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1. Introduction  

Last years much attention a widespread attention was invoked to the existence of additional solutions in 
various relativistic equations [1-6], where the Coulomb potential 1/r is also critical. It is interesting that 
the relativistic equations may have such “additional” solutions, that have no analogue in non-relativistic 
case. In [1-6] while these additional states were found, no attention is payed to the self-adjoint 
extansion, which on the own side  can cause to lose of physical solutions.  

    This article is organized as follows: First of all we describe the appearance of “hydrino” states in 
various spinless relativistic equations . Then we study the same problems in quasipotential-like 
equation of Crater. At least, the Proca equation is also considered and the obtained results are 
summarized.  

2.1    Hydrino states and a self-adjoint extension in the Klein-Gordon Equations 

As we discussed in the introduction, the probem was considered in papers [1-6]. In particular, in [1] the 
Klein-Gordon equation was studied for attractive Coulomb ( )/ 0V rα α= − >  potential 
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The author mentioned that there must be an additional states. Let survey this problem in more detail. 
First of all let us note that this equation coincides formally to the Schrodinger equation in the valence 
electron problem, considered in [7] precisely 
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But now  
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For the existence of bound states we have to require that 22 Em > . Because of mentioned similarity 
one can to use the results of [7] accounting the relations (2.3). Particularly, the general solution of (2.2) 
is  
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The self-adjoint parameter τ  is defined in the following manner 
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And the equation for eigenvalues looks like 
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It must be underlined that (2.6) is a new equation, because the self-adjoint extension did not considered 
by above mentioned authors.  

      As we see (2.6) is a complicated transcendental equation for eigenvalues E, which depends on the 
τ . Only in two cases is possible the analytic solution of the Eq. (2.6): 

• 0τ =   -  only the standard levels. They can be deduced as the poles of )2/1( P+−Γ λ : 

rnP −=+− λ2/1              ...2,1,0=rn                                                                          (2.7) 

Which gives,  
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 And the corresponding wave function is  
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• τ = ±∞ . In this case we have only additional states, determined from the poles of 
)2/1( P−−Γ λ  and they are  
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From which we find  
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And the corresponding wave function is  
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By analogy of  [7] the function (2.4) may be written in the form of a single function  
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Exactly the states (2.12) are called in [1-6] as “hydrino” states. There is one difference between our and 
[1-6] approaches. In valence electron model the limiting procedure 0 0V →  can be carried out and 

derive the hydrogen atom problem. But in (2.1) analogous constants ( )2andα α  are mutually 

dependent and in this limit we turn to free particle problem instead of Coulomb’s one. The self-adjoint 
procedure is not performed in cited [1-6] papers. In [4] the authers think that the exclusion of hydrino 
states is possible by requirement of orthogonality. But the detailed consideration shows that these 
additional solution must be retained [7].  
     The difference between standard and hydrino states manifests itself in the process of non-relativistic 
limit, which must be realized be safety. Detailed consideration in [7] gives the restriction  
                                                      ( ) 21 α<+ll                                                                          (2.14) 
It follows that the l=0 states tending to non-relativistic limit is impossible, because the standard states 
remain, but the hydrino states disappear. Therefore we have to consider only l=0 states.  
   Indeed, it follows from (2.8-11) that for basic state ( 0== lnr ): 
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The expansion in powers of α  gives  
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                                                    )2/( 3)0( αα += mEHYD                                                           (2.18) 
The standard solution does not feel the sign of α , whereas hydrino does.  
Let us mention that expanding to order 2α  we derive  



GESJ: Physics 2018 | No.1(18) 
ISSN 1512-1461 

 

43 
 

                                                    
( ) 











+
−= 2

2
)0(

12
1

r
st n

mE α                                                       (2.19) 

                                                    
( ) 










−= 2

2
)0(

2
1

r
HYD n

mE α                                                           (2.20) 

Comparing these two results we see that there is some degeneracy between 1+rn  and rn  levels, but 
this degeneracy disappear in the higher orders.  
        Now let us study the influence of scalar potential in case of attractive Coulomb’s one 
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In this case we will derive the Eq. (2.2) but now  
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The equations (2.4-12) are valid again. They take the form now 
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  Here  the existence of 0=stE  and  0=addE  levels is possible even for limiting ∞±= ,0τ  cases if  
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As well as for  
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when E=0. In this case (2.14) is replaced by  
                                                       ( ) 221 βα −<+ll                                                                (2.27) 
Which says that hydrino states exist when  
                                                       22 βα >                                                                             (2.28) 
i.e. the vector potential must be more strong than the scalar one, the inclusion of scalar potential 
hinders the appearance of hydrino states.  
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2.2    Self-adjoint procedure in two-body Klein-Gordon equation with equal masses 
 
Consider [8,9] the Klein-Gordon two-body equation for equal mass particles 
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In case of central potentials the radial equation looks like  
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Which for attractive Coulomb potential 
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Here   ε+= mM 2   -  M  is a mass of a bound state, while ε  is a bound state energy. It follows the 
analogous to (2.2) equation, but we must require 224 Mm > . 
    The equations (2.4 – 2.12) are still valid, but now  
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Here the Eq. (2.14)-like condition would be  
                                                  ( ) 2214 αβ <++ll                                                                  (2.36) 
     And the necessary condition for hydrino states is  
                                                      22 βα >                                                                              (2.37) 
Let us make some comments:  
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(1) When β α> , P is a real number and there is no “falling” of particles. For very strong value of 
scalar potential (β →∞ ), it follows 
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2
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β
βmM                                                    (2.38) 

So we have no falling independently of magnitude of β . It is one of non-trivial manifestation 
of relativity.  

(2)  When ,α β>  then P becomas a complex number if  

                                      ( ) 114 22 +++> βα ll                                                             (2.39) 
In this case for (2.35) we obtain the following restriction  
                       ( ) 1)1(414 222 +++<<++ βαβ llll                                                  (2.40) 
But for standard masses (2.34) only upper restriction follows 
                        ( ) 114 22 +++< βα ll                                                                           (2.41) 
If this restriction is fulfilled, then wave functions corresponding to (2.34) and (2.35) oscillates 
very fastly near origin and have no definite limit. We consider it as a falling of particles on each 
others. This falling takes place even for finite values of parameters ,α β .  

(3) The equal portion of vector and scalar potentials, α β= . The Eq. (2.31) reduces to Schrodinger    
like equation an (2.35) simplifies 
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(4)  For pure vector potential ( 0β = ), because of stadd nn < , the standard level is belower ,, than 

the hidrino level, .addst MM <  
(5) Remark that for large 1>>rn , it folows addst nn ≈ , therefore  addst MM ≈ . Remember that  the 

existence of  additional states is possible only if P<1/2. It follows that quasiclassical reagion  
does not distinguish between standard and hidrino states.  

(6) In case of pure vector potential ( 0β = ) it follows 
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In (2.1) and (2.31)                               
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It is seen from these relations, that we have the similar situation as in one-particle Klein-Gordon 
equation.  
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     It is interesting to know if two equal masses particle can form a massless bound state, 
0M = . It is easy to see that in case of scalar potential such a situation can take place for all 

values of τ , including the extreme cases 0,τ = ±∞  for  

                         ( ){ }2)1(1
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r
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   Now we can formulate the necessary conditions for the existing of hidrino states. Let us 
consider the attractive vector and scalar potentials with the following behavior at the origin:  
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Remark, that these potentials are “critical” in relativistic equations in the sense of falling on the 
center. We have derived that for such potentials in equations (2.1) and (2.31) the hidrino states 
appear in area, where the falling onto the center begins.   
 

         2.3 Hydrino states in other two-body Klein-Gordon equations  

 
For non-equal masses the Klein-Gordon two-body equation has the form  
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Where 
                             210 mmm += ;                   012 >−= mmδ                                  (2.50) 
Let us study various cases for relations of vector and scalar potentials: 
a)      Pure scalar potential - 0;0 ≠= SV .  Then the Eq. (2.49) simplifies  
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The hidrino states are expected in cases, when  
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where  
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And require 2/1<P , we derive the condition of existence  hidrino states  

                                      ( ) 0114 2

2
2
0 <








−++

M
Sll δ                                                        (2.55) 

This condition is not fulfilled in equal mass case. Now if we have  

                                      01 2

2
<−=∆

M
δ                                                                          (2.56) 

there   is a chance to fulfill (2.55).  

     Let, for simplicity, consider the case l=0. Remember that  
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We have 
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It’s clear that  this condition   be  satisfied if  

                                     12 22 mm n −<<− ε ,                                                                    (2.59) 

This condition does not contradict to appearance of bound states for non-confining potentials, when 
the bound state energy may be  positive.   

   We think that it is a kinematical (but not dynamical) effect.  

  In case of 0l ≠  it follows from (2.56) –(2.57) that the hidrino states may occur in cases, which 
satisfies to inequality       
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b) Pure vector potential 0;0 =≠ SV .  
In this case the equation takes the following form  
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It is easy to see that the condition of hydrino solution appearance coincides to that of equal masses 
case. Therefore results are the same as in equal mass case.  

c)    Let us now suppose that potentials have the following behaviors at the origin   
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 Then at low distances we get  
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It  is evident, that 11 ≤n  and  12 ≤n , otherwise the falling onto the canter occurs. The only interesting 
case is 121 −=− nn . Let 1 20, 1n n= = , then  
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It follows (from P>1/2) that  
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Then    for 0=l  
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And for 0l ≠ , hidrino is expected as 0V  is small and δ  is large.  
 
 
 
2.4     Other spinless equations 
   

1) The Todorov’s equation [13] 
It has a form  

                              0)1(222
2

22 =



 +

−−−−+′+′′ R
r
llVSmSVR

r
R MM ε ,                           (2.66) 

Where   

                                        ;21

M
mmmM =      

M
mmM

M 2

2
2

2
1

2 −−
=ε                                           (2.67)     

   It is seen from (2.66) that the lesding term at origin should be 2 2V S− . Therefore here the situation is 
analogous to that of Klein-Gordon two-body equation.  

2) Likhtenberg equation [12] 
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The situation here is the same as in Todorov’s equation.  
3) Krolikovsky equation [14]  
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Where   
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In difference of two above equations here the term 2 2V S−  is not a leading one. Therefore more 
detailed analysis is necessary: 

a) Pure scalar potential 0; 0V S= ≠   
Then we derive for potentials like (2.57) 
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And situation is analogous to (5.43) equation  below: No hydrino states.  

b) Pure vector potential  0;0 =≠ SV . NNow  
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determines the leading behavior and the situation is analogous to equal mass Klein-Gordon equation 
(2.30): when P<1/2, hidrino states occur.   

c) 0;0 ≠≠ SV  
Then for leading behavior we must take  
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Now situation is analogous to equal mass Klein-Gordon equation, (2.30): when P<1/2 – hidrino states 
occur.  
        According to above mentioned discussion one concludes that only in different- masses Klein-
Gordon equation appearance of hidrino states is possible and the other considered equations – 
Todorov’s, Likhtenberg’s, Krolikovsky – have the same situation, which coinsides to two-body Klein-
Gordon equation with equal and different masses.  
 
 

“Hydrino” states in fermionic equations 
 
    We already [15]  have shown that hidrino states do not appear in one-particle Dirac equation. 
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3.1  Crater’s  (quasipotential equation) 
 
    In several articles [5,6,16] Crater considered two-body Dirac equation, which is modified 
quasipotential equation – belongs to this klass of relativistic equations. We analyze thE last paper 
[16],in  which  He used his version of three-dimensional equations and for the  1

0S  - state his equation 
looks like the Schrodinger equation  

                           0
22

2

2
2 =








+++′+′′ R

rr
bR

r
R w ααε                                                              (3.1) 

Where ,)(
r

rA α
−=  and α - fine structure constant, w – total energy in CM system, 

222
ww mb −= ε  is 

two-body relativistic energy, w
mw

w 2
2 22 −

=ε  - invariant energy of relative motion, and 
2

w
mm
ω

=  is a 

reduced mass of relative motion.  
     Remark that the equation (3.1) formally coinsides to Schredinger equation for valence electron 
model [7], but now  

                           0
4
1;;2 2

22

22 >−=
−

=−= α
ε

αε
λερ P

m
rm

ww

w
ww                      (3.2) 

For bound states to occur there must be 22
wwm ε> . One can to use the results of [7]. In particular: 

The general solution  

          ( ) );21,2/1(;21,2/1 22/1
2

22/1
1 ρλρρλρ

ρρ

PPFeCPPFeCR PP −−−++−+=
−−−−+−          (3.3) 

The self-adjoint parameter in this case looks like  

                                                     
( )PwwmC

C
221

2

2

1

ε
τ

−
= ,                                                       (3.4) 

And the equation of eigenvalues is  

                     ( )
)21(
)21(2

)2/1(
)2/1( 22

P
Pm

P
P P

ww +Γ
−Γ

−−=
+−Γ
−−Γ ετ

λ
λ                                              (3.5) 

It must be noted that (35) is a new relation, as Crater does not consider a self-adjoint extension in his 
equation (3.1).  
      As follows, Eq.(3.5) is complicated transcendental equation. Only in two cases is possible to extract 
analytic solutions: 

1) 0τ =   

We get a solution from the pole of )2/1( P+−Γ λ , namely  

                           rnP −=+− λ2/1 ;       ...2,1,0=rn                                               (3.6) 
From which we find  
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( )
;

2/14/1
1

22

2
2

2

−−+
+

+=

α

α

n

mwst                                    (3.7) 

Where 1+= rnn    is a principal quantum number ( 0)l = . The corresponding wave function has a form   

                          ( )ρλρ
ρ

;21,2/122/1
1 PPFeCR P

st +−+=
−+−                                                    (3.8)  

2) τ = ±∞   
In this case we have only additional levels, which are found from poles of  )2/1( P−−Γ λ  and give  
                                              rnP −=−− λ2/1            ...)2,1,0( =rn                                        (3.9) 
And   

                      

( )
;

2/14/1
1

22

2
2

2

−−−
+

+=

α

α

n

mwadd     0,1, 2,...n =                              (3.10) 

Corresponding wave function has a form  

                        ( )ρλρ
ρ

;21,2/122/1
1 PPFeCR P

add −−−=
−−−                                              (3.11) 

One can rewrite the wave function in a Unified form as in [7]  

         ( ) ( ) ( )






 −−−Ψ

+
−−Γ+Γ=

−−
ρλρ

πρ
πλ

ρ

;21,
2
121sin2/121)( 2

1
2

1 PPePPPCrR
P

             (3.12) 

Exactly these states are called “hydrino”. Crated called them peculiar states. Distinction from the 
standard states manifests in passing to non-relativistic (small coupling) limit 0α → . Indeed, the 
relation (3.7) gives the form   

                          ( ) ...3,2,1;

32
11124

2 6

3

4

2

2
=+







 −

−−= nO
nn

m
n

mmwst ααα                                  (3.13) 

And (3.1) gives for the ground state of hidrino  relation (39) from [5]  
                                  α+= 121, mwadd                                                                                (3.14) 
Which is a tightly bound state. At the same time from (3.10) we find for excited states (n>1): 

                                      ( ) ...3,2,1;

32
11124

2 6

3

4

2

2
=+







 −

−−= nO
nn

m
n

mmwst ααα                     (3.15) 

     As well as in case of one dimensional Klein-Gordon equation we have a degeneracy between the 
hidrino states with levels for 1rn +  and rn  nodes. This degeneracy disappears in higher order  

                      3

4

1,, n
mww naddnst
α

−=− +                                                                                    (3.16) 
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     Therefore in case of different masses there are no hidrino states in two-body Crater equation and for 
making one of particle heavier, derived one particle Dirac equation also does not have hidrino states. 
Hidrinos appear only in equal masses two-body fermionic equation.  
 
4.  Hidrino states in higher spin equations ( Proca  equation) 
 
     For particles with spin, as is remarked in [17,18] there are two types of states for total momentum J: 

a) States with l=J or, for which orbital momentum l is an integral of motion. In this case the Proka 
equation reduces to one-body Klein-Gordon equation and according to our investigation above 
the Proka equation should have the hidrino states an the self-adjoint extension is necessary.  

b) The states with 1; 1l J J= ± ≥  belongs to the second type of states. At the low distances radial 
Proka equation has a form [17,18]  

                                            0)( 2,12,12,1 =+′′ χχ rf                                                                  (4.1) 

Where   

                                
( ) ( )

22,1
1)(

1
r
JJrV

r
JJ

f +
−′

+
=                                                          (4.2) 

Here 1χ  corresponds to l=J+1, and 2χ  - to l=J-1. It is seen from (4.2) that for 0; <= ngrV n
 

potential we should have a fall onto the center, therefore in this case only physically interesting 
potential may be logarithmic one  (formally, n=0)  

                                                  0;ln 00 >= VrVV                                                                   (4.3) 
For which from Eq. (4.1) folows 

                                               
( ) ( )

0
11

12
0

1 =
+++

−′′ χχ
r

JJVJJ
                                             (4.4) 

Ffrom which we find  

                                             ( ) 0

2

1
2
1 VJJJP ++





 +=                                                         (4.5) 

So,  P>1/2 and we have no additional levels. 
    But when l=J-1, it follows from (4.1), that  

                                          
( ) ( )

0
11

22
0

2 =
+−+

−′′ χχ
r

VJJJJ
                                               (4.6) 

and  

                                           ( ) 0

2

1
2
1 VJJJP +−





 +=                                                         (4.7)  

   Therefore from P<1/2 we derive the following inequality for the existence of additional states  

                                                ( )10 +> JJV                                                                          (4.8) 
Hence the self-adjoint extension procedure is necessary.  
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Conclusions 
 
    The obtained above results may be summarized as follows: 

1) For spinless particles with equal and unequal masses there are hydrino states, as well as in case 
when one of the masses becomes infinitely higher.  

2) For fermions one particle Dirac equation has not a hydrino states. But the Crater’s equation 
does not have hydrino states for unequal masses. But it has for equal masses, also we do not 
have hydrino in case of tending one of mass to infinity, 2 1m m .  

3) The Proka equation has hydrino in some restricted case.  
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