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Введение 

Количество публикаций на эту тему очень велико; имеются 
обзоры с обширной библиографией, например 1 , 2 . Чтобы не 
повторяться, мы решили осветить лишь ряд моментов, имею-
щих дискуссионный характер. Рассмотрены наиболее употреби-
тельные теоретические схемы и модели; обсуждаются пределы 
Их применимости и возможные обобщения; подчеркнуты вопро-
сы, теория которых недостаточно разработана. Основное вни-
мание направлено на пороговые соотношения ввиду практичес-
кой важности этого вопроса. 

1. Основное уравнение 

Рассмотрим стационарное (в сопутствующей системе) с а -
мосогласованное распределение. Его случайное возмущение 
приведет к возникновению дополнительного тока J= kJк eikBe  

и электрического поля Ε обобщенный азимут) . Из урав-
нений Максвелла вытекает линейная связь (в лабораторной 
системе); 

(1) 

где L, - длина ускорителя, зависимость от времени ~ 

Фактически в токе пучка представлены лишь гармоники 

в свою очередь, воздействуют на пучок гармоники поля 

где ωs - угловая скорость равновесной частицы. Поэтому в 
(1) достаточно удержать слагаемое k' = k. После этого с 
помощью преобразования θi = θ + ωst перейдем в сопутствую-
щую систему. В результате (1) приобретает вид: 

(2) 

г д е · Jk( )- Jkω и т,д. Теперь зависимость 
от времени ~ e-t t, =ω - кωs. Величина ( ), называе-
мая импедансом камеры, была впервые введена в работе 3 . 
Ее вычисление представляет собой чисто электродинамическую 
задачу, которую мы далее не рассматриваем, считая импеданс 
известным. 

Вторая связь Ε и J получается из кинетического уравне-
ния. Пока возмущение мало, эта связь линейна: 

(3) 

Величины Π k k ' естественно называть матрицей проводимости 
пучка. Подстановка (2) в (3) дает основную систему уравнений: 

(4) 

Значения , при которых (4) имеет нетривиальные решения, 
определяют спектр когерентных возбуждений пучка. Наличие 
решений c Im > 0 свидетельствует о неустойчивости распре-
деления. Фактически неустойчивость возникает лишь при доста-
точно высокой интенсивности, т.е. имеет пороговый характер. 

2. Ηеегруппированный пучок 

Если равновесное распределение однородно по азимуту, м а т -
рица Π диагональна, то из ( 4 ) следует дисперсионное уравне-
ние: 

( 5 ) 

где u = p - ps - отклонение импульса частицы от равновесного, 
G ( u ) - равновесная функция распределения, нормированная на 1, 
J - средний ток пучка, η = α - γ-2 α - коэффициент расши-
рения орбит, γ = Ε/mc2 - приведенная энергия частицы. Проводимость 

несгруппированного пучка была найдена в работах 4,5. 

а исчерпывающее исследование проведено в 6-8. Критерии 
устойчивости имеет вид: 

(6) 

где β - приведенная скорость, ± p/p - импульсный разброс, 
^ - коэффициент ~ 1, зависящий от вида функции G и от 

фазы импеданса. Для реактивного импеданса неустойчивость 
возможна только при η Im > 0. 

Примечание. Импеданс, определенный согласно (2) , йави-сит-от 
положения центра пучка: ( ,r0). Более стро-

гий подход, при котором учитывается зависимость среднего 
радиуса орбиты от импульса частицы, требует обобщения это-
го понятия: ( , r0 + αR0 u/p3), г д е R0 - средний радиус 
ускорителя 23. Такой импеданс должен остаться под знаком 
интеграла по du в дисперсионном уравнении (5) . Практическое 
значение соответствующих поправок неясно. Мы будем пользо-
ваться прежним определением импеданса (2 ) , который представ-
ляет собой первый член разложения по малому параметру. 

3. Сгруппированный пучок: основные теоретические схемы 

Проводимость одиночного сгустка впервые найдена в рабо-те/9/. 

(7а) 

(76) 

где N - число частиц, ψ' и C ( S ) - фаза и частота синх-ротронных 
колебаний, X  = θ - θs - отклонение от синхронной 

частицы по азимуту, πS - площадь, заключенная внутри фазо-
вой траекторий на плоскости X , u / p s ; F ( S ) - нормирован-
ная на 1 равновесная функция распределения. Ряд по Ш сумми-
руется; получаемое выражение для особенно удобно для 
исследования "быстрой" неустойчивости ( I m » c), на чем 
мы не будем останавливаться 1 0 , 2 , 1 5 . 

Систему (4) с матрицей (7а) можно записать в других 
представлениях, что, разумеется, не изменит физическое со-
держание задачи. Рассмотрим наиболее употребительные схемы. 

A. Совершив в (4) обратное преобразование Фурье, составим 
интегральное уравнение для функции J(θ, )= kJk( )eikθ. 

Впервые это было сделано в р а б о т е / 9 / , где получен важный 
результат: в сгруппированном пучке невозможна неустойчивость 
отрицательной массы. 

B. Возмущение функции распределения представимо в виде 

m f m(s)eimψ. Каждое слагаемое здесь и в (7а) связано с 
колебаниями определенной мультипольности: дипольными (|m|=1) 
квадрупольными и т.д. Связь функций f m с гармониками тока 
установлена в 9 : 

(8) 

Подстановка этого выражения в (4) приводит к системе интег-
ральных уравнений для функций f m, известных как уравнения 
радиальных мод 11,2. С их, помощью получен ряд результатов, 
широко используемых для практических расчетов - главным об-
разом, для узкополосного импеданса в приближении разделенных 
мультиполей. (см. ниже). 

Таким образом, изложенные схемы эквивалентны. Мы будем 
пользоваться системой (4) , хотя такой выбор - дело вкуса. 



4. Сгруппированный пучок: основные предположения 

Обобщение. (7а) на многосгустковую систему дает: 

(9) 

где q - краткость ускорения, φj - синхронная фаза J - г о 
сгустка, величины определены согласно (7а) для 
каждого сгустка. Подстановка (9) в (4) приводит к сложной 
системе, которую невозможно решить без упрощений. Боль-
шинство завершенных исследований проведено при следующих 
предположениях: 

А. Симметричное заполнение 
Все имеющиеся сгустки считаются одинаковыми и эквиди-

стантными. Не ограничивая общности, можно положить в (9) 
φj = 0 что дает: 

(10) 

где M - число сгустков. Нетрудно видеть, что при этом 
индексы в системе (4) пробегают значения: k = M l + n , к = 
= Ml' + n (суммирование по l' ) . Проводимость по-прежнему 
можно вычислять по формуле (7а) , понимая под N полное 
число частиц в пучке. Числа n = 0 ,1 . . . ,М-1 определяют сдвиг 
фаз когерентных колебаний соседних сгустков, равный 2πn/M. 

Далее мы также будем использовать это предположение, 
хотя при этом, видимо, занижается порог неустойчивости. 

B. Приближение разделенных мультиполей 
Как уже отмечалось, каждое слагаемое в (7а) отвечает 

колебаниям опр деленной мультипольности. Считается, что 
при достаточно низкой интенсивности колебания с индексом m 
имеют частоту m c., т .е. разные мультиполи возбуждают-
ся независимо.Тогда в (7а) можно оставить единственное сла -
гаемое. Это приближение эксплуатируется очень широко (см., 
н а п р . 1 , 2 ) . Порой явно или неявно принимаётся, что на поро-
ге неустойчивости колебания всегда имеют мультипольный ха-
рактер 2 , 1 4 . q этиитрудно согласиться хотя бы потому, что 
из-за нелинейности синхротронных колебаний их частоты име-
ют разброс c. Это приводит к неопределенности когерент-
ной частоты m-й моды Δ . = mΔ c. При достаточно боль-
шом m неопределенность превышает расстояние между спект-
ральными линиями, что неизбежно ведет к связи мультиполей. 

Вопрос исследован в работах 1 5 , 1 6 где получено как у с -
ловие применимости приближения разделенных мультиполей, 
так и последствия его нарушения. Эти результаты изложены 
в п. 6. 

C. Узкополосный импеданс 
Большой практический интерес представляет резонансный 

импеданс: 

(11) 

При Δω«Mωs в сумме (4) достаточно учесть не более двух 
слагаемых. Если к тому же для любого целого р выполня-
ется условие 

(12) 
дисперсионное уравнение предельно упрощается: 

(13) 

Многочисленные следствия этого уравнения изложены в сле-
дующем разделе. Отказ от предположения об узкополосности 
импеданса приводит к значительным трудностям, которые до 
сих пор не удалось полностью преодолеть. Этот вопрос рас-
сматривается в п. 7-8 . 

5 . Порог неустойчивости сгруппированного пучка , 
взаимодействующего с узкополосным резонатором 

В этом разделе мы используем методику работ 15-16 

хотя многие результаты были известны и раньше. 

С помощью (7а) и (10) уравнение (13) можно записать 
в виде: 

(14а) 

(146) 

(14в) 

где J - средний ток пучка, πS0 - фазовая площадь сгустка. 
Смысл частоты · 0~ c будет установлен позже. 

Для решения подобных уравнений широко используется гра-
фический метод (см. , напр. 7 , 8 ) . С помощью (146) построим 
на комплексной плоскости Y отображение линии Im + 0 : 

(15а) 

(156) 

где главное значение интеграла, Sm определяется 
из уравнения: 

m c ( S m ) = | | . (16) 

Замкнутая кривая Y(th) ограничивает часть плоскости Y 
вблизи начала координат. Для устойчивости достаточно, чтобы 
точка Yk (и находилась вне этой области. Обычно пороговые 
диаграммы строят на плоскости Y-1 однако это затрудняет 
оценку вклада колебаний различной мультипольности. 

Несколько характерных пороговых диаграмм показано на 
рис. 1. Поскольку они симметричны относительно мнимой оси, 
изображены только правые половины. Рассмотрен режим цир-
куляции при постоянной энергии. Функция распределения сгуст -
ка взята в виде сопряженных парабол: 

(17) 

Рис. 1. Пороговые диаграммы 



Форма диаграмм зависит от двух параметров: относительного 

разброса синхротронных частот и произведения |k x|max. 

Если оба параметра малы, пороговая кривая представляет со-
бой множество вложенных друг в друга замкнутых петель 
(рис. 1а). В пределах каждой петли вклад в (15а) дает един-
ственное слагаемое, и в этом смысле можно говорить о не-
зависимом возбуждении колебаний разной мультипольности. 
В случае 1а наиболее неустойчивы дипольные колебания( |m|= 
=1). При увеличении |кx|max "нормальный* порядок следо-
вания петель может нарушиться, хотя приближение разделен-
ных мультиполей останется в силе (рис. 1b). Дальнейшее 

увеличение |kx|max и/или приводит к тому, что на 

внешней части пороговой диаграммы вклад в Re Y(th) дают 
несколько слагаемых ряда (15а) , что означает совместное 
возбуждение нескольких мультиполей. Их индексы, в некото-
рых точках пороговой кривой отмечены на рис. 1с. При боль-
шом числе связанных мультиполей кривая упрощается, что 
свидетельствует о возникновении в сгустке упорядоченности 
(рис. 1 ) . 

Далее мы явно учтем резонансный характер импеданса, 
воспользовавшись формулой (11) . Поскольку при изменении 

n или Ω Reyk(Ω) почти не меняется, точка yk переме-
щается вдоль прямой aa', параллельной мнимой оси (рис. 1а). 
С учетом (14б) это позволяет сфррмулировать достаточное 
условие устойчивости: 

(18) 

Его можно привести к виду, формально совпадающему с кри-
терием устойчивости несгруппированного пучка (6) , опре-
делив Ω0: 

(19) 

где ± P - максимальный импульсный разброс сгустка. Для 
квазилинейных синхротронных колебаний Ω0 совпадает с час-
тотой малых колебаний. 

Отметим, что для существования порога необходима моно-
тонная зависимость Ω 0 ( S ) . Нарушение этого условия на-
верняка приведет к возникновению мультипольной неустойчи-
вости с характеристиками: 

(20) 

где A ( S ) - амплитуда колебаний вдоль X . В случае моно-
тонной зависимости максимум (18) достигается при частоте 

(21) 

где - значение переменной, при которой |F'(S)| макси-
мально. При этом число слагаемых ряда (15а) (т .е . число 
резонансных мультиполей) есть: 

(22) 

Для приближения разделенных мультиполей формально требу-
ется m < 2. Фактически область применимости шире, по-
скольку среди резонансных мультиполей может найтись доми-
нирующий. Поэтому приближение сохраняет смысл даже при 

Ωc
(min) =0, когда ряд по m не ограничен сверху, но вклад 

высоких мультиполей сильно подавлен множителями |Imk|2. 
Конечный результат зависит кал. от функции распределения 
F ( S ) , так и от формы потенциальной ямы синхротронных ко -
лебаний U ( x ) . Для реалистичных распределений при обычном 
режиме ускорения получается следующее условие мультиполь-
ности: 

é 2 2. (23) 

При этом возбуждается мультиполь с индексом m0, где 

Для сравнения рассмотрим потенциальную яму U (X)~X4, в 
которой Ωc ~ A ~ S . Вместо (23) - (24) получим: 

(25а) 

(25б) 

В мультипольной зоне фактор Л имеет вид: 

(26) 

На рис. 2 показаны функции (ξ) для обычного режима ус-
корения (А) и для ямы U (X)~ Х4 (В). Они имеют сходное 
поведение, но величины Λ(mp) могут сильно отличаться из-за 
разной зависимости Ω c ( S ) . Заметим, что при вычислении 

Λ(mp) для обычного режима допустимо приближение квази-
линейных синхротронных колебаний, ибо такой характер они 
имеют на фазовой траектории ~ S 0 / 2 даже при S0 Ssep. 
Однако вне мультипольной зоны (23) это приближение может 
привести к грубым ошибкам. 

Рис. 2. Графики функций A,B 

При сильном нарушении (23), (25а) одновременно возбуж-
дается множество мультиполей с индексами |m| >> l . В этом 
случае также ξ >> 1, что позволяет воспользоваться асимп-
тотической оценкой интеграла (76) . Подстановка результата 
в (14в) и замена суммы интегралом приводит дисперсионное 
уравнение (14а) к виду (5) с функцией 

(27) 

Пунктирная линия на рис. 1 представляет собой асимптоти-
ческую пороговую кривую, построенную с помощью (5) , (27) . 
На большом протяжении она сливается с истинной. 

Таким образом, эта задача формально сводится к исследо-
ванию устойчивости несгруппированного пучка. В нем возбуж-
дение распространяется в виде независимых волн ~ eikθ. 
Следуя сложившейся традиции, будем называть такую неустой-
чивость в сгруппированном пучке микроволновой. Для уакопо-
лосного импеданса ее порог определяется по формулам (6) 
или (18) , где 

(28) 



Физический смысл этих результатов поясняется рис. 3, где 
изображена часть фазовой плоскости X,µ. На пороге неус-
тойчивости систематическое взаимодействие частиц с полем 
возможно лишь на фазовых траекториях, удовлетворяющих 
условию резонанса (16 ) . При выполнении (23) в пределах 
сгустка помещается одна такая траектория, что и приводит 
к мультипольным колебаниям. При сильном нарушении (23) 
имеется множество резонансных траекторий, на каждой из 
которых возбуждаются колебания своей мультипольности. Фак-
тически взаимодействие частицы с полем происходит в те мо-
менты, когда ее изображающая точка пересекает линию aa', 

на которой скорость частицы - совпадает с фазовой 

скоростью электромагнитной волны . При достаточно боль-

шом числе резонансных мультиполей на линии aa', возникает 
возмущение ~ eikθ. При удалении от этой линии возмущение 
быстро размазывается и з - з а различия угловых скоростей изо-
бражающих точек. Обратная связь , необходимая для возникно-
вения неустойчивости, возникает не за счет синхротронных 
колебаний, а з а счет передачи возмущения от сгустка к с г у -
стку через поле резонатора. 

Рис. 3. К пояснению механизма возникновения микро-
волновой неустойчивости 

При слабом нарушении неравенств (23) , (25а) возбуждает-
ся несколько мультиполей, и аналитическая оценка парамет-
ра Λ становится невозможной. Численные расчеты показали, 
что в этой зоне происходит плавный переход от Λ(mp) × Л(mp)  

Поэтому с практически достаточной точностью при 

Λ = max (Λ(mp), Λ(mcw)), (29) 

причем неравенство Λ > Λ(mcw) является строгим. 
Рассмотрим 2 примера, взяв распределение (17) . При обыч-

ном режиме ускорения условие устойчивости имеет вид: 

(30) 

где φs - синхронная фаза, график A ( ξ ) показан на рис. 2 . 
"Мультипольная" часть этой формулы была известна и рань-
ше 1 3 . 

Другой пример - яма U (X) ~ X4, которую можно создать 
с помощью дополнительного ускоряющего поля кратности 

q1 (q1/q - целое). Этот способ предлагалось использовать 
для повышения порога 17. Условие устойчивости имеет вид: 

(31) 

где 2A0 - азимутальная протяженность сгустка в исходном 
режиме. Кратность q1 ограничивается требованием монотон-

ности Ωc ( S ) : Сравнение (30) и (31) показывает, 

что в мультипольной зоне порог можно повысить в 

раз, а в микроволновой зоне он почти не изменится. 

С помощью (30) можно проанализировать другие предлагав-
шиеся способы повышения порога. Уменьшение амплитуды у с -
коряющего п о л я / 8 / дает незначительный эффект. Перезахват 
сгустка на более высокую кратность q1 (бэз выключения 19 

или с выключением основного напряжения) позволяет повы-

сить порог в раз . Наличие на краю сгустка узла 

сепаратрисы в обоих случаях несущественно. 
Вкратце рассмотрим последствия нарушения условия (12) . 

При этом могут возбудиться 2 гармоники тока 

В микроволновой зоне связь между ними отсутствует , и с о -
храняют силу все предыдущие р е з у л ь т а т ы / 1 5 / . В приближении 
разделенных мультиполей дисперсионное уравнение приводится 

к виду (14) с заменой 

Легко убедиться, что в эффективном импедансе частично по-
давлена реальная часть. Сильнее всего это проявляется при 

n=0 и n = M , в связи с чем неустойчивость оказывается n=0 и n = 
2 , в связи с чем неустойчивость оказывается 

возможной лишь при условии20,21 : 

(32) 

6. Широкополосный импеданс: 
приближение разделенных мультиполей 

Предпринимались многочисленные попытки выйти за рамки 
приближения узкополосного импеданса. В последние годы для 
этой цели активно разрабатывался метод радиальных мод, 
упоминавшийся в п. 4.Интегральное уравнение исследовалось 
для линеныйх синхротронных колебаний в приближении разде-
ленных мультиполей. Численный анализ позволил установить 
вид функций f m ( S ) (см. ( 8 ) ) для некоторых распределений 
и импедансов 2 2 , 1 , 2 . Однако попытки учета нелинейности 
синхротронных колебаний (без чего невозможно получить п о -
рог неустойчивости) привели к серьезным трудностям. Для 
их преодоления предложен "метод синтетического ядра", из 
которого следует дисперсионное у р а в н е н и е / 1 2 , 1 3 , 2 / : 

(33б) 

Здесь r = q А ( S ) - амплитуда колебаний фазы в в.ч. радиа-
нах, Ψ 0 ( r ) - равновесная функция распределения с норми-

ровкой Использовалось квазилинейное приближе-

(34) 

Уравнение (33а) нетрудно получить из основной системы 
(4 ) , установив заодно область его применимости. Для этого 
разложим подынтегральную функцию в (7б) в ряд по X , что 
с учетом (34) дает: 

(35) 

Подстановка в (7а) и (4) в приближении разделенных муль-
типолей приводит к системе с вырожденной матрицей, кото-
рая легко решается: Jk = к|m| при условии разрешимости 
(33) . Отсюда ясна область применимости (33): 

(36) 

где λmin - минимальная длина волны в полосе пропускания 
импеданса, B - длина сгустка. Поэтому уравнение (33) 
применимо лишь для дипольных колебаний и низкочастотного 
импеданса. 



Во многих работах используется модельное распределение 

при S < S0 (см., н а п р . 1 2 , 2 3 ) . В приближении раз-

деленных мультиполей это также приводит к системе с вы-
рожденным ядром и дисперсионному уравнению: 

(37) 

Формула записана так, что при подстановке (35) переходит 
в уравнение (33) . Если же быть последовательными поло-

жить можно получить только оценку 

инкремента. Для расчета порога необходимо включить в схе-
му затухание Ландау, например, формально распространив (37) 
на произвольные распределения. Такая модель обладает уже 
тем преимуществом, что в ней - в отличие от (33) - не воз-
никает проблема сходимости ряда. Кроме того, уравнение (37) 
приводит к правильным результатам в случае узкополосного 
импеданса, п. 6. Из него следует условие устойчивости: 

(38) 

где (cm. (21) ) . Моды n =0 и n = M имеют осо-(cm. (21) ) . Моды n =0 и n = 2 имеют осо-

бенность: для них неустойчивость возможна только в до - или 
закритической зоне (в зависимости от поведения мнимой час-
ти импеданса). Это условие имеет такое же происхождение, 
как (32) . 

Разумеется, эти результаты могут претендовать лишь на 
роль грубой оценки. К тому же, остаются неясными условия 
применимости приближения разделенных мультиполей. Видимо, 
должно сохранять силу ограничение (23) . Однако при вычис-
лении ξ по формуле (21) возникает проблема определения 
характерной частоты ωr, для конкретного широкополосного 
импеданса. 

7. Широкополосный импеданс. Микроволновая неустойчивость 

В данном разделе мы рассмотрим высокочастотный широко-
полосный импеданс, для которого нарушаются все сформули-
рованные ранее ограничения. Такие импедансы встречаются 
очень часто. Необходимость объяснения возникающих эффектов 
привела к появлению так называемой микроволновой модели 24 
В исходном варианте она сводилась к замене сгустка однород-
ным пучком с такой же фазовой плотностью, как в централь-
ном сечении сгустка. Это приводит к критерию устойчивости, 
подобному (6) 

(39) 

где величины с индексом с относятся к центральному сече-
нию, Модель хорошо работает; так, с ее помощью удалось 
объяснить продольную неустойчивость пучка в CPS и уско-
рителе ИФВЭ 24,25. Однако в формальном отношении она 
до сих пор не обоснована, несмотря на неоднократные по-
пытки (см., напр. Ч ) . Это привело к изменению отношения 
к модели и даже смысла термина: в ряде работ микроволно-
вая неустойчивость отождествляется с "быстрой* неустойчи-
востью 1 0 , 2 . с этой точки зрения неравенство (39) не яв-
ляется пороговым соотношением, а гарантирует лишь отсутст-
вие быстрой неустойчивости. 

Вероятно, быстрая неустойчивость, действительно, имеет 
микроволновый характер, т.е. возмущение распространяется 
в виде невзаимодействующих волн ~eikθ. Во всяком случае, 
это было доказано для некоторых частных случаев 1 0 , 1 5 .  
Однако это не снимает вопроса об определении истинного по-
рога неустойчивости. 

Проанализируем в этой связи основы модели в ее перво-
начальной трактовке. В однородном пучке возмущение может 
циркулировать, передаваясь от частицы к частице до замыка-
ния оборота и дeлее. За счет этого возникает обратная связь 
и "самодействие " частиц, что является необходимой предпо-
сылкой неустойчивости. В сгруппированном пучке возмущение, 

создаваемое "головой" сгустка, возбуждает его "хвост" и не 
передается соседнему сгустку из-за быстрого затухания поля. 
При высокой частоте возмущения обратная связь не может 
замыкаться и через синхротронные колебания из-за их нели-
нейности (см. пояснения к рис. 3) . 

Но это означает, что в рассматриваемых условиях обыч-
ная (регенеративная) неустойчивость сгруппированного пучка 
вообще невозможна, и возникает только статический эффект 
перестройки самосогласованного распределения. Такая интер-
претация не является совершенно новой: микроволновую не-
устойчивость часто связывают с аномальным (турбулентным) 
удлиннением и расширением сгустка 2 . Однако мы хотим под-
черкнуть, что ограничение на импульсный разброс типа (39) 
имеет, возможно, "статическое" происхождение и не может 
быть обосновано с помощью системы (4) или любой эквива-
лентной схемы, хотя и является достаточным условием ус-
тойчивости. 

Подтверждение можно найти в работах 3,9, где исследу-
ется поведение сгустка в гладкой камере ( ~ ik). В 3 

рассмотрено самосогласованное распределение; можно видеть, 
что в закритической зоне оно заведомо удовлетворяет усло-
вию (39) с Λ = π-1.В 9 доказано, что стационарное само-
согласованное распределение устойчиво, по крайней мере,при 
F'(s)  < o. 

СВЧ-излучение пучка, которое наблюдается на многих уско-
рителях и обычно ассоциируется с микроволновой неустойчи-
востью, объясняется тем, что перестройка функции распреде-
ления требует конечного времени и происходит не вполне 
адиабатически. Поэтому интенсивность излучения особенно ве-
лика при условиях, когда имеется быстрое "естественное" из-
менение параметров, например, в районе критической энергии, 
или при дрейфе сгустков в постоянном магнитном поле при 
выключенном ускоряющем напряжении. Последний случай рас-
смотрен в работе 2 6 . Показано, что имеются 2 условия не-
устойчивости: "динамическое" (6) , где все параметры усред-
нены по обороту, как в (27), и "статическое". Последнее име-
ет вид (39) для широкополосного импеданса, но стремится к 
(6) при сужении полосы. Нарушение "динамического" условия 
должно приводить к обычной неустойчивости, однако этого 
не происходит, т.к. прежде нарушается "статическое" условие 
в результате чего возрастает импульсный разброс. Этот про-
цесс настолько резко зависит от интенсивности и времени, 
что имеет почти пороговый характер и выглядит как неустой-
чивость. Более точно, в правой части (39) имеется множитель, 
который отличается от 1 на величину ~ ( β C τ / B ) 2 / З , где  

τ - характерное время затухания поля. 

Литература 

1. J . L . L a c l a r e . Proc . 11 I n t . Conf.  on High Energy 
A c c e l . - CERN, 1980, p. 526. 

2. B . Z o t t e r . CERN SPS/83-38, - 3 9 , - 2 0 . 
3. A.N.Lebedev, E .A .Zhi lkov . Nuc l . Instrum. and 

Methods, 1966, p. 238. 
4. C . E . N i e l s e n , A . M . S e s s l e r , K.R.Symon. Proc . I n t . 

Conf.  on High Energy A c c e l . - CERN, 1959, p. 239. 

5. А.А.Коломенский, А.Н.Лебедев. Там же, с. 115 или 
АЭ, т. 7, 1959, с . 549. 

6. А.Н.Лебедев. ЖТФ, т. 37, вып. 9, 1967, с . 1652. 
7. A.G.Ruggiero, V.G.Vaccaro. CERN ISR-TH/68-33. 
8. E . K e i l , W.Schnel l . CERN ISR-TH-RF/69-48. 
9. A.N.Lebedev. Proc . 6 I n t . Conf.  on High Energy, 

Acce l . -CEAL-2000 , 3967, p. 284; 

АЭ, т . 2 5 , вып. 2, 1968, с . 100. 

10. C.Pellegrini, J.Wang. Proc. 11 Int. Conf. on High 
Energy A c c è l . - CEKN, 3980, p . 554. 

11. F . J . S a c h e r e r . IEEE Nucl . S c i . , NS-24, 3977, 
p . 3393, a l s o CERN/PS-BR/77-5, - 6 . 

12. F . J . S a c h e r e r . CERN/SI-BR/72-5. 
13. F . J . S a c h e r e r . IEEE Trans. Nuc l . S c i . , NS-20, 

3 9 7 3 , p . 8 2 5 . 



14. П.Т.Пашков, А.В.Смирнов. АЭ, т . 50, вып. 6 , 1981, 
с . 408. 

15. В.И.Балбеков, С.В.Иванов. АЭ, т. 59, вып. 1, 1985, 
с . 42. 

16. В.И.Балбеков, С.В.Иванов. АЭ, т . 60, вып. 1, 1986, 
с . 45. 

17. P.Bramham e t a l . IEEE T r a n s . N u c l . S c i . , NS-24 , 
1977 , p . 1490 . 

18. D . B o u s s a r d , J . G a r e y t e . P r o c . 8 I n t . C o n f . on 
High Energy A c c e l . , - C E R N , 1971, p . 3 1 7 . 

19. Э.А.Мяэ, П.Т.Пашков, А.В.Смирнов. АЭ, т . 52, вып. 4, 
1982, с . 256. 

20. K . R o b i n s o n . CEAL - 1 0 1 0 , 1 9 6 3 . 
21. А.И.Барышев, С.А.Хвйфвц. ЖТФ, т. 33, вып. 3, 1963, 

с . 320. 
22. G . B e s n i e r . N u c l . I n s t r . and Methods , 164, 1979 , 

p . 2 3 5 . 
23. Н.С.Диканский, Д.В.Пестриков. Препринт ИЯФ 74-94, 

Новосибирск, 1974. 
24. D . B o u s s a r d . CERN IAB I I / R F / I n t / 7 5 - 2 . 
25. Г.Г.Гуров. Препринт ИФВЭ 80-109, Серпухов, 1980. 
26. В.И.Балбеков. Препринт ИФВЭ 86 -73 , Серпухов, 1986. 

D i s c u s s i o n 

A . В . Б у р о в . Какое k нужно п о д с т а в л я т ь в к р и т е р и и . 
у с т о й ч и в о с т и 

B . И . Б а л б е к о в . Для и н д у к т и в н о г о и м п е д а н с а | Z k / k \ = 

= c o n s t . Для р е з о н а н с н о г о с л е д у е т брать:|Zk|k|(<lk| =ТRrωs/ωr. Другие с л у ч а и не и с с л е д о в а н ы . Вряд ли общий к р и т е р и й Г 

у с т о й ч и в о с т и б у д е т с т о л ь простым, к а к написано выше. 
Однако , х о т е л о с ь бы еще р а з п о д ч е р к н у т ь , ч т о о т о т к р и -
терий и м е е т , возможно, " с т а т и ч е с к о е " п р о и с х о ж д е н и е . 

A . А . К о л о м е н с к и й . К а к и е к а ч е с т в е н н ы е о с о б е н н о с т и п о -
я в я т с я при п е р е х о д е к встречным пучкам ( в л и я н и е м е с т 
в с т р е ч и ) ? 

B . И . Б а л б е к о в . Я думаю, ч т о в с т р е ч и не окажут сущест-
в е н н о г о влияния на продольную у с т о й ч и в о с т ь п у ч к о в . Но 
д л я к о л л а й д е р о в продольные н е у с т о й ч и в о с т и б о л е е опасны 
и з - з а ж е с т к и х т р е б о в а н и й к фазовому объему с г у с т к о в . 
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