HI LiGHTCONES FOR LADUMA USING
GADGET-3

PERFORMANCE PROFILING AND APPLICATION OF AN HPC CODE

Presented by:
Matthew Roy Cawood

Dept. of Electrical Engineering
University of Cape Town

Prepared for:

Prof. Michael Inggs
Dept. of Electrical Engineering, University of Cape Town

David Macleod
Centre for High Performance Computing

Prof. Catherine Cress
Centre for High Performance Computing

Submitted to the Department of Electrical Engineering at the University of Cape Town
in fulfilment of the requirements for the degree of

Master of Science in Engineering

November 2014

Key Words: HPC, GADGET-3, MeerKAT, performance profiling, HI lightcone

The copyright of this thesis vests in the author. No
guotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

DECLARATION

. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend

that it is one’s own.

I have used the IEEE convention for citation and referencing. Each contribution to,
and quotation in, this report from the work(s) of other people has been attributed,

and has been cited and referenced.
This report is my own work.

I have not allowed, and will not allow, anyone to copy my work with the intention

of passing it off as their own work or part thereof.

Signature:........
M. R. Cawood
Date:. 13 November 2014

TERMS OF REFERENCE

This project concerns the investigation, performance profiling and optimisation of the
high performance cosmological code, GADGET-3. This code was used to develop a
synthetic field-of-view, or lightcone, for the MeerKAT telescope to replicate what it will
observe when it conducts the LADUMA ultra-deep HI survey. This lightcone will assist

in the planning process of the survey.

The deliverables for this project are summarised as follows:

e Provide an up-to-date performance evaluation and optimisation report for the

cosmological simulation code GADGET-3 .

e Use GADGET-3 to produce an sufficiently high resolution simulation of a region of

the Universe.

e Develop a Python code to produce a lightcone which represents the MeerKAT

telescope’s field-of-view, by post-processing simulation output snapshots.

e Extract relevant metadata from the simulation snapshots to provide additional

insight into the simulated observation.

e Produce an efficiently written and well documented software package to enable

other researchers to produce synthetic lightcones.

il

ACKNOWLEDGEMENTS

I would like to convey my gratitude to the following individuals and institutions who

assisted me in completing this research dissertation.
Prof. Michael Inggs for his supervision and assistance in producing this dissertation.

David Macleod for providing me the opportunity to study through a CHPC studentship,
as well as assistance in familiarising me with the CSIR. Furthermore, for assisting me
with developing high performance code for HPC systems, and finally for proofreading the

dissertation.

Prof. Catherine Cress for her guidance and tremendous assistance in the field of cosmology.
Moreover, for providing immeasurable experience and collaboration opportunities in

support of this research.

Dr. Sean February for his assistance with GADGET-3 and knowledge of computation

astrophysics, as well as general encouragement regarding the field of astronomy.
Miss Ka Wai Ho for her support and assistance with proof reading this dissertation.

Members of the CHPC research group for assistance in data visualisation and high
performance code development, as well as general support, specifically Nick Thorne,
Kevin Colville and Dr. Charles Crosby.

Finally, members of the UWC computational astrophysics research group, who provided
software tools and expertise in support of this dissertation. Specifically, GADGET-3
developer Prof. Romeel Davé and SPHGR developer Dr. Robert Thompson.

This dissertation was funded through a studentship granted by the Human Capital
Development Programme of the CHPC, an initiative of the Department of Science and
Technology (DST) and managed by the Meraka Institute of the Council for Scientific and
Industrial Research (CSIR).

ABSTRACT

The MeerKAT radio telescope being built in South Africa will provide unprecedented
sensitivity and resolution for performing radio frequency astronomical observations. The
‘Looking at the Distant Universe with the MeerKAT Array’ (LADUMA) survey is one
such project scheduled for MeerKAT upon its completion. LADUMA s a ultra-deep
neutral hydrogen survey that aims to investigate cosmic structure formation and galaxy

evolution at distances never before achieved.

The objective of this research was to produce an artificial patch of sky, or ‘lightcone’, which
accurately represents MeerKAT’s view of the sky. Predictions made from measurements
of this synthetic field-of-view will assist in planning the LADUMA survey.

An investigation was conducted into the performance characteristics of the cosmological
simulation code, GADGET-3. Following this process, the code was used to produce a set
of simulation snapshots. A Python program was developed to process this cosmological
data into a lightcone. This procedure involved stacking simulation snapshots using a
method derived from the Blaizot et al. technique. The lightcone volume was extracted
and a pizelisation process was applied to partition the simulation particles into a discrete
three dimensional spatial grid. The code was written using efficient subroutines, with

multi-threading and vectorisation implemented to improve performance.

Benchmarks showed that Intel’s ICS software provided a significant performance improvement
for GADGET-3 compared to GCC. In addition, a poor performance scaling was observed
when running the code across multiple compute nodes within an HPC cluster. The Python
code successfully produced a synthetic lightcone containing a pizelised volume of particle

properties, with the results stored in a NumPy dense array.

Various analyses were conducted on the lightcone to infer information about the nature
of its contents. The Python code proved very efficient; the LADUMA scale lightcone test

case used for code development completed in a five minutes.

Key Words: HPC, GADGET-3, MeerKAT, performance profiling, HI lightcone

vil

TABLE OF CONTENTS

Declaration

Terms of Reference

Acknowledgements

Abstract

List of Acronyms

List of Figures

List of Equations

1 Introduction

2

1.1
1.2

1.3
1.4

Research Background
Objectives e
1.2.1 Purpose of the Study
1.2.2 Research Questions
Scope and Limitations

Dissertation Outline,

Literature Review

2.1

2.2

Background to Cosmology and Galaxy Evolution
2.1.1 The Standard Model, Cosmological Expansion and Redshift

2.1.2 The Importance of Atomic Hydrogen
Radio Astronomy
2.2.1 SKA and the MeerKAT Radio Telescope
2.2.2 The LADUMA Deep Sky Survey

X

iii

vil

xiii

XXV1

xxvii

Tt = W W NN =

13

2.3 High Performance Computing 25
2.3.1 A Brief History of HPC 25
2.3.2 The Centre for High Performance Computing 27

2.4 The GADGET Cosmological Simulation 28
2.4.1 A Background to GADGET 28
2.4.2 The N-GenlC tool 28
2.4.3 GADGET Code Mechanics. 29

2.5 Existing Research oo 33
2.5.1 GADGET-3 HI Post-Processing 34
2.5.2 Existing Lightcone Construction Techniques 36
2.5.3 The Mass-Flux Relation 40

2.6 Conclusion 41

Research Methodology 43

3.1 Plan of Development 44

3.2 GADGET-3 Optimisation 48
3.2.1 GADGET-3 Evaluation Environment 49
3.2.2 The GADGET-3 Optimisation Plan 52
3.2.3 Lightcone Code Development 55

3.3 Conclusion 56

Design of Lightcone Code 59

4.1 Lightcone Construction Approach 59
4.1.1 Defining Lightcone Geometry 60
4.1.2 Lightcone Volume Pixelisation 65
4.1.3 Particle Metadata Extraction Algorithms 67
4.1.4 Lightcone Data Structure 69

4.2 Performance Optimisations for Python 71
4.2.1 High Performance BLAS Libraries 71
4.2.2 Code Parallelisation, 72
4.2.3 Algorithm Optimisations 74

4.3 Conclusion 7

Results 79

5.1 GADGET-3 Performance Evaluation Results 80

5.2 Lightcone Code Optimisation Benchmarks 88

5.3 Lightcone Resultso 100

54 Conclusion 120

6 Discussion

6.1 GADGET-3 Performance Evaluation

6.2 Lightcone Code Optimisation . .
6.3 Observations of Lightcone Results

7 Conclusions

7.1 Response to Research Questions .
7.1.1 Question1.........
7.1.2 Question2.
7.1.3 Question 3.
7.1.4 Question4.
7.1.5 Questionb.
7.1.6 Question6.

7.2 Review of Research Objectives . .

7.3 Research Outcomes

7.3.1 GADGET-3 Performance Evaluation

7.3.2 Lightcone Construction . .
74 Future Work

7.4.1 Further Lightcone Code Development

7.4.2 Improvements of Lightcone Precision

A Python Code for Particle Testing

B Python Code for Particle Binning

C Python Code for Calculating HI Content of Gas Particles

122

122
124
126

130

130
130
131
131
131
132
132
132
133
133
133
134
135
136

145

147

151

X1

L1ST OF ACRONYMS

ACE

API

ASKAP

ATLAS

AU

BAO

BLAS

CDM

CentOS

CHPC

Advanced Computer Engineering, the research and development lab
within the CHPC.

Application Programming Interface, a set of functions which enable the

creation of applications which access the features of another service.

Australian SKA Pathfinder, a new radio telescope currently being

commissioned in Western Australia.

Automatically Tuned Linear Algebra Software, an open source

implementation of BLAS which performs architecture specific tuning.

Astronomical Unit, a unit of length which approximately equals the
distance between the Earth and the Sun.

Baryon Acoustic Oscillations, regular and periodic fluctuations in the

density of the ordinary matter within the Universe.
Basic Linear Algebra Subprograms, a set of routines that provide
standard building blocks for performing basic vector and matrix

operations.

Cold Dark Matter, a hypothetical form of matter which moves slowly
compared to the speed of light and interacts weakly with EM radiation.

Community Enterprise Operating System, an open source enterprise

Linux distribution.

Centre for High Performance Computing, a South African research

facility which hosts high performance computing infrastructure.

xiii

CMB

CMP

COTS

CPU

CSIR

DFT

DRAM

E-CDF-S

FDR

FFT

FIFO

FITS

Cosmic Microwave Background, the thermal radiation assumed to be

remnants of the ”Big Bang” event.

Cloud Management Platform, a set of technologies for managing and

monitoring resources residing in cloud-like environments.

Commercial-off-the-Shelf, commercial products which can be purchased

from a marketplace, often configured for specific applications.

Central Processing Unit, the main processing unit in a computer,

typically used in reference to a von Neumann type processor.

Council for Scientific and Industrial Research, South Africa’s central and

premier scientific research and development organisation.
Discrete Fourier Transform, a numerical variant of the Fourier Transform.

Dynamic Random Access Memory, the most common kind of random

access memory (RAM) for personal computers and workstations.

Extended Chandra Deep Field-South, a survey conducted in the X-Ray

spectrum, in the southern hemisphere sky.

Fourteen Data Rate, a standard for the Infiniband network protocol

designating the 56 Gbps data rate implementation.

Fast Fourier Transform, an efficient algorithm to compute the discrete

Fourier transform of an input vector.

First In First Out, a data structure resembling an ordered queue, in

which the first element is addressed first.

Flexible Image Transport System, a data container standard for storing

3D astronomical data.

Xiv

FoV

GADGET

GCC

GPGPU

HCA

HI

HPC

I1CS

ICs

IPoIB

KAT

LADUMA

Field-of-View, the extent of the observable sky which can be observed at

any given moment.
GAlaxies with Dark matter and Gas intEracT, an SPH simulation code
designed for cosmological simulations and developed to run on distributed

memory systems.

GNU Compiler Collection, a compiler system produced by the GNU

Project supporting the compilation of various programming languages.

General Purpose Graphics Processing Unit, a GPU used for general

purpose computing.

Host Channel Adaptor, a network fabric interconnect based on

InfiniBand technology.

Hydrogen I, the neutral atomic form of hydrogen which emits 21cm

wavelength EM radiation.

High Performance Computing, use of parallel processing for running

advanced application programs efficiently, reliably and quickly.

Intel Composer Suite, a set of compilers developed by Intel Corp. for use

with their microprocessors.

Initial Conditions, a large dataset which defines the initial the state of a
particle simulation such as GADGET-3.

IP over Infiniband, standardised IP encapsulation for InfiniBand

interconnect fabrics.

Karoo Array Telescope, a 7 dish radio telescope built in South Africa,
completed in 2012.

Looking at the Distant Universe with the MeerKAT Array, an ultra deep
neutral hydrogen survey planned for the MeerKAT telescope.

XV

LFAA

LHC

MCA

MIC

MKL

MPI

MWA

NUMA

OFED

PAPER

RDMA

SAM

Low-Frequency Aperture Array, an SKA project which will perform low
frequency radio observations from 50MHz up to 350MHz.

Large Hadron Collider, a particle accelerator developed by CERN

beneath the Franco-Swiss border.

Modular Component Architecture, a series frameworks, components, and

modules which forms the backbone of OpenMPTI’s functionality.

Many Integrated Core architecture, a multiprocessor computer

accelerator architecture developed by Intel.

Math Kernel Library, a set of numerical libraries developed by Intel Corp.

for use with their microprocessors.

Message Passing Interface, standardised and portable message-passing

system designed by distributed computing systems.

Murchison Widefield Array, a low-frequency radio array operating in the

frequency range 80300 MHz, situated in Australia.

Non-Uniform Memory Access, a memory design used in distributed
multiprocessing, where memory access time depends on relative memory

location.

OpenFabrics Enterprise Distribution, a set of software standards for the

Infiniband network protocol.
Precision Array for Probing the Epoch of Re-ionisation, a radio
interferometer built to detect 21 cm Hydrogen occurring when the first

galaxies ionized intergalactic gas.

Remote Direct Memory Access, a memory access from a computer into

a network attached destination without involving the operating system.

Semi-Analytical Model, a simulation approach which uses numerical as

well as theoretical methods.

Xvi

SKID

SMP

SPH

WMAP

Spline Kernel Interpolative Denmax, a numerical method for determining

the spatial locality of a set of particles in 3D space.

Symmetric Multiprocessor, a computer architecture where two or more

identical processing units connect to a single, shared main memory.

Smoothed Particle Hydrodynamics, a computational method used for

simulating fluid flows, often used in astrophysical simulations.

Wilkinson Microwave Anisotropy Probe, a NASA Explorer mission that
launched June 2001 to take measurements of the CMB.

XVvii

LisT OF FIGURES

1.1 An image captured by the Hubble Space Telescope as part of the Ultra-
Deep-Field survey, where each light source is a galaxy [1].
1.2 A visualisation produced from a synthetic lightcone, or mock map, illustrating
the apparent magnitudes of simulated galaxies [2].
1.3 A series of images illustrating the scale of cosmological simulations. The
first image shows the GADGET-2 Millennium Simulation, with a volume
of 500%(Mpc/h)3. The middle image presents a GIMIC high resolution
simulation of a subregion one thousandth the scale of Millennium. Finally,
a simulation of a single disc galaxy is shown which occupies a region 1x10°
times smaller than the GIMIC simulation [3].
1.4 An illustration depicting the lightcone construction process. The lightcone
volume is extracted from a series of stacked GADGET-3 simulation cubes,
according to a relation between beam-width and frequency.
1.5 An image portraying the pixelisation grid which partitions the lightcone
volume in three dimensions. Each pixel holds a set of properties for all
the particles contained within that region of the lightcone. The pixels are
sized proportional to their contents, with the dark matter, ionized gas, HI
and stellar mass contents overlayed - in that order.
1.6 A set of three stacked lightcone frequency slices, showing the grid of angular
pixels. Each dot represents the contents of a pixel, with blue denoting dark

matter, green ionised gas, red HI gas and yellow stellar mass.

2.1 The ‘all-sky map’ from the 9 year WMAP Cosmic Microwave Background
survey, showing the small fluctuations after subtracting the mean, dipole
and the galactic disk. The positive and negative variations in measured
temperature are displayed as red and blue respectively while the mean is
represented as cyan [4].

2.2 A visualisation of the Millennium dark matter simulation, showing the
present day large scale structure. This is known as the ‘cosmic web’.
Colour denotes density - with yellow being high density and blue low
density [5].

Xix

2.3

24
2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

Diagram showing the expansion of the Universe from its early hot, high
density origins to the present [6]. L. 17
Diagram of the matter-energy distribution of the present day Universe [7]. 17
Diagram illustrating the frequency shift (redshift) resulting from a signal’s
passage through expanding space-time [8]. This shift results in a emitted
signal being detected at a lower frequency. If the original emission frequency
is known, the distance to the source of the signal can be calculated using
Equation 2.1. 19
Diagram demonstrating the hyperfine ground state transition which occurs
in a neutral hydrogen atom and the EM emission produces at approximately
1420 MHz [9].. 20

Diagram illustrating the opacity of Earth’s atmosphere to various frequencies

of electromagnetic radiation [10]. Only radio and visible bands are unobstructed.
Karl Jansky’s and his radio antennae array used to detect radio emissions
from Sagttarius A in the 1930’ [11]. 22
The first of 64 13.5 meter diameter dishes of the MeerKAT SKA precursor
radio interferometer, completed in early 2014 [12] 22
Diagram describing how the LADUMA survey'’s effective aperture increases

with redshift (z) [13]. 25
Diagram describing an SMP architecture computer. Each processing unit
(CPU) has access to a private local cache as well as global shared memory.

The available bandwidth of the shared memory imposes a computational
bottleneck in such an architecture.o 26
A set of visualisations produced from GADGET-3 simulation snapshots.

The images show the distribution of gas (red) and star (white) particles,

with colour denoting concentration. The series of images show the formation

of structure over time beginning at early time (snapshot A) and evolving

to the present day (snapshot F). Snapshot A depicts the Universe as it

was 97 million years after the Big Bang (redshift z=30) while snapshot
represents the present day; 13.5 billion years after the Big Bang (redshift
z=0). Refere to Table 2.1 for further snapshot details. 30
A set of perspective 3D visualisations of GADGET-3 simulation snapshots.

A subsection of the z=0 snapshot containing a large cluster of galaxies has

been decomposed into its cold dark matter (top), gas (middle) and star
(bottom) particle components. Colour denotes concentration; in the star
particle case blue denotes a dense galactic core while red denotes a galaxy’s

halo of stars. The large plumes of ejected hot gas, produced from galaxy
outflows, can be seen as defuse halos. The square overlay is approximately

500 kpcon aside. 32

XX

21

2.14 A graph depicting the relationship between redshift and co-moving distance

ina ACDM Universe. v 36
2.15 An illustrative example of the remapping tool converting a unit cube into

an irregular three dimensional cuboid [14]. 38
2.16 A diagram of how the box stacking approach is implemented in the Obreschkow

et al. method of cone construction [15]. 39

3.1 A render of two galaxies in mid-collision, simulated using GADGET-3.
Only the baryonic matter component (stars and gas) is visualised [16]. . 45
3.2 Composite image of a GADGET-3 16 Mpc? simulation snapshot at z=0,
using the visualisation tool Gadget File Viewer. The perspective view
covers a region approximately 20 Mpc by 8 Mpc. 46
3.3 A ParaView visualisation of an initial lightcone containing gas particles,
using a linear beam width function and contained within a single GADGET-
3snapshot. L 47
3.4 A network topology diagram showing the layout of ACE Lab’s HPC cluster. 50
3.5 A software dependency diagram showing GADGET-3 library requirement

needed to produce simulation snapshots. 52

4.1 Anillustration of a virtual telescope’s Field-of-View expanding with redshift.
A set of stacked simulation cubes are also shown. 61
4.2 An illustration demonstrating the particle testing procedure. The angles
between the pointing vector (cone axis vector), cone radius and particle
position are compared. The angle between the red particle and the pointing
vector () is smaller than the angle between the pointing vector and the
lightcone’s radius («), in this case the particle is considered inside the
lightcone. The opposite is true for the blue particle (8). 62
4.3 A 3D diagram showing a single simulation cube, with the lightcone structure
displayed in grey. Particles found within this grey volume are considered
to be inside the lightcone. In this example, it is clear that the simulation
cube should be tiled to the right to prevent the lightcone from breaking
out of the cube’s boundary. 0000 63
4.4 A graphic illustrating the GADGET-3 simulation cube stacking method.
The first 12 stacked cubes required to produce a lightcone with pointing
vector [10,3,-2] are shown. The shades of grey illustrate the cube’s distance
from the Observer, with darker being further away. Sideways tiling of cubes

is necessary to contain the expanding lightcone. 64

xxi

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

An illustration of the lightcone pixelisation technique, the image describes
a section of the cone along one of the lateral dimensions. N denotes an
arbitrary position along the frequency axis, while R denotes the cone’s
radius and M the number of spatial pixels.
A graphical depiction of the pixelised lightcone, the opening area of the
lightcone is partitioned into a 15x15 grid, and the depth partitioned into
8 discrete bins.o
A graphical depiction of the particle processing pipeline developed in order
to produce a lightcone from simulation particles.
A sequence diagram describing the multi-threaded approach implemented
for the lightcone construction code. The “launcher.py” program performs
initialisation and spawns a pool of four threads. Threads operate on
lightcone subsections, the maximum number of concurrent threads is define
by the user. After the thread pool completes, the “postProcessor.py”
program stitches together the resulting lightcone subsections.
A flow diagram showing the inputs and outputs of a single lightcone

construction instance.

A stacked timestep graph for the April release of GADGET-3. The graph

65

66

68

73

73

shows the breakdown of CPU time allocation between the code’s subroutines. 81

A stacked timestep graph for the June release of GADGET-3. The graph

shows the breakdown of CPU time allocation between the code’s subroutines. 81

A fractional representation of CPU time spent per timestep for the April
release of GADGET-3, averaged over the 3500 timestep test case simulation
TUIL . o v v e e e e e e e e e e
A fractional representation of CPU time spent per timestep for the June
release of GADGET-3, averaged over the 3500 timestep test case simulation
0
A compiler comparison for GADGET-3, showing the relative benchmark
runtime for GCC and Intel Compiler Suite.
A CPU utilisation report generated by Ganglia. This data was extracted
from the compute node during a benchmark of GADGET-3 compiled with
GCC 4.8.2. . . .
A CPU utilisation report generated by GangliaThis data was extracted
from the compute node during a benchmark of GADGET-3 compiled with
ICS 2013, . . .
A graph showing the observed scaling of a GADGET-3 test problem on
multiple compute nodes for both virtual machines and native hardware

clusters. The black line represents ideal speedup.

xxii

82

82

83

84

84

5.9 The relative efficiencies of virtual and native cluster configurations observed
when scaling the code across multiple compute nodes.
5.10 A graph of relative runtime compared to number of ‘angle_between()’
function calls.
5.11 A relative runtime comparison of four Python 3D vector normalisation
implementations.
5.12 A graph comparing the pre-initialised memory allocation and iterative co-
ordinate remapping approaches. The red line represents the total time
taken for the iterative method. The dark blue line shows the total remapping
time for the pre-allocation approach, with the light blue line representing
the memory allocation overhead of remapping co-ordinates.
5.13 A graph showing the relative execution times of three Python text based
I/O functions. A file containing 5 million pairs of floats was read from disk
inthistest.
5.14 A graph comparing the performance of two SciPy interpolation functions.
The dark blue bars represent the initialisation time, while the light blue
bars show the interpolation time for 100,000 random samples.
5.15 A linear algebra performance evaluation of Intel MKL (light blue) and
ATLAS (blue) BLAS implementations, compared to standard NumPy
(dark blue) subroutines. A set of five linear algebra test cases were selected

to provide a comparison for a variety of conditions.

86

88

89

91

92

92

93

5.16 A graph comparing the number of particles tested by the lightcone construction

code, with the overall runtime of the application. The pointing vector
was skewed to produce seven different lightcone realisations, sampling a
different number of particles.
5.17 A graph showing the effect parallelism had on post-processing runtime.
Two lightcone test cases were considered; one large (light blue) and one
small (dark blue). In addition, the runtime of each test case is separated
into its parallel and serial components.
5.18 The relative runtime efficiency of a large and small lightcone test case, as
a function of allocated CPU threads.
5.19 A plot showing the relative memory consumption of the iterative and
vectorised lightcone post-processing implementations.
5.20 A runtime comparison of the iterative and vectorised codes, showing the
immense speedup provided by vectorisation.
5.21 A chart illustrating the relationship between memory usage and post-
processing runtime, as a function of lightcone grid size.
5.22 A bar graph representing the distributing of post-processing runtime spent

on parallel and serial components, as a function of lightcone grid size. . .

xxiii

95

96

97

97

98

99

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

A plot showing the fractional densities of HI, Hs and ionised gas as well as
stellar mass as a fraction of the critical density. Such plots are useful for

evaluating cosmic evolution within the simulation and for comparing the

results with existing research. o000 100
A density plot of a GADGET simulation presented in the Davé et al. 2013
paper. The magenta line represents the fractional density of all HI, while
the red line shows stellar mass density. 101
A composite image of the lightcone produced by stacking three consecutive

frequency slices. This image was produced at a low redshift, with relatively

little structure present. Each dot illustrates a pixel, with blue representing

dark matter and grey displaying ionised gas. 102
A composite image of the lightcone produced by stacking three consecutive
frequency slices. This image was produced at a low redshift, with a
significant amount of structure present. Each dot illustrates a pixel, with

blue representing dark matter, grey ionised gas, red HI gas and yellow
stellar mass. 103
A composite image of the lightcone produced by stacking three consecutive
frequency slices. This image was produced at a high redshift, with relatively

little structure. Each dot illustrates a pixel, with blue representing dark
matter, green ionised gas, red HI gas and yellow stellar mass. 104
A composite image of the lightcone produced by stacking three consecutive
frequency slices. This image was produced at a high redshift, with a

large amount of structure visible. Each dot illustrates a pixel, with blue
representing dark matter, green ionised gas, red HI gas and yellow stellar

INASS. © « « v v e e e e e e e e e e e e e 105
A set of three stacked lightcone frequency slices, showing the grid of angular
pixels. The image on the left shows a 100x100 grid of spatial pixels, while

the image on the right shows a 200x200 grid - four times the resolution. . 106
A set of three stacked lightcone frequency slices, showing the grid of angular
pixels. The image on the left shows a 400x400 grid of spatial pixels, while

the image on the right shows a 600x600 grid. 107
A histogram of pixel gas mass as a function of pixel resolution, this illustrates
that the volume sampled by each pixel decreased as resolution increases.

The dark blue line represents a course grained pixelisation while light blue
represents fine grained pixelisation. L. 108
A 3D render of the dark matter mass distribution within the lightcone.

The cosmic web is clearly visible. 109

XXV

5.33

5.34

5.35

5.36

5.37

5.38

5.39

5.40

5.41

5.42

5.43

5.44

A plot of the total number of particles found per frequency channel of

a z=0.58 lightcone. The yellow series represents the star particles, while

blue shows gas and black described the dark matter content. The shaded
background illustrates the cone’s opening area at each frequency channel. 110
A zoomed in view of Figure 5.33 showing 200 of the 4096 frequency channels
within a z=0.58 lightcone. A strong correlation between the quantity of

star (yellow), gas (blue) and dark matter (black) particles is apparent. . . 111
A plot showing the relationship between HI mass and dark matter mass
within the lightcone. The two spatial axes were collapsed to produce a 1D
representation of the total mass per frequency channel within the lightcone.112
A plot illustrating the total flux spectral density of each frequency channel
within the lightcone received by the Observer. 112
A 2D plot showing the flux received by the Observer from HI sources within

the lightcone.o 113
A 2D view of the lightcone’s flux content from a side-on perspective,

the Observer is situated at the bottom of the image with the lightcone
expanding away fromit.o 114
A log plot of detections per redshift per square degree. Four flux thresholds

are provided; 10uJ, 1uJ, 100nJ and 10nJ. Four lightcone realisations were
generated to illustrate the cosmic variance provided by sampling different
simulation volumes. Predictably for higher flux thresholds, the number of
detections drops off sharply with redshift. 115
A plot illustrating the averaged line-of-sight peculiar velocity of each frequency
channel within the lightcone. A set of three pointing vector test cases are
included to illustrate the resulting lightcone randomisation. 116
A plot showing the maximum line-of-sight peculiar velocity of each frequency
channel within the lightcone. o000 117
A 3D render of the line-of-sight peculiar velocities within a lightcone centred
around a pointing vector of [10,0,0]. Blue pixels represent a negative light-
of-sight velocity (towards the Observed) while red pixels describe a positive
velocity. L 118
A 3D render of the line-of-sight peculiar velocities within a lightcone centred
around a pointing vector of [10,1,2]. Blue pixels represent a negative light-
of-sight velocity (towards the Observed) while red pixels describe a positive
velocity.o 118
A 3D render of the line-of-sight peculiar velocities within a lightcone centred
around a pointing vector of [10,2,2]. Blue pixels represent a negative light-
of-sight velocity (towards the Observed) while red pixels describe a positive

velocity.o 118

XXV

5.45

5.46

6.1

A 3D render of the line-of-sight peculiar velocities within a lightcone centred
around a pointing vector of [10,3,2]. Blue pixels represent a negative light-
of-sight velocity (towards the Observed) while red pixels describe a positive
velocity.
A 3D rendering showing a failure condition of the lightcone code. This
failure occurred when the opening diameter of the lightcone extended
beyond volume of the tiled GADGET-3 snapshots. This situation however

occurred at a high redshift, well beyond the requirements of this code. . .

A 2D illustration of the failure case for the lightcone code. At high redshifts
(z=2.0) the diameter of the lightcone extends beyond the bounds of the
tiled cubes. The layers of stacked cubes are represented in shades of blue,

while the un-sampled lightcone volume is shown inred.

XXVI

118

119

L1ST OF EQUATIONS

2.1 An equation describing redshift as a function of emitted and observed wavelength. 18

2.2 Hydrogen ionisation balancing formula used to calculate the fraction. 34
2.3 Fitting function for HI. oo oL 35
2.4 Recombination rate coefficient fitting function. 35
2.5 Radial column density profile. 35
2.6 Expression describing the ratio of molecular to atomic gas. 35

2.7 Matrix of vectors describing the 3D remapping of a cube to a parallelepiped. 37

2.8 Three mutually orthogonal vectors which describe a remapped cuboid. 37
2.9 Equation describing the FoV opening angle as a function of redshift. 39
2.10 Euclidian projection formula for Right Ascension (RA). 39
2.11 Euclidian projection formula for declination (dec). 39
2.12 Stellar mass estimation for dark matter halos. 40
2.13 Stellar mass estimation for dark matter halos. 40
2.14 Mass-Flux relation expression. 41
2.15 Re-factored Mass-Flux relation expression. 41
4.1 Equation of the lightcone’s opening area as a function of redshift. 61
4.2 Equation describing the lightcone’s opening radius as a function of redshift. . 61
4.3 Description for the Janksy unit of lux. 67
4.4 Equation for determining memory footprint of the lightcone datacube. 70

XXVii

1 INTRODUCTION

This dissertation investigates the construction of a synthetic observable sky, or ‘lightcone’,
to assist in planning the LADUMA survey which will be conducted by the MeerKAT
telescope. This lightcone was developed by post-processing GADGET-3 simulation data
into a form which resembles a telescope’s view of the cosmos. This introduction begins
with a brief background of the SKA project and the field of HPC, followed by the project’s

objectives and concluding with an overview of the remaining chapters.

1.1 RESEARCH BACKGROUND

The Square Kilometre Array (SKA) is an international scientific collaboration, with the
goal of looking deeper into the origins of the Universe to answer some of humanity’s
biggest questions. This project involves constructing large radio interferometers in Australia
and South Africa. The development process for this ambitious scientific and engineering
project necessitates simulation and modelling, as well as hardware prototyping. These
prototypes, or precursor telescopes, are currently being developed to assess the effectiveness
of designs and technologies for the greater SKA project. One such precursor, the MeerKAT
telescope, is an initially independent 64 dish radio interferometer which will serve as a
technology showcase and later form part of the larger SKA Phase 1 facility. Although
MeerKAT will be smaller than the SKA, it will still be one of the most powerful radio
telescope ever built and promises to expand the forefront of radio astronomy when it

begins observations.

‘Looking at the Distant Universe with the MeerKAT Array’ (LADUMA) is one of the
two Priority Group 1 surveys planned for the MeerKAT telescope once completed [17].
This survey aims to probe the neutral hydrogen content of the Universe with previously
impossible sensitivity. Currently, 5000 hours of MeerKAT’s observation time have been
committed to performing the LADUMA survey [18]. The MeerKAT project is estimated

1.2. OBJECTIVES

to cost more than two billion rand. Due to this sizeable financial investment, it is
imperative that the survey produces meaningful results. Planning a survey and interpreting
the results from observations requires detailed simulations, including the production of
synthetic lightcones. The MeerKAT telescope and LADUMA survey are detailed further

in Section 2.2 of the literature review.

Due to the large amounts of data produced by scientific instruments such as the MeerKAT
telescope, High Performance Computing (HPC) is often required to process, analyse and
store the results. Inter-disciplinary collaboration is a necessity when developing effective
engineering solutions to meet the scientific goals of projects like the SKA. The Centre for
High Performance Computing (CHPC) is Africa’s largest facility for HPC and provided

the computing infrastructure to conduct this research.

1.2 OBJECTIVES

This dissertation presents research conducted for producing artificial telescope data for
the LADUMA survey; a high resolution deep sky radio survey planned for the MeerKAT
radio telescope. The data resembles a portion of the sky as seen by the telescope. It can
be used to assist in planning the survey as well as to test data processing algorithms,
such as source finding. The process of producing a virtual ‘radio sky’ (referred to as a
‘lightcone’ given its geometry) requires an accurately simulated region of the observable
Universe generated by the GADGET-3 scientific code. This simulation data must be post-
processed to resemble a portion of the sky (lightcone) visible to the MeerKAT telescope.
This radio sky analogue must contain the data necessary to perform validation and other
source finding processes. Such information includes; neutral hydrogen mass, received flux
from radio sources, radio continuum caused by star formation and line-of-sight peculiar
velocities. The data should be contained in an appropriate data structure so that it can

be conveniently stored and accessed.

In addition to the main scientific deliverable for this research, a number of supplementary
investigations are presented. An analysis of the GADGET-3 scientific simulation was
conducted to assess procedures for optimising the runtime performance of the code in
order to reduce runtime. A report of this evaluation is presented to assist members of the
computational astrophysics community with maintaining well optimised code within the
ever-changing HPC field. Finally, a brief overview of NumPy optimisation for Python
will be presented, which was explored as part of the lightcone post-processing code

development process.

1.2. OBJECTIVES

1.2.1 PURPOSE OF THE STUDY

The process of planning a radio telescope survey is a complicated endeavour. A vast
amount of money and time is dedicated to producing results. A synthetic (or virtual)
‘image’ from the telescope is useful for predicting the results of a hypothetical observation,
before physical resources are expended. Producing an accurate input dataset which
accurately represents the radio sky is a complex task due to the scale of MeerKAT
observations. Intricate physical and cosmological processes determine the contents of
a radio telescope’s Field-of-View (FoV).

This study aims to provide a realistic virtual FoV of the MeerKAT telescope. The data
will be in the form of a lightcone which contains information which would ordinarily be
received by the MeerKAT’s front-end radio interferometer. This data must be stored in an
efficient manner to allow astronomers to analyse it based on their requirements. Focus
will be placed on documenting the configuration and optimisation of the GADGET-3

scientific code to support the active community developing and maintaining the code.

1.2.2 RESEARCH QUESTIONS

A number of research questions were developed based on the objectives and requirements
described above. These questions identify the main focus areas for this research and will
be used when evaluating the success of the project in the Conclusion. In completion of

this dissertation, the following problems will be addressed:

e What effect does compiler selection and software environment optimisation have on
GADGET-3 performance?

e Which post-processing technique is best suited for converting GADGET-3 simulation

data into a lightcone?

e How effective is the Python programming language for scientific processing tasks

such as constructing lightcones?

e How can simulation metadata, including masses and flux, be stored inside a virtual

lightcone?

e How can a large multidimensional data structure, such as the LADUMA lightcone,
be stored to hard disk?

1.3. SCOPE AND LIMITATIONS

e What is the most effective approach for visualising complex multidimensional data

to enable intuitive observations.

The questions answered in this research will aid in developing a program for constructing
virtual lightcones. These lightcones will potentially be used to aid in the development of
future neutral hydrogen surveys, with specific focus currently placed on the LADUMA
survey. Researchers planning such surveys would greatly benefit from a high performance
and fast survey simulation which can provide predictions of detectable sources and mass

distributions.

1.3 SCOPE AND LIMITATIONS

The scope of this study is to produce a simulated radio sky to assist in planning the
LADUMA survey. In addition, a comprehensive study of the cosmological simulation
code GADGET-3 will be presented. The scope is limited by a number of factors:

e GADGET-3 will be the only simulation code examined for generating cosmological
data. Other codes, such as Enzo, will not be considered due to the familiarity that
the local academic community has with GADGET.

e Due to hardware availability, the GADGET-3 code will be benchmarked on an
HPC cluster using a maximum of six compute nodes, comprising a total of 120
CPU cores. Further detail of the hardware utilised in this research is provided in
Section 2.3.2.

e The smallest galaxies in the Universe will not be represented in the simulation

volume as they will be below the resolution limit.

e The first phase of the LADUMA survey is planned to operate to a minimum
frequency of 900 MHz. The post-processing tool will be developed to be capable
of a minimum upper redshift limit of z=1.0 to improve it’s flexibility and potential
for use in other applications. While higher redshifts may be possible, it will not be
officially supported due to the added complexity of development.

Furthermore, the contents of the lightcone will be limited to properties which can be

extracted from the GADGET-3 simulation outputs, or can be extrapolated from this data

1.4. DISSERTATION OUTLINE

in a straight forward manner. Focus will be placed on producing efficient code which is
not wasteful of hardware resources. However, due to the nature of the computational and
memory requirements imposed by the size of input data, the code will require specialised
computer hardware to operate on typical problem sizes. The GADGET-3 code will be
evaluated to determine its efficiency as well as to report on the progress of the code
which is still in development. Focus will not be placed on analysing the fundamental

code mechanics of GADGET-3, as this lies outside the scope of this research.

1.4 DISSERTATION OUTLINE

This dissertation continues as follows:

Chapter 2 will present a comprehensive literature review on relevant topics in cosmology,
the Square Kilometre Array and High Performance Computing. In order to provide
context for this research, a concise introduction to cosmology and galaxy evolution is
presented. This covers topics including the standard model of cosmology, referred to
as the Lambda-CDM model, as well as cosmological expansion and redshift. A brief
explanation of the hyperfine transition which occurs in a neutral hydrogen atom (referred
to as HI) is provided to illustrate the importance HI plays in astronomy, specifically
in radio frequency observations. Expanding on this topic, a history to the field of
radio astronomy is presented. Current trends, projects and obstacles within the field
of observational radio astronomy are discussed and the SKA as well as the MeerKAT
precursor telescopes are introduced. Details for the LADUMA deep sky HI survey are
presented which forms the framework in which this research project falls. Figure 1.1 and
1.2 provide a comparison between an optical survey conducted with the Hubble Space
Telescope and a virtual lightcone containing simulated galaxies. Detailed simulations
such as this one are necessary for planning surveys such as LADUMA and interpreting

the results.

1.4. DISSERTATION OUTLINE

Figure 1.1: An image captured by the Figure 1.2: A visualisation produced
Hubble Space Telescope as part of the from a synthetic lightcone, or mock map,
Ultra-Deep-Field survey, where each light illustrating the apparent magnitudes of
source is a galaxy [1]. simulated galaxies [2].

A history of High Performance Computing (HPC) is given, followed by a summary of
current trends and areas of interest. This continues on to an introduction of the Centre for
High Performance Computing (CHPC) and its Advanced Computer Engineering (ACE)
lab. Details are provided on the hardware and software environment made available for

conducting this research.

An overview of the HPC cosmological simulation code GADGET-3 is presented. This
code is the latest release of the N-body particle simulation used for modelling gas and dark
matter interaction and formation on cosmological distance and time scales. A history of
its development and a breakdown of the code mechanics provide some background into

the code used for producing the deliverable of this research.

Finally a number of published papers with similar research themes are presented. The
papers include the 2013 Davé et al. which describes a GADGET HI post processing
technique and the 2010 Carlson & White paper describing a 3D volume remapping of
simulation data. The 2009 Obreschkow et al. paper on a cone construction technique
using volume stacking is also reviewed. Finally a method for converting HI mass to flux

spectral density is presented in the 2004 Abdalla and Rawlings paper.

Chapter 3 presents the research methodology overview of this research. This includes

detailing the process followed to install and run the GADGET-3 simulation code, as

1.4. DISSERTATION OUTLINE

well as the visualisation and validation of simulation results. The process of selecting
the optimal method for post-processing the simulation data is also documented, which
includes implementing and evaluating the methods introduced in the literature review.
The post-processing method selected for this research is presented followed by a motivation

of how this method improves upon existing techniques.

A walk-through is provided for compiling and configuring the GADGET-3 simulation
code. This code was used to generate the raw cosmological data from which the synthetic
lightcones are produced. Optimisation of HPC codes, such as GADGET-3, is crucial for
efficient operation within the expensive hardware infrastructure of HPC facilities. Figure
1.3 presents an explanation of the scale simulated by codes like GADGET-3, illustrating

the need for HPC resources.

Millennium volume GIMIC high-resolution region

Figure 1.3: A series of images illustrating the scale of cosmological simulations. The first
image shows the GADGET-2 Millennium Simulation, with a volume of 500%(Mpc/h)?.
The middle image presents a GIMIC high resolution simulation of a subregion one
thousandth the scale of Millennium. Finally, a simulation of a single disc galaxy is
shown which occupies a region 1x10° times smaller than the GIMIC simulation [3].

This chapter also includes a more comprehensive break-down of the methodology followed
during the performance evaluation of the GADGET-3 code. This includes identifying the
components which contribute to GADGET-3 performance within the software environment
of a computer cluster and developing means of measuring performance. Finally a detailed
description of the development process for the lightcone post-processing code is presented.
This focuses on describing the software tools which were developed and the way in
which these programmes interface. Python code optimisations, which were extensively

researched, are also introduced in this section.

Chapter 4 provides specific details of the software tool developed for this research used

to process GADGET-3 simulation data into a synthetic radio telescope lightcone. The

1.4. DISSERTATION OUTLINE

Research Methodology chapter provided an overview of the development process as well
as design choices based on an evaluation of existing research. This chapter builds on this

with a more in-depth look at the code.

&
@Q
&
E /
£ / ——]
64 Mpcs

Figure 1.4: An illustration depicting the lightcone construction process. The lightcone
volume is extracted from a series of stacked GADGET-3 simulation cubes, according to
a relation between beam-width and frequency.

Details are provided for the lightcone construction algorithm used to extract particles
from GADGET-3 simulation snapshots. Figure 1.4 provides a conceptual overview of
the simulation post-processing technique. This includes an explanation of the lightcone’s
geometry, which uses a Cartesian co-ordinate system and a distance-to-radius relation to
calculate the boundaries of the cone’s volume. The pixelisation scheme used to collapse
the data into a grid structure is also described, this method was implemented to reduce
the large amount of simulation data contained within the lightcone as well as to recreate
the sky as seen by a radio telescope. Several of the particle post-processing methods for
calculating properties of simulation gas particles are also explained. Finally the NumPy
data structure used for storing the multi-dimensional lightcone contents to hard disk is
described. Figure 1.5 presents this data structure graphically, showing the volumetric

partitioning of the lightcone in three dimensions.

1.4. DISSERTATION OUTLINE

Figure 1.5: An image portraying the pixelisation grid which partitions the lightcone
volume in three dimensions. Each pixel holds a set of properties for all the particles
contained within that region of the lightcone. The pixels are sized proportional to their
contents, with the dark matter, ionized gas, HI and stellar mass contents overlayed - in
that order.

Chapter 5 presents a collection of results produced during this research. A selection
of performance results are presented from the GADGET-3 performance optimisation
process. These results focus on the compilers, libraries and the software environment
upon which GADGET-3 relies. It was found that the Intel Compiler Suite provided a
reasonable performance increase over the open source GCC compiler. Unfortunately, in
its current state, the GADGET-3 code demonstrated poor performance scaling within an
HPC cluster.

This chapter also presents the results of several Python optimisations implemented in
order to reduce the post-processing time taken to generate a lightcone from simulation
data. Results from the NumPy and SciPy library optimisation are presented which show
real performance improvements by wrapping a high performance math library such as
Intel MKL or ATLAS. The use of parallelism via multiple execution threads also showed
significant performance improvements. In order to further reduce CPU workload and
increase performance, the code itself was optimised to reduce the number of function
calls and avoid costly operations when possible. The last optimisation result presented
is the vectorisation of the Python code, which showed a tremendous increase in code
efficiency and runtime reduction. The lightcone code was parallelised in order to take full

advantage of the multi-core computers available.

Finally a number of visualisations are presented of the lightcone produced in this research.
These results increase various statistical measures such as mass functions and peculiar
velocity plots, as well as 3D visualisations and other data validations. Several test cases

are presented which include failure conditions, illustrating the limits of the code in its

1.4. DISSERTATION OUTLINE

current form. A feature of the code allows the user to define the resolution at which
the lightcone is pixelised, this allows for a multi-resolution analysis of the lightcone’s
contents. Figure 1.6 illustrates the contents of three stacked frequency slices within a

relatively high resolution lightcone.

Figure 1.6: A set of three stacked lightcone frequency slices, showing the grid of angular
pixels. Each dot represents the contents of a pixel, with blue denoting dark matter, green
ionised gas, red HI gas and yellow stellar mass.

Chapter 6 provides a discussion of the results presented in the previous section. The
performance achieved through optimising the GADGET-3 code is examined and explanations
provided for some of the results observed. Focus is placed on discussing the performance
improvements observed from the Intel ICS compiler, as well as the lack lustre performance

scaling observed within the HPC cluster.

The results of the Python performance optimisations incorporated into the lightcone

10

1.4. DISSERTATION OUTLINE

code are also reviewed. Specifically the performance improvements achieved through
parallelisation and Python vectorisation are considered. The advantages and disadvantages
of several design decisions and a motivation supporting the selected approach are provided.

A justification is also provided for several of the limitations placed on lightcone construction.

Finally, the selection of lightcone results, previously presented in Chapter 5, are discussed
in order to determine their validity. Statistical measurements such as mass functions are
discussed and compared with findings from existing research. In order to justify the

design decisions made during code development several of the outputs will be considered.

Chapter 7 draws conclusions from the results and observations presented. The GADGET-
3 code provided simulation data for the lightcone construction. The Obreschkow method
of simulation cube stacking was implemented in order to avoid the one-to-one volume
relation that exists with the Carlson & White remapping approach. The cone was
constructed from a volume generated with this technique, with special focus placed on
maintaining consistency when converting simulation data to a synthetic observation. The

merits and drawbacks of this lightcone construction methodology are further discussed.

The success of the research is determined by considering the design requirements and
research objectives stated above. Results such as the calculated flux spectral density
received from HI gas within the lightcone are reviewed. Several recommendations are also
given for expanding upon this research in future work. This includes modifications to the
lightcone construction algorithm, allowing it to operate in a wider range of conditions.
Finally, several options are proposed for expanding upon the lightcone’s data structure

to include additional information.

11

2 LITERATURE REVIEW

This chapter will present a background to topics relevant to this research. An introduction
of several cosmological concepts is provided in Section 2.1 to provide a scientific context
for this research. This includes the standard model of cosmology, referred to as the
AC DM model, as well as cosmological expansion and redshift. In addition, the importance
of the neutral hydrogen atom, referred to as HI in the astronomical community, in radio

frequency observations is clarified.

Thereafter a brief overview of the conception and evolution of the field of radio astronomy
is presented Section 2.2. A background into the South African centred SKA project
is presented to provide a more detailed engineering context. The MeerKAT 64 dish
precursor telescope is also introduced, as it is the scientific apparatus for which this
research is conducted. Details regarding the ‘Looking at the Distant Universe with the
MeerKAT Array’ (LADUMA) survey, planned for MeerKAT, are presented to support

the parameters and constraints established for this research.

An overview of High Performance Computing (HPC) topics relevant to this field of study,
including the Centre for High Performance Computing (CHPC), is presented in Section
2.3. The hardware and software specifications are presented to provide a framework for

the HPC applications used.

Section 2.4 will provide an overview of the history and code mechanics of GADGET-3,
an HPC N-body cosmological simulation code. This code was used to generate the raw
cosmological data from which synthetic lightcones were produced. Finally a review and

comparison of several existing studies with similar themes is highlighted in Section 2.5.

13

2.1. BACKGROUND TO COSMOLOGY AND GALAXY EVOLUTION

2.1 BACKGROUND TO COSMOLOGY AND GALAXY EVOLUTION

Physical cosmology refers to the study of the origin and evolution of our Universe,
containing both theoretical and observational disciplines. Physical cosmology emerged
in the early 20th century with Albert Einstein’s Theory of General Relativity, followed
by Edwin Hubble’s observations of extra-galactic objects outside of our own Milky Way
[19]. Some of the current areas of research within the field of physical cosmology include:
measuring the Cosmic Microwave Background (CMB) in order to more accurately parametrise
the AC DM model; the study of large scale structures within the Universe in support of
the Standard Model; and investigating the nature of dark matter and dark energy [20].

2.1.1 THE STANDARD MODEL, COSMOLOGICAL EXPANSION AND REDSHIFT

The Big Bang theory is a cosmological model which describes the evolution of our
Universe, it was first proposed in 1927 by Georges Lematre [21]. Two years later, it
was directly observed by Edwin Hubble when he discovered that the apparent velocity
of distant galaxies was proportional to their respective distances, regardless of direction.
The models developed to describe the early Universe and the sequence of events thereafter

has been extrapolated from what we can directly observe today [22].

The Big Bang is believed to be the single event circa 13.7 Gyr (1 Gyr = 10° years)
ago [23]. It began as the sudden existence of space-time, which is the four dimensional
continuum that relates time and space. At the beginning, the Universe was a singularity
- an infinitely dense region of space-time which causes Albert Einstein’s laws of general
relativity to breakdown. The singularity immediately expanded in all dimensions. Due
to the high temperature and pressure of the early Universe, matter existed in a plasma
form of all elementary particles. It is believed that within the first 20 minutes of the
Universe’s existence, Big Bang nucleosynthesis occurred. During this period, fusion of
primordial hydrogen nuclei (single protons) produced heavier isotopes such as helium-4,

helium-3, lithium-7 and the hydrogen isotope deuterium [24].

After approximately 378,000 years, the early Universe had expanded and cooled enough
to allow the plasma of protons, electrons and neutrons to bind together into neutral
hydrogen in a epoch known as Recombination [25]. Shortly after this period, photon
decoupling occurred and the Universe became opaque to radiation, allowing it to travel

freely without interacting with matter. We can witness this event in the CMB, observed

14

2.1. BACKGROUND TO COSMOLOGY AND GALAXY EVOLUTION

as the visible afterglow of this transition [26]. The CMB is the oldest light in the
Universe - simply because light did not travel before the photon decoupling event. The
CMB is almost entirely uniform in all directions. Thus its discovery in 1964 provided
strong evidence of an expanding Universe and resolved a divided opinion within the
scientific community regarding the origins of the Universe. The CMB has a thermal black
body spectrum, and originally had a temperature of approximately 3000 K. However
due to redshift, the signal we receive only has a temperature of 2.7260 +- 0.0013 K.
The incredible uniformity of CMB measurements provides support for the Big Bang
cosmological model [27]. Figure 2.1 illustrates the CMB as measured in all directions
by the Wilkinson Microwave Anisotropy Probe (WMAP) CMB survey. After removing
the mean temperature and other interferences, the CMB contains very small fluctuations.
This very slight unevenness is believed to be a result of quantum perturbations which
occurred in the very early Universe. These perturbations produced very small over-
densities on a quantum scale. As the Universe expanded, these variations in density
allowed gravity to draw matter together, from low density into high density regions. Over
cosmic time scales, this resulted in the formation of large scale structures (or ‘cosmic
web’) of matter we observe today. Figure 2.2 presents a visualisation of a GADGET
cosmological simulation conducted by the Max Planck Institute, showing this cosmic
web. Measurements of the nearly uniform CMB have also provided supporting evidence
that the curvature and topology of the Universe is flat, or nearly flat, within a 0.4%

margin of error [28].

Figure 2.1: The ‘all-sky map’ from the 9 year WMAP Cosmic Microwave Background
survey, showing the small fluctuations after subtracting the mean, dipole and the galactic
disk. The positive and negative variations in measured temperature are displayed as red
and blue respectively while the mean is represented as cyan [4].

15

2.1. BACKGROUND TO COSMOLOGY AND GALAXY EVOLUTION

During observations of other galaxies, astronomers discovered that all the galaxies appeared
to be ‘missing’ matter. Simulations conducted could not replicate their characteristics,
such as rotational velocity, without adding in additional mass [29]. The galaxies simply
appeared to be spinning too fast given their mass, calculated from their apparent luminosity
[30]. This lead to the proposal of a hypothetical form of matter referred to as dark
matter. It was called dark matter because it interacted very weakly with electromagnetic
radiation. The most common form of dark matter is cold dark matter (CDM). It is
considered ‘cold’ because it moves relatively slowly compared to the speed of light. CDM
is considered to be a collisionless substance as it does not directly react with the ordinary
observable matter, however it operates according to regular laws of gravity. By adding
this mysterious substance to simulation models, scientists were able to not only replicate
the formation of rotating galaxies but also other large structures. These models showed
that for galaxies to exist as we observe them, they must contain approximately five times

as much cold dark matter compared to ordinary matter by mass.

Through observations of extra-galactic objects conducted in the ’90s, it was concluded
that our Universe was expanding at an increasing rate [31]. This observation contradicted
much of the theory at the time, which assumed the initial expansion force caused by the
Big Bang should have slowed. Thus at some point the expansion would eventually stop
and a collapse would begin, due to the gravitational forces between all matter within the
Universe. The increase in expansion rate suggested that there were previously unknown
forces at work. This phenomenon has been defined as a form of energy; namely dark
energy [32]. Like dark matter, dark energy does not directly interact with ordinary
matter. However unlike dark matter, dark energy is not affected by gravity. Instead it
acts to fuel expansion and inflate the Universe. Using the massenergy equivalence theory,
the mass density of dark energy was calculated to be extremely low, only 1.67x10%7
kg/m3. However because it is believed to be uniformly distributed throughout the
Universe, it constitutes the large majority of all matter. The mass-energy distribution of
the known Universe is calculated to be 4.9% baryonic matter (ordinary matter we can
observe), 26.7% dark matter and 68.3% dark energy [33]. Figure 2.4 provides a graphical
representation of this mass-energy distribution, illustrating just how diluted the baryonic

matter is.

The theory of an expanding Universe, as described by the Big Bang theory, has been
parametrised into a mathematical model referred to as the AC DM model, or standard
model of cosmology [34]. Lambda (A) is the term given to the cosmological constant
associated with dark energy and cold dark matter (abbreviated to CDM). This model
operates on the cosmological principle, which states that, if viewed on a sufficiently

large scale, the Universe is uniform in all directions (isotropy) and from any location

16

2.1. BACKGROUND TO COSMOLOGY AND GALAXY EVOLUTION

Figure 2.2: A visualisation of the Millennium dark matter simulation, showing the present
day large scale structure. This is known as the ‘cosmic web’. Colour denotes density -
with yellow being high density and blue low density [5]

(homogeneity) thus our location in the Universe is not significant. Although referred to
as the standard model, much scientific uncertainty still surrounds the AC' DM model with
particular concern regarding the unproven hypothetical dark energy. Opposing theories
which describe the state and evolution of the Universe are continually proposed and
debated [35]. Figure 2.3 provides a condensed graphical description of the Universe’s
time line, from the Big Bang to the present day. It shows the hot and dense beginning,
followed by a period of rapid expansion. Over time, matter cooled and condensed enough
to form stars and galaxies. Thus the Universe was filled with the objects we observe

today.

Figure 2.3: Diagram showing the expansion Figure 2.4: Diagram of the matter-energy

of the Universe from its early hot, high distribution of the present day Universe [7].
density origins to the present [6].

17

2.1. BACKGROUND TO COSMOLOGY AND GALAXY EVOLUTION

The constant speed of light of 3x10® m/s defines that emissions detected from distant
sources have been travelling for some period of time before they are detected by our eyes
(or telescopes). The further away the object is, the more time the light must travel. The
light-year unit for measuring large distances was defined for this reason. We perceive an
object one light-year (9.4x 10 km) away as it was one year ago because its light has taken
one year to reach us. Another unit used to measure scales larger than our solar system is
the parsec (pc), defined as the distance at which a disc with a radius of 1 Astronomical
Unit (AU) appears to subtend an angle of 1 arc-second, or 3.26 light-years [36]. The
average distance between galaxies is approximately 1 Mpc (3.26x10° light-years).

Because the Universe is expanding, electromagnetic radiation travelling through expanding
space-time is effectively stretched. In the visible spectrum, this effect is observed as a
‘reddening’ of the original light source, thus this astronomical phenomenon is named
cosmological redshift. This phenomenon appears similar to the Doppler Effect. A signal
emitted by a source moving at some velocity relative to an observer is perceived at
a different frequency, related to the relative velocity. Redshift cannot be considered
equivalent to the Doppler Effect however. Two objects with zero velocity will experience
no Doppler frequency shift in a signal sent between them. However on a sufficiently
large scale, the same two objects could perceive a frequency shift caused by cosmological
expansion, due to expansion of the space between them [37]. The redshift of the object
can be calculated by measuring the frequency shift of spectral features (such as absorption
and emission lines) between the emitted and the detected signal. The redshift of an object

is defined as by the equation:

Ao — A

where z is the symbol for redshift, A\ is the emission wavelength and)\, is the observed
wavelength. This relation yields a redshift range of zero to infinity, with zero representing
the present day (i.e. no change in apparently wavelength), and redshift of infinity
representing the Big Bang. Due to the ratio of wavelengths, a redshift of z=1, represents a
wavelength shift corresponding to approximately half the age of the Universe. Figure 2.4
shows the apparent change in frequency of a received signal, relative to a non-redshifted
source. This effect is fundamentally important to observational astronomy, as it creates

a relationship between a source’s apparent velocity and its distance from the observer.

18

2.1. BACKGROUND TO COSMOLOGY AND GALAXY EVOLUTION

Figure 2.5: Diagram illustrating the frequency shift (redshift) resulting from a signal’s
passage through expanding space-time [8]. This shift results in a emitted signal being
detected at a lower frequency. If the original emission frequency is known, the distance
to the source of the signal can be calculated using Equation 2.1.

2.1.2 THE IMPORTANCE OF ATOMIC HYDROGEN

The hydrogen element exists in three forms; atomic, molecular and ionic. On Earth,
hydrogen forms diatomic molecules where it exists as bonded hydrogen atom pairs.
Alternatively, it forms part of other molecular compounds. However atomic hydrogen
(a single proton orbited by a single electron), referred to as HI in the astronomical
community, is of great significance in radio astronomy [38]. HI atoms are abundant
and ubiquitous in regions of low density, often found in the Inter Stellar Medium (ISM)
of galaxies. HI also has a very precise emission signature which can be used to determine

its redshift accurately.

An atomic transition exists between two hyperfine levels of the atom’s ground state. It
occurs statistically once every 10 million years (fortunately as mentioned, HI is abundant).
When this transition occurs, the change in energy state produces electromagnetic radiation
at the very precise frequency of 1420.40575177 MHz with a corresponding wavelength of
21.10611405413 cm in a vacuum [39]. Figure 2.6 illustrates this ‘spin flip’ effect and
the resulting EM emission. This emission falls into the microwave-radio band of the EM
spectrum and therefore can penetrate interstellar debris, such as clouds of cosmic dust,
encountering less interference than shorter wavelengths such as visible light. This makes
the HI emission (often referred to as 21 centimetre line or HI line) a visible and highly
accurate astronomical indicator for observing the matter distribution in a large scale

cosmological structure formation throughout the age of the Universe.

It is interesting to note, the HI line frequency was considered of such scientific significance
that it was etched onto the gold-anodised aluminium plaques of the Pioneer 10 and 11

spacecraft [40]. The plaques were attached to the deep space probes as part of a SETI

19

2.2. RADIO ASTRONOMY

Figure 2.6: Diagram demonstrating the hyperfine ground state transition which occurs
in a neutral hydrogen atom and the EM emission produces at approximately 1420 MHz

9].

(Search for Extraterrestrial Intelligence) project. The wavelength of the HI hyperfine
transition was used as a unit of length for describing the height of a human male and
female figure. This was included as a description of our species to potential extraterrestrial

recipients.

2.2 RADIO ASTRONOMY

Radio astronomy is a category of observational astronomy which observes celestial objects
in the radio band of the electromagnetic spectrum. In 1931, the first astronomical radio
source was discovered by Karl Jansky, a Bell Telephone Laboratories engineer. While
investigating static interference on short wave voice communications [41], he discovered
that the source of the radio interference was not of terrestrial origin. It was in fact emitted
from the central region of our Milky Way. Later it was discovered that Jansky’s radio
detection was produced by a complex source labelled Sagittarius A, which comprises of
a supernova remnant and spiral structure as well as Sagittarius A*, the super massive
black hole at the centre of our galaxy. This source is the brightest radio source in the

sky.

Observational astronomy performed at radio frequencies has several key benefits over
observations performed in other bands of the electromagnetic spectrum [42]. One of
the primary advantages of observing in the radio frequency range is that the Earth’s
atmosphere is transparent to radio signals. With the exception of the radio and visible
bands, the Earth’s atmosphere is opaque to electromagnetic radiation to various degrees.
Refer to Figure 2.7 for a graphical illustration of the opacity of Earth’s atmosphere to
various wavelengths. Due to this phenomenon, expensive space based telescopes are
needed to observe other electromagnetic frequencies, such as infra-red, UV, X-Ray and

Gamma rays.

20

2.2. RADIO ASTRONOMY

While visible light can also penetrate the atmosphere, it undergoes atmospheric diffraction
caused by changing air density. Furthermore electromagnetic radiation at visible light
frequencies does not penetrate cosmic dust and therefore cannot be used for observations
through dust clouds. This allows radio astronomy to play an important role in probing

distant objects in the Universe.

Figure 2.7: Diagram illustrating the opacity of Earth’s atmosphere to various frequencies
of electromagnetic radiation [10]. Only radio and visible bands are unobstructed.

The first radio antennae (referred to as radio telescopes) were rudimentary detectors
which did not provide high angular resolution resulting in poor resolving power and
the inability to isolate and characterise radio sources. Figure 2.8 shows Karl Jansky
standing in a field with his early radio antennae array, which he used to detect the radio
source and the centre of our galaxy. Modern radio telescopes are far more technologically
sophisticated. A technique called astronomical interferometry is used, whereby multiple
receivers are configured in an array. The signals received by each of the detectors in the
array are superimposed by means of interferometry to produce a higher sensitivity or
better resolution than possible using only one detector [43]. The effect is an aperture
comparable to that of a much larger single receiver which encompasses all of the interferometer
elements. This approach can be used to perform high resolution imaging as well as Very
Long Baseline Interferometry (VLBI) which uses radio telescopes located thousands of

kilometres apart.

Today radio telescopes are being used to study HI in nearby galaxies by detecting the HI
21cm emission line. In addition, experimental radio interferometers are being developed
to perform new kinds of observations. The Precision Array for Probing the Epoch of
Reionization (PAPER) is a one such project located in the Karoo [44]. Its goal is to

observe the re-ionisation of HI in the early Universe, at low frequencies of between 100

21

2.2. RADIO ASTRONOMY

and 200 MHz. The Murchison Widefield Array (MWA) is another such project based in
Australia which also aims to explore HI in the early Universe [45]. These projects function

as path finders, or precursors, for the SKA Low-Frequency Aperture Array (LFAA) [46].

Another important task for radio telescopes is the search for and timing of pulsars; highly
energetic objects typically rotating at a fixed frequency and emitting charged particles as
jets from their poles [47]. Pulsars can be used as accurate clocks to measure the as-of-yet

undetected presence of gravity waves.

The SKA will expand the forefront of observational cosmology by surveying enormous
volumes of the Universe. New investigations into Baryon Acoustic Oscillations (BAO)
and cluster formation will be possible. In addition, new observational techniques will be

possible, such as detections using weak gravitational lensing of radio signals [48].

Figure 2.8: Karl Jansky’s and his radio Figure 2.9: The first of 64 13.5 meter
antennae array used to detect radio diameter dishes of the MeerKAT SKA
emissions from Sagttarius A in the 1930’s precursor radio interferometer, completed
[11]. in early 2014 [12]

2.2.1 SKA aAND THE MEERKAT RADIO TELESCOPE

The Square Kilometre Array (SKA) is an international scientific project with collaboration
from ten participating countries. The project aims to answer fundamental questions
and challenge existing theories about the evolution and current state of the Universe.
The SKA will be a large radio interferometer comprising thousands of radio telescopes,
with a dense central core of dishes and remote stations extending to a distance for 3000
kilometres providing a massive baseline. As the name suggests, it will have a total
collecting area of 1,000,000 m? [49]. This collection of large dishes will allow the SKA

telescope to survey the sky at 50 times greater sensitivity than any existing observatory .

22

2.2. RADIO ASTRONOMY

In May 2012, South Africa won the bid to host the primary SKA facility situated in the
Karoo region. While design specifications have yet to be finalised, South Africa will host
a large portion of the dish array as well as the dense aperture array [50]. Australia was
also selected to host several arrays, including the Australian SKA Pathfinder (ASKAP).
The project has a budget of R 21 billion and is split into three Phases. Phase 1 includes
the SKA’s central dense core of 256 dishes, is planned for completion by 2023, with
Phase 2 extending to at least 2030. Currently SKA Phase 3 remains largely undefined

and uncertain.

The MeerKAT Precursor telescope is a technology demonstrator currently being built
at the SKA site in the Northern Cape of South Africa. MeerKAT is a purely South
Africa funded project, which had secured its funding before South Africa was awarded
the SKA bid. Nevertheless, MeerKAT and SKA Phase 1 will share the same site location.
The 64 dish array of 13.5 meter dishes currently being constructed is intended to come
online by 2017 [51]. Figure 2.9 shows a photograph of the first of 64 dishes which
will make up MeerKAT, after being installed in early 2014. MeerKAT will be used to
conduct experiments after its commissioning and calibration process. While this 64 dish
interferometer will be relatively tiny compared to the completed 2500 dish SKA telescope,
it will still be one of the most powerful radio telescope ever built once complete in 2017
[52]. MeerKAT was developed to focus on L-Band (1.0 - 1.75 GHz) radio frequencies and
until SKA Phase 1 is complete, it will be the most sensitive L-Band detector in the world.
This provides some perspective of the scale of the SKA project as a whole. As they share
the same site, once SKA Phase 1 is complete, MeerKAT will be fully integrated into the

central dense core region of the larger interferometer.

The MeerKAT telescope itself has a 7 dish precursor array. The Karoo Array Telescope
(KAT-7), which was developed as part of an engineering test bed; has been collecting
data since 2012 [53]. The first papers on KAT-7 results were published in 2013 [54].

2.2.2 THE LADUMA DEEP SKY SURVEY

Looking at the Distant Universe with the MeerKAT Array (LADUMA) is an ultra deep
HI survey which has been awarded 5000 observation hours on the MeerKAT telescope.
This survey, along with the Radio Pulsar Timing survey, are two science projects which
form the Priority Group 1 science workload for MeerKAT when it becomes operational
[55]. The LADUMA survey will use all of its available observation time looking at a single

narrow patch of sky, in order to investigate HI mass distribution at a redshift of upto

23

2.2. RADIO ASTRONOMY

z=0.58 (approximately 2100 Mpc or 7x10? light-years away). At the furthest extent of
the LADUMA survey, MeerKAT would see the Universe as it was 5.7 billion years ago,

in a different state to how it exists today.

The observation field of the survey will be centred at the Extended Chandra Deep
Field-South (E-CDF-S) region of the southern hemisphere sky. Significant data already
exists for this region from surveys conducted at other wavelengths. This is essential, as
LADUMA aims to perform composite imaging using a stacking method with detections
obtained by these other surveys [13]. Using this approach, HI will be detectable at a
redshift of up to z=1.2.

LADUMA will provide new insights into galaxy formation in an evolving Universe by
producing HI density functions over a wide redshift range. These findings will also be
used to broadly characterise galaxies as well as to probe empirical models such as the

Tully-Fisher mass-luminosity relation [17].

The LUDUMA survey was proposed to investigate several key questions in cosmology.
These questions were summarised in the original proposal for the survey [18]. The first
research aim is to investigate the relationship between the cold gas mass of galaxies and
the size of the dark matter over densities (halos) in which they are found. Secondly, the
survey will help investigate the relationship between the content of HI within galaxies
and their corresponding stellar mass. The survey will also probe the relationship between
HI emission line profiles and neutral gas absorption lines. Finally, the survey will provide

insights into the effect’s of the local environment on the cold gas content of galaxies.

In addition to these large scale investigations, LADUMA will also provide the opportunity

to conduct studies on individually detected and well resolved galaxies.

The HI gas being observed by the MeerKAT telescope will have a wavelength of 21cm
(frequency of 1.42 GHz) at minimal distances. However, at the maximum range of the
initial survey stage (z=0.58), the HI emission lines will be frequency shifted down to
900 MHz due to cosmological redshift [56]. This frequency range over which MeerKAT
operates has implications for the survey. The opening angle selected for the LADUMA
survey is 0.948 deg, giving it a field-of-view (FoV) of 0.9 deg?, at the upper 1.4 GHz
detection frequency [57]. However the effective beam-width of a radio telescope increases
as an inverse function of frequency. Therefore when observing HI at the maximum redshift
of z=1.2, the frequency of HI spectra is shifted to 636 MHz, resulting in a telescope FoV of
4.5 deg?. This expansion, or widening, of the telescope’s FoV creates a geometric volume

similar to that of a Vuvuzela; the plastic horn blown by soccer fans. This lead to the

24

2.3. HIGH PERFORMANCE COMPUTING

South African acronym LADUMA, meaning ‘goal’ in isiZulu. Figure 2.10 describes the
geometry of sky surveyed by MeerKAT, showing the aperture of the LADUMA survey.

Figure 2.10: Diagram describing how the LADUMA survey’s effective aperture increases
with redshift (z) [13].

2.3 HicH PERFORMANCE COMPUTING

High Performance Computing (HPC) is a rapidly evolving field within computer science,
focused on developing specialised computing systems in order to solve large computational
problems. HPC facilities provide the infrastructure to perform the immense data processing
required for ambitious scientific projects, such as the Large Hadron Collider (LHC) and
SKA.

2.3.1 A BRIEF HisTORY OF HPC

Originally HPC system designers focused on developing powerful monolithic architecture
systems, or ‘supercomputers’. However, it was soon realised that the physical limitations
inherent with the microprocessor manufacturing process restricted the development rate
of these individual complex machines, thus another approach was required. Multi-
processor systems were developed in order to distribute the workload over multiple
execution threads. These machines, called Symmetric Multiprocessors (SMP), solved the
operating frequency performance limitation. They were nonetheless still bottlenecked by
the supporting memory subsystem which operated at considerably slower speeds. This
limited the scalability of such a design [58]. Figure 2.11 illustrates the shared memory
structure of an SMP architecture computer and demonstrates the inherent memory

bottleneck of such a system.

25

2.3. HIGH PERFORMANCE COMPUTING

Figure 2.11: Diagram describing an SMP architecture computer. Each processing unit
(CPU) has access to a private local cache as well as global shared memory. The
available bandwidth of the shared memory imposes a computational bottleneck in such
an architecture.

Distributed computing was developed to tackle larger computational tasks. While still
remaining within the performance limits imposed by silicon microprocessors and a tiered
memory hierarchy. In recent years, the term high performance computing has become
synonymous with computer clusters. A computer cluster (alternatively called cluster
computer) consists of a group of standard SMP computers (referred to as hosts or nodes)
which communicate over a network in order to distribute a workload to solve large
computational problems. Since the invention of the classical Beowulf cluster architecture
in 1994, the distributed computing approach has rapidly gained popularity to replace
the existing centralised supercomputing systems. Computer clustering has become the
preferred approach for designing high performance computing systems for many applications.
The primary reason for this is the flexibility, expandability and cost effectiveness inherent
in a cluster’s modular and standardised design [59]. Given a sufficiently fast network,
this design has yet to reach the limits of its scalability. As of November 2012, clusters
constitute 82% of the top 500 most powerful computers in the world [60].

A hybrid computing approach has become standard within HPC in recent years [61].
This hybrid model typical consists of multiple SMP architecture computers connected
together via a network to form a greater distributed memory computer architecture.
This results in a NonUniform Memory Access (NUMA) architecture, where the access
time to a memory address is dependent on its location. The computing architecture can
be expanded further to include non-x86 based task specific accelerators such as GPGPUs

(General Purpose Graphics Processing Units) or the Intel Xeon Phi coprocessor [62].

Other approaches do exist for solving HPC problems, however these solutions are typically

26

2.3. HIGH PERFORMANCE COMPUTING

suited for very specific problems. One such example is Field Programmable Gate Arrays
(FPGASs) which can provide significant performance improvements over other approaches
but are often limited in the scope of their application and require long development

processes using non-commodity hardware.

2.3.2 THE CENTRE FOR HIGH PERFORMANCE COMPUTING

The Centre for High Performance Computing (CHPC) is an initiative of the Meraka
Institute, which forms part of the ICT operating unit of the Council for Scientific and
Industrial Research (CSIR) [63]. The CHPC aims to accelerate Africa’s socio-economic
upliftment through the use of world class Cyber-infrastructure. The Advanced Computer
Engineering (ACE) Lab within the CHPC is responsible for the Research and Development
of new HPC technologies, tools and methodologies. The ACE Lab’s research cluster was

utilised for much of the computationally intensive processing performed in this research.

The ACE Lab HPC cluster consists of a head node, storage node and six computation
nodes connected via a high performance network interconnect. The nodes contain Intel
IvyBridge architecture CPUs. Within each computation node, 2 Intel E5-2690v2 processors
operate at up to 3.6 GHz, totalling 20 physical cores (hyper-threading is disabled as is
standard practise in HPC). Each node also contains 128GB of high speed DDR3-1866
MHz memory and an Infiniband Fourteen Data Rate (FDR) 56 Gbps Host Channel
Adaptor (HCA). This interface is primarily used for high performance runtime communication
between nodes, typically via Message Passing Interface (MPI), as well as for accessing
the shared file system hosted on the storage node. In addition, each host on the network
uses a Gigabit Ethernet network interface for out-of-band management and monitoring.
The cluster by default hosts a virtual environment of KVM virtual machines, managed
by the OpenNebula Cloud Management Platform (CMP). This virtualised environment
makes scheduling jobs and managing resources for multiple users more efficient. However
there is a performance overhead associated with virtualisation [64], therefore both virtual

machines and the native hardware environments were considered during the evaluation

of the GADGET-3 code in Chapter 4.

27

2.4. THE GADGET COSMOLOGICAL SIMULATION

2.4 THE GADGET COSMOLOGICAL SIMULATION

2.4.1 A BACKGROUND TO GADGET

GADGET (GAlaxies with Dark matter and Gas intEracT) is an open source cosmological
scientific code distributed under the GNU general public license [65]. It was developed to
perform collisionless particle simulations for accurately modelling the large scale cosmic
structure formation of dark matter. The code relies on well defined mathematical models
for gravitational interactions in large systems to replicate the evolution of the Universe.
Using the dark matter solver, the GADGET code can model the cold dark matter
distribution within the given parameters thus accounting for 80% of the total matter.
Furthermore the code supports a Smoothed Particle Hydrodynamics (SPH) solver, used
for modelling the complex interaction and collision of ordinary matter (baryons). Typically
these interactions occur when baryons fall into gravity wells created by collapsing dark
matter. This interacting matter, in the form of ionised gas, coalesces into structures
and eventually form galaxies. By combining these two solvers, GADGET can effectively

model cosmological evolution at a computationally limited resolution [5].

The code was written in ANSI C and intended for use of distributed memory computers,
using the MPI standard for communication between threads. It was developed by Dr.
Volker Springel from the Max-Planck-Institute for Astrophysics over a period of several
years. The first version, GADGET 1.0, was released in 2000 followed by a complete
rewrite of most algorithms as GADGET-2 in 2005. To date no official release exists of
GADGET-3; however several individuals and research groups are working on numerous
versions of the code. This research relied on a beta edition of GADGET-3, version 3.25.

2.4.2 THE N-GENIC TOOL

The GADGET simulation works on a set of Initial Conditions (ICs) which contain a
large number of particles classified into gas (baryons) and cold dark matter. The ICs are
vitally important to the accuracy of the simulation, as they represent the Universe at a
young age when it had an almost uniform matter density distribution. The simulation
begin by evaluating each of the particles and applying forces to them, calculated from
the surrounding particles [16]. The particles are contained within a three dimensional

cube which represents the simulation space.

28

2.4. THE GADGET COSMOLOGICAL SIMULATION

The series of renders in Figure 2.12 illustrate the passage of time within the simulation,
from an early uniform Universe to the present day. A isometric perspective was captured
using the GADGET visualisation tool - Gadget File Viewer [66]. Table 2.1 provides

additional details for images presented.

Table 2.1 describes the redshift, age of the Universe and light travel distance of each of
the snapshots presented in Figure 2.12. As the speed of light is constant, more distant
objects are seen as they were at earlier times, since the energy they emitted can only be

received after it has travelled through space.

Table 2.1: GADGET-3 simulation snapshot details for Figure 2.12.

Snapshot | Redshift | Time since Big Bang (Billion years) | Light travel distance (Mpc)
A 30.0 0.09 11 337

B 6.75 0.78 8 536

C 2.25 2.86 5 520

D 1.25 4.87 3 870

E 0.51 8.35 1921

F 0.0 134 0

The initial conditions required by GADGET-3 are typically generated with the software
package N-GenlC (alternatively using PgenlC or MUSIC) [65]. This tool considers
perturbation theory to replicate the densities fluctuations of the early Universe, discussed
in Section 2.1.1. The GADGET software then applies its solver models to this set of
particles, manipulating them over time. Typically an even number of gas and dark
matter particles are included in this set of Initial Conditions. The ICs used for this
research were generated using 256 dark matter and 2563 gas particles (16.7 million of
each particle type), at redshift z=30 (100 million years after the Big Bang). The number
of particles defined in the ICs, in relation to the simulation volume, determines the

resolution and the computational workload of the subsequent simulation.

2.4.3 GADGET CobpDE MECHANICS

As the GADGET-3 code is typically used to simulate large numbers of particles (millions
or even billions), the computational requirements are immense. In order to meet the
computational throughput and memory footprint requirements for the code, GADGET-3

runs on a distributed memory HPC cluster computer. The code implements a domain

29

2.4. THE GADGET COSMOLOGICAL SIMULATION

Figure 2.12: A set of visualisations produced from GADGET-3 simulation snapshots. The
images show the distribution of gas (red) and star (white) particles, with colour denoting
concentration. The series of images show the formation of structure over time beginning
at early time (snapshot A) and evolving to the present day (snapshot F). Snapshot A
depicts the Universe as it was 97 million years after the Big Bang (redshift z=30) while
snapshot represents the present day; 13.5 billion years after the Big Bang (redshift z=0).
Refere to Table 2.1 for further snapshot details.

30

2.4. THE GADGET COSMOLOGICAL SIMULATION

decomposition technique to partition the simulation volume and distribute it to individual
threads. As stated previously, GADGET-3 uses the MPI protocol for communication
between threads on both local and remote hosts. Even when using a large HPC cluster
with hundreds or thousands of CPU cores, GADGET-3 simulations can run for weeks or

months depending on the number of particles being simulated.

In order to decrease the solver’s inter-thread communication overhead and improve parallelisation,
an approximation method is implemented. Gravitational forces between particles are
solved using two methods. Near forces are computed using the TreePM method which
groups forces by proximity using a Friends-of-Friends algorithm. The far field forces
are calculated using a Fourier technique to approximate forces. In general, the code
aims to calculate forces for each particle with sufficient accuracy based on their impact.
This is determined by the inverse power law which defines the strength of gravitational
interaction. Following this approach, near and far forces are integrated over different time
intervals to reduce the total number of numeral operations required [16]. This multi-
resolution spatial and time based force approximation technique also serves to lessen the
computational requirements of the code and reduce the runtime from O(n?) to a runtime
that resembles O(n.log(n))).

All the particles in the simulation are contained within a three dimensional cube, the
size of this cube is specified in the global parameter file in units of Kpcs. Gas particles
and dark matter particles are calculated simultaneously with forces interacting between
the two particle types. Given the right conditions (namely temperature and pressure), a
gas particle can split to form a star particle. Star particles typically form in high density
regions and develop into galaxies over time. While the name suggests that these particles
represent individual stars, they are in fact of significantly greater scale. The resolution
of the simulation defines the mass of these particles. In simulations, star particles with a
mass of 65x10° Solar Masses (Mg,), or 65 million times the mass of our Sun were used.
Therefore a typical galaxy would have hundreds or thousands of these particles tightly
bound gravitationally. Figure 2.13 presents a visualisation of a small region within the
GADGET-3 simulation used in this research. The three particle types; dark matter, gas

and stars, have been rendered separately to demonstrate how they would interact.

When modelling large structure formation, on the order of Mpcs in scale, the region
inside the simulation volume cannot be assumed to be a closed system, as this does
not realistically represent the Universe. In order to preserve realistic gravitational force
approximation within the cube, in a Universe assumed to be homogeneous, it is necessary
to enforce Periodic Boundary Conditions. Periodic boundaries creates an infinitely large

simulation space, by using the Ewald summation technique for computing long-range

31

2.4. THE GADGET COSMOLOGICAL SIMULATION

Figure 2.13: A set of perspective 3D visualisations of GADGET-3 simulation snapshots.
A subsection of the z=0 snapshot containing a large cluster of galaxies has been
decomposed into its cold dark matter (top), gas (middle) and star (bottom) particle
components. Colour denotes concentration; in the star particle case blue denotes a dense
galactic core while red denotes a galaxy’s halo of stars. The large plumes of ejected hot
gas, produced from galaxy outflows, can be seen as defuse halos. The square overlay is
approximately 500 kpc on a side.

32

2.5. EXISTING RESEARCH

force interactions [5]. Particles are ‘wrapped around’ the boundary of the simulation
volume. Thus from a perspective within the simulation space one see repeating copies of
the cube’s contents in all directions. However this approach does have implications for
the validity of results however, therefore a volume as large as possible should be chosen

to minimise this effect.

In addition to the gravitational forces, GADGET-3 also models the interactions of gas
particles in close proximity. As these particles are not collisionless like cold dark matter,
the interaction becomes considerably more complex. Enabling the SPH solver to model
gas particles results in simulation runtime that are considerably longer than a CDM
only approach. Due to this, several other methods have been developed for simulating
large structure formation. A Semi-Analytical Model (SAM) ignores the gas content
entirely during the simulation and attempts to add in galaxies using a post processing
method [67]. AMIGA (Analytical Model for IGM and GAlaxy evolution) [68] and GECO
(Galaxy Evolution COde) [69] are two examples of current SAM implementations. This
approach to simulation is often used to understand the processes which contribute to
galaxy formation, and are often preferred as they are computationally less demanding.
However a SAM model cannot replicate the fidelity and resolution of a true analytical
method.

The research team lead by Prof. Davé has improved several of GADGET-3" gas models
to better represent physical processes [70]. A feedback system which exists between star
formation and the ionisation of neutral gas has been developed. Using available data, the
creation of star mass can result in outflows of hot gas. These additions to GADGET are
important for more accurately modelling the neutral gas content of galaxies and relating

it to the rate of star formation and metallicity.

2.5 EXISTING RESEARCH

Several existing research papers have been presented on the relevant topics relating to
this research. A selection of these papers have be reviewed, thus an analysis of results and
comparison of research methodologies is presented in this section. A knowledge base of
existing research is required in order to assess the reliability and validity of the methods

and results presented in this dissertation.

33

2.5. EXISTING RESEARCH

2.5.1 GADGET-3 HI PosT-PROCESSING

The main deliverable of this research project define in the Terms of Reference is producing
software to create an artificial radio telescope observation referred to as a ‘lightcone’.
This lightcone was constructed from cosmological simulation data, generated using the
GADGET-3 code. However GADGET-3 does not provide a sufficient level of detail for
all criteria concerned in this research. As previously stated GADGET-3 operates on gas
and dark matter particles, yet these gas particles are not classified or designated into
any particular form. In the radio spectrum, the 21cm line is by far the most common
emission from gas in galaxies and it is thus necessary the determine which gas is neutral
and thus capable of producing 21cm emission. While GADGET-3 does not provide this
distinction by default, research has been done on post-processing GADGET-3 snapshots

to extract HI information using a semi-analytical approach.

The paper “The neutral hydrogen content of galaxies in cosmological hydrodynamic
simulations” by Davé et al. provided a method for extracting HI fraction from gas
particles [70]. The method they developed involves using Spline Kernel Interpolative
Denmax (SKID) to identify and categorise groups of close proximity star and gas particles
which are tightly bound by gravity. This method produced a catalogue of galaxies that
meet the detection threshold. In order to extract the HI fraction from these gas particles,
several factors needed to be calculated, such as states in which the gas particle exists.
Firstly, the self-shielded fraction of gas was calculated, in order to separate the primordial
neutral gas at the centre of gas structures from the gas in the outer regions. The latter is
exposed to metagalatic ionising flux and thus is in an ionised state. Secondly, the ratio
of atomic hydrogen to molecular hydrogen was calculated. The mathematical method

followed can be summarised as follows.

A hydrogen ionisation balancing formula was used to calculate the neutral hydrogen

fraction of each gas particle:

20 +1— /(20 +1)2 — 4C?

fHI = 20 (2-2)
with
_ nB(7)
C= T (2.3)

2.5. EXISTING RESEARCH

where n is the number density of hydrogen, T is the gas particle temperature (inferred
from its internal energy), I'yy is the HI photoionisation rate and f is the recombination

rate giving by function:

B(T) = a[J(T/T0) (1 + (T/To)) (1 + /T/To))] (2.4)

using fitting parameters of a=7.982x10"" ecm3s!, b = 0.7480, Ty = 3.148 K and T, =
7.036x10° K specific to HI.

At this point, the shelf-shielding ratio is known. An SPH spline kernel is then used to
calculate the fraction of this hydrogen which is neutral. The radial column density profile

is calculated as follows:

h
Naa(r) = 208 [y tyar (2.5)
P T

where p is the SPH density of the gas particle, m, is the proton and & is the particle’s
SPH smoothing length.

Finally the ratio of molecular to atomic hydrogen is calculated using the ISM pressure

relation:

Rypnot = (P/Po)*, (2.6)

where Py = 1.7x1072K and o = 0.8.

This method gives the neutral hydrogen fraction of gas particles. For non star-forming
particles, this required splitting the ionised and neutral component, assuming the fraction
of molecular gas is 0. For a star-forming particle, an additional step was required to
calculate the molecular fraction. Findings from this paper will be considered when

evaluating the HI mass functions produced in the results chapter.

35

2.5. EXISTING RESEARCH

2.5.2 EXISTING LIGHTCONE CONSTRUCTION TECHNIQUES

As stated in Section 2.4.3, the GADGET-3 code performs its simulations within a cube
geometric volume in order to compute the periodic boundary conditions necessary for
large structure formation. While this method is effective for modelling structure in a
regular volume, it is not well suited to the irregular volume required for the current
research. The lightcone being constructed is required to extend at least to a redshift of
z=0.58. Via the ACDM model to describe the expansion of the Universe, the physical
distance to this redshift can be calculated. Using the standard cosmological parameters
of Q, =03, Qy = 0.7, Q. =0, wy = —1.0, w, = 0 and Hy = 70km/s/Mpc, the
relation between redshift and physical distance can be produced. Figure 3.1 presents
this relation, showing that a redshift of z=0.58 corresponds to a physical (referred to
as co-moving) distance of 2144h~*Mpc. The h™! factor is a parameter used to reflect
the uncertainty of the Hubble constant which describes the expansion of the Universe.
h = H/(100km/s/Mpc) = 0.7. Removing the h~! factor gives a distance of 1501 Mpc. It
is infeasible to generate a GADGET-3 simulation volume with a side length of 1501 M pc,
particularly when the computationally complex SPH modelling of gas is being performed.

There are two proposed solutions to this problem.

Comoving Distance

12000

10000

fEele]

6000

4000

Comoving Distance (Mpc)

2000

o L L L L L L L L L L L L L L L L L L

0 2 4 3 g 10 1z 14 18 18 20
Redshift — 2
EEES—

Figure 2.14: A graph depicting the relationship between redshift and co-moving distance
in a ACDM Universe.

In their 2010 paper, “Embedding Realistic Surveys in Simulations though Volume Remapping”
Carlson & White presented a method for producing the irregular volume required for a

lightcone [14]. The method was developed specifically for better aligning the geometry of

36

2.5. EXISTING RESEARCH

cosmological simulations and real-world observational programs. It applied a mathematical
volumetric remapping onto the simulation volume, in order to remap it from a cube into
an irregular cuboid volume. Periodic boundary conditions were required, to allow the
simulation cube to model infinite space. This technique is one-to-one (no duplication
of data), volume preserving and keeps intact smaller scale structure as well as requiring
relatively low computational overhead. The original simulation cube is normalised to a
unit cube and tiled in all directions, with each point conditioning to a shifted copy of the
original. The generalised 3D remapping is performed by applying integer shears to the

cube. Thus a parallelepiped is produced with integer vectors satisfying:

U1 U2 U3
d@t Ug1 U2 U923 =1 (27)

U3z U3z U33

The parallelepiped is squared up into a cuboid after applying two final shears, by choosing
coefficients «, § and 7 such that

€1 = U1,
es = Uy + iy, (2.8)
es = us + [Suy + yug,

are mutually orthogonal. This corresponds to a remapping of the original unit cube into

a cuboid with side lengths L; = |e;|.

There are however limitations to this approach. Firstly, due to the remapping processing,
large scale structure within the simulation space may not be preserved. This limits the
usefulness of this method for performing statistical analysis. Secondly, the volume of the
remapping cuboid is bound to the volume of the original simulation volume. Thus in
order to produce a larger lightcone, a larger simulation will need to be run. In addition,
if the target geometry is too thinly distributed, the resulting remapping may contain
irregular correlations, due to far apart points being mapped closed together. Finally,
because only a single simulation output is used (in this case a GADGET-3 snapshot), the
apparent age of the objects being observed does not decrease as it would with sufficiently

large surveys.

37

2.5. EXISTING RESEARCH

Figure 2.15: An illustrative example of the remapping tool converting a unit cube into
an irregular three dimensional cuboid [14].

Obreschkow et al. presented an alternate method in a 2009 paper “A Virtual Sky with
Extragalactic HI and CO Lines for the SKA and ALMA” [15]. The paper presented
a technique for estimating the detection of HI and CO from large radio telescopes,
such as the SKA, LMT and ALMA interferometers, at large redshifts (z j 10). The
lightcone construction method presented was adopted from an earlier paper published
by Blaizot et al. [2]. As with the Carlson & White approach, cosmological simulation
data was used as the source for these predictions. However another method was used
to produce the irregular volume required for modelling ultra deep HI surveys. The
method implemented an additional level of processing (post processing) following the
initial GADGET-3 simulation to produce the cosmological data. The simulation boxes
are stacked end on end, with the most recent boxes placed near the observer and boxes
with a higher simulation redshift placed further away. To avoid the inherent periodicity
of repeating copies of effectively the same information, a random geometry symmetry
operation is applied to each box before being stacked. Figure 3.3 describes this box

stacking process graphically.

Once an appropriate number of boxes have been stacked to encompass a sufficiently deep

volume, a conic volume can be defined by its opening angle via:

38

2.5. EXISTING RESEARCH

Figure 2.16: A diagram of how the box stacking approach is implemented in the
Obreschkow et al. method of cone construction [15].

© = 2arcsin (25%) , (2.9)

where s, is the co-moving side length of the given simulation box and DC,,,, maximal
co-moving distance. A useful translation performed in this paper is the Euclidian projection
formulae for mapping a Cartesian co-ordinate system onto a projected celestial sphere

centred around the vernal point (right ascension = 0, declination = 0). The mapping is
defined as:

RA = arctcm(r—m) (2.10)
TZ
DEC = arctan | ——¥— (2.11)
V2 +r?

Finally, Duffy et al. present predictions for radio surveys using simulations in the paper
“Predictions for ASKAP Neutral Hydrogen Surveys” published in 2012 [71]. Similar
to the Obreschkow et al. paper, a SAM approach was used to produce a cosmological
simulation through post processing the dark matter only Millennium simulation. They

mapped stellar mass to dark matter halos through the conversion:

39

2.5. EXISTING RESEARCH

-1
M Moa \ ™ (Meaia)"
R (m) (Id) N < 1d) 7 (2.19)
Mcold 0 Mstellar Mstellar

where M/ M.yq = 0.41, the faint end slope («) = 0.52 and the bright end slope (5) =
0.56.

Another useful equation defined in this paper is the estimation of thermal noise for a
single dish, which acts as a lower sensitivity limit or source detection threshold. For a

single beam, the thermal noise is given as:

kT, 1
Onoise = \/5 SHE y 2.13
Acrr VAT Av ()

where Acrp = aeprar/ N(N — 1) (N being number of dishes), T}, is the system temperature,

AT observation time, and Av observation bandwidth.

Each of the methods reviewed in this section had strengths and weaknesses. The Carlson
& White method did not replicate the source simulation data, resulting in a fixed 1:1 ratio
of simulation to cone volume. Thus a limitation on the size of the lightcone was produced,
caused by the computational complexity of the original simulation. The Obreschkow et
al. method removed this fixed volume relationship by stacking, or tiling, the original
simulation boxes. However to avoid a spurious periodicity caused by the replication of
data, symmetry operations are applied to each box, this resulted in discontinuities at the
boundaries of each box. In addition, this approach still requires that the box side length

of the original simulation must to be larger than the opening diameter of the lightcone.

2.5.3 THE MAss-FLUX RELATION

The last paper presented in this review focuses on another important process in producing
an accurate lightcone; producing flux data. The paper “Probing dark energy with
baryonic oscillations and future radio surveys of neutral hydrogen” by Abdalla and
Rawlings, published in 2005 presented a method for estimating the received energy flux
from a source. In addition a number of equations were presented for predicting the

sensitivity of radio telescopes in order to predict the number of detections within a survey

40

2.6. CONCLUSION

16r my Di(z) /
M = LdV, 2.14
HI(Z) 3 AlghC 1 + z S ()

where the integral is over V, line-of-sight width corresponding to projected circular

velocity of the galaxy. This expression can be presented in a more useful form as:

My 142z Mpe® vJykms=’

(2.15)

This relation of HI mass to received flux does not consider the HI self-absorption effect,
where the 21 c¢cm emission of one HI particle is reabsorbed by another HI particle in
the low energy state. Therefore this relation may lead to an under estimate of HI flux,

however the bias is expected to be small [73].

2.6 CONCLUSION

This literature review presented background information on a number of topics related

to the theme of the current research.

A scientific context was provided with an overview of cosmology and galaxy evolution
in Section 2.1. The Universe is continuously expanding while matter collapses into
structures. Cosmologists can place tighter bounds on models which define how dark
matter and ordinary matter interact in the presence of dark energy. This is investigated by
better understanding how large cosmic structures form. An explanation of the hyperfine
transition and the 21cm emission line was given to demonstrate how HI can be detected
by radio telescopes. This allows HI to be used as a marker for the presence of galaxies

on cosmological scales.

Information was also provided on the MeerKAT radio telescope and LADUMA ultra deep
HI survey. This survey will likely be the deepest direct measurement of HI ever attempted,
observing for 5000 hours to detect objects at a redshift of z=0.58. This survey is one
of two Priority Group 1 surveys planned for MeerKAT. Therefore it is important that

41

2.6. CONCLUSION

LADUMA produce the expected results. Effective planning and preparation are key for
conducting a successful survey. Part of this planning process requires a virtual field-
of-view (or lightcone) of what the telescope would observe. This lightcone can be used
for statistical measurements and estimating the number of detections for a given set of

parameters.

In Section 2.3, an introduction to High Performance Computing (HPC) was presented to
provide background to the current state of the industry. HPC systems are implemented
as large distributed memory clusters, comprising many Commercial-off-the-shelf (COTS)
SMP computers connected via a high speed network. This modular design allows for
modular construction of HPC facilities and provides redundancy in the event of a hardware
failure. However this distributing topology creates complications for software developers
writing HPC codes. The inherent NonUniform Memory Access (NUMA) within a network
of SMP machines necessitates the use of advanced inter-node communication techniques,

typically via the standard called Message Passing Interface (MPI).

Following this broad background into HPC systems, an HPC code is introduced. GADGET-
3 is a cosmological simulation code used for modelling structure formation and evolution
on cosmological scales in the expanding Universe. This code uses MPI to communicate
between a set of processor threads. Using the HPC cluster computer facilities available
at the Centre for High Performance Computing (CHPC), a GADGET-3 simulation can

be performed to produce accurate data for lightcone construction.

Finally a selection of journal articles provided insights into the methods used by researchers
who conduct similar research. A post processing method was presented for estimating
the HI component of simulation gas particles based on their temperature and pressure
from the Davé et al. paper. Three approaches for producing virtual observation data
from simulations were also summarised in order to highlight the strengths and weaknesses
of each approach. In review, using a fixed relation of simulation volume to observation
volume results is a computationally limited solution, while replicating simulation data
results in spurious periodicity. A mass to flux relation was also presented from the Abdalla
and Rawlings paper, which provides a semi-analytical method for estimating the 21cm

flux received from the hyperfine transition which occurs in HI.

42

3 RESEARCH METHODOLOGY

This chapter will provide an overview of the methodology undertaken to produce accurate
simulation data using GADGET-3 as well as the Python code developed to post-process
this data into a lightcone. The plan of development will be discussed in Section 3.1 which
broadly describes the course of action followed during this research. This will include the
process of setting up the GADGET-3 simulation code used for generating cosmological
data. Once installed, the performance of the code was evaluated to determine if any
optimisation was possible. A brief introduction will be also given on various visualisation
tools used for validating simulation results. Thereafter, the process followed to utilise the
3D remapping technique as well as the alternate stacking approach will be introduced in
Section 2.5.2.

Section 3.2 builds upon the introduction to GADGET-3 provided in the literature review
by presenting specific information on the software environment used for optimising the
simulation code. This HPC code requires high performance hardware and correctly
configured software in order to operate optimally. The evaluation process of an HPC
code like GADGET-3 is complex because of the inter-dependent nature of various software
components upon which it relies. A systematic approach was therefore selected to best
isolate the effects of each optimisation step. Section 3.3 provides an overview of this

evaluation, with the results presented in Chapter 5.

Finally, an in-depth description of the code written to post-process the GADGET-3
data will be provided in Section 3.4. This includes a motivation to support the post-
processing method selected as well as the description differences between this code and
existing techniques. Significant effort was placed on developing highly efficient Python
code in order to reduce post-processing execution time. An in-depth report on this Python

optimisation process will also be presented.

43

3.1. PLAN OF DEVELOPMENT

3.1 PLAN OF DEVELOPMENT

The process followed for producing a lightcone in this research can be summarised as

follows:

Setup, investigate and configure the GADGET-3 simulation code.

Investigate the lightcone construction methods introduced in Section 2.5.2.

Develop initial Python code to produce a lightcone from GADGET-3 simulations.

Optimise and improve the functionality of the code to improve its usefulness.

The first task in producing data for this research was installing the GADGET-3 scientific
code. The first attempt of installing and running the code was conducted within a single
Symmetric Multi-Processor (SMP) computer, to serve as a proof of concept. GADGET-3
was specifically developed for use on Linux computer clusters. However in an attempt
to produce the simplest working example, a basic laptop computer operating Linux was
used. The installation process required configuring relevant software dependencies and
libraries, as well as configuring the various parameter and configuration files required by
the code. A design feature of the GADGET-3 program includes the simulation parameters
within the compiled binary (such as enabling periodic boundary conditions) while software
environment configuration is handled via a parameter file. A set of input files (including
the Initial Conditions, described in Section 2.4.2) are linked to the binary executable
via the parameter file, located in the same directory. After the code was successfully
compiled, a selection of initial test simulations were run to ensure the code configuration
and software environment were operating correctly. The visualisation tool, GADGET File

Viewer, was installed to render the snapshot output files generated by the simulation.

Figure 3.1 displays an example of a GADGET-3 snapshot, demonstrating the collision of
two galaxies. This simulation contains a meagre 60,000 dark matter particles and no gas
particles. As such the computationally expensive SPH model and the periodic boundary
conditions were disabled. As a result, this simulation is completed within an hour despite
using a workstation laptop computer. In addition to running and testing the code, several

log files and execution monitoring outputs produced at runtime were also analysed.

In order to implement the volume remapping and box stacking post-processing techniques

described in Section 2.5.2, a significantly larger simulation volume was required. The

44

3.1. PLAN OF DEVELOPMENT

Figure 3.1: A render of two galaxies in mid-collision, simulated using GADGET-3. Only
the baryonic matter component (stars and gas) is visualised [16].

GADGET-3 code was recompiled on the ACE Lab HPC cluster (detailed in Section
2.3.2) in order to utilise more CPU cores and memory capacity. By using a set of existing
ICs, a 16 Mpc? volume was simulated, containing 128% dark matter particles and 1283 gas
particles (approximately 2 million of each particle type). By enabling periodic boundary
conditions, gravitational effects were calculated in a ‘wrap-around’ manner, so as to
realistically replicate gravitational forces interacting on a cosmological scale. Figure 3.2
illustrates the results of this simulation, by rendering the final snapshot (produced at
present day, or redshift z=0). A composite image is created by overlaying each of the
particle types: dark matter, gas and stars. Gadget File Viewer’s particle smoothing

feature was enabled in order to reduce noise and emphasise the larger structures.

Visualising a simulation’s output can often be a useful ‘by eye’ verification to ensure

expected results have been produced.

Following this initial investigation of GADGET-3, focus was placed on producing a small
scale HI lightcone proof of concept. The Obreschkow box stacking and Carlson & White
volume remapping techniques were presented in Section 2.5.2. An investigation was
conducted in order to determine which of these methods would best suit the requirements

for producing a LADUMA lightcone. The cuboid remapping tool, developed by Carlson

45

3.1. PLAN OF DEVELOPMENT

Figure 3.2: Composite image of a GADGET-3 16 Mpc?® simulation snapshot at z=0,
using the visualisation tool Gadget File Viewer. The perspective view covers a region
approximately 20 Mpc by 8 Mpc.

& White was installed on the ACE Lab cluster and a set of possible geometric remappings
generated using the included calculator. The LADUMA survey will have a 1 deg? opening
angle (or field-of-view) at low redshifts, so the ideal remapping should produce a long

and thin cuboid shape. Therefore the following remapping matrix was selected:

17 3 15
(ul,u2,u3) = 1 0 1
1 1 0

which corresponds to a remapping scaling function of:

(L1, Lo, L3) = (22.8692,0.2051, 0.2132)

These parameters were supplied to the remapping tool, and the 16 Mpc?® box provided
as input. The resulting cuboid which was produced resembled a 3D rectangle with
dimensions of 365 Mpc x 3.2 Mpc x 3.4 Mpc. Thus effectively increasing the maximum
possible depth of a cone within this volume from 16 Mpc to 365 Mpc.

In order to extract the correct conic volume from this new cuboid, a Python program

was written. It operated on a line-of-sight vector and used a simple linear relationship to

calculate the radius of the cone as a function of distance from the observer. This approach

46

3.1. PLAN OF DEVELOPMENT

does not accurately represent the mechanics of radio telescope observations. This is
because beam-width increases as a function of redshift which is not linearly related to
co-moving distance. However for sufficiently small scales, and as a proof-of-concept, this
approximation proved adequate. Figure 3.3 presents the rudimentary lightcone produced
using this method. This lightcone spans 55 Mpc in physical space and extends to a
redshift of z=0.019.

Figure 3.3: A ParaView visualisation of an initial lightcone containing gas particles, using
a linear beam width function and contained within a single GADGET-3 snapshot.

Several drawbacks were identified upon investigating and implementing this Carlson &
White volume remapping approach for producing simulation volumes analogous to real-
world observations [14]. As previously stated, the arithmetic operation is a one-to-one
relation; therefore the remapped volume used for cone construction is directly limited
by the volume (effectively resolution) of the simulation. In order to produce a synthetic
lightone that is twice the depth, a GADGET-3 simulation would need to be run at
twice the resolution. This is not ideal as GADGET-3 is a computationally intensive
application which typically requires HPC infrastructure. Another consequence of this
one-to-one mapping is that a compromise must be made in order to fit the cone’s length
and circular diameter within the remapped cuboid’s volume. As stated, the opening area
of the lightcone increases as a function of redshift, therefore at larger redshifts, the width
of the cone increases significantly. This, combined with the increasing length, compounds
the volume limitation of this technique. This method is best suited for operating on Semi-
Analytical Model (SAM) simulations, as the modelling of dark matter interaction alone
is computationally less demanding than gas particle interactions. Thus SAM simulations

are typically of a larger scale than gas simulations.
Due to the reasons described above, an alternate method was selected for the production

of synthetic lightcones. As stated in the literature review, the Obreschkow method used

stacking of simulation boxes to construct a volume of sufficient depth for producing a

47

3.2. GADGET-3 OPTIMISATION

lightcone. The main drawback of this method was the random symmetry operations
which were applied to each box in order to avoid the spurious periodicity inherent with
replicating data. These operations, namely rotation, inversion or continuous translations,
produced discontinuities at the boundaries of each simulation box. While this may
be acceptable for conducting statistical measurements, such as mass functions, it does
negatively influence the validity of more precise measurements, such as galaxy detections.

Thus, a modification of this method was developed and is detailed in Section 3.4 below.

Following the initial investigation regarding cosmological simulations and lightcone construction,
an extensive investigation into GADGET-3 performance was conducted. This was done
in preparation for a larger and more computationally intensive simulation. In addition
to improving the runtime of GADGET-3 simulations for this research, the investigation
serves as an up-to-date performance optimisation guide for other GADGET-3 users in

the scientific community.

Upon completion of the performance evaluation and obtaining larger simulation results
from GADGET-3, efforts were focused on developing a more functional HI lightcone
that met the LADUMA survey requirements. This code was developed in Python, so
conformed to an existing set of GADGET-3 post-processing tools; SPHGR. The details

of this process are presented in Chapter 4.

In order to store and perform calculations on the vast number of simulation particles
contained within the lightcone, a pixelisation scheme was designed, which decreases the
resolution of the data within the cone. Particles which fall inside the geometry of the
cone are binned into a pixel corresponding to their physical position. The pixel ranges
are defined as fractions of the opening angle in two planes, and as frequency channels in
the line-of-sight dimension. After a particle is binned, various metadata properties are
calculated for that particle depending on what type of particle it is. For dark matter
and star particles the number and mass of particles is stored. For gas particles additional
properties are also stored such as line-of-sight peculiar velocity, HI mass, radio continuum,

ionised mass and flux received.

3.2 GADGET-3 OPTIMISATION

This section will detail the configuration of the software libraries, dependencies and
compilers used in evaluating GADGET-3. An in depth overview will also provide specifics

on the approach implemented in order to identify and analysis performance factors of the

48

3.2. GADGET-3 OPTIMISATION

code.

3.2.1 GADGET-3 EVALUATION ENVIRONMENT

The GADGET-3 code was designed to run a Linux HPC cluster thus it is highly configurable.
This section details the software and hardware used for profiling GADGET-3 in order to
evaluate its performance and determine if any optimisation is possible. Due to the time
constraints of the project and the complexity of the code, the GADGET-3 source code
itself was not edited. Rather, focus was placed on improving the computational efficiency
through the use of optimised compilers, software libraries and the software environment.
In a Linux based HPC cluster, such factors are often the main determining factor of an

application’s performance.

The performance of a code running on a cluster is dependent on many factors; the
hardware configuration, the software environment as well as individual configuration
parameters within the code. This situation results in a multi-variable optimisation
problem with a vast number of potential configuration combinations. Therefore a systematic
evaluation approach was implemented, whereby an individual performance aspect was
isolated and considered, irrespective of the other variables. This approach may overlook
more subtle dependencies by assuming the variables are independent. However due to a
lack of alternatives, it was selected as the most efficient and comprehensive evaluation

approach.

Through investigating the GADGET-3 code, its dependencies and the software environment
which exists in a Linux HPC cluster; the following criteria were selected for evaluation.
GADGET-3 has undergone many updates throughout its development, with features
being added and changes in performance with every build. Therefore the first aspect
investigated was a comparison between two recent versions of GADGET-3 to illustrate
performance differences. Within a Linux software environment and particularly in HPC,
software is compiled specifically for the hardware architecture on which it is installed.
This places a large importance on compilers needed to produce effective code in order to
execute efficiently on the hardware. Thus the second aspect investigated of GADGET-
3 was compiler performance. The ACE Lab cluster implements a Cloud computing
infrastructure of KVM virtual machines which are managed by OpenNebula, a Cloud
Management Platform (CMP). Initial testing was conducted within this virtual environment.
In order to investigate the poor scaling observed for GADGET-3, a comparison was

conducted between the virtual and hardware cluster environment with regards to computational

49

3.2. GADGET-3 OPTIMISATION

throughput scaling. Finally, a simple test was conducted to determine what effects the

Intel Compiler Suite flags had on code runtime.

3.2.1.1 The HPC Cluster Configuration

The ACE Lab HPC cluster used for this research comprises of six compute nodes. In
addition, a storage node is used to host a shared file system and a head node used for
management, compilation and an interface to users. Each of the compute nodes contain
two Intel Xeon E5-2690 v2 IvyBridge CPUs (totalling physical 20 cores), 128 GB of high
speed DDR3 1866 MHz RAM and a Infiniband Fourteen Data Rate (FDR) 56 Gbps
Host Channel Adaptor (HCA) for high speed and low latency network communication.
Figure 3.4 provides the topology of the ACE Lab’s HPC computer cluster, showing the

networked hosts and interconnect infrastructure.

Figure 3.4: A network topology diagram showing the layout of ACE Lab’s HPC cluster.

The cluster uses Community Enterprise Operating System (CentOS) 6.5, an unbranded
enterprise class Linux distribution based on Red Hat Enterprise Linux (RHEL). The
operating system is widely used in industry and has a large user base. Furthermore
it is actively developed for enterprise and HPC environments. OpenNebula 4.8.1 was
deployed as part of the software stack to provide the Cloud computing infrastructure
that is available on the ACE Lab cluster. This Cloud Management Platform (CMP)
provides a user interface for managing and provisioning virtual machines. Initial testing
of GADGET-3 was conducted within virtual machines, after which the code was rerun

within the host operating systems to test virtualisation overheads.

20

3.2. GADGET-3 OPTIMISATION

To provide improved performance and advanced functionality for the Infiniband FDR
interconnect, the Mellanox distribution of the Open Fabrics Enterprise Distribution
(OFED) software stack was installed. This software also adds support for features such
as Single Root Input Output Virtualisation (SR-IOV) for Infiniband. This allows PCle
hardware pass-through for virtual machines, version 2.2-1.0.1 was installed at the time

of testing.

3.2.1.2 Software Compilers

During the initial phase of testing, open source compilers were used to compile GADGET-
3. Specifically, the popular GNU Compiler Collection (GCC) compiler was used to
generate the compiled binary from source code. In addition, an implementation of
Message Passage Interface (MPI) is required for the runtime network communication
component of GADGET-3. OpenMPI was chosen as the open source option of MPI as
its use with GADGET-2 is well documented [65] [74]. GCC version 4.8.1 and OpenMPI

version 1.6.5 were used during this evaluation.

As part of the optimisation process, Intel’s proprietary Intel Compiler Suite (ICS) was
used to provide a comparison between the popular open source GCC compiler and
a proprietary alternative. ICS is based on the GCC compiler but adds architecture
specific optimisations for Intel processor micro-architectures. This potentially allows this
GCC compatible compiler to provide greater performance through improved hardware
utilisation. Included in the 2013.1.117 release of ICS used in this evaluation, is Intel’s
MPI implementation (IMPI) version 4.1.0.024, which provides more optimised MPI code

compilation and runtime communication.

3.2.1.3 GADGET-3 Library Dependencies

The first approach used to improve an application’s performance on a Linux based HPC
cluster is often to update to the newest compilers, libraries and dependencies. This is
because Linux relies on specific architecture compiled binaries and libraries to fully utilise
the available resources. Depending on the nature of the computational workload and the
hardware architecture of the system, certain compilers would have a performance edge.

Hence extensive testing is required to identify the best option.

GADGET-3 relies on three libraries, namely Fastest Fourier Transform in the West

o1

3.2. GADGET-3 OPTIMISATION

(FFTW), GNU Scientific Library (GSL) and Hierarchical Data Format (HDF5). FFTW
is a library used for computing discrete fast Fourier transforms, it is generally considered
the fastest open source implementation for computing multidimensional FFTs [75]. GSL
is an open source library which provides subroutines for common computational tasks in
applied mathematics and other sciences. GSL was written in C and provides support
for Basic Linear Algebra Subprograms (BLAS) as well as many other mathematical
operations. HDF5 is a data container standard for storing and maintaining both structured
and unstructured large format datasets [76]. This functionality was not required for this
research so the HDF5 module was deactivated during compilation thus the package not

installed.

GADGET-3 requires the older version 2 of FETW, due to the lack of multi-threading
support in newer versions [77]. FFTW 2.1.5 and GSL 1.16 were installed onto the shared
file system within the ACE Lab cluster using GCC 4.8.1. In order to keep the compiler

comparison consistent, libraries were compiled with ICS during that testing phase.

Figure 3.5 presents a diagram of GADGET-3’s dependency structure as well as its output
data.

Figure 3.5: A software dependency diagram showing GADGET-3 library requirement
needed to produce simulation snapshots.

3.2.2 THE GADGET-3 OPTIMISATION PLAN

A relatively small GADGET-3 test case simulation was created in order to conduct

a thorough investigation in a timely fashion. This test case was based on a previous

52

3.2. GADGET-3 OPTIMISATION

simulation using a 16 Mpc?® box containing 128% dark matter and gas particles. In this
simulation, gas particles were included thus the SPH solver will be implemented. Even
though this simulation was eight times smaller than the one used to generate raw data
for the HI skycones, a complete run would take several hours to complete. Therefore a
subset of the full simulation time period was selected. Rather than running from an initial
redshift of z=125 to present day (z=0), a small subset of this period was selected (z=2.5
to z=2.0). This period was specifically chosen as significant star formation and other
complex, computationally intensive processes occur at that time. The GADGET-3 solver
calculates the necessary time resolution for each region based on domain decomposition,
which in turn is dependent on the number of cores and hosts on which the simulation is
run. Therefore the number of time steps produced between z=2.5 and z=2.0 differs when
ran using different cluster and software configurations. These variations are however

small, with the all test cases producing approximately 4000 time steps.

GADGET-3 has a built in module-level monitoring system which logs data for each time
step during runtime. This information includes a hierarchical structure which breaks
down execution time into a gravity algorithm (for collisionless gravitational interactions),
SPH (for gas particle interactions) and other functions such as I/O and the Friends-
of-Friends (FoF) algorithm used for grouping particles. For optimal performance, the
application should spend as much time as possible executing the computationally intensive
tasks like gravity and SPH calculations, while spending less time on /O and communication

components.

A number of output were used to analyse the code and compare performance between
different software configurations. Superficially the GADGET-3 data logs, hardware utilisation

logs and runtime measurements were considered.

3.2.2.1 Version Improvements

GADGET-3 was in pre-release status at the time of this investigation. Initially code
from the April 2014 release of GADGET-3 version 3.25 was used. During the evaluation
process, the code received several important updates which modified and optimised the
solver algorithm. An important modification that dramatically sped up code execution
was altering how the FoF algorithm was implemented. This function is used to identify
particle groups, such as galaxies, and is computationally costly. The code was updated
in the June 2014 release to implement the algorithm less frequently; resulting in a shorter

run time, with effectively identical results.

23

3.2. GADGET-3 OPTIMISATION

3.2.2.2 Software Compiler Comparison

Intel Compiler Suite (ICS) is a software suite maintained by the microprocessor manufacturer
Intel Corp. This proprietary software development toolkit includes a GCC compatible
compiler for C, C++, Fortran as well as several other languages. Additionally, it includes
an implementation of MPI which is compatible with both the Intel and GCC compiler.
The suite is intended to optimise code at compile time to take advantage of Intel hardware.
This provides more efficiently code execution and communication between nodes over an
Infiniband network. The June release of GADGET-3 and its dependencies, FFTW and
GSL, were recompiled using Intel’s ICS 2013 and a comparison was done to investigate

any performance improvements.

3.2.2.3 Virtual Versus Native Software Environments

Further testing with the ICS 2013 demonstrated that the code was suffering poor scaling
when run on multiple nodes within the cluster of virtual machines (VMs). Performance
overheads are a well documented drawback to virtualisation, specifically with regards
to HPC applications. To confirm virtualisation was the cause of this poor scaling, the
code was moved out of the virtual environment to a cluster of native hardware machines.
This infrastructure is reserved for hosting the virtual cluster. The test case was reran to

compare performance scaling from one to five compute nodes.

3.2.2.4 ICS Optimisation Flags

The final subject of this investigation was to determine if any performance improvements
were available through compiler optimisation flags. For this study, the Intel ICS 2013
compiler’s standard optimisation flags were compared. By default, the GADGET-3
makefile invokes the -02 optimisation flag which is generally the recommended optimisation
level for performance [78]. However there are additional options which provide further
optimisation for specific configurations and architectures. Level -0l optimises for size,
whereas level -03 implements more aggressive, potentially unsafe, optimisation techniques

to further boost performance.

o4

3.2. GADGET-3 OPTIMISATION

3.2.3 LIGHTCONE CODE DEVELOPMENT

The decision was made to use the Obreschkow method [15] of box stacking to produce a
lightcone from GADGET-3 simulation data. A number of design decisions were necessary
in order to determine the specific requirements of the code. The software tool-kit developed
in this research may be incorporated into a larger GADGET-3 post-processing suite,
called SPHGR, developed by Prof. Romeel Davé and Dr. Robert Thompson. This
provided some context for the requirements of the code. Firstly, the existing software
package has been developed in Python, therefore for the purpose of uniformity; this code
was also developed in Python. However, the code should also be sufficiently fast such that
a researcher could run it on modest hardware and obtain results in a reasonable amount
of time. Finally, as this code may be used by others in applications for which it was
not specifically developed, the lightcone generation algorithm should be as generalised as

possible.

The development followed an iterative process, in which initial code was implemented,
tested and improved upon. Documentation was continually updated in order to keep the
code legible for potential further development in the future. Focus was originally placed
on producing a volume extraction algorithm to partition gas particles from GADGET-3
output snapshots. A Cartesian co-ordinate system was established which orientated each
box being processed to a fixed observing point, such that the cone’s geometry remained
consistent between boxes. After this co-ordinate system became functional, a snapshot
tiling process was developed to allow for the workable volume to be extended in both
depth and breadth, for creating larger lightcones. A generalisation of this process was

then coded to create lightcones of arbitrary depth and geometry in any desired direction.

Upon testing the code on larger datasets, the post-processing runtime was found to be
undesirable (in the region of 3 hours). This lengthy runtime was due to poor hardware
utilisation. This is often the case with code implemented as loops in a high-level language
such as Python. Therefore effort was placed on optimising the Python code, which
included linking high performance math libraries for the NumPy and SciPy Python
packages. In addition, code was restructured and function calls optimised to reduce the
computational workload. Finally, code vectorisation was implemented which dramatically

improved code efficiency and decreased runtime.

The typical lightcone created using the z=0.58 depth specified for the LADUMA survey
contained approximately 75 million particles. A pixelisation procedure was developed

in order to reduce the amount of data contained within the lightcone. In addition the

95

3.3. CONCLUSION

pixelisation produces more realistic representation of the particles, as viewed by a radio
telescope. The lightcone was partitioned into a discrete grid aligned volume, implemented
as a four dimensional array. The first three dimensions defined the spatial location of a
‘pixel’; while the fourth dimension was used to store data of particles found within each

pixel.

Once a reasonably efficient lightcone construction and pixelisation procedure was developed,
focus was placed on generating useful metadata for the processed particles. The HI mass
content of gas particles was approximated using the semi-analytical method described in
the Davé et al. paper, reviewed in Section 2.6.2. This process proved challenging due
to the mathematical and scientific nuances associated with operating on cosmological
simulation data. Other properties were also calculated for each of the simulation particles
falling within the lightcone’s geometry, including the line-of-sight velocity. This peculiar
velocity is the rate at which the particle is travelling through physical space as opposed to
its apparent recession velocity caused by cosmological expansion. The component of this
peculiar velocity along the line-of-sight creates a bias on the recession velocity for radio
frequency observations, thus it is a useful property for the lightcone. The received flux
of each particle was also computed using the Abdalla and Rawlings method published in
their 2005 paper [72].

In order to improve the usability of the code, a parameter file was generated for users to
specify key configuration variables. This included the directory of GADGET-3 snapshots,
a vector defining the line-of-sight, and the desired depth of the lightcone in redshift. In
addition, hardware information such as the number of CPU threads available to the code
could be provided. A front-end Python file was executed by the user which initialised a
pool of worker threads to perform lightcone processing on multiple GADGET-3 snapshots
simultaneously. Upon completion of all worker threads, a final data post-processing phase
was initialised. This phase stitched the outputs of the individual worker threads together
and performed analytical operations on the entire lightcone volume, including a source

finding algorithm developed to find flux sources which broke pixels’ bounds.

3.3 (CONCLUSION

The GADGET-3 code was optimised to reduce the lengthy runtime for simulating galaxy
evolution in an expanding Universe. A methodical approach was used to optimise the
software environment, compiler selection and software libraries upon which GADGET-3

relied in order to reduce the duration of simulations.

26

3.3. CONCLUSION

This chapter presented the development methodology for generating GADGET-3 simulation
data and producing a lightcone from it. The Carlson & White volume remapping
approach for extracting data from GADGET-3 simulation snapshots was attempted but
ultimately determined not to have met the requirements of a LADUMA lightcone. A
modified Obreschkow box stacking method was implemented instead. This method did
not have a one-to-one volume relation between the simulation and lightcone and therefore

was not computationally bound by the GADGET-3 simulation.
An overview of the post-processing Python code design was presented. This included

the design choices and order of events during the development process. An expanded

description is provided in Chapter 4.

57

4 DESIGN OF LIGHTCONE CODE

This chapter provides details of the code developed for processing the GADGET-3 simulation
data into a dataset resembling a radio telescope’s observational field-of-view. Section
4.1 discusses the code responsible for the lightcone’s construction. A summary of the
particle selection algorithm is described; this code tested particles within the GADGET-
3 simulation to determine if they fall within the bounds of the lightcone’s geometry. After
each particle has been tested a pixelisation process was performed. This partitions the
lightcone’s volume into a fixed grid structure and adds the particles into this grid. As
part of the scientific deliverable of this research, metadata was derived for the simulation
particles. Attributes of each particle are either accumulated to, or averaged with, the
other particles in that pixel. The following section described equations used to calculate

some of these properties, such as HI mass and measured flux.

Section 4.2 presents several steps taken to optimise the Python post-processing code in
order to improve efficiency and reduce runtime. Special emphasis was placed on reducing
the code’s hardware requirements, thus making it more accessible. This code is intended
for researchers and scientists who may not have access to HPC resources. Included in
this overview is an introduction to the NumPy and SciPy math libraries for Python.
Linking these libraries to high performance BLAS implementations such as Intel MKL or
ATLAS provided significant performance improvements for the mathematically intensive
lightcone program. Parallelisation was implemented to improve the code’s performance
on multi-core computers. The processes followed to re-factor and vectorise the code will

be detailed to provide a basis for the performance improvements presented in the Results.

4.1 LiGHTCONE CONSTRUCTION APPROACH

A large GADGET-3 simulation was required in order to produce the synthetic lightcone
for the LADUMA survey. Following the GADGET-3 optimisation process (detailed in the

29

4.1. LIGHTCONE CONSTRUCTION APPROACH

previous chapter), this simulation was computed. The parameters for the simulation were
set to 256 (16.77 million) gas and 256 dark matter particles in a 64 Mpc® simulation
volume. The initial conditions for the simulation were generated with the P-GenlC tool.
A number of additional parameters were set which defined the cosmology of the simulation
to best model the evolution of the observable Universe. These parameters were chosen as
they were consistent with the current parametrisation of the AC DM model. A Hubble
parameter of 0.7 was used, along with €, (fractional matter density - including dark
matter and baryons) of 0.3 while the fractional density of baryons was defined to be

0.045. Finally, the Q) (fractional dark energy density) was selected to be 0.7.

The first task necessary to generate a lightcone from this simulation was to define the
geometry of the cone. This geometry emulates the Field-of-View (FoV) observed by the
hypothetical radio telescope (referred to as the ‘Observer’).

4.1.1 DEFINING LIGHTCONE GEOMETRY

As documented, the main drawback to the Obreschkow cube stacking technique is the
symmetry operations implemented to avoid spurious periodicity introduced by duplicating
simulation data in the Observer’s FoV. While these operations effectively reduce the
perceived repetition of data, they also disrupt the patterns in the large scale structures
in the boundary regions. A modification of this method was therefore developed. Rather
than rotating the simulation cubes, the axis along which the cone is constructed is ‘skewed’
relative to the stacked cubes. This results in the lightcone bisecting a different region of

each consecutive simulation cube.

At certain observational wavelengths, such as in the optical band, the aperture (or opening
area) of the telescope’s FoV expands at a fixed rate with distance. This produces a
cone volume in three-dimensional space expanding away from the Observer, placed at
a fixed location in space. In radio frequency observations however, the beam-width
of the telescope’s FoV is inversely proportional to its operating frequency. The beam-
width increases at lower frequencies (corresponding to higher redshifts). The LADUMA
survey will have an observational redshift range of z=0 to z=0.58. This corresponds
to a minimum operating frequency of 900 MHz in order to observe the 2lcm (or 1420
MHz) emission line of HI at a redshift of z=0.58. MeerKAT will begin observing with
an opening area of 1 deg?, however because the HI emission frequency decreases with

redshift, the opening area of its FoV increases with redshift by:

60

4.1. LIGHTCONE CONSTRUCTION APPROACH

A(z) = Ay(1+ 2)? (4.1)

where z is redshift, A(z) is opening area as a function of redshift, and A, is the opening
area at zero redshift. Using Equation 4.1, it follows that at a redshift of z=0.58 the
opening area of the MeerKAT telescope will increase to 2.5 deg?. Figure 4.1 provides a

simple illustration of how the lightcone’s opening angle increases with redshift.

&
bﬁ\Q
§ /
g // — —

64 Mpcs

Figure 4.1: An illustration of a virtual telescope’s Field-of-View expanding with redshift.
A set of stacked simulation cubes are also shown.

Using this relationship between redshift and the opening area, a particle selection algorithm
was developed to operate on GADGET-3 snapshots. A set of ‘pyGadgetReader’ functions
from the TipsyTools software suite were used to interface with the snapshot data files.
A test was performed using the position of each particle in the simulation, to determine
if the particle falls within the bounds of the lightcone. It was necessary to test every
particle within the simulation space, as the data was unstructured and unordered. Initial
testing was conducted on the gas participles only, but later star and dark matter particles
were also tested to include these types within the lightcone. The lightcone’s instantaneous
opening radius was used to determine its bounds for any given distance from the Observer.

The cone’s radius as a function of redshift is defined by:

where L is the co-moving length of the lightcone and z(L) is the equivalent redshift to

this co-moving distance.

4.1. LIGHTCONE CONSTRUCTION APPROACH

This particle testing was performed within each simulation cube using the particle’s
position, as well as the lightcone’s axis (or pointing) vector and aperture radius. Two
angles were calculated for every particle, one between the lightcone’s pointing vector and
aperture radius, and another between the pointing vector and the position of the particle.
The lightcone’s aperture radius increases with distance, thus the radius is recalculated
for every particle. By comparing these two angles, each of the tested particles were
categorised as inside or outside the lightcone. Figure 4.2 provides a graphical illustration

of the testing procedure.

Figure 4.2: An illustration demonstrating the particle testing procedure. The angles
between the pointing vector (cone axis vector), cone radius and particle position are
compared. The angle between the red particle and the pointing vector () is smaller than
the angle between the pointing vector and the lightcone’s radius («), in this case the
particle is considered inside the lightcone. The opposite is true for the blue particle (53).

The GADGET-3 code was configured to produce 140 snapshot outputs over its simulation
duration. Each snapshot was selected using its simulation redshift value, in order to keep
the cosmology consistent with observations. The redshift of the lightcone at each cube was
calculated using it’s co-moving distance from the Observer. A corresponding snapshot

was then selected to minimise the difference between the physical and simulated redshifts.

A lightcone could now be created within a single simulation volume of 64 Mpc3. This was
considerably smaller than the 1500 Mpc required to reach a redshift of 0.58. Thus, the
modified Obreschkow cube stacking method was implemented. A number of GADGET-
3 snapshots were combined into a larger volume from which the lightcone could be
constructed. Approximately 24 of the 64 Mpc® snapshots (cubes) stacked end-on-end
were required to produce a sufficiently large sampling volume. Therefore, the code was
written in a generalised fashion such that the same particle testing algorithm could be

applied to every cube regardless of its location. Each of the cubes along the length of the

62

4.1. LIGHTCONE CONSTRUCTION APPROACH

lightcone was provided with a set of parameters, including the lightcone’s pointing vector
as well as an ID used orientate the cube relative to the Observer. Using this information,

the code determines the bounds of the lightcone as it passes through that specific cube.

Figure 4.3 provides a 3D depiction the lightcone’s volume within a simulation cube. This
cube is located some distance from the Observer; this is evident as the lightcone’s radius is
not zero at the entry point. Refer to Appendix A: “Python Function for particle testing”

for the code implementation of the testing algorithm.

Xy Yy, Z,)
+

/ X, Y5 Zy)

X

Figure 4.3: A 3D diagram showing a single simulation cube, with the lightcone structure
displayed in grey. Particles found within this grey volume are considered to be inside
the lightcone. In this example, it is clear that the simulation cube should be tiled to the
right to prevent the lightcone from breaking out of the cube’s boundary.

From Figure 4.3, it is important to note the spatial co-ordinates of the lightcone’s entry
point into this volume, denoted by (X7,Y}), differ from the exit co-ordinates (X, Ys). It
follows that the lightcone would enter the next simulation cube at position (Xs, Ya, Z5).
At some distance from the Observer, the lightcone’s entry co-ordinates would extend
beyond the limits of the cube, in order to avoid the offset growing too large, a modulus
operation was applied to the entry co-ordinates. As the lightcone’s entry and exit points

from the cube were at different locations, a new region of each snapshot volume was

63

4.1. LIGHTCONE CONSTRUCTION APPROACH

sampled.

while tiling:
newTile = oldTile +offSetxcubeSize
testTile (newTile)

The skewed lightcone traverses sideways through the simulation cubes. At greater distances
the lightcone breaks the lateral bounds of the cube’s volume. A test is therefore performed
to check if the cube’s bounds have been broken in order to avoid sampling empty space.
In such a situation, the cube was duplicated (or tiled) in the appropriate direction. In its
current form, the simulation cubes are only tiled a maximum of one time in any direction.
Motivation for this decision is provided in the Discussion chapter. Figure 4.4 illustrates
the cumulative volume generated by the first twelve of the twenty four simulation cubes
required for a z=0.58 redshift lightcone. Note that in some cases the cubes were tiled
sideways to accommodate the skewed cone axis vector. All testing and tiling is performed
automatically by the code, such that the pointing vector can be simply changed in the
parameter file and a new lightcone created. In addition, each stacked simulation cube
is independent of the others above and below it. The cube’s position relative to the
Observer is determined by its ID number. This provided the possibility to implement
a simple parallelisation technique of ‘embarrassingly’ parallel cube testing and binning
threads.

Figure 4.4: A graphic illustrating the GADGET-3 simulation cube stacking method.
The first 12 stacked cubes required to produce a lightcone with pointing vector [10,3,-2]
are shown. The shades of grey illustrate the cube’s distance from the Observer, with
darker being further away. Sideways tiling of cubes is necessary to contain the expanding
lightcone.

64

4.1. LIGHTCONE CONSTRUCTION APPROACH

4.1.2 LIGHTCONE VOLUME PIXELISATION

After the lightcone geometry was defined, the volume of the lightcone was partitioned
into a grid structure. This ‘datacube’ structure was implemented to reduce the amount
of data within the lightcone. This process also allowed for easier analysis of the cube’s

contents.

The grid represents a three-dimensional discrete ‘binning’ (or histogram) array, with each
cell of the array being a 3D equivalent of a 2D ‘pixel’. The lightcone’s radius increases
with distance from the Observer, thus a fixed Cartesian grid structure proved ineffective
and wasteful for describing the lightcone’s contents. Rather the two spatial dimensions,
which represent the lightcone’s angular resolution, are defined as a fraction of the cone’s
radius. Therefore, at a lower redshift (closer to the Observer) the volume of each cell
is significantly smaller than its volume at a higher redshift. The third dimension exists
along the Observer’s line-of-sight. This dimension represents the frequency resolution
of the MeerKAT telescope. As the lightcone is considerably longer than it is wide, the
frequency resolution of a radio telescope is lower than the angular resolution. Within the
lightcone, the frequency divisions are calculated as equal fractions (or channels) of the
total frequency range. The sizes of the spatial and frequency dimensions within the array
are defined by the user in the parameter file. Figure 4.5 shows how the frequency and
spatial dimensions are partitioned. N represents an arbitrary frequency channel, while R

is the cone’s radius and M is the number of spatial pixels per dimension.

R/M R/M+1

N+3

N+2

N+1

Figure 4.5: An illustration of the lightcone pixelisation technique, the image describes a
section of the cone along one of the lateral dimensions. N denotes an arbitrary position
along the frequency axis, while R denotes the cone’s radius and M the number of spatial
pixels.

65

4.1. LIGHTCONE CONSTRUCTION APPROACH

Figure 4.6 presents a three dimensional perspective of the pixelisation grid which contains
the lightcone. In this example, both of the spatial dimensions is partitioned by 15 pixels

while the frequency dimension is partitioned into 8 discrete bins.

Figure 4.6: A graphical depiction of the pixelised lightcone, the opening area of the
lightcone is partitioned into a 15x15 grid, and the depth partitioned into 8 discrete bins.

The geometry construction process described above was developed to operate independently
on each simulation cube so that the process could be parallelised simply. This however led
to complications when defining the grid structure between independent cubes. Each cube
contained a subset of the total pixelisation array. The number of line-of-sight frequency
bins per cube is calculated given its offset from the Observer. The particles within each
cube are pixelised using this information, after which all the lightcone sections are stitched

together in the final post-processing phase.

Multiple properties were stored for each pixel in order to provide a comprehensive description
of the lightcone’s contents. Therefore a four dimensional NumPy array was implemented.
Three dimensions were used to spatially identify a pixel, while the fourth dimension was
used to store particle metadata. Section 4.1.4 provides additional information on the

datacube structure.

Refer to Appendix B: “Python Function for particle binning”, for the code implementation

used to pixelise the particles within the lightcone.

66

4.1. LIGHTCONE CONSTRUCTION APPROACH

4.1.3 PARTICLE METADATA EXTRACTION ALGORITHMS

Scientists with different research objectives are involved with the LADUMA survey, each
of whom have a unique research focus. Thus, it was imperative that the HI lightcone
conserve as much of the information extracted from the original simulation data as
possible. A number of properties were determined to be relevant to the LADUMA survey
and included within the lightcone.

As LADUMA is a deep field radio survey, its focus is placed on detecting the 21cm
emission line from neutral hydrogen. Therefore, it was crucial to add this data to
the lightcone. However, GADGET-3 currently does not quantify the gas within the
simulation as neutral or ionised, nor does it differentiate between hydrogen, helium or any
other elements. It was therefore necessary to post-process the simulation to extract this
information. This was achieved using the Davé et al. method; introduced in the literature
review. This technique was implemented within the Python code which conducts the
particle testing and binning process. Each particle in the simulation is tested, binned,

and post-processed - in that order.

Each particle was classified into one of two categories in order to calculate its HI mass
fraction. The particle could either be star-forming or non star-forming. This distinction
was made using the SFR (star formation rate) property which GADGET-3 generates
for each gas particle. Appendix C: “Python Function for Evaluating HI Content of

GADGET-3 gas particles” provides the code extract used for calculating this mass ratio.

Another useful property provided in the lightcone was the received flux from each particle.
Flux spectral density (or spectral irradiance) is a unit of power received per square meter

per hertz and is measured in janksy (Jy). One jansky is defined as:

%%
m2.Hz

1Jy =10"%

This forms an important part of the information provided by the lightcone, as the flux
received from an object determines if it is detectable above the ambient and system noise.
Typically in radio astronomy, the flux received from an object must be 5o above the noise
level to be considered a detection. The flux of an object was extrapolated from its HI
mass using the Abdalla and Rawlings method. The flux spectral density of a particle is

calculated using equation 2.15.

67

4.1. LIGHTCONE CONSTRUCTION APPROACH

In addition to these properties, a number of others were stored for gas particles. Namely;
the number of particles, the mass of ionised gas, star formation rate, and line-of-sight
peculiar velocities were also calculated and stored. After these properties have been
calculated for each GADGET-3 gas particle, they are accumulated into pixels. The
GADGET-3 star particles were also processed into the lightcone, the number and mass
of star particles were binned into pixels and stored for further analysis. The user has the
option to enable dark matter testing in the parameter file, including dark matter within
the lightcone. The number and mass of dark matter particles per pixel are stored in the
datacube along with the gas and star particle data. The properties stored in each pixel
are a summation of the simulation particles found within that pixel. The exception was
the redshift data which was not accumulated, as the distance to a given pixel remains
fixed regardless of the number of particles within that pixel. Results of this process are

presented in the Results chapter.

The lightcone construction process can be broadly classified into three subsections; particle
remapping (cube tiling), particle testing and particle binning. Figure 4.7 presents these

three main subsections, as well as their individual subroutines.

Bin Particles

Figure 4.7: A graphical depiction of the particle processing pipeline developed in order
to produce a lightcone from simulation particles.

68

4.1. LIGHTCONE CONSTRUCTION APPROACH

The first process necessary is to remap the set of particle positions to tile the simulation
cube to a suitable location in 3D space. These remapped particles are then tested to
determine if they fall within the geometry of the expanding lightcone volume. This
requires calculating the distance to the particles, then finding the opening angle of the
lightcone at the corresponding redshift. The angle between the particle and the lightcone
axis vector is then calculated, and the particle tested by comparing this to the cone’s

opening angle.

The resulting set of positively tested particles are then binned into the pixelised lightcone
volume. Each particles distance from the axis vector is used to calculate its spatial pixel
address. The minimum and delta redshift information is calculated for that pixel, as well

as the particles metadata properties. This particle is then merged into the existing pixel.

4.1.4 LIGHTCONE DATA STRUCTURE

An N-dimensional NumPy data structure was constructed to store the lightcone structure.
In order to store multiple properties for each pixel, found within a three dimensional
spatial domain, a four dimensional array was selected. The size of this array is dependent
on three user defined variables. Firstly, the number of spatial divisions (pixels) is
determined by the pixel and frequency channel values in the parameter file. Additionally,
the size of the fourth dimension is dependent on whether the user has enabled dark
matter testing. If dark matter testing is disabled, the fourth dimension contains 10 single
precision elements; alternatively it will contain 12 elements (to include the dark matter
particle count and mass properties). Table 4.1 describes the contents of each 3D pixel,

including the particle aggregation method.

There are several important implications resulting from the use of a dense NumPy N-
Dimensional array for this dataset. Due to the nature of the cosmological data being
sampled, the array is typically very sparse. On average, only 5% of all spatial positions
contains any data. The result is a dense data structure that makes inefficient use of
storage capacity and memory consumption. Several alternatives were explored in order to
reduce the size of the data structure. An investigation into NumPy Structured arrays was
conducted. These arrays utilise objects to store several different data types per element.

This approach did not however address the wasted space of empty array elements.

A sparse array was instead considered to address the amount of wasted space. While

SciPy has sparse array APIs, they are poorly suited to the high dimensionality of the

69

4.1. LIGHTCONE CONSTRUCTION APPROACH

Table 4.1: Description of the data structure implemented for storing lightcone pixel
information.

Array position Property Particle Aggregation Method
0 Gas particle count Accumulated
1 Redshift Minimum Fixed

2 Delta Redshift Fixed

3 Ionised gas mass Accumulated
4 HI gas mass Accumulated
5) Flux spectral density Accumulated
6 Peculiar Velocity Averaged
7 Star formation rate Averaged

8 Star particle count Accumulated
9 Stellar Mass Accumulated
10 (Optional) Dark matter particle count Accumulated
11 (Optional) Dark matter mass Accumulated

datacube. In addition, a sparse data structure increases the complexity of indexed
operations. Such operations are useful for performing spatial operations (such as source
finding) on the pixels. As memory was the limiting factor in array size and not disk
space, this approach was also dismissed. Instead, a down casting of the array contents
from double precision to single precision floating points proved sufficient to meet the

requirements of a LADUMA scale lightcone.

Using a simple calculation, the amount of memory occupied by the datacube array could

be calculated:

Size (FrequencyChannels)(Spatial Pizels)*(Properties Per Pizel)(4Bytes) (4.4)
MB 210 '

Thus a typical lightcone with a pixelisation scheme of 4096x200x200, containing 12
elements per pixel, required 7 680 MB (7.5 GB) of RAM. This was found to be acceptable

for the majority of test cases explored.

In addition to storing the contents of the pixelised lightcone to a NumPy array, another
data format was also used. The Flexible Image Transport System (FITS) is a widely used
open source standard for storing observational imaging data [79]. A FITS file contains a
header (or data block) which describes the contents of the file. The data within a FITS

70

4.2. PERFORMANCE OPTIMISATIONS FOR PYTHON

file can take any dimensionality. Multiple APIs exist for interfacing with a FITS file for
programming languages such as FORTRAN, C++ and Python.

The flux data from the lightcone was stored to a FITS file, as the standard is well
established in the observational community. Collaborators working with the lightcone

data have access to this file for source finding and other common observational processes.

4.2 PERFORMANCE OPTIMISATIONS FOR PYTHON

This section presents details on the optimisation process of the Python code developed
for this research. This process begins with a discussion on software compilers and math
libraries for Python. An investigation into the parallelisation of the lightcone construction
process is also explored. Finally, a number of the optimisations implemented to further

reduce the runtime of the post-processing code are discussed.

4.2.1 HicH PERFORMANCE BLAS LIBRARIES

Much of the computation done by the post-processing tool developed for this research
operated on large datasets. Therefore the popular numerical and scientific packages,
NumPY and SciPY, were installed onto the ACE Lab cluster. These packages provided
easy-to-use APIs for linking Python code to high performance C and FORTRAN mathematical
subroutines. The performance available from these packages is largely dependent on
the specific backend math library implementations on which they rely. By default, the
NumPy package uses its own implementation of the Basic Linear Algebra Subprograms
(BLAS) standardised math library. However, the package also supports linking to non-
standard libraries during compilation. Due to the potential performance improvements
offered by linking to a more efficient BLAS implementation, an investigation was conducted

using several alternatives.

A comparison was conducted between three BLAS implementations: Intel’s Math Kernel
Library (MKL); the open source BLAS implementation Automatically Tuned Linear
Algebra Software (ATLAS), and the default NumPy version of BLAS. The MKL package
is included in Intel’s ICS software suite and promised improved performance through
specific Intel hardware optimisation. ATLAS is considered one of the best open source

implementations of BLAS; as the name suggests, it performs an automatic performance

71

4.2. PERFORMANCE OPTIMISATIONS FOR PYTHON

tuning process during installation.

A benchmark was constructed comprising of five basic linear algebra operations; matrix
eigenvalue, matrix inversion, single value decompositions, matrix determinant and matrix
dot product. 1000 iterations of each test case were performed to produce measurable

runtimes.

4.2.2 CODE PARALLELISATION

The lightcone construction technique, described above, was intentionally developed so
that each simulation cube could be considered an independent subsection within the
larger lightcone structure. This design decision was chosen so that a simple data-parallel

parallelisation technique could be implemented.

The program was initialised from a single Python program named “launcher.py”. This
code extracted relevant information from the user’s parameter file. Thereafter, it calculated
the number of stacked boxes required to produce a lightcone of the specified redshift
using the simulation snapshots provided. The launcher then spawned a thread pool
of processing threads using the “cube.py” program. To improve performance on SMP
machines, the user can specify the maximum number of concurrent threads in the parameter
file. After each cube construction thread completed, the launcher spawned another thread
for the next cube and added it to the pool. The launcher program used a thread barrier,
such that the code would only continue once all the simulation cubes were processed. The
launcher spawned threads for the cubes in a reverse order along the lightcone’s path in
order to reduce the amount of waiting time at the barrier. An assumption was made that
those cubes will be tiled to accommodate the lightcone’s larger diameter at high redshift.
Thus these threads would process more particles, resulting in a longer runtime. Figure
4.6 illustrates the execution of the lightcone construction code. This software architecture

resembles a simple First In First Out (FIFO) queue.

In this example, six simulation cubes were required to create the lightcone. The user
specified a maximum of four concurrent threads. Therefore the furthest four cubes (green)
started immediately, while cube00 and cube01 (orange) started when a thread became
available. After all the threads were completed, the postProcessing.py program was called
by the launcher. This code ‘stitched’ together all the lightcone sections produced by each
of the worker threads in the thread pool.

On a simulation cube level, the lightcone construction process was completely self contained.

72

4.2. PERFORMANCE OPTIMISATIONS FOR PYTHON

Figure 4.8: A sequence diagram describing the multi-threaded approach implemented for
the lightcone construction code. The “launcher.py” program performs initialisation and
spawns a pool of four threads. Threads operate on lightcone subsections, the maximum
number of concurrent threads is define by the user. After the thread pool completes, the
“postProcessor.py” program stitches together the resulting lightcone subsections.

Each cube required its own inputs, and produced its own output. Furthermore, because
the resulting lightcone is stitched together after the thread pool completes, no mutual
exclusion of shared memory was necessary. Figure 4.9 presents the Input/Output digram
of a single cube instance. The cubelD is provided by the launcher, after which the thread

is entirely self contained.

Figure 4.9: A flow diagram showing the inputs and outputs of a single lightcone
construction instance.

73

4.2. PERFORMANCE OPTIMISATIONS FOR PYTHON

The threads takes in inputs from the parameter file (‘params.txt’), the interpolation
data point set (‘ZR_INTERP.txt’) and simulation data from a GADGET-3 snapshot.
The code then produces a log file (‘cube X.log’) while it produces a subsection of the
greatly lightcone data structure (‘cube_X_data.npy’). The array offset of this particular

subsection is stored to file (‘cube_offsets.txt’).

4.2.3 ALGORITHM OPTIMISATIONS

Upon producing the first working solution of the lightcone construction code in Python,
the runtime was found to be unsatisfactory for larger datasets. This was a concern, as
the code was developed to be scalable for producing larger lightcones for other potential
observations, such as LADUMA, in the future. A process of improving the performance
of the code was conducted to increase its efficiency and reduce post-processing runtime.
A number of specific subroutines and code implementations were explored to provide the

best software solution. The focus areas included:

Reducing the number of costly function calls required to process a lightcone section.

Managing NumPy arrays to reduce the memory footprint of the lightcone code.

Selecting the most efficient SciPy interpolation function for converting co-moving
distance to redshift.

Vectorising the code to improve hardware utilisation and dramatically reduce runtime.

4.2.3.1 Costly Function Calls

The first and simplest technique explored was to streamline the Python code so fewer
instructions were required to process the simulation data. Primarily, this involved reducing
the number of calls to the ‘angle_between()’ function within the code. This function took
in two 3D vectors, normalised their length, and calculated the angle between them using
a dot product. This function was used extensively during the particle testing and particle

binning phase of lightcone construction.

The ‘angle_between()’ function proved to be computationally expensive during the particle
testing process. The most costly subroutine within this function was found to be the

normalisation of the 3D vector. In addition to reducing the number of calls to this

4

4.2. PERFORMANCE OPTIMISATIONS FOR PYTHON

function, an investigation was conducted into improving the efficiency of the function.
Several Python and NumPy subroutines were compared to determine which provided the

most efficient implementation of the costly normalisation operation used in this function.

A more intelligent particle testing mask was also implemented. The volume of the
lightcone within the simulation cube was calculated before particle testing began. This
was done by determining the radius of the cone at the entry and exit points of the cube. If
the volume of the lightcone did not break the bounds of the cube, tiling was not required.
However, if a bound was broken, as depicted in Figure 4.3, a duplicate particle array
was created with a set of shifted co-ordinates. All of the duplicated particles required
testing, as the particles were randomly distributed within the volume. This approach of
selectively tiling a cube, rather than blindly tiling in all direction greatly reduced the
number of particles tested. The results of this approach are visible in the structure of

stacked cubes, presented in Figure 4.4.

4.2.3.2 Memory Management

A concerning code memory footprint was observed when testing the code on larger
problem sizes. Memory usage increased when cubes were tiled to accommodate the
lightcone’s increasing radius. Thus, at high redshifts (towards to end of the lightcone)
the cubes are often tiled multiple times (up to 8 times in extreme cases). The memory
consumption of the code increased relative to this tiling, with threads using up to 6 GB of
RAM. This posed less of a concern on the ACE Lab cluster nodes which contain 128 GB of
memory. However for desktop or workstation computers, this severely limited the possible
number of concurrent threads. Focus was therefore placed on managing memory during
the lightcone construction process. Arrays containing particle information of cubes were
created and held in memory only for as long as required. After which, the memory was
released for use by the next tiled simulation cube. This reduced the memory footprint of
the test case cube from 3.8 GB to 2.4 GB. Several test were conducted which probed the
memory usage of the code for a variety of lightcone pixelisation resolutions, these results

are presented in Figure 5.21.

4.2.3.3 Interpolation Functions Comparison

The redshift of the particle from the Observer was required during the particle processing

procedure. Calculating the redshift of a particle from its co-moving distance is not

5

4.2. PERFORMANCE OPTIMISATIONS FOR PYTHON

a straightforward process, as these two properties are not directly related. Thus an
interpolation function was used. An interpolation function provides the ability to create a
mapping between two datasets using a series of discrete data points. A set of five million
distance-redshift pairs was used to generate a forward and reverse linear interpolation
function. SciPy provides two such implementations; the Univariate Spline API and the
1D interpolation function ‘interpld’. The performance of these two alternatives was

investigated.

4.2.3.4 Code Vectorisation

The final step in optimising the lightcone construction code provided the largest gain in
performance. After an efficient algorithm had been developed and tested, vectorisation

of the Python code was explored. NumPy provides powerful multi-dimensional array
functionality. This allowed for array-wise operations to be performed on large datasets,
rather than operating on individual elements within an iterative loop. The high performance
back-end to NumPy could be fully utilised by using these array-wise operations. This
resulted in code executing efficiently on the complex micro-architectures of modern processors.
The vectorisation process allows the processor to fill the data pipeline with multiple
operations and execute several instructions per cycle. The Intel IvyBridge architecture
CPUs used in the ACE Lab cluster support the 256 bit AVX instruction set, allowing for

the operation of 8 single precision floats simultaneously.

While vectorisation promised significant performance benefits, it also had several drawbacks.
Firstly, the syntax required to perform multi-dimensional array operations often proved
complex and problematic to troubleshoot. A greater obstacle observed with code vectorisation
was dealing with conditional operations. As the vectorisation process generates a set of
unconditional instructions for the hardware, the standard iterative approach to conditional
testing within an array was not possible. A masking array was required to select a
subset of the larger data structure. The process of adapting the existing algorithm to

fit within the limits imposed by vectorised operations was not trivial and proved to be
time consuming. However, as seen in the results section, the benefits observed from

vectorisation were well worth the effort.

76

4.3. CONCLUSION

partArray

xyz = coords(partArray)

sortedCoords = lexicalSort (xyz)

assign accumulated values to datacube

4.3 (CONCLUSION

This chapter provided specific details for the lightcone construction code. A description
was given of how the GADGET-3 simulation volume stacking method was implemented.
Furthermore, an explanation was provided on how this implementation differs from
existing techniques such as the Obreschkow approach. The axis along which the lightcone
was constructed relative to the simulation volume (referred to as a cube) could be specified
by the user. A procedure of cube stacking and tiling was implemented in order to ensure

that the volume of the lightcone was kept within the bounds of the simulation cubes.

Details were also provided for the lightcone pixelisation process which was used to
condense the millions of particles found within the lightcone into a fixed grid structure.
This process was performed in order to more accurately represent the contents of the
lightcone, as seen by a radio telescope. This discrete binning of simulation particles also
allowed data to be stored in a more traditional data structure. This data structure was

discussed in depth, with a motivation provided to support the use a dense NumPy array.

The second half of this chapter discussed the several important optimisations performed
on the Python code and NumPy libraries. Significant effort was placed on producing the
most efficient code possible for rapid construction of the lightcone. This was achieved
through the use of optimised math libraries and multi-threaded programming. In addition,

the code itself was improved through optimisations of costly subroutines and vectorisation

7

4.3. CONCLUSION

of the particle testing and binning procedures.

A selection of results obtained from the lightcone construction code and Python optimisation

documented in this chapter are presented next in the Results.

78

5 RESULTS

This chapter presents a selection of results obtained from the GADGET-3 evaluation,
Python code optimization and lightcone construction process. Section 5.1 provides a
collection of performance benchmark results from the GADGET-3 evaluation. A number

of software optimisations were performed in order to improve the efficiency of the simulation
code. This evaluation was conducted to support other GADGET-3 users running the
code on HPC systems. Focus was thus placed on optimising the software environment,
compilers and libraries upon which GADGET-3 relies. A comparison of software compilers,
code implementations and runtime scaling provides insight into the ideal software configuration
for GADGET-3.

Section 5.2 continues with results from a thorough investigation into the Python and
NumPy performance improvements detailed in the previous chapter. These optimisations
were implemented to reduce the hardware requirements of the post-processing code as
well as to improve the execution time. The efficiency of the Python code was optimised
over a number of stages. The code was first streamlined to reduce the number of function
calls and thus CPU workload. The NumPy package was linked to a high performance
math library to boost the performance of linear algebra computation. In addition, several
subroutines were analysed to determine which performed best in the given context. A
multi-threaded implementation of the code was developed to utilise a greater portion
of a modern SMP computer’s memory bandwidth. Finally, the code was vectorised to
produce a set of unconditional matrix operations. Operations on large datasets are more
efficiently mapped to the complex micro-architecture of modern processors. Thus, a

significant performance increase was observed for the lightcone construction code.

Upon developing a program which efficiently produces a lightcone from simulation data, a
number visualisations were generated in order to validate the results. Section 5.3 presents
these results to support the lightcone code developed for this research. A mass function is
presented which shows the composition of the lightcone’s volume. Several other statistical

measurements are included, such as a plot of line-of-sight peculiar velocities. In the next

79

5.1. GADGET-3 PERFORMANCE EVALUATION RESULTS

chapter, these results will be compared with existing research which was introduced in

the literature review.

5.1 GADGET-3 PERFORMANCE EVALUATION RESULTS

The first set of results presented for the GADGET-3 performance evaluation concern
algorithm modifications within the code. During the development process of the code
a new Friends-of-Friends (FoF) algorithm was introduced which greatly improved the
performance of the code. A FoF algorithm is used to identify clumps of particles into
gravitationally bound groups. The velocity and proximity of the particles is used to
identify these groups. These simulation benchmarks were constructed to operate on
a fixed number of timesteps. A timestep represents the progression of time within
the simulation and describes the temporal resolution of the simulation. Additional
information on the GADGET simulation can be found in Section 2.4. The time taken to
process a timestep is determined to the complexity of particle interactions which occur
in that timestep. Therefore, using a fixed selection of timesteps is necessary to perform

a fair comparison.

A test case comprising approximately 3500 timesteps was constructed to compare the
performance of these two FoF algorithms. Figures 5.1 and 5.2 provide a comparison
between the runtime performance achieved by the April and June releases of GADGET-
3.

80

5.1. GADGET-3 PERFORMANCE EVALUATION RESULTS

Figure 5.1: A stacked timestep graph for the April release of GADGET-3. The graph
shows the breakdown of CPU time allocation between the code’s subroutines.

Figure 5.2: A stacked timestep graph for the June release of GADGET-3. The graph
shows the breakdown of CPU time allocation between the code’s subroutines.

Figures 5.1 and 5.2 present a set of stacked graphs of CPU time consumption between
the FoF, Smoothed Particle Hydrodynamics (SPH), TreeGrav (far field N-body), particle

81

5.1. GADGET-3 PERFORMANCE EVALUATION RESULTS

momenta kicks (Kicks) and miscellaneous processing tasks. It is import to note the
different time scales on the vertical axis between the two graphs. It can be seen in Figure
5.1 that the FoF algorithm is dominating the time spent for each timestep of the April
release, resulting in an average step processing time of 12.07 seconds. At approximately
step number 2700 in the test, the PMGrid function is called for far field particle interaction
- hence a spike is observed in total execution time. The June release of GADGET-3, shown
in Figure 5.2, performs significantly better, with an average processing time per step of
1.76 seconds. This is primarily due to the costly FoF function being executed in only two
of the 3500 timesteps. This change to an improved implementation of the FoF algorithm

resulted in an average overall speedup of 686%.

In order to further evaluate the result of the newer FoF algorithm, a fractional time
allocation chart was generated. Figures 5.3 and 5.4 provide a comparison between the
fractional runtimes achieved by the April and June versions of GADGET-3 using the

above test case.

Figure 5.3: A fractional representation of Figure 5.4: A fractional representation of
CPU time spent per timestep for the April CPU time spent per timestep for the June
release of GADGET-3, averaged over the rglease of GADGET-3, averaged over the
3500 timestep test case simulation run. 3500 timestep test case simulation run.

Figure 5.3 shows the average time breakdown of the 3500 simulation steps for the April
release. On average, 67.1% of the CPU’s time is spent executing the FoF algorithm.
The more computationally intensive tasks; SPH, particle momenta kicks and gravity tree
components consume only 14.7% of the total CPU time on average. Figure 5.4 illustrates
the improvements made in June release; the FoF method only consumes 14.2% of the

CPU time. This provides more CPU time for the other tasks. This is an example which

82

5.1. GADGET-3 PERFORMANCE EVALUATION RESULTS

illustrates that the most effective optimisation is often achieved at a application level and

not system level.

The next component under investigation was the choice of software compiler within the
HPC cluster environment. The open source GCC and proprietary Intel ICS compilers
were compared in order to determine what performance benefits existed from selecting one
over the other. A new test case was constructed which operated on a 16 Mpc?® simulation
over a limited redshift range. The result for each benchmark was generated by averaging
three separate simulation runs, the standard deviation of these runs is shown by error

bars. Figure 5.5 presents the results of this compiler comparison.

Figure 5.5: A compiler comparison for GADGET-3, showing the relative benchmark
runtime for GCC and Intel Compiler Suite.

It can be seen from Figure 5.5 that the Intel Compiler Suite alternative provided a
reasonable performance increase over the GCC compiler. ICS compiled code completed
the benchmark 13% faster on average compared to the GCC code. The ICS code does
however show a larger variance in its runtime over the three benchmark runs. In order to
further explore the performance advantage provided by Intel’s ICS software, an analysis
was conducted using Ganglia; a hardware monitoring software. Figure 5.6 and Figure 5.7

provide some insight into a possible cause of the performance difference observed.

83

5.1. GADGET-3 PERFORMANCE EVALUATION RESULTS

nodeB2.cluster.ace.chpc.ac.za CPU nodedl.cluster.ace.chpc.ac.za CPU

=
@
=]
=
@
=]

o
=

o

=

o
=]

o

=]

o~
=]

]

[=]

@
=]

@

=]

Percent
= un
= =
Percent
= (5,1
= =

w
=]

w

=]

[
=]

[

=]

=
=]

=

=]

Q-+ o+

16: 00 16:10 16:30 16:40 14:30 14:40 14:50 15:00
W User Now: 94.3% Min: 0.8% Avg: 71.8% Max: 599.8% W User Mow: 25.2% Min: 5.1% Avg: 74.7% Max: 99, 9%
O Nice Mow: ©.0% Min: ©0.80% Avg: 0.8% Max: 0.08% O Nice Mow: ©.0% Min: 0,08 Avg: 0.0 Max: 0.0%
W SystemNow: 5.7% Min: 0.0% Avg: 2.8% Max: 27.7% W SystemMow: 74.8% Min: 0.1% Avg: 12.9% Max: 74, 8%
O Wait Now: 0.0% Min: 0.8% Avg: O0.8% Max: 0.4% O Wait Now: 0.0% Min: 0.8% Avg: 0.0% Max: 0.7%
O Idle Mow: ©.0% Min: 0.0% Avg: 26.4% Max: 99.9%% O Idle Mow: ©.0% Min: 0.0% Avg: 12.4% Max: 9. 8%

Figure 5.6: A CPU utilisation report Figure 5.7: A CPU utilisation report
generated by Ganglia. This data was generated by GangliaThis data was
extracted from the compute node during a extracted from the compute node during a
benchmark of GADGET-3 compiled with benchmark of GADGET-3 compiled with
GCC 4.8.2. ICS 2013.

Figure 5.6 shows the CPU utilisation graph of a single node during the benchmark of
GADGET-3 which was compiled with GCC. The red component of the CPU load graph
represents system time, where CPU cycles are effectively wasted on non-application tasks.
As can be seen, a portion of CPU time was being wasted in the GCC case. Figure 5.7
shows less system time for code compiled with ICS, which indicates more efficient code

compilation.

Focus was next placed on evaluating the scaling efficiency of the GADGET-3 code.
The code was expected to scale well, as the simulation was developed specifically for
distributed computing systems. However, this was not the case. Initial testing of
GADGET-3 was conducted with a cluster of virtual machines. The code was tested
on both virtual and physical clusters to determine if the the virtual machines performed
poorly. Figure 5.8 presents the results of a runtime scaling test conducted on both
a cluster of virtual and physical machines. The same test case was executed on an

increasing number of compute nodes to investigate the resulting execution time speedup.

84

5.1. GADGET-3 PERFORMANCE EVALUATION RESULTS

Figure 5.8: A graph showing the observed scaling of a GADGET-3 test problem on
multiple compute nodes for both virtual machines and native hardware clusters. The
black line represents ideal speedup.

Figure 5.8 shows a poor runtime scaling for both the hardware and virtual cluster
configurations. The cluster of physical machines did however complete the benchmark

58% faster than the virtual cluster using five compute nodes.

An example of the MPI command used to execute the simulation within the HPC cluster

is provided below.

mpirun —np 100 —hosts n01,n02,n03,n04,n05 ./Gadget3 sr16nl128.p

In this example, the code is run of five hosts, each of which contain 20 CPU cores, resulting
in a total core count of 100. The linking of the GADGET-3 executable ‘Gadget3’ and
parameter file ‘sr16n128.p’ is also displayed.

The hardware still only provided a 244% performance improvement, considerably worse

than ideal performance scaling. Figure 5.9 presents the results as a fraction of the ideal

speedup.

85

5.1. GADGET-3 PERFORMANCE EVALUATION RESULTS

Figure 5.9: The relative efficiencies of virtual and native cluster configurations observed
when scaling the code across multiple compute nodes.

Figure 5.9 shows the relative performance efficiencies of the physical and virtual clusters
when running GADGET-3 across multiple compute nodes. The efficiencies were calculated
using the measured runtime as a fraction of ideal execution runtime. The performance
delta observed between the two configurations increases with the number of compute
nodes assigned to the benchmark. This suggests a communication overhead associated
with virtualisation may be responsible for the performance delta. Further investigation
is required to uncover the cause of this virtualisation performance overhead. When
executing on five compute nodes (100 CPU cores), the hardware cluster operated nearly
twice as efficiently as the virtual cluster, achieved a scaling efficiency of 49%, compared

to 28%. The cause of this generally poor scaling is discussed further in Chapter 6.

The final test conducted during the GADGET-3 performance investigation was to evaluate
the performance benefits which may exist from implementing Intel’s advanced compiler
optimisations. These features are enabled via optimisation flags during compilation of
the GADGET-3 code. Table 5.1 presents a number of compiler optimisation flag options
which were tested using the same GADGET-3 problem as before. For each test case, the
code was recompiled and the resulting binary file size recorded. The code’s execution

time on five compute nodes was then documented.

86

5.1. GADGET-3 PERFORMANCE EVALUATION RESULTS

Table 5.1: ICS Optimisation Flag Comparison for GADGET-3

Optimisation Compiler Flags Binary Size (KB) | Execution Time (s)
Optimisation off N/A 1336 750
Optimisation level 1 -01 1336 720
Size optimisation -Os 1292 515
Optimisation level 2 -02 1440 494
Optimisation level 3 | -O3 -msse4 -opt-prefetch -unroll-4 -M64 1560 485

Notably from Table 5.1, disabling all compiler optimisations resulted in a 50% performance
loss. By default, GADGET-3 implements the -02 level of optimisation, which provides
various optimisations while not being overly aggressive with code re-factoring. The level
2 optimisation provided a near optimal runtime for the sample problem, however further
improvement was possible by enabled additional flags. Level 3 optimisation provides
more aggressive loop transformations as well as specific optimisations for AVX and SSE4

instruction set compatible micro-architectures [80].

87

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

5.2 LicHTCONE CODE OPTIMISATION BENCHMARKS

This section presents the results obtained from various optimisations conducted on the
Python lightcone construction code as well as the math libraries on which it relied. While
the first implementation of the code was functional, it was too slow to perform all but
the smallest problem sizes. The first task in improving the code’s performance was to
reduce the computational workload by removing unnecessary function calls and redundant

operations.

The ‘angle_between()’ function was initially called multiple times for each particle being
tested to determine its position relative to the lightcone. Figure 5.10 presents the effects

of reducing the number of calls to this function.

Figure 5.10: A graph of relative runtime compared to number of ‘angle between()’
function calls.

Figure 5.10 shows that initially the function was called 12 times per particle. This number
was decreased by using temporary variables and by modifying particle binning procedure.
The first attempt at optimising the algorithm reduced this number to 10 calls, with the
final version reducing the number further to 6 function calls. By halving the number of
‘angle_between()’ function calls, the overall code runtime was reduced by 31%. Analysing
this result, the percentage of total execution time spent performing this single function

dropped from 61% to 44% after these optimisations.

38

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

The notable performance improvement observed by reducing the number of function calls
motivated an investigation into the performance of the ‘angle_between()’ function itself.
A comparison was conducted in order to determine to most efficient implementation of the
costly vector normalisation performed within the function. Four methods were tested; the
standard NumPy norm API, the NumPy square root API with standard Python square
function, the math.sqrt with math.pow and finally the math.sqrt with standard python
square. Figure 5.11 presents the results of this normalisation test using 2000 random
3D vectors. Error bars represent the standard deviation recorded between four repeated

tests.

Efficency Comparison of Linear Algebra

Normalization subroutine
80

70

60 -

50

40

30

20

Runtime - 2000 iterations (ms)

10

npJlinang.norm np.sqrt+ ** math.sqrt + math.pow math.sqrt + **

Normailization method

Figure 5.11: A relative runtime comparison of four Python 3D vector normalisation
implementations.

Surprisingly, Figure 5.11 shows the NumPy API for linear algebra normalisation is the
most inefficient implementation. The ‘math.sqrt + **” implementation proved to be the
fastest approach; completing the 2000 vectors almost 15 times faster than the NumPy
API.

An investigation into memory allocation was conducted. A vast number of particle
position need to be remapped due to the tiling of simulation cubes which occurs during
the lightcone construction process. There were two alternate approaches of implementing
this remapping; either via recalculating the position for each particle as its processed, or
by calculating all of the remapped co-ordinates before testing began. The second method

had the disadvantage of requiring more memory as all remapped positions resided in

89

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

RAM simultaneously, as opposed to generating new co-ordinates one at a time. However,
by using a streamlined array operation, the pre-allocation method promised to be faster.
A test was constructed to test the two methods using multiple problem sizes. Table 5.2

presents the results of this comparison.

Table 5.2: Runtime comparison of Pre-Allocation vs. Iterative particle testing methods.

Runtime (s)
Problem Size 10k | 100k 1M 10M
Pre-Allocation Method
Memory Allocation | 10.8 | 10.8 10.8 10.8
Particle Testing 2.7 | 221 | 220.5 | 2176.5
Total Time 14.8 | 37.0 | 256.8 | 2403.1
Iterative Method
Particle Test time | 13.1 | 128.3 | 1271.3 | 12813.1
Total Time 18.2 | 163.2 | 1605.8 | 16086.8

From Table 5.2 it can be seen that the pre-allocation method, labelled ‘Pre-Allocation
Method’, provided a significant performance advantage over the ‘Iterative Method’. These
results are displayed graphically in Figure 5.12 for better interpretation (note the logarithmic

runtime axis).

90

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Runtime comparison of pre-initialized memory arrays vs iterative allocation

—&— Memory allocation Overhead —8— Pre-initialized Runtime —@— I[terative allocation runtime
100000
16086.8
10000 .

~—
é 1605.8 2403.2
= .
S 1000 /.
w
- 163.3
GE) 256.8
= 100
g 18.3
&) 37.1
14.8 " . N
10 o ¢ o
10.8 10.8 10.8 10.8
1 T T T 1
10k 100k 1M 10M

Test case (particles)

Figure 5.12: A graph comparing the pre-initialised memory allocation and iterative co-
ordinate remapping approaches. The red line represents the total time taken for the
iterative method. The dark blue line shows the total remapping time for the pre-
allocation approach, with the light blue line representing the memory allocation overhead
of remapping co-ordinates.

It can be seen that the memory pre-allocation method had a fixed overhead for generating
the remapped co-ordinates in memory prior to execution. This operation was conducted
using a NumPy vectorised array operation and as such was particularly efficient. For
the test cases of one million and ten million particles, the total runtime of the pre-
initialisation solution was almost six times faster than the iterative version. Although
the faster method consumed slightly more memory, the resulting decrease in runtime

made it the favourable option.

An investigation was conducted of the two interpolation functions available in the SciPy
Python package. The Univariate Spline approach performs a smoothing function on the
dataset in order to reduce interpolation time. The interpld method uses a more basic
approach with a faster initialisation time. The two functions are implemented in different
ways and thus are more suited to specific tasks. In addition, a comparison was performed
between various file I/O operations. This investigation was conducted to improve the time
required to read in the large file of 5 million discrete sample points for the interpolation
function. Figure 5.13 presents the I/O function comparison while Figure 5.14 illustrates

the results of the interpolation test.

91

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Figure 5.13: A graph showing the relative
execution times of three Python text based
I/O functions. A file containing 5 million
pairs of floats was read from disk in this
test.

Figure 5.14: A graph comparing the
performance of two SciPy interpolation
functions. The dark blue bars represent
the initialisation time, while the light blue
bars show the interpolation time for 100,000
random samples.

The performance comparison shown in Figure 5.13 presents interesting results. The highly
efficient NumPy functions ‘loadtxt’ and ‘genfromfile’ both performed worse than a simple
list comprehension implemented in standard Python code. This looped implementation
performed 9.8 and 6.9 times faster compared to numpy.loadtxt and numpy.genfromfile
respectively. The UnivariateSpline function demonstrated a slightly slower initialization
time than the simpler interpld method, however it provided a more efficient interpolation
once constructed. Therefore, this method was preferred due to the large number of

redshift interpolations required for lightcone construction.

At this point of the investigation, the performance of NumPy had come under question.
There is the option to link to a non-standard Basic Linear Algebra Subprograms (BLAS)
library during the installation of this Python package. A benchmark was constructed in
order to test the efficiency of basic NumPy math operations. Three instances of NumPy
were installed using different BLAS libraries; the standard (or ‘vanilla’) NumPy, an Intel
Math Kernel Library (MKL) version, and an ATLAS implementation. A selection of
generic linear algebra operations were selected to provide a fair comparison between the
three BLAS implementations. The tests included calculated: matrix eigenvalue, matrix
inversion, single value decompositions, matrix determinant and matrix dot product. For
all test cases, a 2D NumPy array containing 1 million randomly generated floats was

processed. Figure 5.15 presents the benchmark results.

92

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Figure 5.15: A linear algebra performance evaluation of Intel MKL (light blue) and
ATLAS (blue) BLAS implementations, compared to standard NumPy (dark blue)
subroutines. A set of five linear algebra test cases were selected to provide a comparison
for a variety of conditions.

Figure 5.15 illustrates the performance benefits of utilising a high performance linear
algebra subroutine for NumPy. Both Intel MKL and ATLAS perform significantly better
than the standard NumPy by taking advantage of architecture specific optimisations.
ATLAS performed best in four of of the five tests, with Intel MKL besting it in the
eigenvalue benchmark. However, in the majority of cases both third party libraries
produced similar results. Linking to another BLAS library provided a performance
increase of between 246% and 468%, with the improvement being dependent on the

nature of the mathematical operation.

Several verifications of the code were performed to ensure that CPU time was being used
efficiently. A test was conducted which compared the number of particles tested to the
overall program runtime to identify any overheads. The test was conducted by varying
the pointing vector along which the lightcone was constructed. This test also provided
information on what effect altering this vector had on overall post-processing runtime.

Figure 5.16 presents the comparison of particles tested to runtime.

93

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Figure 5.16: A graph comparing the number of particles tested by the lightcone
construction code, with the overall runtime of the application. The pointing vector was
skewed to produce seven different lightcone realisations, sampling a different number of
particles.

It is evident from Figure 5.16 that there is a positive correlation between number of
particles tested and the execution time of the code. In the test case using pointing vector
[10,0,0], 110 million particles were tested in a time of 162 seconds. In contrast, the test
case using a vector [10,2,2], 22% fewer particles were tested, with a corresponding runtime
decrease of 29%. This result suggests that the code has a reasonably linear relationship

with number of particles tested.

A multi-threaded code implementation was developed to utilise a greater portion of the
available hardware, and thus further improve code performance. Each of the lightcone
sections were independent of each other, thus the parallelisation process was simplified.
Figure 5.17 presents to results of a benchmark conducted within an single SMP machine,

comparing the number of allocated CPU cores with runtime.

94

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Figure 5.17: A graph showing the effect parallelism had on post-processing runtime. Two
lightcone test cases were considered; one large (light blue) and one small (dark blue). In
addition, the runtime of each test case is separated into its parallel and serial components.

Figure 5.17 shows the considerable runtime improvement achieved from code parallelisation.
It can been seen however that there were diminishing returns for a higher number of
allocated CPU threads. A 3.6 times speedup was achieved when increasing the allocated
threads from one to four. However, increasing the threads further from four to eight
only yielded an additional 1.7 times speedup. It should also be noted that the for larger
problem size, the serial runtime component consumes a smaller fraction of the overall
runtime. This suggests that the serial overhead is not dependent on the size of the

lightcone being constructed.

95

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Figure 5.18: The relative runtime efficiency of a large and small lightcone test case, as a
function of allocated CPU threads.

It can be seen in Figure 5.18 that the runtime efficiency consistently decreases as more
are threads allocated to the post-processing code. These results represent the fraction of
ideal speedup achieved by increasing CPU threads. It is evident that some factor was
limiting performance of the multi-core computer. The effects of memory bandwidth are

discussed in the next chapter.

A final set of tests were conducted to evaluate the significant performance increase
attained by vectorising the post-processing code. A significant rewrite of the code was
required to produce a full NumPy array implementation of the code. One drawback
that exists with vectorisation is the need for masking arrays to handle conditional matrix
operations. These additional arrays increase the total memory required by the code.
Figure 5.19 below illustrates the memory requires of both the original iterative implementation
of the code and the vectorised solution, while Figure 5.20 presents the corresponding

decrease in runtime.

96

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Figure 5.19: A plot showing the relative Figure 5.20: A runtime comparison of the
memory consumption of the iterative jterative and vectorised codes, showing the

and vectorised lightcone post-processing jmmense speedup provided by vectorisation.
implementations.

Figure 5.19 shows that the amount of memory consumed by the code increased by 14% as
a result of vectorisation. Conversely, Figure 5.20 shows the tremendous performance gains
achieved. An overall application speedup of 64.4 times was observed. This significant
deduction in runtime was due to the use of highly optimised NumPy array operations
for locating, classifying and binning GADGET-3 particles. This matrix operations can
be interpreted and executed by the hardware far more efficiently compared to the more
standard iterative approach first implemented. This massive improvement in execution
time significantly altered the way in which the code could be used. Larger problem
sizes and finer grained testing were made possible due to the dramatic decrease in post-

processing time.

A feature of the code allows the user to alter the resolution of the pixelisation grid. This
in term allows for a more fine grained analysis of the lightcone’s contents. There were
however implications of increasing this grid resolution. Figure 5.21 illustrates the impact

altering the pixelisation grid had on memory consumption and code runtime.

97

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Execution time Versus Memory Usage

=—=Runtime ==—=Memory Usage

4500 100
4000 - 90
3500 - 80
- 70—
3000 &
o) S
& - 60 g’o
3 2500 3
E =
- - 50 A
= s
E 2000 £
= L [}
5 40 2
1500
- 30
1000 L 20
500 / 10
0 T T T 0

2.6 10.2 41.0 163.8 655.4 2007.0

Lightcone pixels (millions)

Figure 5.21: A chart illustrating the relationship between memory usage and post-
processing runtime, as a function of lightcone grid size.

As the size of the NumPy pixel array grows larger, the ‘stitching’ process described
in Chapter 4 because more time consuming. The simple task of merging large arrays
from disk becomes the dominant portion of the code’s overall execution time. A clear
correlation between memory size and runtime is visible in Figure 5.21. In addition, it can
be seen that the code required over 90 GB of memory for the highest resolution test case.
Figure 5.22 shows the breakdown of parallel and serial execution times as a function of

array size to further investigate the relationship between resolution and runtime.

98

5.2. LIGHTCONE CODE OPTIMISATION BENCHMARKS

Runtime comparison of lightcone resolution

B Parallel Component B Serial Component

4500

4000

3500

3000

2500

2000

Runtime (seconds)

1500

1000

2.6 10.2 41.0 163.8 655.4 2007.0

Lightcone pixels (millions)

Figure 5.22: A bar graph representing the distributing of post-processing runtime spent
on parallel and serial components, as a function of lightcone grid size.

Figure 5.22 shows the undesirable effect pixelisation grid size has on the serial section
of the code. As the number of pixels within the lightcone increases, so too does the
serial runtime. For a increase in pixel count of 12.1 times, the serial runtime component
increased by 17.7 times. For this test, the parallel runtime component also increased but

only by 4.9 times. The implications of this effect are explored further in the Discussion.

99

5.3. LIGHTCONE RESULTS

5.3 LIGHTCONE RESULTS

This section presents a number of visualisations generated from the results of the lightcone
post-processing code. A selection of statistical measurements are provided of the GADGET-
3 input data as well as the lightcone’s contents to validate the findings. In addition,
a number of visualisations were generated using Python’s matplotlib and matplot3d
packages. These images are included to provide additional insight into the mechanics

of the lightcone construction.

A 64 Mpc® GADGET-3 simulation volume containing 256° dark matter and 256% gas
particles was executed to generate the input data for the lightcone construction process.
A plot was generated showing the relative densities of ionised gas mass, HI mass, Hy mass
and stellar mass as fraction of the Universe’s critical density. This served as a validation
that the results produced by GADGET-3 are in line with current models. Figure 5.23

presents the results of this validation.

Figure 5.23: A plot showing the fractional densities of HI, H, and ionised gas as well as
stellar mass as a fraction of the critical density. Such plots are useful for evaluating cosmic
evolution within the simulation and for comparing the results with existing research.

The graph in Figure 5.23 shows the fractional densities of a selection of gas types. The
data is normalised to the decreasing critical density of the expanding Universe in order
to remove the effects of expansion from the data. As can be seen, the HI density plateaus

at a density of -3.6 in log units, corresponding to 2.4x10™* My /h~ kpc®. The density of

100

5.3. LIGHTCONE RESULTS

HI plateaus because of feedback processes. Hot gases collapse and cool to form neutral
gas, which in turn create stars. These stars ignite which ionises the remaining gas and
creates outflows. As expected, the ionised gas dominates the mass distribution, with 95%
of all baryons existing in an ionised state. In addition, the H, density decreases as gases
are consumed and ionised by star formation over time. The Davé et al. density result is

provided as reference in Figure 5.24.

Figure 5.24: A density plot of a GADGET simulation presented in the Davé et al. 2013
paper. The magenta line represents the fractional density of all HI, while the red line
shows stellar mass density.

One important fact to note is the disparity observed between the stellar mass density
of this version of GADGET-3 and the version used in the Davé et al. paper. As can
be seen, the density of stellar mass for the current version of GADGET-3 decreased
at lower redshift. One potential cause of this disparity is the significant difference in
simulation resolution. The Davé et al. simulation was run using a smaller volume with
more particles, resulting in a 64 times higher simulation resolution. This allowed for
smaller galaxies to be resolved, which would have increased the amount of stellar mass
produced at lower redshift. Further investigation of GADGET-3 code mechanics is outside

the scope of this research.

A set of visualisations of the lightcone were generated to ensure that it functioned as
expected when post-processing GADGET-3 data. One predictable result of the lightcone,

was that its opening diameter should increase as a function of redshift, or distance, from

101

5.3. LIGHTCONE RESULTS

the Observer. This process was described in Section 4.1.1. Due to the high dimensionality
of the datacube, producing meaningful visualisations from its contents proved challenging.
A ‘“fly through’ of the lightcone (from the Observer to the furthest distance) was performed
to analyse its contents. Figures 5.25 and 5.26 below show two examples of the lightcone’s

field-of-view at a low redshift (close to the Observer).

Figure 5.25: A composite image of the lightcone produced by stacking three consecutive
frequency slices. This image was produced at a low redshift, with relatively little structure
present. Each dot illustrates a pixel, with blue representing dark matter and grey
displaying ionised gas.

102

5.3. LIGHTCONE RESULTS

Figure 5.26: A composite image of the lightcone produced by stacking three consecutive
frequency slices. This image was produced at a low redshift, with a significant amount of
structure present. Each dot illustrates a pixel, with blue representing dark matter, grey
ionised gas, red HI gas and yellow stellar mass.

The pair of figures show a subsection of the lightcone at a low redshift. A group of three
frequency channels were stacked together to capture a larger number of particles. Figure
5.25 shows a slice containing relatively little matter, while Figure 5.26 shows considerably
more activity, including a galaxy (in yellow). Each dot on the plot represents a single pixel
in the angular plane of the lightcone. In this example a pixel grid size of 4096x200x200
was selected, thus the lightcone contains 40,000 spatial pixels per frequency channel.
The blue pixels represent the distribution of dark matter particles within the lightcone,
while green represents the abundant ionised gas. Red pixels represent HI gas and yellow
represents stellar mass. It is important to note that each particle type is portrayed on
a different scale. This was done to address the large range of masses between different
particle types. This effectively exaggerated the presence of HI and stellar mass while
the abundance of dark matter was suppressed. From the plot, it can be seen that the
lightcone’s opening diameter is approximately 10 Mpc at a redshift of z=0.15. In order

to produce comparable lightcone plots, the spatial dimensions were converted to angular

103

5.3. LIGHTCONE RESULTS

units of Right Ascension (RA) and Declination (DEC).

A second pair of frequency cuts were generated at a higher redshift. By looking at
the contents of the lightcone at a greater distance, a comparison can be made with
the previous figures. Figure 5.27 and 5.28 show three stacked frequency slices near the

lightcone’s maximum redshift of z=0.58.

Figure 5.27: A composite image of the lightcone produced by stacking three consecutive
frequency slices. This image was produced at a high redshift, with relatively little
structure. Each dot illustrates a pixel, with blue representing dark matter, green ionised
gas, red HI gas and yellow stellar mass.

104

5.3. LIGHTCONE RESULTS

Figure 5.28: A composite image of the lightcone produced by stacking three consecutive
frequency slices. This image was produced at a high redshift, with a large amount of
structure visible. Each dot illustrates a pixel, with blue representing dark matter, green
ionised gas, red HI gas and yellow stellar mass.

Figures 5.27 and 5.28 show a notably different image compared to the lightcone cross
sections at a lower redshift. Structure formation is clearly visible, with dark matter and
ionised gas particles forming the cosmic web. At intersection points of this web, galaxies
are visible as clumps of HI gas and stellar mass pixels. Figure 5.27 shows a region within
the lightcone which has relatively little activity, while Figure 5.28 shows a considerable
amount of ionised and HI gas, as well as stellar mass pixels. It should be noted that
the field-of-view of the lightcone increased considerably, with the opening diameter at a

redshift of z=0.58 expanding to approximately 45 Mpc.

The lightcone construction code was developed such that the user could specify the
resolution of the pixelisation grid. A comparison was conducted in order to understand
and evaluate the results of changing this binning grid. Figures 5.29 and 5.30 present a

graphical comparison of pixelisation resolution.

105

5.3. LIGHTCONE RESULTS

All four images were produced from the same region within the lightcone, with spatial
pixelisation resolution being the only variable. Using a binning grid of 100x100 (10,000)
pixels, structure is visible though high activity areas are poorly resolved. Increasing the
grid by a factor of four up to 200x200 (40,000) pixels yields a significant improvement
in resolution. At this resolution, the clumps of star and gas particles which represent
galaxies are clearly visible. By using a 400x400 (160,000) pixel grid, addition detail can
be seen in the high density clusters of gas and stars. In addition the cosmic web of dark
matter is more defined. Finally, increasing the resolution further to 600x600 (360,000)
pixels provided little addition information about the lightcone’s contents. This was the
largest test case considered, consuming over 90 GB of memory - representing the limit of

hardware’s capacity.

Figure 5.29: A set of three stacked lightcone frequency slices, showing the grid of angular
pixels. The image on the left shows a 100x100 grid of spatial pixels, while the image on
the right shows a 200x200 grid - four times the resolution.

106

5.3. LIGHTCONE RESULTS

Figure 5.30: A set of three stacked lightcone frequency slices, showing the grid of angular
pixels. The image on the left shows a 400x400 grid of spatial pixels, while the image on
the right shows a 600x600 grid.

The set of figures above show the noticeable increase in lightcone fidelity when increasing
the pixelisation grid. While this increase in detail was advantageous for resolving structures,
it did have a drawback. The number of pixels increased while the total effective lightcone
volume remained constant. Thus, the volume per pixel decreased as the pixelisation
resolution was increased. Figure 5.31 illustrates this effect with a histogram of pixel mass

as a function of pixel resolution.

107

5.3. LIGHTCONE RESULTS

Figure 5.31: A histogram of pixel gas mass as a function of pixel resolution, this illustrates
that the volume sampled by each pixel decreased as resolution increases. The dark
blue line represents a course grained pixelisation while light blue represents fine grained
pixelisation.

The histogram in Figure 5.31 shows the results of increasing pixelisation resolution. For a
course grid structure of 512x50x50, the lightcone’s fixed volume is sampled by 1.3 million
pixels. As such, there a more pixels with a higher mass, as described by the dark blue
line. As the resolution increases, a general trend illustrates that the mass within each
pixel decreased. Using a pixelisation grid of 8192x800x800 (5.2 billion pixels), produces
a large number of pixels with low mass, but far fewer pixels with higher mass. Increasing
the resolution by 4000 times results in 1.7 times fewer pixels containing a mass of more
than 3x10° solar masses. This result is significant as the flux spectral density generated

of each pixel is determined by its HI mass.

108

5.3. LIGHTCONE RESULTS

A 3D plot was generated which depicts the dark matter content of the lightcone. An
image of such structure is observationally not possible because dark matter is not directly
observable. This rendering serves as a verification of the construction process. There
are no visible discontinuities or obvious errors in the results. Figure 5.32 presents this

visualisation of the lightcone.

Figure 5.32: A 3D render of the dark matter mass distribution within the lightcone. The
cosmic web is clearly visible.

From the 3D plot in Figure 5.32 the cosmic web is visible. The variations in dark matter
density are a clear indicator of the structure formation which has occurred through the
evolution of the Universe. The plot also demonstrates the expanding beam width inherent

in a radio telescope’s field-of-view.

109

5.3. LIGHTCONE RESULTS

Several validations were produced to better quantify the contents of the lightcone. As
opposed to considering a series of frequency slices as presented previously, the lightcone
was instead collapsed along its two spatial axes. This produced a 1D dataset which
represented the total contents of the lightcone in each frequency channel. Figure 5.33

presents the first of these analyses.

Particle Distribution of Lightcone over Frequency Range

W Dark Matter Particles M Gas Particles Star Particles
120000

100000

80000

60000 ’

40000 I ! ‘\ i) ‘

Particles per frequency channel

20000 |]

Figure 5.33: A plot of the total number of particles found per frequency channel of a
z=0.58 lightcone. The yellow series represents the star particles, while blue shows gas
and black described the dark matter content. The shaded background illustrates the
cone’s opening area at each frequency channel.

110

5.3. LIGHTCONE RESULTS

Particle Distribution of Lightcone over Frequency Subrange
m Dark Matter Particles ™ Gas Particles Star Particles

120000

100000

80000

60000

40000 -

Particles per frequency channel

20000 -

2900
2907
2914
2921
2928
2935
2942
2949
2956
2963
2970
2977
2984
2991
2998
3005
3012
3019
3026
3033
3040
3047
3054
3061
3068
3075
3082
3089
3096

Frequency Channels

Figure 5.34: A zoomed in view of Figure 5.33 showing 200 of the 4096 frequency channels
within a z=0.58 lightcone. A strong correlation between the quantity of star (yellow),
gas (blue) and dark matter (black) particles is apparent.

From Figure 5.33, a number of observations can be made. A clear relationship is visible
between the number of star, gas and dark matter particles. As expected, they all appear
to follow the same pattern. The shaded area shows the lightcone’s opening angle at
each successive frequency channel. A good correlation is observed between the area of
the lightcone and the number of particles contained within it. Figure 5.34 provides a
small subsection (approximately 5%) of the data series presented in Figure 5.33. As
expected, the quantities of star, gas and dark mater particles are closely related. This
represents the variations in density within the cosmic web. In order to further explore
the obvious relationship between the gas and dark matter particles, another plot was
generated. Figure 5.34 presents a direct relationship between HI mass and dark matter

mass within the lightcone.

111

5.3. LIGHTCONE RESULTS

Comparison of Neutral Hydrogen and Dark Matter Mass Distribution

M Dark Matter Mass M HI Mass

1.2E+14
1E+11

1E+14
8E+10

BE+13

6E+10

6E+13

HI Mass (MSun)

4E+10

Dark Matter Mass (MSun)

4E+13

2E+10
2E+13

Frequency Channels

Figure 5.35: A plot showing the relationship between HI mass and dark matter mass
within the lightcone. The two spatial axes were collapsed to produce a 1D representation
of the total mass per frequency channel within the lightcone.

This plot shows the clear relationship between HI gas and dark matter mass. It is
important to note that there exists approximately 10® times more dark matter than HI
in the lightcone. This result is in-line with the fractional density result displayed in Figure
5.23.

Figure 5.36: A plot illustrating the total flux spectral density of each frequency channel
within the lightcone received by the Observer.

112

5.3. LIGHTCONE RESULTS

Expanding on this results, a plot was produced of the flux spectral density received by the
lightcone’s Observer. Figure 5.36 presents the summed flux for each frequency channel
within the lightcone. As described by Equation 2.14, the flux received by an object follows
an inverse power law. Therefore several large peaks are seen in the lower frequency bins
- corresponding to a higher frequency or closer to the Observer. As the distance to the
observed object increases, the peaks in flux decrease rapidly. Such a plot can be used
to estimate the number of detections for a survey; given the telescope’s sensitivity and a

detection confidence margin.

The flux information obtained from the lightcone post-processing is presented in another
way. A set of visualisations were generated which show the distribution of flux within

the lightcone. These images are presented in Figures 5.38 and 5.39.

Figure 5.37: A 2D plot showing the flux received by the Observer from HI sources within
the lightcone.

Figure 5.37 presents a pixel plot representing individual flux emissions, as would be
detected by the Observer. The brightness of the pixels indicate the intensity of the HI

113

5.3. LIGHTCONE RESULTS

detection. The lightcone’s volume expands with distance from the Observer. Thus, it
follows that the brightest detections were found in the center of the image, with fainter
sources scattered in the background. It is important to note that these flux values are
limited to single pixels. In cases where an emission source spans more than one pixel,
its total flux is effectively truncated by the pixels. Limited research was conducted on
performing source finding to better characterise multi-pixel sources. Figure 5.37 shows

the same data from a side-on perspective.

Figure 5.38: A 2D view of the lightcone’s flux content from a side-on perspective, the
Observer is situated at the bottom of the image with the lightcone expanding away from
it.

The relationship between distance and measured flux is more apparent in Figure 5.38.
This illustration however ignores the more practical aspects of radio interferometry such
as environmental and system noise. Therefore this image portrays a best case scenario
with an effective zero-flux detection threshold. In practise many of these sources would

not be observable.

Additional research was conducted to explore the effect of a flux threshold on the detections
achieved by a virtual survey. To conduct this investigation a new dataset was considered.
A galaxy catalogue was used to avoid the truncation of flux emissions which existed
in the pixelisation approach. This catalogue was provided from the same GADGET-3
snapshots as the pixelisation results as thus can be considered consistent. The catalogue
consists of a list of galaxies extracted from the simulation using a Friends-of-Friends
algorithm to identify high density structures (galaxies). Each galaxy contains a set of
useful data including; positions and masses, as well as rotational and peculiar velocities.

The lightcone code was used to generate four z=1.0 lightcone realizations using this

114

5.3. LIGHTCONE RESULTS

catalogue. A flux threshold was then applied to the set of galaxies within the lightcone
to determine the number of detections achieved. A typical z=1.0 lightcone contained
approximately 40,000 galaxies. The data is presented as a detection density to remove
the effects of an expanding lightcone volume. Figure 5.39 presents the results, with four

selected flux thresholds representing different telescope sensitivities.

Figure 5.39: A log plot of detections per redshift per square degree. Four flux thresholds
are provided; 10uJ, 1uJ, 100nJ and 10nJ. Four lightcone realisations were generated
to illustrate the cosmic variance provided by sampling different simulation volumes.
Predictably for higher flux thresholds, the number of detections drops off sharply with
redshift.

To determine the total number of detections for the virtual survey, the averaged flux
threshold series is integrated over the redshift range. For higher sensitivities (lower
detections thresholds) the number of detections remained relatively high for higher redshifts,
as the lower emission sources were included. For higher (more realistic) flux limits, the
number of detections decreased sharply because the received flux decreased below the

threshold, following an inverse power law.

A set of tests were conducted to ensure that the user defined pointing vector effectively

randomised the lightcone’s sampling of simulation space. A set of three lightcone pointing

115

5.3. LIGHTCONE RESULTS

vectors were chosen. The code was rerun using each of these vectors, creating three
different lightcone realisations which followed a different path through the stacked simulation
cubes. To verify the randomisation, the line-of-sight peculiar velocities were averaged over
each frequency channel for the three test cases. The cumulative velocity of each pixel is
calculated by averaging the velocity of the particles within that pixel. A dot product is
then used to find the component of that velocity along the lightcone’s axis vector. Figure

5.40 illustrates these averaged peculiar velocities for the three pointing vector test cases.

Averaged gas particle line-of-sight perculiar velocities for muliple pointings

m10,3,1 Pointing Vector ~ ®10,2,3 Pointing Vector 10,1,4 Pointing Vector

o
=]
=]

w
=]
=]

|

w -

=1 =]

=3 =3
4 I
——S

0
=]
153

,

_|

H
(=1
(=] (=]
’
—_——

)
=3
=]

Averaged perculiar velocity (km/s}
s g
|

do
=]
=]

S
=)
S

Figure 5.40: A plot illustrating the averaged line-of-sight peculiar velocity of each
frequency channel within the lightcone. A set of three pointing vector test cases are
included to illustrate the resulting lightcone randomisation.

It is evident that the averaged line-of-sight peculiar velocities has a greater magnitude
nearer to the Observer. This is expected, as the beam-width of the lightcone was narrower
at lower redshifts and thus fewer particles were being averaged in each frequency channel.
At higher redshifts, the beam-width increases significantly, allowing for more particles to
be averaged. This resulted in an overall lower averaged velocity. It is important to note
that the three test cases produced noticeably different results, although they were all

generated from the same simulation input data.

A plot showing the maximum line-of-sight peculiar velocity for each frequency channel is
provided in Figure 5.41. Unlike the averaged velocity case shown above, the maximum
velocity increased with distance. This occurred because more volume is sampled within
the lightcone’s increasing beam-width, increasing the probability of detecting particles

with more extreme velocities. These extreme velocities describe the gravitational interaction

116

5.3. LIGHTCONE RESULTS

of particles within energetic galaxy clusters. The apparent periodicity of repeating
positive and negative velocities was produced by particles falling towards over dense

regions.

Figure 5.41: A plot showing the maximum line-of-sight peculiar velocity of each frequency
channel within the lightcone.

A set of three dimensional visualisations were produced from the data above to provide
additional insight into the peculiar velocities within the lightcone. Figures 5.42 through
5.45 illustrate the line-of-sight velocities for a set of four lightcone pointing vectors. From
Figure 5.42 a repeating pattern is immediately obvious, this was produced because the
pointing vector was aligned with the axis of stacked simulation cubes. Thus, the same
region of each successive cube was sampled - producing spurious periodicity. By skewing
the pointing vector along which the lightcone was constructed, a different region of each
simulation cube was sampled. This resulted in dramatically different results obtained

from the same original input data, presented in Figures 5.43, 5.44 and 5.45.

An effect which is not immediately apparent was the distortion of the lightcone’s contents
due to axes of differing scales. The opening length (diameter) of the cone was presented
in co-moving Mpc units, while the length axis was presented as a range of frequency
channels. In reality, a lightcone extending to a redshift of z=0.58 is approximately 1500
Mpc deep. However, to better illustrate the lightcone’s contents two independent axes
units were selected. The rings observed in the images are the result of a very narrow cone

structure being rescaled for better visualisation.

117

Figure 5.42: A 3D render of the line-of-
sight peculiar velocities within a lightcone
centred around a pointing vector of [10,0,0].
Blue pixels represent a negative light-of-sight
velocity (towards the Observed) while red
pixels describe a positive velocity.

Figure 5.44: A 3D render of the line-of-
sight peculiar velocities within a lightcone
centred around a pointing vector of [10,2,2].
Blue pixels represent a negative light-of-sight
velocity (towards the Observed) while red
pixels describe a positive velocity.

118

5.3. LIGHTCONE RESULTS

Figure 5.43: A 3D render of the line-of-
sight peculiar velocities within a lightcone
centred around a pointing vector of [10,1,2].
Blue pixels represent a negative light-of-sight
velocity (towards the Observed) while red
pixels describe a positive velocity.

Figure 5.45: A 3D render of the line-of-
sight peculiar velocities within a lightcone
centred around a pointing vector of [10,3,2].
Blue pixels represent a negative light-of-sight
velocity (towards the Observed) while red
pixels describe a positive velocity.

5.3. LIGHTCONE RESULTS

A set of tests were conducted in order to determine the failure condition of the lightcone
construction code. The code was required to produce a lightcone which met the specifications
of the LADUMA survey. This required a maximum redshift of z=0.58 for phase 1 of
MeerKAT. However, the code was developed to be a general as possible to used for other
potential applications. Therefore, the maximum generated lightcone achievable from the
post-processing code was explored. Figure 5.46 presents the resulting lightcone produced

after a failure case within the code.

Figure 5.46: A 3D rendering showing a failure condition of the lightcone code. This
failure occurred when the opening diameter of the lightcone extended beyond volume of
the tiled GADGET-3 snapshots. This situation however occurred at a high redshift, well
beyond the requirements of this code.

The discontinuity observed in Figure 5.46 was a result of a lightcone being generated to
a redshift of z=2.0. It should be noted that the code correctly generated a lightcone,
without discontinuities to a redshift of z=1.5. The cause of this error and a justification

for why it is acceptable is provided in the next chapter.

119

5.4. CONCLUSION

5.4 CONCLUSION

In this chapter, results on a number of topics were presented. A selection of performance
figures were provided from the GADGET-3 code evaluation process. It was observed that
Intel’s ICS compiler provided a meaningful performance increase over the GCC open
source compiler. The 13% improvement in performance is approximately in-line with
Intel’s advertised gains. This topic is expanded upon in the next chapter. In addition,
it was found that the previous release of GADGET-3 implemented an inefficient version
of the Friends-of-Friends (FoF) algorithm, resulting in woeful performance. The later
version of the code remedied this problem by implementing the costly FoF algorithm less

frequently.

A poor scaling of also observed from the GADGET-3 code. Increasing the number of
processing cores fivefold resulted in a mere 2.5 times reduction in runtime. Finally,
the compiler flags provided by the Intel ICS compiler proved to offer little benefit over
GADGET-3’s standard configuration.

A selection of Python optimisation steps were also presented. Most notable of these was
the performance gained through the use of fast math libraries, multi-threaded parallelisation
and code vectorisation. Using either the open source ATLAS or Intel MKL libraries
resulted in a performance increase of up to 400% in linear algebra operations. Using
a multi-threaded approach to generate lightcone sections in parallel provided a near
linear performance increase with thread allocation. The increase however trailed off
after approximately eight threads, with memory bandwidth likely being the performance
limiting factor. The most significant increase in performance was witnessed through
vectorisation of the code. This was achieved by converting the main lightcone construction
pipeline from a standard Python iterative solution to a set of NumPy array operations.
These operations on large datasets were able to take full advantage of the high performance
C subroutines within NumPy. As a result, a runtime improvement of 63 times was

observed for the given test case.
Finally, this chapter presented several visualisations of the lightcone and its contents.

This section was included to provide verification of the lightcone construction process, as

well as to provide further insight into the scientific deliverables of this research.

120

6 DISCUSSION

In this chapter, a number of the results presented in Chapter 5 will be discussed. The
results obtained from the GADGET-3 optimisation section will be assessed to further
evaluate the findings. Focus will be placed on significant outcomes, such as the scaling of
the code within an HPC cluster and the performance improvement observed using Intel’s

ICS compiler.

A discussion will also be provided for the Python post-processing code which was developed
to construct lightcones from GADGET-3 simulation outputs. A number of performance
optimisations were implemented in this code to reduce the hardware requirements and
decrease processing time. Several of the noteworthy benchmark results will be discussed;
this includes several subroutine optimisations within the code, Numpy libraries, as well
as the parallelisation and vectorisation of the code. In addition, several concerns will also
be explored, such as the effect pixelisation resolution had on runtime. A justification is

also provided for the functional limitations imposed on the current code implementation.

An analysis of the lightcone will be conducted. Numerous visualisations and statistical
plots were presented in the Results chapter. This section will discuss these results to verify
the lightcone’s construction process and the scientific accuracy of the results. Finally, an
explanation is given and an argument made, for the code’s conditions of failure illustrated
in the Results.

6.1 GADGET-3 PERFORMANCE EVALUATION

A comparison was conducted between two recent versions of GADGET-3. It showed
a significant increase in the simulation’s performance. The cause of this improvement
was identified as being the implementation of a better Friends-of-Friends algorithm.

The new function was invoked more sparingly, providing more CPU time for the other

121

6.1. GADGET-3 PERFORMANCE EVALUATION

computationally intensive simulation subroutines. This modification resulted in a simulation
execution rate speedup of over six times. Improvements to code efficiency allow for

simulations to be conducted at higher resolutions with no additional hardware resources.

A performance advantage was observed when compiling the GADGET-3 code with the
Intel Compiler Suite software, compared to the open source GCC compiler. On average,
a 13% decrease in simulation runtime was reported for the multiple tests conducted
between the two compilers. This increase in code efficiency was achieved through Intel’s
proprietary architecture specific software optimizations. The performance increase observed
was approximately in-line with Intel’s advertised gains of upto 24% for floating point

applications [81].

GADGET-3 relies not only on computational throughput, but also memory bandwidth
and network communication performance factors. Therefore, while this improvement
may appear modest, a 13% boost in performance is a noteworthy result. In HPC
industry, small incremental improvements in performance and efficiency provide a means
of evolutionary advancement, much like other leading edge fields. GADGET-3 simulations
often take days or weeks to complete. The Millennium XXL Simulation, completed in
2010, is one of the well known GADGET simulations. It required over 300 core-years to
complete, and executed on 120,000 CPU cores. In such a case, a 13% improvement in
runtime would have provided a significant cost savings in terms of power and infrastructure

usage.

Benchmarks conducted within the cluster of virtual machines revealed an notably poor
runtime speedup for GADGET-3 when the hardware resources were scaled up. The
GADGET-3 code was thus moved to the cluster of physical nodes to further investigate
this scaling issue. As observed in Figure 5.8, the execution time of the GADGET-3 test
simulation improved from a speedup of 145% to 244% when increasing the computational
resources by 500%. However, the scaling observed was still far from ideal. This result
contradicted the original results documented for GADGET-2. Official documentation
for the code reported near linear scaling of GADGET-2 for very large clusters of 512
processors [16]. An important factor which differentiated that evaluation from the
one conducted in this research is the nature of simulation being conducted. The large
simulations, for which GADGET-2 is well known, such as the Millennium Simulation,
were all exclusively dark matter simulations. The additional computational workload
introduced by the SPH algorithm is likely the cause of the poor performance scaling
observed in this evaluation. New developments such as the “SPH With Inter-dependent
Fine-grained Tasking” (SWIFT) project, aim to improve the scalability of the SPH solver

for larger simulations [82].

122

6.2. LIGHTCONE CODE OPTIMISATION

6.2 LicHTCONE CODE OPTIMISATION

During the development of the Python code, a number of comparisons were made between
alternate software solutions to determine which was most the efficient. One such test was
conducted on the simulation cube tiling mechanism for construction of the lightcone. This
feature was implemented as a remapping of old co-ordinates to new ones by a fixed scalar.
A test was conducted whereby all 16.7 million particles in the simulation were calculated
prior to the particle testing, rather than calculating the new co-ordinates of each particle
individually. As shown in Figure 5.12, this approach provided a noticeable performance
improvement; this was primarily due to the co-ordinate remapping being implemented
as a vectorised NumPy arithmetic operation. A small memory allocation overhead exists
for this approach (10.8 seconds for the given test case), however the performance gained
during the particle testing phase quickly outweighs this overhead for larger problem sizes.
Code improvements such as these allowed for larger problem sets to be considered without
a significant increase in runtime. In addition, these efficient subroutines had a compound

effect on the code’s performance when combined with other optimisation techniques.

An evaluation was conducted of several approaches for performing a simple normalisation
of a 3D vector. This was presented in Figure 5.11. Surprisingly, the NumPy normalisation
API proved to be the slowest implementation in the test. It was concluded that the poor
performance observed was due to the manner in which the function was being called.
NumPY can provide significant performance benefits, however this performance primarily
comes from the vectorised array operations it supports. In this benchmark, the function
was implemented in a loop, where the vectors were normalised one at a time. Operating
on individual scalars using the NumPy function did not make efficient use of the package’s
multi-dimensional capabilities. After the lightcone construction code was converted to a
vectorised set of array operations, the NumPy APIs such as the numpy.norm() function

proved immensely efficient.

A similar situation occurred in the file I/O test. Figure 5.13 showed that the numpy.loadtxt()
function was considerably slower than a standard Python list comprehension. There
are two primarily reasons for the NumPy API being almost ten times slower. Firstly,
Python list comprehensions are incredibly efficient in the right applications, as they
can be translated by the interpreter. Secondly, once again NumPy works best on large
datasets such as arrays. The data file used for I/O in this test was a cleanly formatted
set of delimited floating points. In this case NumPy’s advanced exception handling and
multi-dimensional data type handling only served to slow it down. If the data from the

input file was of a higher dimensionality or contained errata, the NumPy implementation

123

6.2. LIGHTCONE CODE OPTIMISATION

would prove to be more efficient.

The thread level parallelisation implemented for the lightcone code provided a significant
performance improvement over the serial implementation. However, the speed-up observed
in Figure 5.17 levelled off at around 6-8 allocated CPU threads. At this point, it
is believed that the memory bandwidth of the SMP computers became saturated and
bottlenecked CPU performance. Increasing the thread allocation beyond this point did
not provide any additional performance. In fact, allocating over 10 threads resulted in
a longer runtime; this was caused by the active threads creating contention for memory
bandwidth. The runtime of the parallel implementation depended greatly on the order
in which the lightcone cubes were allocated to threads. A larger number of simulation
cubes were required to produce the lightcone, compared to the number of available CPU
threads. Thus, the cubes were queued until a thread became available. This resulted
in the thread barrier waiting for a few threads to complete before the program could
continue. The cubes were scheduled to threads in descending order; from furthest away
from the Observer to nearest. This was done on the assumption that the far end of
the lightcone contained more particles for processing and thus required a larger runtime
per thread. An undesirable relationship was observed between the resolution of the
lightcone’s pixelisation grid and the runtime of the code’s serial component, as shown
in Figure 5.19. This relationship existed because the individual lightcone sections were
stitched together after the particle testing and binning had been performed. As the array
increased in size, the stitching process relied more heavily on memory bandwidth. At
the highest resolutions this involved operating on arrays containing almost eight billion
elements occupying 60 GB of memory. While this did impose an upper limit on the
pixelisation grid’s maximum effective resolution, it should be noted that these tests were
conducted at resolutions greater than required for a LADUMA analogue lightcone. On
average, the serial and parallel runtime components were equal for a typical resolution
test case of 4096x200x200 pixels. Nevertheless, a potential solution to this concern
will be presented in the next chapter. Vectorisation of the lightcone construction code
resulted in a tremendous 64.4 times decrease in code runtime. This was possible through
the use of NumPy matrix APIs, which operate on large arrays of data. These arrays
are re-factored into a stream of unconditional CPU instructions. Such an approach
avoids the costly branch detections and pipeline flushes which occur in an iterative
programming approach. There were however drawbacks to such an approach, the code
required to produce a vectorised solution was syntactically more complicated and difficult
to troubleshoot. In addition, special care was necessary when handling conditional
cases and data dependencies between vectorised instructions. One such example of the
added complexity of vectorised code was the particle binning procedure. In the iterative

implementation, each particle was binned into a pixel. This was implemented as a simple

124

6.3. OBSERVATIONS OF LIGHTCONE RESULTS

increment of the pixel’s array elements with particle properties. Such a straightforward
approach was not possible with a vectorised algorithm, as all the particles are being
assigned to pixels in an atomic fashion. This resulted in a race condition, where pixels
had multiple concurrent assignments with data being overwritten. Thus a substantial
redesign of the algorithm was necessary. The particles were sorted and aggregated into
groups; these sets of combined properties could then be assigned to pixels in a vectorised

manner.

6.3 (OBSERVATIONS OF LIGHTCONE RESULTS

A plot was provided in Figure 5.23 which showed the baryonic mass densities of the
64 Mpc® GADGET-3 simulation. The densities generated from the simulation were
approximately in-line with findings in previous research. The Davé et al. paper, introduced
in the literature review, presented a fractional density of -3.2 (log units) for HI at a
redshift of z=0. This research showed a density of -3.6. Various factors contribute to
the discrepancy, including the precise configuration of the solver used by GADGET-3, as

well as the resolution at which the simulation was conducted.

A set of frequency slices were presented in Figures 5.28 and 5.29, these were produced by
varying the resolution of the lightcone pixelisation grid. The fidelity of the data increased
with the number of pixelisation bins as expected. However, increasing the number of
pixels also resulted in the quantity of HI in each pixel to decrease, as shown in Figure
5.30. As a result, the flux spectral density calculated for each pixel also decreased.
This translated to an increased number of pixels falling below a given flux detection
threshold. It is therefore advised to select a moderate resolution, in the range of 200x200
to 400x400 spatial pixels. This allows a high definition lightcone to be constructed,
while also producing measurable flux emissions. A method of performing multi-resolution

sampling will be described in the following chapter.

The cosmic web produced by the dark matter content of the lightcone provides useful
validation of its construction process. In addition, the particle, mass and flux distributions
presented in Figures 5.32 - 5.35 showed the distribution of matter within the lightcone. In
the case of the mass and particle plots, the quantities predictably increased as the aperture
of the lightcone expanded. The 2D visualisations of flux received by the Observer clearly
showed the inverse power law that characterises these detections. It also illustrated the

need for larger and more sensitive telescopes in order to explore deeper into the cosmos.

125

6.3. OBSERVATIONS OF LIGHTCONE RESULTS

As illustrated in Figure 5.44, the current lightcone code has a depth limitation of approximately
z=1.8. At greater distances from the Observer, the lightcone’s opening diameter increased
dramatically. Extending the lightcone’s depth from the LADUMA specification of z=0.58
to z=2.0 resulted in an increased opening diameter from 46 Mpc to 220 Mpc. As the
diameter increased, it became more difficult to encapsulate the lightcone’s volume within
the static bounds of the simulation cubes. Currently, the simulation cubes are tiled in any
direction a maximum of one time to fill the cone’s volume. The simulation cubes could be
tiled multiple times to fill the lightcone’s volume, however this was purposefully avoided.
As the number of cubes stacked abreast increased, so did the apparent periodicity of
the lightcone’s contents. Each simulation cube was merely a copy of the original, thus a
repetitive pattern was quickly noticeable. A limit of one tiled cube in any direction was
specifically chosen to reduce this effect. While the number of tiled cubes was limited, a

larger lightcone could still be created by generating a larger GADGET-3 simulation.

A 2D representation of the tiling limits is displayed in Figure 6.1. which illustrates a

failure condition in the code.

Figure 6.1: A 2D illustration of the failure case for the lightcone code. At high redshifts
(z=2.0) the diameter of the lightcone extends beyond the bounds of the tiled cubes. The
layers of stacked cubes are represented in shades of blue, while the un-sampled lightcone
volume is shown in red.

126

6.3. OBSERVATIONS OF LIGHTCONE RESULTS

The image in Figure 6.1 shows a small portion of the lightcone at a high redshift. The
lightcone’s beam width increases considerably thus the simulation cubes appear relatively
small. In the second, third and fourth rows of cubes, the lightcone’s volume cannot be
fully encompassed by the tiled cubes. In these cases there exists un-sampled volume

within the cone, displayed in red. This would be observed as voids within the lightcone.

The lightcone, in its current state, does not take into account the effects of peculiar
velocity on the apparent redshift of simulation particles. The line-of-sight peculiar velocity
is however calculated and stored within the lightcone as a pixel property. Using the
physical redshift of the object, the velocity corrected redshift (and hence frequency) can

be calculated.

127

7 (CONCLUSIONS

This chapter begins with an assessment of the completion of the original research questions
posed in Section 1.2.2. Following this, a review of the project’s objectives and requirements
specified in the Terms of Reference is provided. A summary of the deliverables produced
from this research will then be reviewed to determine the success of the project, using the
the requirements as reference. This includes the outcomes observed from the GADGET-
3 simulation evaluation, as well as the Python code developed for producing lightcones.
Finally several recommendations will be given for expanding upon this research in future
work. Specifically, design aspects of the lightcone construction code and the accuracy of

the resulting lightcone are considered.

7.1 RESPONSE TO RESEARCH (QUESTIONS

This section addresses the research questions which were posed in the introduction. The
questions will be answered, with references to the relevant outcomes in the results and

discussion chapters.

7.1.1 (QUESTION 1

Question: ”"What effect does compiler selection and software environment optimisation
have on GADGET-3 performance?”

Results obtained from the performance analysis of GADGET-3 showed that the use
of the Intel ICS compiler provided a 13% decrease in code runtime, compared to the
current GCC compiler. In additional, it was observed that executing GADGET-3 within

a cluster of physical machines, provided a considerable performance improvement over

129

7.1. RESPONSE TO RESEARCH QUESTIONS

virtual machines. Finally, the effect of an advanced compiler flag setting was determined

to be insignificant.

7.1.2 (QUESTION 2

Question: " Which post-processing technique is best suited for converting GADGET-3

simulation data into a lightcone?”

A method derived from the Blaizot et al. method of skewing the path of a pencil beam
lightcone through a simulation volume was determined to be the most effective approach.
It eliminated the spurious periodicity of sampling similar volume repeatedly, but did not

introduce discrete discontinuities at the boundaries of simulation volumes.

7.1.3 (QUESTION 3

Question: "How effective is the Python programming language for scientific processing

tasks such as constructing lightcones?”

After considerable effort in optimising the lightcone construction algorithm, the Python
code was found to be highly efficient. A total speedup of several orders of magnitude
was observed over the optimisation process. A LADUMA scale lightcone could be
constructed from simulation data in approximately 5 minutes, demonstrating that the

Python language provided a sufficient level of performance for this application.

7.1.4 (QUESTION 4

Question: "How can simulation metadata, including masses and flux, be stored inside a

virtual lightcone?”

The twelve particle attributes were stored as a pixelised 3D grid within a four dimensional
datacube. This provided a logical ordering to the data, where the first three elements of
an array index denote the two spatial and one frequency dimensions within the pixelised
lightcone. The fourth dimension is used to store the 12 properties extracted from the
simulation data. This structure allowed for a standardised and efficient method of queries

the contents of the lightcone.

130

7.2. REVIEW OF RESEARCH OBJECTIVES

7.1.5 (QUESTION 5

Question: "How can a large multidimensional data structure, such as the LADUMA
lightcone, be stored to hard disk?”

The four dimensional datacube was implemented as a NumPy dense array. While this
approach required considerably more storage capacity than other solutions, it does provide
high performance access to the data. This proves crucial when performing post processing

operations on the lightcone, such as source finding.

7.1.6 (QUESTION 6

Question: "What is the most effective approach for visualising complex multidimensional

data to enable intuitive observations?”

Due to the high dimensionality of the datasets being visualised, the best approach to
intuitively present them was to remove a dimension. This entailed either extracting
a single property from the set of particle metadata, such as dark matter mass, and
plotting this independently in three dimensions. Alternatively, a spatial dimension could

be removed and several particle properties could be presented in 2D.

7.2 REVIEW OF RESEARCH OBJECTIVES

The first requirement of this dissertation was to present an up-to-date analysis on the
performance of GADGET-3. In addition, any potential performance optimisations should
have also been explored and documented. This objective was addressed through a
comprehensive evaluation of GADGET-3 conducted within the ACE Lab’s HPC cluster.
Emphasis was placed on benchmarking the software environment and dependencies upon
which GADGET-3 relies.

Another objective required the post-processing of GADGET-3 cosmological data to produce
a synthetic telescope’s field-of-view. A highly efficient Python code was written specially
for this research, which operated on GADGET-3 output snapshots. A technique of
stacking and tiling simulation snapshots was developed such that a elongated cone geometry

could be produced from the simulation volume. This method was developed to avoid

131

7.3. RESEARCH OUTCOMES

sampling the snapshots in a repetitive manner.

Lastly, a functional software package was required, to allow other users to produce their
own lightcones. The code was thus developed as efficiently as possible and made use
of an intuitive parameter file to simplify the end-user’s experience. The program relies
on standard Python packages such as NumPy and SciPy. Multi-threading and code
vectorisation were also implemented to reduce the runtime of the code, thus improving

its usefulness.

7.3 RESEARCH OUTCOMES

7.3.1 GADGET-3 PERFORMANCE EVALUATION

Two main conclusions can be drawn from the performance evaluation of the GADGET-3
cosmological simulation code. The first conclusion is that Intel’s proprietary ICS software
package provided a noteworthy performance improvement for GADGET-3 over the open
source equivalent; GCC. The increase in performance and corresponding decrease in

runtime enabled more efficient use of HPC resources when conducting this research.

The second conclusion is that GADGET-3 exhibited a generally poor performance scaling
when executing on multiple computer hosts within the ACE Lab’s HPC cluster. Runtime
speedup tapered off once the code was assigned more than 60 CPU cores. This is a well
known issue with GADGET-3. The scaling problem stems from the complex interactions
which occur between gas particles modelled by an SPH computational method. Projects
such as SWIFT are exploring more efficient simulation algorithms designed for distributed

computing architectures.

7.3.2 LIGHTCONE CONSTRUCTION

Python code was developed for extracting data from GADGET-3 snapshots and post-
processing it into a synthetic lightcone. This code operated efficiently, producing a
LADUMA scale lightcone in under 10 minutes. By using optimised math libraries,
parallelism and vectorisation, the Python language provided an adequate level of performance
for this application. Given the correct inputs, the lightcone program was capable of

consistently processing 15 million particles per second.

132

7.4. FUTURE WORK

The program excels when using a lower resolution lightcone pixelisation scheme. An
overhead was observed at higher resolution binning due to the ‘stitching’ of lightcone
subsections which is constrained by memory bandwidth. A potential remedy for this

issue is presented in the Future Work section.

Vectorisation of the code resulted in a massive 64 times speedup over the most efficient
iterative implementation. This was achieved at a cost of only a 15% increase in memory
usage, due to the additional arrays required for masking vectorised operations. This
compromise was found to be practical, as the number of concurrent threads could be
limited to reduce total memory usage of the code, while still achieving a faster overall

runtime.

The lightcone produced by the Python code contained various properties which characterise
its contents. Analyses were conducted which generally agreed with finding in existing
research. By skewing the axis vector along which the lightcone was created, multiple
lightcone instances could be created using the same input simulation data. This proved
useful for exploring cosmic variance as well as for further investigating the results. By
producing multiple lightcone instances, a total of between 8825 and 9445 galaxies were
found within a LADUMA scale lightcone. The number of galaxies captured by the
lightcone depended greatly on the resolution of the original GADGET-3 simulation, this

is explored further in the Future Work section.

7.4 FUTURE WORK

Based on the research outcomes described above, it is clear that a functional lightcone
construction software tool was developed. This tool is capable of producing a synthetic
telescope’s Field-of-View (FoV) of the sky. Various properties which define the contents
of this lightcone were calculated and stored to a dense array data structure for further
analysis. The code was developed to be sufficiently fast such that a lightcone could
be generated in a reasonable amount of time; with typical problem sizes taking under
ten minutes to complete. There are however modifications possible which would further
improve the functionality of the Python code and improve the fidelity of the resulting
lightcone.

133

7.4. FUTURE WORK

7.4.1 FURTHER LIGHTCONE CODE DEVELOPMENT

The lightcone construction code was developed using the Python programming language
specifically so it could be incorporated into the SPHGR GADGET-3 post-processing
suite. This tool-kit abandoned a C implementation due to the relative ease of use
and performance available through Python. Developing a C or Fortran version of this
code would however provide valuable insights into the true performance achieved by the

vectorised Python implementation.

A dense data structure was chosen to store the pixelised lightcone for simplicity, as well
as to conform with existing file containers such as the FITS standard. In addition, an
alternative approach such as implementing a sparse data structure was not selected due
to the lack of support for N-dimensional sparse arrays in the SciPy package. However
the data stored within the structure is indeed relatively sparse, with less than 5% of the
pixels containing anything at all. An efficient sparse array approach to storing the four
dimensional lightcone would likely result in considerably lower memory consumption,

further improving the code’s functionality.

In its current form, the code stitches together the lightcone sections into the final data
structure using a single thread. Equation 4.4 shows that using a typical grid size of
4096x200x200 results in a 7.5 GB array. This places a limitation on the hardware
capable for executing this code. Focus should therefore by placed on reducing the memory
requirements of the code. One possible solution is to use the HDF5 standard which can
transparently manage large data structures between memory and the hard drive. This
approach would allow for significantly larger problems to be considered, as the memory
capacity of the hardware would no longer be a concern. This method would however have
drawbacks. The contents of array is unstructured, this may result in disk access times

limiting the performance of I/O intensive operations such as source finding.

The lightcone construction process was parallelised in order to take better advantage of
modern multi-core computer architectures. These approach provided significant improves
and fully saturated the memory bandwidth of the computer. The time taken to process
each sub-section of the code varies depending on the number of particles being processed.
This results in CPU threads waiting idle for the longer tasks to complete, before triggering
the synchronisation barrier. A finer grainer parallelisation implementation would avoid

wasting resource and produce a faster time-to-solution.

134

7.4. FUTURE WORK

7.4.2 IMPROVEMENTS OF LIGHTCONE PRECISION

Research is currently being done to calculate the relationship between the star formation
rate of gas simulation particles and radio continuum emission. Radio continuum occupies
a much wider frequency spectrum compared to the HI 21cm line and will prove useful in
future SKA observations. This information will be added into the lightcone to supplement

the existing suite of metadata.

The lightcone construction method is being modified to operate under a wider range of
input parameters which will allow for larger scale lightcones to be created. These will

prove useful for larger surveys conducted on the MeerKAT and SKA telescopes in future.

A web based front-end for users would greatly improve the accessibility of the lightcone
data. By using a markup language like PHP, an intuitive interface could be created to

allow scientists to make specific queries to a database of lightcone results.

The completeness of the lightcone developed for this research depended greatly on the
resolution of the cosmological simulation used to generate the input data. The resolution
of the GADGET-3 simulation determines the accuracy to which it can model gravitational
interaction and structure formation. A 64 Mpc?® volume containing 256° particles was
simulated with GADGET-3 to produce the input data for this research. Using this
simulation, galaxies could be reliably detected down to 5x10° solar masses in stellar
mass. Measuring the HI mass function is a key science question for LADUMA and thus

all the galaxies detectable by MeerKAT need to be represented in the simulation.

The simulation snapshots were repeated several times along the lightcone’s line-of-sight
to produce a sufficiently deep sample space - typically containing 24 stacked cubes for
the LADUMA survey. This method cannot however fully remove the repetition inherent
with replicated data. This is particularly true for larger lightcones, as the cone’s opening
area increases to a more significant fraction of the simulation box length. This problem
is avoided by generating larger GADGET-3 simulations which provide larger building
blocks for the lightcone stacking process. The number of particles included within a
GADGET-3 simulation determines its resolution and therefore the lower mass limit of
resolved galaxies. Increasing the number of particles within an N-body simulation is
computationally costly, however doing so would provide increased detail of low mass

objects which are not currently being accurately modelled.

The memory constraint on the pixelisation resolution could be avoided by implementing

135

7.4. FUTURE WORK

a multi-resolution sampling approach. This algorithm may include an initial course
grained sampling of the lightcone to identify areas of significant activity. Once these
regions are located, a higher resolution sampling could be performed of these subregions.
The lightcone’s volume is predominantly empty space, therefore a considerable saving in

memory and disk space may be achieved.

136

BIBLIOGRAPHY

1]

[5]

[10]

[11]

S. V. Beckwith, M. Stiavelli, A. M. Koekemoer, J. A. Caldwell, H. C. Ferguson,
R. Hook, R. A. Lucas, L. E. Bergeron, M. Corbin, S. Jogee, et al., “The hubble ultra
deep field,” The Astronomical Journal, vol. 132, no. 5, p. 1729, 2006.

J. Blaizot, Y. Wadadekar, B. Guiderdoni, S. T. Colombi, E. Bertin, F. R. Bouchet,
J. E. Devriendt, and S. Hatton, “MoMakF: the mock map facility,” Monthly Notices
of the Royal Astronomical Society, vol. 360, no. 1, pp. 159-175, 2005.

R. Crain, “A first look at GIMIC,”

G. Hinshaw, M. Nolta, et al., “Three-year Wilkinson microwave anisotropy
probe (WMAP) observations: temperature analysis,” The Astrophysical Journal
Supplement Series, vol. 170, no. 2, p. 288, 2007.

V. Springel, S. White, et al., “Simulations of the formation, evolution and clustering

of galaxies and quasars,” nature, vol. 435, no. 7042, pp. 629-636, 2005.
L. Johnson, “Rediscovering the Universe,” 2012. [Online; accessed 18-June-2014].

P. Ade, N. Aghanim, et al., “Planck 2013 results. I. Overview of products and
scientific results,” arXw preprint arXiw:1303.5062, 2013.

Las Cumbres Observatory, “What is Redshift?,” 2012. [Online; accessed 15-July-
2014].

S. R. Furlanetto, P. Oh, et al., “Cosmology at low frequencies: The 21cm transition
and the high-redshift Universe,” Physics Reports, vol. 433, no. 4, pp. 181-301, 2006.

B. Mattson, “The Transparency of the Earth’s Atmosphere,” 2004. [Online; accessed
22-July-2014].

F. Ghigo, “Karl Jansky and the Discovery of Cosmic Radio Waves,” 2008. [Online;
accessed 21-July-2014].

137

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

C. Greenwood, “Precursors And Pathfinders,” 2014. [Online; accessed 22-July-2014].

N. Maddox, “Simulations and Observations for the LADUMA Survey,” Presented
at 2011 SA SKA Bursary Conference, 2011.

J. Carlson and M. White, “Embedding realistic surveys in simulations through
volume remapping,” The Astrophysical Journal Supplement Series, vol. 190, no. 2,
p. 311, 2010.

D. Obreschkow, H.-R. Kloeckner, et al., “A Virtual Sky with Extragalactic HI and
CO Lines for the SKA and ALMA,” arXiv preprint arXiw:0908.0983, 2009.

V. Springel, “The cosmological simulation code GADGET-2,” Monthly Notices of
the Royal Astronomical Society, vol. 364, no. 4, pp. 1105-1134, 2005.

B. Holwerda, S.-L. Blyth, and A. Baker, “Looking at the distant universe with
the meerkat array (laduma),” Proceedings of the International Astronomical Union,
vol. 7, no. S284, pp. 496-499, 2011.

Andrew Baker, “LADUMA! - Looking At the Distant Universe with the MeerKAT
Array.”

G. F. Ellis, “Issues in the Philosophy of Cosmology,” arXiv preprint astro-
ph/0602280, 2006.

J. L. Cervantes-Cota and G. Smoot, “Cosmology today-A brief review,” arXiv
preprint arXiw:1107.1789, 2011.

A. Berger, “The big bang and Georges Lemaitre,” 1984.

W. Fischler and J. Meyers, “Dark radiation emerging after big bang
nucleosynthesis?,” Physical Review D, vol. 83, no. 6, p. 063520, 2011.

G. Lemaitre and A. Berger, The Big bang and Georges Lemaitre: proceedings of
a symposium in honour of G. Lemaitre fifty years after his initiation of big-bang
cosmology. D. Reidel Pub. Co., 1984.

B. D. Fields and K. A. Olive, “Big bang nucleosynthesis,” Nuclear Physics A,
vol. 777, pp. 208-225, 2006.

R. Banerjee and K. Jedamzik, “Evolution of cosmic magnetic fields: From the very
early Universe, to recombination, to the present,” Physical Review D, vol. 70, no. 12,
p. 123003, 2004.

7

J. R. Bond, “Cosmic microwave background overview,” Classical and Quantum

Gravity, vol. 15, no. 9, p. 2573, 1998.

138

[27]

28]

[29]

[30]

[32]

[33]

[34]

[41]

[42]

BIBLIOGRAPHY

D. Fixsen, “The temperature of the cosmic microwave background,” The
Astrophysical Journal, vol. 707, no. 2, p. 916, 2009.

D. T. Chuss, “Will the Universe expand forever?,” 2014. [Online; accessed 22-
September-2014].

B. Moore, S. Ghigna, et al., “Dark matter substructure within galactic halos,” The
Astrophysical Journal Letters, vol. 524, no. 1, p. L.19, 1999.

W. De Blok, F. Walter, et al., “High-resolution rotation curves and galaxy mass
models from things,” The Astronomical Journal, vol. 136, no. 6, p. 2648, 2008.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich,
R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, et al., “Observational evidence
from supernovae for an accelerating universe and a cosmological constant,” The
Astronomical Journal, vol. 116, no. 3, p. 1009, 1998.

E. J. Copeland, M. Sami, et al., “Dynamics of dark energy,” International Journal
of Modern Physics D, vol. 15, no. 11, pp. 1753-1935, 2006.

P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Reviews
of Modern Physics, vol. 75, no. 2, p. 559, 2003.

J. D. Bjorken, “Cosmology and the standard model,” Physical Review D, vol. 67,
no. 4, p. 043508, 2003.

R.-G. Cai, Z.-L. Tuo, et al., “Notes on ghost dark energy,” Physical Review D,
vol. 84, no. 12, p. 123501, 2011.

S. Bender, “What is a Parsec?,” 2013. [Online; accessed 30-September-2014].

D. Maulik and 1. Zalud, Doppler Ultrasound in Obstetrics and Gynecology. Springer,
2005.

N. R. A. Observatory, “The HI 21 cm Line,” 2010. [Online; accessed 1-October-2014].
D. J. Griffiths, Hyperfine splitting in the ground state of hydrogen. 1982.

R. Freitas, “Interstellar probes- A new approach to SETI,” British Interplanetary
Society, Journal(Interstellar Studies), vol. 33, pp. 95-100, 1980.

S. Singh, O livro dos codigos. 2004.

P. A. R. Institure, “Lessons Overview : Advantages of Radio Astronomy,” 2007.
[Online; accessed 1-October-2014].

139

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

BIBLIOGRAPHY

P. Hariharan, Basics of Interferometry. Academic Press, 1991.

A. R. Parsons, D. C. Backer, G. S. Foster, M. C. Wright, R. F. Bradley, N. E.
Gugliucci, C. R. Parashare, E. E. Benoit, J. E. Aguirre, D. C. Jacobs, et al., “The
precision array for probing the epoch of re-ionization: eight station results,” The
Astronomical Journal, vol. 139, no. 4, p. 1468, 2010.

C. J. Lonsdale, R. J. Cappallo, M. F. Morales, F. H. Briggs, L. Benkevitch, J. D.
Bowman, J. D. Bunton, S. Burns, B. E. Corey, L. deSouza, et al., “The Murchison
widefield array: Design overview,” Proceedings of the IEEFE, vol. 97, no. 8, pp. 1497—
1506, 20009.

J. G. B. de Vaate, E. de Lera Acedo, G. Virone, A. Jiwani, N. Razavi, F. Perini,
K. Zarb-Adami, J. Monari, S. Padhi, G. Addamo, et al., “Low frequency aperture
array developments for phase 1 SKA,” in XXXth URSI General Assembly and
Scientific Symp, pp. 1-4, 2011.

V. Kaspi, R. Manchester, et al., “A search for radio pulsars in southern supernova

remnants,” The Astronomical Journal, vol. 111, p. 2028, 1996.

M. Brown, F. Abdalla, A. Amara, D. Bacon, R. Battye, M. Bell, R. Beswick,
M. Birkinshaw, V. Bohm, S. Bridle, et al., “Probing the accelerating Universe with
radio weak lensing in the JVLA Sky Survey,” arXiv preprint arXiv:1312.5618, 2013.

G. Hampson, B. Smolders, and A. Joseph, “One square metre of a million,” in
Microwave Conference, 1999. 29th FEuropean, vol. 1, pp. 111-114, IEEE, 1999.

N. R. F. SKA, “Everything you wanted to know about the SKA,” 2014. [Online;
accessed 30-September-2014].

Keith Campbell, “New design, configuration, timeline for MeerKAT radio telescope
programme,” 2011. [Online; accessed 19-October-2014].

N. R. F. SKA, “MeerKAT,” 2014. [Online; accessed 2-October-2014].

A. Young, M. A. Terada, D. I. de Villiers, and D. B. Davidson, “Assessment
of the sensitivity of the south african kat-7 and meerkat/ska radio telescope
reflector antennas,” in Electromagnetics in Advanced Applications (ICEAA), 2012
International Conference on, pp. 486-489, IEEE, 2012.

C. Carignan, B. Frank, K. Hess, D. Lucero, T. Randriamampandry, S. Goedhart,
and S. Passmoor, “Kat-7 science verification: Using hi observations of ngc 3109
to understand its kinematics and mass distribution,” The Astronomical Journal,
vol. 146, no. 3, p. 48, 2013.

140

[55]

[56]

[57]

[58]

[64]

[65]

BIBLIOGRAPHY

N. R. F. SKA, “MeerKAT Science,” 2014. [Online; accessed 2-October-2014].

M. Santos, M. Silva, et al., “HI Specs - Sensitivity Calculations,” 2014. [Online;
accessed 3-October-2014].

W. de Blok, “The meerkat karoo array telescope and its hi emission line surveys,”
Proceedings of the International Astronomical Union, vol. 6, no. S277, pp. 96-99,
2010.

H. P. Hofstee, “Power efficient processor architecture and the Cell processor,”
in High-Performance Computer Architecture, 2005. HPCA-11. 11th International
Symposium on, pp. 258262, IEEE, 2005.

M. Baker and R. Buyya, “Cluster computing: the commodity supercomputer,”
Software-Practice and Ezxperience, vol. 29, no. 6, pp. 551-76, 1999.

TOP500, “TOP500 List - June 2014,” June 2014. [Online; accessed 24-July-2014].

G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid computingwhere hpc meets
grid and cloud computing,” Future Generation Computer Systems, vol. 27, no. 5,
pp- 440-453, 2011.

J. Jeffers and J. Reinders, Intel Xeon Phi coprocessor high-performance programming.
Newnes, 2013.

C. for High Performance Computing, “ACE Lab,” 2013. [Online; accessed 24-July-
2014].

M. Cawood, “Performance Analysis of Virtualization for High Performance
Computing,” UCT, 2013.

V. Springel, User guide for GADGET-2. Max-Plank-Institute for Astrophysics,

Garching, Germany.
J. Helly, “Gadget File Viewer,” 2005. [Online; accessed 3-October-2014].

T. S. Selles, “Galaxy formation and evolution through simulation and SAMs,”

Department d’Astronomia i Meteorologia, Universitat de Barcelona, 2011.

R. S. Somerville, P. F. Hopkins, T. J. Cox, B. E. Robertson, and L. Hernquist, “A
semi-analytic model for the co-evolution of galaxies, black holes and active galactic
nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 2, pp. 481—
506, 2008.

E. Ricciardelli and A. Franceschini, “GECO: Galaxy Evolution COde-A new semi-
analytical model of galaxy formation,” arXiv preprint arXiv:1004.3289, 2010.

141

[70]

[72]

BIBLIOGRAPHY

R. Davé, N. Katz, et al., “The neutral hydrogen content of galaxies in cosmological
hydrodynamic simulations,” Monthly Notices of the Royal Astronomical Society,
vol. 434, no. 3, pp. 2645-2663, 2013.

A. R. Duffy, M. J. Meyer, et al., “Predictions for ASKAP neutral hydrogen surveys,”
Monthly Notices of the Royal Astronomical Society, vol. 426, no. 4, pp. 33853402,
2012.

F. Abdalla and S. Rawlings, “Probing dark energy with baryonic oscillations and
future radio surveys of neutral hydrogen,” Monthly Notices of the Royal Astronomical
Society, vol. 360, no. 1, pp. 27-40, 2005.

W. Lane, A. Smette, et al., “HI 21 Centimeter Absorption in Two Low-Redshift
Damped Lya Systems,” The Astronomical Journal, vol. 116, no. 1, p. 26, 1998.

H. A. Council, “GADGET-2 Best Practices for Intel Cluster Ready,” 2010. [Online;
accessed 7-August-2014].

M. Frigo, “A fast Fourier transform compile,” in Acm sigplan notices, vol. 34,

pp. 169-180, ACM, 1999.

M. Folk, G. Heber, et al., “An overview of the HDF5 technology suite and
its applications,” in Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pp. 36-47, ACM, 2011.

V. Springel, “Reference documentation for GADGET-2,” 2005. [Online; accessed
7-August-2014].

Y. Wang, “Step by Step Performance Optimization with Intel C4++ Compiler,” 2013.
[Online; accessed 11-August-2014].

W. Pence, “FITS Documentation,” 2014. [Online; accessed 20-October-2014].

M. J. Corden and D. Kreitzer, “Consistency of floating-point results using the intel
compiler or why doesnt my application always give the same answer,” tech. rep.,

Technical report, Intel Corporation, Software Solutions Group, 2009.

Intel Developer Zone, “Intel C and C++ Compilers,” 2013. [Online; accessed 4-
November-2014].

M. Schaller, R. Bower, and T. Theuns, “On the use of particle based methods
for cosmological hydrodynamical simulations,” in 8th International SPHERIC
Workshop, 2013.

142

A PyTHON CODE FOR PARTICLE TESTING

def test_particle(particle, starFlag, dmFlag):

#calculate co-moving distance to each particle in snapshot

length = np.linalg .norm(particle , axis=1)

#calculate redshift of particle using Spline

z = zrFunc(length)

#calculate opening angle of cone

coneAng = np.radians ((z+1)*OneOverPi)

#calculate angle between cone pointing vector and particle

partAng = angle_between (particle , coneVec)

#find particle angles within cone

binned = abs(partAng) < coneAng

#check that there are any particles (boundary case)

numParts = np.sum(binned)

if (numParts > 0):

print numParts, "gas particles found in this tile \n"

#begin binning procedure

bin_Gas(particle [binned], length[binned], z[binned],
binned)

else:

print "No particles found in this tile"

143

B PyTHoN CODE FOR PARTICLE BINNING

def bin_Gas(particle, length, z, binned):

#get Y and Z components of particle angle

cone = lengthxconeVec[:, None]

#calculate radius of cone opening at this redshift
coneRadius = np.tan(np.radians((z+1)/np.sqrt(np.pi)))x*
length

#calculate flattened distance in plane perpendicular to axis

particle = np.transpose(particle)

#find of particle distance from cone pointing vector
yDist = particle[l] —cone[1]
zDist = particle[2] —cone [2]

#mapping of co-ordinates to array indices

yBin = ((yDist/coneRadius)*(pixels/2)).astype(int)+(pixels
/2)

zBin = ((zDist/coneRadius)*(pixels/2)).astype(int)+(pixels
/2)

xBin = ((z / zUpperLimit)*(zBins—1) — offSet).astype(int)

#calculate redshift of pixels which contain particles
floor = zMin + (zMax—zMin) x((xBin.astype(float))/cubeZBins)
ceiling = zMin + (zMax—zMin) % ((xBin+1.)/cubeZBins)

delta = ceiling — floor

145

#1 is for z floor
#2 is for z delta
binArray [xBin,yBin,zBin ,(1,2)] = [floor , delta]

##tcalculate HI masses

h1Gas = calcHI()

#calculate peculiar light-of-sight velocities

v = np.dot(vel [binned], coneVec)/np.sqrt(scaleFactor)

#calculate flux for HI particles
flux = calcFlux(hlGas, z, length, delta)

#list of particle co-ordinates

XYZ = np.vstack ((xBin,yBin,zBin)).T

#sort particles by address
order = np.lexsort (XYZ.T)
diff = np.diff (XYZ[order], axis=0)

#produce list of particles with same address
unig_-mask = np.append(True, (diff != 0).any(axis=1))
uniq-inds = order [uniq_-mask |

inv_idx = np.zeros_like (order)

inv_idx [order] = np.cumsum(uniq-mask) — 1

#assume zero molecular gas

ionGas = gasMass|[binned]—h1Gas

#sum particles into pixels

incr = np.bincount (inv_idx)

ionGas = np.bincount (inv_idx , weights=ionGas)
h1Gas = np.bincount (inv_idx , weights=hlGas)
flux = np.bincount (inv_idx , weights=flux)

v = np.bincount (inv_idx , weights=v)

146

starF = np.bincount (inv_idx , weights=sfr [binned])

#find unique array co-ordinates for summed data
xBin , yBin ,zBin = XYZ[uniq_-inds|.T

#unit conversion, 10el10 Msun -> Msun
h1Gas = hl1Gasx1.0¢el0

ionGas = ion%x1.0el0

#0 is for particle count
#3 is for total gas mass
#4 is for HlMass

#5 is for flux

#6 is for perculiar V

#7 is for SFR / radio continuum
#data cube assignments

binArray [xBin,yBin,zBin,(0,3,4,5,6,7)] += [incr, ionGas,
h1Gas, flux, v, starF|

147

C PyTHON CODE FOR CALCULATING HI
CONTENT OF (GAS PARTICLES

def calcHI():

T p = T[binned |

rho_p = rho[binned]

mass_p = gasMass [binned]

sfr_p = sfr [binned|

fneut_p = fneut [binned]

hsml_p = hsml [binned |

H2 _frac = 0.

nonStarForming = np.where(sfr.p = 0.) [0]
ilo = np.zeros(nonStarForming. size)
ihi = np.zeros(nonStarForming. size)
ihi [:] = (NINTERP-1)

frh = fneut_p[nonStarForming] % XH % rho_p[nonStarForming| /
(MHYDR#hsml_p [nonStarForming|*1.3737)

149

#vectorized optimization loop
loop = ((ihi—ilo) > 1.)
while(np.count_nonzero(loop) > 0):
#condition mask 2 = if statement
mask = ((np.array (KernIntTable [[(ilo [loop]+ihi[loop])
/2] ,1])*frh [loop] < NHILIM)). flatten ()
ihi[mask] = (ilo [mask]+ihi [mask]) /2
ilo [mask] = (ilo [mask]+ihi[mask]) /2
loop = ((ihi—ilo) > 1.)

#select particles with temperature below 3E4 and that are

shielded

mask = np.asarray (np.where ((T_p[nonStarForming] < 3.e4) & (
ilo > 0.))).flatten ()

index = ((ilo[mask]+ihi[mask])/2).astype(int)

#calculate fraction of hydrogen that is neutral

fneut_p [mask] = ((fneut_p [mask] * KernIntTable[index ,0]) +
FSHIELD % (1.0 — KernIntTable[index ,0]))

#---if particle is star forming---

starForming = np.where(sfr_p > 0.)[0]

coldphasemassfrac = (1.0e8—T_p[starForming]) /1.0e8

Rmol = (rho_p[starForming|+T_p|
starForming| / (POBLITZ+«MHYDR)) *xALPHAOBLITZ

fneut_p [starForming | = FSHIELD % coldphasemassfrac /
(1.0+Rmol)

return (fneut_p * mass_p * XH)

150

	Declaration
	Terms of Reference
	Acknowledgements
	Abstract
	List of Acronyms
	List of Figures
	List of Equations
	Introduction
	Research Background
	Objectives
	Purpose of the Study
	Research Questions

	Scope and Limitations
	Dissertation Outline

	Literature Review
	Background to Cosmology and Galaxy Evolution
	The Standard Model, Cosmological Expansion and Redshift
	The Importance of Atomic Hydrogen

	Radio Astronomy
	SKA and the MeerKAT Radio Telescope
	The LADUMA Deep Sky Survey

	High Performance Computing
	A Brief History of HPC
	The Centre for High Performance Computing

	The GADGET Cosmological Simulation
	A Background to GADGET
	The N-GenIC tool
	GADGET Code Mechanics

	Existing Research
	GADGET-3 HI Post-Processing
	Existing Lightcone Construction Techniques
	The Mass-Flux Relation

	Conclusion

	Research Methodology
	Plan of Development
	GADGET-3 Optimisation
	GADGET-3 Evaluation Environment
	The GADGET-3 Optimisation Plan
	Lightcone Code Development

	Conclusion

	Design of Lightcone Code
	Lightcone Construction Approach
	Defining Lightcone Geometry
	Lightcone Volume Pixelisation
	Particle Metadata Extraction Algorithms
	Lightcone Data Structure

	Performance Optimisations for Python
	High Performance BLAS Libraries
	Code Parallelisation
	Algorithm Optimisations

	Conclusion

	Results
	GADGET-3 Performance Evaluation Results
	Lightcone Code Optimisation Benchmarks
	Lightcone Results
	Conclusion

	Discussion
	GADGET-3 Performance Evaluation
	Lightcone Code Optimisation
	Observations of Lightcone Results

	Conclusions
	Response to Research Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6

	Review of Research Objectives
	Research Outcomes
	GADGET-3 Performance Evaluation
	Lightcone Construction

	Future Work
	Further Lightcone Code Development
	Improvements of Lightcone Precision

	Python Code for Particle Testing
	Python Code for Particle Binning
	Python Code for Calculating HI Content of Gas Particles

