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Guessing probability in quantum key distribution
Xiang-Bin Wang1,2,3✉, Jing-Tao Wang1✉, Ji-Qian Qin1, Cong Jiang1 and Zong-Wen Yu1,4✉

On the basis of the existing trace distance result, we present a simple and efficient method to tighten the upper bound of the
guessing probability. The guessing probability of the final key k can be upper bounded by the guessing probability of another key
k0, if k0 can be mapped from the final key k. Compared with the known methods, our result is more tightened by thousands of
orders of magnitude. For example, given a 10−9-secure key from the sifted key, the upper bound of the guessing probability
obtained using our method is 2 × 10−3277. This value is smaller than the existing result 10−9 by more than 3000 orders of
magnitude. Our result shows that from the perspective of guessing probability, the performance of the existing trace distance
security is actually much better than what was assumed in the past.
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INTRODUCTION
The first quantum key distribution (QKD) protocol has been
proposed by Bennett and Brassard in 1984; the protocol was
based on the fundamentals of quantum mechanics1. Since then,
the security of QKD has always been the central issue in the
quantum cryptographic field2. Trace distance is a very important
security criterion3,4. It provides the universal composable secur-
ity5,6, which can guarantee the security of key regardless of its
application such as one-time pad (OTP). This is why many studies
choose trace distance for the security criterion3,4,7,8.
In a classical practical cryptosystem, the impact of guessing

probability on security is very important9,10. Specifically, the key
generated by the QKD protocol is not based on the presumed
hardness of mathematical problems; thus, the eavesdropper Eve
can only guess the final key via the measurement result of her
probe. The guessing probability intuitively describes the prob-
ability that Eve can correctly guess the final key, which can reflect
the number of guesses that Eve requires to obtain the final key.
There are few studies on the guessing probability of QKD.

Because there are more rigorous security criterions, such as the
trace distance5,6, which gives the composable security. This makes
the theoretical foundation for security of QKD crucially important.
However, in the real application of QKD projects, customers often
ask the question of guessing probability. The existing prior art
results cannot give them a satisfactory upper bound11. Conse-
quently, some people questioned the security of QKD by relying
on the prior art results of guessing probability12. For example,
according to the existing result11, the guessing probability of the
ε-secure key is approximately 10−9 if ε is approximately 10−9. From
the perspective of guessing probability, the security of the value
10−9 is equivalent to that of a 30 perfect bits. The existing classical
computer systems can easily crack such key. In practice, it is not
unusual to request a much smaller guessing probability such as
10−100 or 10−1000. Therefore, it is beneficial to find a more
tightened upper bound of guessing probability.
As an important criterion in cryptography, guessing probability

alone cannot guarantee the security of the final key. However, the
large value of the loose upper bound of the guessing probability
does not indicate the insecurity of the final key12 because the

value is not achievable by Eve, and one can find a more tightened
value for the upper bound of the guessing probability. Here, by
applying the trace distance criterion2, we find such tightened
bound. We show that the guessing probability is actually smaller
than the existing bound values by many orders of magnitude if
one takes the privacy amplification by Toeplitz matrix. This shows
that the trace distance criterion2 can actually produce a much
better result than what was assumed previously in the viewpoint
of guessing probability.

RESULTS
We consider the security definitions of a practical QKD protocol
with finite size under the framework of composable secur-
ity3,4,13,14. Suppose that Alice and Bob get two N-bit sifted key
strings, s and s0. By performing an error correction and private
amplification scheme, Alice gets an n1-bit key k, and Bob gets an
estimate key k̂ of k from s and s0. The protocol is εcor-correct if
P½k ≠ k̂� � εcor. In general, the key k of Alice can be correlated with
an eavesdropper system, and the density matrix of Alice and Eve is
ρAE. The protocol outputs an ε-secure key7, if

1
2
k ρAE � ρU � ρEk1 � ε; (1)

where ∥ ⋅ ∥1 denotes the trace norm, ρU is the fully mixed state of
Alice’s system. The protocol is εtol-secure if εcor and ε satisfy εcor+
ε ≤ εtol, which means that it is εtol-indistinguishable from a perfect
protocol (which is correct and secret). Without any loss of
generality, we consider the case of εcor= ε in this article.
We define the security level:

Definition 1. If key k is ε-secure, the security level of key k is ε. For
symbol clarity, we will use notation εk for the security level of key
k. With this definition, we can say that the key k is εk-secure or
that its security level is εk. We define the guessing probability:

Definition 2. Let the final key generated by the QKD protocol be
k; the guessing probability of k is defined as the success probability
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of the attacker Eve guessing the final key via her measurement
result and is denoted as p(k).

Lemma 1. The guessing probability of εk-secure key k with length n1
is not larger than 1

2n1 þ εk . This is a conclusion from ref. 11. The
proof has been already given in ref. 11; for the convenience of
readers, we write the proof again in the “Methods” section.
According to Lemma 1, the guessing probability of key k can be
divided into two parts; one part 2�n1 is related to the length of the
key, the other part εk(n1) is related to the security level. Under the
framework of universally composable security, when calculating
the final key length, we often make the security level to be
between 10−9 and 10−24, which is much bigger than 2�n1 because
n1 is often 103, 104, or larger. Therefore, 2�n1 can be ignored and
pðkÞ � pðkÞ � OðεðkÞÞ. However, the guessing probability of a
secure key with a length of tens of bits can also reach this
magnitude. Therefore, when the secure requirements are very
high, it is clearly not enough for a key with a length of thousands
of bits or even longer if the upper bound of guessing probability
only stops at this magnitude. Therefore, we cannot simply use this
formula alone to obtain the upper bound of the guessing
probability. Fortunately, we have a much better way for tightening
the bound. The approach will be presented below.

Lemma 2. If key k can be mapped to string k0 by a map M that is
known to Eve, then the guessing probability of k cannot be larger
than the guessing probability of string k0, i.e.,

pðkÞ � pðk0Þ: (2)

Here pðkÞ; pðk0Þ are the guessing probabilities of k and k0,
respectively. Proof. This lemma is clear because when Eve can
correctly guess k, Eve can obtain k0 by knowing the map M.
Otherwise, Eve can still correctly guess the k0 with a probability
not less than 0, i.e., pðk0Þ ¼ pðkÞ þ δ; δ � 0.

Theorem 1. If the εk-secure key k with a length n1 can be mapped to
the εk0 -secure key k0 with length n2, the guessing probability of k
cannot be larger than k0, i.e.,

pðkÞ � pðk0Þ ¼ 1
2n2

þ εk0 : (3)

Proof. This theorem actually requires two conditions:

(i) the final key k can be mapped to the string k0,
(ii) the string k0 can be regarded as a εk0 -secure key.

Using the above-mentioned conditions, the proof is very simple.
Given the condition (i), we can apply Lemma 2 to obtain

pðkÞ � pðk0Þ: (4)

Given the condition (ii), we can apply Lemma 1 to obtain

pðk0Þ � pðk0Þ ¼ 1
2n2

þ εk0 ; (5)

where pðk0Þ is the upper bound of pðk0Þ. According to Eqs. (4) and
(5), we can obtain

pðkÞ � pðk0Þ ¼ 1
2n2

þ εk0 : (6)

This ends our proof of Theorem 1. As discussed above, if the
length of the final key k and the string k0 are very large, then 2�n1

and 2�n2 can be ignored. Meanwhile, if n2 < n1 and εk0 < εk , then
2�n2 þ εk0 � εk0 � εk � 2�n1 þ εk . Thus, Theorem 1 can provide a
tighter upper bound of guessing probability.
Using Theorem 1, it is now possible for us to obtain the upper

bound of the guessing probability of the εk-secure key k more
tightly. Instead of directly applying Lemma 1, we choose to first
map k to an n2-bit string k0 ¼ MðkÞ. If the string k0 itself can be
regarded as an εk0 -secure final key, we can apply Theorem 1 by

calculating pðk0Þ. In addition, we can obtain a much smaller upper
bound of the guessing probability of k if εk0 is very small and n2 is
not too small. Now, the remaining problems are to determine the
map M, to make sure that k0 ¼ MðkÞ is another key that is
εk0 -secure, and to calculate εk0 . We start our method with the
hashing function in the key distillation.

Our hashing function
We use the key distillation with the random matrix. Denote RnN as
the n × N random matrix with each element being randomly
chosen to be either 0 or 1. In addition, we represent the N-bit
sifted string s by a column vector, which contains N elements. To
obtain the n-bit final key, we use the calculation RnNs. It can be
easily confirmed that our random matrix belongs to the class of
two-universal hashing function family2.
Suppose we have distilled out the n1-bit key k from the N-bit

sifted key s through hashing by our random matrix Rn1N . We can
map the n1-bit key k into the n2-bit string k0 ¼ MðkÞ by deleting
the last n1− n2 bits from the key string k. Clearly, this string k0

mapped from k can be also regarded as another final key distilled
from the sift key s by the n2 × N random hashing matrix Rn2N ,
which is a submatrix of Rn1N . In summary, we have

k0 ¼ MðkÞ ¼ Rn2Ns: (7)

This means that k0 is a string mapped from key k. Moreover, k0

can be regarded as another final key of length n2 distilled from the
sifted key s. Because the two conditions in Theorem 1 are satisfied,
according to Theorem 1, we can obtain a tightened upper bound
of p(k) with Eq. (3) if we know the security level of key k0, i.e., the
value of εk0 . Because our random matrix is a class of two-universal
hashing function, the value εk0 depends on n2

4. The details are
shown in the “Methods” section and explain the calculation of εk0
for n2. Hence, in the QKD protocol that uses a random hashing
matrix presented here, to obtain the upper bound of the guessing
probability of the n1-bit final key k, we can summarize the
procedure above by the following scheme:
Scheme (1) Given the n1-bit final key k, we delete its last n1− n2

bits and obtain a string k0. (2) We regard k0 as another possible
final key that is εk0 -secure. Compute the εk0 value of k0 with the
input parameters N and n2. (3) Calculate pðkÞ by Theorem 1
through Eq. (3).
Because on our scheme the value of εk0 is dependent on n2, as

shown in the “Methods” section, we can now replace εk0 by a
functional form, εk0 ðn2Þ. To obtain the tightened upper bound
value of the guessing probability in scheme 1, we need to choose
an appropriate n2 value. In our calculation, we set the condition

2�n2 ¼ εk0 ðn2Þ; (8)

for the appropriate n2.
For any n > n2, we have εkðnÞ> εk0 ðn2Þ ¼ 2�n2 ; however, for any

n < n2, we have 2�n > 2�n2 . In conclusion, if n ≠ n2,
2�n þ εkðnÞ> 2�n2 . Therefore, in this study, we set 2�n2 ¼ εk0 ðn2Þ,
and obtain a tightened guessing probability 2�n2þ1.
Once we determine the value n2 and the corresponding εk0 ðn2Þ,

we calculate pðk0Þ by Eq. (3). Clearly, this is the upper bound of the
guessing probability of the final key k of length n1 provided that

n1 >n2: (9)

Thus, we can actually use a more efficient scheme to obtain the
upper bound of the guessing probability of key k, as the following
Theorem 2:
As shown in Fig. 1, the arrow between s and k indicates that the

εk-secure n1-bit final key k can be distilled from the N-bit sifted key
s using a random matrix Rn1N , i.e. k ¼ Rn1Ns. The arrow between k
and k0 indicates that there exists a map M that can map the key k
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into k0, i.e., k0 ¼ MðkÞ. The arrow between the sifted key s and k0

indicates that if a random hashing matrix Rn2N is used to distill the
final key, we have k0 ¼ Rn2Ns. Then if n2 satisfies the condition in
Theorem 2, a tightened guessing probability of k can be obtained.
There are two important points need to be noticed. First, when

applying our theorem to obtain the nontrivial upper bound of the
guessing probability for the final key k, we do not really need to
transform k to another string k0, and we only need the existence
of a map that can map k to k0 mathematically. That is to say, we
use the final key k, but its guessing probability is calculated from
the shorter key k0. As shown above, the existence has been
proven. Second, in this study, we use the random matrix RnN as a
family of two-universal hash functions to distill the key to illustrate
our conclusion more intuitively. Of course, we can also use the
modified Toeplitz matrix8 instead of the random matrix RnN. Thus,
the final key k can be also mapped to the string k0, and the string
k0 can also be regarded as the εk0 -secure key. This means that the
proposed theorem in this study still holds.

Theorem 2. In the QKD protocol, if the n1-bit final key k is distilled
from the sifted key s using a random matrix Rn1N, the guessing
probability of k can be upper bounded by

pðkÞ � pðk0Þ ¼ 2�ðn2�1Þ; (10)

where k0 ¼ MðkÞ ¼ Rn2Ns and n2 satisfies 2�n2 ¼ εk0 ðn2Þ; n2 < n1:

DISCUSSION
Table 1 describes the upper bounds of the guessing probability
calculated by different Ntol, where Ntol is the length of the total
string that includes the sifted keys for key generation and the
string used to do parameter estimation. In Table 1, Ntol= 104, 105,
and 106. Table 1 shows that when Ntol= 106, n= 4.90 × 105 and
the guessing probabilities obtained using the methods of ref. 12

and ref. 11 are approximately 10−6 and 10−9, respectively.
However, using our method, the guessing probability can be
reduced to 2 × 10−3277, which is more tightened by thousands of
orders of magnitude than prior art methods. With an increase in
the length of Ntol, the length of the final key also increases;
however, the guessing probabilities in ref. 12 and ref. 11 almost
remain unchanged. Compared with ref. 12 and ref. 11, the guessing
probability obtained by our method is considerably reduced,
which is more realistic and tighter. It should be noted that we
calculate the case without the known-plaintext attack (KPA) in
Table 1. Now, we consider the case of KPA in QKD using our
method. Suppose that Eve knows the t bits of the final n2-bit key
k0; then, the guessing probability of the εk0 -secure key k0 is
pKPAðk0Þ � 2�ðn2�t�1Þ . Now, the upper bound of the guessing
probability of key k0 is equal to that of an ideal (n2− t− 1)-bit key.
Table 2 compares the length of the ε-secure key n and the

length of ε0-secure key n0 when the total length of the sifted key is
104, 105, and 106. This table shows that if only using Lemma 1 to
obtain a smaller guessing probability, ε needs to be reduced.
Accordingly, the length of the final key and the key rate will be
considerably reduced. For example, from Table 2, when Ntol= 106,
if the customer wants to reduce the guessing probability from
10−9 to 2 × 10−3277, the length of the key will become
n0 ¼ 1:1 ´ 104, and the key rate will become r0 ¼ 0:01. This result
is much lower than the original key length n= 4.9 × 105 and the
key rate r= 0.49. Using our result, there is actually no bit cost for a
much smaller bound value of guessing probability. For example,
when Ntol= 106, we can upper bound the guessing probability by
2 × 10−3277 by setting ε= 10−9. Thus, without reducing the value
of ε, we can obtain a tightened upper bound of guessing
probability pThm:2

g of k, as can be seen from Table 1.
Our result shows that in terms of guessing probability, the

performance of the existing trace distance security is much better
than what has been assumed in the past. Incidentally, in ref. 11, a
looser upper bound, 10−6 for Eve’s guessing probability, was
presented12. We emphasize that this looser upper bound does not
in any sense challenge the validity of the existing security proof of
QKD11. Although the large value of lower bound of Eve’s guessing
probability can show insecurity, the large value of upper bound
cannot show insecurity. If one does not make any effort, one can
also obtain a large-value upper bound of 100% for Eve’s guessing
probability. Such value is correct for the upper bound but not
meaningful. If any new upper bound is larger than that in the prior

Fig. 1 Flow chart of our method of bounding the guessing
probability. The arrow between s and k indicates that the εk-secure
n1-bit final key k can be distilled from the N-bit sifted key s using a
random matrix Rn1N , i.e., k ¼ Rn1Ns. The arrow between k and k0

indicates that there exists a map M that can map the key k into k0,
i.e. k0 ¼ MðkÞ. The arrow between the sifted key S and k0 indicates
that if a random hashing matrix Rn2N is used to distill the final key,
we have k0 ¼ Rn2Ns. Then, if n2 satisfies the condition in Theorem 2, a
tightened guessing probability of k can be obtained.

Table 1. Comparison of the guessing probability, where Qtol= 2.14%
is the channel error tolerance, Nz= 0.22Ntol is the length of the string
used to do parameter estimation, Ntol is the total length of the sifted
key, N= 0.78Ntol is the length of the string for key generation, ε= 10−9

is the security level, n is the length of the 10−9-secure key, and pg is the
probability of correctly guessing the final key. Specifically, pThm:2

g is the
result of Theorem 2 of this work.

Ntol 104 105 106

n 2.01 × 103 4.06 × 104 4.90 × 105

pg
12 10−6 10−6 10−6

pg
11 10−9 10−9 10−9

pThm:2
g 2 × 10−32 2 × 10−327 2 × 10−3277

Table 2. Comparison of the rate r= n/Ntol and r0 ¼ n0=Ntol under the
same parameters shows in Table 1. ε and ε0 are the security levels, n
and n0 are the length of ε-secure key and the length of ε0-secure key,
respectively.

Ntol 104 105 106

ε 10−9 10−9 10−9

n 2.01 × 103 4.06 × 104 4.90 × 105

r 0.20 0.41 0.49

ε0 10−32 10−327 10−3277

n0 136 1.12 × 103 1.10 × 104

r0 0.01 0.01 0.01

X.-B. Wang et al.
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art result, it means that the “new upper bound” is trivial and
meaningless rather than the prior art result is invalid. Thus, the
looser upper bound presented by ref. 12 only shows that Eve’s
guessing probability of the key is smaller than 10−6. It does not
conflict with more tightened results presented elsewhere.
In this study, our goal is to obtain a tightened guessing

probability. On the basis of the existing secure criterion (Trace
distance) and the general property of guessing probability, we
propose a simple and efficient method to tighten the upper
bound of the guessing probability. We find that the guessing
probability p(k) of k can be upper bounded by 2�ðn2�1Þ , where n2
satisfies 2�n2 ¼ εk0 ðn2Þ and n2 < n1. Specifically, a simple random
matrix RnN can be used to distill the final key. Compared with the
prior art results, of which the upper bound of the guessing
probability of the ε-secure key is approximately ε, our method
provides a more tightened upper bound. Therefore, the loose
upper bound for the guessing probability obtained in ref. 12

cannot be regarded as evidence to question the validity of
existing the security proof of QKD.

METHODS
Proof of Lemma 1

Lemma 1. The guessing probability of the εk-secure key k with length n1 is
not larger than 1

2n1 þ εk .

This is a conclusion obtained from ref. 11. The proof has been already
presented in ref. 11. Here, for the convenience of the reader, we write the
proof again.
Proof. Let the n-bit string x be the εx-secure key in X . The density matrix

of Alice and Eve is ρXE and satisfies

ρXE ¼
X

x2X
xj i xh j � ρxE ; (11)

1
2
k ρXE � ρUx

� ρEk1 � εx;

where ρUx
is the fully mixed state in X . Then we have

1
2
k ρXE � ρUx

� ρEk1

� 1
2

X

x2X
qðxÞ xj i xh j �

X

x2X

1
2n

xj i xh j
�����

�����
1

(12)

¼ 1
2

X

x2X
qðxÞ � 1

2n

����

����:

Eve’s guessing probability of string x is q(x), and the maximum guessing
probability is pg ¼ maxx2XfqðxÞg. Without any loss of generality, it is
possible to assume that the maximum guessing probability is qðx0Þ. Note
that

P
x2XqðxÞ ¼ 1, then the following holds

1
2

X
x2X qðxÞ � 1

2n

����

���� (13)

¼ 1
2
qðx0Þ � 1

2n

����

����þ
1
2

X

x2X ;x≠x0
qðxÞ � 1

2n

����

����

� 1
2
qðx0Þ � 1

2n

����

����þ
1
2

X

x2X ;x≠x0
½qðxÞ � 1

2n
�

�����

�����

¼ qðx0Þ � 1
2n

����

����:

From Eqs. (11) to (13), we have pg � 2�n1 þ εx ; thus, for the n1-bit εk-secure
key k, the guessing probability satisfies

pðkÞ � pðkÞ ¼ 1
2n1

þ εk; (14)

where pðkÞ is the upper bound of p(k). This ends our proof of Lemma 1.

Calculation of ε0k
We consider the security definitions of a practical QKD protocol with a

finite size under the framework of composable security4,13,14. Suppose that
Alice and Bob get two N-bit sifted key strings. By performing an error
correction and private amplification scheme, Alice get an n-bit final key k
and Bob get an estimate k̂ of k. The protocol is εcor-correct if P½k ≠ k̂� � εcor.
In general, the key k of Alice can be correlated with an eavesdropper
system, and the density matrix of Alice and Eve is ρAE.
The protocol outputs an εk-secure key13, if

1
2
k ρAE � ρU � ρEk1 � εk; (15)

where ∥ ⋅ ∥1 denotes the trace norm, ρU is the fully mixed state of Alice's
system. The protocol is εtol-secure if εcor and εk satisfies εcor+ εk ≤ εtol,
which means that it is εtol-indistinguishable from an ideal protocol. Without
any loss of generality, we consider the case of εcor= εk.
From Lemma 1, we can calculate pðkÞ given the n-bit εk-secure key k. In

this situation, pðkÞ ¼ 2�n þ εk . However, in our method, we only know N
and n2, which are the length of the sifted key and k0 . (The string k0 itself
can be also regarded as another final key distilled from the sifted key.) To
get a tightened upper bound of the guessing probability of k, we need to
obtain the value of εk0 . According to ref. 4, with N and n2, the final key is
εk0 -secure if εk0 satisfies the following equation:

n2 � N½1� hðQtol þ μÞ� � fNhðQtolÞ � log
2
ε3k0

; (16)

where μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NþNz
NNz

Nzþ1
Nz

ln 2
εk0

q
, Nz is the length of string used for parameter

estimation, f= 1.1, h denotes the binary Shannon entropy function, hðxÞ ¼
�x log x � ð1� xÞlog ð1� xÞ and Qtol represents the channel error
tolerance. To obtain nontrivial results, we use equality in Eq. (16) to
calculate the value of εk0 , given the input n2. Since εk0 is dependent on n2,
we use notation εk0 ðn2Þ for εk0 . Here, εk0 ðn2Þ, if n2 is given and we
numerically find the value of εk0 by Eq. (16).
In our calculation, we choose a specific n2-value that satisfies

2�n2 ¼ εk0 ðn2Þ: (17)

In combination with Eq. (16), we obtain the following equation for the
tightened εk0 value:

�log εk0 ¼ N½1� hðQtol þ μÞ� � fNhðQtolÞ � log
2
ε3k0

; (18)

and we can calculate the value of εk0 and then calculate the guessing
probability by Eq. (8) in our main body text.
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