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Abstract. The use of proxy caches has been extensively studied in the HEP environment for 
efficient access of database data and showed significant performance with only very moderate 
operational effort at higher grid tiers (T2, T3). In this contribution we propose to apply the 
same concept to the area of file access and analyse the possible performance gains, operational 
impact on site services and applicability to different HEP use cases. Base on a proof-of-concept 
studies with a modified XROOT proxy server we review the cache efficiency and overheads 
for access patterns of typical ROOT based analysis programs. We conclude with a discussion 
of the potential role of this new component at the different tiers of a distributed computing 
grid. 

1. Introduction 
Since the start of the LHC collider operation the LHC experiments have collected and analysed an 
impressive amount of data from their complex detector systems. The success of physics program with 
first publications emerging already a few months after the machine start has largely profited from the 
distributed computing infrastructure used by all experiments – the World-wide LHC Computing Grid 
(WLCG). Within WLCG multi-tiered computing models are implemented taking advantage of the 
larger computational resources than at the CERN Tier-0 alone. WLCG therefore defines also the 
service roles and utilises available resources from existing computing centres around the globe.  
The distribution of data within the LHC grid has during the first period been dominated by scheduled 
replication from Tier-0 to Tier-1 sites, which take over an important role in providing custodial storage 
on Mass Storage Systems (MSS) deploying tapes. As data gets further replicated to Tier-2 and Tier-3 
sites, additional services for workflows such as user analysis and simulation are provided to complete 
the High Energy Physics (HEP) data handling chain. 
With the first operational experience of the data taking in 2010 the WLCG collaboration has recently 
held a Data Management Jamboree [1], where further optimisations to the existing data strategy have 
been discussed and several demonstration activities have been started, to prove the feasibility of 
suggested enhancements. In this paper we describe work towards a more dynamic data distribution 
chain exploiting the concept of transparent data caches to increase the access performance and 
resource efficiency of the current system. After a description of the main concepts, we compare 
several approaches to implement data caches at Tier-3 and Tier-2 sites and analyse the results from 
first performance tests. Closely related to this concept, also the general performance of wide-area user 
access is being studied to understand under which conditions efficient wide-area access is feasible and 
when client side caching would offer significant advantages. 
 
2. Wide Area Access and Caching for Data File Access 
HEP data analysis exposes typically less sequential file access patterns than data movements or 
reconstruction workflows. This is a direct result of the user application either skipping a significant 
amount of input events and/or skipping a significant amount of the data products available within an 
input event. The typical pattern exposed is therefore a moving band of I/O positions with small 
amounts of read data and non-monotonically rising read offsets within the input file. This pattern 
affects in particular (but not only) efficient data access in the wide area with the HEP data access 
software (e.g. ROOT [2]) for a variety of reasons: 
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• Inadequate read-ahead size used by I/O protocols  
• Large accumulated latency due to many network round-trips 
• Limited network bandwidth and slow increase of usable bandwidth within a TCP/IP session 

 
The large read-ahead size (optimised for sequential access) and the simplistic read-ahead 
implementation led during the first deployment phase to rather low delivered bandwidth to the user 
application and to a large network overhead due to repeat transfers of the same data. In several cases 
the processing of a file required 5-10 times the total file size to be transferred.  
While this situation has improved dramatically with the introduction of larger (e.g. 30 MB) vector-
reads and an in-process data cache on the ROOT side (TTreeCache [3]), the cache can not be 
preserved across process boundaries: neither consecutive user jobs on the same node nor jobs running 
on other nodes can share TTreeCache information directly. We therefore propose to implement a 
persistent data cache, which maintains low latency access to popular data for multiple processes, e.g. 
consecutive execution with the similar input data on a user laptop or a larger number of concurrent 
processes running on a larger computing farm. 
 
To share the cached information we have investigated two different implementation scenarios: 

• A server on network protocol level  
• A transfer fragment cache maintained by ROOT in a shared file area  

  

2.1. Caching Proxy-Servers 
In this approach caching is performed on the network protocol level (e.g. XROOT [4]), which is used 
to obtain the next vector-read block from a file server. Instead of connecting the client application 
directly to the origin storage server, we introduce a proxy-server, which implements the protocol 
towards the client to serve its requests and forwards (using the same protocol) client requests to the 
origin server. The added value of this intermediate component results from the fact that all delivered 
vector-read blocks are being kept also on a local disk area, which is maintained by the proxy-server.  
On repeated requests, this proxy-server can therefore directly serve a second request for the same data 
from its local storage, with less latency than a connection to the original server would imply. In case of 
a single proxy-cache server, this would be located network-wise close to its clients. As the incoming 
and outgoing protocols are identical the cache is functionally transparent also hierarchical setups could 
be constructed to further increase cache efficiency.  
This approach is directly following the approach for database data distribution using the 
Frontier/SQUID [5] packages, which is deployed successfully by the CMS experiment and now being 
evaluated also by ATLAS. On the operational side it has been shown that read-only caches are easy to 
setup and maintain even for sites with very limited hardware and personnel resources.  

2.1.1. XROOT Proxy-Cache 
As a concrete implementation of this approach we used the XROOT proxy-cache server, which 
maintains the data cache using one sparse file for all fragments of the original file. To allow a fast test 
if a particular data block is already cached, a parallel bitmap file is maintained which is mapped into 
the server memory and updated as additional data gets cached. This technique enables the use of 
cached data also in the case of only partially overlapping vector-reads. As this implementation works 
on the page level rather than the complete file, the client will during un-cached reads only be exposed 
to the latency of transmitting one request – not the latency of transmitting the full file. As the server 
component can easily maintain a global map of the popularity of each particular page over a larger 
number of user requests, it would be possible to implement caching policies, selecting only fragments 
for local caching that exceeding a certain minimal hit rate. Given the centrally maintained state in the 
proxy-server component, it should also be relatively easy to implement policies for the maximal cache 
size and age of cached data.  
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2.1.2. HTTP and SQUID Proxy-Cache 
As second implementation of the proxy-cache approach would be even more aligned with the 
Frontier/SQUID setup in use for database access. In this case transfers would be based on the http 
protocol using the SQUID proxy-server to maintain the cache of popular data files. This would have 
the advantage of re-using SQUID as an established and already deployed software component. A 
major disadvantage though might be the resulting latency for un-cached requests. Event though sparse 
vector-reads can be formulated as http requests; the SQUID proxy-cache currently serves those 
requests by downloading the full file before serving the client with the requested data blocks. This 
implication of using SQUID may also have a significant adverse impact on the cache efficiency in 
case the majority of analysis programs only utilise a small fraction of their input data files.  

2.2. ROOT maintained Transfer Fragments 
The second approach we evaluated takes advantage of the I/O protocol abstraction inside the ROOT 
toolkit and implements a shared fragment cache without the need for external server components by 
using a shared file area. Any TTreeCache vector-read result is stored directly from the client 
application as an individual file in the shared area. Before issuing a new vector-read request this area 
is checked for the existence of a suitable fragment – therefore delivering similar latency gains as the 
server based setups above. This approach has the advantage of being agnostic of the particular transfer 
protocol and can be used without change to the I/O protocols already supported by ROOT. One 
disadvantage being that the caching is only provided for ROOT based programs, which is not seen as 
major constraint for HEP use cases. The management of the shared cache area will require though a 
shared file area, which can scale up to a larger number of individual small files (typical vector-read 
size is 30 MB – compared to input file sizes reaching several GB) and will need an additional cache 
eviction policy, for example based on the cache hits for a fragment by time unit. As there is no shared 
knowledge about the fragment popularity until a fragment is stored, it would be more difficult to 
implement caching policies that store cache fragments only after a certain minimal number of uses. 
Also the eviction of old or less popular cache fragments might need additional processing components 
to regularly scan the existing cache content and maintain a global cache size limit.   
 
3. Performance Studies in Local and Wide Area  
To evaluate and compare the above proposals we have setup a test infrastructure in the wide-area and 
local area network. The setup consisted of a source data server (XROOT and HTTP) at BNL 
connected via the optical-private-network (OPN) to CERN (round trip time of ~100ms).  At CERN we 
used a second machine running an XROOT proxy-cache serving ROOT clients via a 10GB (RTT 
0.5ms). The configuration with the cache at CERN and data source outside was picked for 
convenience, as the majority of the contributors were present at CERN. A realistic deployment 
scenario however would eg use Tier-0,1,2 as source server and provide the cache at higher tier sites 
(eg Tier-3) close to the majority of analysis client processes.  
To obtain the baseline performance of our setup we used the Iperf [6] tool to measure the network 
performance of single and multiple stream transfer. We also used the xrdcp command to obtain similar 
measurements with the XROOT protocol. The results obtained are shown in table 1.  
For comparison we note that typical analysis jobs at the current state of the experiment frameworks 
and ROOT are able to consume 1-4 MB/s. A rate of 10 MB/s can be achieved with a pure ROOT 
application reading from a local disk. The target value of 10 MB/s for the pure remote I/O chain (eg 
network, XROOT, ROOT) would therefore be desirable also for remote WAN access in order to 
insure that client jobs can fully utilise the available CPU resources. 

3.1. Results with the XROOT Proxy-Cache 
In table 2 we have collected the performance measurements obtained with native ROOT (TTreeCache 
enabled) - this time utilising a proxy-cache between client and data server. The values obtained for the 
cold cache (first read) shows that the cache implementation can almost reach the performance of a 
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remote read and exposes only minimal overhead. The measurement for the hot cache (second read) 
shows a significant performance increase of almost a factor three. In this case the performance reaches 
almost the full performance (97%) of a local read at the site of the client. The proxy-cache hence does 
not introduce a significant penalty but provides significant benefits in the WAN environment for 
repeat reads. The second part of table 2 details the possible benefit of the sparse cache implementation. 
If only two branches of the benchmark file are being used, then the cache can provide an additional 
performance gain. In this case only 3.9% of the total file volume is cached and the real time for 
accessing the cached data falls to less than a second (to be compared to the initial read duration of 104 
seconds).  This clearly shows the performance potential of sparse caching. 
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Figure 1. Network Setup between CERN and BNL and Data Flow. 

 
 

Table 1. Network and protocol performance in the WAN setup.  

Protocol Bandwidth measured Settings / Comments 

iperf 5 MB/s (50 MB/s) 1 Stream (10 Streams) 
xrdcp 3 MB/s (5MB/s) before (after) optimisation of transfer   

granule size, 1 stream 
ROOT client 3-4 MB/s atlasFlushed.root + TreeCache 

no experiment framework code involved. 
 

 
Table 2. Proxy-cache efficiency and performance impact. 

 
 

Realtime Bandwidth Cached 
Fraction 

WAN / LAN 
Access 

all branches 
1st read  - cold cache 288s 3.7 MB/s 0% 28% 
2nd read - hot cache 109s 9.7 MB/s 100% 97% 

 
two branches 

cold cache 104s 0.32 MB/s 0%  
hot cache 0.9s 35 MB/s 3.9% 
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To measure the cache performance for real-life experiment use cases, we used in addition the 
following applications:  

• a D3PD job using ATHENA 15.6.12 
• a single collection extraction job using ATHENA 16.0.1 

 
In the case of the D3PD job we observed that 
99% of all 4kB data pages of the original file 
have been requested by the application. Sparse 
caching is hence not providing significant 
benefits compared to full file caching. The 
observed behaviour does depend on the detailed 
configuration by the physics working-group 
and we also note that the used ROOT version 
(5.22h) does not perform the automatic basket 
optimisation [3], which is expected to 
significantly increase the colocation of selected 
data.   
For the use case of single collection extraction, 
which requests from a 4GB input file only 
70MB of data in order to store an output 
collection of 17MB, we have measured with 
4kB pages a cache volume of 270MB. Also 
here we obtain a significant gain in storage 
efficiency. Only 6% of the input file storage 
volume is required in the sparse page cache.  
The two examples above confirm the 
expectation that the variation in selectiveness 
between different types of user jobs can be 
quite significant. Only a statistical analysis of 
the combined access patterns in a larger number 
of real user jobs would allow taking 
quantitative conclusions on the effectiveness of 
sparse caching with respect to full file caching.   
As the experiment frameworks are now 
providing the option of remote LAN access 
(rather than full file copy to the worker node) we expect that this analysis can be performed in the next 
months, as soon as larger samples of user jobs 
with remote access become available.   

3.2. Results with a ROOT managed cache 
A second set of tests has been performed using 
the approach of caching vector-read fragments 
directly from the ROOT client process. For this 
we implemented in ROOT an additional 
processing thread, which issues asynchronously 
multiple vector-read requests to the storage 
server. This functionality allows overlapping 
the application processing time for a given 
fragment with the I/O latency in obtaining the 
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Figure 2a.  Asynchronous pre-fetching of buffers.  
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Figure 2b.  Caching of TTreeCache buffers  
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Figure 3.  Gain due to pre-fetching and caching.  
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next fragment (see Figure 2a). This basic setup has been further extended to maintain already obtained 
fragments in a disk cache that is accessible to one or more client applications (see Figure 2b).       

 
 
With this prototype we measured the impact of caching performance summarised in Figure 3. As show 
here already enabling asynchronous access provides in this case a real time saving of some 25%. This 
value depends on the ratio between CPU and I/O latency to process a given amount of data and could 
grow up to 50% in case both component are of equal size. 
   
4. Conclusion 
Both caching approaches tested have shown significant performance advantages in comparison to 
remote access over the WAN. Prototype implementations for both approaches exist but additional 
work on the operational aspects (automatic cache eviction, maximum cache size) are still required 
before an effortless deployment could take place at eg tier 3 sites.  
In addition we have shown that asynchronous pre-fetching on the ROOT TTreeCache level can 
provide additional performance benefits for applications with are not fully I/O bound and that this 
mechanism can be implemented in a generic way independent of the remote access protocol used (eg 
xroot, http). The concept of sparse caching (rather than full file caching) has shown significant 
advantages for certain use cases but for a more quantitative evaluation the selectiveness of different 
user jobs needs to be folded into the analysis. We expect to obtain this information during the next 
months of running with remote access clients.  
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