13th International Physics Seminar 2024 IOP Publishing
Journal of Physics: Conference Series 2866 (2024) 012082 doi:10.1088/1742-6596/2866/1/012082

On the Equivalence of Gravitational Waves Formulations in
Teleparallel Gravity and General Relativity

Andre Saputra' and Bintoro Anang Subagyo?

Department of Physics, Institut Teknologi Sepuluh Nopember
Kampus ITS Sukolilo, Surabaya, 60111, Indonesia

Email: '18.andresaputra@gmail.com, *bintoro.subagyo@its.ac.id

Abstract. Gravitational waves have become a vital way to test our current understanding of
gravity. In this work, we explore the formulations of gravitational waves in two distinct theories
of gravity: the Teleparallel Equivalent of General Relativity (TEGR), a subclass of Teleparallel
Gravity (TG), and General Relativity (GR). By linearizing the gravitational field equations in
each theory, we demonstrate that the formulations of gravitational waves in TEGR and GR are
equivalent. This equivalence suggests that the teleparallel formalism can effectively describe
gravitational waves, providing a novel perspective on the topic and potentially broadening the
scope of gravitational wave research.

1. Introduction

For the last century, General Relativity (GR) has revolutionized our understanding of gravity and the
universe on the large scale. However, recent astronomical and cosmological observations suggest that
GR may not offer a complete framework for explaining the fundamental nature of gravity and the
universe as a whole [1]. Modified gravity has emerged as one of the alternative models to explain
phenomena such as the accelerating expansion of the universe [2], the nature of dark matter [3], and
inflation in the early universe [4]. To validate these theories, it is crucial to contrast their predictions
against a broad range of tests conducted by various methods and bound by astronomical and
cosmological measurements [5].

A modified gravity theory proposed by Albert Einstein shortly after the introduction of GR is distant
parallelism [6], which now serves as the foundation of Teleparallel Gravity (TG) [7]. In TG, the tetrad
field is used as the primary variable to describe the geometrical aspects of spacetime, instead of the
metric used in GR [8]. In TG, the gravitational field is characterized by torsion and/or non-metricity, in
contrast to GR, where the gravitational field is characterized by curvature [9]. One subclass of TG is the
Teleparallel Equivalent of General Relativity (TEGR), which provides an alternative geometrical
formulation to GR. TEGR employs the Weitzenbock connection, which is both metric-compatible and
curvature-free, unlike the Levi-Civita connection used in GR, which is both metric-compatible and
torsion-free [10].

From an astrophysical perspective, the first direct detection of gravitational waves has provided a
novel way to test various theories of gravity, confirming predictions made by Einstein a century ago
[11]. Furthermore, detections of gravitational waves from various astrophysical sources offer a unique
opportunity to test modified gravity theories under strong gravitational field conditions. For instance,
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the detection of GW170817, the first direct observation of a neutron star-black hole merger, imposed
constraints on many modified gravity theories based on the observed properties of the gravitational
waves [12,13].

Given the significance of gravitational waves in testing existing theories of gravity, our work
explores the formulations of gravitational waves in both GR and TEGR. This involves linearizing the
gravitational field equations in each theory and applying specific gauge conditions for the study of
gravitational waves. We then compare the linearized field equations to demonstrate the equivalence
between the formulations in each theory. Our analysis provides a new perspective by utilizing the
teleparallel formalism to explore the nature of gravitational waves.

2. Method

2.1. Theoretical Foundation

The tetrad is the primary variable in TG and the study of differential geometry. Tetrad e”, transforms
the coordinate basis dz* of cotangent space to an orthonormal basis of the cotangent space on a
manifold. The inverse of tetrad, F,*, transforms the coordinate basis 9/9x* of the tangent space to
orthonormal basis of the tangent space on a manifold [14].

= e, dz" E, = Ea“% . (n

Through the relationships below, the metric g,,,, its inverse g*”, and determinants g can be related to

eCL

tetrad e® o its inverse I/ #, and its determinant e,

Gy = Map€” €y g =B B V-g=-e @
where 7, is the Minkowski metric in the tangent space, and 7% is its inverse,
Mgy = diag(—1,1,1,1) . (3)

The tetrad and its inverse also obey the orthogonality conditions

e’ BE,” =0, et Bt =0y . 4

We use a convention where Greek letters (1, v, . .. ) represent spacetime indices, while Latin letters
(a,b,...) represent Lorentz indices for Minkowski spacetime [15]. Latin letters (¢, j, ... ) are used for
the space components of spacetime indices, as commonly known. We can utilize e, and E /" to

transform Lorentz indices to spacetime indices and vice versa. Additionally, ,, and 7%® can be utilized
to raise and lower Lorentz indices. As commonly known in metric formalism, g,,, and g"” can be
utilized to raise and lower spacetime indices. We can establish the relationship between affine
connection ['* . and affine spin connection @, ,, also known as the tetrad postulate

D .0 — a ~Na b _ A a
D€, =0, +wy,e’, =", ey, (5

where D €, 18 the Fock-Ivanenko derivative of tetrad e ,. We also use the convention from [15] to
classify the possible affine connections. General affine connection I v has no specific constraints on

spacetime geometry. Levi-Civita affine connection R v 18 used to define metric-compatible, torsion-
free spacetime in GR.

o 1
F/\/Lu = Egkg(augm/ + 8ug<7/1, - 6agw/) (6)
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Moreover, teleparallel affine connection I'* v 18 used in TEGR to define metric-compatible, curvature-

free spacetime. Quantities associated with a specific affine connection are differentiated analogously to
the differentiation process of that particular affine connection. From the affine connection, we can derive

the torsion tensor 7 v and Riemann (curvature) tensor R g Using Cartan’s structure equations,
T, = E>(0,€e", —0,e", + %, €, —id%,e,), (7)
Raﬂuu = Eaaebﬂ(au(:}abu - au&)abu + (Dacu (chz/ - (’Dacz/ a}cbu) . (8)
In TEGR, we utilize the Weitzenbdck gauge, w;,, = 0, thereby simplifying Eq. (5) to [16]
A _ A a
4, =E 0, . ©)

When we apply Weitzenbock gauge in teleparallel affine connection, we get Weitzenbock affine
connection. Therefore, the torsion tensor and curvature tensor in Weitzenbock affine connection reduces
to [17]

T)\p,y = Ea/\(aueau - aueau) Raﬁuu =0. (10)
We can also define the contortion tensor from the torsion tensor,
. 1 - R -
DU A A by
K [LV7§<TV ,u+71,u 1/+T ,w/)' (11)

With the definition of contortion tensor in Eq. (11), Riemann tensor in Levi-Civita affine connection
can be expressed in terms of teleparallel quantities as

R%s,=K*, K7, ,3— K% K 3+V, K" ;—V, K;. (12)

To formulate the field equations in TEGR, we can define the torsion vector (7}, and T'*), torsion scalar
T, and the superpotential tensor S¥*Y as follows [16].
T,=T%, TH =T (13)

1
Suyvy — (TMV’Y + TvH + TVH"/) + gl“’T’Y — gM’YTV T = 5ZZ’ Suvy (14)

Py

DN | =

2.2. Teleparallel equivalent of general relativity (TEGR) and its relation to general relativity (GR)
To derive the field equations in TEGR, we introduce the action of TEGR as follows:

ct "
T 4 . 15
167rG/dxe +/d1:e£m (15)

Here, £,, is the matter Lagrangian, c is the speed of light, and G is the Newton’s gravitational constant.
In comparison, the Einstein-Hilbert action is used to derive the field equations in GR,

ct — o —
Spy = m/d% V=9 + /d4x V=9% 0 (16)

where R is the Ricci scalar defined in Levi-Civita affine connection.

STEGR -

R=g"R,, =g"R",,, (17)

o

R, is the Ricci tensor defined in Levi-Civita affine connection. By substituting the definition of the

Riemann tensor in Eq. (12) to Eq. (17), we can represent R in terms of teleparallel quantities as

R=—(T+2V,T")=—(T +By), (18)
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where By is the boundary term for TEGR [15]. This boundary term vanishes when we use the principle
of least action for TEGR, yielding the same field equations obtained when the same principle is applied
to the Einstein-Hilbert action in GR. This condition establishes equivalence between TEGR and GR. By
applying the principle of least action to Eq. (15), we obtain the expression for the gravitational field
equations in TEGR as

1 1 8nG
gﬁu(eSa”“) —T",S,," + §EG”T = e,", (19)

where O, " is the stress-energy expressed in terms of tetrad. Meanwhile, the Einstein field equations in
GR can be obtained by applying the principle of least action to Eq. (16),

L LIS , (20)

G,ul/ = R,uu - §g;¢u P %

where G v 18 the Einstein tensor and © ,, is the stress-energy tensor.

3. Result and Discussion

In the theoretical study of gravitational waves, several assumptions are made. The first assumption is
weak and static gravitational field (Newtonian limit). The second assumption is the test particle is non-
relativistic, i.e. v < c. Additional assumptions are established according to each theory.

3.1. Gravitational waves formulation in GR

The first additional assumption in the linearized Einstein field equations is that the metric utilized in the
analysis corresponds to the weak-field metric, which is expanded around the flat spacetime,

gp,l/ - n,ut/ + h,ul/ ) (21)

where 77, is Minkowski metric in spacetime indices and %, denotes the small perturbation on the
metric. For the inverse metric, we have

g;w — ,,];w — hpv (22)

In linearized field equations in GR, we use 7,,,, and /" to raise and lower spacetime indices. The second
additional assumption is the small perturbation on the metric considered in the analysis is only on the
first order, O(h W). To satisfy this condition, the necessary requirements are as follows. For the metric
perturbation, we have

| <1 0,h,,| <1. (23)

By applying the metric and its inverse from Egs. (21) and (22) to Eq. (20), we can linearize the
Einstein field equations, resulting in the following expression,

B 167rG@ , 24)

op = o

Ohy + 1,,0%0°h, 5+ 0,0,h — 0, 0h — 8°0,,h,,, — 0°9,h

where (0 = 7,079 is the usual d’ Alembert operator. To simplify Eq. (24), we introduce the trace-

reverse of h ., which is defined as

p?

1
Ry = By — 510, 0% - (25)

2 nv 2

We also utilize the harmonic gauge, also known as the Lorenz gauge,

9, = 0h,, =0 . (26)
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Based on Egs. (25)- (26), Eq. (24) simplifies to
- 167G
h =— 0,,. 27
O uv C4 ( )

Nz

To simplify the solution of Eq. (27), we introduce a transverse-traceless (TT) gauge in the form of
ho, =h,o=0, ht, =0, 8jhij=0. (28)

This gauge reduces 10 degrees of freedom of the metric perturbation to just 2 degrees of freedom.
Physically, this corresponds to the two polarization states of gravitational waves: plus and cross
polarizations. Furthermore, the trace of the metric perturbation becomes zero, which results in the

relation }?;w = h,,, [18]. Consequently, Eq. (27) can be expressed as
167G o (29)

ij T T ij

Oh

3.2. Gravitational waves formulation in TEGR

The first additional assumption of the linearization of gravitational field equations in TEGR is that the
tetrad used in the analysis is the weak-field tetrad in the form of

et,=06,+B,, (30)
where 6, is a flat diagonal background tetrad and B, denotes the small perturbation on the tetrad.
6, = diag(1,1,1,1) 31
The inverse of Eq. (30) can be expressed in the form of
E*=46"+B,H, (32)

where ¢,/ = ¢, and B, " is the inverse of B ,. In linearized field equations in TEGR, we use 6, and
its inverse " to transform Lorentz indices to spacetime indices and vice versa. Additionally, 7, and
n? are also utilized to raise and lower Lorentz indices, while 1,,, and n"” serve the same roles as in

GR. By utilizing Eq. (2), we can establish the relationship between the tetrad perturbation and metric
perturbation as

h,u,u = nabgapBbu + nabébuBa,u, = B;Ll/ + Bl/,u, . (33)

Furthermore, we can establish the relationship between the Minkowksi metric in tangent space and the
Minkowksi metric in the manifold as

77/_L1/ = nab(sap(sbv (34)

The second additional assumption is the small perturbation on the tetrad considered in the analysis is
only on the first order, O(B* u)' To satisfy this condition, the necessary requirements are as follows. For
the tetrad perturbation, we have

|B*,| <1 0,B°,| <1 (35)

This assumption is related with the corresponding assumption in GR, as shown by Egs. (23) and (33).

Based on the tetrad expansion in Eq. (30) and (32), it follows from Eq. (35) that e ~ 1. Furthermore,
several teleparallel quantities—including the torsion tensor, torsion vector, and superpotential tensor—
are defined using the first-order tetrad perturbation. Meanwhile, other quantities such as torsion scalar
and the term 7 S, " in Eq. (19) come from the second-order tetrad perturbation, which result from
the product of two first-order tetrad perturbations. Therefore, based on Eq. (35), these quantities can be
approximated as zero. Therefore, the linearization becomes the following expression
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1 1 1 1
EnabaﬁaaBba - §nabnpnaoao'Bbp + 560,08%81731)0 - §6aanpmaaabBbp

1 1
- §6b”6a"8p8pBba + iéb’”“éa"@g@pBbP +9,%0°0,(6,%B,) (36)

81G
0,R000, B, — 0,0° (5.0 B ) + 1 0,0,B° = 0,

To simplify Eq. (36), we can impose the symmetric properties of &, to the tetrad perturbation so

that the tetrad perturbation in spacetime indices is symmetric in its both indices, i.e. B,, = B,,,.
Consequently, Eq. (33) becomes

h;w = QnabéapBbu = ZB,LU/ . (37)

In addition, we can also employ the TT gauge from GR by adapting it from the metric form to the tetrad
form using Eq. (37). Therefore, TT gauge in tetrad is expressed as

B,y =B, =0, §,yBb, =0, 0,B", =0, o*B*, =0. (38)

By multiplying Eq. (36) by 0“7, , and using the gauge from Eq. (38), we obtain the following
expression.

167G

nnuaaunabanDBbp + nnu(;auébﬁ(saUDBba = CZ ea,unm/@aﬁ
167G
O(By;+ Bji) = —— 19 (39)
167G
Ohy; = — o i

The result from Eqgs. (39) and (29) demonstrates that the formulations of gravitational waves in GR is
equivalent to those in TEGR. Therefore, all the solutions for the gravitational waves obtained in GR can
be also applied to TEGR, at least in the first-order perturbation of the metric or tetrad.

4. Conclusion

This study investigates the equivalence of gravitational wave formulations in GR and TEGR. By
linearizing the gravitational field equations for each theory, we demonstrate that despite the differences
in the underlying spacetime geometry, both GR and TEGR produce equivalent wave-like perturbations.

In GR, gravity is characterized by the curvature of spacetime, and the field equations are derived
using the Levi-Civita connection, which is metric-compatible and torsion-free. On the other hand, TEGR
employs the Weitzenbock connection, which is metric-compatible and curvature-free, and describes
gravity through torsion. Our analysis shows that these differing geometrical frameworks do not affect
the fundamental nature of gravitational waves, as both formulations converge to the same linearized
field equations in the weak-field limit. This equivalence highlights that torsion can be used as an
alternative to curvature in describing gravitational phenomena, offering a fresh perspective on the
geometrical nature of gravity. These results also suggest that the teleparallel formalism is not only a
valid approach but also a potentially advantageous one for exploring the theoretical aspects of
gravitational waves. This insight is crucial as it broadens the scope of theoretical frameworks that can
be employed in gravitational wave research, potentially leading to new discoveries and deeper
understanding.

Future research could expand on this foundation by exploring other aspects of gravitational wave
modeling within the teleparallel framework. For instance, the Post-Newtonian (PN) formalism,
commonly used in GR to describe the motion of bodies in weak gravitational fields, could be adapted
for TG. Such an adaptation would provide further validation of TG in various gravitational scenarios.
Additionally, Numerical Relativity (NR), which involves solving the field equations using numerical
methods, could be applied to TG to simulate different gravitational wave phenomena, such as the
ringdown phase of binary black hole mergers or extreme-mass-ratio inspirals (EMRIs). More advanced
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modeling techniques for gravitational waves in TG need to be developed. By integrating these advanced
modeling techniques with observational data, we can rigorously test the predictions of TG and compare
them with those of GR, potentially uncovering subtle differences that could lead to breakthroughs in our
understanding of gravity.

In conclusion, our study demonstrates the equivalence of gravitational wave formulations in GR and
TEGR, providing a new approach to studying gravitational waves through the teleparallel formalism.
This equivalence opens up new avenues for research and highlights the robustness of our theoretical
understanding of gravitational waves. As future detectors come online and more data becomes available,
the insights gained from this study will be invaluable in pushing the boundaries of gravitational wave
astronomy and our understanding of the fundamental nature of gravity.
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