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Abstract
One of the oldest problems in quantum information theory is to study if there exists a
state with negative partial transpose which is undistillable [1]. This problem has been
open for almost 30 years, and still no one has been able to give a complete answer
to it. This work presents a new strategy to try to solve this problem by translating
the distillability condition on the family of Werner states into a problem of partial
trace inequalities, this is the aim of our first main result. As a consequence, we obtain
a new bound for the 2-distillability of Werner states, which does not depend on the
dimension of the system. On the other hand, our second main result provides new
partial trace inequalities for bipartite systems, connecting some of them also with the
separability of Werner states. Throughout this work, we also present numerous partial
trace inequalities, which are valid for many families of matrices.

Keywords Werner states · Distillability · Partial trace · Bound entanglement · Trace
inequalities

1 Introduction

The theory of quantum entanglement, introduced in [14] in 1935 by Einstein, Podolsky
and Rosen, has been one of the central topics of debate and progress in the last century
in quantummechanics. However, many questions remain to be solved in this field, and
in this work, we will discuss one of them, the famous problem stated in [1]: Study if
there exists a state with negative partial transpose which is undistillable. A quantum
stateρ ∈ L(H ), whereH = H1⊗H2, is a positive semidefinitematrixwith tr ρ = 1.
A state is called separable if it can be written as a convex sum of tensor products of
positive semidefinite matrices. Otherwise, it is called entangled.
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In this paper, we will focus on the fundamental property called distillability: Sup-
pose that we have two parties, call them Alice and Bob, who share n-copies of the
same state ρ ∈ L(Cd ⊗ C

d), ρ ≥ 0, tr ρ = 1, and that both perform a local operation
obtaining a new state of the form

ρ′ = A ⊗ Bρ⊗n A∗ ⊗ B∗

tr[A ⊗ Bρ⊗n A∗ ⊗ B∗] , (1)

with A, B : (Cd)⊗n → C
2, and where “*” denotes the adjoint matrix. If it is possible

to find a pair of operations (A, B) such that the resulting state ρ′ is entangled, it
is said that ρ is n-distillable (see e.g., [22]) . If, on the other hand, for any pair of
operations (A, B) the state ρ′ is always separable, we say that ρ is n-undistillable. If
for every n ∈ N, ρ is n-undistillable, then ρ is called simply undistillable, otherwise it
is distillable. An alternative definition is that ρ is n-undistillable if, for every Schmidt
rank 2 vector v ∈ (Cd ⊗ C

d)⊗n ,

〈v,
(
ρT1

)⊗n
v〉 ≥ 0, (2)

where T1 denotes the partial transposition and with the Schmidt rank defined as the
minimum number of terms needed to express a quantum state as a sum of tensor
product states, see [26, 28] or [13].

In [20], it was shown that it is enough to reduce the distillability problem to the
family of Werner states defined as (see e.g., [28] or [34])

ρα = 1 + αF

d2 + αd
, (3)

where α ∈ [−1, 1] and F is the flip operator acting on tensor products as F(x ⊗ y) =
y ⊗ x , for x, y ∈ C

d ⊗ C
d . The reason for that, is that every state with a non-

positive partial transpose can be mapped onto a Werner state with a non-positive
partial transpose via the twirling map

T(ρ) =
∫

U (d)

(U ⊗U )ρ(U ⊗U )∗dU , (4)

where dU denotes the Haar measure on the unitary group of d×d matricesU (d). This
twirlingoperator is in particular a formof local operations and classical communication
(LOCC) since it consists of a convex combination of local unitary operators. Therefore,
the existence of undistillable states with non-positive partial transpose can be decided
just by focusing onWerner states. This family of states satisfy the following properties:

1. ρα is separable ⇔ ρα has positive partial transpose ⇔ α ≥ − 1
d .

2. For n = 1 in 1, ρα is 1-undistillable ⇔ α ≥ − 1
2 .

Moreover, in [23] it is conjectured that this family might contain a subfamily of states
which are undistillable but with non-positive partial transpose. In the last decades,
there have been many different approaches to this problem, some of them leading to
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Fig. 1 Connection between partial trace inequalities and properties of Werner states

particular results that have been proved for the distillability of the Werner states , for
example in [6, 7, 26, 28], but still the problem remains open. The conjecture on this
family of Werner states is the following:

Conjecture 1 Let α ∈ [−1, 1], d ≥ 2. A Werner state ρα ∈ L(Cd ⊗ C
d), is n-

undistillable for every n ∈ N if, and only if α ≥ − 1
2 .

A positive answer to Conjecture 1 would solve then the problem of finding a state
with negative partial transpose and is undistillable.

1.1 Summary of main results and structure of this work

In this work, we provide a new characterization for the Conjecture 1 in terms of partial
trace inequalities for the 2-norm, which depend on the parameter α associated with the
Werner states 3. This is the goal of the first main result, Theorem 1, which is presented
in section 3. Moreover in Proposition 2, we also show the connection between the
separability and another family of partial trace inequalities. This connection is showed
in Fig. 1.

In section 4, we will study how the quadratic forms associated to state inversion
operators studied in e.g., [15, 16] or [25] are related with the distillability and separa-
bility properties of Werner states and tensor product of Werner states. We will exploit
the correspondence shown in the previous figure to obtain new results on both partial
trace inequalities and properties of Werner states. In Proposition 2, we will use that
ρα is separable for α ≥ − 1

d to prove partial trace inequalities in n-partite systems for
arbitrary matrices.

Theorem 2 is our second main result, where we present the partial trace inequalities
thatwe have been able to prove for bipartite systems. The spiritwill be then the opposite
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as before, that is, we will try to prove partial trace inequalities to obtain information on
the 2-distillability properties of Werner states. In Theorem 2 appear four partial trace
inequalities: One in the family 1 related to the distillability, the second one related to
the family 2, and two others more concerning the distillability of the tensor product of
twoWerner states with different sign in the parameter α (see Remark 6). In particular,
we show that both ρ 1

2
⊗ ρ− 1

2
and ρ− 1

2
⊗ ρ 1

2
are 1-distillable. The proof of Theorem

2 is presented in Section 7, due to its length.
Another remarkable result is Corollary 1 in section 3. There, we prove that for

α ≥ − 1
4 , the Werner states ρα are 2-undistillable for every dimension d ≥ 2. This

becomes relevant for d ≥ 5, since then for α ∈ (− 1
d ,− 1

4 ] this implies that the states
ρα are 2-undistillable and entangled.

In section 5, we discuss about partial trace inequalities in tripartite systems, and
prove a particular case of the quadratic form associated to the 3-distillabilty. Finally
in section 6, we present numerical results showing the existence of general families
of partial trace inequalities for all the Schatten p-norms.

2 Preliminaries

LetH be a finite-dimensional Hilbert space. We will denote the set of bounded linear
operators in H by L(H ). For T ∈ L(H ) the Schatten p-norms are defined for
p > 0 as

‖T ‖p = (
tr |T |p) 1

p , (5)

where |T | = √
T T ∗. In particular, for p = 2, this norm comes from an inner product

in L(H ) called Hilbert-Schmidt product defined as

〈T , S〉 = tr(T ∗S), (6)

for T , S ∈ L(H ). The case p = ∞ corresponds with the operator norm. In the
particular case whereH = H1⊗H2, one can define the partial trace operator valued

functions for T ∈ L(H1 ⊗ H2), T =
n∑

i=1

T 1
i ⊗ T 2

i as

tr1 T =
n∑

i=1

tr(T 1
i )T 2

i , tr2 T =
n∑

i=1

tr(T 2
i )T 1

i , (7)

which are independent from the choice of decomposition in tensor products. The
following inequalities show some well-known bounds for the norms 1 and 2

‖T ‖2 ≤ ‖T ‖1 ≤ √
r‖T ‖2, (8)

‖T ‖22 ≥ 1

r
| tr T |2, (9)

‖ tri T ‖1 ≤ ‖T ‖1 (10)
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for i = 1, 2 and where r = rank(T ). For 10 see e.g., [31].

Remark 1 Many times in the literature in quantum mechanics, the bra-ket notation is
used for normalized vectors. In this work, however, we will use this notation to denote
arbitrary rank 1 matrices, i.e., matrices of the form |v〉〈w| where v,w ∈ H , but not
vectors or associated functionals. There will be only one exception for this in the proof
of Proposition 5, where it simplifies the notation, and it is also indicated there.

Given a Hilbert space H, the symmetric and antisymmetric subspaces for two
copies of H are defined as

H+ = {v ∈ H ⊗ H : Fv = v}, H− = {v ∈ H ⊗ H : Fv = −v}, (11)

respectively, where F is the flip operator. The respective orthogonal projections are
given by

P+ = 1 + F

2
, P− = 1 − F

2
. (12)

For v,w ∈ H , define the symmetric product � : H ⊗ H → H+ and the antisym-
metric product ∧ : H ⊗ H → H−

v � w = v ⊗ w + w ⊗ v, v ∧ w = v ⊗ w − w ⊗ v. (13)

Finally, the bosonic and fermionic creation operators acting on w ∈ H are

a∗+(v)w = √
2P+(v⊗w) = 1√

2
(v�w), a∗−(v)w = √

2P−(v⊗w) = 1√
2
(v∧w),

(14)
respectively, for v ∈ H , and the bosonic and fermionic annihilation operators on
ϕ ∈ H ⊗ H are just

a+(v)(ϕ) = √
2〈v, P+ϕ〉1, a−(v)(ϕ) = √

2〈v, P−ϕ〉1, (15)

where 〈 , 〉1 : H × H ⊗2 → H is the partial inner product in the first argument,
i.e., the sesquilinear extension of

(v, ϕ1 ⊗ ϕ2) �→ 〈v, ϕ1〉ϕ2. (16)

See [4] for a more general definition of the creation and annihilation operators in the
Fock space.

3 Distillability of Werner states

In recent times, on the way to solving theWerner states’ distillability problem, several
equivalent problems have been proposed in order to approach it with different strate-
gies. A first example is the one formulated in [28] for the C

4 ⊗ C
4 system, where the

2-distillability problem is equivalent to show that for matrices A, B ∈ L(C4), with
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tr A = tr B = 0 and ‖A‖22 +‖B‖22 = 1
2 , the two largest singular values squared of the

Kronecker sum A ⊗ 1 + 1 ⊗ B are upper bounded by 1
2 . A second one is provided

in [11] and it relates the undistillability with the existence of a completely positive
map, which is not completely co-positive but 2-copositive in all its tensor n-th tensor
power, see also [23]. Our first main result presents a new characterization in terms of
partial trace inequalities.

Theorem 1 Let H be a finite-dimensional Hilbert space that can be decomposed as
H = H1 ⊗ . . . ⊗ Hn, with dim(Hi ) = di , and define for α ∈ R the quadratic form

q(n)(α,C) =
∑

J∈P({1,2,...,n})
α|J |‖ tr J C‖22, (17)

where P(X) is the power set of X andwe denote tr∅ = 1. Then,ρα is n-distillable if and
only if there exists a matrix C ∈ L((Cd)⊗n)with rank C ≤ 2 such that q(n)(α,C) < 0,
with α ∈ [−1, 1].
Proof Suppose that ρα is n-copies distillable, i.e, there exists A, B such that ρ′ ∈
L(C2 ⊗ C

2) in 1 is entangled. Since the Hilbert space for ρ′ is C
2 ⊗ C

2, this implies
(see [21]) that (ρ′)T1 � 0, so there exists an element ψ ∈ C

2 ⊗ C
2 such that

〈ψ, (ρ′)T1ψ〉 < 0. (18)

Let V ∈ L(C2) such that ψ = (1⊗ V ∗)�, where � is the maximally entangled state
and denote by P� the orthogonal projection onto �, and by FC

2
the flip operator in

C
2 ⊗ C

2, which satisfy the relation PT1
� = 1

2 F
C
2
. We can then write

〈ψ, (ρ′)T1ψ〉 = tr[P�(1 ⊗ V )(ρ′)T1(1 ⊗ V )∗] (19a)

= tr[PT1
� (1 ⊗ V )(ρ′)(1 ⊗ V )∗] (19b)

= 1

2
tr[FC

2
(1 ⊗ V )(ρ′)(1 ⊗ V )∗] (19c)

� tr[FC
2
(A ⊗ V B)(ρA1B1 ⊗ . . . ⊗ ρAn Bn )(A ⊗ V B)∗], (19d)

where � means up to the normalization factor. Defining D = V B and using the
cyclical property of the trace,

tr
[
(ρA1B1 ⊗ . . . ⊗ ρAn Bn )(A ⊗ D)∗FC

2
(A ⊗ D)

]
< 0. (20)

Let F̃ be the linear extension of the operator which acts on the tensor product as
F̃(x ⊗ y) = y ⊗ x, x, y ∈ (Cd)⊗n . Then,

(A ⊗ D)∗FC
2
(A ⊗ D)(x ⊗ y) = (A∗Dy) ⊗ (D∗Ax) = (A∗D ⊗ D∗A)(y ⊗ x),
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so we obtain the relation

(A ⊗ D)∗FC
2
(A ⊗ D) = (A∗D ⊗ D∗A)F̃ . (21)

Now, let C = A∗D. On the one hand, this matrix satisfies that

rank(C) = rank(A∗BV ) ≤ min{rank(V ), rank(A), rank(B)} ≤ 2.

On the other hand, denote by P({1, 2, . . . , n}) the power set of {1, 2, . . . , n} and define
for J ∈ P({1, 2, . . . , n}), FAJ BJ to be the flip operator swapping the systems A j and
Bj for every j ∈ J . Then if JC is the complementary set of J in P({1, 2, . . . , n}),
combining 19d and 21,

〈ψ, (ρ′)T1ψ〉 � tr
[(
1 + αFA1B1

)⊗ . . . ⊗ (
1 + αFAn Bn

)
(C ⊗ C∗)F̃

]
(22a)

=
∑

J∈P({1,2,...,n})
α|J | tr

[
FAJ BJ (C ⊗ C∗)F̃

]
(22b)

=
∑

J∈P({1,2,...,n})
α|J | tr

[
(C ⊗ C∗)FAJC BJC

]
(22c)

=
∑

J∈P({1,2,...,n})
α|J | trAJC BJC

[
trAJ BJ (C ⊗ C∗)FAJC BJC

]
(22d)

=
∑

J∈P({1,2,...,n})
α|J | trAJC BJC

[
(tr J C ⊗ tr J C

∗)FAJC BJC

]
(22e)

=
∑

J∈P({1,2,...,n})
α|J |‖ tr J C‖22, (22f)

where in the last equation we used the "swap trick" trAJC BJC
[(X ⊗ Y )FAJC BJC

] =
trAJC BJC

[XY ].
Conversely, suppose that there exists a matrix C ∈ L((Cd)⊗n) with rank lower or

equal than 2 such that q(n)(α,C) < 0. By the previous argument this implies that

tr[ρA1B1 ⊗ . . . ⊗ ρAn Bn (C ⊗ C∗)F̃] < 0. (23)

Decompose C = |v1〉〈w1| + |v2〉〈w2|, and notice that

(C ⊗ C∗ F̃)T̃1 = |ψC 〉〈ψC |, (24)

where ψC = v1 ⊗ w1 + v2 ⊗ w2 and following the notation for the flip operator F̃ ,
we denote ( · )T̃1 the partial transposition for (Cd)⊗n ⊗ (Cd)⊗n . Then,

q(n)(α,C) = 〈ψC , (1 + αFA1B1)
T1 ⊗ . . . ⊗ (1 + αFAn Bn )

T1ψC 〉 < 0, (25)

and hence, ρα is n-copies distillable using the characterization given by the equation
2. ��
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For the particular case n = 1, the quadratic form 17 is given by

q(1)(α,C) = ‖C‖22 + α| trC |2, (26)

which is positive for everymatrix of rank r ifα ≥ − 1
r , by the inequality 9. In particular

for r = 2, we get the expected boundary value α = − 1
2 for the 1-distillability. This

observation on the rank together with numerics performed on the positivity of these
quadratic forms, lead us to the following conjecture on the positivity of the form q(n).

Conjecture 2 Let C ∈ L((Cd)⊗n) be a matrix with rankC = r . Then, q(n)(α,C) ≥ 0,
for every α ≥ − 1

r .

Notice that proving Conjecture 2 for r = 1 and r = 2, proves Conjecture 1, due to
Theorem 1. For the rank 1 case, wewill show in the next section that we have positivity
of 17 for α = −1. To prove that α = −1 is indeed the boundary (as established in
Conjecture 2), we now look at what happens to e.g., q(2) for the 2-distillability, for
values α < −1. Take u, v, w ∈ C

d three normalized vectors with v ⊥ w, and define
the matrix C = |u〉〈u| ⊗ |v〉〈w|. Then,

q(2)(−1 − ε,C) = 1 − (1 + ε) = −ε. (27)

Since the 1-distillability of Werner states for α ∈ (−1,− 1
2 ) implies its n-

distillability for n ≥ 2, then by Theorem 1 there exists a matrix C with rank 2 such
that q(n)(α,C) < 0. An explicit example of the saturation of the form q(n) (and hence
an alternative proof of the previous statement) is shown in Appendix A for n even. For
the particular case of the 2-distillability, using Theorem 1, we can find some Werner
states that are not PPT and 2-undistillable for any dimension d ≥ 5.

Corollary 1 If α ≥ − 1
2r , then q(2)(α,C) ≥ 0, for every C ∈ L(H1 ⊗ H2) with rank

r . As a consequence, ρα is not 2-distillable for α ≥ − 1
4 .

Proof For α ≥ 0 the result is clear, so assume that α < 0. We bound from below the
quadratic form 17 using inequalities 8 and 10

q(2)(α,C) = ‖C‖22 + α
[
‖ tr2 C‖22 + ‖ tr1 C‖22

]
+ α2| trC |2

≥ ‖C‖22 + α
[
‖ tr2 C‖21 + ‖ tr1 C‖21

]
+ α2| trC |2

≥ ‖C‖22 + 2α‖C‖21 + α2| trC |2

≥
(
1

r
+ 2α

)
‖C‖21 + α2| trC |2.

(28)

Thus, if α ≥ − 1
2r . we get q

(2)(α,C) ≥ 0. ��
For positivematrices, the a priori boundary valueα = − 1

r can actually be improved,
since this value does not depend necessarily on the rank (see [15] or [30]), but as we
have seen, this changes for the general case. We will discuss in the next section that
for higher ranks, the boundary value for α might not be α = − 1

r anymore, since the
dimension of the systems also plays an important role.
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4 Partial trace inequalities

In order to prove the positivity of the quadratic form 17 for rank one matrices for the
value α = −1, we state the following result, which also shows the underlying structure
of these quadratic forms.

Proposition 1 ForH = H1 ⊗H2, the form q(2)(−1,C) is positive for every rank 1
matrix C ∈ L(H ).

Proof Let v,w ∈ H = H1 ⊗ H2, and write

|v〉〈w| =
n∑

i, j=1

|v1i 〉〈w1
j | ⊗ |v2i 〉〈w2

j |,

where n = max{dimH1, dimH2}. Note that we can make this assumption by com-
pleting the vector with fewer elements with zeros. Now, we compute all the norms

‖|v〉〈w|‖22 =
n∑

i, j,k,l=1

〈w1
j , w

1
l 〉〈v1k , v1i 〉〈w2

j , w
2
l 〉〈v2k , v2i 〉

=
n∑

i, j,k,l=1

〈v1k ⊗ w1
j , v

1
i ⊗ w1

l 〉〈v2k ⊗ w2
j , v

2
i ⊗ w2

l 〉 (29a)

‖ tr1 |v〉〈w|‖22 =
n∑

i, j,k,l=1

〈w1
j , v

1
i 〉〈v1k , w1

l 〉〈w2
j , w

2
l 〉〈v2k , v2i 〉

=
n∑

i, j,k,l=1

〈v1k ⊗ w1
j , w

1
l ⊗ v1i 〉〈v2k ⊗ w2

j , v
2
i ⊗ w2

l 〉 (29b)

‖ tr2 |v〉〈w|‖22 =
n∑

i, j,k,l=1

〈w1
j , w

1
l 〉〈v1k , v1i 〉〈w2

j , v
2
i 〉〈v2k , w2

l 〉

=
n∑

i, j,k,l=1

〈v1k ⊗ w1
j , v

1
i ⊗ w1

l 〉〈v2k ⊗ w2
j , w

2
l ⊗ v2i 〉 (29c)

|tr |v〉〈w||2 =
n∑

i, j,k,l=1

〈w1
j , v

1
i 〉〈v1k , w1

l 〉〈w2
j , v

2
i 〉〈v2k , w2

l 〉

=
n∑

i, j,k,l=1

〈v1k ⊗ w1
j , w

1
l ⊗ v1i 〉〈v2k ⊗ w2

j , w
2
l ⊗ v2i 〉, (29d)
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and using (1 − F)2 = 2(1 − F),

1

4

∥∥∥∥∥∥
n∑

k, j=1

(v1k ∧ w1
j ) ⊗ (v2k ∧ w2

j )

∥∥∥∥∥∥

2

= (30a)

= 1

4

n∑
i, j,k,l=1

〈
v1k ⊗ w1

j , (1 − F)2(v1i ⊗ w1
l )
〉 〈

v2k ⊗ w2
j , (1 − F)2(v2i ⊗ w2

l )
〉

(30b)

=
n∑

i, j,k,l=1

〈
v1k ⊗ w1

j , v
1
i ⊗ w1

l − w1
l ⊗ v1i

〉 〈
v2k ⊗ w2

j , v
2
i ⊗ w2

l − w2
l ⊗ v2i

〉
(30c)

= ‖|v〉〈w|‖22 − ‖ tr1 |v〉〈w|‖22 − ‖ tr2 |v〉〈w|‖22 + |tr |v〉〈w||2 (30d)

= q(2)(−1, |v〉〈w|). (30e)

��
Remark 2 Notice that these forms can be written in a shorter way. For example,
q(2)(−1, |v〉〈w|) can be written as follows:

q(2)(−1, |v〉〈w|) = 1

4
〈(1 − F) ⊗ (1 − F)F23v ⊗ w, (1 − F) ⊗ (1 − F)F23v ⊗ w〉

= 〈v ⊗ w, (1 − F13)(1 − F24)v ⊗ w〉,
(31)

where Fi j is the operator that flips the components i and j and F = F13F24. Similarly
the rest.

Remark 3 In a similar way it can be checked that forH = H1 ⊗ . . . ⊗ Hn and

C = |v〉〈w| =
k∑

i, j=1

|v1i 〉〈w1
j | ⊗ . . . ⊗ |vni 〉〈wn

j |,

with v,w ∈ H and k = max{dimH1, . . . , dimHn}, then

q(n)(−1, |v〉〈w|) = 1

2n

∥∥∥∥∥∥
k∑

i, j=1

(v1i ∧ w1
j ) ⊗ . . . ⊗ (vni ∧ wn

j )

∥∥∥∥∥∥

2

≥ 0. (32)

Changing the antisymmetrizations “∧” by symmetrizations “�” in 32, it is possible
to generate different rank 1 inequalities. In fact, given n ≥ 2, there are 2n combina-
tions of symmetrizations and antisymmetrizations, and each one has associated one
quadratic form. These symmetries coincide with the ones introduced in [30], and
motivate us to introduce the following definition.

Definition 1 LetH = H1 ⊗ . . . ⊗Hn and v ∈ {0, 1}n , v = (vk)
n
k=1, then we define

qv(α,C) =
∑

J∈P({1,2,...,n})
α|J |(−1)(|J |+∑k∈J vk )‖ tr J C‖22 (33)
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where P(X) is the power set of X and where we denote tr∅ = 1.

Remark 4 Notice that when vi = 0 for 1 ≤ i ≤ n, that correspondswith a symmetriza-
tion in the tensor factor i in 32. Conversely, when vi = 1, then the tensor factor i in
32 corresponds with an antisymmetrization.

This definition corresponds with the quadratic form associated to a subfamily of
the universal state inversions, which have been studied in e.g., [15, 16] or [25]. Notice
that the vector v0 = (1, 1, . . . , 1), has the associated quadratic form qv0 = q(n). For
n = 3, for example, the different classes of forms are

q(1,1,1)(α,C) = ‖C‖22 + α(‖ tr1 C‖22 + ‖ tr2 C‖22 + ‖ tr3 C‖22)
+ α2(‖ tr12 C‖22 + ‖ tr13 C‖22 + ‖ tr23 C‖22) + α3| trC |2, (34)

q(0,1,1)(β,C) = ‖C‖22 + β(−‖ tr1 C‖22 + ‖ tr2 C‖22 + ‖ tr3 C‖22)
+ β2(−‖ tr12 C‖22 − ‖ tr13 C‖22 + ‖ tr23 C‖22) − β3| trC |2, (35)

q(0,0,1)(γ,C) = ‖C‖22 + γ (−‖ tr1 C‖22 − ‖ tr2 C‖22 + ‖ tr3 C‖22)
+ γ 2(‖ tr12 C‖22 − ‖ tr13 C‖22 − ‖ tr23 C‖22) + γ 3| trC |2. (36)

By choosing the position of the symmetrizations, one can find 2 forms more like 36,
and another 2 more like 35. At this point we are ready to introduce the main conjecture
of this work.

Conjecture 3 Let H be a finite-dimensional Hilbert space that can be decomposed
as H = H1 ⊗ . . . ⊗ Hn, with dim(Hi ) = di ≥ 2. Then, for every C ∈ L(H ) with
rank(C) = r and every v ∈ {0, 1}n, qv(α,C) ≥ 0 for

|α| ≤ αopt = 1

min{r ,max{d1, . . . , dn}} . (37)

At this point, we recall that one of the quadratic forms in 33was originallymotivated
by the distillability of Werner states. In the proof of the next result, it can be seen how
the upper bound for α in 37 in terms of the dimension is connected to the separability
of the Werner states.

Proposition 2 For |α| ≤ 1
max{d1,...,dn} , the Conjecture 3 holds.

Proof LetH = H1⊗ . . .⊗Hn with dimHi = di and d = maxi {di }. Let v ∈ {0, 1}n
with associated quadratic form qv , so qv can be written as similarly as we did in the
proof of Theorem 1

qv(α,C) = tr[(1 ± αFA1B1) ⊗ . . . ⊗ (1 ± αFAn Bn )(C ⊗ C∗)F̃], (38)
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with the corresponding choice of signs, and where F̃ is the flip operator in (Cd)⊗n ⊗
(Cd)⊗n . Now, decompose as in Theorem 1, C = ∑r

i=1 |vi 〉〈wi | and obtain again

(C ⊗ C∗ F̃)T̃1 = |ψC 〉〈ψC |, (39)

where ψC = ∑r
i=1 vi ⊗ wi . This allow us to write

qv(α,C) = 〈ψC , (1 ± αFA1B1)
T1 ⊗ . . . ⊗ (1 ± αFAn Bn )

T1ψC 〉. (40)

Since for |α| ≤ 1
d the Werner states are separable [34], in particular they are PPT and

we conclude that qv(α,C) ≥ 0 for |α| ≤ 1
d . Finally, the result holds by considering

the embedding of L(H ) in L((Cd)⊗n). ��
Notice that for positive matrices, the previous Proposition was already proven in

e.g., [16], and here present an alternative argument that extends this inequality to
general matrices using the separability of Werner states. For the bounds where only
the dimension of the Hilbert spaces appear, we can reduce any quadratic form with
any vector to the case of the subvector containing all the 1’s, i.e., it is sufficient to
prove the result for the vectors of 1’s only. For example, for v = (1, 0) and α = − 1

d ,
d = max{d1, d2}, the correspondent quadratic form is

q(1,0)

(
− 1

d
,C

)
= ‖C‖22 − 1

d
‖ tr1 C‖22 + 1

d
‖ tr2 C‖22 − 1

d2
| trC |2. (41)

We modify the quadratic form q(1) and define

q{H 1}
(1)

(
− 1

d
,C

)
= ‖C‖22 − 1

d
‖ tr1 C‖22, (42)

where the upper index in q denotes that we take partial trace on the first system instead
of the full trace. This form is positive by [31] and also

q{H 1}
(1)

(
− 1

d
, tr2 C

)
= ‖ tr2 C‖22 − 1

d
| trC |2 ≥ 0. (43)

As a consequence, we can write

q(1,0)

(
− 1

d
,C

)
= q{H 1}

(1)

(
− 1

d
,C

)
+ q{H 1}

(1)

(
− 1

d
, tr2 C

)
. (44)

However, such a decomposition is no longer valid for the rank, because partial traces
do not preserve the rank in general.

Next Theorem shows a version, in terms of partial trace inequalities, of the progress
that we have done in Conjecture 3 for n = 2. The proof is presented in section 7.

Theorem 2 Let C ∈ L(H1 ⊗ H2), r = rank(C) and d = max{d1, d2}, then the
following inequalities hold
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1. ∣∣∣‖ tr1 C‖22 − ‖ tr2 C‖22
∣∣∣ ≤ min{r , d}‖C‖22 − 1

min{r , d} | tr(C)|2. (45)

2.

‖ tr1 C‖22 + ‖ tr2 C‖22 ≤ d‖C‖22 + 1

d
| tr(C)|2. (46)

If, in addition,C canbewritten asC = C1+C2 with rank(C1) = 1andC2 normal such
that the vectors spanning the range of C1 and C∗

1 are orthogonal to all eigenvectors
of C2, then

‖ tr1 C‖22 + ‖ tr2 C‖22 ≤ r‖C‖22 + 1

r
| tr(C)|2. (47)

Remark 5 For the particular case n = 2, rank(C) = 2, the condition q(2)
(
α = − 1

2 ,C
)

≥ 0 in 17 can be rewritten as

‖ tr1 C‖22 + ‖ tr2 C‖22 ≤ 2‖C‖22 + 1

2
| trC |2, (48)

so 47 is the generalization inequality for a rank r matrix. Since we cannot prove 47
for a general rank 2 matrix yet, the problem of the 2-distillabilty remains open.

Remark 6 Inequality 45 for rank 1 and rank 2 shows (following the reasoning of
Theorem 1) that for every A, B : (Cd)⊗2 → C

2 andψC ∈ C
2 ⊗C

2, theWerner states
ρα satisfy: 〈

ψC , (A ⊗ B)
(
ρ 1

2
⊗ ρ− 1

2

)T1
(A ⊗ B)∗ψC

〉
≥ 0, (49)

and 〈
ψC , (A ⊗ B)

(
ρ− 1

2
⊗ ρ 1

2

)T1
(A ⊗ B)∗ψC

〉
≥ 0, (50)

i.e., ρ 1
2

⊗ ρ− 1
2
and ρ− 1

2
⊗ ρ 1

2
are 1-distillable in L((Cd)⊗2). Thus, a positive answer

to Conjecture 3 for rank 1 and rank 2 matrices would not only provide a proof of
the distillability of Werner states, but would also show the distillability properties of
tensor product of Werner states.

5 3-distillability and tripartite systems inequalities

Oncewe have studied 2-distillability in depth, in this sectionwe begin a small approach
to the 3-distillability, i.e., the problem of showing the positivity of q(3)

(− 1
2 ,C

)
for

rank 2 matricesC . This problem turns out to be more challenging as the 2-distillability
case, and for the particular case of a rank 2 matrix we can only show positivity for
self-adjoint matrices with one positive and one negative eigenvalue.

Proposition 3 If C ∈ L(H1 ⊗ H2 ⊗ H3) is a self-adjoint rank 2 matrix with one
positive and one negative eigenvalue, then q(3)

(− 1
2 ,C

) ≥ 0.
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Proof Consider the inversion of a pure state

Q(3),r
a = |a〉〈a| − 1

r

(
1d1 ⊗ tr1(|a〉〈a|) + 1d2 ⊗ tr2(|a〉〈a|) + tr3(|a〉〈a|) ⊗ 1d3

)

+ 1

r2
(
1d1d2 ⊗ tr12(|a〉〈a|) + 1d1d3 ⊗ tr13(|a〉〈a|) + tr23(|a〉〈a|) ⊗ 1d2d3

)

− 1

r3
‖a‖21d1d2d3 . (51)

for a ∈ H . By denoting Q̃(3),r
a = P⊥

a Q(3),r
a P⊥

a , where P⊥
a is again the projection on

ker(|a〉〈a|), we can upper bound this operator

Q̃(3),r
a ≤ 1

r2

(
1 − 1

r

)
. (52)

To prove this, notice that by direct computation

〈tr I (|a〉〈a|), tr I (|x〉〈x |)〉 = ‖ tr IC (|a〉〈x |)‖22, (53)

for any partition I , I C of {1, . . . , n} (in this case n = 3) so we get

〈x,−Q̃(3),r
a x〉 = 1

r2
q(3)(−1, |a〉〈x |) − 1

r2

(
1 − 1

r

)
‖a‖2‖x‖2 (54a)

+ 1

r

(
1 − 1

r

)
(‖ tr12(|a〉〈x |)‖2 + ‖ tr13(|a〉〈x |)‖2 + ‖ tr23(|a〉〈x |)‖2)

(54b)

≥ − 1

r2

(
1 − 1

r

)
‖a‖2‖x‖2, (54c)

since q(3)(−1, |a〉〈x |) ≥ 0 by Proposition 1.
LetC be a self-adjoint matrix with spectral decompositionC = |v1〉〈v1|−|v2〉〈v2|,

with v1 ⊥ v2, but the vectors are not normalized.

q(3)
(

− 1

2
,C

)
=

2∑
i=1

[(
1 − 1

8

)
‖vi‖42 − 1

2

(
‖ tr1 |vi 〉〈vi |‖22 + ‖ tr2 |vi 〉〈vi |‖22 + ‖ tr3 |vi 〉〈vi |‖22

)

+ 1

4

(
‖ tr12 |vi 〉〈vi |‖22 + ‖ tr13 |vi 〉〈vi |‖22 + ‖ tr23 |vi 〉〈vi |‖22

)]
− 2〈v1, Q̃(3)

v2 v1〉.
(55)

Finally, using 52 with r = 2 together with 53, we can write

q(3)
(

−1

2
,C

)
= 1

4

2∑
i=1

3∑
j=1

(
‖vi‖22 − ‖ tr j |vi 〉〈vi |‖22

)
+ 1

8
(‖v1‖22 − ‖v2‖22)2

≥ 0.

(56)
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��
We also study the other two families of inequalities in tripartite systems 35 and

36 for the case that the parameter depends on the rank of the matrix. Proving the
positivity for β, γ = − 1

2 for arbitrary rank 1 and rank 2 matrices, would give us
similar conclusions to the ones obtained in Remark 6. Here, we will show them only
for positive semidefinite matrices. We will need first the following result.

Lemma 1 Let C ∈ L(H1 ⊗ H2) be a positive semidefinite matrix with r = rank(C).

Then, ‖ tr1 C‖22 ≥ 1

r
‖ tr2 C‖22.

Proof Write the spectral decomposition of C =
r∑

i=1

|vi 〉〈vi | and by 53 we get that

‖ tr1(|vi 〉〈vi |)‖2 = ‖ tr2(|vi 〉〈vi |)‖2, (57)

for every 1 ≤ i ≤ r . Thus, by 53 again we can express everything in terms of the
partial trace over the second system

‖ tr1 C‖22 − 1

r
‖ tr2 C‖22

≥
(
1 − 1

r

) r∑
i=1

‖ tr2(|vi 〉〈vi |)‖22 + 2
r∑

i, j=1
i> j

‖ tr2(|vi 〉〈v j |)‖22

−2

r

r∑
i, j=1
i> j

‖ tr2(|vi 〉〈vi |)‖2‖ tr2(|v j 〉〈v j |)‖2, (58)

To conclude, define the polynomial

pr (x) = (r − 1)
r∑

i=1

x2i − 2
d1∑

i, j=1
i> j

xi x j =
r∑

i, j=1
i> j

(xi − x j )
2 ≥ 0, (59)

so we get

‖ tr1 C‖22 − 1

r
‖ tr2 C‖22 ≥ 1

r
pr (‖ tr2(|v1〉〈v1|)‖2, . . . , ‖ tr2(|vr 〉〈vr |)‖2)

+ 2
r∑

i, j=1
i> j

‖ tr2(|vi 〉〈v j |)‖22 (60a)

≥ 0. (60b)

��
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Proposition 4 The conjecture over the class of forms of 35 and 36 for β, γ = − 1
r ,

holds for positive matrices.

Proof We will start with the proof of the family of inequalities 35. We will just prove
35, the other 2 are analogous. In this case the associated linear operator is

P(3),r
a = |a〉〈a| + 1

r

(
1d1 ⊗ tr1(|a〉〈a|) − 1d2 ⊗ tr2(|a〉〈a|) − tr3(|a〉〈a|) ⊗ 1d3

)

+ 1

r2
(−1d1d2 ⊗ tr12(|a〉〈a|) − 1d1d3 ⊗ tr13(|a〉〈a|)

+ tr23(|a〉〈a|) ⊗ 1d2d3

)+
+ 1

r3
‖a‖21d1d2d3 . (61)

This operator is bounded from below by

P(3),r
a ≥ 1 − r2

r3
‖a‖2, (62)

on ker(|a〉〈a|) by computing the expectation value

〈x, P(3),r
a x〉 = 1

r2
p−1(|a〉〈x |) + 1 − r2

r3
‖a‖2‖x‖2 +

(
1 − 1

r2

)
|〈a, x〉|2

+1

r

(
1 − 1

r

)
(‖a‖2‖x‖2 − ‖ tr12(|a〉〈x |)‖2

−‖ tr13(|a〉〈x |)‖2 + ‖ tr23(|a〉〈x |)‖2) ≥ 0, (63)

since

‖a‖2‖x‖2 − ‖ tr12(|a〉〈x |)‖2 − ‖ tr13(|a〉〈x |)‖2 + ‖ tr23(|a〉〈x |)‖2 =
= 〈a ⊗ x, (1 − F14F25)(1 − F14F36)a ⊗ x〉 ≥ 0. (64)

Let C be a positive matrix with rank r and write its (non-normalized) spectral
decomposition C = ∑r

i=1 |vi 〉〈vi |, then using 53 we can write

q(3)
(0,1,1)

(
−1

r
,C

)
=
(
1 − 1

r
− 1

r2
+ 1

r3

) r∑
i=1

‖vi‖4 + 2
r∑

i, j=1
i> j

〈v j , P
(3),r
vi v j 〉

+1

r

(
1 + 1

r

) r∑
i=1

(
‖vi‖4 − ‖ tr1(|vi 〉〈vi |)‖2 − ‖ tr2(|vi 〉〈vi |)‖2 + ‖ tr3(|vi 〉〈vi |)‖2

)
.

(65)
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To conclude, the first to terms in 65 are positive since they are lower bounded by the
expression

r2 − 1

r3

⎛
⎜⎜⎝(r − 1)

r∑
i=1

‖vi‖4 − 2
r∑

i, j=1
i> j

‖vi‖2‖v j‖2
⎞
⎟⎟⎠ ≥ 0, (66)

and the last one is equal to

1

r

(
1 + 1

r

) r∑
i=1

〈vi ⊗ vi , (1 − F14)(1 − F25)(1 + F36)vi ⊗ vi 〉 ≥ 0, (67)

which concludes the first part. For 36, the proof follows then by Lemma 1 writing

q(0,0,1)

(
−1

r
,C

)
=
(

‖C‖22 − 1

r
‖ tr3 C‖22 + 1

r2
‖ tr12 C‖22 − 1

r3
| trC |2

)

+1

r

(
‖ tr1 C‖22 − 1

r
‖ tr23 C‖22

)
+ 1

r

(
‖ tr2 C‖22 − 1

r
‖ tr13 C‖22

)
≥ 0.

(68)

��
Remark 7 Proposition 4 shows that the positivity of the quadratic forms associated
with the state inversions might also depend on the rank and not only on the dimension.
Similar considerations might also hold for the state inversion maps.

6 Inequalities for p-Schatten norms

Finally, in this last section, we set a more general function than 33, which will also
depend on the norm and the exponent as follows:

Definition 2 Let H = H1 ⊗ . . . ⊗ Hn and v ∈ {0, 1}n . Define for p ≥ 1, γ ≥ 1,
α ∈ R, C ∈ L(H ) and v ∈ {0, 1}n the map

qv(p, γ, α,C) =
∑

J∈P({1,2,...,n})
α|J |(−1)(|J |+∑k∈J vk )‖ tr J C‖γ

p . (69)

The objective is to study wether it is possible to extend Conjecture 3 to inequalities
depending on p, γ , r = rank(C) or d = max{d1, . . . , dn} , instead of only depending
on the rank r and d, i.e, we want to study if it is possible to introduce a function
αv(p, γ, r , d) that provides tight bounds for the positivity of 69. For the particular
case of p = 2 and γ = 2, αv(2, 2, r , d) = αopt given by 37.

For v = (1), the bound with the dimension was actually studied in [31], where it
was proved that

‖ tri C‖p ≤ d
p−1
p ‖C‖p, (70)
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Fig. 2 Optimal values for v = (1, 1) for different values of p and γ in R
2 ⊗ R

2 and R
2 ⊗ R

3

and is also possible to obtain a rank bound using the Hölder inequality for the Schatten
p-norms

‖ tri C‖p ≤ ‖ tri C‖1 ≤ ‖C‖1 ≤ ‖1r‖p′ ‖C‖p = r
p−1
p ‖C‖p, (71)

where p′ is the dual Hölder index of p satisfying 1
p + 1

p′ = 1. Thus,

α(1)(p, γ, r , d) = 1

min

{
rγ

p−1
p , dγ

p−1
p

} (72)

is a tight bound satisfying

‖C‖γ
p − α(1)(p, γ, r , d)| trC |γ ≥ 0. (73)

For the vector v = (1, 1) it was proved in [2] that for any state ρ, p > 1 and
γ = 1, p

‖ρ‖γ
p − ‖ tr1 ρ‖γ

p − ‖ tr2 ρ‖γ
p + | tr ρ|γ ≥ 0, (74)

i.e., α(1,1)(p, γ, r , d) = 1, for γ = 1, p when restricted to states. This was used
to show the subadditivity of the Tsallis entropy. However, for fixed dimensions and
different values of p and γ and a general full-rank matrix C , (Fig. 2) shows the
evolution of the quantity αv(p, γ ) which is the quantity analogous to αopt introduced
in 37 but now dependent on p and γ when r and d are fixed, in the systems R

2 ⊗ R
2

and R
2 ⊗ R

3, which seems to have continuous dependence with respect to p and γ .
This shows that there are large families of partial trace inequalities that remain to

be studied that generalize the ones of Conjecture 3, when we also take into account
the p-norms and the exponents γ .

7 Proof of Theorem 2

First of all, by Proposition 2, inequality 46 and the bound with the dimension of the
Hilbert spaces of 45 are proved, so only the bounds with the ranks have to be proved.
We will divide the proof into two parts: first, we will prove 45 and then 47. Before
proving 45, we will need an auxiliary result that allow us to bound the difference of
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partial traces in a tight way. For this purpose, we will make use of the creation and
annihilation operators introduced in 14, 15.

Proposition 5 Let v,w ∈ H = H1 ⊗ H2, d1 = dimH1, d2 = dimH2, then

1d1 ⊗ tr1(|v〉〈w|) = 1

2
[a+(w)F24a

∗+(v) + a−(w)F24a
∗−(v)]|H , (75)

tr2(|v〉〈w|) ⊗ 1d2 = 1

2
[a+(w)F24a

∗+(v) − a−(w)F24a
∗−(v)]|H , (76)

where F24 is the flip operator that exchanges components 2 and 4.

Proof Without loss of generality, we can assume that the vectors are normalized.
In order to simplify this proof, we will use here the bra-ket notation understanding
|v〉 as a vector (not necessarily normalized) with associated functional 〈v|. Write

|v〉 =
n∑

i=1

|v1i 〉|v2i 〉 and |w〉 =
n∑
j=1

|w1
j 〉|w2

j 〉, where we can assume again that n is the

same. We will prove

1d1 ⊗ tr1(|v〉〈w|) − tr2(|v〉〈w|) ⊗ 1d2 = a−(〈w|)F24a∗−(|v〉)|H , (77)

and
1d1 ⊗ tr1(|v〉〈w|) + tr2(|v〉〈w|) ⊗ 1d2 = a+(〈w|)F24a∗+(|v〉)|H . (78)

For the first one, let |x〉 =
n∑

k=1

|x1k 〉|x2k 〉, then

[
1d1 ⊗ tr1(|v〉〈w|) − tr2(|v〉〈w|) ⊗ 1d2

] |x〉 (79a)

=
n∑

i, j,k=1

〈w1
j , v

1
i 〉〈w2

j , x
2
k 〉|x1k 〉|v2i 〉 − 〈w2

j , v
2
i 〉〈w1

j , x
1
k 〉|v1i 〉|x2k 〉 (79b)

=
n∑

i, j,k=1

(
〈w1

j |〈w2
j | ⊗ 1d1 ⊗ 1d2

) (
|v1i 〉|x2k 〉|x1k 〉|v2i 〉 − |x1k 〉|v2i 〉|v1i 〉|x2k 〉

)
(79c)

= (〈w| ⊗ 1d1 ⊗ 1d2

)
F24(|v〉|x〉 − |x〉|v〉) (79d)

= (〈w| ⊗ 1d1 ⊗ 1d2

)
F24(1 − F)(|v〉|x〉), (79e)

where F = F13F24. To conclude the proof, we use that (1− F)2 = 2(1− F) together
with the fact that [F24, F] = 0, and we can write

[
1d1 ⊗ tr1(|v〉〈w|) − tr2(|v〉〈w|) ⊗ 1d2

] |x〉 = (80a)

= 2
(〈w| ⊗ 1d1 ⊗ 1d2

)
P−F24P−(|v〉|x〉) (80b)

= a−(〈w|)F24a∗−(|v〉)|x〉, (80c)
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using the definition of fermionic creation and annihilation operators restricted to one
copy of the space given in 14 and 15. The inequality 78 is analogous. ��

Due to linearity, this result can be extended to any C ∈ L(H ), resulting in the
operator 1d1 ⊗ tr1(C) − tr2(C) ⊗ 1d2 having a “fermionic character”, while that the
operator 1d1 ⊗ tr1(C) + tr2(C) ⊗ 1d2 has a “bosonic character”. From the fermionic
one, we can obtain the following result:

Corollary 2 For any matrix C ∈ L(H1 ⊗ H2) with rank r ,

‖1d1 ⊗ tr1(C) − tr2(C) ⊗ 1d2‖∞ ≤
r∑

i=1

σi = ‖C‖1, (81)

where {σi }ri=1 is the set of singular values of C. In particular, for v,w ∈ H , then

‖1d1 ⊗ tr1(|v〉〈w|) − tr2(|v〉〈w|) ⊗ 1d2‖∞ ≤ ‖v‖‖w‖. (82)

This result follows from the previous Proposition, the singular value decomposition,
and the fact that ‖a−(v)‖∞ = ‖a∗−(v)‖∞ = ‖v‖ (see [4]).

Proof of inequality 45 To show inequality 45, we need to show that both
q(1,0)

(− 1
r ,C

)
, q(0,1)

(− 1
r ,C

) ≥ 0. We will only show the first, since the other is
analogous, i.e., we will prove

q(1,0)

(
−1

r
,C

)
= ‖C‖22 − 1

r
‖ tr1 C‖22 + 1

r
‖ tr2 C‖22 − 1

r2
| trC |2 ≥ 0. (83)

Using the singular value decomposition of C , we can write

C =
r∑

i=1

|vi 〉〈wi |, (84)

where {vi }ri=1 and {wi }ri=1 are orthogonal systems of H = H1 ⊗ H2 (note that the
vectors are not normalized, since they absorb the singular value). Write for every
1 ≤ i ≤ r ,

q(1,0)

(
−1

r
, |vi 〉〈wi |

)
= 1

r
q(1,0) (−1, |vi 〉〈wi |) +

(
1 − 1

r

)
‖vi‖2‖wi‖2

+r − 1

r2
|〈vi , wi 〉|2, (85)

where

q(1,0) (−1, |vi 〉〈wi |) = 〈vi ⊗ wi , (1 − F13)(1 + F24)vi ⊗ wi 〉 ≥ 0, (86)
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analogously to Remark 2. Then,

q(1,0)

(
−1

r
,C

)
= 1

r

r∑
i=1

q(1,0) (−1, |vi 〉〈wi |) +
(
1 − 1

r

) r∑
i=1

‖vi‖2‖wi‖2

+r − 1

r2

r∑
i=1

|〈vi , wi 〉|2 (87a)

+2

r
Re

r∑
i, j=1
i> j

[
− 〈tr1(|vi 〉〈wi |), tr1(|v j 〉〈w j |)〉 + 〈tr2(|vi 〉〈wi |), tr2(|v j 〉〈w j |)〉

−1

r
〈vi , wi 〉〈w j , v j 〉

]
. (87b)

Now, the key idea is to use the norms and the absolute value of the inner products in
87a to bound the term 87b. We proceed as follows:

2

r

∣∣∣∣Re
r∑

i, j=1
i> j

[〈− tr1(|vi 〉〈wi |), tr1(|v j 〉〈w j |)〉 + 〈tr2(|vi 〉〈wi |), tr2(|v j 〉〈w j |)〉
]∣∣∣∣ =

(88a)

≤ 2

r

r∑
i, j=1
i> j

∣∣〈|vi 〉〈wi |,−1d1 ⊗ tr1(|v j 〉〈w j |) + tr2(|v j 〉〈w j |) ⊗ 1d2〉
∣∣ (88b)

≤ 2

r

r∑
i, j=1
i> j

‖vi‖‖wi‖‖1d1 ⊗ tr1(|v j 〉〈w j |) − tr2(|v j 〉〈w j |) ⊗ 1d2‖∞ (88c)

≤ 2

r

r∑
i, j=1
i> j

‖vi‖‖wi‖‖v j‖‖w j‖, (88d)

where we used Corollary 2. Finally, considering again the polynomial 59 given by

pr (x) = (r − 1)
r∑

i=1

x2i − 2
d1∑

i, j=1
i> j

xi x j =
r∑

i, j=1
i> j

(xi − x j )
2 ≥ 0,

we obtain

q(1,0)

(
−1

r
,C

)
≥ 1

r

r∑
i=1

q(1,0) (−1, |vi 〉〈wi |) + 1

r
pr (‖v1‖‖w1‖, . . . , ‖vr‖‖wr‖)
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+ 1

r2
pr (|〈v1, w1〉|, . . . , |〈vr , wr 〉|), (89)

which is positive, so the result follows. ��

In order to show 47, one could think of using the bosonic creation and annihilation
operators as we did in the first part. However, this technique does not seem to work,
since these are bounded by the square root of the number operator ([4]), but we will
prove it for matrices of the form sum of a rank 1 plus a normal matrix making use
of a different strategy. Before going into the proof of 47, consider first the following
inversion of a pure state

Qr
a = |a〉〈a| − 1

r

(
1d1 ⊗ tr1(|a〉〈a|) + tr2(|a〉〈a|) ⊗ 1d2

)+ 1

r2
tr(|a〉〈a|)1d1d2 ,

(90)

which is self-adjoint, for a ∈ H . We make use again of 53. i.e.,

〈tr1(|a〉〈a|), tr1(|x〉〈x |)〉 = ‖ tr2(|a〉〈x |)‖22,

for every x ∈ H . We can obtain then a bound for the spectral radius on ker(|a〉〈a|)
as follows: Let x ∈ ker(|a〉〈a|), then

〈x, Qr
ax〉 = 1

r2
‖a‖2‖x‖2 + |〈a, x〉|2 − 1

r
‖ tr1(|a〉〈x |)‖22 − 1

r
‖ tr2(|a〉〈x |)‖22 (91)

= 1

r
q(2)(−1, |a〉〈x |) − 1

r

(
1 − 1

r

)
‖a‖2‖x‖2, (92)

and conversely

〈
x,

(
1

r2
‖a‖2 − Qr

a

)
x

〉
= 1

r
‖ tr1(|a〉〈x |)‖22 + 1

r
‖ tr2(|a〉〈x |)‖22 ≥ 0, (93)

so

− 1

r

(
1 − 1

r

)
‖a‖2 ≤ Qr

a ≤ 1

r2
‖a‖2 (94)

on ker(|a〉〈a|). In particular, if we denote Pa⊥ the projection onto ker(|a〉〈a|), then

Q̃r
a = Pa⊥Qr

a Pa⊥ (95)

is self-adjoint and ‖Q̃r
a‖∞ ≤ 1

r

(
1 − 1

r

) ‖a‖2, for r ≥ 2.

Proof of inequality 47 The case r = 1 was proven in Proposition 1, so we can assume
that r ≥ 2. Suppose that C = C1 + C2 with C1 = |v1〉〈w1| such that both v1, w1 are
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orthogonal to all eigenvectors of the normal matrix C2. Using the spectral decompo-
sition in C2 we can write

C = |v1〉〈w1| +
r∑

i=2

εi |vi 〉〈vi |, (96)

where εi ∈ C, and we can assume that |εi | = 1 for every i , and the vectors vi and w1
are not normalized for 1 ≤ i ≤ r . Our objective is to show that for this choice of C ,

q(1,1)

(
−1

r
,C

)
=q(2)

(
−1

r
,C

)
=‖C‖22 − 1

r
‖ tr1 C‖22 − 1

r
‖ tr2 C‖22 + 1

r2
| trC |2≥0.

(97)
Similarly as we did in the proof of inequality 45, we write the quadratic form acting
on each rank one matrix

q(1,1)

(
−1

r
, |v1〉〈w1|

)
= 1

r
q(1,1) (−1, |v1〉〈w1|) +

(
1 − 1

r

)
‖v1‖2‖w1‖2

−r − 1

r2
|〈v1, w1〉|2, (98)

q(1,1)

(
−1

r
, |vi 〉〈vi |

)
= 1

r
q(1,1) (−1, |vi 〉〈wi |) +

(
1 − 1

r

)2

‖vi‖4, (99)

for every 2 ≤ i ≤ r , so we obtain

q(1,1)

(
−1

r
,C

)
= 1

r

[
q(1,1)(−1, |v1〉〈w1|) +

r∑
i=2

q(1,1)(−1, |vi 〉〈vi |)
]

+
(
1 − 1

r

)
‖v1‖2‖w1‖2 − r − 1

r2
|〈v1, w1〉|2

+
(
1 − 1

r

)2 r∑
i=2

‖vi‖4 + 2
r∑

i=2

Re
[
εi 〈v1, Qr

vi
w1〉

]

+2
r∑

i, j=2
i> j

Re
[
εiε j 〈v j , Q

r
vi

v j 〉
]
, (100)

where q(1,1)(−1, |v1〉〈w1|), q(1,1)(−1, |vi 〉〈vi |) ≥ 0 due to Proposition 1 (or due to
Remark 2) for every 2 ≤ i ≤ r . Use now the bound of the operator 95

2
r∑

i=2

Re
[
εi 〈v1, Q̃r

vi
w1〉

]
≥ −2

1

r

(
1 − 1

r

) r∑
i=1

‖v1‖‖w1‖‖vi‖2, (101)
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and

2
r∑

i, j=2
i> j

Re
[
εiε j 〈v j , Q̃

r
vi

v j 〉
]

≥ −2
r∑

i, j=2
i> j

1

r

(
1 − 1

r

)
‖vi‖2‖v j‖2. (102)

Thus,

q(1,1)

(
− 1

r
,C

)
≥
(
1 − 1

r

)
‖v1‖2‖w1‖2 − r − 1

r2
|〈v1, w1〉|2 +

(
1 − 1

r

)2 r∑
i=2

‖vi‖4 (103a)

− 2
1

r

(
1 − 1

r

) r∑
i=1

‖v1‖‖w1‖‖vi‖2 − 2
r∑

i, j=2
i> j

1

r

(
1 − 1

r

)
‖vi‖2‖v j‖2 (103b)

=
(
1 − 1

r

)2 ⎡
⎣‖v1‖2‖w1‖2 +

r∑
i=2

‖vi‖4
⎤
⎦+ r − 1

r2

(
‖v1‖2‖w1‖2 − |〈v1, w1〉|2

)

(103c)

− 2
1

r

(
1 − 1

r

) r∑
i=1

‖v1‖‖w1‖‖vi‖2 − 2
r∑

i, j=2
i> j

1

r

(
1 − 1

r

)
‖vi‖2‖v j‖2 (103d)

= 1

r

(
1 − 1

r

)
pr (‖v1‖‖w1‖, ‖v2‖2, . . . , ‖vr‖2)

+ r − 1

r2

(
‖v1‖2‖w1‖2 − |〈v1, w1〉|2

)
(103e)

≥ 0, (103f)

where pr is the polynomial 59. ��

A Example of a matrices saturating the form q(n)

In this appendix, we present a family of matrices that violate the positivity of the form
q(n), for n even , α = − 1

2 − ε, ε > 0 and a rank 2 matrix C . Let n even and consider

C = |v1 ⊗ . . . ⊗ vn〉〈v1 ⊗ . . . ⊗ vn| − |w1 ⊗ . . . ⊗ wn〉〈w1 ⊗ . . . ⊗ wn|, (104)

with ‖vi‖ = ‖wi‖ = 1 and vi ⊥ wi for every 1 ≤ i ≤ n. In this case, for J ∈
P({1, . . . , n}),

‖ tr J C‖22 =
{
0 if J = {1, . . . , n}
2 otherwise

(105)

so for every ε > 0,

q(n)

(
−1

2
− ε,C

)
= 2

∑
J∈P({1,...,n})\{1,...,n}

(
−1

2
− ε

)|J |
(106a)

123



New partial trace inequalities and distillability of Werner states Page 25 of 27    47 

= 2
n−1∑
k=0

(
n

k

)(
−1

2
− ε

)k

(106b)

= 2
n−1∑
k=0

k∑
m=0

(
n

k

)(
k

m

)
(−1)k

2k−m
εm (106c)

= 2
n−1∑
m=0

[
n−1∑
k=m

(
n

k

)(
k

m

)
(−1)k

2k−m

]
εm, (106d)

where in the last step we have permuted the order of the summations. By the following
Lemma, all the even powers of ε vanish and the odd are negatives. Moreover it goes
to zero when ε → 0+. Consequently, q(n)

(− 1
2 − ε,C

)
< 0, for every ε > 0 and ρα

is not n-distillable for α ∈ [−1,− 1
2

)
, n even.

Lemma 2 If n ∈ N is even and m < n, then

n−1∑
k=m

(−1)k

2k−m

(
n

k

)(
k

m

){= 0 if m = 0 or m is even
< 0 if m is odd

(107)

Proof The proof follows from the identity

n∑
k=m

xk
(
n

k

)(
k

m

)
=
(
n

m

)
xm(1 + x)n−m . (108)

Evaluating in x = − 1
2

n−1∑
k=m

(−1)k

2k−m

(
n

k

)(
k

m

)
= 2m

n∑
k=m

(
−1

2

)k (n
k

)(
k

m

)
− (−1)n

2n−m

(
n

m

)

=
(
n

m

)(
1

2

)n−m

((−1)m − (−1)n),

(109)

and the result holds. ��
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