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Abstract

This dissertation reports on experimental studies of universal three-body physics
in an ultracold Fermi gas. The sample consists of lithium-6 atoms occupying an
incoherent mixture of the three lowest energy hyperfine spin states in thermal equi-
librium. Using an externally applied magnetic field, three overlapping Feshbach
resonances among the various two-body scattering channels were used to tune the
s-wave interactions. In the range of magnetic fields from 0 to 1500 Gauss, the
three s-wave scattering lengths were widely tunable from the non-interacting limit
to deeply within the universal regime where the behavior of the gas is independent
of the microscopic details of the inter-particle interactions. We measured the sta-
bility of the gas over the ranges of magnetic fields from 0 to 690 Gauss and 834 to
1500 Gauss where all pairwise interactions are attractive and find that the three-
body recombination rate constant in these regions varies by over eight orders of
magnitude. Further, we observe resonant loss features in the low field region near
130 and 500 Gauss, and a narrow feature in the high field region at 895 Gauss.

Recent calculations indicate that these loss features arise from a series of uni-
versal three-body bound states (Efimov trimers) near threshold. Our determina-
tions of the three-body parameters in these regimes are used to perform the first
complete calculation of the spectrum of Efimov states in any Fermi system. Fur-
ther, we have realized degeneracy of a three spin-state Fermi gas in the high-field
limit where all three inter-particle scattering lengths converge, exhibiting universal
quantum physics in the SU(3) symmetric regime. Finally, we preformed a numer-
ical simulation of a novel cooling scheme, demonstrating the feasibility of produc-
ing multi-component Fermi gasses with temperatures on the order of 10−3 of the
Fermi temperature in a combined three-dimensional optical lattice and Laguerre-
Gaussian trapping potential. These investigations will guide future experiments
aimed at achieving three component (color) superfluidity and exotic magnetic or-
dering in three-state Fermi gases which have no solid-state analog.
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(a) the primary coils and (b) the booster coils. The fields were
calculated assuming a current of 500 A for each coil set. . . . . . . . 90

4.10 System of optics and magnetic coils used in our zero-crossing Zee-
man slower. The insert shows the profile of the x̂ magnetic field
provided by the slower solenoids (1) and (2). . . . . . . . . . . . . . 93

4.11 (a) Orientations and polarizations of the MOT and repumper beams
for laser cooling the atoms in a gradient field, provided by the cur-
rent through the Primary coils (blue arrows). (b) Energy level
diagram of 6Li. The solid (dashed) arrows indicate the cooling and
repumping transitions (spontaneous emission transitions). The nat-
ural linewidth of the D2 transition is indicated in grey. . . . . . . . 96

4.12 (a) Fluorescence from the MOT inside the experimental chamber.
(b) The chamber with the atomic beam shuttered is shown for ref-
erence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.13 Exponential heating time constant τ with respect to trapping fre-
quency vtrap attributed to intensity fluctuations of the 110 Watt
IPG fiber laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.14 Optical design for the Primary Dipole trapping beams. The Corri-
dor coils are shown here. . . . . . . . . . . . . . . . . . . . . . . . . 105

4.15 Measurement of the trapping frequencies for the primary trap (a)
using parametric heating and (b) mapping the induced dipolar os-
cillation of the gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.16 Birds-eye view of the optical setup for the large-volume trapping
beams (A), (B), and (C) . . . . . . . . . . . . . . . . . . . . . . . . 109

4.17 Horizontal view of the optical setup for the large-volume trapping
beams. The Corridor coils are shown. . . . . . . . . . . . . . . . . . 109

4.18 Absorption Imaging after a time-of-flight τ . . . . . . . . . . . . . . 111
4.19 Optical design of the absorption imaging system to measure the 2D

density distribution of the atomic gas. . . . . . . . . . . . . . . . . 113

x



4.20 Absorption image of the atomic gas in the primary dipole trap.
The scale is set to display the atoms remaining in the wings of the
individual trapping beams. . . . . . . . . . . . . . . . . . . . . . . . 115

4.21 Schematic of the RF power drive system. . . . . . . . . . . . . . . . 117

5.1 False color absorption images (left panels) and 1D density distribu-
tions (right panels) of the molecular gas after a time of flight. The
depth of the trapping potential is decreased by nearly a factor of
three between images (a) and (g). The bimodal distribution sig-
naling the on-set of molecular Bose-Einstein condensation is clearly
seen in panels (c)-(d) and (e)-(f). The Gaussian fit (red) repre-
sents the thermal component whereas the Thomas-Fermi fit (blue)
represents the condensed component of the gas. . . . . . . . . . . . 128

5.2 Rabi cycling of 6Li atoms initially prepared in state |2〉 in the pres-
ence of a RF field near resonant with the |2〉 − |3〉 transition fre-
quency. The experimental data (blue dots) represent the number
of atoms in state |2〉 with respect to the RF drive time. The solid
(red) curve is a fit of the data to Equation 5.6. . . . . . . . . . . . . 131

5.3 The populations in states |1〉, |2〉, and |3〉 measured by absorption
imaging in the Paschen-Back regime. (Left) The hyperfine inter-
action in the ground state allows for spectroscopically resolvable
imaging on the mj = −1/2→ m′j = −3/2 cycling transitions. (Top
right) 2-dimensional density profile of each state following a 900
µs time-of-flight. (Bottom right) The total absorption vs. probe
detuning demonstrating equal populations and resolved imaging of
the atoms in each spin-component. . . . . . . . . . . . . . . . . . . 133

5.4 (Left) Impurity-state thermometry is a method of measuring the
degeneracy of a harmonically trapped Fermi gas using a classi-
cal minority component (state |3〉 in this example), in equilib-
rium with the degenerate majority components (states |1〉 and |2〉
here). (Right) The reduced Fermi energy of the minority compo-
nent (EFermi(N|3〉)) combined with thermal equilibrium of the gas
enables this robust thermometry technique. . . . . . . . . . . . . . . 139

xi



5.5 (Top) Nearly degenerate two-component 6Li gases cooled in the
primary dipole trap are loaded into our large-volume trap I (II)
enabling us to prepare three-component samples at temperatures
TI ≤ 180 nk (TI ≤ 30 nk) and densities n0(I) ' 5× 1010 atoms/cm3

(n0(II) ' 5×109 atoms/cm3). (Bottom) As the depth of the primary
trap is adiabatically lowered in the presence of one of the large-
volume traps, the atoms begin to occupy the lowest energy states
of the large-volume trap, with greatly reduced average energy per
particle and enhanced trap volume. . . . . . . . . . . . . . . . . . . 143

6.1 (a) Fraction of atoms remaining in each of the three spin states
after a 201 ms hold time at the field of interest Bhold. The data is
normalized to the number remaining after spending 1 ms at Bhold.
(b) & (c) The low-field (0 ≤ B ≤ 600 G) & high-field (600 G ≤ B ≤
1000 G) s-wave scattering length for 6Li atoms in states |1〉, |2〉, and
|3〉. The scale of (b) is reduced by a factor of 6 with respect to (c),
highlighting the features near zero which include the zero-crossings
of the LF scattering lengths at 0 G and between 528 and 589 G.
The grey region in Figure (b) represents the extent of the van der
Waals length scale lvdw. The purple, pink, and cyan vertical lines
represent the locations of the |1〉-|3〉, |2〉-|3〉, and |1〉-|2〉 Feshbach
resonances respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 The fractional population remaining N201ms/N1ms with respect to
the field of interest for each binary mixture. Atoms in state |1〉
(blue) of a |1〉-|2〉 mixture, state |2〉 (green) of a |2〉-|3〉 mixture and
state |3〉 (red) of a |1〉-|3〉 mixture are shown. The cyan, pink, and
purple vertical lines represent the locations of the a12, a23, and a13

Feshbach resonances respectively. . . . . . . . . . . . . . . . . . . . 151
6.3 Evolution of (a) the number N(t) and (b) temperature T (t) for

atoms in state |3〉 with respect to hold time t of the three-state
mixture at a field of 302 Gauss. The solid lines are fits to the data
using the routine described in the text, resulting in a three-body
loss rate coefficient for this field of K3 = 1.19× 10−23 cm6/s. . . . . 156

6.4 Magnetic field dependence of the three-body loss rate coefficient,
K3. The open circles represent data in the range of fields where we
previously observed loss in at least one of the two-state mixtures. . 160

xii



6.5 Three-body atom loss rate coefficient spanning the low-field region.
Our measurements of the magnetic-field dependence of K3 (blue
dots) are compared to those calculated by E. Braaten et al. [3]
(red curve). The universal theory predicts resonantly enhanced loss
rates at ∼ 125 G and 500 G attributed to an Efimov trimer state
crossing the free-atom threshold at these locations. The dashed
lines represent the boundaries of the universal region, outside of
which at least one of the scattering lengths a ≤ 2lvdw. . . . . . . . . 163

6.6 (Solid curve) The magnetic field dependent binding energies of the
predicted low-field Efimov trimer state. (Shaded region) The cal-
culated width of the Efimov state. (Dashed curves) The estimated
energy scaling of possible non-Efimov trimers from all other spin
channels. Figure taken from Reference [4]. . . . . . . . . . . . . . . 165

6.7 (a) Our low-field K3 measurements (blue dots) are particularly well
fit (red curve) using the model described in Reference [5]. (b)
The effective scattering length am, calculated from Equation 6.9,
is shown as the solid green curve when all aij < 0, and dashed out-
side of the range of validity when any aij > 0. The vertical dashed
lines represent the boundaries of the universal region, outside of
which at least one of the scattering lengths a ≤ 2lvdw. (c) Magnetic
field dependence of the binding energies (in units of 2π~) of the
four dimer states associated with the Feshbach resonances between
543 G and 834 G. Over the low-field universal regime, the binding
energies varies by more than a factor of five. . . . . . . . . . . . . . 167

7.1 The high-field (600 G ≤ B ≤ 1500 G) s-wave scattering lengths for
6Li atoms occupying states |1〉, |2〉, and |3〉. The purple, pink, and
cyan vertical lines represent the locations of the |1〉-|3〉, |2〉-|3〉, and
|1〉-|2〉 Feshbach resonances at 690 G, 811 G, and 834 G respectively. 172

7.2 Evolution of (a) the number Ni(t) and (b) temperature Ti(t) for
atoms in state |3〉 with respect to hold time ti of the three-state
mixture. This data was taken from in situ images of the atoms
in the large-volume trap II at a field of 877 Gauss. The green
(red) lines are fits to a model which does not include (includes)
antievaporation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3 Measured three-body loss rate coefficients in the high-field regime.
The red circles and blue triangles correspond to K3 data extracted
from lifetime measurements taken with the three-component 6Li
gases confined in the large-volume traps I and II respectively. . . . . 177

xiii



7.4 Fit of the measured three-body loss rate coefficients in the high-
field regime using the numerical code provided by D. Kang and E.
Braaten [6]. The fit to the measured K3 rates for fields above 970
G (solid line) was used to extract the high-field three-body param-
eters. The zero-range calculations predict a resonant-loss peak at
895 G (dotted blue line), due to an excited Efimov trimer state
crossing the three-atom threshold at this location. Using a model
that accounts for the saturation of the loss rates from unitarity
(dashed line) [7], the 30 nK data (blue triangles) is well fit in the
vicinity of the Efimov resonance. . . . . . . . . . . . . . . . . . . . 179

7.5 Energies of the Efimov trimer states as a function of the magnetic
field over the region 600 G ≤ B ≤ 1000 G. The solid curves are the
calculated binding frequencies E

(n)
T /(2π~) based on our measure-

ments of the high-field three-body parameters. The upper and lower
error bounds are shown by the dashed curves. The colored curves
labeled 12, 23, and 13 are the atom-dimer thresholds. The field
locations where the trimers come into resonance with the |1〉+ |23〉
atom-dimer threshold are indicated by the dots. For the ground-
state trimer, the threshold crossing occurs at an energy exceeding
the van der Waals energy, shown as the horizontal dotted line. Fig-
ure taken from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.6 K3 in three-component 6Li gases over the field range 600 G ≤ B ≤
1200 G. The blue dots (red triangles) represent our high-field data
taken in the large-volume trap I (II). The curve between 834 G and
1200 G is a fit to the data. In the region from 600 G to 834 G, the
curves are predictions for the total three-body loss rates (black line)
and the contribution from recombination into deeply bound dimer
states (purple line) based on our measured three-body parameters
in the high-field regime. The vertical lines mark the positions of
the Feshbach resonances. Figure adapted from [8]. . . . . . . . . . . 184

7.7 Detailed representation of the K3 rate constant for three-component
6Li atoms in the field range 650 G ≤ B ≤ 850 G. The curves
represent the predictions, based on our measurements of the high-
field three-body parameters, for the total three-body recombination
rate (black line), and the exclusive rate constants for recombination
into only deeply-bound dimers (purple line), |12〉 dimers (red), |23〉
dimers (blue), and |13〉 dimers (green). Figure taken from [8]. . . . 185

xiv



7.8 Dimer relaxation rate constant β1(23) for |1〉+ |23〉 atom-dimer loss
over the range of fields 650 G ≤ B ≤ 750 G. The universal predic-
tions, calculated in [8] based on our measurements of the high-field
three-body parameters (κ'6.9 × 10−3a−1

0 and η∗ ' 0.016) (dashed
line), are in disagreement with the experimental data (red dots) at
these fields. A fit to the data using the universal calculations (solid
curve) finds that the three-body parameters must be varied by ap-
proximately 30% to properly reproduce the measured atom-dimer
loss rates which peak near 685 G. . . . . . . . . . . . . . . . . . . . 188

8.1 The calculated timescales for both BCS pairing (tBCS, solid curves)
and three-body loss (tk3 , dotted curves) in the high-field BCS regime
below B ≤ 2000 G are shown. The atomic densities are varied
so that the critical temperature is Tc = 0.15TF for each of the
possible pairing states (|1〉−|2〉 (black), |2〉−|3〉 (blue), and |1〉−|3〉
(red)). Superfluid pairing is inhibited by rapid three-body loss for
all pairing states throughout the BCS regime except for the |1〉−|2〉
pairing states near 834 Gauss. . . . . . . . . . . . . . . . . . . . . . 198

8.2 (a) Illustration of a 3D cubic lattice potential for the atoms, formed
from the standing-wave interference patterns of three mutually-
orthogonal pairs of counter-propagating laser beams. (b) A two-
component Fermi gas with repulsive interactions loaded into an
idealized lattice potential is shown along one dimension. The sys-
tem is well-described by the Fermi Hubbard model, where t is the
tunneling matrix element and U denotes the on-site interaction en-
ergy term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3 (a) Conjectured low-energy phase diagram of the Fermi Hubbard
model. As the reduced temperature of the gas is decreased below
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Chapter 1
Introduction

Over the last century, pioneering work in quantum physics has lead to uncounted

breakthroughs in our understanding of the physical world. Quantum mechan-

ics provides a quantitative theory of matter at atomic and subatomic scales, and

can be applied to systems with many degrees of freedom through the formalism

of quantum field theory. The remarkable success of quantum theory, which pro-

vides the underlying basis for many fields of physics and chemistry, can be seen in

its ability to describe phenomena over a wide range of length and energy scales.

These range from many-body phases in condensed matter and solid-state physics;

to atomic-scale phenomena studied in quantum chemistry and atomic, molecular,

and optical physics; eventually leading to a general understanding of fundamental

particle physics by means of quantum electrodynamics and quantum chromody-

namics.

One of the most amazing features of these disciplines is that the underlying

physics is often related, leading to universal theories that can describe numerous

physical systems [12, 13, 14, 15, 2]. Strongly correlated Fermi systems, for example,

are defined by strong interactions between pairs of spin-up and spin-down fermions.

These systems can be found in superconductors, neutron and nuclear matter [16,

17, 12, 18], quark-gluon plasmas [19], and have been recently realized in ultracold

atomic Fermi gases [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

Universality generally emerges when the microscopic details of the scattering

processes can be neglected. This can occur, for example, when the deBroglie

wavelength is much larger than the range of pairwise interactions. In this regime,
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the pairwise interactions can be fully described by the so-called scattering length

a, which contains all of the information about the short-range properties of the

two-body scattering potential. Even stronger1 classes of universality occur when

the scattering length greatly exceeds the range of two-body interactions or even

the average interparticle spacing.

Universality is beneficial for understanding the physics of numerous interacting

Fermi systems. Here, the properties of one system can be studied to learn about

other universally connected nonrelativistic particles with proper rescaling of the

relevant length and energy scales. Such universal connections are particularly

amazing when making analogies between the behaviors of ultracold atomic Fermi

gases and atomic nuclei as the energy scales vary between these systems by ∼ 18

orders of magnitude.

1.1 Universal Three-Body Physics

The universal properties of bosonic or fermionic systems with short-range two-

body potentials, in turn, connect to an astonishing and counterintuitive universal

behavior in the three-body system, as first predicted by V. Efimov in 1970 [30].

Efimov first considered an ensemble of identical spinless particles interacting via

resonant two-particle interactions. He assumed that the resonance arose from a

bound state in the two-body scattering potential which is degenerate with the two-

body scattering threshold (E = 0), causing the scattering length to diverge. In

this limit, he found that an infinite number of arbitrarily-shallow three-body bound

states (Efimov states) emerge, even when binding is prohibited in the two-body

system.

For identical bosons in the resonant limit, the ratio of the binding energies of

successive Efimov states (n) approaches a universal constant in the asymptotic

limit, given by E
(n+1)
T /E

(n)
T → 1/515.03. This universal ratio is independent of

the mass or structure of the particles as well as of the form of their short-range

interactions. In two papers published in 1971 and 1979 [31, 32], Efimov went on to

prove that the three-body system has universal properties not only in the resonant

1Universality in these cases are stronger in the sense that fewer and fewer parameters are
needed to characterize a particular physical system within the universality class.
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limit, but rather throughout the universal regime in which the magnitude of the

scattering length is large as compared to the characteristic range of the two-body

potential.

Efimov found that the number of supported weakly-bound trimer states, which

is now finite for |a| 6= ∞, decrease as the magnitude of the scattering length is

reduced for systems exhibiting both repulsive (a > 0) and attractive (a < 0)

pairwise interactions. Here too, however, the critical scattering lengths at which

the binding energies of successive Efimov states disappear, through either the free-

atom or atom-dimer thresholds, also scale geometrically. Efimov further predicted

that the entire spectrum of three-body bound states obeyed a universal scaling so

that knowledge of the binding energies of one of the Efimov trimer states at a single

scattering length is all of the information required to derive the entire spectrum of

universal trimer states at all scattering lengths throughout the universal regime.

Although Efimov’s scenario quickly became well-established theoretically, over

36 years passed between Efimov’s first predictions and the experimental confirma-

tion of the existence of these universal trimer states. The unambiguous identifi-

cation of Efimov states in nature is difficult since typical systems do not exhibit

resonant two-body interactions and their scattering lengths can not be varied in

general. T. Lim et al. proposed in 1977 that the excited state of the 4He trimer is

an Efimov trimer [33]. This state, however, has eluded experimental observation.

The ground-state 4He trimer, observed by W. Schöllkopf and J. P. Tönnies [34],

can also be interpreted as an Efimov state [18], although its classification is still

debated. In nuclear physics, for which the concept of Efimov physics was origi-

nally devised, a number of systems display low-energy universality associated with

Efimov physics including the triton and two-neutron Halos such as 20C [18]. While

initial studies of bound state observables are becoming available in these systems,

corrections to the universal models must be included to properly account for the

finite range of the interactions.

The first unambiguous signature of the existence of Efimov states came in 2006

when T. Kraemer and co-workers observed a resonant enhancement of the loss rate

from three-body recombination in an ultracold gas of attractively interacting 133Cs

atoms due to an Efimov trimer state coming into resonance with the free-atom

scattering threshold [35]. A minima in the three-body loss rates was also observed
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at positive scattering lengths due to an interference in two recombination pathways.

Although this phenomena is also associated with the existence of Efimov states in

the system, the two observed features were not associated with the same scattering

resonance, and no universal connections between the features were expected.

Since that time, the experimental and theoretical study of Efimov physics in the

field of cold atom physics has progressed rapidly. In an ultracold gas of bosonic
7Li atoms, two resonant features were observed in the measured rates of three-

body loss (Efimov resonances) associated with a single scattering resonance [36].

Additionally, evidence for the existence for the first two Efimov states in bosonic
39K and 7Li have been reported [37, 38]. In all of these studies, the various critical

scattering lengths at which resonant effects emerge in the measured three-body loss

rates are relatively well predicted with the universal theories based on Efimov’s

findings. However, it is generally expected and experimentally observed that as

the magnitudes of the scattering lengths are decreased, corrections to the universal

theories are required to account for the finite range of the two-body potentials.

Efimov resonances have also been observed in hetero-nuclear mixtures of ultra-

cold bosonic 41K and 87Rb atoms [39]. Here, two resonant loss features were found

associated with Efimov trimer states in the KRbRb and RbKK channels. The

properties of Efimov states can also be determined in atom-dimer mixtures in the

form of resonances in the atom-dimer inelastic scattering rates. Such resonances

have been observed in the loss rates of atom-dimer mixtures of 133Cs atoms [40].

These experiments explored the spectrum of Efimov trimer states that emerge

in various ultracold bosonic gases whose pairwise interactions were resonantly en-

hanced by a single two-body scattering resonance. In general, the systems closely

mirror Efimov’s original model. It was the ultracold nature of these classical (i.e.

non-degenerate) gases that enabled these studies. Comparison of the data with the

universal models requires that the system be in the threshold regime, in which the

collision energy is the smallest energy in the system, above which thermal effects

rapidly decrease the visibility of the Efimov resonances. The threshold regime was

reached in the previously mentioned experiments by cooling the atoms with large

scattering lengths to sufficiently low temperatures. Thanks to the extensive ex-

perimental and theoretical research of these systems, the Efimov effect in bosonic

systems near an isolated Feshbach resonance is now becoming well understood.
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The investigation of Efimov’s scenario for a system of three distinguishable,

equal-mass particles becomes more complicated. Here, pairwise interactions among

the various components are not necessarily equal and scattering resonances may

exist which differ for each pair of particles. The few-body physics of these systems

can be quite rich, however, due to the coexistence of multiple scattering lengths

with mutually varying magnitudes and even signs. Examples of such cases that

can exist in nature include different isotopes of the same atom that can have nearly

the same mass but widely varying pairwise interaction strengths. Also, the proton

and neutron have nearly the same mass, but vary in their interaction properties. A

primary result of my thesis work involved studies of three-body physics in dilute,

nearly-degenerate gases of fermionic lithium-6 atoms at ultracold temperatures

occupying three distinct hyperfine spin states to directly explore this novel system.

1.2 Ultracold Fermi Gases

Ultracold gasses of neutral alkali atoms provide ideal model systems to simulate

complicated few- and many-body quantum mechanical phenomena that can be

extended to describe the physics of denser systems. These gases, which can achieve

temperatures below 1 nK [41], often occupy a regime of phase-space density where

quantum mechanics dictates the properties of the systems. Further, these gases

are among the cleanest and most dynamically adjustable experimental systems

available, where the temperature, density, and scattering length of the gases can

often be varied over a wide range using simple optical and magnetic fields. As

these gases are so cold that a ground-state analysis of the systems generally suffice

and the atoms interact via short-range contact interactions, the systems can often

be theoretically modeled exactly and complexity can be slowly added to simulate

a variety of physical phenomena.

These dilute gases are generally produced by laser cooling [42] and subsequent

evaporative cooling [43] in optical or magnetic trapping potentials. The degree to

which quantum statistics becomes important for the understanding of an ensemble

of atoms is parameterized by the phase-space density ρ = nλ3
dB, where n is the

density of the gas and λdB =
√

2π~2/(mkBT ) is the thermal de Broglie wavelength

for the atoms with mass m and temperature T . For a system of identical particles,
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as ρ becomes on the order of unity the thermal de Broglie wavelength becomes

comparable to the average interparticle spacing and the wavepackets of adjacent

particles begin to overlap. In this quantum degenerate regime, the symmetry of

the many-body wave function must be considered and a classical description of the

gas is no longer possible.

For identical particles of integer spin (bosons), the many-body wave function

must be symmetric with respect to exchange of the constituent particles. The

ground state of this system has remarkable properties, resulting in a macroscopic

occupation of the lowest accessible energy state. This form of matter, which was

first predicted by Satyendra Nath Bose and Albert Einstein in 1924-1925, is called

a Bose-Einstein condensate (BEC) and is characterized by a superfluid phase with

zero entropy. The realization of a Bose-Einstein condensed gas of weakly inter-

acting alkali atoms [44, 45, 46], seventy years after the theoretical prediction of

the BEC phase, therefore enabled a host of new studies of quantum systems using

dilute ultracold atomic gases.

On the other side of the spectrum, the many-body wavefunction for identical

particles with half-integer spin (fermions) must be antisymmetric under exchange.

The phase-space density distribution of these particles must therefore obey the

famous Pauli-Exclusion principle, in which simultaneous occupation of a quantum

state is prohibited. For an ensemble of N identical and non-interacting fermions,

the many-particle system can be described in terms of single-particle energy states

where, at zero temperature, the particles fill the N lowest energy quantum states

up to the so-called Fermi energy while all higher energy states are empty.

Whereas bosons undergo a dramatic phase transition to a condensed phase

which marks the onset of degeneracy, the transition between a classical (thermal)

and quantum (degenerate) fermionic system is continuous. From a theoretical point

of view, the simulation of quantum Fermi systems with ultracold Fermi gases is

quite interesting, however, as all of the material elementary particles, including

quarks, electrons, muons, taus and neutrinos, obey Fermi statistics. Further, in

the presence of even arbitrarily small attractive interactions the atoms can undergo

a phase transition to a superfluid state by forming Cooper pairs, similar to the

well-known superconducting transition of the electron gas in certain metals at

low temperatures as described by the Bardeen-Cooper-Schrieffer theory [47, 48].
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Ultracold Fermi gases can provide a robust and highly dynamic model system to

explore the phenomena of superfluidity and studies of these gases may be useful

for simulating the frictionless flow exhibited by electrons in a variety of solid-state

systems.

Much of the utility of using ultracold gases as model system for studying quan-

tum fermionic phenomena lies in the fact that all of the scattering events involving

angular momentum are frozen out, as the kinetic energy of particles is insufficient

to overcome the height of the centrifugal barrier for even p-wave scattering. In

this regime, the collisions are generally sufficiently low-energy that the de Broglie

wavelength (λdB) is much larger than the characteristic range of the two-body

potential. The atoms undergoing pairwise collisions therefore cannot resolve the

microscopic properties of the potential and s-wave scattering dominates the physics

of the interparticle interactions.

In a sample of identical fermions, however, s-wave scattering is prohibited by

symmetry. Therefore, mixtures of at least two distinguishable components (e.g.,

a gas occupying at least two distinct internal states) are required for the atoms

to interact. For this same reason, three-body interactions are generally prohibited

in two-component Fermi gases, requiring a third component to study phenomena

associated with three mutually-interacting bodies. Another fortunate feature of

ultracold multi-component Fermi gases of neutral alkali atoms is that the s-wave

scattering lengths may be varied by means of magnetically tuned Feshbach res-

onances [9]. These resonances are attributed to the existence of weakly bound

dimer states in the two-body potentials coming into resonance with the scattering

threshold.

In this respect, fermionic 6Li gases occupying the lowest hyperfine ground states

are an exceptional choice for studies of interacting multi-component Fermi gases

over a wide range of interaction strengths. Very broad Feshbach resonances occur

in these systems, which are magnetically accessible at moderately-high magnetic

field values, to arbitrarily tune the strengths and signs of their s-wave scattering

length to realize physical systems characterized by either attractive or repulsive

interactions. Additionally, in the range of fields near the resonance where the scat-

tering length is tuned to large positive values (exhibiting repulsive interactions), a

weakly bound dimer state exists. The molecular state can then be populated by
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collisions among the particles to study bosonic phenomena in degenerate molecular

Fermi gases.

1.3 Progress with 2-State Fermi Gases

The first experiment to create a quantum degenerate gas of fermionic atoms was

conducted by D. Jin’s group in 1999 [49]. They showed that a magnetically trapped

sample of 40K atoms occupying two different internal states could be cooled to

degeneracy using the same techniques that lead to the realization of Bose-Einstein

condensation in the previous studies with ultracold bosonic gases, namely laser and

evaporative cooling. Shortly thereafter, highly-degenerate gases were also realized

by means of sympathetic cooling with bosons in a magnetic trap [50, 51, 52], and

direct evaporative cooling of two-component 6Li gases in an optical dipole trap

[53, 54]. In the later technique, the degenerate gas was confined in a conservative

optical potential which allowed for the use of an external magnetic field to tune the

interactions by means of a Feshbach resonance. In so doing, the first realization of

a strongly interacting degenerate Fermi gas was reported by J. Thomas’ group in

2002 [20].

Accessing the magnetically tuned Feshbach resonance enabled a range of stud-

ies associated with strongly interacting Fermi gases exhibiting large attractive or

repulsive pairwise interactions. At field values where the scattering lengths are

large and positive, a gas of bosonic molecules can form. The molecular gas will

eventually condense at sufficiently low temperatures to form a molecular BEC, as

demonstrated by three groups in 2003 [55, 23, 56]. On the negative scattering

length side of the resonance, no weakly-bound dimer states exist and the ground-

state of the gas, which exhibits attractive pairwise interactions, is described by a

Bardeen-Cooper-Schrieffer (BCS) superfluid phase. It is now well understood that

the pairing mechanisms in both limits (BEC and BCS) are smoothly connected by

a crossover through the resonance [21, 57, 58, 59].

Indeed, the demonstrated stability of two-component Fermi gases against two-

and three-body loss and the possibility of tuning the pairwise interactions to re-

alize quantum fermionic and bosonic phenomena by use of magnetically tuned

Feshbach resonances has made these systems the standard for exploring so-called
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BEC-BCS crossover physics. Notably, in 2004 Fermi condensates were observed by

pair projection measurements using fast magnetic field sweeps [59, 57], and collec-

tive mode measurements have demonstrated superfluid transition behaviors in the

damping behaviors of the gases [60, 21, 61, 62]. Additionally, radio-frequency and

photo-emission spectroscopy has been used to explore the elementary excitation

spectrum in the gases, revealing a pairing gap near the transition and inferring

information about the sizes of the pairs [63, 64, 28, 65]. Finally, the observation

of a vortex lattice in a rotating strongly interacting Fermi gas on both sides of the

resonance is direct evidence for high temperature superfluidity in these systems

[59].

A number of experiments have also studied the universality of strongly- inter-

acting Fermi gases in the vicinity of a Feshbach resonance. At the peak of the

resonance the gas is in the unitarity regime, where the s-wave scattering length

diverges to ±∞. Here, there exists a universality that connects the unitary Fermi

gas to that of an ideal Fermi gas, whose energies scale by a universal constant β

[66, 67]. Detailed measurements have also been made of the hydrodynamic expan-

sion of normal [20] and rotating [14, 68] strongly interacting Fermi gases, which

also arises in a quark-gluon plasma [69, 19], as a consequence of very low viscosity

hydrodynamics characteristic of a nearly perfect fluid. Recent measurements of the

amplitude of the high momentum tail of the momentum distributions, called the

contact, for Fermi gases in the BEC-BCS crossover have also proven useful for ver-

ifying such universal relations as the adiabatic sweep theorem and the generalized

virial theorem [70] for strongly interacting Fermi systems.

Finally, the properties of two-component Fermi gases loaded into cubic optical

lattice potentials (optical dipole traps made of standing wave laser light to create a

regular lattice potential) have been recently explored. These lattice-confined sys-

tems are promising for simulating the low-temperature phase diagram of the Fermi

Hubbard model [71] which predicts that, at sufficiently low temperatures, such

phenomena as quantum magnetism and possibly even d-wave superfluid phases

should emerge [72, 73, 74]. These experiments have revealed direct observation of

the Fermi surface filling the first Brillouin zone [75], interaction-controlled trans-

port [76], Mott and band insulating phases [77, 75, 78, 79], BCS superfluidity in a

weak lattice potential [80], and anti-bunching reflecting the Pauli exclusion prin-
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ciple [81]. Temperatures low enough to observe more complex quantum phases in

a lattice such as Néel antiferromagnetism, strongly correlated Fermi liquids, spin

liquids in frustrated geometries, or d-wave superfluidity have yet to be attained in

cold-atom-based Fermi systems [82].

1.4 Three-Component Fermi Gases

Nearly all of the previous investigations of ultracold Fermi gases with tunable

interactions have focused on mixtures of gases occupying two distinct internal

states. The addition a third distinguishable component to the gas can drastically

change the nature of the problem. Whereas the interactions of two-component

samples can be fully described by a single s-wave scattering length (a), the pairwise

interactions among the various components of a three-state gas are not necessarily

equal, and multiple scattering resonances can exist simultaneously. Further, three-

body interactions are no longer forbidden, allowing for the study of phenomena

associated with the quantum mechanical three-body problem (e.g., Efimov physics)

in ultracold multi-component Fermi gases .

In this thesis, I will discuss our recent experiments studying few-body inter-

actions in dilute, ultracold gases of lithium-6 atoms occupying the three lowest-

energy hyperfine spin states. This multi-component Fermi gas is unique in that

three broad, overlapping Feshbach resonances exist which allow for simultaneous

resonant enhancement of all three pairwise interaction strengths. Further, a zero-

energy resonance at high fields causes the three pairwise interaction strengths to

converge to an anomalously large value where a universal SU(3) symmetric descrip-

tion of the gas is appropriate. Also, the three generally unequal s-wave scattering

lengths characterizing the system cross zero at fields below the Feshbach reso-

nances, allowing for the study of very weakly-interacting three-component gases

at these fields. For the majority of the fields studied, however, all three s-wave

scattering lengths are unequal and exceed the characteristic range of the two-body

potentials, so that the gas is generally in the threshold regime and exhibits uni-

versal behaviors.

A variety of interesting new phenomena can now be studied with these three-

component systems. With the inclusion of three-body interactions, a spectrum
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of Efimov states may now be supported [1, 83]. Theoretical investigations of Efi-

mov’s scenario for a system of three distinguishable equal-mass particles, however,

becomes more complicated. Prior to our studies, the universal theories derived to

calculate the influence of Efimov states on the three-body loss rates of an ultracold

gas concentrated on systems described by a single resonantly enhanced scattering

length. It was therefore not obvious how the universality of Efimov’s scenario

would translate for the ultracold system of three distinguishable particles studied

in our experiments.

It is also interesting to consider the low-temperature properties of the three-

component Fermi system in a regime where superfluid phases are expected for

multiple pairs of components in the gas. It’s not obvious to what extent such

effects as pairing competition between multiple paired states and trion formation

will have on the ground state of the gas [84, 85, 86, 87, 88, 89].

Excitement in this system is inspired by its close connection to strongly inter-

acting quark matter. If the pairwise interactions are all attractive and of equal

magnitude, the SU(3) symmetric gas is expected to exhibit a novel atomic color

superfluid phase analogous to color superconductivity in quantum chromodynam-

ics (QCD). Further, if the ratio of the interaction energy to the kinetic energy can

be increased (e.g., in an optical lattice), the system is well described by a SU(3)

symmetric Hubbard Hamiltonian. Here, a quantum phase transition to a Fermi

liquid of trimers may be applicable for quantum simulation of the color superfluid

to Baryon phase transition conjectured in QCD [90, 91, 92].

Future studies of the above phenomena, however, critically depend on the mag-

nitude of the two- and three-body loss rates, particularly when two or more scat-

tering lengths are resonantly enhanced. Two- and three-body loss and heating

processes can impose stringent limits on the maximum achievable phase space

density, in turn defining the degree to which quantum phenomena can arise in

the systems. Further, the unambiguous observation of three-body loss resonances

associated with Efimov trimer states requires negligible two-body loss [35].

Our early experiments were therefore dedicated to exploring few-body physics

in ultracold gases of 6Li atoms occupying the three lowest-energy hyperfine spin

states. The primary observable in our experiments was the magnetic field depen-

dence of the stability of the gas with respect to three-body loss. The measurements
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were taken over a wide range of interaction strengths to answer such questions as

”What is the stability of the gas against three-body decay in both the weakly- and

strongly-interacting regimes?” and ”How does the Efimov effect translate for non-

identical particles characterized by multiple scattering resonances?”. Our measure-

ments are also applied to establish the feasibility of using this multi-component gas

as a quantum simulator of iconic models in condensed matter and quantum field

theory. These measurements are therefore an important first step for future stud-

ies of universality and exotic many-body phenomena in multi-component Fermi

systems.

1.5 Thesis Outline

This dissertation reviews the general setup of Professor Ken O’Hara’s Lab and

the first set of experiments preformed to study the few-body physics of ultracold

multi-component Fermi gases of 6Li atoms with resonantly enhanced interactions.

The thesis is organized as follows:

Chapter 2 provides a general overview of the properties of ultracold gases of 6Li

atoms occupying the three lowest-energy hyperfine spin states. The chapter begins

with a brief description of the ground-state hyperfine structure of the atoms. The

low-energy two-body scattering properties and inelastic loss rates of the gas are

then considered, leading to a discussion of magnetically tuned Feshbach resonances

in ground-state 6Li atoms. Finally, the universal properties of 6Li gases with

resonantly enhanced interactions is discussed.

Chapter 3 summarizes the universal theory which describes the quantum me-

chanical three-body problem for particles with resonantly enhances pairwise in-

teractions. We start by considering the simplified three-body system of identical

bosons in hyperspherical coordinates to derive the universal form of the three-body

potentials. The basics of Efimov’s theories are then reviewed for understanding

of the general properties of the Efimov trimer states. Additionally, the theoreti-

cal predictions for the variation of the three-body loss rates associated with the

existence of the universal trimer state are reviewed as these rates are direct experi-

mental observables useful in calculating the spectrum of Efimov trimer states for a

given system. The extension of these universal theories to our system where three
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distinguishable particles interact with three unique but resonantly enhanced scat-

tering lengths is then briefly discussed. Finally, the effects of the finite temperature

of the gas on measurements of the Efimov features are considered as pertaining to

our experiments.

Chapter 4 provides an overview of the experimental apparatus used to cre-

ate and probe degenerate and/or ultracold two- and three-component gases of

fermionic 6Li atoms over a range of magnetic bias fields spanning 0 to 1500 Gauss.

Strict control over the ultra-high vacuum, magnetic, and optical environments

experienced by the atoms are required to enable our experiments. The various

components installed to cool a 6Li Fermi gas from 465 � to ultracold tempera-

tures ranging from ∼ 2 µK to 30 nK, and prepare and probe equally populated

incoherent mixtures of multi-component Fermi gases in thermal equilibrium for

our few-body studies of these ultracold systems is discussed in detail.

Chapter 5 discussed the techniques used in our experiments both to produce de-

generate and nearly-degenerate ultracold Fermi gases of 6Li atoms occupying the

three lowest-energy hyperfine states and to extract information about the gases

using low-intensity absorption imaging techniques. Evaporative cooling is used to

initially prepare two-component gases at ultracold temperatures which, at certain

magnetic fields, leads to a long-lived molecular BEC as the gas is cooled to de-

generacy. Manipulation of the internal atomic states using radio-frequency pulses

and magnetic field gradients creates the incoherent three-state mixtures. Further,

at high fields, spectroscopically resolved absorption imaging of the three atomic

states can be used to extract information about the density, temperature, and

degeneracy of each component of the gas. Finally, we discuss our method of adi-

abatically relaxing the gas into conservative large-volume trapping potentials to

achieve extremely low temperatures and densities, enabling our studies in regimes

characterized by strong pairwise interactions and high rates of three-body loss.

Chapter 6 reports on our first measurements of the stability of the gas to

three-body loss along with the measurement of the three-body recombination rate

coefficients for the three-state Fermi gas over a wide range of magnetic fields. We

observed high stability when at least two of the three s-wave scattering lengths

were small, rapid loss in the vicinity of the three Feshbach resonances, and two

unexpected resonant loss features at fields below the Feshbach resonances, which
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were later described by the existence of an Efimov trimer state at these fields.

Recent analytic interpretations of the low-field three-body loss rates to characterize

the nature of the Efimov state and the three-body loss rates in this system are

discussed at the end of the chapter.

Chapter 7 reviews our recent experiments exploring the magnetic field depen-

dent three-body recombination rates for a three-state Fermi gas of 6Li atoms in

the high field, strongly universal regime where all three pairwise interactions are

large and attractive, with the goal of mapping out the spectrum of Efimov fea-

tures near the scattering resonances. We observed enhanced three-body recombi-

nation attributable to an excited Efimov trimer state near the three-atom scat-

tering threshold. Additionally, we demonstrate quantum degeneracy of a three-

component Fermi gas in the high-field limit, where the multi-component Fermi

gas becomes SU(3) symmetric. The end of the chapter discusses the implications

of this research in terms of the theoretical study it has enabled and the various

features that have been recently observed in three-component 6Li gases in the

high-field regime.

Chapter 8 briefly discusses many-body physics in two- and three-component

Fermi gases. Various novel many-body phenomena have been theoretically pre-

dicted to emerge when a third spin component is added to the system. Our previ-

ous measurements of the stability of the three-component 6Li gas in the high-field

regime is used to determine the feasibility of experimentally studying some of

this new physics using ultracold 6Li gases occupying the three states discussed in

this thesis. Then, a brief review of the physics of multi-component Fermi gases

loaded into three-dimensional (3D) optical lattice potentials is discussed. For two-

component Fermi gases, the lattice has been shown to enhance the critical tem-

perature for BCS superfluid pairing, and quantum magnetic ordering is expected

to emerge at low temperatures for repulsively interacting particles. At sufficiently

low temperatures, lattice-confined three-component Fermi gases may exhibit multi-

component superfluid phases in the high-field SU(3) symmetric regime and novel

phases at lower fields which cannot be explained by the paradigm models in con-

densed matter theory. Finally, a theoretical investigation of a cooling method that

we developed to filter high entropy-density atoms from a 3D optical lattice poten-

tial is discussed. We found that by using this method, a sample of fermionic atoms
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can be prepared in the lattice potential at unprecedented low temperatures and

uniform densities.

Chapter 9 concludes the dissertation by reviewing the achievements of this

Ph.D. project and provides an outlook for future studies with ultracold multi -

component Fermi gases.



Chapter 2
Fermi Gases

In our experiments, a three-component Fermi gas is comprised of ultracold 6Li

atoms in the three lowest-energy hyperfine spin states. At ultracold temperatures,

the pairwise interactions among these particles can be simply described in terms

of a single parameter, the s-wave scattering length a. By applying an external

magnetic field, these s-wave scattering lengths can be tuned over a wide range due

to a collisional scattering resonance known as a Feshbach Resonance. In the vicinity

of this resonant feature, the s-wave scattering lengths may be tuned to the universal

regime where the behavior of the gas is independent of the microscopic details of

the inter-particle interactions. The ability to control the pairwise interactions

among ultracold atoms to access the universal regime plays a crucial role in all

experiments with strongly interacting Fermi gases.
6Li has the remarkable property that three broad, overlapping Feshbach reso-

nances exist among atoms occupying the three lowest-energy spin states, enabling

studies of universal three-body physics where multiple attractive and/or repulsive

pairwise interactions among particle can simultaneously affect the ground-state of

the system with widely varying magnitude. Further, inelastic two-body loss of

the atoms is negligible in the presence of a magnetic field due to both the Pauli

exclusion principle, which inhibits collisions among identical fermions; and spin po-

larization of the valence electron, where hyperfine-changing transitions are highly

suppressed. This chapter concentrates on the two-body interactions among 6Li

atoms in the three lowest-energy spin states to demonstrate that this is an ideal

system for exploring universal three-body physics with ultracold Fermi gases.
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2.1 6Li Hyperfine States

The majority of ultracold atomic physics experiments utilize the unique properties

of alkali metal atoms, where the single unpaired valence electron yields a relatively

simple atomic structure and spectra. The fermionic isotope 6Li studied in our ex-

periments is a light alkali metal atom with atomic number three and nuclear spin

of one. We are primarily interested in the properties of the ground (1s22s1) and

excited electronic states (1s22p1) of this isotope, given by the spectroscopic nota-

tion 22S and 22P respectively. The transition between these states are represented

by the broad spectroscopic D-line.

The fine structure splitting of the D-line arises from the spin-orbit interaction

for the unpaired valence electron moving in the electric field of the nucleus. This

interaction is a magnetic dipole interaction between the intrinsic angular momen-

tum S and the orbital angular momentum L, which couple to the total angular

momentum J = L + S. The ground state of 6Li is singular in the |J,mJ〉 basis

with S = 1/2, L = 0, J = 1/2 expressed in spectroscopic notation as 22S1/2. The

excited state, on the other hand, yields two J values (S = 1/2, L = 1, J = 1/2,

3/2). This interaction term gives rise to the splitting of the spectroscopic D-line

into the D1 and D2 lines corresponding to the 22S1/2 ↔ 22P1/2 and 22S1/2 ↔ 22P3/2

transitions respectively.

Further splitting of the spectroscopic D1 and D2 lines emerges due to the inter-

action energy of the nucleus, which has a non-spherical charge distribution and an

intrinsic spin, with the electric and magnetic field of the valence electron. In 6Li,

the nuclear Hamiltonian includes electric monopole, magnetic dipole, and electric

quadrupole interaction terms. The electric monopole interaction represents the

electric interaction of the electron with the spherical part of the nuclear charge

distribution, leading to an overall shift of all of the energy levels. The higher order

terms, collectively known as the hyperfine interaction terms, lead to further split-

ting of the ground and excited states. The hyperfine Hamiltonian must therefore

account for the nuclear angular momentum I, with eigenstates that are represented

in terms of the total atomic angular momentum F, where F = J + I.

An energy level diagram displaying the fine and hyperfine structure of the 22S

and 22P lines is shown in Figure 2.1. The reported hyperfine splitting for the
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Figure 2.1. Energy level diagram of the fine and hyperfine structure of the 22S ground
and 22P excited states of 6Li. The energy level splittings are not to scale.

ground (22S1/2) and excited (22P1/2, 22P3/2) energy levels were measured in [93].

Further details on the atomic structure of 6Li including an extensive analysis of the

physical and optical properties of bulk and atomic 6Li for application to atomic

cooling and trapping experiments is given in Appendix A of [11]. This energy

level structure essentially details the relevant spectroscopic transitions between

the ground and 2P excited states in 6Li in the absence of external fields.
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Property Symbol Value

Total Electronic g-Factor

gJ (22S1/2) -2.0023010

gJ (22P1/2) -0.6668

gJ (22P3/2) -1.335

Nuclear Spin g-Factor gI 0.0004476540

Magnetic Dipole Constant (MHz)

A22S1/2
/h 152.1368407

A22P1/2
/h 17.375

A22P3/2
/h -1.155

Electric Quadrupole Constant (MHz) B22P3/2
/h -0.10

Table 2.1. g-factors and Hyperfine constants for the 22S ground and 22P excited
electronic states of 6Li

2.1.1 Hyperfine States in a Magnetic Field

The majority of our experimental applications are preformed in the presence of a

significant magnetic field (B). Even for magnetic fields as small as a few Gauss, the

Zeeman interaction energy (EZE) is no longer small as compared to the hyperfine

splitting (Ehf ) for the 22S ground and 22P excited states of 6Li. In this case, F is no

longer a good quantum number and the total magnetic and hyperfine interactions

must be considered in the | J mJ , I mI〉 basis. The combined Hamiltonian which

must be solved for the eigenenergies of the system in a static magnetic field is given

by [94]

Hint = Hhf +HZE, (2.1)

Hhf = AJ I · J +
BJ [3(I · J)2 + 3/2(I · J)− I(I + 1)J(J + 1)]

2I(2I − 1) J(2J − 1)

HZE = −µB(gJJ + gII) ·B

where AJ and BJ are the magnetic dipole and electric quadrupole hyperfine con-

stants for an atom in state J , and µB is the Bohr Magneton. These quantities

along with the relevant g-factors for the two lowest-energy electronic levels of 6Li

are listed in Table 2.1.
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For the electron in the 22S1/2 ground state (L = 0), the angular wavefunction

is spherically symmetric and does not support the nuclear electric quadrupole

interaction. The combined Hamiltonian can therefore be diagonalized yielding six

eigenstates |1〉 - |6〉, expressed in terms of superpositions of the product states

|ms, mI〉 [95]

|1〉 = sin Θ+ |1/2 0〉 − cos Θ+ | − 1/2 1〉

|2〉 = sin Θ− |1/2 − 1〉 − cos Θ− | − 1/2 0〉

|3〉 = | − 1/2 − 1〉 (2.2)

|4〉 = cos Θ− |1/2 − 1〉+ sin Θ− | − 1/2 0〉

|5〉 = cos Θ+ |1/2 0〉+ sin Θ+ | − 1/2 1〉

|6〉 = |1/2 1〉

where the states are numbered in order of increasing energy. The coefficients are

defined as

sin Θ± =
1√

1 + (Z± +R±)2/2

cos Θ± =

√
1− sin2 Θ± (2.3)

Z± =
µBB

A22S1/2

(−gJ(22S1/2) + gI)±
1

2

R± =
√

(Z±)2 + 2

The corresponding eigenenergies of the ground state levels |n〉, given in units of

frequency (E/h where h is Planck’s constant), are shown in Figure 2.2 as a function

of applied magnetic field in units of Gauss (1 Gauss = 10−4 Tesla). Note that at

zero field, the good angular momentum quantum numbers for the 22S ground state

are F = 1/2 and F = 3/2. As the magnetic field is applied, the degeneracy of

the |F, mF 〉 states are quickly lifted, resolving into the six calculated eigenstates.

In the high field limit, known as the Paschen-Bach regime (µB B � A22S1/2
), the

product states |mS mI〉 become good approximations to the true eigenstates of the

Hamiltonian. The eigenstates then separate into spectroscopic triplets of the high-

magnetic-field seeking states |mS = −1/2, mI = 0,±1〉 and low- magnetic-field
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Figure 2.2. Magnetic-field dependence of the 22S1/2 ground state of 6Li

seeking states |mS = 1/2, mI = 0,±1〉.
Numerical results for the tuning of the 22P3/2 Zeeman states in a uniform

magnetic field are shown in Appendix A, Figure A.2. The mathematica code

from [11] numerically diagonalizes the interaction Hamiltonian, Equation 2.2, to

determine how the eigenenergies of these atomic levels tune in a magnetic field.

As shown in the figure, these states quickly enter the Paschen-Bach regime due

to the small hyperfine splitting, and rapidly converge to the spectroscopic triplet

states, described in the product basis |J, mJ〉|I, mI〉, where the interaction energy

is simply given by

Eint =
µB
~

(gJmJ + gImI)B +
h

2
AhfmI . (2.4)

In the limit of high magnetic field, the energy splitting between the eigenstates for

a given |J,mJ〉 triplet state asymptotes to the value of the hyperfine splitting for

both the ground and excited electronic levels. This limiting behavior allows us to

preform state-selective operations within the ground high-field seeking states over

a wide range of magnetic fields with minimal sensitivity to the applied magnetic

fields. In the following, I will discuss the low-energy scattering properties of a gas

of ground-state fermionic 6Li atoms to demonstrate the unique properties which

emerge for this system under the influence of an applied magnetic field.
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2.2 S-Wave Elastic Collisions

Two neutral alkali atoms scattering off each other interact primarily via a short-

ranged electrostatic molecular potential V(R) in which the interaction depends

only on the relative distance between the particles (R= r1 - r2). In the center of

mass frame of the two particles, the collisional problem reduces to the study of

the scattering of a single particle by the spherically symmetric potential V(r). At

large distances, V(r) is approximated by the van der Waals potential for neutral

atoms with a J = 1/2 ground state which falls off as

V (r) ' −C6

r6
. (2.5)

At smaller distances, on the order of an atomic dimension, the atoms experience a

strong Pauli repulsion as the electron orbitals overlap, which increases rapidly as

r → 0. The net action of both the attractive long-range force and the repulsive

short-range force produces a potential well that may support many bound molec-

ular states. For low-energy collisions, the asymptotic behavior of the interaction

potential is fixed by the van der Waals coefficient (C6) which defines the character-

istic length scale at which the kinetic energy of the relative motion of two atoms

with reduced mass M equals their interaction energy.[96]

lvdw = (2MC6/~2)1/4 (2.6)

For alkali-metal atoms, lvdw can be much larger than the atomic scale, typically on

the order of several nanometers, due to the strong polarizability of these atoms.

To describe the essential properties of the scattering states of ultracold atoms,

a quantum mechanical treatment is necessary [97, 98, 99, 100, 101, 102]. In this

formalism, an incident particle can be represented as a plane wave with momentum

~ki. Scattering of this wave from the interaction region results in some of the wave

amplitude leaving in the form of a spherical outgoing wave with momentum ~kf .
The final asymptotic wave function of the particle (ignoring normalization factors)

is given by

Ψ(r) = eiki·r + f(kf , ki)
eikf r

r
. (2.7)
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In this expression, only the scattering amplitude f(kf , ki) depends on the potential

V(r). It can be shown that the differential scattering cross section can be calculated

from the scattering amplitude from the following [97]

dσ

dΩ
=
kf
ki
|f(kf , ki)|2. (2.8)

For the case of elastic scattering from a central potential, the scattered wave

function can be expanded in terms of partial waves (wave functions associated with

states of well-defined angular momentum). In this basis, the scattering amplitude

can be expressed in terms of the Legendre polynomials Pl(x) in the orbital angular

momentum basis |l〉.

f(k, θ) =
1

k

∞∑
l=0

(2l + 1)eiδl(k) sin[δl(k)]Pl(cos θ) (2.9)

where cos (θ) = k̂f ·k̂i is the scattering angle of the particle and δl(k) is the acquired

phase shift associated with the lth partial wave. Finally, the total cross section can

be derived from the imaginary part of the forward scattering amplitude using the

Optical Theorem [102]

σ(k) =
4π

k
=(f{k, 0}) (2.10)

=
4π

k2

∞∑
l=0

(2l + 1) sin2[δl(k)]. (2.11)

It is interesting to note that the S-matrix elements for the scattering event,

which describe the overlap of the initial state (Ψ+
i ) with the time reversal of the

final state (Ψ−f ), are directly related to the acquired phase shift as [103]

〈f |S|I〉 = 〈Ψ−f |Ψ
+
i 〉 (2.12)

Sl(k) = e2iδl(k). (2.13)

In this partial wave basis, both the S-matrix and the total cross section are func-

tions of the channel momentum k and the angular momentum l. We shall see

that this basis is ideal for studying collisions in the limit of low energy, where high
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angular momentum contributions are suppressed so that only a few partial-waves

need to be considered.

The previous results generally considered the elastic scattering of a particle

from a central potential V(r), which can be directly applied to the case of colli-

sions among distinguishable particles. When considering scattering among identi-

cal particles, the above results must be slightly altered to account for the proper

symmetry of the wavefunctions. It is impossible to distinguish between the final

states for two identical particles when each scatter by an angle of θ or when they

are backscattered by an angle of π−θ. The differential cross section which accounts

for this symmetry is given by

dσ

dΩ id
= |f(k, θ)± f(k, π − θ)|2. (2.14)

Here 0 < θ < π/2 is the angle between the incident and scattered particles and the

sign (+/−) applies for bosons and fermions respectively. Aside from increasing the

total scattering length by a factor of two due to quantum statistics, the extra term

in Equation 2.14 varies the spectrum of available partial wave interactions. This

can be seen from the angular dependence contained in the Legendre polynomials in

Equation 2.9, which are related by cos(π − θ) = − cos(θ), Pl(π − θ) = (−1)lPl(θ).

Therefore, the sum in Equation 2.11 only runs over even (odd) integers of l for

identical bosons (fermions), so that only these partial waves contribute to the

scattering amplitudes for identical particles.

The partial waves describe effective unidimensional scattering potentials which,

for l > 0, have long-range centrifugal barriers (Veff (r) = V (r)+ l(l+1)/r2). Much

of the utility of using ultracold gases lies in the fact that the energy of this barrier

can be much larger than the kinetic energy of the colliding atoms. For 6Li atoms,

the angular momentum barrier for the van der Waals potential is greater than

kB ∗ 6.5 mK for all partial wave scattering channels above l = 0 [104]. In the low

temperature limit (k → 0), all partial-wave cross sections except for the s-wave

(l = 0) contribution vanish as E−2l [103], where E = ~2k2/(2Mr) is the kinetic en-

ergy of the incident particle. Thus, for the ultracold temperatures relevant to this

thesis (T ≤ 2 µK), all but the s-wave scattering amplitudes can be neglected. Con-

sidering the previous discussion of collisions among indistinguishable particles, it



25

is found that s-wave interactions are therefore forbidden among identical fermions.

Interactions among spin-polarized fermions at ultracold temperatures are highly

suppressed [105] and for this reason, we use mixtures of atoms in different internal

spin states throughout most of our experiments.

To determine the ultracold collisional cross section, it is convenient to expand

the s-wave phase shift in terms of k2 [106, 101].

k cot(δ0(k)) = −1

a
+

1

2
rek

2 + · · · (2.15)

a = − lim
k→0

tan δ0

k
(2.16)

where a is the s-wave scattering length and re is the effective range describing

the distance over which the distorted wave differs from a free wave. The limiting

behavior of the total scattering cross section at zero-energy is given by

lim
k→0

σ =
(C) 4πa2

1 + k2a2
. (2.17)

The constant C depends on the nature of the interacting particles, where C = 1

for scattering between distinguishable particles and C = 2 or 0 for identical bosons

and fermions respectively.

The physical interpretation of the s-wave scattering length is given in [101].

In the low-energy limit, the s-wave scattering length is defined as the distance

between the center of the scattering potential and zero-crossing of the asymptotic

radial wavefunction on the r axis. The value of a therefore represents how much

the particle wavefunction is modified by the scattering potential. Further, the

sign of the scattering length defines whether the wavefunction is repelled from or

attracted to the origin, where positive (negative) scattering lengths correspond to

repulsive (attractive) interactions between the particles.

For finite energies (k 6= 0), so long as the collisions are sufficiently low-energy

that the de Broglie wavelength (λdB) is much larger than the characteristic range

of interactions (λdB � re), the atoms undergoing pairwise collisions cannot resolve

the microscopic properties of the potential and the scattering length dominates

the description of the interaction. For weak interactions, the s-wave scattering

length is much smaller than the both the de Broglie wavelength of the colliding



26

atoms and the average inter-particle separation (a� k−1, n1/3). In this limit, the

low-energy scattering amplitude f → −a and cross section σ → (C) 4πa2 can be

fully described by the s-wave scattering length.

In this limit, the interaction potential can be treated as an effective contact

interaction using the Born approximation [95, 107]

V (r) = gδ(r) =
4π~2a

Mr

δ(r). (2.18)

This approximation is generally valid for ultracold collisions in the dilute limit,

where both the de Broglie wavelength and the inter-particle spacing n−1/3 greatly

exceed the characteristic range of the potential.

2.3 Inelastic Collisions

In the previous discussion, purely elastic two-body collisions were considered. Since
6Li atoms have internal degrees of freedom, there is the additional possibility for

inelastic internal-state-changing collisions that may lead to heating and loss of our

confined atoms. It is therefore necessary to consider the possible inelastic processes

that can occur for a multi-component Fermi gas as these loss-mechanisms will

determine the dominant physical processes that we can observe.

For a N-body problem where there exists only one possible scattering state

(channel), the phase shift δ(k) must be real due to the unitarity of the S-matrix,

which states that particle flux must be conserved. When the atoms undergoing a

collision have internal structure, allowing for more than one possible interaction

potential, a coupled-channel treatment of scattering may be necessary. Transitions

to other channels can occur in such a case and the particle flux of a single channel is

no longer necessarily conserved. For simplicity, I will denote the entrance channel

as |i〉 and all other coupled channel states as |j〉. The phase shift associated with

a particular channel δ(k) will therefore be complex where

Si = e2i(δii+iδji) = e−2δjie2iδii . (2.19)

The real part of the complex phase δii gives the phase shift associated with
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elastic scattering. The imaginary part δji makes |S| 6= 1, which implies the inelastic

gain or loss of particle flux depending on the sign. In the low-energy limit, the

rate for inelastic transitions is given by

lim
ki→0

Ri→j = Gi→jni (2.20)

Gi→j =
π~
Mrki

|Sji|2 (2.21)

where Gi→j is the inelastic decay rate constant, ni is the density of the atoms in

the entrance channel and ki is the wavevector of the atoms before the collision.

In this section, I will briefly discuss the relevant inelastic two-body processes

that can occur among ultracold atoms occupying the three lowest-energy spin

states in 6Li (|1〉, |2〉, |3〉). For an extensive discussion of these processes, refer to

[95]. Due to energy and momentum conservation, two-body interactions cannot

drive transitions between free atoms and bound molecular states. Therefore, we

only need to consider hyperfine-changing collisions here. Three-body interactions,

which constitute the primary observable in our experiments, will be discussed in

detail in Chapter 3.

In the asymptotic limit, the eigenstates of two colliding 6Li atoms in our system

are the states |1〉, |2〉, or |3〉. When the two fermions collide, they approach each

other in an antisymmetric combination |{α, β}−〉, where α and β are one of the

eigenstates. For s-wave interactions, this means that for interactions to exist, the

total spin wave functions χ must be antisymmetric.

|{χ1, χ2}−〉 =
1√
2

(|χ1〉|χ2〉 − |χ2〉|χ1〉) (2.22)

The two-body collision therefore consists of colliding particles which approach each

other in an entrance channel |i〉 = |{α, β}−〉 and recede from each other in one

or more exit channels |j〉 = |{α′, β′}−〉. For two ground state alkali atoms,

the interaction potential is given by the sum of a central electrostatic interaction

potential V c(r) and a magnetic dipole-dipole interaction potential V d(r). The

dipole-dipole interaction is much weaker than the electrostatic interaction and

therefore has been neglected in the previous discussion of the low-energy elastic

scattering properties of the gas. When the inelastic collision rate due to V c(r)
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vanishes, however, V d(r) must be considered as it gives the dominant inelastic

rate constant.

As discussed previously, s-wave collisions among particles in the same spin state

are strictly forbidden, which can also be seen from Equation 2.22 |{α, α}−〉 = 0.

Therefore, only three entrance channels must be considered in an ultracold gas

of 6Li atoms occupying the |1〉, |2〉, |3〉 ground states (|{2, 1}−〉, |{3, 1}−〉 and

|{3, 2}−〉). The stability of a gas of ultracold 6Li atoms only occupying the two

lowest-energy hyperfine states |1〉 and |2〉 to inelastic loss has been discussed in

detail [95]. This mixture has been the workhorse of the ultracold 6Li experiments

to date attributed both to the existence of a the broad Feshbach resonance in this

channel and because this mixture is virtually impervious to inelastic collisions in

the low-temperature limit. In the following, I will show that the same mechanisms

inhibit the inelastic two-body collisions for all of the entrance channels relevant to

our experiments.

2.3.1 Spin-Exchange Collisions

For collisions among ground state neutral alkali atoms, depending on whether

the valence electron from each atom couple to form a singlet spin state (S =

S1 + S2 = 0), or a triplet spin state (S = S1 + S2 = 1), the atoms will approach

along either a singlet Vs(r) or triplet molecular potential Vt(r). For our ultracold
6Li gases, the single potential approximation is not justified because the spin of

the valence electron is coupled to the spin of the nucleus through the hyperfine

interaction. The valence electrons from two colliding atoms are therefore coupled

into a superposition of the triplet and singlet states, and the collisions cannot be

described simply by scattering from either potential.

Interactions by means of the central (singlet and triplet) potential is given by

V c(r) = Vs(r)P s + Vt(r)P t where P s and P t denote projection operators onto

the singlet and triplet total-electron-spin subspaces [108]. A central potential

cannot change the orbital angular momentum and hence total angular momen-

tum conservation requires that the total spin angular momentum is also con-

served in the collision. Therefore, V c(r) only couples channels with the same

MF = mf1 +mf2 where mfn is the spin projection of atom n in the F-basis. The
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entrance channel |{2, 1}−〉, were MF = 0, is therefore coupled to four other chan-

nels: |{2, 1}−〉 → |{4, 5}−〉, |{6, 3}−〉, |{5, 2}−〉, and |{4, 1}−〉. All of these

states have much higher energy than the |{2, 1}−〉 mixture, making the reac-

tions endothermic. A thermal energy of at least 10 milliKelvin would be required

to make any of these spin-exchange transitions and therefore, for the ultracold

collisions considered here these higher-lying channels are closed.

The only available spin-exchange collision in the |1〉, |2〉, |3〉 mixture is the

|{3, 1}−〉 → |{4, 2}−〉 reaction, where all other processes are either energetically

forbidden or require higher partial-wave scattering, which is forbidden at ultracold

temperatures. In the absence of a magnetic field, these channels will be energeti-

cally degenerate, leading to a finite inelastic spin-exchange rate constant Gc
31→42.

As soon as a magnetic field is applied however, the degeneracy is lifted and the

|{4, 2}−〉 channel will become closed for field values where the required energy

for the |{3, 1}−〉 → |{4, 2}−〉 reaction exceeds the available thermal energy of

the atoms. In this limit, all of the inelastic spin-exchange collisions in the high-

field-seeking ground states are fully suppressed, and the dipole-dipole interaction

provides the dominant mechanism for inelastic two-body reactions.

2.3.2 Dipolar Relaxation Collisions

The magnetic dipolar interaction potential V d(r) predominantly arises from the

electron-electron magnetic dipole interaction. Although electron-nucleon, and

nucleon-nucleon magnetic dipole interactions exist, the nuclear magnetic moment

µn is several orders of magnitude smaller than the Bohr magneton µe. The corre-

sponding dipolar decay rate constants are smaller by a factor of (µn/µe)
2 ' 2×10−5

[109] and are therefore neglected here. The magnetic dipole-dipole interaction can

therefore be written in terms of the electron spin operators S1 and S2 as

V d(r) =
µ0(2µB)2

4πr3
[S1 · S2 − 3(S1 · r̂)(S2 · r̂)]. (2.23)

where µ0 is the permeability of free space.

This interaction transforms as spherical tensors of rank two in both coordinate
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and spin space, which can be written in the form [108]

V d(r) = −
(

24

5π

)1/2
µ0µ

2
B

r3

2∑
µ=−2

Y ∗2µ(r̂)Σ2,µ (2.24)

where Ylm(r̂) is a spherical harmonic and Σ2,µ is a spherical tensor of rank two

made up from the two spin operators with components

Σ2,0 = −
√

3

2
(S1zS2z − S1 · S2/3) (2.25)

Σ2,±1 = ±1

2
(S1zS2± + S1±S2z) (2.26)

Σ2,±2 = −1

2
S1±S2± (2.27)

This interaction can induce transitions in which the orbital angular momentum

quantum number changes by 0 or ±2, and the total electron spin projection of the

atoms changes by 0, ±1, or ±2. Two atoms colliding in a s-wave entrance channel

can therefore be scattered to a d-wave state, where the angular momentum is

provided by the electron spins.

To understand what channels can be coupled by V d(r), it is instructive to refer

to Equations 2.3, in which the eigenstates of the 22S1/2 ground state of 6Li are

expressed in the |mS, mI〉 basis. Here we are considering the possible exothermic

inelastic collisions that might occur among atoms in a mixture of the high-field

seeking states in the range of magnetic fields above ∼ 10 Gauss, in which the

eigenstates |1〉 → |6〉 are well resolved.

For the lowest-energy entrance channel, |{2, 1}−〉 → |1〉1, |1〉2 is the only avail-

able exothermic reaction. In this case, however, the initial state has an antisym-

metric spin wave function requiring a symmetric spatial wave function, whereas the

final state has a symmetric spin wave function requiring an antisymmetric spatial

wave function. As discussed previously, the s-wave entrance channel wave function

can only couple to s-wave and d-wave (symmetric) exit channel wave functions for

inelastic dipolar collisions. Therefore, the magnetic dipole-dipole interaction must

preserve the total spin symmetry of the system. The lowest-energy entrance chan-

nel is therefore fully immune to hyperfine changing inelastic collisions at ultracold

temperatures.
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This is not necessarily the case for collisions among all of the relevant entrance

channels. In fact, there are three exothermic hyperfine changing collisions that are

allowed for atomic gases of 6Li atoms occupying the three lowest-energy spin states:

the single spin flip transitions |{3, 1}−〉 → |{2, 1}−〉 and |{3, 2}−〉 → |{3, 1}−〉,
and a two spin-flip process |{3, 2}−〉 → |{2, 1}−〉. These decay channels lead

to finite inelastic magnetic dipole-dipole rate constants for each transition Gd
31→21,

Gd
32→31, and Gd

32→21.

The decay rates for transitions from the initial state |{α, β}−〉 to a final state

|{α′, β′}−〉 are essentially given by Fermi’s golden rule [110]. For the case of

alkali-atoms interacting at T = 0, the inelastic dipolar rates due to these couplings

are approximated by [108]

Gd
α, β→α′, β′ ∝ v′α′, β′

∑
µ

|〈α′, β′|Σ2,µ|α, β〉|2 (2.28)

where v′α′, β′ =
√

2(εα + εβ − εα′ − εβ′)/Mr is the relative velocity gained in the

exothermic reaction from the initial state with energy εi = εα+εβ to the final state

with energy εf = εα′ + εβ′ .

Experimental and theoretical investigations of the stability of an ultracold gas

of 6Li atom in a |3〉−|1〉 mixture at a bias field B = 8.3 Gauss have determined the

low-field decay rate constant for the |{3, 1}−〉 entrance channel to be G31→21 �
2×10−14 cm3/sec [111]. For a gas with a density of n = 1012/cm3, this corresponds

to an inelastic dipolar collision rate of R31→21 � 0.02/sec. From Equation 2.28,

it can be assumed that at low fields, Gd
31→21 ∼ Gd

32→21 > Gd
32→31, where the single

spin flip process from state |3〉 → |2〉 are dominant over the |2〉 → |1〉 transitions

attributed to the greater energy released in this reaction.

At high magnetic fields, the matrix terms in Equation 2.28 becomes suppressed,

attributed to the spin polarization of the valence electron. The magnetic field

dependence of the spin-flip transitions are scaled by the coefficients sin Θ± and

cos Θ±, given in Equation 2.4 where

lim
B→∞

sin Θ± =
A22S1/2√

2µBB
lim
B→∞

cos Θ± → 1. (2.29)

For all of the dipolar transitions that we are considering, at high magnetic fields
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Gd
i→j ∝ (sin Θ±)2, suppressing the total inelastic dipolar rate constants Gd by

approximately two orders of magnitude at an applied magnetic field value of 1000

Gauss. Therefore at the relevant densities and timescales for our experiments

(n < 1012/cm3, t ∼ 10 sec) the effects of inelastic two-body hyperfine-changing

processes are negligible.

2.4 Scattering Resonances

Resonant scattering in atomic and molecular systems has been a subject of intense

investigation since the earliest days of quantum physics. A resonance occurs when

the s-wave scattering phase changes by π over a relatively narrow range of energy.

For collisions among neutral atoms, resonant phenomena is generally attributed

to the presence of a molecular state that is coupled to the scattering state of the

colliding atoms. Such resonances may be due to a vibrational level either at the

dissociation energy or trapped behind a repulsive barrier of a single molecular

potential (shape resonance), or by coupling to a bound state which has a different

symmetry and potential than that of the colliding atoms (Feshbach resonance).

From low-energy scattering theory, it is known that the presence of a molecular

level which is barely above (below) the energy of the scattering continuum leads

to a large negative (positive) scattering length that increase in magnitude as the

energy of the bound level approaches the continuum and diverges when these two

levels are degenerate [101].

To understand the physical origins of Feshbach resonances, consider the inter-

actions among ground-state, high-field seeking, neutral alkali atoms in the presence

of a large externally applied magnetic field. The atoms predominantly approach

along the triplet molecular potential (entrance channel), where the singlet state

is Zeeman shifted to a higher energy that greatly exceeds the available kinetic

energy of the ultracold atoms. Here, the transitions to the continuum of the sin-

glet potential are forbidden (closed channel). This potential is important for the

physics discussed however, because it may support bound molecular states near

the threshold of the entrance channel.

The ability to tune the interactions in such a system lies in the fact that the

scattering states have different magnetic moments (∆µ), allowing for the energy
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Figure 2.3. (a) A Feshbach resonance occurs when a bound molecular state in a closed
channel energetically coincides with the collision energy of the particles in the entrance
channel. (b) By varying the applied magnetic field in the vicinity of the resonance lo-
cation at B0, the s-wave scattering length can be widely varied to large positive and
negative values, diverging at the resonance location. (c) As the molecular level is ener-
getically tuned through the scattering continuum, coupling of the entrance and closed
channels dresses the scattering and molecular states. This causes an avoided crossing
which adiabatically connect these levels as the magnetic field is varied.

difference between the scattering state in the open channel and the molecular state

in the closed channel to be tuned with respect to each other using an externally

applied magnetic field, as shown in Figure 2.3(a). When these states energetically

approach each other even a weak coupling, given by the hyperfine interaction for

our ground-state 6Li atoms, can lead to strong mixing between the two channels.

Although, for elastic collisions, the atoms enter and leave the interaction in the

same channel state, the coupling allows the atoms to occupy a virtual molecular

state for a finite time, altering the scattering phase shift and allowing the scattering

length to become resonantly enhanced. This phenomenon is called a magnetically

tuned Feshbach resonance and allows the interactions to be externally tuned to

yield arbitrarily large positive and negative scattering lengths.

The enhancement of the two-body interactions that arise from the coupling of

a discrete state to the continuum was first studied by H. Feshbach and U. Fano in

the framework of nuclear [112] and atomic physics [113] respectively. The response

of the s-wave scattering length a as a function of the applied magnetic field B

for a magnetically tuned Feshbach resonance can be described, in the absence of
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inelastic loss, by a simple expression [114].

a(B) = abg

(
1− ∆

B −B0

)
(2.30)

This expression, which is plotted in Figure 2.3(b), demonstrates that the Feshbach

resonance occurs at a magnetic field B0 when the scattering length diverges a →
±∞. The width of the resonance is denoted by ∆, which also gives the zero crossing

of the scattering length at B = B0 + ∆. For magnetic fields far detuned from the

resonance position, the scattering length is well approximated by the background

scattering length abg. It is important to note that both abg and ∆ can be either

positive or negative. More details on the applications of Feshbach resonances to

ultracold atom experiments can be found in a recent review article [9]

2.4.1 Resonant Scattering in 6Li

The three lowest-energy spin states of 6Li studied in this thesis have the amazing

property that both shape and Feshbach resonances allow for resonantly enhanced

pairwise interactions in the presence of reasonably large magnetic field. Shielding

of the repulsive force between the 6Li nuclei in the singlet state leads to a relatively

deep singlet potential which supports 38 vibrational bound states and exhibits a

s-wave singlet scattering length of as = +45.16 a0 [19, 115], where a0 ≈ 0.5Å is the

Bohr radius. The triplet potential, on the other hand, is much shallower due to

the vanishing probability density for the valence electrons between the nuclei. This

potential supports 9 bound states and exhibits a zero-energy resonance where the

energy of the virtual ν = 10 vibrational state is within 0.03% of the dissociation

energy of Vt(r) [95], leading to an anomalously large triplet s-wave scattering length

at = −2140 a0 [115].

At sufficiently high magnetic fields (B > 100 Gauss), atoms in the three lowest-

energy spin states (|1〉, |2〉, |3〉) become predominantly electron spin polarized, with

mS = −1/2 in the |mS, mI〉 basis. Pairwise interactions between the atoms in

these states are described by three s-wave scattering lengths a12, a23 and a13. In

the high field limit the atoms predominantly approach along the shallow triplet

potential. The background s-wave scattering length for the atoms then converges
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Scattering Channel Partial Wave B0(Gauss) ∆(Gauss)

|1〉 |2〉 s 834.1 -300
|2〉 |3〉 s 811.2 -222.3
|1〉 |3〉 s 690.4 -122.3

|1〉 |2〉 s 543.25 0.1

|1〉 |1〉 p 159.14 na
|1〉 |2〉 p 185.09 na
|2〉 |2〉 p 214.94 na

Table 2.2. Properties of the observed s- and p-wave Feshbach resonances for 6Li in the
three lowest-energy spin states, taken from Reference [9]

to aαβ → at where α, β represent atoms in any of the high-field seeking states.

This limiting behavior opens the exciting possibility of studying strongly interact-

ing three-component Fermi gases in the SU(3) symmetric regime where all of the

pairwise interactions are effectively identical.

Below 1000 Gauss, a molecular state in the highest vibrational level of the sin-

glet potential comes into resonance with the entrance channel. This bound state is

split into multiple hyperfine states with F = 0, mF = 0 and F = 2, mF = ±2,±1, 0

due to the coupling between the I = 1 nuclear spins of each atom. Therefore, each

binary mixture exhibits Feshbach resonances with the amazing property that there

exists three broad s-wave resonances which all overlap [115]. This allows for si-

multaneous resonant enhancement of the three pairwise interaction strengths and

coexisting attractive and repulsive interactions to study a wide range of strongly-

interacting phenomena. Figure 2.4 shows the magnetic field dependence of the

scattering lengths a12, a23 and a13 in units of the Bohr radius a0, from a coupled

channel calculation by P. Julienne at NIST, [116], based on precise measurement

of the interaction parameters [115].

In addition to the broad Feshbach resonances, a number of other two-body

resonant features are also present below 1000 Gauss. In the |1〉 − |2〉 scattering

channel, an extremely narrow Feshbach resonance exists with a width of only ∼ 100

mG [117]. Further, p-wave resonances, associated with p-wave rotational levels of

the ν = 38 bound state of the singlet potential, have been observed in the |1〉−|1〉,
|1〉− |2〉, and |2〉− |2〉 scattering channels [118, 119]. An overview of the Feshbach
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Figure 2.4. Variation of the scattering length with respect to applied magnetic field
for the three lowest-energy spin states of 6Li

resonances observed in 6Li is given in Table 2.2.

2.5 Universality

Universality is a fundamental concept in physics. It illustrates the ability to de-

scribe the long-rang behaviors of various systems with expressions that only depend

on a small set of universal constants. In other words, universal physical systems

behave identically under certain limits regardless of their microscopic properties.

Universality is prevalent in the physics of ultracold atomic gases where resonant

enhancement of the pairwise interactions allows the low-temperature scattering

properties to be solely described by the s-wave scattering length a. In fact, the

quantum simulation of condensed matter, nuclear, and particle physics phenomena

with ultracold atoms is dependent on the universal behaviors of these gases.
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In our experiments, the characteristic range of interactions r0 is given by the

van der Waals length scale, discussed in section 2.2, where lvdw = 62.5 a0 for 6Li.

When a � lvdw, the scattering length dominates over the microscopic properties

of the interaction potential. This constitutes the universal regime in which the

two-body properties of the gas depend only on the scattering length (We will see

in Chapter 3 that an additional three-body parameter κ∗ is required to describe

the three-body properties of the system). In this regime the pairwise interactions

are dominated by the value of the scattering length, where first-order corrections

to the universal theory scale with powers of lvdw/a [1].

In the vicinity of a Feshbach resonance, where the scattering state in the open

channel and the molecular state in the closed channel are strongly coupled, the

scattering length can be very large. For entrance-channel dominated resonances,

the system exhibits universal properties over a large fraction of the resonance

width, typically associated with relatively broad resonances (∆ > 1 Gauss). In

contrast, narrow resonances are typically closed-channel dominated resonances,

where a small fraction of the resonance width is in the universal regime. One of

the most interesting aspects of Feshbach resonances is that in the universal regime,

for positive values of a, a dressed molecular state exists with a binding energy given

by

ED =
~2

2Ma2
. (2.31)

In this regime, the details of the interaction become irrelevant and all of the prop-

erties of the dimer are characterized by the scattering length a. The molecular

wave function of this universal dimer extends over a much larger range than the

interaction potential, falling off exponentially in the asymptotic limit as exp(−r/a)

[120]. The regime where the extent of a bound quantum object is much larger than

the classical system is also referred to as the quantum halo regime.

In two limiting cases, the universal predictions become exact.

� The scaling limit: a is fixed and r0 → 0,

� The unitarity limit: r0 is fixed and a→ ±∞.

The scaling limit is a powerful approximation, often referred to as the zero range

limit, to calculate the properties of universal systems. In this approximation, the
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point-like pseudo-potential approximation for the two-body potential in Equation

2.18 is exact and the scattering length is the only relevant length scale in the prob-

lem. This method is often used in renormalization group calculations to predict

the universal behaviors of observables in strongly interacting systems [1]. In the

two-body sector, the scaling limit is associated with a continuous scaling symme-

try which is a trivial consequence of the fact that the scattering length is the only

length scale remaining in the problem. Here, the scattering length (a), position

(r), and time (t) variables are all rescaled by the appropriate powers of a positive

number (λ)

a→ λa, r→ λr, t→ λ2t. (2.32)

Under this symmetry, the two-body observables such as binding energies of the

universal dimer and scattering cross sections simply scale with the appropriate

powers of λ as suggested by dimensional analysis. For real atoms, this symmetry

is only an approximation and scaling violations emerge which break the symmetry,

giving first-order corrections on the order of r0/|a| [1].

The unitarity limit can be reached experimentally as the interactions diverge at-

tributable to resonant enhancement of the scattering length (B → B0 for Feshbach

resonances). In this case, the low-energy collisional cross section is limited by the

size of the de Broglie wavelength and the k2a2 term in the denominator of equation

2.17 dominates, yielding a maximum temperature-dependent cross section given

by

lim
a→±∞

σ =
(C) 4π

k2
. (2.33)

Fermi gases in this limit are known as unitary Fermi gases where the scattering

properties of these gases are completely dependent on the wave vector of the ther-

mal energy and the inter-particle spacing is the only remaining length scale.

In this regime, there exists a universality that connects the unitary Fermi gas

to that of an ideal Fermi gas. In a uniform strongly interacting Fermi gas, the

ground-state energy is a universal fraction of the energy of a noninteracting gas

at the same density, denoted by 1 + β [20, 11] where β is the universal constant

that cannot be calculated analytically. The state of the art measurements for this

universal constant yield β ' −0.6 [66], measured by the group of J. Thomas at

Duke University using an ultracold gas of 6Li atoms in the two lowest-energy spin
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states near the broad Feshbach resonance at 834 Gauss [26]. They have also made

detailed measurements of the hydrodynamic expansion of normal [20] and rotating

[14, 68] strongly interacting Fermi gases, which also arises in a quark-gluon plasma

[69, 19], as a consequence of very low viscosity hydrodynamics characteristic of a

nearly perfect fluid. These few examples demonstrate the power of using ultracold

two-component Fermi gases in the universal regime as quantum simulators for a

variety of phenomena in strongly interacting Fermi gases over a wide range of

length and energy scales [26]. In the following chapter, I will discuss the universal

theory of three-body interactions, which have become accessible in our experiments

with the inclusion of a third spin component to our ultracold Fermi gas.



Chapter 3
Universal Three-Body Physics

In the 1970s, Vitali Efimov published a series of ground-breaking papers, effec-

tively solving the quantum mechanical three-body problem for low-energy particles

with resonantly enhanced s-wave interactions [30, 31, 121, 32]. His investigations

found that a non-relativistic system of three identical bosons, with sufficiently

strong interactions, can support a spectrum of three-body bound states whose

number increase to ∞ as the scattering length is tuned to resonance. Further,

these so-called Efimov trimer states exhibit universal behaviors as a consequence

of a discrete scaling symmetry in the zero-range limit.

This chapter begins by summarizing the textbook results for the quantum me-

chanical three-body problem as pertaining to identical bosons. Much of the in-

formation given here is based on a recent review article discussing universality in

few-body systems by E. Braaten and H. W. Hammer [1]. We start by considering

the three-body system in hyperspherical coordinates and the various simplifying

assumptions that effectively reduce the Hamiltonian to an uncoupled set of radial

Schrödinger equations in terms of three-body hyperspherical potentials. With the

three-body potentials in hand, the universal properties of the Efimov trimer states

are then explored. Evidence for the existence of the Efimov states can be indirectly

observed in the form of resonant enhancement or suppression of the three-body

recombination rate in ultracold atomic gases. Recent theoretical advancements

predicting the locations and widths of these resonant features will be discussed for

the case of identical bosons to provide a general overview of the various features

that arise with the inclusion of universal trimer states.
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The application of the above theory to our case is discussed in the last two sec-

tions. Here, three distinguishable particles interact with three unique, resonantly-

enhanced scattering lengths. Recent analytical approximations are discussed to

demonstrate the new features that are expected to arise in our system. Further,

the methodology for numerically solving for the rate constants using a generaliza-

tion of the Skorniakov and Ter-Martirosian (STM) equations is reviewed as this

method has been directly applied to analyze our data. Finally, the effects of the

finite temperature of the gas on the observed Efimov features are discussed. This

review is not designed to cover the entire scope of the rapidly evolving field of

universal few-body physics, but instead concentrates on the variety of phenomena

that arise when three-body interactions are included by means of adding a third

spin-state to ultra-cold gases of fermionic atoms.

3.1 Three-Body Interactions

Although the quantum mechanical three-body problem has been investigated since

nearly the beginning of quantum mechanics [122], it is still generally considered

an unsolved problem. Consider even the simple case of three atoms of equal mass

m at located at positions ri, interacting via a central potential V (r1, r2, r3). The

Schrödinger equation for this system is given by[
− ~2

2m

3∑
i=1

52
i + V (r1, r2, r3)

]
Ψ(r1, r2, r3) = E Ψ(r1, r2, r3) (3.1)

where Ψ(r1, r2, r3) is the three-atom wavefunction. After transforming to the

center-of-mass frame, six degrees of freedom still remain. Here, spherically sym-

metric pairwise interactions between the atoms imply total angular momentum

conservation, but this only provides three constraints of motion. This leaves a

three-dimensional partial second order non-linear differential equation for which

no general solution exists. Here I briefly describe hyperspherical coordinate space

and the simplifying assumptions which allow for an analytic solution to the quan-

tum mechanical three-body problem for the case of three resonantly interacting

identical bosons when only pairwise interactions are considered. For a thorough

review of this formalism, refer to References [123, 1].



42

1 3

2

r12

r3,12

Figure 3.1. Hyperspherical coordinate system for three particles

3.1.1 Hyperspherical Coordinates

The universal quantum-mechanical three-body problem can be most easily under-

stood by formulating it in terms of hyperspherical coordinates. This coordinate

system is expressed as of a set of Jacobi coordinates consisting of vectors repre-

senting the separation between atom pairs rij = ri − rj and a vector represent-

ing the separation of the third atom from the center-of-mass of the atom pair

rk,ij = rk − 1
2
(ri + rj) as illustrated in Figure 3.1.

In this formalism it is useful to consider the hyperradius R and the Delves

hyperangle αk [124], defined as

R2 =
1

3
(r2

12 + r2
23 + r2

13) =
1

2
r2
ij +

2

3
r2
k,ij (3.2)

αk = arctan

(√
3rij

2rk,ij

)
(3.3)

where (i, j, k) is a permutation of the particle numbers (1,2,3). The hyperangle

αk varies from 0, when atom k is far from atoms i and j, to π/2, when atom k is

near the center-of-mass of the other two atoms. Further, the hyperradius R, which

represents the root-mean-square separation of the three atoms, is only small if all

three atoms are mutually in close proximity.

In the center-of-mass frame, six variables are necessary to describe the three-

body Schrödinger equation. The hyperspherical coordinates used are the hyper-

radius R, one of the hyperangles αk, and the unit vectors r̂ij and r̂k,ij. The five
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dimensionless variables (αk, r̂ij, r̂k,ij), referred to as the hyperangular variables, are

collectively denoted as Ω. In terms of hyperspherical coordinates, the Schrödinger

equation in the center-of-mass frame reduces to[
TR + Tαk +

Λ2
k,ij

2mR2
+ V (R,Ω)

]
Ψ = E Ψ, (3.4)

where TR is the hyperradial kinetic energy operator, Tαk is the kinetic energy

operator associated with the hyperangle αk, and Λk,ij is a generalized angular

momentum operator which contains the conventional angular momentum operators

associated with the vectors rij and rk,ij. More details on this derivation can be

found in Reference [1].

3.1.2 Faddeev Equations

Up to this point, the analysis of the three-body problem has been exact for a

general three-body system. One assumption that greatly simplifies the physics

considers only configurations where a two-body cluster is well separated from the

third atom. The resulting Faddeev equations are a set of equations equivalent

to the three-body Schrödinger equation in Equation 3.4 that makes use of this

simplification. Along with the restrictions associated with low-energy collisions at

ultracold temperatures, the three-body problem can be reduced to a set of integro-

differential equations in terms of only the hyperradius R.

We first assume that the three-body interaction potential can be expressed as

V (r1, r2, r3) = V (r12) + V (r23) + V (r13). (3.5)

where the terms V (rij) are two-body potentials depending only on the separation

between atom pairs. This assumption is well justified for short-range potentials

which decrease as a power of r−n, for n ≥ 3 [125]. In this case, the three-body

terms at short distances can be expressed at low energies as a sum of two-body

potential terms to reproduce their universal effects. The total wavefunction of the

system is then expressed in terms of three different sets of coordinates of the form

Ψ(r1, r2, r3) = Ψ(1)(r23, r1,23) + Ψ(2)(r31, r2,31) + Ψ(3)(r12, r3,12), (3.6)
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which are solutions to the three-body Schrödinger equation. These wavefunctions

are generated by the following set of Faddeev equations [126].(
TR + Tαk +

Λ2
k,ij

2mR2

)
Ψ(k) (3.7)

+V (rij)(Ψ
(k) + Ψ(i) + Ψ(j)) = E Ψ(k)

At this point, it is useful to transform the Faddeev wavefunction Ψ(k) into

hyperspherical coordinates. This can be most easily achieved by expanding the

wavefunction in terms of spherical harmonics for the unit vectors r̂ij and r̂k,ij and

considering only the zero orbital angular momentum terms for each component [1].

The assumption of neglecting subsystem angular momentum is well justified for

three-body interactions in our ultracold atomic gases. The Schrödinger wavefunc-

tion in Equation 3.6 for three identical particles then reduces to

Ψ(r1, r2, r3) = Ψ(R,α1) + Ψ(R,α2) + Ψ(R,α3). (3.8)

In hyperspherical coordinates, the Faddeev equations then reduce to a particularly

simple set of equations given by

(TR + Tαk − E)Ψ(R,αk) + V (
√

2R sinαk) (3.9)

×[Ψ(R,α1) + Ψ(R,α2) + Ψ(R,α3)] = 0

The three Faddeev equations in hyperspherical coordinates can be reduced to

a single equation by using the fact that the hyperangles αi, αj, and αk are not

independent. Implementing a set of rotations that express the hyperangles α2 and

α3, in terms of α1 = α and integrating over the angular variables r̂23 and r̂1,23, the

resulting integro-differential equation for Ψ(R,α) is given by [125]

(TR + Tα − E)Ψ(R,α) = −V (
√

2R sin(α)) (3.10)

×

[
Ψ(R,α) +

2

sin(2φ)

∫ π/2−|π/2−φ−α|

|φ−α|

sin(2α′)

sin(2α)
Ψ(R,α′) dα′

]

The angle φ depends only on the masses of the particles, equal to π/3 when they

are all equal. This equation is referred to as the low-energy Faddeev equation.
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The solution of Equation 3.10 is simplified by using a hyperspherical expansion

[1]. Here, the Faddeev wavefunction Ψ(R,α) is expanded in a complete set of

functions in terms of the hyperangle α

Ψ(R,α) =
1

R5/2 sin 2α

∑
n

fn(R)Φn(R,α). (3.11)

The functions Φ(R,α) must vanish at α = 0, π/2 due to the divergence of the pre-

factor. Using this expansion, the low-energy Faddeev equation can be manipulated

to obtain a coupled set of eigenvalue equations for the hyperradial wave functions

fn(R) given by[
~2

2m

(
− ∂2

∂R2
+

15

4R2

)
+ Vn(R)

]
fn(R) (3.12)

+
∑
m

[
2Pnm(R)

∂

∂R
+Qnm(R)

]
fm(R) = E fn(R),

where the potentials Pnm(R) and Qnm(R) induce coupling between different hy-

perradial channels [1].

The channel potentials for the hyperradial variable R are given in terms of

channel eigenvalues λn(R) as

Vn(R) = [λn(R)− 4]
~2

2mR2
. (3.13)

Here, the hyperradial dependence of the channel potentials Vn(R) is fully con-

tained in the form of the channel eigenvalues. In the following, I will describe the

simplifying assumptions used to describe the channel potentials in hyperspherical

coordinate space in terms of effective 1/R2 potentials capable of supporting a series

of universal bound trimer states.

3.1.3 Hyperspherical Channel Potentials

In the adiabatic hyperspherical approximation, the eigenvalues λn(R) are assumed

to be independent of R. Here, the coupling potentials Pnm(R) and Qnm(R) vanish

and Equation 3.12 decouples to form a set of radial Schrödinger equations for

each hyperspherical potential. This assumption, which is valid in the two limiting
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ranges of the hyperradius R � |a| and R � |a| [1], greatly simplifies the analysis

of the Faddeev equations, which can now be solved numerically for the values of

the channel eigenvalues λn(0).

The hyperradius R is separated into distinct regions when the scattering length

is much larger than the characteristic range of interactions |a| � l, based on the

form of the hyperradial wavefunction in these regions. For identical bosons, the

regions are separated as [127]

� the short-distance region R ≤ l,

� the scale-invariant region l� R ≤ |a|,

� the long-distance region R ∼ |a|,

� the asymptotic region R � |a|.

In the scaling limit (l → 0) the short-distance region goes to zero and the low-

energy Faddeev equation can be reduced to an exact transcendental equation, first

derived by Efimov in 1970 [30]. Here, the channel eigenvalues λn(R) can be solved

for numerically to determine the hyperradial dependence of the hyperspherical

channel potentials.

The lowest three channel potentials for both positive (solid line) and negative

(dashed line) scattering length as functions of R/|a| are shown in Figure 3.2 [127].

It is interesting to note that for both positive and negative a, the lowest hyper-

spherical potential is attractive whereas all other channel potentials are repulsive

for all R. It is the attractive V0(R) ∝ 1/R2 potential that allows for the universal

three-body bound states, giving rise to the Efimov effect. As R → ∞, nearly all

of the hyperspherical potentials asymptote to the 3-atom threshold. The only ex-

ception occurs for the V0(R) potential for a > 0, which asymptotes to the binding

energy of the universal dimer ED = −~2/ma2, discussed in Section 2.5, plus a free

atom. As R/|a| → 0, the hyperspherical potentials asymptote to 1/R2 potentials

whose coefficients depend on the channel eigenvalues λn(0). The limiting value of

the lowest eigenvalue is [1]

λ0(R)→ −s2
0

(
1 + 1.897

R

a

)
, (3.14)
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Figure 3.2. The three lowest-energy hyperspherical channel potentials for attractive
(dashed) and repulsive (solid) pairwise interactions, V0(R) is denoted in black. Figure
taken from Reference [1].

where s0 = 1.00624 is calculated numerically from the transcendental equation.

3.1.4 Efimov States in the Resonant Limit

In the resonant limit, where |a| → ∞, the channel eigenvalue λ0(R) = −s2
0 is a

constant and the adiabatic hyperspherical approximation is applicable for all finite

values of R. In this limit, the eigenvalue equation given by Equation 3.12 for the

lowest channel hyperradial wave function f0(R) reduces to

~2

2m

[
− ∂2

∂R2
− s2

0 + 1/4

R2

]
f0(R) = E f0(R). (3.15)

This is an analogous equation to the radial Schrödinger equation for a particle

in a 1/R2 potential. The hyperradial potential can support three-body bound

states with binding energies E
(n)
T = (~κ(n))2/m, where κ(n) are the wave numbers
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of these trimer states. As discussed in the following, Efimov showed that for three

identical bosons, the calculation of the binding energies for all of the Efimov states

E
(n)
T could be reduced to the calculation of a single universal function ξ which

depends on the energy and scattering lengths of the particles.

It should be stressed that Equation 3.15 is not valid in the short-distance re-

gion, as it ignores the microscopic properties of the scattering potential and the

1/R2 potential is too singular as R→ 0 to allow for a well behaved analytic solu-

tion. In the scale invariant region (l � R � |a|), the hyperradial wave function

f0(R) is represented by an incoming hyperradial wave and an outgoing hyperra-

dial wave which is reflected off the short distance region R ∼ l [1]. The eigenvalue

equation can then be solved by matching the short- and long-range hyperradial

wavefunctions and their logarithmic derivatives. Efimov showed that at unitarity

this solution yields an infinite series of three-body bound states (Efimov trimers)

whose binding energies are given by

E
(n)
T =

(
e−2π/s0

)n−n∗ ~2κ2
∗

m
, as n→∞, a = ±∞ (3.16)

where κ∗ is the wave number associated with the state n = n∗. More details related

to matching of the boundary conditions and the derivation of this energy spectrum

can be found in [127, 1].

The beauty of Efimov’s solution lies in the fact that the entire spectrum of

universal trimer states in the resonant limit can be calculated once the single

three-body parameter (κ∗) is determined. This parameter encapsulates all of the

information pertaining to the short-range three-body interactions, analogous to

the scattering length in the two-body problem.

Generally the three-body parameter cannot be determined from knowledge of

the two-body potentials alone and must be determined experimentally for each

atomic species due to the short-range, non-additive, purely three-body interaction

that exist in these triatomic systems [128]. Note that there are an infinite number

of arbitrarily shallow Efimov states in the resonant limit with an accumulation

point at the three-atom scattering threshold. Further, the binding energies of

the spectrum of Efimov states obeys log-periodic scaling with subsequent states

emerging at multiplicative factors of e2π/s0 ∼ 515.03 as the binding energy is
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Figure 3.3. A representation of the lowest hyperspherical potential in the resonant limit

a = ±∞ and the spectrum of Efimov trimer states E
(n)
T are shown. The log-periodic

scaling of the binding energies has been reduced from ∼ 515 to 2 for clarity.

decreased.

The previous discussion is only exact for resonant interactions in the scaling

limit (l → 0). In real systems, there is always a finite characteristic range of

interactions, which must be accounted for. Since the eigenvalue equation 3.15 is

no longer valid for R < l, the three-body spectrum is bounded from below where

the deepest Efimov state has a binding energy

E
(0)
T ∼

~2

ml2
. (3.17)

For Efimov states near this cutoff, there are power-law scaling violations with

leading order corrections to the binding energies on the order of κ
(n)
∗ l [129]. These

corrections decrease rapidly as the binding energy of the Efimov states goes to zero

at the three-atom scattering threshold.

3.1.5 Universal Scaling at Finite Scattering Length

In the two-body problem in the scaling limit, the continuous scaling symmetry

given by Equation 2.32 is a consequence of the fact that the scattering length is

the only relevant length scale. In the three-body sector in the scaling limit, Efimov

showed that logarithmic scaling violations occur due to the boundary conditions
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Figure 3.4. The spectrum of Efimov trimers (ET ) on the a−1 − K plane. Here, the
discrete scaling factor was reduced from 22.7 to 2.2, allowing a greater range of a−1 and
K to be shown. The grey lines indicate the threshold for the 3-atom scattering states
AAA and atom-dimer scattering states AD. Outside of the window of universality, either
the scattering length is smaller than l, or the on-resonance binding energies of the trimers
exceed E0

T , given by Eq. 3.17. The characteristic shape of the trimer binding energies
were taken from [1].

imposed on the short- and long-range hyperradial wavefunctions. Remarkably,

these scaling violations have a log-periodic form so that a discrete scaling symmetry,

a discrete subgroup of the continuous scaling symmetry, remains exact. Examples

of this symmetry include

κ∗ → κ∗, a→ λn0a, r→ λn0r, t→ λn0 t (3.18)

where n is an integer and λ0 = eπ/s0 ≈ 22.7. Under this symmetry, observables

such as the binding energy and cross sections scale with integer powers of λ0. In

fact, it is this symmetry which gives the log-periodic form of the trimer binding

energies in the resonant limit, given in Equation 3.16.

While an infinite number of bound Efimov trimers exist in the resonant limit, at
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finite values of the scattering length only a finite number of bound states exist. This

is evident in the fact that no Efimov states exist outside of the universal regime,

where the scattering length is on the order of or smaller than the characteristic

range of interactions l.

The characteristic shape of the binding energy for the Efimov trimers with

respect to the inverse of the scattering length 1/a and the wave number variable

(K = sign(E)
√
m|E|/~2) is shown in Figure 3.4 [1]. On the positive side of the

resonance (a > 0), the diagonal line represents the energy of the shallow two-body

bound state with binding energy ED = −~2/(ma2). The grey region represents

the atom-dimer dissociation threshold for the three-body system. For negative

scattering lengths, no universal two-body bound states exist and the three-body

dissociation threshold occurs at zero energy as indicated. The Efimov trimers are

represented by the solid curves below threshold. Although only a few are shown,

on resonance (1/a→ 0) there are infinitely many branches of Efimov trimers which

intercept the vertical axis at K = −(e−π/s0)n−n∗κ∗.

As the magnitude of the scattering length is decreased from infinity to a < 0,

the effective hyperradial potential increases at large distances (R ≈ |a|). As a

result, the energy of the most loosely bound Efimov trimers are ”pushed up” until,

at a critical value of the scattering length (a
′(n)
∗ ), the Efimov trimer states E

(n)
T

are dissociated at the three-body scattering threshold. For a > 0, on the other

hand, the effective potential decreases as the magnitude of the scattering length

is decreased from infinity. Here, the effective potential converges to the dimer

binding energy (V0(R) → ED) for large hyperradii. At critical scattering lengths

a
(n)
∗ , the Efimov trimer states E

(n)
T converge with the atom-dimer threshold and

dissociate to form a free atom and weakly-bound dimer.

Efimov derived powerful constraints on the three-body observables that he

called the radial law [32]. He showed that when expressed in terms of the polar

variables H and ξ defined by 1/a = H cos(ξ) and K = H sin(ξ), shown in Figure

3.4, the binding energies for all of the Efimov states can be calculated from a single

universal function in terms of ξ. The energy of the nth trimer state in the universal

limit is parameterized as

ET +
~2

ma2
=
(
e−2π/s0

)n−n∗
exp[∆(ξ)/s0]

~2κ2
∗

m
(3.19)
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where ∆(ξ) is a universal function of the polar angle ξ ∈ [−π, − π/4], given by

tan(ξ) = −
√

(mET/~2)a. The form of the universal function ∆(ξ) can be found by

either solving the Schrödinger or Faddeev equations numerically for short-ranged

model potentials [130], or by using effective field theory calculations (EFT)[1].

In so doing, the critical scattering lengths a′∗ and a∗ where the Efimov trimer

comes into resonance with the three-body and atom-dimer scattering thresholds

are calculated using a zero-range model (l→ 0) as [1, 131]

a′∗ = −1.50763κ−1
∗ , a∗ = 0.0707645κ−1

∗ . (3.20)

As can be seen from Equation 3.19, the shapes of the Efimov trimers with

respect to the scattering length are identical to within a multiplicative factor. This

is a direct consequence of the discrete scaling symmetry for the three-body system

in the universal regime, and corresponds to multiplying the three-body parameter

by the discrete scaling constant (κ
(n)
∗ = κ∗λ

n
0 ). Therefore, the critical scattering

lengths a′∗ and a∗, which are directly dependent on 1/κ
(n)
∗ , occur at values that

differ by multiplicative factors of λ0. In the scaling limit, the entire spectrum of

Efimov states for identical bosons depend on only the scattering length a, which

is generally known, and a single three-body parameter κ∗.

If there are no deeply bound molecular states in any of the two-body chan-

nels, the Efimov states are sharp states with the spectrum given at unitarity by

Equation 3.16. If such deeply bound dimers exist, their inclusive effects can be

incorporated by analytically continuing the three-body parameter κ∗ to a complex

value, expressed in the form κ∗exp(iη∗/s0), where η∗ is the inelasticity parameter,

and both κ∗ and η∗ are positive real numbers. Substituting this expression into

Equation 3.16 yields the binding energies and widths of the Efimov trimers at

unitarity with non-zero decay given by [8]

E
(n)
T =

(
e−2π/s0

)n−n∗ ~2κ2
∗ cos(2η∗/s0)

m
, as n→∞, a = ±∞ (3.21)

Γ
(n)
T =

(
e−2π/s0

)n−n∗ 2~2κ2
∗ sin(2η∗/s0)

m
. (3.22)

In the following, I will discuss the available observables and the theoretical for-

malism that has developed over the last decade to enable the experimental mea-
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surement of the three-body parameters κ∗ and η∗ for strongly interacting ultracold

gases of identical bosons.

3.2 Experimental Observables

For a system of three arbitrary atoms, labeled A, B, and C, the various processes

that are likely to display resonant phenomena associated with Efimov physics are

[132]

A+B + C → AB∗ + C Three− body recombination (3.23)

→ AB + C (3.24)

AB∗ + C → AB∗ + C Elastic scattering (3.25)

→ AB + C Vibrational relaxation (3.26)

→ AC∗ +B Reactive scattering (3.27)

→ AC +B. (3.28)

Here, AB (AB∗) represents a deeply bound (universal) dimer state. In our ex-

periments, we are primarily interested in the three-body recombination rate for

three distinguishable atoms in a thermal gas. For ultracold atoms, the third atom

recedes from the dimer with an energy roughly equal to the binding energy of

the dimer. Since the molecular binding energies of the deeply bound dimers are

generally much greater than the depth of the trapping potential, these three-body

recombination events are evident in atom loss from the trap.

The rate equations for the number densities ni of the atoms A, B, and C in

the presence of three-body loss is given by

dni
dt

= −K3 nA nB nC . (3.29)

The three-body recombination rate constant K3 can be separated into Kdeep
3 for

recombination into the deep dimers AB and Kshallow
3 for recombination into the

shallow (universal) dimer states AB∗. If all of the pairwise scattering lengths are

negative, no universal dimer states exist, and Kshallow
3 is zero.

In ultracold gas experiments, the spectrum of Efimov states in the universal
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regime are manifest in the experimentally measurable three body recombination

rates. In fact the first conclusive evidence for the existence of Efimov trimer states

was observed by R. Grimm’s group at the University of Innsbruck in 2006 [35].

Using a gas of ultracold, non-degenerate bosonic 133Cs atoms, they detected a res-

onant enhancement of the three-body loss at negative scattering lengths and a loss

minima at positive a, corresponding to resonant effects associated with Efimov

trimer states. These measurements, along with the corresponding theoretical pre-

dictions for the variation of K3 associated with the trimer states [133], provided

the first conclusive evidence of the validity of Efimov’s theory.

To get a general overview of these experimentally observable resonance fea-

tures, it is useful to first consider the case of three identical bosons with resonantly

enhanced interactions. Here, the cross-sections for all rates and possible processes

can be calculated from the scattering matrix elements Sfi for scattering from an

entrance channel i to the exit channel f . The S-matrix elements were discussed

for two-body elastic and inelastic collisions in Chapter 2. In the three-body sector,

Efimov’s radial law gives simple relations based on probability conservation which

enable the calculation of the S-matrix elements [31, 121, 32]. Various analytical re-

sults for the two- and three-body recombination rate constants for identical Bosons

and the manifestation of Efimov physics in these observations is discussed in the

following sections.

3.2.1 Atom-Dimer Scattering

In Chapter 2 we showed that the differential scattering cross section for two-body

collisions can be expressed in terms of the scattering length. Here we consider

collisions between a free atom and a universal dimer near the atom-dimer threshold.

The functional form of the elastic atom-dimer cross section σAD was first deduced

by Efimov. Discrete scaling symmetry implies in this case that the ratio of the

atom-dimer scattering length to the scattering length for two free atoms aAD/a

must be a log-periodic function of aκ∗ with a period π/s0 [1]. The exact form

of the atom-dimer scattering length, with the added effects of loss attributed to

decay to deeply bound dimer states, takes the form [1]

aAD = a(1.46 + 2.15 cot[s0ln(a/a∗) + iη∗]), (3.30)
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Figure 3.5. Dimer relaxation rate constant (β in units of ~a/m) as a function of a/a∗
for various values of the inelasticity parameter η∗.

where a∗ is one of the locations where an Efimov state crosses the atom-dimer

threshold given in Equation 3.20. Further, this equation demonstrates that as

η∗ → 0, aAD vanishes if a has one of the values 0.38a∗(e
π/s0)n. The existence of the

deeply bound molecular states opens up an inelastic loss channel in which an atom

and universal dimer undergo a low energy collision to form an atom and a deeply

bound molecular state. In general, every decay event releases enough energy to

result in loss of both the atom and the dimer from the trap. The decrease of the

number density of atoms and shallow dimmers is then given by

d

dt
nA =

d

dt
nD = −βnAnD, (3.31)

where β is the relaxation rate event constant, first calculated in Ref. [133] as

β =
20.3 sinh(2η∗)

sin2[s0ln(a/a∗)] + sinh2(η∗)

~a
m
, (3.32)
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and m is the mass of one of the particles. The coefficient of ~a/m is shown in

Figure 3.5 as a function of a/a∗ for several values of the inelasticity parameter

η∗. Resonant enhancement of β occurs at scattering lengths coinciding with an

Efimov trimer crossing the atom-dimer threshold. As can be seen, increasing the

magnitude of the inelasticity parameter η∗, associated with dimer decay to deeply

bound molecular states, reduces the dimer relaxation rate constant at the resonance

positions and broadens the width of the resonance. This ”washing out” of the

resonances associated with Efimov physics in the presence of large inelastic loss is

a general feature in both the two- and three-body recombination measurements.

3.2.2 Three-Body Recombination of Identical Bosons

In Efimov’s derivation of the radial law, he assumed that decay into the deeply

bound dimer states was negligible. Using Efimov’s relations in the hyperspherical

framework, Nielsen and Maceck [134] and Esry et al. [135] derived the approximate

functional form of the three-body recombination rate into the shallow universal

dimer, given as

Kshallow
3 ' Cmax(sin

2[s0ln(aκ∗) + γ])
~a4

m
, (a > 0) (3.33)

The constant Cmax and the phase γ were first calculated using effective field the-

ory [136]. This approximate expression, which is correct to within an error of

∼ 1%, demonstrates the amazing feature that the coefficient of ~a4/m oscillates

between zero and Cmax as a function of a. The oscillatory loss behavior comes

about from an interference effect between two decay pathways, as illustrated in

Figure 3.6 (a). The 3-body recombination process involves an avoided crossing

between the 3-atom scattering state on the lowest hyperspherical potential in the

entrance channel and the highest s-wave two-body scattering state on the exit

channel [135]. Coupling between these two channels occurs in the long-distance

region R ∼ 3a. As shown, the incoming 3-atom scattering state can decay by two

distinct paths, depending on whether the scattering state decays while R is increas-

ing or decreasing. The scattering wavefunction, which is a superposition of waves

traveling both paths, will then exhibit interference between the scattering states

reflecting off the short-distance region of the potentials dependent on the scatter-
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Figure 3.6. The lowest two adiabatic hyperspherical potential curves (purple and blue)
for (a) a > 0 and (b) a < 0. (a) For positive scattering lengths, three-body decay to
the universal dimer state and a free atom occurs in the long-distance region where an
interference between two distinct decay paths (yellow and red) leads to the oscillatory
behavior of K3. (b) For a < 0, resonant tunneling through a repulsive barrier to a
bound trimer state results in enhanced decay to deeply bound molecular states in the
short-distance region. An analogous figure was published in a recent review of universal
few-body physics by C. Greene [2].

ing length a. Using Equation 3.33, it is found that the recombination zeroes are

located at a”∗ = 0.32(eπ/s0)nκ−1
∗ . Note that these zeroes exhibit the log-periodic

dependence a”
(n+1)
∗ /a”

(n)
∗ ' 22.7. This phenomena was first derived in References

[135, 134], where the behavior was described in terms of Landau-Zeener-Stückelberg

oscillations [137].

If we include the effects of deeply bound dimmers into the analysis, three-body

decay now includes loss to both the shallow dimer state Kshallow
3 and to the deeply

bound molecular states Kdeep
3 . The approximate expression for these decay rate

constants for a > 0 are given by [1]

Kshallow
3 ' Cmaxe

−2η∗
(
sin2[s0ln(a/a”∗)] + sinh2(η∗)

) ~a4

m
(3.34)

Kdeep
3 ' Dmax

(
1− e−4η∗

)
,
~a4

m
(a > 0) (3.35)

where Dmax is a numerical constant [133]. For identical bosons with positive scat-

tering lengths, the total three body recombination rate constant with respect to

(aκ∗)
−1 for various inelasticity parameters η∗ is shown in the right-hand panel of

Figure 3.7. Decay to the deeply bound molecular states significantly reduces the
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Figure 3.7. Log-Log plot of K3 scaling with (aκ∗)
−1 for negative (left panel) and

positive (right panel) values of a. The rate coefficient is in arbitrary units, demonstrating
the general a4 scaling behavior and the influence of Efimov states for systems of identical
bosons. Decay to deeply bound molecular states, parameterized by η∗, reduces the
visibility and broadens the Efimov resonances.

visibility of the Stückelberg oscillations. Further, the finite width of the Efimov

trimers associated with this loss broadens the resonances, further ”washing out”

the resonant features.

For identical bosons at negative scattering lengths, no universal dimer exists

and the only three-body loss channels are to the formation of deeply bound molec-

ular states. Resonant enhancement of K3 in this case is observed when the Efimov

trimer state cross the free-atom threshold. The three-body decay process for a < 0

is depicted in Figure 3.6 (b). The lowest hyperspherical potential exhibits a bar-

rier in the region (R ∼ 2|a|) for these repulsively interacting particles [138, 135],

At sufficiently low energy, the scattering state must tunnel through this barrier

to access the short-distance region and decay to the deeply bound molecular po-

tential shown. Transmission through the barrier is enhanced when the energy of

an Efimov trimer state trapped behind the barrier comes into resonance with the

incident energy (KE) of the particles. The 3-body recombination rate therefore

exhibits resonant peaks at scattering lengths associated with the Efimov trimers

crossing threshold.

The analytic expression for the three-body recombination rate is given by [133]

Kdeep
3 = C ′max

sinh(2η∗)

sin2[s0ln(a/a′∗)] + sinh2(η∗)

~a4

m
, (a < 0) (3.36)
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where a′∗ is given in Equation 3.20. The total three body recombination rate con-

stant with respect to (aκ∗)
−1 for various inelasticity parameters η∗ is shown in

the left-hand panel of Figure 3.7. As with the resonant features on the positive

scattering length side of unitarity, as η∗ increases the resonant loss peaks (Efimov

resonances) become washed-out making their experimental detection and charac-

terization of the three-body parameters more difficult. These relatively simple

expressions for β and K3 are correct only for a system of identical particles, but

they are useful guides to provide a general overview of the features that are ex-

pected to emerge associated with the existence of Efimov states near threshold.

The following section briefly discusses the extension of this universal three-body

theory to a system of non-identical particles with multiple scattering lengths ap-

plicable to our ultracold Fermi gas.

3.3 Efimov Physics in Fermi Gases

Extension of Efimov’s theory for a general 3-body system in which the three par-

ticles have identical masses and large but unequal scattering lengths was first

discussed by Amado and Noble [139] and by Efimov [140, 121]. This problem is of

fundamental interest, approximating such low-energy systems as multiple strongly-

interacting isotopes of heavy atoms and nuclear matter consisting of interacting

protons and neutrons. The general case of 3-body systems with unequal masses

has also been considered in detail [139, 140, 121, 141], exhibiting a mass-ratio

dependent scaling factor λ0, but this broad subject is beyond the scope of this

thesis.

It is not obvious at first glance whether Efimov trimer states exist for a system

of fermions or distinguishable particles, let alone how the universal relations and

scaling symmetries translate to such systems. These questions are answered by

determining the channel eigenvalue λ0(R) for the lowest hyperspherical potential

in the scaling limit, analogous to Eq. 3.14. The Efimov effect occurs so long

as λ0(R) is negative at R = 0. Further, the value of λ0(0) = −s2
0 provides the

discrete scaling factor as DSF = eπ/s0 . The various results for this general case are

summarized in the review article [1] and presented here in Table 3.1. Note that so

long as all three particles are resonantly interacting, the Efimov effect occurs with
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Identical Fermi Pairs Large aij Efimov Effect DSF

0 3 Yes 22.7
0 2 Yes 1986.1
1 2 No

0, 1, 3 0, 1 No

Table 3.1. Classification of equal-mass systems exhibiting the Efimov effect and the
corresponding discrete scaling factors.

the same discrete scaling factor (DSF ' 22.7) regardless of the imbalance of the

scattering lengths. For systems where less than three distinguishable Fermi states

exist, however, the Efimov effect does not occur. Even when the scattering lengths

are widely varying, the entire spectrum of Efimov trimers and resonances are still

universally connected, and can be described by the three-body parameters κ∗ and

η∗ indicating the binding energies and widths of the trimer states respectively.

In general, solving for the dependence of the binding energies and threshold

crossings of the Efimov trimers on the individual scattering lengths is a techni-

cally difficult problem. Consider the three-component Fermi gas in our system

where three broad Feshbach resonances individually tune the various scattering

lengths. Here, the spectrum of Efimov trimers are not simply described in terms

of Efimov’s radial, shown in Figure 3.4, as three individual scattering lengths now

characterize the system and the locations of the three scattering resonances do not

coincide. Further, it is now possible to achieve mutual attractive and repulsive

pairwise interactions among the various single-particle states, possibly leading to

new resonant features that can be detected in the measurement of K3.

3.3.1 Analytic Approximations for K3

Analytic approximations for the three-body collisional properties of ultracold gases

near overlapping Feshbach resonances were recently derived for collections of iden-

tical bosons and distinguishable particles by J. D’Incao and B. Esry [142]. Their

analysis effectively solves for the inelastic three-body rates using the hyperspheri-

cal formalism with model two-body molecular potentials [138]. They demonstrate

that the entire spectrum of resonant features in the recombination rate can be
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described with interference minima (M) and resonant enhancement terms (P) as-

sociated with the Stückelberg interferences and resonant tunneling through the

effective three-body potential barriers described previously. These terms are of

the form

M s∗0
s0

(
x

y
,
z

u

)
∝ sin2

[
s0 ln

(∣∣∣∣xy
∣∣∣∣)+ s∗0 ln

(∣∣∣z
u

∣∣∣)+ Φ

]
+ sinh2(η∗) (3.37)

P s∗0
s0

(
x

y
,
z

u

)
∝ sinh(2η∗)

sin2
[
s0 ln

(∣∣∣xy ∣∣∣)+ s∗0 ln
(∣∣ z
u

∣∣)+ Φ
]

+ sinh2(η∗)
. (3.38)

In these expressions, Φ and η∗ are the unknown three-body parameters which must

be determined empirically. The variables x, y, z, and u each represent either a

single pairwise scattering length (aij) or the characteristic range of interactions

(r0). s0 = 1.00624 and s∗0 = 0.41370 are the scaling constants associated with

the discrete scaling factors 22.7 and 1986.1 respectively. For strongly interacting

identical bosons, s0 is set to zero, and the expressions for Ms0 and Ps0 are identical

to Equations 3.34 and 3.36 respectively.

These expressions demonstrate the complexity of analyzing general, strongly-

interacting three-body systems, which is essentially built into the form of the three-

body hyperradial potential V0(R). Consider the case where all the interactions

are repulsive aij < 0 and |a12| � |a23| � |a13|. In both the short-distance and

asymptotic regions, V0(R) and the hyperradial wave functions are insensitive to the

particular values of the scattering lengths. Two scale-invariant regions now exist:

region (a) |a12| � |a23| � |a13| ≥ R� |l|, in which all three atom pairs resonantly

interact in much the same way as if all three scattering lengths were infinite, leading

to a s0 = 1.00624 scaling; and region (b) |a12| � |a23| ≥ R � |a13| � |l| where

only two pairs of particles are resonantly interacting, leading to a s∗0 = 0.41370

scaling of V0(R) [143] For all larger values of R, the atoms are too far separated

to support the weakly-bound Efimov trimers. Esry and D’Incao showed that in

contrast to identical bosons with a single isolated resonance, for which interference

minima occur in K3 for a > 0 and resonant enhancement of K3 for a < 0, minima

and peaks in K3 occur ubiquitously near overlapping resonances and, in some cases,

these resonances can simultaneously tune K3 in the same scattering process.
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3.3.2 Integral Equations for Calculating K3

E. Braaten and co-workers have demonstrated a method of calculating K3 for a

three-component Fermi gas at threshold with resonant interactions by numerically

solving a generalization of the Skorniakov-Ter-Martirosian (STM) equations. Using

this formalism, they were able to fit the measured three-body recombination rate

data for three-component 6Li Fermi gases in the low-field regime (122 Gauss < B <

485 Gauss) taken by our group [144] and that of S. Jochim’s group in Heidelberg

[145], where all of the pairwise scattering lengths were negative. The fit enabled

them to extract the low-field three-body parameters and make a strong claim that

the resonant loss features observed in the this region were attributed to Efimov

physics [146].

Subsequently, using recent K3 measurements by our group in the high-field

region B > 840 Gauss [147], they were able to numerically fit our data to extract

the high-field three-body parameters and map out the entire spectrum of Efimov

features throughout the universal regime spanning the three overlapping Feshbach

resonances [8]. This spectrum has been valuable in analyzing our data and design-

ing future experiments to test the universal properties of our ultracold gas. In the

following I will briefly describe the basis of their theory.

In the low-temperature limit, the optical theorem can be used to express the

rate constant K3 in terms of the forward T-matrix elements for 3-atom elastic

scattering in the limit where the momenta of the three atoms goes to zero,

K3 = 2=(T (0, 0, 0; 0, 0, 0)). (3.39)

The T-matrix elements can, in turn, be expressed in terms of the atom-dimer

scattering amplitudes Aij(p, q;E) where i and j are the initial and final states,

and the scattering occurs from relative-momentum state p between the incident

atom-diatom pair to relative-momentum state q between the scattered atom-dimer

system at energy E. Considering only s-wave interactions, the rate constant K3 is

given by [8]

K3 =
32π2

m

∑
i,j

aiaj=(Aij(0, 0; 0)). (3.40)

In this notation, ai = ajk, the sums i, j are over the labels (1,2,3), and the imag-
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inary component of the atom-dimer scattering amplitude in the limit of zero mo-

menta is denoted by =(Aij(0, 0; 0)). This formalism can also be applied to deter-

mine the exclusive decay rates to one of the shallow universal dimers as

Kij
3 =

512π2~
3
√

3ma2
k

∣∣∣∣∣∑
l

al(Alk(0, 2/(
√

3ak); 0)

∣∣∣∣∣
2

(3.41)

where again k is the complimentary spin to ij and the dimer and recoiling atom

both have momentum 2/
(√

3ak
)
.

For two-body, l = 0 potentials in the zero-range limit, the momentum-space

Faddeev equations for the atom-dimer scattering amplitudes reduce to the integral

equations derived by Skorniakov and Ter-Martirosian [129]. The nine scattering

amplitudes in Equation 3.40 satisfy coupled integral equations that are generaliza-

tions of the STM equations [8] which, assuming the initial relative momentum and

total energy are set to zero, are given by

Aij(0, p; 0) =
1− δij
p2

+
2

π

∑
k

(1− δkj)
∫ Λ

0

dq Q(p, q; 0)Dk(3q
2/4)Aik(0, q; 0) (3.42)

where

Q(p, q;E) =
q

2p
log

p2 + pq + q2 −mE
p2 − pq + q2 −mE

, (3.43)

Dk(p
2) =

[
−1/ak +

√
p2 − iε

]−1

. (3.44)

Here Λ is an ultraviolet cutoff that must be large compared to p, 1/|a1|, 1/|a2|,
and 1/|a3|. Note that the solutions to the integral equations 3.42 depend log-

periodically on Λ with the discrete scaling factor λ0 ' 22.7 such that Λ only differs

from the three-body parameter κ∗ by a numerical constant. Analogously, extension

of these generalized STM equations to account for deeply bound dimer states

involves extending the cutoff parameter to the complex plane as Λexp(iη∗/s0), and

extending the path of integration in the variable q to run both along the real axis

from 0 to Λ and then along the complex plane from Λ to Λexp(iη∗/s0). In so doing,

the rate for decay to deeply bound dimer states Kdeep
3 becomes non-zero.

The T-matrix elements in Equations 3.40 can be further reduced to three cou-
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pled integral equations for the three linear combinations
∑
i

aiAij(0, p; 0). The

solutions to these equations for the real part of Aij(0, p; 0) are singular as p → 0

[148]. Therefore, the rate constant K3 is finally simplified by subtracting the sin-

gular terms, proportional to 1/p2, 1/p, and ln(p), as =(Aij(0, p; 0)) is extrapolated

to p = 0 [8]. The final set of three, coupled integral STM equations are then solved

numerically to extract the three-body parameters κ∗ and η∗ from the variation of

the rate constant with respect to the scattering lengths K3(a12, a23, a13).

This powerful method has been adapted for a variety of applications including

solving for the spectrum of Efimov states for our three-component Fermi gases

[146, 8] as well as probing the influence of finite range corrections [149] and finite

temperature effects [150] on the universal spectrum of Efimov trimer states and

resonant three-body recombination features. If this theory is applied to the simpli-

fied case of distinguishable particles with identical, resonantly-enhanced scattering

lengths (a12 = a23 = a13 � l), the analytic expressions for the recombination

rates of identical bosons (Equations 3.34 and 3.36) are recovered. The three-body

recombination rates are therefore sensitive only to the magnitude and sign of the

scattering lengths in the universal regime, and insensitive to the statistics of the

particles.

3.4 Efimov Physics at Finite Temperatures

In principle, an infinite series of Efimov resonances should become observable in

systems of identical bosons as the scattering length is tuned toward±∞ from above

or below the resonance. In practice however, this is obviously not the case at finite

temperatures, where the scattering lengths themselves are unitarity limited to on

the order of the size of the deBroglie wavelength, as discussed in Section 2.5. In

fact there are three primary thermal effects that limit the visibility of the Efimov

resonances: unitarity, thermal averaging, and higher partial waves. A detailed

review of the effects of temperature on the three-body rates K3 can be found in

Reference [151]

The universal expressions given for the three-body scattering observables K3

are only valid in the threshold regime k|a| ≤ 1, where the collision energy is the
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smallest energy scale in the system. This requirement is not assured even with our

ultracold gases due to the extremely low energy scales set by the binding energy

of the universal dimer (ED = ~2/(ma2)) for positive scattering lengths and the

height of the repulsive barrier in the lowest hyperspherical potential for negative

scattering lengths [135]. For identical bosons with large negative scattering lengths,

the height of the barrier in the adiabatic three-body potential is given by [151].

Umax = 0.158~2/(ma2) (3.45)

For thermal energies much lower than this barrier height, the measured rate coeffi-

cient is independent of the energy and can be compared to the calculated recombi-

nation rates at threshold. Thermal averaging, or averaging of the energy-dependent

rate coefficients for an ensemble at temperature T , only becomes important for

energies on the border of the threshold regime. Its effects generally reduce the

visibility of the resonant features in the recombination rate.

The effects of unitarity and higher partial waves can be understood by exam-

ining the three-body recombination rate defined in terms of the S-matrix [151]

K3 =
1

2

∑
J,π

∑
i.f

32N !(2J + 1)π2

Mk4
|Sjπfi |

2 (3.46)

where N is the number of identical particles, and J and π are the total angular mo-

mentum and the overall parity respectively. k =
√

2ME/~2 is the hyperradial wave

number in terms of the energy E and the three-body reduced mass M = m/
√

3,

and i and f label the initial and final scattering channels. In our experiments, K3 is

defined as the rate coefficient for the number of atoms lost per spin state attributed

to three-body interactions. This term differs from the event rate at which triplets

of atoms collide, defined in Reference [151], simply by the included factor of 1/2 in

the above expression. At threshold, the Jπ = 0+ contribution dominates with the

2+ term suppressed as K3 ∝ E2a8 [152]. As the scattering length is increased with

a non-zero collision energy, the unit recombination probability limit (|S|2 = 1) is

at some point reached.

Accounting for thermal averaging, which reduces the maximum detectable value

of K3 by a factor of two, for a gas at temperature T the maximum value of K3 is
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then given by

Kmax
3 =

32π2~
4Mk4

=

√
108π2~5

m3(kBT )2
. (3.47)

D’Incao and co-workers showed that, whereas K3 reached the unitarity limit for

a > 0 outside the threshold regime, for a < 0 the rate saturates at a value nearly a

factor of 10 below the unitarity limit. Subsequently, they define a critical scattering

length

ac = ~/
√
mkBT (3.48)

above which the visibility of the maxima and minima in the rate coefficients K3

are significantly affected by the finite temperature of the gas. Essentially, both

thermal averaging and unitarity primarily restrict the number of resonant features

observable. The truncation of these features at finite energies, however can also

shift the apparent location and width of the resonant peaks unless these effects are

included in the analysis of the data. Treatment of the thermal effects in our data

will be discussed in greater detail in Chapter 6.



Chapter 4
Experimental Apparatus

The creation and detection of ultracold many-component Fermi gases requires

strict control over the ultra-high vacuum, magnetic, and optical environments ex-

perienced by the atoms. This chapter describes the experimental apparatus used to

create and probe degenerate and/or three-component gases of fermionic lithium-

6 atoms spanning a range of magnetic bias fields of 0 to 1500 Gauss. I began

working in Professor O’Hara’s lab in the spring of 2005. At that time, the only

installed components of the experiment were the optics tables. Approximately one

year later, we first observed trapping of 6Li atoms in a Magneto-Optical Trap, and

in September 2007, we achieved degeneracy of a two-component Fermi gas of 6Li

atoms. Over the six years that I have been with the lab, our experimental system

has undergone numerous upgrades. In this thesis I will concentrate on describ-

ing the most recent experimental system, only reviewing older iterations of the

apparatus that were directly relevant to our experimental results.

This chapter is organized as follows: In the first section, the vacuum system

is discussed including the design of our apparatus and the various components

required to maintain ultra-low vacuum in the experimental chamber to assure that

our trapped atomic gas is long lived. The oven region is then discussed, which

creates a high flux, collimated atomic beam that provides the source for our atomic

gas. The second and third sections detail the design and control of our laser system

and the various electromagnets installed to cool, image, and manipulate the atoms

during various stages of the experiment.

The atoms are initially cooled from the atomic beam of 6Li atoms at a tem-
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perature of 465 � using a zero-crossing Zeeman slower, as described in Section

4. Eventually, the slowed atoms drift into the experimental chamber where they

become trapped and are cooled to a temperature T ∼ 200µK using a Magneto-

Optical Trap. The theory and implementation of this cooling scheme is described

in Section 5. From the Magneto-Optical Trap, some of the atoms are loaded into

a conservative trapping potential provided by the Gaussian profile of high power

(∼ 100 Watts), far red-detuned laser beams. These so-called optical dipole traps

are used extensively in our experiments to provide an adjustable confinement for

the atoms, in which the gas is eventually evaporatively cooled to degeneracy. We

have also implemented large-volume dipole traps capable of adiabatically cooling

the gas to achieve extremely low temperature and density samples. The design,

implementation, and control of our laser-trapping systems is discussed in detail in

Section 6.

Section 7 discusses our method of extracting information about the density and

momentum profile of the gas using standard absorption imaging techniques. In

Section 8, we discuss the design of our radio frequency antennas and the system of

electronics used to apply radio-frequency magnetic fields to manipulate the internal

states of our atoms. Finally, the computer-based control system is discussed in

Section 9, designed to provide highly precise and temporally controlled signals to

command the various components in our experimental apparatus. Essentially all

of these systems were designed and installed over the last six years that I have

been with the lab. Thanks in large part to the ingenuity and hard work of Ken

O’Hara and his group, the current apparatus is robust and highly dynamic, ideal

for studying few- and many-body physics in multi-component Fermi gases.

4.1 Vacuum System

The entire vacuum system is approximately 55” long and consists of three regions:

the oven, the Zeeman slower, and the experimental chamber. (see Figure 4.1) The

oven (1) and the Zeeman slower (2) are designed to collimate an atomic beam

from a vapor of 6Li atoms heated to approximately 465 � and initially slow and

cool the beam for subsequent cooling and trapping in the experimental region.

This process necessitates maintaining high vacuum in the oven region to minimize
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Figure 4.1. Overview of the entire vacuum system. The image has been slightly rotated
along the x̂-ŷ plane.

attenuation of the atomic beam and chemical reactions of the Lithium source with

background gases. Further, an ultra-high vacuum in the experimental region must

be maintained throughout the experimental process to minimize heating and loss

of magnetically and optically trapped atoms from background gas collisions.

The primary pumping sources in our apparatus are Ion Pumps, Titanium Sub-

limation Pumps, and Non-Evaporable Getters. These pumps are ideal for use in

ultracold atomic gas experiments due to their cleanliness, ability to pump a variety

of gases, and vibration free operation.

Ion pumps utilize ionization of background gases and acceleration of these ions

in a strong electric field towards a solid chemically active cathode to pump

atoms and molecules out of the system [153]. Our ion pumps (VacIon Plus

StarCell) are triode types with a Titanium cathode, and are specially de-

signed for pumping large amounts of Noble gases and hydrogen, with oper-

ating pressures between 10−2 and 10−11 Torr.
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Titanium Sublimation Pumps (TSP) are used to supplement the pumping

action of our ion pumps. Titanium is highly reactive and can be applied to

large areas of the vacuum system, can be more effective in removing certain

reactive elements, and can help combat the regurgitation effects of ion pumps.

The TSP consists of titanium filaments through which a high current is

passed (47 Amps for 7 minutes), sublimating a thin layer of titanium atoms

onto the walls of the vacuum system. Reactive background gases form stable

compounds when they come into contact with the titanium layer, effectively

removing them from the system. For highly reactive gases (eg. H2), this

yields pumping rates as large as 10 l/(s cm2) times the surface area of the

sublimation layer. Over time, the titanium layer becomes saturated, and a

new layer of titanium must be sublimated to maintain the pumping efficiency.

Non-Evaporable Getters (NEG) are supplemental pumps that work on much

the same principal as the TSP. Our getters, manufactured by SAES getters,

are composed of a thin layer of st707 powder on Constantan (amagnetic)

strips. These getter strips can be cut and applied to any region of the vacuum

system, and are shipped with a protective passivation layer which is removed

during bake-out of the vacuum system. St707 is a TiZrV alloy that is highly

efficient for absorbing reactive molecules (O2, H2O, N2, CO, CO2, H2). After

activation, the getters can have a pumping rate as high as a few 0.1 l/(s cm2)

for H2. Over time, however, the getters develop a film of reacted materials

requiring reactivation to maintain their pumping efficiency.

The TSP and ion pumps are used in conjunction to achieve maximum pumping

for both reactive and Noble gases. We use a combination ion/TSP pump (Vacion

Plus 150 Star-Cell ion pump, 125 l/s for N, with integrated TSP cartridge and

heaters) to maintain vacuum in the oven region, along with an ion pump (Vacion

Plus 75 Starcell, 65 l/s for N) and TSP (Varian) connected to a 4” diameter,

12” tall chamber between the Zeeman slower and the experimental chamber to

maintain UHV in these regions. These pumps are shown in Figure 4.1. Further,

NEG strips are applied to both the walls of the drift tube for the Zeeman slower

and wherever possible in the experimental chamber itself. The NEGs were then

activated during the 2–3 day initial bake-out of the vacuum system (400 � in the
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Zeeman slower and oven regions, 200� for the experimental chamber). Finally, an

all-metal gate valve (MDC, GV-1500M-P) is positioned between the oven region

and the Zeeman slower, allowing us to bring the pressure in the oven region up

to atmosphere for service or to replenish the lithium source while maintaining an

ultra-high vacuum throughout the rest of the system.

The experimental chamber consists an 8” Multi-CF Spherical Octagon from

Kimball Physics (MCF800-SO2000800). The use of this chamber is highly advan-

tageous in that it has large optical access and high conductance to the pumping

regions to maintain the UHV environment. Further, in contrast to glass cells,

the windows can all be antireflection (AR) coated on both sides and the eight 2-

3/4” Conflat (CF) ports have integrated grooves to allow mounting of components

within the chamber itself (i.e. the RF coils shown in Figures 4.1 and 4.6). The

Octagon is mounted to the Zeeman slower on one of the CF ports, and capped with

2-3/4” viewports on the other 7. On the faces of the Octagon are a pair of recessed

viewports. The glass faces of the viewports, which are AR coated for 671nm and

1064nm light, are each located only 1” from the center of the chamber. These

large viewports provide nearly 90 degrees of optical access along the axis of the

chamber and contain multiple mounting surfaces for high current electromagnets,

which have been useful for externally applying large bias and gradient fields to the

atoms.

Differential pumping was required between the oven region and the Zeeman

slower to achieve ultra-high vacuum in the experimental chamber. The pressure

differential is maintained by separating these regions with a 4” long, 0.25” outer

diameter (OD), 0.19” inner diameter (ID) copper rod that limits the conductance

of background gases between the oven and high-vacuum regions. The conductance

is a measure of the number of atoms or molecules passing through a region of

the vacuum system per second. As particles collide with the walls of the tube,

they hit, stick, and desorb in a cosine distribution, limiting their transmission flux

[154]. Therefore, smaller ratios of tube diameter to tube length lead to smaller

conductances.

For a tube with a diameter (D) and length (L), measured in inches, the con-

ductance (C) of air at room temperature and the resultant pressure differential
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across a tube are given by [154, 153]

C = 78
D3

L
ls−1 (4.1)

P1

P2

=
C

S + C
(4.2)

where P1 (P2) are the steady-state pressures in the high (low) vacuum regions and

S is the speed of the pump in the high vacuum region. The pressure drop across

our differential pumping tube (C = 0.133 ls−1, P1/P2 ' 500−1) should allow us

to maintain a pressure on the order of 10−11 Torr in the experimental region,

regardless of the higher vacuum in the oven region (5.4∗10−9 Torr for the hot oven

or 6 ∗ 10−10 Torr when the oven is in the cold state).

The background gas pressure in the experimental region sets an upper bound for

the lifetime of our ultracold trapped gases. Heating and loss of the trapped gas is

attributed to elastic collisions between the ultracold atoms and the background gas

atoms and molecules nominally at room temperature (T = 300 K). For a residual

background gas of lithium atoms at a pressure P = 10−11 Torr, the loss rate for

our sample, which is directly proportional to the pressure, is Γc = 0.0028 s−1,

which should cause the atoms to decay exponentially with a time constant of

τc = 1/Γc = 355 sec [155]. This time constant far exceeds any of the characteristic

timescales in our experiments and such loss should therefore be negligible.

4.1.1 6Li Oven

The oven region consists of the heated lithium chamber and nozzle, along with

the shutter and collimators used to produce a high-flux, pulsed atomic beam. The

lithium chamber and the nozzle sections are housed in 2” diameter aluminum

cylinders which are machined to maximize their thermal contact with the stain-

less steel components. These aluminum housings, which are heated with regulated

band heaters and imbedded with multiple thermocouples for temperature feed-

back, have a large thermal mass and are designed to provide a highly uniform and

reproducible thermal environment for the lithium chamber and nozzle regions.

The lithium chamber is a 3/4” OD × 1-1/2” tall half-nipple with a 1-1/3” CF

flange from MDC Vacuum. Approximately 2 grams of solid lithium is loaded into
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the chamber which, during operation, is heated to 435 �. At this temperature,

liquid lithium fills the bottom 1/3 of the chamber (6Li melting point = 180.7 �).

The rest of the chamber is filled with lithium gas at a vapor pressure of 3.6× 10−4

Torr [11]. The chamber is oriented vertically and connected to a 90◦ CF elbow

fitting (MDC vacuum 403000). A nozzle is then attached to the end of this fitting

to limit the conductance of the atomic vapor into the rest of the system.

The gasket connecting the lithium chamber to the CF elbow fitting is prone

to failure in lithium ovens [156] due to the daily temperature cycling of these re-

gions and the highly reactive nature of lithium. We therefore use nickel gaskets

between these regions because nickel is both more immune to failure from repeated

temperature cycling and is less reactive in a corrosive environment. Regardless,

we still experienced a failure of the nickel gasket in our first iteration of the oven,

where we used heater tape to heat the oven instead of band heaters. The failure

occurred in the form of a green deposit (likely a lithium-salt [156]) surrounding

the nickel gasket which caused a short in the heater tape. It is conceivable that,

due to imperfect winding of the heater tape, a temperature minima was at the

location of the gasket where lithium gas would condense and wet the gasket ma-

terial. With the more uniform thermal environment provided by the band heaters

and aluminum housing, we have run the lithium oven for over two years with no

noticeable degradation in the atomic beam.

In our original design, the nozzle consisted of a glass capillary array, composed

of an array of 100 micron diameter tubes approximately 2 mm in length, to provide

a large flux collimated lithium beam. These arrays are rated to withstand tem-

peratures above 450 � and are often used for gas flow collimation and differential

pressure barriers. We found however, that the lithium vapor reacted with the glass

in the array at temperatures on the order of 460� and when we removed the array

after a period of operation, the array had turned black and was etched over a large

volume of the material.

Our current nozzle is based on a design which was developed for a dual-species

lithium/sodium apparatus [156]. It is machined from a double-sided 1-1/3” Conflat

Flange Blank from MDC vacuum and contains a 1/4” diameter, 0.15” long aperture

radially centered on the flange. To inhibit condensation of lithium vapor onto the

nozzle, it is heated to a temperature of 465� during operation, and held at 350�
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when the oven heater is off. This assures that the atoms in the lithium vapor will

condense back in the lower temperature oven region, whose temperature defines

the vapor pressure of the atomic gas. The number density of atoms in the vapor,

as calculated from the ideal gas law, is approximately n0 = P/kbT = 4.7 ∗ 1012

cm−3. At this temperature, the flux of atoms from the lithium reservoir Φ and the

number of atoms diffusing through the nozzle per second Ṅ are [157]

Φ = n0v̄/4 = 1.89× 1017/(cm2s) (4.3)

Ṅ = ΦAS = 6× 1016/s, (4.4)

where v̄ =
√

8kBT/(πm) = 1610 m/s is the average velocity of the atoms in the

vapor and AS is the area of the nozzle-aperture.

At the end of the nozzle, a thin-walled stainless steel tube separates the high

temperature sections of the oven from the rest of the vacuum system. This tube

is machined from a 3/4” OD × 3” long nipple from MDC Vacuum. The thickness

of the tube wall is reduced to approximately 0.01” over a length of 0.825” to

significantly limit its thermal conductance (G = .0052 W/K). This allows for a

thermal gradient along the tube while maintaining the tensile strength to support

the nozzle and lithium chamber. By wrapping the high-temperature sections with

multiple layers of flexible fiberglass for thermal insulation and simple air cooling

of the low-temperature sections of the oven region, we maintain temperatures of

465 � (435 �) in the nozzle (lithium chamber), and a temperature of 60 � at the

end of the thin-wall drift tube.

The low temperature sections of the oven consist of the oven chamber, which

houses the collimators and shutter for the atomic beam, and the vacuum pumps to

maintain vacuum in this region (see Figure 4.1). The oven chamber is a 6” spherical

square (Kimball Physics, MCF600-SS200408), connected to the combination ion

pump/TSP on one of the 6” CF flanges and capped with a glass viewport on the

other. Radially, it has four 2-3/4” CF flanges and four pairs of 1-1/3” CF flanges

which are used to connect various parts of the vacuum system, a vacuum gauge,

and an electrical feedthrough for the shutter.

The first element that the high-temperature atoms encounter after effusing

through the nozzle is a 1.4” X 3” X 1/4” copper cold plate with a 1/4” aperture
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centered on the atomic beam. The copper plate is centered in the oven chamber

and maintained at room temperature with two 1/4” diameter copper rods. These

rods are part of a high-current CF feedthrough which is mounted on the bottom

flange of the oven chamber. The cold plate acts as a collimator for the beam to

protect our shutter from excessive buildup of solid lithium along with providing a

low-temperature condensation region to capture the majority of the atoms from

the atomic beam and maintain a high vacuum in the oven region. We have the

ability to further cool this plate to liquid-nitrogen temperatures to enhance the

condensation rate of lithium atoms onto this plate and further improve our vacuum

in this region. The vacuum in the oven region raises by only a factor of ten with

the inclusion of the atomic beam, however, and further cooling of this plate has

not been necessary.

The atomic beam entering the Zeeman slowing region is collimated by the

combination of the high-temperature nozzle (1/4” aperture diameter) and the end

of the differential pumping tube (.19” aperture diameter), discussed in Section 4.1

which are separated by approximately 11”. The resultant collimated atomic beam

enters the high-vacuum region with a solid-angle of 40 mrad. The intensity of the

atomic beam can be determined from the number of atoms leaving the oven per

second in spherical coordinates with respect to the directions given by θ, φ and v

[158].

dṄv,θ,φ =
n0AS
π3/2v̄3

ve−v
2/v̄2 cos(θ)v2 sin(θ)dvdθdφ. (4.5)

Integrating this equation over the solid-angle of the beam for all velocity classes

yields an intensity of Ṅ = 8.6 × 1010 atoms/s with an average velocity along the

axis of the Zeeman slower v̄x ' 1600 m/s and transverse to the slower v̄r ' 30

m/s.

During an experimental sequence, lithium atoms are initially slowed and

trapped in the experimental region from the atomic beam. After the atoms are

collected in the trap, if the atomic beam is left on continuously, the atoms in

the beam will elastically collide with the trapped atoms causing loss in the same

manner as through collisions with background gases. This loss mechanism can be

inhibited by shunting the atomic beam after the loading stage. To this end, we

have installed a ultra-high vacuum (UHV) compatible shutter (UNIBLITZ, Ls6T2
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with encapsulated coil), centered on the atomic beam and thermally connected

to the cold plate to relieve the thermal load on the shutter mechanics caused by

repeated cycling. The Teflon-coated shutter blade fully blocks the aperture when

engaged with 100 Hz (continuous) and 400 Hz (pulsed) cycling frequencies.

We quickly found that shuttering of this atomic beam is mandatory for achiev-

ing long lifetimes and minimal heating of our trapped atoms during the experimen-

tal sequence. Aside from heating and loss of the trapped atoms due to scattering

from the hot atomic beam, the lifetime of the trapped gas reduced to a few seconds

when the duty cycle of the atomic beam was greater than 10%. Likely, the atoms

from our high-flux atomic beam which were not cooled to within the capture veloc-

ity of our optical and magnetic trapping potentials remained for a significant time

in the experimental region before migrating to our ion and TSP pumps, thereby

increasing the vacuum pressure in the experimental chamber. The combination

of longer delay times between experiments and maintaining a 1 second load time

of the atomic beam has allowed us to accumulate large samples of trapped atoms

with lifetimes exceeding 30 seconds.

4.2 Laser System

The initial stages to slow and cool the effusive atomic beam from 738 K to∼ 200 µK

and trap the atomic samples in the experimental chamber are derived from the

radiation pressure that atoms experience in a near-resonant light field. Here I

describe the system of lasers, optics, feedback electronics, and frequency refer-

ences necessary to cool and image the 6Li gas for our experiments. An overview

of our cooling/imaging laser system to produce multiple light sources with wave-

lengths nominally centered on the D2 transition of lithium at ∼ 671 nm, is shown

in Figure 4.4. Two primary requirements for this laser system are that the laser

linewidths must be much narrower than the natural linewidth of the transitions

(Γ = 5.87 MHz for the D2 line) and the laser system must be stabilized to the

atomic transition throughout the experiment. Further both the frequency and in-

tensity of the lasers are designed to be dynamically adjustable, allowing for multi-

ple cooling stages and providing imaging frequencies for multiple Zeeman sublevels

over a large range of magnetic field, which is instrumental to our experiments.
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Before the spring of 2009, the light for the cooling and imaging lasers was

derived from a Coherent 899-21 ring-dye laser. The liquid gain medium, Ld-688

dye in a concentration of 1.17 grams per liter of solvent (2-Phenoxyethanol, 98%),

was pumped with nominally 6 Watts of 532 nm laser light from a solid-state laser

(Verdi V18 from Coherent Inc). The dye laser was frequency stabilized to an

internal reference cavity which in turn was locked to the D2 transition in 6Li

using the fluorescence from a transversely pumped 6Li collimated atomic beam.

Although the Coherent 899 provided up to 1 Watt of power at 670.977 nm, which

was sufficient to cool ∼ 108 atoms to below 0.3 mK in a Magneto-Optical Trap

(MOT) (see Section 4.5), the Dye laser had an unacceptably large linewidth (∼ 4

MHz) and long-term power and pointing instabilities which severely affected the

shot-to-shot stability (∼ 50%) of our data.

Recently, we have made significant upgrades to both our cooling/imaging lasers

and our magnet system. The source for our laser light is now derived from two

tunable, grating stabilized diode lasers (Toptica DL100). As the power output

from these sources is relatively low (∼ 10 mW) and hundreds of mW of power is

required for Zeeman slowing the atomic beam and trapping the atoms in a MOT,

the light from each of these lasers are amplified to approximately 500 mW by ta-

pered amplifiers (Toptica TA-0670-05000). The solid-state design and mechanical

stability of the these laser systems has greatly improved both the linewidth and

stability of our optical system where, after the system has been run for a short

time, the experimental shot-to-shot stability is now less than 10% and the optical

power and directionality are effectively stable.

4.2.1 Laser Lock to Iodine

Previous frequency references for ultracold lithium experiments used either the

Doppler minimized fluorescence from a collimated lithium beam [25] or sub-

Doppler saturated absorption spectroscopy in a high-temperature lithium cell [159,

160, 161]. The lithium beam has limited application because saturated-absorption

spectroscopy is difficult in these setups and the signals are homogenously broad-

ened by the finite transit-time of the atoms through the probe beam. Lithium cells,

on the other hand, can be used for saturated absorption spectroscopy but they re-
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quire high temperatures to maintain a sufficient vapor pressure and difficulties

arise with lithium condensing on the windows.

We have recently upgraded the laser locking system from using a collimated 6Li

beam to using sub-Doppler saturated absorption spectroscopy [162] of molecular

iodine. Much of this work was carried out by Yi Zhang over the Summer of

2009, but theoretical investigations to fully characterize the system are still under

way. For our first step, we mapped out the spectrum of hyperfine lines in the

R(142)5-6 rovibronic transition of the B0+
u ← X0+

g electronic system in 127I2 [163].

This rovibronic line, whose observation has not been previously documented, is

particularly useful because it is centered approximately 1 GHz to the red of the D2

transition in 6Li and we found that the hyperfine lines have sufficient line strengths

to provide high-resolution feedback for locking of the spectroscopy laser.

To measure the hyperfine components of this line, we used standard sub-

Doppler saturated absorption spectroscopy techniques. Our spectroscopy setup

is shown in Figure 4.2. Saturated absorption spectroscopy is based on velocity-

selective absorption of resonant light. In a vapor cell, particles move randomly in

all directions with a Boltzmann velocity distribution along each axis. Standard

absorption spectroscopy samples this velocity distribution, where atoms moving

with a velocity v have a Doppler shifted resonance frequency

ν ′0 = ν0

(
1 +

v

c

)
. (4.6)

The sign has been chosen for a laser beam propagating along the positive axis so

that atoms traveling along the laser beam have resonance frequencies blue shifted

to higher frequencies, and atoms traveling counter to the laser beam are red shifted.

This leads to spectral widths on the order of GHz for molecular iodine at room

temperature.

By counter-propagating two spectroscopy laser beams through the cell with

frequencies varying by a small amount ∆ν, only atoms in a single axial velocity

class are simultaneously resonant with both lasers, given by

vres =
c∆ν

2ν0

(4.7)

Saturated absorption spectroscopy uses a pump-probe technique to measure this
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Figure 4.2. Optical layout for sub-Doppler absorption spectroscopy and frequency
locking the spectroscopy laser to molecular iodine in a temperature controlled vapor
cell.

velocity-selective spectra. Here, an intense pump beam depletes the atomic pop-

ulation in the lower state that can be excited by the probe beam at the velocity

class vres.

In our setup, the pump beam consists of approximately 60 mW of light from

the spectroscopy laser which is double-passed through an acousto-optic modulator

(AOM) to up-shift the frequency of the light by approximately 252 MHz and

amplitude modulate the beam at 100 kHz. The ∼ 10 mW probe beam is at the

frequency of the spectroscopy laser. A second identical probe beam is displaced

from the pump beam as it propagates through the cell to sample the Doppler profile

of the iodine spectra. The saturated absorption signal from the probe beams,

which is detected on a balanced photodetector system (Thorlabs PDB150A) is

then monitored with a Lock-in amplifier. The Lock-in looks for fluctuations in the

absorption signal at the frequency of and in phase with the modulation introduced

by the AOM, removing the Doppler background.

A ”cold-finger” on the iodine cell is held nominally at room-temperature to

define the vapor pressure in the cell (7.56 mTorr at 260 K). The body of the iodine

cell, on the other hand, is housed in a copper chamber and heated with regulated
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band heaters to ∼ 200 � to enhance the population of atoms in the excited rovi-

brational levels. Further, aluminum cylinders are attached to the view ports of the

chamber and capped with AR coated windows to provide a thermal gradient from

the heated chamber, minimizing air currents which perturb the optical beams.

Simultaneous measurement of the saturated absorption spectra of the R(142)5-

6 rovibronic line in 127I2 and the D2 line from a collimated 6Li beam are shown

in Figure 4.3. Although the sub-Doppler spectra for the iodine line follows the

1-4-4-1-4-1 hyperfine structure for the even rotational quantum numbers [164], our

resolution is not sufficient to resolve the multiplets. We decided to use the a10

singlet hyperfine line, which is frequency downshifted from the 6Li resonance by

931(5) MHz with a linewidth on the order of 1 MHz, as the frequency reference

for our 670 nm laser system.

By frequency modulating the ∼ 126 MHz AOM shift on the pump beam by ± 2

MHz at a rate of 100 kHz, the lock-in amplifier outputs an error signal proportional

to the frequency offset of the spectroscopy laser from the a10 hyperfine line in

Iodine. As the probe and pump frequencies are separated by 2 × 126 MHz, the
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zero-crossing of the error signal occurs when the spectroscopy laser is 814(5) MHz

to the red of the D2 transition in 6Li. This error signal is shaped by a home-

built PID board [165] to shape the signal for feedback to the piezo actuator of

the DL100 laser, thereby locking the frequency of the spectroscopy laser. The

remaining light from this laser (∼ 100 mW), is coupled through a single-mode,

polarization maintaining fiber to be used for Doppler cooling of the atomic beam

along the Zeeman slower. To minimize the noise in this frequency locking scheme

the entire optical setup shown in Figure 4.2 is housed on a 2’ × 3’ optical table

which is raised above the floating optical table by four 2” × 2” × 3” Absorbathane

cubes, reducing the resonance frequency of the table to 7.5 Hz. Further, the table is

housed in a Styrofoam box to provide acoustic shielding from the rest of the room.

With these improvements, we lock the spectroscopy beam to the a10 hyperfine line

with a signal noise on the order of 200 kHz.

4.2.2 Experimental Laser System

Whereas the frequency of the spectroscopy laser is effectively static, the experimen-

tal laser system, shown in Figure 4.4 is designed to be highly dynamic, providing

light for both the frequency-dependent magneto-optical cooling in the experimen-

tal region as well as light for imaging the atomic gas, whose resonance frequency

is highly dependent on both the magnetic field applied to the atoms and the

atomic state under investigation. To achieve such high precision tunability over a

wide frequency range, the experimental laser is phase-frequency locked to a pro-

grammable frequency offset of the spectroscopy laser using an optical phase-locked

loop (OPPL) designed for use with grating stabilized diode lasers [166]. In this

system, the rate at which the relative phase between the spectroscopy (master)

laser and the experimental (slave) laser changes is locked to a fixed value, which

is defined by an external waveform generator. Figure 4.5 gives an overview of the

OPPL design.

A series of AOMs frequency shift a small fraction of the light from both the

locked spectroscopy laser and the experimental laser to optimize the frequency-

locking range of the OPPL, as shown in Figure 4.4. These beams are then com-

bined on a high speed, differential output photodiode with integrated preamp
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(Hamamatsu G9843-32). A high frequency divider/PLL synthesizer (Analog De-

vices ADF4007) divides the frequency of the detected beat-note signal between the

lasers by a factor of 16 and compares this signal to a reference frequency provided

by a home-built Direct Digital Synthesizer (DDS). The DDS system, based on

the design by Dr. Todd P. Meyrath and Dr. Florian Schreck [167], can produce

Radio Frequency (RF) signals between DC and 135 MHz and is interfaced with a

microprocessor for dynamic computer control. The error signal produced by the

ADF4007 is sent through feedback electronics, as described in [166], to provide

feedback to the FET and the piezo actuator of the experimental DL100 diode

laser. Fast recovery of the feedback lock and suppression of saturation of the error

signal are provided by feed-forward of the piezo actuator as the experimental laser

is switched to new frequencies. The experimental laser is therefore continuously

phase-frequency locked to the spectroscopy laser, which in turn is locked to the

iodine hyperfine line discussed in the previous section, and is tunable between ∼
50 MHz and -2.1 GHZ from the D2 line of lithium with a linewidth below 1 MHz

and switching speeds on the order of 1 ms.

4.3 Magnet System

Much of the technology we use to cool dilute neutral gases to degeneracy and

induce resonant enhancement of pairwise interactions in our samples is based on the

Zeeman shift of the atomic hyperfine levels under the influence of an applied bias

or gradient magnetic field. As described in Chapter 2, the low-energy interaction

properties of 6Li atoms in the three lowest-energy hyperfine spin states is quite

rich in the range of applied magnetic fields between 0 and 2000 Gauss due to

the presence of multiple s- and p-wave Feshbach resonances between these three

states and the effective convergence of the scattering-lengths for the three high-

field seeking states for fields above ∼ 1500 Gauss. Additionally, gradient magnetic

fields can be used to both directly apply forces on the atoms and to alter the

resonant frequencies of the atoms in the presence of near-resonant light attributed

to the spatially-dependent Zeeman shift.

To this end, we have installed multiple sets of electromagnets about the exper-

imental chamber, as shown in Figure 4.6. The primary and booster coils, axially
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Figure 4.6. Overview of the current-carrying bars and coils used to manipulate the
atoms in the experimental chamber. The blue arrows indicate the direction of current
flow.

centered on the experimental chamber, are designed to provide a large bias field

and/or field gradients at the center of the experimental chamber. The primary coils

in particular are the workhorse of our experiment, providing both the quadrupole

field for our Magneto-Optical Trap and the uniform bias field for tuning interatomic

interactions. The four current carrying bars external to the vacuum system pro-

vide a field at the center of the chamber along the polarization axis (ẑ) of the

experiment. The gradient fields perpendicular to this axis can exert forces on the

atoms to stabilize against gravity and correct for stray forces at the center of the

experimental chamber. Our experiments required flowing large currents through

the magnets (up to 1000 Amps) with a high level of stability and temporal control.

In this section, I describe the design and electronic control of our magnet system

to address these issues.

4.3.1 Primary Coils

Our primary coils are among the most stable and dynamically adjustable devices in

our labs. These coils are attached directly to the outside of the 8” viewports on the

experimental chamber, and separated by 3.75”, thereby approximately satisfying

the Helmholtz condition when identical currents are passed through the coils. Each

coil consists of 16 turns of shielded copper wire ((3/16”)2 cross-sectional area with a

(1/16”)2 hollow core), and the pair is sandwiched between padded Plexiglas plates
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to minimize shifting due to inductive forces during rapid turnoff of the current.

Swagelok connectors at the ends of the wires provide electrical connections to the

power supplies and a port for water flow through the hollow core of the wires.

The primary coils are able to flow a steady-state current in excess of 600 Amps

and can be run in either Helmholtz or anti-Helmholtz configuration. Independent

computer control of the currents in each coil allows us to apply an arbitrary mag-

nitude of the bias and gradient of the magnetic field along the ẑ axis up to ∼ 1000

Gauss or ∼ 62 Gauss/cm at the center of the experimental chamber. For simplic-

ity, the coils are named Chandlee (1) and Corridor (2), based on the proximity of

the coils to the Chandlee building at PSU or the corridor of the lab. The power

supplies for these coils (Sorensen DHP-20-660) can supply continuous currents of

up to 660 Amps per coil and can be remotely computer-controlled with a 0-10 Volt

reference. Internal feedback in the supplies maintains the programmed current

to within 0.2% in constant current mode. However, we found that the current-

switching slew-rates in this mode are on the order of a few Amps/ms due to the

large filtering capacitors in the supplies.

4.3.2 Booster Coils

In addition to the primary coils, a pair of 10 turn booster coils are fit within the

recessed housing of the viewports as shown in Figure 4.6. These coils have a radius

of 3”, are separated by 2.6”, and are wired in series to enhance the bias field of

the Primary coils in Helmholtz configuration. The coils were mounted to the rear

surface of a water-cooled copper housing which was specially designed to secure

the booster coils within the inner profile of the recessed viewports and provide

sufficient coil to metal contact for heat dissipation. Further, the inner radius of

the housing was machined with a conical profile such that after installation, the

coils had virtually no impact on the optical access to the center of the chamber.

A slit was cut radially through the copper housing and electrical isolation was

installed between the copper housing and the metal of the viewport to suppress

additional eddy currents during switching of these coils.

Due to insufficient heat dissipation from these coils through the water-cooled

housing, we were limited to constant currents of a few hundred Amps or pulsed
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currents of up to 600 Amps for a few hundred milliseconds, driven by a Sorensen

DHP-15-660 power supply. The booster coils nearly touch the viewport glass,

whose vacuum seals are only rated to withstand up to ∼ 200 �. Overheating of

these coils could cause a catastrophic failure of our vacuum system. The coils were

sufficient, however, to provide up to an additional 500 Gauss bias field at the center

of the chamber for many seconds to study the two- and three-body loss properties

of the ground-state 6Li atoms at high fields (B > 1000 Gauss).

4.3.3 Current Control

Current control external to the power supplies was implemented for the Chandlee

coil, Corridor coil, and the Booster coil pair to increase the slew-rates, maintain low

current noise, and assure long-term stability of the field. The current is controlled

with a bank of 10 Power MOSFETs (IXYS IXFN-108N20) which are mounted on a

water cooled plate with thermal compound to assure good thermal contact. Each

of the MOSFETs can continuously flow up to 180 Amps of current and dissipate

700 W of power. The MOSFETS are all wired in parallel to easily accommodate

the maximum current provided by the power supplies and each of the gates are

connected to the control voltage VG through a 1 Ω resistor to suppress high fre-

quency oscillation of the gate voltages, called parasitic oscillation [168] that occur

during switching transients.

Servo control of the current, outlined in Figure 4.7, was designed similar to

the magnetic trap current servo used in the degenerate Fermi gas apparatus in D.

Jin’s Lab at JILA, Boulder Co. [169] The current from the power supplies are

measured with closed loop current sensors (Honeywell CSNK500M). These sensors

behave like a current transducer with 5000 turns and a 50 Ω coil resistance with ±
0.5% accuracy. The output current IS from each sensor is converted to a voltage

VS with a stable 100 Ω burden resistor RS. Differential amplification between the

signal from the current sensors and a reference signal VR, provided here by a 0-10

V analog output from our computer control system, provides feedback to the gate

of the MOSFETs.

Switching the current from Helmholtz to anti-Helmholtz configuration is based

on controlling the current path with high-current Integrated Gate Bipolar Transis-
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Figure 4.7. Current control electronics for the Corridor coils.

tors (IGBT Powerex, CM600HA-5F). These are effectively high current switches,

which can each accommodate up to 600 Amps of current with switching times

on the order of microseconds. Figure 4.7 shows a schematic of the IGBT current

control system for the Corridor coil. Each of the switches shown constitutes two

IGBTs in parallel. The diode and thyristor protect the power supply and IGBT

modules from inductive voltage spikes due to the rapid turnoff. For the Corridor

coil, depending on whether the IGBT pairs 1 & 3 or 2 & 4 are activated, the

current will flow through the coils either in the same direction as or in opposition

to the direction of current flow through the Chandlee coils. For the Chandlee

coil, a single IGBT pair and diode is used to simply provide rapid shunting of the

magnetic field. No IGBTs, diodes, or thyristors are installed for the booster coil

system. Computer triggering of a logic circuit, designed by Ron Stites in our lab,

controls the IGBT drivers (Powerex BG2B), allowing the coils to be shunted and

switched rapidly within the same experimental procedure.

Using this current control scheme, the slew-rate is significantly enhanced, lim-

ited only by the resonance frequency of the coils, and the current is immune to

long-term drifts. The bias magnetic field induced by these currents at the center of

the experimental chamber was measured and calibrated using high-field RF spec-
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troscopy of the ultracold lithium atoms in the two lowest hyperfine spin-states (see

Section 5.2). Using this technique, the current and field stability was found to be

on the order of a part in 103. Recent improvements include replacing the current

sensor with a precision current transducer whose linearity is better than 3 ppm

(DanFysik Ultrastab 867) and temperature stabilization of the burden resistors to

the peak of their stability curve at 25 � which, to date, has increased the stability

of the magnets by approximately two orders of magnitude.

4.3.4 Gradient Fields

As discussed previously, gradient magnetic fields can exert significant forces on the

atoms. For an atom in a magnetic hyperfine state MF , in a magnetic field whose

gradient is along the ẑ axis, this force is given by

F = −gFµBMF
dB

dz
. (4.8)

For most of our experiments, atoms in the three lowest-energy hyperfine spin states

are spin polarized by a large magnetic field pointing in the ẑ direction. Atoms in

these three spin states, whose quantum numbers vary only by the nuclear spin,

therefore effectively feel the same force given by the x̂, ŷ, and ẑ gradients of the

component of the magnetic field along the ẑ direction and the magnetic moment

of the electron.

Magnetic field gradients were used in our experiment to cancel stray forces and

counter the force of gravity, which is highly detrimental to achieving low temper-

ature, low density degenerate clouds because this energy scale sets the minimum

trapping force necessary to hold the atoms. To counter the gravitational force on

the atoms, a magnetic field pointing in the ẑ direction with a gradient of approx-

imately 1 Gauss/cm along the ŷ axis was necessary. It turns out that the simple

field from an infinitely long wire positioned directly above the atoms, and aligned

with the x̂ axis provides an ideal gradient profile for levitating the atoms, given by

B(y) =
µ0Iẑ

2πy
(4.9)

where y is the vertical distance from the axis of the wire to the atoms, µ0 is the
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Figure 4.8. Calculated profile for the magnetic field induced by the levitation bars
along the ŷ-ẑ plane. The current-carrying bars are shown in orange and the arrows
indicate the direction of the B-field.

permeability of free space, and I is the current in the wire along the x̂ axis.

To approximate this field profile, a pair of ∼ 3/4” diameter current-carrying

(levitation) bars at the top of the experimental chamber were installed, as shown

in Figure 4.6. Additionally, two pairs of current-carrying (translation) bars were

installed at the front of the experimental chamber to apply forces to the atoms

along the x̂ axis. These bar sets carry very large currents, where the levitation

bar set and the first set of translation bars at the front of the chamber are wired

in series and driven by a 1000 A power supply (Sorensen DHP 5-1000). Further,

the second set of translation bars at the front of the chamber are independently

controlled, driven by a 440 A power supply (Agilent 6690A). The direction of the

currents through these bars are shown by the blue arrows in the figure. Each of

the power supply are programmed by a 0-10 V analog output from the computer

control system. The profile of the magnetic field from the levitation bars in the

ŷ-ẑ plane is shown in Figure 4.8, where the center of the experimental chamber is
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located at (0,0) on this plot. Using a combination of the gradient field from these

bars and an induced gradient from the primary coils, we are able to cancel the

force of gravity and all other translational forces exerted on the atoms to within

the detectable precision of our experiments.

In discussing the bias field produced by the primary coils and the booster

coils, it was assumed that the coils perfectly obeyed the Helmholtz criteria. A

more realistic analysis showed that, at the center of the experimental chamber,

non-negligible gradient fields from these coils can significantly affect the atoms.

These gradients are caused by the finite size of the coils, slight deviations of the

radius from their displacement, relative rotations of the coils, inhomogeneities of

the winding, etc. The bias field is therefore modified by a weak hyperbolic parabola

field distribution in the x̂,ŷ-ẑ plane near the center of the chamber, whose saddle-

point location is highly dependent on the homogeneity and rotation of the coils. For

both the primary and booster coils, the ratio of the coil radius to the displacement

of the pair is greater than one, resulting in a local minima (maxima) of the field

along the x̂ and ŷ (ẑ) axes. A representative radial and axial magnetic field profile

due to the deviation of the mean radius of the primary and booster coils from the

Helmholtz configuration is shown in Figure 4.9. These forces minimally perturbed

the atoms in our initial atom traps, but were found to be useful in providing

confining forces to the atoms along the x̂-ŷ plane for our later experiments. This

application will be discussed in more detail in Chapter 5.
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4.4 Zeeman Slower

Atoms interacting with a collimated laser beam resonant with the atomic transition

undergo a scattering process where each absorbed photon transfers its momentum

to the atoms. The spontaneously emitted radiation is then isotropically radiated,

averaging zero net momentum after many scattering events. The net force exerted

on the atoms from the unidirectional absorption of near-resonant photons is the

basic mechanism behind laser cooling of atomic gases. The maximum force exerted

on the atoms from these scattering events is given by Fmax = ~kΓ/2, where ~k is

the momentum of the absorbed photons and Γ is the atomic spontaneous emission

rate.

For light resonant with the 2S1/2 to 2P3/2 cycling transition in 6Li this force

results in a very large acceleration of the atoms (amax = 1.8 × 106m/s2). We

utilize this scattering force to slow our high-temperature atomic beam so that

the atoms can be trapped and further cooled at the center of the experimental

chamber. Realistic implementation of this simple scheme must, however, account

for Doppler shifting of the atomic resonance frequency which is on the order of 1.4

GHz for atoms traveling at 1 km/s. For a cooling beam resonant with these atoms,

as the atoms are decelerated they will quickly fall out of resonance with the laser

light and cooling will cease.

In 1982, Nobel laureate Williams Phillips and co-workers used a spatially-

dependent magnetic field, provided by a tapered solenoid along the axis of an

atomic beam, to shift the atomic frequency of Na atoms into resonance with a

counter-propagating laser beam to account for the Doppler shift as the atoms are

slowed along the drift tube. To maintain a constant deceleration of the atoms

requires that the Zeeman shift obey the following condition

δω +
δµB(z)

~
= kv (4.10)

Where δω is the detuning of the laser from the zero-field atomic resonance, δµ =

(g′FM
′
F − gFMF )µB is the difference of the atomic magnetic moment between the

ground and excited states and k is the wave vector of the light. More details

on the design and implementation of Zeeman slowers can be found in References

[170, 171].
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In our system, we use a zero-crossing Zeeman slower, which means that the

bias field crosses zero and changes direction along the solenoid. The calculated

magnetic field profile along our slower is shown in the subset of Figure 4.10. This

design allows for lower current requirements, adjustability of the field between the

different sections, and a significantly detuned slower beam to minimally perturb the

atoms collected at the center of the experimental chamber. The solenoid consists

of two spatially inhomogeneous coils of water-cooled wire, specially wound around

the drift tubes to provide the required magnetic-field profile shown. At the end

of the experimental chamber, a coil consisting of 16 turns of water-cooled wire

provides a counter magnetic field to zero the field at the center of the experimental

chamber.

All three of the slower coils are electrically connected in series, powered by a

computer-controlled power supply (Sorensen DCS8-125E). Slight adjustments of

the location of the zero-crossing along the axis of the Zeeman slower is provided

by an adjustable stainless-steel current shunt. The field from the slower coils at

the center of the experimental chamber is adjusted with the axial distance of the

final coil from the chamber. Details about the specific slower parameters are given

in Table 4.4. Although stray magnetic fields have been minimized by running the

wires which carry the supply and return current along the same path, the effect

of the slower field on the location of the atoms during magneto-optical trapping is

visibly noticeable, but does not seem to affect the loading efficiency of the MOT

(see Section 4.5).

To cool the atoms, ∼ 100 mW of light from the spectroscopy laser system is sent

through a polarization maintaining fiber to the optics table supporting the vacuum

system. The optical layout for the slower beam is shown in Figure 4.10. The

slower light, which is approximately 814 MHz red detuned from the D2 transition,

is converted to right circularly polarized light with a λ/4 wave plate before it is

counter-propagated with the atoms. The beam has a diameter of approximately 15

mm at the entrance window of the experimental chamber and is focused onto the

nozzle of the atomic oven. The |F ′ = 5/2〉 ↔ |F = 3/2, mF 〉 cooling transitions

for the atoms near the beginning of the slower region are shown in Appendix A.

At the zero-crossing of the slower field, the light is on resonance with atoms which

were slowed to approximately 540 m/s. Here, the intensity of the light is ∼ 12
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Figure 4.10. System of optics and magnetic coils used in our zero-crossing Zeeman
slower. The insert shows the profile of the x̂ magnetic field provided by the slower
solenoids (1) and (2).

times the saturation intensity of the atoms (ISat).

At low bias fields near this zero-crossing, the cooling transitions are no longer

closed due to mixing of the nuclear and angular momentum quantum numbers

in the hyperfine states. This is particularly predominant in the D2 transition of
6Li, where the hyperfine spacing of the 2P3/2 manifold is smaller than the natural

linewidth of the cycling transition Γ. Atoms cycling on this transition can decay

back the 2S1/2 |F = 1/2〉 dark states, where they are far-detuned from the cool-

ing light and the cooling cycle will cease. To maintain population in the cycling

transition for all fields, an electro-optic modulator (New Focus 4001) frequency

modulates the slower beam, creating side-band frequencies at 228 MHz. Atoms

are optically pumped from the dark states with the blue sideband and can sub-

sequently scatter light from the slower beam throughout the entire length of the

slower.

The bias field is rapidly extinguished as the atoms enter the experimental cham-

ber and scattering from the slower beam, which is now approximately 814 MHz red

detuned from the D2 transition, is suppressed. These atoms, which have an average

velocity of approximately 30 m/s along the slower axis, will drift toward the cen-
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Slower Property Value

Section 1 Length (current) 20” (128 A)
Section 2 Length (current) 4” (115.4 A)
Section 3 Turns (current) 16 (115.4 A)
Maximum B-Field (Bmax) ∼ 775 Gauss
Minimum B-Field (Bmin) ∼ -600 Gauss

Total Electric power 680 W
Laser Power 100 mW

Laser Detuning -814(5) MHz
Maximum Capture Velocity ∼ 1100 m/s

Table 4.1. Properties of the current-carrying coils and light for the Zeeman slower

ter of the vacuum chamber where they will be trapped using the magneto-optical

trapping scheme that I will describe in the next section.

4.5 Magneto-Optical Trap

As the atoms leave the Zeeman slower, they are still far too energetic to be captured

by the optical dipole trap used to cool the atoms to ultracold temperatures. The

atomic beam is therefore precooled in a Magneto-Optical Trap at the center of the

experimental chamber. This trap combines a magnetic quadrupole field and three

mutually-orthogonal pairs of σ+ − σ− counter-propagating laser beams pointing

towards the center of the quadrupole field, as shown in Figure 4.11 (a), to provide

compression of both the spatial and momentum distribution of the atoms.

The six beams alone, which are all derived from the same laser and slightly red-

detuned from the atomic transition, form a so-called optical molasses [172, 170].

Atoms moving along the axis of one of the beam pairs are Doppler shifted into

resonance with the counter-propagating beam. Since the velocity of the atoms

can always be described in terms of their components along the three mutually-

orthogonal beam pairs, at the intersection of the beams the atoms experience a

three-dimensional viscous damping force which leads to a significant reduction of

the momentum distribution (and hence the temperature) of the atomic gas. This

laser cooling technique was first demonstrated by Nobel laureate Steven Chu and

colleagues at Bell Laboratories in 1985 [173].
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As the atoms are cooled in the optical molasses, random fluctuations of both the

photon absorption rate and the angular distribution of the spontaneously emitted

photons lead to a random walk of the atoms in momentum space. In the steady-

state, the net effect of optical cooling in three-dimensions balancing the diffusive

heating caused by the random momentum kicks, assuming I � Isat, yields an

equilibrium temperature of the atoms given by

kBT =
~Γ

4

1 + (2δ/Γ)2

−2δ/Γ
, (4.11)

where Γ is the atomic natural linewidth and δ = ω − ω0 is the detuning of the

lasers from the cooling transition. The minimum equilibrium temperature TD at

δ = −Γ/2 is the Doppler cooling limit. For 6Li atoms cooling on the D2 cycling

transition, TD = 142µK.

The drawback of this cooling technique is that it provides no spatial confine-

ment, allowing the atoms to random-walk out of the active volume of the beams.

Further, the capture velocity of the molasses is generally quite low [170], limiting

the efficiency of the Zeeman slower. The addition of a quadrupole magnetic field

and the correct choice of σ± laser polarizations Zeeman shifts the cooling transi-

tion frequencies of the atoms closer to resonance with the photons that are mov-

ing towards the center of the trap, producing a three-dimensional restoring force

to confine the atoms. Nearly all of the ultracold atomic gas systems use these

Magneto-Optical Traps as an initial cooling stage due to their relatively large cap-

ture velocities and volumes, capable of trapping room temperature atomic vapors

for the heavy alkalis. For more details on laser cooling and trapping techniques,

please refer to References [170, 42].

In our setup, the quadrupole field is provided by running 85 Amps of current

through the primary coils in the anti-Helmholtz configuration. This produces a

linear gradient at the center of the chamber of 5 Gauss/cm in the radial and 10

Gauss/cm along the axis of the chamber. In addition to the primary coils, we have

installed three sets of coils in Helmholtz configuration about the experimental

chamber, which are useful in canceling out stray fields and moving the location

of the zero-point of the gradient field in three-dimensions. Independent control of

this external bias field has been quite useful in moving the center of the MOT,
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Figure 4.11. (a) Orientations and polarizations of the MOT and repumper beams for
laser cooling the atoms in a gradient field, provided by the current through the Primary
coils (blue arrows). (b) Energy level diagram of 6Li. The solid (dashed) arrows indicate
the cooling and repumping transitions (spontaneous emission transitions). The natural
linewidth of the D2 transition is indicated in grey.

which is nominally centered on the zero-point of the gradient field, to optimally

load the atoms into subsequent trapping potentials.

The cooling transition used is the 2S1/2 |F = 3/2〉 to 2P3/2 transition of the D2

line of 6Li. As discussed in Section 4.4, at the low magnetic fields provided by the

anti-Helmholtz coils, the cooling transition is not closed. To maintain population in

the cooling transition, the MOT cooling beams are combined with MOT repumper

light that is resonant with the 2S1/2 |F = 1/2〉 to 2P3/2 transition. An energy-level

diagram of the MOT cooling and repumper transitions is shown in Figure 4.11 (b).

The MOT beams, which are produced by the experimental laser system shown

in Figure 4.4, are launched into polarization-maintaining fibers from the experi-

mental laser table and combined on a 2 × 6, temperature stabilized, splice-free

coupler tree (Canadian Instrumentation & Research Ltd). This apparatus uses ar-

rays of evanescent wave couplers to combine two fiber-coupled laser beams (MOT

cooling and MOT repumper), and splits the combined light into six equal power

beams which are output coupled to six polarization-maintaining fibers to provide

light for each MOT beam. Each of the combined MOT cooling/repumper beams

are launched from these fibers using home-built fiber launches, shown in Figures

4.14 and 4.19, to collimate the beams and shift their polarizations from linear to
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circular using λ/4 wave plates. The six ∼ 40 mm diameter beam are then directed

through the viewports of the experimental chamber using adjustable gold mirrors

to intersect nominally at the center of the gradient field as shown in Figure 4.11

(a).

Dual-stage cooling is implemented to optimize the loading and cooling efficiency

of the MOT. In the first stage, the MOT is loaded from the Zeeman slowed atomic

beam. Each MOT beam has approximately 27 mW of MOT cooling and 4 mW

of MOT repumper power, where both the cooling and repumper light are ∼ 30

MHz (5Γ) red detuned from resonance. For our oven temperatures of 435 �, we

can achieve ∼ 108 atoms/second loading rates. This allows us to load the MOT

within 1 second, significantly reducing the experimental cycle time and the duty

cycle of the atomic beam to maintain UHV vacuum in the experimental chamber.

The lifetime of the atoms in the MOT is greater than 10 seconds, indicating a low

background gas pressure.

The MOT now traps approximately 108 atoms at a temperature on the order

of a mK. This temperature is significantly larger than the Doppler recoil limit due

to the necessary detuning of the beams to minimize light-assisted collisions [174],

which ultimately limit the steady-state density and number of atoms in the MOT.

A picture of the fluorescence from the atomic gas while trapped in the MOT is

shown in Figure 4.12. The image of the atoms at the center of the experimental

chamber, taken through a recessed viewports, is seen in the left-hand panel.

In the second cooling stage the frequency of the MOT cooling and repumper

beams are shifted to ∼ 5 MHz (1Γ) red detuned from resonance, while significantly

reducing their intensities (1.4 mW cooling, 2.3 mW repumper power). Cooling of

the atoms in this compression stage for 7 ms is sufficient to bring the atoms into

equilibrium with minimal atoms loss. At the end of the compression stage, the gas

is at a temperature of ∼ 200 µK, with a peak density of 2 × 1010 atoms/cm3 and

a phase-space-density on the order of 2.5 × 10−6.

Finally, to suppress inelastic spin-exchange collisions between atoms in the
2S1/2 |F = 1/2〉 and |F = 3/2〉 states, described in Chapter 2, the MOT cooling

beams were rapidly extinguished and the gas was illuminated with only the MOT

repumper light for 200 µs to optically pump the atoms into the |F = 1/2〉 ground

state. All of the experimental parameters for the Zeeman slower, MOT, MOT
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(a) (b)

Figure 4.12. (a) Fluorescence from the MOT inside the experimental chamber. (b)
The chamber with the atomic beam shuttered is shown for reference

compression, and optical pumping stages described previously were experimen-

tally determined to provide optimum transfer into the optical trapping potentials

described in the next section.

4.6 Optical Dipole Traps

Our experiments studying the universal physics of many-component Fermi gases

required, in the end, that we produce extremely cold, nearly degenerate Fermi gases

occupying the three lowest-energy hyperfine spin states whose interactions are tun-

able by a large magnetic field pointing along the ẑ quantization axis. The dipole

force from a gradient light field provides an optimum potential to satisfy these

requirements. The atoms experience a conservative force in the optical dipole trap

which is effectively insensitive to both the atomic hyperfine state of the trapped

atoms, for linearly polarized light, and to applied magnetic fields. Such opti-

cal trapping potentials are readily available from the Gaussian profile of far off-

resonance laser beams and have been used extensively to trap and evaporatively

cool Fermionic atoms to degeneracy with extraordinarily low heating and trap loss

rates [53, 147, 175]
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4.6.1 Far-Off-Resonance Dipole Traps

The origin of the optical dipole force is derived from the dispersive interaction of

the induced atomic dipole moment p with the intensity gradient of a light field.

For an atom of polarizability α in the presence of an electric field E, the dipolar

potential Udip is given by

Udip = −1

2
αE2. (4.12)

A rigorous analysis for the dipolar trapping potential and light scattering rate

Γsc for two-level neutral atoms in the limit of large detunings of the light (ω0−ω)

and negligible saturation (I � Isat) yields [176]

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (4.13)

Γsc(r) = − 3πc2

2~ω3
0

(
ω

ω0

)(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r), (4.14)

where c is the speed of light, Γ is the damping rate, which corresponds to the

spontaneous decay rate of the excited level, and I(r) is the intensity profile of the

beam. In general, the rotating-wave approximation is valid in which the counter-

rotating term (ω0 + ω) in the above equations are neglected, yielding expressions

for the dipole trapping potential Udip and scattering rates Γsc proportional to

I(r)/(ω0 − ω) and I(r)/(ω0 − ω)2 respectively. Using high intensity beams whose

frequencies are far detuned to the red of the atomic transition can produce large

trapping forces on the atoms with minimal heating from off-resonant scattering of

the trapping light.

The multi-level structure of atoms and molecules can greatly complicate the

analysis of the dipole force. Even in this case, however, the atoms can act as an

effective two-level system so long as the trapping laser is far detuned from all of

the transition frequencies. For the case of neutral 6Li, which has both Fine and

Hyperfine structure in the 22S↔ 22P transition, the detuning of a far-red-detuned

trapping laser δ is defined with respect to the center of the D-line doublet. In

such a far-off resonance dipole trap (FORT), the detuning of the laser, which is

generally on the order of hundreds of THz, greatly exceeds the Fine structure

splitting of the 22P levels (δFS = 10.1 GHz) and hence also the Hyperfine splitting
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in the 2S1/2 (δHF = 228.2 MHz), 2P1/2 (δ′HF = 26.1 MHz) and 2P3/2 states (δ′′HF =

4.5 MHZ). The potential formed by the FORT beam provides an effectively state-

independent trapping mechanism with second order corrections on the order of

(δFS/δ) [176]. The ability to confine an arbitrary mixture of ground-state atoms

along with minimal heating from light scattering and a magnetic-field insensitive

trapping profile makes this an ideal trapping potential for our experiments.

For a single focused Gaussian laser beam at wavelength λ, the intensity profile

is given by

I(r, z) =
Io

1 + (z/z0)2
exp

[
−2r2

w2
0

]
, (4.15)

where I0 = 2P/(πw2
0) is the peak intensity of the laser beam with power P , 1/e2 in-

tensity radius at the focus (waist w0), and Rayleigh range (z0 = πw2
0/λ). Inserting

this expression into Equation 4.13 for the trapping potential yields

Udip(r, z) = − Uo
1 + (z/z0)2

exp

[
−2r2

w2
0

]
. (4.16)

Here, U0 is the maximum depth of the trapping potential. This trap depth is often

expressed in terms of the recoil energy (ER = ~2k2/(2m)) that the atoms of mass

m gain from a single scattering event from the FORT light with wavevector k.

Ultracold atoms are generally confined near the center of the trapping poten-

tial (r � w0). In this regime, the trapping potential is well approximated by a

harmonic profile, as can be seen from the Taylor expansion of Equation 4.16

Udip(r, z) ' −Uo
(

1− z2

z2
0

− 2
r2

w2
0

)
+ . . . (4.17)

The first term is simply an offset representing the overall trap depth. The second

and third terms on the right hand side of the equation are compared with the

harmonic oscillator potential for a particle with mass m to yield the trapping

frequencies along the axial (ωz) and radial (ωr) directions for a single-beam FORT

trap, given by

ωz =

√
2U0

mz2
0

ωr =

√
4U0

mw2
0

. (4.18)

The aspect ratio of the trapped gas (ωr/ωz) can be quite large unless the FORT
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beam is highly focused. Highly elongated cigar-shaped traps result in very small

axial trapping frequencies, and relatively low densities. Narrow-waist beams, on

the other hand, severely limit the volume of the trap and high numerical aperture

lenses are required, limiting the accessible viewports to transmit the trapping beam

to the atoms. Further, we have found that our high power beam can easily exceed

the damage threshold of the AR coated windows (100 kW/cm2) when tightly

focusing the beams to the center of the chamber. For many of our applications, we

therefore use a crossed-beam configuration where two trapping lasers are focused

on the atoms at a relative angle θ. The resultant trapping frequencies for two

beams crossed in the x̂-ẑ plane are given by [177]

ωz =

√
4U0

m

(
sin2(θ/2)

w2
0

+
cos2(θ/2)

2z2
0

)
(4.19)

ωx =

√
4U0

m

(
cos2(θ/2)

w2
0

+
sin2(θ/2)

2z2
0

)
(4.20)

ωy =

√
4U0

mw2
0

, (4.21)

where U0 is now twice the trap depth given by a single beam. This crossed-beam

configuration allows us to arbitrarily design the trap depth, volume, and aspect

ratio with the beam parameters power (P), crossing angle (θ), and waist (w0).

In our experiments, the trapping lasers are derived from a single-transverse

mode, 110 Watt, linearly polarized Yb Fiber laser (IPG photonics, YLR-100-LP).

This laser has a central wavelength of 1064.27 nm, multi-longitudinal mode with an

emission bandwidth of 2.517 nm. At this wavelength, the laser is far red detuned

with respect to the D2 transition in 6Li (δFS/δ = 6 × 10−5). The fiber laser is

collimated with an output beam diameter of 5 mm (M2 ∼ 1.05), and is highly

stable with long-term power stability on the order of ±1%.

The beam from this 110 Watt laser was used extensively to produce multiple

optical trapping potentials for our atoms. Particular attention was paid to the

position and intensity fluctuations of the trapping beams as this noise can cause

parametric heating of the atoms [178]. The intensity-noise induced parametric

heating time constant with respect to the trapping frequencies vtrap = ωtrap/(2π)
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Figure 4.13. Exponential heating time constant τ with respect to trapping frequency
vtrap attributed to intensity fluctuations of the 110 Watt IPG fiber laser

of a given trap is shown in Figure 4.13. This time constant, which describes the

exponential rate at which the average energy of the gas increases (〈Ė〉 = τ〈E〉) was

calculated from the measured one-sided power spectrum of the relative intensity

noise SK(ω) from the laser using the relations derived in [178]. In the following

sections, I will explain the geometry of our trapping potentials and the real-world

complications that arise when using these multimode lasers as stable, conservative

trapping potentials.

4.6.2 Real-World Complications

Our first set up for the primary FORT trap, which was loaded with atoms di-

rectly from the MOT, involved a crossed-beam geometry where the beam from

the IPG multimode laser was split into two equal power beams on a polarizing

beam splitter (PBS). The beams were separately focused to intersect with parallel

linear polarizations at an angle of 90◦ at the center of the vacuum chamber. We

were disappointed to see that the lifetime of the atoms in this configuration was

extremely short ∼ 30 ms with an exponential decay profile indicating a single-body

loss mechanism. Checking the intensity and position noise power spectra of the

beam, the vacuum pressure in the experimental chamber, possible near-resonant

light scattering sources, and thermal lensing effects on our AOM and PBS cubes
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assured us that the heating and loss from the usual suspects was sufficiently small

to expect much longer lifetimes (∼ 4 seconds), and hence the loss mechanism was

a bit of a mystery.

It turns out that a number of other groups have had similar problems trapping
6Li atoms with the IPG multi-longitudinal-mode fiber lasers in the crossed-beam

configuration [179, 180]. When we converted from the crossed-beam configuration

to a single-beam trap, the lifetime of the gas was recovered to approximately 4

s, which was limited by collisions with background 6Li vapor from our high-flux

atomic beam at the time. The heating mechanism is therefore driven by the multi-

frequency nature of the laser which, based on the length of the fiber laser cavity

(estimated by IPG Photonics) the longitudinal mode spacing should be 7 ± 1 MHz

over the ∼ 2.5 nm spectral width of the laser.

Discussions with David Weiss lead us to a likely explanation for the heat-

ing mechanism, which seems to corroborate with our findings and those of Rudi

Grimm’s group at the University of Innsbruck [179]. It is likely that the loss is

caused by the various frequency components of the multi-mode laser beams driving

two-photon Raman transitions between the bound states of the trapping potential

and the continuum states, where the photons driving the transitions have different

wave vectors dependent on the relative angle between the two beams. Another

way of looking at this problem is to consider the spatial interference profile of the

two lasers. For collinearly polarized beams, the various frequency components of

the laser beams intersecting at a relative angle θ will create moving optical lat-

tices with a period approximately given by dL ' λ/(2 sin θ
2
) and phase velocity

vL ' dL∆ν, where ∆ν is the frequency difference between two laser modes. The

atoms can Bragg-scatter off of the various moving lattice potentials, leading to

heating and loss of the atomic gas.

We tested this hypothesis using two methods: (1) using crossed linear polar-

izations for the trapping beams in the crossed-beam configuration and (2) stro-

boscopically alternating the crossed beams very rapidly (∼ 100 kHz) such that

the beams were never on simultaneously (the atoms experience a time-averaged-

potential if the modulation frequency is much greater than the oscillation frequency

for atoms in the trap). Both methods inhibit interference between the trapping

beams, prohibiting the formation of the moving optical lattice potentials. Using
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both methods, the lifetime of the gas was increased to the background-gas limited

lifetime of 4 s, strongly supporting the explanation of the loss mechanism discussed

above. Improvements in the MOT loading cycle has recently increased this lifetime

to greater than 30 seconds.

4.6.3 Primary FORT Trap

In setting up our primary crossed-beam dipole trap, we followed the design im-

plemented in R. Grimm’s lab, where two co-propagating beams with orthogonal

polarizations are intersected at a small relative angle (∼12◦). Figure 4.14 shows a

layout of the optical system to produce the primary dipole trap. The fiber laser

emits up to 110 Watts of light in collimated beam from the end of a flexible fiber

output. The end of the fiber output is mounted in an aluminum housing, attached

directly on the optics table to suppress position fluctuations of the emitted light

and protect the collimating lens from dust. The beam is then passed through an

AOM (NEOS 23080-3-1.06) which controls the relative power between the first-

order diffracted beam (primary trapping beams) and the zeroth order beam, used

for the large volume trapping potentials discussed in Section 4.6.5.

After passing through the AOM, the primary trapping beam is shaped by an

adjustable telescope and passed through a λ/2 wave plate to a thin film polarizer.

The s-polarized light is reflected vertically off the polarizer towards the bottom

viewport of the experimental chamber while the remaining p-polarized component

passes through the polarizer and is absorbed by a razor-blade stack (not shown).

The s-polarized beam is then focused onto the center of the experimental chamber

and collimated as it exits the top viewport with two identical lenses at the top and

bottom of the vacuum chamber, separated by 2F , where F = 4” is the focal length

of the lenses. This beam is then routed around the experimental chamber, passed

through another λ/2 wave plate and linear polarizer at the bottom of the chamber,

and again directed through the bottom F = 4” lens such that this highly-polarized

beam is focused on the center of the vacuum chamber.

The initial and second pass beams nearly co-propagate in the vertical direction

(ŷ), with mutually orthogonal polarizations, and intersect at a relative angle of

∼ 11◦ at the center of the MOT. Further, the beams are elliptical with calculated
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Figure 4.14. Optical design for the Primary Dipole trapping beams. The Corridor coils
are shown here.

e−2 waist radii of ∼ 30 µm and ∼ 100 µm at the point of intersection. The

ellipticity is likely attributed to an astigmatism in the beams introduced either

from the laser, the AOM, or the optical components prior to the first pass through

the vacuum chamber. Finally, the second-pass beam is collimated by the top lens

and absorbed by a high-power laser beam dump (Blue Sky Research, Black Hole-

500).

At maximum power of the trapping beams (∼ 80 W for each beam), the large

depth (U0 ∼ kB × 1 mK per beam) and relatively small aspect ratio (ωr/ωz ' 10)

of this trap is designed to optimally load atoms from the MOT. To this end, the

crossed dipole trap at full power is turned on 100 ms before the end of the MOT
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loading stage. Optical scattering and elastic collisions during the MOT and MOT

compression stages allow up to ∼ 5× 106 atoms to be loaded into the conservative

potential of the primary crossed dipole trap. At this point, the trapped atomic

gas is comprised of atoms in the two lowest-energy hyperfine spin states at a

temperature of approximately 200 µK.

The geometry of the primary trap is set throughout our experiments. Strict

control over the power in the beams was therefore required to access various regimes

of temperature, density, and phase-space densities of the atoms. Stable control of

the laser power over a wide dynamic range was therefore built in to our design of

the RF power delivered to the AOM. A crystal oscillator signal at 80 MHz, which

is amplified to a maximum of ∼ 37 dBm (5 Watts), provides the RF power to drive

the AOM. The intensity of this signal is attenuated by a variable voltage controlled

attenuator (Mini-Circuits ZX73-2500) which, in-turn, is controlled by an arbitrary

waveform generator (Agilent 33220A). Computer-controlled programming of the

signal generator allows us to vary the intensity of the RF signal with a signal shape

fully defined by the computer control software. In conjunction with the intrinsic

stability of the AOM, the intensity of the beams can be arbitrarily controlled in a

stable and reproducible manner to vary the power in each of the primary trapping

beams ranging from ∼ 80 Watts to effectively zero.

To minimize the position dependent heating of the atoms, the optics for this

trap are mounted on 1/2” steel posts as close to the optics table as possible.

Further, the optics above the experimental chamber are supported by an optical

breadboard above the system to minimize the oscillation amplitude of these compo-

nents. The combined heating and loss rates for our atoms in the two lowest-energy

spin states at low trap depths, neglecting evaporative loss, limits the lifetime of

the atoms to ∼ 30 seconds, which is much longer than any other timescale in our

experiments.

4.6.4 Calibrating the Dipole Trap

Calibration of the trapping frequencies of the Primary trap was conducted using

two methods. The first method, called parametric heating, is based on the res-

onant heating of atoms in a harmonic potential when the intensity of the trap



107

A
to

m
ic

 P
op

ul
at

io
n 

Modulation Frequency (kHz)

(a)

Ce
nt

er
 o

f M
as

s 
Po

si
tio

n 
(µ

m
)

Oscillation Time (s)

(b)Parametric Resonance Heating Dipolar Oscillation

Figure 4.15. Measurement of the trapping frequencies for the primary trap (a) using
parametric heating and (b) mapping the induced dipolar oscillation of the gas.

is modulated at twice the trapping frequency (vmod = 2vtrap) or any of the sub-

harmonic frequencies [181]. The second method measures the frequency of an

induced collective dipole oscillation of the atoms in the harmonic trap.

In a simple picture, parametric heating occurs when the atoms experience a

”kick” from the trapping potential at each of their classical turning points. On

resonance, this leads to an exponential heating of the atoms. For our experiments,

we modulated the amplitude of the RF driving the AOM intensity for a set time,

and measured the atom loss from the gas with respect to the frequency of the

modulation using standard absorption imaging after a time of flight (see Section

4.7). A representative parametric heating measurement of one of the radial trap-

ping frequencies of the primary trap, with a power of nominally 3 Watts in each

beam, is shown in Figure 4.15 (a).

For very weak trapping potentials and generally along the axis of the crossed-

beam trap it is simpler to measure the collective dipole oscillation of the sample to

calibrate the trapping frequencies. Applying a magnetic field gradient along one

of the experimental axes will shift the center-of-mass of the atoms with respect to

the trap. By rapidly shunting the gradient, the gas collectively oscillates with a

frequency equal to vtrap. The frequency of this oscillation is then ”mapped out” by

varying the hold time during which the atoms oscillate before recording the center

of mass position of the atoms using either in-situ absorption imaging or imaging

after a short time of flight as described in Section 4.7.

The broad utility of this method comes from the fact that two-body interac-
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tions are not affected by the dipole mode of the harmonically confined gas because

the motion of the center of mass is perfectly decoupled from the internal degrees of

freedom of the system [182]. Therefore, the frequency of the dipole mode charac-

terizes any system confined in a harmonic potential, regardless of the interactions

and statistics of the gas. A measurement of the induced dipole oscillation of the

atomic gas along the axis of the crossed-beam trap with a power of nominally 3

Watts in each beam is shown in Figure 4.15 (b). The decay of the oscillation is

likely attributed to anharmonic deviations of the gaussian trapping potential.

4.6.5 Large Volume Traps

In our recent experiments, we were measuring three-body phenomena over a range

of magnetic fields where the inter-atomic scattering lengths were unitarity limited

for gases at temperatures above ∼ 30 nK. To this end, we have installed two large-

volume (LV) dipole traps which can access much smaller trapping frequencies while

maintaining large trap depths to accommodate large sample sizes. By adiabatically

loading an ultracold sample of atoms from the primary dipole trap into one of these

large-volume traps, we were able to achieve much lower atomic temperatures and

densities.

A schematic of the optical layout for these traps is presented in Figures 4.16 and

4.17. The light for the LV traps is derived from the zero-order beam which passes

through the AOM for the primary crossed-dipole trap, providing up to 110 Watts

of power when the crossed-beam dipole trap is extinguished. The power from this

beam can be divided among three paths. In path (A), the light intersects the

atoms aligned with one of the radial MOT beams using a Dichroic mirror which

reflects the 1064 nm light and passes the 671 nm MOT beam. The trapping laser is

focused along the ẑ direction using a cylindrical lens to produce a highly elliptical

beam, strongly confining the atoms along the ẑ axis, with weak radial confinement

along the x̂ − ŷ plane and negligible confinement along the axis of the beam. In

path (B), the light is directed co-propagating with that of path (A), but now the

beam is circular, providing identical radial trapping frequencies in the absence of

gradient fields. Path (C) produces a beam propagating along the x̂ − ẑ plane to

provide confinement along the axis of the beams (A) or (B).
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(A)

(B)

Figure 4.16. Birds-eye view of the optical setup for the large-volume trapping beams
(A), (B), and (C)

Figure 4.17. Horizontal view of the optical setup for the large-volume trapping beams.
The Corridor coils are shown.



110

LV Beam minimum waist (wmin) ellipticity (wmin/wmax) Pmax

ẑ Trap (A) 127 µm 0.05 ∼ 50 W
ẑ Trap (B) 2.5 mm 1 ∼ 50 W

Axial Trap (C) 430 µm 0.8 ∼ 50 W

Table 4.2. Waists, ellipticities, and maximum available laser powers for the various
large-volume trapping beams

The gradient of the Primary and Booster magnetic coils, described in Section

4.3.4, was quite useful for achieving ultra-low densities and temperatures in our

experiments. These gradients provide sufficient restoring force along the x̂ − ŷ

plane to confine our ultracold atoms in the ẑ traps (A) and (B) alone. The axial

confinement beam (C) was therefore used only to increase the density of the atoms.

For each path, the light is sent through a series of optics to shape the beam and

AOMs to control their intensities. The RF powers for the AOMs are provided

by stable 80 MHz reference frequencies from our DDS systems. This reference is

amplified by home-built RF amplifiers, which can be amplitude controlled by an

external 0-10 V signal, provided by our computer control system.

The trapping frequencies of these potentials were calibrated by measuring the

dipole oscillation frequencies as described previously, and the large volume of these

traps and very low atomic temperatures allowed both in the trap (in situ) imaging

of the atoms and imaging after a significant time of flight, thereby allowing us

to obtain information about both the position and momentum distribution of the

atomic gas. Details of the various laser beams used in our LV traps can be found

in Table 4.2. The loading and utility of these traps in our experiments will be

discussed in greater detail in Chapter 5

4.7 Data Acquisition

Physical information about the atomic gas is primarily extracted in our experi-

ments from pictures taken of the atomic cloud using standard absorption imaging

techniques. As the atoms are illuminated with resonant light, the intensity of the

light that interacts with the atomic cloud is depleted via resonant scattering. The

shadow of the atoms is then imaged on the surface of a sensitive charge-coupled
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device (CCD) camera to provide information about the two-dimensional density

distribution of the atomic ensemble in the radial directions of the probe beam, as

illustrated in Figure 4.18.

Figure 4.18. Absorption Imaging after a

time-of-flight τ .

Whereas imaging atoms directly

within the trap leads to in situ mea-

surement of the density distribution of

the atoms, by allowing the atoms to

ballistically expand for a variable time

(time of flight), we can also gain infor-

mation about the momentum distribu-

tion of the initial trapped atomic cloud

(see Section 5.3). These techniques pro-

vide the experimental observable to de-

termine most of the relevant properties

of our samples including the total atom number, number of atoms in each spin

state, temperature, density, and degeneracy of the gas, etc.

4.7.1 Absorption Imaging

A light beam with the initial spatial intensity profile I0(x, y), propagating along

the ẑ axis through a cloud of atoms is attenuated according to

I(x, y) = I0(x, y)e−D(x,y), (4.22)

where D(x, y) is the optical density. For a probe beam nearly resonant with a

single atomic transition with saturation intensity Isat, detuning ∆, and natural

linewidth of the transition Γ, the optical density is given by

D(x, y) = D0(x, y)
1

1 + I
Isat

+ 4∆2

Γ2

, (4.23)

D0(x, y) = σ0ñ(x, y), (4.24)

which depends on the polarization-averaged resonant scattering cross section (σ0)

and the so-called column density ñ(x, y), defined as the spatial density n(x, y, z)

integrated over the ẑ direction.
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Three images are taken during each experimental cycle. First, a short (20 µs)

absorption image pulse Iabs records the shadow of the atomic cloud. As the light

is on-resonance with the D2 transition, the pulse rapidly heats the atoms out of

the trap, destroying the sample. Next a reference image is taken Iref with an

identical light pulse, 2.159 milliseconds after the atoms are ”blown away” with the

absorption pulse. Finally a third image is taken hundreds of ms later without any

imaging light Ibkgd to measure the background light detected by the camera. The

transmission of the light detected by the camera is then calculated as

T (x, y) =
Iabs(x, y)− Ibkgd(x, y)

Ires(x, y)− Ibkgd(x, y)
. (4.25)

For on-resonance imaging (δ = 0), in the low intensity limit (I � Isat), the opti-

cal density is given by D(x, y) = σ0ñ(x, y). In combination with the Beer-Lambert

Law, which states T (x, y) = e−D(x,y), and the magnification of the imaging sys-

tem (M), the processed image yields direct information about the column density

distribution of the gas.

n(x, y) = − 1

σ0M2
ln[T (x, y)] (4.26)

The density distribution is the primary observable in our experiment, used in

conjunction with the known experimental parameters, to measure the intrinsic

properties of the gas.

4.7.2 Imaging Optics and CCD Camera

The optical layout of our imaging system is shown in Figure 4.19. The imaging

light, derived from the experimental laser, is initially passed through an AOM to

rapidly turn on/off the light and define the offset frequency of the probe from the

MOT cooling light. The addition of a computer-controlled shutter is used to shunt

the light throughout the majority of the experimental cycle, further suppressing

heating attributed to near-resonant light leakage to the atoms. The light is then

spatially filtered and transferred to the experimental chamber by a single mode,

polarization maintaining fiber. This probe beam is expanded to a waist of 1 cm,

so that the intensity (I ∼ 0.1 Isat) is constant across the atomic gas, and reflected
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Figure 4.19. Optical design of the absorption imaging system to measure the 2D density
distribution of the atomic gas.

off of a polarization-maintaining beam splitting cube (PBS) to assure vertical po-

larization (the same cube passes one of the horizontal MOT beams as horizontally

polarized light). Subsequently, the beam is passed through a λ/4 waveplate to

produce a σ− circularly polarized beam propagating along the ẑ quantization axis,

and radially centered on the atomic gas. At the exit port of the experimental

chamber, an identical λ/4 waveplate and PBS cube separates the probe from the

MOT beam paths. The shadow of the atoms is focused onto the camera system

(consisting of the CCD chip and a ∼ 1.32× expanding telescope) with two identical

lenses using standard 1F-2F-1F imaging.

The images are captured and digitized with a back illuminated, frame transfer

electron-multiplying CCD camera (Princeton Instruments, Photon Max 512). The

CCD chip has a 512 × 512 array of pixels, with a 16 µm × 16 µm area for each

pixel. The camera has two acquisition modes, fast kinematic readout using an

on-chip multiplication gain amplifier or a long integration mode using a traditional

amplifier. We generally utilize the fast kinematics mode, which offers microsecond

time resolution between frames. By enabling this mode, the CCD chip is vertically

divided into two regions, where the camera only allows one of the regions to be ex-
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posed. After exposure, the photoelectron charges in the exposed region are rapidly

transferred to the unexposed region, freeing the camera to take a second picture.

This allows two individual images to be stored in the CCD array. The digitized

signals for the two images are finally read and processed by the data-acquisition

computer system to determine the optical density of the gas. An example pro-

cessed absorption image of the atoms in the primary dipole trap, directly after the

MOT is extinguished, is shown in Figure 4.20. An image processing procedure

written in the Igor data analysis software then analyzed the processed images and

extracted the physical properties of the atomic gas.

Absorption imaging in the absence of an applied magnetic field (zero-field imag-

ing) is predominantly used in our experiment to measure the characteristics of the

MOT. Here, our atoms are imaged with light resonant on the 2S1/2 |F = 1/2〉 →2

P3/2 transition. Again, this transition is not closed at zero-field requiring an imag-

ing repumper beam, resonant with the 2S1/2 |F = 3/2〉 →2 P3/2 transition, to

optically pump the atoms back to the |F = 1/2〉 ground state and sustain the

atomic population resonant with the imaging transition. The repumper beam in-

tersects the atoms along the experimental -x̂ axis during the imaging pulse (not

shown in Figure 4.19). Specific details regarding zero-field imaging of 6Li atoms

on the D2 transition was discussed in detail in Reference [11].

The total magnification of the imaging system was determined from the free-fall

trajectory of ultracold atoms in the absence of perturbing magnetic fields. By map-

ping out this trajectory using zero-field absorption imaging, comparison between

the detected acceleration of the atoms to the actual acceleration under gravity was

used to calibrate the magnification of the imaging system (M = 1.55). This mea-

surement was conducted using the ”old” system, where the light for cooling and

imaging the atoms was derived from the Coherent-899 Ring Dye laser (see Section

4.2). The uncertainty in this measurement, along with the ∼ 2 MHz linewidth of

the probe laser, lead to uncertainties of the total atom calibration on the order of

30%.

In Chapter 2, I described the effects of a large magnetic field on the hyperfine

spin states of the 22S and 22P levels of 6Li. For large magnetic fields (above

∼ 100 Gauss), each of the hyperfine states are effectively spin polarized in the

|J mJ , I MI〉 basis. Absorption imaging in a high magnetic field can therefore be
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treated as an optical dipole transition between nearly perfect two-level systems [26].

12o

Figure 4.20. Absorption image of the

atomic gas in the primary dipole trap. The

scale is set to display the atoms remaining in

the wings of the individual trapping beams.

In this basis, the selection rules for

the electric dipole transition define that

the total orbital angular momentum

can change by: ∆J,∆mJ = ±1, 0,

whereas the nuclear spin is not affected

by this transition. Using σ− imag-

ing light propagating along the quan-

tization axis of the magnetic field, the

|1/2 − 1/2, 1 ± 1, 0〉 ↔ |3/2 −
3/2, 1 ± 1, 0〉 transitions can be ac-

cessed, providing a closed cycling tran-

sition for each ground-hyperfine state

separately and negating the utility of

the repumper beam used at zero-field.

Using the offset of the phase-

frequency lock of the experimental

laser, described in Section 4.2.2, the imaging probe can be frequency tuned over

∼ 2 GHz to access the field- and state-dependent resonance frequencies of the

22S Zeeman sublevels. At high magnetic field, the mJ = 1/2 state is separated

from the mJ = −1/2 by on the order of GHz, which is much larger than the

natural linewidth of the D2 line. Further, for monochromatic absorption imaging,

the numbered states of interest in this experiment (|1〉, |2〉, |3〉) are spectroscop-

ically resolvable, with hyperfine energy spacings between states on the order of

80 MHz. Absorption imaging in the presence of a large magnetic field (high-field

imaging) is therefore a useful tool, allowing for state-selective operations (imaging

and removal) to be performed on the numbered states |n〉, and was utilized for the

majority of our experimental measurements.

4.8 RF System

Radio frequency (RF) fields are the primary tool we use to manipulate the internal

state of our atoms. Over the range of magnetic fields applicable to our experiments,
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the three lowest-energy hyperfine ground states of 6Li vary by roughly 50 - 120

MHz. By applying resonant pulses, it is possible to selectively drive transitions

among the hyperfine states to prepare our samples. We use RF pulses in vari-

ous stages of our experiments, both to prepare balanced two-state mixtures for

evaporation as well as to transfer populations between states |1〉 ↔ |2〉 and states

|2〉 ↔ |3〉 to create balanced three-state mixtures. RF spectroscopy is also a useful

tool that we use to probe the properties of the system under study. In this section,

the design of our RF antennas and the system of electronics to produce an oscil-

lating magnetic field at the atoms is discussed. Details about the spectral content

of our pulses and their use to create incoherent three-state mixtures is discussed

in more detail in Chapter 5.

Two RF surface coils were installed within the experimental chamber. The

coils, which were designed in our lab by Ron Stites, each consist of a single copper

strip 0.25” wide and 0.01” thick. These wires were shaped into a nearly enclosed

”race-track” shaped loops approximately 3.5” long and 1” wide, with both coils

supported on ceramic rods such that the loops are vertically separated by 1” and

centered about the location of the atomic gas. Here, the distances from the atoms

to the RF antennas are much smaller than the wavelength of the radiation. In this

near-field limit, the RF effectively acts as an oscillating magnetic field oriented

along the ŷ axis. The design of our RF antennas is shown most prominently in

Figure 4.21.

For each loop, both of the ends were silver-soldered directly to the center con-

nectors of two UHV compatible coaxial wires (MDC Vacuum Products, In-Vacuum

Insulate Wire), and the shields were soldered together close to the connectors to

minimize the area of the RF loops. The other ends of the four coaxial wires were

connected to BNC vacuum feedthroughs (MDC Vacuum Products) to provide elec-

trical access outside of the vacuum system.

At first, we had serious concerns about placing the coils inside our experimental

chamber. Although designed for a UHV environment, the effect of outgassing from

the coil pair, which effectively surrounded our atoms, was not clear. Also, heating

of the coils, which carry pulses of up to 50 Watts for hundreds of milliseconds, in an

evacuated environment was a serious concern. It was also worried that the stainless

steel chamber would affect the performance of the loops, where the conductive
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Figure 4.21. Schematic of the RF power drive system.

chamber reduces the magnetic flux return path and therefore the magnetic field

experienced by the atoms. We have had no problems with the coils since their

installation in 2005 and it turns out that none of these factors are serious detriments

to the performance of our system.

A schematic of our various electronics dedicated to applying RF magnetic fields

to the atoms is shown in Figure 4.21. In general, one of the coils was dedicated

to driving |1〉 ↔ |2〉 transitions whereas the other coil drove |2〉 ↔ |3〉 transitions

throughout an experimental sequence. For the |1〉 ↔ |2〉 RF coil, the signals

were provided by one of two arbitrary waveform generators (Agilent 33250 A).

The Agilents provided frequency modulated RF signals with central frequencies

resonant with the |1〉 ↔ |2〉 transition at different parts of the experimental routine.

One Agilent was centered on-resonance at the evaporation magnetic field, used to

equalize the populations for optimum evaporative cooling, while the other Agilent

was centered on-resonance for the field at which the three-state mixture is created.

For the |2〉 ↔ |3〉 RF coil, the signal for creating the three-state mixture is provided

by a single arbitrary waveform generator (Agilent N5181 A), which can provide

signals at frequencies above 80 MHz. These high frequencies are necessary to

make the |2〉 ↔ |3〉 transitions for nearly all of the fields of interest. A low-

frequency waveform generator (Agilent 33220A) is used to drive the amplitude of

the frequency modulation of this signal about the center frequency. Single-tone

signals from the Agilents were also used for RF spectroscopy to observe Rabi-

flopping of the atomic populations. The ability to choose which signal is amplified

and sent through the RF coils along with control over the timing of the pulses is
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provided by multiple computer controlled RF switches.

During the pulse, the signals are initially amplified to either 50 or 100 Watts

using Minicircuits RF amplifiers. The signals are then each attenuated by 3 dB

before passing through the coil and getting absorbed by a 50 Ω load on the exit port

of the coils. The attenuators are installed to protect the amplifier from the reflected

power not absorbed by the load. Although the coils are nominally impedance

matched to the amplifier by the 50 Ω loads, a slight mismatch can reflect Watts

of power back to damage the amplifier. The attenuators assure that the reflected

power is reduced from the incident by 6 dB for further protection.

The use of multiple RF coils makes it particularly simple to apply two inco-

herent RF fields to the atoms by simply driving both coils independently. Future

experiments may use the fact that both coils can be driven coherently to signifi-

cantly increasing the B-filed experienced by the atoms. Further, by placing the RF

coils inside the vacuum system, the magnetic field at the atoms is optimized. We

are currently capable of inducing complete population transfer among the lowest

three numbered states within ∼ 50 µs with this system, even at high magnetic

fields where the transfer efficiency is reduced due to electron-spin polarization.

Recent upgrades include switching the RF frequency sources from the Agilents to

using our home-built DDS waveform synthesizers, allowing for computer control of

the center and modulation of the frequency during the experimental runs. Addi-

tionally, a high-power/high-frequency RF amplifier (Minicircuits ZHL-30W-252+)

has been installed to allow us to access transitions to the low-field seeking states

|4〉, |5〉, and |6〉 for RF spectroscopy applications with our three-component Fermi

gases.

4.9 Computer-Controlled Data Acquisition

Ultracold atomic gas experiments generally require that all of the optical, magnetic,

and electronic devices work in a precise timing sequence. For our applications, a

timing precision of about 1 µs is sufficient. Our experimental control system in-

cludes the controller computer, two high-speed analog output boards (National In-

struments, PCI-6733), two programmable TTL Pulse generators (Spincore, Pulse-

Blaster), and both commercial and in-house produced digital synthesizers.
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Each PCI-6733 AO board provides eight analog outputs (± 10 V, 5 mA) with

16 bit resolution and 1 MS/s update rate. These boards are ideal for cold atom

experiments, with 15V/µs slew rates, 80 µVrms noise, and an internal 20 MHz clock

with 24 bit counter resolution for timing I/O. Additionally, timing signals can be

routed to and from the device by means of a Programmable Function Interface

which allows for external clock synchronization and triggering of DC analog outputs

and externally programmed waveforms stored in the devices memory buffer.

The PulseBlaster (PB) is a multichannel, programmable TTL pulse/digital

word generator, capable of producing 24 precisely timed, individually controlled

digital output signals. The timing controller is driven by a 100 MHz internal

crystal oscillator, and can produce TTL pulses with variable length from one clock

period (10 ns) to nearly two years with a cycle delay of less than 100 ns. These

boards can also be externally triggered for timing synchronization and externally

reset. Our two PB boards are in a master/slave configuration in our experiment

to allow enhanced complexity of the timing sequence for the TTL outputs.

Our control computer (Pentium 4, 3.4 GHz processor with 1 Gb RAM) provides

the timing sequence for the various components in our experiments. The entire

sequence is controlled by a LabVIEW (National Instruments) timing program. The

various digital outputs and analog output values can be chronologically entered into

the graphical interface of the program, with variable time delays between steps,

allowing complete control of the timing events for each analog and digital channel.

At the beginning of each experimental run, the program generates an array with

time and state information for each device, which it sends to program the various

control boards and devices throughout the experiment. Additional features in this

program include:

� Programmable analog voltage ramps with variable time and step sizes,

� Generation of multiple waveforms, which are sent via GPIB to programmable

digital synthesizers (i.e. the Agilent 33250 A controlling the power of the

primary dipole trap) which will be time-synchronized with the experiment,

� Automated loops which automatically change either the time or amplitude

of experimental parameters for multiple experimental cycles.



120

This highly dynamic control system is quite robust and is generally useful for a

wide range of cold atom experiments.

Recently, Eric Hazlett and Yi Zhang upgraded the computer control system to

incorporate programming and timing synchronization of our in-house built direct-

digital synthesizers (DDS), briefly discussed in Section 4.2.2. These RF synthe-

sizers use an AD9852 DDS IC chip from Analog Devices to generate sine signals

ranging from DC to 135 MHz. The DDSs are digitally interfaced with a micropro-

cessor module (RCM3200 RabbitCore with Rabbit 3000, 44.2 MHz microproces-

sor), which is programmed via Ethernet with control software directly implemented

in our LabVIEW experimental control program. The DDS can be commanded to

generate sequences of RF pulses and frequency ramps, which are programmed into

the micro controller at the beginning of the experimental run and triggered during

the experimental cycle with external digital signals. The various operation modes

of these devices include single-tone, frequency shift keyed (FSK), ramped FSK,

frequency chirp, and binary phase shift keyed (BPSK).

We have had great success with these synthesizers by simply following the

original design of Dr. Meyrath and Dr. Schreck [167]. In addition to their use as a

frequency reference for the offset lock of the experimental laser and the source for

our RF fields, these synthesizers are now used in conjunction with our home-built,

variable RF amplifiers to drive nearly all of our AOMs, including those controlling

the cooling/repumping and imaging light as well as the AOMs that control the

intensity of the large-volume trapping beams. In this way, the intensity and timing

of all of the light, magnetic, and RF fields in our experiments can be controlled

in a reproducible and highly dynamic manner that makes this system amenable

to wide range of ultracold experiments with multi-component and/or degenerate

Fermi gases.



Chapter 5
A Toolbox of Methods: Preparing

and Probing 3-State Fermi Gases

The methods of producing degenerate and/or ultracold Fermi gases of 6Li atoms

occupying the three lowest Zeeman sublevels (|1〉, |2〉, and |3〉) and probing their

universal properties is detailed in this chapter. To this end, we initially evapora-

tively cool stable mixtures of atoms occupying states |1〉 and |2〉 to degeneracy.

Whereas the atoms remain unbound for magnetic fields above 834 Gauss and below

∼ 550 Gauss, the existence of the universal dimer state between these field val-

ues enables the atoms to be cooled into a long-lived bosonic molecular gas, finally

condensing into a Bose-Einstein Condensate (BEC) as the gas becomes degenerate.

The general methods and technical requirements for studying three-component

Fermi gases at magnetic fields exhibiting large three-body loss is then discussed.

Particular attention to the design of the conservative dipole trapping potentials and

the evaporation process was required to enable our measurements. In this system,

three-body decay of the gas is attributed to recombination events consisting of

one free atom from each spin state, decaying via inelastic three-body collisions to

form a high-energy dimer and recoiling atom. To gain quantitative information

about the rates of these three-body processes, we prepared the three-state mixture

using broad-band RF pulses centered on the |1〉 − |2〉 and |2〉 − |3〉 transition

frequencies respectively. Here, we discuss our methodology for assuring that the

gas is initially prepared in an equally populated mixture in thermal equilibrium.

Next, we discuss how we extract information about the temperature, density, and
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population of each spin component for both classical and quantum degenerate

gases from the low-intensity absorption images that provide the observables in our

experiments. Finally, the design and use of our large-volume traps is discussed.

By adiabatically loading our ultracold gases from the primary trap into one of

these large-volume, low-frequency traps, we were able to achieve unprecedentedly

low temperatures and densities for the three-component samples to study Efimov

physics in the strongly universal regimes.

5.1 Evaporative Cooling

In Chapter 2, it was demonstrated that the equilibrium temperature and density

of an atomic gas determines the range of physics that can be studied with a given

systems. Most importantly, the phase-space density of the gas determines to what

level quantum effects come into play. As discussed in Section 4.5, the maximum

achievable phase space density of 6Li atoms in a MOT is on the order of 10−6,

whereas a phase-space density in excess of one is required to observe phenomena

associated with Fermi degeneracy and molecular condensation. We therefore utilize

the evaporative loss of the atoms from the primary trap to further cool and increase

the phase-space density of the gas. This well-known scheme was instrumental to

the realization of the first Bose-Einstein condensates of dilute gases of neutral

atoms [44, 45, 46], and still remains the only method capable of producing dilute,

degenerate gases.

Evaporative cooling describes the process where the preferential removal of the

most energetic atoms from a trap causes the average energy of the atomic gas

to decrease. This process requires the selective removal of atoms from the high-

energy tail of the Boltzmann distribution and elastic collisions among the atoms

to rethermalize the gas to a lower average energy. Continuous rethermalization

assures that the population of atoms in the high-energy tail of the Boltzmann

distribution is maintained to sustaining the evaporation process. In our setup, the

depth of the optical dipole trap U0 sets the scale for evaporative cooling, where only

the atoms with energies in excess of this value can leave the confining potential.

The efficiency of the evaproative cooling scheme is therefore defined in terms of the

so called η-parameter, given as the ratio of the trap depth to the thermal energy
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of the gas (η = U0/(kBT )), where the atom-loss rate scales as Ṅ ∝ exp(−η). The

cooling efficiency is maximized for large values of η, requiring that each atom lost

carry away much more energy than the average energy per particle. However, large

η values require longer cooling times attributed to the exponential suppression of

Ṅ . Evaporative cooling eventually stagnates in real systems when an equilibrium

is reached between the rates of cooling from evaporation and the residual loss and

heating rates present in the experiment.

To further cool the atoms, forced evaporation is required. For our system,

this translates to lowering the trapping potential at an exponentially decaying

rate such that η effectively remains constant. Scaling laws for the number, trap

depth, and phase-space density [183] reveal that maintaining η ' 10 provides a

good compromise between the efficiency and speed of the cooling cycle. In this

reference, K. O’Hara and co-workers further found that Pauli-blocking is not a

major constraint of directly cooling the gas to degeneracy because, even as the

phase-space density exceeds unity, the final state of the atoms evaporated from

the trap remain essentially unoccupied. Therefore, the evaporation rate is only

suppressed by a factor of T/TF due to Fermi statistics.

The success of evaporative cooling hinges on elastic collisions between the atoms

dominating over the inelastic loss. As described in Section 2.3, inelastic two-body

decay among atoms in states |1〉 and |2〉 are effectively negligible. One-body loss

attributed to background gas collisions and heating in the trap are therefore the

dominant inelastic decay process. Since the lifetime of the two-component gas in

the primary trap is on the order of 30 seconds, it was necessary to assure that

the rethermalization rates greatly exceeded this timescale. In the classical regime,

where the gas is thermal and the effects of unitarity are negligible, the elastic

collision rate can be written as [53]

γ =
8π2Nmv̄3a2

kBT
, (5.1)

where N is the number of interacting particles, m is the atomic mass, v̄ = ω̄/(2π) =

(ωxωyωz)
1/3/(2π) is the mean trapping frequency, and a is the scattering length of

the particles. Taking reasonable values for our system near the end of evaporation

(v̄ = 100 Hz, N = 4 × 105, T ' 700nK, and a = −280a0 [B = 330 Gauss]),
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we find that the minimum collision rate is on the order of 8 Hz, exceeding the

inelasticity timescale by orders of magnitude. Although not applicable for all of

our experiments, evaporation at fields near the Feshbach resonance can also be

utilized, where the dramatic increase of the scattering length further assures rapid

thermalization of the gas.

Evaporative cooling is implemented in our experiments directly after the 100

ms loading stage when the atoms are trapped from the MOT into the primary

dipole trap. At the end of the transfer, the atoms are optically pumped into

states |1〉 and |2〉 to suppress inelastic loss. A magnetic field is then applied, using

the primary coils in Helmholtz configuration, either at the low-field value of 330

Gauss or near the Feshbach resonance at 840 Gauss to induce large interactions

among the atoms. At this point, a broadband ”noisy” RF pulse whose frequency

is centered on the |1〉 ↔ |2〉 transition is applied for 100 ms. As discussed in the

next section, this pulse drives transitions between the two hyperfine states for a

sufficient time to assure that an incoherent 50-50 mixture of atoms in each state

is prepared, optimizing the evaporative cooling efficiency.

The trap is held at its peak depth of U0 ∼ kB × 1 mK, where kB is the Boltz-

mann’s constant, for another 100 ms to allow for free evaporation and assure that

η0 ∼ 10, optimizing the efficiency of the subsequent forced evaporation stages.

The depth of the trap is then lowered by exponentially decreasing the power of

the primary trapping beams using an exponential ramp profile with a τ = −0.5

second time constant and a total ramp duration of between T = 2.5 to 4.5 sec-

onds. To support the atoms against gravity and cancel out forces on the atoms

along the x̂ axis, the levitation and shim fields are linearly ramped to their final

values over 100 ms during the first second of the forced evaporation stage. The

final trap depth determines the temperature, density, atom number, and reduced

temperature of the gas, but we can regularly produce two-component degenerate

Fermi gases in states |1〉 and |2〉 with N ∼ 3 × 105 atoms in both spin states at

reduced temperatures T/TF ≤ 0.3, .
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5.1.1 Molecular Bose-Einstein Condensation

At magnetic fields slightly below the Feshbach resonances, where the atoms exhibit

large positive scattering lengths, the existence of the universal molecular dimer

states can greatly affect the evaporative cooling dynamics, eventually leading to

the formation of a molecular BEC as the gas approaches degeneracy. To understand

this phenomenon, consider the evaporative cooling of a mixture of 6Li atoms in

states |1〉 and |2〉 at a magnetic field value of 760 Gauss. Here, the binding energy

of the dimer state is ED ' kB × 1.6 µK, calculated from the scattering length

at this field (a12 ' 4160a0) and the universal relation given in Equation 2.31.

If the thermal energy of the sample drops to a value comparable to the binding

energy of the dimers, the molecular state can become populated by means of

three-body recombination. Although this recombination process is expected to be

Pauli-suppressed in a two-component Fermi gas, D. Petrov showed both that the

recombination rate into the shallow dimer near the Feshbach resonance scales as

a6, and an energy dependence of the recombination event leads to a decreasing

average energy per particle, cooling the gas. No Efimov states are expected to

exist, however, for equal mass fermions occupying two spin-states [182].

On the other hand, the universal dimmers are surprisingly stable because the

rates for inelastic atom-dimer and dimer-dimer collisions corresponding to molec-

ular relaxation to deeply bound states are strongly suppressed at large scattering

lengths [184]. This phenomena was experimentally verified by R. Grimm’s group

in Innsbruck [185] and has been utilized extensively to produce stable ultracold

Feshbach molecules of fermionic atoms [117, 186, 187]. As the temperature of the

gas is reduced, a chemical equilibrium between the number of atoms (Nat) and

molecules (Nmol) coexisting in the gas is established, given by [188]

Nmol

Nat

= ρat × exp

[
ED
kBT

]
(5.2)

where ρat is the phase-space density of the atomic sample. The occupation of the

molecular state therefore increases as the temperature of the sample is reduced

and the gas approaches degeneracy, as has been confirmed by RF spectroscopy

measurements [115].

The formation and cooling of the Feshbach molecules is amazingly robust in
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optical dipole traps. As described previously, once formed the molecules are ef-

fectively stable at large scattering lengths and the dimer-dimer scattering lengths

remain large, equal to 0.6a where a is the scattering length for free atoms [189].

Further, the polarizability of the molecules is twice as large as compared to free

atoms, resulting in twice the trap depth. The increased mass of the molecules,

however, assures that the trapping frequencies are the same for atoms and Fesh-

bach molecules of the same atomic species. Evaporative cooling in a regime where

both atoms and molecules coexist preferentially leads to loss of the atomic popu-

lation. Eventually, the gas consists almost entirely of bosonic Feshbach molecules,

resulting in the emergence of a molecular BEC as the gas is cooled to degeneracy.

The creation and stability of the molecular BEC phase using ultracold fermionic

atoms was first demonstrated in 2003 [23, 55, 56], leading to numerous studies of

BEC-BCS crossover physics [22, 21, 57, 58, 26, 70] and applications to cool and

probe the properties of ultracold, strongly interacting Fermi gases.

In a harmonic confining potential, approximating the potential experienced by

the ultracold gases in our optical dipole trap, the critical temperature for molecular

condensation is given by [170]

kBTc ' 0.94 ~ω̄N1/3
mol, (5.3)

where ω̄ = (ωxωyωz)
1/3 is the mean oscillation frequency of the trap. At tempera-

tures below Tc, the occupation of the ground state is given by

N0 = N

[
1−

(
T

Tc

)3
]
, (5.4)

where at T = 0, all of the atoms occupy the ground state with a single macro-

scopic wavefunction describing the system. In comparing the critical temperature

for molecular condensation (Tc) with the Fermi energy of free atoms in the non-

interacting limit (TF ), entropy conservation requires that for harmonically trapped

gases, Tc ≈ 0.22TF [108]. In fact, the direct association of molecular condensates

from degenerate Fermi gases by means of adiabatic B-field sweeps across Feshbach

resonances has been demonstrated as a feature of BEC-BCS crossover physics [23].

Molecular BECs are produced in our experiments, inspired by the procedures



127

layed out by the Innsbruck and Heidelberg groups [185, 190], by evaporatively

cooling the gas at an applied magnetic field of B = 760 Gauss. During evaporation

we lower the depth of the trapping potential by a factor of approximately 670

where, at the end of the evaporation stage, the critical temperature Tc ∼ 100nK.

As the gas becomes degenerate, the macroscopically occupied ground state of the

BEC leads to an inverted parabola (Thomas-Fermi) density distribution in the

center of the gas, while the thermal component in the wings of the distribution

can be fit with a Gaussian.

A standard method for detecting the normal → BEC phase transition is by

observing the emergence of a bimodal distribution in the time of flight images

associated with the BEC and thermal components of the gas. Since our molecular

BECs are strongly interacting near the Feshbach resonance, the expansion of the

BEC at 760 G is comparable to that of the thermal cloud. Therefore, to distinguish

the two phases, directly after the atoms are released from the trap the magnetic

field is ramped to ' 600 Gauss (reducing a12 by over an order of magnitude)

to minimize the mean-field interaction energy and allow for the formation of the

bimodal distribution. The thermal gas now expands much more rapidly during

the time of flight (TOF) than the BEC component, however the molecules are

deeply bound at this field and cannot be imaged with absorption imaging. After

approximately 20 ms TOF, at which point the gas is highly dilute, the field is again

increased to 785 Gauss. The effects of the mean-field interaction on the expanded

density distribution are now minimal, and imaging of the molecules in both the

thermal and BEC phases is possible.

The density distribution of our gas at various cooling stages on the route to

degeneracy is shown in Figure 5.1. Each image is the result of a single experimental

run, where the power in the primary trapping beams was decreased from P ' 80

mW per beam in Figures (a) and (b) to P ' 30 mW per beam in Figures (g)

and (h). The left-hand panels are the direct absorption images of the gas. In the

right-hand panels, a one dimensional (1D) slice of the density distribution through

the center of the cloud along the x̂ axis is shown. For each image, the 1D density

distributions shown in the right-hand figures was fit to extract the thermal and

BEC components of the gas. The red curves represent a Gaussian fit of the wings,

corresponding to the thermal component of the gas. The blue curves in these
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Figure 5.1. False color absorption images (left panels) and 1D density distributions
(right panels) of the molecular gas after a time of flight. The depth of the trapping
potential is decreased by nearly a factor of three between images (a) and (g). The
bimodal distribution signaling the on-set of molecular Bose-Einstein condensation is
clearly seen in panels (c)-(d) and (e)-(f). The Gaussian fit (red) represents the thermal
component whereas the Thomas-Fermi fit (blue) represents the condensed component of
the gas.

figures are fits using a Thomas-Fermi distribution, corresponding to the fraction of

the gas in the condensed phase. In the top panels (a)-(b), the gas is purely thermal

where the number and temperature of the gas is obtained from the Gaussian fit

(see Sections 4.7 and 5.3). In the middle panels (c)-(d) and (e)-(f), the emergence

of the bimodal distribution, signaling the onset of condensation, is clearly shown.

The number of atoms in the thermal phase and the temperature of the gas are

obtained from the Gaussian fits to the wings and the occupation of the molecular
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components are given from the Thomas-Fermi fits. In the bottom panel, it was not

possible to extract the thermal component from the fit, signaling that a nearly pure

BEC is formed at this stage. It should be noted that these figures were taken over

two years ago, before we had installed the bars for the levitation and translation

fields. At that time, we were only able to cool ∼ 104 molecules into a nearly pure

BEC. Recent advancements in our system have increased this number to N0 >

105, demonstrating how important magnetic levitation and stable lasers/frequency

references are in our experiments. Whenever possible, our two-component 6Li gases

are prepared in the BEC phase as a starting point for our experiments. Subsequent

magnetic field ramps across the Feshbach resonance yield initial samples with N >

105 atoms per spin state at reduced temperatures of T/TF ≤ 0.3.

5.2 Preparing a Three-Component Fermi gas

Three-component Fermi gases are produced in our experiments by means of si-

multaneously applying two radio-frequency pulses whose frequencies are centered

on the |1〉 − |2〉 and |2〉 − |3〉 transitions respectively. A magnetic field gradient

provided by the levitation fields and collisions between the atoms leads to an in-

coherent mixture of atoms in the three lowest energy spin states. The samples are

then state-selectively imaged to determine the atomic population and temperature

after a variable hold time in the trap. In this section I will describe the produc-

tion methodology in more detail to provide understanding of the issues involved

in creating incoherent, thermally equilibrated three-component Fermi gases in our

experiments.

5.2.1 RF Transitions in 6Li

In a constant magnetic field, the eigenstates of our ground-state atoms, discussed

in Chapter 2, are stationary. Addition of an oscillating magnetic field can induce

an electromagnetic coupling between these states. Described in the framework

of dressed states [174], coherent coupling can induce transitions among atomic

states if the frequency of the applied radiation field is resonant with the energy

difference between the states and the transitions are allowed by the selection rules.
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The electromagnetic coupling from an applied RF pulse can drive magnetic dipole

transitions between the Zeeman sublevels of the atoms, with selection rules ∆F =

0,±1, ∆mF = 0,±1. For a pulse of frequency ωRF , the probability for an atom to

transition from state |a〉 to state |b〉 is given by the Rabi formula [191, 174]

Pba(t) =

(
ΩR√

Ω2
R + (ωRF − ω0)2

)2

sin2

(√
Ω2
R + (ωRF − ω0)2

2
t

)
, (5.5)

where ΩR is the Rabi frequency and ω0 = (Eb - Ea)/~ is the energy difference of

the states. If the RF pulse is on-resonance (ωRF = ω0), the atoms can be fully

transferred between the states in a time t = π/ΩR, commonly referred to as the

π-pulse time. For more details on RF driven atomic transitions, please refer to

Reference [191].

For our three lowest-energy Zeeman sublevels, the resonant RF frequencies at

large magnetic fields are typically on the order of ωRF ∼ 80 MHz. Since the wave-

length of the RF radiation is relatively long, on the order of 4 m, the momentum

transferred to the atoms can be neglected as compared the energy of the exter-

nally applied trapping potentials. Further, the spontaneous decay rate for transi-

tions among the Zeeman sublevels (Aba ∝ ω3
RF ) is negligible on our experimental

timescales. By applying a moderate magnetic field to define the quantization axis

of the system and subjecting our atoms to a near-resonant RF field provided by

our RF coils and amplifier system, we can induce transitions among the high-field

seeking magnetic sublevels of the 22S ground state in our 6Li atoms. Further, the

transition can be driven with negligible heating of the atoms and, once produced,

the atoms are effectively stable with respect to spontaneous decay to the absolute

ground state.

Figure 5.2 shows a representative data set displaying RF induced Rabi oscilla-

tions of our atoms at a field value of B = 930 G. Here an initially spin-polarized

gas of atoms in state |2〉 is exposed to RF radiation resonant with the |2〉 − |3〉
transition for a variable time. The number of atoms in state |2〉 is displayed with

respect to the duration of the applied RF field, demonstrating the characteristic

oscillatory behavior of the population of atoms in the initial state given by

Na(t) = Na(0)(1− Pba(t)), (5.6)
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Figure 5.2. Rabi cycling of 6Li atoms initially prepared in state |2〉 in the presence of
a RF field near resonant with the |2〉 − |3〉 transition frequency. The experimental data
(blue dots) represent the number of atoms in state |2〉 with respect to the RF drive time.
The solid (red) curve is a fit of the data to Equation 5.6.

where Na(0) is the initial population of atoms in state |2〉 and Pba(t) is the

transition probability given in Equation 5.5. For this data, the oscillation pe-

riod, peak atom number in state |2〉, and maximum transition amplitude were

fit using Equation 5.6 above to determine the RF field detuning from resonance

(|ωRF − ω0| ' 2π × 4 kHz), the RF Rabi frequency (ΩR ∼ 2π × 6 kHz) and total

atom number (N = N|2〉(0) ' 2.4 × 105). The coherence time of the atoms can

also be determined from this technique by observing the decay rate of the Rabi

oscillation.

With our RF power and antenna system, described in Section 4.8, we achieved

Rabi frequencies over the field range 100 G ≤ B ≤ 1500 G on the order of ΩR '
2π × 5 to 9 kHz, with π−pulse times of approximately 50 to 100 µs. As the

transition probability is highly sensitive to the value of the homogeneous magnetic

field, RF spectroscopy in the form of mapping out the resonant frequency of the

atoms was used extensively in our experiments to characterize both the absolute

magnetic field applied to the atoms and the amplitude noise of the magnetic fields.
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5.2.2 Incoherent Three-State Mixtures

The necessity of creating samples with at least three components to study three-

body physics in Fermi gases has been discussed in detail throughout this thesis.

More formally, an incoherent three-state mixture is necessary, which is not guar-

anteed by simply applying resonant RF pulses to populate the various spin com-

ponents. Considering the Bloch sphere representation, a resonant RF pulse does

nothing but rotates the population on the Bloch sphere. For an initially spin polar-

ized sample, so long as the decoherence mechanisms are negligible on the timescale

of the pulse, all of the atoms will remain in an identical (superposition) state af-

ter the RF pulse, and therefore still cannot interact. This coherent excitation

was demonstrated in the form of an absence of mean-field ”clock shifts” in two-

state mixtures of 6Li fermions, regardless of the initial coherence of the samples.

[192, 193]

Decoherence can readily occur with the inclusion of magnetic field inhomo-

geneities, creating a spatially dependent detuning of the atoms from the RF field.

This leads to inhomogeneous phases of the atoms in the superposition state with

respect to the driving field. Decoherence is further enhanced by collisions among

the atoms, redistributing the phases as the atoms become distinguishable [194].

The scrambling of the particle phases causes the atoms to evolve from a coherent

superposition state into a ”ring state” on the Bloch sphere [193], whose average

has no coherences (off-diagonal elements of the density matrix).

The magnetic field inhomogeneity in our experiments is primarily produced

by the ∆By ∼ 1 Gauss/cm gradient of the levitation field. By measuring the

decay rate of RF induced Rabi oscillations in a spin polarized sample, we were

able to determine that the required drive time for the samples to fully decohere

was in the range of 5 to 30 ms, depending on the field and trap profile in which

the samples are prepared. In this measurement, decoherence was signaled by the

suppression of Rabi flopping, saturating the atomic populations of the RF coupled

states to a steady-state value. For driving fields on-resonance with the average of

the atomic frequencies, decoherence leads to equal populations of the RF addressed

states. Equal population was not assured, however, for all state-driving RF pulses.

Particular attention to the stability of the transition was therefore required to

assure that we produced equally-balanced three-state mixtures for our experiments.
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Figure 5.3. The populations in states |1〉, |2〉, and |3〉 measured by absorption imag-
ing in the Paschen-Back regime. (Left) The hyperfine interaction in the ground state
allows for spectroscopically resolvable imaging on the mj = −1/2→ m′j = −3/2 cycling
transitions. (Top right) 2-dimensional density profile of each state following a 900 µs
time-of-flight. (Bottom right) The total absorption vs. probe detuning demonstrating
equal populations and resolved imaging of the atoms in each spin-component.

The resonance width of the RF-driven transition is given by the relative slope

of the magnetic moments, and the gradient and stability of the magnetic field.

States |1〉, |2〉, and |3〉 tune almost identically in the Paschen-Bach regime for

fields above 100 Gauss. The widths of the transitions are therefore quite narrow

(∼ 500 Hz) for pulses that are not Fourier limited. In our experiments, the RF

pulses are generally 10− 100 ms in length, providing negligible Fourier broadening

of the transitions. Therefore, noise and drifts in the magnetic field translate to

shifts of the atomic resonance frequencies, leading to reduced efficiency of the state

transfer.

To consistently produce equal-population, incoherent three-state mixtures in a

manner that is immune to magnetic field gradients and drifts, we used ”noisy” RF

pulses to drive our transitions. Here, the on-resonance RF frequencies were mod-

ulated with a white-noise spectrum provided by an Agilent (33220A or 33250A)

arbitrary waveform generator. The frequency modulation ranged in width from

10 kHz to 1 MHz (∼ ΩR to 100ΩR). Along with the decoherence mechanisms in

the presence of a magnetic field gradient, the modulated RF pulse assured that
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the total final populations in each of the ground states |1〉, |2〉, and |3〉 were equal

[20]. The atomic populations in each of the three spin states, populated from a

two state mixture by the noisy RF pulses, is shown in Figure 5.3. The images are

taken at a bias field of 568 Gauss, well within the Paschen-Bach regime. In the top

right panels, the on-resonance absorption images show the density distribution for

each of the three states after a 900 µs time-of-flight expansion. In the bottom right

panels, the total absorption signal is shown with respect to the relative detuning

from the |F = 1/2,mF = −1/2〉 → |F ′ = 3/2,m′F = −3/2〉 zero field transi-

tion, demonstrating that the states are equally populated and spectroscopically

resolvable at high fields.

5.3 Thermometry of Fermi gases

This section describes the theory and methodology of measuring the temperature

of ultracold Fermi gases from the two-dimensional density distributions obtained

with absorption imaging techniques. The majority of our experiments were con-

ducted with a gas at reduced temperatures on the order of T/TF ∼ 0.5, where a

classical treatment of the gas is appropriate. In this case, the temperature is read-

ily extracted from a Gaussian fit to the 2D integrated density distribution, as given

by absorption images of the gas. As the gas is cooled to degeneracy, the density

and momentum distributions are described by a Fermi-Dirac integral function, and

the simple Gaussian fit no longer applies. The methodology of directly fitting the

absorption images for a degenerate gas using the integral function is at this point

well established [169, 11, 28, 50]. However, the analysis requires numerical fitting

routines and high resolution imaging to accurately extract the temperature. For

these reasons, we primarily utilized a thermometry technique which uses a small

”impurity-state” component as a classical probe to determine the degeneracy of

our gases.
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5.3.1 Spatial and Momentum Distributions in Harmonic

Traps

We start by considering N spin-polarized (non-interacting) fermions in a harmonic

potential. The single-particle Hamiltonian is given by

H(r,p) =
1

2m
[p2
x + p2

y + p2
z] +

m

2
[ω2
xx

2 + ω2
yy

2 + ω2
zz

2], (5.7)

with density of states

g(ε) =
ε

2(~ω̄)3
. (5.8)

Here, ω̄ is the mean oscillation frequency of the harmonic trap. For a Fermi gas,

the statistics are described by the Fermi-Dirac distribution

f(ε) =
1

eβ(ε−µ) + 1
, (5.9)

where β = (kBT )−1, and µ = µ(T,N) is the chemical potential of the gas which is

normalized by the atom number in each spin state as

N =

∫
g(ε)f(ε) dε. (5.10)

Direct integration of the above equation at T = 0 defines the Fermi energy EF =

µ(T = 0, N), which simplifies in a harmonic trap to

EF = kBTF = (6N)1/3~ω̄. (5.11)

The Fermi-Dirac occupation factor for a zero-temperature gas is unity for ener-

gies below this value and zero otherwise. The Fermi energy therefore defines the

energy and temperature scales over which quantum statistics significantly affect

the physics of the system. Comparison of the temperature of the cloud to the

Fermi-temperature TF is an indicator of the degeneracy of the Fermi gas, which

relates to the peak phase-space density as ρ0 = n0λ
3
dB = (T/TF )−3/6 [27].

The density distribution functions in position and momentum space for har-

monically trapped Fermi gases have been calculated in multiple publications [169,

11, 28, 50] using standard statistical mechanics techniques and assuming a semi-
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classical (Thomas-Fermi) approximation [195], applicable in the large N limit when

many oscillator states are occupied. The 2D density and momentum distributions

for harmonically trapped Fermi gases are given by [11]

n(x, y) =
N

bxbyπ

Li2

[
e
U0−µ
kBT e

−
(
x2

b2x
+ y2

b2y

)]
Li3

[
e
U0−µ
kBT

] , (5.12)

n(px, py) =
N

(2mkBT )π

Li2

[
e
U0−µ
kBT e

−
p2x+p

2
y

2mkBT

]
Li3

[
e
U0−µ
kBT

] , (5.13)

where the width coefficients bi are related to the 1/e-widths (ai) of the trapping

potential of depth U0 as bi = ai
√
kBT/U0 and Lin[z] are Poly-Logarithmic func-

tions defined as Lin[z] =
∑∞

k=1
zk

kn
. These Poly-Log functions appear often in the

analysis of harmonically trapped Fermi gases. The two-dimensional distributions

were given here for comparison with the 2D density distributions that we measure

using absorption imaging techniques.

5.3.2 Thermometry in a Classical Gas

In the classical limit (T � TF ), the statistics of the gas are described by a Maxwell-

Boltzmann distribution. In this case, the above equations for the density and

momentum distributions simplify to a Gaussian form as

n(x, y) =
N

bxbyπ
e
−
(
x2

b2x
+ y2

b2y

)
, (5.14)

n(px, py) =
N

(2mkBT )π
e
−
p2x+p

2
y

2mkBT , (5.15)

where the widths (bx and by) are dependent on the temperature (T ) of the gas and

the properties of the harmonic trap. In momentum space, the dependence on the

trap parameters drop out and the Gaussian distribution is fully characterized by

the atomic mass (m) and the temperature T .

To measure the temperature of the gas, we often use a method that involves

releasing the atoms from the trap, and allowing the gas to freely expand for a
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time-of-flight (τ). After release, the atoms will expand ballistically (assuming

that the gas is not in the strongly-interacting hydrodynamic regime) so that their

coordinates evolve according to

x = x0 + vxτ = x0 +
px
m
τ, (5.16)

where vx (px) is the x-component of the atoms velocity (momentum), and similarly

for the y component. After rescaling the 2D density distribution in Equation 5.14

to account for the ballistic expansion of the gas [11], referred to as ballistic scaling,

the atomic density distribution for a classical gas after a time-of-flight is given by

n(x, y, τ) =
N

cxcyπ
e
−
(
x2

c2x
+ y2

c2y

)
, (5.17)

where the width of the Gaussian distribution in the x direction now scales as

cx = bx

√
1 +

2kBT

mb2
x

τ 2 = bx
√

1 + ω2
xτ

2, (5.18)

and similarly for the y direction. Here, ωx is the initial trapping frequency in the

x̂ direction. For expansion times ωτ � 1, the trapping parameters in bx drop

out of the analysis and the temperature of the gas can be directly extracted from

the Gaussian width of the expanded gas. In our system, thorough calibration of

our trapping frequencies allows us to use both in situ imaging and time-of-flight

imaging to measure the temperatures of the gas. The temperature conversions

from the Gaussian width of the density profiles are given by

T = mc2
x/(2kBτ

2), τ � 1/ωx (5.19)

T = mω2
xc

2
x/(2kB), τ = 0 (5.20)

The density distributions of our gases, measured by the absorption imaging

techniques discussed in Section 4.7, are fit using a 2D Gaussian fitting routine that

extracts the peak density (n0) and width (ci) of the gas along both the x̂ and ŷ

axes. This provides us with a check of the quality of the fit and the magnitude of

perturbing forces during expansion, since the initial temperature of our thermalized
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gases should be uniform in all directions. These techniques to extract the thermal

properties of our classical gases have also proven useful for precision thermometry of

multi-component Fermi gases in the degenerate regime. Here, we use an impurity-

state thermometry technique, described in the next section, which was developed

in D. Jin’s Lab at JILA [27].

5.3.3 Impurity-State Thermometry

Impurity-state thermometry is a robust technique for measuring the degeneracy

of multi-component Fermi gases, and is particularly well suited for probing mod-

erately degenerate samples (0.2 ≤ T/TF ≤ 0.5). The technique, which was first

described in C. Regal’s Ph.D. thesis [27], uses the facts that interactions among

atoms in distinct spin states can be used to bring the various spin components of a

Fermi gas into thermal equilibrium and that the Fermi energy of each component

scales with the atom number in the given spin state as EF ∝ N1/3. Therefore,

if the atom number in one of the spin components is smaller, its Fermi energy is

correspondingly reduced while its temperature remains consistent with that of the

rest of the gas.

For a sufficiently small population in the minority spin component, the atoms

in this state can in fact remain non-degenerate even when in thermal contact with

multiple degenerate components, allowing for a simple Gaussian fit after a time-of-

flight to deduce the temperature of gas. Subsequent measurements of the number

of atoms in the degenerate components and knowledge of the parameters of the

harmonic trap are all of the information required to deduce their Fermi energies

and hence the degeneracy of each component in the gas. The basis of this scheme is

illustrated in Figure 5.4. Here, a harmonically trapped degenerate two-component

sample is in thermal equilibrium with a third minority component. The occupation

of the energy states in the harmonic trap, shown on the right, demonstrates that

the difference of the Fermi energies of the components (EFermi(Ni)) requires that

the minority component be less degenerate to maintain thermal equilibrium.

As an example, consider that we cool a two-component Fermi gas of 6Li atoms in

states |1〉 and |2〉 with N = 105 atoms in each spin state to an absolute temperature

of 180 nK, with a reduced temperature T/TF = 0.3. If we now transfer a small
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Figure 5.4. (Left) Impurity-state thermometry is a method of measuring the degeneracy
of a harmonically trapped Fermi gas using a classical minority component (state |3〉 in
this example), in equilibrium with the degenerate majority components (states |1〉 and
|2〉 here). (Right) The reduced Fermi energy of the minority component (EFermi(N|3〉))
combined with thermal equilibrium of the gas enables this robust thermometry technique.

amount of the population from state |2〉 to state |3〉 using a short on-resonant

RF pulse, say N ′ = 2 × 104, the reduced temperature of the state |3〉 atoms is

increased to T/T ′F = 0.51. Here, a thermal analysis of the 2D density distribution

is appropriate since the effects of degeneracy are negligible at these temperatures.

This thermometry method is a natural choice for our experiments at high fields,

where we regularly populate these three components during the procedure. We can

directly use this technique to determine the degeneracy of a two-component gas

before populating the third state. Additionally, we can determine the degeneracy of

a three-component gas after a variable hold time using this technique. To make this

measurement, we initially create a three-component gas and hold the sample for a

set time. Then, one of the spin components is removed by applying an on-resonance

light pulse, which is resolved at high fields and negligibly perturbs the atoms in

the other components. Finally, impurity-state thermometry is preformed by re-

populating a small third component and allowing the system to come into thermal

equilibrium. The technique outlined here was directly applied to demonstrate

the realization of a degenerate three-component Fermi gas in the high-field SU(3)

symmetric regime, as described in Section 7.2.2.

As with all thermometry methods, there are certain limitations to this tech-

nique. First, the method can only be applied if the three-state mixture is suf-

ficiently long lived. Three-body decay itself reduces the degeneracy of the gas,

reducing both the number of atoms per spin-state and possibly preferentially re-

moving atoms from the coldest/densest regions of the gas, a phenomena referred
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to as anti-evaporative heating. In general, we prepare our samples such that they

are sufficiently long-lived to allow the system to decohere and come into thermal

equilibrium while heating from three-body loss is minimal. It is also possible to

remove one of the two majority components, measuring the temperature of a single

spin component with the minority component, which is now effectively immune to

three-body loss. Further, the gas should be weakly interacting because the effects

of interactions are neglected in the analysis. These requirements are both met

by either measuring the temperature in the region of the ”zero-crossings” of the

scattering lengths, near 550 Gauss, or by preparing highly dilute samples so that

the ratio of the scattering lengths to the mean free path is small. Finally, the de-

generacy of the original sample must not be strong to allow for sufficient number

of atoms in the minority component for reasonable Gaussian fits of the thermal

2D density distributions.

In general, our atoms are prepared in a highly-dilute gas which is amenable to

this thermometry technique. Further, our preparation scheme limits the minimum

achievable temperatures to Tmin ∼ 0.15TF . Due to the generally short lifetimes of

a three-component gas in the presence of strong interactions, we first cool a two-

component gas and then populate the third component at the field of interest using

noisy RF pulses. Therefore, the final three-component sample, with conserved

energy but reduced Fermi energy, has a larger reduced temperature T/TF by at

least a factor of N
1/3
2 /N

1/3
3 . In the following, I will discuss in more detail how

we load atoms into our large-volume traps to achieve extremely low temperatures

and densities, allowing us to study multi-component Fermi gases in the presence

of large three-body loss.

5.4 Low-Temperature/Density Atomic Gases

In Section 3.4, we discussed the temperature requirements for analyzing three-body

loss data using the rates calculated at threshold. Our recent experiments were

dedicated to measuring the three-body loss rates of our three-component Fermi

gases in the range of magnetic fields between 834 ≤ B ≤ 1500 Gauss. At these

fields, slightly above the |1〉−|2〉 Feshbach resonance, the scattering lengths are very

large (|a| > 34 lvdw) and negative, requiring extremely low temperature samples to
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avoid unitarity limitations and thermal averaging effects on our measured rates.

Consider the three-component gas at fields above 1500 Gauss, where the scat-

tering lengths nearly converge to −2140a0. At these field, the critical temperature

limit, calculated from the height of the barrier in the adiabatic three-body po-

tential given by Equation 3.45, is Tc = 0.158 ~2/(kBma
2) ' 1 µK. Further, the

maximum three-body loss rate measurable for a gas at a temperature T , attributed

to unitarity and thermal averaging, is given by Kmax
3 defined in Equation 3.47. For

our 6Li gases at the critical temperature, Kmax
3 (Tc) = 7× 10−21 cm6/s. The mea-

sured rates at these fields can therefore only be compared with those calculated

at threshold if both the temperature of the gas and the measured three-body loss

rates are significantly less than Tc and Kmax
3 respectively. In our primary trap,

we regularly produce nearly-degenerate multi-component Fermi gases at tempera-

tures on the order of T ' 2 µK, which is slightly above the temperature at which

thermal effects begin to significantly affect the measured loss rates.

At lower fields, in the vicinity of the Feshbach resonances, the temperature

requirements can be much stricter. Consider now that the three-component gas

is prepared at 875 Gauss, where the largest scattering length is a12 = −12, 250a0.

Here, the critical temperature and maximum three-body decay rate are Tc ' 30 nK

and Kmax
3 (Tc) = 7× 10−18 cm6/s respectively. In the primary trap, it is currently

not possible to cool a sufficient number of free fermions to such low temperatures

to preform our stability measurements. Additional difficulties arise in studying

such large three-body loss in our system stemming from the relatively large peak

densities of our samples n0. Since the loss rates are expected to scale as a4 near

the Feshbach resonances, a three-component sample is expected to decay rapidly

at these fields in the high-density primary trap.

Considering reasonable values for our trapping parameters to hypothetically

cool mixtures of free fermions with N ∼ 105 atoms per spin state at a temperature

of even T = 50 nK at this field value, the 1/e lifetime of the gas in a three-state

mixture is found to be τ ≤ 10 ms for densities per spin state n0 ≥ 1011/cm3

and three-body loss rates K3 > 10−20 cm6/s. The lifetime of the gas is therefore

quite short as compared to the 100 ms duration noisy RF stage we use to create an

incoherent three-state mixture in thermal equilibrium. For this reason, the primary

trap was insufficient for measurements of K3 throughout the high-field regime. We
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overcame this limitation by adiabatically loading the atoms from the primary trap

into one of the large-volume traps, discussed in section 4.6.5 and illustrated in

Figure 5.5. In this way, the temperatures and densities of the samples are reduced

by orders of magnitude, enabling the production of the three-state mixtures for

our high-field recombination rate measurements.

Adiabatically changing the depth and volume of the harmonic trapping poten-

tial to vary the thermal and collisional properties of trapped atoms has played a

crucial role in experiments with ultracold atomic gases. This technique has been

used to increase the collision rates among particles to assist in evaporative cooling

to degeneracy [196, 197], and achieve world-record breaking low temperature gases

[41]. In these experiments, the volume and/or depth of the trapping potential is

dynamically adjusted to alter the density and temperature of the gas. So long

as the adiabaticity requirement is satisfied dωtrap/dt � ω2
trap, defining the rate

at which the trapping frequencies ωtrap should be varied to avoid non-adiabatic

transitions among vibrational states, and the shape of the potential (form of the

density of states) is maintained, the phase-space density remains constant. In this

case, the evolution of the temperature and density distribution for a thermal gas

in an adiabatically varying harmonic trap can be determined from simple scaling

laws.

We are changing both the waist and power of the lasers providing the har-

monic trapping potentials as the trap is adiabatically transformed. For this anal-

ysis, it is assumed that the adiabatic theorem applies [97], which states that a

physical system will remain in its instantaneous eigenstate if the perturbation is

acting on the system sufficiently slowly and if there is a sufficient gap between

the eigenvalue of the system and the rest of the Hamiltonian’s spectrum. For

our harmonically trapped gases, the eigenstates are characterized by the harmonic

trapping frequencies ω which, according to Equations 4.18, are proportional to the

power P and waist w of the optical trapping beams as ω ∝
√
P/w2. Adiabatic

changes of the waist and power of the beams leads to the temperature scaling

as T ∝ ω ∝
√
P/w2. So long as the trap remains harmonic, adiabatic changes

conserve the phase-space density ρ0 ∝ n0T
−3/2, where n0 is the peak 3D density

distribution of the gas. Therefore, as the trap is adiabatically varied, the peak

density transforms as n0 ∝ T 3/2 ∝ P 3/4/w3. Further, the collision rate and three-
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Figure 5.5. (Top) Nearly degenerate two-component 6Li gases cooled in the primary
dipole trap are loaded into our large-volume trap I (II) enabling us to prepare three-
component samples at temperatures TI ≤ 180 nk (TI ≤ 30 nk) and densities n0(I) '
5×1010 atoms/cm3 (n0(II) ' 5×109 atoms/cm3). (Bottom) As the depth of the primary
trap is adiabatically lowered in the presence of one of the large-volume traps, the atoms
begin to occupy the lowest energy states of the large-volume trap, with greatly reduced
average energy per particle and enhanced trap volume.
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body recombination rates scale as Γ ∝ n0T
1/2 ∝ P 5/4/w5 and ṅ ∝ n3 ∝ P 9/4/w9

respectively. Therefore, by loading the atoms from the primary trap into one of

the large-volume traps, it is possible to significantly decrease the temperature,

density, and decay rates of our atoms to observe the properties of the gas in the

presence of large three-body loss. This analysis is likely an oversimplification as

it is not guaranteed that the form of the density of states is conserved when both

traps are present, as illustrated by the possible variation of the vibrational energy

levels in the bottom panel of Figure 5.5. No observable deviation of the reduced

temperature T/TF was observed, however, for atoms loaded into either of our large-

volume traps, suggesting that the deviations of the trap profile from harmonic was

negligible throughout the loading process.

In our experiments measuring the three-body loss rates at high fields, we used

two different trapping geometries for the large volume trap, illustrated in pan-

els (b) and (c) of Figure 5.5. In the first geometry (large-volume trap I), the

trap is derived from the confining potential provided by the large-volume trap-

ping beams (A) and (B), with a minor correction attributed to the confining

(anti-confining) magnetic field gradients from the primary and booster magnetic

coils along the x̂ and ŷ (ẑ) axes. The design of these trapping beams and gra-

dient fields are discussed in detail in Sections 4.6.5 and 4.3.4 respectively. The

maximum power used in each beam (A) and (B) was nominally on the order

of 20 Watts during the experiment, yielding a peak depth of U0 ' 1 µK and

trapping frequencies ωx = 2π × 33
√

1 + 1.4× 10−3(B − 842 G)Hz ± 3%, ωy =

2π × 21
√

1 + 3.6× 10−3(B − 842 G)Hz ± 3%, and ωz = 2π × 94(2)Hz. The mag-

netic field dependence (B) of the trapping frequencies is due to the field curvature

of the booster coils, which were applied in some of our high-field data runs to

supplemented the fields from the primary coils for values above 842 G.

For the second geometry (large-volume trap II), the trap is derived from the

combined potentials provided by the large-volume trapping beam (C) and the

magnetic field gradients from the primary magnetic coils. For this geometry, the

beam was effectively collimated at the atoms, where the large waist of the confining

beam (w = 2.5 mm) lead to negligible confinement along the axis of the beam.

Confinement along the ŷ′ axis, defined to be parallel to the axis of the beam, was

therefore solely provided by the harmonic gradient field from the primary coils, as
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illustrated in Figure 4.9 (a). The maximum power used in beam (C) was nominally

on the order of 40 Watts for this experiment, yielding a peak depth of U0 ' 10 µK

and trapping frequencies ωx = 2π × 15(2)Hz, ωy = 2π × 0.242
√
BHz ± 1%, and

ωz = 2π × 12(1)Hz. This trap was used to measure the three-body rate constants

K3 over a narrow range of fields (840 G ≤ B ≤ 960 G) near the 834 G Feshbach

resonance, where the loss rates of the three-component gas are orders of magnitude

larger than the unitarity limited rates in the primary trap (see Section 7.2.1).

Adiabatic loading of the atoms from the primary trap into one of the large-

volume potentials is illustrated in the bottom panel of Figure 5.5. As the power of

the primary trapping beams is adiabatically reduced, the temperature and density

of the atoms evolve to maintain the occupation distribution of the energy states

(represented as grey lines in this figure). At the end of the adiabatic transfer, the

atoms in the large-volume trap I (trap II) were regularly prepared in incoherent

three-state mixtures at temperatures TI ≤ 180 nK (TII ≤ 30 nK) and initial peak

densities per spin state n0(I) ' 5×1010 atoms/cm3 (n0(II) ' 5×109 atoms/cm3). As

discussed above, these temperatures and densities are sufficiently small to assure

that our measurements of K3 could be compared with zero-temperature calcula-

tions of the three-body loss rates for fields above ' 875 G.

We will show in the next few chapters how the three body parameters of

our three-component gases are calculated from our three-body loss measurements.

These measurements were taken both at low-fields (0 G ≤ B ≤ 600 G) and in the

high-field regime (834 G ≤ B ≤ 1500 G). The extracted three-body parameters in

these two non-universally connected regimes can, in turn, be used in conjunction

with the universal theory for interacting three-body systems, discussed in Chapter

3, to predict the magnetic-field dependent stability of the gas and the spectrum of

Efimov trimer states in all of the field regions where the pairwise scattering lengths

are resonantly enhanced. The high field results are particularly relevant for future

experiments studying many-body physics in three-component Fermi gases at fields

spanning the three overlapping Feshbach resonances and in the asymptotic regime

at which the particles exhibit SU(3) symmetric interactions.



Chapter 6
Experimental Findings with

3-Component Fermi Gases

In this chapter our initial experimental investigations of ultracold fermionic 6Li

gases occupying three mutually interacting hyperfine spin states are described.

Previous to the work done by our group [144, 147] and that of S. Jochim’s group

in Heidelberg [145, 5, 198], a third state was utilized in both 40K and 6Li Fermi

gases, but only as a probe for thermometry [27] and as a final state for radio

frequency spectroscopy of the two-component samples [192, 115, 64]. In RF spec-

troscopy experiments preformed with strongly interacting 6Li samples, it was found

that rapid decay of atoms in the third state prohibited their detection. This rate

was later measured on the |1〉 − |3〉 Feshbach resonance at 691 Gauss to be on the

order of 30 ms [28]. Such rapid inelastic decay prevents the production of three-

component samples in equilibrium unless the sample is made to be very weakly

interacting. Our experiments were therefore dedicated to exploring the stability

of a three-component Fermi gas in thermal equilibrium over a range of interaction

strengths to determine the universal few-body physics of a system of distinguish-

able particles with mutually enhanced pairwise interactions as well as to determine

the feasibility of using this multi-component gas to study novel many-body phe-

nomena, discussed in more detail in Chapter 7.

Our first experiments measured the collisional stability of the three-component

gas and went on to measure the three-body decay rate constant over the range of

fields (15 G < B < 960 G). At low fields (15 G < B < 527 G), all three s-wave
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scattering lengths are negative and generally unequal. This region is universally

disconnected from the three overlapping Feshbach resonances at higher fields due to

a zero-crossing of the scattering lengths at a12 ' 528 G, a13 ' 568 G, and a23 ' 589

G respectively. Both regions of high stability, where the gas at reasonable densities

can survive for 10s of seconds, and resonant loss peaks are observed in the low-field

data. Theoretical calculations of the three-body loss rates in the low-field region

found that the resonant loss peaks are associated with a ground-state Efimov trimer

crossing the free-atom threshold. Recent analytic interpretations of the low-field

three-body loss rates are discussed in greater detail at the end of the chapter.

6.1 Stability of 3-Component 6Li Gases

Our first experiments measured the stability of our three-component gas to three-

body decay. This heating and loss mechanism ultimately determines the maximum

density and degeneracy of our samples, and hence the range of phenomena that we

can study with our three-component gases. Although we measured the stability

of the gas for magnetic fields ranging from 15 to 953 Gauss, the data above ∼
600 Gauss is suspect as the measured decay may include loss events associated

with two-state mixtures. Further, much of this high-field data was likely unitarity

limited at the time. We therefore will focus on discussing the stability of the gas

in the low-field region (0 ≤ B ≤ 600 G), where the decay can be attributed to

three-body events consisting of one atom from each spin state and the loss rates

are sufficiently low to assure that the interactions are in the threshold regime.

6.1.1 State Preparation

For this experiment, two-state mixtures of 6Li atoms were initially evaporatively

cooled in the primary dipole trap nearly to degeneracy as described in Chapter

5. Forced evaporation of the atoms occurred at a field of 330 Gauss, where a12 '
−280a0. This field was chosen so that the atoms were relatively strongly interacting

for efficient evaporation while assuring that the final sample consisted of free atoms.

This is in contrast to evaporating near the Feshbach resonance at 834 Gauss,

where the interactions can be enhanced to the unitarity limit for highly efficient
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evaporation but the formation of weakly-bound molecular states, as the field is

ramped below the Feshbach resonance, is unavoidable at low temperatures. The

molecules associated with the a12 Feshbach resonance, which are weakly-bound

and stable at high fields, are rapidly lost when the magnetic field is reduced to

the non-universal regime because the molecules become strongly bound and the

stabilizing effects discussed in Section 5.1.1 no longer apply.

This experiment was conducted before the levitation and translation bars were

installed, requiring a relatively tight trap to support the atoms against gravity.

After the atoms were evaporatively cooled nearly to degeneracy in the primary

trap, its depth (U0) was adiabatically increased by a factor of 4 to stabilize the

gas and suppress further evaporative loss. Adiabatic recompression increased the

ratio of U0/kBT by a factor of ' 2, but left the phase-space density unchanged.

The final oscillation frequencies of the primary trap were ωx = 2π × 3.84 kHz,

ωy = 2π × 106 Hz, and ωz = 2π × 965 Hz, determined by dipole oscillation and

parametric heating techniques, with a final depth per beam U0 ' 40 µK. At

this point, the total number of atoms N ' 3.6 × 105 occupied a balanced two-

state mixture at a temperature of T ' 1.9µK. The final reduced temperature

T/TF ' 0.51, is sufficiently high so that it is appropriate to treat the cloud as a

thermal gas.

To create the incoherent three-state mixture, we first increase the strength of

the magnetic field over 10 ms to 568 Gauss. This field is near the zero-crossing

for all three scattering lengths, as shown in Figure 6.1 (b), where a12 ' 168a0,

a23 ' −105a0, and a13 ' 7a0. Here, three-body recombination is minimized but

the interactions are still sufficiently strong to allow for rethermalization of the gas

within ∼ 20 milliseconds. We then apply a 50 ms noisy RF pulse with frequencies

centered on the |1〉 ↔ |2〉 and |2〉 ↔ |3〉 transitions at this field, each broadened

to a width of 1 MHz. The addition of a ' 1 G/cm magnetic field gradient along

the ẑ axis is provided by an imbalance of the current in the primary magnetic

coils to destroy any internal state coherence in the samples. At the end of the RF

pules, the sample is held for an additional 20 ms to allow the atoms to come into

thermal equilibrium. The final sample consists of a balanced three-state mixture

with N ' 1.2× 105 atoms in each of the high-field seeking Zeeman states. At this

point, T ' 1.9 µK with a reduced temperature of T/TF ' 0.6 and a peak density
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Figure 6.1. (a) Fraction of atoms remaining in each of the three spin states after a
201 ms hold time at the field of interest Bhold. The data is normalized to the number
remaining after spending 1 ms at Bhold. (b) & (c) The low-field (0 ≤ B ≤ 600 G) &
high-field (600 G ≤ B ≤ 1000 G) s-wave scattering length for 6Li atoms in states |1〉,
|2〉, and |3〉. The scale of (b) is reduced by a factor of 6 with respect to (c), highlighting
the features near zero which include the zero-crossings of the LF scattering lengths at 0
G and between 528 and 589 G. The grey region in Figure (b) represents the extent of
the van der Waals length scale lvdw. The purple, pink, and cyan vertical lines represent
the locations of the |1〉-|3〉, |2〉-|3〉, and |1〉-|2〉 Feshbach resonances respectively.

n0 ' 5.5× 1012 atoms/cm3.
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6.1.2 Collisional Stability Measurement

To gain qualitative insight into the magnetic field dependence of the decay of the

three-component 6Li Fermi gas, we measured the fraction of the atoms in each

spin state lost from the trap after being held at a particular field of interest (15 G

≤ Bhold ≤ 960 G) for 200 ms. For each experimental cycle, the magnetic field was

ramped from 568 G, at which the mixture was prepared, to the field of interest in

10 ms. The mixture was held constant at Bhold for either 1 or 201 ms, followed by

a 10 ms field ramp to 953 Gauss. After an additional 20 ms hold time to allow

the fields to fully stabilize, spectroscopically resolved absorption imaging was used

to determine the number of atoms in a given spin state for the two hold times

(N1ms or N201ms). The 10 ms field ramp to 953 Gauss (where a12, a23, a13 < 0)

ensured that any atoms which had formed weakly bound Feshbach molecules and

remained trapped would be dissociated and measured. For each field value, N201ms

is normalized by N1ms to correct for the fraction of atoms lost during the field

sweeps, both to and from the field of interest. The raw data N1ms and N201ms for

each state is presented in Appendix B, Figure B.1.

The normalized data displaying the magnetic field dependence of the fraction

of atoms lost in a three-state mixture of atoms occupying states |1〉 (blue squares),

|2〉 (green diamonds), and |3〉 (red circles) after a hold time of 200 ms is shown

in Figure 6.1(a). The purple, pink, and cyan vertical dashed lines represent the

locations of the |1〉-|3〉, |2〉-|3〉, and |1〉-|2〉 Feshbach resonances respectively. The

representative error bars indicate the standard deviation in the mean, which re-

mained relatively consistent for all of the data. During the experimental runs, the

field of interest was randomly varied for each shot, and the RF and imaging fre-

quencies were recalibrated multiple times throughout the experiment to minimize

systematic errors.

To determine the influence of two- and three-body loss processes among atoms

occupying only two spin states to the measurements described above, we repeated

the experiment with all possible binary mixtures. For this data, the three-state

mixture was first prepared as described previously. Before the field was ramped

to the field of interest, however, one of the three components was removed with

a resonant light pulse. Again, we make use of the fact that the Zeeman energy

splitting between the states is on the order of 80 MHz at our preparation field of
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Figure 6.2. The fractional population remaining N201ms/N1ms with respect to the field
of interest for each binary mixture. Atoms in state |1〉 (blue) of a |1〉-|2〉 mixture, state
|2〉 (green) of a |2〉-|3〉 mixture and state |3〉 (red) of a |1〉-|3〉 mixture are shown. The
cyan, pink, and purple vertical lines represent the locations of the a12, a23, and a13

Feshbach resonances respectively.

568 G to selectively heat the atoms in one of the spin states out of the trap in

a sufficiently short time ∼ 100µs that the light pulse leaves the other two states

effectively unperturbed. The ratio of atoms remaining after evolution times of 201

and 1 ms at the various fields of interest was then measured in an identical manner

as described above.

Figure 6.2 shows the ratio N201ms/N1ms for atoms in state |1〉 (blue) of a |1〉-
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|2〉 mixture, state |2〉 (green) of a |2〉-|3〉 mixture, and state |3〉 (red) of a |1〉-|3〉
mixture respectively. We have checked the populations of the states not shown

for each of the pairs over a number of points to assure that no state selective

loss occurs in any of the binary mixtures. With the exception of the loss features

between 600 and 750 G, each of the two-state mixtures was found to be stable. The

loss features observed are attributed to three-body recombination to the weakly-

bound Feshbach molecular states. Since the two-state mixtures are stable for fields

B ≤ 600 G and B ≥ 750 G, with lifetimes limited only by heating from off-resonant

light scattering from the trapping beams and one-body loss from background gas

collisions, excess loss in the three state mixtures at these fields are due to three-

body events involving one atom from each spin state.

In Figure 6.1(a), the dominant loss feature centered at 720 G occurs in the

vicinity of the three overlapping interspecies Feshbach resonances. Significant loss

due to three-body recombination is expected in this region since recombination

events including one atom from each spin state are not suppresses by the exclusion

principle and a significant increase in the event rate is expected when two or more

scattering lengths are resonantly enhanced. When all three scattering lengths are

much larger than the characteristic length scale lvdw, the rates are expected to

scale in some manner with the magnitude of the scattering lengths, analogous to

the a4 scaling in identical Bosonic systems (see Section 3.2).

Similarly, the high stability near zero-field and in the vicinity of the zero cross-

ings of the Feshbach resonance, around 560 Gauss, is not surprising. Near zero

field, at least two of the scattering lengths are small as compared to lvdw. In this

case, the system effectively consists of an interacting two-component gas, which is

stable, and a ”spectator” Fermi gas consisting of the third component. Near the

zero-crossings, at least one of the pairwise scattering lengths was generally small.

Here, three distinguishable particles can still strongly interact since the third parti-

cle acts as a mediator for the weakly interacting pair. However, all three scattering

lengths are also minimized near the zero-crossings, leading to high stability against

three-body loss. It is difficult to interpret the high-field data (B ≥ 600 G) in this

experiment due to the influence of three-body loss to the Feshbach molecular states

and the fact that the three-body loss rates were likely unitarity limited through-

out this range at the time. The general trends of highest loss near the Feshbach
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resonances, high stability near the zero-crossings of the scattering lengths, and

the stability of all binary mixtures for fields away from the resonance locations

provides a nice quality check of the general trends of the magnetic field depen-

dent three-body loss in the three-state mixture to what was expected based on the

magnetic-field dependence of the scattering lengths shown in Figures 6.1(b) and

(c).

In the low-field region, unexpected resonant loss features are observed near

127 and 504 Gauss, where the pairwise scattering lengths are not predicted to

exhibit any resonances. The narrow loss feature at 127 Gauss, first reported by S.

Jochim’s group [145], is particularly surprising as all three scattering lengths are

quite smooth in this regime with a12 ' −140a0 > 2 lvdw, a23 ' −187a0 ∼ 3 lvdw,

and a13 ' −660a0 > 10 lvdw. Resonant loss is also clearly evident near 500 Gauss,

exhibiting differing loss rates for the three states leading to a population imbalance.

At this field, our data is in stark contrast to that published in Reference [145]. They

observed no state dependent loss and the resonant feature was less visible in their

qualitative data, regardless of the temperature and degeneracy of their gas [190].

We have also observed the 127 and 500 Gauss resonant features and the emergence

of population imbalance only near the 500 Gauss feature at higher temperatures

(T = 4 µK) and in a different trap configuration, as discussed in Appendix B,

and shown in Figure B.2. To date, the state-dependent loss mechanism is still a

mystery, with possible explanations ranging from fundamental processes in which

a three-body event occurs and only one or two of the reaction products are formed

with enough energy to exit the trap, to simple systematic errors leading to heating

and loss that have not yet been identified in our system.

At 228 Gauss, preferential loss from states |1〉 and |3〉, and suppressed loss

from state |2〉 is observed. This feature is likely associated with a |1〉 − |3〉 p-

wave Feshbach resonance near this field. A simple calculation based on the known

locations of the p-wave resonances in 6Li (See Table 2.4.1) and the energy tuning

of the high-field seeking Zeeman sublevels in a magnetic field [11] suggests that

the |1〉 − |3〉 p-wave resonance should occur near 223 Gauss. The |2〉 − |3〉 and

|3〉 − |3〉 p-wave resonances are expected to occur at higher fields near 250 G and

283 G respectively. We also observed a very narrow but inconsistent loss feature at

259 G, which is not shown here. Further, the modest increase in stability observed
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near 200 G did not appear in our data taken at 4 µK, see Figure B.2.

Figure 6.1(a) provides a qualitative picture of the magnetic-field dependent

three-body rates that emerge with the inclusion of a third spin-state to the system.

The spectrum of loss features was found to be quite rich in the low-field regime,

demonstrating regions of high stability and rapid loss dependent on the magnitude

of the three s-wave scattering lengths. We decided to preform a measurement of

the field-dependent three-body loss rate coefficients (K3) to quantify the stability

of the gas in this field regime, along with obtaining data that can be compared with

theoretical models to determine the physical basis for the anomalous loss features

at 127 G and 500 G.

6.2 Measurement of Three-Body Loss

It is difficult to extract quantitative results from our previous measurements be-

cause (I) two- and three-body loss occurred during the magnetic field ramps to the

field of interest and to the imaging fields, as shown in Appendix B, and (II) the

temperature and density of the gas varied for different fields of interest and hold

times. It is therefore difficult to apply our measurements to calculate the stability

of samples with different temperatures and/or densities. Our second set of exper-

iments measured the three-body loss rate coefficients K3, restricted to magnetic

fields where the decaying populations remained balanced. For these experiments,

the magnetic field was swept to the field of interest Bhold in 10 ms after creation

and thermal equilibrium of the three-state mixture as before. The number N(t)

and temperature T (t) of the atoms in state |3〉 are then measured by absorption

imaging at the field of interest Bhold for hold times ranging from 2 ms ≤ t ≤ 4 s. In

this way, the atoms are imaged at each of the fields of interest, avoiding the atom

loss that may occur in a final B-field sweep, and the thermal evolution of the gas

is recorded to be included in the analysis.

From the qualitative data, we saw that for fields B ≤ 600 G and B ≥ 750 G,

two-body processes were negligible. Therefore, in our analysis we only include trap

loss associated with one-body processes (i.e. collisions with background gases and

heating from off-resonance light scattering) and three-body processes involving

one atom from each spin state (three-body recombination events which lead to
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loss of both the atom and molecule from the trap). All of the processes involving

multiple atoms in the same spin state are suppressed by Pauli-blocking at these

fields, and are therefore excluded from the analysis. Our analysis closely follows

the model derived by R. Grimm’s group for analyzing the loss rate coefficients of

ultracold atomic gases, which considers the time evolution of both the number and

temperature of the gas [199, 200].

6.2.1 Three-Body Loss Analysis

The differential equations which describe the one- and three-body loss of our three-

component Fermi gas are given by

dni(r)

dt
= −K3n1(r)n2(r)n3(r)−K1ni(r) (6.1)

where K3 (K1) are the three-body (one-body) recombination rate constants and

ni(r) denotes the density of the atoms in states |1〉, |2〉, or |3〉 for i = 1, 2, 3

respectively. In our case, we prepare equal populations in all three states and we

are not considering loss at any magnetic fields where two-body loss is appreciable

or state-selective decay is present. Therefore, the analysis is simplified because

the population and density is equal for atoms in each of the states throughout the

experiments (ni(r) = n(r)).

Our data is given in terms of the total atom number per spin state N and

temperature T of the gas. When the three-body recombination events involve one

atom from each spin state, Equation 6.1 can be simplified to yield a differential

equation representing the evolution for the number of trapped atoms in each of

the equally populated spin states N(t) as

dN

dt
= −K1N −K3〈n2〉N. (6.2)

Here, 〈n2〉 is the average value of the squared density per spin state. K3 in this

equation is the three-body rate coefficient for the number of atoms lost per spin

state, defined in Equation 3.46. The one-body rate constant K1 represents the

1/e lifetime of the atoms to one-body loss. Assuming a non-degenerate gas with

a Gaussian density distribution in a harmonic trap, the density is normalized by
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(a) (b)

Figure 6.3. Evolution of (a) the number N(t) and (b) temperature T (t) for atoms in
state |3〉 with respect to hold time t of the three-state mixture at a field of 302 Gauss.
The solid lines are fits to the data using the routine described in the text, resulting in a
three-body loss rate coefficient for this field of K3 = 1.19× 10−23 cm6/s.

the total atom number per spin state as

n(r) = N
(a
π

)3/2

e−a(x2+y2+z2), (6.3)

where a = mω̄2/(2kBT ), which depends on the mean trapping frequency ω̄ and

the temperature T of the gas. The time evolution of the atomic populations can

therefore be represented in terms of the measurable quantities: total number of

atoms per spin state N(t), temperature of the gas T (t), and the mean trapping

frequencies ω̄ = (ωxωyωz)
1/3 as

dN

dt
= −K1N − γ

N3

T 3
, (6.4)

where

γ =
K3√
27

(
mω̄2

2πkB

)3

. (6.5)

In general, the time-dependence of the temperature must also be accounted

for to constrain Equation 6.4 above. T. Weber and co-workers have derived a

differential equation modeling the thermal evolution of the gas attributed to the

two primary heating mechanisms: anti-evaporation and recombination heating [199,

200]. Equation 6.2 demonstrates that the atom-loss rates from three-body events

scales with the atomic density squared. In our harmonically trapped samples, the
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density is highest at the center of the trap where the particles, on-average, have

the lowest energy. This results in spatially inhomogeneous three-body atom loss

rates, preferentially heating the low-energy atoms from the center of the trap and

leading to anti-evaporative heating of the gas. Comparing the mean potential

energy of an atom undergoing a three-body recombination event (kBT/2) to the

average energy per particle in the gas (3kBT/2), it is found that for each atom

lost from anti-evaporation, an average excess of kBT energy is left in the sample.

The recombination heating mechanism accounts for the average energy that the

three-body reaction products (high-energy dimer and recoiling atom) deposit as

they leave the gas. An energy term kBTh is included in the analysis to account for

this trap-dependent heating mechanism.

Relating the total heating energy (kB(T + Th)) to the energy of the trapped

gas (3NkBT ) yields an expression for the time evolution of the temperature of the

gas in the presence of three-body decay given by

Ṫ

T
=
Ṅ

N

kB(T + Th)

3kBT
. (6.6)

Inserting the expression for Ṅ from Equation 6.4 into the above formula, and

assuming that only the three-body loss mechanisms contribute to the heating,

yields an explicit expression for the temperature evolution of the gas which is

given in terms of experimental observables N(t) and T (t) as

dT

dt
= γ

N2

T 3

(T + Th)

3
. (6.7)

Equations 6.4 and 6.7 form a set of coupled, nonlinear differential equations which

can be numerically integrated for a given parameter set [N(0), T (0), K1, K3, and

Th] to give N(t) and T (t). Representative plots of the number Ni and temperature

Ti evolution of atoms in state |3〉 for the set of i hold times ti in the three-state

mixture are shown in Figure 6.3. Each data point in these graphs represents the

mean value of five independent measurements whose variance (σNi and σTi repre-

sented by the vertical error bars on each data value) are given by the uncertainty

in the mean.

The best-fit parameters to simultaneously fit the measured number Ni and
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temperature Ti data at each field of interest are obtained by minimizing χ2, given

by

χ2 =
∑
i

(N(t)−Ni)
2

σ2
Ni

+
(T (t)− Ti)2

σ2
Ti

(6.8)

where the sum over i includes all 12 data points taken at hold-times ti = 2i ms,

which span 2 ms ≤ ti ≤ 4 s. We use an iterative approach to find the best-fit

values of the parameters based on the nonlinear fitting routines and numerical

algorithms detailed in References [201] and [202]. The fit is preformed using the

Wolfram Mathematica computing software as follows:

� Choose reasonable initial values for the five fitting parameters N(0), T (0), γ,

K1, and Th

� For each parameter, record the χ2 values as the parameter value is varied

over ±2.5% in 0.5% steps while holding all other parameters constant.

� Fit the set of χ2 values for each parameter to a parabola to find the minima,

or best-fit value.

� Cycle through all parameters to determine the minimum χ2 for each.

� Reset the initial guess parameter values equal to the stored values that min-

imized χ2 and repeat the procedure until the parameter values converge.

The accuracy of the fit is most conveniently determined from the reduced chi-

squared χ2/ν, where ν is the number of degrees of freedom given by the number

of data points minus the number of fitting parameters. From χ2 statistics, a good

fit results in χ2/ν ' 1. Significant deviations from this value occur when either

the assumed fitting distributions are not good representations of the data or the

variances of the data are significantly under/over estimated [201]. We assumed

that the Innsbruck model, given by Equations 6.4 and 6.7, was appropriate and

adjusted the variance of the data to yield χ2/ν = 1 whenever the fits significantly

varied from this value.

In multi-parameter fits, the one-σ error for a given fit parameter can be es-

timated by determining the variation of the parameter value about its minima

which increases χ2 by one. Care must be taken in this analysis due to the possible
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correlations that can exist between the parameters. In this case, the contour plot

of χ2 with respect to various parameters may be elliptical, necessitating that we

consider the full range of the ∆χ2 = 1 contour over the entire parameter space and

not just the intersection of the contour with the axis of the parameter of interest

[201]. To this end, for each field value we mapped out the variation of χ2 with

respect to all five of the fitting parameters. This simulation was conducted using

Monte-Carlo calculations where each of the parameters were randomly selected

within a range of parameter space that encompassed the ∆χ2 = 1 contour. The

±68% confidence interval values are then given by the maximum and minimum

values of the parameter of interest that yield an increase of χ2 by one for any value

of the other fitting parameters.

6.2.2 Low-Field Three-Body Recombination Coefficients

For each field of interest, the time evolution of the atoms in state |3〉 is measured,

yielding sets of data analogous to that shown in Figure 6.3, which are then fit

using our routine to extract the three-body recombination rate constant. The

solid lines shown in the figure are simultaneous least-squares fits of the number

and temperature data to Equations 6.4 and 6.7, demonstrating that our data is

well fit by the Innsbruck model. The best-fit K3 values over the range of magnetic

fields 15 G ≤ B ≤ 953 G is shown in Figure 6.4. Over this range, K3 varies by over

4 orders of magnitude from 1.63×10−26 cm6/s at ∼ 15 Gauss to 1.02×10−21 cm6/s

at ∼ 776 Gauss. Additionally, the recombination heating term Th extracted from

our fits varied from 1.5 − 4µK and the one-body loss rate coefficients K1 varied

from 0.1− 0.33 s−1, indicating relatively low but non-negligible one-body heating

rates. The error bars in Figure 6.4 indicate the 68% confidence interval of our

data, determined by the multi-parameter ∆χ2 = 1 analysis described above. A

systematic uncertainty in the data arising from our uncertainty in the atom number

(±30%) and trap frequencies (±5%) is not included in the data. Due to the scaling

of K3 as N2ω̄6, small errors in these values can lead to large uncertainties (±70%)

in our extracted K3 values.

The three-body recombination rate constants closely follow the qualitative

trends shown in Figure 6.1 for the collisional stability of the gas. Near 0 and
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Figure 6.4. Magnetic field dependence of the three-body loss rate coefficient, K3. The
open circles represent data in the range of fields where we previously observed loss in at
least one of the two-state mixtures.

568 G, the three-body recombination rates are relatively small, allowing for sta-

ble three-state Fermi gases to be created. At 568 G, the field at which we create

the three-state mixture, K3 = 9.33 ± 2.44 × 10−26 cm6/s. A gas with a density

n = 1012 cm−3 per spin state has a 1/e lifetime on the order of 10 s at this field,

long compared to any of the relevant experimental timescales. Additionally, an

anomalous resonant peak in K3 is observed at B ' 125 G, which is consistent with

the anomalous loss observed near this field in the qualitative data. At 504 G, cor-

responding to the second loss peak observed in the qualitative data, a population

imbalance again emerged at longer hold times. Our model cannot account for such

state-dependent loss rates and therefore we did not include a value for K3 at this

location.

In the range 600 G < B < 750 G, the measured decay includes loss events

that were observed in the two-state mixtures at these field values. These state-

selective decay mechanisms are not included in our analysis, possibly leading to an

overestimate of the reported K3 values (represented as open circles in Figure 6.4).

The temperature of the gas varied from nominally 1.9 µK to 6 µK for various hold

times and field values. The maximum value of the three-body loss rate constants
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at these temperatures, calculated from the absolute maximum values Kmax
3 given

in Equation 3.47, ranged from Kmax
3 (1.9µK) ' 2 × 10−21 cm6/s to Kmax

3 (6µK) '
2×10−22 cm6/s. As can be seen in Figure 6.4, all of the K3 values measured above

600 G lie within this range and the effects of unitarity and thermal averaging

on these data points cannot be ruled out. At first, we thought that the smooth

decrease of the three-body rates for the three highest field values above 834 G, and

the fact that the calculated Kmax
3 for these values was larger than the measured

rates by at least a factor of two, signaled that the measured rates for the three

highest field values were nominally correct. Later measurements taken with a

colder sample (See Section 7.2.1) demonstrated, however, that these data points

were under reported by over an order of magnitude attributed to the effects of

unitarity.

For the low-field data (B ≤ 600 G), the smaller pairwise interaction strengths

were expected to yield reduced three-body loss in this regime. Here, the temper-

ature of the gas varied from nominally 1.9 µK to 4 µK, leading to a maximum

three-body atom loss rate of Kmax
3 (4µK) ' 4.4 × 10−22 cm6/s. It is unlikely that

any of our data in this region is limited by unitarity as the measured rates were

lower than Kmax
3 by between a factor of six (at 125 G) and over four orders of

magnitude (at 14.5 G). The extent to which the rate coefficients are significantly

affected by the temperature of the gas was defined in Section 3.4 in terms of

the critical scattering length ac, given by Equation 3.48. For our temperatures,

ac(4 µK) ' 2680 a0, nearly a factor of three times larger than the magnitudes of

any of the scattering length in the low-field range. The measured low-field recombi-

nation rates are therefore independent of the energy and can be directly compared

to the calculated recombination rates at threshold. The results of this experiment

have been published in Physical Review Letters [144] in 2009, and our low-field

K3 results are in good agreement with those independently obtained in an earlier

publication by S. Jochim’s group in Heidelberg [145].

6.3 Interpretation of the Low-Field Data

The loss rates of the gas near 125 G and 500 G were anomalously large, and not

explainable by any distinct features in any of the scattering lengths, therefore mer-
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iting further investigation. The resonant features have been shown to be attributed

to a single Efimov-like trimer state crossing the free-atom scattering threshold near

these locations [3, 4, 203]. Fits to the locations and shapes of these features based

on universal predictions have revealed a surprising amount of information relating

to the interactions among distinguishable atoms, both in and on the verge of the

universal regime. In this section, the theoretical interpretation of our three-body

loss data in the range of magnetic fields from 15 to 600 Gauss is discussed in greater

detail.

As discussed in Chapter 3, the zero-range approximation is only accurate so

long as all of the scattering lengths (|a12|, |a23|, and |a13|) are much larger than

the characteristic length scale in our system, given here by the van der Waals

length scale lvdw = 62.5a0. In the low-field region, all three scattering lengths

satisfy |aij| > 2lvdw for magnetic field values between 122 G < B < 485 G. In this

universal region, all three scattering lengths are negative and relatively large (near

320 G, the smallest scattering length a12 = −290a0 = −4.6 lvdw) and calculations

of K3 using the zero-range approximation should be reasonably accurate. The

resonant loss features, whose maxima lie near 125 G and 500 G respectively are

surprising, however, as they lie on the outskirts of this universal regime. Here, the

effects of the finite range of the interaction is non-negligible and we were initially

doubtful that the loss features could be described within the framework of Efimov

physics.

In Reference [3], E. Braaten and co-workers used a generalization of the Skorni-

akov and Ter-Martirosian (STM) equations, discussed in Section 3.3.2, to numeri-

cally solve for the low-field rate constants in Equation 3.40. By fitting the shape

of the K3 data from the Heidelberg group [145] to their model in the region 122

G < B < 485 G, and using the known magnetic field dependence of the scattering

lengths [116], they were able to extract the three-body parameters describing the

loss in this regime. Their results from this fit are shown in comparison to our data

as the red curve in Figure 6.5. Here, the magnetic-field dependent three-body

loss rates are calculated using their best-fit values of the three-body parameters:

the trimer binding wave number (κ∗ = 76.8 a−1
0 ) and the inelasticity parameter

(η∗ = 0.11). The blue dots in the figure are the experimentally measured values

of the three-body loss rate coefficients reported by our group in Reference [144].
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Figure 6.5. Three-body atom loss rate coefficient spanning the low-field region. Our
measurements of the magnetic-field dependence of K3 (blue dots) are compared to those
calculated by E. Braaten et al. [3] (red curve). The universal theory predicts resonantly
enhanced loss rates at ∼ 125 G and 500 G attributed to an Efimov trimer state crossing
the free-atom threshold at these locations. The dashed lines represent the boundaries of
the universal region, outside of which at least one of the scattering lengths a ≤ 2lvdw.

The vertical lines represent the boundaries of the region in which the smallest

scattering length |a12| ≥ 2lvdw, outside of which, the universal theory is expected

to break down due to finite range effects. The absolute normalization of the fit

was determined by the three-body parameters κ∗ and η∗, reflecting the universal

dependence of the loss rates on the scattering lengths discussed in Section 3.2.

The fit by Braaten and co-workers is in good agreement with the shape of

our narrow resonance feature near 125 G and the absolute normalization of the

theoretical curve agrees with much of our data in the universal regime to within

the statistical uncertainty of our K3 measurements. A second resonant feature

is predicted around 500 Gauss, near the location of the enhanced loss we previ-

ously observed in the qualitative data shown in Figure 6.1. We could not report a

three-body loss coefficient at the location of the predicted peak because our data

exhibited state-dependent loss rates at these fields. The three-body loss measure-

ments published by the Heidelberg group [145] were similar to our low-field data to

within a universal offset due to the systematic errors in our measurements. Their
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data exhibited no sharp features in the vicinity of the resonance predicted at 500

G resonance, but instead displayed a very broad loss feature which peaked at the

higher end of the universal regime.

Similar predictions of the three-body recombination rate of three-component
6Li system in the low-field region have also been independently calculated by three

other groups, using either a hyperspherical formalism [4], functional renormaliza-

tion techniques [28], or using the analytical results derived by E. Braaten and H.

W. Hammer [1] for three identical bosons, given in Equation 3.36, and assuming a

reasonable form for the effective scattering length that describes the total rate for

three-body collisions [5]. In all of these calculations, resonant loss features near

125 G and 500 G are predicted, attributed to an Efimov trimer state crossing the

free-atom threshold near the resonance locations.

The field dependent binding energies (ET ) of the Efimov trimer state respon-

sible for the loss peaks were calculated in References [4, 28, 8]. They found that

both of the predicted resonances are actually associated with a single Efimov state

crossing threshold near both 130 G and 500 G, as originally illustrated in Reference

[4] and reprinted here in Figure 6.6 for reference. The binding frequency of the

trimer state (νT = ET/(2π~), where ~ is Planck’s constant) is predicted to increase

from zero near 130 G and 500 G to a maximum of ∼ 10 MHz near 330 G.

The binding energy of the next deeper Efimov trimer is characterized in Refer-

ence [8]. This state is relatively uniform over the low-field regime, with a binding

frequency on the order of 12 GHz. The binding frequency of this state greatly

exceeds the van der Waals frequency (νvdw = 154 MHz), signaling that the most

weakly bound Efimov state observed in our data is also the ground-Efimov-state

(E
(0)
T ) and all deeper states predicted by the universal theory are simply artifacts

of the zero-range approximation.

P. Naidon and M. Ueda also considered the possibility that the resonant features

could be described in terms of non-Efimov trimer states, originating from other

spin channels with the same total projection (mF = −3/2), crossing threshold near

130 G [4]. The energy scaling of these states as a function of magnetic field are

shown as the dotted lines in Figure 6.6. They found that this scenario is unlikely

as the steep monotonic field dependence of these energies cannot account for the

second loss feature near 500 G. From their calculations of the width (shaded blue
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Figure 6.6. (Solid curve) The magnetic field dependent binding energies of the predicted
low-field Efimov trimer state. (Shaded region) The calculated width of the Efimov state.
(Dashed curves) The estimated energy scaling of possible non-Efimov trimers from all
other spin channels. Figure taken from Reference [4].

region) and binding energy of the Efimov state (solid blue curve), they were also

able to determine that the lifetime of the trimer is approximately 50 ns at 300 G,

much shorter than any of the relevant timescales in our experiment.

In Reference [5], A. Wenz and co-workers proposed a simple analytic approxi-

mation for the three-body recombination rate in regions where all three scattering

lengths are negative. In their approximation, they consider the analytical results

for K3 given in Equation 3.36, which was derived for the case when all three scat-

tering lengths are equal. To this end, they define an effective scattering length am

given by

am = − 4

√
1

3
(a2

12a
2
13 + a2

12a
2
23 + a2

13a
2
23). (6.9)

This relatively simple expression nicely reproduces many of the behaviors of univer-

sally interacting three-body systems discussed in Chapter 3. If all three scattering

lengths are equal, am reduces to the value of the scattering lengths, reproducing the

simple a4 scaling derived for three-body recombination in this case. The effective

scattering length also correctly accounts for the fact that three-body processes are

suppressed when two of the three scattering lengths are small, whereas significant

loss can still occur when at least two of the three scattering lengths are resonantly

enhanced. This expression is not valid, however, either when one of the scatter-

ing lengths diverges, leading to a diverging three-body rate which is unphysical, or
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when any of the scattering lengths cross zero. E. Braaten et al. considered another

possible choice for the effective scattering length when all three scattering lengths

are negative. Their term is expressed as the geometric mean of the three scattering

lengths ag = −|a12a23a13|1/3. Using their universal results to test the accuracy of

the approximate expressions, they found that ag is more accurate than am [8].

In Reference [5], an explanation for why the loss feature near 500 G is much

broader than that predicted in References [4, 28, 3] was also provided. They

showed that the observed behavior of the three-body rates could be well described

using their formalism by taking into account a magnetic field variation of the

trimer state lifetime. In the previous calculations, it was assumed that the three-

body parameters κ∗ and η∗ were independent of the magnetic field so long as

the scattering lengths remained in a regime where universal predictions apply. In

principle, these parameters are smoothly varying functions of the magnetic field,

effectively constant only in a small field range such as in the vicinity of a sufficiently

narrow Feshbach resonance [133, 204].

For the lower three Zeeman levels of 6Li, this variation can be significant and

must be accounted for. A. Wenz and co-workers pointed out that the binding

energies of the dimers responsible for the Feshbach resonances at 543 G, 690 G,

811 G, and 834 G vary strongly (by nearly a factor of 6) with magnetic field over

the low-field region. The lifetime of the trimer state depends on the binging energy

of the dimer because the overlap of the wavefunctions of these states increase for

smaller dimer binding energies. In our loss measurements, the trimer state acts as

an intermediate level, enhancing the probability for atoms to undergo three-body

recombination into the dimer states. Hence, greater overlap of the wavefunctions

lead to an enhanced decay probability. As the trimer lifetime is directly related to

the inelasticity parameter η∗ describing the widths of the resonances, this suggests

that η∗ should vary with the magnetic field. It is assumed in their model that

the variation of η∗ is dependent only on the inverse of the binding energies of

the dimer states associated with the Feshbach resonances, and that all four dimer

states contribute in the same way, leading to a scaling of the inelasticity parameter

as

η∗ = A

(
1

ED,1
+

1

ED,2
+

1

ED,3
+

1

ED,4

)
, (6.10)
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Figure 6.7. (a) Our low-field K3 measurements (blue dots) are particularly well fit (red
curve) using the model described in Reference [5]. (b) The effective scattering length
am, calculated from Equation 6.9, is shown as the solid green curve when all aij < 0,
and dashed outside of the range of validity when any aij > 0. The vertical dashed lines
represent the boundaries of the universal region, outside of which at least one of the
scattering lengths a ≤ 2lvdw. (c) Magnetic field dependence of the binding energies (in
units of 2π~) of the four dimer states associated with the Feshbach resonances between
543 G and 834 G. Over the low-field universal regime, the binding energies varies by
more than a factor of five.
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where ED,i are the binding energies of the dimer states (i = 1, 2, 3, 4) associated

with the Feshbach resonances near 543 G, 834 G, 690 G, and 811 G respectively,

and A is a numerical constant [5]. The binding frequencies of the four dimer states

are shown for reference in Figure 6.7(c).

A fit of our low-field three-body loss rate data using the Heidelberg model,

described above, is shown in Figure 6.7(a). Here, the coefficient of the scaling

relation A, along with the value of κ∗ were used as the fitting parameters. Figure

6.7(b) shows the calculated effective scattering length am in this field regime, as

defined in Equation 6.9. The effective scattering length am at 130 G and 510

G are equal, and am reaches its maximum amplitude near 330 G, qualitatively

reproducing the shape of the calculated Efimov trimer binding energy shown in

Figure 6.6. Above ∼ 527 G, at least one of the scattering lengths becomes positive

and the assumptions used in deriving the effective scattering length break down

until the field exceeds 834 G, above which all three scattering lengths are again

negative. The binding frequencies of the four dimer states associated with the

Feshbach resonances used in this calculation are shown in Figure 6.7(c). These

binding frequencies, which were calculated using the model detailed in Reference

[9], tune as expected with nominally two Bohr magnetons (2.8 MHz/G) for fields

below the zero-crossings of the Feshbach resonances. As can be seen in the top

panel of the figure, an excellent agreement with our measured three-body loss

rates is obtained throughout the universal regime by fitting the data using the

Heidelberg model.

Similar results have recently been obtained using a more rigorous calculation of

the dependence of η∗ with the magnetic field by S. Rittenhouse [205]. In this article,

the three-body rates are solved for using both numerical solutions of the inelas-

tic scattering rates, within the Wentzel-Kramers-Brillouin (WKB) approximation,

using the adiabatic hyperspherical representation as well as using an analytic ex-

pression for K3 that he derived resulting in a term analogous to that first reported

in Reference [142]. It is shown in this publication that the inelasticity parameter

scales with the binding energy of the dimers as η∗ = (1/2)ln[1/(1 − exp(−β∆))],

where the parameter β encompasses the unknown short-range dependence of η∗

which is independent of the dimer binding energies ∆. The fact that such good

agreement can be realized between the zero-range models from References [5, 205]
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and our data, without also scaling κ∗ with magnetic field, suggests that even

though the resonant features lie on the verge of the universal regime, the short-

range physics determining the properties of the Efimov trimer state are likely

independent of the magnetic field.

Our low-field measurements of the collisional stability and three-body loss rates

of the lowest hyperfine spin states of 6Li has revealed a great deal of information

about three-body interactions in systems of distinguishable particles with unequal

scattering lengths. We demonstrated that, at magnetic field values where at least

two of the three scattering lengths are small, a long-lived three-component gas can

be formed at high densities. The stability region around 560 G, where all three

scattering lengths in this system are crossing through zero, has in fact been used

to prepare weakly-interacting, quantum degenerate gases of three-component 6Li

atoms [190, 175].

Further, it is now generally accepted that the resonant loss features in the three-

body recombination rate data near 130 and 500 G are associated with an Efimov

trimer state crossing threshold near these locations. Extensive theoretical effort

over the last few years to explain the low-field data, reported by the Heidelberg

group [145] and our own reported results [144], now makes the observed three-

body recombination rates of the gas in this field regime well described within the

framework of Efimov physics. Since the two resonant loss peaks are associated

with the same Efimov state crossing threshold twice, the variation of the widths

of the two features has revealed that the inelasticity parameter scales with the

binding energies of deeply bound molecular states. The properties of the Efimov

trimer can be well described completely within a universal framework in terms

of the three-body parameters κ∗, defining the spectrum of the Efimov state, and

now A or β, the normalization of the inelasticity parameter, to fully predict the

three-body interactions in the low-field universal regime.



Chapter 7
3-State 6Li Gases at High Fields

We were interested in studying three-component Fermi gases in the high-field re-

gion (B ≥ 600 G) for two primary reasons, (I) to determine the stability of the gas

both in the vicinity of the Feshbach resonances, where superfluid two-component

Fermi gases have been previously created [22]; and in the high-field limit where

the gas exhibits SU(3) symmetry for application to future many-body studies with

strongly-interacting gases and (II) to determine the three-body parameters in the

universal regime above the ∼ 560 G zero crossings, enabling the full mapping of

the spectrum of Efimov trimer states and features throughout the range of fields

encompassing the three overlapping Feshbach resonances. In our previous exper-

iment, we published measurements of the three-body recombination rates for six

field values in the range 600 G to 960 G. In Reference [3], E. Braaten and co-

workers fit the last two data points at 894 G and 953 G using their calculations in

the zero-temperature limit, predicting that an Efimov resonance should occur at

fields near 1200 G. These results encouraged us to explore the high-field, strongly

universal regime in more detail, where novel phenomena is expected to emerge in

the vicinity of the three overlapping Feshbach resonances.

It is generally accepted that there are no universal connections of the three-

body parameters across a zero-crossings of the scattering lengths [128]. This non-

universal behavior is due to the magnetic-field variation of the two- and three-body

potentials which define the three-body parameters in a given universal region. As

the scattering lengths are tuned across a zero-crossing in a, it is assumed that the

potentials have varied sufficiently that corrections to the zero-range approxima-
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tions diverge (lvdw/a → ∞). Therefore, since the scattering lengths all cross zero

between the low- and high-field regions, our previous measurements of the low-

field loss rates made no predictions about the locations or widths of the Efimov

resonances at fields above the zero-crossings. Independent measurements of the

three-body loss rates were therefore required to extract the three-body parameters

in the high-field universal regime.

This chapter describes our second set of experiments, in which we measured

the three-body decay rate constants over the range of fields 834 G < B < 1500

G. Here, the scattering lengths a12, a23, and a13, shown in Figure 7.1, are all

negative signaling that no universal dimer states exist. At the lower values of

this range, the scattering lengths are strongly tuned by the nearby Feshbach reso-

nances, yielding very large and widely varying interaction strengths. At the high

fields, the scattering lengths all asymptote to the anomalously large triplet scat-

tering length (at = −2140a0), defined by the zero-energy resonance in the triplet

scattering potential. Throughout the high-field regime, all three scattering lengths

are significantly over an order of magnitude larger than the van der Waals length

scale (lvdw), well within the universal regime where theoretical calculations based

on the zero-range approximation, discussed in Chapter 3, are justified.

By utilizing our various large-volume traps, we were able to measure the three-

body loss rate coefficients (K3) throughout this range of fields, observing a resonant

loss feature associated with Efimov physics near 895 G as well as determining

the asymptotic high-field loss rates important for future realization of many-body

physics with these three-component Fermi gases in the SU(3) symmetric regime.

At the end of the chapter, I will briefly discuss the implications of this research

in terms of the theoretical study it has enabled, and compare our measurements

with the various features that have been recently observed in three-component 6Li

gases.

7.1 High-Field State Preparation

For this experiment, two-component 6Li gases were again evaporatively cooled in

the primary dipole trap nearly to degeneracy, as described in Section 5.1. A very

high evaporation efficiency can be achieved at fields close to the Feshbach reso-
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Figure 7.1. The high-field (600 G ≤ B ≤ 1500 G) s-wave scattering lengths for 6Li
atoms occupying states |1〉, |2〉, and |3〉. The purple, pink, and cyan vertical lines
represent the locations of the |1〉-|3〉, |2〉-|3〉, and |1〉-|2〉 Feshbach resonances at 690 G,
811 G, and 834 G respectively.

nance [206], where the s-wave elastic scattering cross-section is limited by unitar-

ity throughout the cooling process, and the two-state mixture is effectively stable

against inelastic two-body loss (see Section 2.3 and Figure 6.2). Forced evapora-

tion of an equally balanced mixture of atoms in states |1〉 and |2〉 occurred at a

field of 840 Gauss for this data set to optimize the cooling efficiency while assuring

that the final gas consists of free atoms.

Preliminary measurements of the three-body loss rates for our three-state sam-

ples in the high-field regime, presented in Figure 6.4, were unitarity limited for

the characteristic ∼ 2 µK gases produced in the primary trap. In Section 5.4, we

discussed the large-volume trapping potentials, which were specifically designed

to provide a reasonably deep conservative potential to confine the 6Li gas, while

maintaining sufficiently low temperature samples to assure that thermal averaging

and unitarity effects on the atomic lifetimes could be discounted. Further, the low

densities achieved in the large-volume traps provided sufficient atomic lifetimes

to prepare incoherent three-state mixtures in thermal equilibrium throughout the

high-field range investigated. The atoms were directly loaded into either of the

large-volume traps during the last second of the evaporation stage.

Remember that the power for the large-volume beams was derived directly from
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the zero-order beam that is not deflected by the AOM controlling the primary

dipole trap. As the power of the primary trapping beams is decreased for forced

evaporation, the power of the large-volume trap is increased accordingly. Here, the

power in the primary trap is reduced from ∼ 3 W to zero while the power in the

large-volume trapping beams change by less than 4%. By varying the time-constant

of the primary trap decay profile and recording the equilibrium temperature of the

gas, we assured that the large-volume trap was adiabatically loaded.

The stabilizing forces from the levitation and translation fields were imperative

for our high-field lifetime measurements. These gradient fields served two purposes,

supporting the atoms against gravity as well as translating the center of the primary

and booster coil field gradients onto the atoms. Without canceling these forces,

not only is the efficiency of the adiabatic transfer greatly reduced, but oscillation of

the center of mass and/or breathing modes (dipolar and quadrupolar excitations)

are induced as the bias magnetic fields are varied.

After the gas is adiabatically transferred into one of the large-volume traps (I

or II) shown in Figure 5.5, the magnetic field is ramped to the field of interest

within 10 ms. Broad-band RF fields are then applied to drive the |1〉 − |2〉 and

|2〉 − |3〉 transitions at each field Bhold. Each of the RF fields are broadened to a

width of 10 kHz (approximately equal to the Rabi frequency Ω/2π). Depending

on the field of interest and the large-volume trap confining the atoms, the duration

of the RF fields are applied for a time ranging from 10 to 100 ms, chosen to be at

least twice as long as the observed decoherence times at these fields. At the end of

the RF pulse, the sample is again held for an additional 20 ms to allow the atoms

to come into thermal equilibrium. The final sample, confined in either of the large-

volume traps, consists of a balanced three-state mixture at a reduced temperature

T/TF ' 0.5 with N ' 105 atoms in each of the three high-field seeking Zeeman

states.

7.2 Three-Body Loss Measurements

A very similar procedure as that described in Section 6.2 was used to determine

the three-body loss rate coefficients for each field of interest 834 G ≤ Bhold ≤ 1500

G. For this experiment, however, the number and temperature of the trapped
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Figure 7.2. Evolution of (a) the number Ni(t) and (b) temperature Ti(t) for atoms in
state |3〉 with respect to hold time ti of the three-state mixture. This data was taken
from in situ images of the atoms in the large-volume trap II at a field of 877 Gauss. The
green (red) lines are fits to a model which does not include (includes) antievaporation.

atoms were measured as a function of hold time by in situ absorption imaging.

An example data set taken at the field of interest Bhold = 877 G for the number

Ni and temperature Ti evolution of the three-state mixture for the set of 21 hold

times ti = 25 × i ms in the large-volume trap II is shown for the atoms in state

|3〉 in Figure 7.2. Each data point in these graphs represents the mean value of

five independent measurements whose variance (σNi and σTi), represented by the

vertical error bars on each point, are given by the uncertainty in the mean.
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The magnitude of the two- and three-body loss arising in two-state mixtures is

greatly suppressed at high-fields from the mechanisms discussed in Section 2.3. We

tested this assumption for fields in the range 834 G ≤ Bhold ≤ 1500 G by measuring

the population of the remaining atoms in all possible binary mixtures confined in

the large-volume trap I after a 200 ms hold time. The decay was consistent with

one-body loss due to background gas collisions with a 1/e lifetime 1/Γ = 2.8 s. The

measurements confirmed that two- and three-body decay is negligible in the high-

field regime when only two spin-components are involved in the collision events.

Therefore, at ultracold temperatures, three-body loss events including one atom

from each spin state are the dominant loss process in our three-component 6Li

gases for all of the high-field values and atomic densities investigated.

The Innsbruck model, given by Equations 6.4 and 6.7 for the number N(t)

and temperature T (t) evolution of each state, was used to extract the three-body

recombination rate coefficients (K3) for the low-field data. As shown in Figure

7.2 (b), the temperature of the gas in the high-field regime remains approximately

constant as the gas decays. This is consistent with the fact that the energetic atom

and molecule produced in a three-body decay event have a mean free path (lMFP )

much larger than the characteristic size of the gas. From the measured dissociation

energy of the most weakly-bound molecular state in the 6Li triplet potential [207],

the particles (atom and dimer) are expected to each recoil with an energy ER ∼
kB × 500 K. The mean free path of the reaction products are therefore very large

for fields above 834 G (lMFP ' 6 km in a sample with density n0 = 5× 1010/cm3),

and the high-energy reaction products generally exit the cloud without depositing

energy. This is in stark contrast with the low-field data, where recombination into

the deeply bound states associated with the Feshbach resonances can produce much

lower-energy reaction products with significant probabilities of depositing energy

into the gas as they exit the trap (at 500 G, decay into the most weakly-bound

dimer states shown in Figure 6.7(c) leave the trap with recoil energy ER ∼ kB × 7

mK and mean free path lMFP ' 850 µm for samples with densities n0 = 5.5 ×
1012/cm3).

For the high-field data, the recombination heating term Th in Equation 6.7

can therefore be neglected. Although our measurements are generally consistent

with a model that includes a small rise in temperature due to the antievaproative
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heating mechanism, shown by the red dashed curves in Figure 7.2 (a) and (b), lower

values of χ2 are obtained by simply fitting the evolution of the atomic population

using Equation 6.4 and assuming that the temperature remains constant, as shown

by the green solid curves in the figures. Since the overall temperature increase

is minimal compared to the absolute temperature of the samples, ignoring the

thermal evolution of the gas does not significantly change the results of the fit.

7.2.1 High-Field K3 Data

To determine the high-field three-body loss rates (K3), the number evolution of the

atoms in state |3〉 at each field is fit with an analytic solution to Equation 6.4 using

K3, the initial atom number (N0), and the temperature (T ) as free parameters. For

fields between 834 G and 1500 G, the measured values of K3 are shown in Figure

7.3. The red circles (blue triangles) correspond to data taken in the large-volume

trap I (II), giving the three-body loss rates for atoms at a temperature T ≤ 180

nK (30 nK) with a reduced temperature of T/TF ' 0.5 and an initial peak density

in each spin state of n0 ' 5 × 1010 (5 × 109) atoms/cm3. The error bars give

the statistical error from the fit, as discussed in Section 6.2.1, and the uncertainty

in the trap frequencies added in quadrature. A systematic uncertainty of ±60%

arising from the uncertainty in the absolute atom number (±30%) is not included

in these error bounds.

As the field is varied, the measured values of K3 varied by several orders of

magnitude. The smooth decrease of the loss rates as the field is increased above

B ' 975 G was qualitatively expected from the variation of the scattering lengths

at these fields, shown in Figure 7.1. At 975 G, the rates measured in the large-

volume traps I and II converge. Below this field, the divergence of K3 for the

high-temperature (T ≤ 180 nK) and low-temperature (T ≤ 30 nK) measurements

signal the influence of thermal averaging and unitarity on the data. In addition

to the smooth variation of the loss rate with magnetic field, resonant three-body

loss is observed near 900 G in both data sets. This loss feature cannot be directly

explained by distinct peaks in any of the scattering lengths at this field, suggesting

the presence of an Efimov trimer states crossing the three-atom threshold near the

resonance location.
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Figure 7.3. Measured three-body loss rate coefficients in the high-field regime. The red
circles and blue triangles correspond to K3 data extracted from lifetime measurements
taken with the three-component 6Li gases confined in the large-volume traps I and II
respectively.

For fields above 834 Gauss, |a12|, |a23|, |a13| � lvdw signaling that the system

is deeply in the universal regime. The data should therefore be well described

by the zero-range calculations of K3 discussed in Chapter 3. Further, the zero-

temperature approximation for calculating the field dependence of K3 requires the

temperature of the gas must both be in the threshold regime and unaffected by

unitarity. From calculations of the height of the asymptotic barrier in the three-

body potential and the unitarity limit for our three-component gases, given by

Equations 3.45 and 3.47 respectively, it is found that our measured rates can be

compared to the zero-temperature calculations for the T ≤ 180 nK ( T ≤ 30 nK)

data for fields B > 960 G (B > 875 G), and three-body loss rates Kmax
3 � 2×10−19

cm6/s (Kmax
3 � 8×10−18 cm6/s). The measured values for K3 are below Kmax

3 /10

for the 180 nK (30 nK) data for fields above 975 G (907 G). These subsets of

data should be in excellent agreement with the zero-temperature calculations of
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the three-body loss rates, allowing for the first determination of the three-body

parameters for this multi-component 6Li gas in the strongly universal, high-field

regime.

In our measurements, all three scattering lengths were unequal, requiring a

numerical analysis to accurately extract the high-field three-body parameters from

our measurements of the field dependence of K3. We were able to fit the data using

an iterative computer routine that was kindly provided by D. Kang and E. Braaten

[6]. The code numerically solves for the three-body rates using a generalization of

the STM equations [3, 8]. This is the same routine that E. Braaten and co-workers

used to fit the low-field data [3], as discussed in Section 6.3. The best fit (solid line)

to the subsets of the 30 nK data (907 G ≤ B ≤ 975 G) and the 180 nK data (975

G ≤ B ≤ 1500 G), using D. Kang and E. Braaten’s code, is shown in Figure 7.4.

The three-body parameters κ∗ and η∗ are the only free parameters in this fit. As

shown in the figure, our K3 data is well described with the numerical calculation

for fields B ≥ 907 G, yielding κ∗ = 6.9(2) × 10−3a−1
0 and η∗ = 0.016+0.006

−0.010, where

the combined statistical and systematic uncertainty indicate 1 standard deviation.

7.2.2 Interpretation of the High-Field Data

From our high-field measurements, the calculated three-body parameters were then

used to make predictions of the zero-temperature three-body loss rates for all fields

above 834 G using the code provided by D. Kang and E. Braaten. These results

are shown as the dotted line in Figure 7.4. This model predicts that a peak in K3

at B = 895+4
−5 G is attributed to an Efimov trimer state crossing the three-atom

scattering threshold. The three-body loss rate coefficients are locally maximized

at this field, where K3 = 4.1+8.5
−1.5 × 10−17 cm6/s at T = 0. The measured loss rates

for the 30 nK data qualitatively resemble this behavior, also peaking near 895 G,

though at a significantly smaller magnitude due to unitarity. The 180 nK data is

further suppressed at this field, also exhibiting a shift of the peak location which

is likely associated with the finite temperature of the gas.

The dashed line in Figure 7.4 shows a fit to the data using the code from

D. Kang and E. Braaten and taking the unitarity limit into account. Here, the

calculated rates are scaled by 1/K3 + 1/Kmax
3 , as suggested in Reference [7]. The
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K 3

Figure 7.4. Fit of the measured three-body loss rate coefficients in the high-field regime
using the numerical code provided by D. Kang and E. Braaten [6]. The fit to the
measured K3 rates for fields above 970 G (solid line) was used to extract the high-field
three-body parameters. The zero-range calculations predict a resonant-loss peak at 895
G (dotted blue line), due to an excited Efimov trimer state crossing the three-atom
threshold at this location. Using a model that accounts for the saturation of the loss
rates from unitarity (dashed line) [7], the 30 nK data (blue triangles) is well fit in the
vicinity of the Efimov resonance.

”unitarized” recombination rate therefore accounts for the observed saturation of

K3 in the thermal gas to a value Ksat
3 ' Kmax

3 /3. This model provides a good

fit to our data for all high-field values, demonstrating that the measured three-

body loss rates are well described by the zero-range model in this highly universal

regime, and the resonant loss feature at 895 G is explained by an Efimov trimer

state crossing the free-atom threshold near this location. The measured high-field

three-body recombination rates and the subsequent fit of the data to extract the

three-body parameters discussed here were published by our group in Physical

Review Letters [147] in 2009.

Our measurement of the three-body parameters in the high-field regime also
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predict that at very high-fields, B � 1500 G the three-body loss rates saturate

to K3 ' 5 × 10−22 cm6/s. This saturation is attributed to the convergence of

the three scattering lengths to a = −2140a0 at high fields. We were particularly

interested in the stability of the gas in the high-field SU(3) symmetric regime

for the possibility of studying superfluidity and many-body phenomena in this

highly symmetric system, discussed in more detail in Chapter 8. The high loss-

rates, however, make it difficult to create long-lived, strongly interacting three-

component gases at these fields. More advanced preparation and cooling schemes

will likely be required to further study ultracold gases of 6Li atoms occupying the

three lowest-energy Zeeman states in the high-field, strongly interacting regime.

It is interesting to compare the three-body parameters κ∗ and η∗ in the high-

field region with those previously measured at lower fields. The regions are sepa-

rated by a zero-crossing of all three scattering lengths near 560 G and it is therefore

expected that the three-body parameters are not universally connected between

these regions. We find, however, in comparing the measurements of the low-field

parameters (κlf∗ ' 6.56 × 10−3a−1
0 and ηlf∗ ' 0.11), calculated by E. Braaten

and co-workers in Reference [3] with our calculations of the high-field parameters

(κhf∗ = 6.9(2) × 10−3a−1
0 and ηhf∗ = 0.016+0.006

−0.010) that the values of κ∗ are likely

consistent within 1 σ. Remember that κ∗ is only defined to within a multiplicative

factor of the discrete scaling factor (' 22.7), so that the observed resonances are

not necessarily associated with the same Efimov state.

Although this agreement could be attributed to a coincidental tuning of the

two-body parameters in these regimes, it suggests that the phase of the three-body

wavefunction at short distances, which controls the spectrum of Efimov trimer

states, is somehow unchanged by the presence of the broad Feshbach resonances

that tune the scattering lengths. This interpretation has also been suggested in

Reference [8], and similar apparently universal scalings of the three-body param-

eters have been observed in the earlier studies of ultracold 133Cs gases exhibiting

Efimov resonances on either side of a zero-crossing [35, 208, 209].

The inelasticity parameter η∗, on the other hand, varies between the low- and

high-field regions by over an order of magnitude. This scaling may be directly

related to the variation of the deeply-bound dimer states between these two regions,

as was used to describe the variation of the widths of the two loss features at
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approximately 125 and 500 G discussed in Section 6.3. Neither of the models used

to explain this phenomena [5, 205] can be directly applied, however, as the binding

energies of the most weakly-bound dimer states vary by approximately seven orders

of magnitude between the low- and high-field regimes, whereas η∗ varied by only

a factor of 10 between these regions.

7.2.3 Efimov Physics in the High-Field Regime

In Figure 7.1, the tuning of the three scattering lengths a12, a23, and a13 with

magnetic field is highlighted. For fields above 608 G (637 G), the magnitudes of

all three scattering lengths exceed 125 a0 ∼ 2lvdw (2140 a0 ∼ 34lvdw), where the

atoms are in the universal (strongly universal) regime. The zero-range approxima-

tion should therefore be quite accurate throughout the high-field regime. Atoms

prepared in this field region are expected to reveal novel few- and many-body phe-

nomena attributed to the three overlapping Feshbach resonances in the |1〉 − |2〉,
|2〉− |3〉, and |1〉− |3〉 scattering channels at 834 G, 811 G, and 690 G respectively

(vertical lines in Figure 7.1). Depending on the field of interest, any number of

the scattering lengths can be positive, and 0, 1, 2, or 3 weakly-bound dimer states

can exist. Three-component 6Li gases prepared at these fields would therefore

exhibit mutual coexistence and possibly competition of resonantly-enhanced at-

tractive and repulsive pairwise interactions, the effects of which have not yet been

demonstrated in any ultracold atomic system.

In Reference [8], E. Braaten et al. used our measurements of the high-field

three-body parameters to make universal predictions about the spectrum of Efi-

mov states and three-body loss rates throughout the high-field universal regime

spanning 600 G ≤ B ≤ 1200 G. Their calculations of the binding frequencies of

the Efimov trimers (E
(n)
T /(2π~)) in the high-field regime are shown in Figure 7.5.

Only two trimer states exist with binding energies less than the van der Walls

cutoff (Evdw = 2π~ × 154 MHz) in this region. The most weakly bound Efimov

state (E
(1)
T ) crosses the free-atom scattering threshold at the location of our ob-

served loss resonance (B = 895+4
−5 G). As the field is decreased, E

(1)
T increases until

the critical value B
(1)
∗ = 672 ± 2 G, at which the Efimov trimer is predicted to

come into resonance with the |1〉 + |23〉 atom-dimer threshold. Here, the binding
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Figure 7.5. Energies of the Efimov trimer states as a function of the magnetic field over
the region 600 G ≤ B ≤ 1000 G. The solid curves are the calculated binding frequencies

E
(n)
T /(2π~) based on our measurements of the high-field three-body parameters. The

upper and lower error bounds are shown by the dashed curves. The colored curves
labeled 12, 23, and 13 are the atom-dimer thresholds. The field locations where the
trimers come into resonance with the |1〉 + |23〉 atom-dimer threshold are indicated
by the dots. For the ground-state trimer, the threshold crossing occurs at an energy
exceeding the van der Waals energy, shown as the horizontal dotted line. Figure taken
from [8].

frequency of the universal |23〉 dimer state with respect to the free-atom threshold

is 871+43
−68 kHz. The maximum of the calculated frequency Γ

(1)
T /(2π~) associated

with the width of the shallow trimer is 7.98 kHz, occurring at 692 G, and decreases

to less than 1 kHz as the field approaches the free-atom and atom-dimer thresh-

olds. The lifetime of the trimers occupying this state ranges from ∼ 20 to 160 µs,

approximately three orders of magnitude longer than the lifetime of the low-field

Efimov state.
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The ground-state Efimov trimer has a binding frequency that decreases from

34.9+1.9
−1.9 Mhz at 672 G to 26.4+1.7

−1.6 MHz at 895 G. For a < 0, the critical scattering

length for this state is calculated as a′∗ ' −292 a0. Since all three scattering

lengths converge to aij → −2140 a0 at high fields, the binding energy of the

ground-state Efimov trimer saturates as the field is increased, never crossing the

free-atom threshold. For a > 0 their model predicts that the ground-state trimer

crosses the |1〉 + |23〉 atom-dimer threshold at B
(2)
∗ = 597 G, where the binding

frequency relative to the three-atom threshold is 203 MHz. Here, the binding

frequency is larger than the van der Waals frequency, and the smallest scattering

length (a23 = 54a0) is also smaller than the van der Waals length scale. E. Braaten

and co-workers point out that the zero-range calculations are likely inaccurate for

such large energies and small scattering lengths. The frequency associated with

the width of the ground-state trimer state is approximately Γ
(0)
T /(2π~) = 1.7 MHz

at high fields, corresponding to a ∼ 90 ns lifetime of the trimers occupying this

state.

From the calculated spectrum of high-field Efimov trimer states, the authors

of Reference [8] make further predictions of the three-body recombination rates in

the field region 600 G ≤ B ≤ 834 G, where all three scattering lengths are strongly

tuned by the overlapping Feshbach resonances and one or more of the scattering

lengths are positive. Their results are displayed here in Figure 7.6 for reference.

Besides the resonant enhancement of K3 we observed at 895 G, the only other

expected peaks occur at the locations of the Feshbach resonances. These peaks

simply arise from the a4 scaling of K3, where a is some form of the mean of the

scattering lengths a12, a23, and a13. Between the locations of the four loss peaks,

three minima in the K3 rates are expected. It is interesting to note, however,

that the locations of the minima in the top (black) curves representing the total

three-body loss rate into shallow and deeply-bound dimers significantly vary with

respect to the lower curves (purple) representing the loss rates when only decay

into the deeply bound dimer states is accounted for.

To get a better understanding of these features, E. Braaten and co-workers

show the predictions for the three-body loss rates in the regions from 650 G to

850 G in more detail [8], presented here Figure 7.7. In addition to K3 (black)

and Kdeep
3 (purple), they show explicitly the contributions from recombination
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Figure 7.6. K3 in three-component 6Li gases over the field range 600 G ≤ B ≤ 1200 G.
The blue dots (red triangles) represent our high-field data taken in the large-volume trap
I (II). The curve between 834 G and 1200 G is a fit to the data. In the region from 600
G to 834 G, the curves are predictions for the total three-body loss rates (black line) and
the contribution from recombination into deeply bound dimer states (purple line) based
on our measured three-body parameters in the high-field regime. The vertical lines mark
the positions of the Feshbach resonances. Figure adapted from [8].

into the |12〉 (red), |23〉 (blue), and |13〉 (green) universal dimer states. This figure

illustrates that at 830 G, a minima in the recombination rate into the |12〉 universal

dimer (K12
3 ) arises, attributed to a Stückelberg interference in the recombination

pathways into the universal dimer state as discussed in Sections 3.2.2 and 3.3.1.

Similar interference minima in the |12〉 and |23〉 scattering channels are observed

at 757 G and 765 G respectively. There are also minima in the rates into the |13〉
dimer at 672 G and the |23〉 dimer state at 600 G, but their effects are not visible

in the total recombination rate K3.

A rich structure is predicted in the three-body loss of our three lowest-energy

spin states of 6Li in the vicinity of the three overlapping Feshbach resonances. It

was quite surprising to see that resonant suppression of the three-body loss rates

was predicted whenever any of the interactions were repulsive since this feature is

highly dependent on the shape of the asymptotic three-body hyperspherical po-
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Figure 7.7. Detailed representation of the K3 rate constant for three-component 6Li
atoms in the field range 650 G ≤ B ≤ 850 G. The curves represent the predictions, based
on our measurements of the high-field three-body parameters, for the total three-body
recombination rate (black line), and the exclusive rate constants for recombination into
only deeply-bound dimers (purple line), |12〉 dimers (red), |23〉 dimers (blue), and |13〉
dimers (green). Figure taken from [8].

tential as discussed in Chapter 3. We are currently exploring the three-body loss

in the vicinity of the Feshbach resonances where these Stückelberg interference

minima are predicted to occur. Deviation of the experimental results from the cal-

culated three-body rates by E. Braaten and co-workers would suggest new physical

mechanisms that cannot be explained in the zero-range universal theory.

7.3 SU(3) Symmetric Degenerate 6Li Gas

We also note that despite the large rates of three-body loss in the high-field regime,

we can produce quantum degenerate three-component Fermi gases at fields where

the three scattering lengths are large, negative, and approximately equal. To

demonstrate this, we initially prepared a two-state mixture in the large-volume

trap I as described in Section 7.1, but extended the evaporation to cool the sample
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to degeneracy with a reduced temperature T ≤ 0.25TF . Subsequently, the field was

ramped to 1500 G within 10 ms and the three-component mixture was created with

a 100 ms duration noisy RF pulse. After a 30 ms hold time at this field to assure

thermal equilibrium, the population of the three-component gas was N = 6(2)×104

atoms per spin state, yielding a Fermi temperature of TF = 180(20) nK. Impurity

state thermometry was conducted by initially preparing the thermally equilibrated

three-component Fermi gas in an identical manner. Subsequently, the population

of atoms in state |3〉 was heated out of the gas using a pulse of on-resonance light

at an intensity equal to 1/10 of the saturation intensity of the transition. As the

light was detuned from the states |1〉 and |2〉 by more than δ = 2π × 76 MHz,

off-resonant light scattering of atoms in these states was negligible. Subsequently,

a minority component of state |3〉 atoms was repopulated from atoms in state |2〉
using a short, monochromatic RF pulse resonant with the |2〉−|3〉 transition. After

an additional 20 ms hold time to allow for thermal equilibrium, the temperature

and number of atoms in the minority component was probed.

By comparing the temperature of the minority component (T = 50(10) nK)

with the Fermi temperature previously recorded in the three-state sample, it was

found that the three-component gas was degenerate with a reduced temperature

T/TF = 0.28(6). Measurements of the population and temperature of the majority

(state |1〉 atoms) component were consistent with the previous measurements in

the balanced three-state mixture, assuring that the gas is not noticeably heated by

the thermometry technique. At 1500 G, the difference in the mean field energies

(Emf
ij = ngij, where n is the density of atoms and gij ∝ aij is defined for a given

pairwise interaction in Equation 2.18), is more than 1 order of magnitude smaller

than any other energy scale in the system. In this way, we have demonstrated the

viability of studying quantum physics in degenerate three-component Fermi gases

which exhibit effective SU(3) symmetry. In Chapter 8, this system is explored

in more detail, discussing the interesting many-body phases that are predicted to

occur and the feasibility of using our system for many-body studies of strongly

interacting three-component Fermi gases.
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7.4 Recent Experiments in 3-State 6Li Gases

As discussed in Section 3.2.1, enhanced loss in mixtures of atoms and dimers occur

at the magnetic field values where an Efimov trimer state comes into resonance

with the atom-dimer scattering threshold. In Figure 7.5, the calculated binding

energies of the ground (n = 0) and first-excited (n = 1) high-field Efimov trimer

states are shown in the vicinity of the atom-dimer threshold crossings [8]. These

trimer states are predicted to come into resonance with the |1〉 − |23〉 atom-dimer

threshold at B
(1)
∗ = 672 ± 2 G and B

(0)
∗ = 597 G respectively. In the magnetic

field region below 730 G, the |23〉 dimer is the lowest-lying weakly bound dimer so

that the only possible atom-dimer loss process for this mixture is relaxation into

the deeply bound dimer states.

In Reference [8], E. Braaten and co-workers went on to make predictions of

the magnetic-field dependent dimer relaxation rate constants, β1(23) as defined in

Equation 3.31, for fields near the predicted crossing of the excited-state trimer with

the |1〉+|23〉 atom-dimer threshold. Here, β1(23) is expected to be locally maximized

at B
(1)
∗ , with a width that is set by the inelasticity parameter η∗. Assuming that

the three-body parameters are constant throughout the high-field regime, which is

one of the tenants of the universal theory, our measurements of κhf∗ and ηhf∗ should

yield a peak in the |1〉+ |23〉 atom-dimer loss rates at B
(1)
∗ = 672 ± 2 G. The field

dependence of the predicted atom-dimer resonance, calculated in Reference [8], is

shown as the dashed line in Figure 7.8.

Two separate groups have recently published results for the inelastic atom-

dimer decay rate coefficients in nearly-degenerate, ground-state 6Li gases [210, 198].

In both References, the atom-dimer loss rate coefficients for mixtures of trapped

atoms in state |1〉 and dimers associated from atoms occupying states |2〉 and |3〉
were measured over the range of fields 580 G . B . 760 G. Their measurements

both displayed resonant peaks in the measured atom-dimer loss coefficients β1(23)

centered at 685 G and 602 G. Measurements made in our lab by Eric Hazlett of

the |1〉+ |23〉 atom-dimer loss rate coefficients near the upper resonance, shown as

the red points in Figure 7.8, are in agreement with the published results. Although

the peaks are likely associated with the n = 1 and n = 0 high-field Efimov trimer

states crossing the |1〉+ |23〉 atom-dimer threshold, the locations of the peaks vary
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Figure 7.8. Dimer relaxation rate constant β1(23) for |1〉 + |23〉 atom-dimer loss over
the range of fields 650 G ≤ B ≤ 750 G. The universal predictions, calculated in [8]
based on our measurements of the high-field three-body parameters (κ'6.9 × 10−3a−1

0

and η∗ ' 0.016) (dashed line), are in disagreement with the experimental data (red dots)
at these fields. A fit to the data using the universal calculations (solid curve) finds that
the three-body parameters must be varied by approximately 30% to properly reproduce
the measured atom-dimer loss rates which peak near 685 G.

significantly from those universal predictions in Reference [8].

T. Lompe et al. fit their measurements of the field-dependent atom-dimer loss

rates to extract the three-body parameters using a formalism derived in Reference

[8]. They find that the parameters must be varied by about 30% to properly fit

the data near 685 G [198]. They point out that non-universal corrections are likely

to play a role at these fields, as demonstrated by the fact that even at 685 G, the

binding energy of the dimer deviates by ∼ 5% from the universal predictions. The

lower peak at 602 G also deviated from their fit, but this result is not surprising

as the dimer state is no longer in the universal regime at this low field value.

S. Nakajima et al. went on to show that the locations of the atom-dimer loss

peaks disagree with the universal theory predictions in a way that cannot be ex-

plained even with non-universal two-body corrections [210]. They used the STM

formalism [8] to solve the three-body problem with zero-range interactions param-

eterized by energy-dependent scattering lengths. Even considering non-universal

corrections to the two-body parameters a(k), the predicted location of the second
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resonance is unshifted at ' 672 G unless the three-body parameters depend on

energy as well, and possibly magnetic field. By including corrections to the short-

range three-body parameters, however, they were able to obtain a good fit to their

data, thereby making a first step at characterizing the non-universal three-body

physics of ultracold, three-component 6Li gases. Non-universal corrections near

685 G were not expected as all three scattering lengths are still resonantly en-

hanced near this field. The broad Feshbach resonances in 6Li, however, allow for

sensitive measurements of the limits of the universal theory, of which a great deal

of work is left to be done.

In Reference [198], T. Lompe et al. also measured the loss rates in |2〉 + |13〉
and |3〉 + |12〉 atom-dimer mixtures. For these interactions, the measured decay

rates βA(BC) includes loss events both into the deeply bound dimer states as well

as in exchange processes of the form |A〉 + |BC〉 → |B〉 + |AC〉, where the free

atom and one of the atoms constituting the weakly-bound dimer are exchanged in

a small-energy exothermic process. They found two pronounced minima in β3(12)

at 610 G and 695 G, where the loss rate was strongly suppressed. These features

qualitatively agreed with the theoretical predictions by J. D’incao et al. that the

existence of a trimer state can cause interference minima in the exchange reaction

rates [142]. No distinct features were observed in β2(13).

The increase of the |3〉+ |12〉 atom-dimer lifetime at the resonant fields may be

useful for preparing samples in future experiments, and since all of the resonant

features in the high-field regime should be universally connected, the locations of

the β3(12) resonances may further shed light on the universality of the 6Li gas in

the vicinity of the three overlapping Feshbach resonances.

Finally, T. Lompe et al. recently published results of their RF spectroscopy

measurements, in which they were able to directly observe the binding energies of

the n = 1 Efimov state over the range of fields 670 G ≤ B ≤ 740 G [211]. Here,

the authors initially prepared mixtures of atoms in state |2〉 and |12〉 (|23〉) dimers

at the field of interest. Subsequently, RF fields were applied to drive |2〉 → |3〉
(|2〉 → |1〉) transitions which, depending on the detuning of the pulse, can either

(a) dissociate the dimer leading to three unbound atoms in states |1〉, |2〉, and

|3〉; (b) flip the spin of the bare atom leading to |3〉 − |12〉 (|1〉 − |23〉) atom-

dimer mixtures; or (c) associate the dimer and atom into a |123〉 Efimov trimer.
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Their measurements constitute the first direct observation of the Efimov trimer

state in any system, and yielded the binding energies of the Efimov trimer state

throughout the range of fields studied. Their measurements of the trimer binding

energies were also in good agreement with the predictions from the theoretical

model discussed in Reference [210], which used the observed threshold crossings

of the trimer states as inputs to calculate the trimer binding energies, including

the necessary non-universal corrections to the three-body parameters. These RF

association measurements have confirmed that within the range of measurements,

the theory given in Reference [210] accurately describes the trimer binding energies

in this system.

The rich spectrum of few-body phenomena that has been measured and pre-

dicted over the last few years have provided invaluable information relating to both

the applicability of the universal theories to our system, and the behaviors of the

gas in the vicinity of the three overlapping Feshbach resonances. The next logical

step is to begin exploring the variety of many-body phases that emerge when the

s-wave scattering lengths are unequal in magnitude and/or sign. In the next chap-

ter, we discuss various theoretical investigations of the novel phenomena expected

to emerge in this system. Further, based on our stability measurements of the

gas, we can now consider the feasibility of realizing such many-body phenomena

as superfluidity or magnetism in the high-field regime using our current experi-

mental system. The inclusion of a third spin component to our ultracold Fermi

gases has enabled the study of novel few-body interactions that are inaccessible in

ultracold samples of identical bosons or two-component Fermi gases. In so doing,

this system has revealed unique loss characteristics that shed light on previously

unseen characteristics of the universal theory. It is to be expected that this will

also be the case when exploring the many-body physics of three-component Fermi

gases.



Chapter 8
Many-Body Physics in a

Multi-Component Fermi Gas

This thesis was dedicated to studying few-body physics in three-component Fermi

gases in the form of mapping out the spectrum of resonant Efimov features in ul-

tracold 6Li gases consisting of the three lowest-energy hyperfine spin states. Based

on the recent experiments conducted with these systems and theoretical insights

gained from interpreting the experimental results, discussed in Chapters 6 and 7,

the few-body physics of ultracold multi-component gases is now becoming well

understood. The next logical question relates to the feasibility of using our system

to study some of the interesting many-body phenomena expected to arise in an

ultracold gas of three distinguishable particles exhibiting three broad, overlapping

Feshbach resonances.

This chapter begins with a brief overview of the superfluid phases that have

been studied in ultracold two-component Fermi gases. A short review is then

given of the various novel many-body phenomena that have been theoretically

predicted to emerge when a third spin component is added to the system. The

nature of the problem can change drastically whenever at least two interaction

strengths are resonantly enhanced, allowing for effects which are generally forbid-

den in equal-population two-component Fermi gases. Such interactions include

competition among various pairing states, phase separation, trimer formation, and

even instability against collapse. Our previous measurements of the stability of

the three-component 6Li gas in the high-field regime can now be used to determine
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the feasibility of experimentally studying some of these novel phenomena using

ultracold 6Li gases occupying the three states discussed in this thesis.

Then, a brief review of the physics of two- and three-component Fermi gases

loaded into three-dimensional optical lattice potentials is discussed. The lattice

breaks the effective translational symmetry of the system, causing the atoms to

become more localized at the lattice sites and enhancing the strength of the interac-

tions that give rise to many-body phenomena. For attractive pairwise interactions,

lattice confinement has been shown to enhance the superfluid critical temperature

[72], which is promising for observing multiple superfluid pairing states in three-

component Fermi gases at high fields where the gas exhibits SU(3) symmetry. This

atomic color superfluid phase would be particularly interesting due to a close anal-

ogy with the color superconducting phase in two-flavor quantum chromodynamics

(QCD) [91], and may open the door to future quantum simulation of a simplified

version of the QCD phase diagram with ultracold quantum gases.

In the repulsively interacting regime, quantum magnetism and possibly d-wave

superfluidity is expected to emerge in lattice-confined two-component Fermi gases

at sufficiently low temperatures. The behavior of the three-component Fermi gas

in the regime where at least one of the scattering lengths is positive is currently

an open question, both experimentally and theoretically. It can be expected, how-

ever, that for sufficiently long-lived samples at low temperatures, novel phases

should emerge when the particles exhibit anisotropic, resonantly enhanced interac-

tions where the ground-state of each pair tends toward magnetic ordering and/or

Fermionic superfluid phases. Temperatures low enough to observe such exotic

phases have yet to be achieved, however, in even two-component ultracold Fermi

systems.

The chapter is concluded by discussing a cooling method that we proposed

to prepare fermionic atoms in a three-dimensional optical lattice potential at un-

precedentedly low temperatures and uniform filling factors. The method involves

adiabatic loading of a degenerate two-component Fermi gas into a combined optical

lattice and ”box-like” trapping potential, followed by selective removal of atoms

from all but the lowest energy band. Numerical calculations for sample sizes ∼ 105

predict that temperatures ∼ 0.003 TF , corresponding to an entropy per particle of

∼ 0.02 kB can be achieved. Two-component Fermi gases prepared in this manner
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should be sufficiently cold to begin exploring quantum spin phases of fermionic

atoms [72, 73, 74], which are currently inaccessible.

8.1 Superfluidity in 2-Component Fermi Gases

Superfluidity is one of the most spectacular properties associated with quantum

degenerate systems. This phenomena, which is generally associated with conden-

staion, is characterized by frictionless flow and persisting quantized vorticies. For

degenerate Fermi gases, magnetically tuned Feshbach resonances in two-component

gases have allowed the various regimes of fermion pairing and superfluidity to be

experimentally realized. Multiple interacting spin components are required, how-

ever, to realize the superfluid phase as condensation is not allowed for single Fermi

components by the exclusion principle.

Pairing on the BEC side of the resonance, where a > 0, can be understood in

terms of condensed bosonic molecules consisting of one atom from each spin state.

This case was considered in detail in Section 5.1.1, where we demonstrated that

ultracold two-component Fermi gases can form long-lived, weakly-bound dimer

states at magnetic fields where the pairwise interactions are resonantly enhanced.

At sufficiently low temperatures, a molecular Bose-Einstein Condensate emerges,

which has been shown to demonstrate superfluid behavior from the emergence of

quantized vorticies in the time-of-flight images of rotated Fermi gases [22]. In a

harmonically trapped sample, the critical temperature for molecular condensation

scales with the Fermi energy as [108]

TBECc ≈ 0.22TF , (8.1)

where TF is defined as the Fermi energy in the non-interacting limit. The success of

realizing the superfluid phase lies in the low inelastic loss rates of two-component

Fermi gases, where the combined phase-space density and temperature of the gas

define the required densities and interaction strengths to achieve stable molecular

gases with sufficient degeneracy to Bose-condense.

For attractive pairwise interactions a < 0, no universal dimer state exists to

allow for the formation of a molecular BEC. The pairing mechanism for these
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fermions is a many-body effect, where the ground state of the system at zero tem-

perature is a fermionic superfluid. In the weakly interacting regime, the pairing

mechanism is described by Bardeen-Cooper-Schrieffer (BCS) theory, which was

first derived to explain the phenomena of superconductivity [47, 48], but also ac-

curately described the properties of superfluid 3He. BCS theory predicts that the

three-dimensional Fermi sea is unstable in the presence of arbitrarily small attrac-

tive interactions, preferring to form bound states (Cooper pairs) with exponentially

small binding energies. The pairs can then Bose-condense at a critical temperature

given by

TBCSc ≈ 0.28 TF exp

(
π

2kFa

)
, (8.2)

where kF is the Fermi wavevector, defined in terms of the Fermi energy as EF =

~2k2
F/(2m). For temperatures below the critical temperature, the Fermi gas has

been shown to exhibit superfluid behavior [22] due to the presence of a finite gap in

the single-particle excitation spectrum (∆gap ≈ 1.76 kBT
BCS
c ). For realistic values

of kFa in ultracold Fermi gas experiments, the transition temperature quickly

becomes prohibitively small, making observation of the true BCS state difficult.

It is now well understood that the pairing mechanisms in both limits (BEC and

BCS) are smoothly connected by a crossover through the universal regime. The

interaction regime is characterized by the dimensionless parameter kFa, where

(kFa)−1 � 1 corresponds to the molecular BEC regime and for (kFa)−1 � −1, the

system is in the BCS regime. In between these extremes, the fermi gas is strongly

interacting, allowing for a significant enhancement of the BCS critical temperature.

It was discussed in Section 2.5 how the low-energy scattering properties of the

gas scale in the unitarity regime, where the s-wave scattering length a greatly

exceeds all other length scales in the problem. At unitarity, the critical superfluid

temperature must also scale with the Fermi temperature as Tc = αTF , where α is

a universal dimensionless parameter. Theoretical predictions [212, 213, 214] and

experimental observations [59] of condensates at unitarity have placed α ≈ 0.2.

Recent experiments have also studied superfluidity in spin-imbalanced samples,

in which the gas contains an unequal number of atoms in the two components. A

breakdown of superfluidity was observed above a critical imbalance in addition

to a spatial separation of a superfluid core surrounded by a partially-polarized
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shell of thermal atoms [215, 216, 217, 218]. In this system of strongly-interacting

polarized Fermi gases, a rich phase diagram has emerged, exhibiting two superfluid

phases and a tricritical point, where the phase transitions can be either of first or

second order. Additional phases associated with deformed Fermi surfaces (DFS)

and spatially oscillating order parameters (FFLO) are predicted but have not yet

been observed [219, 218].

The stability of two-component Fermi gases against two- and three-body in-

elastic loss was instrumental to the realization of superfluidity in both the spin-

balanced and spin-polarized Fermi gas experiments. These experiments have re-

vealed an extensive new body of knowledge to the many-body physics of strongly-

interacting systems. The next section briefly reviews some of the novel many-body

phenomena theoretically predicted to arise in an ultracold Fermi gas consisting of

three mutually-interacting spin components. Further, based on our previous sta-

bility measurements, we discuss the feasibility of realizing fermionic superfluidity

in a gas of 6Li atoms equally occupying states |1〉, |2〉, and |3〉.

8.2 Many-Body Physics in 3-Component Fermi

Gases

For a two-component Fermi gas in the universal regime, the system can be fully

described by the scattering length a. The addition of the third spin component

significantly changes the nature of the problem, where three distinct interaction

strengths determine the ground state of the system. Further, a sample of three

distinguishable fermions has a completely different symmetry, approaching SU(3)

at high fields, compared to the SU(2) symmetry of two-component gases. SU(3)

symmetry is also exhibited by the three different color of quarks in QCD. This

analogy was recently noted by Nobel laureate F. Wilczek [92] as a potentially

useful model system to explore the properties of low-temperature quark matter.

Over the last 5 years, there has been a remarkable theoretical effort exploring

these interacting three-body systems. Some of the interesting issues that have

been considered include:

� Two component Fermi gases are stable against collapse even when the inter-
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actions are tuned to infinity. Stability is no longer guaranteed if a third or

fourth component is added [220], possibly leading to collapse analogous to

the bosenova instability for trapped Bose gases with attractive interactions

[221].

� At sufficiently low temperatures, two-component mixtures pair to form a

superfluid. It is unknown how this phenomena translates for three mutually-

interacting particles. Pairing competition may now emerge, in which two-

components which would by themselves pair can now be cannibalized by a

third component. This mechanism could determine the number of pairing

states that will be mutually allowed. Further, first and second order phase

transitions at finite temperatures between different paired states and the

normal unpaired states have been predicted [84, 87, 85, 88, 222, 86, 203, 223].

� It is also questionable whether multiple paired phases can coexist in the

same spatial region. In certain systems, depending on the anisotropy of

the chemical potential, density, and strength of the pairwise interactions,

the three-component Fermi gas is expected to form phase domains, shell

structures, and/or breached pairing [224, 89, 222, 225, 226].

� It is predicted that in some instances, the critical temperature for the BCS

superfluid transition can deviate from that predicted in a weakly interact-

ing two-component system due to many-body contributions to the effective

interaction between fermions in a three-component Fermi mixture [85, 227].

� It is unknown what the ground state of the system is when loaded into a one-

or three-dimensional optical lattice. Dependent on the atomic density and

the strength and anisotropy of the interactions, various density-waves and

ordered states are expected [228, 229, 230]. Further, quantum phase transi-

tions between superfluid and trion phases are predicted [84]. In response to

a local perturbation in 1D, color-charge separation (analogous to spin-charge

separation predicted by Luttinger Liquid theory [231]) may emerge [232]. It

has also been proposed that strong three-body loss can be utilized to stabilize

the paired superfluid phase in the optical lattice. [233]
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� Under certain limits, the three scattering lengths for our three-component

gas converge while still exhibiting resonantly enhanced interactions. In a

3D optical lattice, the system is well described by a SU(3) symmetric Hub-

bard Hamiltonian. Here, a color superfluid to trion phase transition may be

applicable for simulating the physics of strongly interacting sub-atomic and

fundamental particles such as the color superfluid to Baryon phase transition

conjectured in QCD [90, 91, 92].

The similarity of these three-component Fermi gases to strongly interacting nu-

clear and quark matter, along with the extensive theoretical consideration of the

system, demonstrates the potential impact that research with three-component

Fermi gases could have on a broad range of physical disciplines. Experimental

realization of these systems would shed light on the dependence of the above phe-

nomena on such parameters as the chemical potential, mass ratio, temperature,

and individual interaction strengths of the particles in the system.

8.2.1 Superfluidity vs. Stability in 3-State 6Li Gases

Our measurements of the stability of the three-component 6Li gas in the high-field

regime can now be used to determine the feasibility of experimentally realizing

superfluidity in this system to explore some of the novel phenomena discussed

above. Essentially, superfluidity can be realized so long as at least two components

of the gas have sufficient interaction strengths to support pairing. The strength of

the interactions are parameterized by the density and pairwise interaction strengths

as kFa, where a is the s-wave scattering length for the pairing states and the

Fermi wavevector is related to the peak density of the gas as k3
F = 6π2n0. The

temperature and density requirements to realize the BEC and BCS superfluid

phases are constrained by Equations 8.1 and 8.2 respectively.

In contrast to the two-component experiments, where the gas is stable against

two and three-body loss for fields above the 834 G Feshbach resonance, observing

many-body effects in our three-component 6Li gases is complicated by the signifi-

cant three-body loss rates in this regime. Superfluidity cannot emerge unless the

pair formation rate τBCS ∝ (kBTc)/~ [109, 234] exceeds the rate of three-body loss

τK3 = Ṅ/N ' −K3〈n2〉, given by Equation 6.2. Constraints on the temperature
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Figure 8.1. The calculated timescales for both BCS pairing (tBCS , solid curves) and
three-body loss (tk3 , dotted curves) in the high-field BCS regime below B ≤ 2000 G are
shown. The atomic densities are varied so that the critical temperature is Tc = 0.15TF
for each of the possible pairing states (|1〉−|2〉 (black), |2〉−|3〉 (blue), and |1〉−|3〉 (red)).
Superfluid pairing is inhibited by rapid three-body loss for all pairing states throughout
the BCS regime except for the |1〉 − |2〉 pairing states near 834 Gauss.

and density of the gas are difficult to simultaneously satisfy. We have demonstrated

long atomic lifetimes, even in the high three-body loss regimes near the 834 G Fes-

hbach resonance, by expanding the gas to densities as low as n0 ≤ 5× 109/cm3 in

our large-volume traps. Even though the interactions are resonantly enhanced in

this regime, however, the gas is still weakly interacting.

At 1500 G, for example, a gas at a density of even n0 = 3×1011/cm3 can survive

for a time tK3 = τ−1
K3
' 100 ms, which is on the order of our three-state creation

timescales. Here, the gas is in the SU(3) symmetric regime which is particularly

interesting for studies of pairing competition and spontaneous symmetry breaking

phenomena. At this density, kFa ' −0.39 which translates to a critical BCS

temperature of TBCSc ' 4×10−3TF . It is inconceivable to cool our samples to such

low temperatures, approximately an order of magnitude smaller than the current

state-of-the-art reduced temperatures achieved with even two-component Fermi

gases.

To further explore the possibility of observing superfluidity in three-component
6Li gases in the high-field BCS regime (B ≥ 834 G), we take as an assumption
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that it is possible to create a degenerate three-state Fermi gas with reduced tem-

peratures as low as T/TF = 0.15. Equation 8.2 then requires that the gas must be

sufficiently strongly interacting (kFa ' −2.5) for superfluid pairing to emerge. In

Figure 8.1, the calculated timescales for both BCS pairing (tBCS = τ−1
BCS, solid

curves) and three-body loss (tk3 = τ−1
K3

, dotted curves) in the high-field BCS

regime below B ≤ 2000 G are shown. Here, the density of the gas was varied

at each field so that the critical temperature remained constant at Tc = 0.15TF .

The three-body loss rates used in this calculation were taken from the universal,

zero-temperature fit to our high-field data, given by the dotted line in Figure 7.4.

As the three scattering lengths were generally unequal, the density of the gas at

each field determines whether one, two, or all three of the pairing states satisfy

the temperature requirements for superfluidity to emerge. The BCS pairing and

three-body loss timescales at which each of the possible pairing states, |1〉 − |2〉
(black), |2〉 − |3〉 (blue), and |1〉 − |3〉 (red), has sufficient density for BCS pairing

are therefore shown explicitly in Figure 8.1. Although BCS theory is not strictly

justified in this strongly interacting regime, the temperature of the gas is still con-

strained below the critical temperature at unitarity Tc ≈ 0.2TF , and should provide

order-of-magnitude estimations of the relevant BEC formation and three-body loss

timescales.

At high fields, the three-component Fermi gas is SU(3) symmetric, where the

required densities to achieve BCS pairing for all three components converge. At

the high critical temperatures we consider here, however, the three-body loss rates

exceed the BCS pairing rates by nearly an order of magnitude so that the gas will

decay before superfluidity can emerge. Superfluid pairing is in-fact inhibited by

three-body loss for all pairing states throughout the BCS regime except for the

|1〉 − |2〉 pairing states below 856 Gauss. Here, the BCS pairing rate exceeds the

K3 loss rate since a12 is enhanced near the 834 G Feshbach resonance whereas the

K3 rates are dependent on all three interaction strengths.

At 840 G, a gas with a density of n0 ' 5× 109/cm3 has a critical temperature

of Tc ' 0.15TF in the |1〉−|2〉 BCS pairing channel. In this case, the lifetime of the

gas from three-body loss is tk3 ' 80 ms, as compared to the BCS pairing timescale

which is tBCS(aij) ' 3 ms. It should be possible with our current apparatus

to realize this BCS superfluid phase, however, the other components are normal
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and very weakly interacting at this density and field. No pairing competition is

expected, with a two-component superfluid and a superimposed weakly interacting

gas of atoms in state |3〉 as the expected equilibrium states.

8.2.2 BECs and Phase Separation in 3-State 6Li Gases

It is also interesting to consider the possibility of observing many-body phenomena

and superfluidity in three-component 6Li gases at fields below the 834 G Feshbach

resonance, in which universal dimer states exist and mutual attractive and repul-

sive pairwise interactions can compete to define the ground state of the system.

For equal populations in the three spin states, depending on the temperature and

density of the gas, either a normal three-component Fermi gas, a Bose-Einstein con-

densate of dimers coexisting with a normal Fermi gas of the complementary atoms,

multiple Bose-Einstein condensates of dimers, and even coexisting or competing

BEC and BCS superfluid phases may exist. In all cases, interesting many-body

effects can arise so long as the gas is sufficiently cold and long-lived.

A recent experiment with two-component 6Li Fermi gases occupying states |1〉
and |2〉 has demonstrated that with sufficiently strong repulsive interactions, the

spin-components of the gas separate to minimize the total energy of the system

[235]. The phase-separation, referred to as itenerant ferromagnetism, is predicted

to occur at a critical interaction strength kFa = π/2, when the mean-field energy

exceeds the kinetic energy cost for phase-separating. For our three-component

Fermi gas, an itenerant ferromagnetic phase may emerge below the 834 G Feshbach

resonance, but the inclusion of the third spin-state |3〉 may also significantly alter

the ground-state of the system. Consider the gas at 670 G, where all three states are

repulsively interacting with a12 = +1086 a0, a23 = +807 a0, and a13 = +8576 a0,

and the three-body loss rates are predicted to be K3 ' 10−22 cm6/s [8]. Here, it is

expected that phase separation will occur as long as kFa ≥ π/2 for any two compo-

nents, and all three components may phase separate when the pairwise interactions

are sufficiently strongly interacting for all atoms in the gas. The critical densities

required for kFa13 = π/2 (all kFaij ≥ π/2) are ncrit = 8.3× 1011/cm3 (1015/cm3).

At the lowest density considered, the expected lifetime of the gas is tK3 ' 75 ms,

which is reasonable with our current experimental methodology. When the densi-
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ties are increased so that the gas satisfies the itenerant ferromagnetism criterion for

at least two or three pairwise interactions, however, the lifetime of the gas drops

below tK3 < 1 µs.

At sufficiently low temperatures, one or multiple spin-components are expected

to form a BEC of dimers. Here, we consider the many-body system at 731 G, where

the gas is SU(2) symmetric with a12 = a23 = +2500 a0 and a13 = −7100 a0. If the

gas is prepared with atoms of type |1〉 coexisting with a |23〉 dimer condensate,

the mean-field energy of the atom is estimated by Emf
1(23) ' 2 × 10−9 Hz cm3

×(2π~n(23)) [8]. The positive sign implies that the atoms are repelled by the |23〉
dimer condensate, possibly leading to phase separation. However, the |23〉 dimers

are energetically degenerate with the |12〉 dimer states, so pairing competition may

also come into play. The lifetime of the atom-dimer gas, given by Equation 3.31,

is determined by the dimer relaxation rates β1(23) = β3(12) ' 8 × 109 cm3/s (see

Figure 7.8), which are equal at this field by the SU(2) symmetry. At densities on

the order of n0 ' 109/cm3, where the lifetime of the gas t1(23) = t3(12) ' 100 ms,

the mean-field energy is Emf
1(23) ' kB×0.12nK, much smaller than the Fermi energy

of the state |1〉 atoms (EF ' kB × 7nK). Although phase separation is not likely

at these densities and temperatures, pairing competition may lead to interesting

many-body effects, justifying more experimental and theoretical study.

8.3 Many-Body Physics in Optical Lattices

We have seen previously that for our dilute three-component atomic Fermi gases,

the gas must generally be in the regime where the Fermi momentum is small as

compared to at least two of the scattering lengths (kFaij < 1) for the atoms to

have sufficient lifetime against three-body decay to enable creation and thermal

equilibrium of the samples. In this regime, the superfluid critical temperature is

prohibitively low in bulk, harmonically trapped samples to realize pairing in three-

component gases with mutual superfluid components. On the other hand, if the

atoms are confined in a periodic potential then the effects due to interactions, and

hence the critical BCS temperatures, can be greatly enhanced.

Such potentials can be experimentally realized for cold atomic gases in one, two,

or three dimensions from the interference pattern of multiple coherent laser beams.
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Two-component Fermi gases loaded into these so-called optical lattice potentials

are nearly-ideal quantum simulators for the Fermi Hubbard model [71], providing

a testing ground for paradigm models of condensed matter physics [72, 73, 74]. By

loading ultracold three-component Fermi gases into these periodic potentials, the

existence of multiple pairing states and the inclusion of the trion, in which three

atoms occupy the same quantum state, may be used to study phenomena beyond

the well-established framework of condensed matter physics [91].

8.3.1 Optical Lattice Potentials for Ultracold Fermions

An optical lattice potential can most easily be created from the dipole trapping

profile realized with superimposed counter-propagating laser beams. If the beams

are derived from a single-longitudinal mode laser, the interference pattern results in

a standing-wave intensity profile, where the atoms are attracted to or repulsed from

the periodic intensity maxima dependent on whether the light is red or blue de-

tuned with respect to the atomic transitions. Further, by focusing three mutually-

perpendicular, retro-reflected lasers onto the atomic gas, a three-dimensional op-

tical lattice can be formed, as illustrated in Figure 8.2(a). For identical lattice

beams, so long as the interferences between standing waves are suppressed, the

atoms at ultracold temperatures will experience a simple cubic lattice potential

given of the form [236]

V (xi) = V0

3∑
i=1

sin2(kLxi) +
m

2
ω2x2

i (8.3)

where kL is the wave vector of the light and V0 is the depth of the potential wells,

typically expressed in units of the atomic recoil energy ER = ~2k2
L/2m, along each

direction i. The ω2 terms are the squares of the effective trapping frequencies of

the external harmonic confinement due to the Gaussian profile of the lattice laser

beams (see Section 4.6).

If the amplitudes of the lasers are sufficiently intense, then the ultracold atoms

are localized to the minima of each of the optical potential wells and can only

move by tunneling between the lowest lying states within each well. In this tight-

binding limit, the atoms are effectively confined by an array of harmonic potentials
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(a) (b)

Figure 8.2. (a) Illustration of a 3D cubic lattice potential for the atoms, formed from
the standing-wave interference patterns of three mutually-orthogonal pairs of counter-
propagating laser beams. (b) A two-component Fermi gas with repulsive interactions
loaded into an idealized lattice potential is shown along one dimension. The system is
well-described by the Fermi Hubbard model, where t is the tunneling matrix element
and U denotes the on-site interaction energy term.

with corresponding trapping frequencies at the center of each trap given by ω2
L =

2k2
L V0/m. For retro-reflected beams, the lattice constant in each direction is

directly related to the wavelength of the laser light (λL) from which the optical

lattice is derived. Larger period lattices can also be realized by propagating the

interfering lattice beams at small relative angles (θ), yielding lattice constants of

d(θ) = λL/(2 sin(θ/2)) [237].

Further, if the atomic scattering lengths are smaller than the optical lattice

constant, then the interactions are restricted to each lattice site. Correspondingly,

for very cold atoms confined in a deep optical lattice (kBT,EF � ~ωL), and ignor-

ing the effects of the confining potential in Equation 8.3, the system of interacting

atoms is well described by the following Hamiltonian [91]

H = −t
∑
〈i,j〉,α

ĉ+
iαĉjα +

∑
α 6=β

∑
i

Uα,β
2

(n̂iαn̂iβ), (8.4)

where ĉ+
iα is the creation operator of a fermionic atom in component α at site i,

and n̂iα = ĉ+
iαĉiα.

The first term in the Hamiltonian is the tunneling term, which describes the

tunneling of atoms between neighboring potential wells, denoted by 〈i, j〉. The

strength of the tunnel coupling is characterized by the tunneling matrix element
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approximately given by [71, 72]

t ' 2ER√
π
s3/4e−2

√
s, (8.5)

where s = V0/ER. This kinetic energy term causes each atom in the ensemble to

delocalize over the lattice.

The second term describes the interactions between spin-components α and β

mutually occupying a single lattice site. The interaction term Uαβ is related to the

s-wave scattering length (aαβ) as [71, 72]

Uαβ ' ERaαβkL
√

8/πs3/4. (8.6)

The interaction energy of the system is well described by this term, which generally

tends to localize atoms on a given lattice site.

For a two-component gas, the Hamiltonian in Equation 8.4 corresponds to the

Fermi Hubbard Hamiltonian, originally proposed as a phenomenological model for

studying solid-state systems. In Figure 8.2(b), a two-component Fermi gas loaded

into an idealized optical lattice is illustrated along one dimension. Here, the s-wave

interactions are repulsive (U > 0) so that it is energetically unfavorable for multiple

spin-components to occupy a given lattice site. Equations 8.5 and 8.6 demonstrate

that by loading multi-component fermionic atoms into a deep optical lattice, a new

degree of freedom is now available to vary the strength of the on-site interactions

(Uαβ) and the magnitude of the tunneling matrix elements (t) through the depth

of the optical lattice potential (s). Further, the on-site interaction energy can take

on either positive or negative values depending on the sign of the s-wave scattering

lengths to realize a range of many-body phases that may otherwise be prohibited

in bulk Fermi gases.

8.3.2 BCS Superfluidity in a Lattice

It is the interplay of the terms t, U , and the filling factor ρ (defined as the average

number of atoms per spin species per lattice cite) that define the ground state of

the system. Consider first the case where U < 0. Previously, we discussed that

attractive s-wave interactions (aif < 0) can give rise to a BCS superfluid phase
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for Fermi gases occupying multiple spin components. The exponential suppression

of the critical temperature TBCSc for moderate values of kFa makes it extremely

difficult to observe BCS pairing in bulk systems outside of the unitarity regime.

In a periodic system, however, the effects due to interactions can be enhanced.

In Reference [72], W. Hofstetter et al. predicted that for attractively interacting

two-component fermions in a shallow 3D optical lattice, where t � |U |, the BCS

critical temperature scales as

TBCSc ≈ te−7t/|U |. (8.7)

As the depth of the optical potential is increased the atoms become more local-

ized, with increased on-site interaction strength U and a decrease in the tunneling

t. The combined effects lead to an exponential suppression of t/|U |, with a dra-

matic increase of TBCSc . As the on-site interactions become comparable with the

tunneling energy, atom pairs are formed within a single lattice site with reduced

mobility, leading to a decrease in TBCSc . At the crossover between the two regimes

(where U ∼ 10t), the critical temperature is maximized at

kBT
max
c ' 0.3Efree

F kL|aij|, (8.8)

where Efree
F = (3/π)2/3ER at half-filling (approximately one atom per lattice site).

TBCSc now scales linearly with the small parameter kL|aij|, which is a dramatic

improvement over the exponential suppression in bulk gases.

We propose using the enhancement of the BCS critical temperature to realize

BCS pairing in a three-component gas of 6Li atoms loaded at low densities into a

weak cubic optical lattice potential. Consider a large-period optical lattice with

lattice constant d = 2 µm. Loading a three-component 6Li gas into the lattice with

a filling factor of 1/3 (one atom on average per lattice cite) translates to a density

of n0 = 1.25×1011/cm3. At high fields where the gas exhibits SU(3) symmetry and

attractive pairwise interactions can support three distinct BCS superfluid phases,

the lifetime is on the order of tK3 ' 200 ms. If the lattice depth is raised to

even V0 = 3ER, the BCS critical temperature is now increased to TBCSc ' 0.2TF ,

which is only slightly lower than the reduced temperatures that we previously

achieved in our three-component samples at 1500 Gauss (see Section 7.3). Further,
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the timescale for pair formation is expected to be on the order of tBCS ' 2 ms,

approximately two orders of magnitude shorter than the lifetime of the gas at this

density. Such large-period optical lattices are readily available by designing the

geometry of the lattice beams such that, for each interfering lattice beam pair,

the lasers are propagated at a small relative angle [237], and BCS superfluidity

has already been demonstrated with two-component Fermi gases loaded into a

weak lattice potential [80]. It is anticipated that this proposed method should be

directly experimentally realizable to study color superfluid phases in a degenerate,

three-component 6Li gas.

8.3.3 Magnetic Ordering of Ultracold Fermi Gases

Theoretical studies of two-component Fermi gases loaded into optical lattices with

repulsive pairwise interactions (U > 0) have predicted that a number of exotic

phases emerge at low temperatures [72, 73, 74]. The two most notable quantum

phases predicted are:

Antiferromagnetic ordering is predicted near half-filling (one atom per lattice

site). For sufficiently strong coupling (U/t), the lowest energy state is a two-

sublattice spin ordering with a doubling of the unit cell as shown in Figure

8.3(b). Realization of this ordered phase would be an important first step

towards quantum simulation of the low-temperature phase-diagram of the

Fermi Hubbard model, as shown in a simplified version in Figure 8.3(a).

d-wave superfluidity is expected to emerge as the ground-state of the system

when the filling factor is significantly decreased below 1/2, as shown in Figure

8.3(a). This phase is a suggested pairing mechanism responsible for high Tc

superconductivity in the cuprates [238]. Therefore, quantum simulation of

this exotic phase could be quite important for understanding doped Mott

insulators in the strongly correlated regime.

However, temperatures low enough to observe such phases have yet to be attained

in cold-atom-based Fermi systems. The lowest entropy per particle reported to

date for two-component fermions in an optical lattice is 0.77kB [239]. This exceeds

the entropy at the antiferromagnetic (Néel) transition (sH ' ln(2)/2) by more

than a factor of two [74].
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Antiferromagnetic Ordering

(a) (b)

Figure 8.3. (a) Conjectured low-energy phase diagram of the Fermi Hubbard model.
As the reduced temperature of the gas is decreased below a critical (Néel) temperature,
antiferromagnetic ordering emerges at low unoccupied site fractions (ρ ≈ 1/2). At lower
filling fractions, a d-wave superfluid phase is expected to emerge at very low tempera-
tures. (b) Antiferromagnetism is characterized by a spin ordering with alternating spins
on neighboring lattice sites, leading to a bipartite lattice with a doubling of the unit cell
(dashed lines).

It is not obvious what the ground state will be for a three-component 6Li gas

loaded into an optical lattice when at least one of the scattering lengths is positive.

Recent theoretical investigations of fermionic alkaline earth atoms in optical lattice

potentials, which exhibit SU(N) symmetry due to the lack of hyperfine coupling in

the N = 2I + 1 nuclear spin states, have demonstrated that these systems can re-

alize a variety of model correlated systems, many of which lack solid-state analogs

[240, 241]. In contrast to the magnetic ordering expected in two-component Fermi

gases, which exhibit SU(2) symmetry, it is found that for N ≥ 3 there is a degen-

eracy of the classical ground states. These results suggest that for a repulsively

interacting three-component Fermi gas with SU(3) symmetry, the magnetic order is

underconstrained leading to geometric frustration even in a cubic lattice geometry.

For the three lowest hyperfine states of 6Li at fields between 650 G ≤ B ≤ 834

G, any number of the pairwise interactions can be repulsive and the three scattering

lengths are resonantly enhanced leading to strong correlation in even moderately

deep lattice potentials. The three overlapping Feshbach resonances, which yield

widely varying strengths and anisotropies of the three pairwise interactions, provide

a large parameter space for novel phases to emerge in our three-component system.
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Here, SU(2) is the highest symmetry class at any field suggesting that magnetic

ordering may again emerge at low temperatures. If all three interaction terms

(Uα,β) in Equation 8.4 are positive then magnetic ordering, frustrated magnetism,

phase separation, and charge density states may emerge depending on the filling

factor and anisotropy of the interactions. If, on the other hand, at least one of

the interaction terms is negative, BCS pairing may also compete with magnetic

ordering to define the ground state of the system.

Undoubtedly, two-component 6Li atoms loaded into optical lattices will prove

ideal for quantum simulation of the novel phases predicted by the Fermi Hub-

bard model. However, the observation of the antiferromagnetic phase in such

two-component gases has remained elusive due to the low temperature/entropy

requirements. By adding a third spin-component to the lattice, color superfluidity

in a SU(3) symmetric gas should be realizable. The close analogy of this system

with the color superconducting phase in two-flavor QCD [91] may open the door to

future quantum simulation of a simplified version of the QCD phase diagram with

ultracold quantum gases. Further, the magnetic ground state of three-component
6Li gases in a lattice is currently unknown, but the system offers a promising foun-

dation for realizing novel phases which may exhibit physics beyond the paradigms

considered in condensed matter theory. It is likely, however, that very low tem-

perature/entropy gases will be required to study the phase diagram of the system,

and exploring new methods of cooling (removing entropy from) multi-component

Fermi gases loaded into optical lattices is therefore of critical importance.

8.4 Preparing a Highly Degenerate Fermi Gas in

an Optical Lattice

Previous to our findings with three-component Fermi gases, we began exploring

methods of cooling two-component Fermi gases directly in a 3D optical lattice to

begin mapping out the phase diagram of the Fermi Hubbard model. Methods for

removing entropy considered elsewhere include defect filtering in a state-dependent

optical lattice [242], compacting atoms in a site-addressable lattice [243], algorith-

mic filtering in a one-dimensional (1D) optical lattice in the presence of harmonic
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confinement [244], and expelling excess entropy to the edges of a trapped system

[245, 246, 82, 247]. Very recently, a proof-of-principle demonstration of entropy ex-

change between two atomic species was observed in a 1D lattice [248]. This section

reviews our theoretical investigations of a cooling method we proposed to prepare

fermionic atoms in a three-dimensional optical lattice potential at unprecedentedly

low temperatures and uniform filling factors.

The method makes use of a ”box-like” potential for external confinement and

takes advantage of the Pauli exclusion principle to facilitate the selective removal

of atoms from multiply-occupied lattice sites. We find that of critical importance

is the use of a nonharmonic trapping potential to provide external confinement

for the atoms. We assume that the box-like potential, which exhibits a central

region of very small curvature surrounded by a steep repulsive barrier, is provided

by the radial profile of a blue-detuned (repulsive), high-order Laguerre-Gaussian

(LG) laser beam along each Cartesian axis. In this method, atoms are prepared

via a two-step process involving (1) adiabatically loading atoms initially confined

in the LG trap into a superimposed optical lattice, followed by (2) irreversibly

filtering atoms from all but the lowest energy band (see Figure 8.4). We find that

when the Fermi energy of the system is sufficiently large, such that atoms begin to

significantly populate the first energy band prior to filtering, considerable cooling

is achieved. For realistic experimental parameters, this procedure will produce a

Fermi gas in a lattice with a reduced temperature of T/TF ∼ 0.003 and an entropy

per particle of s ∼ 0.02kB. The results of this investigation were recently published

in Physical Review A, Rapid Communications [249].

8.4.1 Cooling in a Homogeneous Optical Lattice Potential

The energy spectrum of an ensemble of ultracold atoms is greatly affected by the

addition of a 3D cubic optical lattice. We begin by describing the idealized cooling

procedure as it would be implemented with a Fermi gas in a homogeneous 3D

optical lattice potential (i.e., a uniform optical lattice confined over a finite range).

Here, the lattice breaks the translational symmetry of the system, resulting in a

series of discrete energy bands whose width and energy spacings are dependent

on the intensity of the laser light. For a vanishing lattice depth, the band gaps
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EF

Figure 8.4. We filter atoms from a combined optical potential (red solid curve) consist-
ing of a box-like trapping potential (blue dashed line) and optical lattice by selectively
removing atoms from all but the lowest energy band. Amplitude modulation of the lat-
tice potential can selectively transfer these atoms to high-lying bands via a two-photon
transition (green arrows) where they can then tunnel out of the region. Dramatic cooling
results when the Fermi energy (prior to filtering) lies within the first excited band.

disappear and the ”bands” equal the free particle energy-momentum (dispersion)

curves reduced to the first Brillouin zone. As the lattice depth is increased, the

gaps between bands grow and the width of the bands is exponentially suppressed

[250]. In Figure 8.5(a), the band structure for a V0 = 5ER deep 1D sinusoidal

optical lattice is shown. The eigenenergies are given in units of the lattice recoil

energy ER versus quasi momentum q within the first Brillouin zone ranging from

−~kL ≤ q ≤ ~kL.

Starting from a homogeneous degenerate Fermi gas, the depth of 3D optical

lattice potential is adiabatically increased from zero. This results in adiabatic

cooling (with no change in entropy) if the filling factor is greater than unity (i.e.,

more than one atom per spin species per lattice site on average) [251]. In this

case, adiabatic cooling significantly diminishes the reduced temperature T/TF since

application of the lattice increases the Fermi energy EF = kBTF , which lies within

the first excited band at this density, and simultaneously reduces the width of

the Fermi surface, which scales with the width of the first excited band, thereby

reducing the temperature T . For sufficiently high final lattice depths, adiabatic

cooling results in the ground (n = 0) band being uniformly filled with extremely
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Figure 8.5. (a) Band structure for a 5 ER deep lattice. (b) Atoms can be selectively
excited from the n to n + 2 energy bands by modulating the amplitude of the optical
lattice light. The ranges of excitation energies between bands 0 and 2 (blue) and 1 and
3 (red) for fermions in all crystal momenta states are shown. As the depth of the optical
lattice approaches 35 ER, the overlap of these excitation energy ranges vanishes, thereby
demonstrating the feasibility of performing the band selective excitations required in our
filtering method.

high fidelity (because T/TF is now very low) whereas the first excited (n = 1) band

contains significant fluctuations in the occupation number. Entropy is removed in

our method by selectively transferring population from the n = 1 to n = 3 band

and subsequently reducing the depth of the confining potential to allow atoms in

the high-lying bands (n ≥ 3) to escape.

Atoms can be selectively transferred from the n = 1 to n = 3 energy band

with no change in the crystal momentum q by modulating the intensity of the

lattice beams [252]. In Figure 8.5(b), the band excitation energies are shown as

a function of lattice depth for n = 0 → 2 and n = 1 → 3 transitions spanning

all q within a Brillouin zone. By loading the sample into an optical lattice with a

depth of V0 = 35 ER, we find that these transitions are well resolved. It is therefore

possible to apply a filtering process to selective transfer the atomic population from

bands n = 1→ 3 by adiabatic rapid passage. In this case, adiabatic rapid passage

is implemented by sweeping the amplitude modulation frequency from below to

above all 1 → 3 transition frequencies for different q within the Brillouin zone,

while remaining below the lowest 0 → 2 transition frequency. The atoms now

occupying the third and higher bands contain the majority of the entropy density

in the system, and their removal via tunneling significantly reduces the entropy
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Figure 8.6. (a) Calculated 2D intensity profile of an ` = 12 order LG beam. (b) Spatial
profile along each axis of the confining potential (VLG normalized to Vpeak) provided by
a blue-detuned 12th order LG beam. (c) Confinement is provided in 3D at the center
of three elliptical blue-detuned LG beams with mutually orthogonal orientations. The
third beam propagating out of the page is not shown.

per particle of the atoms remaining in the ground band, yielding a high fidelity

system.

8.4.2 Cooling in an Experimentally Realizable System

It is currently unfeasible to experimentally realize the homogeneous trapping po-

tential considered above. The majority of ultracold atomic gas experiments to-date

have relied on the harmonic profile provided by either magnetic or optical fields to

provide external confinement to the atoms. Later, it will be shown that our cool-

ing scheme effectively breaks down if the atoms are purely confined in a combined

optical lattice and harmonic trapping potential. Indeed, it has been theoretically

predicted [75, 253] and experimentally observed [75] that fermi gases adiabatically

loaded into an optical lattice with harmonic external confinement experience an

increase of the reduced temperature T/TF (reduced degeneracy) for all but very

high initial temperatures and filling factors.

In order to experimentally approximate the homogenous lattice potential de-

scribed above, we consider the addition of a box-like external potential which
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can be produced by intersecting three elliptical, blue-detuned, `th-order Laguerre-

Gaussian laser beams. Along each axis, these beams provide a potential VLG(r) =

Vpeak

(
2 e r2

w2
0 `

)`
e−2r2/w2

0 at the beam waist w0. For a given charge `, the peak value

Vpeak of the potential occurs at rmax = w0

√
`/2 and the width of this peak decreases

with decreasing w0. Therefore, for a given trap size (rmax), the LG profile more

closely approximates a box potential when ` is increased and w0 is correspondingly

reduced. Trapping of ultracold gases has been demonstrated in single or crossed

beam configurations of LG beams up to ` = 16 [254, 255, 256].

For the trap described above, the Hamiltonian along each cartesian axis is given

by

H =
−~2

2m

d2

dx2
+ VLG(x) + V0 cos2(kLx+ φx) +

mω2

2
x2, (8.9)

where the third term represents a lattice potential of depth V0 and phase offset

φx. We also include a harmonic term that arises if red-detuned Gaussian beams

are used to produce the lattice potential; in this case ω ∝
√
V0. The 1D eigenval-

ues (εi) and eigenfunctions for a given depth of the optical lattice are calculated

by numerically diagonalizing the Hamiltonian (Equation 8.9) using the Discrete

Variable Representation (DVR) method described in [257]. This powerful method

uses a grid-point representation in coordinate space to reduce the quantum eigen-

value calculation from an integral equation to a simple matrix representation. The

Hamiltonian matrix can be quite sparse, requiring only five points per deBroglie

wavelength to converge, where the potential energy is diagonal and the kinetic

energy reduces to a sum of one-dimensional matrices. A copy of the Mathematica

code written to diagonalize the 1D Hamiltonian (Equation 8.9) using this method

is given in Appendix C.1.

For sufficiently shallow lattice depths, the low energy eigenstates are delocalized

and closely approximate Bloch states in the lowest band of a homogeneous system.

However, higher energy states are either localized at the edges of the trap (i.e.

near x = rmax) or delocalized and correspond to Bloch states in excited energy

bands. The qualitative form of the eigenstates in the ground and first-excited

energy bands for atoms in a combined LG and optical lattice potential at depths

VLG(x) = V0 = 35 ER is illustrated for reference in Appendix C.1. Localization

of the atoms occupying the edge states is clearly shown in the figures, whereas
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Figure 8.7. Energy level spectrum as a function of the optical lattice depth in units of
the lattice photon recoil energy (ER) for the 1D model Hamiltonian given in Equation
8.9. At higher lattice depths, the eigenvalues generally converge into a band structure.
Deviations from the uniform band structure emerge from the existence of the edge states,
which can trap atoms in lower vibrational levels at energies greatly exceeding the band-
widths and even the band-gaps characterizing the distributions of the central eigenstates.

the atoms near the center of the trap are still highly delocalized, even in the

deep lattice potential. While a band structure picture is not strictly valid for

this inhomogeneous system, we classify the set of eigenfunctions without nodes as

constituting the lowest band.

A plot of the 1D eigenenergy spectrum for our model Hamiltonian with respect

to the depth of the optical lattice V0 is shown in Figure 8.7. As the lattice depth

is adiabatically increased, the 1D eigenvalues generally separate into groups cor-

responding to a band structure. At higher energies and lattice depths, a series

of avoided crossings are observed between the eigenvalues converging into one of

the energy bands and a set of eigenvalues that evolve roughly in the same man-
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ner as one of the lower-energy bands. These states that deviate in energy from

the majority band structures are associated with lattice sites at the edges of the

LG trapping potential. Atoms trapped in these edge states can become highly

localized, and slow lattice ramps may be required to assure that adiabaticity and

thermal equilibrium is maintained throughout the gas at all lattice depths.

We then extend our model to three dimensions, where the Hamiltonian H3D =

H(x) + H(y) + H(z). We further assume equal lattice depths in each direction.

The 3D spectrum (Em) for a given depth of the optical lattice is then generated by

calculating all possible combinations of the sum Em = εi+εj+εk for all values of the

1D eigenenergies (εp) in each spatial direction. The 3D energy spectrum for energy

states in the lowest band of the optical lattice is calculated in a similar manner,

where only the 1D eigenenergies associated with states in the lowest energy band

are included.

In calculating thermodynamic quantities during the proposed cooling method,

we assume thermal equilibrium before and after the selective removal of atoms from

excited energy bands. Equilibrium is maintained by elastic collisions in a mixture of

spin-1/2 fermions and changes in the trapping potential are adiabatic with respect

to the rethermalization time scale. However, we also assume that the interactions

can be tuned such that they are weak enough to not significantly modify the single-

particle energy spectrum, Em. We therefore use Em when calculating the following

quantities:

N = 2
∑
m

1

1 + exp[(Em − µ)/kBT ]
,

E = 2
∑
m

Em
1 + exp[(Em − µ)/kBT ]

, (8.10)

S

kB
= 2

∑
m

ln[1 + exp[(µ− Em)/kBT ]] +
E

kBT
− µ

kBT
N,

where T is the temperature, µ is the chemical potential of an atom in either spin

state, N is the total number of atoms, E is the total energy in the system, and S

is the total entropy. The factor of two accounts for the fact we are considering a

Fermi gas whose atoms occupy two spin-states.

Our method for cooling the atoms is comprised of (1) an adiabatic increase in
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the lattice depth starting from zero, (2) an irreversible removal of atoms in excited

bands, (3) rethermalization and (4) an optional adiabatic change to a final lattice

depth. To model the thermodynamic changes that occur during adiabatic ramps

of the potential, we calculate the change in the quantities µ and T using the multi-

band energy spectrum, assuming that both N and S are conserved. In contrast,

to model rethermalization after the selective filtering stage we initially calculate

E and N (from Equation 8.10) for atoms restricted to the lowest energy band and

subsequently solve for µ and T using the multi-band energy spectrum assuming

that the system equilibrates with the calculated E and N after removing all of the

atom from the excited bands. Section C.2 contains our main program, written in

ANSI C, which calculates the energy-spectrum and thermodynamic evolution of

the gas throughout the various stages of the cooling procedure.

8.4.3 Cooling Simulations

We consider a 50/50 spin mixture of 6Li atoms initially trapped in a LG trap-

ping potential with ` = 12, Vpeak = 35ER and rmax = 13.5µm. For reason-

able lattice beam properties (kL = 2π/1064 nm and a Gaussian-beam waist of

wGauss = 300µm) we find ω = 2π (390Hz) for the final lattice depth V0,fin = 35ER.

At this depth, the final entropy per particle (sfin ≡ Sfin/kBNfin) after adiabatic

loading, filtering and rethermalization, is shown in Fig. 8.8 for various initial re-

duced temperatures (Tinit/TF ) and sample sizes (Ninit). Fig. 8.8 also shows the

final reduced temperature (Tfin/TF ) and final atom number (Nf ). In each case

φx = φy = φz = 0. This data shows that the thermodynamic properties of the

system are highly dependent on the initial filling factor and can be separated into

two distinct regions A and B. The vertical dashed line separating the regions rep-

resents the number of atoms at which the Fermi energy enters the first excited

band.

In region A, the Fermi energy before filtering lies below the first excited energy

band. For very low initial filling factors, the filtering/cooling procedure does not

reduce the atom number or the entropy per particle since there is negligible popu-

lation in excited bands. This is indicated in Fig. 8.8 by the fact that for low Ninit,

Nfin = Ninit and sfin remains constant at a value determined by the initial entropy
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per particle (which ' π2

2
Tinit
TF

, the entropy of a homogeneous Fermi gas). Initially,

as Ninit is increased, T/TF increases while the entropy per particle remains con-

stant. As the Fermi energy before filtering approaches the first-excited band, both

the reduced temperature and the entropy per particle begin to decrease.

In region B, the density is such that the Fermi energy before filtering lies within

the first excited band. In this region the adiabatic cooling and filtering procedure

can result in a dramatic reduction of both T/TF and s and produces a sample

with a precisely defined atom number. We find that significant cooling is achieved

for initial temperatures in the vicinity of Tinit = 0.1TF or below. In this case, the

final entropy per particle sfin . 0.02 kB and reduced temperature Tfin/TF . 0.004

over a range of initial atom numbers which varies by 20%. For initial temperatures

Tinit ≤ 0.05TF , the final entropy per particle and reduced temperature saturate

at sfin ∼ 0.01 kB and Tfin/TF ∼ 0.002 respectively each having been reduced by

more than an order of magnitude. This lower limit on the achievable reduced

temperature and entropy is set by the residual harmonic confinement from the

Gaussian lattice beams and the steepness of the walls of the box-like potential.

We also note that, as shown in Fig. 8.8(b), Nfin is insensitive to fluctuations in

Ninit for low initial temperatures. For example, at Tinit = 0.05TF , a variation of

±10% around Ninit = 1.6× 105 yields a variation of only +0.09%/− 0.2% in Nfin.

The cooling efficiency and number filtering are dependent on the choice of

the relative phases between the optical lattice and the center of the LG trapping

potential along each axis (e.g. φx in Equation 8.9) due to the sensitive effect these

phases have on the location of localized edge state eigenenergies relative to the

Fermi energy. To study this effect, we modeled the system allowing the phase in

each direction to be independently selected from the set φα = (0, π/10, ..., π/2).

We considered samples with Tinit = 0.05TF and Ninit = 1.5×105 atoms, parameters

close to optimal for cooling. From the set of all possible phase combinations, we

find an average final entropy per particle sfin = 0.014 kB with a standard deviation

of 0.004 kB and an average final temperature Tfin = 0.003TF with a standard

deviation of 0.001TF . From this same set, we find an average final number Nfin =

1.20× 105 with a standard deviation of 1.6× 103.
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Figure 8.8. (Color online) As a function of initial atom number we report (a) the final
entropy per particle in units of kB, (b) the final reduced temperature and (c) the final
atom number after filtering for various initial temperatures between 0.02 and 0.3TF .
The vertical dashed line represents the number of atoms for which the Fermi energy
enters the first excited band. The trap and lattice parameters are as described in the
text.
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Figure 8.9. (Color online) The effects of the charge ` of the Laguerre - Gaussian
trapping potential on the efficiency of our proposed cooling and filtering method. For
each data set, the initial temperature Tinit = 0.05TF and the phases φx = φy = φz = 0.
For all ` values, the number of atoms at which the Fermi energy enters the first excited
band (vertical dashed line) is held constant.

8.4.4 Technical Limitations of the Cooling Method

Two technical challenges for implementing this technique are (1) maintaining ther-

mal equilibrium when increasing the depth of the optical lattice and (2) maximizing

the fidelity with which atoms are filtered from excited energy bands. Here, we de-

scribe what is required to achieve sfin ≤ 0.028 kB (i.e. a quantity within a factor

of 2 of the average value of the phase-averaged data).

To study the effects of nonadiabatic ramps of the optical lattice, we consider the

possibility that thermal equilibrium is maintained only up to a lattice depth Vadiab.

For V0 > Vadiab, we assume that changes are performed diabatically with respect

to collisions, however, single particle band excitations are not induced. Thus, the

occupation number distribution found in the single-particle states at a depth of

Vadiab is simply mapped on to the corresponding single-particle states for the final

lattice depth V0,fin = 35ER where filtering is performed. After filtering, the depth

is returned to V0 = Vadiab (again without band excitation) where the system is
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assumed to then be able to rethermalize via collisions. We consider samples with

Ninit = 1.5 × 105, Tinit/TF = 0.05, and phases φx = φy = φz = 0. We find that if

thermal equilibrium can be maintained up to a lattice depth of Vadiab ≥ 15.5ER,

the final entropy per particle sfin ≤ 0.028 kB. It seems reasonable to expect the high

tunneling rate in the first-excited band will help to maintain thermal equilibrium

as the lattice depth is increased to Vadiab = 15.5ER. For example, for V0 < 15.5ER,

the tunneling time between lattice sites in the first-excited band is . 74µs for 6Li

atoms in a lattice with k = 2π/(1064 nm). For comparison, the inverse of the

photon scattering rate R−1
sc ∼ 10 s, which sets the timescale for heating, is always

more than five orders of magnitude larger. A detailed analysis to determine the

timescale for adiabatic loading, however, is beyond the scope of this thesis.

Further, to study the effects of incomplete filtering, we modeled the cooling

method with fully adiabatic ramps, but randomly allow a small percentage of

the occupation number distribution for atoms in excited energy bands to remain

after filtering. We find that for the system described above, entropies per particle

below 0.028 kB are achieved if the atoms are removed with a fidelity better than

98.5%. The constraint on the inadvertent loss of atoms from the ground band is

more stringent, requiring that the occupation number in the ground band must be

maintained with a fidelity > 99.99% in order to achieve sf < 0.028 kB.

8.4.5 Effects of Varying the Confining Potential

Finally, we consider the effect of the charge ` of the LG beams for samples with

Tinit = 0.05TF , phase φx = φy = φz = 0, final lattice depth of 35ER, and various

initial atom numbers (see Fig. 8.9). For this data, the waists of the Gaussian lattice

beams are assumed to be wGauss = 200µm, somewhat smaller than before. For each

`-value, the waist of the LG beam is adjusted such that the number of states below

the first excited energy band is held constant at 1.22×105. As seen in Fig. 8.9, the

cooling efficiency of this procedure is highly dependent on the charge. For ` = 1,

which approximates harmonic external confinement, only a modest reduction in

Tfin/TF is observed. For ` ≥ 8 a reduction by a factor ' 20 is achieved. For ` & 8,

the minimum reduced temperature saturates to Tfin/TF . 0.003. For higher values

of `, the extent of the saturation regime grows.
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The efficiency of the cooling scheme proposed is highly dependent on both the

charge ` of the LG trapping potential (defining the ”steepness” of the walls of the

box-like potential) and the magnitude of the harmonic confinement provided by the

optical lattice beams (defining the ”flatness” of the central region of the confining

potential). We have checked that as the waist of the Gaussian lattice beams grows,

the absolute minimum of Tfin/TF decreases. In fact, when considering a true box

potential (wGauss, `→∞), for samples with Tinit = 0.05TF , phase φx = φy = φz =

0, and final lattice depth of 35ER, the final Tfin/TF and sfin are too low for us to

accurately determine with the limited grid-size used in the simulation. However,

both the optical lattice and the high-` LG confining potentials simulated in this

proposal are currently experimentally accessible, and our cooling scheme should

be directly implementable using the current of the state-of-the-art technology to

cool two-component degenerate Fermi gases to unprecedented low temperatures

and entropies per particle with very little variation in the final atom number.

8.4.6 Applicability of the Cooling Method for Two- and

Three-Component Fermi Gases

In this section we have discussed a method for preparing a sample of highly de-

generate two-component Fermi gases by adiabatic loading into a combined optical

lattice and “box-like” trapping potential followed by selective removal of atoms

from all but the lowest energy band. Numerical calculations for sample sizes ∼ 105

predict that temperatures ∼ 0.003TF corresponding to an entropy per particle

∼ 0.02 kB can be prepared in this manner. This method is robust against initial

number and temperature fluctuations for a sufficiently degenerate initial sample of

atoms and yields samples with little variance in the final number. While the selec-

tive removal of atoms must occur in a deep lattice (in order to spectrally resolve

the band excitations), subsequent reduction of the lattice depth, if desired, will

maintain the extremely low entropy per particle if changes are made adiabatically.

Two-component gases prepared in this manner should be sufficiently cold to explore

quantum spin phases of fermionic atoms [72, 73, 74], including antiferromagnetic

ordering and possibly d-wave superfluidity, which are currently inaccessible. This

method could also provide a physical realization of an essentially perfect quantum
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register.

It is further conceivable that two-component Fermi gases prepared in this man-

ner could provide an initial low-temperature basis for producing highly-uniform

three-component Fermi gases confined in the same optical lattice and LG trapping

potentials. Applying state-driving broadband RF pulses to the pre-cooled 50-50

mixture of 6Li atoms in the presence of a magnetic field will cause the atoms in

the lattice to equally occupy the lowest three Zeeman sublevels. Particular atten-

tion to the field value, field gradient, and hold time after the RF pulse will be

required to assure decoherence while maintaining uniform filling of the gas at two

atoms per lattice site. The decreased density of the spin states, however, leads to

a decrease of the Fermi energy and hence an increase of the reduced temperature

so that very little, if any, cooling is achieved in this manner. Further, by blowing

away one of the two spin components before applying the state-driving RF pulses,

three-component gases with almost perfect filling of one atom per lattice cite can

be realized in the combined trapping potentials. Using these methods, the uniform

atomic filling may be maintained at effectively one or two atoms per lattice site.

It is also conceivable to preform the cooling technique with three distinguishable

components loaded into each lattice site. Very weak interactions will be required,

however, at such high densities to achieve any cooling of the gas.



Chapter 9
Conclusions and Outlook

Efimov’s theory considered the few-body interactions of identical bosons with

resonantly-enhanced interactions. Ultracold gases consisting of 6Li atoms equally

occupying the three lowest-energy hyperfine spin states have proven to be a nearly

ideal test-bed for studying the validity of Efimov physics for more complicated

systems consisting of three distinguishable but resonantly interacting particles.

Further, numerous theoretical studies have recently predicted that a host of new

many-body phenomena are expected to emerge in these systems. The wide range

of phenomena available for study with these gases are attributed to the rich struc-

ture of their pairwise interactions. Three overlapping Feshbach resonances and a

zero-energy resonance in the triplet potential provide a wide variety of interac-

tion strengths and imbalances. These range from SU(3) symmetric interactions

at high-fields, to three large and characteristically unequal scattering lengths near

the Feshbach resonances, to regions where the scattering lengths go to zero and

pairs of particles are non-interacting. Further, the gas exhibits regions where any

number of the scattering lengths can be positive and between 0 and 3 universal

dimer states exist.

The ultracold nature of the gas and the short-range of the two-body poten-

tials make these systems ideal for universal studies of the spectrum of weakly-

bound trimer states that can emerge and the various many-body phases that are

expected to arise for such three-component systems. Based on the impact that

few- and many-body studies of ultracold Fermi gases have had to-date on a range

of physical disciplines, it is anticipated that future studies with both two- and
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three-component Fermi gases will reveal a host of new knowledge to expand our

understanding of the universal physics of a variety of interacting Fermi systems.

9.1 Few-Body Studies

Starting with the low-field K3 measurements, we already saw that Efimov trimer

states can exist even when the gas is characterized by three unique s-wave scat-

tering lengths. Fortuitously, the low-field trimer came into resonance with the

free-atom threshold at two field locations, as shown by the white arrows in Figure

9.1 [145, 144]. The locations and widths of the two resonant loss features subse-

quently provided the necessary information both to extract the low-field three-body

parameters describing the properties of the Efimov state in this region [4, 28, 8],

and to derive new models explaining how the inelasticity parameter (η∗) varies

with the binding energies of the most weakly-bound dimer states [5, 205]. The red

curve in Figure 9.1(a) was obtained by fitting our low-field data using the Heidel-

berg model [5], yielding an excellent agreement between the data and the universal

predictions calculated in the zero-range approximation for field values between 16

G < B < 600 G.

Throughout the great majority of the high-field regime, all three scattering

lengths exceed the van der Waals length scale by well over an order of magnitude.

This region is therefore interesting because universal calculations based on the zero-

range approximations should be highly accurate, with non-universal corrections

of lvdw/a ≤ 3%. We therefore conducted a series of experiments measuring the

magnetic field dependent three-body recombination rate for a three-state Fermi

gas of 6Li atoms over the range of fields 834 ≤ B ≤ 1500 G. Particular attention

to the temperature and density of the gas was required for these experiments,

due to the extremely large scattering lengths and loss rates at these fields, to

assure that the K3 measurements were immune to unitarity and thermal averaging

effects. Novel hybrid optical and magnetic traps were specially developed for this

experiment, allowing for the measurement of three-body recombination rates which

varied by over eight orders of magnitude.

The high-field data, which was taken at low sample temperatures (T ≤ 30

nK and T ≤ 180 nK) for comparison with the zero-temperature theory, is rep-
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T < 30 nK
T < 180 nK
T < 4 µK

(a)

(c)

(b)

Figure 9.1. (a) Our entire data set containing both the low-field (green) and high-
field (blue and red) measurements of K3 along with universal fits to the data using the
Heidelberg model (red curve) and a numerical solution of the STM equations (black
and purple curves, adapted from Reference [8]). Resonant three-body loss was observed
(arrows) when an Efimov trimer intersected the three-atom scattering threshold. (b)
Three overlapping s-wave Feshbach resonances in 6Li for states |1〉, |2〉, and |3〉. (c) The
binding energies (E12, E23, and E13) of the universal dimer states associated with the
Feshbach resonances. The dashed lines (n and n′) depict the binding energies of the
Efimov trimer states [8]. The grey shaded areas identify non-universal regions where
E < Evdw or |aij | < 2lvdw.
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resented by the blue triangles and red circles respectively in Figure 9.1(a). Our

measurements exhibited enhanced loss attributed to an Efimov trimer state cross-

ing threshold near 895 G [147] (black arrows in Figure 9.1). A numerical fit of our

high-field K3 measurements using the model provided by D. Kang and E. Braaten,

which explicitly accounted for the variation of the scattering lengths [6], was used

to extract the three-body parameters in the high-field regime. These parameters

also predicted the locations of the loss features previously observed at lower mag-

netic field values, which was unexpected as these features are separated by a range

of scattering lengths which are not universally connected in Efimovs theory.

Our measurements constituted the first observation of multiple Efimov features

in any fermionic system and provided the three-body parameters that were sub-

sequently used to map out the entire spectrum of Efimov states throughout the

high-field universal regime [8]. In Figure 9.1(c), the calculated binding energies of

the ground (n = 0) and first-excited (n = 1) high-field Efimov trimer states are

shown. E. Braaten and co-workers found that the ground (first-excited) trimer

state is predicted to come into resonance with the |1〉− |23〉 atom-dimer threshold

at B
(1)
∗ = 672 ± 2 G (B

(0)
∗ = 597 G). They went on to use our measurements of

the high-field three-body parameters to calculate the three-body loss rate coeffi-

cients for free 6Li atoms throughout the high-field regime. Their calculations are

included in Figure 9.1(a), where the black (purple) curves represent the loss-rates

to both weakly- and deeply-bound (deeply-bound only) dimer states. Their model

predicts multiple minima in the three-body loss rates attributed to Stückelberg

interferences, demonstrating that these loss features can occur whenever at least

one of the scattering lengths are positive.

Recent experiments have begun to explore some of the predicted features at

high fields, including measuring the enhancement of the atom-dimer loss rates

near where the Efimov trimer states crosses the |1〉 + |23〉 atom-dimer thresholds

[210, 198]. Measurements of the atom-dimer resonance at 685 G and the free-atom

resonance at 895 G effectively complete the observation of the spectrum of Efimov

states in 6Li. The disagreement of the atom-dimer loss measurement with the

theoretical prediction based on the high-field three-body parameters, however, has

required the inclusion of non-universal scalings of the three-body parameters to

properly fit all of the loss data [210]. Experiments directly measuring the binding
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energies of the Efimov trimer states using RF photoassociation techniques [198]

may be the key to solving this mystery.

The spectrum of Efimov trimer states and resonant loss features in ultracold
6Li atoms occupying the three lowest Zeeman sublevels (|1〉, |2〉, and |3〉) are now

becoming well understood. However, the source and field-dependence of the non-

universal corrections, that apparently emerge with the inclusion of the weakly-

bound dimer states, is not yet fully known and further data may be required

to shed light on this phenomena. Measurements of the locations and widths of

the Stückelberg interference minima in the three-body loss rates for free atoms,

predicted in Reference [8], could be enlightening since universal predictions char-

acterizing these features already exist and the non-universal theories [210] can be

directly applied to calculate these features based on the pre-existing free-atom and

atom-dimer loss measurements.

Studies of the universal three-body physics in ultracold 6Li gases are therefore

far from exhausted. A natural question also arises as to the possibility of observing

universal four-body physics in these systems. In a recent experiment F. Ferlaino

et al. found evidence for the existence of universal four-body (tetramer) bound

states in a 133Cs gas [258]. These states, which were theoretically predicted by J.

von Stecher et al. [259], exhibit unique universal properties. It turns out that the

tetramer states are related to Efimov physics since the four-body potential is only

attractive enough to support two universal tetramer states in the close proximity

of a trimer state, and therefore the universal relations do not require any four-

body parameters. In ultracold 7Li gases, two sets of tetramers have been observed

corresponding to two Efimov trimer states [38]. Further, there are theoretical

predictions that even higher N-body universal states may exist [260], but their

experimental observation becomes exceedingly difficult.

The Pauli exclusion principle, however, prohibits four-body interactions in a

Fermi gas consisting of only three distinguishable states. These studies already

suggest that new effects are expected to arise by adding a fourth distinguishable

state to the system. Although for different reasons, we have begun exploring the

interactions of atoms occupying state |4〉 with our multi-component gases.

The recently reported RF photoassociation spectroscopy technique [211] pro-

vides a powerful new tool to explore the spectrum of Efimov states in a range of
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three-body system. Associating Efimov trimers from two-component Fermi gases

is limited, however, because three particles are prohibited from occupying the same

spatial region due to Pauli exclusion. Further, the RF-transition drives the atoms

between states in a coherent way so that the addressed atoms remain identical,

prohibiting the formation of trimers [211]. This problem was circumvented by

probing an atom-dimer mixture in which the free and bound atoms occupying the

same internal states were distinguishable, with resonant RF frequencies differing

by the binding energy of the dimer.

Using this method, the authors made the first direct measurement of the bind-

ing energies of an Efimov trimer state. However, RF spectroscopy could only be

preformed using this technique at fields significantly below the Feshbach resonance.

We have been exploring the possibility of preforming RF photoassociation spec-

troscopy to associate the |123〉 Efimov trimer from 6Li gases consisting of either

|4〉 atoms and |12〉 molecules or |1〉, |2〉, and |4〉 coexisting free-atom states. Three

distinct atomic states would now exist in this system, avoiding the limitations as-

sociated with Pauli-exclusion and distinguishability. Further, preliminary results

for the calculated s-wave scattering lengths and spin-exchange decay rates at low

fields [261] suggest that in the absence of RF addressing, these mixtures should be

relatively long-lived.

It is conceivable that, by using this method, RF photoassociation could be

used to map out the binding energies of the entire spectrum of Efimov states in

the system. These measurements would provide valuable information for testing

both the continuity of the trimer states across the Feshbach resonances and the

scaling of the trimer binding energies E0
T/E

1
T . With high resolution measurements

it should also be possible to use this technique for precision tests of non-universal

corrections to the few-body theories and to directly measure the lifetime of the

Efimov trimers from the width of the association peaks.

9.2 Outlook for Many-body Studies

To date, all of the experiments with ultracold three-component Fermi gases have

concentrated on the few-body properties of the system. However, now that the

stability of the gas is known throughout the high-field, strongly universal regime,
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the field is primed to begin studying some of the novel many-body phenomena

that are predicted to emerge with the inclusion of a third spin component to the

gas. In general, collective effects emerge in degenerate gases exhibiting strong

pairwise interactions. Although we have demonstrated quantum degeneracy of a

three-component Fermi gas in the high-field, SU(3) symmetric, regime the gas was

too weakly interacting to realize the atomic color superfluid phase at these fields.

In Chapter 8, the density and lifetime requirements of the gas were considered

for realizing a variety of predicted phenomena in both bulk and lattice confined

three-component Fermi systems. It was found that in bulk samples, the lifetime

of the 6Li gas was generally too short to create gases with more than one pair

of components in the strongly interacting regime. It is therefore not possible to

create bulk three-component 6Li gases with multiple coexisting BCS superfluid

components. Various initial studied are available, however, to demonstrate many-

body effects in this system.

A relatively simple first experiment, which was previously discussed, would be

to create a BCS superfluid of |1〉 − |2〉 atoms coexisting with a weakly-interacting

gas of atoms in state |3〉 near the 834 G Feshbach resonance. Demonstration of

this phase mixture would in fact be a first realization of an atomic color super-

fluid, where two of the components form a superfluid while the third component

remains as a spectator. Another interesting scenario was recently considered by

T. Ottenstein [175] to probe the mean-field energy between atoms and dimers.

Here, an initial mixture of atoms in state |2〉 and |23〉 molecules are considered.

As the molecules are cooled below the BEC critical temperature, the sample is

shown to phase separate to form a superfluid core surrounded by a shell of the

free atoms. The atoms can then be rapidly transferred to state |1〉 with a resonant

RF pulse. So long as the atom-dimer scattering length is sufficiently large and

positive the system should remain phase separated, minimizing the atom-dimer

loss rates and demonstrating a mean-field dominated phase in a three-component

gas. This experiment can be further generalized to study the collapse of the gas

as the field is reduced toward 731 Gauss, where pairing competition emerges due

to the degeneracy of the binding energies of the |12〉 and |23〉 dimer states.

The greatest opportunity for realizing exotic many-body phases in two- and

three-component Fermi gases, however, will likely come from loading the atoms



230

into a lattice potential. For three-component 6Li gases at high fields, the lattice

may act to significantly increases the BCS critical temperature. Depending on

the strength of the pairwise interactions, the ground state of the system is then

characterized by either a color superfluid phase or a phase of trions consisting of

one atom from each spin component [84, 90, 91, 92].

In the high-field SU(3) symmetric regime, the atomic color superfluid phase

may provide a useful analog for studying the color superconducting phase in two-

flavor quantum chromodynamics (QCD) [91]. The high loss rates of the gas, how-

ever, suggest that the trion phase will be highly unstable, especially for the case

where three distinguishable 6Li atoms are highly localized at a single lattice site.

Counterintuitively, it is conjectured that strong three-body loss can be useful for

stabilizing the color superfluid phase [233]. This phenomena is due to a Quantum-

Zeno like effect where the immediate loss of a trion is analogous to continuous

interrogation of the quantum system as the atoms tunnel among nearest-neighbor

lattice sites.

Although our experiments to-date have concentrated on the three-component

systems, the original goal of the lab was dedicated to studying the exotic phases

that are predicted to emerge for repulsively interacting two-component Fermi gases

confined in a three-dimensional optical lattice potential. These gases provide a

nearly ideal model system for studying the low-temperature phase diagram of the

Fermi Hubbard model, which predicts a phase transition to an antiferromagneti-

cally ordered state and possibly even a d-wave superfluid phase at extremely low

temperatures.

To this end, we theoretically investigated the cooling efficiency of a method that

we developed to prepare a highly-degenerate Fermi gas in a deep three-dimensional

optical lattice with a box-like external confining potential. The method involves

adiabatic loading of a two-component gas into the lattice with sufficiently high

density that the Fermi energy lies within the second energy band, followed by a

filtering procedure which removes all of the atoms in the excited energy bands. Our

investigations found that weakly-interacting Fermi gases prepared in this manner

can be cooled to reduced temperatures on the order of T/TF ∼ 10−3, sufficiently

low for possible studies of quantum magnetic ordering in multi-component Fermi

gases, with very little variance of the final number of atoms per lattice site.
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We further found that the cooling procedure breaks down as the profile of

the confining potential is transformed from box-like to harmonic. In fact, the

ground-state properties of the lattice-confined gas are significantly unique for the

boxlike potential. Even in a relatively deep trap, a large portion of the eigenstates

are characterized by delocalized ”Bloch wave” like states in the central region

surrounded by highly localized states at the edges of the potential. Atoms prepared

by our cooling method are expected to form a band insulator in the central region

with a population in the localized edge states exhibiting suppressed tunneling rates

into the central region as compared to the rates of tunneling to neighboring edge

states. This scenario is reminiscent of the central insulator and conducting edge

states characterizing a topological insulator.

The boxlike potential we considered can be realized by intersecting three mu-

tually orthogonal, elliptical 12th order Laguerre-Gaussian (LG) laser beams which

are blue detuned from the atomic resonance. Eric Hazlett and Yi Zhang in our lab

have both made a great deal of progress in designing the LG trapping beams, which

will soon be installed on our apparatus, and the next upgrade of our system is ded-

icated to installing a three-dimensional lattice potential which will enable a host

of new experiments aimed at studying quantum magnetism and exotic many-body

phenomena using ultracold multi-component 6Li gases.



Appendix A
Reference Data

A.1 Fundamental Constants and 6Li Properties

Symbol Value Definition

h 6.62606896 × 10−34 Js Planck’s constant
~ 1.05457162 × 10−34 Js Planck’s constant/2π
c 2.99792458 × 108 ms−1 Speed of light in vacuum
µ0 12.5663706 × 10−7 NA−2 Magnetic permeability in freespace
ε0 8.854187812 × 10−12 Fm−1 Electric constant
kB 1.3806504 × 10−23 JK−1 Boltzmann’s constant
µB 927.400915 × 10−26 JT−1 Bohr’s magneton
a0 0.529177209 × 10−10 m Bohr’s radius

Properties of 6Li

mLi 9.988341146 × 10−27 kg Mass of a 6Li atom
λD2 670.977338 nm Wavelength of the D2 line in vacuum
ΓD2 5.8724 MHz Natural linewidth of the D2 transition
Isat(D2) 2.54 mW/cm2 Saturation intensity of the D2 transition
σ0(D2) 2.1495972 m2 Optical cross-section of the D2 transition
ER(671 nm) kB × 3.535 µK Photon recoil energy (671 nm light)
ER(1064 nm) kB × 1.405 µK Photon recoil energy (1064 nm light)

Table A.1. Fundamental constants used in this thesis, values taken from Reference [10].
The properties of 6Li are calculated or taken from Reference [11].



233

A.2 Magnetic Field Tuning of D2 Transitions
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Figure A.1. Energy tuning of the 2S1/2 (ground) and 2P3/2 (excited) Zeeman hyperfine
levels in a magnetic field. The arrows indicate the slower cooling transitions (at ∼ Bmax)
and the energy-resolved imaging transitions near ∼ 500 Gauss.



Appendix B
Supplementary Experimental Data

This appendix includes supplementary data related to the ”qualitative” stability

measurements of the three-component 6Li gas described in Section 6.1.2. In Figure

6.1(a) of the main text, the ratio N201ms/N1ms is reported, which is the ratio of the

populations remaining after spending either 201 ms or 1 ms in the primary optical

trap at the field of interest Bhold. We report this ratio to account for the fact that

atoms are lost during the field sweeps to and from the various fields of interest and

that the number of atoms lost depends in a smoothly varying way on the particular

field of interest. The entire data set containing the number of atoms remaining

in each state after spending either 1 ms (N1ms) or 201 ms (N201ms) at the field of

interest is provided here for reference in Figure B.1. This data set represents the

raw data used to generate Figure 6.1(a).

We have also observed the low-field resonant loss features near 130 G and 500

G in a somewhat different trapping configuration and at an initial temperature

twice that reported in the main text. For the data shown in Figure B.2, the trap

oscillation frequencies are comparable to those reported for the primary trap in

Section 6.1.2. However, the axis of the crossed-beam trap was oriented along the

x̂ − ẑ axis (i.e. orthogonal to the direction of gravity) at an angle of 34◦ with

respect to the ẑ (magnetic bias field) axis. For this data, the initial temperature

of the cloud was 4 µK.

The experimental sequence for measuring the population remaining in the trap

was nearly identical to that described in Section 6.1.2. The notable differences are

that the data presented in Figure B.2 is not normalized by a measurement of N1ms,
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and therefore does not account for the atom loss during the field sweeps. Addition-

ally, the calibration of the magnetic field is shifted by several hundred milliGauss

between the two data set. This shift explains the absence of the narrow p-wave

resonance at 228 G from this data set. Figures B.2 and 6.1(a) are qualitatively

consistent, both exhibiting the anomalous resonant loss features near 130 G and

500 G. Additionally, the resonant loss feature near 500 G results in a larger loss of

atoms from states |1〉 and |2〉 in both data sets. The state-selective loss is not in

agreement with the data presented in Reference [145].
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Figure B.1. The number of atoms remaining in the primary optical trap in each of the
three spin states (|1〉, |2〉, and |3〉) after spending either 1 ms or 201 ms at the field of
interest Bhold. The data reported in Figure 6.1(a) is produced by computing the ratio
N201ms/N1ms. Here, the values for N201ms (colored data sets) and N1ms (black data sets)
are shown explicitly for each field of interest.
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Figure B.2. The number of atoms remaining in an optical dipole trap in each of the
three spin states (|1〉, |2〉, and |3〉) after spending 200 ms at the field of interest Bhold.
The samples are prepared in a manner similar to that described in Section 6.1.2. For
the data reported here, the trap had a similar geometry and trap frequencies as the final
primary trap geometry used for the collisional stability measurements shown in Figure
6.1(a), but was rotated so that the trap-axis was orthogonal to gravity, and the initial
temperature of the cloud was now 4 µK. Resonant loss features are again observed near
130 and 500 G. The loss which occurs near 500 G also leads to a population imbalance.



Appendix C
Lattice Cooling Simulator

This appendix includes the code used to numerically simulate the thermodynamic

evolution of a Fermi gas throughout the various stages of the cooling method that

we proposed, discussed in Chapter 8. The codes presented here are a template

which can be easily altered for various simulations. In their current form, the

programs are generally applicable for ultracold fermions trapped in a combined

12th order Laguerre-Gaussian and optical lattice trapping potential. Numerical

diagonalization of the Hamiltonian is simplified by using a Discrete Variable Rep-

resentation (DVR) method to obtain a simple kinetic energy matrix in the position

basis [257], which allows us to accurately calculate the energy-spectrum at various

depths of the 3D optical lattice.

Section C.1 contains Mathematica code that calculates and plots the 1D

eignevalues and eigenfunctions for a given Hamiltonian. When changing either the

external or optical lattice trapping potentials, the user-defined set of 1D eigenfunc-

tions in the lowest-energy band can be graphically determined from this program,

consisting of all of the eigenstates without nodes. Section C.2 contains our main

program, written in ANSI C, which calculates the energy-spectrum and thermody-

namic evolution of the gas throughout the cooling procedure. Analogous programs

were used to calculate all of the data in Figures 8.7, 8.8, and 8.9 in Section 8.4.
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C.1 Eigenfunction/Eigenvalue Calculator
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C.2 Main Cooling Program

/******************************************************************* 
*                * 
*   Thermodynamic Simulator for Adiabatic loading of fermions into a     * 
*   3D Optical lattice and filtering the atoms from all excited bands    *   
*                    * 
*******************************************************************/ 

#include "spectrum.h" 
#include <stdio.h> 
#include <math.h> 

/*  User-defined parameters */  

#define GRDSZ  3500 
#define GRDSTRT -26*PI 
#define GRDEND 26*PI 
#define dGRD ((GRDEND-GRDSTRT)/(GRDSZ - 1.0)) 
/*#define SSTRT  0 
#define SEND  35 
#define NSVALS 8 
#define dS  (SEND-SSTRT)/(NSVALS - 1.0)*/ 
#define TAU_STRT 0.005 
#define TAU_END 6.0 
#define TAU_NPTS 250 
#define TAUSTEP 2 
#define dTAU  (TAU_END-TAU_STRT)/(TAU_NPTS-1.0) 
#define MUSTEP 1.0 
#define NEIGSOUT 300 
/*#define NUM 100000*/ 
#define MAX_ITRS 150 
#define EIGVAL_CUTOFF 35.0 
#define Min_Atom_Nums 1000 
#define Max_Atom_Nums 100500 
#define dAtom_Nums 500 
#define Num_Atom_Nums ((Max_Atom_Nums-Min_Atom_Nums)/(dAtom_Nums))+1 
#define InitTemp .1 
#define phase PI/8.0 

int NUM_EIGS3D; 
int NUM_EIGS1D; 
int NUM_EIGS_1BAND3D; 
int NUM_EIGS_1BAND1D; 
int NUM; 

long double Entropy_0, Energy_0; 



243

/* Function to find number of eigenvalues with energies below cutoff */ 

int GetNum1DEigVals(float *EigVals) 
{
  int i; 
  for(i=1;i<GRDSZ+1;i++) 
    { 
      if(EigVals[i] > EIGVAL_CUTOFF) 
 { 
   return(((int) i-1)); 
 } 
    } 
  return(GRDSZ); 
}

/* Entropy evaluator function  */ 

float EvalEntropy(float mu,float tau,float *EigVals3D) 
{
  int i; 
  long double logZ; 
  long double Energy; 
  long double Factor; 
  long double PosExpFactor; 
  long double NegExpFactor; 
  long double Entropy; 
  logZ = 0.0; 
  Energy = 0.0; 

  for(i=1;i<NUM+1;i++) 
    { 
      Factor = ((long double) EigVals3D[i]- (long double) mu)/((long double) tau); 
      PosExpFactor = (long double) exp((long double) Factor); 
      logZ += (long double) log((long double) PosExpFactor + (long double) 1.0) - Factor; 
      Energy += (long double) EigVals3D[i]/((long double) PosExpFactor + 1.0); 
    } 

  for(i=NUM+1;i<NUM_EIGS3D+1;i++) 
    { 
      Factor = ((long double) EigVals3D[i]- (long double) mu)/((long double) tau); 
      PosExpFactor = (long double) exp((long double) Factor); 
      NegExpFactor = (long double) exp(-(long double) Factor); 
      logZ += (long double) log((long double) 1.0 + (long double) NegExpFactor); 
      Energy += (long double) EigVals3D[i]/((long double) PosExpFactor + 1.0); 
    } 
  Entropy = logZ + Energy/((long double) tau) - (long double) mu*NUM/((long double) tau); 
  return((float) Entropy); 
}
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/*  Energy evaluator function  */ 

float EvalEnergy(float mu,float tau,float *EigVals3D) 
{
  int i; 
  long double Energy; 
  long double Factor; 
  long double PosExpFactor; 
  Energy = 0.0; 

  for(i=1;i<NUM_EIGS3D+1;i++) 
    { 
      Factor = ((long double) EigVals3D[i]- (long double) mu)/((long double) tau); 
      PosExpFactor = (long double) exp((long double) Factor); 
      Energy += (long double) EigVals3D[i]/((long double) PosExpFactor + 1.0); 
    } 
  return((float) Energy); 
}

/*  Function to determine approprite range of chemical potential for iterators  */ 

float BracketMu(float (*NConstraint)(float,float,float *),float mu_plus,float delta_mu,float 
tau,float *EigVals3D) 
{
  int i; 
  float mu_neg; 

  mu_neg = mu_plus - delta_mu; 

  for(i=1;i<MAX_ITRS+1;i++) 
    { 
      if(NConstraint(mu_neg,tau,EigVals3D) < 0.0) 
 { 
   return(mu_neg); 
 } 
      mu_neg -=  delta_mu; 
    } 
  printf("Error: Max iterations reached in function BracketMu"); 
  exit(1); 
  return(1); 
}

/*  Define functional form of external trapping potential  */ 

float LGRad(float x,float w0,int l) 
{
  return(pow(2.0*E,l)*exp(-2.0*x*x/(w0*w0))*pow(x/w0,2.0*l)/pow(l,l)); 
}



245

/*  Another function for determining approprite range of chemical potential for iterators  */ 

float BracketMuPlus(float (*NConstraint)(float,float,float *),float mu_plus,float delta_mu,float 
tau,float *EigVals3D) 
{

  int i; 
  float mu_plus_test; 
  mu_plus_test = mu_plus; 
  for(i=1;i<MAX_ITRS+1;i++) 
    { 
      if(NConstraint(mu_plus_test,tau,EigVals3D) > 0.0) 
 { 
   return(mu_plus_test); 
 } 
      mu_plus_test +=  delta_mu; 
    } 
  printf("Error: Max iterations reached in function BracketMu"); 
  exit(1); 
  return(1); 
}

/*  Function for calculating 1D eigenvalues */ 

void MakeIValList(float s,float *EigVals, float **T, float **V, float **H) 
{
  int i; 
  int j; 
  float x; 
  x = GRDSTRT; 
  for(i=1;i<GRDSZ+1;i++) 
    { 
      V[i][i] = s*pow(cos(x+(phase)),2.0)+35.0*LGRad(x,32.4789,12)+(s/35.0)*0.0001*x*x; 
      x += dGRD; 
    } 
  for(i=1;i<GRDSZ+1;i++) 
    { 
      for(j=1;j<GRDSZ+1;j++) 
 { 
   H[i][j] = T[i][j] + V[i][j]; 
 } 
    } 
  call_eval_solver(GRDSZ,H,EigVals); 
  for(i=2;i<GRDSZ+1;i++) 
    { 
      EigVals[i] -= EigVals[1]; 
    } 
  EigVals[1] = 0.0; 
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}

/*  Function to express Kinetic Energy in position space     * 
*   Based on D. T. Colbert and W. H. Miller, J. Chem. Phys.  96, 1982 (1991).  */ 

void InitTMatrix(float **T) 
{
  int i,j; 
  float TFactor; 
  TFactor = PI*PI/(2.0*(GRDEND-GRDSTRT)*(GRDEND-GRDSTRT)); 
  for(i=1;i<GRDSZ+1;i++) 
    { 
      for(j=1;j<GRDSZ+1;j++) 
 { 
   if(i == j) 
     { 
       T[i][i] = TFactor*(0.66666667*(GRDSZ+1.0)*(GRDSZ+1.0)+0.3333333 - 
pow(sin(PI*i/(GRDSZ+1.0)),-2.0)); 
     } 
   else 
     { 
       T[i][j] = TFactor*(pow(-1.0,i-j)*(pow(sin((i-j)*PI/(2.0*(GRDSZ+1.0))),-2.0) - 
pow(sin((i+j)*PI/(2.0*(GRDSZ+1.0))),-2.0)));
     } 
 } 
    } 
}

/* Function to initialize matrix for Potential */ 

void ZeroVMatrix(float **V) 
{
  int i,j; 
  for(i=1;i<GRDSZ+1;i++) 
    { 
      for(j=1;j<GRDSZ+1;j++) 
 { 
   V[i][j] = 0.0; 
 } 
    } 
}

/*  Function to build 3D list of eigenenergies from list of 1D eigenenergies  */ 

void Build3DIValList(float *EigVals,float *EigVals3D,int NUM_EIG1D,int NUM_EIG3D) 
{
  int j,k,m; 
  for(j=1;j<NUM_EIG1D+1;j++) 
    { 
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      for(k=1;k<NUM_EIG1D+1;k++) 
 { 
   for(m=1;m<NUM_EIG1D+1;m++) 
     { 
       EigVals3D[j+NUM_EIG1D*(k-1)+NUM_EIG1D*NUM_EIG1D*(m-1)] = 
EigVals[j] + EigVals[k] + EigVals[m]; 
     } 
 } 
    } 
  sort(NUM_EIG3D,EigVals3D); 
}

/*  Function to calculate Number of particles from chem. potential, tau, and 3D eigenenergies  */ 

float NConstraint(float mu,float tau,float *EigVals3D) 
{
  int i; 

  long double NSum; 
  NSum = 0.0; 
  for(i=1;i<NUM_EIGS3D+1;i++) 
    { 
      NSum += 1.0/(exp(((long double)EigVals3D[i]-(long double)mu)/(long double)tau)+1.0); 
    } 
  return((float)NSum-NUM); 
}

/* Function to Calculate Number of doubly occupied sites from chem. potential, tau, and 3D 
eigenenergies  */ 

float NumDouble(float mu,float tau,float *EigVals3D) 
{
  int i; 
  long double N2Sum; 
  N2Sum = 0.0; 
  for(i=1;i<NUM_EIGS3D+1;i++) 
    { 
      N2Sum += pow(1.0/(exp(((long double)EigVals3D[i]-(long double)mu)/(long 
double)tau)+1.0), 2); 
    } 

  return((float)N2Sum); 
}

/*  Function to compare calculated entropy to known entropy for adiabatic operations */  

float EntropyConstraint(float mu,float delta_mu,float tau,float *EigVals3D) 
{
  int i; 
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  float Entropy_test, MUNEG, MUPLUS; 
  Entropy_test = 0.0; 
  MUPLUS= mu+1.0; 
  MUNEG = BracketMu(NConstraint,mu,delta_mu,tau,EigVals3D); 
  MUPLUS = MUNEG + delta_mu; 
  mu = zbrent(NConstraint,MUPLUS,MUNEG,tau,EigVals3D,0.0000000001); 
  Entropy_test = EvalEntropy(mu,tau,EigVals3D); 
  return(Entropy_test - Entropy_0); 
}

/****************************** 
*   Main body of the program  * 
*******************************/ 

main(int argc, char **argv) 
{
  int i,j,k; 
  int N0; 
  FILE *fileptr; 
  float x, s, mu, tau; 
  long double mu_plus, mu_neg; 
  long double tau_plus, tau_neg, tau_0; 
  float EFermi[Num_Atom_Nums+1],RethEFermi[Num_Atom_Nums+1]; 
  float TTF[Num_Atom_Nums+1],RethTTF[Num_Atom_Nums+1]; 
  float **Entropy; 
  long double Entropy_Test, Energy_Test; 
  float EigVals[GRDSZ+1]; 
  float *EigVals3D; 
  float OneBand_EigVals[52]; 
  float *OneBand_EigVals3D; 
  long double Energy_OneBand[Num_Atom_Nums+1]; 
  long double NUM_OneBand[Num_Atom_Nums+1]; 
  long double NUM_35ER, N2; 
  float **T; 
  float **H; 
  float **V; 

  Entropy = matrix(1,2,1,Num_Atom_Nums); 

  H = matrix(1,GRDSZ,1,GRDSZ); 
  T = matrix(1,GRDSZ,1,GRDSZ); 
  V = matrix(1,GRDSZ,1,GRDSZ); 

  InitTMatrix(T); 
  ZeroVMatrix(V); 

  /*for(i=1;i<NSVALS+1;i++) 
    {*/ 
  i=1; 
  printf("Calculate entropy at zero lattice depth for various atom numbers \n" ); 
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s = 0; 

 MakeIValList(s,EigVals,T,V,H); 
      NUM_EIGS1D = GetNum1DEigVals(EigVals); 
      NUM_EIGS3D = NUM_EIGS1D*NUM_EIGS1D*NUM_EIGS1D; 
      EigVals3D = vector(1,NUM_EIGS3D); 
      Build3DIValList(EigVals,EigVals3D,NUM_EIGS1D,NUM_EIGS3D); 
      NUM = Min_Atom_Nums; 

   for(j=1;j<Num_Atom_Nums+1;j++) 
   { 
    mu = (EigVals3D[NUM]+EigVals3D[NUM+1])/2; 
    EFermi[j] = mu; 
    tau = InitTemp*EFermi[j]; 
    mu_plus = mu*2.5; 
    mu_neg = BracketMu(NConstraint,mu,MUSTEP,tau,EigVals3D); 
/*    mu_plus = mu_neg + MUSTEP; 

    mu_plus = BracketMuPlus(NConstraint,mu,MUSTEP,tau,EigVals3D);*/ 
    mu = zbrent(NConstraint,mu_plus,mu_neg,tau,EigVals3D,0.0000000001); 
    Entropy[i][j] = EvalEntropy(mu,tau,EigVals3D); 
/*    printf("\t NUM: %f\t EFermi: %f\t TTF: %f\t Entropy: 
%f\n",NUM,EFermi[j],tau/EFermi[j],Entropy[i][j]);*/ 
    NUM += dAtom_Nums; 
 } 

      free_vector(EigVals3D,1,NUM_EIGS3D); 

/*  Build 3-D Eigenvector list for atoms in 35 Er lattice depth potential*/ 

   s = 35; 
   MakeIValList(s,EigVals,T,V,H); 
      NUM_EIGS1D = GetNum1DEigVals(EigVals); 
      NUM_EIGS3D = NUM_EIGS1D*NUM_EIGS1D*NUM_EIGS1D; 
      EigVals3D = vector(1,NUM_EIGS3D); 
      Build3DIValList(EigVals,EigVals3D,NUM_EIGS1D,NUM_EIGS3D); 

/*  Build 3-D Eigenvector list for atoms in first E-Band at 35 Er lattice depth (user-defined)*/ 

   for(i=1; i<41; i++) 
   { 
   OneBand_EigVals[i] = EigVals[i]; 
   } 
   OneBand_EigVals[41]=EigVals[76]; 
   OneBand_EigVals[42]=EigVals[78]; 
   OneBand_EigVals[43]=EigVals[81]; 
   OneBand_EigVals[44]=EigVals[115]; 
   OneBand_EigVals[45]=EigVals[123]; 
   OneBand_EigVals[46]=EigVals[131]; 
   OneBand_EigVals[47]=EigVals[165]; 
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   OneBand_EigVals[48]=EigVals[169]; 
   OneBand_EigVals[49]=EigVals[188]; 
   OneBand_EigVals[50]=EigVals[193]; 
    OneBand_EigVals[51]=EigVals[GRDSZ]; 

 NUM_EIGS_1BAND1D = GetNum1DEigVals(OneBand_EigVals); 
      NUM_EIGS_1BAND3D = 
NUM_EIGS_1BAND1D*NUM_EIGS_1BAND1D*NUM_EIGS_1BAND1D; 
      OneBand_EigVals3D = vector(1,NUM_EIGS_1BAND3D); 

Build3DIValList(OneBand_EigVals,OneBand_EigVals3D,NUM_EIGS_1BAND1D,NUM_EIGS
_1BAND3D); 

   if((fileptr = fopen("Laguerre_pi_8_1_1.dat","w")) == NULL) 
    { 
      printf("Can't open output file\n"); 
      return(1); 
    } 

/*  Begin Adiabatic Cooling Iterator */ 

 NUM = Min_Atom_Nums; 
   for(j=1;j<Num_Atom_Nums+1;j++) 
   { 
    printf("Starting Blakie Cooling with %i %s \n \n", NUM, " Atoms"); 
    Entropy_0 = Entropy[1][j]; 
    mu = (EigVals3D[NUM]+EigVals3D[NUM+1])/2.0; 
    EFermi[j] = mu; 
    tau_0 = .05*EFermi[j]; 
    tau_neg = .0001*EFermi[j]; 
    tau_plus = EFermi[j]; 

    for(i=1;i<MAX_ITRS+1;i++) 
     { 
     mu = (EigVals3D[NUM]+EigVals3D[NUM+1])/2.0; 
     mu_plus = mu*2.5; 
     mu_neg = BracketMu(NConstraint,mu,MUSTEP,tau_0,EigVals3D); 
/*       mu_plus = 
BracketMuPlus(NConstraint,mu,MUSTEP,tau,EigVals3D);*/ 
     mu = 
zbrent(NConstraint,mu_plus,mu_neg,tau_0,EigVals3D,0.0000000001); 
     Entropy_Test = EvalEntropy(mu,tau_0,EigVals3D); 
     printf("Tau_0/EF = %Lf %s %Lf %s %Lf %s %Lf %s %i 
\n",tau_0/EFermi[j]," Entropy_0 = ",Entropy_0," Entropy_Test = ",Entropy_Test, " Entropy_Test 
- Entropy_0 = ",Entropy_Test - Entropy_0,"  i = ",i); 

     if(fabs(Entropy_Test - Entropy_0) > .001 && tau_plus - tau_neg > 
tau_0/100000.) 
     { 
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      if(Entropy_Test > Entropy_0) 
      { 
       tau_plus = tau_0; 
       tau_0 = (tau_plus + tau_neg)/2; 
      } 
      else 
      { 
       tau_neg = tau_0; 
       tau_0 = (tau_plus + tau_neg)/2; 
      } 
     } 
     else 
     { 
      break; 
     } 
     if(i == MAX_ITRS) 
     { 
     printf("Error: Max iterations reached in Blakie Cooling"); 
     return(1); 
     } 
    } 
/* fprintf(fileptr,"\t%f\n",tau_neg); 

    tau = 
zbrent_tau(EntropyConstraint,tau_plus,tau_neg,mu,MUSTEP,EigVals3D,0.0000000001);
*/
              tau = tau_0; 
              TTF[j] = tau/EFermi[j]; 
              NUM_OneBand[j] = 0; 
              NUM_35ER = 0; 
              N2 = 0; 
              Energy_OneBand[j] = 0; 
              for(i=1;i< NUM_EIGS_1BAND3D + 1;i++) 
              { 
              NUM_OneBand[j] += 1.0/(exp(((long double)OneBand_EigVals3D[i]-(long 
double)mu)/(long double)tau)+1.0); 
              Energy_OneBand[j] += (long double)OneBand_EigVals3D[i]/(exp(((long 
double)OneBand_EigVals3D[i]-(long double)mu)/(long double)tau)+1.0); 
              } 
              NUM_35ER = 1.0/(exp(((long double)OneBand_EigVals3D[NUM_EIGS_1BAND3D]-
(long double)mu)/(long double)tau)+1.0); 
              N2 = NumDouble(mu, tau, EigVals3D); 
             printf("%i %s %i %s %Lf %s %Lf \n \n", NUM," ", NUM_EIGS_1BAND3D, " ",  
NUM_OneBand[j], " ",Energy_OneBand[j] ); 

             fprintf(fileptr,"%i \t %f \t %Lf \t %Lf \t %f \t %Lf \t %Lf \t %f \t %f \t %LE \t %LE 
\n",NUM,TTF[j],Entropy_0,Entropy_Test - 
Entropy_0,EFermi[j],NUM_OneBand[j],Energy_OneBand[j],mu,tau, NUM_35ER, N2); 
    NUM += dAtom_Nums; 
 } 
      fprintf(fileptr,"\n \n"); 
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/*  Rethermalization after filtering iterator */ 

   for(j=1;j<Num_Atom_Nums+1;j++) 
   { 
     N0 = Min_Atom_Nums; 
     Energy_0 = Energy_OneBand[j]; 
     NUM = NUM_OneBand[j]; 
     mu = (EigVals3D[NUM]+EigVals3D[NUM+1])/2.0; 
     RethEFermi[j] = mu; 
     tau_0 = .05*RethEFermi[j]; 
     tau_neg = .00001*RethEFermi[j]; 
     tau_plus = RethEFermi[j]; 

     printf("Starting rethermalization with %i %s \n \n", NUM, " Atoms"); 

     for(i=1;i<MAX_ITRS+1;i++) 
     { 
     mu = (EigVals3D[NUM]+EigVals3D[NUM+1])/2.0; 
     mu_plus = mu*2.5; 
     mu_neg = BracketMu(NConstraint,mu,MUSTEP,tau_0,EigVals3D); 
/*     mu_plus = 
BracketMuPlus(NConstraint,mu,MUSTEP,tau,EigVals3D);*/ 

     mu = 
zbrent(NConstraint,mu_plus,mu_neg,tau_0,EigVals3D,0.0000000001); 
     Energy_Test = EvalEnergy(mu,tau_0,EigVals3D); 
     printf("Tau_0/RethEF = %Lf %s %Lf %s %Lf %s %Lf %s %i 
\n",tau_0/RethEFermi[j]," Energy_0 = ",Energy_0," Energy_Test = ",Energy_Test, " 
Energy_Test - Energy_0 = ",Energy_Test - Energy_0,"  i = ",i); 

           if(fabs(Energy_Test - Energy_0) > .001 && tau_plus - tau_neg > tau_0/100000.) 
           { 
     if(Energy_Test > Energy_0) 
     { 
      tau_plus = tau_0; 
      tau_0 = (tau_plus + tau_neg)/2; 
     } 
     else 
     { 
      tau_neg = tau_0; 
      tau_0 = (tau_plus + tau_neg)/2; 
     } 
    } 
    else 
    { 
     break; 
    } 
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           if(i == MAX_ITRS) 
     { 

     printf("Error: Max iterations reached in Blakie Cooling"); 
     return(1); 
     } 
           } 

              tau = tau_0; 
              RethTTF[j] = tau/RethEFermi[j]; 
              NUM_OneBand[j] = 0; 
              NUM_35ER = 0; 
              N2 = 0; 
              Energy_OneBand[j] = 0; 
              for(i=1;i< NUM_EIGS_1BAND3D + 1;i++) 
              { 
              NUM_OneBand[j] += 1.0/(exp(((long double)OneBand_EigVals3D[i]-(long 
double)mu)/(long double)tau)+1.0); 
              Energy_OneBand[j] += (long double)OneBand_EigVals3D[i]/(exp(((long 
double)OneBand_EigVals3D[i]-(long double)mu)/(long double)tau)+1.0); 
              } 

              NUM_35ER = 1.0/(exp(((long double)OneBand_EigVals3D[NUM_EIGS_1BAND3D]-
(long double)mu)/(long double)tau)+1.0); 
              N2 = NumDouble(mu, tau, EigVals3D); 

      printf("Tau_0/EF = %Lf %s %Lf %s %Lf %s %LE %s %i 
\n",tau_0/RethEFermi[j]," Energy_0 = ",Energy_0," Energy_Test = ",Energy_Test, " 
Energy_Test - Energy_0 = ",Energy_Test - Energy_0,"  i = ",i); 
       fprintf(fileptr,"%i \t %i \t %f \t %Lf \t %LE \t %f \t %Lf \t %Lf \t %f \t %f \t 
%LE \t %LE \n",N0,NUM,RethTTF[j],Energy_0,Energy_Test - 
Energy_0,RethEFermi[j],NUM_OneBand[j],Energy_OneBand[j],mu,tau, NUM_35ER, N2); 
         N0 += dAtom_Nums; 
           } 
      free_vector(EigVals3D,1,NUM_EIGS3D); 
      free_vector(OneBand_EigVals3D,1,NUM_EIGS_1BAND3D); 

/*      NUM = Min_Atom_Nums; 
      fprintf("\t NUM; %f\t TTF; %f\t Entropy; %f\t EFermi"); 
   for(i=1;i<Num_Atom_Nums+1;i++) 
    { 
   j=1;*/ 
   /*NUM += dAtom_Nums;*/ 

  fclose(fileptr); 
  free_matrix(Entropy,1,2,1,Num_Atom_Nums); 
  free_matrix(H,1,GRDSZ,1,GRDSZ); 
  free_matrix(T,1,GRDSZ,1,GRDSZ); 
  free_matrix(V,1,GRDSZ,1,GRDSZ); 
  return(1);} 
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