

The Use of Proxy Caches for File Access in a Multi-
Tier Grid Environment
R. Brun1, D. Duellmann1, G. Ganis1, A. Hanushevsky2, L. Janyst1, A.J. Peters1,
F. Rademakers1, E. Sindrilaru1
1CERN, Geneva, Switzerland,
2Stanford National Accelerator Laboratory, Menlo Park, USA

Abstract. The use of proxy caches has been extensively studied in the HEP environment for
efficient access of database data and showed significant performance with only very moderate
operational effort at higher grid tiers (T2, T3). In this contribution we propose to apply the
same concept to the area of file access and analyse the possible performance gains, operational
impact on site services and applicability to different HEP use cases. Base on a proof-of-concept
studies with a modified XROOT proxy server we review the cache efficiency and overheads
for access patterns of typical ROOT based analysis programs. We conclude with a discussion
of the potential role of this new component at the different tiers of a distributed computing
grid.

1. Introduction
Since the start of the LHC collider operation the LHC experiments have collected and analysed an
impressive amount of data from their complex detector systems. The success of physics program with
first publications emerging already a few months after the machine start has largely profited from the
distributed computing infrastructure used by all experiments – the World-wide LHC Computing Grid
(WLCG). Within WLCG multi-tiered computing models are implemented taking advantage of the
larger computational resources than at the CERN Tier-0 alone. WLCG therefore defines also the
service roles and utilises available resources from existing computing centres around the globe.
The distribution of data within the LHC grid has during the first period been dominated by scheduled
replication from Tier-0 to Tier-1 sites, which take over an important role in providing custodial storage
on Mass Storage Systems (MSS) deploying tapes. As data gets further replicated to Tier-2 and Tier-3
sites, additional services for workflows such as user analysis and simulation are provided to complete
the High Energy Physics (HEP) data handling chain.
With the first operational experience of the data taking in 2010 the WLCG collaboration has recently
held a Data Management Jamboree [1], where further optimisations to the existing data strategy have
been discussed and several demonstration activities have been started, to prove the feasibility of
suggested enhancements. In this paper we describe work towards a more dynamic data distribution
chain exploiting the concept of transparent data caches to increase the access performance and
resource efficiency of the current system. After a description of the main concepts, we compare
several approaches to implement data caches at Tier-3 and Tier-2 sites and analyse the results from
first performance tests. Closely related to this concept, also the general performance of wide-area user
access is being studied to understand under which conditions efficient wide-area access is feasible and
when client side caching would offer significant advantages.

2. Wide Area Access and Caching for Data File Access
HEP data analysis exposes typically less sequential file access patterns than data movements or
reconstruction workflows. This is a direct result of the user application either skipping a significant
amount of input events and/or skipping a significant amount of the data products available within an
input event. The typical pattern exposed is therefore a moving band of I/O positions with small
amounts of read data and non-monotonically rising read offsets within the input file. This pattern
affects in particular (but not only) efficient data access in the wide area with the HEP data access
software (e.g. ROOT [2]) for a variety of reasons:

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072010 doi:10.1088/1742-6596/331/7/072010

Published under licence by IOP Publishing Ltd 1

• Inadequate read-ahead size used by I/O protocols
• Large accumulated latency due to many network round-trips
• Limited network bandwidth and slow increase of usable bandwidth within a TCP/IP session

The large read-ahead size (optimised for sequential access) and the simplistic read-ahead
implementation led during the first deployment phase to rather low delivered bandwidth to the user
application and to a large network overhead due to repeat transfers of the same data. In several cases
the processing of a file required 5-10 times the total file size to be transferred.
While this situation has improved dramatically with the introduction of larger (e.g. 30 MB) vector-
reads and an in-process data cache on the ROOT side (TTreeCache [3]), the cache can not be
preserved across process boundaries: neither consecutive user jobs on the same node nor jobs running
on other nodes can share TTreeCache information directly. We therefore propose to implement a
persistent data cache, which maintains low latency access to popular data for multiple processes, e.g.
consecutive execution with the similar input data on a user laptop or a larger number of concurrent
processes running on a larger computing farm.

To share the cached information we have investigated two different implementation scenarios:

• A server on network protocol level
• A transfer fragment cache maintained by ROOT in a shared file area

2.1. Caching Proxy-Servers
In this approach caching is performed on the network protocol level (e.g. XROOT [4]), which is used
to obtain the next vector-read block from a file server. Instead of connecting the client application
directly to the origin storage server, we introduce a proxy-server, which implements the protocol
towards the client to serve its requests and forwards (using the same protocol) client requests to the
origin server. The added value of this intermediate component results from the fact that all delivered
vector-read blocks are being kept also on a local disk area, which is maintained by the proxy-server.
On repeated requests, this proxy-server can therefore directly serve a second request for the same data
from its local storage, with less latency than a connection to the original server would imply. In case of
a single proxy-cache server, this would be located network-wise close to its clients. As the incoming
and outgoing protocols are identical the cache is functionally transparent also hierarchical setups could
be constructed to further increase cache efficiency.
This approach is directly following the approach for database data distribution using the
Frontier/SQUID [5] packages, which is deployed successfully by the CMS experiment and now being
evaluated also by ATLAS. On the operational side it has been shown that read-only caches are easy to
setup and maintain even for sites with very limited hardware and personnel resources.

2.1.1. XROOT Proxy-Cache
As a concrete implementation of this approach we used the XROOT proxy-cache server, which
maintains the data cache using one sparse file for all fragments of the original file. To allow a fast test
if a particular data block is already cached, a parallel bitmap file is maintained which is mapped into
the server memory and updated as additional data gets cached. This technique enables the use of
cached data also in the case of only partially overlapping vector-reads. As this implementation works
on the page level rather than the complete file, the client will during un-cached reads only be exposed
to the latency of transmitting one request – not the latency of transmitting the full file. As the server
component can easily maintain a global map of the popularity of each particular page over a larger
number of user requests, it would be possible to implement caching policies, selecting only fragments
for local caching that exceeding a certain minimal hit rate. Given the centrally maintained state in the
proxy-server component, it should also be relatively easy to implement policies for the maximal cache
size and age of cached data.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072010 doi:10.1088/1742-6596/331/7/072010

2

2.1.2. HTTP and SQUID Proxy-Cache
As second implementation of the proxy-cache approach would be even more aligned with the
Frontier/SQUID setup in use for database access. In this case transfers would be based on the http
protocol using the SQUID proxy-server to maintain the cache of popular data files. This would have
the advantage of re-using SQUID as an established and already deployed software component. A
major disadvantage though might be the resulting latency for un-cached requests. Event though sparse
vector-reads can be formulated as http requests; the SQUID proxy-cache currently serves those
requests by downloading the full file before serving the client with the requested data blocks. This
implication of using SQUID may also have a significant adverse impact on the cache efficiency in
case the majority of analysis programs only utilise a small fraction of their input data files.

2.2. ROOT maintained Transfer Fragments
The second approach we evaluated takes advantage of the I/O protocol abstraction inside the ROOT
toolkit and implements a shared fragment cache without the need for external server components by
using a shared file area. Any TTreeCache vector-read result is stored directly from the client
application as an individual file in the shared area. Before issuing a new vector-read request this area
is checked for the existence of a suitable fragment – therefore delivering similar latency gains as the
server based setups above. This approach has the advantage of being agnostic of the particular transfer
protocol and can be used without change to the I/O protocols already supported by ROOT. One
disadvantage being that the caching is only provided for ROOT based programs, which is not seen as
major constraint for HEP use cases. The management of the shared cache area will require though a
shared file area, which can scale up to a larger number of individual small files (typical vector-read
size is 30 MB – compared to input file sizes reaching several GB) and will need an additional cache
eviction policy, for example based on the cache hits for a fragment by time unit. As there is no shared
knowledge about the fragment popularity until a fragment is stored, it would be more difficult to
implement caching policies that store cache fragments only after a certain minimal number of uses.
Also the eviction of old or less popular cache fragments might need additional processing components
to regularly scan the existing cache content and maintain a global cache size limit.

3. Performance Studies in Local and Wide Area
To evaluate and compare the above proposals we have setup a test infrastructure in the wide-area and
local area network. The setup consisted of a source data server (XROOT and HTTP) at BNL
connected via the optical-private-network (OPN) to CERN (round trip time of ~100ms). At CERN we
used a second machine running an XROOT proxy-cache serving ROOT clients via a 10GB (RTT
0.5ms). The configuration with the cache at CERN and data source outside was picked for
convenience, as the majority of the contributors were present at CERN. A realistic deployment
scenario however would eg use Tier-0,1,2 as source server and provide the cache at higher tier sites
(eg Tier-3) close to the majority of analysis client processes.
To obtain the baseline performance of our setup we used the Iperf [6] tool to measure the network
performance of single and multiple stream transfer. We also used the xrdcp command to obtain similar
measurements with the XROOT protocol. The results obtained are shown in table 1.
For comparison we note that typical analysis jobs at the current state of the experiment frameworks
and ROOT are able to consume 1-4 MB/s. A rate of 10 MB/s can be achieved with a pure ROOT
application reading from a local disk. The target value of 10 MB/s for the pure remote I/O chain (eg
network, XROOT, ROOT) would therefore be desirable also for remote WAN access in order to
insure that client jobs can fully utilise the available CPU resources.

3.1. Results with the XROOT Proxy-Cache
In table 2 we have collected the performance measurements obtained with native ROOT (TTreeCache
enabled) - this time utilising a proxy-cache between client and data server. The values obtained for the
cold cache (first read) shows that the cache implementation can almost reach the performance of a

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072010 doi:10.1088/1742-6596/331/7/072010

3

remote read and exposes only minimal overhead. The measurement for the hot cache (second read)
shows a significant performance increase of almost a factor three. In this case the performance reaches
almost the full performance (97%) of a local read at the site of the client. The proxy-cache hence does
not introduce a significant penalty but provides significant benefits in the WAN environment for
repeat reads. The second part of table 2 details the possible benefit of the sparse cache implementation.
If only two branches of the benchmark file are being used, then the cache can provide an additional
performance gain. In this case only 3.9% of the total file volume is cached and the real time for
accessing the cached data falls to less than a second (to be compared to the initial read duration of 104
seconds). This clearly shows the performance potential of sparse caching.

!"#$

%!&&"'(

+,-./
<=>

<A3>-/"
<=>

$)*

+,-./
01234"567/(

+89)

9??@
+76/14

!&"#$
%&:;"'(

Figure 1. Network Setup between CERN and BNL and Data Flow.

Table 1. Network and protocol performance in the WAN setup.

Protocol Bandwidth measured Settings / Comments

iperf 5 MB/s (50 MB/s) 1 Stream (10 Streams)
xrdcp 3 MB/s (5MB/s) before (after) optimisation of transfer

granule size, 1 stream
ROOT client 3-4 MB/s atlasFlushed.root + TreeCache

no experiment framework code involved.

Table 2. Proxy-cache efficiency and performance impact.

Realtime Bandwidth Cached
Fraction

WAN / LAN
Access

all branches
1st read - cold cache 288s 3.7 MB/s 0% 28%
2nd read - hot cache 109s 9.7 MB/s 100% 97%

two branches

cold cache 104s 0.32 MB/s 0%
hot cache 0.9s 35 MB/s 3.9%

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072010 doi:10.1088/1742-6596/331/7/072010

4

To measure the cache performance for real-life experiment use cases, we used in addition the
following applications:

• a D3PD job using ATHENA 15.6.12
• a single collection extraction job using ATHENA 16.0.1

In the case of the D3PD job we observed that
99% of all 4kB data pages of the original file
have been requested by the application. Sparse
caching is hence not providing significant
benefits compared to full file caching. The
observed behaviour does depend on the detailed
configuration by the physics working-group
and we also note that the used ROOT version
(5.22h) does not perform the automatic basket
optimisation [3], which is expected to
significantly increase the colocation of selected
data.
For the use case of single collection extraction,
which requests from a 4GB input file only
70MB of data in order to store an output
collection of 17MB, we have measured with
4kB pages a cache volume of 270MB. Also
here we obtain a significant gain in storage
efficiency. Only 6% of the input file storage
volume is required in the sparse page cache.
The two examples above confirm the
expectation that the variation in selectiveness
between different types of user jobs can be
quite significant. Only a statistical analysis of
the combined access patterns in a larger number
of real user jobs would allow taking
quantitative conclusions on the effectiveness of
sparse caching with respect to full file caching.
As the experiment frameworks are now
providing the option of remote LAN access
(rather than full file copy to the worker node) we expect that this analysis can be performed in the next
months, as soon as larger samples of user jobs
with remote access become available.

3.2. Results with a ROOT managed cache
A second set of tests has been performed using
the approach of caching vector-read fragments
directly from the ROOT client process. For this
we implemented in ROOT an additional
processing thread, which issues asynchronously
multiple vector-read requests to the storage
server. This functionality allows overlapping
the application processing time for a given
fragment with the I/O latency in obtaining the

!"#$"#

%&'()#&*"++

!"#$"#

%&'(

,#""-'*."
/01

!"#$"#

!"#

Figure 2a. Asynchronous pre-fetching of buffers.

!"##$%&'#
()*

+#",#"

-.%/

+0."#1.21
34561$%&'#

!"##$%&'#178.&612%9#/1
:40'1*3;<.=5#0>8#2?

!"#$%&%'()*+

),%

-.%/1@".91
34561$%&'#

-+.$%&%'()*+

!"##$%&'#
()*

),%

AB

Figure 2b. Caching of TTreeCache buffers

!"#$%&'"()

Figure 3. Gain due to pre-fetching and caching.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072010 doi:10.1088/1742-6596/331/7/072010

5

next fragment (see Figure 2a). This basic setup has been further extended to maintain already obtained
fragments in a disk cache that is accessible to one or more client applications (see Figure 2b).

With this prototype we measured the impact of caching performance summarised in Figure 3. As show
here already enabling asynchronous access provides in this case a real time saving of some 25%. This
value depends on the ratio between CPU and I/O latency to process a given amount of data and could
grow up to 50% in case both component are of equal size.

4. Conclusion
Both caching approaches tested have shown significant performance advantages in comparison to
remote access over the WAN. Prototype implementations for both approaches exist but additional
work on the operational aspects (automatic cache eviction, maximum cache size) are still required
before an effortless deployment could take place at eg tier 3 sites.
In addition we have shown that asynchronous pre-fetching on the ROOT TTreeCache level can
provide additional performance benefits for applications with are not fully I/O bound and that this
mechanism can be implemented in a generic way independent of the remote access protocol used (eg
xroot, http). The concept of sparse caching (rather than full file caching) has shown significant
advantages for certain use cases but for a more quantitative evaluation the selectiveness of different
user jobs needs to be folded into the analysis. We expect to obtain this information during the next
months of running with remote access clients.

Acknowledgments
The authors would like to thank Daniel van der Ster (CERN, IT-ES group) for providing us with the
ATLAS analysis jobs used in our tests. We would also like to thank Michael Ernst and John Hover for
providing over several months a remote test infrastructure at Brookhaven National Laboratory.

[1] Jamboree on Evolution of WLCG Data & Storage Management, 16-18 June 2010, Amsterdam,

The Netherlands, http://indico.cern.ch/conferenceDisplay.py?confId=92416
[2] Brun R et al, ROOT — A C++ framework for petabyte data storage, statistical analysis and

visualization, Computer Physics Communications; Anniversary Issue; Volume 180, Issue 12,
December 2009, Pages 2499-2512.

[3] Canal Ph, Bockelman B and Brun R, ROOT I/O: The Fast and Furious, CHEP 2010, Taipei,
Taiwan, In these proceedings

[4] The Scalla/xrootd Team, The Scalla Software Suite: xrootd/cmsd, http://
xrootd.slac.stanford.edu/

[5] Dykestra D, Scaling HEP to Web Size with RESTful Protocols: The Frontier Example, CHEP
2010, Taipei, Taiwan, In these proceedings

[6] Tirumala A, Qin F, Dugan J Ferguson J and Gibbs K, Iperf,
http://dast.nlanr.net/Projects/Iperf/

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072010 doi:10.1088/1742-6596/331/7/072010

6

