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Abstract. Different approaches to the problem of mass quantization are discussed. The Barut 
ideas of crucial influence of  magnetic forces for explaining the properties of the strong 
interaction are considered in details. It is shown that this approach gives the possibility to 
understand the enormous number of elementary particles (about 400) as the excited states of 
stable fundamental particles (𝑒𝑒, 𝑝𝑝, 𝑣𝑣) , bounded by magnetic interactions. 

1. Introduction 
The description of the mass spectrum of the observed elementary particles is included in the 
Ginzburg list of 30 most important unsolved problems in theoretical physics [1]. There are numerous 
approaches to its solution: group methods based on SU (N) - symmetries (Gell-Mann); dynamic 
(Barut); relational (Vladimirov); geometric (Bolokhov, Vladimirov) and many others. Interesting 
formulas for the masses of leptons and hadrons are obtained. 

One of the people who “laid the foundation” was Nambu [2], whose idea was to connect the 
masses of all elementary particles known at that time with the fine structure constant. Barut was also 
a supporter of that idea, and in 1979 obtained a formula in the form of an empirical dependence 
related to lepton masses [3]: 

𝑚𝑚𝑛𝑛 = 𝑚𝑚𝑒𝑒 �1 + 3
2𝛼𝛼
∑  𝑘𝑘4𝑛𝑛
𝑘𝑘=0 �      (1) 

where  𝑚𝑚𝑒𝑒 is the electron mass, 𝛼𝛼 is the fine structure constant.  
This formula is in a good agreement with the observed masses of leptons. For example, for n = 0 

we get the electron mass 𝑚𝑚𝑒𝑒
𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒. = 0.510999 𝑀𝑀𝑀𝑀𝑀𝑀 ( 𝑚𝑚𝑒𝑒

𝑒𝑒𝑒𝑒𝑒𝑒. = 0.510999 𝑀𝑀𝑀𝑀𝑀𝑀); for n = 1 - the muon 
mass 𝑚𝑚𝜇𝜇

𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒. = 105.549 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑚𝑚𝜇𝜇
𝑒𝑒𝑒𝑒𝑒𝑒. = 105.658 𝑀𝑀𝑀𝑀𝑀𝑀);  for n = 2 the mass of the tauon 𝑚𝑚𝜏𝜏

𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒. =
1786.155 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑚𝑚𝜏𝜏

𝑒𝑒𝑒𝑒𝑒𝑒. = 1776.822 𝑀𝑀𝑀𝑀𝑀𝑀). With a value of n = 3, the 4th lepton with a mass of 
10293.711 𝑀𝑀𝑀𝑀𝑀𝑀 is predicted, which has not yet been observed. 

A little later, a Japanese physicist Yoshio Koide discovered the following relationship between 
the masses of leptons [4]: 

    𝑚𝑚𝑒𝑒 + 𝑚𝑚𝜇𝜇 + 𝑚𝑚𝜏𝜏 = 2
3
��𝑚𝑚𝑒𝑒 + �𝑚𝑚𝜇𝜇 + �𝑚𝑚𝜏𝜏�

2
                   (2) 

 
Expression (2) is true with a very high accuracy. Based on experimental data (2016), the ratio of 

the left side of (2) to the right side (on the right side without taking into account the 2
3
 coefficient) is 

obtained and is equal 0.6666605 ± 0.0000068 (in theory that ratio is 0.666666(6)). Despite of 
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this, no reasonable theoretical explanation of formula (2) has yet been obtained. The predicted mass 
of the 𝜏𝜏-lepton from the Koide formula, turns out to be 𝑚𝑚𝜏𝜏

𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒. = 1786.968884 ±0.000065, and 
the experimental value is 𝑚𝑚𝜏𝜏

𝑒𝑒𝑒𝑒𝑒𝑒. = 1776.822. 
Varlamov [5] also presented his own formula for the particles masses. If we take into account the 

principle of equivalence between mass and energy, it can be argued that the mass formula 
 

𝑚𝑚 = 𝑚𝑚𝑒𝑒 �𝑙𝑙 + 1
2
� �𝑖𝑖 + 1

2
�                    (3) 

 
defining the mass (energy) of the state (cyclic Lorenz representation (𝑙𝑙, 𝑖𝑖)),  is, in a sense, similar to 
the well-known relation 𝐸𝐸 =  ℎ𝜈𝜈, where the electron mass plays the role of  “quantum of mass” 𝑚𝑚𝑒𝑒.  

Up to present it is difficult to give preference to any of the existing approaches. In our opinion, 
Barut approach is more promising, as it  allows one to naturally extend it to describe the spectrum of 
the hadron sector, which is much richer in the number of observed states. 
 
2.Materials and methods 
From the very beginning we shall indicate some not well known facts about the magnetic interaction. 
 
2.1. Unusual (little known) properties of magnetic forces 
2.1.1 Attraction is possible at different orientation of magnetic moments. 

 
𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 = −2 𝜇𝜇1𝜇𝜇2

𝑟𝑟3
< 0     (4) 

 
 
 
 
 

Figure 1. Coaxial parallel orientation of magnetic moments 
 
 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 = −𝜇𝜇1𝜇𝜇2
𝑟𝑟3

< 0      (5) 
 
 
 
 

Figure 2. Misaligned antiparallel orientation of magnetic moments 
 
2.1.2. Different dependence upon a distance. 
 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖~ ± 𝑏𝑏
𝑟𝑟2

± 𝑐𝑐
𝑟𝑟3

+ 𝑑𝑑
𝑟𝑟4

    (6) 
 

2.1.3. Emergence of a repulsive core independently of 𝜇𝜇 orientation. 
 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖~ + [𝜇𝜇�×𝑟̅𝑟]2

𝑟𝑟6
     (7) 

The presence of terms with different signs in the interaction potential makes it possible to obtain for 
different particles with different masses and charges a large number of potential wells in which the 
bound states of particle systems can exist and may be observed experimentally as resonances. 
 
2.2. Barut mass formula 
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To illustrate the effectiveness of the Barut method, let us deduce the above mass Barut formula (1) 
for leptons [3]. For a particle of mass 𝑚𝑚 with a charge 𝑒𝑒 moving in the field of a magnetic dipole 𝜇𝜇 
we have: 

𝑚𝑚𝑣𝑣2

𝑟𝑟
= 𝑒𝑒𝑒𝑒𝑒𝑒

𝑟𝑟3
       (8) 

In the nonrelativistic case, the Bohr-Sommerfeld quantization rule can be applied: 
𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛ħ ,  𝑛𝑛 = 0,1,2, …     (9) 

From (9) we find  𝑟𝑟 = 𝑛𝑛ħ
𝑚𝑚𝑚𝑚

, then we substitute this expression into (8) and we obtain: 
 

𝑣𝑣𝑛𝑛 = ħ2

𝑒𝑒𝑒𝑒𝑒𝑒
𝑛𝑛2      (10) 

For kinetic energy, we have the expression: 
 

𝐸𝐸𝑛𝑛 = 𝑚𝑚𝑣𝑣𝑛𝑛2

2
= ħ4

2𝑒𝑒2𝑚𝑚𝜇𝜇2
𝑛𝑛4 = 𝜆𝜆𝜆𝜆4    (11) 

On the other hand, adding the rest mass of the electron to the Nambu formula for the muon [2]: 
 

𝑚𝑚𝜇𝜇 = 3
2𝛼𝛼
𝑚𝑚𝑒𝑒      (12) 

we get  
 

𝑚𝑚𝜇𝜇 = 𝑚𝑚𝑒𝑒 �1 + 3
2𝛼𝛼
� , 𝑛𝑛 = 1     (13) 

Using (11) and (13) we get the Barut formula [3]: 
 

𝑚𝑚𝑛𝑛 = 𝑚𝑚𝑒𝑒 �1 + 3
2𝛼𝛼
∑  𝑘𝑘4𝑛𝑛
𝑘𝑘=0 �     (14) 

Here 𝑛𝑛 = 0 for electron;    𝑛𝑛 = 1 for muon;    𝑛𝑛 = 2 for tauon;    𝑛𝑛 = 3 for the 4-th lepton. 
 

2.3. The main ideas of Barut 
As it is well known, the quarks show no existence in nature (nobody observed them up to now). 
Observed elementary particles (more than several hundreds) according to Barut can be described as 
bounded states of a small number of really stable particles  𝑝𝑝, 𝑒𝑒−,  𝜈𝜈 . 

The features of strong interactions, such as: 
1) Short interaction range; 
2) Saturation; 
3) Charge independence (isotopic invariance); 
4) Strong spin dependence; 
5) Pairing; 
6) Pauli principle; 
7) Experimentally observed quark potential; 
 

𝑉𝑉(𝑟𝑟) = 𝑎𝑎
𝑟𝑟

+ 𝑏𝑏𝑏𝑏 + 𝑐𝑐     (15) 
can be explained strictly by electromagnetic forces only. 

 
2.4. Dirac equation with electromagnetic interaction 
From the Dirac Equation   
 

�𝛾𝛾𝜇𝜇𝜕𝜕𝜇𝜇 + m�𝛹𝛹 = 0     (16) 
describing a free particle, one can obtain an extended Dirac equation for a charged particle 
interacting with an external electromagnetic field in two steps. 

1) The extension of derivatives  𝜕𝜕𝜇𝜇 → 𝜕𝜕𝜇𝜇 − 𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇 results in the appearance of additional terms 
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𝜇𝜇𝑛𝑛 𝜌𝜌3(𝜎𝜎� ∙ 𝐻𝐻�) + 𝜇𝜇𝑛𝑛 𝜌𝜌1(𝜎𝜎� ∙ 𝐸𝐸�)           (17) 

in the Hamiltonian operator, where 𝜇𝜇𝑛𝑛 is the normal magnetic dipole moment of the charged 
particle. 

2) For a neutral particle with an abnormal (anomalous) magnetic dipole moment (such as a 
neutron), one has to add on the right hand side of the Dirac Equation , the Pauli coupling 
term 

 
 0  →    𝜇𝜇𝑎𝑎𝐹𝐹𝜇𝜇𝜈𝜈𝜎𝜎𝜇𝜇𝜈𝜈 = 𝜇𝜇𝑎𝑎 𝜌𝜌3(𝜎𝜎� ∙ 𝐻𝐻�) + 𝜇𝜇𝑎𝑎 𝜌𝜌1(𝜎𝜎� ∙ 𝐸𝐸�)   (18) 

 
where 𝜇𝜇𝑎𝑎 is the abnormal magnetic dipole moment. 

The above two steps, when applied to the electron moving around a proton, yield a radial equation 
with an effective potential of the following form: 

 
𝑉𝑉(𝑟𝑟) = ± 𝑎𝑎

𝑟𝑟
+ 𝑏𝑏

𝑟𝑟2
± 𝑐𝑐

𝑟𝑟3
+ 𝑑𝑑

𝑟𝑟4
    (19) 

 
The coefficients 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 are obtained automatically and they are fixed in the model and their 

explicit form will be given below. 

 
Figure 3. Effective interaction potential of the electron with the proton in the Barut model 

 
Figure 3 shows two potential wells that are obtained for the “electron-proton” system, for given 

values  of the parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 which are automatically fixed in the model as a result of the above 
procedure (two steps) to turn on the interaction. 

The right potential well has a minimum at 𝑟𝑟 ≈ 10−8 cm. In this well the terms  −𝑎𝑎
𝑟𝑟

+ 𝑏𝑏
𝑟𝑟2

  play the 
main role.  We call this domain electric. Other terms in (19) related to magnetism give small 
corrections. It is in this well that a familiar bound state the hydrogen atom arises. In the left potential 
well with a minimum at 𝑟𝑟 ≈ 10−13 − 10−14 cm, the short-range magnetic forces play the main role, 
and the electric forces give small corrections. 

Here the formation of heavy particles is possible due to magnetism, which in the experiment will 
look like resonances. In the case of a coupled system of two heavy particles (for example, a neutron-
proton), the left well is interpreted in the Barut model as a well that reproduces all the properties of 
strong interaction with small electromagnetic corrections from the right well. 
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2.5. Effective potential for two charged particles with normal and anomalous magnetic moments 
Let us consider two interacting charged particles with normal and anomalous magnetic moments. The 
full Hamiltonian of the system in this most general case is as follows [6]: 
 

𝐻𝐻 = 1
2𝑚𝑚1

�𝑝𝑝1 −
𝑒𝑒1
𝑐𝑐
𝐴𝐴2�

2
+ 1

2𝑚𝑚2
�𝑝𝑝2 −

𝑒𝑒2
𝑐𝑐
𝐴𝐴1�

2
+ 𝑒𝑒1𝑒𝑒2

|𝑟𝑟1−𝑟𝑟2| + 𝑆𝑆12(𝑟𝑟1 − 𝑟𝑟2)  (20) 
 

Here 𝐴𝐴1 = 𝑀𝑀��⃗ 1×(𝑟𝑟2−𝑟𝑟1)
|𝑟𝑟1−𝑟𝑟2|3 , 𝐴𝐴2 = 𝑀𝑀��⃗ 2×(𝑟𝑟1−𝑟𝑟2)

|𝑟𝑟2−𝑟𝑟1|3   are vector potentials of the electromagnetic field created 

by one particle at the point of location of the other particle; 𝑀𝑀��⃗ = 𝑒𝑒ħ
2𝑚𝑚𝑚𝑚

(1 + 𝑎𝑎)𝜎⃗𝜎 is the intrinsic 
magnetic moment of a charged particle with spin 1/2, proportional to the Bohr magneton; 𝑎𝑎 is a 
parameter that determines the magnitude of the intrinsic anomalous magnetic moment of the particle; 
𝜎⃗𝜎 is the particle spin operator; 𝑒𝑒𝑖𝑖,𝑚𝑚𝑖𝑖(𝑖𝑖 = 1,2) are charges and masses of particles; the last term 
describes the spin-spin interaction of the intrinsic magnetic moments of the particles. It is usually 
written as: 

 
𝑆𝑆12(𝑟𝑟1 − 𝑟𝑟2) = 1

𝑟𝑟3
��𝑀𝑀��⃗ 1𝑀𝑀��⃗ 2� − 3�𝑀𝑀��⃗ 1𝑟𝑟0��𝑀𝑀��⃗ 2𝑟𝑟0��     ,              𝑟𝑟0 = 𝑟𝑟

|𝑟𝑟|    (21) 
 

After the transition to the center of mass system, the Hamiltonian takes the form: 
 

𝐻𝐻 =
𝑝𝑝2

2𝜇𝜇
+
𝑒𝑒1𝑒𝑒2
𝑟𝑟

−
1
𝑟𝑟3
�𝐿𝐿�⃗ �

𝑒𝑒1𝑀𝑀��⃗ 2
𝑚𝑚1𝑐𝑐

+
𝑒𝑒2𝑀𝑀��⃗ 1
𝑚𝑚2𝑐𝑐

��+  
𝑒𝑒12

2𝑚𝑚1𝑐𝑐2
�
𝑀𝑀��⃗ 2 × 𝑟𝑟
𝑟𝑟3 �

2

+
𝑒𝑒22

2𝑚𝑚1𝑐𝑐2
�
𝑀𝑀��⃗ 1 × 𝑟𝑟
𝑟𝑟3 �

2

 

+𝑀𝑀1𝑀𝑀2
𝑟𝑟3

�𝑆𝑆2 − 3�𝑆𝑆𝑟𝑟0�
2
�       (22) 

 
Here 𝜇𝜇 = 𝑚𝑚1+𝑚𝑚2

𝑚𝑚1𝑚𝑚2
 is the reduced mass; 𝑟𝑟 = 𝑟𝑟2 − 𝑟𝑟1;  𝑝𝑝 = 𝑚𝑚1𝑝⃗𝑝1−𝑚𝑚2𝑝⃗𝑝2

𝑀𝑀
; 𝑀𝑀 = 𝑚𝑚1 + 𝑚𝑚2; 𝑃𝑃�⃗ = 𝑝𝑝1 + 𝑝𝑝2;  

𝑅𝑅�⃗ = 𝑚𝑚1𝑟𝑟1+𝑚𝑚2𝑟𝑟2
𝑀𝑀

 is the radius of the mass center; 𝐿𝐿�⃗ = 𝑟𝑟 × 𝑝𝑝;  𝑆𝑆 = 1
2

(𝜎𝜎�2 + 𝜎𝜎�1) is the operator of the 
total spin of a system of two particles. 

Formula (22) gives the effective potential of interaction for the radial function in the form: 
 

  𝑉𝑉(𝑟𝑟) = 𝑏𝑏1
𝑟𝑟

+ 𝑏𝑏2
𝑟𝑟2

+ 𝑏𝑏3
𝑟𝑟3

+ 𝑏𝑏4
𝑟𝑟4

      (23) 
 

In this expression the centrifugal potential ~ 1
𝑟𝑟2

 appeared as a result of variables separation of the 

Laplacian inside the term  𝑝⃗𝑝
2

2𝜇𝜇
= −ħ2∆𝑟𝑟,𝜑𝜑,𝜃𝜃

 

2𝜇𝜇
. 

The coefficients 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4 are of the form [6]: 
 

𝑏𝑏1 = 𝑒𝑒1𝑒𝑒2        
 

𝑏𝑏2 = ħ2𝑙𝑙(𝑙𝑙 + 1)       
 

𝑏𝑏3 = 𝑒𝑒1𝑒𝑒2ħ
2𝑚𝑚1𝑚𝑚2𝑐𝑐2

�𝐿𝐿�⃗ (𝑎𝑎2𝜎𝜎�2 + 𝑎𝑎1𝜎𝜎�1) �+ 𝑒𝑒1𝑒𝑒2ħ
𝑚𝑚1𝑚𝑚2𝑐𝑐2

 �𝐿𝐿�⃗ ∙ 𝑆𝑆  �+ 𝑒𝑒1𝑒𝑒2ħ2(1+𝑎𝑎2)(1+𝑎𝑎1)
4𝑚𝑚1𝑚𝑚2𝑐𝑐2

 �𝑆𝑆2 − 3�𝑆𝑆 ∙ 𝑟𝑟0�
2
�    

 
𝑏𝑏4 = 𝑒𝑒1𝑒𝑒2ħ2

4𝑚𝑚1𝑚𝑚2𝑐𝑐4
 �(1+𝑎𝑎1)2

𝑚𝑚1
+ (1+𝑎𝑎2)2

𝑚𝑚2
�         (24) 
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In general case, both the relativistic and nonrelativistic descriptions of two interacting fermions do 
not allow to completely solve the problem analytically. The main advantage of a relativistic 
description is a wide range of allowable energies. However, as a result, the final equations are 
complex and analytically solvable only for a small number of fields, often with a very specific choice 
of parameters. The scope of nonrelativistic equations is naturally limited by the range of permissible 
energies. The advantages of a nonrelativistic analysis are the relative simplicity of the equations and 
the possibility of easy comparison with known results, as well as the ability to use fewer “adjustable” 
parameters. 

 
3. Conclusion 
We presented in a brief form the main ideas of Barut and gave a general view of the potential of 
interaction of two charged particles with normal and anomalous magnetic moments. Using the 
general expression (20) for the Hamiltonian, a number of problems were solved earlier. In the case of 
the “ep” system, it was predicted the possible existence of small Barut-Vigier atoms with a size of 
𝑟𝑟 ≈ 10−11 cm [7]. The use of expression (20) for the bound “neutron-proton” system (deuterium 
nucleus) turned out to be very effective [8], allowing us to describe the basic properties of the 
deuteron. For example, the absence of a singlet state in a deuteron on the experiment is easily proved. 
In this case, the spins of the particles are antiparallel (which means that the magnetic moments are 
parallel due to the fact that 𝜇𝜇𝑝𝑝 = +2.7 𝑒𝑒ħ

2𝑀𝑀𝑝𝑝𝑐𝑐
 , 𝜇𝜇𝑛𝑛 = −1.9 𝑒𝑒ħ

2𝑀𝑀𝑛𝑛𝑐𝑐
) and there will be no potential well due 

to the repulsion of the magnetic moments. There is hope using the general formula (20) to obtain a 
more accurate mass spectrum of light and heavy particles. 
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