
compensate for any size mismatch, ensuring compatibility
and smooth operation within the TR-QNet model architec-
ture.

3.2 Tensor ring optimized variational quantum
learning classifier

The proposed TR-optimized variational quantum learning
classifier (Quan-TR) with TNN is a hybrid classical-quantum

algorithm combining tensor network elements and varia-
tional quantum circuits for data and image classification. The
proposed Quan-TR introduces a multi-layer TR-optimized
variational quantum learning classifier with cascading entan-
gling gates to address quantum entanglement among model
parameters efficiently, which is the primary distinction with
our previously published TR-VQC (Peddireddy et al. 2023).
The proposed Quan-TR framework consists of three main
components: TR encoding, variational learning parameters,
and measurement. TR encoding represents the quantum
states in a compressed format. It leverages the TR structure, a
TN with a specific hierarchical ring-like connectivity pattern.
The TR approximation uses SVD to compress the quantum
states while preserving important features. This approxima-
tion allows for efficient representation and manipulation of
quantum states within Quan-TR, as shown in Fig. 3. In the
proposed Quan-TR, single-qubit rotation gates R (w) and
R.(w) are used to represent rotations along the Y and Z
axes, respectively. These rotation angles (w) are learned dur-
ing training to find optimal values that minimize the objective
function. By combining TR encoding with variational learn-
ing parameters and measurement, the proposed TR-QNet
architecture enables the training of quantum circuits for
data and image classification. Within the proposed Quan-TR
framework, using 7 tensors, each with bond dimension B,
indicated by X' (v), the tensor-ring approximation describes
a quantum state |[y) as follows Wang et al. (2018):

W)= Y D XMXnXQky - XX 1, ye)
V1 yr X1 X
(18)

Here, the 27-dimensional Hilbert space is spanned by the
physical indices y,, € {0, 1}, and the maximum amount of
entanglement recorded by Quan-TR is controlled by the bond
indices x,, € {1, ---By}. The entanglement captured by a
tensor ring is controlled by the parameter (53,,). Allowing B,
increases enables the TR to capture more information about
the quantum state, although at a computational cost. When
designing the training algorithm, B, is a critical hyperpa-
rameter choice along with parameters such as batch size and
learning rate. We assume for all v, B, = B, reducing the
number of hyperparameters following Wang et al. (2018).
This bond dimension is called the tensor ring rank.

The parameterization of the tensor ring of a 4-qubit state is
illustrated in Fig. 2. In Quan-TR, each X' (v) in TR represents
a tensor of dimension B x B x D, signifying the connections
between the tensors in the tensor ring. The tensor, X' (v), has
three indices, two of which have a bond dimension B, and
the third index has a dimension D. Subsequently, the input
characteristics are encoded through the utilization of single-
qubit rotation gates (R (w)), which preserve the tensor ring
configuration. The fundamental element of the parametrized
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ZFwo+1)

Fig.3 The initial tensor X'(v) is contracted with the unitary rotation matrix . The common bond index is contracted between X'(v) and X' (v +1)
to apply a two-qubit controlled rotation operation. SVD is applied on the resultant tensor Z” after reshaping it as (Z, x £,) x (Z,, 11 X Lot1)

circuit in every layer of the proposed Quan-TR model is the
cascading entanglement of qubits, which is subsequently fol-
lowed by parametrized single-qubit rotations. The two-qubit
gates, such as the CNOT gate, do not preserve the TR rep-
resentation. An approximation technique based on singular
value thresholding (SVD) addresses this issue at this gate.
The TR structure facilitates the computation of 2-qubit gates
for adjacent qubits. A CNOT operation from the ultimate
qubit to the initial qubit becomes feasible by employing a
cascading configuration of the tensor ring. It should be noted
that using the TR format allows utilization of the same rank
B in each decomposition, which may not be feasible with
the conventional MPS format. Using this approximation, all
calculations for the forward pass exhibit linearity concerning
the number of gates.

We develop a universal TR-QNet model that uses the
intrinsic probabilistic behavior of qubit measurements to
classify images using a hybrid classical-quantum framework.
The aspects of the VQC learning framework regarding encod-
ing, variational, and measurement are accomplished within
the implementation of Quan-TR. The single-qubit rotation
gate, Ry (), encodes rotations along the ¥ axes in the encod-
ing section. Quantum bits (qubits) represent the input state
of Quan-TR in the proposed TR-QNet as

[ (w)) = (cos w|0) + sinw|1))|Orn) . (19)
In Quan-TR, the quantum states | (w)) correspond to the

quantum encoding of the classical inputs Oy from the clas-
sical layer of TNN. The proposed Quan-TR is dense and

@ Springer

constitutes parametrized single qubit gates with CNOT gates
to entangle quantum states from each qubit. To encode phase
information, the dressed quantum layer of TR-QNet uses the
rotation gates Ry and R;. Complementary quantum states
are created with the help of the CNOT gate. In the Bloch
sphere projection, the R (w) and R;(w) gates represent the
following single-qubit rotations about the Y and Z-axes,
respectively, as follows:

_ . | cosw/2 —sinw/2
Ry(@) =exp(=jYw/2) = |:sina)/2 cosw/2 j| (20)
and
R:(w) = exp(—jZw/2)

| exp(—jw/2) 0

- [ 0 exp(o/2)] b
The initial tensor X'(v) is contracted with the 2 x 2 unitary
rotation matrix Ry to accomplish the one-qubit rotation. The
rotated state of the v’/ qubit is represented by the resultant
tensor Q(v) as follows:

QW = Y RyX W),y (22)
Yu

Before conducting the two-qubit controlled rotation gate
operations, the tensor ring must be converted into an orthog-
onal form centered around the qubits of interest, v and
(v + 1) in the proposed TR-QNet. To build a new tensor,
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the common bond index is contracted between the tensors
X (v) and X' (v + 1) as follows:

U+I
Z Q(U)XUXU-H Q(U + 1)3);51})611-%—2

Xy41=1

Z(U, v+ 1))’U)’u+l _

XyXy+2 =
(23)

where Z is the contracted tensors of Q(v) and Q(v + 1).

We restructure the two-qubit controlled-NOT gate
(CN OT) into an operator acting on the joint state of qubits
v and (v + 1) to apply it to the two-qubit tensor derived from
Eq. 23.

Zou+ DI = Y CNOT@ v+ Dy
YuYu+1

xZ(v, v+ Dyt) (24)

We apply singular value decomposition (SVD) on the result-
ing tensor Z’ after reshaping it as (y], X x,,) X (yl’)Jrl X Xy41)
in the following manner:

v v y{/
2w v+ DI = S VO S M+ DL
Xu+1

(25)

In this context, ) and M consist of orthogonal vectors, while
Sy, is formed by the singular values of matrix Z’. The matrix
always has a total of 2N singular values, regardless of the
structure of the two-qubit gate. Here, N represents the bond
dimension of the tensor ring. After truncating the matrix Sy,
to retain only the N largest singular values, we refer to the
resulting matrix as S’y . V and M are truncated to retain only
the orthogonal vectors associated with the N largest singular
values and resultant matrices, and Q' (v) and Q'(v + 1) are
evaluated as follows:

Q (U)xeUJr] = VEU“XUHS’XU (26)
QW+ Dl = Ml 27)

The TR-approximation procedures are illustrated in Fig. 3
for better clarity and understanding.

The preprocessed data from the TNN layer, denoted as
OiT N> 18 transformed into a quantum state represented by
[¥(O% ). Subsequently, the quantum state undergoes pro-
cessing through Quan-TR with parameters U (w1, wy, - - - ,
wy). Finally, by performing measurements on particular
qubits using the Pauli-Z basis, we obtain a collection of
outputs denoted as A ; along with their corresponding proba-
bilities as follows:

Hij = (Y (O IU (@) 1) (0 [U@) [ (O ) (28)

where complete operation is U (w) is defined as

[ [th(@) = (@)1 (@4-1) -
i=1

Uw) = Ui (wr). (29)

The loss function, £(w), can be defined as follows consider-
ing the input quantum state as |O)fo

L(w) = f(yj(w),t;) =H(yj(w) #t))

N . .
= > LU0 (O U (@)0;U (@) (OF ) |0). 1)
J

(30)

where 6; € [A;)() ;| and ¢; correspond to a target output. To
train the proposed Quan-TR model, the gradient of the loss
function is evaluated as follows:

SL sut
9 (o O )e U@ (OL)0)
wj
SU
e N)w (@8] (“’)wo 7 )10y
3uj(a)j)

= Ol (O U (@)) - o

UL (@) U@ (OF,)]0)
SZ/{J' (a)j)

'HOWT(O;N)UT(CU)Q/Un(a)n) o
j

Uy (@)Y (04 )10)
= 01y (@) DU iy U6 ;U (@) (O ))10)
+(01y F(OF U (@)0, U [ =i WU (O )10)
31)

where Uj(w;) = e iwj V(@)

However, due to NISQ’s limitations, classical simulators
are now being utilized to optimize and update parameters
and feed them back to TNN and Quan-TR separately until
convergence conditions are reached. Hence, we have used the
cross-entropy loss to update the parameters. The loss function
(L,,) is derived with the hyper-parameters w of the proposed
TR-QNet model as

Ny ‘
argmin L) = Z[tj log f(OF\)
¢ j
(1 — 1)) log{l — F(OF O] . (32)

where f (OT N> @) can be defined for binary optimization
problem as follows:

I, lff(OTN,a))>0

(Ofy. 0) =
f©ry —1, otherwise

(33)
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The DMRG-like sweeping technique (White 1992) for train-
ing the TNN uses a stochastic gradient-based optimization
strategy in which a gradient descent step with a learning rate
updates the local bond tensors B; ;1 towards a global min-
imum of the loss function. To update the weights in TNN,
a gradient of the bond tensors concerning the loss, B; j11,
is obtained by defining f ((’)]T n) = T B, where T represents
the contraction of every tensor in the TNN other than the
bond tensor B.

3.3 Absence of barren plateaus in TR-QNet

To investigate the presence of barren plateaus within the TR-
QNet framework, it is essential to evaluate the variance of
the partial derivative of the empirical loss function.

S L(w)

, 34
o, (34)

8, L(w) =

where v, € w.
If there exists a barren plateau in the w,, direction, then

o E,[8,L(w)] =0and

e Var[§,L(w)] € O(c™V)¥Yc > 1 where E[-]and Var|[-]
are designated as expected value and variance over ran-
domly chosen parameters, respectively.

By randomly selecting parameters in TR-QNet, the proba-
bility of encountering a gradient magnitude §,L(w) > 7
can be exponentially influenced by the qubit count ;. This
relationship can be elucidated using Chebyshev’s inequal-
ity, showcasing the exponential variation in the probability
concerning the gradient magnitude threshold concerning the
qubit count (Cervero Martin et al. 2023) as follows:

< Var[§,L(w)]
nZ

(%)
co— (35)
n

For our local cost function for Quan-TR,

PllduLw) — Bl L(@)]] = n]

5, L
B8, L(@)]=Tr [p (‘;T(“’)u*(wm Py |U(w>>} ,

m
(36)

where p designates the initial state density matrix. The vari-
ance of the gradient for a local cost function can be expressed
as follows:

oWy 1)

Var[s, L@~ Y 1GIU @) U @) )
j=0

1
o—— 37
€ <poly(Nq)) &7
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Hence, it is indicated that the variance may vanish polyno-
mially with Quan-TR and the absence of a barren plateau.
However, in our Quan-TR framework, the utilization of
two-qubit CNOT gates with TR approximation leads to the
establishment of a barren plateau cost landscape, with excep-
tions in exponentially small regions around local minima as
shown in Fig. 4.

4 Results
4.1 Data sets

The Iris dataset (Fisher 1936) is often used as a benchmark to
evaluate the performance of different machine learning algo-
rithms. The Iris dataset contains a total of 150 samples, and
each sample has four features: sepal length, sepal width, petal
length, and petal width. We extracted three distinct binary
data sets from the original Iris dataset. We added 80% sam-
ples to each training subset and the remaining 20% samples
for each class as a test data set.

Researchers studying computer vision often rely on the
MNIST dataset (LeCun et al. 1998) as a benchmark for ANN.
The MNIST dataset has 70, 000 28 x 28 grayscale images
(60, 000 for training and 10, 000 for testing), divided into 10
classes and each containing 7000 images.

The CIFAR-10 (Krizhevsky et al. 2012) dataset comprises
a total of 60, 000 images in 10 categories (6000 for each
class), with 32 x 32 color images including 50, 000 training
images and 10, 000 test images. The tests, however, resize
and transform CIFAR-10 images into 28 x 28 times their
original size grey-scale images.

However, owing to the limited qubit available at the NISQ
processor, we perform binary classification jobs using this
batch of images with values O or 9; 1 or 8, 2 or 7, 3 or 6,
and 4 or 5 and multi-class classification with values 0, 1, or
9; 2,4, or 5; and 3, 6, or 7. We had to restrict our datasets
to two randomly selected classes in our investigations, since
the Qiskit quantum simulator only has access to a few qubits.

4.2 Simulation settings

We compute the mean and variance of the original input data
sets. The data sets are then normalized using the zero-mean
normalization procedure to have a zero-mean and unit vari-
ance before feeding into the TNN. The proposed TR-QNet
comprises TN layers with six trainable MPO tensors, and
a stochastic gradient-based algorithm has been employed to
train MPOs (Panagakis et al. 2021), relying on a DMRG-
like technique. Each MPO trainable weight on the TN layers
has virtual dimension ¥V = 4 (Jahromi and Orus 2023) and
a ReLU activation function. The last layer of Quan-TR in
the output chain is a dense layer with softmax activation,
which produces hot encoded vectors (OHE) and contains
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Fig.4 a Visualization of the
cost function landscape,
revealing large flat regions
indicative of barren plateaus. b %
The gradient variance decay as - \
the number of qubits increases,

demonstrating the expected
exponential suppression 15

Value

1072

Barren Plateau Landscape in TR-QNet

Gradient Variance vs. Number of Qubits

Variance O(1/poly(Nq))
-m- Probability Bound O(c~"/n?)

—e— Barren Plateau (Exponential Decay)
—a— Quan-TR (Polynomial Decay)

Gradient Variance

10-%

2 4 6

Number of Qubits (Ng)

(a)

the predicted probabilities for the desired number of labels.
The prior tensor gradient technique is appropriate for TNN
models fully composed of TN layers. However, it is neither
effective nor adaptable in hybrid architectures that combine
TN layers and VQC models.

We used automated differentiation techniques (Baydin
et al. 2018) and a classical back-propagation algorithm to
determine the gradient of TNN trainable weights, as our TR-
QNet is a feedforward hybrid neural network that combines
TN and quantum layers. We have used the TensorLy-Torch
library to compute the automatic differentiation of TN layers
in PyTorch settings. However, being a hybrid classical-
quantum framework, the classical TNN model is simulated
on the Qiskit simulator. The weights of the TN layers are
updated using a layer-by-layer approach. The intermediate
dense layer has merely been included to compensate for the
size mismatch between the features in the last TN layer and
Quan-TR, and it is not trainable. We set the initial qubit state
as [00 - - - 0), which is later transformed into a TR represen-
tation since X(v) € RB*B*2 tensor with only (0,0, 0)""
element as 1 and the rest as 0's. Our Quan-TR is repeated
r times to illustrate the depth of Quan-TR. The tensor ring
rank in Quan-TR is set to B = 4 for all tests. This rank serves
as a pivotal hyperparameter choice in TR decompositions,
impacting the compressibility, flexibility, and robustness of
the model. Qiskit simulations have been carried out using the
varying numbers of qubits (4, 6, 8, 10, 12) and the number of
TN and Quan-TR layers on an Nvidia Tesla V100 — SX M2
GPU Cluster with 32 GB of memory and 640 tensor cores
with 8 cores of Intel(R) Xeon(R) CPU E5-2683 v4@2.1GHz.

In the Iris data classification, TR-QNet model architecture
involves utilizing TN layers alongside a non-trainable dense
layer and TR-QNet to facilitate the classification of Iris data
points. The TN layers comprise 64 input entries with 3 MPO
trainable weights, each with input and output dimensions
d = 4, virtual dimension V = 4 (Jahromi and Orus 2023),
and ReLU activation function. Our Quan-TR is provided with
the four input feature vectors (N, = 4) for training from the
previous TNN layer with batch size 4.

8

10 12 14 2 4 6 8 10 12 14
Number of Qubits (V)

(b)

In the case of image classification, 784 input features
(28 x 28) from the input images are received at the input
layer of the proposed TR-QNet. The TN layers comprise 64
input entries with 6 MPO trainable weights, each with input
and output dimensions d = 2, virtual dimension V = 4, and
ReLU activation function. With a maximum of 25 epochs,
Quan-TR layers of the proposed TR-QNet model are rig-
orously trained using the Adam optimizer with an initial
learning rate of 0.01 and weight decay (8) of 0. Figures 5
and 6 show the convergence of loss during training of the
proposed TR-QNet model varying the number of qubits and
the TN and Quan-TR layers with 5-fold cross-validation. We
chose three measures at random to represent the three classes
of the dataset out of the 2* available measurements acquired
from Quan-TR. To further transform selected measurements
into class probabilities, we employ the sigmoid activation
function (Softmax) and the cross-entropy loss function as
given in Eq. Al. However, in the case of the MNIST and
CIFAR-10 datasets, for binary classification, we choose the
final measurements |00 - --0) and |11 - - - 1) as output values
and batch size 32, where multiple readouts must feed the
results to TR-QNet.

4.3 Simulation results

Numerical simulations have been conducted using large sets
of Iris (Fisher 1936), MNIST (LeCun et al. 1998), and
CIFAR-10 (Krizhevsky et al. 2012) data sets with varying
numbers of qubit counts 4, 6, 8, 10, and 12 and TR ranks
(B) of 2, 3, and 4 as provided in Table 1. However, it has
been found from the simulation data for the Iris dataset that
the optimal result is found for 4 qubits Quan-TR model with
tensor ring rank of 4 as reported in Table 1. In addition, to
justify the introduction of the tensor ring (TR) in VQC, we
have performed an ablation study on the proposed TR-QNet
without the TR component and replacing variational Quan-
TR by classical fully connected (FC) layers and referred to as
TN-FC as provided in Table 2. The ablation study has been
performed with varying numbers of qubit counts 4, 6, and
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Fig.5 TR-QNet training loss is
reported on a 4 qubits systems
with varying layers of TNN and
Quan-TR layers for randomly
selected binary classes a 1 or 2,
b2or3,and c 1 or 3, d varying
with qubits (4, 6, 8, 10, and 12)
on Iris dataset (Fisher 1936)

Fig.6 TR-QNet training loss is
reported with varying layers of
TNN (1 and 2) and Quan-TR
layers varying with qubits

(4, 6, 8, and 10) for randomly
selected binary classes on a
MNIST (LeCun et al. 1998) and
b CIFAR-10 (Krizhevsky et al.
2012)

Table 1 Comparative analysis
of the proposed 2-2 layers
TR-QNet with varying number
of qubits and tensor ranks (5)
on Iris dataset
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Table 2 Mean accuracy of the proposed TR-QNet, QNet (without TR approximation), and TN-FC

Model Qubits  Iris MNIST CIFAR-10
1-2 2-3 1-3 0-9 1-8 2-7 3-6 4-5 0-9 1-8 2-7 3-6 4-5
TR-QNet 4 0941 0939 0955 0.817 0.828 0.869 0.850 0.809 0.758 0.803 0.747 0.798  0.771
6 0.882 0.865 0.880 0.828 0.836 0891 0.863 0.870 0819 0.849 0.833 0857 0.809
8 0.787 0.780 0.788  0.667 0.684 0.669 0.650 0.671 0.658 0.603 0.647 0.618 0.624
QNet 4 0928 0925 0915 0.801 0.803 0.819 0.813 0.798 0.739 0.789 0.713  0.772  0.755
6 0.869 0.851 0.856 0.802 0.812 0.839 0.823 0.843 0.801 0.813 0.803 0.819 0.798
8 0.769 0.754 0.771  0.647 0.663 0.628 0.623 0.645 0.634 0.588 0.612 0.601  0.607
TN-FC N/A 0.809 0.811 0.815 0.765 0.750 0.788 0.746  0.741 0.687 0.679 0.711  0.709  0.697

8, and it has been observed that optimal accuracy has been
achieved for class 2 or 3 in most cases of the Iris dataset. Our
TR-QNet achieves promising accuracy of 94.5%, 86.16%,
and 83.54% with 4 qubits on the Iris and with 6 qubits
on the MNIST and CIFAR-10 datasets, respectively. It is
noteworthy that the proposed TR-QNet and its quantum and
classical counterparts, namely, variational quantum tensor
networks classifier (VQTN) (Huang et al. 2021), quantum
convolutional neural networks (QCNN) (Cong et al. 2019),
tensor ring parametrized variational quantum circuit (TR-
VQC) (Peddireddy et al. 2023), fully classically simulated
variational tensor neural network (VTNN) (Jahromi and Orus
2023), and its classical counterpart TN-FC are trained on the
binary and ternary pair of classes from the datasets. How-
ever, only two hidden layers are used in each network model
to benchmark the simulations without any model bias.

To illustrate the resilience of the proposed model over
the quantum counterpart and the models based on classical
tensor neural networks, unforeseen test images are used for
evaluation in the Iris (Fisher 1936), MNIST (LeCun et al.
1998), and CIFAR-10 (Krizhevsky et al. 2012) datasets.
The training loss curves for the proposed TR-QNet model
are demonstrated on the Iris (Fisher 1936), MNIST (LeCun
et al. 1998), and CIFAR-10 (Krizhevsky et al. 2012) in

Table 3 Mean accuracy of the proposed TR-QNet with VQTN (Huang
et al. 2021), TR-VQC (Peddireddy et al. 2023), QCNN (Cong et al.
2019), fully classically simulated VTNN (Jahromi and Orus 2023), and

Figs. 5 and 6, respectively. Our TR-QNet achieves near-
optimal performance within 20 — 25 epochs, demonstrating
effective learning. The loss reduction follows an exponential
decay pattern, stabilizing as the network approaches minima.
However, convergence on CIFAR-10 is slower compared to
MNIST, due to the dataset’s increased complexity. The loss
function exhibits fluctuations early in training but eventu-
ally stabilizes, suggesting that TR-QNet effectively learns
higher-dimensional features over time. More training epochs
(30 — 35) are required to reach a lower loss plateau. The
convergence analysis of the proposed TR-QNet is also pro-
vided in Appendix. Table 3 summarizes the numerical results
obtained using our TR-QNet using 4, 6, and 8§ number of
qubits, VQTN (Huang et al. 2021), and QCNN (Cong et al.
2019) and TR-VQC (Peddireddy et al. 2023) using 4 (Iris
dataset) and 8 qubits (MNSIT and CIFAR-10 datasets), fully
classically simulated VITNN (Jahromi and Orus 2023), and
its classical counterpart TN-FC on Iris, MNSIT, and CIFAR-
10 datasets. It has been observed from the simulation results
reported in Table 3 that optimal accuracy has been achieved
in the case of the MNIST and CIFAR-10 datasets, class 3
or 6 reports optimal accuracy for the state-of-the-art models.
However, in the case of multi-class classification, despite TR-
QNet’s low accuracy, as provided in Table 4, it outperforms

TN-FC on the test Iris (Fisher 1936), MNIST (LeCun et al. 1998), and
CIFAR-10 (Krizhevsky et al. 2012) datasets (The bold values shed light
to the two-sided paired Wilcoxon signed-rank test data (Conover 1999))

Model Qubits  Iris MNIST CIFAR-10
1-2 2-3 1-3 0-9 1-8 2-7 3-6 4-5 0-9 1-8 2-7 3-6 4-5
TR-QNet 4 0941 0939 0955 0.817 0828 0.869 0.850 0.809 0.758 0.803 0.747 0.798 0.771
6 0.882 0.865 0.880 0.828 0.836 0891 0.863 0.870 0.819 0.849 0.833 0.857 0.809
VQTN 4/6 0924 0905 0911 0.813 0.806 0.829 0.811 0.823 0.788 0.794 0.776  0.745 0.763
QCNN 4/6 0.871 0.852 0.861 0.772 0.736  0.740 0.742 0.755 0.721 0.714 0.717 0.732  0.746
TR-VQC  4/6 0.853 0.849 0.829 0.803 0.799 0.802 0.789 0.790 0.767 0.759 0.761 0.753  0.747
VTNN N/A 0.838 0.839 0.842 0.797 0.788 0.798 0.778 0.780 0.701  0.698 0.734  0.727  0.715
TN-FC N/A 0.809 0.811 0815 0.765 0.750 0.788 0.746 0.741 0.687 0.679 0.711 0.709  0.697

@ Springer



57 Page 14 0f 22

Quantum Machine Intelligence (2025) 7:57

Table 4 Mean accuracy of the proposed TR-QNet with tensor ranks (B8 = 4), VQTN (Huang et al. 2021), VTNN (Jahromi and Orus 2023), and
TN-FC for multi-class (3-class) classification (The bold numbers provide information about the two-sided paired Wilcoxon signed-rank test data)

Iris MNIST CIFAR-10

Model Qubit 1-2-3 0-1-9 2—-4-5 3—-6-7 0-1-9 2—-4-5 3—-6-17
TR-QNet 4 0.815 0.738 0.723 0.746 0.707 0.712 0.723

6 0.802 0.741 0.736 0.739 0.719 0.725 0.731

8 0.785 0.709 0.717 0.716 0.718 0.707 0.713
VQTN 6 0.811 0.714 0.701 0.698 0.688 0.682 0.694
VTNN N/A 0.774 0.689 0.684 0.679 0.613 0.639 0.657
TN-FC N/A 0.755 0.694 0.677 0.681 0.601 0.619 0.643

VQTN, VTNN, and TN-FC. It may be noted that TR-VQC
and QCNN are not feasible for multi-class classification
owing to the limitations of their framework. In addition, we
use a significant threshold y = 0.05 for a two-sided paired
Wilcoxon signed rank test (Conover 1999) to demonstrate
the effectiveness of the proposed TR-QNet model over other
methods. It is evident from the two-sided paired Wilcoxon
signed-rank test that the proposed TR-QNet model yields sta-
tistically significant results using 4 and 6 qubits Quan-TR for
Iris data and image (MNIST and CIFAR-10) classification,
respectively. This is primarily owing to the limited Iris data
feature demanding fewer qubits, whereas the larger image
size requires more qubits. The subsequent increase to 8, 10,
and 12 qubits resulted in a substantial decrease in accuracy
for the proposed TR-QNet and the other methods, probably
as aresult of over-parameterization (Larocca et al. 2023) and
barren plateaus (McClean et al. 2018).

However, to validate our claim regarding the barren
plateau in our Quan-TR framework, we have conducted addi-
tional numerical experiments. Specifically, we analyzed the
gradient variance decay as the number of qubits increases,
demonstrating the expected exponential suppression. Addi-
tionally, we visualized the cost function landscape, revealing
large flat regions indicative of barren plateaus. These results,
which align with our theoretical analysis, are now included
in Fig. 4.

5 Discussions

The simulation results reported in the manuscript show that
the proposed TR-QNet model outperforms its quantum and
classical counterparts for binary classification and multi-
class (ternary) classification in test datasets in the given
simulation settings. This is due to the fact that the proposed
TR-QNet is capable of modulating classification tasks by
substituting the trainable weight matrices of the fully con-
nected dense layers of standard TNN with Quan-TR, and
hence, TNN acts as an efficient encoding tool, especially
for large image features with minimal loss of information

@ Springer

from the input images. The VQC-based training algorithm
resembling DMRG (White 1992) enables a straightforward
entanglement of the entanglement spectrum of the MPO’s
(Panagakis et al. 2021) trainable weights, thereby facilitating
a lucid comprehension of the correlations within the param-
eters of TN layers. We have presented a novel entanglement-
aware training technique relying on hybrid classical-quantum
algorithms and stochastic gradient-descent updates to train
the proposed Quan-TR model efficiently. This approach oper-
ates on a condensed parameter subspace obtained from the
tensorization of trainable weights, leading to local minima-
free convergence and promising results.

However, in our Quan-TR framework, we find that while
the tensor-ring approximation can mitigate the extent of bar-
ren plateaus, they are not entirely eliminated due to the
presence of entangling operations. This implies that Quan-
TR retains a level of quantum complexity that prevents
full classical simulability, distinguishing it from classical
machine learning models.

Moreover, our implementation enables the creation of
hybrid architectures that combine TN layers, dense layers,
and Quan-TR to create valid instances of deep learning
models. We have conducted an additional experiment in
which we completely eliminate the quantum component from
the proposed TR-QNet, effectively converting the quantum-
enhanced TNN into a fully classical model and referred to
as TN-FC as reported for binary classification and provided
additional results for ternary classification. Our findings
indicate that the fully classical system TN-FC, while still
performing reasonably well, does not achieve the same
level of performance as our hybrid quantum-classical TR-
QNet model. Specifically, we observe that the hybrid model
exhibits improved accuracy and generalization capabilities,
particularly in scenarios with complex data structures. This
demonstrates that the inclusion of the quantum part indeed
provides an enhancement, rather than merely an alternative
approach.

Nevertheless, it is worth noting that the multi-layer design
of Quan-TR within our proposed TR-QNet has the poten-
tial to produce the cascading effect of entanglement between
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the neuronal inputs and their outputs. Moreover, quantum
layers in TR-QNet exploit entanglement to capture non-
classical correlations between qubits, enhancing the learning
of intricate dependencies within the data. They may exhibit
resistance to certain types of noise, which could lead to more
robust models in specific applications (Konar et al. 2022,
2023a,b,c). Our results indicate that the classical TNNs
with DMRG-like training and Quan-TR methods work accu-
rately and efficiently for data and image classification tasks.
Direct access to the singular values throughout the virtual
dimensions of the trainable MPOs of TN layers provided by
the DMRG-like training method and tensor ring-optimized
variational learning algorithm is crucial as it enables the com-
putation of a measure of entanglement (correlation) between
the features and model parameters. Since more qubits signify
a bigger Hilbert space to parametrize the input data (Bia-
monte et al. 2017), we see a general pattern of increasing the
classification accuracy with the qubit count from 4 to 6. How-
ever, a further increase in the 8, 10, and 12 qubits resulted in a
substantial decrease in accuracy for the proposed TR-QNet,
probably as a result of overparameterization (Larocca et al.
2023) and barren plateaus (McClean et al. 2018). Due to the
additional non-linearity caused by the truncated SVD over
the MPOs and two-qubit gate transformations, we also notice
that in the case of the Iris dataset, TR-QNet significantly out-
performs the VQTN, QCNN, and TR-VQC with complete
quantum state information and classically simulated VTNN.
Eight-qubit circuit topologies are used in a series of studies
utilizing different rankings to examine the impact of tensor-
ring rank on the performance of TR-QNet as it yields optimal
results regarding input qubit counts.

However, the proposed TR-QNet model for multi-class
image classification has achieved a comparable level of pre-
cision, primarily due to the inherent challenges faced by
the slow convergence of Quan-TR. Hence, even though
its promising performance is exhibited on relatively more
minor datasets, the proposed TR-QNet is restricted due to
the inherent difficulties in scaling and time-intensive train-
ing of Quan-TR. Furthermore, TR-QNet has achieved higher
accuracy in binary classification tasks than its quantum and
classical counterparts. Our method paves the way for devel-
oping novel representations of a quantum state in the deep
neural network. It serves as a valuable tool for investigating
the expressive potential of quantum neural states. We aim
to develop an efficient TR-QNet model comprising an opti-
mized Quan-TR with fewer hyper-parameters.

5.1 Complexity analysis

Assuming that for an ' order TR 7 as y, = Z and
Xy, = LYv = 1,---1, successive SVDs on TR cores
(ZL x L) require O(ZL3) for each operation, and for the
TR of /" order, T requires O (tZ£>) (Oseledets 2011). The

computational complexity of Quan-TR is O (N, Z) since each
calculation of a single or two-qubit rotation gate in Quan-TR
is O(1) (Peddireddy et al. 2023). Hence, the total computa-
tional complexity of the proposed TR-QNet is estimated as
O(TNGT + (t — 2)IL3).

6 Conclusion

In line with the impressive advances in quantum machine
learning, the proposed TR-QNet framework improves over
fully classical TNN. It has been developed as a proof-
of-concept using hybrid classical-quantum algorithms for
better training strategies for TNN. This paper investigates
the benefits of the proposed Quan-TR to find a better opti-
mization strategy for TR-QNet, which exploits the inherent
entanglement between qubits. The simulation results on the
test datasets using the proposed TR-QNet model show its
efficiency over the quantum and classical counterparts in
binary and multi-class classification. Moreover, the sim-
ulation results demonstrate the efficacy of the proposed
TR-QNet in various settings, which is crucial for data clas-
sification and image recognition in noisy intermediate-scale
quantum (NISQ) devices. Consequently, our TR-QNet model
is a strong contender for deep learning and can revolutionize
the studies in quantum machine learning.

While tensor rings (TR) and variational quantum layers
(VQQC) are integrated into our tensor network (TR-QNet) for
classification tasks, the following benefits emerge:

1. Efficient computation: TR parameter efficiency allows
the model to handle expensive two-qubit gate operations
(CNOT) in polynomial time. Hence, our TR-QNet model
is suitable for high-dimensional inputs without excessive
computational costs.

2. Enhanced pattern recognition: The combined expressiv-
ity of TR and the powerful feature extraction of quantum
layers enable the network to capture and utilize complex
patterns in the image data for classification.

3. Scalable and robust model: The structural regularization
of TR and the adaptive nature of variational quantum lay-
ers (Quan-TR) contribute to building robust and scalable
models that generalize well to unseen data.

4. Potential quantum speedups: While still an active research
area, the potential computational speedups from quantum
processing of our TR-QNet could offer practical advan-
tages in training and inference times.

However, the current TR-QNet architecture for deep con-
volutional neural networks and their training algorithms
for regression and classification, which can be deployed
immediately in near-term quantum devices, remains to be
investigated. The authors are engaged in this direction.

@ Springer
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Appendix A: Convergence analysis
of TR-QNet

Due to NISQ’s limitations, classical simulators are now being
utilized to optimize and update parameters and feed them
back to TNN and Quan-TR separately until convergence con-
ditions are reached. Hence, we have used the cross-entropy
loss to update the parameters. The loss function (L) is
derived with the hyperparameters @ of the proposed TR-
QNet model as

Ny
argmin L, = Z[tj log f(O]TN)
¢ j
+(1 —¢;) log{l —

O (A1)

tj corresponds to a target output, AV, is the number of qubits in
Quan-T6,R and f ((’)JT ) 18 the average outcome on quantum
measurement of a qubit j concerning the network hyper-
parameter set @ as evaluated in the following subsection as
follows:

Ny _ _
FOi@), 1) =Y O (O U (@)0;U @) (OF)10)), 1)
J

(A2)

where 0 (w) € |A;)(A ;| and ¢; corresponds to a target output
and the preprocessed data from the TNN layer, denoted as
OiT N,.is transformed into a quantum state represented by
¥ (O ).

To train the proposed Quan-TR model, the gradient of the
loss function is evaluated as follows:

8 FHOL ) sut
% O (O ( )9 U@ Y (O )]0)
su
+H(O0y (O’N)U (@) (‘“)

w(OJN)IO)

= 01y (O U] (1)
.SU ; (w))
Swj
Ol (OF U (@)8;Uy (@)
Ui (w;) ;
L Uy (@)Y (OF)10)
wj
where U (w;) = e V(@) The global phase does not
directly affect the measurement results; hence, we disregard

the global phase. Now, the rotation gates can be written as
follows:

3¢ (w, O 1 3y’ (, 0
W(cg ™) _ e +_ Orn) ¥'(@.Orw)
w’ S/

U () U @)Y (OF)10)

(A3)
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1
= Y- % Ory) (A4)

We obtain as follows by substituting Eq. A3 by Eq. A4:

3fUO%)
w’

U}' (w))
Swj

U1 (@00)0;U @)Y (O )10)

+O1Y T (OF U (@)8;Uy (1)

SUj () :
SJTJJ U (@)Y (O7)10)

= 01y OF U (@1) -

! - Ul () — %)
= 5{ — 01y (O U (@1) - %
U1 (@0)0;U @)Y (OF)10)
+O[ T (O U (@)0Uy ()
SU; 4+ pLS .
% -ul<w1>w<0§N>|0>}
1 N : . ;
= SHOW Oy UL UL U @)Y (OF)10)
A N)u*(ww-u+[fiw,<]u_¢<0§N)|0>}

1

= E‘Pm(l//((’) N — 7“1"14) (¥ (0 N)) (AS)
For the rotation gates Ry(wy) and R (w;) of Quan-TR,
the angle of rotation [variational parameter ()] is wy and
w;, respectively. The rotation gates Ry (wy) and R;(w;) of
Quan-TR operate the qubits [,) and [;) as follows:

[ cos Awy (1) —sin Awy (1)
¥yt + 1) = (sin Aa);}(t) cos Aa)yy(t) ) ¥yW)  (A6)
_ [ exp(—jLw (1) 0
e+ 1) = ( o L sza))) =)
(A7)
where
wy(t+ 1) = w, () + Awy (1) (AB)
and
o (L + 1) = w(0) + Aoy (1) (A9)

For the quantum layers in Quan-TR at epoch, ¢, Eqs. A8
and A9 measure the change in the phase or angles Aw, (1)
and Aw; (1), respectively. Let us consider

Ct) = wy () — wy () (A10)
D) = o,(t) — () (Al1)
and

RW =wy+1) —wy0) =C+1) —CQ) (A12)
SO =w(t+ 1) —w,() =D+ 1) —D() (A13)
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The optimal phases or angles are therefore w,(¢) and @, (1)
for the rotation gates Ry (wy) and R;(w;), respectively.

To update the weights in TNN, a gradient of the bond ten-
sors concerning the loss (L), B, j+1,1s obtained by defining
f (O; ~) = T B, where T represents the contraction of every
tensor in the TNN other than the bond tensor B.

When considering B; (1), @y (1), and ? (1), the loss func-
tion L, (B, wy, w;) is differentiated as follows:

aﬁw(B,w},,wz)zg’:afl(O’;N) N |
dB; (1) o BiW Oy 1= £1Oy)

tj — 1 :|
— fHOM)

(A14)

-y

= [f (Ofy

Hence, the change in the bond tensor designated as AB; ()
is evaluated as follows:

Ly (B, wy, ;)

BB ==y ()=
J

(A15)

Here, y (1) is alearning rate in the gradient descent procedure
for updating the bond tensors in TN layers.

ALy (B, oy, ®;) af o [y -1
dol (1) _,X; w}(t) L f{OF ) e FUOhy)

(A16)

1Ly (B.wy.w) 5 f O [ 1 -1 ]
=) _ft(om - Oy

(A17)

Here, parameter shift techniques are used to evaluate the
gradient of the Quan-TR parameters wy and w, (Mitarai et al.
2018; Li et al. 2017; Huang et al. 2021) as follows:

afl(oé‘N 1 +1 L j
=g (Wit @) = ¥, s ©f )]
y
(A18)
and
2/Ofy) 1
S [ W) O]

(A19)

where with rotation angles a)i (1) and a)é (v), respectively,
V()03 (U (O7y) and W (1), +.7 (Y (Of ) are the mea-
sured qubit 1//((’)] ). The changes in phase or angles are

designated as Aa)y (v) and sz (v), respectively, for the rota-
tion gate used to update the qubits. The rotation angles are
then modified using the formula below:

, ey
Ay (1) = —v(0) { M } (A20)
wy (1)
) LM/
Awl() = —p() {M} (A21)
w;z (1)

Here, v(¢) and p(¢) are the learning rates for updating the
rotation angles in the gradient descent procedure.
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Appendix B: Additional simulation results

Additional plots for the simulation results reported in
Tables 1- 4 are provided in Figs. 7, 8,9, and 10, respectively.

Table 1: TR-QNet Accuracy with Varying Tensor Ranks (Iris Dataset)
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Fig. 7 Plots for analysis of the proposed 2-2 layers TR-QNet with varying number of qubits and tensor ranks (53) on Iris dataset as reported in

Table 1
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Table 2: TR-QNet vs. QNet vs. TN-FC Accuracy
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Fig.8 Plots for mean accuracy of the proposed TR-QNet, QNet (without TR approximation), and TN-FC as reported in Table 2
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Fig.9 Plots for mean accuracy
of the proposed TR-QNet with
VQTN (Huang et al. 2021),
TR-VQC (Peddireddy et al.
2023), QCNN (Cong et al.
2019), and fully classically
simulated VTNN (Jahromi and
Orus 2023), and TN-FC on the
test Iris (Fisher 1936), MNIST
(LeCun et al. 1998), and
CIFAR-10 (Krizhevsky et al.
2012) datasets as reported in
Table 3

Fig. 10 Bar plots for mean
accuracy of the proposed
TR-QNet with tensor ranks
(B =4), VQTN (Huang et al.
2021), VINN (Jahromi and
Orus 2023), and TN-FC for
multi-class (3-class)
classification as reported in
Table 4
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Table 3: TR-QNet vs. Other Models Accuracy
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Table 4: TR-QNet vs. Other Models Accuracy
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Dataset
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