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Abstract: Type Ia supernovae (SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs
(WDs) and are well-known as a distance indicator. However, it is still unclear how WDs increase their
mass near the Chandrasekhar limit and how the thermonuclear runaway happens. The observational
clues associated with these open questions, such as the photometric data within hours to days since
the explosion, are scarce. Thus, an essential way is to discover SNe Ia at specific epochs with optimal
surveys. The 2.5 m Wide Field Survey Telescope (WFST) is an upcoming survey facility deployed
in western China. In this paper, we assess the detectability of SNe Ia with mock observations of the
WEST. Followed by the volumetric rate, we generate a spectral series of SNe Ia based on a data-based
model and introduce the line-of-sight extinction to calculate the brightness from the observer. By
comparing with the detection limit of the WFST, which is affected by the observing conditions, we
can count the number of SNe Ia discovered by mock WEST observations. We expect that the WFST
can find more than 3.0 x 10* pre-maximum SNe Ia within one year of running. In particular, the
WEST could discover about 45 bright SNe Ia, 99 early phase SNe Ia, or 1.1 x 10* well-observed SNe Ia
with the hypothesized Wide, Deep, or Medium modes, respectively, suggesting that the WFST will be

an influential facility in time-domain astronomy.

Keywords: type la supernovae: general; light curves; telescopes

1. Introduction

Type Ia supernovae (SNe Ia) are thermonuclear explosions of carbon-oxygen white
dwarfs (WDs) in a close binary system. Of particular interest is how the WD acquires
the mass near the Chandrasekhar limit from its donor star [1]. In the single degenerate
scenario, the WD accretes matter from a main-sequence star or red giant through the Roche
lobe or stellar wind [2,3]. In contrast, the double degenerate scenario suggests that the
donor star is another WD and SNe Ia originate from the merger of the two WDs [4,5].
Cosmologically, SNe Ia serve as a distance indicator based on the luminosity-width rela-
tionship [6-8]. The measurements of SNe Ia have exposed the accelerating expansion of the
universe and constrained the properties of dark energy [9-11]. Astrophysically, SNe Ia can
inject metal elements into interstellar environments and play an important role in galaxy
evolution [12-14]. SNe Ia also tightly connect with stellar evolution, accreting processes,
and merger physics.

To date, the physical nature of SNe Ia, however, is still elusive, such as the pathway
of WDs acquiring mass [1], the region of thermonuclear ignition [15], and the existence of
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a surviving companion or the circumstellar material (CSM) [16,17]. One efficient way to
reveal these mysteries is to capture the multi-band photometric signals of SNe Ia soon after
the explosion. Here are several examples:

¢ The photometric signals within a few hours after the explosion strictly constrain the
progenitor of SN 2011fe to be a WD [18].

*  The early phase declining in the ultra-violent bands of iPTF14atg possibly relates to
the ejecta—companion interaction [19].

®  The early light curve excess and red color evolution of MUSSES 1604D supports the
helium burning on the surface of a WD [20].

¢ The early ultra-violet/optical bump of a large fraction of 91T /99aa-like luminous SNe Ia
suggests radioactive decay from abundant *®Ni at the outermost layer of ejecta [21].

*  The prominent optical flash within the first day after the explosion points to the
presence of ejecta-CSM interaction for SN 2020hvf [22].

*  The early phase observations of SNe 2012cg, 2017cbv, 20180h, 2019np, 2019yvq, and
2021aefx are also valuable for studying their physical origins [23-28].

Decades of observational efforts, particularly by virtue of the transient surveys, have
been dedicated to exploring the physical nature of SNe Ia and its cosmological applications.
The Supernova Legacy Survey discovered about 1000 SNe Ia from 2003 to 2008, and
the redshift is up to 1.0 with the 3.6-meter Canada-France-Hawaii telescope [29]. The
Equation of State Supernova Cosmology Experiment program found about 200 SNe Ia
with redshifts from 0.1 to 0.8 using the 4-meter CTIO Blanco telescope during its 2002-2008
running [30,31]. With the Hubble Space Telescope and the Subaru Hyper Suprime-Cam,
the redshifts of discovered SNe Ia have been up to above 1.5 [10,32-35]. On the other hand,
several supernova surveys are designed to catch the nearby supernovae to investigate
their physical nature. The Lick Observatory Supernova Search (LOSS) is a survey project
focused on nearby galaxies in the northern sky [36]. After about ten years of running, LOSS
discovered 165 SNe Ia with multi-band observations and constructed the explosion rate of
SNe Ia in the local universe [37]. The Palomar Transient Factory (PTF) and its successor the
Zwicky Transient Facility (ZTF) adopted a 1.2-meter Schmidt telescope with a wide field of
view to capture time-series signals of SNe Ia [38—40]. For example, PTF 11kx is an SN Ia
with ejecta—CSM interaction signals discovered by PTF, and ZTF found a few SNe Ia with
early phase multi-band observations [41,42].

The 2.5 m Wide Field Survey Telescope (WFST) is an upcoming time-domain facility
deployed at the Lenghu site of western China [43—47]. The field-of-view of the WEFST is
6.55 square degrees, and the r-band limiting magnitude with 30-second exposure can reach
22.92 mag, making the WFST one of the most powerful imaging survey facilities in the
northern hemisphere. The WEST can discover SNe Ia in a large distance range, which can
be used for both SN science and as cosmological distance indicators. In this paper, we
present a preliminary study on the ability of the WFST to discover SNe Ia based on mock
observations. In Section 2, we introduce the configuration of our framework, including
simulations of SNe Ia in the universe, observing conditions of the Lenghu site, and the
efficiency of the WFST. Section 3 shows the ability of the WEST to discover SNe Ia with
mock observations. The discussion and conclusion are shown in Section 4.

2. Methods

There are two basic methods for constructing a framework to simulate SNe Ia observed
by the WEST. The first one is simulating the brightness of SNe Ia based on their physical
properties. The second one is estimating the limiting magnitude of the WFST by considering
the influence of observing conditions of the Lenghu site. With this framework, we can
determine whether WFST can discover SNe Ia at specific phases and distances, and thus
estimate the number of discovered SNe Ia by the WEST under different observations. To
have a reasonable order estimation, we construct a simplified framework without losing
any significant factors and describe them sequentially below.
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2.1. Simulations of SNe Ia

We randomly generate 10° artificial SNe Ia at specific redshifts by following the redshift
evolution of the SN Ia rate from Frohmaier et al. (2019) [48]. A data-based model generates
the spectra energy distribution of SNe la. Considering the time dilation, redshifting,
distance, and dust extinction from host galaxies and the Milky Way, we can obtain the
multi-band light curves of SNe Ia by convolving WEFST filters. Here, we briefly introduce
the assumptions adopted in simulating SNe la.

The volumetric rate of SNe Ia The volumetric rate of SNe Ia (r(z)) is a function of
redshift z constrained by the combination of the star-formation history and the delay-time
distribution between the short star formation and subsequent SN Ia events. In our study,
the redshift of the simulated SNe Ia is less than 1.0 based on the detection limit of the WFST.
We adopt a power-law distribution to describe the SN Ia rate as r(z) = ry x (1 + z)*, where
ro is the local SN Ia rate with rp = 2.27 4 0.19 x 107> Mpc~3Year !, and a = 1.70 +0.21
from Frohmaier et al. (2019) [48]. Note that we only consider the volumetric rate of
normal SNe Ia, excluding the peculiar ones, such as the 91bg-like, 02es-like, [a-CSM, and
super-Chandrasekhar SNe Ia.

The spectral template of SNe Ia SALT3 provides a data-based model to estimate the
observer-frame time relating to the peak brightness f, a stretch-like parameter x1, a color
term ¢, and a scaling factor xg [49]. Inversely, a set of spectra energy distribution of SNe Ia
can be generated by SALT3 with predetermined parameters ty, x1, ¢, and x¢ [50]. In our
study, the parameter t( is randomly distributed from one month before to one month after
the mock observation run described in Section 2.2. The underlying population of x; (P(x1))
is an asymmetric Gaussian distribution as below,

P(xy) = {eXp [~ —a7)/207), i <0 M
exp[—(x1 —x1°)/20%], if x1 > %

where ¥; = 0.938 £0.101, o— = 1.551 £0.118, and oy = 0.269 £ 0.078 [51]. The potential
distribution of the color term c (P(c)) should be a convolution between Gaussian and
exponential functions corresponding to the intrinsic scatter of SN Ia color and the extinction
from the host galaxy, respectively. For simplicity, we adopt an asymmetric Gaussian function
similar to Equation (1) to describe P(c) with ¢ = —0.062 & 0.016, 0~ = 0.032 £ 0.011, and
o+ = 0.25[33,51], in which the value of o is consistent with the previous study on the dust
model of SN Ia host galaxies [52]. xp is a simple normalization parameter associated with
the B-band maximum absolute magnitude of SNe Ia, which has a typical value of —19.31
with a standard deviation of 0.15 [53]. Based on the distributions above, we randomly
generate 10,000 sets of these parameters to produce the corresponding spectra energy
distribution spanning from —20 days to +40 days relative to the peak brightness. Note that
the epoch of —20 days is not the explosion time of simulated SNe Ia since the rising time is
different under different parameter configurations in the SALT3 model. In our study, the
explosion time is roughly estimated by fitting the early phase light curve with a power-law
function [54].

The Milky Way extinction The radiation from SNe Ia goes through the extinction
from both their host galaxies and the Milky Way. As discussed above, the color term ¢
has implicitly included the effect of the dust extinction from the host galaxy. Thus, no
additional host-galaxy extinction is included. Supernova surveys usually avoid directions
toward the galactic disk, so the Milky Way extinction is from the observational data with
galactic latitudes |b| > 10° [55].

2.2. The Observing Conditions of the Lenghu Site

The Lenghu site is located in the relatively high latitudes of western China, leading to
apparent changes in the nighttime and weather conditions during the four seasons. Thus,
we divide the whole time window of one year of running into six runs. This time series
with six runs can reasonably deal with the changes in nighttime and weather conditions.
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Each run has a time window of two adjacent months, with the first consisting of January
and February. Thus, the WFST could continually monitor the same sky area in each run.

Nighttime Astronomically, nighttime is commonly defined as when the sun’s altitude
is more than 15 degrees below the horizon. At the Lenghu site, the longest nighttime in
winter is about 11.4 h, and the shortest in summer is only about 5.2 h. Such noticeable
change in the nighttime is unfriendly to the SN survey because the observable time varies
daily, and it is difficult to repeatedly monitor the same sky area. By dividing the 1-year
observations into six runs, the observable time of each day is the shortest nighttime within
the run. Although this simplified process underestimates the observable time of each day,
it does guarantee that the telescope can visit the same sky area in each run.

Weather Of the nights at the Lenghu site, about 70% are photometric times during the
year [56]. The probability of observable nights in winter is particularly high and relatively
low in summer. For simplicity, we use a parameter P, to describe the probability that
a night is observable. In our study, P, equals 0.8, 0.9, 0.6, 0.4, 0.6, and 0.8 from the
first run (January and February) to the last run (November and December), respectively.
This approximation satisfies the 70% observable time per year and is consistent with the
distribution of observable nights through the accumulated measurement in the Lenghu
site [56].

Moon phase The full-moon light seriously affects the sky brightness, especially in
the optical u and g bands. For simplicity, we adopt the optical r band to simulate the
mock observations with the WEST. We assume there is no influence on the r-band limiting
magnitude during the dark night. The r-band limiting magnitude will be reduced by 0.2 or
0.5 mag during a gray night or bright night, respectively.

2.3. The Efficiency of the WEST

The field of view of the WFST The WFST has a field of view of 6.55 square degrees
covered by nine CCDs. However, there are gaps between the CCDs, making the effective
field of view ~ 5.95 square degrees.

Limiting magnitude The WFST can reach the limiting magnitude of 22.92 in the r
band with a 30-second exposure. However, various factors in real observations could
reduce this limiting magnitude, including moonlight pollution, atmospheric extinction, and
background noise from host galaxies. These effects are not negligible, although they could
be reduced by setting a large target-moon distance, observing the sky area near the zenith,
and developing more efficient algorithms to eliminate host galaxy contamination using
image subtraction. For each simulated observation of the WFST, we generate a random
number from 0.0 to 1.0 to reduce the r-band limiting magnitude. Such simplification can
reasonably reduce the overestimation of discovering SNe la by the WFST.

2.4. The Configurations of Mock Observations

In this paper, we consider three hypothesized observing modes: wide, medium, and
deep observations with the abbreviations “Wide", “Medium", and “Deep", respectively.
A summary of the three modes is shown in Table 1. Within an observing run defined in
Section 2.2, we assume the WEST continuously monitors the pre-selected sky area with
the optical r band regardless of the moon phase. The Wide mode aims to cover a large sky
area; therefore, the cadence is three days, and there is one visit per night for a specific point.
In contrast, daily cadence, two visits per night, and 90-second exposure ensure that the
Deep mode can search for SNe Ia in an extensive distance range. The Medium mode is a
relatively moderate configuration to a certain degree, in which the cadence is one day, and
there is one visit per night.
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Table 1. A summary of the three observation modes simulated in this paper.

Observation . Visits per Limiting
Mode Filter Cadence Night Exposure Magnitude
Wide r three days 1 30s 22.92

Medium r one day 1 30s 22.92
Deep T one day 2 90s 23.54
3. Results

For the convenience of comparing the counts of discovered SNe Ia under different
hypothesized observing modes, we define the discovery time t4;5 of SNe la as the epoch
corresponding to the second r-band observation and the discovery magnitude m4;5 as the
r-band magnitude at the epoch tg4;5. This definition can reduce contamination from fake
sources and moving objects in real observations. On the other hand, purely discovering
SN Ia candidates is far from adequate for SN Ia sciences. From the perspective of identifying
a supernova candidate, the discovery time tg4;4 is better to be earlier than the peak brightness
so that the spectroscopic observation can be triggered at the epoch around the maximum
light. To reveal the physical nature of SNe Ia, bright or early phase ones are still very scarce,
while a well-observed light curve is necessary for cosmological distance measurements.
Thus, we will investigate the ability to discover SNe Ia at specific epochs with the three
mock observations, as shown below.

3.1. Discovering Pre-Maximum SNe Ia

Discovering pre-maximum SNe Ia is essential for SN Ia science, e.g., classification
based on the spectrum near the peak light, depicting the spectral evolution covering from
early phase to late-phase epochs, and estimating a stretch-like parameter with a well-
observed light curve. However, the rising time of SNe Ia is usually less than 20 days,
making discovering pre-maximum SNe la difficult.

Transient Name Server (TNS)! is a network platform to report transients discovered by
worldwide survey programs. Supernova candidates submitted to TNS in 2021 reach about
2.1 x 10%, including all types of supernovae and possibly other transients, such as variables,
stellar flares, novae, or active galactic nuclei. Finally, only small proportions could be
classified as SNe Ia due to the lack of spectroscopic observations. Nevertheless, the number
of supernova candidates counted in TNS still provides an upper limit for the discovered
supernovae. As a comparison, Figure 1 shows the mg;s distributions of the discovered
supernova candidates submitted to TNS in 2021 and the discovered pre-maximum SNe Ia
by the WEST under the three mock observing modes. These three mock observations can
discover above 3.0 x 10* pre-maximum SNe Ia, and the cumulative count reaches 1.5 X 10°
for the Wide mode. The peak of the count is at the mg; of 21.9, 22.2, or 22.8 magnitudes for
the Wide, Medium, or Deep modes, respectively. The magnitude distribution indicates that
the WEST can search for pre-maximum SNe Ia in a larger distance range or discover local
SNe Ia earlier than ongoing survey programs.

With the advent of wide-field time-domain surveys, an enormous number of SNe Ia
have been discovered in the last decade. The need for extensive follow-up observations
of these transients has quickly overwhelmed the limited spectroscopy resource available.
Spectroscopic follow-ups will be a challenge for future WEST surveys. Utilizing machine
learning classification based on photometric data can be a promising solution to fully
harness the power of the WEST survey [57]. Moreover, optimizing the spectroscopic
observations for SNe Ia may help us to efficiently utilize follow-up resources [58].
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TNS21 (2.1 x 10%)
[ Wide (1.5 x 10°)
10t 1 Medium (9.4 x 10%)
[ Deep (3.7 x 10%)

Count per 0.1 mag

102 |
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Figure 1. The gray line is the count versus the discovery magnitude (1m4;5) for supernova candidates
submitted to TNS in 2021 (TNS21). The teal, yellow, and red lines represent the counts of pre-
maximum SNe Ia discovered by the WEST under the hypothesized Wide, Medium, and Deep modes,
respectively. The corresponding cumulative counts are displayed in the figure legend.

3.2. Discovering Bright SNe Ia

Bright SNe Ia are scarce and valuable and provide golden samples to be monitored
with photometric, spectroscopic, or polarimetric observations. These diverse observations
could provide rich clues to the physical origins of SNe la. For instance, the asphericity
derived from spectropolarimetric diagnostics strongly supports the delayed-detonation
explosion of SNe Ia [59,60]. Furthermore, the thermonuclear ignition of carbon-oxygen WDs
is off-center, suggested by the relationship between the early phase velocity gradient of the
ejecta and the late-phase velocity shift of emission lines [61]. The late-phase spectroscopic
or photometric observations can also diagnose the existence of circumstellar gas around
SNe Ia, or the light echos from interstellar or circumstellar dust [17,62,63].

For simplicity, we define bright SNe Ia as a maximum brightness brighter than 16.0
magnitude. As shown in Figure 2, the Wide mode could discover about 45 bright ones
earlier than the peak brightness in one year of running, which is comparable to the number
discovered in 2021 from the Bright Supernova website?. The total number of bright SNe Ia
is about 50 per year in the northern sky, estimated with the assumptions such as the SN Ila
rate described in Section 2.1, the peak absolute magnitude of —19.3 mag, and moderate
dust extinction along the line of sight. Thus, the WFST and the running survey facilities
can contribute to discovering bright SNe Ia with high completeness.
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Figure 2. The distributions of the maximum magnitude (mmax) versus redshift z for the bright
SNe Ia defined as maximum magnitude brighter than 16.0 mag. The gray symbols are bright SNe Ia
discovered in 2021 (Bri21); the rest are the selected bright SNe Ia discovered by the WFST under the
three mock observations. The total numbers of bright SNe Ia are displayed in the figure legend.

3.3. Discovering Early Phase SNe Ia

The early phase SNe Ia are full of mysteries and are regarded as a longstanding
topic with theoretical or observational views. A “dark phase" might exist between the
explosion and the first light due to the adiabatic expansion of the ejecta and the absence of
thermal heating from “°Ni decay. This dark phase is an essential observational phenomenon
reflecting shallow or deep %°Ni deposit [64], which is determined by the thermonuclear
runaway process of WDs. When ignition occurs at the center of a WD, a detonation
will destroy the WD and produce a breakout with an X-ray flash [65,66]. Moreover, an
ultra-violet flash might also be generated from the interaction between the ejecta and an
accretion disk [65]. However, these high-energy flashes associated with SNe Ia have not
been observed yet.

On the other hand, several SNe Ia events with early phase photometric observations
have shown clues to the progenitor system or explosion mechanisms, such as the helium
detonation on the surface of a WD, the mixture of °°Ni to the outer ejecta, and the interaction
of the ejecta with a donor star or CSM [19-22,25]. Presently, the early phase observations of
SNe Ia are still rare, limited by the field of view and detection limit of optical facilities and
the survey mode. The advantages of the WFST can make up for this shortcoming, leading
to a potential opportunity for the WFST to catch the early phase signals of SNe Ia.

We define “early phase SNe Ia” as tg4;5 less than two days since the explosion. Note
that tq;s is determined by the second observation, thus early phase SNe la cannot be
“discovered” by the Wide mode. The upper panel of Figure 3 displays the distribution of
discovered early phase SNe la by the hypothesized Deep mode in the space of mg;s versus
redshift z. Compared with the discovered SNe la with early phase observations from ZTF
or other studies [18,19,22-28,42], the WEFST can find much more early phase SNe Ia with
higher redshift and fainter brightness. Thus, the Deep observation with the WFST would
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contribute a substantial sample of SNe Ia with early phase photometric data. In comparison,
the cumulative count of discovered early phase SNe la by the hypothesized Medium mode
is also displayed in the lower panel of Figure 3, which is less than that of the Deep mode.
However, catching the signals of early phase SNe Ia is the first step, and the consequent
efforts are also necessary, such as rapid follow-up observations by other facilities.
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Figure 3. The upper panel displays the distribution of discovery magnitude (rg4;5) versus z for the
discovered early phase SNe Ia by the WFST with the hypothesized Deep mode, in which each bin
covers the area of 0.5 mag in mg;s and 0.01 in z. The early phase SNe Ia is defined as t4; less than
two days since the explosion. The gray symbols are SNe Ia discovered by ZTF with early phase
observations, and the teal symbols are SNe Ia with early phase observations from other studies.
The solid red line in the lower panel is the corresponding cumulative count of the discovered early
phase SNe Ia with the hypothesized Deep mode. The yellow line represents the Medium mode for
comparison. The shadow in the lower panel is the standard deviation in our simulations, which
mainly corresponds to the uncertainty of the volumetric rate of SNe Ia.

3.4. Discovering Well-Observed SNe Ia

With the rapid development of transient surveys, the SNe Ia sample has been signifi-
cantly expanded, and the physical nature of SNe Ia and their cosmological applications
have been widely investigated. For instance, nearby SNe Ia can be used to calibrate the
Hubble constant Hy. The latest value of Hy (73.04 + 1.04 km s™! Mpc_l) [67-72] measured
from local SNe Ia, calibrated by the Cepheid distance ladder, is in 50 tension with the
predicted Hy from the cosmic microwave background observations [73-75]. For those SNe
Ia at high redshifts, they can be applied to constrain the property of dark energy [10], test
the cosmic distance duality relation [76-78], constrain cosmic opacity [79], estimate the
time variation of Newton’s constant G [80], and so on. The WFST could discover many
well-observed SNe Ia with redshifts above 0.5, providing a vital opportunity for cosmologi-
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cal applications. On the other hand, based on the future sample of the well-observed SNe
Ia from the WFST, one could also expect the detection of strongly lensed SNe Ia [81]. These
events open an exciting possibility to test the Friedman-Lemaitre-Robertson-Walker metric
[82], investigate the cosmic opacity [83], constrain the speed of light over cosmological
distances [84], and measure Hubble constant and cosmic curvature in a model-independent
way [85]. However, only two strongly lensed SNe Ia, iPTF16geu [86] and SN Zwicky [87],
have been discovered with multiple-imaged observations. Identifying strongly lensed
SNe la is difficult, as these systems could not be distinguished in the usual optical transient
surveys. A photometric method is to select the SNe Ia far brighter than the normal ones as
the candidates for strongly lensed SNe Ia [81,88]. The WEST could find a certain number of
lensed SNe Ia due to the detection capability. However, this part of the exciting forecasting
work is beyond the scope of the simulation in this paper. To satisfy the cosmological
applications of SNe Ia, we discuss discovering well-observed SNe la by the WEST in the
mock observations.

The well-observed light curve is the primary condition for SNe Ia to be used as distance
indicators because calibrating the peak luminosity of SNe Ia is based on the shape of light
curves. It is trivial to define the “well-observed light curve” strictly, but the light curve
should be better to cover the whole epochs from the rising phase to the declining phase. Thus,
we set up four criteria to select the discovered SNe Ia within the three mock observations:

®  tgi is earlier than the peak brightness, which means there are at least two observations
during the rising phase of SNe Ia.

* there are at least two nights of observations from —2 days to +2 days relative to the
peak brightness so that the maximum magnitude can be estimated properly.

* thereare at least two nights of observations at the epoch from +15 days to +30 days after
the peak brightness so that the decline of the light curve could be estimated properly.

¢ there are at least fifteen nights of observations of the whole light curve so that the
photometric data are sufficient to derive the light curve parameters.

The cumulative counts of the well-observed SNe Ia discovered by the three hypothe-
sized observing modes are shown in Figure 4. The Medium mode can find 1.1 4 0.1 x 10*
well-observed SNe la with the redshift up to 0.3. For cosmological use, light curves with
at least three filters are necessary to calibrate the photometric magnitude to the standard
optical filters in the rest-frame coordinate system and then to estimate rest-frame peak
luminosity. By assuming three bands in the mock observations, the number is 650 £ 50
for well-observed SNe Ia within the Hubble flow (z < 0.15) under the hypothesized
Medium mode, which is larger than the sample used to measure Hy in previous studies [72].
Thus, SNe Ia searches with the WEST could play an important role in understanding
Hubble tension.
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Figure 4. The teal, yellow, and red lines are the cumulative counts of discovered well-observed
SNe Ia with the hypothesized Wide, Medium, and Deep observations, respectively. The shadows are
their corresponding standard deviation due to the uncertainty of the SN Ia rate. The total number
of well-observed SNe Ia and the associated standard deviation are also exhibited. The insert figure
highlights the cumulative count of SNe Ia at z < 0.15.

4. Discussion and Conclusions

In this paper, we constructed a framework to assess the ability to search for SNe Ia

with the WFST. However, several factors are not considered, which leads to a larger
uncertainty of the estimated number of SNe Ia discovered by the WEST under different
mock observations, as discussed below.

Although the dust extinction of host galaxies is already implied in the parameter c
of the SALT3 model, it is likely to underestimate the degree of host galaxy extinction.
The distribution of the parameter ¢ adopted in our simulations does not correspond to
highly reddened SNe Ia. Moreover, the extinction law of SN Ia host galaxy may differ
from that of the Milky Way, which makes the parameter c incomplete to describe the
host galaxy extinction.

The explosion rate of SNe Ia is likely correlated to the position in host galaxies and
varies for different galaxy types. However, the configuration of the explosion rate in
this work is only a function of redshift. This over-simplification may bring additional
uncertainties into our simulations.

Detecting a transient close to the center of the host galaxy may involve more difficulties
in data processing. The Poisson noise of the host galaxy, as well as the typical arti-
facts on difference images induced by inaccurate image subtraction or astronomical
misalignment [89], can significantly degrade the true detection efficiency in a real survey.
Although the angular separation between the moon and the pointing of the WFST is
essential for attenuating moonlight contamination, the separation is ambiguous as
the observed sky areas are not specified in the hypothesized modes. For simplicity,
we adopt moderate values to account for the influence of the limiting magnitude by
moonlight. For the same reason, the airmass is also uncertain, and its influence on the
limiting magnitude is attributed to a random number ranging from 0.0 to 1.0.

We simplified the influence of the weather because the weather can also affect the
limiting magnitude, which is not considered in this study.
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*  The optical r band is the only filter considered in this paper. For observations with
more filters, the covered sky area per night should be reduced accordingly.

Nevertheless, our simulations demonstrate the impressive performance of the WEST
in searching for SNe Ia, as the WFST can find over 3.0 x 10* pre-maximum SNe Ia within
one year of running under the hypothesized Wide, Medium, or Deep modes. Specifically,
the Wide mode has an advantage in discovering bright SNe Ia with a total number of
about 45 per year; it is about 99 per year for the discovered early phase SNe Ia under
the Deep mode; the Medium mode can find about 1.1 x 10% SNe Ia with well-observed
light curves. Therefore, a concrete observing plan for the WFST needs to be determined
through comprehensive arguments, such as considering the scientific goals and observing
conditions of the Lenghu site and the operating state of the WFST.
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