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Elastic scattering cross sections of 300 MeV/c and 600 MeV/c antiprotons on 128, Ca

g 208 )

1 . . .
an Pb have recently been very accurately measured ’. Microscopic calculations of

the antiproton-nucleus optical potential and the related cross sections are avail-
able2’3’4}. The results of these calculations are very different according to which
method, approximations and basic two-body interaction have been used. In this paper
we calculate)the antiproton elastic scattering cross section from the Dover-Richard
5

interaction”’ with a different and simple method which contains the essential ingre-
dients. To study the model and its capabilities, medium corrections are, for the pre-
sent, ignored.
For a definite isospin I and spin S, the central part of the elastic antiproton-
nucleon T-matrix elements corresponding to the Dover-Richard interaction are parame—
trized by a sum of Yukawas

N

ISz _y_ v .
To (k ’r)_j£1(aj(IS)+k bj(IS))exp(~ujr)/(ujr) (1)

where k, the CM momentum in L units, is given by
k= (/267 ) /2 (2)

E being the antiproton kinetic energy in the system where the target nucleon is sta-
tionary. The coefficients aj and bj are determined by making a least squares fit to
the Dover-Richard forward scattering amplitude plus s and p-waves over a limited e-
nergy range. (For the 300 MeV/c calculations the range 205ES100 MeV was used and for
the 600 MeV/c calculations 100SES300 MeV was used.) In each case the first term in
the sum was held fixed at the one pion exchange value (using %;: 14.43) and fits

were made with 2 and with 3 additional Yukawas . For comparison similar fits were al-
50 made with the OPE Yukawa plus 2 or 3 Gaussians.

In order to use this parametrization in a calculation of the optical potential we

kave to decide how to treat the k* term in eq.(1). One possibility is to express k?
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in terms of gradients acting to the left and to the right i.e.

2 L 1= G
K*f(rt) —g(giﬁf(r')+f(r'hzip)

where f(r) is any function of r'=l£:{i| and where
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In this case the central part of the optical potential is given by

b
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where [¢> is the nuclear ground state wave function, where

N
c

C(r')= § ] a.(@S)exp{-p.r')/(p.r')
1§, 3 j j
i=

and where D(r') is given by a similar equation with aj(IS) replaced by bj(IS).

can be evaluated giving (r'=|r'-r})
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where the densities p and kinetic densities 7 are related to those of the proton and

neutron by
oo=%+%1 PI= R P

T0=Tp+1n 1= n

The functions F are given by

N
c

Folr!)=rz jz_l[ a;(00)+3a ;(01)+3a,(10)+9a ;(11)] exp(~p ;r")/(u ;r)
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while the functions G are given by corresponding definitions with the aj's replaced

by bj’s. {Note that in the case of the Gaussian fits the Yukawas in egs.(9) must be

replaced by Caussians). In evaluating (5} we have neglected those probability current

terms which vanish for time reversal symmetric nuclear wave functions., Using semi-
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classical approximationsé) for 1, the potential is finally expressed in terms of the
nuclear density distributions p_ and on and the effective mass in eq.(7) is removed
by a suitable transformation of the radial Schrodinger equation leading to an energy
dependent optical potential.

Instead of expressing k® in terms of gradients, an alternative approach is to appro-
Ximate it by its average value <ki§> obtained from the Fermi motion of the nucleons
within the nucleus. The resulting potential can be obtained from eq.(7) by setting
GosGlsO and by replacing aj(IS) by aj(IS)+<kiﬁ>bj(Is) in eqs.{(9).

In the calculations the nuclear density distributions are obtained from the charge

7). In eq.(7) they have

distribution as measured by electron scattering experiments
to be modified because of the finite size of the antiproton and this is approximately

taken care of by making use of the'relationg)

2, .2 CerEa_ 1
<rf> =<rf> | —<r >p (10)

vhere the subscript ¢ refers to the modified density distribution, ch to the charge

distribution and p to the finite extension of the antiproton.

SPb for antiproton momenta of 300 MeV/c

The optical potentials for 120, 400& and 0
and 600 MeV/c are shown in fig.l for the two alternative treatments of the k® terms
in eq.(1). In the case where the k¥ terms are replaced by their operator forms, the
curves correspond to the potentials after transforming the effective mass terms away.
The tail regions are in general quite similar as are the high energy imaginary parts.
Otherwise significant differences are apparent. The imaginary depth seems to saturate
at about 150 MeV.

In fig.2 we compare the elastic scattering cross sections with the experimental re-
sults. The two potentials lead to almost identical cross sections which overall agree
remarkably well with the measurements. There is a clear tendency to underestimate the
Cross sections at larger angles at the high energy.

The other T-matrix approximations also give fairly similar cross sections which can
be classified by their yx®/N-values. With this measure we find that Caussians in gene—
ral give worse fits than Yukawa functions. There is no clear preference for either
the "gradient" or "average k*'" treatment,

9)

Changing the neutron density distribution to give a skin thickness
208

of 0.4 fm for

Pb leads to a surprisingly small change in ¥%.

In conclusion the very simple two-body T-matrix approximations and our method of in-
cluding its energy dependence leads to a satisfactory agreement with elastic scatter—
ing cross sections, especially considering the parameter free microscopic nature of
our computations. The results of our procedure are described in more detail in a

forthcoming pubicationlo).
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Fig. 1. The real (V) and imaginary (W) part of the optical potential as function of

the radius r for various nuclei. All the curves correspond to the T-matrix
approximation with three Yukawa functions plus that of the pion. The antipro-
ton momentum is 300 MeV/c in the upper figure and 600 MeV/c in the lower fi-
gure. The dashed curves are the potentials corresponding to eq.(7) and the
solid curves are thoge arising from eq.(3) by substituting k- by its average
value <ki >=0.75 fm “. The tail part of the potentials are alBo shown en-
larged bypa factor of ten.
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Fiy. 2. The differential antiproton-nucleus elastic scattering cross sections as
functions of angle for various nuclei. The curves are obtained with the po-
tentials of fig. 1 and the experimental peints are from ref.l.



