
Mach. Learn.: Sci. Technol. 6 (2025) 015006 https://doi.org/10.1088/2632-2153/ada087

OPEN ACCESS

RECEIVED

13 July 2024

REVISED

24 October 2024

ACCEPTED FOR PUBLICATION

16 December 2024

PUBLISHED

13 January 2025

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Automation of quantum dot measurement analysis via
explainable machine learning
Daniel Schug1,2, Tyler J Kovach3, M AWolfe3, Jared Benson3, Sanghyeok Park3, J P Dodson3,
J Corrigan3, M A Eriksson3 and Justyna P Zwolak2,4,5,∗
1 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States of America
2 National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
3 Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, United States of America
4 Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, United States of
America

5 Department of Physics, University of Maryland, College Park, MD 20742, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: jpzwolak@nist.gov

Keywords: explainable machine learning, explainable boosting machines, semiconductor quantum dots

Abstract
The rapid development of quantum dot (QD) devices for quantum computing has necessitated
more efficient and automated methods for device characterization and tuning. Many of the
measurements acquired during the tuning process come in the form of images that need to be
properly analyzed to guide the subsequent tuning steps. By design, features present in such images
capture certain behaviors or states of the measured QD devices. When considered carefully, such
features can aid the control and calibration of QD devices. An important example of such images
are so-called triangle plots, which visually represent current flow and reveal characteristics
important for QD device calibration. While image-based classification tools, such as convolutional
neural networks (CNNs), can be used to verify whether a given measurement is good and thus
warrants the initiation of the next phase of tuning, they do not provide any insights into how the
device should be adjusted in the case of bad images. This is because CNNs sacrifice prediction and
model intelligibility for high accuracy. To ameliorate this trade-off, a recent study introduced an
image vectorization approach that relies on the Gabor wavelet transform (Schug et al 2024 Proc.
XAI4Sci: Explainable Machine Learning for Sciences Workshop (AAAI 2024) (Vancouver, Canada) pp
1–6). Here we propose an alternative vectorization method that involves mathematical modeling of
synthetic triangles to mimic the experimental data. Using explainable boosting machines, we show
that this new method offers superior explainability of model prediction without sacrificing
accuracy. This work demonstrates the feasibility and advantages of applying explainable machine
learning techniques to the analysis of QD measurements, paving the way for further advances in
automated and transparent QD device tuning.

1. Introduction

In many machine learning (ML) applications, there has been a longstanding trade-off between the accuracy
and interoperability of candidate models [2–4]. This is evident in the extreme example of deep neural
networks (DNNs), which can offer excellent accuracy for many problems, often surpassing existing
methods [5–7]. Yet, the best-performing ML models are limited in their interpretability due to the number of
inaccessible layers. Alternatively, simple techniques like linear models or decision trees allow the user to fully
comprehend the internal weights. However, these techniques often cannot model the complex relationships
seen in modern datasets. For image data, there has been considerable progress toward finding a middle
ground, typically through explaining complex models with surrogates such as the local interpretable
model-agnostic explanations (LIME) [8] and Shapley [9].
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In contrast with many black-box ML models, explainable boosting machines (EBMs) are a glass-box
method that enables the model to be directly interpretable rather than relying on surrogate explanations
[10]. Specifically, EBMs extend generalized additive models to include pairwise interactions, allowing one to
observe the relationship between features. EBMs often provide accuracy on par with many black-box models
with the additional advantage of enhanced intelligibility, which makes them an appealing replacement for
other models, especially in applications of consequence, such as medicine [11–13] or finance [14]. However,
to date, EBMs have not been adapted to any other data type than tabular data.

For spatial data, such as images, interpretability is more challenging. This is partly due to their
composition by structures highly correlated at multiple scales in the two-dimensional (2D) space. This
feature is one of the main reasons why convolutional neural networks (CNNs) [5] and, more recently, vision
transformers (ViTs) [15] have quickly become the dominant ML approach for many computer vision tasks.
However, the black-box nature of CNNs and ViTs makes their use prohibitive in applications where a solid
understanding of model predictions is necessary. While making CNNs and ViTs more interpretable has been
a very active area of research, techniques proposed to date vary in utility in many applications, especially as
the depth of the neural network increases [16–18].

Our previous work developed a methodology that addresses some of these interpretability concerns for
measurement data by combining image vectorization with EBMs. Using EBMs as models for image data
poses numerous challenges, the principal of which is the mapping from images to a vector representation
that could be used directly with EBMs. To achieve this goal, we used the Gabor Wavelet transform and a
constrained optimization procedure to extract key image features from the data. We also applied custom
feature engineering to tailor this process to the particular dataset [19]. To ensure that the resulting model
produces human-agreeable interpretations, we relied on domain knowledge and understanding of the
physical systems under investigation to inform the feature extraction process. Here, we demonstrate that the
same approach can be successfully applied to assist in the tune-up of accumulation mode Si/SixGe1−x

quantum dot (QD) devices. We also propose an alternative image vectorization method involving the
generation of synthetic data to approximate the experimentally acquired scans [1]. We then show that both
methods result in comparable performance, but the latter produces more intuitive and easier to interpret
features.

The paper is organized as follows: in section 2, we provide a brief overview of the scientific context of the
problem. Section 2.1 describes the problem of tuning QD devices and introduces the concept of triangle
plots. Data used for benchmarking is discussed in section 2.2. The two vectorization methods, the Gabor
filterbank approach and the synthetic data modeling approach, are described in section 2.3 and section 2.5,
respectively. Finally, the EBMs performance on experimental data vectorized using both methods, as well as
using a hybrid approach where the dominant Gabor filter is combined with synthetic data, is presented in
section 3. We conclude with a discussion of the future direction in section 4.

2. Background andmethods

In this section, we introduce the scientific context of our problem and the data utilized in our experiments.
We also present an overview of the signal processing methods used in the Gabor filterbank approach and the
synthetic data modeling approach.

2.1. QD tuning problem and triangle plots
Arrays of QDs–interconnected islands of electrons confined in a semiconductor heterostructure with unique
properties that allow them to act as artificial atoms–are a leading candidate for use as qubits, the
fundamental information carriers in quantum computers [20]. We use a type of gate-defined QD device, as
shown in figure 1(a), in which three layers of overlapping gates fabricated on top of a Si/SixGe1−x

heterostructure are used to form and control QDs [21, 22]. Scaling these systems to large arrays suitable for
quantum computations is a challenging task, as with the number of QDs, the number of gates needed to
control them grows, making the manual tuning process unfeasible. An autotuning framework incorporating
ML tools was originally proposed and validated off-line in [23] using premeasured experimental scans
capturing a large range of gate voltages and then deployed online (i.e. in situ) to tune a double QD in
real-time in [24]. A detailed description of the tuning process is available in [25].

One sub-problem within the tuning procedure is determining the voltage placement of gates to allow the
formation of isolated current channels inside the 2D electron gas formed at the intersection of the Si and
SixGe1−x layers in the heterostructure, see figure 1(a). One way to achieve proper gate voltages is by sweeping
certain gates, which we call screening gates, [S1, S2, S3, and S4 in figure 1(a)] until the currents begin flowing
in the correct channels. The bright bars at the edges of the images in figures 1(b) and (c), called walls, are due
to the current flowing strictly under those gates. The region with the ridged pattern figure 1(b) is the area of
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Figure 1. (a) False-colored SEM micrograph of a typical Si/SixGe1−x heterostructure device. The red highlighted gates are the
screening gates that are swept for the triangle plot. This quad-QD device has three distinct current channels between the screening
gates marked with white arrows. One of the channels (in the lower half of the device) contains four QDs in series while the other
two channels (in the upper half of the device) are single QD channels for charge-based single-electron-transistor readout. (b) An
example of a good triangle plot with high visibility in the triangle region above the background and (c) a corresponding synthetic
triangle plot. (c) An example of a bad triangle plot with little to no current in the triangle region and (d) a corresponding
synthetic triangle plot.

interest—it indicates that the current is not flowing under any screening gates, but instead, it is flowing
between them. If there is no current in this region, as shown in figure 1(c), it is necessary to increase the
voltage of gates over the current channel to accumulate more electrons in the 2D electron gas and try again.

In gate-defined QD devices, the area of interest usually takes the form of a triangle—thus the name
triangle plots—and indicates the formation of an isolated current channel. Due to the physics principles at
play, the only possible orientation of the triangle plot is the one with the right angle in the top-right corner of
the image. The patterned texture inside this region is due to charge defects and variability in gate uniformity
near the current channel [26]. Combining this with the fact that there is no complete analytical form for the
triangle plot at this time makes physical modeling of the measurement impossible. While researchers can
easily visually identify these regions, finding them automatically using simple threshold analysis is
challenging; largely due to experimental variations for different voltage configurations and when measuring
different pairs of gates. In moving towards automating the tuning process, it is desirable to have an algorithm
that can (1) predict whether the triangle plot indicates a well-behaving current channel and (2) explain this
prediction.

2.2. Triangle plots dataset
The images in the triangle plots dataset represent various scales and orientations of image data as well as
variations in the triangle region size. About 90% of the images were taken at the high temperature of 1.3 K,
instead of roughly 100mK, which means that the Coulomb blockade and other gate turn-ons are much less
steep than in typical measurements. Since the high-intensity features (e.g. the Coulomb blockade fringes),
while prominent to the eye, are less predictive of correct device performance, we focus on the larger-scale
features, such as the presence or absence of the triangle region.

For our study, images that contain the triangle region, as shown in figure 1(a), are considered good.
Images that do not contain the triangle region are considered bad. We use 902 experimentally acquired
triangle plots, of which a total of 210 are labeled as having good triangles and 692 are labeled as having bad
triangles.

The images range in size from 31× 31 to 171× 151 pixels. Prior to analysis, all images are resized to
64× 64 pixels, utilizing a bicubic interpolation provided by the Pillow image library [27]. This is done to
enable using fixed-parameter filterbanks and synthetic triangles with comparable parameter ranges. While
bicubic rescaling can distort the angle of the diagonal region, the majority of the samples that needed
preprocessing were in the bad class and thus had minimal to no diagonal activity. In the good class, the
maximum observed aspect distortion is within about 13%, which corresponds to about 3.5◦ difference and
does not present significant errors in the context of the Gabor filters. Each image is then vectorized following
the procedure described in the Gaber filterbank approach (section 2.3) and the synthetic data modeling
approach (section 2.5). The QFlow Triangles dataset containing all experimental images as well as the
corresponding synthetic data and Gaber filterbanks is available at Zenodo [28].
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2.3. Gabor filterbank approach
To vectorize the image data, we utilize the 2D Gabor wavelet transform, an oriented multi-scale
representation that is shown in [29] to be a model for complex neurons in mammalian vision. Gabor wavelet
transform has seen frequent use in numerous computer vision tasks and serves as an economical and
effective feature transform. As such, this representation seems ideal for extracting oriented features, as well as
textures, from image data.

Definition. The 2D Gabor Kernel for parameters p= {σx,σy,λ,θ} for (x,y) ∈ R2 is defined as

Gp (x,y) =
1√

2πσxσy

e
− 1

2

(
x2

σ2
x
+ y2

σ2
y

)
eiλ(x sin(θ)+y cos(θ)), (1)

where σx and σy represent scale in x and y, and θ and λ are the wave direction and wavelength. We further
denote the convolutional application of kernel Gp to an image u(x,y) to be Gp(x,y) ∗ u(x,y).

Specifically, we consider small filterbanks of Gabor wavelets to capture scales and orientations directly
relevant to the triangle plots image data. Relying on wavelets leads to a significantly more compact
representation.

Definition. The 2D Gabor filterbank for discrete set of N parameters P= {p0, . . .,pN}

GP (x,y) =
{
Gpi (x,y)

}N

i=0
. (2)

We denote the application of the filterbank GP to an image u to be GP ∗ u= {Gpi(x,y) ∗ u(x,y)}Ni=0

In practice, we attempt to construct the set of parameters P such that the Fourier transform of the
filterbank GP supports prominent frequencies observed in the Fourier transform of the image u. This can be
accomplished with optimization or other filterbank construction techniques [30–32].

To produce the vector representation of the image, we take advantage of heuristics. In particular, the
main factor allowing the discrimination of good and bad triangles is the presence of the pattern of line-like
features at approximately 45◦ orientation corresponding to the interaction between the two gates, see
figure 1(b). The image is vectorized by taking the L2-norm of each filter in the Gabor filterbank with this
orientation and at different scales. This achieves a single numerical measure of the filter’s response to the
given image, which is ultimately descriptive due to the images’ simple structural content. The specific scales
used were obtained through an iterative process. At each iteration, an EBMmodel is trained on an available
filterbank, starting with one that consists of a large number of possible scales and is refined by eliminating
scales that are not discriminative. The process is repeated until no further reduction of the filterbank size is
observed. The resulting filterbank contains scales determined to be highly discriminative.

In our case, the final filterbank consists of six filters at scales σx = σy = 4,8,16, and orientation 45◦ and
−45◦ degrees, where λ is fixed to 1. We also perform additional feature engineering in the form of extracting
the estimated location of narrow, edge-like Gabor filters to localize the boundaries of the walls and triangle
regions. This technique is used to absorb important spatial features for later use in classification. While other
techniques for vectorizing the data based on orientation or scale are possible and, in some instances,
advantageous, we chose Gabor because it enables encapsulating the specific diagonal behavior in very few
filters. Such vectorization is desirable to ensure that the prediction interpretation is given in terms of relevant
features.

Figure 2(b) shows a weighted sum of the filters of the final filterbank for a scan shown in figure 2(a), with
weights defined by the contribution of each term in the EBM. While the resulting filterbank is an incomplete
representation of the data, it covers primary discriminant support in the frequency domain between classes.
The features are designed to measure the extent of response of the diagonal component of the triangle plot at
different scales, where we operate under the intuition that good triangles will have a greater associated
response at the±45◦ orientations than bad triangles, within a region resembling a fringed isosceles right
triangle. The location of the edge-like filters acts as a further sieve for the presence and quality of a triangle
region. While other vectorization techniques might provide more complete representations of the data and,
in some cases, offer superior classification performance, this effect can be diminishing while harming the
overall interpretability.

2.4. Synthetic triangle plots
To enable the creation of interpretable features, we generate a set of crude synthetic triangle plots. The
synthetic data share certain salient features visible in experimental triangle plots, namely the presence of
walls of varying width and a possible diagonal region. It is important to note that while the resulting images
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Figure 2. (a) A sample experimentally acquired scan, the same as in figure 1(b). (b) The Gabor filters for the scan shown in (a),
weighted by their importance as indicated by the EBMmodel. (c) Synthetic fit to scan shown in (a). TheHB, VB, andDB are the
horizontal, vertical, and diagonal optimal boundaries, respectively, and the θ indicates the orientation of the diagonal boundary.

are visually similar to experimental data, as depicted in figures 1(c) and (e), this approach does not produce
physically realizable data.

For generating the synthetic triangles, we utilize the 2D sigmoid function,

sm,r,b (x) =
m

1+ er(x−b)
, (3)

where m, r, and b control the magnitude, rate, and shift of the sigmoid, respectively. The motivation for this
choice is the resemblance of the idealized walls and triangle region to the step function. In practice, the
transition from no signal to wall and triangle should be smooth. Triangle plots are assumed to have a
horizontal and/or vertical wall corresponding to individual gates, as well as a possible third diagonal region
linking the walls. To construct the 2D triangle plots, we compose three sigmoids:

∆(x,y) =max(sh (x) , sv (y) , sd (x sinθ+ ycosθ)) (4)

where sh, sv, and sd are the parameters for the horizontal, vertical, and diagonal sigmoid, respectively, with θ
indicating the orientation of the diagonal sigmoid. In practice, we evaluate this function on an evenly spaced
grid of (x, y) points.

It is important to restrict the parameters used to define the synthetic triangles to physically reasonable
ranges. The simple constraints we chose include a requirement that the sigmoids cannot be infinitely dilated
and that the walls must be in the image and have positive heights. The criteria used to determine the presence
of a triangle region are derived from the definition of the triangle plot: we require that sd(x sin(θ)+ ycos(θ))
is greater than sh and sv. We also impose a constraint that the orientation of the diagonal sigmoid is
sufficiently diagonal, with the cutoff defined as 0⩽ θ ⩽ π

2 .

2.5. Synthetic data modeling approach
The synthetic triangles are used to model the experimental triangle plots by deriving from experimental data
parameters defining a most similar synthetic triangle. The resulting vector provides a powerful and compact
representation for ML. Moreover, this vectorization approach has a key advantage in that the vector features
correspond directly to the original image and that fewer assumptions about the frequency content of the data
are made.

We start by defining an appropriate measure of image similarity. The experimentally acquired triangle
plots contain considerable noise, texture, and other high-frequency features that are not essential in
characterizing the overall structure. The synthetic triangles can serve as a representation of the boundaries of
the vertical, horizontal, and diagonal walls defined by a shifted, scaled, and dilated sigmoid function. Since
the synthetic and experimentally acquired plots are assumed to be structurally similar by design, both can be
transformed into a region of the frequency domain that they are expected to share.

In practice, this involves applying an ideal low-pass filter, such as a Gaussian filter. To focus on the details
of the structure, we use the magnitude gradient of the low-pass filtered image. While this can be thought of
as a simple edge detection, we do not have a priori knowledge about the appropriate scale of the Gaussian for
any particular image. The presence of the low-pass filter makes this approach notably more insensitive to
certain classes of noise, which is desirable for our use case. To quantify the similarity between an
experimentally acquired and synthetic triangle plot, we use the L2-norm applied to both transformed images,
assuming that the two images are visually similar if their distance in this transformed space is small.
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Definition. LetU andV be two images subject to some transform Fwith parameters q. The similaritymeasure
between U and V is defined as

SF
q (U,V) = ||Fq (U)− Fq (V) ||2. (5)

The desired vector representation of an experimentally acquired image Iexp is obtained by optimizing the
parameters defining the corresponding synthetic image Isim such that SF

q (Iexp,Isim) is minimized subject to
boundary constraints. We set up the optimization problem as:

q∗,σ∗ = argmin
q,σ

{
λS∇Γ

q,σ (Iexp,Isim)+ (1−λ)S I
q(Iexp,Isim)+ ϵ(q)

}
, (6)

where S∇Γ
σ is the similarity measure using the gradient of the Gaussian transform,∇Γ(U) =∇(Γσ(U)); S I

is the similarity measure using the identity transform, I(U) = U; λ is a hyperparameter giving us control over
the balance between trusting S∇Γ

σ and SI similarity measures; and

ϵ(q) =

{
C, if q violates boundary constraints,

0, otherwise,
(7)

for some arbitrarily large penalty constant C. In practice, it is desirable to make this penalty larger than the
other terms of the objective function so that the constraints are satisfied.

Since the initial guess for optimization is determined solely based on the raw image, we use the
differential evolution global optimizer implemented in SciPy [33] to remedy this limitation. This makes our
method less sensitive to initial values than if we had used a local optimizer but incurs a greater computational
cost. A local optimizer might still be viable in cases where the phenomenological model is simpler, e.g. with
fewer parameters or with guaranteed convexity. In an experimental context, we have access to additional data
tied to each image to aid in establishing initial guesses for optimization.

The optimal parameters, as well as the value of the objective function using those parameters, define the
final vector representation of image Iexp:

v
(
Iexp

)
=
[
σ∗,H(B,M,R) (q

∗) ,V(B,M,R) (q
∗) ,D(B,M,R,θ) (q

∗) ,F (q∗)
]

(8)

where B,M, and R denote the boundary, magnitude, and rate for the optimal horizontalH, vertical V , and
diagonalD component, respectively; θ indicates the orientation of the diagonal boundary; σ∗ is the optimal
scale, q∗ = [H,V,D][see. Equation (6)]; and F is the value of the objective function for the optimized
parameters (the fit fitness). For a visualization of these features, see figure 2(c).

3. Results

We present the results of experiments with the Gabor filterbank approach, the synthetic data modeling
approach, and the hybrid approach combining the synthetic features with the single most informative Gabor
feature. The transformation procedures described in sections 2.3 and 2.5 are applied to each experimentally
observed triangle to produce the final vector of features v(Iexp). In each case, the vectorized features v(Iexp)
are used to train and test an EBMmodel. Since the dataset is quite imbalanced in terms of good and bad data,
the training is performed using five six-fold stratified cross-validations, with 10% of the data withheld for
testing purposes. To determine the optimal k-fold configuration, we performed the stratified cross-validation
for k ranging between 1 and 10, as we found that k= 6 achieved the most performant set of models.

To improve the accuracy and interpretability at a modest training time cost, we utilize the smoothing and
greedy rounds parameters [34]. For a more thorough discussion of this, see [35]. We carry out five six-fold
stratified cross-validations and report averaged results as well as type I and type II errors for each method.
For completeness, we also include the averaged confusion matrices.

The results from all experiments, presented in table 1, show a relatively close performance for all three
methods, with the Gabor fitting approach only slightly outperforming the more intuitive synthetic data
modeling approach, at 92.5(1.2)% vs. 90.5(1.0)%, respectively. Interestingly, the inclusion of a single, most
important Gabor filter in the vector of features obtained using synthetic data modeling brings the EMBs
performance back up to 91.7(8)%. Importantly, the model resulting from the hybrid vectorization retains
the majority of the performance while the features in the hybridized vector remain well aligned with the
physical intuition of the problem. This validates that the optimal fit captures the location and average
intensity of the walls and diagonal components. Modifying the diagonal component function to capture the
ridged pattern observed in the experimental data could further improve the performance.
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Table 1. The results of five six-fold stratified cross-validation for the experimentally acquired data. The accuracy, type I error, and type II
error are reported for each method. Corresponding confusion matrices are included for completeness. The value(uncertainty) notation
is used to express uncertainties. All uncertainties herein reflect the uncorrelated combination of single-standard deviation statistical and
systematic uncertainties.

Model Accuracy [%] Type I [%] Type II [%] Confusion matrix [counts]

Gabor filterbank 92.5(1.2) 4.9 (0.9) 2.6 (0.7)
real ↓/ pred→ Good Bad
Good 406 (4) 14 (4)
Bad 27 (5) 99 (5)

Synthetic triangles 90.5(1.0) 5.8 (0.5) 3.6 (0.6)
real ↓/ pred→ Good Bad
Good 400 (3) 20 (3)
Bad 32 (3) 94 (3)

Hybrid approach 91.7(8) 5.0 (0.8) 3.3 (0.2)
real ↓/ pred→ Good Bad
Good 402 (1) 18 (1)
Bad 27 (4) 4.3 (4)

Figure 3. The feature importance plot for (a) the Gabor filterbank vectorization approach, (b) the synthetic data modeling
vectorization approach, and (c) the hybrid vectorization approach. The mean absolute score refers to the extent to which a feature
contributes to all predictions. Feature curve for (d) the oriented Gabor feature G45

16,16, (e) the fit fitness feature F of the synthetic
triangle fit, and (f) the diagonal boundary componentDB of the synthetic triangle fit for the synthetic data modeling approach
shown in orange and for the hybrid approach shown in blue. The x-axis indicates the value attained by the feature [normalized to
(0, 1) in (d) and (e)], and the score indicates the log odds towards good (positive) and bad (negative) classes for each respective
feature. The histograms in (g)–(i) depict the relative class distribution as a function of the normalized feature value, with cyan
representing good triangles and pink representing bad triangles.

3.1. Prediction interpretability
To understand the EBMmodel decisions, we rely on the EBM’s feature importance, as well as the plots of
individual features. The feature importance for all three cases we consider is shown in figures 3(a)–(c). The
mean absolute score metric indicates the extent of the overall feature contribution to the model across all
predictions for each feature in the model. We also consider the feature curves, depicted in figures 3(d)–(f),
which show the log odds of being in a good vs. bad class, respectively, as a function of the feature values
[normalized to (0, 1) for plots (d) and (e)]. The accompanying histograms, shown in figures 3(g)–(i),
provide the relative class distribution as a function of feature values.

Examining the overall feature importances for the Gabor method, shown in figure 3(a), we see that the
four dominant roles are occupied by oriented features Gθ

σx,σy
with θ= 45. The most important is a broad

scale filter G45
16,16, one of the filters characterizing the triangle region of the plots.

Examining the feature curve for the dominant filter, shown in figure 3(d), we see that the model
associates a strong 45◦ response with good triangles. The curve also reveals a threshold in the filter response
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below which a triangle is expected to be bad. The histogram in figure 3(d), showing the distribution of the
good and bad features, further supports the discriminative nature of this filter, with 90.4% of bad data falling
in the first bin. It is notable that despite the higher performance of the Gabor-based technique, each Gθ

σx,σy

filter reveals only simple information about the extent of the presence of 45◦ information. Thus, despite
being highly discriminative, the information obtained from this family of filters does not directly provide
information on how to adjust the experimental setup.

The feature importance plot for the synthetic data modeling approach, shown in figure 3(b), reveals that
this model also prioritizes features characterizing the triangle region, withDB (the diagonal boundary
component) andDM (the diagonal magnitude component) being among the top three filters. The most
important feature here is the fit fitness F , quantifying how close the vectorized representation matches the
experimental data. Looking at the feature curve for F depicted in figure 3(e), we see that for a modest cost
associated with fitting, that is when 102 ⪅ F ⪅ 103, the log odds of belonging to the good class are positive.
For bad triangles, the associated cost is either disproportionately low or high. On the low end of the
spectrum, this is likely due to the problem of fitting a bad triangle with only two rectangular regions being a
significantly simpler optimization problem. On the high end, the exceptionally high cost is generally
associated with poor quality of the data.

The second most important feature in the synthetic data modeling approach isDB. TheDB feature curve,
shown in orange in figure 4(f), indicates that the log odds that a triangle region belongs to a good plot
increase withDB once it extends past 28. The log odds of a triangle region belonging to a good plot are
positive when 35<DB < 85. TheDB feature quantifies the extent to which the triangle region stretches in the
screening gate-screening gate plot, as depicted in figure 2(c). WhenDB < 35, it is likely that the fitted triangle
region overlaps with the horizontal and/or vertical sigmoid, and thusDB would not be a reliable discriminant
between good and bad class. While theoretically vectorDB can extend to the bottom left corner in figure 2(c),
for large values ofDB the hypotenuse becomes relatively short which makes finding a reliable fit challenging.
This dependency is confirmed by the feature plot, indicating that forDB > 85, the log odds of a triangle
region belonging to a good class fall below 0. The importance of theDB filter is further evidenced by its
dominant role in the hybrid approach, where it occupies the third most important position, see figure 4(c).

It is important to emphasize that, due to the way EBMs are trained, the feature curves are not the same as
the marginal distribution of feature values. Rather, each curve is affected by the complete vector of features
v(Iexp) used to train the model. This means that individual features cannot be treated as entirely
independent from one another. This is confirmed by the slight difference between the shape of theDB curve
for the synthetic data modeling approach vs. the hybrid approach, shown in figure 3(f) in orange and blue,
respectively.

The hybrid model achieves comparable performance to the Gabor-based model while including only a
single Gabor feature in addition to the synthetic features. It thus retains the improved intelligibility of the
synthetic features without a significant reduction in accuracy.

EBMs also give us the ability to examine predictions for individual images. Figure 4(a), (b), and (c) show
an example of a bad image, its synthetic fit, and Gabor filter representation, respectively. The synthetic
triangle fit effectively captures the structural content of the experimental image, exhibiting no triangle
region. The relative feature importance plot, shown in figure 4(d), also agrees with this observation,
indicating VB (the vertical boundary component) andHB (the horizontal boundary component) as the most
dominant features contributing to the negative (i.e. bad class) prediction.

Similarly, for good triangle regions, shown in figures 4(e) and (i), the synthetic triangle fit also correctly
captures the structural content, as depicted in figure 4(f) and (j), respectively. In the relative feature
importance plots, shown in figures 4(h) and (i), respectively, the top three dominant features include the
Gabor filter G45

16,16,DB, and F , which is consistent with the global prediction for the good images class, albeit
the order of the latter two features is swapped compared to figure 3(c). As expected, all three features strongly
contribute to the positive class prediction.

In all three examples, there is a direct observable relationship between the fit parameters and the visual
features of the synthetic triangle. In practical applications, these visual features can lead to thresholding
decisions and derived quantities for choosing operating points in the voltage space. For example, in the case
of figure 4(i), a good operating point might be right inside the triangle region above the diagonal boundary,
bisecting the area of the triangle at around (VS3 ,VS2) = (0.09,0.09V) [at point (25,25) in figure 4(j)]. Using
theDB andDθ with the knowledge of the boundaries of the image in voltage space, along with the VB and
HB, we can create a normal vector describing the direction in which the triangle is expanding. This normal
vector describes the relative strengths of the associated screening gates. Ideally, the normal vector of the
triangle would point symmetrically towards the bottom left corner, meaning that both screening gates have
equal action on the forming current channel. But, more often than not, this vector tends to vary. By
re-scaling the normal vector and defining the magnitude to begin at (VB,HB) with the end pointing to the
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Figure 4. (a) A sample experimentally acquired bad scan. (e), (i) Two sample experimentally acquired good scans. (b), (f), (j) The
fitted synthetic triangle plots for scans (a), (e), and (i), respectively. (c), (g), (k) Gabor-filter-based local interpretation of scans is
shown in (a), (e), and (i), respectively. (d), (h), (l) The feature importance for the hybrid vectorization method for scans (a), (e),
and (i), respectively. The intercept coefficient α= 4 is removed from plots (d), (h), and (l) for clarity.

diagonal boundary of the triangle, the vector can now encode size information. If we then reduce the
magnitude by 10%, we have an initial guess, inside the bounds of the triangle, for the operating point. We
can also use the vector to calculate the area of the triangle in voltage space, which can be thresholded to
ensure it is large enough to proceed.

If, on the other hand, the triangle plot looks like in figure 4(a), and no triangle is predicted, we can
enhance the chance of detecting one by increasing the voltage of gates over the current channel and taking
the triangle plot once more. Hence, there are many derivable quantities from this model that could be used
iterably to function as feedback in a larger tune-up procedure beyond just determining triangle existence.

4. Conclusion and outlook

In this work, we demonstrate an alternative approach to vectorizing image data for use with EBMs that relies
on generating synthetic data that best fits the experimentally acquired scans. We show that the new method is
better adapted to the complexity of the triangle plots dataset. While the original vectorization method,
invoking the Gabor filterbank features, produces a model that performs well with the classification task, its
interpretability and usefulness are limited as the resulting model does not comprehend the underlying
structure of the data. The alternative method, relying on fitting synthetic triangle plots to the experimental
data, retains comparable accuracy, failing in about 2% more cases than the Gabor filterbank approach.
However, unlike the Gabor approach, it produces features that are strongly aligned with heuristics-based
intuition about the data, resulting in qualitatively superior explanations. As such, the features can be tied
directly back to the scientific problem and used to adjust the experimental system to produce triangle plots of
desirable quality. Future work might include integrating this analysis directly into an automated real-time
QD tuning system.

It is reasonable to assume that the Gabor technique excels due to its ability to represent the ridged pattern
in the triangle region which is considered an important characteristic of a good scan. We see that including a
single Gabor filter–capturing the presence and prevalence of a diagonal activity–allows us to recover nearly
all of the performance without compromising the model’s interpretability. Alternatively, to avoid calculating
the Gabor filterbank, this behavior could also be encapsulated within the synthetic approach by representing
this pattern with a sinusoidal term in the synthetic triangle model.
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The one disadvantage of the synthetic data modeling approach, when weighed against the Gabor
filterbank, approach is the greater computational cost of the former. This is primarily due to the reliance on a
global optimizer, whereas the Gabor-based approach only requires a small number of fixed filters. To remedy
this, alternative similarity functions that would improve convergence and be less reliant on a global optimizer
could be explored. However, care must be taken to ensure that the qualitative fitness is not reduced.

Finally, while all data used in this work comes from a quad-QD device with an overlapping gate
architecture, we expect these results to be generalizable to an entire subclass of devices in Si/SixGe1−x with
different gate designs [21, 36, 37]. Likewise, other electronic materials that can host gate-defined QDs, such
as bi-layer graphene [38] and silicon-MOS structures [39], can benefit from ML-enabled characterization
and tuning as proposed in this work. The only requirement is that the tuning procedure must involve
confining electrons to a 1D channel with a pair (or pairs) of gates so that other additional gates can then
divide that channel into a chain of QDs.
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Appendix

A.1. Misclassified data: a post-hoc analysis
While the synthetic triangles provide a good representation of the crude features captured in experimental
data for the majority of the data, there are cases where the vectorized representation is misclassified by the
EBM. There are two types of misclassifications: classifying a triangle plot with a well-pronounced triangle
region as bad [false-negative, see figures A1 panels (a)–(c)] and classifying a plot without well-defined
triangle region as good [false-positive, see figure A1 panels (d)–(e)].

There are several reasons for such misclassifications. In figures A1(a) and (b), the plots are excessively
accumulated, which would usually indicate a good sample if the user were to zoom out, and there is not
sufficient diagonal activity for the sample to be valid. In figure A1(a) the scan window seems too small for the
size of the triangle plot. In figure A1(b), on the other hand, we see the shadow of a second channel
influencing the readout. This is a rare breakdown of the model’s assumptions where the channels of the QD
device were assumed to be independent. The ohmic potential is typically proportional to the maximum
current in the image. With high accumulation, the ohmic potential can drift dynamically depending on
multiple channels simultaneously since the measured current takes the path of the lowest resistance. This
issue only plagues the upper channel of this device with charge sensors, see figure 1(a), since they are not
separated by a gate-like isolation of the quad-QD channel on the bottom of the device. To resolve this with
the same model, the experimental setup would need to know exactly when the ohmic potential started
drifting and compensate for both halves of the charge sensor to keep exactly half the current flowing out
through both channels equally. In figure A1(c), the slope indicating the formation of coulomb blockade is
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Figure A1. Sample ambiguous triangle plots. (a)–(c) Good-class triangle plots classified by the model as bad. (d)–(e) Bad-class
triangle plots classified by the model as good.

relatively weak but technically visible, which, to an experimentalist, indicates that the triangle plot is good.
However, in all three plots, one of the channels seems to be missing, which contributed to them being
classified as bad even though the triangle region is present in all of them.

In figure A1(d), there is a substantial region with no current inside the triangle region, which seems to
suggest that the channel is not accumulated correctly. In figure A1(e), the device is tuned to the wrong
regime for the triangle plot where the blockade is controlled by one screening gate more than the other. This
can be seen by the fringes being vertical rather than diagonal. Because plots in figures A1(d) and (e) have
erroneous dropout regions, they should be considered bad. However, because the presence of the significant
diagonal behavior has been vectorized through the synthetic triangle modeling, the EBM classified these
images as good. In the plot depicted in figure A1(f), the strong diagonal and ridged pattern indicates a
possibly shocked device. Yet, the diagonal rigid region is incorrectly vectorized as a proper triangle, which
again leads to incorrect classification by EBM.
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