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Abstract. Gravitational waves have become a vital way to test our current understanding of 

gravity. In this work, we explore the formulations of gravitational waves in two distinct theories 

of gravity: the Teleparallel Equivalent of General Relativity (TEGR), a subclass of Teleparallel 

Gravity (TG), and General Relativity (GR). By linearizing the gravitational field equations in 

each theory, we demonstrate that the formulations of gravitational waves in TEGR and GR are 

equivalent. This equivalence suggests that the teleparallel formalism can effectively describe 

gravitational waves, providing a novel perspective on the topic and potentially broadening the 

scope of gravitational wave research. 

 

 

 

1. Introduction 
 

For the last century, General Relativity (GR) has revolutionized our understanding of gravity and the 

universe on the large scale. However, recent astronomical and cosmological observations suggest that 

GR may not offer a complete framework for explaining the fundamental nature of gravity and the 
universe as a whole [1]. Modified gravity has emerged as one of the alternative models to explain 

phenomena such as the accelerating expansion of the universe [2], the nature of dark matter [3], and 

inflation in the early universe [4]. To validate these theories, it is crucial to contrast their predictions 
against a broad range of tests conducted by various methods and bound by astronomical and 

cosmological measurements [5]. 

A modified gravity theory proposed by Albert Einstein shortly after the introduction of GR is distant 
parallelism [6], which now serves as the foundation of Teleparallel Gravity (TG) [7]. In TG, the tetrad 

field is used as the primary variable to describe the geometrical aspects of spacetime, instead of the 

metric used in GR [8]. In TG, the gravitational field is characterized by torsion and/or non-metricity, in 

contrast to GR, where the gravitational field is characterized by curvature [9]. One subclass of TG is the 

Teleparallel Equivalent of General Relativity (TEGR), which provides an alternative geometrical 

formulation to GR. TEGR employs the Weitzenböck connection, which is both metric-compatible and 
curvature-free, unlike the Levi-Civita connection used in GR, which is both metric-compatible and 

torsion-free [10]. 

From an astrophysical perspective, the first direct detection of gravitational waves has provided a 
novel way to test various theories of gravity, confirming predictions made by Einstein a century ago 

[11]. Furthermore, detections of gravitational waves from various astrophysical sources offer a unique 

opportunity to test modified gravity theories under strong gravitational field conditions. For instance, 

https://creativecommons.org/licenses/by/4.0/


13th International Physics Seminar 2024
Journal of Physics: Conference Series 2866 (2024) 012082

IOP Publishing
doi:10.1088/1742-6596/2866/1/012082

2

 
 
 
 
 
 

the detection of GW170817, the first direct observation of a neutron star-black hole merger, imposed 

constraints on many modified gravity theories based on the observed properties of the gravitational 

waves [12,13]. 
Given the significance of gravitational waves in testing existing theories of gravity, our work 

explores the formulations of gravitational waves in both GR and TEGR. This involves linearizing the 

gravitational field equations in each theory and applying specific gauge conditions for the study of 
gravitational waves. We then compare the linearized field equations to demonstrate the equivalence 

between the formulations in each theory. Our analysis provides a new perspective by utilizing the 

teleparallel formalism to explore the nature of gravitational waves. 

 

2. Method 

2.1. Theoretical Foundation 
The tetrad is the primary variable in TG and the study of differential geometry. Tetrad 𝑒𝑎𝜇 transforms 

the coordinate basis 𝑑𝑥𝜇  of cotangent space to an orthonormal basis of the cotangent space on a 

manifold. The inverse of tetrad, 𝐸𝑎𝜇, transforms the coordinate basis 𝜕/𝜕𝑥𝜇 of the tangent space to 

orthonormal basis of the tangent space on a manifold [14]. 

 𝑒𝑎 = 𝑒𝑎𝜇𝑑𝑥𝜇          𝐸𝑎 = 𝐸𝑎𝜇 𝜕
𝜕𝑥𝜇 . (1) 

Through the relationships below, the metric 𝑔𝜇𝜈, its inverse 𝑔𝜇𝜈, and determinants 𝑔 can be related to 

tetrad 𝑒𝑎𝜇, its inverse 𝐸𝑎𝜇, and its determinant e, 

 𝑔𝜇𝜈 = 𝜂𝑎𝑏𝑒𝑎𝜇𝑒𝑏𝜈 ,           𝑔𝜇𝜈 = 𝜂𝑎𝑏𝐸𝑎𝜇𝐸𝑏𝜈 ,          √−𝑔 = e, (2) 

where 𝜂𝑎𝑏 is the Minkowski metric in the tangent space, and 𝜂𝑎𝑏 is its inverse, 

 𝜂𝑎𝑏 = diag(−1, 1, 1, 1) . (3) 

The tetrad and its inverse also obey the orthogonality conditions 

 𝑒𝑎𝜇𝐸𝑎𝜈 = 𝛿𝜇𝜈  ,          𝑒𝑎𝜇𝐸𝑏𝜇 = 𝛿𝑏𝑎 . (4) 

We use a convention where Greek letters (𝜇, 𝜈, . . . ) represent spacetime indices, while Latin letters 

(𝑎, 𝑏, . . . ) represent Lorentz indices for Minkowski spacetime [15]. Latin letters (𝑖, 𝑗, . . . ) are used for 

the space components of spacetime indices, as commonly known. We can utilize 𝑒𝑎𝜇  and 𝐸𝑎𝜇  to 

transform Lorentz indices to spacetime indices and vice versa. Additionally, 𝜂𝑎𝑏 and 𝜂𝑎𝑏 can be utilized 

to raise and lower Lorentz indices. As commonly known in metric formalism, 𝑔𝜇𝜈  and 𝑔𝜇𝜈  can be 

utilized to raise and lower spacetime indices. We can establish the relationship between affine 

connection Γ̂𝜆𝜇𝜈  and affine spin connection 𝜔̂𝑎𝑏𝜇, also known as the tetrad postulate 

 𝔇̂𝜇𝑒𝑎𝜈 ≡ 𝜕𝜇𝑒𝑎𝜈 + 𝜔̂𝑎𝑏𝜇𝑒𝑏𝜈 = Γ̂𝜆𝜇𝜈𝑒𝑎𝜆 , (5) 

where 𝔇̂𝜇𝑒𝑎𝜈 is the Fock-Ivanenko derivative of tetrad 𝑒𝑎𝜇. We also use the convention from [15] to 

classify the possible affine connections. General affine connection Γ̂𝜆𝜇𝜈 has no specific constraints on 

spacetime geometry. Levi-Civita affine connection Γ̊𝜆𝜇𝜈 is used to define metric-compatible, torsion-

free spacetime in GR.  

 Γ̊𝜆𝜇𝜈 = 1
2 𝑔𝜆𝜎(𝜕𝜇𝑔𝜎𝜈 + 𝜕𝜈𝑔𝜎𝜇 − 𝜕𝜎𝑔𝜇𝜈) (6) 
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Moreover, teleparallel affine connection Γ𝜆𝜇𝜈 is used in TEGR to define metric-compatible, curvature-

free spacetime. Quantities associated with a specific affine connection are differentiated analogously to 

the differentiation process of that particular affine connection. From the affine connection, we can derive 

the torsion tensor 𝑇̂𝜆𝜇𝜈 and Riemann (curvature) tensor 𝑅̂𝛼𝛽𝜇𝜈 using Cartan’s structure equations, 

 𝑇̂𝜆𝜇𝜈 = 𝐸𝑎𝜆(𝜕𝜇𝑒𝑎𝜈 − 𝜕𝜈𝑒𝑎𝜇 + 𝜔̂𝑎𝑏𝜇𝑒𝑏𝜈 − 𝜔̂𝑎𝑏𝜈𝑒𝑏𝜇) , (7) 

 𝑅̂𝛼𝛽𝜇𝜈 = 𝐸𝑎𝛼𝑒𝑏𝛽(𝜕𝜇𝜔̂𝑎𝑏𝜈 − 𝜕𝜈𝜔̂𝑎𝑏𝜇 + 𝜔̂𝑎𝑐𝜇 𝜔̂𝑐𝑏𝜈 − 𝜔̂𝑎𝑐𝜈 𝜔̂𝑐𝑏𝜇) . (8) 

In TEGR, we utilize the Weitzenböck gauge, 𝜔𝑎𝑏𝜇 = 0, thereby simplifying Eq. (5) to [16] 

 Γ𝜆𝜇𝜈 = 𝐸𝑎𝜆𝜕𝜇𝑒𝑎𝜈 . (9) 

When we apply Weitzenböck gauge in teleparallel affine connection, we get Weitzenböck affine 

connection. Therefore, the torsion tensor and curvature tensor in Weitzenböck affine connection reduces 

to [17] 

 𝑇 𝜆𝜇𝜈 = 𝐸𝑎𝜆(𝜕𝜇𝑒𝑎𝜈 − 𝜕𝜈𝑒𝑎𝜇)         𝑅𝛼𝛽𝜇𝜈 = 0 . (10) 

We can also define the contortion tensor from the torsion tensor, 

 𝐾̂𝜆𝜇𝜈 = 1
2 (𝑇𝜈̂𝜆𝜇 + 𝑇𝜇̂𝜆𝜈 + 𝑇̂𝜆𝜇𝜈) . (11) 

With the definition of contortion tensor in Eq. (11), Riemann tensor in Levi-Civita affine connection 

can be expressed in terms of teleparallel quantities as 

 𝑅̊𝛼𝛽𝜇𝜈 = 𝐾𝛼𝜈𝛾𝐾𝛾𝜇𝛽 − 𝐾𝛼𝜇𝛾𝐾𝛾𝜈𝛽 + ∇̊𝜈𝐾𝛼𝜇𝛽 − ∇̊𝜇𝐾𝛼𝜈𝛽 . (12) 

To formulate the field equations in TEGR, we can define the torsion vector (𝑇𝜇 and 𝑇 𝜇), torsion scalar 

�, and the superpotential tensor ���� as follows [16]. 

 𝑇𝜇 = 𝑇 𝛼𝜇𝛼          𝑇 𝜇 = 𝑇 𝛼𝜇𝛼 (13) 

 𝑆𝜇𝜈𝛾 = 1
2 (𝑇𝜇𝜈𝛾 + 𝑇 𝛾𝜈𝜇 + 𝑇 𝜈𝜇𝛾) + 𝑔𝜇𝜈𝑇 𝛾 − 𝑔𝜇𝛾𝑇 𝜈          𝑇 = 1

2 𝑇𝜇𝜈𝛾𝑆𝜇𝜈𝛾 (14) 

2.2. Teleparallel equivalent of general relativity (TEGR) and its relation to general relativity (GR) 
To derive the field equations in TEGR, we introduce the action of TEGR as follows: 

 𝑆𝑇𝐸𝐺𝑅 = − 𝑐4
16𝜋𝐺 ∫𝑑4𝑥 𝑒𝑇 + ∫𝑑4𝑥 𝑒ℒ𝑚 . (15) 

Here, ℒ𝑚 is the matter Lagrangian, 𝑐 is the speed of light, and 𝐺 is the Newton’s gravitational constant. 

In comparison, the Einstein-Hilbert action is used to derive the field equations in GR, 

 𝑆𝐸𝐻 = 𝑐4
16𝜋𝐺∫𝑑4𝑥 √−𝑔𝑅̊ + ∫ 𝑑4𝑥 √−𝑔ℒ𝑚 , (16) 

where 𝑅̊ is the Ricci scalar defined in Levi-Civita affine connection. 

 𝑅̊ = 𝑔𝜇𝜈𝑅̊𝜇𝜈 = 𝑔𝜇𝜈𝑅̊𝛼𝜇𝛼𝜈 (17) 

𝑅̊𝜇𝜈 is the Ricci tensor defined in Levi-Civita affine connection. By substituting the definition of the 

Riemann tensor in Eq. (12) to Eq. (17), we can represent 𝑅̊ in terms of teleparallel quantities as 

 𝑅̊ = −(𝑇 + 2∇̊𝜇𝑇 𝜇) = −(𝑇 + 𝐵𝑇 ) , (18) 
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where 𝐵𝑇  is the boundary term for TEGR [15]. This boundary term vanishes when we use the principle 

of least action for TEGR, yielding the same field equations obtained when the same principle is applied 

to the Einstein-Hilbert action in GR. This condition establishes equivalence between TEGR and GR. By 

applying the principle of least action to Eq. (15), we obtain the expression for the gravitational field 
equations in TEGR as 

 
1
𝑒 𝜕𝜇(𝑒𝑆𝑎𝜅𝜇) − 𝑇 𝜇𝜈𝑎𝑆𝜇𝜈𝜅 + 1

2𝐸𝑎𝜅𝑇 = 8𝜋𝐺
𝑐4 Θ𝑎𝜅 , (19) 

where 𝛩𝑎𝜅 is the stress-energy expressed in terms of tetrad. Meanwhile, the Einstein field equations in 

GR can be obtained by applying the principle of least action to Eq. (16), 

 𝐺𝜇̊𝜈 ≡ 𝑅̊𝜇𝜈 − 1
2 𝑔𝜇𝜈𝑅̊ = 8𝜋𝐺

𝑐4 Θ𝜇𝜈 , (20) 

where 𝐺𝜇̊𝜈 is the Einstein tensor and Θ𝜇𝜈 is the stress-energy tensor.  

3. Result and Discussion 
In the theoretical study of gravitational waves, several assumptions are made. The first assumption is 

weak and static gravitational field (Newtonian limit). The second assumption is the test particle is non-

relativistic, i.e. 𝑣 K 𝑐. Additional assumptions are established according to each theory. 

3.1. Gravitational waves formulation in GR 

The first additional assumption in the linearized Einstein field equations is that the metric utilized in the 

analysis corresponds to the weak-field metric, which is expanded around the flat spacetime,  

 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈  , (21) 

where 𝜂𝜇𝜈  is Minkowski metric in spacetime indices and ℎ𝜇𝜈  denotes the small perturbation on the 

metric. For the inverse metric, we have 

 𝑔𝜇𝜈 = 𝜂𝜇𝜈 − ℎ𝜇𝜈 . (22) 

In linearized field equations in GR, we use 𝜂𝜇𝜈 and 𝜂𝜇𝜈 to raise and lower spacetime indices. The second 

additional assumption is the small perturbation on the metric considered in the analysis is only on the 

first order, 𝒪(ℎ𝜇𝜈). To satisfy this condition, the necessary requirements are as follows. For the metric 

perturbation, we have 

 ∣ℎ𝜇𝜈∣ K 1          ∣𝜕𝜌ℎ𝜇𝜈∣ K 1 . (23) 

By applying the metric and its inverse from Eqs. (21) and (22) to Eq. (20), we can linearize the 

Einstein field equations, resulting in the following expression, 

 □ℎ𝜇𝜈 + 𝜂𝜇𝜈𝜕𝛼𝜕𝛽ℎ𝛼𝛽 + 𝜕𝜇𝜕𝜈ℎ − 𝜂𝜇𝜈□ℎ − 𝜕𝜎𝜕𝜇ℎ𝜎𝜈 − 𝜕𝜎𝜕𝜈ℎ𝜎𝜇 = −16𝜋𝐺
𝑐4 Θ𝜇𝜈 , (24) 

where □ = 𝜂𝜌𝜎𝜕𝜌𝜕𝜎 is the usual d’Alembert operator. To simplify Eq. (24), we introduce the trace-

reverse of ℎ𝜇𝜈, which is defined as 

 ℎ̅𝜇𝜈 ≡ ℎ𝜇𝜈 − 1
2 𝜂𝜇𝜈ℎ𝛼𝛼 . (25) 

We also utilize the harmonic gauge, also known as the Lorenz gauge, 

 𝜕𝜈ℎ̅𝜇𝜈 = 𝜕𝜈ℎ̅𝜇𝜈 = 0 . (26) 
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Based on Eqs. (25)- (26), Eq. (24) simplifies to 

 □ℎ̅𝜇𝜈 = −16𝜋𝐺
𝑐4 Θ𝜇𝜈 . (27) 

To simplify the solution of Eq. (27), we introduce a transverse-traceless (TT) gauge in the form of 

  ℎ0𝜇 = ℎ𝜇0 = 0 ,          ℎ𝑖𝑖 = 0 ,          𝜕𝑗ℎ𝑖𝑗 = 0 . (28) 

This gauge reduces 10 degrees of freedom of the metric perturbation to just 2 degrees of freedom. 

Physically, this corresponds to the two polarization states of gravitational waves: plus and cross 

polarizations. Furthermore, the trace of the metric perturbation becomes zero, which results in the 

relation ℎ̅0𝜇𝜈 = ℎ𝜇𝜈 [18]. Consequently, Eq. (27) can be expressed as 

  □ℎ𝑖𝑗 = −16𝜋𝐺
𝑐4 Θ𝑖𝑗 . (29) 

3.2. Gravitational waves formulation in TEGR 

The first additional assumption of the linearization of gravitational field equations in TEGR is that the 

tetrad used in the analysis is the weak-field tetrad in the form of  

 𝑒𝑎𝜇 = 𝛿𝑎𝜇 + 𝐵𝑎𝜇 , (30) 

where 𝛿𝑎𝜇 is a flat diagonal background tetrad and 𝐵𝑎𝜇 denotes the small perturbation on the tetrad. 

 𝛿𝑎𝜇 = diag(1, 1, 1, 1) (31) 

The inverse of Eq. (30) can be expressed in the form of 

 𝐸𝑎𝜇 = 𝛿𝑎𝜇 + 𝐵𝑎𝜇 , (32) 

where 𝛿𝑎𝜇 = 𝛿𝑎𝜇 and 𝐵𝑎𝜇 is the inverse of 𝐵𝑎𝜇. In linearized field equations in TEGR, we use 𝛿𝑎𝜇 and 

its inverse 𝛿𝑎𝜇 to transform Lorentz indices to spacetime indices and vice versa. Additionally, 𝜂𝑎𝑏 and 

𝜂𝑎𝑏 are also utilized to raise and lower Lorentz indices, while 𝜂𝜇𝜈 and 𝜂𝜇𝜈  serve the same roles as in 

GR. By utilizing Eq. (2), we can establish the relationship between the tetrad perturbation and metric 

perturbation as 

 ℎ𝜇𝜈 = 𝜂𝑎𝑏𝛿𝑎𝜇𝐵𝑏𝜈 + 𝜂𝑎𝑏𝛿𝑏𝜈𝐵𝑎𝜇 = 𝐵𝜇𝜈 + 𝐵𝜈𝜇 . (33) 

Furthermore, we can establish the relationship between the Minkowksi metric in tangent space and the 

Minkowksi metric in the manifold as 

 𝜂𝜇𝜈 = 𝜂𝑎𝑏𝛿𝑎𝜇𝛿𝑏𝜈 (34) 

The second additional assumption is the small perturbation on the tetrad considered in the analysis is 

only on the first order, 𝒪(𝐵𝑎𝜇). To satisfy this condition, the necessary requirements are as follows. For 

the tetrad perturbation, we have 

 ∣𝐵𝑎𝜇∣ K 1          ∣𝜕𝑎𝐵𝑎𝜇∣ K 1 (35) 

This assumption is related with the corresponding assumption in GR, as shown by Eqs. (23) and (33).  

Based on the tetrad expansion in Eq. (30) and (32), it follows from Eq. (35) that 𝑒 ≈ 1. Furthermore, 

several teleparallel quantities—including the torsion tensor, torsion vector, and superpotential tensor—

are defined using the first-order tetrad perturbation. Meanwhile, other quantities such as torsion scalar 

and the term 𝑇 𝜇𝜈𝑎𝑆𝜇𝜈𝜅 in Eq. (19) come from the second-order tetrad perturbation, which result from 

the product of two first-order tetrad perturbations. Therefore, based on Eq. (35), these quantities can be 

approximated as zero. Therefore, the linearization becomes the following expression 
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1
2 𝜂𝑎𝑏𝜕𝜅𝜕𝜎𝐵𝑏𝜎 − 1

2 𝜂𝑎𝑏𝜂𝜌𝜅𝜕𝜎𝜕𝜎𝐵𝑏𝜌 + 1
2 𝛿𝑎𝜎𝜕𝜅𝜕𝑏𝐵𝑏𝜎 − 1

2 𝛿𝑎𝜎𝜂𝜌𝜅𝜕𝜎𝜕𝑏𝐵𝑏𝜌

− 1
2 𝛿𝑏𝜅𝛿𝑎𝜎𝜕𝜌𝜕𝜌𝐵𝑏𝜎 + 1

2 𝛿𝑏𝜅𝛿𝑎𝜎𝜕𝜎𝜕𝜌𝐵𝑏𝜌 + 𝛿𝑎𝜅𝜕𝜌𝜕𝜌(𝛿𝑐𝛼𝐵𝑐𝛼)
− 𝛿𝑎𝜅𝜕𝜌𝜕𝑐𝐵𝑐𝜌 − 𝜕𝑎𝜕𝜅(𝛿𝑐𝛼𝐵𝑐𝛼) + 𝜂𝜌𝜅𝜕𝑎𝜕𝑐𝐵𝑐 = 8𝜋𝐺

𝑐4 Θ𝑎𝜅 . 
(36) 

To simplify Eq. (36), we can impose the symmetric properties of ℎ𝜇𝜈 to the tetrad perturbation so 

that the tetrad perturbation in spacetime indices is symmetric in its both indices, i.e. 𝐵𝜇𝜈 = 𝐵𝜈𝜇 . 

Consequently, Eq. (33) becomes 

 ℎ𝜇𝜈 = 2𝜂𝑎𝑏𝛿𝑎𝜇𝐵𝑏𝜈 = 2𝐵𝜇𝜈 . (37) 

In addition, we can also employ the TT gauge from GR by adapting it from the metric form to the tetrad 

form using Eq. (37). Therefore, TT gauge in tetrad is expressed as 

 𝐵𝜇0 = 𝐵0𝜇 = 0 ,         𝛿𝑏𝜈𝐵𝑏𝜈 = 0 ,           𝜕𝑏𝐵𝑏𝜈 = 0 ,         𝜕𝜇𝐵𝑎𝜇 = 0 . (38) 

By multiplying Eq. (36) by 𝛿𝑎𝜇𝜂𝜅𝜈 , and using the gauge from Eq. (38), we obtain the following 

expression. 

 

𝜂𝜅𝜈𝛿𝑎𝜇𝜂𝑎𝑏𝜂𝜌𝜅□𝐵𝑏𝜌 + 𝜂𝜅𝜈𝛿𝑎𝜇𝛿𝑏𝜅𝛿𝑎𝜎□𝐵𝑏𝜎 = −16𝜋𝐺
𝑐4 𝑒𝑎𝜇𝜂𝜅𝜈Θ𝑎𝜅 

□(𝐵𝑖𝑗 + 𝐵𝑗𝑖) = −16𝜋𝐺
𝑐4 Θ𝑖𝑗 

□ℎ𝑖𝑗 = −16𝜋𝐺
𝑐4 Θ𝑖𝑗 

(39) 

The result from Eqs. (39) and (29) demonstrates that the formulations of gravitational waves in GR is 

equivalent to those in TEGR. Therefore, all the solutions for the gravitational waves obtained in GR can 

be also applied to TEGR, at least in the first-order perturbation of the metric or tetrad.  

4. Conclusion 
This study investigates the equivalence of gravitational wave formulations in GR and TEGR. By 

linearizing the gravitational field equations for each theory, we demonstrate that despite the differences 
in the underlying spacetime geometry, both GR and TEGR produce equivalent wave-like perturbations. 

In GR, gravity is characterized by the curvature of spacetime, and the field equations are derived 

using the Levi-Civita connection, which is metric-compatible and torsion-free. On the other hand, TEGR 

employs the Weitzenböck connection, which is metric-compatible and curvature-free, and describes 

gravity through torsion. Our analysis shows that these differing geometrical frameworks do not affect 

the fundamental nature of gravitational waves, as both formulations converge to the same linearized 

field equations in the weak-field limit. This equivalence highlights that torsion can be used as an 

alternative to curvature in describing gravitational phenomena, offering a fresh perspective on the 

geometrical nature of gravity. These results also suggest that the teleparallel formalism is not only a 

valid approach but also a potentially advantageous one for exploring the theoretical aspects of 
gravitational waves. This insight is crucial as it broadens the scope of theoretical frameworks that can 

be employed in gravitational wave research, potentially leading to new discoveries and deeper 

understanding. 

Future research could expand on this foundation by exploring other aspects of gravitational wave 

modeling within the teleparallel framework. For instance, the Post-Newtonian (PN) formalism, 

commonly used in GR to describe the motion of bodies in weak gravitational fields, could be adapted 

for TG. Such an adaptation would provide further validation of TG in various gravitational scenarios. 

Additionally, Numerical Relativity (NR), which involves solving the field equations using numerical 

methods, could be applied to TG to simulate different gravitational wave phenomena, such as the 
ringdown phase of binary black hole mergers or extreme-mass-ratio inspirals (EMRIs). More advanced 
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modeling techniques for gravitational waves in TG need to be developed. By integrating these advanced 

modeling techniques with observational data, we can rigorously test the predictions of TG and compare 

them with those of GR, potentially uncovering subtle differences that could lead to breakthroughs in our 
understanding of gravity. 

In conclusion, our study demonstrates the equivalence of gravitational wave formulations in GR and 

TEGR, providing a new approach to studying gravitational waves through the teleparallel formalism. 
This equivalence opens up new avenues for research and highlights the robustness of our theoretical 

understanding of gravitational waves. As future detectors come online and more data becomes available, 

the insights gained from this study will be invaluable in pushing the boundaries of gravitational wave 

astronomy and our understanding of the fundamental nature of gravity. 
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