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Guessing probability in quantum key distribution

Xiang-Bin Wang'**¥, Jing-Tao Wang'®, Ji-Qian Qin’, Cong Jiang" and Zong-Wen Yu'*®

On the basis of the existing trace distance result, we present a simple and efficient method to tighten the upper bound of the
guessing probability. The guessing probability of the final key k can be upper bounded by the guessing probability of another key
k', if k' can be mapped from the final key k. Compared with the known methods, our result is more tightened by thousands of
orders of magnitude. For example, given a 10~ °-secure key from the sifted key, the upper bound of the guessing probability
obtained using our method is 2 x 10 >%”7. This value is smaller than the existing result 10~° by more than 3000 orders of
magnitude. Our result shows that from the perspective of guessing probability, the performance of the existing trace distance
security is actually much better than what was assumed in the past.
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INTRODUCTION

The first quantum key distribution (QKD) protocol has been
proposed by Bennett and Brassard in 1984; the protocol was
based on the fundamentals of quantum mechanics'. Since then,
the security of QKD has always been the central issue in the
quantum cryptographic field?. Trace distance is a very important
security criterion®*. It provides the universal composable secur-
ity>®, which can guarantee the security of key regardless of its
application such as one-time pad (OTP). This is why many studies
choose trace distance for the security criterion®*7,

In a classical practical cryptosystem, the impact of guessing
probability on security is very important®'°. Specifically, the key
generated by the QKD protocol is not based on the presumed
hardness of mathematical problems; thus, the eavesdropper Eve
can only guess the final key via the measurement result of her
probe. The guessing probability intuitively describes the prob-
ability that Eve can correctly guess the final key, which can reflect
the number of guesses that Eve requires to obtain the final key.

There are few studies on the guessing probability of QKD.
Because there are more rigorous security criterions, such as the
trace distance®, which gives the composable security. This makes
the theoretical foundation for security of QKD crucially important.
However, in the real application of QKD projects, customers often
ask the question of guessing probability. The existing prior art
results cannot give them a satisfactory upper bound''. Conse-
quently, some people questioned the security of QKD by relying
on the prior art results of guessing probability’?. For example,
according to the existing result'’, the guessing probability of the
e-secure key is approximately 10~ if £ is approximately 10~°. From
the perspective of guessing probability, the security of the value
107 is equivalent to that of a 30 perfect bits. The existing classical
computer systems can easily crack such key. In practice, it is not
unusual to request a much smaller guessing probability such as
107" or 10 '9%°, Therefore, it is beneficial to find a more
tightened upper bound of guessing probability.

As an important criterion in cryptography, guessing probability
alone cannot guarantee the security of the final key. However, the
large value of the loose upper bound of the guessing probability
does not indicate the insecurity of the final key'? because the

value is not achievable by Eve, and one can find a more tightened
value for the upper bound of the guessing probability. Here, by
applying the trace distance criterion®, we find such tightened
bound. We show that the guessing probability is actually smaller
than the existing bound values by many orders of magnitude if
one takes the privacy amplification by Toeplitz matrix. This shows
that the trace distance criterion® can actually produce a much
better result than what was assumed previously in the viewpoint
of guessing probability.

RESULTS

We consider the security definitions of a practical QKD protocol
with finite size under the framework of composable secur-
ity>*'31%, Suppose that Alice and Bob get two N-bit sifted key
strings, s and s’. By performing an error correction and private
amplification scheme, Alice gets an n;-bit key k, and Bob gets an
estimate key k of k from s and s'. The protocol is e -correct if
Pk =k] < . In general, the key k of Alice can be correlated with
an eavesdropper system, and the density matrix of Alice and Eve is
pae- The protocol outputs an e-secure key”, if

1
EH Pae — Py @ Pelly <& (M

where || - ||; denotes the trace norm, py is the fully mixed state of
Alice’s system. The protocol is & -secure if .o, and € satisfy ecor +
€ < &, Which means that it is &-indistinguishable from a perfect
protocol (which is correct and secret). Without any loss of
generality, we consider the case of &, = ¢ in this article.

We define the security level:

Definition 1. If key k is e-secure, the security level of key k is €. For
symbol clarity, we will use notation g, for the security level of key
k. With this definition, we can say that the key k is gc-secure or
that its security level is g. We define the guessing probability:

Definition 2. Let the final key generated by the QKD protocol be
k; the guessing probability of k is defined as the success probability
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of the attacker Eve guessing the final key via her measurement
result and is denoted as p(k).

Lemma 1. The guessing probability of &-secure key k with length n,
is not larger than Z%Jrsk. This is a conclusion from ref.'". The
proof has been already given in ref.'"; for the convenience of
readers, we write the proof again in the “Methods” section.
According to Lemma 1, the guessing probability of key k can be
divided into two parts; one part 27" is related to the length of the
key, the other part g(n) is related to the security level. Under the
framework of universally composable security, when calculating
the final key length, we often make the security level to be
between 10~° and 1072*, which is much bigger than 2~ because
ny is often 10°, 10%, or larger. Therefore, 2~ can be ignored and
p(k) <p(k) ~ O(g(k)). However, the guessing probability of a
secure key with a length of tens of bits can also reach this
magnitude. Therefore, when the secure requirements are very
high, it is clearly not enough for a key with a length of thousands
of bits or even longer if the upper bound of guessing probability
only stops at this magnitude. Therefore, we cannot simply use this
formula alone to obtain the upper bound of the guessing
probability. Fortunately, we have a much better way for tightening
the bound. The approach will be presented below.

Lemma 2. If key k can be mapped to string k' by a map M that is
known to Eve, then the guessing probability of k cannot be larger
than the guessing probability of string K/, i.e.,

p(k) < p(K). (2)

Here p(k),p(k’) are the guessing probabilities of k and K,
respectively. Proof. This lemma is clear because when Eve can
correctly guess k, Eve can obtain k' by knowing the map M.
Otherwise, Eve can still correctly guess the k' with a probability
not less than 0, i.e., p(k') = p(k) + 6,6 > 0.

Theorem 1. If the g-secure key k with a length n, can be mapped to
the gg-secure key k' with length n,, the guessing probability of k
cannot be larger than K/, i.e.,

p(k) < PK) = 517

Proof. This theorem actually requires two conditions:

+ Sk’ . (3)

(i) the final key k can be mapped to the string k’,
(i) the string k' can be regarded as a g,-secure key.

Using the above-mentioned conditions, the proof is very simple.
Given the condition (i), we can apply Lemma 2 to obtain

p(k) < p(K'). ()
Given the condition (ii), we can apply Lemma 1 to obtain

_ 1
pK) < p(K) = 37 + & 5)

where p(k’) is the upper bound of p(k'). According to Egs. (4) and
(5), we can obtain

p(k) < P(K) = 55 + & ©)
This ends our proof of Theorem 1. As discussed above, if the
length of the final key k and the string k' are very large, then 2™
and 27™ can be ignored. Meanwhile, if n, <n; and g <&, then
27" L go ~ g < & ~ 27" + &. Thus, Theorem 1 can provide a
tighter upper bound of guessing probability.

Using Theorem 1, it is now possible for us to obtain the upper
bound of the guessing probability of the g-secure key k more
tightly. Instead of directly applying Lemma 1, we choose to first
map k to an n,-bit string k' = M(k). If the string k' itself can be
regarded as an g-secure final key, we can apply Theorem 1 by
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calculating p(k’). In addition, we can obtain a much smaller upper
bound of the guessing probability of k if & is very small and n, is
not too small. Now, the remaining problems are to determine the
map M, to make sure that k' = M(k) is another key that is
ge-secure, and to calculate g. We start our method with the
hashing function in the key distillation.

Our hashing function

We use the key distillation with the random matrix. Denote R,y as
the nxN random matrix with each element being randomly
chosen to be either 0 or 1. In addition, we represent the N-bit
sifted string s by a column vector, which contains N elements. To
obtain the n-bit final key, we use the calculation R,ys. It can be
easily confirmed that our random matrix belongs to the class of
two-universal hashing function family?.

Suppose we have distilled out the n;-bit key k from the N-bit
sifted key s through hashing by our random matrix R,,n. We can
map the n;-bit key k into the n,-bit string k' = M(k) by deleting
the last n; — n, bits from the key string k. Clearly, this string k’
mapped from k can be also regarded as another final key distilled
from the sift key s by the n, x N random hashing matrix Ry,
which is a submatrix of Ry n. In summary, we have

k/ = M(k) = anNs~ (7)

This means that k' is a string mapped from key k. Moreover, k’
can be regarded as another final key of length n;, distilled from the
sifted key s. Because the two conditions in Theorem 1 are satisfied,
according to Theorem 1, we can obtain a tightened upper bound
of p(k) with Eq. (3) if we know the security level of key k', i.e., the
value of g,. Because our random matrix is a class of two-universal
hashing function, the value g/ depends on n,*. The details are
shown in the “Methods” section and explain the calculation of g
for n,. Hence, in the QKD protocol that uses a random hashing
matrix presented here, to obtain the upper bound of the guessing
probability of the n;-bit final key k, we can summarize the
procedure above by the following scheme:

Scheme (1) Given the ny-bit final key k, we delete its last n; — n,
bits and obtain a string k'. (2) We regard k’ as another possible
final key that is g -secure. Compute the g value of k' with the
input parameters N and n,. (3) Calculate p(k) by Theorem 1
through Eq. (3).

Because on our scheme the value of g is dependent on n,, as
shown in the “Methods” section, we can now replace &/ by a
functional form, &¢(n;). To obtain the tightened upper bound
value of the guessing probability in scheme 1, we need to choose
an appropriate n, value. In our calculation, we set the condition

27" = gu(ny), 8

for the appropriate n,.

For any n>n,, we have &(n) > g (ny) = 2~™; however, for any
n<n, we have 27">2""™, In conclusion, if n#n,,
27" + &(n) >27™. Therefore, in this study, we set 27" = g (n,),
and obtain a tightened guessing probability 271,

Once we determine the value n, and the corresponding g, (n,),
we calculate p(k’) by Eq. (3). Clearly, this is the upper bound of the
guessing probability of the final key k of length n; provided that

ny >n;. 9)

Thus, we can actually use a more efficient scheme to obtain the
upper bound of the guessing probability of key k, as the following
Theorem 2:

As shown in Fig. 1, the arrow between s and k indicates that the
ge-secure ny-bit final key k can be distilled from the N-bit sifted key
s using a random matrix Rp,y, i.e. k = Rp,ns. The arrow between k
and k' indicates that there exists a map M that can map the key k
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Fig. 1 Flow chart of our method of bounding the guessing
probability. The arrow between s and k indicates that the g-secure
n;-bit final key k can be distilled from the N-bit sifted key s using a
random matrix Ry, i.e., k=R, ns. The arrow between k and k'
indicates that there exists a map M that can map the key k into k/,
i.e. k' = M(k). The arrow between the sifted key S and k' indicates
that if a random hashing matrix R,y is used to distill the final key,
we have k' = R,,ys. Then, if n, satisfies the condition in Theorem 2, a
tightened guessing probability of k can be obtained.

Table 1. Comparison of the guessing probability, where Q. = 2.14%
is the channel error tolerance, N, = 0.22N,, is the length of the string
used to do parameter estimation, Ny, is the total length of the sifted
key, N = 0.78N,, is the length of the string for key generation, e = 10~°
is the security level, n is the length of the 10~ °-secure key, and pg is the
probability of correctly guessing the final key. Specifically, p;h’“'Z is the
result of Theorem 2 of this work.

Neol 10* 10° 10®

n 2.01x10° 4.06 x 10* 490x%10°
Py’ 1076 107 107

Py 10°° 10°° 107°
pg™? 2x 10732 2x1073% 2x 107327

into k', i.e,, k' = M(k). The arrow between the sifted key s and k'
indicates that if a random hashing matrix Ry, is used to distill the
final key, we have k' = R,,ys. Then if n, satisfies the condition in
Theorem 2, a tightened guessing probability of k can be obtained.

There are two important points need to be noticed. First, when
applying our theorem to obtain the nontrivial upper bound of the
guessing probability for the final key k, we do not really need to
transform k to another string k’, and we only need the existence
of a map that can map k to k' mathematically. That is to say, we
use the final key k, but its guessing probability is calculated from
the shorter key k'. As shown above, the existence has been
proven. Second, in this study, we use the random matrix R,y as a
family of two-universal hash functions to distill the key to illustrate
our conclusion more intuitively. Of course, we can also use the
modified Toeplitz matrix® instead of the random matrix R,y. Thus,
the final key k can be also mapped to the string k/, and the string
k' can also be regarded as the g -secure key. This means that the
proposed theorem in this study still holds.

Theorem 2. In the QKD protocol, if the n,-bit final key k is distilled
from the sifted key s using a random matrix Rn,n, the guessing
probability of k can be upper bounded by

p(k) < p(k) =2 "), (10)

where k' = M(k) = Rn,ns and n, satisfies 2" = gg(n,), ny <ny.
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Table 2. Comparison of the rate r=n/Ny, and r' = n’ /Ny under the
same parameters shows in Table 1. € and € are the security levels, n
and n’ are the length of e-secure key and the length of £-secure key,
respectively.

Neor 10* 10° 108

€ 10°° 10°° 10°°

n 2.01x 10 4.06 % 10* 490%10°
r 0.20 0.41 0.49

£/ 1 0—32 1 0—327 1 0—3277

n 136 1.12x10° 1.10x10*
r 0.01 0.01 0.01
DISCUSSION

Table 1 describes the upper bounds of the guessing probability
calculated by different N,o, where Ny, is the length of the total
string that includes the sifted keys for key generation and the
string used to do parameter estimation. In Table 1, Ny = 107, 10°,
and 10°. Table 1 shows that when Ny, = 10°% n=4.90% 10° and
the guessing probabilities obtained using the methods of ref. 2
and ref."" are approximately 10°° and 10°° respectively.
However, using our method, the guessing probability can be
reduced to 2 x 1032”7, which is more tightened by thousands of
orders of magnitude than prior art methods. With an increase in
the length of N, the length of the final key also increases;
however, the guessing probabilities in ref.'? and ref.'" almost
remain unchanged. Compared with ref.'? and ref. !, the guessing
probability obtained by our method is considerably reduced,
which is more realistic and tighter. It should be noted that we
calculate the case without the known-plaintext attack (KPA) in
Table 1. Now, we consider the case of KPA in QKD using our
method. Suppose that Eve knows the t bits of the final n,-bit key
k'; then, the guessing probability of the g/-secure key k' is
prea (k') <271 Now, the upper bound of the guessing
probability of key k' is equal to that of an ideal (n, — t — 1)-bit key.

Table 2 compares the length of the &-secure key n and the
length of €-secure key n" when the total length of the sifted key is
107, 10°, and 10°. This table shows that if only using Lemma 1 to
obtain a smaller guessing probability, € needs to be reduced.
Accordingly, the length of the final key and the key rate will be
considerably reduced. For example, from Table 2, when Ny = 10°,
if the customer wants to reduce the guessing probability from
10°° to 2x10 3?77, the length of the key will become
n' = 1.1x 10% and the key rate will become r' = 0.01. This result
is much lower than the original key length n=4.9 x 10° and the
key rate r = 0.49. Using our result, there is actually no bit cost for a
much smaller bound value of guessing probability. For example,
when Ny, = 10°, we can upper bound the guessing probability by
2% 103%"7 by setting £ = 10°. Thus, without reducing the value
of & we can obtain a tightened upper bound of guessing
probability p;hm‘z of k, as can be seen from Table 1.

Our result shows that in terms of guessing probability, the
performance of the existing trace distance security is much better
than what has been assumed in the past. Incidentally, in ref.'", a
looser upper bound, 10 for Eve's guessing probability, was
presented'2. We emphasize that this looser upper bound does not
in any sense challenge the validity of the existing security proof of
QKD'". Although the large value of lower bound of Eve's guessing
probability can show insecurity, the large value of upper bound
cannot show insecurity. If one does not make any effort, one can
also obtain a large-value upper bound of 100% for Eve’s guessing
probability. Such value is correct for the upper bound but not
meaningful. If any new upper bound is larger than that in the prior
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art result, it means that the “new upper bound” is trivial and
meaningless rather than the prior art result is invalid. Thus, the
looser upper bound presented by ref.'? only shows that Eve's
guessing probability of the key is smaller than 107, It does not
conflict with more tightened results presented elsewhere.

In this study, our goal is to obtain a tightened guessing
probability. On the basis of the existing secure criterion (Trace
distance) and the general property of guessing probability, we
propose a simple and efficient method to tighten the upper
bound of the guessing probability. We find that the guessing
probability p(k) of k can be upper bounded by 2=™~1, where n,
satisfies 27" = g (n,) and n; < ny. Specifically, a simple random
matrix R,y can be used to distill the final key. Compared with the
prior art results, of which the upper bound of the guessing
probability of the &e-secure key is approximately ¢, our method
provides a more tightened upper bound. Therefore, the loose
upper bound for the guessing probability obtained in ref.'?
cannot be regarded as evidence to question the validity of
existing the security proof of QKD.

METHODS
Proof of Lemma 1

Lemma 1. The guessing probability of the gc-secure key k with length ny is
not larger than 5+ &.

This is a conclusion obtained from ref.'". The proof has been already
presented in ref. "1 Here, for the convenience of the reader, we write the
proof again.

Proof. Let the n-bit string x be the gc-secure key in X. The density matrix
of Alice and Eve is pye and satisfies

Pxe :Z\x)(x|®p§7 (1

xeX

1
5 | oxe — Py, @ Pelly < &,

where py_is the fully mixed state in X. Then we have

1
3 Il oxe — Pu, @ pelly

1 1
e > _atx) (x| - 227 ) (x| 12)
XeX XeX 1
1 1
= Eg q(x) — 7

Eve's guessing probability of string x is g(x), and the maximum guessing
probability is py = maxxcx{q(x)}. Without any loss of generality, it is
possible to assume that the maximum guessing probability is g(x'). Note
that 3", ,q(x) = 1, then the following holds

1 1
3D e300~ 55 (13)
1‘ 1] 1
= 2lab) — x5 3 Ja00 55
2 2 zxeX‘x;:x’ 2’
1 0 1 1 1
*E‘q(x)_Z_" +3 Z [q(x)—z—n
XEX X=X/

1

o) - 5

From Egs. (11) to (13), we have pg < 27™ + &; thus, for the ny-bit g-secure
key k, the guessing probability satisfies

p(k) < p(k) = 1

where p(k) is the upper bound of p(k). This ends our proof of Lemma 1.

+ &, (14)
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Calculation of &

We consider the security definitions of a practical QKD protocol with a
finite size under the framework of composable security®'>'. Suppose that
Alice and Bob get two N-bit sifted key strings. By performing an error
correction and private amplification scheme, Alice get an n-bit final key k
and Bob get an estimate k of k. The protocol is e.o-correct if Plk k| < &cor.
In general, the key k of Alice can be correlated with an eavesdropper
system, and the density matrix of Alice and Eve is pag.

The protocol outputs an gesecure key'?, if

1
E” Pae — Py ® Pl < &, (15)

where || - || denotes the trace norm, py is the fully mixed state of Alice's
system. The protocol is gg-secure if €., and & satisfies €.or + & < Eolr
which means that it is &, -indistinguishable from an ideal protocol. Without
any loss of generality, we consider the case of £, = &.

From Lemma 1, we can calculate p(k) given the n-bit g-secure key k. In
this situation, p(k) = 27" + &. However, in our method, we only know N
and n,, which are the length of the sifted key and k'. (The string k' itself
can be also regarded as another final key distilled from the sifted key.) To
get a tightened upper bound of the guessing probability of k, we need to
obtain the value of g . According to ref.*, with N and n,, the final key is
ge-secure if g satisfies the following equation:

2

ny < N[1 = h(Qol + )] — fNh(Qor) — log a2 (16)
v

where p =, /fie Nt in 2+ N is the length of string used for parameter

estimation, f= 1.1, h denotes the binary Shannon entropy function, h(x) =
—xlogx — (1 —x)log (1 —x) and Qi represents the channel error
tolerance. To obtain nontrivial results, we use equality in Eq. (16) to
calculate the value of g, given the input n,. Since g is dependent on n,,
we use notation g¢(ny) for g¢. Here, g¢(ny), if ny is given and we
numerically find the value of g/ by Eq. (16).

In our calculation, we choose a specific n,-value that satisfies

27" = go(n). 17)

In combination with Eq. (16), we obtain the following equation for the
tightened & value:

2
—log &y = N[1 —h(Qui +H)] — fNA(Qual) ~ log -, (18)
o
and we can calculate the value of g and then calculate the guessing
probability by Eq. (8) in our main body text.
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