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ABSTRACT

This thesis explores the study of Yang-Mills theories with matter
in the adjoint representation, focusing on the limit of large number
of colors (large-N¢). The research leverages the property of Eguchi-
Kawai reduction, where the theory becomes independent of the torus
size in the large-N. limit, facilitating simulation as a matrix model
on a lattice with a single spacetime point. Key to this approach is the
application of twisted boundary conditions (TEK reduction), provid-
ing a solid and efficient way to formulate and simulate Yang-Mills
theory, including its extension with matter in the adjoint represen-
tation. The thesis provides a comprehensive overview of the lattice
formulation of volume-reduced theories, presenting a review of perti-
nent concepts. It then presents a collection of results that encompass
various research areas, offering insights into multiple topics of inves-
tigation. The primary field of application is the pure Yang-Mills the-
ory in the large-N limit, of which we present a tree-level improved
methodology to perform the scale setting. Furthermore, we present
a preliminary calculation of the A-parameter in the MS scheme and
the chiral condensate of the theory. Moving on to the case of N =1
SUSY Yang-Mills theory, we conducted simulations featuring a single
Majorana adjoint fermion. Consistent results were obtained by de-
termining lattice spacing through various observables. We then stud-
ied the supersymmetric limit and extrapolated the lattice scale in the
massless gluino limit, revealing the expected dependence on bare cou-
plings in the supersymmetric theory.
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RESUMEN

Esta tesis explora el estudio de las teorias de Yang-Mills con mate-
ria en la representacién adjunta, centrdndose en el limite en el que
el nimero de colores es N es grande. La investigacion aprovecha
la propiedad de la reduccién de Eguchi-Kawai, donde la teoria se
vuelve independiente del tamafio del espaciotiempo en el limite de
N, grande, facilitando la simulacién como un modelo matricial en
una red con un unico punto del espaciotiempo. La clave de este
enfoque es la aplicacion de condiciones de contorno “twisted” (re-
duccién TEK), que proporciona una forma soélida y eficiente de for-
mular y simular la teorfa de Yang-Mills, incluyendo su extensién
con materia en la representaciéon adjunta. La tesis proporciona una
visién global de la formulacion reticular de las teorias de volumen
reducido, presentando una revision de los conceptos pertinentes. A
continuacioén, presenta una coleccién de resultados que abarcan diver-
sas areas de investigacion, ofreciendo una visién de multiples temas
de investigacién. El principal campo de aplicacién es la teoria pura
de Yang-Mills en el limite de N, grande, de la que presentamos una
metodologia mejorada a nivel de drbol para realizar el ajuste de es-
cala. Ademads, presentamos un célculo preliminar del pardametro A
en el esquema MS y el condensado quiral de la teoria. Pasando al
caso de la teoria N = 1 SUSY Yang-Mills, realizamos simulaciones
con un Unico fermién adjunto Majorana. Se obtuvieron resultados
consistentes determinando el espaciado de la red a través de varios
observables. A continuacién, estudiamos el limite supersimétrico y
extrapolamos la escala de reticulo en el limite del gluino sin masa, re-
cuperando la dependencia esperada de los acoplamientos desnudos
en la teoria supersimétrica.
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INTRODUCTION

The Standard Model (SM) of particle physics has been a highly suc-
cessful theory since its inception in the Sixties, with countless exper-
imental verifications confirming its validity. One of the most signif-
icant experimental confirmations of the SM came in 2012 with the
discovery of the Higgs boson by the ATLAS and CMS groups at the
Large Hadron Collider (LHC) at CERN [1, 2]. This discovery was a
significant milestone in particle physics, providing strong evidence
in support of the SM’s description of known particle interactions.
Ten years after the discovery of the Higgs boson, the “last missing
piece of the puzzle”, the field of particle physics has shifted towards
new frontiers in research. One of these frontiers is precision physics,
which aims to measure quantities related to particle interactions with
unprecedented experimental accuracy. This approach requires theo-
retical predictions for these quantities to be of the same precision as
experimental measurements, in the hope that small significant devi-
ations from experimental results could unveil the presence of new
physics. Among the different quantities, a noticeable mention goes
to the magnetic moment of the muon, referred to as (g, —2), whose
most precise experimental value was revealed by Fermilab in April
2021 [3]. On the theoretical side, a consensus prediction is still to
be achieved: a data-driven dispersive approach leads to a value that
shows a 4.20 discrepancy with the experimental result [4], while ab-
initio SM calculations reduce this tension to 1.50 [5]. This thrilling
divergence on the theoretical side can be considered one of the major
problems in modern theoretical physics.

Another frontier in particle physics is the search for new theoretical
frameworks that can address more fundamental problems. This is the
case of the so-called hierarchy problem, which refers to the challenge
of explaining the significant difference between the electroweak scale
and the Planck scale in particle physics that requires an “unnatural”
amount of fine-tuning. Another intriguing issue is the one called the
strong CP problem which, specifically, explores the absence of signifi-
cant violation of the combined symmetry of charge conjugation (C)
and parity (P) in strong interactions. These problems, among others,
led to the necessity to look at extensions of the SM theories that could
provide a solution to these problems, waiting for new experimental
results to give bounds. Among the most popular candidates, we cite
supersymmetry and technicolor models. The first class of theories in-
volves enlarging the spectrum by adding a “super”-partner with op-
posite spin and statistics to each of the SM fields, while technicolor
theories add to the SM gauge group a new interaction SU(N.), and
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Nt massless flavors of technifermions. As we continue to explore and
gain a better understanding of the fundamental problems posed by
the Standard Model, it is possible that any potential solutions could
offer valuable insights into other significant issues in modern particle
physics, including those whose input motivation comes from cosmol-
ogy, such as dark matter.

As the expert reader may have noticed, the overview provided here
covers several of the unresolved issues in the SM, which are tied to-
gether by a common theme. The key underlying factor among these
challenges is that they all require an understanding of quantum field
theories featuring a strong interaction. Looking back in history, one of
the first notable examples of a strongly interacting theory was QCD,
the sector of the SM responsible for the strong nuclear force emerging
from the interaction between quarks and gluons. The exploration of
QCD and its properties has been a major endeavor in physics over the
past century and has greatly influenced our comprehension of QFTs.
Since the discovery of asymptotic freedom in the early Seventies [6,
71, QCD has led to several predictions that have been experimentally
validated in hadronic physics. Nonetheless, due to its fundamentally
non-perturbative nature, strong interaction is challenging to study
theoretically. The intriguing phenomena of hadronic physics, such as
confinement, occur in the low-energy regime where the theory is en-
tirely non-perturbative, and conventional analytical methods are lim-
ited in their effectiveness. Although nowadays we are still far from
a complete understanding of the mechanism underlying these phe-
nomena, in the last 50 years a lot of progress has been done. When
determining a significant year to mark the beginning of this journey,
as suggested in [8], it is impossible not to acknowledge 1974. This was
the year when Gerard 't Hooft’s “A Planar Diagram Theory for Strong
Interactions” was published in Nuclear Physics B [9], and Kenneth
Geddes Wilson’s “Confinement of Quarks” was published in Physical
Review D a few months later [10]. These papers had a significant im-
pact on the study and comprehension of high-energy physics in the
ensuing decades, and they led to the development of two distinct yet
occasionally intersecting lines of research. In the first quoted paper,
striking properties of non-Abelian gauge theories were demonstrated
to emerge from the limit in which the number of color charges N,
is taken to be very large and vanishing gauge coupling. First of all,
Feynman diagrams can be organized in an expansion in 1/N, and in
the aforementioned limit, the only surviving terms have well-defined
topological properties. On the other hand, the second paper formu-
lated a quantum field theory on a discretized space-time and showed
how the confinement of quarks emerged in the (unphysical) limit in
which the coupling grows to infinity. Apart from the result on con-
finement, the paper led the foundations of the field of Lattice Gauge
Theories, a natural way of regularizing a QFT providing a rigorous
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formulation of the path integral and a natural link to statistical field
theory. In particular, this analogy opens the possibility to study QFTs
through methods and techniques belonging to other fields in theoreti-
cal physics, like Monte-Carlo computations. Due to the complexity of
the matter, simulating a Quantum Field Theory (QFT) on a lattice to
generate quantitative predictions is still considered nowadays one of
the most challenging and expensive tasks in Computer Science. This
is the reason why LGTs were not employed as a quantitative tool for
prediction until the last two decades. However, the recent advance-
ments in computing power and algorithmic development have signif-
icantly increased the use of the lattice approach to explore strongly
interacting QFTs and nowadays is considered among the leading the-
oretical tools in theoretical physics."

This Thesis frames itself somehow in between these two impor-
tant topics in the context of the study of strongly interacting gauge
theories aimed at a better understanding of QCD and QCD-like the-
ories that can be used as possible extensions for the SM. Our main
goal will be based on the study of the lattice of the large-N. limit
of SU(N.) Yang-Mills theories coupled with fermionic matter on the
lattice. In recent years, the investigation of the large-N. limit on the
lattice has been an important area of study.> However, one significant
challenge encountered in this line of inquiry is the computational
complexity, which escalates as the number of colors increases. While
large-N. results do not necessarily require the precision achieved by
lattice simulations generating results that can be compared with real-
world phenomena, obtaining accurate quantitative predictions still
poses challenges. One of these challenges is the substantial compu-
tational cost associated with simulating gauge theories that include
dynamical fermions and a sufficiently large number of colors. In the
large-N. limit, it is well-established that fundamental fermions be-
come "quenched," meaning their dynamical effects can be neglected,
drastically reducing the computational effort required by the simula-
tion. However, when large-N_ results are obtained with extrapolation
from relatively small N, it becomes crucial to ensure that the dynam-
ical effects of fermions do not significantly affect the accuracy of the
extrapolation. Moreover, if one aims to simulate theories with adjoint
fermions (or fermions in a representation larger than the fundamen-
tal), the natural quenching no longer applies, and one is limited to
simulating these theories with a small number of colors, far from
the large-N. limit. This thesis will utilize an alternative paradigm,

In the aforementioned muon (g, — 2) puzzle, the ab-initio SM result comes indeed
from state-of-art lattice simulation. The reference quoted refers to the first result of
the BMW collaboration. The interested reader can refer to [11] for the most recent
(up-to-date) review on the topic.

For a general review of the recent effort in this field up to 2013, the reader can refer
to [8]. More specifically on the large-N. limit of QCD, the reader may look also
at [12].
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known as twisted volume reduction [13], to overcome the aforemen-
tioned issues. As it is well known in the literature, SU(N.) gauge
theories possessing center-symmetry exhibit volume independence
in the large-N. limit when compactified on a torus. By using twisted
boundary conditions, one can exploit this feature safely and use it to
formulate and simulate the theory on a single-site lattice. Up to now,
twisted models are the only methods that allow simulating gauge
theories at values of N, of the order of 102 — 103. Over the past 15
years, this method has been applied successfully to various physical
applications on the lattice. More recently, it has also been applied to
Yang-Mills theory coupled with N¢ dynamical flavors of fermions in
the adjoint representation, which is the focus of this thesis. This work
poses itself as a natural continuation in this line of research, extend-
ing some of the present topics and opening new ones.

The first part of the results we are interested in is the pure Yang-
Mills theory in the large-N limit, which, as motivated in the first part
of this introduction, is at the base of QCD and the strong sector in the
SM. The other main part is related to the usage of adjoint fermions.
As it is well known, QCD is a SU(3) gauge theory where quark fields
are fermions in the fundamental representation and therefore the us-
age of adjoint fermions may sound artificial. The reason why we are
interested in theories with such nonconventional matter content is
manifold. First of all, gauge theories with adjoint fermions are among
the possible candidates of relevance in the context of BSM technicolor
model. Another interesing point of view, is the one suggested by the
orientifold equivalence [14, 15], which provides a natural parallelism be-
tween QCD with adjoint fermions to QCD with Dirac fermions in a
two-index symmetric or anti-symmetric representation. In the large-
N, limit, the latter is equivalent to the fundamental representation
and thus the model can be seen as the natural generalization of QCD
in the large-N. limit.

Another reason can be found in the remarkable plethora of differ-
ent physical scenarios that can be achieved by studying such theories.
A single adjoint Majorana fermion can be seen as the super-partner
of the gluon, and therefore the respective gauge theory is the sim-
plest realization of a supersymmetric theory. On the other hand, a
gauge theory featuring two adjoint Dirac fermions has been consid-
ered a valid potential BSM candidate. However, recent lattice inves-
tigations calculated an anomalous dimension that exceeded the limit
set by phenomenology, thus ruling out the theory as a viable option.
It should be noted, though, that this theory is known to be conformal,
making it interesting from a theoretical point of view since it exhibits
a completely different behavior than confining theories. The case of a
single adjoint Dirac fermion is also extremely relevant in a variety of
different contexts, from the other potential candidate for a BSM the-
ory to condensed matter physics. In the former context, the confining
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or conformal nature is actively still debated in the literature, and pre-
cious insights could come from the study of the large-N, limit.

After establishing the context for the framework to which this The-
sis belongs, we will now delve into a more detailed explanation of
the topics and objectives at hand.

In Chapter 1, we deal with the formulation of strongly interacting
gauge theories and their relevant features. We will go through some
of the details of the formulation of a Yang-Mills theory on Euclidean
space-time, dedicating some space to introduce the large-N limit and
the properties emerging from coupling this gauge theory to fermions,
such as chiral symmetry and supersymmetry. In the second part of
the Chapter, we will go through the formulation of these theories on
the lattice, exploring the consequences of the space-time discretiza-
tion. In the last part, we will give an overview of how Monte-Carlo
methods can be applied to extract relevant physical quantities.

In Chapter 2, we will introduce the concept of twisted boundary
conditions and how their usage provides a way to mix the color and
volume degrees of freedom. On the base of that, we will also see how
volume reduction emerges as a feature when the large-N. limit is
taken. We will apply the reduction to formulate the Twisted Eguchi-
Kawaii (TEK) model, which is going to be our main tool to simulate
SU(N¢) Yang-Mills theories on a single-site lattice. In the last part
of the Chapter, we will overview how fermions can be coupled and
simulated in the single-site framework.

After this general introduction, in Chapter 3 we overview the main
algorithmic ideas and issues to implement actual simulations of the
different theories we introduced in the previous Chapters. We will
present lists of the different statistical ensembles of configurations
we generated for the case of the pure Yang-Mills theory and Yang-
Mills theory coupled with N flavors of adjoint fermions in the adjoint
representation. We will also provide details on how the problem of
autocorrelation is dealt with in our error analysis.

Chapter 4 is dedicated to the results of the pure Yang-Mills theory,
denoted as N¢ = 0. We first present our methodology to set the scale
of the lattice theory, which is based on standard gradient flow tech-
niques adapted to our case and improved with perturbation theory at
the tree level to deal with systematic effects coming from the lattice
discretization and finite N corrections. After testing and performing
scale setting, we dedicate a section to discuss scaling and asymptotic
scaling in our simulation, giving an estimate of the A-parameter for
Yang-Mills theory in the large-N. limit. The last part of the Chapter
is dedicated to the calculation of the chiral quark condensate.

In Chapter 5 we deal with the case of dynamical adjoint fermions.
We first perform the scale setting with the Wilson flow in the case
of one adjoint Majorana fermion (N¢ = %), which in the continuum
corresponds to N = 1 SUSY Yang-Mills. We then proceed to study
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the limit in which the lattice theory recovers supersymmetry by em-
ploying two different methodologies, obtaining compatible results.
Combining the values of the scale we extracted with the results con-
cerning the supersymmetric limit, we study the dependence of the
lattice spacing on the bare coupling for the supersymmetric theory
confronting the results with theoretical predictions of the 3-function.
The rest of the Chapter is dedicated to performing the scale setting
on the theory following other two methodologies and comparing the
results. In the last part, we apply the Wilson flow scale setting proce-
dure to the ensembles for 1 and 2 adjoint Dirac fermions (N¢ =1, 2),
which allows us to study the dependence of the scale on the adjoint
fermion mass highlighting the behavior of the theories in the massless
and the heavy mass limit.

The last Chapter will be dedicated to the conclusions, where we
collect and summarize the main results we obtained in this Thesis.
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INTRODUCCION

El Modelo Estandar (SM) de la fisica de particulas ha sido una teoria
de gran éxito desde su creacién en los afios sesenta, con innumer-
ables verificaciones experimentales que confirman su validez. Una de
las confirmaciones experimentales mads significativas del Modelo Es-
tandard (SM) se produjo en 2012 con el descubrimiento del bosén
de Higgs por los grupos ATLAS y CMS en el Gran Colisionador de
Hadrones (LHC) del CERN [1, 2]. Este descubrimiento fue un hito sig-
nificativo en la fisica de particulas, proporcionando una fuerte eviden-
cia en apoyo de la descripcién del SM de las interacciones de particu-
las conocidas. Diez afios después del descubrimiento del bosén de
Higgs, la “altima pieza que faltaba en el rompecabezas”, el campo
de la fisica de particulas se ha desplazado hacia nuevas fronteras en
la investigacion. Una de estas fronteras es la fisica de precision, cuyo
objetivo es medir las cantidades relacionadas con las interacciones de
las particulas con una precisiéon experimental sin precedentes. Este en-
foque exige que las predicciones tedricas de estas cantidades tengan
la misma precisién que las mediciones experimentales, con la esper-
anza de que pequefias desviaciones significativas de los resultados
experimentales puedan desvelar la presencia de nueva fisica. Entre
las distintas cantidades, destaca el momento magnético del muén,
denominado (g, — 2), cuyo valor experimental mds preciso fue reve-
lado por el Fermilab en abril de 2021 [3]. En el lado tedrico, ain no
se ha alcanzado una prediccién de consenso: un enfoque dispersivo
basado en datos conduce a un valor que muestra una discrepancia
de 4,2 o con el resultado experimental [4], mientras que los cdlculos
SM ab-initio reducen esta tensién a 1.50 [5]. Esta emocionante diver-
gencia en el lado teérico puede considerarse uno de los principales
problemas de la fisica tedrica moderna.

Otra frontera en la fisica de particulas es la bisqueda de nuevos
marcos teéricos que puedan abordar problemas mds fundamentales.
Este es el caso del llamado problema de jerarquia, que se refiere al reto
de explicar la diferencia significativa entre la escala electrodébil y la
escala de Planck en la fisica de particulas que requiere una cantidad
“no natural” de ajuste fino. Otra cuestion intrigante es el denominado
problema CP fuerte que, en concreto, explora la ausencia de violacién
significativa de la simetria combinada de conjugacién de carga (C) y
paridad (P) en las interacciones fuertes. Estos problemas, entre otros,
llevaron a la necesidad de buscar extensiones de las teorias del SM
que pudieran proporcionar una solucién a estos problemas, a la es-
pera de que nuevos resultados experimentales dieran limites. Entre
los candidatos mas populares, citamos los modelos supersimetria y
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tecnicolor. La primera clase de teorias implica ampliar el espectro afia-
diendo un “super” compariero con spin y estadistica opuestos a cada
uno de los campos SM, mientras que las teorias technicolor afiaden
al grupo gauge SM una nueva interaccién SU(N.), y Ny sabores sin
masa de technifermiones. A medida que continuamos explorando y
adquiriendo una mejor comprension de los problemas fundamentales
que plantea el Modelo Estandar, es posible que cualquier solucién po-
tencial pueda ofrecer valiosos conocimientos sobre otras cuestiones
significativas para la fisica de particulas moderna, incluidas aquellas
cuya motivacién procede de la cosmologia, como la materia oscura.
Como habré observado el lector experto, la visién general que aqui
se ofrece abarca varias de las cuestiones sin resolver del SM, unidas
por un tema comun. El factor clave subyacente entre estos retos es
que todos ellos requieren una comprensién de las teorias cudnticas de
campos fuertemente acopladas. Historicamente, uno de los primeros
ejemplos notables de una teorfa con interaccién fuerte fue la QCD, el
sector del SM responsable de la fuerza nuclear fuerte que surge de la
interaccién entre quarks y gluones. La exploracién de la QCD y sus
propiedades ha sido una de las principales tareas de la fisica durante
el siglo pasado y ha influido enormemente en nuestra comprensioén
de las QFT. Desde el descubrimiento de la libertad asintética a princi-
pios de los setenta [6, 7], la QCD ha conducido a varias predicciones
que han sido validadas experimentalmente en la fisica hadrénica. Sin
embargo, debido a su naturaleza fundamentalmente no-perturbativa
la interaccién fuerte es dificil de estudiar tedricamente. Los fené-
menos intrigantes de la fisica hadrénica, como el confinamiento, ocur-
ren en el régimen de baja energia, donde la teoria es totalmente no-
perturbativa, y los métodos analiticos convencionales tienen una efi-
cacia limitada. Aunque hoy en dia todavia estamos lejos de compren-
der completamente el mecanismo que subyace a estos fenémenos, en
los ultimos 50 afios han habido muchos avances. Si queremos sefialar
un afo especialmente significativo que marcase el inicio de este vi-
aje, como se sugiere en [8], es imposible no mencionar 1974. Este
fue el afio en que se publicé “A Planar Diagram Theory for Strong In-
teractions” de Gerard 't Hooft en Nuclear Physics B [9], y “Confine-
ment of Quarks” de Kenneth Geddes Wilson en Physical Review D
unos meses después [10]. Estos articulos tuvieron un impacto signi-
ficativo en el estudio y la comprensién de la fisica de altas energias
en las décadas siguientes, y condujeron al desarrollo de dos lineas
de investigacion distintas que cruzarian caminos mds de una vez. En
el primer articulo citado, se demostré que surgen propiedades sor-
prendentes de las teorias gauge no abelianas a partir del limite en
el que el niimero de cargas de color N, se considera muy grande y
el acoplamiento gauge se desvanece. En primer lugar, los diagramas
de Feynman pueden organizarse en una expansiéon en 1/N. y en el
limite mencionado, los tinicos términos restantes tienen propiedades
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topoldgicas bien definidas. Por otro lado, el segundo articulo formu-
laba una teoria cuantica de campos en un espacio-tiempo discretizado
y mostraba cémo surgia el confinamiento de quarks en el limite (no
fisico) en el que el acoplamiento crece hasta el infinito. Aparte del re-
sultado sobre el confinamiento, el articulo sent6 las bases del campo
de las teorias gauge en el reticulo, una forma natural de regularizar
una QFT que proporciona una formulacién rigurosa de la integral
de camino, ademds de un vinculo natural con la teoria estadistica
de campos. En particular, esta analogia abre la posibilidad de estu-
diar las QFT mediante métodos y técnicas pertenecientes a otros cam-
pos de la fisica tedrica, como los cdlculos de Monte-Carlo. Debido
a la complejidad del asunto, la simulacién de una Teoria Cuantica
de Campos (QFT) en una red para generar predicciones cuantitativas
sigue siendo considerada hoy en dia una de las tareas mas desafi-
antes y costosas en Ciencias de la Computacién. Esta es la razén por
la que las QFT no se emplearon como herramienta cuantitativa de
prediccion hasta las dos dltimas décadas. Sin embargo, los recientes
avances en potencia computacional y desarrollo algoritmico han in-
crementado significativamente el uso de la aproximacién reticular
para explorar QFTs de fuerte interaccion y sigue siendo considerada
hoy en dia como una de las herramientas tedricas lideres en fisica
tedrica.?

Esta Tesis se enmarca de alguna manera entre estos dos impor-
tantes topicos en el contexto del estudio de teorias gauge fuertemente
interactuantes orientadas a una mejor comprensiéon de la QCD y de
las teorfas QCD-like que pueden ser utilizadas como posibles exten-
siones para el SM. Nuestro objetivo principal se basard en el estudio
en la red del limite grande N de las teorias de SU(N.) Yang-Mills
acopladas con materia fermidnica. En los dltimos afios, la investi-
gacion del limite de grande N en la red ha sido un 4rea de estudio
importante.* Sin embargo, un reto importante que se encuentra en
esta linea de investigacion es la complejidad computacional, que crece
a medida que aumenta el niimero de colores. Aunque los resulta-
dos a N grande no requieren necesariamente la precisién alcanzada
por las simulaciones reticulares que generan resultados que pueden
compararse con fenémenos del mundo real, la obtencién de predic-
ciones cuantitativas precisas sigue planteando retos. Uno de estos re-
tos es el considerable coste computacional asociado a la simulacién
de teorias gauge que incluyen fermiones dindmicos y un nimero
suficientemente grande de colores. En el limite de N. grande, esta
bien establecido que los fermiones fundamentales se "apagan", lo que

En el enigma del muén (g,, —2) antes mencionado, el resultado ab-initio SM procede
de una simulacién de reticulo de tltima generacién. La referencia citada se refiere al
primer y (hasta la fecha) mas preciso resultado de la colaboracién BMW.

Para una revision general de los esfuerzos recientes en este campo hasta 2013, el
lector puede consultar [8]. Mds especificamente sobre el limite de N grande de
QCD, el lector puede consultar también [12].
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significa que sus efectos dindmicos pueden despreciarse, reduciendo
drésticamente el esfuerzo computacional que requiere la simulacién.
Sin embargo, cuando se obtienen resultados de N, grandes mediante
extrapolacion a partir de N relativamente pequefios, resulta crucial
garantizar que los efectos dindmicos de los fermiones no afecten sig-
nificativamente la precisién de la extrapolaciéon. Ademads, si se pre-
tende simular teorias con fermiones adjuntos (o fermiones en una
representacion mayor que la fundamental), el temple natural ya no
es aplicable, lo que limita las simulaciones a teorias con un ntimero
pequefio de colores, lejos del limite de gran N..

Esta tesis utilizard un paradigma alternativo, conocido como reduc-
cion de volumen twisted [13], para superar los problemas mencionados.
Como es bien conocido en la literatura, las teorias gauge SU(N.) que
poseen simetria de centro exhiben independencia de volumen en el
limite grande-N. cuando se compactan en un toro. Mediante el uso
de condiciones de contorno “twisted”, se puede explotar esta carac-
teristica de forma segura y utilizarla para formular y simular la teoria
en una red de un solo sitio. Hasta ahora, los modelos twisted son los
tnicos métodos que permiten simular teorias gauge en valores de N
del orden de 102 — 103. Durante los tltimos 1 5 afios, este método se ha
aplicado con éxito a diversas aplicaciones fisicas en la red. Més recien-
temente, también se ha aplicado a la teoria de Yang-Mills acoplada
con N¢ sabores dindmicos de fermiones en la representacion adjunta,
que es el foco de esta tesis. Este trabajo se plantea como una contin-
uacién natural en esta linea de investigacion, ampliando algunos de
los temas actuales y iniciando otros nuevos.

La primera parte de los resultados en los que estamos interesados
es la teorfa pura de Yang-Mills en el limite N. grande, que, como se
ha motivado en la primera parte de esta introduccioén, estd en la base
de la QCD y del sector fuerte en el SM. La otra parte principal esta
relacionada con el uso de fermiones adjuntos. Como es bien sabido, la
QCD es una teoria gauge SU(3) en la que los campos de quarks son
fermiones en la representaciéon fundamental y, por tanto, el uso de
fermiones adjuntos puede sonar artificial. Las razones por la que es-
tamos interesados en teorfas con tal contenido de materia no conven-
cional son mdltiples. En primer lugar, las teorias gauge con fermiones
adjuntos se encuentran entre los posibles candidatos relevantes en
el contexto del modelo tecnicolor BSM. Otro punto de vista intere-
sante, es el sugerido por la orientifold equivalence [14, 15], que propor-
ciona un paralelismo natural entre la QCD con fermiones adjuntos
a la QCD con fermiones de Dirac en una representaciéon simétrica o
anti-simétrica de dos indices. En el limite de N, grande, esta tltima
es equivalente a la representacion fundamental y, por tanto, el mod-
elo puede verse como la generalizacién natural de la QCD en el limite
de N, grande. Otra razén puede encontrarse en la notable plétora de
escenarios fisicos diferentes que pueden alcanzarse estudiando tales

XX



teorias. Un tinico fermién de Majorana adjunto puede considerarse
como el supercompafiero del gluén y, por tanto, la teoria gauge corre-
spondiente es la realizacién més sencilla de una teorfa supersimétrica.
Por otro lado, una teoria gauge con dos fermiones de Dirac adya-
centes se ha considerado un candidato potencial BSM. Sin embargo,
recientes investigaciones en reticulo calcularon una dimensién ané-
mala que superaba el limite establecido por la fenomenologia, descar-
tando asi la teoria como opcién viable. Cabe sefialar, no obstante, que
se sabe que esta teoria es conforme, lo que la hace interesante desde
un punto de vista tedrico, ya que exhibe un comportamiento com-
pletamente distinto al de las teorias con confinamiento. El caso de un
tnico fermién de Dirac adjunto también es extremadamente relevante
en una variedad de contextos diferentes, desde ser otro potencial can-
didato BSM hasta la fisica de la materia condensada. En el primer
contexto, la naturaleza confinante o conforme sigue debatiéndose ac-
tivamente en la literatura, y el estudio del limite de N grande podria
aportar valiosos conocimientos. Tras establecer el contexto del marco
al que pertenece esta Tesis, nos adentraremos en una explicaciéon mds
detallada de los temas y objetivos que nos ocupan.

En el Capitulo 1, tratamos la formulacién de teorias gauge de inter-
accion fuerte y sus caracteristicas relevantes. Repasaremos algunos
de los detalles de la formulacién de una teoria de Yang-Mills en el
espacio-tiempo euclideo, dedicando algo de espacio a introducir el
limite de N, grande y las propiedades que surgen del acoplamiento
de esta teoria gauge a fermiones, como la simetria quiral y la su-
persimetria. En la segunda parte del capitulo, repasaremos la formu-
lacion de estas teorias en la red, explorando las consecuencias de la
discretizaciéon del espacio-tiempo. En la tltima parte, daremos una
vision general de cémo se pueden aplicar los métodos de Monte-
Carlo para extraer cantidades fisicas relevantes.

En el Capitulo 2, introduciremos el concepto de condiciones de
contorno twisted y cémo su uso proporciona una forma de mezclar
los grados de libertad de color y de volumen. Basdndonos en ello,
veremos también cémo la reduccién de volumen cuando se toma el
limite N. grande. Aplicaremos la reduccién para formular el mod-
elo Twisted Eguchi-Kawaii (TEK), que va a ser nuestra principal her-
ramienta para simular teorfas de Yang-Mills SU(N.) en una red de
un solo punto. En la dltima parte del capitulo, veremos cémo pueden
acoplarse y simularse fermiones en el marco de esta teorfa con unico
punto.

Después de esta introduccién general, en el Capitulo 3 se describen
las principales ideas y problemas algoritmicos para implementar sim-
ulaciones reales de las diferentes teorias que hemos introducido en
los capitulos anteriores. Presentaremos listas de los diferentes conjun-
tos estadisticos de configuraciones que generamos para el caso de la
teoria de Yang-Mills pura y la teoria de Yang-Mills acoplada con N¢
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sabores de fermiones en la representacién adjunta. También propor-
cionaremos detalles sobre cémo se trata el problema de la autocor-
relacién en nuestro andlisis de errores.

El Capitulo 4 estd dedicado a los resultados de la teoria Yang-
Mills pura, denotada como N¢ = 0. Primero presentamos nuestra
metodologia para establecer la escala de la teoria en el reticulo, que
se basa en técnicas estandar de flujo de gradiente adaptadas a nue-
stro caso y mejoradas con teoria de perturbaciones a nivel de arbol
para tratar con efectos sistematicos procedentes de la discretizacion
de reticulo y correcciones finitas N.. Después de probar y realizar el
ajuste de escalas, dedicamos una seccién a discutir el escalado y el
escalado asintético en nuestra simulacién, dando una estimacién del
pardmetro A para la teoria de Yang-Mills en el limite de N, grande.
La dltima parte del capitulo esta dedicada al cdlculo del condensado
quark quiral.

En el Capitulo 5 tratamos el caso de fermiones dindmicos adjuntos.
Primero realizamos el ajuste de escala con el flujo de Wilson en el
caso de un fermién de Majorana adjunto (N¢ = 1), que en el con-
tinuo corresponde a N' = 1 SUSY Yang-Mills. A continuacién pro-
cedemos a estudiar el limite en el que la teoria de reticulo recupera
la supersimetria empleando dos metodologias diferentes, obteniendo
resultados compatibles. Combinando los valores de la escala que ex-
trajimos con los resultados relativos al limite supersimétrico, estudi-
amos la dependencia del espaciado de la red con el acoplamiento
desnudo para la teorfa supersimétrica confrontando los resultados
con las predicciones tedricas de la funcion 3. El resto del capitulo se
dedica a realizar el ajuste de escala en la teoria siguiendo las otras
dos metodologias y comparando los resultados. En la dltima parte,
aplicamos el procedimiento de ajuste de escala del flujo de Wilson a
los conjuntos para 1 y 2 fermiones de Dirac adjuntos (N¢ = 1,2), lo
que nos permite estudiar la dependencia de la escala con la masa del
fermién adjunto destacando el comportamiento de las teorfas en el
limite sin masa y con masa pesada.

El altimo Capitulo estard dedicado a las conclusiones, donde reco-
gemos y resumimos los principales resultados que hemos obtenido
en esta Tesis.
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INTRODUCTION



QUANTUM FIELDS FOR STRONG INTERACTIONS

1.1 STRONGLY INTERACTING THEORIES IN THE CONTINUUM

The most generic description of QCD and QCD-like theories is formu-
lated in terms of a non-abelian Yang-Mills theory, coupled with sev-
eral flavors of fermions. These theories possess a local invariance un-
der a gauge group SU(N.), where N is the number of color charges.
The gauge fields are hermitian traceless matrices whose elements are
ALR)(X) = AS(X)T&), where the index a runs in 1,...,N% —1 and
labels the generator T, of the algebra of SU(N.) in a generic rep-

resentation R. The generators are defined to satisfy tr (T&)T(I’RO =

5APT(R), being T(R) a numerical factor proper of the representation
R. For simplicity, for the fundamental representation, we will omit
the index R. As standard in Yang-Mills theories, the gauge fields are
a connection in the gauge space and define a natural covariant deriva-
tive defined as

D]ELR)(X) =0u— igA&R) (x), (1.1.1)

where g is the bare coupling constant. The associated field-strength
tensor is given by

Fuv =0 Ay — 0 AL —ig[A, AV, (1.1.2)

where we omitted the space-time point x. A gauge transformation is
implemented with a generic special unitary local rotation Q(x) €
SU(N) through

Aplx) — AL(X) = Q(x)/\u(x)Q(X)Jr — ;(E)HQ(X))QJr (x). (1.1.3)

Matter fields are included in the description via N¢ fermionic fields
P(x) and P(x), which are Grassmann-valued variables carrying a
spinor index and a color index. Fermions are coupled to gluons through
the covariant Dirac operator

3% = vDF (xiw(x) = v* (3.0 (x) — igAL (Mb(x)), (1.1.4)

where the product between the fermion and the gauge field has to be
understood within the representation R

dim R

=ALK) D (Th)iybi(x), (1.1.5)

1
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where the sum over a is implicit. A local gauge transformation Q g (x) €
SU(N,) acts as

P(x) = 90 = Qry (K1), Bx) = P00 = DR)Q]y, () (1.1.6)

The Lagrangian of the theory is defined as

N
1 —_
L =—3 tr P FHY + E Pe(AB ™ —mewy, (1.1.7)
=1

where we omitted the dependence of the fields on the space-time
point x. On the other hand, the action, is a functional of the fields
defined as

S[A, WP, ] = Jd“xg(x), (1.1.8)

which is symmetric under the transformations (1.1.3) and (1.1.6), namely

SIA, P, P] = SIA, P/, P]. (1.1.9)

The quantum description of the theory is formulated with the path
integral approach, whose central object is the generating functional,
defined as

Z= J[DAH] D] [DpletSAwd bl (1.1.10)

where the functional integral extends over all the possible configu-
rations of the field A, 1P and . As known from standard QFT,
quantum fields are operators acting over the Hilbert space of physical
states, and observables are the vacuum expectation values of generic
operators O, combinations of quantum fields generating some state
from the vacuum with some definite quantum numbers. In the lan-
guage of path integrals, observables can be calculated as

<©> = ]ZJ[DA“] (DY) [DpetS AP BIHIA L, p, ] . (1.1.11)

A connected correlation function of operators O, build from gauge
fields and fermion bilinear can be studied by adding in the path inte-
gral a corresponding source term of the form 3a©a

Ly = J[DAH] D] [Dlet [4"x(£ () +da(x)0a(x)) (1.1.12)

and taking functional derivatives with respect to them

2 - im0 d
<O1(x1)..-on(xn)>c =1 T a) S log Z4 o (1.1.13)



Several interesting properties of this quantum field theory can be
studied in detail after the so-called Wick’s rotation, i. e.an analytic con-
tinuation of the partition function to imaginary time. The complete
prescription reads

(x°,xY) = (x4 = ix%,x1) (1.1.14a)
(00,0i) — (04 = —i09, 0;) (1.1.14b)
YO = (va =v%vi = 1Y) (1.1.14¢)
(Ao, Ai) = (Ag = —iAp, Ay) (1.1.14d)
(W, ) = (P, ¥). (1.1.14e€)

Wick-rotated world is also referred to as Euclidean, as the Minkowski
metric n*Y becomes 6"V (modulo a global sign depending on the def-
inition of n). In the Euclidean, the generating functional in Eq. (1.1.10)
becomes

Ze = J[DAH] DPIDleStAwb bl (1.1.15)
where
1 Al
Sg = Jd4x [2 trFuvFuv + ]; Pe(D+me)de |, (1.1.16)

where we omitted the superscript R in the covariant derivative. From
now on, we will work always in Euclidean space and therefore we
will drop the subscript E everywhere.

Eq. (1.1.15) has a well-known immediate interpretation in terms of
statistical mechanics. If we imagine the functional integral as a “sum”
over every possible configuration that the fields can assume, the gen-
erating functional in Eq. (1.1.10) can be interpreted as the partition
function of a statistical system in the canonical ensemble

Z:Ze*w{(‘b), (1.1.17)
{d}

where we denoted with ¢ the generic field configuration. In this anal-
ogy, the action plays the role of the Hamiltonian J{ of the system and
each microstate (field configuration) is weighted with a real Boltz-
mann factor e~ PE. This statistical average can be expressed as

<©> - ;J[DA”J DY) [Dple S AP PIOA, b, p], (1.1.18)

which can be interpreted as a mean value over an ensemble of field
configurations distributed according to the following probability dis-
tribution

_ e_s[lbllprAu}
P, P, Al = — (1.1.19)
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Table 1: Dimension and Casimir invariants of the fundamental (F), and ad-
joint adj representation of SU(N_).

A crucial observation is that since the gauge coupling constant g
is dimensionless, in the limit in which fermions are massless the the-
ory has no other mass scale, i.e. there is a scale invariance. However,
upon quantization, the coupling acquires a dependence on an energy
scale p, namely the scale at which the UV divergences are subtracted.
This process is commonly referred to as dimensional transmutation. The
common approach is to transfer the analytic dependence on the en-
ergy scale on the coupling constant g (or « = 9°/4x). This “running”
of the coupling g, i.e. the dependence of the coupling on the energy
scale u is dictated by the renormalization group equations

dg2

Tlog 12 =B(qg), (1.1.20)

where the (3-function is a function that depends on the theory under
consideration and that can be expanded around g = 0:

B(g) = —Bog’ —B1g°+0(g®). (1.1.21)

Although a generic coefficient 3;~1 is dependent on the renormaliza-
tion scheme, the first two coefficients 3o and (31, are universal and
are given by

(4m)2Bo = 2%2 - gT(R)Nf (1.1.22a)
(4m)*B1 = ?%2 - (230%2 +4‘52(R)>T(R)Nf, (1.1.22b)

where the numerical coefficients T(R), 4> and %> (R) are, respectively,
the trace normalization, the quadratic Casimir of the adjoint and the
quadratic Casimir of the representation R, summarized in Tab. 1 for
some of the representations of SU(N.). Although the perturbative ver-
sion of the 3-function can predict the running in the weak-coupling
regime and not in the full energy spectrum, some important overall
information of the theory can be extracted from the first coefficients
in the expansion. Further information about the running of the cou-
pling will be given in Sec. 1.2.3.3.

At this point, one has to tackle two problems. The first one is that
we do not have a formal definition of the integration measure appear-
ing in Eq. (1.1.15) and in the definition of the observables. The second
one is more practical: once the path integral has been defined, we



have to give an operational implementation of the calculation of the
observables. Both of these problems will be solved by the lattice for-
mulations of gauge theories which we are going to review in Sec. 1.2.
Before doing so, in the next subsections, we will go through some
of the relevant aspects that will be targeted in the result chapters of
this thesis. Although some of the concepts will be discussed in some
detail, this should not be taken as a complete treatment of the matter
for which we refer to standard textbooks in QCD and quantum field
theories such as [16, 17].

1.1.1  The large-N limit

The standard way to study analytically a strongly interacting theory
is to expand the path integrals in power series of the bare coupling
constant g. Another approach is to treat the rank of the gauge group
N, as a parameter, and perform an expansion in powers of /N, jus-
tified when N. is large. This scenario was first explored by 't Hooft
in the "7os [9], which observed first that for this limit to make sense,
the gauge coupling g must be taken to zero, in such a way that the
"t Hooft coupling A = g?N, remains constant. The observation about
how to take the limit becomes clear if one looks at Eq. (1.1.21): al-
though a naive N, — oo limit is ill-defined, when rescaling the cou-
pling, the RG equation for the "t Hooft coupling A becomes

dr ANTR A? 3
dlog i~ <H N )W+O()\), (1.1.23)

and the N — oo limit is perfectly defined, once the representation R
is specified. In the case where no fermions are considered, i.e. N¢ =0,
Eq. (1.1.23) shows that pure SU(N.) Yang-Mills theories are asymp-
totically free in the large-N. limit, being the leading order coefficient
smaller than zero.

TWO DIFFERENT LARGE-N. LIMITS The case in which we con-
sider fermions deserves special attention. In Eq. (1.1.23), the coeffi-
cient in front of the O(A?) term depends on the number of flavors we
couple to gauge fields and their representation. In the case of QCD,
quarks are in the fundamental representation, for which Tgpng = /2.
In this case, their contribution to the -function vanishes when N, is
taken to be large, provided the number of flavors N remains constant.
This is typically referred to as the 't Hooft limit, in which Nr/N. — 0
while A remains constant.

Another possible scenario is when the number of flavors N is also
sent to infinity, holding the Nt /N, ratio fixed. In this case, also known
as the Veneziano limit [18]: the number of fermionic degrees of free-
dom grows with the same power as the number of gluonic ones, and
their contribution does not disappear in the large-N. limit. A similar



scenario relevant to this work is the case in which fermions are in
a higher dimensional representation such as the adjoint, for which
Tadj = N¢. In this case, even though the number of flavors is left con-
stant, the number of fermionic degrees of freedom is by definition the
number of gauge ones, being gluon fields in the adjoint representa-
tion of SU(N,).

LARGE-N_: COUNTING RULES An advantage of having a struc-
tural parameter of the theory such as the rank of the gauge group
going to be sent to infinity is that dynamical quantities can be or-
dered based on the different powers of N they carry. For this reason,
it is very instructive to be able to keep explicit track of the N, de-
pendence of relevant quantities such as vertices and propagators in
perturbation theory. First of all, we have to rescale gauge and fermion
fields in the following way

Aulx) = ZAW), i) = VNG, (1.1.24)

A useful tool is the so-called "ribbon" or "double-line" notation for
Feynman diagrams, which consists in replacing each line in the dia-
gram with as many lines as fundamental color indices the correspond-
ing propagator carries. For example, the propagator of a fundamen-
tal quark <1j)i(x)1T)(y)]—> o 5} is diagonal in color space, therefore it
will be drawn as a single oriented color line. On the other hand, the
propagator of an object in the adjoint representation such as a gluon
or an adjoint fermion will be represented by a couple of (oppositely
oriented) color lines, being <Au(x)ijAu(x)kl> x 6{6}‘ — 6}6‘{/Nc. In
the final diagram, the overall power of N, can be deduced using the
following rules: each closed color line contributes with a single N,
factor, while each vertex brings a g into the product, which can be
substituted with /*/N.. We can summarize the main result in the

following rules

¢ Non-planar diagrams are subleading in N. and then suppressed
in the large-N. limit.

¢ Diagrams with internal fundamental fermion loops are sup-
N

pressed as gt
These conclusions are summarized in Fig. 1. The first bullet can be
formulated from a topological consideration. In the 't Hooft limit, the
perturbative expansion of any observable O can be organized in a
double expansion, both in powers of the coupling and also in powers
of 1/N.:"

0= Z Nngh*b Z A" Chbn (1.1.25)
h,b=0 n=0

1 See e.g.[8] and references therein for a complete treatment.
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Figure 1: Three different Feynmann diagrams with three loops contributing
to the gluon propagator. Only the one in the left panel survives
the large-N. limit. The picture is taken from [8].

where h is the number of handles and b is the number of boundaries of
the simplest Riemann surface the diagram can be written on without
crossing lines and with quark lines along the boundary. One could
also verify that the number of boundaries b corresponds to the num-
ber of quark loops. Along the line of what we mentioned before, the
leading contribution O(N2) comes from h = b = 0, i.e. a planar di-
agram with no boundaries. For this reason, the "t Hooft limit is also
referred to as the planar limit of gauge theories. Note that the simplifi-
cation in the large-N. limit involving fermions corresponds to the so-
called quenched approximation in lattice QCD. Observables involving
fundamental fermions can be therefore described by neglecting the
effect of sea quarks induced by the determinant of the Dirac operator
and hadronic states can be described well by properties of valence
quarks.

1.1.2  Chiral symmetry

The matter content of the class of theories we are studying has crucial
dynamical consequences and influences heavily the phenomenology.
It is worthwhile to review in some detail some of the relevant con-
cepts regarding symmetries that interest fermionic degrees of free-
dom.

We recall that, in addition to color degrees of freedom, fermion
fields carry information about spin, i.e. they belong to a representa-
tion of the Lorentz group. From standard group theory arguments,
we know that in 3 4+ T dimension, Dirac fermions are a reducible rep-
resentation of the Lorentz group, consisting of a right-handed (RH)
and a left-handed (LH) Weyl fermion. The same concept can be ex-
pressed in terms of the projection operators

T+vys

PL =
+ 7 ’

(1.1.26)

which “isolate” one Weyl component of the fermion, i.e. project a
generic fermion onto an eigenstate \+ of the chiral operator ys:

Pip=1s,  vshr=+0s. (1.1.27)



SINGLE FLAVOR CASE For simplicity let us start by considering
the case of a single Dirac fermion N¢ = 1. It is easy to show that the
kinetic part in the fermionic action can be written as

Pildy = P iDY, + P iy, (1.1.28)

while the mass term is

mpp =m(Pp P +P_Py) (1.1.29)

It is straightforward to notice that the kinetic term does not mix the
Weyl components of the fermion, while an explicit mass term does.
At this point, we can make some observations about the symme-
tries of the kinetic part of the fermionic action in Eq.(1.1.28). First, it
has an exact symmetry under the following U(1)y transformation

P — et*, P — e . (1.1.30)

(x being a real number), associated with the conservation of fermion
number. This transformation is a phase shift that acts in the same
way on LH and RH components, this is why it is usually referred to
as vector symmetry, which explains the subscript of the unitary group.
On the other hand, when considering an axial rotation, namely

P — eV, P — Petrs™, (1.1.31)

the transformation distinguishes between LH and RH components of
the spinor and only the kinetic term is symmetric, being the only one
that does not mix chiralities. However, we can say that the massless
theory possesses axial symmetry whose explicit breaking is propor-
tional to the fermion mass.

MULTIPLE FLAVOR CASE If we consider the case of N¢ several fla-
vors, the theory is invariant under independent chiral transforma-
tions if m = 0 that also mixes flavor

Ve — Ugph?, P = Vepd?, (1.1.32)

with UTU = VTV = 1. The total symmetry group is U(N¢); @ U(N¢)g,
where the subscript denotes the components of the spinor over which
the transformation acts. Using the fact that a unitary transformation
is a product of a special unitary transformation and a complex phase,
we can write the flavor symmetry group for the massless theory as

UNeL @UNg)r >~ SUN)L @ SUNfr@U) @U(1)A (1.1.33)

where the two U(1) groups are the ones we commented on the single
flavor case.
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1.1.2.1  Chiral symmetry breaking

In the previous section, we commented on how a mass term breaks
axial symmetry explicitly. The massless theory, however, seems pro-
tected against chiral symmetry breaking, at least at a classical level.
Although the massless Lagrangian manifests symmetry under chi-
ral transformation, two phenomena can occur. The first is the well-
known spontaneous breaking of the symmetry, namely when the vac-
uum is not symmetric under chiral rotations. This is analogous to
what happens to ferromagnetic spin systems, where the ground state
microstate is with all spins aligned in one direction. This spin con-
figuration is not invariant under a global flip (change of sign), thus
leading to a macroscopic magnetization of the system. Analogously,
QCD-like systems whose ground state is not invariant under chiral
rotations develop a non-vanishing chiral condensate, defined as

(P (x)) . (1.1.34)

Note that the chiral condensate transforms as a mass term, therefore
it is a suitable order parameter for the breaking of the symmetry,
analogous to the magnetization in spin systems. This phenomenon
is known as spontaneous breaking of the chiral symmetry. A dynamic
insight into how this mechanism occurs was provided by Banks and
Casher in [19], who proposed that low-modes of the Dirac operator
undergo a condensation with a consequent formation of the typical
scale. The average spectral density of the Dirac matrix is defined as

o]

p(Am) = A —Ak)) , (1.1.35)

=

k=1

where iAy are the eigenvalues of the euclidean massive Dirac operator
in a volume V. The remark of Banks and Casher establishes

>
lim i li A = — .1.36
Alg})mlglovlglop( m) '’ (1.1.36)

where X represents the chiral condensate

L=—lim lim (). (1.1.37)
In the infinite volume limit, a non-zero density of quark modes im-
plies that chiral symmetry is broken and vice-versa.

Another crucial consequence of the spontaneous breaking of chi-
ral symmetry is the formation of massless excitation in the spectrum
of the theory, called Nambu-Goldstone bosons. The most illustrative
case is QCD, where pions can be seen as “pseudo” Nambu-Goldstone
bosons, whose small masses, around 140 MeV, are a consequence of
the explicit breaking of the symmetry by the light quarks mass. This
concept is well summarized in N¢ = 2 QCD with degenerate quarks
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m, = Mg = Mmq, where the so-called pion mass formula, or Gell-Mann-
Oakes-Renner (GMOR) relation [20] reads
2 2mgl
™ f72_[

(1.1.38)

which relates the mass of the lightest meson in the spectrum, the pion,
to the chiral condensate (and the pion decay constant f).

The other phenomenon that might occur is an anomalous breaking
of the symmetry: the usage of a regulator for the quantum version of
the theory introduces symmetry-breaking terms that do not vanish
once the regulator is removed. There are several different ways in
which this problem can be described, we are going to review the basic
concepts here, for a more technical treatment, the interested reader
can refer to e. g. [21]. One can see that the measure of the path integral
is not invariant under chiral rotations by studying the Jacobian of
the transformation a-la Fujikawa [22]. Another way is to calculate
explicitly the 4-divergence of the axial current |, = Py*y°P, which
should vanish at a classical level in the massless theory thanks to
Noether’s theorem. After an explicit calculation, in the m — 0 limit
the divergence of the axial current 9,,J', result to be proportional to
the topological charge density Q, whose volume integral is an integer
number that labels the different topological sectors in the space of
configurations. The topological charge is a complex object and can
be seen from a lot of perspectives. An intriguing way is to use the
famous Atiyah-Singer theorem [23] that states

Q=nr—mng, (1.1.39)

where with ng,; we indicate the right/left-handed zero modes of
the Dirac operator. This theorem has a crucial interpretation for the
axial anomaly: instanton-like (Q # 0) configurations in the vacuum
of the theory interact with fermion flipping the chirality of some of
their zero-modes. This decompensation is what causes the anomalous
breaking of the U(1)a subgroup of the full axial group U(N¢)a. The
remaining SU(N¢) subgroup is broken spontaneously in the vacuum
as mentioned before.

1.1.3 Supersymmetry

Another interesting property that these theories could manifest is su-
persymmetry (SUSY), namely the invariance under a transformation
that exactly maps bosonic degrees of freedom into fermionic ones
and conversely. Although QCD is not invariant under such transfor-
mations, the action formulated as in Eq. (1.1.8) manifests a supersym-
metric behavior for some type of fermion fields. In this subsection,
we will give some general details about SUSY, referring to [24—26] for
details.
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In a nutshell, supersymmetry can be viewed as an extension of
Poincaré algebra, describing the symmetries of the spacetime under
translation, boosts and rotations. If we call P, and L, the infinites-
imal generator of translations and Lorentz transformations, respec-
tively, we can qualitatively write the Poincaré algebra as

[P,Pl=0, [P,L]~P, [LL]~L. (1.1.40)

At this point we can extend the Poincaré algebra with N set of com-
plex Grassmann generators Q called supercharges which satisfy the
following (qualitative) relations

P,Ql=0, QU~Q, {QQ}~P. (1.1.41)

When considering Majorana fermions, defined by the condition { =
G, a supercharge Q can be viewed as an operator that changes boson
into fermions and vice versa

Q |boson) = [fermion), Q |fermion) = [boson) . (1.1.42)

Supersymmetry naturally induces several interesting properties that
make the corresponding theory extremely appealing from a theoreti-
cal perspective. We just list some of these features in the following:

¢ The spectrum of the theory is composed of bound states called
supermultiplets, which contain the same number of bosonic and
fermionic states with the same mass. An example of such a
multiplet is a spin-'/2 Majorana fermion, a scalar and a pseu-
doscalar boson.

¢ Unbroken supersymmetric theories have an exactly zero vac-
uum energy, without the need for renormalization and arbitrari-
ness of an additive constant. Consequently, vacuum energy is an
order parameter for SUSY breaking.

* The trace of the Witten index predicts whether SUSY is broken:
a non-zero value forbids its spontaneous breaking [27].

* The “non-renormalization” theorem [28]: bosonic loops in quan-
tum corrections are canceled by those of their fermionic su-
perpartners. When supersymmetry is manifest at tree-level in
perturbation theory it cannot be broken by higher-order correc-
tions, thus SUSY holds at all orders.

1.1.3.1 N =1 SUSY Yang-Mills model

This model is the simplest supersymmetric realization of the gluonic
sector of QCD, namely Yang-Mills theory. Although the matter con-
tent of this theory is fairly simple, i.e. only one gluino (an adjoint Ma-
jorana fermion), it manifests several non-trivial properties. The theory
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is confining at low energy and zero temperature, and the spectrum is
composed of a supermultiplet degenerate in mass [18, 29, 30].

As mentioned before, gluino fields are Majorana fermions in the
adjoint representation, namely they have N2 — 1 color degrees of free-
dom (as gluons). We will indicate the corresponding quantum field as
A(x), not to be confused with the 't Hooft coupling, always denoted
with the same Greek letter. The Majorana condition reads

A="AC, (1.1.43)
being @ the charge conjugation matrix defined as

Cyu ! ==Yy, (1.1.44)

The Majorana condition (1.1.43), states that they are self charge-conjugated
particles, i.e. A = A and impose a constraint on the spin component

of the fermion. In fact, a Majorana fermion carries half of the degrees

of freedom of a Dirac fermion, which is the reason why it is denoted

as Ny = 1/2. The Euclidean action of the theory is

Sn=1 = Jd“x B trF FHY 4 %t?\(i@D)A (1.1.45)

which, on top of the standard gauge invariance, it is also invariant
under infinitesimal supersymmetric transformations.

At the classical level, the theory possesses a global U(1) A symmetry,
corresponding to axial rotations of the gluino

Ax) — e®YsA(x). (1.1.46)

This “chiral” symmetry is called R-symmetry for historical reasons
and does not commute with supersymmetry as there is no analogous
rotation for the gluons. At the quantum level, this symmetry is broken
by the anomaly to the Z,n, subgroup of the transformations

Alx) — elzf\'iicnyﬂ\(x) , (1.1.47)

labeled by the integers n modulo 2N.. At this point, the vacuum
states can develop a non-zero gluino condensate (A\) which breaks
spontaneously the remaining symmetry down to Z,, i.e. a change of
sign

A— —A. (1.1.48)
To summarize, the overall pattern of symmetry breaking is
U(])A —)ZZNC _—)Zz. (1.1.49)
anomaly <7\)\

In this case, the spontaneous breaking happens for a discrete group
and thus the Goldstone theorem does not apply.

This model will be the subject of one of our simulations whose
results will be analyzed in detail in Chapter 5. The formulation of
supersymmetry theory on the lattice though is not straightforward
and one has to face several problems. We are going to summarize
these issues in Sec. add ref to lattice SUSY.
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1.2 YANG-MILLS THEORIES ON THE LATTICE
1.2.1 SU(N,) Yang-Mills theories on the lattice

1.2.1.1 Discretizing gauge fields

We consider a lattice, i.e. a spacetime grid of spacing a of volume
V = L1L;L3L4. The generic spacetime point x will be given by a
vector of integers n, as

x = (any,any, anz, ang) withn, €[0,...,L,—1], (1.2.1)

and will be also denoted as n. The gauge degrees of freedom are
given in terms of U, (n) € SU(N.) matrices living on the links of the
lattice. They are defined such that

U_(n+1f)= UL(n) . (1.2.2)

A general gauge transformation mediated by Q(n) € SU(N,), as
expressed in Eq.(1.1.3), translates into

Uy (x) = Q(x)U (x)Q(x + ﬁL)T , (1.2.3)

Using this formalism, the trace of every product of link fields U, (n)
following a closed path is gauge-invariant. Defining a closed path
v, the trace of the path-ordered product of the link variables U(y) is
called a Wilson loop. The simplest loop one can build is called plaguette
and is given by

Puv(n) =Ug(m)Uy(n+ ﬁL)UL(n +9)Ul (n). (1.2.4)

One of the possible actions for these link variables is the Wilson
action

SwllW =bNe Y 3~ Retr(1— Uu(m)Uy (n+ @)Ul (n+ @)Ul (n)
nop#v
(1.2.5)

where b is an overall coefficient to be determined.

The Wilson action is far from being unique, every gauge-invariant
action that reproduces the continuum Yang-Mills action in the a — 0
limit works. We can easily see that, by expanding the gauge fields as

Uy, (n) = e 9% =1 _iagA, (n) +0(a?), (1.2.6)

Eq. (1.2.5) becomes

4.2
S, = —bN, Z Z Re tr (—iazgﬂw(n) — azg Fuv(m)? + O(a6)>
nopFEv
2
- bNC% at Z Z tr(Fuv(m)?) +0(a®), (1.2.7)
nopFEY
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where F - is defined through

tret9@Fuv(n) — p o—tagAu(n) p—tagAy (n+p) giagAu (nt¥) siagAy (n)
(1.2.8)
By setting
a4Z—>Jd4x, b:%:l, (1.2.9)
~ g?Ne ~ A

the Wilson action reproduces the standard (euclidean) Yang-Mills ac-
tion.”

It is worth mentioning that Wilson’s action (1.2.5) is real and posi-
tively defined

Swiu] >0, (1.2.10)

the inequality being saturated only when the link variables are unit
matrices modulo gauge transformations. Given its positivity, e =S\
is a well-defined weight for the link configuration in the Euclidean
path integral for Yang-Mills fields. To define the path integral, we still
have to define the measure of integration [dU] in a gauge-invariant
way. First we will denote as [dU] the product over the measures for
all gauge fields

[du] = Hduu(n) . (1.2.11)
wm

Taken a generic element U € SU(N.), which is a compact group, the
group invariant integration measure is given by the Haar measure,
which can be proven to be unique and satisfies the properties

du=dvu=duv (1.2.12a)

J du=1 (1.2.12b)
SU(Nc)

where V € SU(N.). Since the parameterization of a generic SU(N¢)
element is a complicated expression, the construction of the Haar
measure is lengthy and we will not go through the details. However,
since we adopt a numerical approach the general expression for dU
is not needed.

Any gluonic gauge-invariant observables can be obtained from the
expectation value of (the trace of) a product of gauge fields along a
close path ¥ on the lattice. By setting ¥ = [n,n+ py,...,n— unl, we
can defined a Wilson loop the following quantity

1
W) = - (ruifl), - U] = Uy, (MU, (n+ @) - UL ().

2
c

Usually, in standard literature p = =3¢ = 21;\1 is used instead of b.
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(1.2.13)

The expectation value will be evaluated by means of Eq. (1.1.15) using
the Wilson action as

1
z

tr Ufyl
Ne¢

W) = J[dl,l]eS [ (1.2.14)

1.2.1.2 Discretizing fermions

The Euclidean fermion action for Ny = 1 in the continuum reads
[ B0, — 1A + M. (1.215)

The lattice fermionic action can be given in terms of the discretized
version of the (massive) Dirac operator, which can be written as a
matrix when the fermionic degrees of freedom are countable, as on a
discretized spacetime. It can be written as

SelU, P, ] = a? Z P(n)D(n, mp(m), (1.2.16)

and must reduce to Eq. (1.2.15) when expanding the analytical expres-
sion around a — 0. The product between the Dirac matrix D and the
fermion field 1 has to be intended as an actual matrix-vector product
in the vector space in which the representation R lives.

s(n+f,m)— Ul (n—wsn—pm)
D(n m+Zyu ZaH ,

(1.2.17)

which is known to suffer from the presence of unphysical states,
called doublers. To quantify this statement, we must analyze the free
spectrum of the theory, study i.e. Eq. (1.2.17) in momentum space
after setting U, (n) = 1. We can write

D(p,q) = k Y e P TD(n,m)eted™
n,m

eltadu _ o—iaqy
e tp—a) Zy +m
et (s,

=5(p, q)D(p)

where

D(p) = m—i—%Zyusin(apu), (1.2.18)
w

where the momentum is given by a four-vector whose components p,,
are integer multiple of 2%, where 1 = al and V = 1*. Since the Dirac
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matrix is diagonal in momentum space, its inverse, i.e. the propagator
can be simply calculated as

L % ZuYu sin(ap,.)

D (p) = ) (1.2.19)
m2+ Ly sin(ap,,)?

One can prove that, for the massless case m = 0, in the limit a — 0,
the propagator becomes —ip/p? whose only pole is at p = (0,0,0,0),
as expected. Nevertheless, the lattice version of the propagator in
Eq. (1.2.19) has a pole every time a component of the momentum
is either 0 or 7/a, thus leading to 15 unwanted poles. The solution is
to employ the so-called Wilson discretization, which reads

Dw(n,m) = (m—i— i) — 2]—(1 Z[(]l—yu)uu(n)é(n—i— L, m)+
w

(1 —|—yu)UL(n —)d(n—p,m)]. (1.2.20)

By following the same procedure we did for naive fermions, one can
see that the Dirac operator in momentum space reads

Dw(p)=m+ % Zyu sin(apy) + 1: ZU —cos(apy)). (1.2.21)
n n

For the physical pole at p = 0 the Wilson term vanishes, while for the
mass term of the doublers is modified as

21
m+—, (1.2.22)
a

| being the number of components p,, = 7/a. It is clear that in the
a — 0 limit, doublers become infinitely massive and they decouple.
The Dirac-Wilson matrix D,, is the discretized version of a contin-
uum operator that amounts to add to the fermion largrangian in
Eq. (1.2.15) an operator O,, proportional to the laplacian operator,
ie.

O ~—5B(x) Ab(x), (1.2.23)

which takes the name of Wilson’s term. As a first observation, the
Wilson operator { A has mass dimension 5 and therefore a factor a
is necessary to make the Wilson term dimensionless in the action. As
a consequence the Wilson term naively disappears when taking the
a — 0 limit, for this reason, it is said to be irrelevant in the IR. The
second important observation that we can make is that the Wilson
term breaks chiral symmetry in the same way as a mass term. These
considerations have deep consequences we are going to comment on
more in detail in Sec. 1.2.2.

In our lattice simulations, the Dirac matrix is implemented by rescal-
ing Eq. (1.2.20) with a factor 1/(am +4). In this way the first term is
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just 1 and in front of the sum over directions we obtain the inverse of

1

: 2(am+4)’

(1.2.24)

called hopping parameter. This small modification can be done by pay-
ing no price: any overall numerical constant can be absorbed in the
definitions of the fermion fields. The hopping parameter contains the
same physical information as the (bare) mass parameter in the action.
For k = 0 (m = o0), the Dirac matrix becomes the unit matrix, namely
infinitely heavy quarks. On the other side, the limit of free quarks
m = 0, corresponds to k = 1/s.

GLUINOS ON THE LATTICE Eq. (1.2.20) is valid for any Dirac fermions
on the lattice in an arbitrary representation. Since it is going to be the
object of one of our simulations, it is worthwhile to comment on how
the general picture gets modified when Majorana fermions are con-
sidered. Given a Dirac fermion field 1\, we can build two separate
Majorana fermions as

A = S5+ €4p)

A = s+ E4)).

S

(1.2.25)

With this definition, the fields A(Y) satisfies the Majorana condition
AV = tA[UE expressed in Eq. (1.1.43). The Wilson-Dirac action for a
single Dirac fermion thus breaks into the sum of the action for two
Majorana fermions

S¢ =Dy = % > albep, W, (1.2.26)
i=1,2

The fact one Dirac fermion corresponds to two independent Majorana
ones reflects the intuition that a Majorana fermion corresponds to
N¢ = 7.

1.2.1.3 Fermion determinant and quenched approximation

In the path integral, the exponential of the fermionic Wilson-Dirac
action is added to the Wilson action (1.2.5) in the Boltzmann weight
factor. To lighten the notation, we could rescale the fermion fields

P — a_%ll), (1.2.27)

in such a way the fermion action in Eq. (1.2.16) would be also rescaled
as a*PpD,,p — P(aDyy ). The extra overall factor a can be included
in the definition of the Dirac matrix by eliminating every factor a in
Eq. (1.2.20) (and every derived expression). When writing the fermion
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action as a quadratic form in the fields 1 and { by means of Eq. (1.2.16),
one could write

ZelU) = | dldple VO T detDulllmel),  (1228)
f

where we allowed for different flavors f and D,,[U, m¢] indicates
the Wilson-Dirac matrix (1.2.20) calculated in the background gauge
fields U. To summarize, we can write the complete euclidean path
integral (1.1.15) on the lattice as

Z= J[dU] (H det(Dy[U, mf])> e Swill, (1.2.29)
f

from which one can evince that the determinant is the only term
that includes information about the quantum dynamics of fermions.
The determinant has the same role as diagrams with fermion loops
in perturbation theory. A full computation of the determinant of the
Wilson-Dirac operator is typically extremely expensive in terms of
computational costs, given that the Dirac matrix usually has 0(10'2)
complex (sparse) entries in standard lattice simulations. One possible
approach is to just neglect this term in the path integral, i.e. setting
det(D,,) = 1 in expectation values. This assumption is called quenched
approximation and corresponds to neglecting the effect of fermion
loops in perturbation theory, i.e. to assume that valence fermions have
an infinite mass and do not contribute to the dynamics. Although the
quenched calculation cannot be used for a precision determination
of observables on the lattice, it can be used as an approximation. On
top of that, we recall that in the large-N. limit loops of fundamental
fermions are automatically suppressed and the quenched approxima-
tion is exact. However, the large-N. limit of the quenched theory cor-
responds with the one of the dynamical theory only for those cases in
which fermionic degrees of freedom are subleading to gluonic ones.
For example, in theories with adjoint matter, the quenched approxi-
mation is not justified.

As a last comment, we note that the expression (1.2.28) gets mod-
ified when considering gluinos. In fact, the path integral of a theory
with a single Majorana fermion gives

J[cv\]e—%“@'?w” = Pf(CD,, ), (1.2.30)
where Pf stands for Pfaffian. Since the Pfaffian satisfy Pf( M)? = det{M},
we can write

Pf(CDw) = Idet(GDW)I%sign(GDW) . (1.2.31)

The fact that the sign of the Pfaffian can be negative makes the prob-
ability distribution problematic to be sampled. We will deal with the
issue of generating configurations with such a sign problem in Chap-
ter 3.
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1.2.2  The fate of (fermionic) symmetries on the lattice

In Sec. 1.1.2 and Sec. 1.1.3 we analyzed chiral symmetry and super-
symmetry in the continuum formulation of strongly interacting Yang-
Mills theories. Both of them are deeply affected by lattice regulariza-
tion and it is worthwhile to comment on how such symmetries should
be seen when approached in a lattice simulation.

First, we note that the operators appearing in a theory play a differ-
ent role when following a RG trajectory depending on their dimen-
sionality. While irrelevant operators like Wilson’s in Eq. (1.2.23) vanish
in the continuum limit and thus they do not contribute to IR physics,
relevant operators like a fermion mass term survive the removal of
the regulator and influences the long-distance modes. As a general
consideration, following the argument of [26], if the bare theory pos-
sesses a certain global symmetry, renormalization cannot generate
radiatively a symmetry-breaking term in perturbation theory. On the
other hand, when the symmetry is broken explicitly by a term in the
lagrangian, other symmetry-breaking operators could appear in the
renormalized theory. In the absence of a symmetry “protecting” the
mass operator, it is not natural to expect the corresponding mass to
be “light” (i.e. m < 1/a). Radiative corrections can result in large ad-
ditive renormalization factors, and “miraculous” cancellations have
to take place.

This is the case of a mass-operator for a fermion mp: although
it explicitly violates chiral symmetry, in the process of renormaliza-
tion only mixes with itself and receives correction proportional to the
mass itself, i. e. it gets multiplicatively renormalized. In this case, we talk
about “approximate chiral symmetry”, and the mass term is “pro-
tected” against large additive renormalization that would have other-
wise to be unnaturally fine-tuned to leave behind a light fermion. On
the other hand, the case of Wilson fermions is substantially different.
A Wilson operator ap Ay is an irrelevant operator of dimension 5
which breaks chiral symmetry, and in the renormalization process
gets mixed with lower dimensional operators, such as the simple
mass term. This mixing thus generates an additive renormalization
factor that shifts the mass term proportionally to '/a. This additive
renormalization needs fine-tuning to describe a world with arbitrar-
ily light fermions:

amg = am—ame, (1.2.32)

where m represents the bare parameter in the action and mc is the
additive correction we just described. The quantity in amg is typi-
cally referred to as the subtracted mass. In Sec. 1.2.2.1 we are going
to make this statement more quantitatively, giving also a practical
description of how this additive renormalization can be calculated
on the lattice. From an equivalent perspective, the observations we
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just made are the manifestation of a well-known property of a large
class of Dirac operators, formulated in a “no-go” theorem known as
Nielsen-Ninomiya theorem [31-33]. At its core, it states that local Dirac
operators of the form (1.2.16) cannot be simultaneously free from dou-
blers and conserve a complete chiral symmetry.

Supersymmetry, on the other hand, is also problematic on the lat-
tice. The breaking of continuous spacetime transformations to dis-
crete subgroups implies that on the lattice infinitesimal translations
cannot exist. Consequently, on the lattice, there cannot be any defi-
nition of SUSY charges Q, whose anti-commutation is related to in-
finitesimal translations. However, even though Poincaré symmetry is
broken in the lattice (UV) theory, gauge invariance forbids any rele-
vant operator to break the symmetry in the continuum limit. In this
case, where the symmetry-breaking operators are only of irrelevant
types, we talk about accidental symmetries. Although SUSY is broken
on the lattice, can it emerge as an accidental symmetry in the IR? As
argued by Kaplan in [26, 34] the answer for N = 1 SUSY is yes: the
only relevant operator that breaks SUSY and can be added to the La-
grangian is a mass term, which also breaks the Z;n_ chiral symmetry
(R-symmetry) as argued in Sec. 1.1.3.1. So imposing the R-symmetry
in the target theory, the gluino mass is forbidden and the IR the-
ory is accidentally supersymmetric. A practical prescription for this
accidentally-supersymmetric scenario in lattice simulations was pro-
posed by Curci and Veneziano in [35] which, by analyzing the axial
and supersymmetric Ward identities, were able to demonstrate that
the same tuning of the gluino mass restores chiral symmetry and su-
persymmetry at the same time in the continuum limit. Following this
line, several results on the lattice have been obtained in the literature,?
confirming that in the limit in which the gluino is massless and in the
continuum limit one recovers evidence for a supersymmetric theory.
We also are going to follow this approach and analyze in detail this
supersymmetric limit in Chapter 5.

Now, the question we aim to answer is more practical: how can
define suitable quantities to tune the theory to the “chiral” limit? We
are going to answer in the following subsection.

1.2.2.1  Axial ward identities and PCAC mass

A non-singlet axial infinitesimal transformation of the fermion fields
can be written as 1 — 1 + 5 where the variation takes the following
form

S(x) =ieq T y5(x) (1.2.33a)
SP(x) = teah(x)T%s, (1.2.33b)

See, e. g. [36—40] and references therein.
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being T the generator of the SU(N¢) flavor group. The invariance of
the partition function of the theory reflects the expectation value of a
generic observable O through the following condition

0= (50) —{(55)0) , (1.2.34)

where & denotes the linear change under the transformations (1.2.33).
In the particular case O = 1, the variation equation reduces to the
simple form (3S) = 0 which leads to relations analogous to Noether’s
conservation laws, called nonsinglet axial Ward identity (AWI). When
writing them for renormalized quantities, in the case of non-singlet
axial currents in the case of Ny = 2 with degenerate fermion mass
m, = mg = m, they take the following form

aHAL”a =2m(rplria (1.2.35)

where we define

mi) = E, piHa=7z,pe, AlMa=7 A% (1.2.36)
Zs H
where Zg, Zp and Za are the renormalization factors, and AL =
PYypysT4 and P¢ = 51ysTY. If considering an operator O which
produces a state out of the vacuum with the quantum numbers of the
pion, the resulting version of the AWI is

0o Amaln = 2m (oPM g | (1.2.37)
pwip

from which one can extract the renormalized quark mass m(*). On
the lattice, one would have to use a discretized version of Eq. (1.2.37),
although is not completely straightforward how to relate the current
in the continuum to lattice quantities. Moreover one also would need
the renormalization factors Z5 and Zp, which are typically cumber-
some to calculate on the lattice. + What is usually done is to consider
an ultralocal version of the axial vector current and an interpolating
operator for the pion with optimized projection onto the pseudoscalar
channel ground state. Further details on how such an observable can
be implemented on the lattice will be given in Sec. 3.5 of Chapter 3.
The result is a 2-point correlation function Ca g (t) of the operators cor-
responding to channels A and B. For the left-hand side of Eq. (1.2.37)
we use the discretized time derivative of the correlator with channel
YoYs and 7ys5, while for the right-hand side the one of channel vs
and vs. By neglecting the renormalization constants one defines the
asymptotic ratio of the unnormalized correlators

GY0Y5/Y5 (t + a) — eYoYles (t — a)
4Cy5,vs(t)

~ AMPCAC, (1.2.38)

For a textbook overview, the interested reader can consult Chapter 11 of [41] and
references therein.
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which takes the name of partially conserved axial current (PCAC)
mass. This quantity relates to the renormalized quark mass as

M ZA
am'™ = 7 AMPCAC - (1.2.39)

P
Being directly proportional to the renormalized quark mass, ampcac
already includes the additive renormalization caused by the chiral
symmetry-breaking effect of the Wilson operator and thus it can be
tuned to zero to extract the critical value of the bare mass m. (or the
hopping parameter k.) without the need for an explicit calculation of
the renormalization factor Zs. Alternatively, in theories in which the
chiral symmetry is spontaneously broken, one can tune directly the

mass of the pseudo-Goldstone boson to obtain k..

To conclude this section we also recall that the tuning of ampcac to
zero, should also restore supersymmetry in N = 1 SUSY Yang-Mills
in the continuum limit, although in this case the R-symmetry plays a
slightly different role of chiral symmetry in QCD, as the Goldstone
theorem is not applicable. We are going to give further details and
analyze the massless gluino limit in Chapter 5.

1.2.3 Lattice field theory simulations

In the last sections we outlined (some of) the main features possessed
by Yang-Mills theories with the fermionic matter when discretized
on a discrete space-time. We gave an explicit construction for the Eu-
clidean path integral defined in Eq.(1.1.15) for bosonic and fermionic
quantities, and we argued about interesting properties emerging from
the lattice formulation of the corresponding quantum theory. How-
ever, to give quantitative predictions we still have to give an operative
implementation of the path integral that can allow one to perform the
explicit computation of the observables. On top of that, we have to
define operatively how the calculation of physical observables can be
implemented and how physical quantities have to be extracted. Lastly,
we have to understand how the output of the simulations relates to
the continuum physics. These matters are the topic of this section.

1.2.3.1  Numerical approach for computing the path integral

From a practical perspective, a direct “naive” numerical computation
of the path integral is doomed to fail catastrophically due to the
unfeasible number of integrals to perform with a standard method
such as Simpson’s: only for a pure-gauge SU(N.) theory discretized
on a lattice made of L* points, the number of multiple integrals in
Eq.(1.1.15) is d(N2 —1)L*, which rapidly approaches a huge number.
On the other hand, a more favorable way is given by a Monte-Carlo
approach which consists in replacing the integral with an average
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over the lattice observables evaluated over a sample of N configura-
tions distributed with probability oc e =5\

(0) = < Z o[u], (1.2.40)

where the symbol ~ in the sum indicates that the link variables U have
been sampled from a given probability distribution proportional to
the Boltzmann factor e 5. The ~ sign in Eq. (1.2.40) refers to the fact
that the approximation becomes exact in the limit of infinite samples
N — oo and the error scales as N~ as dictated by probability theory.
The problem has now shifted to how to generate (efficiently) a sample
of N configuration generated from a given probability distribution

efS[U}

PIUI = ——, (1.2.41)

where the action S can also include fermionic degrees of freedom
through the determinant of the Dirac matrix as in Eq. (1.2.29). The
way this problem is tackled is through the employment of a Markov
process known as Markov Chain Monte Carlo (MCMC). The idea is
to initiate the system to a starting configuration Uy and evolve it in
discrete steps following a stochastic process

u®© 5 um sy ... (1.2.42)

In this case, the superscript is just an index that labels the “stages”
of this process that evolves the initial configuration. The change of
the configuration from one stage to another in Eq. (1.2.42) is called
an update and the subscript is typically referred to as the Monte-Carlo
or Markov time, not to be mistaken with the physical Euclidean time.
A stochastic process like (1.2.42) is called a Markov Chain if the con-
figuration at some Markov time U; only depends on the “earlier”
configuration U¢_1. The evolution from one state U to another one
Us is characterized by a transition probability P(t — s) for any given
Markov times s and t. If this transition probability satisfies the detailed
balance condition

P(t — s)e S = p(g — t)e S (1.2.43)

the process evolves towards a stable asymptotic distribution called
equilibrium distribution given by Eq. (1.2.41). For a review on common
algorithms used to simulate gauge theories the reader can refer to [41,
42]. In Chapter 3 we are going to review the main algorithm used in
our simulations.

A crucial point in the decision of which algorithm to adopt is effi-
ciency, i.e. how fast the Markov process explores the configuration
space and therefore how fast will produce enough configurations to
have a good determination of observables through (1.2.40). A good
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estimate of the efficiency of an algorithm is the correlation time. Given
an observable O calculated at two different Markov times t and t + 7,
their correlator is expected to behave as

T

(O(t)O(t+1)) xe "o, (1.2.44)

where the correlation time T depends both on the observable and on
the Markov process. Another issue encountered when dealing with
correlated data is that the final average of the observable O might be
biased and differ from (O). Popular techniques to take into account
autocorrelation and bias are jack-knife and bootstrap, which we do
not enter in the details. Modern lattice calculations have developed
several techniques that allow a precise and fair estimation of the sta-
tistical errors coming from the stochastic process at the base of the
production of the configurations. See e.g. [41, 43] for a complete re-
view of a numerical method for treating these problems. At the end
of Chapter 3, we will give more details on how autocorrelation and
error analysis is implemented in our case.

1.2.3.2  Computation of observables

Once an ensemble of configurations at equilibrium is sampled from
the desired distribution, we want to be able to compute the expec-
tation value of gauge-invariant observables. Following the standard
quantum mechanics formulation, any observable O corresponds to
an operator O acting on physical states which are vectors in a Hilbert
space. When acting on the ground state |0) of the theory, the operator
creates a state with some quantum numbers, specified by the oper-
ator itself. When we specify a direction on the lattice and we call it
(Euclidean) time t, the correlator of two observables 07 and O, can
be written as

(O1(1)02(0)) = Y (0l011n) (nl6210) e tEn, (1.2.45)

n

where the sum is taken over a discrete, orthonormal and complete
base of eigenstates of the Hamiltonian

A In) =E,n) . (1.2.46)

Assuming that the states are ordered E,, > E, s for n > n’/, we ex-
pect that for asymptotically big Euclidean time t — oo, the sum in
Eq.(1.2.45) is dominated by the state with the lowest energy, i.e.the
fundamental state

(01()02(0)) oc e Eo(1 4+ O (e t4F)), (1.2.47)

where AE = E; — Eg is the difference in energy between the funda-
mental and the first excited state. Since we want our states to have a
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definite spatial momentum p, a Fourier transform over spatial com-
ponents is performed

O(p,t) = \/]\/73 Z O(n, t)e P, (1.2.48)

where V3 is the number of points in the spatial volume. The advan-
tage of such a procedure is that in momentum space, the energies of
the states are defined by the relativistic dispersion relation

E(p) =~ 4/ m?2 +p?, (1.2.49)

and therefore E(0) = m. In Eq. (1.2.49), the ~ sign refers to the fact
that the formula is only valid in the continuum and receives O(a)
corrections on the lattice.

The operator O can be purely gluonic observable (Wilson or Polyakov
loops) or describe a hadronic state. An example of purely gluonic op-
erators can be a rectangular Wilson loop of sides R and L, W(R, T).
Its expectation value can be seen as the correlator of an operator that
creates a static quark-antiquark pair at a distance R and annihilates
them after a time T. We thus expect that for large T,

(WR,T)) =e TVIRI(1 L 0(eTAE)). (1.2.50)

where we used the notation V(R) = Ey to indicate a generic num-
ber which is a function of the separation R. If the theory shows con-
finement, Wilson loops are expected to follow the so-called area-law,
where this “potential” is expected to grow linearly for large R, i.e.
V(R) = oR, and thus

(WIR, T]) o e ORT (1.2.51)

where o is known as string tension.
An example of fermionic quantities is the so-called meson interpola-
tor, defined as

0=y, (1.2.52)

where 1\ and 1’ are fermionic fields of different flavors and T is a
general combination of y,, matrices with definite quantum numbers.
As an example, we consider the case of N = 2 fermions, whose non-
singlet interpolator is Or = dl'u. A generic correlator is given by

(0r(x)0}y)) = (AXrux)a(y)rd(y) (1.2532)
=—tr [ID},' (x,y)I'D;,' (y,x)] (1.2.53b)

which involves two inversions of the Dirac matrix. Such inversion
falls into the category of those numerical problems involving the nu-
merical computation of quantities from large sparse matrices, typi-
cally to be performed with the paradigm of distributed or parallel
calculus. More details on the computation of the correlators in our
setup will be given in the last Section of the next Chapter.
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1.2.3.3 The continuum limit

After being calculated on the lattice, any observable has to be extrap-
olated to the continuum limit a — 0, which is practically approached
by sending the lattice coupling to infinity b — oo, by virtue of asymp-
totic freedom. Since the lattice theory only contains dimensionless
parameters (the gauge coupling b, and the fermion masses in lattice
units m¢), simulations can only output pure numbers, namely dimen-
sionless physical quantities, while the lattice scale has to be fixed
with external physical inputs. This is typically done by choosing a
reference observable O that is accessible on the lattice with rather
good precision and using it as a reference scale. Supposing that this
observable has the dimension of a mass, the lattice spacing will thus
be extracted as

a(b) = <©O>b , (1.2.54)

exp
where (-), indicates that the lattice estimate is done at some fixed
value of the bare coupling b and Oep is the experimental value of O,
when accessible, or a more general reference value, otherwise. Equiv-
alently, the prediction for any other physical quantity O; of mass di-
mension is obtained by >

_ O:
01 = R{Oexp, where R; = lim (Oi)p (1.2.55)

a(b)—0 (0),
The assumption that all observables on the lattice depend on the lat-
tice spacing only through a “dimensionality factor” which thus can-
cels in dimensionless ratios giving a constant value in the continuum
limit is called scaling. More formally, the statistical field theory de-
scribed by the quantum fields undergoes a phase transition as the "t
Hooft coupling A is tuned to its critical value A, = 0 (b, = 00): at
the critical point, all the correlation lengths of irrelevant operators
diverge with a well-determined rate that renders all dimensionless
ratios tend to a constant value.

A meaningful continuum limit requires a precise functional depen-
dence of the lattice spacing on the lattice coupling. There are some
cases in which there is a known analytical relation between a and the
bare lattice coupling A (or b). E. g., in the vicinity of the trivial critical
point A, = 0, perturbation theory fixes the relation between the cou-
pling A5 given in some scheme s and the regulator a through the RG
equations (1.1.20), written here for the 't Hooft coupling

4(?1 log a2 = _BSO\S) (1‘2‘56)

In this example we consider only observables having dimensions of a mass. Clearly,
the considerations we made are valid for any other observables, providing that the
lattice spacing a is properly defined with the right power in Eq. (1.2.54).
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whose solution is typically expressed as

a(As) = /TfO\s) (1.2.57)

by

1
f(As) = (boAs) 280 e Z0ors x

by

As 1 1
—-J hdx(zi(ﬁiz— 2 )
% e Bs(x) © 2bpx>  2b3x , (1258)

where Aj is the integration constant and is dependent on the scheme
chosen. The B-function admits a perturbative expansion as®

Bs(As) = —boAZ —biA2 —bLA + O(AD), (1.2.59)

where, although the first two coefficients by and by are universal,
higher-order corrections to Eq. (1.2.58) are not and thus the A-parameter
is dependent on the renormalization scheme. Using these results, we
expect that any generical observable of mass dimension O close to the
continuum limit has a dependence on the bare coupling dictated by

(O)p = O% (1/v) (1.2.60)

where Oy represents the value of O extrapolated at b = co. How-
ever, although Eq. (1.2.60) combined with the perturbative 3-function
in Eq. (1.2.58) (asymptotic scaling) is valid in the vicinity of the con-
tinuum limit, scaling is known to take place well beyond the region
of couplings where the solution in Eq. (1.2.58) provides a good ap-
proximation. For a generic value of the bare coupling, Eq. (1.2.60) is
not expected to be valid and the continuum limit can be taken as in
Eq. (1.2.55) after the scale has been fixed with a reference observable
as in Eq. (1.2.54). Nevertheless, the region of predictivity of Eq. (1.2.58)
can be extended by making some considerations we are briefly going
to list here.

First of all, one can consider the effect of 0(7\4) corrections. In
this scenario, the higher-order coefficients of the 3-function depend
on the renormalization scheme. Although the lattice renormalization
scheme with the Wilson action A,, = % is known to have higher-
order perturbative corrections, other choices of the coupling A1(A.,),
called improved schemes are known to mitigate the problem. We will
take care of the scale setting of our lattice simulations for Yang-Mills
theory in Chapter 4 and in Sec. 4.2 we will study the applicability
of asymptotic scaling by means of some of these improved coupling.
Another observation we can make is allowing for small deviations
of scaling, by modifying Eq. (1.2.58) allowing for a generic quadratic
term in a? in units of some reference observable, whose constant coef-
ficient has to be determined from a fit together with the A parameter.

The coefficients of Eq. (1.1.20) and Eq. (4.2.3) are simply related through . =
NI Tby,.
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QUANTUM FIELDS ON THE TORUS AND
REDUCTION

The requirement of quantitative predictions for physical observables
follows along with a deep understanding of the beautifully non-trivial
nature of gauge theories. An intriguing aspect of Yang-Mills theories
emerges when they are formulated on a torus endowed with some
boundary conditions for the quantum fields. One crucial aspect of
such a framework is that the physical size of the torus provides a
natural low-energy scale for the theory which can be related to the
characteristic energy scale emerging in Yang-Mills theory. In this way,
one can assign a dynamical role to the volume of spacetime, and con-
trol it to study the theory over a large range of energy scales. Over the
last forty years, a flourishing number of works regarding the study of
this topic both on the lattice and in the continuum have been populat-
ing the literature, and complete treatment goes beyond the scope of
this work. Nevertheless, since we will heavily rely on some of these
results, is necessary to go through some selected topics, to have a
complete understanding of the framework we work in. We will try to
review these concepts in a modern and concise way, highlighting in
some detail those aspects which are relevant to our work, but citing
and referring to the original works for additional details.

2.1 YANG-MILLS FIELD ON THE TORUS

The first attempt at formulating Yang-Mills theory on a torus was
put forward by 't Hooft at the turn of the "7os and the "8os [44, 45]
in his early efforts to characterize the different possible phases of
Yang-Mills theories. Given a pure-gauge SU(N.) Yang-Mills theory
defined on a 4-dimensional torus of size 1, in each p direction, the re-
quirement is that gauge-invariant quantities need to be periodic. This
boundary condition (BC) translates into the following requirement
for the gauge potential

Apx+1,9) = Oy ()AL ()0 (x) +10,0,0% (x), (2.1.1)

where the matrices Q. (x) belong to SU(N,). However, these matrices
are not completely arbitrary, as the gauge transformations have to
be consistent in the corner of the hypercube: when relating the field
Aun(x) with Ay (x + 1,9V +1,p), the order of the directions ¥ and p has
to be irrelevant. After some algebra, one easily finds the following
consistency condition

Quix+1L¥)Qy(x) = 25, Qv (x + 1) Qi (x) (2.1.2)
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that reduces the number of possible gauge transformations admitted
by this choice of boundary conditions. In Eq. (2.1.2), the z,,, denotes
an element of the center Zy, of SU(N,), hence it can be written as

.
Zyy = e Ne M (2.1.3)

where 1, is an antisymmetric tensor of integers modulo N, which is
usually referred to as the twist tensor. The trivial "no-twist" choice, i.e.
nuv =0 mod N, leads to the well-known case of periodic boundary
conditions, while the general case of a non-zero twist tensor is usu-
ally referred to as twisted boundary conditions. As it was clear since
the first studies that followed "t Hooft original work [46-50], although
the choice of periodic boundary conditions is the simplest, it comes
with serious complications related to the existence of infinitely many
gauge-inequivalent zero-action configurations, the torons. The prob-
lem can be formulated in terms of gauge zero-momentum modes,
which dominate the low energy dynamics and are cumbersome to
treat perturbatively. The first clear advantage of using twisted BC
comes clear in this context: as we will see, zero modes are incompati-
ble with this choice at the boundary, and one can perform calculations
also in perturbation theory without the complications of dealing with
zero modes.

A significant class of solutions for Eq. (2.1.2) is when the Q (x) are
constant matrices, conventionally called I, and referred to as twist-
eaters. Using the twist-eaters, Eq. (2.1.1) and Eq. (2.1.2) become, re-
spectively,

Ap(x+1L,9) =Ty AL ()T, (2.1.4)
and
Tuly = zyu Iy T (2.1.5)

The solution of this equation is not unique since any transforma-
tion of the gauge field under a symmetry of the action gives an
equivalent configuration. In particular, given a gauge transformation
QO € SU(N,) and an element of the center z,, € Zn_, we can build
other zero-action solution through the

My — Qr,Qf (2.1.6a)
My = zuly (2.1.6b)

The existence of solutions for the twist equation (2.1.5) for a generic
twist tensor n, is only guaranteed in d < 3, while for d = 4 an
additional assumption is required

€EpvprTluvpar = 0 mod N (2.1.7)
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which is usually referred to as orthogonal twist." Another important
condition we will require for the twist tensor is irreducibility. Irre-
ducible twists are defined as the ones for which solutions to the
twist equations (2.1.5) are unique modulo global gauge transforma-
tions and multiplication by elements of the center. In four dimen-
sions, only N2 inequivalent twist-eating solutions can be constructed,
which are all roots of the identity, i. e. they satisfy FEC = 1. For more
details regarding the choice of the twist tensor and the construction of
twist-eating irreducible and orthogonal solutions, we refer the reader
to [51]. In the following, we are going to analyze in some detail one
possible choice of orthogonal and irreducible twist tensor that we are
going to use in the rest of this Thesis, called symmetric twist, defined

by
My = kL for u>v (2.1.8)

where k and T are integers. Irreducibility of the twist is ensured by
the requirement that [ and k are coprime. In our practical implemen-
tations, we constrain N, to be a square number and set [ = /N..
In this way, the twist factor appearing in the commutation relations
results by

2mik
Zyv =evNe  for p>v. (2.1.9)

As analyzed in detail in [52], we can define a Fourier decomposition
consistent with the choice of the boundary condition by using

Ap(x) \/> Z e'9*A,(q)f(q). (2.1.10)

The [ are the following set of matrices,> labeled by a 4-vector q

f(q) = j;(\l—quf](q)r?(q)r?(q)rj“q)/ (2.1.11)
where «(q) denotes an arbitrary complex phase and
= 2mms.,
sul(q) = =k €,vm, where q, = N (2.1.12)
where m,, is an integer and in which we introduced
kk = T(mod 1), Z Eup€ov = Opv, (2.1.13)

[

The name “orthogonal” refers to the fact that the twist tensor ny can be written us-
ing two different 3-vectors K and 1it such that nyj = €3jxmMy and np; = k;. Using this
notation, the orthogonality of the twist expressed in Eq. (2.1.7) reduces to standard
euclidean orthogonality k - 1t = 0(mod N.).

2 The " matrices were introduced for the first time in this context in [13].
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and €,y = —€yu = 1 for p > v. One can demonstrate that the ma-
trices '(q) are linearly independent and traceless, except the corre-
sponding to s, = 0(mody/N¢), which is proportional to the identity.
By excluding it, this set of N2 — 1 matrices can be used as a basis for
the Lie algebra of SU(N,). The primed sum in Eq. (2.1.10) is to indi-
cate that in the sum we remove those " whose qu = 0( mody/N¢) in
all directions. The corresponding eigenstates are the so-called “zero
modes”, that in the context of twisted BC get automatically removed.
Eq. (2.1.10) generalizes the standard Fourier expansion: by summing
over ¢ we are simultaneously taking into account the expansion in
“plane waves” and the sum over the generators of the group. It is inter-
esting to notice how momenta are quantized as multiples of 27/1,, VN,
as momenta on a periodic “effective” torus whose size is v/N¢1,.. We
will explore more in detail this conclusion in Sec. 2.3.

It is interesting therefore to write explicitly the commutation rela-
tion from which one can derive the structure constant. In this basis,
the structure constants become momentum dependent and read

[F(p),F(q)] =iF(p,q,—(p+ )l (p+q), (2.1.14)
where
2 e v %
Fp,q,—(p+q)) =4/ sin (Hpuq> (2.1.15)
N 2
and
L. . K
Ouv = €.v0, where 0 = (2.1.16)

being 1,, = 1,v/N¢. As it is well-known, the structure constant ap-
pears in perturbation theory in the Feynman rules in the vertices,
which become dependent on the effective momentum degrees of free-
dom. As was first observed in [13], surprisingly cancel exactly in pla-
nar diagrams which are the only ones surviving the large-N. limit,
while contributing to cancel the non-planar ones. Surprisingly these
Feynman rules correspond to those appearing in a non-commutative
field theory and [46, 53] was the first time in which they appear in
the literature.

2.2 IMPLEMENTING TWISTED BOUNDARY CONDITIONS ON THE
LATTICE

Twisted BC are a powerful tool to study gauge theories at finite vol-
ume, both on the lattice and in the continuum. In this section, we will
review basic concepts and discuss in some detail the implementation
of twisted BC in Yang-Mills theories.
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We will consider a 4-dimensional symmetric lattice of sizes L, =L
(I = aly) on which gauge fields V. (n) are periodic up to a gauge
transformation Q (n) € SU(N.)

Vin+19) = Qv(n)Vu(n)Q:f, Mm+0Q). (2.2.1)

In this and in the following expression we will set a = 1. The dy-
namics is governed by the usual Wilson action defined in Eq. (1.2.5)
(substituting U,, with V,,). We stress the fact that Eq. (2.2.1) corre-
sponds to Eq. (2.1.1) formulated on a lattice and consequently, the
transformation matrices obey the consistency conditions expressed
in Eq. (2.1.2) given by

Quv = 010001 (L) Q4 (L) QL(0) = 2,01, (2.2.2)

where the last equality remarks that Q,, is an element of the center,
as stated by Eq. (2.1.2). This guarantees that the boundary conditions
are independent of the ordering of the directions taken. Since in the
Wilson action, (1.2.5) gauge fields only appear in terms of plaquettes,
we have to explicit the gauge transformation only in those plaquettes
having at least one link lying on the edge of the lattice. There are two
cases: the plaquette with only one link lying on the edge of the lattice
(“edge” plaquettes) and the one with two links (“corner” plaquettes).
When using Eq. (2.2.1) to transform the link lying on the boundary,
we can absorb the (O matrices in the definition of those links in the
plaquette “pointing to the edge”. We can summarize the main change
of variable as

U, (x) =

{VH(X)QH(X) if xu=([L-1)p (2.2.3)

Vi.(x) otherwise

With this change of variable, the twist matrices get completely reab-
sorbed in the edge plaquettes, while in the corner plaquette appears
the product Q, from Eq. (2.2.2). By iterating this procedure for every
edge and corner plaquette lying at the boundary, the twist matrices Q
should disappear from the action, only leaving a twist factor in every
corner plaquettes. To write explicitly the twisted BC Wilson action in
a compact form, we can assign a point-dependent twist factor Z . (n)
to each plaquette which is always 1 except for the plaquette at each
corner in which they are z,:

SBC=bN. Y > Retr [11 — Zpy (MU (MU (n+ QU (n+ UL ()|,
n pu#Ev
(2.2.4)

where U, (n) € SU(N.) are now periodic. These point-dependent
twist factors can also be choosen in a more general way: the can also
be different from 1 in each plaquette but, to respect consistency, the
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product of all the twist factors in a plane has to give the aforemen-
tioned z.~

H Zuv (Tl) =Zuv, (2~2~5)
€(m,v)

and the product of each twist factor associated with plaquettes on the
faces of a cube (with orientation) has to be 1. All the factors can be
absorbed into the gauge fields by a change of variables, except the
one in the corners.
The same change of variables that led to Eq. (2.2.4) influences also
a generic Wilson loop W(¥). Following the same rationale, the final
expression is
wis) = 2 ruge) (2.2.6)
Cc
where U(¥) is the product of gauge variables along a closed path ¥
and z(¥) is the product of twist factors in all the plaquettes belonging
to a surface whose boundary is the 7.

2.3 LARGE-N_. LIMIT AND VOLUME REDUCTION

In trying to apply lattice methods to the study of large-N. gauge the-
ories one faces the difficulty of dealing with the infinite number of in-
ternal degrees of freedom. However, in the Eighties an idea emerged
that can be used to ameliorate the situation: Volume reduction. This
concept states that in the large-N. limit, the expectation value of cer-
tain physical observables becomes independent of the lattice size. Let
us be more precise and explain the implications for lattice gauge the-
ory formulated on a box of size L* and twisted boundary conditions.
For simplicity we restrict ourselves to Wilson action with parameter
b and a symmetric twist with flux k, including the periodic BC case
of k = 0. With the standard methodology in order to obtain the ex-
pectation value of the observable at infinite volume and infinite N ,
one should first take the thermodynamic limit

lim O(b,N¢,L, k) =0(b,N.), (2.3.1)

L—o0
then the large-N. limit
lim O(b,N.) = 0(b), (2.3.2)
N¢,—o0
The statement of volume independence is a conjecture about the order
of these two limits and predicts

N¢;—o0
This idea allows us to omit taking the thermodynamic limit reducing
the spatial degrees of freedom. If this principle holds for all values of
L it can allow obtaining the same infinite volume result O(b) from a
one-point lattice L = 1.
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2.3.1 A historical perspective

In the early Eighties volume reduction appeared first in a paper [54]
by Eguchi and Kawai, where they studied the large-N_ limit of gauge
theories using the loop equations formulated on the lattice, already
introduced by Makeenko and Migdal a couple of years before [55].
Their striking observation was that the physics of the large-N. limit
would be independent of the spatial volume: the equations showed
no dependence on the lattice size, provided the following two con-
ditions hold: factorization of observables in the large-N. limit and
invariance of the 4-dimensional theory under the center of the gauge
group Z4NC. The implications of this idea are incredibly appealing: a
d-matrix model (EK model) with action

Sex[Uy =bN Y tr (11 - uuuVuLuL) (2.3.4)
HFEY

describing gauge field on a single-site periodic lattice could encom-
pass the large-N. physics of gauge theories at infinite volume, b being
the inverse of the "t Hooft coupling.

As mentioned, the EK reduction validity relies heavily on symme-
try under center transformations.? "Center symmetry" is a symme-
try of the finite size theory that amount to the multiplication of the
"transition matrices" by an element of the center. This affects loops
with non-trivial windings (non-trivial elements of the fundamental
group). In the infinite volume theory, there are no Polyakov loops and
thus the equivalent terms are open loops whose expectation value
is zero because of gauge invariance. On the other hand, finite vol-
ume Polyakov lines are gauge invariant and the vanishing of the
expectation values is assured only if the global center-symmetry is
unbroken. However, the assumption that center symmetry remains
intact is not always verified, there could be values of the coupling at
which Zy, gets spontaneously broken in the vacuum. The assump-
tion is safe in the strong-coupling limit (b — 0): the SU(N.) Haar
measure dominates the path integral and the expectation value of
any Polyakov loop is automatically zero. This is not true anymore
when considering the opposite regime, i. e.the weak-coupling limit, in
which center symmetry could break spontaneously in the vacuum.
This was clear from the beginning, as reads a note added by Eguchi
and Kawai themselves at the end of their original paper. Evidence for
this spontaneous symmetry breaking was indeed found in the same
year [46, 56—58] using both analytical considerations and lattice sim-

In Eguchi and Kawai’s argument when formulating loop equations in the reduced
setup, traces of Polyakov loops appear in the form of disconnected diagrams. They
are not relatable to any term in the large-volume version, therefore their expectation
value has to vanish to have an exact correspondence between the two setups.

37



ulations at small values of N.. 4 A possible workaround is known
as Quenched Eguchi-Kawai (QEK): after “freezing” the eigenvalues
to a suitable center-symmetry preserving distribution, one could cal-
culate the path integral over such values [56, 58, 59]. Several years
later, simulations suggested that Polyakov loops winding in various
directions might still break center symmetry [60]. This conclusion has
been questioned recently [61], reviving the validity of the model.

Another way of solving the issue was made by Gonzélez-Arroyo
and Okawa [13, 62] who proposed reformulating the model using
twisted boundary conditions, showing that the initial arguments of
Eguchi-Kawai also hold in this case and showing that at weak cou-
pling a sufficiently large subgroup of center-symmetry is preserved.
This is going to be the topic of the next subsection.

2.3.1.1  Volume reduction on the twisted torus and the single site model

The paradigm of volume reduction can be exploited in practical ap-
plications, including the extreme case where the entire volume of the
torus collapses to a single point (L = 1), in the spirit of the origi-
nal work by Eguchi and Kawaii in the 80’s. This case, called Twisted
Eguci-Kawai (TEK) model [13, 62], is going to be our main model to
simulate the large-N. limit of gauge theories. Now, we will review
the TEK model as it will be used in this Thesis. After the formula-
tion, we will briefly discuss how the TEK model solves the problem
of center symmetry breaking described in the previous section.

The starting point is to write the Wilson action on a single-site
twisted lattice. There are two prescriptions we can adopt. One is start-
ing directly with the Wilson action (1.2.5) (Where we use the letter
V. (n) for the gauge fields)

Vi) — Vy (2.3.52)
Ve +9) = IV, I, (2.3.5b)

and to the following change of variables

Uy, = VT (2.3.6)

An instructive way of illustrating the problem is by looking at the partition function
of the lattice theory of the EK model and writing it in terms of the eigenvalues of the
gauge fields on the lattice. In the strong coupling limit, the only term that survives
is a function of the difference of the eigenvalues, which is symmetric under Zy,

transformations, whose only effect is to shift the eigenvalues. In the opposite limit,
configurations with the eigenvalues uniformly distributed along the U(1) circle (i.e.
center-symmetric) are exponentially suppressed in d > 2. The favored configurations
are hence those in which eigenvalues attract in the complex plane inducing sponta-
neous symmetry breaking. For a review of the discussion, the reader can refer to [8]
and references therein.
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Equivalently, the same prescription corresponds just to remove the
dependence on the space-time point n in (2.2.4). The resulting action
is

St =bNe ) tr(1 -z U Uy UL ) (2.37)
HFAV

We adopt the choice of an orthogonal (2.1.7) and symmetric (2.1.8)
twist, for which the twist factor becomes the one defined in Eq. (2.1.9),
which we rewrite for completeness

27mik
Nuv =kyNe, zyy =evWNe  forp<v.

On top of that, we will choose /N to be a prime number to avoid
the center-symmetry group having improper subgroups. We recall
that the flux k has an important role in the picture, as it has to be
tuned to preserve center symmetry. One thus has to choose it to be
coprime with \/N¢. In this framework, paths in the extended lattice
map to a collection of directions in the reduced lattice

m,n+f,n+0+02,...0 = u, 1.0 (2.3.8)

The corresponding observable is defined consistently as the product
of the four matrices following this collection of indices.

z(y)

Wrek (V) = N
C

(tru(y)rpx, Uly) =Uu Uy, --- (2.3.9)

where z(v) is the product of all the twist factors in every plaquette
enclosed by the path v.

A complete discussion on the reason why this choice of parame-
ters is enough to rescue center symmetry can be found in [63-65], we
present here a short discussion that aims to review some of the rele-
vant concepts behind it. The crucial difference with the periodic BC
case (k = 0) is that the vacuum configurations of the twisted model
are given by the twist eaters U(uo) = I, and thus a generic Wilson
line is given by the matrices M(q) in Eq. (2.1.11). By construction, all
Wilson lines are thus traceless except for those whose length in each
direction is a multiple of v/N¢, i.e. those having q, = 0 mody/N¢
in all directions, which can be seen as lines that wind around one
direction of the effective torus having L = /N.. This ensures that
center symmetry breaks down at most to Zf/N7C’ which ensures the
reduction to hold in the large-N. limit.

Based on these observations, the original version of the twisted
model (k = 1) survived untouched for almost three decades until was
put to the test when the results of further lattice investigations [66—
68] joined the debate around 2008. The central observation was that
at some intermediate values of the lattice coupling b, for big values of
N¢ > 100, TEK model showed a pattern of center symmetry breaking
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resembling a transition. Although the continuum limit is achieved
in the weak-coupling limit where reduction works untouched, the
transition point seemed to move to higher and higher values in b as
N, is increased, leaving no way out for the reduction. The possible
explanation for this symmetry breaking could be the existence in the
vacuum of configurations having non-vanishing traces despite being
extrema of the TEK action. For certain values of b, fluctuations could
overcome the potential barrier and the system could tunnel toward
configurations that might induce center symmetry breaking. In [63],
the authors of the original TEK model proposed that the problem can
be avoided by tuning the choice of the flux k as the large-N. limit
is taken. In particular, for the symmetric twist, the value of k should
not be kept constant when increasing N.. The prescription is to keep
both k/y/N¢ and *k/vN larger than a certain value as N is increased.

2.3.2 Finite-N. corrections

Our previous study of the twisted torus allows us to understand how
volume reduction emerges in perturbation theory as shown in [13,
63, 69]. Furthermore, it also allows us to understand the nature and
size of the finite N, corrections to observables. We had a hint in this
direction when we wrote the Fourier expansion in Eq. (2.1.10) and the
consequent momenta in Eq. (2.1.12). On the lattice, the momenta q,,
can be written in a more illustrative way as

q :727-[ m +zjr Eq(c)+q(s) (2.3.10)
K NLu H LH |2 H =g

where m,, are integer numbers modulo y/N.. This momenta structure
is very peculiar: the second term in Eq.(2.3.10) assumes the standard
form of the momentum in a periodic lattice: we will refer to it as the
spatial momentum, while the first term will be called color momentum.
The crucial observation is that, unlike the case of a periodic lattice in
which momenta are quantized in units of 27/1, on a twisted lattice,
additional factors of /N appear in the denominator. Momenta are
now quantized like multiples of 27/ where [ = L/N, represent the
“effective” size of our lattice. This gives an insight into the concept
of volume independence arising in the large-N. limit: the dynamics
of gauge modes is governed not by the number of color N, and the
physical torus size 1 = aL separately, but rather by the effective length
1 = aLl, which in the case we analyzed is given by the product v/NL.
When the number of colors is large compared to the volume of the
torus, the latter becomes irrelevant in the dynamics of the theory. In
fact, following this line of thought, Eq. (2.3.3) can be seen as a “ther-
modynamic limit” in L.

Given that the complete reduction is true in the large-N. limit, it is
straightforward to ask what happens to the volume reduction when
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the value of L is not infinite, in particular when we are dealing with
actual lattice simulation and we have a finite value of N. also when
L = 1. The problem of interpreting these finite-N. corrections is also
very practical: although the number of colors in the simulations can
be pushed to rather big values, having a solid understanding of the
nature of finite-N. corrections allows one to have control over system-
atic effects arising. Some information on the nature of finite-N effects
comes from perturbation theory. As was already observed in the orig-
inal works, the gluon propagators in the TEK model are identical to
those of a lattice of finite size v/N¢. On top of that, as we saw in the
first section, the Feynman rules for the vertices acquire extra phases
which depend on the effective momentum degrees of freedom which
disappear in planar diagrams and help to suppress the non-planar
ones in the large-N. limit. Analytical studies of perturbation theory
for the plaquette and Wilson loops [13, 52, 64, 70] confirm this sce-
nario about finite-N. corrections. The idea that the “true” scale that
governs the physics of finite volume effects is the effective volume
is also exploited in more recent investigations [71, 72], in which the
quantity 1 rather than the actual physical size of the torus, is used as
the energy scale to define the running coupling of the gauge theory.

2.4 FERMION FIELDS ON THE TWISTED LATTICE

The inclusion of matter fields on the torus with twisted BC presents
more complications than gauge fields. The main reason is that the
representation in which fermions live is not always compatible with
the boundary conditions that we impose on the gauge fields. Con-
sidering a generic representation R, the condition that fermion fields
have to respect at the boundary reads

PR+ 1) = OR(XIWR(x), (2.41)

where the matrices QF are the same ones we used for gauge fields in
Eq. (2.2.1) which thus have to satisfy the twist equation (2.1.2) in the
representation R

QR (x+ 1,905 (x) = 25, OF (x + Ly QE (%), (2.4.2)

where the twist factor sz has to be the image representation of the
SU(N¢) matrix z,+1. In general, we can write that

R

N
Zyv = (zpv) "R

(2.4.3)
where Ky is the K-ality of the representation R: for the fundamental
representation Knq = 1, while for the adjoint X,4; = 0. This has some
important implications we must address.

First of all, in the fundamental representation, the presence of the
twist factor spoils the whole formulation: when imposing the con-
dition of consistency for the fermion field at the corner of the torus
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PEnd) (x 4+ T+ 19), the non-commutativity of the twist matrices leads
to an inconsistency. One can try to find an ad-hoc solution for this
problem by considering additional flavors of fundamental fermions
which get also twisted by the boundary conditions in the same way as
colors. The other possibility, as advocated in [73] is to allow fermions
to propagate in a lattice of any size on which the gauge fields work as
a background field. This is going to be the main idea we will follow
for practical application. On the other hand, the adjoint representa-
tion can host several flavors of matter fields without any complica-
tion arising from compatibility with boundary conditions. Of course,
the requirements of consistency would be indeed the same as the one
for gauge fields and therefore one does not have to make any extra
assumptions.

2.4.1 Reducing fermion action

The Wilson discretization for the Dirac operators on the lattice was
given in Eq. (1.2.16). Just for clarity, we rewrite the Wilson-Dirac op-
erator as

4
S¢ = Z [_ (Mp(n) —« Z [(]l —VH)LT)(TL)VLR) (n)P(n+ p)+

@+ v )P MV (n—m*w(n—m}], (2.4.4)

where we used VELR) instead of UELR), where superscript R identifying
the representation of fermion. As anticipated in the last section, we
allow fermions to propagate on a generic lattice of volume V = 1yL x
L3 with integer 1y.5 We will see that this lattice can be combined with
the boundary conditions in such a way as to perform a full or partial
reduction, depending on the representation. The goal of this section
is to derive relevant expressions for the observables we are going to
need in the following. We will follow in some detail the derivation
that the interested reader can also find in [73, 74].

2.4.1.1  Reducing the adjoint fermion action

The case of the adjoint representation is the simplest, as adjoint fermions
are of the same nature as gauge fields and therefore they do not suffer
the problem of incompatibility with twisted BC. In fact, if choosing
constant twist matrices Q, (n) = Iy, we can write

Y(n+ ) =Tupm)r] . (2.4.5)

The reason why the “temporal” extent is enlarged by a factor 1 is a standard choice
in lattice spectroscopy to increase time resolution in observables such as correlators.
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using the so-called bi-fundamental representation.® The reduction pro-
cess will then be completely analogous to the gauge actions: we will
just consider fermions to live on a single-site lattice {(n) — . At
this point, we change variables as U, = VI, and the final form of
the Wilson-Dirac matrix will then be

DM =1-«) [(]l—vu)llﬁdj +(1 +vu)(U§dj)T} (2.4.8)
i

where Ufldjll) = UHQ)UL using gauge field in the fundamental rep-
resentation. The dimension of the matrix will then be (4(N2 —1))2.
Being adjoint fermion objects of the same kind of gauge fields, in
practical implementation, we have to impose a traceless-ness condi-

tion to the resulting vector DI

2.4.1.2  Reducing the fundamental fermion action

For fundamental fermions, the reduction is more involved. First of all,
we apply the reduction prescription to gauge fields, namely

Vi) =Tm)V.r(n)t, (2.4.9)

where we used V,, = V,,(0) and we choose a “rectangular” straight
path for the twist eaters as

Mn) = MUHRrRsne, (2.4.10)

and we also apply the usual change of variables V,, = U,T,. It is also
useful to make an additional change of variables to the fermion fields
P(n) =T (n)¥(n), we can write the Dirac operator as

Dfund(n, m) =1—« Z[(H—Vu)uurlﬁ (M)Fn+p)d(n+ o, m)+
n

M +y )M M — wruism—pl. (2.4.11)

6 Fermion fields on the lattice carry three indices, a spinor one «, a color one a and a
“volume” one n: P g (n). In components, the displacement reads

N2_1

pim+p = Y [V i), (2.4.6)

b=1

In the adjoint representation, the color index runs over N2 — 1 possible values and
therefore the fermion field can be seen as a traceless N x N¢ matrix. Using this
representation notation, the Fff 4 in the left-hand side of the previous equation acts

as

z

c

k,1=1

where T, are the N¢ x N twist eaters in the fundamental representation.
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We can simplify further this expression by noting that, using standard
identities for the twist eaters we end up with

FﬂFT(n)F(n +p) = etwnlng (2.4.12)
The complex phase w, (n) assumes the following form
2mk
= NC Z TLV . (2'4‘13)

v>pu

wu(n)

We are thus left with the following expression:
D (n,m) =1k Y [(1—y)Uype™™M5(n + o, m)+
s

L +yUle i onm=Msm — g m). (2.4.14)

In order to follow with the derivation, it comes useful to define the
matrices Fw whose components are

Iu(n,m) = etrMg(m4+,m). (2.4.15)

We can observe that the matrices I, satisfy the following version of
the twist-equation

My =z, Ty M, (2.4.16)
and thus they are a reducible representation of the twist group in V x V
matrices, providing V is an integer multiple of N.. In principle, we
could say that there is a transformation () such that

h=Q(eDy)a . (2.4.17)

being D, a diagonal matrix. Let us make some observations about the
dimension of these matrices. The fp matrices are (V x V)-dimensional,
while the twist-eaters are N. x N, being them an irreducible repre-
sentation of the twist group. This means that the dimension of ma-
trices D, has to be V/N. x V/N.. This is an additional confirmation
that (an arbitrary number of) fundamental fermions cannot be fully
reduced on the lattice since the volume is constrained to be divisi-
ble by the number of colors. The minimal symmetric choice is when
L, = vVN¢ (i.e. V = N2), which is in line with the “effective” lattice
induced by twisted BC on gauge fields. 7 In the large-N. limit the box
in which fermion propagates grows indefinitely, but for finite values
of N, we expect to see corrections in the form of finite-volume effects
of a lattice of size L = /N¢. The choice typically used in practical
implementation such as [75] is to take Ly = lpy/N with integer 1o
(typically 2) to improve the signal of the correlator.

This choice is also in line with the definitions of the I'(n) matrices in Eq (2.4.12),
which are all linearly independent except when n,, is proportional to /N, which
makes T'VNe « 1, implying periodic boundary conditions on a (VN)?* lattice.
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By inserting Eq. (2.4.17) in Eq. (2.4.14), one gets

DM =Q|1—«k) [[1—y)UuTiD, +
o

M +y Ul Ty DI Q7T (2.4.18)

where we made the matrix Q) to act also on spin space and we omit-
ted the tensor product signs. Although a general derivation of the
matrices () would be necessary, one can easily demonstrate that their
effect on almost every practical application of the Dirac matrix is non-
relevant. The main observation is that, as one can see in the left-hand
side of Eq. (2.4.18), the transformation matrices () only implement a
change of basis in the space of spinors and therefore left eigenvalues
untouched. The transformation also acts as a gauge transformation
and therefore all gauge-invariant observable are left untouched. The
fermionic observables we are interested in are typically base invariant,
as they are the result of a trace or functions of the only eigenvalues.
For this reason, from now on we will drop () when writing the Dirac
matrix.

On the other hand, the matrices D,, deserve special attention. The
first observation is that they are diagonal and unitary and their size
depends on the volume of the space in which we let fermion prop-
agate. Furthermore, in the case in which L, = v/N, one can easily

see that DXWC =1, which implies that the diagonal elements are just
repetitions of the /N, roots of 1. This means that the matrix given
by I'i ® Dy, is block diagonal and each block is just z,,T';, being z,, =

s 2mn

e VNe with integer n. Following the properties of the twist group,
every solution of the twist equation is unique up to gauge transfor-
mation or multiplication of the center, therefore zurﬁ = QFHQ*1,
where the matrix Q) has the same role as Q in Eq. (2.4.18) and can
be safely ignored. We can therefore write the Wilson-Dirac matrix for

fundamental fermions as

DErd =1« Y [@ -y Ue T+ A yUf @ T @1, (24.19)
o

with the caveat that we are omitting the Q. To obtain this expression
we absorbed the factor z,, inside the definition of I}, which transform
D, into a unit matrix of the same dimension that can be factored out.
We observe that, as it is clear from Eq. (2.4.19), the reduced Dirac
matrix is block-diagonal and each block gets repeated V/N. times.
For this reason, the Dirac modes are given by the eigenstates of the
inner block, repeated V/N. times.

In the other relevant case explained before, i.e.when the temporal
extent of the fermion lattice is 1o1/N., we are not entitled to absorb
the factor z,, inside T};, because it would be true only if the global
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ZxN . remains unbroken (and not only Z \/NT)' In this case, we would
have the same expression of Eq. (2.4.19), but with

: 21

U, — U/ =etPoduoy, ith pg = ——n, 2.4.20
K o8 |23 w1 Po 10\/Wn ( 4 )

being n an integer modulo lpy/N¢. It can be useful also to leave the

phases z,, explicit in the formulas. This is also the case that we would

obtain when considering the Fourier transform of Eq. (2.4.14). Con-

sidering that the momenta take the form of

=20 ¢ with o € [0, 1lov'N — 1]
do = [y U/N.TO 0 0 (2.4.21)
qi = leri with r; € [0,v/N¢ — 1],

the Dirac matrix in momentum space would read

Dd(q) =1k Y [(1—v,)e Ul + (1+y,)e U] .
w
(2.4.22)

2.4.1.3 Dirac spectrum and fermion propagator

The first relevant observable we can compute is the free-fermion spec-
trum. We recall that in standard lattice formulation, the spectrum is
given by the (inverse of) Eq. (1.2.21). We now want to obtain the cor-
responding result in our case.

The free-fermion propagator is obtained when the fermion is al-
lowed to propagate in a static background field without interacting
with it. This limit can be achieved by using constant vacuum configu-
rations U, =T, for the gauge field in Eq.(2.4.22):

waund, free(q) —1— KZ [(H_Yu)eiq“ruri +(1 +Vu)e_iq“ritru} )
w
(2.4.23)

where, as usual, the product between the (vacuum) link matrices and
the twist eaters is to be intended as I', ® F:‘L. However, it is easy to
prove that the matrices I, = I, ® I, commute among themselves

Furv = (ru & r:i)(rv & r\*/)
=Ty Ty (2.4.24)
=z WL @2, T

=zuvZyy (V@ T (M @ T) = T3y,

and therefore exist another transformation Q such that

M,=0D,Q"' (2.4.25)
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where D, is a diagonal matrix. Given the property of the twist eaters

that FQ/NT‘ =1, this also holds for I',. Being the dimension of the latter
Nc x N, the eigenvalues of D, can be chosen to be the /N roots

of the identities et9» with qu € %[O,...,\/Nc — 1] repeated /N,
times: ‘

_ . . (VN
D, = diag;(elq{‘w,...,equ h )) @1 N - (2.4.26)

When combining the diagonal matrices D, and the momenta matrix
eTl9u1, we observe that the resulting matrix is diagonal and its en-
tries the roots of the identity repeated /N, times. The global (free)
Wilson-Dirac matrix is diagonal in momentum space can be written
as

waund, fI‘EE(q) —1—« Z [(]1 _Yu)eiQp + (]1 +yu)e—iQu] , (2.4.27)
"

where Q, can be seen as the “generalized momenta

lat

2n
Qu= Wmu +4qy (2.4.28)

where m,, are integers modulo /N and ¢! is given by Eq.(2.4.21).
Surprisingly we found that momenta structure for fundamental fermions
emerging from reducing the Wilson-Dirac matrix with twisted BC is
exactly the one we obtained in Eq. (2.3.10) for gauge fields when dis-
cretized on a L* lattice with twisted BC.

2.4.2  Meson correlators and spectroscopy in the reduced model

In this section, we give technical details about computing meson cor-
relators in both the fundamental and adjoint representation and their
subsequent use to obtain the masses of the lowest state with the cor-
responding quantum numbers. In the literature, there have been ex-
tensive studies done previously [76-78] using the same techniques
explained in this Thesis.

As a recap of what we saw in this Section, the Dirac matrix for fun-
damental fermion in momentum space is given in Eq. (2.4.22), which
we rewrite for completeness using this new compact notation

4
DM (q) ==k ) |(L—v,) ® Waula) + (1+v,) @ Wi(a),
p=1
(2.4.29)
where W,,(q) are the following N2 x N2 matrices
Wulq) = eI Uy o Ty, (2.4.30)

while the momenta are quantized in units of 27/L,, as in Eq. (2.4.21).
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For the adjoint representation, the reduction of fermions is less in-
volved and the Dirac matrix in momentum space can be obtained by
Eq. (2.4.8) with the substitution U, — ewluuH , obtaining

4
Dis](UI) = 4= Kad] Z [ ]1 Yp.) & elq”uad] + (]1 +Yu) lq“l,lad]

=1
(2.4.31)

where the momenta live on the same lattice A as the one for funda-
mental fermions. We also remind that fermions in the adjoint repre-
sentation 1) can be seen as N. x N. matrices, over which the gauge
field acts through the bi-fundamental action defined as Uutl)UL, be-
ing U, the N¢ x N, link matrices.

We are now ready to define the meson correlation function. Given
some operators acting on the Dirac space, Oa and Og with the quan-
tum numbers of the meson that we are interested in one can use the
Wilson-Dirac operators and their inverses to define the corresponding
correlator as

e (q0) “ A, |p§p <Tr[ Dy} (F,po + 40)Oy Dy (P)D ,

(2.4.32)

where the trace is over spin, space and color degrees of freedom. In
this work, we take the Euclidean time period 1o = 2 so that the tempo-
ral momentum takes values qo = ™™/vN with integer m. The symbols
A and B specify the spin-parity quantum numbers of the operator
and the indices 1 and j run over a family of operators with the same
quantum numbers. The inversion of the Dirac operator is performed
using the BiCGStab algorithm or the Conjugate Gradient algorithm
whenever the former does not converge. If [A 4|, i.e. the number of el-
ements in A, is large, this might imply many inversions. In practice,
what we do is perform this average stochastically: for each configura-
tion, we generate p randomly and use it to perform the inversion of
Dy (q). The Euclidean time correlator is then defined as

Clp(no) =) e HomoEl(qo). (2.433)
qo
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Part II

LARGE-N. SIMULATIONS ON A SINGLE-SITE
LATTICE



TECHNICAL ASPECTS OF SINGLE SITE
SIMULATIONS

In the first part of the Thesis we presented a generic overview of
the physical framework we will work in. In this Chapter, we present
some technical details of our simulation, leaving results for the next
Chapters.

In the first Sections, we deal with the generations of the ensem-
bles of configurations we will use in the next Chapters. In Sec. 3.1
we will first analyze the pure-gauge case (N¢ = 0), for which dif-
ferent algorithms can be adopted. The common strategy is to adopt
the Fabricius-Haan approach [79] together with one of the different
existing updating algorithms for unitary groups. In Sec. 3.2 we will
then move to the case of Yang-Mills theory coupled with Ny flavors
of adjoint fermions. As it is well known, each one of these theories
corresponds to distinct computational challenges. The case of N¢ = %
is analyzed in Sec. 3.2.1, where we will deal with the known sign
problem we encountered in Sec. 1.2.1.3

Another important topic that we have to discuss is how we deal
with autocorrelation in our results, as it influences the determination
of the errors in the quantities we will study in the rest of the The-
sis. In Sec. 3.3, we will address the problem and discuss the general
strategies we will adopt.

Sec. 3.4 is dedicated to the methodology we will employ to perform
the scale setting. Our first method is based on Wilson flow techniques
combined with a tree-level improvement to treat systematic effects
coming from lattice artifacts and finite-N. effects. Another method
we present makes use of Wilson loops and it will be used only in
Chapter 5 in the case of N¢ = 1.

Sec. 3.5 is a summary of the main formulas concerning meson spec-
troscopy we will apply in the case of N¢ = %

3.1 Nf = 0: SIMULATING THE TEK MODEL

From a computational perspective, simulating the TEK model amounts
to dealing with a Monte-Carlo simulation of a 4-matrix model U, dis-

tributed according to the exponential of (minus) the TEK action, given

in Eq. (2.3.7), which we rewrite for completeness

2mik

Stek = bN, Z tr(ﬂ—quUuUVULUW Zuy = eVNe for u > v.
HFAV

In such a simulation, the number of colors N, the flux k, and the

gauge coupling b are to be intended as “meta-parameters" of the sim-
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ulation, in the sense that they are fixed and have to be specified in the
preliminary stage of the computation, typically at compiling time.

In standard lattice gauge theory simulations, the pure Yang-Mills
theory is simulated by performing local updates of the link vari-
able, i.e. changing the value of a single link while keeping the other
frozen. Standard updating algorithms include heat-bath [80, 81], over-
relaxation [82] or a combination of the previous two [83]. One par-
ticularly efficient method to perform one of the aforementioned up-
dates to a generic SU(N.) matrix is to adopt the Cabibbo-Marinari
subgroup technique [84, 85], where all the w diagonal SU(2)
subgroups are updated.

Although these algorithms are well-known in the lattice commu-
nity since the early days of lattice simulations, they cannot be directly
applied to the TEK mode since the action is not a linear function of
the links U,,. An early attempt at simulating the EK model made
use of the standard Metropolis algorithm [85], while Fabricius and
Haan in [79] proposed a heat-bath-inspired algorithm that allowed to
overcome the initial problem. In this section, we are just presenting
the algorithms used in this Thesis, which are based on the methodol-
ogy proposed originally in the ‘8os. A complete and modern review
of methodologies and possible choices for the Fabricius-Hann algo-
rithm can be found in [86], which also describes in detail theoretical
aspects, algorithmic issues and performance analysis on modern com-
puter making use of parallel computing.

3.1.1 The Fabricius-Haan algorithm

The Fabricius-Haan proposal was to introduce auxiliary d(d —1)/2
N. x N, matrices qu/ which are normally distributed.” The result-
ing partition function will be

Z x J[du] [dQe Sex[UWe—2 Ty 1 Qv Qv | (3.1.1)

After performing the change of variables

Quv = Quv + tuvUpUy +ty Uy Uy, tuy = \/2Ncbzyy (3.1.2)

whose Jacobian is 1, the enlarged action can be written as

Z x J[dU] [dQ]efsTEKQ[u’Q]ef% T tr Qliv Quuv , (3-1.3)
where
StekQl, QJ = — Y Retr [QLV(twuuuv +ty Uy Uy | . (3.1.4)
w>v

With “normally distributed matrix” we intend a N¢ x N matrix whose entries are
complex numbers whose real and imaginary parts are sorted from a normal distri-
bution N(0, 1) (mean o, and standard deviation 1).
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This action is linear in U,,, and therefore is suited for the aforemen-
tioned updating algorithms.

The general methodology consists in updating first the auxiliary
variables Q. and then the link matrices U,. The update of Q. is
typically referred to as “refreshing” as it corresponds to a generation
of a new set of normally-distributed matrices. On the other hand,
the update of the link variables can be achieved using one of the
previously mentioned algorithms. The original proposal by Fabricius
and Haan used an heat-bath approach through the SU(2) projections
proposed by Cabibbo and Marinari. Another possibility is overrelax-
ation, which can also be achieved by subsequent SU(2) updates.” In
the configuration used in this Thesis, we used overrelaxation updates
through subsequent SU(2)-subgroup changes (OR2) to generate con-
figurations.

In general, an update of a single link variable U, — U™ corre-
sponds to a change in action AS = S, [U%"] — S«[U«], being

SalUgl = —Re tr [UgHql, (3~1-5)

where H,, is the sum of “staples” given by

Hy = Z t(,wU\,QfxV +thLVuV where Qyv = Qv for ax < v.
V£
(3.1.6)

A final version of a possible updating algorithm is described in
Alg. 1.

Algorithm 1 Simulation algorithm for TEK model. Details on the up-
dating algorithms can be found in [86].
1: forx € [0,d—1] do
2: Generate d — 1 auxiliary variables Q «,, according to Eq. (3.1.2)
3 Compute the staple according to Eq. (3.1.6)
4 Update Uy using HB/ORN/OR2
5. end for

As a general consideration, when building a simulation code one
is typically concerned about the overall performance of the code in
terms of timing and memory requirement. It is easy to see that the
cost of the updating algorithm scales accordingly to

time o< memory o $$$ o< €€€ o N2, (3.1.7)

therefore preferring one choice over another is strongly dependent on
the type of data structure, the architecture used for the computation

For details of how both algorithms can be implemented, the interested reader can re-
fer to [86] and references therein. In this reference, also an additional overrelaxation
update over the entire SU(N.) group is provided.
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and the level of optimization of existing routines. The link matrices
(as well as the auxiliary variables) are N. x N. complex dense uni-
tary matrices and writing ad-hoc routines might result in extremely
inefficient codes. The best (i. e. coding-time saving) choice is typically
to rely on standard libraries that efficiently handle these data struc-
tures and allow one to fully exploit the paradigm of parallel comput-
ing. In the specific case of the simulation of the TEK model, different
update algorithms correspond to different optimal implementations,
e.g. SU(2) projections allow for easy vectorization and might benefit
from the multi-core structure of the CPU. On the other hand, other
algorithms like global overrelaxation updates over the entire U(N_)
only require efficient linear algebra routines like singular value de-
composition on top of matrix multiplication, typically offered by lin-
ear algebra libraries. Another extremely valid alternative is the usage
of graphical processing units (GPU), that in some cases can provide
a considerable increase in performance.

In Tab. 2 we provide a complete list of ensembles we will use in the
next chapters.
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b (Nc, k) <P> Nconf

0.35  (841,9) 0.52968(4) 500

(169,5) 0.5453(1) 800
o355 (289,5) 0.545378(57) 800
(361,5) 0.545351(60) 400
(529,7) 0.545339(31) 400
(841,9) 0.545336(25) 800
(169,5) 0.557900(89) 800
(289,5) 0.558001(49) 800
0.36  (361,7) 0.558062(72) 321
(529,7) 0.557927(39) 400
(625,4) 0.558057(45) 360
(841,9) 0.558030(17) 1100
(169,5) 0.569056(70) 800
(289,5) 0.569095(52) 800
0.365 (361,7) 0.569123(58) 400
(529,7) 0.569063(48) 400
(625,4) 0.569014(34) 359
(841,9) 0.569050(14) 1200
(169,5) 0.578861(92) 800
(289,5) 0.578960(49) 800
03y (361,7) 0.579008(51) 400
(529,7) 0.579010(35) 400
(625,4) 0.578981(33) 382
(841,9) 0.578927(12) 1400
0375 (625,4) 0.588061(35) 300
(841,9) 0.588046(12) 1500
03y (6254) 0.596495(33) 342

(841,9) 0.5965021(92) 2500

0.385 (841,9) 0.6044154(79) 2400

Table 2: List of ensembles for N¢ = 0 configurations together with the num-
ber of configurations and the average value of the plaquette.
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3.2 Nf > 0: A THEORY WITH DYNAMICAL ADJOINT FERMIONS

The inclusion of dynamical fermions in lattice simulations is an ex-
tremely challenging task. Following Eq. (1.2.28), when sea fermions
are simulated dynamically, the probability density is

e~ Stex[U]

7 (det DW)Nf , (3.2.1)

plU] =
where we keep considering a generic number of flavors N¢.3

As a general consideration, the fermion determinant depends non-
locally on the gauge field. A direct single-link update like the one we
proposed in the last section is not feasible, and we make use of stan-
dard (Rational) Hybrid-Monte Carlo (HMC) techniques adapted for
our model. For a review of the HMC algorithm, originally proposed
in 1987 in [87], the interested reader can look at the excellent review
of computational strategies by Martin Liischer in [42]. In this section,
we will review the algorithm used in our simulations.

First, we consider the hermitian version of the Wilson-Dirac opera-
tor, defined as Q,, = y5D,,. Thanks to ys-hermiticity of the Wilson-
Dirac operator, D:r,v = v5Dw Vs, it holds that DiVDW = Q%v. Using
this notation, the power of the fermion determinant can be rewritten
in terms of pseudo-fermion fields ¢, i.e. scalar fields with the same
quantum number as the fermionic fields. Their usage comes in hand
to rewrite the fermion determinant

-N

(det Qu™" = [aglidohie 2], (3:22)
where the effective action is defined through

Sert[Qu"] = ¢TQ,™ . (3:23)

The simplest case is for N¢ = 2 in which the effective action is simply
Q2. Since this pseudo-fermionic effective action is quadratic in
¢ and the matrix Q2 is hermitian and positively defined by defini-
tion, the pseudo-fermion fields ¢ can be easily generated with the
following procedure: given some random field x whose components
are generated by a standard Gaussian distribution, the fields

¢ = QWX (324)

will be distributed following Eq. (3.2.3).

Eq. (3.2.1) is a symbolic notation to indicate all the cases corresponding to different
Ny. The equation is the case of a single Dirac fermion is trivially satisfied by setting
N¢ = 1. In the case of Ny = 2, the equation corresponds to the case of degenerate
masses m, = mgq. The case of one adjoint Majorana fermion (N = %) is to be
intended in the sense of Eq. (1.2.30) in Chapter 1, where the square root is to be
intended as a square root and an undetermined sign +. The case of Ny = % will be
treated in detail in Sec. 3.2.1
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On the other hand, in the case of a different number of flavors,
Eq. (3.2.2) has to be corrected with the right power of Q.,. For ex-
ample, in the case of a single Dirac fermion, in order to have det Q,,,

1
one has to generate pseudofermion fields as ¢ = Qi x. This can be
achieved by considering an effective action

Se[RN/2(Q3)] = 9TREN21(Q2)9, (32:5)

where the matrix R(=P)(Q2) is a rational approximation of the matrix
(Q2,)"P.4 Clearly also the generation of pseudofermions has to be
performed accordingly as ¢ = R(P)(QZ,)x. In this case, the algorithm
is called Rational Hybrid Monte-Carlo algorithm (RHMC) [88—91].

An additional ingredient is the non-interacting “momentum”-fields
7. (x). Reminiscent of a classical system, the inclusion of such mo-
menta defines a Hamiltonian

Hire, U, ) = 3 (072 + 51U, ), (3.2.7)

where the action S[U, ¢] = Stk + Se is a sum of the TEK action and
the pseudofermion effective action. With the Hamiltonian, we can re-
write the path integral as

J[dU]e_S“” (det Dy [U)) N & J[dﬂ] U] [deTeHImLe)  (358)

which does not affect the physics content of the theory. This Hamil-
tonian drives a dynamic evolution of the system with respect to a
fictitious time T, following the associated Hamilton’s equations. In
this context, they are typically referred to as molecular dynamics equa-
tions. The solution of the molecular dynamic equations 7t¢ and U<
are uniquely determined and they can be seen as a trajectory in the
phase space parameterized by the time 1. After generating the mo-
menta fields 7, the newly updated fields in the Monte-Carlo chain
are the solution of the molecular dynamic equation after a given time
7. In principle, the MD equations are known to preserve the Hamil-
tonian of the system, and therefore the updated field does not have
to undergo any kind of acceptance-rejection step to ensure detailed

)
through the Ng-th order rationalRpolynomial approximation to xP for a real number
x € [a, bl:

Following [78], the matrix Rl(\]f (Q%\,) is an approximation for (Q%\,)p defined

(p) »), 3 o
P~ P = \P )
x . RN () =y + .:E - B(p). (3.2.6)

) j

Using the Remez algorithm, sets of the coefficients {O‘)g]i)o,...,N o B ](gN R} have

been prepared and tabulated for various cases: the power p = 1/8, f%, the dynamic
range b/a and the order of the approximation Ng.
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balance and ergodicity. Nevertheless, in practice any integrator on the
lattice®> will adopt a step € of finite size and therefore the condition

AH =H[n', U, '] —H[m U, d] =0 (3.2.9)

is only satistied approximately and gets corrected at some order in e.
In the equation, the primed quantities represents the fields after the
integration of the MD equations. For this reason, after MD equations
are integrated and a field variable U’ is proposed for the update, a
Metropolis accept-reject step is employed to ensure detailed balance.
Overall, a general summary of the algorithm is given in Alg. 2

Algorithm 2 Summary of the HMC algorithm.

1: Generate randomly momentum fields 7t and fields n, both follow-
ing a Gaussian distribution.

2: Create the pseudo-fermion from the field n following the distribu-
tion given by Eq. (3.2.3), or Eq. (3.2.5) in case of rational approxi-
mation.

3: Integrate molecular dynamics equations from (Hamiltonian) time
T = 0 to some time T = Typ taking 7, and U,, as initial values of
the field.

4 The gauge fields are updated to U, with probability

Pacc(7r, U) = min[1, eiAH]

otherwise, the updated field is set to U,—o.

3.21 N = 3: One adjoint Majorana fermion

The case of a single Majorana fermion is complicated by the presence
of a sign-problem. As we saw in Sec. 1.2.1.3 of Chapter 1, the path
integral weight of a single configuration is given by

e—Stek[U]
Z

which cannot be taken as a probability distribution as the Pfaffian is
not positive definite. In general, we can rewrite the pfaffian isolating
its oscillatory sign as

Pf(CD.,), (3.2.10)

P£(CD,,) = sign(Pf(CD,y))| det Q2|7 . (3.2.11)

The methodology thus consists in generating an ensemble of configu-
rations with

e—Stek[U]
Z

A widely used choice is the leap-frog integrator, which is explained in detail in [43].
Other suitable integrators can be found in the literature under the name of symplectic
integrator.

plUu] = |det va\% (3.2.12)
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Kadj  plaquette Neont Kadj  plaquette N conf

0.100 0.53159(12) 500 0.100 0.55946(11) 500
0.110 0.53256(14) 500 0.110 0.560129(86) 500
0.120 0.534148(81) 500 0.120 0.56116(11) 500
0.130 — 500 0.130 0.562683(74) 500
0.140 — 500 0.140 0.564782(77) 500
0.150 — 495 0.150 0.567829(70) 500
0.155  0.544957(99) 500 0.155 0.569670(77) 500
0.160 0.547599(84) 500 0.160 0.571896(76) 500
0.165 0.550819(77) 492 0.165 0.574812(60) 500
0.175 0.558961(80) 500 0.175 0.58233(16) 80
Table 3: Ensemble of “heavy” configurations generated for N¢ = % for

(N = 289,k = 5). (left: b = 0.35, right: b = 0.36).

using the RHMC algorithm with p = —1 and by taking the absolute
value of the pfaffian and then reweighting the negative sign directly
in the observables by following

_ (O sign(PE(EDw))), (32.13)

(sign(P£(CDw)))
A dynamical algorithm to simulate gluinos on the lattice was first
proposed in [92]. On the line of this algorithm, we adopted the same
choice for our simulation as explained in the introduction of this sec-
tion. In Tab. 3 and Tab. 4 and we report a list of all the ensemble we
generated for N¢ = 7, technical details of the algorithm employed
can be found in [78]. After computing the configuration, one has to
deal with the effect of the sign of the Pfaffian in Eq. (3.2.11) by means
of the reweighting method as in Eq. (3.2.13). To compute the sign of
the Pffafian for our configurations we make use of the results [40, 93—
95], according to which, the sign can be determined by counting the
number of negative real eigenvalues of D,,. To perform this search,
we carried out a complete determination of all the complex eigenval-
ues of D,, near the origin of the complex plane, using the ARPACK
library [96]. The shift invert mode with the shift parameter o = —0.1,
which computes the extreme eigenvalues of (D., — o)~ ', is used so
that the eigenvalues having negative real part can be captured. Fig. 2
shows, for all configurations, the 100 complex eigenvalues of D,,
closest to z = —0.1 in the complex plane. Given the symmetry of
(CDy)t = —(CDy,), each point represents a two-folded eigenvalue.
For heavy gluino masses, we are not expecting flips of sign of the
Pfaffian. Hence, our analysis focused on the lightest adjoint fermion
masses at each b and N.. We did not observe any negative-real eigen-
values in the spectrum. This absence was also checked for several
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(No,k) b Kag plaquette  (Amnl) Neonts
0.17750  0.561689(73) 0.049554(65) 600
0.18000  0.564610(70) 0.038933(51) 600

0.350 0.18250  0.568020(55) 0.028445(42) 600
0.18500  0.571769(42) 0.018722(79) 607
0.18750  0.576334(91) 0.011781(77) 600
0.18000  0.55072(10)  0.049524(85) 600

(361,7) o345 018400 0.556335(31) 0.032503(57) 712
0.18680  0.561253(71) 0.020603(59) 600
0.18960  0.567106(91) 0.011117(97) 600
0.18500  0.541414(99) 0.040589(71) 640
0.18750  0.546237(83) 0.029619(64) 638

0.340 0.18900  0.549479(88) 0.023011(64) 604
0.19100  0.55419(10)  0.014393(64) 660
0.19300  0.560145(74) 0.008346(73) 625
0.176000 0.583233(62) 0.039755(62) 516
0.178000 0.585296(89) 0.031968(77) 800

0360 0-180000 0.587629(60) 0.024920(65) 600
0.182000 0.590255(64) 0.019453(67) 720
0.183172  0.591912(75) 0.017702(68) 600
0.184000 0.593188(51) 0.017090(80) 800
0.177500 0.561674(93) 0.050168(76) 680
0.180000 0.564575(72) 0.039760(56) 600

0350 0-182500 0.568034(85) 0.029459(77) 600
0.185000 0.57191(10)  0.020167(95) 600

(289,5) 0.186378 0.57421(10)  0.016132(79) 600
0.187500 0.576383(73) 0.01427(11) 680
0.180000 0.55045(12)  0.050209(83) 624

0345 0184000 0.55636(10)  0.033087(77) 600
0.186800 0.56126(11)  0.021689(91) 600
0.189600 0.567256(95) 0.013094(99) 600
0.185000 0.541611(88) 0.040868(72) 610
0.187500 0.546422(99) 0.029998(74) 600

0340 0189000 0.54981(14)  0.02343(10) 608
0.191000 0.554363(99) 0.015480(69) 600
0.192067 0.557248(99) 0.011992(77) 610
0.193000 0.56039(14)  0.010557(92) 630
0.1775  0.56191(18)  0.05322(12) 600
0.1800  0.56479(16)  0.04353(10) 600

0350 0.1825  0.56834(15)  0.034286(94) 600
0.1850  0.57194(14)  0.02676(11) 700

(169,5) 0.1875  0.57680(12)  0.022537(83) 600
0.1850  0.54165(23)  0.04309(15) 600
0.1875  0.54666(23)  0.03270(17) 600

0.340 0.1890  0.55007(19)  0.02691(11) 610
0.1910  0.55495(17)  0.020784(92) 610
0.1930  0.56003(28)  0.017592(78) 600

Table 4: List of “light” configurations for N¢ = % For each value of N,
° b and k,gj we list the expectation value of the plaquette (P), and
(Aminl), with A2 )2'

in the lowest eigenvalue of Q2 = (Dwys
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Figure 2: We display in the complex plane and for a subset of our simula-
tion parameters at various values of N, the 100 eigenvalues of the
Wilson-Dirac operator D, closest to —0.1. Figure taken from [78].



Kadj Neonf

0.050 495 Kagj  Neonf
0.100 495 0.050 495
0.110 495 0.100 495
0.120 250 0.120 250
0.130 500 0.130 250
0.140 500 0.140 500
0.150 500 0.150 500
0.155 495 0.155 995
0.160 500 0.160 500
0.165 495 0.165 500
0.170 500 0.170 500
0172 300 0172 300
0.175 300 0.175 300
0.180 340

Table 5: Ensemble of configurations generated for N¢ = 1 for (N, =289,k =
5). (Left: b = 0.35, right: b = 0.36).

heavier fermion masses. Therefore we conclude that the sign of the
Pfaffian is always positive for the model parameters we employed,
simplifying the reweighting method by validating the distribution us-
ing the absolute value of the Pfaffian. Similar results showing that
the negative sign of the Pfaffian is rare even with moderately light
adjoint masses have been observed in lattice SUSY models [38, 97].

3.2.2 N¢ = 1,2 adjoint Dirac fermions

The case of N¢ = 1,2 adjoint Dirac fermions is more standard and
the generation of configurations for the case of Ny = 2 was detailed
in [74] to which we refer to any technical details. The case of N¢ = 1
follows the explained methodology and employs the standard RHMC
algorithm we mentioned in the previous section. A list of the ensem-
bles available for the case of Ny = 1 and N¢ = 2 are given in Tab. 5
and Tab. 6, respectively.

3.3 DEALING WITH AUTOCORRELATION

A crucial issue we have to take into account when analyzing the
results of the simulations is the so-called autocorrelation. We shortly
present here the problem and how it affects our ensembles of config-
urations.
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Kadj Neonf Kadj Neonf

0.100 500 0.100 500
0.105 495 0.105 495
0.110 500 0.110 500
0.115 495 0.115 495
0.120 500 0.120 250
0.125 495 0.125 495
0.130 500 0.130 500
0.135 495 0.135 495
0.140 500 0.140 500
0.145 495 0.145 495
0.150 500 0.150 500
0.155 495 0.155 495
0.160 500 0.160 500

Table 6: Ensemble of configurations generated for Ny = 2 for (N, =289,k =
5). (Left: b = 0.35, right: b = 0.36).

After an MC run, one is left with Nyjc configurations from which
are determined primary observables®

O¢, t=1,...,Neonf, (3-3.1)

where t labels the Monte-Carlo time in the Markov chain.

Following a naive statistical treatment of these MC data, assuming
that the distribution of these observables can be approximated with
a simple gaussian N(O, o), estimates for the real observable are esti-
mated with the average over the measurements

1 Nwmc
O=_— Oy, 3.2
NMC,; t (3-3-2)

and the uncertainty through the standard deviation of the gaussian
distribution divided by the square root of the number of statistically
independent samples

1 Numc

2

, — (Of — . 3.
O0p = Nt t (3-3-3)

0o

S =
Nmc

With the term “primary” we intend that the observable O is obtained just through
elementary linear-algebra operations of the link matrices, such as multiplications,
sums, traces and determinants and not the results of fit, extrapolations or interpo-
lations. Examples of such observables could be the plaquette, and Wilson loops but
also the exponential decay of a correlator.
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The final result for the lattice estimate will be quoted as O =+ d¢.
Nonetheless, this procedure relies on several assumptions we are go-
ing to briefly discuss.

The statement of the distribution of the data being gaussian is
somewhat justified, although not always true. In fact, primary observ-
ables are typically the result of several averaging procedures’ that
tend to produce a normal distribution, by means of the central limit
theorem. This assumption though is not always verified. For example,
some observables might have an asymmetric distribution due to their
definition: plaquettes and Wilson loops for example are bounded and
they cannot be bigger than 1. In this case, a simple average like that
in Eq. (3.3.2), might introduce some bias in the final results, although
most of the time is included in the statistical error.

The other loose point in the naive description we presented is that
we assumed that in the ensemble we generate all the configurations
are statistically independent. It is known that subsequent MC mea-
surements are not independent and thus the error given by Eq. (3.3.3)
is underestimated. A quantitative statement about how much our
computations are affected by autocorrelation can be made by means
of the autocorrelation function, defined as

Nmc—t

Z Oyt —0) (0 —0), (3-3-4)

t'=1

1

Mt) = —

(t) Ny—

which quantifies how much the signal at t is correlated on average

with every other MC time. In a normal situation, the normalized au-
tocorrelation time behaves exponentially at large t

I'(t) —t

o) e v, (3-35)

where Teyp is called exponential autocorrelation time. Empirically, one
could say that the number of independent configurations is given by

N
Nind. conf = Zic s (336)

exp

and thus a more fair estimate of the error on the observable is given

by
(o) O ZTexp
=4/ 0o (3:3.7)
N ind. conf N MC

In the vast literature of Monte-Carlo Markov Chains, the interested
reader can find several detailed discussions on how to compute this
exponential autocorrelation time (i. e.the slowest mode of the Markov

o>
G
Il

7 Plaquettes and loops are averaged over the different planes and then the trace is
taken, which can be seen as a “color average”. Correlators, on the other hand, are
“averages” over the spatial volume of the effective lattice.
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operator), but a simple practical implementation of Texp can be given
by the integrated autocorrelation time, defined as

1

(W) = 2+ T

W (3-3-8)

M=

t=1

In the limit in which the parameter W, called summation window, is
large compared to Texp, We can safely assume that Tin; ~ Texp and use
it to calculate the corrected error as in Eq. (3.3.7).

In our analysis, when performing the estimation of errors of pri-
mary observables, we take into account the autocorrelation using two
distinct methods we are briefly going to summarize here.

* The so-called I'-method. We directly estimate the integrated auto-
correlation time (3.3.8) and assign 5 defined in Eq. (3.3.7) as an
error associated with the observable O. In practical implemen-
tations, one has to adopt a choice for the summation window
W. In [98], one of the first implementations of the I-method ad-
vocates an optimal algorithm to choose the summation window.
We are not going into the details of this automatic windowing,
but it is based on the observation that the error coming from
the truncation of the sum in the autocorrelation function is ap-

_w
proximately e "¢, while the “relative error on the error” can
be estimated as 2,/ W/Npic. The optimal window is then chosen
to minimize the quantity

_w w
E(W)=¢e¢ "w + 2\/» where Ty = 47Tin; . (3:3.9)
Nmc

In our analysis, the estimation of errors by the '-method is im-
plemented through ADerrors [99], which combines the estima-
tion of the integrated autocorrelation time with the propagation
of errors on derived observables following the paradigm of au-
tomatic differentiation. This is not the only viable option. Other
solutions, which rely on prior knowledge of the exponential au-
tocorrelation time, can be found in [100, 101].

* Jackknife resampling. Out of the Nyjc initial measurements of
the observable O, we build Nyic subsets by removing the n-
th entry of the original sets (n = 1,..., Nyc) and determining
the average O, for each set. An estimate of the true standard
deviation is given by the square root of

=Ml 5 (o2 o) 3310
09 = Nye 2= % , 3.3.10

being O the total average. Often jackknife is combined with
blocking techniques, where instead of applying the procedure
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directly on the measurements, they are first divided into groups
or bins of length Ny, and averaged inside each bin. In order for
the method to be effective, the size of the bin should satisfy
Npin 2 Texp and use

N L -] Nbin
0% = bmi' Z (Of1 — Oz) , (3.3.11)
=1
where O, here represent the average inside the n-th bin.

3.4 SCALE SETTING

Scale setting is a standard and rather crucial step one has to face in
lattice gauge theories. In simulations, the lattice spacing a can be seen
as a natural unit length (or energy) scale one can use to define the nu-
merical value of any other observables. Any dimensionful observable
with the right energy dimensions is a candidate to fix the scale. In
theories with a massive spectrum, one could simply take one of the
masses as a unit. For QCD or Yang-Mills theory the lowest glueball
mass, the vector meson mass or the square root of the string tension
are typical units of this kind. A unit must be of the appropriate size
for the objects to be measured, it should be precise, easy to compute
and as insensitive as possible to typical statistical or systematic errors.
From that point of view, the natural type of units mentioned earlier
might not be optimal, since they involve taking asymptotic limits. An-
other possible family of choices involves dimensionless monotonous
functions of an energy scale. The unit of energy is taken to be the
value at which the function takes a particular numerical value. To
this class belong some of the most common scales used nowadays by
the lattice community such as the Sommer scale [102], based on the
quark-antiquark potential, and those relying on the use of the gradi-
ent flow such as tp [103] or wy [104]. For a review of these and other
common methods to fix the scale, the interested reader can consult
[105]. In the following, we are going to provide a general discussion
about scale setting techniques that are not only valid in the case of the
single site lattice. At the end of each part, we will underline which
formulas are going to be directly applied to our case.

3.4.1 Scale setting with the Wilson flow scale

The gradient flow [103, 106, 107] is a smoothing technique that has
received much attention in recent years. The idea is to replace the
original gauge fields A, (x) with a set of flow-time dependent fields
obtained by solving the gradient flow equations:

atBu(X;t) = DVGuV(X;t)/ (341)
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with B, (x;0) = A (x) and leading to effective smearing of the gauge
fields over a length scale v/8t. The flow time, having physical dimen-
sions of a length squared, induces natural candidates for scale setting;
one just has to find a dimensionless, flow-time dependent, quantity
and determine the flow time at which it equals a particular pre-fixed
value. The most common choices used for this purpose are based on
the quantity:

2
ot = (), 642

where E(t) stands for the flowed energy density:

1

(E(t)) = 3 (Tr Guv (%, 1) Gy (x, 1)) . (3-4-3)

Particular examples are the ones obtained by solving either of the two
following implicit equations:

=s, (3-4-42)

D(1)

ta =s, (3.4.4b)
where s = 0.1 corresponds to the standard choices in the literature
denoted by to [103] and wo [104]. These definitions differ from the
standard ones used in lattice QCD simulations due to the extra, N.-
dependent, factor, required to have a well-defined large N limit of
these quantities.

The perturbative expansion of the infinite volume flow in terms of
the “t Hooft coupling in the MS scheme at scale p = 1/v8t is given

by [103]

D (t,Ne) = K(NC)}\MS(H) (] +C1)\M5(H)) . (3-4-5)
H:ﬁ
where
C3(NZ-1)
KNe) = T8Nz - (3-4.6)

This expression is used to define the gradient flow (GF) coupling con-
stant [103]:

1 Doo(t)
A = = = Aye 1 Aie , 4.
i(1= ) = o =M1 Fedsu)), G4
showing that c; stands for the finite one-loop renormalization con-
stant that relates the A parameters in the two schemes. So far our
discussion of the flow observables has been in the continuum. A gen-
eralization to the lattice is rather straightforward, one has to select a
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discretization of the energy density and the flow equations. We adopt
the clover version of the field strength which, in our one-site reduced
lattice, leads to a discretized version of Eq. (3.4.3) given by:

. 1
E=—s ; tr| zy (uvuuuLuL +ruubulu,

2
UL UL U U, + UL U U U ) — h.c.] . (348)

As for the flow, the flow time is discretized in units of the lattice spac-
ing as t = Ta?, where we will from now on use capital letters to
denote lattice, dimensionless quantities. We integrate the discretized
flow equations by using a 3'¢ order Runge-Kutta integrator with con-
stant time interval AT = 0.03125. We have checked that changing the
time step does not produce any sizeable difference in the integrated
flowed observable, resulting only in a different computational cost
for different lattice spacings. In terms of E(T), the naive dimension-
less flowed energy density can be estimated on the lattice from:

T2E(T)
Ne /-

O (T,b,N¢) = < (3-4-9)

3.4.1.1 Finite-"“size” effects in the gradient flow

All these definitions we gave, take place in infinite volume. However,
numerical simulations are typically implemented on a L-site lattice
of finite physical size 1 = al, a fact that leads to finite size effects in
the determination of the scale whenever the flow radius extends over
a significant fraction of the box size. One can derive an analogous
expression for the finite volume flow. In our case, on a box of size 14
with twisted boundary conditions, one obtains at second order in the

coupling [72]:

®(t,1,Ne) = N(c(t), Ne) A (W + ez (1)+
+Cle(t), Ne)Ags (Wl (3-4.10)

where finite volume effects depend on the dimensionless variable:

c(t) = \/187 T=/Ncl, (3-4.11)

and are encoded in the functions N(c(t),N.) and C(c(t), N¢). The
former has a simple expression in terms of Jacobi 03 functions and
reads:

3x?

N(x,N.) = m(eg‘(o, inx) — 03(0,inNex)), (3.4.12)
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03(0,ix) = Z e T = — Z e m/x (3-4.13)

In the large volume limit, taken by sending 1 to infinity at fixed flow
time, i.e. by sending c(t) to zero, this normalization factor tends to
the infinite volume one, i.e. Eq. (3.4.6). The function C(c(t), N.) goes
to zero in this limit and the infinite volume expansion of the flow
presented above is recovered.

Let us also mention that, on account of volume independence, the
same expressions can be obtained for SU(oco) by taking the c(t) — 0
limit differently, i.e. by sending N, to infinity at fixed torus size 1 (in
the particular case of the one-point lattice, 1 = a). In that limit, the ex-
plicit N. dependence of the normalization X(N.) factor disappears.

These considerations indicate a simple way to correct the flow at
leading order in the coupling. Indeed, we introduce the following
definition of the coupling

1

MEUN) = NG

D(t,1,N¢), (3.4.14)
which, at the leading order in the coupling, has the correct pertur-
bative expansion. Consequently, by “inverting” Eq. (3.4.14), we can
define a modified flowed energy density given by:

O(t,1,N¢) = K(NA(L, L, Ne).. (3.4.15)

At the second order in A, the remnant volume dependence comes
from the c(t) dependence of the function €(c(t), N.), which has not
yet been computed in perturbation theory for a general number of
fermions. As we will see, finite volume (finite N in our set-up) effects
are considerably reduced with this choice. Our scale definitions are
then obtained by replacing ® by ® in Eq. (3.4.4), which at infinite
volume coincide with the standard ones. In the next paragraph, we
are going to see how this can be implemented in lattice observables.

In order to correct the scale with the normalization factor, we have
to find an analogous correction, which in addition takes into account
lattice artifacts, to be derived by computing the tree level factor N(c(t), N¢)
in lattice perturbation theory. For our choice of the clover discretiza-
tion of the energy density and the one-point lattice [71]:

4 / _Maz
X e 4 .
Np(x,N¢) = 128 E E T sz(qv) cos? (%) , (34.16)
n#Av 4

where the lattice momentum is given by q, = 2sin(qy/2), with q
taking values:

_ 2mmy,

qu = N (3-4.17)
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for my = 0, ,4/N¢ — 1. The prime in the sum excludes the zero
momentum mode, with m;, = 0, Vu. One advantage of using the
lattice determined instead of the continuum norm is that one corrects
finite lattice artifacts on top of finite size effects at tree level. On the
other hand, the normalization factor corresponding to the plaquette
discretization of the energy density simply corresponds to

/
3X4 _N(i‘x2 ~2
= e

(plaq)
NP (x, Ne) = 128 g . (3.4.18)

With all this, our final formula for the discretized version of the
flow is given by the following observable

-
OL(T,b,N) = 5 <T () > (3-4.19)

1287123\&(\/%,1\16) Ne

with Ni(x,N¢) given by eq. (3.4.16). Before directly applying our
scale-setting procedure to our ensembles, it is worthwhile to make
some general considerations about the applicability of the method
we are about to use.

As we will observe, finite-N. corrections are a sizable source of
systematics. We expect that the usage of Eq. (3.4.19) will considerably
improve the determination of the scale reducing these systematic ef-
fects. This method is expected to work within a scaling window, whose
lower bound is determined by limiting the effects of lattice artifacts
and the higher bound by remnant finite-size effects. In particular, the
effective parameter that governs the validity of our method is the ra-

tio c(t) = l%’ which determines the fraction of the effective box
occupied by the smearing radius. The bounds of the scaling limit can

be empirically set to be

Te [1.25,1/2]\;;] (3.4.20)
where vy is a value to be chosen.

There is an additional consideration that has to be made. To have
a precise determination of the scale it is important that the value of
Ts = ts/a? in the lattice counterpart to Eq. (3.4.4) falls well within the
scaling window given by Eq. (3.4.20) and can therefore be reached by
interpolation. As will become clear in the next sections, this is best
attained by choosing s = 0.05 instead of the commonly used value
of s = 0.1. The corresponding lattice scales will be denoted by Ty
(s =0.1) and Ty (s = 0.05) from now on.

3.4.1.2  Scale setting with Wilson loops

A particular version of these techniques was used to set the scale in
large N pure Yang-Mills theory [108]. In this section, we are going to
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provide an alternative way to set the scale. Standard physical quanti-
ties such as string tension or glueball masses are difficult observables
to measure as they involve taking asymptotic limits. This makes them
more affected by corrections and systematic uncertainties. It is in this
spirit that Sommer scale [102], which is based on the quark-antiquark
potential but not at infinite separation, is superior. However, the Som-
mer scale still involves the study of loops that are asymptotically long
in time. Our proposal is based on fixed aspect ratio Wilson loops and
hence it involves no limit.

Ultimately all gluon observables are based on Wilson loop expecta-
tion values. However, the Wilson loops themselves are UV divergent
quantities and thus not suitable observables. Our proposal is based
on the following observable function

_62 log W(r,v’)

F(r,r') = yor

(3-4.21)
where W(r,r’) are expectation values for rectangular r’ x r Wilson
loops. The double derivative gets rid of perimeter and corner singu-
larities and one gets a well-defined continuum quantity depending
on two scales. We can reduce it to a single scale by fixing the aspect
ratio v’/r. Different choices give different definitions. Notice that the
Sommer scale involves the limit r > r’. Here we will restrict ourselves
to the opposite limit given by symmetric loops v = t/ (a restriction
taken after the derivative is evaluated).

Indeed we claim that F(r,r) is a very interesting physical quantity
for SU(N.) Yang-Mills theory, which has been computed in [108]
both for finite and infinite N.. Obviously, the string tension is given

by
o= lim F(r,1). (3.4.22)

T—00
However, it is better not to fix the scale in terms of the string tension.
For that purpose, one notices that F(r,r) has dimensions of energy
square, so we consider the dimensionless observable G(r) = r?F(r, 7).
A physical scale 7(fo) can be defined, 4-la Sommer, as follows

G(7(fo)) = r*F(r,1)| =0, (3-4-23)

r=T

where fj is some numerical value that can be chosen arbitrarily. This
is essentially the method used in [108] to fix the scale with fo = 1.65.
Here we will consider a variant of the method that makes use of the
gradient flow and results advantageous from the point of view of the
lattice implementation.

One can use the gradient flow to construct flow-time dependent
Wilson loops W¢(r,1’) and use them to define a function F¢(r, 1), in
analogy to Eq. (3.4.21). Our new proposal is to use the flowed func-
tions at non-zero flow time to set the scale. To define a function of a
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single energy scale in the problem, we fix the flow smearing radius to
be proportional to the loop size: v/8t = 1/8t(r,s) = sr. This amounts
to defining Wilson loops having fat edges with thickness proportional
to the size of the loop. This choice defines a dimensionless function
of a single length r

G(r;s) = rzF{(rrs) (v, 7). (3-4.24)

Applying now the prescription we can define a physical scale ¥(f, s)
as follows

G(F(fo,s);s) = fo, (3-4-25)

Any choice of fo and s defines a different scale, but they should all
be proportional to each other. The concrete choice of s and fy is dic-
tated by practical reasons of accessibility and insensitivity of the cor-
responding lattice observable to different error sources. From that
viewpoint, the choice used previously 7(1.65,0) is not the most ade-
quate here.

On the lattice, the counterparts of the observables F(r,1) are the
so-called Creutz ratios, defined as follows:

W(R +0.5,R’ + 0.5)W(R — 0.5, R’ — 0.5)

R,R) = —1 . (3.4.26
X(RRY) = —log 3R 05, R —05)W(R—05,R' 7 05) 3420

In this formula, W(R, R’) is the lattice Wilson loop evaluated for a rect-
angle of size r x 1/, where r = aR and r’ = aR’ are integer multiples
of the lattice spacing a. Thus, in our definition of x(R,R’), the argu-
ments take half-integer values. Taylor expanding the Wilson loops we
see that

a* 3% log W(r, 1)

n _ 2 AN .
X(R,R") = a“F(aR, aR’) 2 3133y +.... (3-4.27)

Thus, in the continuum limit one has

2

Gi(R) = R*x(R,R) a=0, 2F(r, 1)+ 0 <?2> . (3.4.28)
Notice that the first term is universal, being independent of the lattice
bare coupling, once r is measured in units of an implicitly defined .
A practical problem that appears when implementing this method
is that Creutz ratios x(R,R’) are very noisy quantities for R and R’
large. To face this issue one can use the gradient flowed equivalents of
these observables: W¢(r’, 1), F¢(r, 1) and G¢(r). Analogously to what
is done for the flowed energy density in the Wilson flow, we have to
give a definition of a lattice equivalent to G(r;s). In Chapter 5, we
are going to give technical details of the lattice implementation and
a discretized version which will be called Gy (R;s). In this case, the
flow time in lattice units is fixed in terms of R as follows: v/8T = sR.
Although, this function is well-defined in the limit s — 0, performing
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this extrapolation as in [108] is unnecessary. For an effective statistical
error reduction it is enough to keep s larger than 0.1 and smaller than
1. Notice that intuitively our lattice observables are square Creutz
ratios obtained from fat (i. e. smeared) links of thickness proportional
to their edge length.

3.5 SPECTROSCOPY ON A SINGLE-SITE LATTICE

In this last Section, we are going to review the main techniques that
will be employed to perform spectroscopy in the single-site lattice
setup. At the end of Chapter 2 we discussed how reduction can be
applied to the case of fermions. The formula for the correlator of
operators acting on the Dirac space Ox and Og with the quantum
numbers of the meson that we are interested is given by Eq. (2.4.32),
which we rewrite for completeness

Cp(q0) |/\ | Z <Tr[ Dy} (5, po + 40)Oy ' D) (p)D,

We recall that the symbols A and B specify the spin-parity quantum
numbers of the operator and the indices i and j run over a family
of operators with the same quantum numbers. The Euclidean time
correlator is then defined as

(‘BXB no) Ze “40“0(“2” 5 (do).
qo

Now we have to specify the selection of operators used to obtain
the masses. The easiest choice is to use ultralocal operators O(Ai) =
YA, being ya the corresponding fermion bilinear. We will be mainly
interested in the pseudoscalar (0~ ), axial (1*") and vector (177)
channels for which the quantum numbers are given by vs, yoys and
YiYs. Apart from ultralocal operators, we are interested in having
a full set of operators having the same quantum numbers. This is
obtained by applying Wuppertal smearing [109-111] to the bilinear
operator combined with three-dimensional APE smearing to the link
variables [112]. This amounts to replacing the ultralocal operator ya
as follows

ya — O =y (M(p)™, (3.5.1)

where the single-step smearing operator is given by

M(p) I—i—cZ [P Tl + e (W) |,

k=1

and the s; are integers. In this equation, U indicates smeared gauge
field in a generic representation. In the fundamental representation
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this amounts to U, = Uy ® I}, while in the adjoint representation
this is simply W; = Uid]. In this work, we have used ¢ = 0.5 and the
following list of values:

i o1 2 3 4 5 6 7 8 9

si 0 1 4 16 36 64 100 144 196 256

In the case of adjoint fermions, we only used up to 6 operators,
while for fundamental ones we used up to 9. The symbol Uy appear-
ing in eq. (3.5.2) corresponds to the 10 times APE-3d smeared link to
be explained below. The smearing procedure is an iterative one which
in our case maps three spatial SU(N.) matrices onto new ones:

uf? —ult =l - nui+

+ 2 > (U uPuP g uPuu )], i)

i#i
where P is an operator projecting on SU(N.). The starting point of
the iteration is the link matrices UEO) = U;. For the case of adjoint
fermion correlators, we chose f = 0.081 and stopped after 10 itera-
tions U; = ugm)’ which is then transformed into the adjoint repre-
sentation and replaced in eq. (3.5.2). For the adjoint fermion, the pro-

jection to SU(N.) matrix is not required and it is enough to project
onto U(N.) as follows

P(W) =w(Wiw) /2, (3.5.4)

For the case of fundamental meson correlators, we applied the same
method using f = 0.15.

3.5.0.1  GEVP methodology

As we argued in Eq. (1.2.45) in Sec. 1.2.3.2 of Chapter 1, we expect
the signal to decay in time as an (infinite) sum of exponentials, cor-
responding to the contribution of the ground state plus other heavier
excited states. Given the typical hierarchy in the mass spectrum, we
expect the excited states to decay faster than the ground state, whose
signal dominates for large enough time separation. We want to extract
the mass of the ground state from an exponential fit in a region where
excited states give no systematic contribution. In order to do so, one
has to maximize the projection onto the ground state to have a single-
exponential decay setting in early on. Fermion smearing in Eq. (3.5.1)
should provide an improvement in this regard since it increases the
overlap onto the ground state wave function. Beyond that, we make
use of a variational approach, in the same philosophy of ref. [77]. Us-
ing the definition of the correlator matrix given in eq. (2.4.32), where
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the index i and j run over the smearing levels, we applied the so-
called GEVP method. Given two timeslices Ty and t1 (with t9 < T7)
(not to be confused with gradient flow scales) we solve numerically
the generalized eigenvalue problem (GEVP)

CY (1 )vj(n) =A@l (’to)v).(n) at fixed o, 11, (3-5.5)
where v(™) and A(M) are the eigenvectors and the eigenvalues, respec-
tively for a given choice of 1o and 17 (in order to lighten the notation,
we also omitted the indices A and B that appeared in eq. (2.4.32)). In
this work we used 19 = a and t1 = 2a. Among the basis composed by
the eigenvectors v(™), we choose the one whose corresponding eigen-
value is the biggest among the others. Let us denote this maximum
eigenvector with v™®, which we use to define an optimal operator by
rotating the original correlator-matrix

Copt(no, T1,To) = V™ €Y (no, 11, To) 0", (3.5.6)

The ground state mass is extracted from the exponential decay at
large time of this correlator.

75



RESULTS FOR YANG-MILLS THEORY AT LARGE-N_

This Chapter is dedicated to the results we obtained from our simula-
tions of Yang-Mills theory at large-N, through TEK volume reduction,
whose configurations were generated according to what is stated in
Chapter 3.

In Sec. 4.1 we apply the Wilson flow technique to set the scale in
our ensembles of configurations. We will study the systematic effects
coming from lattice artifacts and finite-N..

In Sec. 4.2 we use the Wilson flow scales calculated in the previous
sections and confront them with the ones obtained from the string
tension from previous results. Since our ensembles span many differ-
ent gauge couplings also to values close to the region where pertur-
bation theory can be applied, we will use the corresponding scales to
attempt an extrapolation of the A-parameter of Yang-Mills theory in
the large-N. limit exploiting asymptotic scaling.

In Sec. 4.3 we discuss the computation of the chiral condensate
of Yang-Mills theory in the large-N. limit. We will use two different
methodologies, one coming from the dependence of the pion mass on
the fermion mass and the other from the analysis of the low modes
of the Dirac spectrum.

4.1 N¢ =0: THE SCALE OF YANG-MILLS THEORY AT LARGE-N,

In this section, we apply the methodology explained in the previous
Chapter to the ensembles of configurations we have for the case of
pure Yang-Mills theory N = 0. We will start by analyzing the effect
of the norm correction on lattice artifacts and finite-size effects.

The first step is to integrate the Wilson flow equations and apply
the norm correction to obtain the improved flow function &1 (T,b,N¢)
as in Eq. (3.4.19) and then extract the scales Tp and T;. We recall that
we define as @ (T, b, N.) the integrated flowed energy density whose
definition can be found in Eq. (3.4.19). The improvement of the flow
through the norm corrections is thought to treat simultaneously lat-
tice artifacts and finite-volume effects. Since we have at our disposal
several values of the gauge coupling b and N, we can study how our
method works to reduce the aforementioned systematic effects. We
recall also that the norm correction is expected to work within a win-
dow determined on the low side by lattice artifacts and on the upper
one by finite volume effects.

To illustrate the role of lattice artifacts, we select the cases of (N, =
289,b = 0.36) and (N. = 841,b = 0.38). This choice is driven by
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Figure 3: Flowed energy density at b = 0.36 for N. = 289 (upper panels)
and N. = 841 (lower panels) before (left-hand panels) and after
(right-hand panels) the norm correction as in Eq. (3.4.19). Differ-
ent colors correspond to different discretizations of @ (T) on the
lattice (“clover” refers to Eq. (3.4.8)). The reference scale s; = 0.05
and sp = 0.1 are represented as horizontal grey lines and the scal-
ing window [1 .25, v2Ne /8] (with y = 0.22) is represented as a verti-
cal grey band. The value of the physical volume in units of /8ty
is approximately the same for the two (b, N.) values showed, as
indicated in the text.

the observation that the effective volume 1* = (ay/N¢)? in the two
cases is approximately the same (vN¢/\/8Ty =~ 5.424(13) and 5.143(25),
respectively). In such a case the two curves should display similar fi-
nite volume /N, effects at large flow time, while the curve at b = 0.38
should be less affected by lattice artifacts at small T since this value
of b corresponds to our finest lattice. To compare these two cases
directly, we plot in Fig. 3 the respective flowed energy densities as
functions of Nic = {5. In the same plot, we display the scaling win-
dow as a vertical colored band. By looking at the plot we can make
several observations. In the left-hand panels we show the uncorrected
flowed energy density @ (T) using two different choices for the lat-
tice version of the flowed energy density: the simple plaquette and the
clover from Eq. (3.4.8). The clover discretization is better behaved in
the region of small T, where we expect the effect of lattice artifacts to
be more sizeable. The plaquette discretization shows indeed a small
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Figure 4: Difference between the (inverse of the) of plaquette and clover flow
after the norm correction.

“bump” which in the case of N. = 289 induces a large systematic
uncertainty in the direct determination of the corresponding /8T;.
The same behavior is present also in the finer lattice at b = 0.38, but
does not influence the determination of the scale, as expected. On the
other hand, this systematic effect is completely absent in the clover
flow, as the curve shows a monotonous behavior. An additional effect
captured by the different discretizations of @ (T) is a relative horizon-
tal shift between the plaquette and the clover curve, which can be
also attributed to the effects of lattice artifacts. In the right-hand pan-
els of Fig. 3, we repeat the same plot but after the application of the
norm correction as in Eq. (3.4.19). Note that the norm correction factor
changes depending on the lattice discretization of the energy density:
the norm associated with the clover is given by Eq. (3.4.16), while the
one for the plaquette by Eq.(3.4.18). As it is evident, the norm correc-
tion gets rid of the bump in the plaquette flow and makes the clover
and the plaquette flow overlap almost completely above the lower
end of the scaling window. In Fig. 4 we depict the difference between
the inverse of the plaquette and the clover flow after the application
of the norm correction. The difference grows sizeably big in the re-
gion of small flow times, signaling additional lattice artifacts effects.
For better visualization, in Fig. 5 we depict for N. = 289, b = 0.36
and N..841 b = 0.38 the flowed energy density before and after the
application of the norm correction, making the flow @ (T) and its cor-
rected version @1 (T) to overlap. The additional conclusion we make
from this plot is that the norm correction induces a horizontal shift
of the curves, which we are going to analyze in the following.

The other systematic effect we target is the one produced by finite-
N.. In Fig. 6, we illustrate the effect of the norm correction for several
values of N (132, 172,192,232, 252, 292) in the case b = 0.37. In the
left-hand panel of Fig. 6 we display the flow curves before the applica-
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Figure 5: Effect of the norm correction to the flowed energy density in the
case of b = 0.36 for N. = 282 and N, = 841 for the clover flow. The
reference scale s1 = 0.05 and sp = 0.1 are represented as horizontal
grey lines and the scaling window [1.25,y?Ne/s] (with y = 0.22) is
represented as a vertical grey bands.

tion of the norm correction, and the two reference scales so = 0.1 and
s1 = 0.05 depicted with corresponding horizontal grey lines. As it is
evident from the magnification in the plot, each curve corresponding
to a different N intersects the line corresponding to s; at a differ-
ent value of the lattice flow time T. The values of the scales /8T;
are 4.847(74), 4.464(22), 4.393(29), 4.367(21), 4.359(17), 4.328(13), or-
dered for all the values of N. quoted previously. In the right-hand
panel, we apply the norm correction to the flowed energy densities
for each value of N, and we depict the results of the right-hand side
of Fig. 6. The corresponding value of /8T; are 4.134(29), 4.222(17),
4.222(24), 4.251(19), 4.257(16), 4.240(12). In the plot, each different
color corresponds to a different N, and the different scaling windows
are represented as colored vertical bands. It is visible to the eye that
inside each scaling window all the different flow curves collapse, in-
dicating that the norm corrections effectively remove finite-N. effects
within the region described by Eq. (3.4.20).
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Figure 6: Left-hand side: Flowed dimensionless energy density ® (b, N.) (c.f. Eq. (3.4.9)) for pure Yang-Mills for different numbers of colors at b = 0.37.
Right-hand side: Same flow curves with the norm correction applied, c.f. Eq. (3.4.19). The scaling windows in Eq. (3.4.20) with y = 0.28 are
represented with a vertical stripe of the same color as the flow curve they are associated with. They all start at T = 1.25 but in the region
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Figure 7: N. dependence at b = 0.37 of the lattice scales /8Ty extracted
from the clover flowed energy density before (“raw”) and after
(“corrected”) the application of the norm correction. The plot
shows a linear extrapolation to the large-N. limit of both cases.
The values of the scales before the application of the norm correc-
tions are reported in the text, while the ones after are in Tab. 7.

Nevertheless, it is interesting to compare the results obtained with
and without the norm correction. In Fig. 7 we display the lattice scales
\/ST determined in both cases (“raw” and “corrected” in the caption)
as a function of /N2 and we perform a linear extrapolation to the
limit of large-N.. We first observe that the N. dependence is milder
for the norm-corrected scales, which are compatible with a constant
value. Although both linear extrapolations have a good x?/dof (~ 0.2
in both cases), the extrapolated values do not coincide.

To explore this in more detail, we analyzed how this discrepancy
varies with the values of b. Let us call with T;™(b) the value of Ty
extracted from the clover flow without the norm correction and then
linearly extrapolated in 1/N2 to the limit N. — oo as in Fig. 7. By call-

ing T (b) the extrapolated value of the clover flow after applying the

1 : : _ Aeorr(b) _ T (b)
norm correction, we can define the ratio R(b) = D) = T ON

In Fig. 8 we plot the number R(b) as a function of the lattice spac-

ing calculated as —g— leaving out the case of b > 0.37 for which

V8T
we do not have enough values of N to perform a large-N. extrap-
olation. As one can see from the plot, the number R(b) extrapolates
to 1 within errors in the continuum limit, confirming that the dis-
crepancy we observed is an effect due to lattice artifacts. Although
the values of Ty (b) are obtained through a large-N. extrapolation, a
constant fit gives almost always a good x? as the dependence on N
is efficiently captured and neutralized by the norm correction. More-
over, the extrapolated values are always compatible with the values

T1(b,N. = 841) and therefore in the following we will always use
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Figure 8: Extrapolation of R(b) = /T;*V(b)/T{°(b) to the continuum limit.
The lattice spacing in the x-axes is expressed in units of T{™".

them to fix the scale. All the values of Ty obtained after applying the
norm corrections are reported in Tab. 7.

4.1.1  Outside the window

One important issue that we have to address is the choice of the up-
per limit of the scaling window, set to Tnax = yz%. We remind that,
as commented in Sec.3.4.1 of Chapter 3, the physical parameter that
governs finite volume effects is c(T) = \/ﬁit, i.e. the fraction of the
effective length occupied by the flow smearing range. In order to give
a quantitative prescription, we have to analyze the behavior of the
norm correction. In Fig. 9, we plot the correction factor of the flow
(subtracted by 1), for different values of N versus the parameter c. At
small values of ¢, the differences between the corrections factor are as-
sociated with lattice artifacts effects, which for fixed physical volume
1 = ay/N¢ are given in terms of 1/y/N¢. As the parameter ¢ grows, the
effect of the norm correction tends to be the same, irrespective of the
value of N.. We also notice that the correction grows rapidly as one
goes beyond the region having c ~ 0.3, indicating that finite volume
corrections are expected to be severe. In Fig. 10, we display the rela-
tive difference between the norm-corrected clover flows for N. = 841
and N. = 169, corresponding to the biggest and smallest effective
lattice volume, respectively. This helps to identify the region in T in
which the corrections treat effectively finite-N. effects: as one can see
from the plot, choosing vy ~ 0.22 ensures that the relative difference is
of the order of a few percent.

An important observation is that for the majority of the cases (ex-
cept for N = 169) the scale selected at the reference value s; = 0.05
falls before the upper limit of the scaling window Tnax = yz% with
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b (Ne, k)  ¥8u VBY (g fit) V8o VB (o fit)
0.35 (841,9)  2.1819(23) 22014(43)(78) 3.5932(62) 3.578(68)(35)
(169,5)1  2.6243(89) — 4154(19) -

o355 (289,5)1  26451(44) 2.6511(53)(54)  4.2784(94) 4.31(1)(65)
T (361,7)1 2.6513(44) 2.6697(56)(59)  4.334(10)  4.3393(90)(37)

(529,7)  2.6504(37) 2.6693(66)(76) 4.34(11)  4.339(11)(1)

(841,9)  2.6533(44) 2.6803(82)(74) 4.359(14)  4.356(13)(1)

(169,51 3.093(11) — 4.800(24) —

(289,5)1  3.1341(77) 3.1333(83)(14)  4.999(17)  5.09(1)(77)
oze (36171 31384(9%) 3.139(11)(2)  5.044(20)  5.102(2)(12)
T (529,7)1 3.377(43) 3.1401(64)(50)  5.094(12)  5.104(11)(8)

(625,4)  3.1558(62) 3.1637(89)(68)  5.141(16)  5.142(15)(5)

(841,9)  3.1492(47) 3.1610(68)(87)  5.138(12)  5.138(12)(1)

(169,51 3577(19) — 541039)  —

(289,5)1  3.678(12)  3.67876(93)(86) 5.777(28)  5.98(2)(90)
0.365 (361,7)7  3.649(13)  3.6486(6)(36)  5.769(28)  5.930(21)(23)

(529,7)F  3.663(11)  3.655(13)(3)  5.868(26)  5.940(21)(19)

(625,4)7  3.6801(97) 3.676(11)(3)  5.938(24)  5.975(19)(15)

(841,9)  3.682(14) 3.684(23)(8)  5.986(43)  5.988(39)(6)

(169,5)%1 4.134(29) — 6.150(52) —

(289,5)%1 4.222(17)  4.2322(37)(56)  6.529(37)  6.88(2)(100)
03y (B617)7T 4222(24)  4.2345(35)(57)  6598(66)  6.883(25)(30)
T (529,7)F 4.251(19)  4.247(18)(2)  6.762(50)  6.903(30)(24)

(625,4)F  4.257(16)  4.251(16)(2)  6.798(35)  6.910(26)(23)

(841,9)F  4.240(12) 4.231(15)(2)  6.837(36)  6.877(26)(20)
o375 (625,4)1  4.854(30) 4.862(22)(8)  7.621(75)  7.902(39)(36)
T (841,91 4.853(16)  4.849(16)(5)  7.761(38)  7.881(26)(30)
o3g (625,471 5508(44)  5558(7)(16)  852(12)  9.034(47)(52)
T (841,91 5.639(27)  5.618(19)(3)  9.03(07)  9.131(31)(26)
0385 (841,9)1  6311(59) 6342(26)(13)  9.84(14)  10.307(42)(51)

Table 7: List of Wilson flow scales for TEK model for each value of (N, b).
Those ensembles whose scale Ty (after norm correction) falls at the
right of the scaling window with y = 0.22 are marked with an
T, while the same cases for Ty are marked with a *. The scales in
the 3'd and 5™ columns are extracted by simple interpolation, and
errors are evaluated with the I' method. The scales in the 4™ and
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v = 0.22, therefore /8T can be safely estimated through an interpo-
lation. This is not generally true for sp = 0.1, which falls out of the
scaling windows (except for N. = 841 for some b values), and there-
fore can suffer from systematic effects coming from finite-volume /N
corrections. Conversely, the flow curve may intersect the reference
value at a value of T < 1.25. This is also a case in which the scale falls
outside the scaling window, although the systematic effect felt in this
case is due to lattice artifacts. In both cases, the scale should not be
extracted by interpolating the curve, but rather by fitting it inside the
scaling window and then extrapolating (backward or forward) the
values at the reference scale. In Tab. 7, we indicate which ensembles
have a T; or Ty falling outside the scaling window and for which, in
principle, one would need to extrapolate. We will detail below how
to handle these cases.

We make use of a parameterization of the flow-time dependence
which relies on the connection between the infinite volume flow and
the gradient flow renormalized coupling constant Ay, c.f. Eq. (3.4.7).
Starting from the renormalization group equation defining the 3 func-
tion and integrating it between two different reference scales ts and
t one arrives at:

J)‘gf(t) dx 1 1 <ts> (4.1.1)
—— =slog(—|. 1.1
Agelte) B(X) 2 B\t 4
The left-hand side of this equation can be easily integrated in our
range of couplings using the following parameterization of the (3-
function:
oA

B(}\gf) :_] —

k17 (4'1'2)
k=0 ak}\gf

with coefficients chosen to reproduce the universal expansion of the
B-function to second order in A4, given by

B(Agf) = —bo7\§f - b17\§f +0 (N;) , (4.1.3)
where
1 11 —4Ng
1 34—32N¢
by = ) 3 . (4.1.4b)

where ag is set to by/bp and we allowed for a generic number of
flavors N¢. For the time being, we will set N¢ = 0, although the same
method can be trivially extended to the case of dynamical fermions by
allowing the global function to be a function of T/Ts(b, N¢, Kaq;) and
considering the appropriate N¢ factor in Eq. (4.1.4). The advantage
of using such a parameterization is that it constrains the small-time
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behavior of the flow to the expected one in PT and the large-time flow
to those given by “safe” interpolations. After integration, one arrives
at the following equation

@10 o LN +
2 %0 T T\ agelts)
—aplo Ay (1) —§ak<7\k(t)—7\k(t )) (4.1.5)
OB\ Mgilte) | T Ak Vs T e )y RS

which can be used to fit the numerical results for the flow, leaving as
free parameters the non-universal coefficients of the 3-function and
the t scale.” To be more specific about the procedure, we recall that
the flow and the gradient flow coupling in the continuum differ for
a multiplicative factor Ag¢(t) = @ (t)/K(00). According to Eq. (4.1.5),

we can define a function H as

N

H(T) = % log Ts — X (o0) <A1 — 1)4—

o(T) s
O(T) s .
—aplog (s) — ]; ﬁ(@(ﬂk —s%), (4.1.6)

which is a function of the flow & and of some free coefficients {ay}
and one free parameter Ts for each b and N, l:l((i)(T);{ak}, TS). We
thus extract the scale and the parameters by minimizing the following
cost function

(D (T); {ax) Ty) — B log T
XZ(TS,{ak})=Z< ( ( ){ak}éH) 2 08 ) , (4.1.7)
T

where 6H is the uncertainty on H, linearly propagated from the one
on @:

SH =

dH (:K(oo) ao>%, (18

~0p = =
ad ? )

where o0¢ identifies the Monte-Carlo error we calculated on the flow
.

Let us apply now this procedure to our data. First of all, we test our
methodology by applying this global fit procedure to extract T; and
compare it to the values we obtained before. To obtain good x?2/dof
in the global fit, we adopt the following choices: we consider a scaling
window of [1 .25,0.222%], we exclude the case of N. = 169, and fit
the curves in the region where ®; < 0.11. As previously mentioned
we fit together all the curves with different b and N and allow Ts to
depend on both these parameters. In the fourth column of Tab. 7, we

An analogous procedure can be found in [113] where it is used to parameterize the
step scaling function.
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b a/o \/§T1

0.355 0.2410(30) 0.37689(62)
0.360 0.2058(25) 0.31754(47)
0.365 0.1784(17) 0.2716(10)
0.370 0.1573(19) 0.23582(69)
0.375 0.1361(17)  0.20605(69)
0.380 0.1191(17) 0.17734(86)
0.385 0.1049(11)  0.1584(15)

Table 8: Lattice scale in units of the string tension (taken from [108]) and the
Wilson flow improved scale.

report the values of /8Ty obtained following this methodology. We
also associate a systematic error calculated as the dispersion of the
results of the global fit by varying the number of free coefficients in
the B-function expansion, and the limit of the scaling window. We
observe that the values we obtain are perfectly compatible with the
ones obtained through interpolation, also for some of those few cases
whose interpolated Ty fell right above the upper end of the the scaling
window with 0.22. This is a confirmation of the fact that, although
needed to have a good fit, y = 0.22 is a somewhat “strict” parameter
and for Ty a global fit is not needed. Given this compatibility, we
proceed to apply the procedure to extract the values of /8Ty. We
perform again the same global fit procedure, this time using so = 0.1
as a reference value, and we report the values in Tab. 7.

4.2 TESTING (ASYMPTOTIC) SCALING AT LARGE-N,

In this section, we are going to confront the lattice scale extracted
in the previous section with the one extracted in units of the string
tension /o obtained from a previous determination. In particular,
we will refer to [108] in which the authors extract the string tension
of Yang-Mills theory in the large-N. limit, by using Creutz ratios
method introduced in Sec. 3.4.1.2 of Chapter 3. In Tab. 8, we report
the values of the lattice spacing in units of the string tension taken
from [108] and the Wilson flow improved scale and their dimension-
less ratio R = y/0+/8t;. In Fig. 11, we depict each value of the ratio as
a function of (a/+/8t7)2. A simple fit to a constant gives the value of
0.6566(78) with a x?/#dof = 1.6, mainly spoiled by the value at the
coarsest point. Nevertheless, we notice that a linear fit in (a/y/8t; )2
gives an extrapolated value of 0.6742(83) with a x2/#dof = 0.24 may
accounts better for scaling violations. As a final value, we will con-
sider 0.674(8)(18) where the systematical error is the dispersion be-
tween the two previously obtained values. This comparison with the
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Figure 11: Ratio of the string tension on the lattice and the Wilson flow scale
for each value of the gauge coupling b. The horizontal band cor-
responds to the fit to a constant, giving the value of 0.6566(78),
while the linear fit gives a value of 0.6742(83) for the extrapolated
value.

string tension is a remarkable confirmation of the validity of scaling
for a wide range of 't Hooft couplings which gets small violations in
the case of the coarsest ensembles. Furthermore, our new determina-
tion of the scale has smaller errors than the one previously extracted
using the string tension.

In the next subsection, we will exploit this feature to extract the
A-parameter of the Yang-Mills theory in the large-N, limit. We recall
that what is going to be presented in the next sections is the result of
a preliminary analysis, and there is ongoing work that is not included.
The final results will be presented in a future publication.

4.2.1  The A-parameter

As already mentioned in Sec. 1.2.3.3 of Chapter 1, in a generic renor-
malization scheme labeled with s, the Renormalization Group (RG)
equation for the bare coupling dependence on the cutoff scale a reads

dAS

—W , (4.2.1)

Bs(As) =
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which, upon integration, leads to
N
a/\S = (bo)\(a)) Zb0 e 2bpA(a) X

_ (Ma) 1 4 1 by
j dx(zﬁ[x] JrZboxz Zb%x

> (4.2.2)

X e

where Ag is the integration constant which is scheme-dependent. We
recall that Eq. (4.2.2) is an exact integral of the first-order differential
RG equation and the equal sign holds when the integral is performed
with the exact 3-function. On the other hand, it is well-known that the
B-function has the following perturbative expansion around As ~ 0

B(As) ~ —boAZ +b1A] + b(z“g]?\ls1 +0(A2), (4-2.3)

where by and by are known to be universal (scheme independent)
and in a pure Yang-Mills theory they amount to*

11
0= 3 0.02321943791803574 (4.2.5)
34
= 2~ 0.0004544 4 2.
b1 = S 0.00045448358940008786, (4.2.6)

while higher-order coefficients are known to be dependent on the
scheme chosen. In the MS-scheme the second coefficient is given
by [114]
LS _ 1 2857
2 7 (4me 54
On the lattice using the Wilson action, the coefficient in the large-N.
limit is given by [115, 116]

~ 0.000013435607137976756 . (4-2.7)

by = bF +0.16995599b1 — 0.0079101185b¢ ~ —0.00009299069,
(4.2.8)

which will be referred to as the “Wilson scheme”. Using a fully per-
turbative pB-function truncated at O(?\3 ), we can easily calculate the
coefficient of the linear term of the expansion of the integral. In terms
of the Wilson flow scale 1/8t;, we obtain the following formula

a

—1 =log Ag\/8t] + ———
V- TERCE A TS W
by c%s) 5
+ ﬂ log(boks(a)) + EAS(G) + O()\s) , (429)

We are giving our definitions using the "t Hooft coupling A = gzNC, since we are
interested in the large-N. limit of Yang-Mills theories. Although in the literature it
is more common to use gZ to define the B-function, the formulas we are going to
review here are easily generalizable. The coefficients of the standard [5(92] are typi-
cally indicated with the Greek letters 3;. The conversion between the two definitions
reads

Bi

BRI
N¢

i

(4-2.4)
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where the coefficient of the linear term is given by

bls) 2
cgs) = sz — % , (4.2.10)
and is scheme dependent, as well as the A-parameter itself.

On the lattice, several approaches can be followed to calculate the
A-parameter. Among the different possible schemes, we recall that
the twisted gradient flow we analyzed in detail in Sec. 3.4.1 of Chap-
ter 3, provides a well-defined scheme for the coupling. One possi-
ble approach is to combine twisted BC with standard step-scaling
techniques which allows one to fix the energy scale p = (v/8t)! and
link it to the inverse of the physical size of the effective lattice 1 as
1= (cn)~', being ¢ a parameter that is usually chosen to be 0.3. By
confronting the results of simulations of several values of 1, one can
run the coupling to match the lattice results to perturbation theory.
This is the line followed by [71, 117], in which twisted gradient flow
on an extended lattice with twisted BC is combined with step-scaling
techniques to determine the A-parameter in SU(3) Yang-Mills the-
ory.’

Another possible approach is the one whose philosophy follows
the one in [108, 118], which we are going to briefly review here.

Given a change in the coupling

N =As(T+y1As 7278 + O(AY), (4.2.11)

we can easily relate the definition of the scheme dependent quantities
(the A-parameter and cgs)) with a one-loop calculation as

A/ i
A = ezgo (4.2.12)
/ 2 by
f=ci+yi—va+5 V1. (4-2.13)
2by

which allows us to confront different schemes. The coupling scheme
we have direct access to is the lattice one given by the Wilson action
Aw = 1/b, which is known to have large higher-order perturbative
corrections. In fact, the ratio between the Wilson’s and the MS scheme
is known to be [70, 119]

% = 38.853. (4-2.14)

4%

Nonetheless, this is to be expected: in the range of b in which typ-
ical lattice simulations are performed, it is well known that asymp-
totic scaling has large corrections when using the naive Wilson cou-
pling constant. However, it is well known that adopting a different
“improved” definition of the coupling as in Eq. (4.2.11) can mitigate
the problem of large higher-order correction and improve the conver-
gence with perturbation theory. In the following, we give three differ-

3 In [71], the physical size of the lattice is set to 1=ayNeg.
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symbol  definition //\\V,“ 1
Aw T 1 —0.00438798235
A1 S 0.0677656398  —0.00172791
Ae 8(1—P(Aw)) 04148791463  —0.0005030
Aer —8logP(Ay) 0.1080025976  —0.00042426

Table 9: Possible definitions for the gauge coupling on the lattice.

4.0 4.2 44 46 48 5.0

Ap

Figure 12: Logartihm of the lattice spacing in units of the Wilson flow scale
V/8t1 listed in 8 as a function of the improved coupling Ag/ de-
fined in Tab. 9. The green line is the result of a fit to Eq. (4.2.9).

ent possibilities that will be adopted: A1 (from [118]), Ag (from [120,
121]) and Ag/. We report their definition in Tab. 9. All of them rely on
the usage of the plaquette, which in the case of TEK action is known
to O(A3,) in PT [52]

P(Aw) = T—wiAw — woA3, — w3h;,, (4.2.15)

where wy = 1/5, wy ~ 0.0051069297 and w3 ~ 0.00079425. By em-
ploying these three different improved couplings, in the following,
we proceed with the extraction of the corresponding A-parameter.

Having at our disposal such a large range of values for the 't Hooft
coupling we can explore non-perturbatively a region close to the weak
coupling limit. To illustrate the effectiveness of the usage of the im-
proved couplings, in Fig. 12 we depict the logarithm of the lattice
spacings in units of /8ty as a function of Ag: and a fit of Eq. (4.2.9)
leaving the A-parameter term free. Although when looking at the
plot the accordance with theoretical prediction is quite striking, the
direct fit of Eq. (4.2.9) to our data does not give a good x?2. This is to
be expected, given the small size of the error and the large range of
values of the coupling covered by our data.
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4.2.1.1  A-parameter of Yang-Mills theory at large-N

As explained in the previous subsection, the goal is to determine the
A-parameter in the MS scheme in units of the improved Wilson flow
scale /8ty by exploiting asymptotic scaling. The main formula is
Eq. (4.2.9), which dictates the dependence of the lattice spacing on
the “t Hooft coupling in units of /8ty in a given renormalization
scheme. Scaling implies that we can define the A-parameter in the
MS scheme in the continuum as

. S
sV 8t = }\lslgo Al fs(As)V/8T1, (4.2.16)
where we defined
1 %S) _ b1
fu(he) = e (o 2 0) (o) 203 (4.2.17)

from Eq. (4.2.9) and the ratio between the corresponding A-parameters

is known by taking the product
s = s Aw , (4.2.18)
As A As

where the separate factors can be calculated from Eq. (4.2.14) and

Eq. (4.2.12).

We depict in Fig. 13 the calculated values of Agg in units of /8t
at fixed lattice spacing. We observe that the point corresponding to
b = 0.38 is unexpectedly displaced. For this value of the coupling, the
flowed energy density suffers from large autocorrelation time which
might bias the central value of the distribution. For the sake of visu-
alization, we depict in Fig. 14 the Monte-Carlo history of Ty, and the
relative histogram. The origin of this large autocorrelation is yet to
be explored and analyzed, although it is similar to what is observed
in other similar works in the literature [122, 123]. For the moment,
we exclude this point from the following analysis. A more complete
treatment of this behavior will be issued in a future publication. We
perform a quadratic extrapolation to a/y/8t; = 0 for each one of
the improved couplings, excluding the one at b = 0.38, obtaining
good reduced x?, reported in the caption of Fig. (13). The extrapo-
lated value of Agyg in units of /8ty are 0.3682(47), 0.3620(46) and
0.3652(47) for A1, Ag and Ag-, respectively. We also notice that the ex-
trapolated values do not change significantly if we also include the
point at b = 0.38, although the x? grows bigger. To quote a final esti-
mate of the A-parameter for the Yang-Mills theory at large-N. in the
MS scheme, we give the mean values between the previous results
and assign the dispersion as a systematical error. We report the final
value in units of \/8t7 and of \/c*

Asgs = 0.3618(47)(29) (\/ﬁ )*1 — 0.5366(94)(120) /o, (4.2.19)

4 We convert the result using the dimensionless ratio R = /8ty/0 = 0.674(8)(12) we
previously found.
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Figure 13: (Logarithm of the) A-parameter in the MS scheme in units of
V8ty versus the lattice spacing in the same units using three
different improved couplings in Tab. 9. We also depict the cor-
responding quadratic continuum extrapolations. In the fit, we
excluded the point corresponding to b = 0.38 (whose points
are depicted with an empty marker), obtaining x?/#dof =
0.49,0.61,0.62 for A1, Ag and Ag/, respectively.
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Figure 14: Monte-Carlo history of the value at which the flowed energy den-
sity at No = 841, b = 0.38 crosses s = 0.05 and relative histogram.
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Figure 15: Values of Ay present in the literature compared. The red band
represents a weighted average.

where the systematical error is a sum in quadrature between the sys-
tematical uncertainty on A and the one on R. which results to be in
accordance with the large-N. value 0.503(2)(40)+/0 in [118] and with
the result 0.525(2) in the TEK model from [108] and also with the
number of 0.5093(15)(250) given in [124]. To collect and compare vi-
sually all these results we plot all the values in Fig. 15 in a FLAG-style
plot.

4.3 THE CHIRAL CONDENSATE OF YANG-MILLS THEORY AT LARGE-
Ne

In this section, we present the result concerning the extraction of the
chiral condensate for fermions in the fundamental representation. As
mentioned in Sec. 1.1.2.1 of Chapter 1, the fermion condensate is the
order parameter of the spontaneous breaking of chiral symmetry in
the vacuum. Under the assumption that this mechanism survives the
large-N limit, our goal is to perform a quantitative calculation of
the chiral condensate in Yang-Mills at large-N.. We recall that in
the large-N limit, fundamental fermions are naturally quenched and
thus pure gauge configurations can be directly employed and no ad-
ditional computational cost, excluding the ones needed to compute
fermionic observables. Although a computation of the chiral conden-
sate has never been attempted in the TEK model, a lot of effort has
been put into computing the meson spectrum in the large-N. limit
in [75], where the authors also provide the data of a large number
of observables at several values of b and N.. We will follow two dif-
ferent strategies to compute the chiral condensate in our setup. The
first one, presented in Sec. 4.3.1 makes use of the GMOR relation on
the lattice, i. e. the dependence of the pion mass on the renormalized
fermion mass that can be read directly from [75] at no additional
computing cost. The second one, presented in Sec. 4.3.2, is based on
the study of the spectral density of the Dirac operator following the
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Banks-Casher relation for which we will need to perform an explicit
computation of the eigenspectrum of the Dirac operator.

The material presented in this Section has to be intended as a pre-
liminary analysis that will be presented in a future publication.

4.3.1  The condensate from the GMOR relation

The first methodology makes use of the Gell-Mann-Oakes-Renner
relation (cfr. Eq. (1.1.38)), which states that in the continuum the
squared pion mass m2 is equal to the renormalized fermion mass
m, multiplied by a combination of the renormalized chiral conden-
sate X, and the pion decay constant fy,

m2 = %mr. (4.3.1)

7T

As mentioned in the introduction of this section, we can use the data
provided in [75] for N. = 289 and 4 different values of b. More specif-
ically, when dealing with pion spectroscopy, the authors provide data
for the slope (divided by /0) of the relation between the pion mass
squared in units of the string tension versus the bare subtracted quark
mass (M~ /)% o (2k)~1. We can compare this formula to the GMOR
relation, by dividing both sides of Eq. (4.3.1) for ﬁz and express-
ing the renormalized pion mass in terms of the subtracted mass mg,
defined through

1/1 1
mq = 4 <2|< — 2Kc> =Zsm,. (4-3-2)
We thus obtain the relation
slope  2Xg
Jo - Zs2Jo (4-3.3)

whose corresponding numbers are reported in [75] for several values
of b and N.. To extract a value for the condensate, we need to have the
values of the pion decay constant f, and the renormalization factor
Zs. The pion decay constant is given in terms of the matrix element
of the axial current A, between the vacuum and the pion states and,
given its scaling in color as /N, it can be defined to coincide with
the N. = 3 case as

3 3
Fr=\/Nom2 (0l AG(0)Im;p = 0) = 4/ N, (4-3-4)

In [75], the calculation of F is tackled from several measurements,
including a separate calculation using twisted mass Wilson fermions
to have a determination independent of the normalization factor Za.
The final result is given by a fit to the general formula

F(my) + B(my)e €WV, (4-3.5)
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where the functions F and B are well described by second degree poly-
nomials in m, and 1 = a\/N¢. F(my) gives the estimate of the pion
decay constant at infinite volume and infinite N.. We are interested
in the limit of zero pion mass, as the GMOR relation describes the
behavior of the pion mass in the chiral limit, given by

fr  0.232(6)
WNeve 3 (4:3.6)

This value has to be intended in the continuum limit, therefore it will
be used just as an overall numerical factor. The last missing ingredient
would be the explicit value of the renormalization factor Zs, which
is known to be a cumbersome quantity to calculate on the lattice. On
the other hand, we have direct access to the ratio 4r/z5, derived from
the ratio Z2r/z5z, (i.e. the slope of mpcac versus the bare quark mass)
and Za, obtained by confronting the different determinations of F.
Combining Eq. (4.3.3) and Eq. (4.3.6) we obtain a definition of the
chiral condensate (divided by N.) and in units of the renormalization
factor Zp

L. 1/0232(6)\*(slope\ Zs
chp‘z< = )(\/6)2])%)3. (437)

In Fig. 16 we depict the values of the condensate as in Eq. (4.3.7)
versus the lattice spacing in units of /o converted to MeV through
v/o =440 MeV. A meaningful extrapolation of the chiral condensate
to the continuum limit with the data in Fig. 16 would need the exact
non-perturbative values of the renormalization constant Zp(a), which
unfortunately are not available at the moment of the writing of this
Section. For this reason, we will take the point with the finest lattice
spacing as a result, which gives

]

3
Iy —0514(14)/y/o atb =037, (4.3.8)
ZpNe

which, converted in MeV through Vo = 440 MeV, gives a value of
226(6) MeV.

4.3.2  The chiral condensate from the Banks-Casher relation

As mentioned in Sec. 1.1.2.1 of Chapter 1, one way to see the mech-
anism of spontaneous symmetry breaking is the condensation of the
low-lying modes of the Dirac operator d-la Banks-Casher, whose re-
lation states that the spectral density p(A) of the massless continuum
theory has a non-vanishing value for the lowest mode in the ther-
modynamic limit, which is directly related to the quark condensate

Iim lim lim p(A,m) = %, (4.3-9)

A—=0m—0 Voo
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Figure 16: Chiral condensate from the GMOR relation in units of Zp ver-
sus the squared lattice spacing in units of the string tension. The
values of the condensate have been converted to MeV using the
relation \/o = 440 MeV. The blue horizontal band represents the
value of the point corresponding to the ensemble with the finest
lattice spacing.

being L the quark condensate of the infinite-volume massless the-
ory. We remind that A are the eigenvalues of the Euclidean massless
Dirac operator D and m is the quark mass. In the infinite volume
limit, as found in [125] chiral perturbation theory dictates the behav-
ior of the spectral density as a power series of the fermion mass (and
the eigenvalue A). The leading term in the expansion is given by the
Banks-Casher formula, where the “effective condensate” reads

v(M, m)
y == 3.
where v(M, m) is the mode number, i.e. the average number of eigen-
modes of the massive hermitian operator DD +m? with eigenvalues

a < M2,

A
v(M, m) = VJ dAp(A,m), where A =+vVM2—-m2. (4.3.11)
—A
At the next-to-leading order, the formula receives corrections directly
proportional to the fermion mass.

The definitions that we gave of the quantities related to the mode
number can be translated on the lattice once one is careful to cor-
rectly identify meaningful observables. As pioneered in [126], the
mode number itself can be estimated through the average number
(v(M,mq)) of eigenmodes of the hermitian operator D!,D,, with
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eigenvalue o < M2, where M2 is a bare mass threshold. There are dif-
ferent methods one can adopt to evaluate the average mode number
(v). A popular one employs the usage of spectral projectors: the eigen-
modes of the Dirac operator with o < M2 are “filtered” through
a projection operator, then the mode number is evaluated stochasti-
cally by a trace over the filtered subspace.> On the other hand, our
approach is somewhat simpler. We proceed with the direct extraction
of the 100 lowest magnitude eigenvalues Q,, using ARPACK routines
for a sample of 100 configurations at N. = 289 maximally spaced in
MC time to minimize autocorrelations, for several values in the (b, k)
parameter space. By calling Aq the extracted eigenvalues, we define

o = (72%)2 which has the right naive continuum limit and thus can
be considered the lattice version of the eigenvalue of the operator
DD 4 m?.

To extract the mode number we perform the counting of eigen-
values in terms of renormalized quantities. We recall that the mass
threshold, as well as the eigenvalues, renormalize as M = ZpM, (or
A = ZpA;), while the bare subtracted fermion mass myq = Zsm, can
be expressed in terms of the PCAC mass mpcac. We can thus define

the ratios

M, M M VA
- 5 - = 7
my  ZampcacT My  ZaMmpcac

(4.3.12)

where the PCAC masses and the renormalization factor Z5 can be
directly taken from [75]. Nevertheless, it is worth noticing that, as
formally demonstrated in in [126], the mode number is a RG invari-
ant quantity, i.e. v;(My, m;) = v(M, mq) and thus can be calculated
by counting the number of eigenstates having % below a certain
threshold given in physical units i.e.

Vr(mrr Mr) = Z 1. (4313)

[Arl ~ My
mr < mr

As predicted by chiral perturbation theory, the mode number shows
a linear behavior starting from above the threshold region M, ~ m,,
from which we fit the slope. Given this linear behavior, following
the methodology suggested in [126], we define the mass-dependent
effective condensate as

E_i 1— My zaVr(Mr,mr)
N, 2V

Mr aMR (4314)

which coincides with the leading term of the condensate in chiral
perturbation theory. We notice that the N, factor in the effective con-
densate comes naturally from the definition of our Dirac operator. If

The original method was already employed in [126]. Later in the years, the same
approach has been endowed with more efficient filtering operators [127-129].
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we let fermions propagate in a (vVN2)* box, the Dirac operator be-
comes block diagonal where each block gets repeated N times (cfr.
Eq. (2.4.19)). Since we calculate the eigenvalues of one block, we au-
tomatically obtain the right multiplicity factor. We will repeat this
procedure for several values of the lattice coupling and the fermion

mass.

Since the Banks-Casher relation is a statement in the continuum
and the chiral limit, to recover the value of the condensate through
Eq. (4.3.14) we use the following procedure.

100

¢ We identify 3 lines of constant physics in the parameter space

(b, k), in which the pion mass in units of the string tension is
approximately constant. For each one of the 4 values of the
lattice spacing (b = 0.355, 0.36, 0.365, 0.370), we use the data
in [75] to find the linear dependence of the pion mass squared
on 1/2k. We then select 3 values of the pion mass squared in
units of the string tension m,/y/0 ~ 1.05,1.25,1.563 and use
this dependence to extract at each b the values of k correspond-
ing to each one of the values of the fixed pion mass. Using the
data provided in [75], we are also able to extract the depen-
dence of mpcac on k, which can be combined with Z4 to give
m.Zp = Zampcac. We report the values of (b, k) and the corre-
sponding value of Za mpcac in Tab. 10.

We thus proceed to calculate the mode number for each value
of (b, k) in Tab. 10 by counting the number of eigenvalues as
in Eq. (4.3.13), obtaining the value of the (v,) as a function of
M, /m;.

We identify a linear region in the dependence (v;(Mr/m,)), we
fit the following linear relation to our obtained data

LM M
T m, = Po ‘P1mT

We then use the slope p; and the relation between the PCAC
mass and Z 5 to calculate

P1 _ _P1
Lampcac Lpmy

We calculate the effective condensate as in Eq. (4.3.14) as

c 2
Lo (M) P
ZpN. 2V (MT> Zpm,
where in the square root factor we use the value m, /M, evalu-

ated at the middle of the fitting interval.



_ 1
b K mer (ﬁ) ° \V 8t0
0355 0.1600 0.03785(38)  0.6084(79)
0.360 0.1580 0.03055(52) 0.638(10)
0.365 0.1565 0.02279(43) 0.629(10)
0370 0.1550 0.02045(63)  0.638(12)
0.355 0.1610 0.02426(33) 0.6061(70)
0.360 0.1588 0.01897(56) 0.6221(96)
0365 0.1573 0.01069(53)  0.592(13)
0370 0.1556 0.01085(58)  0.612(15)
0.355 0.1615 0.01752(34) 0.5976(69)
0360 0.1592 0.01323(62)  0.595(16)
0365 0.1576 0.00618(58)  0.587(22)
0.370 0.1559 0.00607(60) 0.608(23)

Table 10: Values of Zpm, (calculated as Zx mpcac) and the effective chiral
condensate in units of Zp at fixed b and k obtained from the slope
of the mode number on the mass threshold in units of 1/8ty. Inside
each horizontal block, the values of (b, k) correspond to a fixed
value of the pion mass in units of the string tension, respectively
1.05,1.24,1.57.

101



[ k=0.1600 | k=0.1610 | k=0.1615
7 K = 0.1580 K = 0.1588 K = 0.1592
6 [ k=0.1565 | k=01573 I k=0.1576
[ k=0.1550 | k=0.1556 | k=0.1559
5 i
—~ f
= { j }
Z=4 i {
3 f / J
3 i i
i
i fi
I i
2 { ’ f /
{ A i pt /
1 P i gt | i
v SEUE i p
i:r’( "iq(”*iﬂu i ”H,’:;UH”
0 2 4 2 4 2.5 5.0
M, M, M,
s my my

Figure 17: Renormalized mode number versus M.,/m, for each value of
(b, k). The value of « is reported in the caption, while the color
reflects the value of b (blue, orange, green, red corresponding to
b = 0.355,00.36,0.365, 0.37). Each panel contains the mode num-
ber calculated for values of (b, k) having approximately a con-
stant value of my/\/0 ~ 1.05,1.25,1.563, respectively. The solid
points represent the one for which we performed a linear to ex-
tract the value of the effective condensate reported in Tab. 10

In Fig. 17 we depict the mode number as a function of the ratio M+ /m.
for every value of (b,k) and we report the values of the effective
condensate in Tab. 10 using v/8to, whose values have been taken from
the fifth column of Tab. 7 for N, = 841.

The final value of the chiral condensate needs to be extrapolated
first to the continuum limit and then to the chiral limit. Unfortu-
nately, analogously to the last Section, we cannot perform a direct
extrapolation to the continuum limit since the values of the renormal-
ization constant Zp are not available. Using the numbers we obtained
at the finest lattice spacing, we can use the corresponding value of the
condensate to take the chiral limit using the pion masses extracted
from [75]. In Fig. 18 we depict the points corresponding to b = 0.37
and the linear extrapolation to the chiral limit. The final value we
obtain is

1

( Iy >3:O.573(36)/\/8t0,

ZpNe

(43.15)

which results be compatible with the value of 0.546(15)/1/8to we pre-
viously found in the last subsection from the GMOR relation, after
the conversion factor R = /8tpo = 1.0631(67) has been applied. For
the sake of completeness, we report in Tab. 11 the values of the ex-
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Figure 18: Chiral condensate in units of Zp at b = 0.37 versus the pion
mass squared in units of \/8ty. The blue band represents the re-
sult of the linear fit. The red point corresponds to the value in
Eq. (4.3.8) converted in units of /8ty using the ratio R = /8tpy0 =
1.0631(67).

b (2538t
0.355  0.591(13)
0.360  0.579(22)
0.365  0.549(26)
(36)

0.370 0.573(36

Table 11: Values of the chiral condensate at large-N limit in units of 1/8tg
extrapolated at zero pion mass at fixed lattice spacing.

trapolated condensate at zero pion mass for the other values of the
lattice spacing.

The last point needed would be a comparison with other results in
the literature. Unfortunately, this is not possible since our results, as
well as the majority of those found in the literature, are calculated at
a fixed value of the lattice spacings and do not take into account the
value of a Zp factor, which depend on the cut-off scale as well as the
lattice action.

We just limit ourselves to quoting the references where other de-
terminations of the chiral condensate have been performed. In [126],
Giusti and Liischer calculate a value of the condensate from the mode
number for SU(3) and N¢ = 2 configurations with O(a)-improved
fermions, obtaining a value of 191(4) MeV, after a trivial rescaling
with 33. Applying our conversion factor R = 1/8too = 1.0631(67), the
value we obtain is 0.4644(97). Another result in the literature comes
from [130], whose lattice simulations are done with the Iwasaki ac-
tion and O(a)-improved Wilson fermions at generic values of N.. Al-
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though the authors do not directly give a value for the condensate,
we can calculate it from the data related to the slope of the pion mass
squared £/(F2Zp), for which they provide two numbers for the large-
N, quantity coming from two different fitting functions, an average
of the two being 1.71(7) in lattice units. Since the value of the lattice
spacing in 1/to units as well as the one of F in physical units are also
provided, we obtain a condensate of 0.585(25). As previously men-
tioned these numerical values cannot be directly compared with our
result as they are obtained for a different lattice spacing, a different
lattice discretization and they do not include Zp. Nevertheless, we
observe that all these values are in the same ballpark, which sounds
extremely promising. A more precise comparison will be issued in a
future publication.
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RESULTS FOR YANG-MILLS THEORY COUPLED
WITH N = ;7 ADJOINT FERMIONS

This Chapter is dedicated to the results we obtained for our simula-
tions of a Yang-Mills theory coupled with adjoint dynamical fermions
in the large-N. limit. The majority of our results concerns the theory
with one adjoint Majorana fermion (N = %), i.e. N =1SUSY Yang-
Mills (SYM), introduced in Sec. 1.1.3 and 1.2.2 of Chapter 1.

In Section 5.1 we will perform the scale setting of the N = 1 SUSY
theory using the Wilson flow techniques we developed in Chapter 4
for the case of pure Yang-Mills theory. The method corresponds to
the application of the tree-level improved norm correction to the flow
function, combined with the global fit procedure.

In Section 5.2 we perform scale setting using two additional defi-
nitions of the scale. The first one is related to quantities built from
Wilson loops, while the second employs the fundamental light me-
son spectrum in the fundamental chiral limit. The compatibility of
different results confirms the solidity of our results.

Section 5.3 is dedicated to the study of the supersymmetric limit
of the theory. As explored in Sec. 1.2.2 of Chapter 1, the lattice dis-
cretization breaks SUSY, which is claimed to be restored to the limit
in which the physical mass of the gluino vanishes. We will explore
this limit by studying the PCAC mass and the low-lying spectrum of
the Dirac operator.

Once the scale has been extracted and we define a meaningful way
to perform a limit to the supersymmetric theory, in Section 5.4 we test
our results for the scale extrapolated to the vanishing gluino mass
against theoretical prediction for the bare 3-function.

Finally, Section 5.5 is dedicated to the scale setting of the theory
with N¢ = 1, 2, using the Wilson flow improved methodology. Having
at our disposal ensembles at several values k,qj, we can explore the
dependence of the scale on the adjoint fermion mass.

5.1 THE WILSON FLOW SCALE

As a reminder of Sec. 3.2.1 of Chapter 3, we generated gauge config-
urations with one dynamical gluino for a large number of values of
the parameter (b, K,qj). A summary can be found in Tab. 3 and Tab. 4.

The procedure to extract the scale consists of the application of the
norm correction as in Eq. (3.4.19) and the global fit procedure. We also
remind the reader that, unlike the case of pure gauge configurations,
the scale now acquires a dependence on the gluino mass. We simulta-
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Figure 19: We display ®(t) as a function of t/t; for all our datasets with
N. = 289. The width of the colored bands indicates the error in
the different quantities. The black line on the plot corresponds to
the two-loop infinite N (infinite volume) perturbative prediction
for the flow-time dependence of d(1).

neously fit our data to a single universal curve whose only argument
is T/T1 (b, N, k). Our combined data covers a window that runs from
the perturbative small flow-time region up to values around Ty. In
playing this game we are neglecting violations of universality that
may come from lattice artifacts, remnant finite size effects or depen-
dence of the flow on the gluino mass. As we will see below, these
assumptions are well satisfied by our results. To serve the purpose of
illustrating how well universality holds, we display in Fig. 19 the de-
pendence of ®(T) on T/1, for N. = 289. The different data displayed
in the plot correspond to different values of b and «k,q; restricted to
the scaling window Eq. (3.4.20) with v = 0.28. The values of T; have
been obtained from a universal fit to the data as the one described
by Eq. (4.1.5) with three parameters of the -function, in addition
to the two universal ones corresponding to N = 1 Supersymmetric
Yang-Mills, and gives a x*/dof per degree of freedom of 1.2 (we obtain
x?/dof = 3.1 for the datasets with N. = 361). As becomes evident from
the plot, the advantage of the joint fit is that it allows constraining the
time dependence of the flow in a region of scales much larger than
the actual fitting window and permits to determine T; even when it
falls outside it. Finally, we also display for comparison the prediction
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of two loop perturbation theory at infinite N, given by the black line
in the plot, which describes quite well our results in a large window
of flow times.

We now present our results. To have an additional check on the
effective reduction of finite N effects, we have fitted separately the
N. = 289 and 361 data sets, obtaining compatible results within er-
rors. Our final values for Ty are given in Tab. 15, the first quoted error
is statistical and the second systematic. The latter is determined to
cover various determinations of the scale corresponding to different
fitting functions and ranges.

We end this section by discussing the relation of the scale t; to
those more common in the literature, such as ty or wp. We have al-
ready mentioned that in most of our simulations, t¢ falls out of the
scaling window. Nevertheless, and under the assumption of scaling,
we can use the universal fitting functional describing the flow to ob-

tain a determination of the ratio R = \/?‘]’ . The result is R = 1.624(50)
and R = 1.631(70) for N. = 361 and 289 respectively. This is in per-
fect agreement with the ratios obtained in the few cases where we can
determine Ty directly by interpolation. The error quoted in all cases
covers the systematics in the fitting functional and fitting ranges fol-
lowing the same procedure used to determine t;.

Finally, we have also determined the scales wy and wq derived by
solving the implicit equation Eq. (3.4.4) with s = 0.05 and s = 0.1
respectively. The strategy to determine these scales is very similar to
the one used for t;. We rely on the universality of the flow and fit
tdq;iit) as a function of t/a2 simultaneously for all our datasets within
the scaling window corresponding to y = 0.28. In this case, we use
a degree-two polynomial fit, with the systematic error obtained by
varying the fitting range. The resulting scales can be compared to
t1. Excluding the sets at b = 0.36, which have very large system-
atic errors and give nevertheless results consistent within errors, and
restricting to a region “safe” from finite-volume effects," a fit of the di-
mensionless ratio of scales to a constant gives w;/y/8t; = 0.4535(49)
and wo//8t; = 0.586(10) with x? per degree of freedom equal to
0.24 and 0.15 respectively.

We collect our final results for the ratio of \/8ty, wo and wj to
v/8t7 in Tab. 12. These ratios can be used to convert all the results
given in this section, in particular, the values of the lattice spacing as
a function of the bare coupling and gluino mass, to the other more
standard units used in the literature.

To determine such a region, we rely on the PCAC mass mpcac we defined in Chap-
ter 1 from Eq. (1.2.37), and select those ensemble having mpcacy/8t1 > 0.3. Further
details on the computation of mpcac will be given in the next Section.
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to Wi Wo
t V8t V8t
1627(50) 0.4535(49) 0.586(10)

Table 12: Different scales determined from the flow expressed in units of
V/8tq. Scales t7(tp) and wq(wp) are derived respectively from
Eq. (3.4.4) setting s = 0.05(0.1).

b Kad VBU (N, =289) YBH (N, =361)
0.185 2.878(2)(46) 2.883(2)(58)
0.1875  3.209(3)(68) 3.188(3)(90)
034 0189 3.514(3)(65) 3.488(3)(88)
0.191 4.049(4)(37) 4.042(4)(58)
0.192067 4.568(6)(58) -
0.193 5.273(7)(161)  5.244(8)(175)
0.18 3.166(3)(74) 3.145(2)(93)
0345 0184 3.664(4)(77) 3.645(3)(98)
0.1868  4.294(5)(40) 4.274(5)(55)
0.1896  5.559(8)(154)  5.614(8)(201)
0.1775  3.730(3)(97) 3.737(3)(105)
0.18 4.109(4)(75) 4.003(7)(109)
o35 01825 4.634(6)(70) 4.516(5)(64)
0.1850  5.364(8)(144)  5.323(7)(65)
0.186378 5.909(9)(192)  —
0.1875  6.608(11)(249)  6.582(12)(287)
0.1760  5.77(1)(32) —
0.1780  6.32(1)(31) -
0zg 018 7.05(1)(31) —
0.1820  7.85(2)(35) -
0.183172  8.68(2)(44) -
0.184 9.16(2)(52) -

Table 13: Values of the inverse lattice spacing for Ny = % in units of the
Wilson flow scale Ty, the first error is statistical, and the second is
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5.2 OTHER DETERMINATIONS OF THE SCALE Nf = %

The case of N¢ = % has to be analyzed with special care. The list
of the ensembles we generated is vast and very fine in the region of
light gluino masses. Having ensembles in this region was crucial to
have good control over the extrapolation of the lattice scale in the
supersymmetric limit in Sec. 5.3. In this region, the effect of finite-
N, effects are particularly evident, especially when considering the
ensembles for the finest lattice spacing at b = 0.36. For this reason,
following [78], we are going to perform scale setting with other two
methods.

The first, a variant of which has been already used in large-N.
pure Yang-Mills theory [108], is analogous to the Sommer scale but
involves Wilson loops of fixed aspect ratio. The advantage of this is
that the extrapolation to asymptotically large times needed to com-
pute the quark-antiquark potential is no longer required.

The third method involves the usage of the spectra of mesons made
of quarks in the fundamental representation to set the scale. In the
large-N. limit, fundamental fermion loops are suppressed and the
quenched approximation is exact. The computation of the meson
spectrum can therefore be determined at no additional cost on our
set of dynamical adjoint fermion configurations. These meson masses
depend on an additional scale, which is the fundamental quark mass,
but in the zero mass limit this dependence disappears and the mass
of the lightest non-singlet vector meson becomes a natural scale for
SUSY Yang-Mills.

Finally, we will compare the three different determinations of the
scale. We emphasize that the methods presented in the following sub-
sections can also be used at finite N, and for other gauge theories and
are particularly well-suited when finite size effects are an important
source of concern.

5.2.1 The scale from Wilson loops

This scale setting procedure was spelled out in Sec. 3.4.1.2 in Chap-
ter 3. As a reminder, we recall that it is based on Creutz rations, which
on the lattice can be defined as

W(R+0.5,R"+05)W(R—0.5,R" —0.5)
W(R+0.5,R'—0.5)W(R—0.5,R’+0.5)

x(R,R') = —log , (5.2.1)

where W(R, L) are the lattice Wilson loop evalutated for a rectangle
of size v x 1, being v = aR and | = aL. Creutz ratios can be used to
define the following lattice quantity

G (R) = R*x(R,R), (5.2.2)

which continuum limit has been spelled out in Eq. 3.4.28. In order to
practically treat Wilson loops, which are known to be noisy quanti-
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ties, we employ a smeared version G (R;s), in which Wilson loops
are calculated on configurations on which the Wilson flow has been
integrated up to flow time s.

Having defined the lattice observables to be used, we will now de-
scribe the process leading to the determination of the lattice spacing
in units of ¥(fy, s), c.f. eq. (3.4.25).
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* For each configuration of our simulation parameters (b, Kagj, N¢)

we evolve the lattice link variables using the same discretized
flow that was explained earlier.

At each flow time T we compute the Wilson loops and Creutz
ratios for R = R’ = 1.5,2.5,3.5,4.5 and 5.5, and determine from
them the corresponding value of G (R;s) and its error by aver-
aging over configurations having the same simulation parame-
ters.

We investigated the N. dependence of these values for those
cases in which we have at least two values of N.. As expected
the sensitivity depends on the quantity R/\/N¢ giving the ratio of
the loop size to the effective lattice size. This is indeed what hap-
pens when computing these quantities in perturbation theory
at finite volume. To keep the finite volume correction smaller
than 1 — 2%, one should set R/yN¢ < 0.25. Our largest value of
Rmax = 5.5 gives ratios of 0.29, 0.32 and 0.49 for N. = 361,289
and 169 respectively, which are larger than 0.25. Indeed, for
G (5.5;s) the difference between the value at N. = 289 and
N = 361 can reach up to 10%. Thus, to process the results we
first extrapolate to N. = oo using the N = 289 and 361 data
and assuming a '/Nn2 dependence as predicted by perturbation
theory for large enough N.. In practice, this limits our determi-
nation of the scale to the cases in which there is N = 361 data
available.

To extract the value of a/7(fp, s) one should deal with two addi-
tional issues. The first is that the values of r obtained on the lat-
tice are multiples of the lattice spacing. Determining the value
7 at which G(f;s) = fo must be done by interpolation. The sec-
ond is that Gy differs from the continuum function G by terms
of order a? as described in Eq. (3.4.28). One can deal with both
issues simultaneously by a method that gives a more robust de-
termination of the scale. It involves a simultaneous fit to all our
data points with 2.5 < R < 5.5 by a function

R\? R\?/fo—a—2y &

where o, v and 8 only depend on the value of s and fy, and
1/R = a(b, Kadj)/T(fo, s) expresses the lattice spacing in ¥(fo, s)
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Figure 20: For all our N. = 361 data samples, we display G(r;0.65) as a
function of r/7(1,0.65), where #(1,0.65) is the scale determined
using eq. (3.4.25) setting fo = 1 and s = 0.65. The black line
is obtained by doing a joint fit of all the data with R > 1.5 to
eq. (5.2.3), as described in the text.

units. Thus, the fitted data contains 4 values of R for each of the
14 total simulation parameters, and the fit parameters are the 14
values of R and the three additional parameters «, y and 6. The
rationale behind the parameterization is given by the flowed
equivalent to eq. (3.4.28). The universal function Fg(.¢)(7,7) is
well described by a second order polynomial in (¥(fo,s) /1)
forced to be equal to fp for ¥(fy,s)/r = 1. This parameteriza-
tion is inspired by the results at s = 0 in which « is given by
the string tension o72(fy,s) and y by a Liischer-type term. The
parameter § is introduced to account for the a? correction ap-

pearing in eq. (3.4.28).

The procedure can be performed for various values of s and fj
and the results should be compatible up to a change in the unit. In
particular, we chose two values of fy (0.65 and 1) and two values of
s (0.5 and 0.65) to check consistency. The results for different fy are
perfectly compatible since they involve fitting the same data points.
The data just predicts the ratio ¥(1,0.65)/7(0.65,0.65) = 1.611 and
7(1,0.50)/7(0.65,0.50) = 2.045. On the other hand a change in s in-
volves data at different flow times so that the comparison serves to
check the independence of this choice. If we fit the ratio of scales



to a constant we get perfect compatibility with a constant value of
7(1,0.65)/7(1,0.50) = 1.120(6).

Finally, we will express our lattice spacing in units of ¥(1,0.65)
which are the ones affected by smaller errors. The results are given in
Tab. 15. Notice that the final values come from a global fit to the data
which assumes scaling. Hence, the errors do include a part associated
with the amount of scaling violation present in our data. A visual de-
termination of how well our data satisfies scaling can be obtained by
plotting the best fit to the continuum function G(r;0.65). This is given
in Fig. 20. Together with the function we plot all our data points after
subtraction of the lattice artifact 5 term. The horizontal errors come
from the errors in the determination of the scales R. The overall agree-
ment is very good.

5.2.2  The scale from fundamental meson spectrum

As mentioned in Sec 1.1.1, fermions in the fundamental representa-
tion play a different role than adjoint ones in the large-N limit. If the
number of flavors is fixed when taking N, to infinity, fundamental-
quark loops are suppressed and the quenched approximation is exact.
Nevertheless, these fundamental fermions give rise to a spectrum that
can be used to set the scale for the N = 1 SUSY Yang-Mills theory at
large N.. Fundamental pions can be considered pseudo-Goldstone
bosons associated with the spontaneous breaking of the fundamental
chiral symmetry, and the PCAC relation should hold as we approach
the limit of vanishing fundamental fermion mass. The p-meson re-
mains massive in the fundamental chiral limit, and its mass can be
used as a scale for the massless (supersymmetric) theory. To achieve
our final goal we compute the correlation functions of bilinear quark
operators for pseudoscalar, axial and vector channels. The next step is
to determine the mass of the lightest state having the corresponding
quantum numbers for various values of the fundamental quark mass.
Then we extrapolate those masses to the fundamental chiral limit.

In order to compute Mpcac, Mz and m, on the lattice we perform
a spectroscopy calculation according to the method defined the last
Section of Chapter 2. As an example of the outcome of the method,
we display in Fig. 21 the correlators of the optimal operators in the
pseudoscalar and vector channels for the case b = 0.35, Kkaq; = 0.1825,
k¢ = 0.1525, with k¢ the fundamental hopping parameter. The time-
dependence of these correlators shows a clear exponential decay from
which the mass of the t-meson (pseudoscalar) and p-meson (vector)
can be extracted. The numbers obtained and the x? of the fits to an ex-
ponential are also displayed in the figure. We also show the signal that
allows one to extract the fundamental PCAC mass m}fxac, defined as
in eq. (5.3.2). Summing up, the procedure to extract the masses goes
as follows. It amounts to determining the optimal operator and then
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Figure 21: Stack plot of the correlators in this analysis for one example case.
The first one shows the signal for am{m1C as an effective mass.
The blue band is the result of the fit, the length corresponds to
the time slices used to fit the mass, while the width corresponds
to the error. The second and the third display the pion and the
rho correlator signal, respectively. The blue line is the result of
the fit performed in the region between the vertical lines.
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fitting the corresponding correlator in a certain interval to an expo-
nential (rather to a hyperbolic cosine function, taking into account the
periodic nature of the temporal direction). There are of course some
specific details that reflect the selection of the operator and the choice
of fitting interval that affect the final numerical value for the mass. In
the end, variations of these types which are of similar statistical sig-
nificance are accounted for as a systematic error of the determination.
Here we will comment briefly on the choice of the fitting interval.
The main points to be taken into account in this selection are finite
volume effects, lattice artifacts and the contamination of excited states.
Typically, finite-size effects are more relevant close to the chiral limit,
as the pion mass goes to zero and its Compton wavelength becomes
comparable to the effective volume. To avoid too severe effects our
selected values of the hopping parameter should stay sufficiently far
from the chiral limit. In particular, in our data, the lightest cases still
had mavN ~ 3.4. Nonetheless, finite-size effects may still reflect in
the appearance of a constant term in the correlator arising from the
propagation of quarks wrapping around the finite extent of the lat-
tice [131]. Although this effect disappears in the large volume (large
N.) limit, we have observed that in some cases the addition of a small
constant to the hyperbolic cosine was required to obtain a good fit.

114



f
b Kadj Kf AMpeac amy am,

0.15500 0.09711(88) 0.507(12) 0.549(20
0.15700 0.05755(89) 0.381(17) 0.434(31

( (20)

0.189 ( (31)
0.15800 0.0392(11)  0.350(14)  0.421(27)

0.15920 0.0149(11)  0.248(39) 0.336(56)

0.15250 0.1253(11)  0.545(16) 0.570(21)

oqo1 0-15500 0.07464(76) 0.423(17) 0450(29)
0.15580 0.05929(86) 0.370(14) 0.416(22)

0.34 0.15700  0.03601(89) 0.345(33)  0.373(54)
0.15380 0.08564(87) 0.430(20) 0.458(27)

0.192  0.15550 0.05090(88) 0.368(21) 0.405(32)
0.15650 0.03086(75) 0.336(21) 0.379(34)

0.15240  0.1000(12)  0.443(21)  0.450(30)

oqo3 015380 0.06932(92) 0.318(24) 0317(30)
0.15530  0.03904(60) 0.301(21) 0.299(27)

0.15630 0.01982(96) 0.288(34) 0.283(46)

0.15000 0.1730(11)  0.701(16)  0.741(22)
01775 015250 0.11939(90) 0558(13) 0.599(20)
0.15500 0.06896(73) 0.425(15) 0.480(27)
0.15625 0.04288(45) 0.328(18) 0.382(28)
0.15000 0.15806(93) 0.608(12)  0.626(15)

oqg (015250 0.10532(64) 0488(13) 0.514(19)
0.15500 0.05327(78) 0.343(14) 0.377(24)
0.15625 0.02986(60) 0.323(18)  0.409(33)
0.14700  0.2093(16)  0.719(18) 0.731(21)
0.15000 0.1457(13)  0.560(19)  0.582(25)

035 01825 015250 0.08904(91) 0.443(22) 0.463(34)
0.15500 0.03765(92) 0.306(30)  0.303(50)
0.15580  0.02157(81) 0.314(22) 0.319(43)
0.14930  0.1410(19)  0.533(26) 0.537(33)
0.15100 0.1025(13)  0.430(24) 0.432(32)

0.185  0.15250 0.0704(12)  0.351(25) 0.346(34)
0.15380 0.0428(10)  0.288(30) 0.277(42)
0.15500 0.0176(11)  0.259(42) 0.262(78)

0.14180 0.1538(23)  0.496(32) 0.495(39)
0.15000 0.1106(17)  0.447(28) 0.452(35)
0.1875  0.15100 0.0882(14)  0.397(29) 0.401(36)
0.15250  0.0547(12)  0.323(34) 0.323(45)
0.15380 0.0258(11)  0.253(52) 0.249(68)

0.14750  0.1194(20)  0.413(28) 0.406(33)
0.36  0.1831 0.15000 0.0630(14)  0.282(39) 0.282(46)
0.15100 0.0430(12)  0.289(55) 0.282(67)

Table 14: The values of m}];cac, my and m, for fermions in the fundamental
representation and for each (b, Kadij, k¢) value at N = 289 are gives.
The fitting procedure is the one described in sec. ??, from which
we obtained x? per degrees of freedom in general smaller than
one.
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Figure 22: Extrapolation of am}f)Cac to o. In the labels, we report the corre-

sponding value of KECC] extracted from the fit and the correspond-
ing x? per degree of freedom. Errors are calculated using stan-
dard jackknife techniques.

The results we obtained for the PCAC mass, the pion mass and the
vector meson mass of fundamental fermions are reported in lattice
units in Tab.14. We use these results to explore the (fundamental) chi-
ral limit of the theory. The first check we do is to analyze the depen-
dence of the PCAC mass on the fundamental hopping parameter ;.
To determine the critical hopping parameter where the fundamental
fermions become massless we follow the same strategy as for gluinos,
i.e. we analyze the dependence of the PCAC mass on k¢ and deter-
mine the critical hopping parameter as the point where the funda-
mental PCAC mass vanishes. In Fig. 22 we plot am;;Cac as a function
of 1/(2k¢). Performing separate linear fits for each value of (b, kaq;),
we extracted in each case the critical value of the hopping parameter
K;C). As signaled by the x? per degree of freedom reported in the
legend of the plot, the observed linear dependence is very good and
confirms what one would expect from chiral symmetry restoration in
the limit of vanishing quark masses for Wilson fermions.

We finally come to the determination of the scale based on the vec-
tor meson mass. To determine the chiral extrapolation of this quan-
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tity we perform a global fit of am, as a linear function of am{,Cac fo

T

each value of (b, k,qj), by imposing a common slope and extracting
amy (b, Kadj) as the intercept at vanishing PCAC mass. We obtain a x?
per degree of freedom of 0.56. The final values of the inverse lattice
spacing in units of mj obtained in this way are the ones used in Chap-
ter 4 to determine the scale in the SUSY theory and were reported in

Tab. 15.

5.2.3 Scales comparison

0.185 2.878(2)(46)  2.883(2)(58)  3.362(36) -
0.1875 3.209(3)(68)  3.188(3)(90)  3.658(37) -
0sq O1% 3514(3)(65)  3.488(3)(88)  3.959(40) 3.10(13)
0.191 4.049(4)(37)  4.042(4)(58)  4.682(48) 3.53(17)
0.192067  4.568(6)(58) - - 3.54(28)
0.193 5.273(7)(161)  5.244(8)(175)  6.014(78) 4.86(51)
0.18 3.166(3)(74)  3.145(2)(93)  3.635(37) —
0345 013 3.664(4)(77)  3.645(3)(98)  4.208(41) -
0.1868 4.294(5)(40)  4.274(5)(55)  4.939(51) -
0.1896  5.559(8)(154)  5.614(8)(201)  6.649(111) —
0.1775 3.730(3)(97)  3.737(3)(105)  4.377(43)  3.08(14)
0.18 4.109(4)(75)  4.003(7)(109)  4.485(43) 3.65(17)
055 01825 4.634(6)(70)  4.516(5)(64)  5.135(56)  3.94(26)
0.1850  5.364(8)(144)  5.323(7)(65) 6.187(108) 5.06(37)
0.186378  5.909(9)(192) - - -
0.1875  6.608(11)(249) 6.582(12)(287) 7.681(180) 5.34(71)
0.1760 5.77(1)(32) — — —
0.1780 6.32(1)(31) - - -
0s6 018 7.05(1)(31) - - -
0.1820 7.85(2)(35) — — —
0.183172  8.68(2)(44) — — 6.99(87)
0.184 9.16(2)(52) - - _

Table 15: Values of the inverse lattice spacing in units of the three different
scales determined in this work. For flow-related scales, the first
error is statistical, the second is systematic.
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Figure 23: Comparison of scales as a function of the adjoint hopping param-
eter K,q; for different gauge couplings. In the top panel it is dis-
played the ratio /8t /%(1,0.65), in the bottom one m¥+/8ty. The
red bands represent the average weighted over the errors, while
their width represents the statistical uncertainty over the average
ratio. When needed, points corresponding to the same k,g; have
been slightly shifted in the x-axes to avoid overlapping.

We dedicate this last part of the section to the comparison of the
results obtained with the three different scale setting methods which
are summarized in Tab. 15, which reports the lattice spacing in terms
of \/zC;lT]' 4 and amy. Although each of these quantities changes con-
siderably when we change b (the inverse lattice 't Hooft coupling)
and the hopping parameter k,qj (related to the gluino mass), scaling
dictates that the ratio should stay constant and be given by the ratio of
the corresponding units of energy. In Fig. 23 we display the two inde-
pendent ratios /8t /F(1,0.65) and m¥+/8t; for all the cases in which
it is available. For the case of 2/,/8t; we have used an average of the
results of N, = 289 and N, = 361 with errors that are dominated
by the systematic ones. The results are compatible with being a con-
stant within errors. From the best fit, we estimate that the conversion
factor between the two units /8t; and 7(1,0.65) is 0.8708(54), while
between /8ty and 1/mj it is 1.144(23). A more visual impression of
how scaling works can be seen in Fig. 24 where the three lattice spac-
ing determinations of the inverse of the lattice spacing are displayed
side by side after applying the conversion factors determined earlier.

118



T e =031
b =0.345 #]#7
o b=035
6 v
B 108 g708(5) T O
i
g 1.144(23) /am) v v
85
=
@ ( ,‘mW
§ (.‘
= 1 <.)W
v !
<l> (i)mw
v
3 ov
0178 080 0182 0084 0186 0188 0190 0192  0.094

Ka

Figure 24: The inverse lattice spacing for the different values of (b, k,qj). The
quantities 7(1,0.65)/a and 1/am} have been rescaled with the
conversion factor indicated in the legend to match the value of

V8t /a.

All datasets for which 7(1,0.65) was available are displayed. The fig-
ure shows how the three scales change considerably within all the
datasets following the same trend in a consistent way. One can also
notice the relative size of the errors of the three determinations of
the lattice spacing. It looks as if the scale based on the Creutz ratios
is the most precise, but the N. dependence had to be corrected for
systematic errors and might be underestimated.

5.3 THE SUPERSYMMETRIC LIMIT

In this Section, we want to explore the limit of massless gluinos,
where the theory is expected to retrieve supersymmetry. As a re-
cap of what is explained in Chapter 1, the typical methodology re-
quires tuning the parameters of the theory to the vanishing gluino
mass limit. The way this tuning is done in QCD takes advantage of
the fact that pions are pseudo-Goldstone bosons for the spontaneous
breaking of chiral symmetry, and their mass is proportional to the
square root of the renormalized quark mass. On the other hand, in
N =1 SUSY Yang-Mills, the chiral-symmetry breaking pattern is dif-
ferent, and no Goldstone excitation appears in the spectrum, one has
instead an excitation analogous to the QCD n/’. Several methods have
been proposed in the literature to attain in this case the limit where
SUSY is restored. One of them is to define a renormalized gluino
mass using the supersymmetric Ward identities regularized on the
lattice and tune this mass parameter to zero [37]. Another possibility
is to use the connected part of the adjoint-n’ correlator, this leads to
a non-singlet adjoint-pion correlator that can be seen as composed
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of the gluino and a quenched Majorana fermion. On the basis of
partially-quenched chiral perturbation theory [39], this adjoint-pion
is a pseudo-Goldstone boson for the spontaneous breaking of the
“partially quenched" chiral-symmetry and can be tuned to vanishing
mass to restore supersymmetry [36, 38]. In this Section, the strategy
used to determine the point of SUSY restoration consists of two very
different methods.

The first one is in the same spirit as the aforementioned adjoint-
pion mass tuning. Although in the target supersymmetric theory, the
gluino field is described by a single flavor, we make use of an addi-
tional “quenched” flavor which allows us to define a pseudoscalar
P = Wy5¥ and an axial current A, = Wy, ys¥. We can therefore
define an analog of the PCAC mass as in Eq. (1.2.37) though

(00 A lm)

P 39

ZTnpcac =
where |) stands for a generic state with the quantum numbers of the
adjoint-pion. On the basis of partially-quenched chiral perturbation
theory, we expect this mass to be directly proportional to the renor-
malized gluino mass and we tune it to zero to find the SUSY restora-
tion limit. As in Eq. (1.2.38), the PCAC mass is then determined by
fitting to a constant the ratio of correlation functions:

Cyovs,yvs (X0 +a) = Cygys,ys(xo — a)
4 GVSIVS (X’O)

AMpcac = , (5.3.2)
The values of the PCAC masses extracted in this way are provided in
Tab. 16. We include in the table results for our datasets with N. = 289
and 361. The general agreement, within errors, of the results for the
two different values of N indicates the small influence of finite N,
effects on this quantity.

The second one makes use of the analysis of the eigenvalues of
the Wilson-Dirac matrix, whose calculation has already been tackled
in Sec. 3.2.1 of Chapter 3. Let us call A2, the minimum eigenvalue
of Q2. At infinite volume, we expect this quantity to vanish in the
chiral limit. In our case, this corresponds to it vanishing at large N,
as already observed in the context of Yang-Mills theories with N = 2
Dirac flavors [132]. Hence, we can use its dependence on the fermion
mass to define a proper massless gluino limit.

5.3.1 Determination from the PCAC mass

Contrary to what happens in standard lattice simulations, and due
to the form in which it is computed in the reduced setup, the signal-
to-noise ratio in the adjoint-pion correlation function deteriorates sig-
nificantly at large time [76]. For this reason, it turns out to be more
convenient to do the tuning in terms of the PCAC mass which can
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Figure 25: Dependence of the PCAC adjoint fermion mass on 1/(2k,g;j) for
all the values of the bare coupling b and the largest value of
N, within out set of simulations. The bands are linear fits at a
fixed value of b used to determine the critical value of the adjoint
hopping parameter K;dj, with the width indicating the error in the

fit. The x? per degree of freedom of each of the fits is indicated
in the legend.

be determined with very good precision, and this is the choice we
have used in this Thesis. As we will see below, the results obtained in
this way turn out to be consistent with the less precise determination
from the adjoint-pion mass.

In the chiral limit, the PCAC mass is expected to be proportional
to the fermion mass. This implies that close to this limit mpcac should
depend linearly on 1/« and vanish at the critical value. Indeed, in
Fig. 25 we display our results, for the datasets with the larger value
of N, together with a fit to a linear function of 1/(2k,q;). We see that
the straight line provides a very good qualitative description of the
data. Given the small errors, an additional quadratic term is needed
in some cases to get a fit with x> per degree of freedom of the order
of one, if we include also the largest masses. In any case, to deter-
mine the point of vanishing of the PCAC mass both fits give identical
results.

Our final results for the critical value of k,qj, corresponding to the
largest value of N. simulated in each case, are collected in Tab. 17.
The values obtained are in remarkable agreement with the determi-
nation based on the eigenvalues of the Dirac operator. In the rest of
this work, the vanishing of the PCAC mass will be used as the criteria
to tune all other quantities to the zero gluino mass limit.

Finally, to check for the consistency of our approach, we have as
well determined the adjoint-pion mass and analyzed its dependence
on the hopping parameter k,q;. Results are collected in table 16. Fig. 26

displays m2 vs 1/2«,;. The colored lines shown in the plot correspond
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b Kadj amgs amige  amZ®? amie!
0.340  0.1850  0.1957(21) 0.2018(14) 0.970(6)  0.977(4)
0340  0.1875  0.1426(14) 0.1424(15) 0.814(7)  0.819(7)
0340  0.1890  0.1041(12) 0.1083(7)  0.699(5)  0.719(4)
0.340 01910 0.0603(9)  0.0619(9)  0.534(6)  0.540(5)
0.340 0.192067  0.0344(8) - 0.397(4) -
0.340 01930 0.0120(3)  0.0138(6)  0.258(6) 0.263(13)
0.345  0.1800  0.2390(60) 0.2352(32) 1.040(17) 1.043(6)
0.345  0.1840  0.1477(22) 0.1507(11) 0.814(16)  0.821(5)
0.345 0.1868  0.0901(7) 0.0913(18) 0.630(7)  0.631(6)
0345  0.1896  0.0275(5) 0.0289(5) 0.349(6)  0.353(5)
0.350  0.1775  0.2363(29) 0.2353(19) 1.013(12) 1.001(7)
0.350  0.1800  0.1805(25) 0.1826(16) 0.878(9)  0.883(7)
0350  0.1825  0.1242(24) 0.1242(15) 0.719(13)  0.733(6)
0.350  0.1850  0.0733(14) 0.0712(10) 0.534(6)  0.540(6)
0.350  0.1864  0.0427(9) - 0.433(7) -
0350 0.1875  0.0192(7) 0.0195(4) 0.291(8)  0.293(6)
0.360  0.1760  0.1684(9) - 0.804(7) -
0.360  0.1780  0.1227(17) - 0.689(15) -
0.360  0.1800  0.0837(8) - 0.541(15) -
0360  0.1820  0.0420(7) - 0.370(7) -
0.360  0.1832  0.0202(6) - 0.270(19) -
0.360  0.1840  0.0038(5) - 0.249(17) -

Table 16: Values of the PCAC and adjoint-pion masses determined for all
values of the bare coupling and adjoint hopping parameter in our
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Figure 26: Dependence of the adjoint pion mass on 1/(2k,q4;). The bands are
fits to the data at a fixed value of b with the critical hopping
parameter fixed to the one extracted from the vanishing of the
PCAC mass, as determined from Fig. 25.

to linear fits where, for each value of the bare coupling b, the critical
value of the hopping parameter is fixed to the one determined from
the PCAC mass; only the slope is left as a free parameter. Linearity
works very well in all cases, giving x? per degree of freedom of the or-
der of one, except on the smallest lattice with bare coupling b = 0.36,
where a deviation is observed for the lighter masses (the two lightest
ones are excluded from the fit). This difference can be due to finite
size effects, which come out more pronounced for the pion mass than
for the PCAC mass. For this reason, it is also preferable to use the lat-
ter to determine the point of SUSY restoration.

5.3.2 Determination from the eigenvalues of Q.

As already mentioned, the second method that we have used to de-
termine the point of SUSY restoration is based on the eigenvalues of
the Dirac matrix. In the continuum limit the minimum eigenvalue of
the massive Dirac operator at infinite volume goes to zero linearly
with the fermion mass. On the lattice one expects a similar behavior
for the operator D.y/Kaq; which tends to the continuum one up to
a renormalization factor. As explained earlier the lowest lying spec-
tra of Q. = DwY5 have been determined for all our configurations.
This includes [Amin|, whose average value is listed in Tab. 4 for all
our datasets. Notice that this quantity has very small errors, mak-
ing it a perfect observable for the determination of the zero mass
point. Indeed, the aforementioned continuum behaviour implies that
(IAminl) /4 should depend linearly on /2« and vanish at Kadj = K;dj,
signalling the point of vanishing gluino mass. Since finite N correc-
tions amount to finite volume effects, this behavior is only expected
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Figure 27: Dependence, for the 4 values of the bare coupling used in this
work, of (Aminl) /kq on 1/ (2Kadj), where )\rznin stands for the min-

imum eigenvalue of QZ,. The dashed lines in the various plots
correspond to fits to eq. (5.3.3), while the dotted lines represent
the infinite N extrapolations, allowing to determine the value of
the critical hopping parameter K(a:dj (b).

to hold at infinite N. Building on this analogy we would expect a
dependence of the following form:

2 2
Pminl) \ - _ 5 (] ] +5<1). (53-3)

Kadi 2ady 2Ky N2

where the function 5(1/N2) should vanish at large N.. A correction of
this type was observed earlier [132] for the large N, reduced model
coupled to two flavors of adjoint fermions. In our case, the formula
describes our data very well as shown in Fig. 27. The dashed lines
gives our best fit with (1 /N2) = B/N2 and the dotted line the ex-
trapolation to infinite N.. The resulting critical hopping parameters
Kagj are presented in Tab. 17.
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b Kgd]. from (Aminl) K;dj from mpcac

0.340 0.19359(5) 0.19365(5)
0.345 0.19095(6) 0.19100(6)
0.350 0.18857(5) 0.18845(2)
0.360 0.18415(4) 0.18418(2)

Table 17: Values of the adjoint critical hopping parameter Kgdj determined
from the vanishing, as a function of 1/(2kag;), of (Aminl) or the
Mpcac Mass.

b fs% JEXTO o P(b)

0.34  0.1702(31) 0.1046(37) 0.2904(72) 0.5620(3)
0.345 0.1423(46) 0.0875(39) 0.2428(89) 0.57027(15)
0.35  0.1292(35) 0.0794(33) 0.2205(71) 0.57810(15)
036 0.1048(45) 0.0644(34) 0.1788(83) 0.5934(1)

Table 18: Lattice spacing in units of \/8t; for the supersymmetric theory.
For comparison with other authors, we also convert to /8ty and
W units using the conversion factor determined in the previous
section Tab. 12. The last column displays the plaquette expectation
value extrapolated to the massless gluino limit.

5.4 THE LATTICE SPACING AND THE B-FUNCTION IN THE SUSY
LIMIT

After having completed the determination of the scale with good pre-
cision for our massive gluino values, we will here attempt to achieve
our main goal of determining the scale for the supersymmetric theory:.
This will be done by extrapolating the lattice scale in units of /8t
to the massless-gluino limit, achieved by tuning to the limit of van-
ishing mpcac always expressed in physical units. The resulting plot
is shown in Fig. 28. In the plot, different markers were used to dis-
play the points belonging to N. = 289 and N. = 361. By looking at
the plot, it is visible by eye that the points corresponding to different
markers are compatible within errors, showing that we were able to
control finite-volume effects. The points are well fitted by a straight
line and no higher-order polynomial terms are necessary to perform
the extrapolation, which is remarkable, taking into account the wide
range of Mypcac values covered. The values of the scale extrapolated
to the massless-gluino limit are reported in Tab. 18 for different val-
ues of the gauge coupling b. Having these values greatly simplifies
future studies in both selecting the parameters in which to simulate
and expressing the results in physical units.

125



0.35 b=0.34 ¥
b=0.345
b=0.35 %
0.30 b=0.36
b N =289 #
N =361 +
0.25 o %@
QQ , i
0.20
H =
; ; }
0.15 ¢ B
$
’ $
¥
0.10{ ! d
0.0 0.2 0.4 0.6 0.8 1.0

MpcacV/ St

Figure 28: The lattice spacing expressed in units of the gradient flow scale
V8t as a function of the adjoint PCAC mass in physical units.
Different markers represent a different number of colors N (vol-
ume). The straight lines represent the extrapolation of the lattice
spacing to the massless-gluino limit, obtained through a joint fit
to all the points for each b. The error bars on the y-coordinate are
dominated by systematics (cfr. Tab. 13) while those on the hori-
zontal axis take only into account the errors on the bare PCAC
mass.

Our results provide the value of the lattice spacing as a function of
the inverse lattice 't Hooft coupling A, from which we can study the
B-function of the theory, following the definitions we gave in Sec. 4.2
of Chapter 4.

As a reminder, perturbation theory predicts the leading behavior
of the function up to next to the leading order. For Yang-Mills theory
coupled to N¢ flavors of adjoint Dirac fermions this gives

dA

B(A) = —boA? —biA* + O(A!) = “dloga?’ (5-4.1)

with the coefficients by and by are given by Eq. (4.1.4) which we
rewrite for completeness.

1 114N

bo = Gz 3 (5-4-2)
1 34—32Ny

by = ) TR (5-4-3)
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There is one particular scheme in which the 3-function is known to all
orders. This is the so-called Novikov-Shifman-Vainshtein-Zakharov
(NSVZ) B-function [133]:

boA?
—.
1—gIA

B(A) =—

(5.4-4)

This functional form is particularly well-suited for performing the
integration of the inverse of the B-function. One gets

LI

—log aA = ——
8 ¢ JboA T 202

log boA, (54.5)
which gives the same equation we found in Chapter 4, without the
linear term in A. Thus, although we are certainly not in the NSVZ
scheme, this formula incorporates nicely the universal part of the (3-
function and provides a suitable parametrization that allows adding
extra terms proportional to the coupling and higher powers of it. For
this reason, we employ the improved coupling previously define, of
which we report here the definitions.

Now let us apply these ideas to our data. As already discussed in
Chapter 4, for lattice QCD the naive lattice coupling /v is not particu-
larly well-suited for comparison with the perturbative predictions of
scaling. As already mentioned one possible choice is A; = 1/(bP(b)),
where P(b) represents the average value of the plaquette extrapolated
to the massless-gluino limit, whose values are reported in Tab. 18. Fit-
ting the NSVZ f-function (with N¢ = 1/2) to our 4 data points gives
a chi-square per degree of freedom x?/dof = 1.42. If we modify the
fit to include a higher order term in the P-function the fit gives a
worse x2/dof and the additional parameter comes out compatible
with zero. We conclude that our data does not have enough sensitiv-
ity to determine modifications to the NSVZ p-function. However, our
data do have sensitivity to the leading coefficients of the 3-function.
A two-parameter fit leaving Ny and A free having x?/#dof = 1.38,
gives N¢ = 0.31(20) ((4m)%by = 9.76(80)) to be compared with the
perturbative result Ny = 0.5 ((4m)%by =11 —4N¢ = 9).

One can repeat the procedure with another choice of the improved
coupling constant, like Ag = 8(1 — P(b)). The one-parameter fit to the
NSVZ B-function gives x?/dof = 1.42. Again a two-parameter fit leav-
ing also N¢ free gives N¢ = 0.30(22) ((41)%bg = 9.78(87)), completely
compatible with that obtained for the other improved coupling. In
Fig. 29 we display side-by-side the logarithm of the lattice spacing as
a function of both improved couplings together with the lines corre-
sponding to the fits described before.

In summary, we emphasize that the behavior of the scale in the
range explored in our study is certainly not far and even compatible
with the dependence predicted by perturbation theory. The data also
shows the tendency expected by the addition of an adjoint Majorana
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1-parameter fit A =1 SUSY, {* = 1.42 1-parameter fit N =1 SUSY, {* = 1.42
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Figure 29: Dependence of the logarithm of the lattice spacing as a function
of the improved coupling A1 (left panel), and A{ = Ag (right
panel). Points have been fitted with Eq. (5.4.5) leaving only A
free (solid orange line), and with the same analytical form leav-
ing also N¢ as a free parameter (dashed green line).

fermion since N¢ comes out larger than the value 0 corresponding
to the pure gauge theory and not incompatible with the value 0.5,
expected for the SUSY Yang-Mills theory at asymptotic small values
of the coupling. This implies that the leading perturbative coefficient
agrees within a 10% with the expected value by = 9/(4m)2.

5.5 THE CASE OF Ny =1,2

In this section, we discuss the extraction of the Wilson flow scale
for the ensembles of configurations we generated in Sec. 3.2.2 corre-
sponding to Nt = 1 and N¢ = 2. After integrating the Wilson flow for
each configuration in our ensembles, we apply the norm correction
as in Eq. (3.4.19). The first observation is that in several ensembles
the corresponding values of T; fall within the upper bound of the
scaling window corresponding to Y = 0.3 and no extrapolation is
needed. Since these ensembles correspond to the case of smaller k,q,
we will refer to them as “heavy” and we directly extract the scale
with a simple interpolation of the flow curve at the value ® = 0.05.
For the other ensembles (that will be referred to as “light”) we employ
the methodology we developed in Sec. ??, based on the global fit on
the universal curve. We treat separately each value of Ny, since the
method implicitly assumes that the universal function used for the
fitting can be parameterized in terms of (the integral of the inverse
of) the pB-function, which changes depending on the number of fla-
vors. The results are reported in Tab. 19 and 20, where the distinction
between light and heavy ensembles is spelled in the caption of the
table.
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Kadj vV 8T1 Kadj vV 8T]

0.100 2.2839(43) 0.100 3.255(16)
0.110 2.3382(64) 0.110  3.326(14)
0.120 2.4208(61) 0.120 3.451(27)
0.130 2.5621(52) 0.130 3.579(18)
0.140  2.7550(66) 0.140  3.925(20)
0.150  3.0951(86) 0.150 4.347(28)
0.155 3.306(13) 0.155 4.824(28)(47)
0.160 3.712(18) 0.160 5.345(39)(55)
0.165 4.193(27) 0.165 6.229(61)(73)
0.170  5.1236(28)(52) 0.170  8.240(78)(99)
0.172  5.7874(61)(58) 0.172  9.52(13)(13)
0.175 7.1691(83)(76) 0.175 13.63(26)(20)

Table 19: Wilson flow scales for Ny = 1. Those values having a single er-
ror correspond to the “heavy” ensemble and the uncertainty is the
statistical error of the extrapolation evaluated with the '-method.
For the “light” scales, the first error is the statistical (uncorrelated)
error of the global fit, while the second is the systematic one calcu-
lated as explained in the text. Left: b = 0.35, right: b = 0.36.

For the light ensembles, the mean values are obtained from a uni-
versal fit to Eq. (4.1.5) with 3 parameters in addition to the universal
one given by Eq. (4.1.4) with N¢ = 1 or 2. In the tables, the scales for
the light ensembles also are reported with a systematic error calcu-
lated as the dispersion of the values obtained by varying the number
of parameters in the functional form, the lower and the upper limit
of the scaling window.

5.5.1 The dependence on the scale on the fermion mass

In this subsection, we analyze for different theories the dependence
of the scale on the value of the adjoint fermion mass. We focus on the
case of b = 0.350 and 0.360 for which we have data in a large range
of fermion masses at all values of N¢ (cfr. Tab. 15, Tab. 20 and 20). In
this section we will also use the “heavy” ensembles of N¢ = 1 i.e. the
ones listed in Tab. 3, whose scale are reported in Tab. 23.

Having those at our disposal, we can attempt a quantitative study
of the behavior of the corresponding theories, trying to highlight the
expected substantial differences.

The critical value of the hopping parameter has been extracted by
tuning the PCAC mass to zero: we obtain Késj) =0.18418(2), 0.1777(1)

and 0.1698(1), for b = 0.360 and Ny = %, 1 and 2 respectively.
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Kadj v 8T1 Kadj vV 8T1

0.100 2.3884(62 0.100 3.390(16
0.105 2.4397(53 0.105 3.494(17
0.110 2.5140(50 0.110 3.522(11

17

(62) (

(53) (

(50) (

0.115  2.6055(61) 0.115  3.638(
0.120 2.7037(74) 0.120 3.749(27
(83) (

(93) (

(

0.125 2.8163(83 0.125 3.951(26
0.130  2.9955(93 0.130 4.146(22
0.135 3.217(14) 0.135  4.464(35
0.140  3.506(16) 0.140  4.79(1)(55)
0.145 3.856(24) 0.145 5.42(7)(63)
0.150 4.501(34) 0.150  6.20(7)(75)
0.155 5.35(7)(62) 0.155  7.67(10)(97)
0.160  6.99(7)(86) 0.160  10.8(1)(1.3)

Table 20: Wilson flow scales for Ny = 2. Those values having a single er-
ror correspond to the “heavy” ensemble and the uncertainty is the
statistical error of the extrapolation evaluated with the Imethod.
For the “light” scales, the first error is the statistical (uncorrelated)
error of the global fit, while the second is the systematic one calcu-
lated as explained in the text. Left: b = 0.35, right: b = 0.36.

In Fig. 30, we plot the lattice spacing in units of 1/8t; as a function
of the subtracted bare quark mass, 1/2k,q; — 1 /2K;§j). The plot shows
a smooth dependence of the lattice scale on the fermion mass. As
expected from the decoupling of fermions in the heavy mass limit, the
curves approach a unique value irrespective of the number of flavors
and approximate the red band in the figure which represents the
value of the scale extracted on N = 841 pure gauge configurations.

In the light fermion sector, our results approach different theories.
The N¢ = % case has been studied in detail in Sec. 5.3 of this Chapter.
In summary, ¢/\/8t; shows a linear behavior in /8t mpc,c in the light
region from which we can attempt an extrapolation to the massless
limit. The case of Nt = 2, on the other hand, is known to behave differ-
ently. The theory with 2 dynamical adjoint fermions is believed to be
conformal in the chiral limit. As a direct consequence of conformality,

every scale in the theory should behave like (amg )ﬁ as the fermion
mass is tuned to zero. In [134], conformality was studied in the same
model through the behavior of the low-modes of the Dirac operator,
and a value of y* = 0.269(2)(50) was found for the mass anomalous
dimension. Given the lack of enough precise data in the small mass
region, we can only test the compatibility of our results with the pre-
vious ones. The dependence of the scale on the subtracted bare quark
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Table 21: b = 0.35 Table 22: b = 0.36
Kadj V8t Vv 8to Kadj V8t Vv 8to
0.100 2.2225(43) 3.621(11) 0.100 3.204(11) 5.107(28
0.110 2.2527(48) 3.670(11) 0.110 3.217(10) 5.120(24
0.120 2.2993(35) 3.741(12) 0.120 3.265(16) 5.183(36
0.130 2.3667(47) 3.849(11) 0.130  3.368(11) 5.346(30
0.140 2.4618(62) 4.006(15) 0.140 3.496(14) 5.507(29
0.150 2.5887(64) 4.189(15) 0.150 3.673(18) 5.756(42
0.155 2.6848(68) 4.341(15) 0.155 3.815(16) 5.970(39
0.160 2.8019(90) 4.517(22) 0.160 3.957(19) 6.152(42
0.165 2.9782(76) 4.799(20) 0.165 4.256(32) 6.585(70
0.175 3.493(11)  5.545(29) 0.175 5.28(20)  7.93(36)
Table 23: Wilson flow scales for “heavy gluino” configurations at N¢ = % for
(N =289,k =5).
b=0.35
0.4
0.37
k0.2—
0.1
0.0
b=10.36
0.30
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Figure 30: Lattice spacing in units of 1/8t; as a function of the bare sub-

tracted quark mass

2k 2K¢

]a — 5L for N¢ =0, %, 1,2. The Yang-Mills

value is represented as a red band whose width corresponds to

the error.
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Figure 31: Light sector of the lattice scale. Right panel: Lattice scale for N¢ =

2 at b = 0.35,0.36. Solid points are fitted to p;(amq) 1+0]‘269. Left
panel: Lattice scale for Ny =1 at b = 0.35,0.36.

mass has been fitted to our data fixing the anomalous dimension and
leaving free the overall coefficient, showing an agreement within er-
rors as displayed in Fig. 31 in a log-log plot. Finally, the case of N¢ = 1
has also been argued to be conformal in a series of recent works [135].
The fermion mass dependence of the scale is also displayed in Fig. 31;
as in the Ny = 2 case, a conclusion cannot be drawn based on our
data and more precise results at lighter masses would be required to
test this hypothesis.
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CONCLUSIONS

In this final chapter, we draw upon the extensive research conducted
throughout this doctoral thesis to provide a comprehensive conclu-
sion to our study. Our aim in this concluding chapter is to revisit
the research objectives set forth at the beginning of this journey and
assess to what extent they have been achieved.

In this thesis, we focused on simulating the SU(N.) Yang-Mills
theory in the limit of large N, along with its extensions involving
N¢ flavors of adjoint fermions. Our primary approach, known as the
“twisted volume reduction”, exploits the concept of volume indepen-
dence arising in the large-N. limit and its spelled out in Chapter 2.
According to this concept, by quantizing the theory on a torus with
twisted boundary conditions, the dynamical parameter representing
the information of the volume is determined by a combination of the
number of colors and the actual lattice size. In the limit of large-N,
providing the center symmetry remains unbroken, we can reduce the
spacetime to a single site, effectively capturing the physics of a lattice
with a side length of ay/N.. This particular formulation is referred
to as the TEK model. The reduction can be also applied to fermions
completely or partially depending on the representation. Let us now
summarize the main achievements of this work.

¢ In Chapter 3, we examined the primary approach utilized for
generating configurations in both the pure Yang-Mills theory
and the theory incorporating dynamical adjoint fermions with
N¢ = %, 1,2. We presented the collection of ensembles that have
been generated. Additionally, within the same chapter, we ex-
tensively discussed the methodology employed to set the scale
of the theory. As emphasized in Sec. 3.4.1, the Wilson flow
technique served as the main tool, complemented by a pro-
cedure called norm correction. This procedure effectively elimi-
nates the effect of finite-N. and lattice artifacts at the tree level
in perturbation theory. Through this approach, we introduced
a novel tree-level improved scale, denoted as /8t;, enabling
us to achieve high precision scale settings in our simulations.
Alongside this technique, we also provided detailed informa-
tion on an alternative method for scale setting, which combines
Wilson flow with the utilization of Creutz ratios. We specifically
applied this alternative approach to the case of N¢ = 1. Further-
more, we presented a comprehensive overview of how meson
spectroscopy can be conducted within our setup.

¢ At the beginning of Chapter 4 we apply these methodologies
to the case of pure Yang-Mills. We extensively test the applica-
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bility of our scale-setting methodology to all our ensembles by
comparing the results at different values of N. and the gauge
coupling b. We verify that the norm correction is effectively able
to capture the systematic shift of the scale caused by lattice ar-
tifacts, and can treat finite-N. effects. We provide a list of the
scales we extracted in Tab. 7. In Sec. 4.2 we compare the deter-
mination of the scale with this method to the previous deter-
mination of the scale in the TEK model done with the string
tension in [108]. We provide the values of the scale in both units
in Tab. 8 and verify that the dimensionless ratio R = \/0+/8t; is
almost always compatible with a constant value, except for the
case of the coarsest lattice, where it is still compatible within 2c.
This can be understood in terms of scaling violations and can
be accounted for by a linear fit in a?, leading to an extrapolated
value of R = 0.674(8)(12) in the continuum limit. This result
is a remarkable confirmation of the validity of scaling in the
range of our couplings, which extends also to a region where
asymptotic scaling is expected to hold valid.

By exploiting the analytic prediction given by perturbation the-
ory in the region where asymptotic scaling is valid, we can cal-
culate the value of the A parameter from our setup and con-
vert it to the more familiar MS scheme. We used three different
improved couplings to have a better convergence with pertur-
bation theory and we obtain an overall value of /8t Ayg =
0.3618(47)(29), compatible with previous results from the TEK
model [108] and also other results from standard lattice simu-
lations in the large-N. limit from [124, 136]. A more detailed
analysis and a careful treatment of this ensemble will be issued
in a future publication.

The last section of Chapter 4 is dedicated to the computation
of the chiral condensate ~ of Yang-Mills theory in the large-N.
limit. This is a crucial quantity to understand the mechanism of
the spontaneous breaking of chiral symmetry. We approach the
determination from two different perspectives. The first one is
a fully non-perturbative proof of the GMOR relation on the lat-
tice, which states that the chiral condensate can be read from the
slope of the vanishing of the pion mass in the chiral limit. We
take the relevant quantities needed from this study from [75],
where the light meson spectrum in the large-N. limit has been
computed in the TEK model. Our preliminary result for the con-
densate in units of Zp at the finest lattice spacings is 0.546(15) in
units of v/8to. The other determination comes from the study of
the mode number of the Dirac operator following the line of [126],
which leads to a value of 0.573(36) in units of /8ty for the
finest lattice spacings. We found a remarkable accordance be-



tween the two results, which is a nontrivial confirmation of the
solidity and consistency of our method. For the final determi-
nation of the chiral condensate, the chiral extrapolation has to
be seconded to a continuum one, for which the values of the
renormalization factor Zp are needed. At the time of the writ-
ing of this Thesis, these values are not available, and thus our
results have to be considered as a preliminary stage of a more
complete analysis in a future publication.

After the case of pure Yang-Mills theory, in Chapter 5 we pass
to the analysis of the case of Ny = J (an adjoint Majorana
fermion), which in the continuum and massless limit, corre-
sponds to N = 1 SUSY Yang-Mills theory. The first step is to per-
form scale setting. To ensure the robustness of our conclusions,
we employed redundancy by computing the lattice spacing us-
ing three distinct and independent observables. This analysis
was performed across various simulation runs, encompassing
different values of the lattice coupling and gluino mass. The
results are compiled in Tab. 15. As each observable represents
the lattice spacing in its respective unit, compatibility dictates
that the values should be proportional to each other, with the
proportionality constant determined by the ratio of units. Our
findings, as indicated in the table and visually represented in
Fig. 24, demonstrate that this proportionality holds for our lat-
tice sample within the limitations of errors. It is important to
note that the exact proportionality is only achieved in the con-
tinuum limit.

The final step involved extrapolating the results to the massless
gluino limit, thereby obtaining the desired value of the lattice
spacing for each bare lattice coupling. First of all, we apply dif-
ferent methodologies to find the critical value of the hopping
parameter ngj) at which the gluino becomes massless, obtain-
ing perfectly consistent value, enforcing the consistency of our
methods. We thus use the PCAC mass to extrapolate the lattice
scale in units of 1/8t; to the limit of massless gluino, where the
theory is expected to be supersymmetric. Remarkably, the re-
sulting dependence of the 3 function for two commonly used
improved lattice couplings closely aligns with the predictions of
perturbation theory. This finding also indicates that the range of
bare couplings explored in our study falls within the regime of
asymptotic.

As a last application of our method, we extract the scale also
for the cases of Nt = 1,2 adjoint fermion and depict our results
in Fig. 30 of Section 5.5 in Chapter 5. The plot demonstrates a
smooth relationship between the lattice scale and the fermion
mass. In the heavy mass limit, the curves converge to a consis-
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tent value independent of the number of flavors, resembling the
red band representing the scale extracted from pure gauge con-
figurations. In the light fermion sector, the results approach dif-
ferent theories. However, for the case of Ny = 2, which involves
2 dynamical adjoint fermions, the behavior is distinct. This the-
ory is believed to exhibit conformal properties in the chiral limit
as shown in [134] for our setup. Due to limited data precision in
the low mass range, our results can only be compared for com-
patibility with the previous findings. Additionally, as suggested
by recent studies, the case of N¢ = 1 could also show signals of
conformality. The fermion mass dependence of the scale does
not provide a conclusive result based on our data, and more
precise measurements at lighter masses would be necessary to
test this hypothesis.



CONCLUSIONES

En este capitulo final, nos basamos en la amplia investigacion real-
izada a lo largo de esta tesis doctoral para ofrecer una conclusién
exhaustiva de nuestro estudio. Nuestro objetivo en este capitulo final
es revisar los objetivos de investigacion establecidos al principio de
este viaje y evaluar hasta qué punto se han logrado.

En esta tesis, nos hemos centrado en la simulacién de la teoria
SU(N.) de Yang-Mills en el limite de grandes N, junto con sus ex-
tensiones que implican N¢ sabores de fermiones adjuntos. Nuestro
enfoque principal, conocido como “twisted volume reduction”, ex-
plota el concepto de independencia de volumen que surge en el limite
de N, grande y se explica en Capitulo 2. Segin este concepto, al
cuantizar la teoria en un toro con condiciones de contorno twisted, el
pardmetro dinamico que representa la informacion del volumen viene
determinado por una combinacién del ntimero de colores y el tamafio
real de la red. En el limite de N grande, siempre que la simetria del
centro permanezca intacta, podemos reducir el espaciotiempo a un
tnico punto, capturando efectivamente la fisica de una red con una
longitud lateral de ay/N¢. Esta formulacion particular se denomina
modelo TEK. La reduccién también puede aplicarse a fermiones total
o parcialmente, dependiendo de la representaciéon. Resumamos ahora
los principales logros de este trabajo.

* En el capitulo 3, examinamos el enfoque principal utilizado
para generar configuraciones tanto en la teoria pura de Yang-
Mills como en la teoria que incorpora fermiones dindmicos ad-
juntos con N¢ = %, 1,2. Presentamos la coleccién de conjuntos
que se han generado. Ademads, dentro del mismo capitulo, dis-
cutimos ampliamente la metodologia empleada para establecer
la escala de la teorfa. Como se subraya en Sec. 3.4.1 la técnica del
flujo de Wilson sirvié como herramienta principal, complemen-
tada por un procedimiento denominado correccion de la norma.
Este procedimiento elimina eficazmente el efecto de finito-N.
y artefactos de reticulo al tree-level en la teoria de perturba-
ciones. A través de este enfoque, hemos introducido una nueva
escala mejorada al tree-level, denominada /8t;, que nos per-
mite lograr ajustes de escala de alta precision en nuestras simu-
laciones. Junto con esta técnica, también proporcionamos infor-
macién detallada sobre un método alternativo para el ajuste de
escalas, que combina el flujo de Wilson con la utilizacién de los
coeficientes de Creutz. Aplicamos especificamente este enfoque
alternativo al caso de N¢ = % Ademas, presentamos una visién
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general de como se puede llevar a cabo la espectroscopia de
mesones dentro de nuestra configuracion.

Al principio del capitulo 4 aplicamos estas metodologias al caso
de Yang-Mills puro. Comprobamos extensamente la aplicabili-
dad de nuestra metodologia de fijacion de escala a todos nue-
stros conjuntos comparando los resultados a distintos valores
de N, y del acoplamiento gauge b. Verificamos que la correc-
ciéon de la norma es capaz de capturar eficazmente el desplaza-
miento sistematico de la escala causado por artefactos de red,
y puede tratar efectos finitos de N.. Proporcionamos una lista
de las escalas que extrajimos en Tab. 7. En la Sec. 4.2 compara-
mos la determinacién de la escala con este método con la de-
terminacion previa de la escala en el modelo TEK realizada
con la tensién de la cuerda en [108]. Proporcionamos los val-
ores de la escala en ambas unidades en la Tab. 8 y compro-
bamos que la razén adimensional R = \/01/8t; es compatible
casi siempre con un valor constante, excepto para el caso de la
red més gruesa, donde sigue siendo compatible dentro de 2o.
Esto puede entenderse en términos de violaciones de escala y
puede explicarse mediante un ajuste lineal en a?, que conduce
a un valor extrapolado de R = 0, 674(8)(12) en el limite del con-
tinuo. Este resultado es una notable confirmacién de la validez
del escalado en el rango de nuestros acoplamientos, que se ex-
tiende también a una region en la que se espera que el escalado
asintético sea valido.

Explotando la prediccién analitica dada por la teoria de per-
turbaciones en la regién donde el escalado asintético es valido,
podemos calcular el valor del pardmetro A a partir de nues-
tra configuraciéon y convertirlo al esquema mds familiar MS.
Utilizamos tres acoplamientos mejorados diferentes para tener
una mejor convergencia con la teoria de perturbaciones y obten-
emos un valor global de /8t; Ayg = 0.3618(47)(29), compatible
con resultados anteriores del modelo TEK [108] y también con
otros resultados de simulaciones en el reticolo estandar en el
limite N. grande de [124, 136]. Un andlisis méas detallado y un
tratamiento cuidadoso de este conjunto se publicardn en una
futura publicacién.

La tltima seccién del capitulo 4 estd dedicada al célculo del con-
densado quiral £ de la teoria de Yang-Mills en el limite de gran
N.. Esta es una cantidad crucial para entender el mecanismo
de la ruptura espontdnea de la simetria quiral. Abordamos la
determinacion desde dos perspectivas diferentes. La primera es
una prueba totalmente no-perturbativa de la relacion GMOR en
el enrejado, que afirma que el condensado quiral puede leerse a
partir de la pendiente de la desapariciéon de la masa del pién en



el limite quiral. Tomamos las cantidades relevantes necesarias
de este estudio de [75], donde el espectro del mesén ligero en el
limite grande-N. ha sido calculado en el modelo TEK. Nuestro
resultado preliminar para el condensado en unidades de Zp a
las separaciones maés finas de la red es de 0.546(15) en unidades
de \/8ty. La otra determinacién procede del estudio del niimero
de modo del operador de Dirac siguiendo la linea de [126], que
conduce a un valor de 0.573(36) en unidades de /8t para los
espaciamientos més finos de la red. Encontramos una notable
concordancia entre ambos resultados, lo que supone una confir-
macién no trivial de la solidez y consistencia de nuestro método.
Para la determinacién final del condensado quiral, la extrap-
olacién quiral tiene que ser secundada a una continua, para
lo cual se necesitan los valores del factor de renormalizaciéon
Zp. En el momento de escribir esta Tesis, estos valores no estan
disponibles, por lo que nuestros resultados deben considerarse
como una etapa preliminar de un andlisis mds completo en una
futura publicacién.

Después del caso de la teoria pura de Yang-Mills, en el capitulo
pasamos al analisis del caso de N¢ = % (un fermién de Majo-
rana adjunto), que en el limite continuo y sin masa, corresponde
a N = 1 teorfa SUSY Yang-Mills. El primer paso es realizar el
ajuste de escala. Para asegurar la robustez de nuestras conclu-
siones, empleamos redundancia calculando el espaciado de la
red utilizando tres observables distintos e independientes. Este
andlisis se realiz6 a lo largo de varias simulaciones, abarcando
diferentes valores del acoplamiento del reticulo y de la masa
del gluino. Los resultados se recopilan en Tab. 15. Como cada
observable representa el espaciado de la red en su unidad re-
spectiva, la compatibilidad dicta que los valores deben ser pro-
porcionales entre si, con la constante de proporcionalidad deter-
minada por la relacion de unidades. Nuestros resultados, como
se indica en la tabla y se representa visualmente en la Fig. ??, de-
muestran que esta proporcionalidad se mantiene para nuestra
muestra del reticulo dentro de los errores. Es importante sefialar
que la proporcionalidad exacta s6lo se alcanza en el limite del
continuo.

El altimo paso consistié en extrapolar los resultados al limite
del gluino sin masa, obteniendo asi el valor deseado del espa-
ciado reticular para cada acoplamiento reticular bare. En primer
lugar, aplicamos diferentes metodologias para encontrar el valor
critico del pardmetro de salto Kégj) en el que el gluino deja de
tener masa, obteniendo un valor perfectamente consistente, re-
forzando la consistencia de nuestros métodos. Asi, utilizamos la

masa PCAC para extrapolar la escala del reticulo en unidades
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de /8t; al limite de gluino masivo, donde se espera que la
teoria sea supersimétrica. Sorprendentemente, la dependencia
resultante de la funcién 3 para dos acoplamientos de celosia
mejorados comtnmente utilizados se alinea estrechamente con
las predicciones de la teorfa de perturbaciones. Este hallazgo
también indica que el rango de acoplamientos bare explorado
en nuestro estudio cae dentro del régimen de escalamiento as-
intoético.

Como tdltima aplicacién de nuestro método, extraemos la escala
también para los casos de Ny = 1,2 fermién adjunto y repre-
sentamos nuestros resultados en la Fig. 30 de la Seccién 5.5 del
Capitulo 5. El gréfico muestra una relacién suave entre la escala
de la red y la masa del fermién. En el limite de masa pesada,
las curvas convergen a un valor consistente independiente del
numero de sabores, asemejdndose a la banda roja que repre-
senta la escala extraida de configuraciones gauge puras. En el
sector de los fermiones ligeros, los resultados se aproximan a
teorfas diferentes. Sin embargo, para el caso de N¢ = 2, que im-
plica 2 fermiones dindmicos adyacentes, el comportamiento es
distinto. Se cree que esta teoria exhibe propiedades conformes
en el limite quiral como se muestra en [134] para nuestra config-
uracién. Debido a la limitada precision de los datos en el rango
de masas bajas, nuestros resultados solo pueden compararse en
cuanto a compatibilidad con los hallazgos anteriores. Ademas,
como sugieren estudios recientes, el caso de N¢ = 1 también
podria mostrar sefiales de conformidad. La dependencia de la
escala con la masa del fermién no proporciona un resultado
concluyente basado en nuestros datos, y serian necesarias medi-
ciones més precisas a masas mads ligeras para probar esta hipdte-
sis.
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