

Gamma-ray Spectroscopy in mirror nuclei ^{19}F - ^{19}Ne

Saikat Sen^{1,*}, S. Rajbanshi¹, R. Palit², Sajad Ali³, H. Pai⁴, F. S. Babra², R. Banik⁵, S. Bhattacharya⁶, S. Bhattacharya^{7,8}, P. Dey², G. Mukherjee^{7,8}, Md. S. R. Laskar², S. Nandi⁹, Rajkumar Santra⁷, and T. Trivedi¹⁰

¹Presidency University, Kolkata 700073, India

²Tata Institute of Fundamental Research, Mumbai 400005, India

³Government General Degree College at Pedong, Kalimpong 734311, India

⁴Extreme Light Infrastructure - Nuclear Physics,

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest-Magurele, 077125, Romania.

⁵Institute of Engineering and Management, Saltlake Sector V, Kolkata 700091, India

⁶The Hebrew University of Jerusalem, Jerusalem 91904, ISRAEL

⁷Variable Energy Cyclotron Center, 1/AF, Bidhannagar, Kolkata 700064, India

⁸Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

⁹Subatech, Nantes University, IMT Atlantique,

IN2P3/CNRS 4 rue Alfred Kastler, 44307 Nantes cedex 3, France and

¹⁰Department of Physics, University of Allahabad, Prayagraj- 211002, India

Introduction

The near equality of the masses of proton and neutron corresponds to Isospin symmetry in mirror nuclei resulting in a identical spectra in mirror nuclei. However, the Coulomb interaction is the primary cause of this symmetry breaking, resulting in energy differences in the analogue states of mirror nuclei. Additionally, there is evidence for the presence of Isospin Symmetry-Breaking (ISB) components of non-Coulomb origin, which further disrupt the symmetry. We can see the effects of symmetry breaking by comparing the level scheme of a mirror nuclei. Previously, ISB effects have been investigated in the mirror pairs ^{47}V - ^{47}Cr , ^{49}Cr - ^{49}Mn , ^{50}Cr - ^{50}Fe and ^{51}Mn - ^{51}Fe [1]. In this work, we aim to explore the ISB phenomena in the lower mass region at $A = 19$.

Experimental details

The main experiment was done with ^9Be as a projectile and ^{76}Ge as target with a thickness of 4.2 mg/cm^2 on a 10.8 mg/cm^2 thick

lead as degrader in a heavy ion Fusion - Evaporation reaction. The beam of projectile was accelerated upto an energy $E_{lab} = 37 \text{ MeV}$. In this target-projectile combination with an appropriate beam energy the most populated yield was ^{82}Kr together with ^{79}Se . The ^9Be beam was delivered by the Pelletron Linac Facility at the Tata Institute of Fundamental Research (TIFR), Mumbai.

The mirror nuclei ^{19}F - ^{19}Ne was produced in a different way. The lead (^{208}Pb) material used as a degrader is highly reactive to oxygen and during target preparation with the backing, the lead underwent oxidation, resulting in the formation of PbO . As the degrader was positioned in front of the beam, ^{19}F and ^{19}Ne were produced through the reaction $^{16}\text{O}(^9\text{Be}, \alpha p/\alpha 2n)^{19}\text{F}/^{19}\text{Ne}$. The PACE4 calculations show a very low production rate of ^{19}Ne in this reaction. Although we could produce the nuclei of interest using a ^{16}O gaseous target, this approach will result in a significantly lower reaction cross-section compared to employing a solid target. We have also explored alternative target-projectile pairings and performed PACE4 calculations, but none yielded superior results compared to what we achieved with the current combination. The INGA ar-

*Electronic address: saikat1234sen@gmail.com

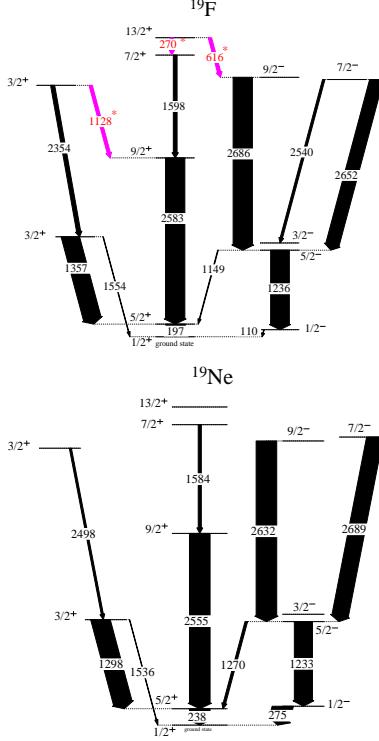


FIG. 1: Partial level scheme of ^{19}F - ^{19}Ne . Newly observed transitions are marked by an asterisk.

ray, consisted of 14 HPGe clover detectors, were deployed at various angles relative to the beam axis for detecting de-exciting gamma rays. Double and triple coincidence gamma rays were collected and sorted into various symmetric and asymmetric $\gamma - \gamma$ matrices and a $\gamma - \gamma - \gamma$ cube using the MARCOS program. The matrices and the cube were analyzed using the INGASORT and RADWARE software packages [2]. For assigning the multipolarity of gamma rays, angular distribution from oriented nuclei (ADO) ratio (R_θ) were calculated using the following relation,

$$R_\theta = \frac{I_{\gamma_1} \text{ (At } \theta_1 = 157^\circ \text{ ; gated by all)}}{I_{\gamma_1} \text{ (At } \theta_2 = 90^\circ \text{ ; gated by all)}} \quad (1)$$

Results and Discussions

Almost all previously reported low level transitions in positive as well as negative par-

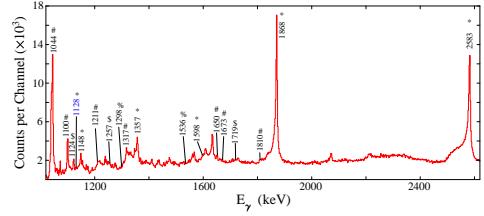


FIG. 2: The 197-KeV gated spectrum. #, \$, *, % corresponds to the gamma ray energies of ^{82}Kr , ^{79}Se , ^{19}F and ^{19}Ne respectively.

ity **Yrast** and side band have been verified in ^{19}F nucleus. We have observed very few low lying transitions in the ^{19}Ne nucleus which is populated with low cross-section. Three new transitions have been found which are $E_\gamma = 268.7$, 613.7 and 1130.3 -keV by analysing the experimental data. The level structures of the two nuclei, constructed using a symmetric matrix based on coincidence relationships, are shown in Figure 1.

TABLE I: Energy and Intensity of new gamma rays of ^{19}F . The intensities of gamma rays are normalized to the 197 KeV transition with $I_\gamma = 100$.

$J_i^\pi \rightarrow J_f^\pi$	E_γ (keV)	Intensity (I_γ)	R_θ
$13/2^+ \rightarrow 7/2^+$	268.7(5)	14.3(8)	1.35(12)
$13/2^+ \rightarrow 9/2^-$	613.7(6)	17.2(5)	1.29(11)
$3/2^+ \rightarrow 9/2^+$	1130.3(6)	16.5(9)	1.70(13)

The single gated spectra on 197-keV is shown in Figure 2. Further ADO, polarization and lifetime measurement are going on for complete assessment of the states which will be discussed in detail during the presentation.

Acknowledgements

I would like to acknowledge TIFR Pelletron facility for continuous beam during the experiment and INGA collaborators for their help.

References

- [1] AP Zuker *et al.*, Phys. Rev. letters **89**(14), 142502 (2002).
- [2] D. C. Radford, Nucl. Instrum. Methods, Phys. Res., Sect. A **361**, 297 (1995).