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Abstract

The description of symmetry breaking proposed by K. Symanzik within the
framework of renormalizable theories is generalized from the geometrical point
of view. For an arbitrary compact Lie group, a soft breaking of arbitrary covari-
ance, and an arbitrary field multiplet, the expected integrated Ward identities
are shown to hold to all orders of renormalized perturbation theory provided the
Lagrangian is suitably chosen. The corresponding local Ward identity which
provides the Lagrangian version of current algebra through the coupling to an
external, classical, Yang-Mills field, is then proved to hold up to the classical
Adler-Bardeen anomaly whose general form is written down. The BPHZ renor-
malization scheme is used throughout in such a way that the algebraic structure
analyzed in the present context may serve as an introduction to the study of
fully quantized gauge theories.
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1 Introduction

Besides the well-known relevance of broken symmetries to elementary particle physics,
further investigations of renormalizable models exhibiting broken symmetries are am-
ply justified by the present understanding of gauge and even super-gauge theories.
The present status of the subject is well represented by K. Symanzik’s 1970 Cargése
lectures where the fundamental phenomena are discussed [2]. Since much of the struc-
ture analyzed there can also be found in the study of gauge theories, it is of interest
to complete Symanzik’s analysis from the algebraic point of view, both in consider-
ing an arbitrary compact Lie group as describing the symmetry to be broken, and
in analyzing the perturbative analog of current algebra, namely the coupling with
an external Yang-Mills field, which, as is well-known, leads to the definition of the
celebrated Schwinger-Bell-Jackiw-Adler-Bardeen anomaly [3]. In fact, although this
program had been announced by K. Symanzik, [2], it has not been carried out until
now following the stimulation [4] provided by the advent of gauge theories. Also, it
seems that recent progress in renormalization theory has allowed a more tractable gen-
eral treatment than the techniques known in 1970 would have permitted. Most of the
present analysis relies on general properties of the perturbative series which stem from
locality and power counting, as summarized by the renormalized action principle of
Lowenstein and Lam [5] whose detailed form is one of the highlights of the Bogoliubov-
Parasiuk-Hepp-Zimmermann [6] renormalization scheme. Within this framework, ex-
plicit bases of local operators of given dimensions are constructed [7], together with
the linear relations connecting operators with different dimensions (the so-called Zim-
mermann identities). To avoid inessential technical complications, we shall only treat
cases in which no massless field is involved. Our analysis can, however, be extended
without essential modifications to a wide class of models involving massless fields ex-
ploiting Lowenstein’s and Zimmermann’s extension of BPHZ renormalization scheme
[8]. Whereas these elementary tools, which are best exploited by means of a repeated
application of the implicit function theorem for formal power series 1, suffice to solve
most of the algebraic problems at hand, the elimination of some possible anomalies is
occasionally performed by looking more deeply into the behavior of the theory under
scaling transformations, which provides some new non-renormalization type state-
ments similar to that which leads to the non-renormalization of the Adler-Bardeen
anomaly coefficient [9][10]. This article is divided into two main parts: Section 2
is devoted to the proof of the integrated Ward identity which expresses symmetry
breaking for an arbitrary compact Lie group, with an arbitrary dimension (< 4) and
covariance. Section 3 is devoted to a discussion of ’current algebra’ which, in the
present framework amounts to the proof of a local Ward identity, in the presence of
an external Yang-Mills field, and leads to the definition of the Adler-Bardeen anomaly.

1For a brief summary see [4] (b), Appendix II.
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A number of appendices are devoted to the treatment of some technical questions,
among which the elimination from the integrated Ward identities of algebraically al-
lowed anomalies consistent with power counting, and details about the cohomology
of the gauge Lie algebra associated with the symmetry group (i.e. the Wess-Zumino
[11] consistency conditions).

2 Broken global symmetries

This chapter is devoted to the proof of the perturbative renormalizability of a generic
model built on a set of quantized field variables and characterized by a softly bro-
ken invariance under field transformations belonging to a compact Lie group. We
shall systematically use a functional formulation in which, e.g., Green’s functions
are obtained as functional derivatives of their functional generator, and the classical
Lagrangian is a local field functional.2 The need of describing local operators such
as e.g. the terms breaking the invariance of the classical Lagrangian, requires the
introduction, together with the quantized fields, of further functional variables, that
we call external fields, coupled to the relevant operators.

It might be useful to shortly remind the general properties of a perturbatively
renormalizable theory, in particular, in the chosen, regularization independent, frame-
work based on the BPHZ scheme.

First of all, the perturbative construction is based on the Feynman diagram expan-
sion.3 The kernel of Feynman’s construction is the calculation of 1-particle irreducible
(1-P.I.) diagrams amputated of their external legs. Their functional generator is called
the effective action and denoted by Γ(ϕ). A n loop 1-P.I. diagram corresponds to an
amplitude proportional to ~n, thus Γ(ϕ) is a formal power series in ~. In the classi-
cal limit Feynman diagrams correspond to tree diagrams, those without loops, and
Γ(ϕ) corresponds to the classical action. In our scheme in the fully quantized limit,
not only Green’s functions, but also many important quantities, as e.g. Lagrangian
parameters, are formal power series in ~.

Renormalizability is based on power counting. A canonical (power counting) di-
mension is associated with any field, in particular, in the case of quantized fields,
this dimension is determined by the maximum derivative degree of the free, bilinear
part of the Lagrangian, or else, of the higher derivative part of the wave operator
which is assumed non-degenerate. As is well known the short distance behavior of
the causal Green’s function, the propagator, is determined by the dimension of the

2Thus quantized fields can also be interpreted as functional variables.
3In Feynman amplitudes quantized fields propagate while external ones do not. In the functional

formalism to every quantized field one associates a further functional variable called the field source
which plays the role of Legendre conjugate variable to the quantum field. The Legendre transform
of the classical action is the functional generator of the tree-approximation Feynman diagrams.
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corresponding fields. The general necessary condition for renormalizability is that the
canonical dimension of the Lagrangian, also including the contribution of derivatives,
should not exceed four.4

In many important cases, once the classical Lagrangian is given, one builds Feyn-
man diagrams, and hence the effective action, computing suitably regularized 1-P.I.
diagrams, so avoiding divergent results. A clever choice of regularization my help in
preserving symmetry properties of Green’s functions. In reality this works well in
some cases, while it is not a universal method. Choosing BPHZ subtraction method
we have a systematic construction of Green’s functions, but symmetry might be bro-
ken by loop corrections. The aim of the present paper is to show how symmetry can
be restored even in the BPHZ framework and hence independently of regularization.
Zimmermann’s subtraction method associates with every vertex in a Feynman dia-
gram a quantized field dependent monomial M(ϕ) equipped with the prescription
that the non trivial (sub)-diagrams containing the vertex should be subtracted at
zero momenta of the external legs together with their Taylor expansion up to total
dimension δ ≥ dimM . The operator corresponding to the ‘subtracted’ monomial is
denoted by Nδ[M ] and δ is called Zimmermann’s index.5 For the terms of the ef-
fective Lagrangian Leff , which contains all the prescriptions for the Green function
construction, an N4 subtraction is understood. A second basic point is Lowenstein-
Lam’s quantum action principle [5] according to which the variation of Γ(ϕ) under
infinitesimal parameter and field transformations corresponds to the insertion into
Γ(ϕ) of a (possibly integrated) local vertex whose Zimmermann’s index is the maxi-
mum canonical dimension of the variation of Leff , four in our case. The insertion of
the vertex V (ϕ) into Γ(ϕ) corresponds to the introduction into every 1-P.I. diagram
contributing to the expansion of Γ(ϕ) of a further local vertex which is specified by
the form of V . In general V may depend on both external and quantum fields. The
insertion of the vertex V (ϕ) into Γ(ϕ) is denoted by V Γ(ϕ) which is a new ~ formal
power series valued functional satisfying the equation

V Γ(ϕ) = V (ϕ) +O(~V )

where V (ϕ) is interpreted as a local functional and O(~V ) lumps the contributions
of the non trivial loop diagrams together. There are exceptional situations which
correspond to operators, either independent, or linear in the quantized fields. In these

4Note that e.g. in the case of a massive vector field where gauge invariance is broken by a mass
term the higher derivative part of the wave operator is degenerate due to gauge invariance and the
model is not renormalizable.

5The great advantage of Zimmermann’s subtraction method is its precise definition and the
identification of complete bases of local operators with well defined power counting behavior. In
spite of the very careful and detailed form of the original formulation, it is possible to show that
essentially the same properties are obtained by other methods, e.g. renormalization group evolution
equations, in which extra subtractions correspond to stronger initial conditions.[12]
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cases the corresponding vertices cannot be inserted into 1-P.I. diagrams and hence
the insertion of an exceptional operators into Γ(ϕ) is purely additive V Γ(ϕ) = V (ϕ).

A general quantization condition for any system is the stability of its dynamics
under infinitesimal changes of parameters and consistent deformations of symmetry
conditions. Dealing with ~ formal power series, implicit function theorem says that
the mentioned stability properties are guaranteed if they hold true at the zeroth order,
that is, in the classical theory. Thus if, e.g., we want to construct a perturbation
theory for which a particle interpretation exists, we must assume that there exists an
invertible change of variables between the parameters of the classical Lagrangian and
the physical ones. In general we shall precede the analysis of any quantum property
by a discussion of the classical case and of its stability under change of parameters and
symmetry conditions. We shall denote by an upper ring the classical quantities with
the exception of the the classical Lagrangian density functional/operator L. Thus we
have the functional equation

Γ̊ =

∫
dx L,

and the operator equation
L̊eff = N4[L].

2.1 The Classical Theory

The general situation is as follows: G is a compact Lie group, G its Lie Algebra:
G = S + A, S semi-simple, A Abelian. ϕϕϕ is a field multiplet belonging to a fully
reduced finite-dimensional unitary representation D of G, dϕ > 0 is the canonical
dimension of ϕ. Given X ∈ G the corresponding infinitesimal transformation of ϕϕϕ is:

δXϕϕϕ = −t̊(X)ϕϕϕ (2.1)

where X → t̊(X) is the representation of G induced by D.
Let βββ be a classical field to which is assigned dimension dβ < 4, belonging to a

multiplet characterized by another representation D of G (finite dimensional, fully
reduced, unitary, with no identity component) and

X → θ̊(X), X ∈ G, (2.2)

be the corresponding representation of G. The symmetry G will be said to be bro-
ken with dimension 4 − dβ, covariance b̊bb, belonging to multiplet D, if there exists
a Lagrangian L(ϕϕϕ,βββ) of maximum dimension four invariant under the simultaneous
transformation

ϕϕϕ→ gϕϕϕ = D(g−1)ϕϕϕ, (2.3)

βββ + bbb→ g(βββ + bbb) = D(g−1)(βββ + b̊bb). (2.4)
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The classical field βββ is introduced as an auxiliary item, in order to characterize the
breaking described by the space-time independent b̊bb according to its dimension, a
concept which is meaningful in the renormalizable framework we have in mind. The
theory will be truly renormalizable, i.e. L(ϕϕϕ,βββ) will be a polynomial, if

dβββ > 0, (2.5)

This criterion, introduced by Symanzik [2], leaves the broken theory with an asymp-
totic memory of the initial symmetry group. However, the limiting case

dβββ = 0,

can also be considered since L(ϕϕϕ, b̊bb) is invariant under simultaneous transformation

of ϕϕϕ and b̊bb and is not, in general, the most general Lagrangian which is invariant
under the residual symmetry group, namely the stability group Hb̊bb of b̊bb. Clearly, the
notion we have introduced only depends on the equivalence classes of D, D and the
orbit of b̊bb. We shall assume that in the tree approximations of the corresponding
Green functions and for some values of the parameters characterizing L, a particle
interpretation is possible and that there is an invertible change of parameters between
the coefficients of L and those occurring in normalization conditions through which
masses, coupling constants, etc., are defined. We shall furthermore assume that no
vanishing mass parameter appears in the theory. When the Lagrangian has a term
linear in the quantized field, the particle interpretation requires a field translation

ϕϕϕ→ ϕϕϕ+ F̊FF

through which the linear term is eliminated. F̊FF is then defined by:

∂ϕL(ϕϕϕ, b̊bb)|ϕ=F̊ = 0

which certainly has a solution continuous in the parameters of L if the mass matrix

M = ∂2
ϕϕL(ϕϕϕ, b̊bb)|ϕ=F̊

is non-degenerate. As shown in Appendix A, F̊FF is then a covariant function of b̊bb, and,
consequently, the coefficients of the Lagrangian expressed in terms of the translated
fields are also covariant. From now on, we shall still denote by ϕϕϕ and βββ the translated
field and by

L̃(ϕϕϕ,βββ) ≡ L(ϕϕϕ+ F̊FF ,βββ + b̊bb).

At this point, the action

Γ̊(ϕϕϕ,βββ) =

∫
dx L̃(ϕϕϕ,βββ) (2.6)
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fulfills the integrated Ward identity

W (X )̊Γ(ϕϕϕ,βββ) ≡ −
∫
dx
{δΓ̊
δϕϕϕ
t̊(X)(ϕϕϕ+ F̊FF )

+
δΓ̊

δβββ
θ̊(X)(βββ + b̊bb)

}
= 0, X ∈ G (2.7)

which expresses its invariance under the infinitesimal transformation

δXϕϕϕ = −t̊(X)(ϕϕϕ+ F̊FF ),

δXβββ = −θ̊(X)(βββ + b̊bb). (2.8)

Now we note that if we wants to construct a perturbation theory for which a par-
ticle interpretation exists, it is necessary to assume the following: Let the Lagrangian
be written in the form

L = C̊CC]LLL] =
∑
i

C̊i
]Li] (2.9)

where the C̊i
]’s are numerical coefficients and Li] are all possible local monomials

invariant under Equation (2.8), consistent with the renormalizability requirement.
Then there must exist an invertible change of variables between, on the one hand,
the C̊i

]’s and b̊bb and, on the other hand, a set of physical parameters (masses, wave
function normalizations, coupling constants) occurring in normalization conditions
imposed on Γ̊. These normalization conditions must be consistent with the symmetry
expressed by the Ward identity, but not constrained by power counting. This implies
in particular that power counting does not restrict Equation (2.9) compared to the
most general solution of Equation (2.7), as far as these normalization conditions are
concerned (e.g. power counting does not enforce mass rules). Of course, the fulfillment
of normalization conditions is only necessary if a particle interpretation is required,
the Ward identity being sufficient if only a theory of Green’s functions is aimed at.

Secondly one might object that the prescription of the Ward identity Equation
(2.7) does not seem to define the theory in a natural way from the point of view of
power counting: in a more general scheme one would have a Ward identity with the
following structure:

W (X )̊Γ(ϕϕϕ,βββ) ≡ −
∫
dx
{δΓ̊
δϕϕϕ

(T̊ (X)ϕϕϕ+ F̊FF (X))

+
δΓ̊

δβββ
(Θ̊(X)βββ + b̊bb(X))

}
= 0, X ∈ G (2.10)

subject to the algebraic constraint

[W (X),W (Y )] = W ([X, Y ]), X, Y ∈ G (2.11)
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thus expressing the invariance of Γ̊ under the transformation

δXϕϕϕ = −
[
T̊ (X)ϕϕϕ+ F̊FF (X)

]
,

δXβββ = −
[
Θ̊(X)βββ + b̊bb(X)

]
. (2.12)

with coefficients constrained by:

a)
[
T̊ (X), T̊ (Y )

]
= T̊ ([X, Y ]),

b)
[
Θ̊(X), Θ̊(Y )

]
= Θ̊([X, Y ]),

c) T̊ (X)F̊FF (Y )− T̊ (Y )F̊FF (X)− F̊FF ([X, Y ]) = 0,

d) Θ̊(X )̊bbb(Y )− Θ̊(Y )̊bbb(X)− b̊bb([X, Y ]) = 0, (2.13)

according to which
X → T̊ (X),

X → Θ̊(X),

are representations of G and b̊bb(X), F̊FF (X) are G Lie algebra cocycles 6 with values in
the representation spaces E and E of T̊ and Θ̊ respectively. It is shown in Appendix B
that the requirements which allow a particle interpretation and take into account our
definition of symmetry breaking put quite severe restrictions on T̊ (X), Θ̊(X), namely
they can be lifted to the group G, and thus, in particular, they are fully reducible.
They can thus be obtained from representatives of their equivalence classes which are
related to t̊, θ̊, through suitable field renormalizations:

T̊ (X) = Z−1̊t(X)Z,

Θ̊(X) = Z−1θ̊(X)Z, (2.14)

It is then shown in Appendix B that F̊FF (X), is a Lie algebra coboundary

F̊FF (X) = t̊(X)F̊FF (2.15)

for some fixed F̊FF , up to invariant components

F̊FF ](X)

which vanish for X ∈ S, the semi-simple part of G. It is finally shown in Appendix B
that F̊FF ](X) 6= 0 contradicts the assumption that the mass matrix is non-degenerate.
Thus the Ward identity (Equation (2.7)) is actually the most general in the present

context, since the Lie algebra coboundary structure of b̊bb(X):

b̊bb(X) = θ̊(X )̊bbb,

is implied by our picture of symmetry breaking.

6For a brief summary of Lie algebra cohomology, in particular the meaning of coboundary and
cocycle, see [4] (c), Appendix A
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2.2 Radiative Corrections

The description of radiative corrections proceeds via the construction of an effective
dimension four Lagrangian

Leff = N4[L+ ~∆L] (2.16)

without a term linear in the quantized fields, with coefficients formal power series in
~ such that the renormalized Ward identity holds:

W (X)Γ ≡ −
∫
dx
{δΓ
δϕϕϕ

(t(X)ϕϕϕ+FFF (X))

+
δΓ

δβββ
(θ(X)βββ + bbb(X))

}
= 0, X ∈ G = 0 (2.17)

subject to the algebraic constraints strictly analogous to those given in Equation
(2.11). Equation (2.17) expresses the invariance of Leff in the sense of the renormalized
action principle under the renormalized transformation

δXϕϕϕ = −(t(X)ϕϕϕ+FFF (X)),

δXβββ = −(θ(X)βββ + bbb(X)). (2.18)

which coincides with Equation (2.8) in the lowest order in ~. The analysis performed
in this section will actually lead to the conclusion that there exists a quantum exten-
sion in which the almost naive Ward identity holds:

W (X)Γ(ϕϕϕ,βββ) ≡ −
∫
dx
{δΓ
δϕϕϕ
t̊(X)(ϕϕϕ+FFF )

+
δΓ

δβββ
θ̊(X)(βββ + bbb)

}
= 0, X ∈ G (2.19)

where FFF is determined by the requirement that Leff has no term linear in ϕϕϕ, and bbb,
which picks up radiative corrections due to normalization conditions, has the same
stability group Hb̊bb of b̊bb. This is to say that one can fulfill quantum invariance under
the renormalized transformation

δXϕϕϕ = −t̊(X)(ϕϕϕ+FFF ),

δXβββ = −θ̊(X)(βββ + bbb), (2.20)

as a consequence of the algebraic constraints, Equation (2.11). It is shown in Ap-
pendix B that the consistency conditions (Equations (2.13)) on t(X) and θ(X) can
be used to replace them by t̊(X) and θ̊(X) up to terms which can be interpreted
as invariant anomalies to the Abelian Ward identities, i.e. Equation (2.17) with X
restricted to A, the Abelian part of G. Similarly the consistency condition on bbb(X)
leads to

bbb(X) = θ̊(X)bbb
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where bbb is arbitrary, and can trivially be chosen to keep the same stability group of
its classical limit (the residual symmetry group). Finally FFF (X) is found to be of the
form t̊(X)FFF for some fixed FFF , up to terms which again can be interpreted as invariant
anomalies to the Abelian Ward identities.

It will be shown, see in particular Appendix C, that the Ward identity, Equation
(2.19), cannot be broken exclusively by invariant Abelian anomalies, one concludes
that, modulo a field renormalization, all solutions of Equation (2.17) are solutions of
Equation (2.19).

We thus proceed to analyze the validity of Equation (2.19). Applying the action
principle to the case of the field variations given in Equation (2.20), we find

W (X)Γ = −∆(X)Γ (2.21)

where ∆(X) denotes the dimension four vertex insertion 7

−∆(X) =

∫
dxN4[δXLeff + ~Q(X)](x) (2.22)

where ~Q(X) lumps the radiative corrections together. Note that the first one-particle
irreducible diagrams appearing in the expansion of −∆(X)Γ are the tree diagrams
with a single vertex whose functional generator is

−∆(X) =

∫
dx{δXLeff + ~Q(X)}(x) = W (X)

∫
dxLeff(x) +O(X, ~Leff), (2.23)

the second term being linear in X. Furthermore, because adding a loop to a diagram
introduces a factor ~, we have the functional equation

−∆(X)Γ = −∆(X) +O(~∆(X)). (2.24)

The first step of our analysis will consist in deriving consistency conditions on
∆(X) which stem from the algebraic properties of W (X) (Equation (2.20)). Iterating
Equation (2.21) we get

[W (X),W (Y )] Γ = W ([X, Y ])Γ

= −∆([X, Y ])Γ

= − [W (X)∆(Y )Γ−W (Y )∆(X)Γ] , (2.25)

therefrom, using Equation (2.24), we get

W (X)∆(Y )−W (Y )∆(X) = ∆([X, Y ]) + ~O(∆(X),∆(Y ),∆([X, Y ])). (2.26)

7Here δXLeff is considered a functional.
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Since Leff and Q belong to finite-dimensional representation spaces of G, ∆ can be
reduced into irreducible components.

Equation (2.26) is a perturbed Lie algebra cocycle condition.8 Having split G into
its Abelian part and its semi-simple part: G = A + S and ∆(X) into its invariant
and non-invariant parts:

∆(X) = ∆](X) + ∆[(X),

let
X = Xαeα, W (eα) ≡ Tα, ∆(eα) ≡ Bα (2.27)

eα being a basis in G. Due to its linearity in X and Y Equation (2.26) can be rewritten

TαBβ − TβBα − fγαβBγ = ~Mαβ(B), (2.28)

Let {X,X} be a symmetric, positive definite, invariant form on G (e.g. Tr(W (X)W (X)))
which can be used to raise and lower indices. Let {T , T } = TαT α, we get from Equa-
tion (2.28)

{T , T }Bβ − TβT αBα = ~T αMαβ(B) (2.29)

where commutation relations have been used together with the antisymmetry of fαβγ
which is due to the invariance of {X,X}. Positive definiteness of {X,X} insures
that {T , T } is strictly positive on the non-invariant ([) part, so that using again
invariance, which insures that

[Tβ, {T , T }] = 0,

we get

B[
β = Tβ

T α

{T , T }[
B[
α + ~

T α

{T , T }[
M[

αβ(B) (2.30)

i.e.
∆[(X) = W (X)∆̂ +O(~∆) (2.31)

where ∆̂ is linear in ∆[. Furthermore, for eα, eβ ∈ S

fγαβB
]
γ = ~M]

αβ(B). (2.32)

Thus, using the non-degeneracy and invariance of the Killing form for S, we have

B]
α = O(~B), eα ∈ S. (2.33)

Assuming temporarily that also

B]
α = O(~B), eα ∈ A, (2.34)

8The following analysis consists in a perturbed version of the construction of the first class Lie
algebra cohomology which is discussed in Appendix B.
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as we shall demonstrate in a moment, we have

∆(X) = W (X)∆̂ +O(~∆). (2.35)

Now we show that it is possible to choose Leff and F in such a way that

∆̂ ≡ T αB[
α = 0. (2.36)

Indeed Equation (2.22) reads

Bα = Tα
∫
dx Leff + ~Qα

and separating in Leff and Q(X) the invariant and non-invariant parts, Equation
(2.36) reads ∫

dx L[eff + ~
Tα

{T , T }[
Q[
α = 0, 9 (2.37)

which is soluble for
∫
dx L[eff in terms of

∫
dx L]eff , FFF and bbb.10

Once Leff and FFF are so adjusted, Equation (2.26) is of the form

∆ = O(~∆)

whose solution is
∆ = 0.

The breaking parameter bbb, which has been so far left arbitrary, will eventually be
determined together with L]eff in terms of the physical parameters.

Thus, there remains to prove that

∆] = O(~∆), (2.38)

which requires a more detailed analysis than that provided by power counting used
up to now.

The idea is to order ∆] according to terms of decreasing dimensions and analyze
the various terms successively [9][10]. For this purpose, let us consider the linear space
spanned by the integrated monomials in the components of ϕϕϕ, βββ and their derivatives.
Denoting altogether these functional variables by ΦΦΦ, we define

MMM I,J,µ(I∪J) ≡
∫
dx

∏
i∈I∪J

3∏
σ=0

∂µσ(i)
σ Φi(x) (2.39)

9Which one may check to be independent of the choice of {X,X}.
10Note that renormalizabilty implies that Leff depends on a finite number of parameters which

are formal power series in ~ and Q[ can be written as a formal power series in Leff and ~.
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where I and J denote sets of, possibly repeated, components of ϕϕϕ and βββ respectively
and µσ(i) is a 4-vector valued function on the union of these sets whose components
are integers identifying the degree of the xσ-derivative on the i-th element.

It is clear that, on the one hand, different functions µ and ν must be identified if
they coincide after permutations of elements of I and J corresponding to the same
component of the fields and, on the other hand, that linear combinations of MMM ’s
are trivial if the corresponding linear combinations of the monomials appearing in
Equation (2.39) are equal to a total derivative. For this reason we fix a unique
basis of the space spanned by the monomials by ordering in a given sequence the
components of ΦΦΦ and we identify one element in the equivalence class up to a total
derivative choosing the monomial in which ΦiM , the last component of Φ belonging
to I ∪ J , appears at least once without derivatives.

The set of integrated monomials MMM with canonical dimension bounded by d (we
shall consider in particular the case d = 4) span a finite dimensional linear space
in much the same way as polynomials of bounded degree are elements of a finite
dimensional linear space. The dual space of the space of polynomials is spanned
by multiple derivatives at the origin. In our case we introduce the dual functional
differential operators XXX defined by

XXXI,J,µ(I∪J)(qqq) ≡
δ

δΦiM (0)

∏
i∈I∪J, i6=iM

3∏
σ=0

∂µσ(i)
σ

δ

δΦ̃i(qi)
, (2.40)

where Φ̃ denotes the Fourier transformed field. It is easy to see that one has the
following orthogonality property

XXXI,J,µ(I∪J)(000)MMM I′,J ′,µ′(I′∪J ′)|ΦΦΦ=0 = NI,J,µ(I∪J)δI,I′δJ,J ′δµ,µ′ , (2.41)

indeed, in particular, the right-hand side of Equation (2.41) vanishes unless I =
I ′, J = J ′ and hence iM = i′M . N is a non vanishing normalization factor. Further-
more,

XXXI,J,µ(I∪J)(qqq)MMM I′,J ′,µ′(I′∪J ′)|ΦΦΦ=0 = XXXI,J,µ(I∪J)(000)MMM I′,J ′,µ′(I′∪J ′)|ΦΦΦ=0 (2.42)

provided that the canonical dimensions

dimMMM I,J,µ(I∪J) ≥ dimMMM I′,J ′,µ′(I′∪J ′). (2.43)

Let G act on XXX according to:

XXXI,J,µ(I∪J)(qqq)T Hα Γ̄|ΦΦΦ=0 ≡
(
T Hα XXXI,J,µ(I∪J)(qqq)

)
Γ̄|ΦΦΦ=0 (2.44)

for any integrated local functional Γ̄. We have set

T Hα ≡
∫
dx
{
ϕϕϕ̊tTα

δ

δϕϕϕ
+ βββθ̊Tα

δ

δβββ

}
, (2.45)
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and T Hα is the homogeneous part of Tα obtained by putting βββ = FFF = 0 in Equation
(2.20). Let

XXX](qqq) =
∑

I,J,µ(I∪J)

C]
I,J,µ(I∪J)XXXI,J,µ(I∪J) (2.46)

be an element of a basis of T Hα -invariant test operators corresponding to dimension
four local polynomial functionals, one has

XXX](qqq)TαΓ|ΦΦΦ=0 = −XXX](qqq)BαΓ|ΦΦΦ=0

= −XXX](qqq)

∫
dx
{
FFF t̊Tα

δ

δϕϕϕ
+ bbbθ̊Tα

δ

δβββ

}
Γ|ΦΦΦ=0

= −XXX](qqq)Bα|ΦΦΦ=0 +O(~B)

= −XXX](0)Bα|ΦΦΦ=0 +O(~B). (2.47)

The first line is a consequence of the anomalous Ward identity, the second one makes
use of the T Hα -invariance of XXX](qqq), the last one follows from Equations (2.24, 2.42,
2.43). Now for qqq large in the Euclidean region power counting insures that the ex-
pression

XXX](qqq)

∫
dx
{
FFF t̊Tα

δ

δϕϕϕ
+ bbbθ̊Tα

δ

δβββ

}
Γ|ΦΦΦ=0

is asymptotically negligible, because dimϕϕϕ > 0 and dim βββ > 0, and hence, this expres-
sion is a linear combination of multiple derivatives of one-particle irreducible Feynman
amplitudes with global dimension, including the field and momentum derivatives,
smaller than minus four. It must vanish for large, linearly independent, qqq’s in the
Euclidean region. Thus

XXX]
I,J,µ(I∪J)(0)Bα = O(~B), ∀(I, J, µ(I ∪ J)), (2.48)

and hence the dimension four part of B]
α is O(~B). The analysis of the lower dimen-

sion terms of B]
α is slightly more sophisticated and is given in Appendix C.

This analysis completes the proof of Equation (2.38)
At this point, we have completed the construction of an effective action fulfilling

the Ward identity (2.19). The free power series parameters C], and bbb can then be
used to fulfill the normalization conditions which allow a particle interpretation of
the theory under the assumptions stated in section (2.1), namely the existence in

the tree approximation of an invertible transformation from C̊] and b̊bb to the physical
parameters involved in the normalization conditions.

13



3 The local Ward identity (current algebracurrent algebracurrent algebra)

3.1 The Classical Theory [14]

Given a Lagrangian L̃(ϕϕϕ,βββ) invariant under the global transformation Equation (2.20),
it is easy to introduce an external gauge field aaaµ of dimension 1, and construct a La-
grangian L(ϕϕϕ,βββ,aaaµ) invariant under the local gauge transformation:

δωωωϕϕϕ(x) = −t̊(ωωω(x))(ϕϕϕ(x) +FFF ),

δωωωβββ(x) = −θ̊(ωωω(x))(βββ(x) + bbb),

δωωωaaaµ(x) = ∂µωωω(x)− [ωωω(x), aaaµ(x)], (3.49)

where we have considered aaaµ(x) as well as ωωω(x) as elements of G: it is enough to
replace the derivatives occurring in L(ϕϕϕ,βββ) by covariant derivatives:

∂µϕϕϕ→ Dµϕϕϕ = ∂µϕϕϕ+ t̊(aaaµ)(ϕϕϕ+ F̊FF ),

∂µβββ → ∆µβββ = ∂µβββ + θ̊(aaaµ)(βββ + b̊bb), (3.50)

and to include gauge invariant terms constructed with aaaµ, through the antisymmetric
covariant tensor

GGGµν = ∂µaaaν − ∂νaaaµ − [aaaµ, aaaν ].

The local Ward identity which expresses the invariance of L(ϕϕϕ,βββ,aaaµ) under the local
gauge transformation Equation (3.49) is:

W(ωωω)̊Γ(ϕϕϕ,βββ,aaaµ) =

∫
dx

[
δΓ̊

δaaaµ
(∂µωωω(x)− [ωωω(x), aaaµ(x)])

−δΓ̊
δϕϕϕ
t̊(ωωω)(ϕϕϕ+ F̊FF )

−δΓ̊
δβββ
θ̊(ωωω)(βββ + b̊bb)

]
= 0, ωωω(x) ∈ G. (3.51)

The relationship between the integrated Ward identity for G and the local Ward
identity for the associated gauge group is:

W (ωωω) =W(ωωω) for ωωω space−time independent.

Note that the introduction of the external gauge field aaaµ, which globally transforms
under the adjoint representation of G whose generators are denoted by {fα}, does not
spoil the conclusions of the previous section because nowhere Lorentz covariance of
the fields was used.
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3.2 Radiative Corrections

Defining

Wα(x) ≡ δW
δωα(x)

,

we are going to give a general proof of an anomalous local Ward identity:

Wα(x)Γ = Gα(x)

where Gα is a dimension four polynomial in the classical gauge field aaaµ and its deriva-
tives. Taking into account the remark at the end of section 2 we have already proved
the integrated Ward identity in the presence of the gauge field:∫

dx
{
aaaµf

T
α

δ

δaaaµ
+ (ϕϕϕ+FFF )̊tTα

δ

δϕϕϕ
+ (βββ + bbb)θ̊Tα

δ

δβββ

}
(x)Γ = 0.

On the contrary, performing a local gauge transformation yields

Wα(x)Γ = Kα(x)Γ

where Kα(x) is a dimension four local insertion. It follows from the validity of the
integrated Ward identity that ∫

dx Kα(x) = 0,

hence
Kα(x) = ∂µKµα(x)

where Kµα a dimension three local operator. Now the quantum action principle implies
that Kα fulfills the perturbed compatibility condition [11]

δKβ(y)

δωα(x)
− δKα(x)

δωβ(y)
− fγαβδ(x− y)Kγ(x) = O(~K) (3.52)

where O(~K) lumps the radiative corrections together.
In Appendix D it is shown that the solution to the unperturbed compatibility

condition

δK̂β(y)

δωα(x)
− δK̂α(x)

δωβ(y)
− fγαβδ(x− y)K̂γ(x) = 0 (3.53)

is of the form

K̂α =
δ

δωα(x)

∫
dy K(y) +Gα(x) (3.54)
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where Gα(x) does not depend on the quantized fields and is not the gauge variation of
any local functional of dimension less than or equal to four. K(x) is a local dimension
four functional. Furthermore the insertion of the vertex Gα(x) into the effective action
is additive and does not contribute any radiative correction11

Gα(x)Γ = Gα(x). (3.55)

Therefore, the solution of Equation (3.52) is provided by

Kα(x) = K̂α(x) +O(~(K −Gα)). (3.56)

Furthermore, since Kα is a divergence, so is K̂α. Now we recall that, according to the
quantum action principle,

Kα(x) =
δ

δωα(x)

∫
dyLeff(y) +Qα(x) (3.57)

with Qα = O(~Leff). From this equation, considering Equations (3.54), (3.56) and
(3.57), we have

Kα(x) =
δ

δωα(x)

∫
dy Leff(y) +Qα(x)

= K̂α(x) +O(~(K −G))

=
δ

δωα(x)

∫
dy K(y) +Gα(x) +O(~(K −Gα)). (3.58)

From which we have

Qα(x)−Gα(x) =
δ

δωα(x)

∫
dy [K(y)− Leff(y)] +O(~(K −Gα))

≡ δ

δωα(x)

∫
dy N(y) +O(~(K −G)), (3.59)

where N(y) is a term generated by radiative corrections and hence is O(~Leff(y)). It
follows that the equation

δ

δωα(x)

∫
dy [N(y) + Leff(y)] =

δ

δωα(x)

∫
dyK(y) = 0

can be solved in terms of the parameters in Leff and hence the system (3.58) reduces
to

Kα(x)−Gα(x) = O(~(K −G))

11That is: to the right-hand side of Equation (3.52). Concerning the radiative corrections to G
see also [13][14] .
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whose unique solution is
Kα(x)Γ = Gα(x)Γ.

At this point, taking into account Equation (3.55), we have

Kα(x)Γ = Gα(x)Γ = Gα(x),

namely we have proved the anomalous Ward identity

Wα(x)Γ = Gα(x).

As shown in Appendix D, Gα(x) can always be chosen in the form:

Gα(x) = ∂µK
µ
α(x) (3.60)

with
Kµ
α(x) = εµνρσ

[
Dαβγ(∂νa

β
ρ)aσγ + Fαβγδa

β
νa

γ
ρa

δ
σ

]
(3.61)

and

Fαβγδ =
1

12

[
Dαβηf

η
γδ +Dαδηf

η
βγ +Dαγηf

η
δβ

]
. (3.62)

Dαβγ is a symmetric invariant rank three tensor on G, it parametrizes the general
form of the Adler-Bardeen anomaly.

4 Conclusion

We have completed a number of points of Symanzik’s program on the renormalization
of theories with symmetry breaking.

For models without massless particles, we have been able to deal with an arbi-
trary compact internal symmetry Lie group, and prove the integrated Ward identities
characteristic of a super-renormalizable breaking with given covariance. The corre-
sponding anomalous local Ward identity - the functional expression of current algebra
- is then proved in full generality and a compact formula exhibited for the correspond-
ing Adler-Bardeen anomaly. Our perturbative treatment fails if power counting mixes
with geometry to produce e.g. mass rules, since in this case a particle interpretation
of the theory is no longer possible. The breakdown of our treatment generated by
this phenomenon is quite more dramatic in models involving massless particles. This
happens in particular if, due to tree approximation mass rules there are more mass-
less scalar fields than Goldstone bosons (pseudo-Goldstone bosons [15]). In this case,
even the construction of a Green function theory needs a deep modification of the
perturbative scheme [16]. Another limiting case which is worth mentioning occurs
when the breaking has dimension four and, given the direction bbb which characterizes
the breaking, the most general invariant Lagrangian formed with the quantized field
is not the most general Lagrangian invariant under the residual symmetry group Hbbb.
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A F̊FF is a covariant function of b̊bb

A classical action is viewed as an integrate local functional whose argument is indef-
initely differentiable with fast decrease. In the present case

Γ̊(ϕϕϕ,βββ) =

∫
dxL(ϕϕϕ+ F̊FF ,βββ + b̊bb)(x)

where L is a classical Lagrangian density without a constant term, i. e. L(F̊FF , b̊bb) = 0,
defined up to a divergence. We shall limit ourselves to renormalizable Lagrangians, ac-
cording to the conventional power counting theory through which fields ϕϕϕ are assigned
dimensions connected with the structure of the quadratic part of L, the dimension
of βββ being a priori given, namely Lagrangians of positive dimension smaller than or
equal to four. If dimϕϕϕ > 0, renormalizable Lagrangians are polynomials. Assuming
that L has no term linear in ϕϕϕ, we see that the integrated Ward identity, Equation
(2.7), is only meaningful if

δΓ̊

δβββ
|ϕϕϕ=βββ=000θ̊(X )̊bbb = 0 (A.1)

which we shall assume. The field translation parameter appropriate to get rid of the
term linear in ϕϕϕ from a Lagrangian which is an invariant formed with ϕϕϕ+F̊FF and βββ+b̊bb,
of course, depends on b̊bb . For constant ϕϕϕ and vanishing βββ, L(ϕϕϕ+ F̊FF , b̊bb) is an invariant

polynomial which we denote by F . Hence F̊FF is implicitly defined by

∂F
∂ϕϕϕ

(F̊FF , b̊bb) = 0 (A.2)

and the Ward identity implies

∂F
∂ϕϕϕ

t̊(X)(ϕϕϕ+ F̊FF ) +
∂F
∂̊bbb

θ̊(X )̊bbb = 0. (A.3)

Differentiating Equation (A.2) with respect to b̊bb and Equation (A.3) with respect to

ϕϕϕ at ϕϕϕ = F̊FF yields

∂2F
(∂ϕϕϕ)2

|ϕϕϕ=F̊FF

[̊
t(X)F̊FF − ∂F̊FF

∂̊bbb
θ̊(X )̊bbb

]
= 0

18



which, under the assumption that the mass matrix ∂2F
(∂ϕϕϕ)2
|ϕϕϕ=F̊FF be non-degenerate, im-

plies that F̊FF is a covariant function of b̊bb :

t̊(X)FFF =
∂FFF

∂bbb
θ̊(X)bbb.

Similarly the other coefficients of L are covariant functions of b̊bb.

B Canonical form of the Ward Identity

This appendix is devoted to the reduction of the Ward identity to canonical form.

B.1 The tree approximation

We have assumed that G = S +A be a compact Lie algebra and hence that {X,X}
be a symmetric, positive definite, invariant form on G which can be used to raise and
lower indices. We first show that the representations

X → t̊(X), X → θ̊(X), X ∈ G, (B.1)

are fully reducible. This is automatic for X ∈ S, the semi-simple part of G . For
X ∈ A, the Abelian part of G , this is a consequence of the assumption that the
kinetic part of L be Hermitian non-degenerate, which insures that X → t̊(X) is fully
reducible. Then, the Lie algebra cocycle condition Equation (2.13 c) can be solved
as follows. Reducing Equation (2.13 c) to components (see Equation (2.27)):

t̊αF̊FF β − t̊βF̊FFα − fγαβF̊FF γ = 0

yields
{̊t, t̊}F̊FF β ≡ (̊tαt̊

α)F̊FF β = t̊β (̊tαF̊FFα).

Thus restricting F̊FFα to its non-invariant part F̊FF
[

αwe have:

F̊FF
[

α =
1

{̊t, t̊}
t̊α(̊tβF̊FF β) ≡ t̊αF̊FF

[
.

Similarly, using the non-degeneracy of the Killing form of S, we also get

F̊FF
]

α = 0, eα ∈ S

so that only F̊FF
]

α for eα ∈ A is left undetermined.
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Thus one has to find a polynomial Lagrangian L invariant under

δXϕϕϕ
[ = −t̊(X)(ϕϕϕ[ + F̊FF

[
), δXϕϕϕ

] = F̊FF
]
(X), δXβββ

[ = −θ̊(X)(βββ[ + b̊bb
[
).

According to the mathematical meaning of βββ, which characterizes the symmetry
breaking, any βββ] component is excluded. Thus the last of the above equations is
proved in the same way as the first one.

It is easy to see that, due to the polynomial character of L, those components of

ϕϕϕ] for which F̊FF
]
(X) 6= 0 do not couple.

B.2 Radiative Corrections

We shall first show that the representation property Equation (2.13a) 12 with

t(X) = t̊(X) +O(~)

where t(X) is a formal power series in ~, implies that

t(X) = Z−1̊t(X)Z

for some formal power series Z:

Z = 1 +O(~).

Let first X ∈ S the semi-simple part of G, let

t(X) =
∞∑
n=0

tn(X)

Z =
∞∑
n=0

Zn

be the formal power series for t(X) and Z, respectively. We have chosen

t0(X) ≡ t̊(X), Z0 = 1

thanks to a symmetric wave function renormalization. The possibly non-trivial first
order term in the expansion of Equation (2.13a) reads

[̊t(X), t1(Y )]− [̊t(Y ), t1(X)]− t1([X, Y ]) = 0

12We replace into Equation (2.13a) T̊ (X) by t(X) because we are now considering radiative cor-
rections and hence formal power series in ~.
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which is a Lie algebra cocycle condition strictly analogous to Equation (2.13c)13 and
can be solved in the same way; hence, due to the semi-simplicity of G

t1(X) = [̊t(X), Z1]

for some Z1.
Let us now assume that

t(X) = (Z(n−1))−1̊t(X)Z(n−1) + τn(X)

with τn(X) = O(~n) and Z(n−1) =
∑n−1

0 Zk which is true for n = 2 with

Z(1) = 1 + Z1.

The term in Equation (2.13a) at the lowest non-vanishing order reads:[̊
t(X), {Z(n−1)τn(Y )(Z(n−1))−1}n

]
−
[̊
t(Y ), {Z(n−1)τn(X)(Z(n−1))−1}n

]
−{Z(n−1)τn([X, Y ])(Z(n−1))−1}n = 0, (B.2)

where, given a ~ formal power series X, {X}n denotes the term of order n. This is a
further cocycle condition whose solution is

{Z(n−1)τn(X)(Z(n−1))−1}n = [̊t(X), Zn]

for some Zn, so that

τn(X) = (Z(n−1))−1 [̊t(X), Zn]Z(n−1) +O(~n+1) = [̊t(X), Zn] +O′(~n+1)

thus
tn(X) = {(Z(n))−1̊t(X)Z(n)}n

with
Z(n) = Z(n−1) + Zn.

As a conclusion, we may choose t(X) = t̊(X) for X ∈ S up to a field renormalization
identified by Z.

Now, for X ∈ A, the Abelian part of G, any anomaly in the Ward identity can
be considered as a breaking of the canonical Ward identity through a term which,
up to O(∆2), is Abelian invariant, and thus, cannot occur as a consequence of the
argument at the end of section 2 for the anomaly in t(X), and of the argument in
next Appendix C for the anomaly in FFF (X).

13It just refers to a different representation, the adjoint, of G.
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C Elimination of Soft Invariant Anomalies from

the Integrated Ward Identity

Once the dimension four anomalies have been eliminated as indicated in the text, one
might remain with a Ward identity of the form:

W (X)Γ =
∑
δ=1,2,3

∆]
δ(X)Γ for X ∈ A

where the breaking insertions ∆]
δ are invariant and have power counting dimension

(Zimmermann’s index) δ. Let now λ be any parameter of the theory (every parameter
identifies an independent term of L), and let

Dλ = ∂λ −
∫
dx ∂λB

δ

δΦ(x)
(C.1)

where
B = (FFF ,bbb), Φ = (ϕϕϕ,βββ).

Then
[Dλ,W (X)] = 0.

In particular, let m∂m be the operator which scales all the parameters of the theory
according to their mass dimensions (the first term in the Callan-Symanzik equation)
and Dm the associated invariant operator [10] (as in Equation (C.1)). In the tree
approximation DmL is invariant and soft.

A differential scaling equation is written introducing into L an invariant external
fields η, with dimension d = 1, coupled to soft invariant terms constrained by the
condition for the classical action Γ̊

DmΓ̊(η) =

∫
dx m

δΓ̊(η)

δη(x)
,

where m defines a reference mass scale. If this equation is satisfied L is a linear
combination of dimension four independent invariant local polynomials in Φ and in
η−m. The coefficients of this linear combination, that we label by ξ, are dimensionless
and are constrained by a sum rule which follows from the already stated condition
that L must vanish when all the quantized and external fields vanish.14

14It is important to note here that this condition, holding true in the tree approximation, remains
fulfilled also by the loop corrections since the subtraction prescription does not contribute any
constant term.
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After the introduction of η, repeating the analysis shown in the text, we see that
the Ward identity becomes

W (X)Γ(η) =
∑
δ=1,2,3

∆]
δ(X, η)Γ(η) (C.2)

where ∆]
δ(X, η) are the new, soft, η-dependent, invariant breaking insertions and Γ(η)

the new η-dependent effective action functional.
Considering the scaling equation beyond the tree approximation, we deduce from

the quantum action principle15[
Dm −

∫
dx m

δ

δη(x)

]
Γ(η) = ~

[
Mm]

4 (η)Γ(η) +Mm[
4 (η)Γ(η)

]
(C.3)

where M
m]/[
4 Γ(η) =

∫
dxN4[Mm]/[(x)]Γ(η) correspond to the insertion into Γ of a

linear combination of, invariant/non-invariant, integrated local vertices among which
there are some which are η dependent.

Furthermore we have

DξΓ(η) = M ξ]
4 (η)Γ(η) + ~M ξ[

4 (η)Γ(η), (C.4)

where the non-invariant ([) operators appear because the Ward identity is broken.
The mentioned operator set (i.e. that spanned by the linear combinations of the

M ξ]
4 (η)’s) being complete, there must be a linear relation among Mm]

4 and the M ξ]
4 ’s.

Thus Equation (C.3) reads[
Dm −

∫
dx m

δ

δη(x)
+ ~

∑
cξDξ

]
Γ(η) = ~M̃m[

4 (η)Γ(η), (C.5)

where M̃m[
4 lumps the non invariant insertions appearing in the right-hand side of

Equations (C.3) and (C.4) together.
It is obvious that, if the Ward identity were unbroken, the right-hand side of

Equation (C.5) would vanish because it is not invariant, while the left-hand side
is. In that case Equation (C.5) coincides with the Callan-Symanzik equation of the
theory ([10]). If, on the contrary, we have the broken Equation (C.2), combining this

15Which in the present case corresponds to the Zimmermann identities giving the expansion of
local operators with a weaker subtraction prescription in terms of local operators with stronger
subtraction prescriptions, such as those coupled to η − m. This difference vanishes in the tree
approximation because there is no diagram to subtract.
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equation with Equation (C.5) we get

W (X)

[
Dm −

∫
dx m

δ

δη(x)
+ ~

∑
cξDξ

]
Γ(η)

=

[
Dm −

∫
dx m

δ

δη(x)

] ∑
δ=1,2,3

∆]
δ(X, η) +O(~∆])

= −~T (X)M̃m[
4 (η) +O(~2M̃m[

4 ). (C.6)

Indeed the last term in the second line is due to the action of ~
∑
cξDξ on the breaking

∆](η) and to the loop diagrams with the insertion of ∆]. The last line in Equation
(C.6) accounts for the action of W (X) on the right-hand side of Equation (C.5) whose
first order approximation is given by the action of T (X) on ~M̃m[

4 (η).
Equation (C.6) is equivalent to a system of equations involving terms with different

dimensions and covariances. For the non-invariant part we have

T (X)M̃m[
4 (η) ∼ M̃m[

4 (η) = O(∆], ~Mm[
4 (η))

which implies
M̃m[

4 (η) = O(∆]).

Thus we have [
Dm −

∫
dx m

δ

δη(x)

] ∑
δ=1,2,3

∆]
δ(X, η) = O(~∆]).

Now, considering in the order the terms with decreasing powers of η and decreasing
dimension d, none of which is annihilated by the differential operator Dm

16, we finally
get

∆]
δ(X, η) ≡ 0

and the unbroken integrated Ward identity is proved.

D Cohomology of the Gauge Lie Algebra

We shall analyze the structure of

K̂α(x) = ∂µK
µ
α (D.7)

16Indeed the breaking ∆δ has physical (mass) dimension 4 and power counting dimension δ ≤ 3,
this implies the presence of coefficient with mass dimension larger than one.
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solution of the gauge algebra17 cocycle condition (Cf. Equation (80))

δK̂β(y)

δωα(x)
− δK̂α(x)

δωβ(y)
− fγαβδ(x− y)K̂γ(x) = 0 (D.8)

(the Wess-Zumino consistency condition [11]). Integrating first Equation (D.8) over
x shows that ∂µK

µ
α transforms like the adjoint (regular) representation, under global

transformations. Indeed, upon x-integration, Equation (D.2) reduces to

TαK̂β(y)− fγαβK̂γ(y) (D.9)

where Tα is the infinitesimal generator of the global transformations. Due to its def-
inition, Equation (D.7), Kµ

α is a local polynomial in the fields and their derivatives
identified up to terms which belong to the kernel of ∂µ. The mentioned polynomi-
als carry completely reducible representations of the compact Lie algebra G which
commutes with ∂µ. Thus, writing Kµ

α as a combination of terms, each belonging to a
different irreducible representation G, we should find two different combinations cor-
responding to the kernel of ∂µ and to the rest of Kµ

α which must belong to the adjoint
representation. In the following we shall only consider this rest which we shall persist
denoting by Kµ

α and which belongs to the adjoint representation of G . We shall now
expand Kµ

α in increasing powers of aaaµ, obviously every term of this expansion belongs
to the adjoint representation of G. Let Kµ

0α be the term independent of aaaµ. We may
write

∂µK
µ
0α =

δ

δωα(x)

∫
dy Kν

0β(y)aβν (y) + ∂µL
µ
α (D.10)

where Lµα subtracts the homogeneous part of the gauge transformation of the first
term and hence is linear in aaaµ. The same decomposition can be repeated for the
terms of higher degree.

Let Kµ
1 be the term of Kµ + Lµ linear in aaaµ. We can similarly write

∂µK
µ
1α(x) =

1

2

δ

δωα(x)

∫
dy Kν

1β(y)aβν (y) + ∂µQ
µ
α

provided that

Kµν
1αβ(x, y) ≡

δKν
1β(y)

δaαµ(x)
− δKµ

1α(x)

δaβν (y)
= 0. (D.11)

Qµ
α is now quadratic in aaaµ. From the aaaµ independent part of Equation (D.8) we get

∂xµ∂
y
νK

µν
1αβ(x, y) = 0. (D.12)

17The gauge Lie algebra discussed in the present paper is an infinite dimensional generalization
of a Lie algebra. The analysis shown in this section has been extended to a more general situation
in [17].
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The only possibleKµν
1αβ(x, y) consistent with power counting, symmetry, and condition

(D.12), is:
Kµν

1αβ(x, y) = (�gµν − ∂µ∂ν)δ(x− y)Aαβ

for some Aαβ anti-symmetric invariant tensor on the Lie algebra. Then

K̃µ
1α(x) = Kµ

1α(x) + (�aµβ(x)− ∂µ∂νaνβ(x))Aαβ

does fulfill Equation (D.11) and

∂µK̃
µ
1α(x) = ∂µK

µ
1α(x).

Thus

∂µK
µ
1α(x) =

1

2

δ

δωα(x)

∫
dy K̃ν

1β(y)aβν (y) + ∂µR
µ
α(x) (D.13)

for some Rµ
α(x) quadratic in aaaµ.

Similarly we proceed considering the terms Kµ
2α(x) = Kµ

α(x)+Rµα(x) quadratic in aaaµ.
It is convenient to continue our analysis after Fourier transformation of fields and

local functionals. To simplify our formulae and calculations for a generic quantity
f(x) (or y) we denote its Fourier transform by f(p) (or q or else k), only changing
the variables. The most general form of Kµ

2α(−p) which is not orthogonal to p is

Kµ
2α(−p) = i

∫
dk
[
kµaνβ(k)aνγ(−p− k))Zαβγ + kνaµβ(k)aνγ(−p− k))Xαβγ

+kνaνβ(k)aµγ(−p− k))Y αβγ + εµνρσDαβγkνaρβ(k)aσγ(−p− k)
]
, (D.14)

where Dαβγ must be symmetric in β and γ 18. Furthermore all the coefficient are
invariant tensors on G.

Now

ipµK
µ
2α(−p) = −

∫
dk
[
p · kaνβ(k)aνγ(−p− k))Zαβγ + pµk

νaµβ(k)aνγ(−p− k))Xαβγ

+pµk
νaνβ(k)aµγ(−p− k))Y αβγ + εµνρσDαβγkµaνβ(k)pρaσγ(−p− k)

]
, (D.15)

The part of the cocycle (consistency) condition on pµK
µ
2α(−p) which is linear in aaaµ

requires the symmetry under simultaneous interchange of p and q and α and β of

qν
δ pµK

µα
2 (−p)

δ aνβ(q)
= q · aγ(−p− q)[p · q(Zαβγ − Zαγβ − Y αγβ +Xαβγ)− p2Zαγβ]

+p · aγ(−p− q)[p · q(−Y αγβ −Xαγβ)− q2(Xαγβ − Y αβγ)](D.16)

18In order to verify these properties it is useful to have occasionally recourse to the change of the
integration variable k → −p− k.

26



where we have performed twice the partial change of variables mentioned in the
footnote. From Equation (D.16) we get

Zαγβ = Xβγα − Y βαγ

Zαβγ − Zαγβ − Y αγβ +Xαβγ + Y βγα +Xβγα = 0. (D.17)

We now consider K3, the most general integrated local functional of dimension
four and cubic in aaaµ, it is

K3 =

∫
dx
[
∂µaµβ(x)aνγ(x)aνδ(x)Aβγδ + aµβ(x)∂µaνγ(x)aνδ(x)Bβγδ

+εµνρσEβγδ∂µaνβ(x)aργ(x)aσδ(x)
]

(D.18)

where Aβγδ is symmetric in γ and δ and Eβγδ is anti-symmetric in the same indices.
Computing pµ

δ K3

δ aµα(p)
we get the same expression as that in the right-hand side of

Equation (D.14) where however

Zαβγ = Bαβγ − 2Aαβγ = −Y βαγ, and Xαβγ = Zγβα − Zγαβ. (D.19)

These are consistent with Equation (D.17). B being arbitrary, although invariant, we
can choose B and A satisfying Equation (D.19). With this choice and using Equation
(D.15) we have, for some Q3 cubic in aaaµ

ipµK
µα
2 (−p) =

δ

δωα(p)
K3 +Qα

3 (p)

−
∫
dk pµk

ν
[
aµβ(k)aνγ(−p− k))(Xαβγ − Zγβα + Zγαβ)

+aνβ(k)aµγ(−p− k))(Y αβγ + Zβαγ)
]

−
∫
dk εµνρσ(Dαβγ − 2(Eαβγ + Eβαγ))kµaνβ(k)pρaσγ(−p− k) (D.20)

Using the first Equation (D.16) we get Xαβγ − Zγβα + Zγαβ = Y αγβ + Zγαβ ≡ Wαγβ

which is antisymmetric in the last two indices due to Equation (D.16). Now it is not
difficult to verify, using again the above mentioned change of variables, that the third
term in the right-hand side of Equation (D.20) vanishes. We are still free to choose
E; we set Eαβγ = 1

3
[Dβγα−Dγαβ] (D is symmetric in the last two indices). Then the

coefficient in the third term in the right-hand side of Equation (D.20) reads

1

3
(Dαβγ + 4Dγαβ)− 2

3
Dβγα.

However we must remind that the non-vanishing contribution to Equation (D.20) of
its fourth term corresponds to the part of this tensor which is β − γ-symmetric, that
is

D̃αβγ ≡ 1

3
(Dαβγ +Dγαβ +Dβγα), (D.21)
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this is an invariant fully symmetric tensor on the Lie algebra G. Thus we get

∂µK
µα
2 (x) =

δ

δωα(x)
K3 +Qα

3 (x) + εµνρσD̃αβγ∂µaνβ(x)∂ρaσγ(x). (D.22)

In order to perform the last step we put together Equations (D.10), (D.13) and (D.22)
and, omitting the˜sign above D, we obtain

∂µK
µα(x) =

δ

δωα(x)

[∫
dy (Kν

0β(y)aβν (y) +
1

2
K̃ν

1β(y)aβν (y)) +K3

]
+∂µS

µα(x) + εµνρσDαβγ∂µaνβ(x)∂ρaσγ(x) =
δ

δωα(x)
M + ∂µJ

µα(x), (D.23)

for some Sµα and hence Jµα of dimension four and cubic in aaaµ. Thus

∂µJ
µ
α(x) = ∂µ

[
εµνρσ(

1

2
Dαβγaνβ(x)

↔
∂ ρaσγ(x) + Fαβγδaνβ(x)aργ(x)aσδ(x))

+Gαβγδaµβ(x)aνγ(x)aνδ (x)
]
, (D.24)

for some Fαβγδ and Gαβγδ invariant tensors on the Lie algebra G. Fαβγδ is anti-
symmetric in its last three indices while Gαβγδ is symmetric in its last two indices.
Furthermore ∂µJ

µα(x) must satisfy the consistency condition (D.8).
This condition generates a system of algebraic equations for the coefficients Fαβγδ

and Gαβγδ. In particular, the parts containing the antisymmetric four dimensional
Ricci symbol give three independent equations that we now write in terms of space-
time functionals

εµνρσ∂µδ(x− y)∂ν(aργaσδ)(y)
[
3(Fαβγδ + F βαγδ) +Dαωγfβδω +Dβωγfαδω

]
= 0, (D.25)

εµνρσ∂µδ(x− y)(aργ
↔
∂ νaσδ)(y)

[
Dαωγfβδω −

1

2
Dδωγfαβω

]
= 0, (D.26)

εµνρσ∂µδ(x− y)(aνγaρδaση)(y)
[
3fβδω Fαωγη − fαβω F ωδγη

]
= 0. (D.27)

The equations for the coefficients in Equations (D.26) and (D.27) are

1

2

[
Dαωγfβδω +Dαωδfβγ +Dδωγfβαω

]
= 0

and
fβδω Fαωγη + fβγω Fαδωη + fβηω Fαδγω + fβαω F ωδγη = 0

which are trivially satisfied due to the invariance of D and F .
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The equation for the coefficient in Equation (D.25) is

6(Fαβγδ + F βαγδ) = Dαωγf δβω +Dβωγf δαω +Dαωδfβγω +Dβωδfαγω

=
1

2

[
Dαωγf δβω +Dαωδfβγω +Dβωδfαγω +Dβωγf δαω + 2Dβωαfγδω

]
, (D.28)

which is apparently solved by Equation (3.62).
It is clear that this is a particular solution of Equation (D.28) whose general

solution is obtained by adding to the right-hand side of Equation (3.62) a solution of
the corresponding homogeneous equation (D = 0). This must be antisymmetric in
α− β. But Fαβγδ is also completely antisymmetric in its last three indices, thus the
solution of the homogeneous equation must be completely antisymmetric in all its
indices. However the contribution to ∂ ·Kα(x) corresponding to a generic invariant
totally antisymmetric Fαβγδ

A is just equal to

1

4

δ

δωα(x)

∫
dyεµνρσ(aµαaνβaργaσδ)(x)Fαβγδ

A ≡ δ

δωα(x)
N.

N can be added to M in Equation (D.23).
Still we have to discuss the last term in Equation (D.24), that is the consistency

condition (D.8) for Kα
G(x) = Gαβγδ∂µ(aµβ(x)aνγ(x)aνδ (x)). We find, once again a

system of algebraic equations for the coefficient Gαβγδ. Selecting the independent
parts we have

∂(x)
µ ∂(y)µ(δ(x− y)aνγ(x)aνδ (x))

[
Gαβγδ −Gβαγδ

]
= 0, (D.29)

∂(x)
µ ∂(y)

ν (δ(x− y)aµγ(x)aνδ (x))
[
Gαγβδ −Gβδαγ

]
= 0, (D.30)

∂µδ(x− y)(aµδaνγa
ν
η)(y)

[
fβδω Gαωγη + 2fβγω Gαδωη − fαβω Gωδγη

]
= 0, (D.31)

from which we see that Gαβγδ must be an invariant tensor on the Lie algebra G, that
must be symmetric in its first (and last) two indices and it must be left invariant by
the exchange of the first pair of indices with the second one. Therefore we have

Kα
G(x) =

δ

δωα(x)

1

4

∫
dy Gβγδε(aµβa

µ
γaνδa

ν
ε ) ≡

δ

δωα(x)
P.

Also P can be added to M in Equation (D.23).
In this way we have proved Equation (3.54) with

∫
dx K(x) = M + N + P and

Gα(x) satisfying Equations (3.60), (3.61) and (3.62).
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