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We propose the entanglement bipartitioning approach to design an optimal network struc-
ture of the tree tensor network (TTN) for quantum many-body systems. Given an exact
ground-state wavefunction, we perform sequential bipartitioning of spin-cluster nodes so
as to minimize the mutual information or the maximum loss of the entanglement entropy
associated with the branch to be bipartitioned. We demonstrate that entanglement biparti-
tioning of up to 16 sites gives rise to nontrivial tree network structures for S = 1/2 Heisen-
berg models in one and two dimensions. The resulting TTNs enable us to obtain better
variational energies, compared with standard TTNs such as the uniform matrix product
state and perfect binary tree tensor network.

Subject Index A24, A43, A63

1. Introduction

The tensor network is a universal theoretical framework for understanding entanglement struc-
tures in quantum many-body systems, statistical mechanics, and quantum information as well
as quantum gravities [1-3]. Also, it provides practical numerical tools for simulating various
quantum/classical many-body systems. In particular, tree tensor network (TTN) states [4-8]
have been widely utilized in well-established tensor network algorithms such as variational ma-
trix product state (MPS) approaches [9-14] and tensor renormalization groups [15,16]. The
strong disorder renormalization group for random spin systems, which is a conventional real-
space renormalization group based on the energy spectrum, can be regarded as a one-way algo-
rithm based on the TTN framework [17-20]. In the context of quantum computation, recently,
the MPS-type algorithm has attracted renewed interest by demonstrating its efficient simulation
of noisy intermediate-scale quantum devices [21].

The TTN algorithms mentioned above have been improved through various applications and
checks for practical problems so far. However, the network structure of tensors, which is a pri-
marily important factor in determining their efficiency and accuracy, has been basically de-
signed in a semi-empirical way based on the physical property of target systems. How can
we construct an optimal network structure of the TTN to describe a given quantum many-
body state? Although several approaches to adjusting tree network structures have been tested
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Fig. 1. (a) Schematic diagram of the EBP. Given a wavefunction of N = 8 (zeroth generation), we search
the bipartition of G, and Gg minimizing S(Ga) (= S(Gp)). For the first generation, we further divide
Gp — Gap, Gag and Gg — Gpp , G by minimizing the evaluation function fymr or fyvx based on
the exact EE associated with subbranches. (b) The TTN corresponding to (a), where T, etc. represent
isometry tensors.

[22-31], a theoretical framework together with a practical procedure to extract an appropri-
ate TTN structure from the exact wavefunction is necessary for thoroughly understanding the
physics of tensor networks. Recently, the tensor network representation of quantum states has
become massively relevant to numerical simulation of quantum circuits. A clear answer to the
question about the TTN structure will also be essential in the context of quantum computation.

To be specific, let us discuss the binary TTN, which includes the MPS and the conventional
real-space renormalization based on the perfect binary tree network. For an N-site system,
in general, the number of possible binary tree networks is given by Qy = (2N — 3)!!, which
increases much more rapidly with increasing N than the exponential explosion of the Hilbert
space dimension of the usual quantum many-body systems'. Then, our problem is to determine
an appropriate TTN structure among such a huge network configuration space, which has not
been systematically explored yet, even at the level of the binary TTN. In this paper, we propose a
top-down approach to determine the binary network structure of the TTN for a given ground-
state wavefunction.

A central idea is that sequential bipartitioning of the exact ground-state wavefunction, which
we call “entanglement bipartitioning” (EBP) below, generates an appropriate network struc-
ture so as to minimize the loss of entanglement entropy (EE) due to truncation of the bond
dimension of isometry tensors (see Fig. 1). In order to evaluate the loss of EE, we examine
the following complemental principles in the bipartitioning process: minimization of the mu-
tual information between the branches bipartitioned and minimization of the maximum EE
for the branches bipartitioned, which we respectively refer to as MMI (minimization of mu-
tual information) and as MMX (minimization of the maximum loss) below. We then show that
both MMI and MMX generate the network structure corresponding to the dimer MPS for an
S = 1/2 Heisenberg chain of 16 spins with the open boundary condition. Moreover, we find
that the MMX approach gives rise to a nontrivial network consisting of the 4-site MPS unit

'Qy =135135 for N = 8.
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for an S = 1/2 square-lattice Heisenberg model with the open boundary condition. The varia-
tional optimization for the TTNs based on the EBP demonstrates that the resulting variational
energies are certainly improved, compared with such well-known TTNs as uniform MPS and
TTN with the perfect binary network structure (abbreviated as “pbTTN”). We also discuss rel-
evance of the EBP to TTN simulations and its generalization to tensor networks including loop
structures.

This paper is organized as follows. In the next section, we explain the details of the EBP with
MMI and MMX. In Sect. 3, we present numerical results of the EBP for S = 1/2 Heisenberg
spin chains and an S = 1/2 square-lattice Heisenberg model with the open boundary condi-
tion. We also evaluate variational energies for the resulting TTNs, using the direct variational
optimization of isometry tensors with singular value decomposition (SVD) of environment
tensors based on causal cone structure [32]. In Sect. 4, we summarize the results and discuss
their implications to general tensor networks.

2. [Entanglement bipartitioning
As an example, we consider an S = 1/2 Heisenberg chain of the length N = 8 with open bound-
aries. Suppose that the exact ground-state wavefunction W, _,, is obtained with such a nu-
merical method as exact diagonalization, where s; with i = 1,...,N indicates a spin state at the
ith site in the standard S* basis. As depicted in Fig. 1, we construct an appropriate network
structure for the TTN from entanglements involved in ¥, (zeroth generation). The first
step is to divide ¥y, ;. into two parts G and Gp such that S(G,) is minimized, where S(Gya)
(= S(Gp)) represents EE for the bipartitioned subsystem. In Fig. 1, we assumed G5 = {1, 2,
3,4} and Gg = {5, 6, 7, 8} (first generation).

The next step is to divide the subsystems G, and Gp into descendant subsystems of the sec-
ond generation: G5 — Gaa, Gag and Gg — Gpa, G respectively. Imagine a sequence of the
bipartitionings at the nth generation,

e e

for instance. We then determine the optimal bipartitioning of Gg,a, Gq,s for the n + 1th genera-
tion. For this purpose, we define the following function to evaluate the quality of bipartitioning
based on the mutual information:

JSumr = S(Go,a) + S(Gg,B) — S(Gg,a U Gg,B). (1)
We also examine a similar but distinct evaluation function:
fnvix = max(S(Gq,a), S(Gg,B)) - (2

We then determine the optimal Gg,a and Gg,g so as to minimize fyvr or favx. In Fig. 1, we
assume the case of Gaa = {1} and Gag = {2, 3,4}, and Gga = {5, 6} and Ggg = {7, 8}. We can
recursively repeat this process to higher generations and finally arrive at the state where all of
the spin sites in ¥, are decomposed into single-site nodes. Then, the resulting binary tree
network in Fig. 1(a) provides the corresponding TTN structure in Fig. 1(b). More precisely, we
put isometry tensors, which are illustrated as triangle-like symbols, on the nodes except for the
single-site and top nodes, and connect (contract) the tensor legs as in the network obtained by
the EBP. Finally, we put a yellow diamond symbol at the top node representing the singular
value matrix.
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Let us discuss the physical implications of fymvr and fyvx to the resulting TTN state. First,
we note that fyrvr is nothing but the mutual information between two subsystems, implying that
minimization of fy\y basically leads to a classically well-separable bipartition, as partially used
in Ref. [22]. For the TTN case, moreover, Gg,a U Go,B = Gq, and thus S(Gg,a U Gg,B) = const
within the branch of Gq,. Thus, the minimum of fypvr is determined by calculating S(Gg,a)
and S(Gq,) only.

For famvx, meanwhile, we have more practical reasoning. In practical TTN simulations, we
usually truncate leg degrees of freedom attached to isometric tensors, the upper bound of which
is usually termed bond dimension yx. For a relatively small number of x, an approximated
isometry with the bond dimension x loses its accuracy by the truncation of the EE exceeding
log x. In particular, if the gap between log x and the true EE without truncation for a certain
isometry is large, the accuracy of its descendant branches is significantly spoiled. Thus, the
minimization of fynix enables us to reduce the maximum loss of the EE due to truncation
of the bond dimension in practical TTN simulations. Here, we note that both approaches of
MMI and keep MMX the balance of EEs between two branches at each bipartitioning step
and thus basically generate the same binary tree network for 1D cases. If an irregular difference
occasionally appears in ramifications, however, we adopt the MMX approach, because it tends
to pick up a more regular network structure.

In the EBP based on the above two approaches, the quantity that we need is the exact EEs for
all possible bipartitions in the subsystems. The tree network structure generated by sequential
bipartitioning might depend on branching paths. However, we should note that the exact EE
emerging at any link of tensors is independent of branching paths, if we keep sufficient bond
dimensions. More precisely, S(Gg,a) is exactly calculated as the bipartitioned EE of the Gg,a
and Gg,, where G, is the complement of Gg,a. We also obtain the exact S(Gg,p) as the EE
for the Go,p and Gq,a, where Gq,p is the complement of Gg,p. In Fig. 1(b), for instance, the
exact EE at the partitioning of the blue dotted line is calculated by the bipartition of Gag = {2,
3,4} and Gap = {1, 5, 6,7, 8} for W, s which is clearly independent of the connectivity of
the other links. Thus, we first calculate the EEs for all possible bipartitions, i.e., 2V ~ ! number
of bipartitions of Wy, . beforehand, and then search the minimum of fyiv1/vmvx by picking
up the EEs for the corresponding bipartitions. Here, we note that, in general, the bipartitions
by minimizing fyvvivix may have trivial degeneracies reflecting symmetries such as lattice
translation, parity, etc. If this is the case, we randomly select one of the bipartitions having a
degenerating value of fyivimvx. Using the EBP thus, we can determine an optimal network
structure within a realistic computational cost up to N = 16, without directly searching (2N —
3)!! number of all possible networks.

Once the optimal network structure is generated by the EBP, we can straightforwardly con-
struct the corresponding TTN by putting isometric 3-leg tensors at the nodes in the network
(see, e.g., Fig. 1(b)). Here, it should be recalled that, in general, the location of the singular
value tensor in the isometric TTN in the canonical form can be shifted with SVD or QR de-
composition [4]. This implies that the location of the root node in Fig. 1(a) is irrelevant in the
context of the TTN, and thus a binary tree network of the EBP accompanies a 2N — 3 number
of equivalent TTN structures. In the following, we demonstrate variational optimization of the
TTNs based on the EBP, where the resulting accuracy is confirmed to be independent of the
position of the top tensors.
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Fig. 2. The EBP for the ground state of an S = 1/2 Heisenberg chain of N = 16 sites with the open
boundary condition. The sizes and colors of the node circles represent the number of spins included
in the nodes. Numerical values on link arrows represent the EE minimizing fyinvravx. Note that both
JSymimmx yield the same network structure. Inset: The dimer MPS corresponding to the network struc-
ture in the main panel.

3. Results and variational optimization

3.1. S =1/2 Heisenberg chain with the open boundary condition

As a benchmark example, we consider an S = 1/2 Heisenberg chain of N = 16 sites with the
open boundary condition, for which the ground-state energy is given by Ee, = —6.911 737 146.--.
Here, we have assumed the exchange coupling J = 1. We perform the EBP based on fynvr mvix.,
which yields the same network structure depicted in Fig. 2. In this figure, we should note that
the node circles represent not isometry tensors but nodes of the spin cluster, since the EBP
generates the network structure only. In particular, the sizes of circles in the figure symbolically
represent the number of spins included in the nodes and numerical values on the links indicate
optimal values of S(Gq,a) and S(Gq,) obtained with the EBP. Note that the decomposition
of dimerized spin-pair nodes always gives the trivial EE, log2 >~ 0.6931---, reflecting the spin-
singlet ground state.

A crucial point in Fig. 2 is that spin-pair nodes sequentially branch oft from the dominant
node clusters, which results in an MPS-type network structure with the dimerized-spin unit.
On the basis of the network structure in Fig. 2, we then construct the TTN state composed
of 3-leg isometric tensors as in the inset of Fig. 2, which is mentioned as the “dimer MPS”
below. In order to evaluate the quality of the network structure, we perform a variational cal-
culation for the dimer MPS with the bond dimension x = 8. (See Appendix B for details of the
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Fig. 3. (a) The uniform MPS, which is usually assumed in the DMRG. (b) A TTN of the 1D perfect
binary tree network, which is abbreviated as “pbTTN”. (c) A pbTTN for a 2D square lattice.

Table 1. Variational energies for an S = 1/2 Heisenberg chain of 16 sites with the open boundary con-
dition. The variational states are assumed to be dimer MPS (inset of Fig. 2), uniform MPS (Fig. 3(a)),
and pbTTN (Fig. 3(b)). The maximum bond dimension is y = 8 for all cases. AE denotes the deviation
from the exact ground-state energy.

E AE
Exact —6.911737 146.-- -
Dimer MPS —6.911614 696 0.00122
Uniform MPS —6.911 558 558 0.00179
pbTTN —6.891960 394 0.01977

variational optimization method.) For comparison, we also examine variational optimizations
of uniform MPS and pbTTN, which are respectively depicted in Figs. 3(a) and (b). Note that
the ground-state energies are well converged within 200 iterations. Results of the variational
energy are summarized in Table 1. The dimer MPS gives the best energy £ = —6.911 614 696 in
the table, which implies that the EBP approach generated an appropriate network structure for
the spin chain with the open boundary condition. Also, we have confirmed that the EEs hosted
by the tensor legs in the dimer MPS are smaller than those in the uniform MPS. Thus, the EBP
certainly provides an appropriate network structure for a chain with open boundaries.

3.2. S = 1/2 Heisenberg chain with the periodic boundary condition

We discuss the EBP for the ground state of the S = 1/2 Heisenberg chain with the periodic
boundary condition. Of course, the periodic boundary system is translationally invariant and
thus the process of the EBP gives sequential single-spin decoupling with S(Ggg) = log?2, as
depicted in Fig. 4. Then, the EBP naturally yields a uniform linear network, which leads us to
a uniform MPS in Fig. 3(a). However, we also note that the resulting MPS explicitly breaks
the translational symmetry at the boundary, implying that local tensors in the vatiationally
optimized MPS become position dependent. In strict sense, thus, the uniform MPS in Fig. 3(a)
may not mean “uniform” literally.
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Fig. 4. The EBP for an S = 1/2 Heisenberg chain of 16 sites with the periodic boundary, which yields
the uniform chain network corresponding to the uniform MPS in Fig. 3(a). The color bar represents
the magnitude of optimal values of the EE on link arrows. Note that the EE associated with single-site
bifurcation is always log 2, reflecting the spin-singlet ground state.

Table 2. Variational energies for an S = 1/2 Heisenberg chain of 16 sites with the periodic boundary
condition. The variational states are assumed to be dimer MPS (inset of Fig. 2), uniform MPS (Fig. 3(a)),
and pbTTN (Fig. 3(b)). The maximum bond dimension is fixed at y = 8 for all cases. AE denotes the
deviation from the exact ground-state energy.

E AE
Exact —7.142296 361 --- -
Dimer MPS —7.106 850 777 0.035445 58
Uniform MPS —7.095 822 585 0.04647378
pbTTN —7.109020 051 0.03327631

In Table 2, we present variational energies of the chain with typical TTNs and the exact
energy. As in the case of the DMRG for the periodic boundary system, the accuracy of the
uniform MPS and dimer MPS for the periodic system is worse than that for the open boundary
case, where we have confirmed that the bond energy between i = 1 and 16 loses its accuracy
substantially. Meanwhile, the pbTTN gives the best variational energy, which is comparable
to the dimer MPS. The reason why the pbTTN yields a better accuracy is that it maintains
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Fig. 5. The EBP for the Heisenberg model on a 4 x 4 square lattice. (a) Site indices on the square lattice.
Colored broken lines represent 4-site units generated by the EBP with fynx. (b) The TTN corresponding
to the EBP result.

more lattice symmetries such as bond parity involved in the ground-state wavefunction, which
certainly mitigates a substantial drop in the accuracy of a particular bond energy compared
with the uniform MPS. This fact suggests that, as for the variational TTN, the loop structure
due to the periodic boundary condition is not treated appropriately in this EBP approach. In
the framework of the MPS, one should implement a periodic loop network structure to achieve
an accurate variational energy for the periodic system [33].

3.3.  §=1/2 square-lattice Heisenberg model with the open boundary condition

We discuss the EBP for 2D systems. In general, the TTN does not satisfy the area law of EE
for 2D systems. This point should be contrasted with the tensor product state [34] or projected
entangled pair state [35], which contain the loop structure with respect to the auxiliary degrees
of freedom. Here we restrict our argument to an optimal network structure within the binary
tree network and then discuss features of the resulting TTN in comparison with typical TTNs,
like a pbTTN and an MPS defined on snake-like 1D paths embedded in a 2D lattice.

We consider the EBP for the S = 1/2 Heisenberg model on a square lattice of 4 x 4 with
the open boundary condition. The arrangement of lattice sites is defined in Fig. 5(a). We then
perform the EBP for the exact ground-state wavefunction calculated with the exact diagonaliza-
tion. The results of EBP with the MMX and MMI are presented in Fig. 6, where the MMX and
MMI approaches yield partly different network structures. In particular, the network structure
due to fymvr has some irregular bifurcations of distal branches, while the result of fymix shows
a more systematic network structure consisting of an MPS-like network of the 4-spin unit,
which is illustrated as broken lines in Fig. 5(a) (see also Fig. 7(a)). Here, we note that the maxi-
mum EE in the bipartitioning process is Sﬁ;& = 1.111 for the MMX, while that for the MMI is
S&nﬁ? = 1.378. Thus, the loss of EE due to the truncation in the variational TTN computation
for the MMX network is expected to be smaller than that for the MMI. The TTN constructed
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Fig. 6. The EBP for the square-lattice Heisenberg model of 16 sites with the open boundary condition.
The site index corresponds to that in Fig. 5(a). The color bar represents the magnitude of optimal val-
ues of the EE on link arrows. Note that the EE associated with single-site partitioning is always log 2,
reflecting the spin-singlet ground state.
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Fig. 7. The networks for the square-lattice Heisenberg model with open boundaries. Numbers around the
networks represent the index of bare-spin nodes. (a) The network for the 16-site system in the disk-like
representation, which is equivalent to Fig. 6(a) obtained with the EBP. The yellow node corresponds to
the root (top) node in Fig. 6(a). (b) The extended network for the 64-site system, which is obtained by
straightforward extrapolation of panel (a).
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Table 3. Variational ground-state energies for the square-lattice S = 1/2 Heisenberg model of 16 sites
with the open boundary condition. The variational states of the MMX and MMI are respectively based
on the networks in Figs. 6(a) and (b). pbTTN indicates the variational energy for the TTN in Fig. 3(c).
Also, snake MPS corresponds to the MPS with a typical 1D path used in the DMRG for 2D systems.
The maximum bond dimension for variational computations is fixed as x = 8 for all cases. AE denotes
the deviation from the exact ground-state energy.

E AE
Exact —9.189207--- -
MMX —9.052 564 0.136 643
MMI —8.980 623 0.208 584
pbTTN —9.052 564 0.136 643
Snake MPS —8.760 211 0.428 996

on the MMX network is shown in Fig. 5(b), where the colors of isometries correspond to those
of the broken lines of the 4-spin unit in Fig. 5(a).

In Table 3, we present results of variational TTN calculations with x = 8 based on the net-
works of the EBP, pbTTN, and snake MPS. The snake MPS has a typical 1D path for the MPS,
which was often employed in the early works on the DMRG for 2D systems. The pbTTN is de-
picted in Fig. 3(c). In the variational TTN optimization, the maximum bond dimension is fixed
at x = 8, and the maximum number of the TTN optimization is up to 200, where the numerical
convergence of the variational energy is up to seven digits. In the table, the variational energy
for the MMX is Eyivix = —9.052 564, which is close to the exact one Eex = —9.189 207---. Also,
the variational energy for the pbTTN for N = 16 is the same as Fypyx within numerical conver-
gence. Thus, it may be concluded that the EBP with the MMX yields the best variational TTN
for a square-lattice Heisenberg model compared with a typical TTN such as snake-MPS.

An interesting point in Table 3 is that the variational energy of MMX coincides with that of
pbTTN. Note that the coincidence of the variational energies for MMX and pbTTN is con-
firmed for a larger x. The main reason for this behavior is that the networks for both the TTNs
have similar 4-site unit structures at the level of N = 16. As mentioned before, the position of
the root node (singular value tensor) is not relevant to the variational TTN computation. In
the disk-like representation of the network in Fig. 7(a), which is equivalent to Fig. 5(b), we can
move the yellow diamond symbol to the center bond in the network, which illustrates the 4-spin
unit MPS structure similar to the ppTTN. The 4-spin unit MPS can describe the corresponding
4-spin cluster very accurately within the small x. Thus, the resulting accuracy of the variational
computation becomes equivalent to that for the pbTTN. On the other hand, it remains a non-
trivial problem how the variational energy for the TTNs behaves with increasing V.

In the remaining part of this subsection, we thus examine a straightforward extension of the
MMX network of N =16 (=4 x 4) to N = 64 (= 8 x 8). In particular, the result for N = 16
also suggests that the MMX network in Fig. 7(a) may have better scalability with respect to
N, whereas the EBP for N > 16 is a numerically hard problem because of the computational
limitations. For this purpose, we notice that the network has a branching structure of a 4-site
MPS-like unit, as is more visible in the disk-like representation of the network in Fig. 7(a).
In Fig. 7(b), we then construct an extended network for the N = 64 (= § x 8)-site system by
assuming self-similar connectivity in the network.
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Fig. 8. The x-dependence of variational energies for the Heisenberg model on an 8 x § lattice with the
open boundary condition. The extended network provides the best energy for each .

In order to evaluate the quality of the extended network, we perform variational TTN cal-
culations for the corresponding TTN with y = 8-64 as well as for the ppTTN and the snake-
like MPS. The x-dependence of variational energies is summarized in Fig. 8, where the curves
monotonously decrease with increasing x. As expected from the result of N = 16, then, it is
verified that, for each x, the MMX always gives the lowest variational energy compared with
those of the ppTTN and snake-like MPS. The best value, E = —51.63179, is achieved by the
extended network with x = 64, which is a lower energy than Ey,rrny = —51.578 96 for the stan-
dard pbTTN and Ej,, e = —51.22124 for the snake MPS often used in the DMRG. We note
that the computational time was about 30 hours (37 hours) with an Intel Core 19-12900K CPU
for the extended network (pbTTN). From Fig. 8, moreover, it follows that the accuracy of
the snake-like MPS with x = 64 is comparable to the TTN variation based on the extended
network with x =~ 20. We therefore conclude that the EBP has certainly provided an essential
insight into the construction of a better network for practical variational TTN simulation in
two dimensions.

4. Summary and discussions

We have shed light on the network structure of the TTN. We have proposed the EBP, which
leads to an optimal binary network structure without using the full search of all possible bi-
nary TTNs. After demonstrating the appropriate TTN for an S = 1/2 Heisenberg chain with
the open boundary, we have clarified that, for the 2D Heisenberg model, a nontrivial hierarchi-
cal network with an MPS-like structure of the 4-spin unit provides better variational energy,
compared with well-established TTNs such as snake MPS and pbTTN.
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From the practical viewpoint, designing an efficient network structure of the TTN is essential
for reliable simulations of random spin systems [17-20,36-38], quantum chemistry [23,25,26],
and complex data processing [39], which usually contain highly nonuniform interactions. For
such systems, the algorithm equipped with automatic structural optimization of the TTN is
hopeful [31]. We believe that the EBP provides an intriguing perspective of the variational TTN
complementary to such a bottom-up construction of the TTN.

In this paper, we have concentrated our arguments on the variational energy to evaluate the
quality of the network structure. However, the computational cost of variational optimization
of TTNs is another important issue to be investigated from the computational viewpoint. For
example, let d be the bond dimension of bare spins. Then, the computational cost for the con-
struction of an environment tensor based on the causal cone in Evenbly and Vidal’s algorithm
[32] is O(d?x*) for the MPS, which is much cheaper than O(x°) for a generic TTN such as
pbTTN, if d « x. This implies that the accuracy of an MPS simulation can be easily improved
by increasing the bond dimension x . In the practical situation, thus, the balance between the ac-
curacy intrinsic to the network structure and the computational limitation to x would become
a crucial problem.

We finally point out that the MMI approach has potential importance for analyzing general
tensor networks containing loop structure. This is because S(GAUGg) in fynr is capable of rep-
resenting interferences between the two branches mediated by a disentangler in the multi-scale
entanglement renormalization ansatz (MERA) [40]. Recently, the nontrivial connection [41]
between the MERA and the holographic entanglement entropy [42] has stimulated intensive
cross-disciplinary research. Thus, the EBP with MMI may provide an essential insight into the
development of a deeper understanding of the connection between tensor network structures
and geometry associated with the holographic EE [43—45]. More recently, the TTN representa-
tion of quantum circuits has also been discussed [46]. The EBP approach may have relevance
to designing quantum circuits.
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Appendix A. Number of binary tree networks

The number of possible bipartitioned tree networks corresponds to that of rooted binary trees,
which is given by

Qy = 2N = 3)!, (A1)
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where N( > 1) denotes the number of lattice sites (bare-spin nodes). This formula can be derived
from the recursive relation for Qy,
L5
Q=Y n1Gy
k=1
which is associated with the trees of k sites connecting at the rightmost branch of the trees of N
+ 1 — k sites. Note that Kronecker’s § in the denominator originates from the double counting
of the same branches. Then, this recursive relation can be attributed to the identity of double
factorials [48],

QN _gi1 (A2)
14+ Snpi—ki

N
2N - D! = ZNCk 2k — 3)NC2N — 2k — 1!, (A3)
k=1
which gives Eq. (A1). Note that Q16 = 6190283 353 629 375. Thus it is hard to directly search
all possible binary networks even for N = 16.
For the tree networks of N sites, there are 2N — 3 number of possible edge positions for the
root. Thus, the number of the unrooted binary tree networks is given by

Qy = (2N —5)! (A4)

with Q, = 1. In general, the position of the singular value tensor is not relevant in the TTN
representation of quantum states. Thus, one can regard Eq. (A4) as the number of possible
network structures for the TTN of N sites.

Appendix B. Variational optimization for the TTN

We explain the details of variational optimization for the TTN and numerical results for the typ-
ical quantum spin systems. The algorithm used in this work is the direct variational optimiza-
tion of isometry tensors through SVD of environment tensors based on causal cone structure
[32]. The TTN contraction code for the environment tensors is generated by the TensorTrace
package developed by G. Evenbly [47]. Initial tensors of an iterative optimization are random
tensors, and the maximum bond dimension is fixed at x = 8. For a 1D chain of 16 spins, a
typical number of iterations is 200, with which we can achieve 10-digit convergence of the vari-
ational energy. The variational optimization of the extended network for the 2D model of 64
spins with x = 64 requires 400 iterations for 7-digit convergence. Note that the reason why we
used a relatively small x is to make the cutoff effect on the resulting variational energy clear.
The variational optimization may sometimes be trapped at metastable states. We perform the
same computations with different initial random tensors 10 times and adopt the best energy as
the final result for a target system.
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