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Elastic scattering cross sections of 300 MeV/c and 600 MeV/c antiprotons on 12C, 40Ca 

and 208pb have recently been very accurately measured I) . Microscopic calculations of 

the antiproton-nucleus optical potential and the related cross sections are avail- 

able 2'3~4). The results of these calculations are very different according to which 

method, approximations and basic two-body interaction have been used. In this paper 

we calculate the antiproton elastic scattering cross section from the Dover-Richard 

interaction 5) with a different and simple method which contains the essential ingre- 

dients. To study the model and its capabilities~ medium corrections ar% for the pre- 

sent~ ignored. 

For a definite isospin I and spin S~ the central part of the elastic antiproton- 

nucleon T-matrix elements corresponding to the Dover-Richard interaction are parame- 

tPized by a sum of Yukawas 

N 
c 

TIS(k ~,r)= I (aj(IS)+k~bj (IS))exp(-gjr)/(gjr) (I) 
j=1 

where k~ the CM momentum in fm -I units~ is given by 

k=(ME/2~) I/2 (2) 

E being the antiproton kinetic energy in the system where the target nucleon is sta- 

tionary. The coefficients a. and b are determined by making a least squares fit to 
3 3 

the Dover-Richard forward scattering amplitude plus s and p-waves over a limited e- 

nergy range. (For the 300 MeV/c calculations the range 20~E~I00 MeV was used and for 

the 600 MeV/c calculations lOOSE'J00 MeV was used,) In each case the first term in 
G 2 

the sum was held fixed at the one pion exchange value (using ~= 14.43) and fits 

were made with 2 and with 3 additional Yukawas . For comparison similar fits were al- 

so made with the OPE Yukawa plus 2 or 3 Gaussians. 

In order to use this parametrization in a calculation of the optical potential we 

have to decide how to treat the k 2 term in eq.(1). One possibility is to express k = 
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in terms of gradients acting to the left and to the right i.e. 

k' f ( r '  ) ÷-}(~2~f(r' )+f(r' )~;~) 
where f(r9 is any function of r'=I~-ri[ and where 

(3) 

;.-=½(~ - ; ) = ( -  ~ig) ÷ (4) --lp ~r i ~r 

In this case the central part of the optical potential is given by 

A 
+2 Vc(r)=<¢I [ [C( I r~ - r lY-½(~-D( I r i - r l )+D( I£ i - r l )Z i~ ) ] t ¢>  (5) 

i=l ~± ~ ~lp ~ 

where [~> is the nuclear ground state wave function, where 

N 
C 

C(r ' )=  [ [ a j ( I S ) e x p ( - g j r ' ) / ( ~ j r ' )  (6) 
I ,S  j=l 

and where D(r') is given by a similar equation with aj(IS) replaced by bj(IS). Eq.(5) 

can be evaluated giving (r"=lS'~l) 

-~- 1 a ÷ 
Vc(r)=-~r '  ~ f R o ( r ' ) O o ( r " ) - P l ( r ' ) O l ( r " ) ] d ' f f V r +  

f{Po(r' )(Fo(r")- ~ &Go(r"))- Pl(r' )(F 1 (r")-~ AO 1 (r")) 

(7) 

-1(Go ( r ' 9  % ( r ' ) - 0 1  ( r" )  ~I ( r ' )  ) }d~£ ' 

where the densities p and kinetic densities • are related to those of the proton and 

neutron by 

Pc= ~p+ % PF ~-Pn (Sa) 

~O=~p+~ n ~l=~p-~n (Sh) 

The funct ions  F are given by 

N c 
Fo(r")=l~ [ [ a j ( O 0 ) + 3 a j ( 0 1 ) + 3 a j ( 1 0 ) + 9 a j ( l l ) ] e x p ( - g j r " ) / ( g j r " )  (9a) 

j=l 
N 

1 c 
Fi(r'9-~-lbj= 1[ [ - a j ( 0 0 ) + a j ( 1 0 ) - 3 a j ( 0 1 ) + 3 a j ( l l ) ] e x p ( - ~ j r " ) / ( g j r " )  (95) 

m i l e  the funct ions  O are  given by corresponding d e f i n i t i o n s  with the a . ' s  replaced 
J 

by b j ' s .  (Note tha t  in the case of the Gaussian f i t s  the Yukawas in eqs . (9)  must be 

replaced by 0auss ians) .  In e v a l u a t i ~  (5) we have neglected those p r o b a b i l i t y  cur rent  

terms which vanish for  time r eve r sa l  symmetric nuclear  wave func t ions .  Using semi- 
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cLLssical approximations 6) for T, the potential is finally expressed in terms of the 

nuclear density distributions pp and Pn and the effective mass in eq.(7) is removed 

by a suitable transformation of the radial Schrodinger equation leading to an energy 

dependent optical potential. 

Instead of expressing k a in terms of gradients, an alternative approach is to appro- 

ximate it by its average value <k~-> obtained from the Fermi motion of the nucleons Ip 
within the nucleus. The resulting potential can be obtained from eq.(7) by setting 

OoSGl~0 and by replacing aj(IS) by a.(IS)+<k~->b.(IS) in eqs.(9). 
J lp  J 

In  t h e  c a l c u l a t i o n s  the  n u c l e a r  d e n s i t y  d i s t r i b u t i o n s  a r e  o b t a i n e d  from t h e  cha rge  

d i s t r i b u t i o n  as  measured  by e l e c t r o n  s c a t t e r i n g  e x p e r i m e n t s  7) .  In  e q . ( 7 )  t hey  have 

to  be m o d i f i e d  b e c a u s e  of  t he  f i n i t e  s i z e  of  t h e  a n t i p r o t o n  and t h i s  i s  a p p r o x i m a t e l y  

t a k e n  c a r e  of  by making use  of  t he '  r e l a t i o n  8) 

<r~>p=<r2>ch-<r~>-  (10) 
P 

where t he  s u b s c r i p t  ~ r e f e r s  to  the  mod i f i ed  d e n s i t y  d i s t r i b u t i o n ,  ch to  the  cha rge  

d i s t r i b u t i o n  and p to  t he  f i n i t e  e x t e n s i o n  of  t h e  a n t i p r o t o n .  

The optical potentials for 12C, 4Oca and 208pb for antiproton momenta of 300 MeV/c 

and 600 MeV/c are shown in fig.l for the two alternative treatments of the k ~ terms 

in eq.(1). In the case where the k 2 terms are replaced by their operator forms, the 

curves correspond to the potentials after transforming the effective mass terms away. 

The tail regions are in general quite similar as are the high energy imaginary parts. 

Otherwise significant differences are apparent. The imaginary depth seems to saturate 

at about 150 MeV. 

In fig.2 we compare the elastic scattering cross sections with the experimental re- 

sults. The two potentials lead to almost identical cross sections which overall agree 

remarkably well with the measurements. There is a clear tendency to underestimate the 

cross sections at larger angles at the high energy. 

The other T-matrix approximations also give fairly similar cross sections which can 

be classified by their xe/N-values. With this measure we find that Oaussians in gene- 

ral give worse fits than Yukawa functions. There is no clear preference for either 

the "gradient" or "average k ~'' treatment. 

Changing the neutron density distribution to give a skin thickness 9) of 0.4 fm for 

208pb leads to a surprisingly small change in ×2. 

In conclusion the very simple two-body T-matrix approximations and our method of in- 

cluding its energy dependence leads to a satisfactory agreement with elastic scatter- 

ing cross sections, especially considering the parameter free microscopic nature of 

our computations. The results of our procedure are described in more detail in a 

forthcoming pubication I0) 
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Fig. i, The real (V) and imaginary (W) part of the optical potential as function of 
the radius r for various nuclei. All the curves correspond to the T-matrix 
approximation with three Yukawa functions plus that of the pion. The antipro- 
ton momentum is 300 MeV/c in the upper figure and 600 MeV/c in the lower fi- 
gure. The dashed curves are the potentials corresponding to eq.(7) and the 
solid curves are tho~e arising from eq.(3) by substituting k~= by its average 
value <kE >=0.75 fm- The tail part of the potentials are aI~o shown en- 

i 
larged b~a factor of ten. 
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Fig. 2. The differential antiproton-nucleus elastic scattering cross sections as 
functions of angle for various nuclei. The curves are obtained with the po- 
tentials of fig. I and the experimental points are from ref.l, 


