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Abstract

General properties of nuclear vertex constants and asymptotic normalization
coefficients as well as the methods of their determination are discussed. Selected
problems of nuclear astrophysics are outlined. A relation between asymptotic
normalization coefficients (ANCs) and astrophysical nuclear reactions is eluci-
dated. An analytic continuation of the effective range expansion is applied to
the α+ d system which is of interest for nuclear astrophysics.
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1 Introduction

Asymptotic normalization coefficients (ANCs) determine the asymptotics of nuclear
wave functions in binary channels. ANCs are proportional to nuclear vertex constants
(NVC) which determine the virtual processes a→ b+c and are related directly to the
residue in energy of the elastic bc scattering amplitude at the pole corresponding to
the bound state a [1]. NVCs and ANCs are fundamental nuclear characteristics. They
are used actively in analyses of nuclear reactions within various approaches. NVCs
and ANCs extracted from one process can be used for the prediction of characteristics
of other processes. Comparing empirical values of NVCs and ANCs with theoretical
ones enables one to evaluate the quality of a model.

The ANC for the channel a → b + c determines a probability of the configura-
tion b + c in nucleus a at distances greater than the radius of nuclear interaction.
Thus ANCs arise naturally in the expressions for cross sections of nuclear reactions
between charged particles at low energies, in particular, of astrophysical nuclear reac-
tions. Nuclear reactions in stars and stellar explosions are responsible for the synthesis
of chemical elements. Note that due to the Coulomb barrier cross sections at astro-
physical energies are so small that their direct measurement in laboratories is very
difficult, or even impossible. Hence knowing ANCs allows one to obtain additional
and important information on astrophysical nuclear reactions.

ANC values could be determined from microscopic calculations, however such
calculations are rather tedious. The theoretical results should be matched to the
empirical ones obtained from data on scattering and reactions. One of the promising
methods to extract ANCs is the analytic continuation of bc-scattering data to a pole
of a scattering amplitude corresponding to a bound state a lying in the unphysical
region of negative energies. The most effective way of realization of that procedure is
the analytic continuation of the effective range function.

The present paper deals with various problems related to the methods of analytic
continuation of scattering data and to utilization of these methods for obtaining an in-
formation on astrophysical nuclear reactions. The plan of the paper is as follows. We
discuss the general properties of NVCs and ANCs and methods of their determination

58



Analytic continuation methods 59

in Section 2. Section 3 is dedicated to selected problems of nuclear astrophysics in-
cluding indirect methods of obtaining information on astrophysical nuclear reactions.
The analytic continuation of the effective range expansion is applied in Section 4 to
the α+ d system which is of interest for nuclear astrophysics.

The system of units with ~ = c = 1 is used throughout the paper.

2 ANCs and NVCs

2.1 Definition and properties of ANCs and NVCs

ANC Cabc(LS) for the a→ b+ c channel is defined as a coefficient in the asymptotics
of the radial overlap integral of the wave functions of a, b, and c nuclei [1]

Iabc(LS; r)|r→∞ → Cabc(LS)W−ηb,L+1/2(2κr)/r. (1)

Here r is the distance between b and c, L and S are the channel orbital angular
momentum and the channel spin, κ2 = 2µǫ, ǫ = mb + mc − ma, mi is the mass
of particle i, µ = mbmc/ma, ηb = ZbZce

2µ/κ is the Sommerfeld parameter for the
bound state and Wm,n(z) is the Whittaker function.

Note that the asymptotical form (1) has been rigorously proved only for the sim-
plest case when the composite system a consists of two elementary constituents. In
that case the form (1) follows directly from the Schrödinger equation. For three-
and more particle systems the asymptotics of overlap integrals may differ from (1)
(‘anomalous asymptotics’) [2, 3].

NVC Gabc(LS) is the on-shell matrix element of the virtual a → b + c process in
the given partial-wave state LS. It is related to the amplitude of elastic bc scattering

res 〈LS|MJa |LS〉 = (−1)LG2
abc(LS). (2)

Gabc and Cabc are interrelated:

Gabc(LS) = −(πNbc/µ
2)1/2L!/Γ(L+ 1 + ηb)Cabc(LS). (3)

Nbc arises due to the identity of nucleons. Its value depends on the way of antisym-
metrization of wave functions: 1 ≤ Nbc ≤ (Ab + Ac)!/(Ab!Ac!), Ai being the mass
number of the nucleus i. Nbc is often included into Cabc.

2.2 Methods of determination of ANCs and NVCs

1) Microscopic calculations of ANCs and NVCs are very tedious. Working in the
configuration representation, one should make calculations in the asymptotical region
where wave functions decrease exponentially entailing a low accuracy of the results.
Using the momentum representation needs analytic continuation to imaginary values
of momenta that is non-trivial. To author’s knowledge, there are only two ab initio

calculations of ANCs for nuclei with A > 3 [4, 5].

2) Theoretical results should be matched to the empirical ones obtained from analyses
of scattering and reactions. There are various methods of extracting ANCs and NVCs
from experimental data.

2a) Analysis of data on transfer reactions. If the pole diagram corresponding to
the transfer of particle c contributes to the amplitude of the a(x, y)b reaction, the
differential cross section σ(z) of this reaction possesses the 2nd order pole at z = z0
(z = cos θ, θ is the c.m. scattering angle, |z0| > 1) (Fig. 1). If one extrapolates the
experimental values of (z − z0)

2 σ(z) to the pole position, one immediately obtains
the value of |GabcGyxc|

2.2

2Account of the Coulomb interaction in the vertices of the pole diagram turns a pole to a branch

point.
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Figure 1: A pole diagram for a transfer reaction.

2b) Extrapolation in energy E of the partial-wave amplitude of elastic bc scattering
(obtained by the phase-shift analysis) to the pole corresponding to the bound state a.

Note that the problem of using continuum-state data to obtain information on
bound-state characteristics is non-trivial. It is written in the well-known monograph
[6]: “It is impossible to obtain information on bound states from characteristics of
scattering processes, as a matter of principle”.

This assertion is based on the inverse scattering theory which states that to restore
a local potential one needs to know: i) phase shifts δL(E) for some arbitrary L in the
whole region 0 ≤ E <∞ and ii) 2NL parameters characterizing NL bound states for
a given L [7]. One can use NL binding energies and NL ANCs as those parameters.
Thus, if the system possesses bound states, knowing δL(E) is not sufficient to restore
unambiguously a potential describing the system. Instead one gets an infinite set of
so-called phase equivalent potentials (PEP) which lead to identical scattering phase
shifts δL(E) but to different properties of the bound states for a given L.

There are various methods of constructing PEPs, e. g., Bargmann potentials [6]
or the supersymmetric transformation [8]. In particular, the supersymmetric trans-
formation can be used to construct a PEP which differs from the initial potential by
any modification of the bound spectrum. A bound state can be added or suppressed;
its binding energy and/or the ANC can be modified.

Hence within the formal potential approach with arbitrary potentials and without
any additional conditions, it is impossible to determine unambiguously characteris-
tics of bound states knowing only δL(E). A way to resolve this ambiguity problem
is to use a natural requirement that amplitudes of processes are analytic functions
of their kinematic variables. The analyticity property follows from a fundamental
microcausality principle.

Using the analyticity and knowing the partial wave bc scattering amplitude fL(E)
on some segment of the real positive semiaxis, one can continue analytically fL(E)
to the unphysical region E < 0 and obtain both the position of the pole E = −ǫ < 0
and the residue of fL(E) at that pole, that is, the NVC and ANC. (Note that we
discuss here a principal side of the problem and not a practical realization of analytic
continuation.)

Thus, in the case of potential scattering, knowing ǫ, ANC Cabc, and fL(E) at
0 ≤ E < ∞, one can construct unambiguously a local potential V (r) using methods
of the inverse scattering theory [7]. As a result, a unique ‘analytic’ potential would
be selected out of the set of PEPs, which leads to the needed analytic properties of
the scattering amplitude. This potential describes all bound and continuum states of
the given system.

Now let us discuss why the characteristics of a bound state obtained by the direct
analytic continuation of fL(E) from E ≥ 0 to E < 0 may differ from the characteristics
found by solving the bound state problem with the potential which describes correctly
fL(E) at E ≥ 0. To be specific, we will consider the case L = 0 (the index 0 will be
omitted). According to [6, Chapter 12], one can continue analytically the amplitude
f(k) to the band |Im k| < α in the k plane if the potential V (r) satisfies the condition

∫ ∞

0

|V (r)|e2αrrdr <∞, α > 0. (4)
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In the potential scattering theory the procedure of analytic continuation is based
on the expression for the partial-wave amplitude in the form

fL(k) = −
µ

2π

∫ ∞

0

ϕL(kr)V (r)ψL(kr)dr, (5)

where ϕL and ψL are the plane wave and the exact wave function for given L, respec-
tively. Upon the continuation of k from the positive semiaxis to the complex plane,
the integrand in the r.h.s. of (5) develops terms proportional to e2|Im k|V (r) causing a
divergence of the integral in (5) at the upper limit if V (r) decreases insufficiently fast
for r → ∞. In this case, the condition (4) ceases to hold and the analytic continuation
of the amplitude with the aid of expression (5) becomes impossible. However, there
is a possibility to perform an analytic continuation by a different method. This can
be done, for example, if an expression for fL(E) in the region E ≥ 0 is known or if
fL(E) for E ≥ 0 can be approximated quite accurately by some analytic expression.

Consider a trivial example

f(z) =

∫ ∞

0

e(a−z)tdt. (6)

f(z) is defined initially only for Re z > Re a since the integral diverges if this inequality
is violated. On the other hand, the integration can be performed explicitly: f(z) =
1/(z − a). This expression defines a function analytic on the entire complex z plane
with a pole at z = a.

Let us consider an instructive example of the Bargmann-type potential specified
in [6, Chapter 14] as

Vd(r) = −
κ

µ

d

dr

[

sinh(br)
gd(κ, r)

gd(κ+ b, r)− gd(κ− b, r)

]

, (7)

where gd(x, r) = x−1[e−κr + d sinh(xr)].
In the S wave, this potential has one bound state, its binding energy ǫ = κ2/2µ.

The respective normalized radial wave function has the form:

ϕd = 2

√

κd

b2 − κ2
sinh(br)

gd(κ+ b, r)− gd(κ− b, r)
, b > κ. (8)

For the potential (7), the effective-range approximation coincides with the exact so-
lution. In this case, the S wave phase shift is determined by the equation

k cot δ = −κb/(b+ κ) + k2/(b+ κ). (9)

The S wave scattering amplitude has the form:

f(k) =
e2iδ − 1

2ik
=

1

k cot δ − ik
=

b+ κ

−bκ+ k2 − i(b+ κ)k
. (10)

As follows from (10), f(k) is independent of the parameter d; that is, expression (7)
determines a family of phase-equivalent potentials differing by the value of d. The
amplitude f(k) in (10) can be analytically continued to the region of imaginary k
where it has a pole at k = iκ. Expressing the vertex constant G and the asymptotic
normalization coefficient C in terms of the residue of f(k) at this pole, one obtains:

G =

[

2πκ(b+ κ)

µ2(b− κ)

]1/2

, C =

[

2κ(b+ κ)

b− κ

]1/2

. (11)

On the other hand, a d-dependent expression for the asymptotic normalization coef-
ficient can be obtained directly from (8). Specifically, one has:

Cd =

[

4κ(b+ κ)

d(b − κ)

]1/2

. (12)
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One can see that only at d = 2 does Cd given by (12) coincide with C given by (11).
The fact that the value of d = 2 stands out becomes understandable upon examining
the asymptotic behavior of the potential Vd(r) for r → ∞. It can be shown that this
asymptotic behavior is given by

Vd(r) =

{

−V1e
−2κr, d 6= 2

−V2e
−2br, d = 2.

(13)

Since b > κ, the analyticity condition (4) for Vd(r) is satisfied at d = 2 but is violated
for all d 6= 2. Thus, an analytic continuation of the amplitude f(k) to the region of
imaginary values of k makes it possible to select among the set of phase-equivalent
potentials Vd(r), the only ‘analytic’ potential which corresponds to d = 2, and to
find the relevant correct values of the ANC C. As for phase-equivalent potentials
that are obtained by means of supersymmetry transformations, they develop at the
origin a singularity of the 1/r2 type (see [8]) and, hence, do not satisfy the analyticity
condition (4) just in the same way as the potential (7) does not satisfy it for d 6= 2.

So far, we have addressed a problem of a pure potential scattering of structureless
particles. For practical purposes, including applications in astrophysics, the case of
composite particles, first of all, nuclei, is of greater importance. Complex nuclei are
the subject of many-body theory. An attempt at describing elastic nucleon-nucleus
or nucleus-nucleus scattering within a two-body potential problem would lead to a
complex-valued optical potential that is in general nonlocal and energy and angular-
momentum dependent. Nevertheless, both the bound-state energy (which is usually
known from experimental data) and the respective NVC and ANC can in principle be
found as before by performing an analytic continuation of the partial-wave amplitude
fL(E) to the region of negative values of E (imaginary values of k). This continuation
may be realized in various ways. For example, G6Liαd and C6Liαd for the S wave
state of the α + d system were found by two methods in Ref. [9]. Within the first
method, an analytic Padé approximation of the scattering function k cot δ obtained
for E > 0 from the experimental phase shifts for the d 4He scattering was analytically
continued to the region E < 0, the parameters of the respective Padé approximants
being determined by means of the χ2 minimization. Within the second method, an
effective two-body dα potential Vdα(r) describing the same d 4He phase shifts was
constructed using the harmonic oscillator basis and the χ2 minimization. The next
step of this method involved deriving the two-body (d+α) wave function for the 6Li
bound state in the potential Vdα(r) and determining the respective ANC C6Liαd. The
two methods yielded rather close values of C6Liαd. Since the potential Vdα(r) was a
finite sum of harmonic-oscillator wave functions, it obviously satisfied the necessary
analyticity condition (4).

It should be noted that, in a general case, when b or c (or both) are composite
systems, the ANC Cabc refers to the overlap integral Iabc(r) which is normalized to
the spectroscopic factor Sabc rather than to unity. If, however, the ANC is found by
solving the bound-state problem for nucleus A on the basis of two-body potential Vbc
fitted to the bc phase shifts, the respective two-body wave function should be normal-
ized to unity. It would be incorrect to normalize this function to the independently
determined spectroscopic factor as was done, for example, in Ref. [10] for the 3He+α
system.

2.3 Inference

1. Using the fundamental analyticity property of scattering amplitudes and analytic
continuation methods allows one to obtain information on characteristics of nuclear
bound states (including ANCs) from the phase shift data. Thus the ambiguity related
to the existence of phase-equivalent potentials is removed.
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2. The most efficient method of analytic continuation is the analytic approximation
of the experimental values of k cot δ.

3. If the continuation is performed by fitting a two-body potential, one should use a
potential which decreases rapidly enough at r → ∞. One should set the spectroscopic
factor equal to 1.

3 Selected problems of nuclear astrophysics

3.1 Introduction

Nuclear reactions in stars and stellar explosions are responsible for ongoing synthesis
of chemical elements. Nuclear physics plays an important role as it determines the
signatures of isotopic and elemental abundances found in spectra of stars, novae,
supernovae, and X-ray bursts.

The rapid neutron capture process (r-process) is responsible for existence of about
a half of stable nuclei heavier than iron. Capture cross sections for most of nuclei
involved are hard if just impossible to measure in the laboratory and indirect ex-
perimental approaches have to be employed to gather the relevant nuclear structure
information. The same concerns (p, γ) and (p, α) reactions.

Quantities used in nucleosynthesis calculations are reaction rates. A thermonu-
clear reaction rate is a function of density of interacting nuclei, their relative velocity
and the reaction cross section. Extrapolation procedures are often needed to derive
cross sections in the energy or temperature region of astrophysical relevance. While
non-resonant cross sections can be extrapolated rather well to the low-energy region,
the presence of continuum or sub-threshold resonances can complicate these extrap-
olations.

As an example of an important astrophysical reaction one may mention 7Be(p, γ)8B
which plays a major role for the production of high energy neutrinos from the β-decay
of 8B. These neutrinos come directly from the center of the Sun and are ideal probes
of the Sun structure. The reaction 12C(α, γ)16O is extremely relevant for the fate of
massive stars. It determines if the remnant of a supernova explosion becomes a black
hole or a neutron star. These two reactions are two examples only of a large number
of reactions not known yet with an accuracy needed for astrophysics.

3.2 Thermonuclear cross sections and reaction rates

The number r of reactions between a target j and a projectile k per unit volume and
time can be expressed as r = σvnjnk or, more generally, as

rjk =

∫

σvd3njd
3nk. (14)

Here σ is the cross section, v is the relative velocity, nj and nk are number densi-
ties. For nuclei j and k in an astrophysical plasma obeying a Maxwell–Boltzmann
distribution,

d3nj = nj

( mj

2πkT

)3/2

exp

(

mjv
2
j

2kT

)

d3vj , (15)

k is the Boltzmann constant and T is the absolute temperature. Using (15), one can
rewrite (14) as

rjk = 〈σv〉jk , 〈σv〉jk =

(

8

πµjk

)1/2

(kT )−3/2

∫ ∞

0

Eσ(E) exp

(

−
E

kT

)

dE, (16)

where 〈σv〉jk is an average over the temperature distribution.
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3.3 Charged particles

Experimentally, it is more convenient to work with an astrophysical S factor:

S(E) = Eσ(E)e2πη , η = ZjZke
2/v. (17)

Eq. (16) can be written as

〈σv〉jk =

(

8

πµjk

)1/2

(kT )−3/2

∫ ∞

0

S(E) exp

(

−
E

kT
−

b

E1/2

)

dE, b = 2πηE1/2.

(18)
If one assumes that S(E) is a constant, the integrand in (18) is maximal at the Gamow
energy E0 = (bkT/2)2/3.

Measurements of cross sections at low energies are difficult and their extrapolation
from higher energies can be complicated by presence of unknown resonances.

3.4 Nuclear reactions at the Sun

The Sun belongs to the main-sequence stars which energy is governed by the pp- and
CNO-cycles (Figs. 2, 3).

According to the Standard Sun model, 99% of the Sun energy is generated by the
pp-cycle (see Fig. 4), an ultimate result of this cycle is the transmutation of 4 protons
into helium

4p→ 4He + 2e+ + 2νe. (19)

The explosive nuclear burning in astrophysical environments produces short-lived
exotic nuclei which in turn can play a role of targets in subsequent reactions. In
addition, it involves a very large number of stable nuclei still not fully explored in
experiments. Thus, it is necessary to be able to predict reaction cross sections and
thermonuclear rates with the aid of theoretical models, moreover, a direct cross section
measurement is often not possible with existing experimental techniques. For getting
a reliable result obtained by extrapolation down to the stellar energies of the cross
sections measured at the lowest possible energies in the laboratory, such extrapolations
should have as strong theoretical foundation as possible. The theory is even more
mandatory when excited or unstable nuclei are involved in the entrance channel.

99.76% 0.24%

83.30% 16.70%
~2·10 %

-5

99.88% 0.12%

ppI ppII ppIII

p + p →
2H + e+ + νe p + e− + p →

2H + νe

2H + p →
3H + γ

3He +3He →
4He + 2p 3He +4He →

7Be + γ 3He + p →
4He + e+ + νe

7Be + e−→
7Li + νe

7Be + p →
8B + γ

7Li + p → 2 4He 8B →
8Be∗ + e+ + νe

Figure 2: The pp-cycle.
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Figure 3: The CNO-cycle.

3.5 Nuclear reaction models

1. Potential models assume that physically important degrees of freedom are the rel-
ative motions between structureless nuclei in the entrance and exit channels. Interac-
tion between them is described by an optical potential (usually of the Woods–Saxon
form). DWBA is used practically for all astrophysical nuclear reactions. The only mi-
croscopic information is introduced in terms of spectroscopic factors and parameters
of the optical potential. A deficiency of these models is that the optical parameters
cannot be determined unambiguously.

2. In microscopic models, nucleons are grouped into clusters and completely an-
tisymmetrized relative wave functions between various clusters are determined by
solving the Schrödinger equation for a many-body Hamiltonian with an effective
nucleon-nucleon interaction. Typical cluster models are based on the Resonating
Group Method (RGM) or the Generator Coordinate Method (GCM). They result in
a complicate set of coupled integro-differential equations. Modern nuclear shell-model
calculations, such as the Monte Carlo shell model, or the no-core shell model, are able
to provide the wave functions for light nuclei. However so far they cannot describe
scattering wave functions with a sufficient accuracy.

Theoretical results for the astrophysical S-factor for the 7Be(p, γ)8B reaction are
shown in Fig. 5. The dashed line corresponds to the no-core shell model and the dotted
line to RGM. Experimental data are taken from 8 different papers. It is evident that
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Figure 4: Relative energy release in stars as a function of temperature. The dotted
line corresponds to the Sun.
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Figure 5: Comparison of theoretical and experimental results for the 7Be(p, γ)8B
reaction. Dashed line — no-core shell model, dotted line — RGM. See Ref. [11] for
details.

both theory and experiment need improvement for this important reaction.

3. Field theories adopt a completely independent approach to nuclear physics
calculations which does not use the concept of nuclear potentials. The basic method
of field theories is to start with a Lagrangian for the fields which is used to con-
struct Feynman diagrams that are utilized for practical calculations. Effective field
theory (EFT) bypasses complications of quantum chromodynamics (QCD) using an
expansion over a small parameter determined as a ratio of short-range and long-range
(or ‘light’ and ‘heavy’) scales. Practically, for the NN interaction, this parameter is
conventionally defined as

p =
(1/a,B, k)

Λ
, (20)

where for the ‘light’ scale one uses either 1/a (a is the NN scattering length), or a
typical binding energy B, or a typical nucleon momentum k. The ‘heavy’ scale is
determined by the pion mass: Λ ∼ mπ ∼ 140 MeV.

The reaction rates dominated by the contributions from a few resonant or bound
states, are often extrapolated to energies of astrophysical interest in terms of R-
matrix fits. The appeal of these methods rests on the fact that analytical expressions
can be derived from underlying formal reaction theories allowing for a rather simple
parameterization of the data. However, the relation between the parameters of the
R-matrix model and the experimental data is quite indirect.

A large fraction of the reactions of interest proceed through compound systems
that exhibit high enough level densities to provide a reliable description of the reaction
mechanism by means of statistical methods. A theoretical treatment of nuclear reac-
tions leading to formation and decay of compound nuclei was developed by Ewing and
Weisskopf based on two ideas: (a) the compound nucleus formation independence hy-
pothesis as proposed by Niels Bohr, and (b) the reciprocity theorem, or time-reversal
properties of the underlying Hamiltonian. This allows one to relate capture and decay
cross sections.

3.6 Effects of electron screening

The form of the astrophysical S factor given in Eq. (17) assumes that the electric
charges of nuclei are ‘bare’ charges. However, this is the case neither at very low lab-
oratory energies, nor in stellar environments. In stars, the bare Coulomb interaction
between nuclei is screened by the electrons in the plasma surrounding them. If one
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measures reaction rates in the laboratory using atomic targets (always), the atomic
electrons provide screening as well.

1. Stellar electron screening

Coulomb interaction between two charges in a neutral plasma can be written as

V (r) =
Z1Z2e

2

r
exp

(

−
r

RD

)

, (21)

where RD is the Debye radius, i. e., the scale over which mobile charge carriers in the
neutral medium screen out electric fields. In the weak screening approximation

V (r) ≈
Z1Z2e

2

r

(

1−
r

RD

)

= Vb(r) + U0, U0 = −
Z1Z2e

2

RD
. (22)

As a result, the reaction velocity increases:

〈σv〉screened = f〈σv〉bare, f = exp(|U0|/kT ). (23)

2. Atomic electron screening

The laboratory screening can be evaluated in the adiabatic approximation assum-
ing that the electron velocities in the target are much larger than the velocity of
the relative motion between the projectile and the target nucleus. In this case, the
electronic cloud at each instant time t adjusts to the ground state of a ‘molecule’
consisting of two nuclei separated by a time-dependent distance R(t). Since the clos-
est approach distance between the nuclei is much smaller than typical atomic cloud
sizes, the binding energy of the electrons will be given by the ground-state energy B
of the Zp + Zt atom. Energy conservation implies that the relative energy between
the nuclei increases by

Ue = B(Zp + Zt)−B(Zt). (24)

Ue is the screening potential. This energy increment enhances the fusion (tunneling)
probability. Supposing that Ue/E is small and using (17) one gets

σ(E + Ue) = exp

[

πη(E)
Ue

E

]

σ(E). (25)

The values of Ue needed to reproduce the experimental data are systematically larger
than the theoretical ones by a factor of 2 (see Fig. 6).

3.7 Indirect methods of obtaining information
on astrophysical nuclear reactions

1. Trojan horse method

The Trojan horse (TH) method [12, 13] is an efficient indirect method of deter-
mining cross sections of astrophysical binary reactions by measuring cross sections
of reactions with three particles in the final state. Suppose we are interested in the
A+ x→ B + y reaction at low (astrophysical) energies, and direct measurements are
not possible due to the Coulomb barrier. Consider the reaction 1 + A → 3 + B + y
where 1 = 3 + x. The particle 1 is the Trojan horse which includes the particle x.

Consider the quasifree mechanism (Fig. 7). At low momentum transferred from
1 to 3, this mechanism may provide a dominant contribution (or at least determine
angular and energy dependencies). The respective differential cross section is of the
form:

σ3diff(A+ 1 → B + y + 3) = KFψ2(1 → 3 + x)σ̃2diff(A+ x→ B + y). (26)
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Figure 6: S factor of the 3He(d, p)4He reaction. Dashed curve — bare nuclei, solid
curve — screened nuclei with Ue = 219 eV (theory gives Ue = 119 eV). See Ref. [11]
for details.

Here KF is a known kinematical factor, ψ is the wave function of particle 1 in the
3 + x channel, and σ̃2diff is a modified differential cross section of the binary reaction
of interest. If KF and ψ are known, σ̃2diff can be extracted from σ3diff .

As a typical example, one sets 1 = d, x = p, and 3 = n.

σ̃2 differs from the free cross section σ2 by particle x being virtual (off-shell), that
is σ̃2 describes the A+ x→ B + y process half-off-shell.

Using the energy and momentum conservation laws at the vertices of the diagram
of Fig. 7, one can show that the relative momentum k of particles A and x in the
initial state of the reaction A + x → B + y remains non-zero as the relative kinetic
energy EAx → 0. Hence the Coulomb barrier factor e−2πηi does not appear in the
expression for σ̃2, and it remains finite at EAx → 0. A qualitative explanation is that
at the moment of interaction with particle A, the particle x has already penetrated
through the Coulomb barrier in the initial state as a part of particle 1.

Note that the initial energy EA1 should be chosen large enough so that the reaction
can be measured. A proper choice of EBy and the use of Eq. (26) and energy
conservation in the A+x→ B+ y vertex makes it possible to find σ̃2 at EAx ≈ 0 and
to obtain finally the desired σ2(E) and S(E) at EAx ≈ 0 by multiplying σ̃2 by the
Coulomb penetration factor. Practically, the absolute value of S(E) is found by the
normalization to direct measurements at higher energies when the penetration factor
e−2πηi ≈ 1.

By comparing the cross section thus obtained with the laboratory one at lower
energies one can obtain an information on the electron screening effects. These effects
which are essential at very low energies, are accounted by multiplication of the reaction
cross section on the ‘bare’ nucleus by a factor exp(πηUe/E) that results in the increase
of the cross section. The TH cross section is free from the screening effects, and its

1 3

A

B

x
y

Figure 7: Quasifree mechanism of the A+ 1 → B + y + 3 reaction.
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Figure 8: S factor for the 15N(p, α)12C reaction obtained by the TH method using
the 15N(d, nα)12C reaction at Ed = 60 MeV (filled dots). Open dots are the direct
data. The line corresponds to the Breit–Wigner fit. See Ref. [11] for details.

comparison with the directly measured cross section allows one to obtain information
on Ue.

An example of using the TH method is shown in Fig. 8. Other examples of
astrophysical reactions for which S(0) has been found by the TH method (C.Spitaleri,
A.M.Mukhamedzhanov et al., INFN-LNS, Catania, Italy) are

7Li + p→ α+ α (from d+ 7Li → α+ α+ n) (x = p, 1 = d).
6Li + d→ α+ α (from 6Li + 6Li → α+ α+ α) (x = d, 1 = 6Li).
6Li + p→ α+ 3He (from d+ 6Li → α+ 3He + n) (x = p, 1 = d).
11B+ p→ 8Be + α (from d+ 11B → 8Be + α+ n) (x = p, 1 = d).

2. Coulomb dissociation method

In this method, the use is made of experimental data on a dissociation of a fast
nucleus a in the Coulomb field of a heavy nucleus A (e. g. lead): a+A→ b+c+A. The
cross section of this process induced by a high energy virtual photon could be related
to the photoeffect cross section (γ+a→ b+c), which by the time reversal is related to
the sought-for cross section of the inverse process of the radiative capture b+c→ γ+a.
The strong interaction effects could be reduced if one performs the measurements at
low scattering angles when the electromagnetic interaction dominates over the nuclear
one.

3. Method of asymptotical normalization coefficients (ANC)

The ANC method [14] allows one to determine S(E ≈ 0) for radiative capture
reactions using their peripheral character due to the Coulomb (or centrifugal) barrier.
The cross section for a non-resonant radiative-capture reaction b(c, γ)a at zero relative
energy depends only on the long-distance behavior of the b+ c wave function (and on
the overlap of that extended wave function with that of a). The detailed short-range
behavior of the scattering state b + c or the bound state a is not relevant to the
reaction mechanism. At large distances the overlap integral of the wave functions of
b, c, and a is determined by the corresponding ANC (see (1)).

The ANC needed for the b(c, γ)a reaction may be found from another nuclear
reaction which mechanism includes the b+c→ a vertex. Usually ANCs are determined
from peripheral transfer reactions using the DWBA. The particle energies in the initial
and final states can be large enough.

The test of the method has been performed by comparing the experimental data for
the 16O(3He, d)17F and 16O(p, γ)17F reactions. The ANC method was used for many
radiative capture reactions. In particular, the 10B(7Be,8B)9Be and 14N(7Be,8B)13C
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Table 1: Summary of updates to S values and derivatives for CNO reactions. The
table is taken from review [15].

Reaction Cycle S(0) S′(0) S′′(0)
keV b b keV−1 b

12C(p, γ)13N I 1.34± 0.21 2.6× 10−3 8.3× 10−5

13C(p, γ)14N I 7.6± 1.0 −7.83× 10−3 7.29× 10−4

7.0± 1.5
14N(p, γ)15O I 1.66± 0.12 −3.3× 10−3 4.4× 10−5

15N(p, α0)
12C I (7.3± 0.5)× 104 351 11

15N(p, γ)16O II 36± 6
64± 6

29.8± 5.4
16O(p, γ)17F II 10.6± 0.8 −0.054
17O(p, α)14N II Resonances
17O(p, γ)18F III 6.2± 3.1 1.6× 10−3 −3.4× 10−7

18O(p, α)15N III Resonances
18O(p, γ)19F IV 15.7± 2.1 3.4× 10−4 −2.4× 10−6

reactions were used to obtain the S factor S(0) for an important process 7Be(p, γ)8B.
Other examples of using the ANC method to calculate the S(E = 0) for radiative
capture processes are

4He(d, γ)6Li, 4He(3He, γ)7Be, 7,9Be(p, γ)8,10B, 8B(p, γ)9C, 11,13C(p, γ)12,14N,
12−14N(p, γ)13−15O, 17F(p, γ)18Ne, 20Ne(p, γ)21Na.

The sensitivity of the extracted cross section to the parameters of the optical
potential used in the DWBA, has been also tested.

Nowadays astrophysical factors S(E ≈ 0) for numerous astrophysical reactions
and their derivatives with respect to energy are determined by various methods (see
Table 1). However such data are not available for many important processes, and the
accuracy of available data should be improved.

3.8 Nuclear experiments using beams of rare (unstable)
isotopes

Unstable nuclei take part in many astrophysical nuclear processes (r-process, rp-
process). Experiments using beams of such nuclei are performed actively nowadays.
Two main mechanisms of formation and separation of exotic nuclei are:

1. Beams of short-lived nuclei are formed in a thin target and are separated
in-flight;

2. Exotic nuclei are formed and stopped in a thick target and then are extracted
and accelerated anew (on-line).

Several examples of important astrophysical processes with unstable nuclei mea-
sured recently are (T1/2 is shown in brackets):

7Be(53 d)(p, γ)8B; 13N(10 m)(p, γ)14O; 19Ne(17 s)(p, γ)20Na; 15O(122 s)(α, γ)19Ne;
18F(110 m)(p, α)15O; 14O(71 s)(α, p)17F.

Along with cross section measurements, measuring of unstable nucleus masses is an
important goal when dealing with radioactive beams. There are two main methods
of mass determination: by energy release in reaction and by deflection of ions in
electromagnetic fields.
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Recently a considerable progress has been achieved in experimental nuclear astro-
physics and in developing theoretical methods of describing astrophysical processes.
The further progress in this field is related both with creation of the next generation of
installations (GSI/FAIR in Germany and FRIB in the USA) and with modernization
of existing installations (GANIL in France and TRIUMF in Canada).

4 Analytic continuation of effective range
expansion for α + d system

One of the most widespread methods of obtaining information on bound states from
scattering data is an analytic continuation in energy of data on the partial wave
amplitude of elastic bc scattering to the pole corresponding to the bound state a.
The most efficient way of realization of this procedure is the analytic continuation
of the effective range (ER) function KL(k

2). This method was used successfully in
several works (see Refs. [9,16–19]). In these works, NVCs and ANCs were determined
for the processes 6Li → α + d [9], 2He → p + p, 3He → p + d, 8Be → α + α
[16], 5He(5Li) → n(p) + α [17], 17O(17F) → n(p) + 16O, 16O → 12C + α [18] and
7Li(7Be) → α+ t(3He) [19].

All cited works treated a one-channel elastic scattering. However, a description of
scattering of particles with nonzero spins usually demands accounting for the channel
coupling even in the absence of inelastic channels. The most typical situation induced
by tensor forces is the case of two coupled channels, 1 and 2, with the same Jπ but
different L (L1 and L2 = L1 + 2). A generalization of the ER expansion to the case
of two coupled channels and its utilization for determination of ANCs and NVCs was
considered in Refs. [20, 21] using the np scattering as an example. The formalism
developed in Refs. [20, 21] can be applied to any two-channel nuclear system for which
the results of the phase-shift analysis are known. One of similar important systems is
6Li in the α+ d channel. The ANC values for this system determine the cross section
of the radiative capture 4He(d, γ)6Li which is the main source of 6Li formation in
the Big Bang model. Direct measurement of this process at astrophysical energies is
impossible due to the smallness of the cross section. Available data on the values of
NVCs and ANCs for the 6Li → α+ d channel (L = 0; 2) are characterized by a large
spread, especially by the spread of the D state constants G2 and C2.

In the work [22], the NVCs and ANCs for 6Li → α + d are obtained by analytic
continuation of the two-channel ER expansion. Several sets of dα scattering phase
shifts are used as an input.

1. The energy-dependent phase-shift analysis of Ref. [23] neglecting the coupling
of L = 0 and L = 2 channels (set 1).

2. The energy-independent phase-shift analysis of Ref. [24] accounting for the
channel coupling (set 2).

3. Faddeev calculations neglecting the Coulomb interaction [9] (set 3).

Combining sets 1 and 2 results in C0 = 2.3–2.4 fm−1/2. Set 3 gives C0 =
2.0 fm−1/2. A low accuracy of phase-shift analysis at low energies and simplicity
of Faddeev equations used make it impossible to obtain an accurate value of the ANC
for L = 2: C2 = 0.02–0.07 fm−1/2. The sign of C2 (relative to C0) appears to be
positive.

The method developed in Refs. [20, 21] and utilized in Ref. [22] considers elastic
channels only. On the other hand, low-lying inelastic thresholds may modify the
ER expansion. The simplest way to allow for an inelastic channel at E = E0, is
to include in the ER expansion an additional term which is complex at E > E0.
The form of this term should provide the correct analytic behavior of scattering
amplitudes at the threshold E = E0. According to the general theory of singularities
of Feynman diagrams, a singular part of a scattering amplitude near a threshold
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behaves as (E − E0)
(3n−5)/2 for even n and as (E − E0)

(3n−5)/2 ln(E − E0) for odd
n, where n = 2, 3, 4, ... is a number of intermediate particles at the threshold.

The work on accounting for inelastic channels in the ER expansion for αd scatter-
ing is in progress.
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