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Abstract: A new route to the Dirac equation and its symmetries is outlined on the basis of the
four-vector representation of the Lorentz group (LG). This way permits one to linearize the first
Casimir operator of the LG in terms of the energy—-momentum four-vector and enables one to
derive an extended Dirac equation that naturally reveals the SU(2) symmetry in connection with
an isospin associated with the LG. The procedure gives a spin-one-half fermion doublet, which we
interpret as the electron and neutrino or the up-and-down quark doublet. Similarly, the second
Casimir operator can be linearized by invoking an abstract isospin that is not connected with the
LG, but with the two basic empirical fermion types. Application of the spinor helicity formalism
yields two independent singlet and triplet fermion states—which we interpret as being related
to U(1) and the lepton, respectively—to the SU(3) symmetry group of the three colors of the
quarks. The way in which we obtain these results indicates the genuine yet very different physical
natures of these basic symmetries. This new notion does not need the idea of grand unification.
However, by still combining them in the product group SU(4) = SU(3) ® U(1) and then further
combining all groups into SU(2) ® SU(4), one may get a symmetry scheme that perhaps supports
the notion of unification by the group SU(8). We also argue that the simpler SO(4) group—instead
of SU(4)—seems more appropriate for achieving unification.

Keywords: Lorentz group; extended Dirac equation; isospin; SU(2), SU(3), and SO(4) symmetries;

fermion unification

1. Introduction

The mathematical SU(N) symmetries related to Lie groups are key elements of the
standard model of elementary particle physics (SM) [1,2], which describes the electroweak
(N = 2) and strong (N = 3) interactions among lepton and quark fermions. The way of
including the associated gauge bosons in the quantum mechanical framework of modern
field theory was first described in the seminal paper by Yang and Mills [3]. However, the
physical origin of these important symmetries has remained somewhat obscure or of a
mainly empirical nature until today. They were chosen in the case of SU(2) to describe the
effects of parity violation by assuming that weak interactions only involve the left-handed
fields [4] of massless fermions or were just introduced ad hoc in the case of SU(3) by
Gell-Mann [5] in order to bring some schematics into the complex variety of hadrons found
empirically in accelerator experiments.

The aim of this paper is to cast somewhat more light on the genuine nature of the
SU(2) symmetry (weak interactions) and SU(3) symmetry (strong interactions) in particle
physics and mathematical physics with the help of (1) the mathematical and physical
principles of Lorentz invariance, (2) the two associated Casimir operators of the Lorentz
group (hereafter, LG), and (3) their relations to the notion of isospin. This paper is meant
to extend and deepen the recent work by Marsch and Narita [6,7] on these topics. A
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similar approach to understanding space-time hidden symmetry was used by Hestenes in
his development of space-time algebra, e.g., interpreting electron spin direction and spin
magnitude as geometric properties [8].

We first prepare some necessary ingredients of the theory in a section on the generators
of the Lorentz group for the transformation of four-vectors in Minkowski space-time.
Then, new versions of an extended Dirac equation and the associated Clifford algebra are
presented. The related physical spin and rapidity of the resulting fermion spinor field are
discussed. A version of the extended Dirac equation on the Weyl basis is also derived in the
Appendix A. The notion of isospin is introduced and derived in the context of the spinorial
representation of the Lorentz group. The consequences for the origin of SU(2) and the
related fermion lepton doublet, such as an electron and a neutrino, are elucidated.

Furthermore, on the basis of the Pauli-Lubanski operator, we develop a concept for
the possible origin of the SU(3) color symmetry. It may stem from a new intrinsic isospin
of 1/2, which is assumed to describe the lepton—quark fermion doublet. Thereby, use is
made of the powerful concept of spinor helicity by employing the Pauli matrices, which
permit one to decompose the square of any three-vector into a Pauli matrix product. The
related symmetry turns out to be SO(4), which contains SO(3) as a subgroup.

Finally, we discuss some possible schemes for the unification of these symmetries. A
short discussion section concludes the paper.

2. The Generators of the Lorentz Group

To begin with, we discuss the generators of the Lorentz group in the vectorial repre-
sentation. The Lie algebra for the Lorentz group [9-11] is decomposed into two commuting
independent sub-algebras as so(3,1) = su(2) ® su(2). Here, so denotes the algebra as-
sociated with the special orthogonal group SO, and su denotes the algebra associated
with the special unitary group SU. That is, they define the generators of the irreducible
SU(2) ® SU(2) representation of the LG. We introduce the standard hermitian rotation
operator J = (Jx, Iy J2) and the anti-hermitian boost operator K = (KX,Ky, K2). These
three-vector generators of the LG are component-wise 4 x 4 matrices in Minkowski space-
time. According to their definitions, the rotation and boost operators obey the well-known
linked three-vector equations of the Lorentz algebra:

IxJ=i], KxK=—i], Jx K=Kx]J=iK 1)

where the cross-product sign stands as an abbreviation for the commutator [, |. The four-
vector LG generators can be written as tensors in Minkowski space-time [12], a well-known
subject. In the Appendix A, the components of the matrix vectors J and K are quoted for
completeness and reference. From them, we straightforwardly obtain the absolute value of
the rotation operator as

0 0 0 O
02 00
2_ 12 2 2 _
0 0 0 2
and that of the boost matrix as
-3 0 0 0
0o -1 0 0
2 _ 2 2 2 _
K fKX+Ky+KZf 0 0 -1 o0 3)
0 0 0 -1
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Consequently, we find ]2 — K2 = 314. Then, for any three-vector V = (x,y,z), one
obtains

0 0 0 O 0 0 0 0
v_:l 0 0 —z y wvi2_| O v +z2 —xy —xz
JV=ily 2 o x| J-v)"= 0 —xy x*2+z22 —yz | @
0 -y x 0 0 —xz —yz x>+
and similarly, one obtains
0 x y z x>+y2+z2 0 0 0
_ x 000 2 0 X2 xy xz
K-v=il g4 ¢ | (K-V)2 = 0 w 7oy | (5)
z 000 0 xz yz 72

Therefore, one finds that (K- V)(J- V) = (J- V)(K - V) = 0. Moreover, we obtain
the relation
(J- V)= (K- V)> = (& + 1 +2°)1y = V?1y. ©6)

This important result will play a key role and be exploited in the subsequent section.

3. New Versions of the Dirac Equation and Clifford Algebra

Recently, Marsch and Narita [13] derived an extended Dirac equation on the basis of
the vector representation of the Lorentz group. In this section, we present a new route to
obtain such an extension of the standard Dirac equation [14]. Historically, the key question
was that of how to derive a linear relativistic wave equation. This task requires linearizing
the kinetic energy for a massive particle, which goes with the momentum squared in the
basic relativistic dispersion relation and is given by

E? — p?> = m? = P'P,. 7)

This is the so-called mass—shell condition for a free particle of mass m, energy E, and
momentum p, and it is just the first Casimir operator of the Lorentz group. Here, we use
the covariant four-momentum P, = (E, —p) as a variable in Fourier space. According to
relativistic quantum mechanics [1,2], the covariant four-momentum operator is associated
with a temporal or spatial derivative:

Jd 0
Py = (E,—p) =1idy = i(grg)' (8)

We abbreviate the contravariant space-time coordinates x* = (t,x) with x and conve-
niently use the units for which ¢ = 1 and 7 = 1. The differential operator P, will be used
later when we discuss the desired relativistic wave equation.

If we now multiply the above relativistic dispersion relation (7) by the four-dimensional
unit matrix, by means of (6), we obtain the algebraic matrix result:

E’14+ (K-p)* = (J- p)* = m*Ls. )

This equation should then be linearized in the energy and momentum variables E and
p. For that purpose, we introduce three 2 x 2 Pauli-type matrices:

oo S)n=(Ro) e=(V ) w
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which are real, obey A2, = 15 and A3 = —1,, and mutually anticommute with each other.
Thus, we can write the linearized dispersion equation as follows:

AMLE+MK-p+A)-p =mlsg. (11)

When squaring this equation and exploiting Equations (6) and (9), we retain the
original dispersion relation (7) times the 8 x 8 unit matrix, which corresponds to the eight
degrees of freedom obtained by the linearization procedure. Two of them belong to the
lambda matrices. Their two dimensions relate to the two possible signs of the energy and,
thus, correspond to the particle and antiparticle, as in the standard Dirac equation. The
other four degrees of freedom stem from the space-time coordinates of Minkowski space
and the Lorentz transformation. Their physical meaning will become clear below.

It is convenient and appropriate to rewrite Equation (11) in covariant form by intro-
ducing the subsequent Lambda matrices corresponding to Dirac’s gamma matrices. We

btai
obtain N L0 N 0 K] .
o=\ o -1, ) 7"\ K+] o0 : (12)

They obey A% = 1g and A? = —31g, where use was made of Equations (4) and (5).
The three space components and the single time component of the contravariant Lambda
four-vector A" = (A, A) anticommute, which is obvious for Ay and A, and this follows for
the x,y, z components after some lengthy calculations with the help of the Lorentz algebra
of the three-vectors J and K after Equation (1). Therefore, as shown in the subsequent
section, we then obtain the Clifford algebra for the Lambdas:

AFAY + AVAF =2¢MV1g, (13)
from which it follows that one can take, so to speak, the root of (7) and obtain
AFP, = mlg. (14)

Finally, by inserting the differential operator of Equation (8) here, we obtain the Dirac
equation in a new non-standard form as

A9, ¥ (x) = m¥ (x). (15)

The spinor wave function ¥ (x) has eight components, of which two correspond to
particles and antiparticles. The other four are related to their associated spin and isospin
doublets, as shown in the next section.

We would like to emphasize that other equivalent forms of the Lambda four-vector
AF = (Ag, A) are possible. They have been extensively discussed by Marsch and Narita [6]. In
the present framework, there are essentially three options, which correspond to the possible
ways in which the Ag » matrices can occur in Equation (11). They are obtained through the
cyclic permutation of the lambda positions in that equation. It was argued in [6,15] that these
three possibilities reflect the physical fact that there exist exactly three families of fermions in
the SM. The number three just corresponds to the three dimensions of the real physical space,
which are revealed by the three Pauli matrices (or lambdas in our case) as the generators of the
rotation group in its fundamental bi-spinor representation.

4. Spin and Rapidity

The aim of this section is to first calculate the spinorial analogs of the Lorentz group
generators J and K in Minkowski space. All one needs to do is use the properties of the
Clifford algebra (13). The cartesian spin x component is given by

i

SX:2

AyA,, (16)
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and the y and z components are obtained through cyclic index permutation. Multiplication
of the three spin components gives

SxSyS, = (%)3AYAZAZAXAXAY = %18. (17)

Similarly, we obtain
SxSy — SySx = (%)Z(AYAZAZAX — A AAyAZ) =S, (18)
Thereby, we only used AJZ = —1g for j = X, y, z and the fact that the Lambdas

anticommute. Moreover, one gets S2 = 11g and the same result for the y and z components.
In conclusion, here, we are dealing with a spin one-half fermion.
The rapidity or boost operator is adequately defined as

Ry = %AOAX, (19)
from which it follows that
RxRy — RyRx = (%)2(A0AXA0Ay — NoAyAgAx) = —iS,. (20)
Similarly, we also find that
RxSy — SyRx = (%)Z(AOAXAZAX — Ay AxAoAx) = iR, (21)

As a result of all of these calculations, we obtain, in full analogy to Equation (1), the
spinorial Lorentz algebra

SxS=i5, RxR=-i5, SXxR=R xS =iR. (22)

Let us then evaluate more explicitly the components of spin and rapidity matrix
vectors. For the spin x component (the y and z components are obtained through cyclic
index permutations), we get the matrix

i (Ky=Jy)(K+]) 0 )
Sy = — Y y i 23
2 ( 0 (Ky + ]y) (Kz - ]Z) *)
and for the rapidity, we obtain the matrix three-vector
_i 0 (K-J)
k= _wen ) 9

At this point, we should explicitly calculate the involved matrices K + J. By using their
expressions in Equations (A1) and (A2) of the Appendix A, with the definition K£] = ir®,
we obtain the three real Lambda 4 x 4 matrices, which are also quoted in the Appendix A.
In terms of these matrices, we can rewrite the spatial Lambda matrix vector in the form

A:i( A0+ "0_ > (25)

The components (with 7, j = x, y, z) of the Lambda vector obey the important metric condition:

AAT FATAS =261, (26)
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which guarantees that the spatial Lambda components obey the Clifford algebra. At this
point, we can also define the chiral Lambda matrix:

0 ASAT A,
= 1 = y z
As = iNgAAyA, ( AFAAY B ) : (27)

Multiplying the above product of the lambdas out, one obtains

0 iA
As = ( —iA 0 ) @8)

where the new diagonal matrix Delta corresponds to the metric in Minkowski space and
reads as follows: A = diag(1, —1, —1, —1], which obeys A% = 1,. This permits one to switch
the sign of the superscripts attached to the lambdas because one finds that AA*A = —ATF.
In terms of the matrix vector lambda, the spin and rapidity can be written as

il AgAS 0 1/ 0 —A"
— y“z = —
5x 2( 0 AfA, > R z(/ﬁ 0 ) @9)
Upon the insertion of the expressions of (25), we obtain the spin and rapidity vectors
in the form
1/ 0 i 0 ZXZ°7A
5_2( 0 xt )’R_2<Z+A 0 ) (30)

The connection of the Sigmas to the previously used vector lambdas is as follows: A* =
+iZEA. These matrices are defined in terms of Ag 1, and are quoted in the Appendix A.
Both of the Pauli-type (but 4 x 4) matrices that appear here obey £+ x £+ = 2iL*, yet
for opposite superscripts, they commute component-wise with each other: [Z*,£¥] = 0.
Moreover, we get Z;—LZ?,EZ;E = il4. One finds that AL*A = L, which is a relation that is
very useful for validating the commutation relations of the spin and isospin addressed
below. Finally, note that (£*A)* = £FA. This is required to show that —iR is hermitian.

Using the Sigma matrices is appropriate to rewrite the previous Lambda matrices of
Equation (12) in a new form. We obtain

(14 0 B 0 I A (0 A
A°_<0 —14)’A_(—>:+A 0 ) A5_<A o)' (31)

This version of the extended Dirac equation is formally the same as that derived
recently by Marsch and Narita [6], yet it differs slightly in the definition of the Sigma
matrices. However, their way of obtaining this result was also somewhat different. In the
Appendix A of their paper, they provided six equivalent versions of Equation (31), which
are all connected by similarity transformations.

5. Isospin and SU (2)

Using the results on the Sigma matrices of the previous section, we are now in the
position to define a new entity, the isospin, as follows:

= 1/t 0
S—2< 0 x- ) (32)
This obviously commutes with the spin because Sigma matrices with opposite super-
scripts commute. However, it is less trivial to show that [S, A] = 0, yet when using the
algebraic properties of A 1 2, with some lengthy matrix multiplications, one can show that
this is the case. Moreover, we find more easily that [S, Ag] = [S, Ag] = 0, and therefore, S,

Sx, and A can have common eigenfunctions in the rest frame of the fermion. Consequently,
the multiplet state ¥ can, in that frame, be fully determined by the quantum numbers of
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those matrix operators. Since their squares are proportional to the unit matrix 1g, according
to Equations (12), (A7), and (A8), we obtain the eigenvalues E = £m for the energies of the
Dirac equation (14) in the fermion rest frame corresponding to particles and antiparticles.
The values :I:% for the spin (or isospin) are obtained as evaluated by means of their block-
diagonal x components, which correspond to the physical spin up and down states and to
the up and down components of the isospin doublet. Marsch and Narita [6] extensively
discussed a possible gauge theory based on the isospin (32) to which we refer and which,
therefore, shall not be elucidated any further here.

6. Intrinsic Spin and SU(3)

In their seminal work, Wigner [9] and Bargman and Wigner [10] emphasized the
important role played by the two Casimir operators of the Poincaré and Lorentz group,
namely, the four-momentum squared (7) and the square of the Pauli-Lubarnski operator
WH = (1 p, E1 +ilI x p), which involves the intrinsic spin I of the particle, where spin just
means a physical quantity that obeys the usual angular momentum algebra

IxI=il (33)

The square of the Pauli-Lubanski operator is the product of the squared mass with 12,
and thus, for a massive particle, it reads:

— WHW,, = m*I* = (E? — p*)I? (34)

Here, the squares of the space-time Fourier variables E and p and the intrinsic isospin
three-vector I are connected in a simple multiplicative way, which is consistent with the
constraint placed by the Coleman—-Mandula theorem [16]. The Casimir operators turn out
to be relevant in the derivation of covariant and first-order (with respect to the derivatives)
relativistic wave equations for massive charged particles of arbitrary intrinsic spin I.

It was Dirac [14] who noticed that the first Casimir operator (7) can be written as
the square of an expression that is linear P, with the help of the famous contravariant
gamma matrices that he introduced. Here, we have extended his approach to include the
SU(2)-isospin related to the Lorentz group in the Lambda matrices of (12), which leads to
(14). Furthermore, Dirac [17] later also noticed how one can write the square of the intrinsic
spin I with the quantum number ! as the following product:

LI = (0-1)(0 - T+ 1yp1) = Lyl +1), (35)

which uses the concept of what we now call [2] spinor helicity ¢ - I. To define it, we use the
standard Pauli matrix three-vector o. We can thus express the three-vector I as a bi-spinor
in 2 X 2-matrix form. Then, we obtain the following result for the spinor helicity:

a I, Ik—ily
o I_(Ix+ily L ) (36)

It is important to note that for any intrinsic spin operator I in its standard repre-
sentation, the x and z components are real, and the y component is purely imaginary.
Consequently, the above spinor helicity is a real (2(2] + 1) x 2(2] + 1))-matrix operator and
has real eigenvalues. We abbreviate the two operators involved in (35) as

Ho(l) = (¢-1)/1, Hi(I) = (0 - I+ 1p341))/ (I +1). 37)

It is obvious that [Hy(I), H1(I)] = 0. Consequently, we can rewrite, with the help of
(14) and (35), the Pauli-Lubariski operator (34) in an algebraically new form as

(AFPy)?Ho(I)H(1) = m*1g1p05141)- (38)
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We recall that all operators appearing in this equation commute with each other. In
addition to the eight kinetic degrees of freedom associated with the particle-antiparticle
doublet, the spin up and down doublet, and the isospin up and down doublet, we now
have the spinor helicity multiplet of I with 2(2] + 1) degrees of freedom. This is reflected
in the product of the unit matrices at the mass term.

However, in what follows, we shall restrict the discussion to [ = 1/2, i.e., we shall
consider only two intrinsic configurational or species degrees of freedom. Empirically, the
spin-one-half fermions come in only two species, namely, as leptons and quarks, which we can
accommodate in the doublet given by I = %(r. It was shown by Marsch and Narita [7] that the
operators Hy; can, for | = 1/2, be brought into diagonal forms based on their four common
orthogonal eigenfunctions, and thus, they take the simple form

Hy = diag[1,1,1,-3], H; = [1, 1,1, —:1))] . (39)
It is interesting that Hy is apart from the normalization identical to the fifteenth element
of the SU(4) Lie group. Hy can be considered as the hypercharge matrix operator of a
unified lepton—quark gauge theory, which was discussed by Marsch and Narita [18] in
their study of the connections existing in the Dirac equation between the Clifford algebra
of Lorentz invariance and the Lie algebra of SU(N) gauge symmetry. Apparently, the
state space of the spinor helicity operator Hy decomposes into two orthogonal Hilbert
spaces with dimensions of three and one. The corresponding wave equation applies to
the four-component super-spinor ' = (‘Y{,‘I’E,‘Fg,‘l’l), where the spinor fields ¥; are
solutions of the extended Dirac wave Equation (15). By using Equation (37), we can thus
write a new second-order (in P,) wave equation for ® as follows:

(A"P,)*Ho(1)Hy (1)@ = m*®, (40)
which can, again, be decomposed into two linear wave equations:

H()AFPFCDO = m<I>1

HlAVqu)l = mdDO. (41)

We recall that all operators commute with each other and relate to the 32 independent
inner and kinetic degrees of freedom. Close inspection of the above two equations shows
that they are, in fact, identical if we choose ¥4 = —%‘I’M and Yo = ¥y forj=1,2,3.
Hp,1 then just act as unit matrices in their respective subspaces, and in this way, we obtain
two entirely decoupled Dirac equations. One has three intrinsic degrees of freedom, which
we associate with the three colors of the quarks, and the other has one intrinsic degree
of freedom, which we associate with the “single color" of the lepton. So, we write the
corresponding Dirac equations as

NP, Dy = mD
AP, &, = mb, (42)

Here, the spinors are ®; = ¥ for the lepton and Cba = (¥f ,‘Y;,‘I’f)) for the quarks,
with the usual color indices of red, green, and blue being used as in the SM. Of course,
the related symmetry gauge groups are U(1) for the leptons and SU(3) for the quarks. In
conclusion, each of the four fields associated with the four degrees of freedom of the spinor
helicity obeys the extended Dirac Equation (15) that yields the SU(2) symmetry for the
isospin doublet. Thus, we have covered all three known fundamental fermion symmetries
of the SM. The color symmetry is a consequence of the Pauli-Lubanski operator involving
the simplest possible isospin with quantum number | = 1/2, corresponding to a fermion
doublet, which splits into four states by means of the spinor helicity mechanism being
applied to I? according to (35).
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7. Symmetry Unification Schemes

In the previous section, we showed that the simplest possible internal isospin I for a
fermion doublet with a quantum number of | = 3 yields, via the spinor helicity formalism,
a quadruplet assembling three colored quarks and a single lepton into a four-component
super-spinor, gt — (‘Y;f ,‘I’Z,‘Pg,, ‘Y;f), where each of the four spinor fields obeys the ex-
tended Dirac wave Equation (15). So, we can concisely rewrite the unified extended Dirac
equation as

AFPY =m¥. (43)

This equation has the symmetry SU(2) stemming from Lorentz invariance, which
determines the four-vector A¥, and the symmetry SU(4) stemming from the spinor helicity
o - I of (36), which is associated with the internal isospin. It formally describes a quark-
lepton couple that splits into a quadruplet involving a single lepton (with symmetry U(1))
and three colored quarks (with symmetry SU(3)). As a result, we obtain the unified fermion
symmetry SU(8) = SU(2) ® SU(4). Such a unification model was developed before by
Marsch and Narita [19,20], but on the basis of combinatorial symmetries of the standard
Dirac equation, which comes in two main versions, as evaluated on the basis of Dirac and
Weyl.

The SU(8) symmetry suggested here is equivalent to the symmetry of the orthogonal
SO(10) group as described by Fritzsch [21,22]. The related 16-component spinor represen-
tation of SO(10) includes all spin one-half fermions of the first generation in the SM. The
symmetry SU(4) was proposed long ago by Pati and Salam [23,24], who considered the
lepton number as the fourth color, which was long then an ad hoc assumption, whereas
here, we give a good physical reason for such a quadruplet. It is based on the spinor helicity
of an intrinsic spin one-half in connection with the Pauli-Lubariski operator, which is the
second Casimir operator of the Lorentz group.

However, the unification scheme employing SU(4) requires 15 gauge fields, which
are sometimes called leptoquarks, to link leptons and quarks in the multiplet. There is
no observational evidence for the related gauge bosons, and therefore, it is desirable to
reduce their number. Such a reduction is offered by the use of the less complex SO(4)
instead of SU(4) in the spirit of Occam’s razor. We suggest installing the SO(4) symmetry,
which requires nine fewer gauge fields than SU(4). The mathematical reason is that the
spinor helicity multiplet involves a real operator acting in the Euclidian space spanned
by the four simplest possible and real eigenfunctions ¢! = (1,0,0,0), I = (0,1,0,0),
¢ = (0,0,1,0) and ¢} = (0,0,0,1). The six purely imaginary matrices of the SO(4)
generators are quoted in the Appendix A. We may assemble them into two three-vectors
and name them M = (Mj, My, M3) or N = (N3, N», N3). They obey the linked algebra

MxM=iM, NxN=iM, MxN =N xM =iN. (44)

This algebra resembles the Lorentz algebra of Equation (1), aside from a minus sign.
Of course, the group SO(4) includes SO(3) as a subgroup. Using it instead of SU(3) means
that the symmetry of the strong SM interactions would be considerably simplified and
would not require eight gluons, but just three new gauge bosons. Admittedly, this is a
rather speculative new scheme that needs further scientific investigation.

8. Summary and Conclusions

In this paper, we outlined a new route to the extended Dirac equation and its sym-
metries on the basis of the four-vector representation of the Lorentz group (LG). It turned
out that the SU(2) symmetry emerges naturally via the linearization of the first Casimir
operator of the LG and is intimately connected with the isospin. This is an outcome of
the chiral nature of the LG. Similarly, the intrinsic isospin related to the second Casimir
operator can be linearized by means of the spinor helicity formalism, which yields two
independent singlet and triplet fermion states. We suggest interpreting them as being
related to the symmetry U(1) and the lepton or to the symmetry SU(3) and the three
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colored quarks. These results indicate the very different origins and physical natures of
these basic symmetries of the SM, but they do not genuinely support the idea of grand
unification. However, when combining them in the product group SU(4) = SU(3) @ U(1),
and then by combining all groups into SU(2) ® SU(4), one gets a combined symmetry
scheme that seems to support unification by the group SU(8). It is found that the smaller
SO(4) group, instead of SU(4), also seems appropriate for achieving unification, and it
offers the advantage that it simplifies the theory and reduces the number of gauge fields
required.

Concerning the basic wave Equation (40) based on the second Casimir operator, we
stress again that the space-time differential operator P, the algebraic operators A¥ of the
Clifford algebra related to the Lorentz group, and, finally, the operators Hy; related to
the SO(4) symmetry of the intrinsic spin I do all commute with each other, and therefore,
their sequence when operating on the state spinor ® does not matter. Its full dimension is
8 x 2 x (21 + 1) according to Equation (40). At this point, we are just dealing with a Klein—
Gordon equation for each of the many components of ®. However, when we linearize
that equation with respect to P, we have to use the matrix representations of the algebraic
operators. They are then connected through tensor multiplication, where their sequence
does matter.

We have two options for constructing the resulting extended Dirac equation. Either the
intrinsic spin operator acts first from the left on ® and is followed the space-time operators,
or vice versa. In the first case, the field equation looks like a single Dirac equation with
many internal degrees of freedom; in the second case, it looks like a multiplet of Dirac
spinors assembled in an N-tuple of the SU(N) symmetry group in matrix representation.
The latter case gives the standard picture of the Yang—Mills theory. The mathematical
connections between the two approaches were extensively discussed in [18]. The way
that is is advantageous needs to be worked out and may depend on the symmetry group
involved. The analysis of this problem is beyond the scope of this paper.
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Appendix A. Lorentz Group, SO(4), and the Weyl Basis
Appendix A.1. Lorentz Group Matrices

In this subsection, we compose some of the relevant matrices of the key physical
parameters. For the generators of the Lorentz group, we have the following 4 x 4 matrices.
For the component matrices of J, we obtain

0 00 O 0 0 00 00 0 O
000 O 0 0 0 i 00 —-i 0
Je= 00 0 —i Jy = 0 0 0O Je = 0 i 0 O (A1)
0 0 i 0 0 —-i 00 00 0 O
The component matrices of K are also quoted here:
0 —-i 0 0 0 0 —-i 0 0 00 —i
-i 0 0 0 0 0 0 O 0 00 O
K= 0 0 00 Ky = -i 0 0 0 Ko = 0 00 O (A2)
0 0 00 0 0 0 O -i 00 0
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By using the above matrix vectors, with the definition K£]J = iAi, we obtain three
new and real lambda 4 x 4 matrices. In terms of these matrices, we can rewrite the spatial
Lambda matrix vector in the form

0 -1 0 O 0 0 -1 0 0 0 o0 -1
-1 0 0 O 0O 0 0 =#£1 0O 0 =F1 O
+ + _ + _
A= 0O 0 0 =1 Ay = -1 0 0 O Az = 0 1 0 O (A3)
0 0 +£1 O 0 &1 0 O -1 0 0 0

Here, we first quote the Lambda matrices with negative superscripts in 2 x 2 matrix block

form as
=N 0 _ 0 -1, _ 0 A
A= < 0 —As >’ Ay - ( —Ayp O >’ Ar = < A1 0 ) (Ad)

Similarly, for the lambdas with positive superscripts, we obtain the following results:

—A1 O 0 -A 0 -2
+ _ 1 + _ 0 + _ 1
A= < 0 A ) Ay = ( -1, 0 ) A= ( —A, 0 ) (A5)

Moreover, in this way, the Delta matrix can also be written as

(A O
A—( o _12). (A6)

Finally, we quote here the spin matrices for the Sigmas with negative superscripts:

- . A 0 - . 0 1L - 0 —XA
ZX—1< 0 A ), Zy—1< 1, 0), Zz—l( A 0 ) (A7)

Similarly, for the Sigmas with positive superscripts, we obtain the following result:

Ay 0 0 —A 0 —-A
+ . 2 + 0 + 1
PN —1< 0 A ), Xy —1( Ao 0 ), b —1< A0 > (A8)

Appendix A.2. SO(4) Group Matrices

The symmetry group SO(4) describes the possible rotations around the four axes of
the real Euclidian space of four dimensions, which is the space of the spinor helicity that
has four real orthogonal eigenfunctions spanning that space. The associated unitary and
purely imaginary matrices with zero traces can be written as follows:

. (A9)

o o o o
o o o o

Together, they form the SO(3) subgroup of SO(4) and obey the angular momentum
algebra. The three remaining matrices link the fourth dimension with the three other ones

and read
0 00 1 0 0 0 0 00 0 0
1 o o0 o0 o0 0 0 0 1 00 0 0
NMi=il g 000 |"™MTH o 0 00 |™MM=i oo o 1 [ AO
1000 0 -1 0 0 00 -1 0
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Any matrix of the SO(4) group can be represented by a linear combination of M; and
N; with j running from 1 to 3. Therefore, any element G of the SO(4) Lie group can be
written as

3 3
G=exp(i)  Mja;j+i)  NjB;). (A11)
j=1 j=1

Thus, G is real and represents the general phase factor involving six real numbers
«123 and B1 7 3 corresponding to two sets of rotation angles.

Appendix A.3. The Extended Dirac Equation on the Weyl Basis

In this subsection of the appendix, we will transform the extended Dirac equation
from the Dirac into the Weyl basis. For that end, we rewrite the Lambda matrices and
the Delta matrix and quote them in 2 x 2 block form, which is convenient for algebraic
manipulations. They are quoted in the previous subsection of the appendix. Equations
(12), (25), and (28) correspond to the extended Dirac equation on the Dirac basis. With a
similarity transformation, one can readily change to the Weyl basis. With the help of the
unitary (V~! = V1) transformation

11 (1, —A
v ing = (%08, (a12)

one retains (25) for A, but transforms Ay, which now reads

A0:<2 ﬁ) (A13)

The Weyl basis is particularly convenient in the case of a vanishing mass m. On the
Weyl basis, one obtains the new extended Dirac equation in the form

(0 A\O 0 A" 0
<1<A O)Bt_(/\+ 0 >ax>‘1’—m‘1’ (A14)
By squaring this equation, one retains the Klein-Gordon equation for each component of
the spinor field ¥. Inserting the standard plane-wave solution, one obtains the dispersion relation

NE?— (AT -p)(A” -p) = m’1y, (A15)

which is equivalent to the initial ones of Equations (7) and (9), if we use the fact that A2 = 14
and exploit the metric property (26). This yields (AT - p)(A~ -p) = (A~ -p)(AT - p) = p*14.
One can rewrite Equation (A14) in terms of separate equations for the two components of
the spinor field ¥* = (¥1,¥1). This yields

; d 14— .0 —
(A5 +id™ -5 )Y =mY, (A16)
(A9 +idT - L) ¥, =mY_
Let us define & = iAA™. It obeys Xx3¥y¥, = il4 and, thus, the angular momentum
algebra X x X = 2iX = 0. It can be expressed in terms of tensor products of the three Pauli

matrices in the form
L = (12 ®0y,0y ®@0y,0y @ 0x). (A17)

Close inspection of Equations (A17) and (A8) shows that X is, in fact, identical to the
previous L in the spin operator (30). Similarly, we find that —iA*A is identical to the
previous £ in the spin operator. We now redefine the fieldsas ¥_ = ¥_ and ¥, = AY
and introduce the contravariant Sigma matrices X/, = (14, +X). By using the fact that
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AAE + ATA =0, we can combine the two equations (A16) into a single concise one, which
reads
Y410, ¥ = m¥ 4. (A18)

For a massless fermion (m = 0), the two Weyl fields decouple into independent left-
and right-chiral fields with four degrees of freedom (particle/antiparticle and isospin
doublets), and their dispersion relation is obtained from the requirement for a solution to
exist, which yields

det(X p,) = (E> — p?)* =0. (A19)

The twofold degeneration corresponds to the two doublets involved. With this result,
we conclude the subsection on the Weyl equations as derived from the extended Dirac

equation.
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