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Equivalence of relativistic three-particle quantization conditions
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We show that a recently derived alternative form of the relativistic three-particle quantization condition
for identical particles can be rewritten in terms of the R matrix introduced to give a unitary representation of
the infinite-volume three-particle scattering amplitude. Combined with earlier work, this shows the
equivalence of the relativistic effective field theory approach of Refs. [M. T. Hansen and S.R. Sharpe,
Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015)] and the
“finite-volume unitarity” approach of Refs. [M. Mai and M. Déring, Eur. Phys. J. A 53, 240 (2017);
M. Mai and M. Déring, Phys. Rev. Lett. 122, 062503 (2019)]. It also provides a generalization of the latter
approach to arbitrary angular momenta of two-particle subsystems.
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I. INTRODUCTION

The study of resonant three-particle systems using lattice
QCD (LQCD) is becoming feasible, due to advances in the
underlying theoretical formalism [1-13] and its practical
application [4,14-16], as well as in algorithmic and
computational methods necessary to extract three-particle
spectra (see, for example, the recent results presented in
Refs. [17-19])." The present frontier is the application to
the 3z system [18,25,26]. For recent reviews, see
Refs. [27,28].

One of the key steps in the formalism is the derivation of
three-particle quantization conditions, equations whose
solutions give the finite-volume spectrum of three-particle
states as functions of infinite-volume two- and three-
particle K matrices. These K matrices can then be related
to two- and three-particle scattering amplitudes by solving
integral equations. Three different approaches have been
followed to obtain the quantization conditions.

The first is based on an all-orders diagrammatic analysis
in a generic relativistic field theory and is usually denoted
the RFT approach. It was initially developed for identical
scalar particles with a G-parity-like Z, symmetry [1,2], and
subsequently extended to allow 2 — 3 processes [6], the
inclusion of poles in the two-particle K matrix [9,11], and
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nonidentical but degenerate scalars [12]. In all cases, the
formalism allows arbitrary interactions in two-particle
subsystems (which we henceforth refer to as “dimers”).
In a companion paper [13], henceforth referred to as BS1,
we have presented an alternative, simpler, derivation of the
RFT quantization condition in the presence of the Z,
symmetry, including an alternative form of the quantization
condition itself. This new form, which depends on an
unsymmetrized three-particle K matrix, will play a crucial
role in the present work.

The second approach uses nonrelativistic effective field
theory (NREFT), allowing a much simplified derivation of
the quantization condition [7,8]. The formalism has so far
only been developed for identical scalars with s-wave
dimers and no 2 — 3 transitions.

The third approach, developed in Refs. [3,4], is based on
a unitary parametrization of the three-particle scattering
amplitude, M3, in terms of a K-matrix-like real quantity
called the R matrix (and denoted R“*) below) [29,30].
Following Ref. [27], we call this method the “finite-volume
unitarity” (FVU) approach. It leads to a quantization
condition that incorporates relativistic effects, and has so
far only been developed for scalars with s-wave dimers and
no 2 — 3 transitions.

A natural question is whether there are relations between
the approaches, particularly between the two relativistic
approaches (RFT and FVU). In addition, as stressed in
Ref. [27], it is not clear in the FVU approach whether all
sources of power-law volume dependence have been
accounted for. Thus an alternative derivation of the FVU
result would be welcome.

The relationship between approaches was first addressed
in Ref. [8], where it was shown that the nonrelativistic limit
of the RFT quantization condition of Ref. [1], restricted to
s-wave dimers, reproduced the NREFT result, aside from
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certain technical differences. The agreement also required
that the quantities describing three-particle interactions in
the two approaches were restricted to their simplest,
momentum-independent form. This agreement was repro-
duced in Ref. [27] using a simplified method. In addition,
Ref. [27] showed that, when restricted to s-wave dimers,
and assuming a constant three-particle interaction, the RFT
quantization condition could be manipulated into a form
that agreed with that from the FVU approach (again aside
from certain technical differences).

Our aim here is to extend these results to general two-
and three-particle interactions. In particular, we are able to
derive the FVU form of the quantization condition starting
from the RFT result, and thus to generalize the FVU
approach to dimers in all partial waves. The key inputs here
are, first, the new form of the RFT quantization condition
that we obtained in BS1, and, second, a generalization we
derive here of the relation between the K matrix of the RFT
approach and the R matrix obtained in Ref. [31]. Our final
result, given in Eq. (45), is a form of the quantization
condition given explicitly in terms of R,

This article is organized as follows. In the following
section we summarize the relativistic quantization con-
ditions obtained previously, in both the RFT approach
(Sec. II A) and the FVU approach (Sec. II B). Additionally,
in Sec. Il A we rewrite the new form of the quantization
condition from BS1 in an alternate form. In Sec. III we
derive the infinite-volume relationship between asymmetric
forms of the three-particle K matrix and the R matrix,
R (), Using these, in Sec. IV we rewrite the RFT
quantization condition (in its asymmetric form) in terms
of R4 thus obtaining the general form of the FVU
quantization condition. In a concluding section, Sec. V,
we briefly compare the advantages of the different forms
of the quantization condition for practical applications.
Appendix A summarizes notation and definitions, while
Appendix B discusses subtleties concerning infinite-
volume limits.

II. RECAP OF PRIOR FORMS OF THE
RELATIVISTIC QUANTIZATION CONDITION
A. Results in the RFT approach
The RFT quantization condition of Ref. [1] is given by
det[l +chf,3F3] = 0, (1)

where Ky 3 and F3 are matrices in the space of on-shell
three-particle states, with F'5 containing the two-particle K
matrix as well as known kinematical factors,

111 2 ~ - U
F3:F|:§—EF1|, H:1/,C2’L+F+G, (2)

while /Cys 5 is a three-particle K matrix. The notation here is
that of BS1, which differs somewhat from that of Ref. [1].

We summarize the relevant definitions in Appendix A, and
only note here that Iﬁz, . contains the two-particle K matrix,
while F and G are known kinematic functions. All three
quantities depend on the box size L, with the dependence of
ICQ.L being of a simple kinematic nature [see Eq. (A2)]
while F and G contain the nontrivial volume dependence.
A key property of Ky 5 is that it is symmetric under particle
exchange, separately for both the initial and final three-
particle states. Thus it has the same symmetry properties as
the three-particle scattering amplitude M.

In BS1 we show that the quantization condition of
Eq. (1) is equivalent to a form written in terms of the
asymmetric K matrix ICE{}:; ). Here the right (left) superscript
“u” indicates that one of the three incoming (outgoing)
momenta is being singled out as being the “spectator” in
cases where the initial interaction involves only two
particles. The precise definition of ICS?_’?) is given con-
structively in Ref. [1], but is not important here. In fact, to
write the asymmetrized quantization condition in a simple
form, one must use a new version of the asymmetric K
matrix, denoted ICé(fo ’3"), which is obtained from ICS';;‘ ) by
solving an integral equation containing X, and given

explicitly in BS1. Then the new form of the RFT quan-
tization condition is

det[1 4 (Kpp + KNS (F + G)) = 0. (3)

We stress that no information is lost in the transition from

ICS?Z " to ICgT'-g"), since we do not have an explicit form for
either. In practical applications of the quantization con-
dition, both must be parametrized. They are both related to
M3 by (different) integral equations, and both are Lorentz
invariant if the relativistic form of G is used.

It turns out to be useful to rewrite the asymmetrized
quantization condition as follows™:

det[H — X(=1)] = 0, “)
_ _ wu)—1
X = K34 = [Kop + ’C;(m )] (5)
=1 1 (uu) -1 1
= ,CZ,LICdf,S ICZ»L (6)

1+ Ky K

We return below to the issue of whether X(**) is an infinite-
volume object, i.e., whether the matrix products in its
definition can be replaced by integrals.

BSI1 also presents an alternative ab initio derivation of
the asymmetric form of the quantization condition,

*To obtain this form, we are assuming that det[KC, ; +
ICé(fog")] # 0, which we expect to be true in general.
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det [1 + (K + ’Cd’;g )(F+G)]=0. (7)

This differs from Eq. (3) only in the three-particle K matrix
that enters: here it is ICE{;;’ ), while IC;(K’;) appears in Eq. (3).”

These two asymmetric K matrices are similar, but differ in

their detailed definitions. ICdL;;‘ is defined using an asym-

metry based on dlagrams in time-ordered perturbation
uu

theory, while that for ICdf 3’ is based on Feynman pertur—
bation theory, together with additional comphcatlons As
discussed in BS1, the fact that the same form of the
quantization condition can hold with different asymmetric
K matrices is a reflection of an intrinsic ambiguity in the
definition of asymmetric quantities. We return to this point
below. Finally, we note that Eq. (7) can also be manipulated
into the form of Eq. (4), with X(“*) now given by Eq. (6)

uu

with ICdf" ) replaced by ICdf3

B. The FVU quantization condition

The FVU form of the quantization condition has been
written explicitly so far only when the particles in the
dimer interact in the s wave. The original forms given in
Refs. [3,4] are quite complicated, but it is shown in
Ref. [27] that the FVU quantization condition can be
rewritten as

det [, — 2wL3)"1C!"" QwL3) ] =0,  (8)
where @ is the on-shell single-particle energy (defined in
Appendix A), A, is the s-wave restriction of A (i.e., with £

and m set to zero on both sides), and C’g”’”)(k,p) is a
smooth, real function of the spectator momenta. Using the
definition of R(“*) given in Refs. [4,31] together with

results from Ref. [27], one can show that C'(”’“) — Rlww),

with R ") the s-wave restriction of R, We have added
the “(u, u)” superscript (which is absent in the original
FVU works and in Ref. [27]) in order to emphasize that this
is an intrinsically asymmetric object, since it parametrizes
the smooth part of the dimer-particle contact interaction.
In writing the result (8) in terms of F and G, we are
implicitly assuming that we are using the smooth cutoff
function that is built into the approach of Ref. [1]. The
introduction of this cutoff function is essential in that work

3 Another technical difference is that the BS1 derivation defines
G using a different boost to the dimer center-of-mass frame than
that used in Ref. [1]. However, the derivation of Eq. (3) goes
through using either boost. The equations in the remainder of the
paper also hold using either boost—although one must use the
same choice throughout.

“One implication of this difference is that lCdf 5 is not Lorentz
invariant (irrespective of the choice of G), because it is defined in
a frame-dependent way in terms of the diagrams of time-ordered
perturbation theory.

(and in the alternative approach of BS1) in order to argue
that all power-law volume dependence is accounted for. By
contrast, in the FVU approach, a hard cutoft is introduced
by hand. There is, however, no technical reason not to use
the smooth cutoff in the FVU approach, and we assume
henceforth that this has been done.

Aside from this technical issue, Eqgs. (4) and (8) are
clearly very similar and suggest a relation between the

s-wave restriction of X% and R“" In the following
sections we will make this concrete, using a variant of the

relationship between K((ibf’:;) and the matrix R introduced
in Ref. [31].

III. THE R®**) MATRIX AND ITS RELATION
TO Cjr3) AND KCie)

One of the results of the RFT approach is an integral
equation relating Ky 3 to the physical three-particle scat-
tering amplitude M5 [2]. This provides a representation of
M3 in terms of a real function that is devoid of s-channel
unitary cuts (up to the five-particle threshold) and of on-
shell singularities. An important check on this result was
the demonstration, in Ref. [32], that it provided a repre-
sentation of M that satisfied the constraints of s-channel
unitarity.5 A similar, but different, parametrization of Ms,
in terms of a real K-matrix-like asymmetric6 amplitude
R4 had previously been suggested in the context of
amplitude analyses of experimental results for resonances
that decay to three particles [29,30]. This parametrization
was developed in order to satisfy s-channel unitarity. In
Ref. [31], it was shown that these two parametrizations are
equivalent, and the relationship between Ky 5 and R(%)
was derived.

Here we need to extend the analysis of Ref. [31] to relate

the asymmetric RFT amplitudes 15" and K\ to the

FVU amplitude R“*). This brings to light two technical
issues that were overlooked in Ref. [31], although it turns
out that they do not impact the final conclusion of that
work. We will describe these in the course of our
discussion.

The desired relationships are determined by equating
expressions for asymmetric forms of the three-particle

scattering amplitude. We use two such amplitudes: Mé"‘u)
defined in Ref. [2] in the context of a Feynman diagram

analysis, and M ) defined in BSI in an analysis using
time-ordered perturbatlon theory (TOPT). We present the
results for these quantities in turn, and then compare them
to the corresponding expressions in terms of R(“4),

>This demonstration remains valid when G is defined with the
boost used in BSI.

%As with C{“*), we have added the superscript (i, u), which
is not present in the original works, to emphasize the asymmetry
of RU=4),
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A. Expression for Mgu‘u)

Mg"’“) is defined in Ref. [2] using a skeleton expansion
in terms of Bethe-Salpeter kernels. The external particles
can be directly connected to either two- or three-particle
kernels. The asymmetry arises because two-particle kernels
are connected to the external momenta such that the
spectator momentum is always associated with the non-
interacting propagator. The connection to the three-particle
kernel does not lead to asymmetry, since this kernel is
symmetric.

In Ref. [2], an expression for /\/l “4) s obtained that

uu

depends on both ICdf ;) and Ky 3. In particular, it does not
depend solely on the symmetric form Xy ; alone. This

brings up the first technical issue alluded to above. In the

analysis of Ref. [31], a different expression for /\/l
used that is given wholly in terms of Ky 5 [see Eqs (20)
and (21) of [31], in which M{“") is called A]. This is, in

fact, not the correct expression for M;"'”), but rather
describes a related (and implicitly defined) quantity, in
which a certain subclass of diagrams has been sym-
metrized. This change does not impact the final results
of Ref. [31] because both the correct and the incorrect
expressions for /\/lgu’”) symmetrize to the same quantity,
M3, and this is all that is required for the derivation.
Here we use the correct expression for /\/lg"'”) . To
determine this, we start from the finite-volume version
of the amplitude, Mglfi") (also defined in Ref. [2]), which
goes over to /\/lg”'") in the appropriate L — oo limit. It was
shown in BS1 how to asymmetrize the result for Mg’fiu)
given in Ref. [2] so as to write it solely in terms of IC((;f'g ),
After further manipulation this is rewritten in BS1 in terms

/(u,u)
of Ky3 s

Mg = M5 — D 9)
1 /(1,1
= _ - — Ko
1+ Ky (F+G) 4
1 1

X

L+ (F + 6) g Kars 1+ (F 4 GKan

(10)

Here we have switched to using the divergence-free form of
the three-particle amplitude, whose difference from the
original form is given by the multiple two-particle scatter-
ing contribution

1

D(LM) =M, GM,, TV (11)
2L

where M, ; is defined in Eq. (A12).

Taking the infinite-volume limit of Eq. (10) using the ie
prescription described in Ref. [2], we obtain

1
MG = cicy” — L', (12)
1+ (Fpy + G®) LK
1
- , (13)
1 + Ky (ppy + G*)
1
L7 = _ (14)

L+ (Ppy + G®)K,

This is written in a highly compact notation, adapted from
that of Ref. [31], which we now explain. All quantities

depend implicitly on initial and final on-shell variables,

each in the {k,#,m} space. For example, K"

explicitly by

is given

K:d(f% )(k p)fm 'm' hm [’Ccffu;)]kfm;pﬂm'v (15)

with Mg?g) defined similarly. The explicit forms for the
other quantities are

ICZ(k’p)fm;f’m’ = Lli_{loloVCZ.L]kfm;pf’m’
— Z «
= 8(k = p)ore B KS (a3,),  (16)
- = (0 4
pPV(k’ p)fm;f’m’ = 5(k - p)éff’5mm’p£>\2(Q2,2k)7 (17)

© yfm(p*) H(k)H(p) yf’m’(k*)
G (k’ p)fm;f’m’ = p . b2 B . 7 L
Gk Oppe—m-tie gy,

’

(18)
where

d(k —p) = 20 (27)°5° (k — p). (19)
and Kgf), ﬁl(,"i,), and the kinematic variables are defined in
Appendix A. The products appearing in Eqgs. (12)—(14)
should be viewed as matrix products in the on-shell index
space. Angular momentum indices are summed as usual,
while the spectator momenta (which are now continuous

variables) are integrated with the Lorentz-invariant mea-
sure’ [ = [ d®r/(2w,[22]*). Thus

[XZ](k’p)fm;f’m’ = Z / X(k’ r)fm;f”m”z(r’ p)f”m”;f’m”
f”m” r

(20)

"This differs from the notation of BS1, where the 1/(2w,)
factor is not included in the definition of .
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where X, Z € {K», ppy, G=, /Cij(fbf 5”)}. Finally, the inverses
in Egs. (12)—(14), which are well defined as matrix inverses
for finite L, become integral equations in the infinite-
volume limit. Thus, for example, £ satisfies

£ - 1 - Kz(ﬁpv + G°°)[, (21)

Further details on how the infinite-volume limit of
Mg}’?L leads to Eq. (12) are provided in Appendix B.
In addition, we describe there how the inverses of K,,

ICQ(:’;’), and related quantities are defined, since these are
needed below.

B. Expression for Mé"’")
An alternative version of the asymmetric scattering

amplitude is introduced in BS1 and denoted Mg”'“). Its
asymmetry is defined in terms of two- and three-particle
irreducible TOPT amplitudes, which differ from the cor-
responding Bethe-Salpeter kernels. Thus it differs from

M) although both symmetrize to the physical scattering
amplitude M.

The expression for M{“") (given in Appendix E of BS1)
is identical to that for /\/lg » Bq. (12), except with ’Cgfu,éu)

replaced by K:

u,u)

- 1
My = LRy LT (22)
1+ (ﬁpv + G“)EICEM)

Here Iﬁg'fjg) is the asymmetric K matrix appearing in
Eq. (7), the new form of the RFT quantization condition
obtained in BS1.

C. Result for asymmetric amplitudes in terms of R**)

We now recall the expression for the asymmetric
scattering amplitude in terms of the R matrix [29,30].
For reasons that will become clear shortly, we give the
amplitude a different name from those discussed earlier,

calling it M. We use the form given in Egs. (15)~(19)
of Ref. [31], which, converted into our notation, becomes®

1 ~

R.(u.u F 1o (uu

In the original works that introduce this form [29,30], a
different choice of G* was used than that we use here, Eq. (A10).
In particular, the cutoff function H(k) was replaced with a hard
cutoff, and barrier factors were not included. However, as noted
in Ref. [31], the derivation of s-channel unitarity—which is the
essential property of this form—goes through for all choices of
G that have the same residues of the on-shell poles, which is the
case for the choices used here.

~ - 1 1

L=M —— = = M,, (24
T4+GM, 1+ MG=" 2 (24)

where
MoK B) gy = Bk = P)S oS MY ) (@3,), (25)

with /\/lgf) being the /th partial wave of the two-particle
scattering amplitude. Using the result

- - 1
My, =Ky ————, (26
? 21+PPV/C2 )

which follows from Eq. (A6), we find

~ 1 _ _ 1
E: — ’C —]C - .
1+ Ky(pey +G) 21+ (v + G¥)K,

(27)

Before comparing to the earlier expressions (12) and
(22), we discuss the second technical issue alluded to

above. This issue is whether Mﬁg" should be equated to

M ‘(fftg ) orto M f{f‘g‘ ). All three amplitudes symmetrize to the
same quantity, M3, but this does not guarantee equiv-
alence before symmetrization. Furthermore, as we have
already noted, the analysis of Ref. [31] uses a different,
partially symmetrized version of Mé’;:g) (which also
symmetrizes to Myr3). In Ref. [31], it is implicitly
assumed that this last version of the asymmetric amplitude
is equal to Mzizf:g"'"). However, since the R-matrix para-
metrization is not obtained using Feynman or TOPT
diagrams, but rather is a form constructed solely to satisfy
s-channel unitarity, we see no fundamental way of con-
necting it to any of the diagram-based definitions. We also
see no sense in which either M((ff"’g) or Mgf”’g) (or the
partially symmetrized version of the former) is better suited
to an R-matrix parametrization.

We propose that the resolution to this conundrum is that

R4 is intrinsically ambiguous, and that, with suitable

u,u)

choices of this quantity, we can equate Mffg to either

M E{;g‘ Vor M g}’;’ ) (or to the partially symmetrized version of
the former, as done in Ref. [31]). To say it differently, we

propose that the parametrization of M in terms of R(%)
involves a redundancy, such that a family of choices of

R4 Jeads to the same physical scattering amplitude.
We stress that we are not suggesting that any ambiguity
arises in the relation between R(“*) and szf:g"’“)—for a
given choice of the latter quantity (including its subthresh-

old continuation), we expect that R(“*) is uniquely
determined. The ambiguity arises in the definition of
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Mﬁﬁ”'”) itself.” The relations derived below demonstrate
a posteriori the validity of our proposal, because they show

that the expressions given above for both Mé?’;’) and

/\/lg'z ;’) can be rewritten exactly in the R-matrix form.

D. Combining results
Returning to the main line of argument, we note that the
external integral operators in the two expressions, Egs. (12)
and (23), are related by

Z: = E’@Q = KzET. (28)

Thus, Eq. (23) can be rewritten as'

1

ﬁK: R u,u) -
1 — LI, R

M K,LT (29)

1
=L—= = = L. 30
KEI [R(u,u)]—llcgl _ ’Cglﬁ ( )

Comparing this to a slightly rewritten version of Eq. (12),

1
[’Cfi(tfféu)]_l + (Ppy + G*)L

MY =r LT, (31)

we observe that these expressions match if and only if

A = R RIS = (R3! + fpy + G)L
(32)
= K3 [RUw7ICT! = K51, (33)

where the second step follows from Eq. (13). This can be
rewritten as

1

K —_
df3 1 _ R(M‘L‘)Kz

= C,R1) , (34)

or, equivalently, as an integral equation

K = RyROR, + KyRU0OKLY. (35)

The inverse relation can also be given, as discussed below.

Reversing the algebraic steps, we conclude that, if IC:i(f'f )

°A potentially confusing point is that, in Ref. [31], the
amplitude leaf:;“’l’ is called Ay, with no explicit indication
that it is an asymmetric quantity. We stress that Ay, is
asymmetric and is related to M3 by the symmetrization pro-
cedure of Eq. (7) of Ref. [31].
""The inverses appearing in this section and the next are
defined in Appendix B.

and R are related in this manner, then Mdﬁi;’ can be

written in the R-matrix form of Eq. (23).
We can follow exactly the same steps if we equate the

result for Mé‘;:?, Eq. (22), to Mziaf:g”'"). Thus, with a
different choice of R(”’”), we have

Kl = RyRu0R, ! 36

i =R T, 09

The relations (34) and (36) are simpler than that between
(a third choice of) R(**) and Kqr 3 obtained in Ref. [31].
This is perhaps to be expected as both are asymmetric
quantities. We note that the new relations are consistent
with the fact that both the R and K matrices are purely real.
The appearance of factors of K, “wrapping” R%) is a
result of the choice in the R-matrix approach of pulling
out the dimer scattering amplitude as an explicit external
factor—see Fig. 2(a) of Ref. [31].

A technical point concerns the integrals over intermedi-
ate momenta that are implicit in Eqgs. (34) and (36).
Expanding the geometric series, there are terms of the
form ... R“C, R4 .., which lead to an integral over

the spectator-momentum associated with ICg’p). If there are

narrow resonances in a given channel, then ICgf) can have
poles on the real axis, and one must specify how to do the
integrals. These can be dealt with either by using a pole
prescription or by generalizing the principal value (PV)
prescription used to define IC(;>, which can move the poles
out of the relevant kinematic range [11]. We prefer the latter
approach, as this generalized PV prescription is needed to
derive the quantization condition of Eq. (4) in the case

where ICgf)

In fact, although &\ and K5 both depend on the
choice of PV prescription, it turns out that all choices of
R“4) are prescription 1ndependent The key fact here is
that the combination IC2 ! + F is, by construction, inde-

has poles.

pendent of the prescription. This in turn implies that £ is
also prescription independent, since it can be written

1
F—lim— (37)
L—>oo ICZL + F + G

Finally, using Eq. (23) and the fact that Mzizf,éu,u) is
prescription independent (which follows from the prescrip-
tion independence of M3 and D) we see that R ()

must also be independent of the PV prescription. In this

sense, R(“*) is a “more physical” quantity than ICdf”;‘ or

ICSB) We note, however, that R(“*) does depend on the

cutoff function, since that dependence enters through G*
and is not canceled.
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IV. EXPRESSING THE QUANTIZATION
CONDITION IN TERMS OF R ®%)

We are now ready to combine the results obtained above
to rewrite the quantization condition in terms of R(“%).
For definiteness, we first consider the choice of R(“*) that
is related to K\ by Eq. (34), and thus consider the
form of the quantization condition containing the latter
quantity, Eq. (4). We discuss the other choices of R (¥

subsequently.
We start from Eq. (33), from which follows

[Run=l = IC, + K, [ICdf ;) 1R, (38)
This can be rewritten as
R = 51 — [y + KN4 (39)
. 1
= ’Cz lCdf3 ’Cz (40)

1+ K ks

The key observation is that the quantity X(“*) appearing in
the quantization condition, Eq. (6), satisfies

Jim (20L?)X () (20L7) = R, (41)

where the factors of (2wL?) arise from Eq. (B7). It follows
that, if the finite-volume corrections to this result are
exponentially suppressed, i.e., if

[(2wL3)X(u’u)(2wL3>]kfm;pf’m’ = [R(u.u)]kfm‘pf’ !

+ O(e™™h), (42)
then the quantization condition (4) can be rewritten as

det[H — QoL 'R (2wL3) "' =0.  (43)

Here R(“*) is the matrix form of the infinite-volume
amplitude, obtained in the usual way

[R(M’U)]kfm;pﬂm/ = R (uu) (k, p)fm;f’m’ ’

{k.p} € (22/L)Z° (44)

i.e., by restricting the momenta to the finite-volume set.
To discuss the validity of Eq. (42), we consider the

definition of X(“*), Eq. (6). Expanding out the geometric
series, we find terms of the form . ..IC;(K '3")165 lLICiff” W As
shown in Eq. (B8) this goes over to . ICdf3 ICzllCdf3

in the infinite-volume limit, with the intermediate momen-
tum sums over spectator momenta converted to integrals.

However, if IC<;> has zeros within the kinematic range
of interest (which ranges up to the four pion threshold for
two-particle scattering), then the difference between sum
and integral over the resulting poles in 5! will lead to
power-law corrections to Eq. (42), which would invalidate
the quantization condition (43). Zeros in Kgf) (along the
real qfk axis) occur when the phase shift passes through nz
with n € Z and have no particular physical significance.
Excluding such cases would be a major restriction on the
applicability of Eq. (43).

In fact, we do not think that such cases need to be
excluded. The point is that we expect R to be finite in the
(and thus Mf)) has zeros.
is defined in the

expression for M 5 with factors of Mgf) pulled out on both
sides [as can be seen from Eq. (23)]. Thus the effects of a

vicinity of positions where Kgf)
This is because, as noted above, R (¥

vanishing Mgf) are already included. Assuming so, then

Eq. (34) shows that IC;(fugu) vanishes at such positions—
specifically, /Cd(f3 )(k P)imem =0 if Ky(k),, =0 or

KC5(p) s,y = 0. This implies that the divergences in K5'
occurring in the expression for X(“*) are canceled by the

behavior of IC:flﬁf 5"). Thus we conclude that Eq. (43) is a

legitimate form of the quantization condition.

We can repeat the arguments just given using the

quantization condition written in terms of ICdetg , BEq. (7),

and the relation between ICJ;;’ and a different choice for

R4 given in Eq. (36). The result is that the quantization
condition can be written in exactly the form of Eq. (43),
except with the new choice of R(“*). One disadvantage of
this choice of R(** is that it is not Lorentz invariant. This
follows because it is defined in terms of the TOPT
asymmetric amplitude Mgl”"), which depends on the
choice of frame used to define the time axis. By contrast,
the form of R("*) obtained by equating M.y o L) 10 M (o)

is Lorentz invariant, as long as the relativistic form of G
is used.

V. SUMMARY AND OUTLOOK

The main result of this work is the demonstration that the
three-particle quantization condition for scalar particles
with a Z, symmetry obtained in the RFT approach in
Ref. [1] (and extended in BS1) can be rewritten in terms of
the R matrix of Refs. [29,30] in the simple form

det K3} + F + G — 2wL?) 'R (20L3)~] = 0.

(45)

This provides the generalization of the s-wave FVU result
of Refs. [3,4], Eq. (8), to all angular momenta of the dimer,
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and shows the equivalence of the RFT and FVU approaches
in general.'' We stress that the derivation of Eq. (45)
requires the use of a smooth cutoff function (as opposed to
a hard cutoff) as well as the presence of the “barrier factors”
in the definition of G [see discussion below Eq. (A10)]. We
note that, while the two-particle interaction enters with a
factor of 1/L* (contained in 162, 1), the three-particle
interaction term comes with a 1/LS. This is as expected
based on the overlap amplitudes of particles with wave
functions distributed throughout the volume, and it is
consistent with the results of the threshold expansion
[33-35]. We expect that by taking the nonrelativistic limit
of this form of the quantization condition, one will obtain
the generalization of the NREFT quantization condition of
Refs. [7,8] to all dimer angular momenta.

We have also found that the R matrix is not unique, but
rather that Eq. (45) holds for two different choices of Rwu),
which are in turn related to the two different asymmetric
forms of the three-particle K matrix that we have discussed,

namely ICZ;K’;') and ICE;};’ ). We have argued that the lack of

uniqueness of R(“* is an example of the general result that
asymmetric forms of amplitudes are intrinsically ambigu-
ous, since the process of symmetrization is not invertible.
This is most obviously seen in the fact that one can consider
two different asymmetric forms of the three-particle scat-

tering amplitude, Mg’”’) and Mg“"”, whose definitions
differ by whether the asymmetry is defined with respect to a
Feynman-diagram-based skeleton expansion [2] or an
expansion in terms of time-ordered perturbation theory
(see BS1).

Looking forward, an important question is how the new,
asymmetric form of the quantization condition, Eq. (45),
compares in practice with the original, symmetric form of
Eq. (1). The advantages of the new form include its
simplicity and the fact that R(“" is independent of the
choice of PV prescription. It is also closely connected to
phenomenological analyses of scattering amplitudes,
through which intuition and experience concerning appro-
priate parametrizations of R“*) have been developed. The
disadvantage of the new form is that R(“*) is an asym-
metric amplitude, whose general description requires addi-
tional parameters in comparison to the symmetric K matrix
Kt 3 that enters Eq. (1). This is clear, for example, in the
threshold expansion worked out in Ref. [16], where a
significant reduction in parameters occurs because of the
symmetry of Ky 5.

""As noted earlier, Eq. (8) is obtained from the original result
for the FVU quantization condition, given in Refs. [3,4], only
after some algebraic manipulations [27]. Presumably, our gen-
eralized result could be rewritten in a form similar to that of the
original works, but we have not attempted this.

One can also see this in the result for Kd';:; one obtains in
leading-order chiral perturbation theory, by extending the calcu-
lations described in Ref. [25].
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APPENDIX A: SUMMARY OF NOTATION
AND DEFINITIONS

We collect here the definitions of quantities used in the
main text and explain the notation that is used. These
results are drawn from Refs. [1,2,13], and we use the
notation of the latter work (referred to as BS1 in the main
text). We present a bare-bones description here—see these
references for further details.

Configurations of three on-shell particles are described
by denoting one of the particles as the spectator and the
other two as the interacting pair, or “dimer” for short. These
designations are intrinsically asymmetric, and this is used
when defining the asymmetric kernels such as R(“*) and
K:l(f'f '3"), where any initial two-particle interaction is always
chosen to involve the dimer, although subsequently all
three particles interact. For symmetric quantities such as
Kars, the choice of which momentum is denoted the
spectator is irrelevant.

In more detail, for a given total 4-momentum P* =
(E,P), the momentum dependence of quantities is speci-
fied by giving the momentum of the spectator, call it k, and
then boosting to the center-of-mass frame (CMF) of the
dimer and decomposing the momentum dependence of
one particle in the dimer into spherical harmonics. Thus
the variables are {k,#,m}. A similar set of variables is
used for both initial and final momenta, so that, for
example, the on-shell scattering amplitude can be written
M;(K, P) sy In infinite volume, k and p are continu-
ous variables.

In the quantization conditions, the spectator momenta are
constrained by the boundary conditions, here chosen to be
periodic in the box size L. Then k = 22n, with n € Z°.
Thus all of the variables become discrete, and we denote the
full set by {k¢m}, with k a shorthand for the discrete
choices of k. All quantities in the quantization condition
are then matrices in which each of the indices runs over the
set {k¢m}. For quantities that are initially defined in
infinite volume, the restriction to the finite-volume matrix
versions is exemplified by

R(u,u)

2z _,
kem;pt'm' {k.p} e fZ :

= R(u.u) (k’ p)fm;f’m”
(A1)

Two-particle quantities that enter the quantization con-
dition naturally come with associated factors of 2w, L3,

where w; = VK> + m?, with m the particle mass. These
quantities are overlined, to distinguish them from the
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infinite-volume two-particle amplitude that they contain,
and given a subscript “L” to emphasize their volume
dependence. For example,

[(2wL3)’C2]kfm;pf'm” (AZ)

[’CZ,L]kfm;pf’m’ =

) x
[K2]kfm;pt”m’ = 5kp5ff’5mm’lcg )<Q2,k>7 (A3)

[2wL3]kfm;pf/m' = 6kp6ff'6mm’2ka37 (A4)
where IC<2"0) is the Zth partial wave of the infinite-volume
two-particle K matrix, which depends on the dimer CMF
relative momentum,

9y = \ E;zk/4 -m?,

Following Refs. [1,11], we define I, using a generalized
PV pole prescription, such that its relation to the physical
two-particle scattering amplitude M, is

Ef = (E—wy)* — (P-k)>
(A5)

) x -1 O w =1 A0 .
K (@3 0) = M (@507 = A (a5). (A6)
where
(0 s 4 G
P}g\) (42,2/() = H(k) {P(%,Zk) +@11(>V>(612_2k) ) (A7)
with the phase space factor given by
. [ —ilasl ah>0
Alays) = TonE ) s - . (AB)
LY |Q2.k| B < 0

IK) is an arbitrary real, smooth function, which is used to

move poles in I, out of the kinematic range of interest.

H(k) is a smooth cutoff function, which cuts off the sum

over k for |k| ~ m. Examples are given in Refs. [1,6].
The kinematic functions F and G are

N Hk) [1 UV dPa
szf’m;pf’m’ = 5kakL3 [FZ _PV/ W
a

« yfm (alt) 1 yf/m’(aZ)

CI%{ 2!2wa<b%a - m2) ‘ﬁi

(A9)

1 yfm(plt) H(k)H(p) yf’m'(k;;) 1

PIOT A b?)k — m?

kam;pf’m’ =
(A10)

Here b, =P‘—k'—a" is a four vector, with k* =
(wi. k) and @ = (w,, a), and by, is defined analogously.

q%i; 2pr3 ’

The sum over a in F runs over the finite-volume set.
Momenta with an asterisk, e.g., a; and p}, are boosted from
the original frame (with total momentum P) into the CMF
of the dimer. There is some flexibility in the choice of
boost, with two examples being given in Refs. [1] and BS1.
The former leads to a relativistically covariant G, in the
sense that the vectors p; and kj, are unchanged (up to
global rotations) when the initial frame is given an arbitrary
boost. We refer to this form of G as the “relativistic form” in
the main text. The harmonic polynomials are defined by
yfm<a) = \/4_72'Yfm(ﬁ)|a|f7 (All)
with the spherical harmonics chosen to be in the real basis.
The factors of [p;|”/ g3 in G are called “barrier factors” in
the main text and are needed to assure the smoothness of G
when |p;| — 0. The superscript UV on the sum and integral
in F indicate an ultraviolet regularization, the nature of
which affects F only at the level of exponentially sup-
pressed terms. Finally, the integral in F is defined by the
generalized pole prescription mentioned above [11].
With these definitions, the finite-volume two-particle
scattering amplitude (defined in Ref. [2]) is given by
My ] = (Ko )™+ F, (A12)
which in the appropriate L — oo limit goes
to Eq. (A6).

over

APPENDIX B: INFINITE-VOLUME LIMITS

In this Appendix we provide further details of the
infinite-volume limit needed to obtain Eq. (12) from
Eq. (10), and we discuss the properties of the inverses
that appear in Secs. III D and IV.

To obtain Eq. (12) we need to show that

.~ 1 .~
lim X, (F+G)Z, = lim X, - (2wL?)(F +G)(2wL?)

L—oo (2@[,3)
1
—7 Bl
2L " (B1)
= Xo(Ppy + G®)Z, (B2)

with X;,Z, € {}Cgf“_ ‘3“),162‘L} being finite-volume matri-

ces, and X, Z, their corresponding infinite volume limits,
given in Egs. (15) and (16). The factors of 1/(2wL?)
convert the sums over intermediate momenta into the
Lorentz-invariant integrals that are implicit in the
infinite-volume form, Eq. (B2). The remainder of the result
can be obtained using

gi_l;rc}ozka3Fkt’m;pf’m’2pr3 = ﬁPV(k’ p)fm;f’m” (B3)
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I}lm 2a)kL3kam;pf’m’2pr3 = Goo(k’ p)fm;f’m" <B4)

The first line follows from the results in Appendix B of
BS1, while the second follows from the definitions of G,
Eq. (A10), and G*, Eq. (18).

We now turn to the definition of inverses of infinite-
volume quantities, beginning with X5'. Given our integra-
tion measure, this should satisfy

ICEI (k’ r)fm;f”m”ICZ(r7 p)f’m”;f’m’

'm" r

= S(k - p)(st’f’(smm’v (BS)
from which it follows that
_ - £, \i-1
K5 (K. D) g = 5K = P)S B K5 (q5,)] 7" (BO)

A drawback of our notation is that, although the infinite-
volume limit of /', ;, given in Eq. (16), looks natural, the
same is not true of the inverse

lim (2wL3)[K,, ] 2wL3) = K51

L—oo

(B7)

The extra factors of (2wL?) are, however, needed so that
the limit of matrix products is as expected. For example, we
have

. H(ugu) 71 - (uu)
Lh_EIolo[ICdfj K2.L’Cdf,3 ]k{m;pﬂm’

= (K5 K3 K 106 D) e (BY)
with the matrix multiplications converted to Lorentz-
invariant integrals by the induced factors of (2wL?)7!.
The only places where these extra factors are not absorbed
are on the ends of expressions, such as in Eq. (41).

The inverses of IC;(:’;) and R(**) appearing in Sec. IV are
defined as in Eq. (BS), e.g.,

z / [R(u,u)]—l (k’ r)fm;f”m”R(u’u) (I', p)f’m”;f’m’

'm" r

= g(k - p)éfzf”5rnm" (B9)
The relation of these inverses to the inverses of their finite-
volume versions display similar peculiarities to that seen in
Eq. (B7), but these relations are not needed in the argu-
ments of the main text.

[1] M. T. Hansen and S.R. Sharpe, Phys. Rev. D 90, 116003
(2014).

[2] M. T. Hansen and S.R. Sharpe, Phys. Rev. D 92, 114509
(2015).

[3] M. Mai and M. Déring, Eur. Phys. J. A 53, 240 (2017).

[4] M. Mai and M. Déring, Phys. Rev. Lett. 122, 062503 (2019).

[5] K. Polejaeva and A. Rusetsky, Eur. Phys. J. A 48, 67 (2012).

[6] R. A. Bricefio, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D
95, 074510 (2017).

[7]1 H.-W. Hammer, J.-Y. Pang, and A. Rusetsky, J. High Energy
Phys. 09 (2017) 109.

[8] H. W. Hammer, J. Y. Pang, and A. Rusetsky, J. High Energy
Phys. 10 (2017) 115.

[9] R. A. Bricefio, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D
99, 014516 (2019).

[10] J.-Y. Pang, J.-J. Wu, H. W. Hammer, U.-G. Meiner, and A.
Rusetsky, Phys. Rev. D 99, 074513 (2019).

[11] F. Romero-Lépez, S.R. Sharpe, T. D. Blanton, R. A. Bri-
ceflo, and M. T. Hansen, J. High Energy Phys. 10 (2019)
007.

[12] M. T. Hansen, F. Romero-Loépez, and S. R. Sharpe, J. High
Energy Phys. 07 (2020) 047.

[13] T.D. Blanton and S.R. Sharpe, arXiv:2007.16188.

[14] M. Doring, H. W. Hammer, M. Mai, J. Y. Pang, A. Rusetsky,
and J. Wu, Phys. Rev. D 97, 114508 (2018).

[15] R. A. Bricefio, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D
98, 014506 (2018).

[16] T.D. Blanton, F. Romero-Lépez, and S. R. Sharpe, J. High
Energy Phys. 03 (2019) 106.

[17] B. Horz and A. Hanlon, Phys. Rev. Lett. 123, 142002
(2019).

[18] C. Culver, M. Mai, R. Brett, A. Alexandru, and M. Déring,
Phys. Rev. D 101, 114507 (2020).

[19] S. Beane et al., arXiv:2003.12130.

[20] F. Romero-Lépez, A. Rusetsky, and C. Urbach, Eur. Phys.
J. C 78, 846 (2018).

[21] R. A. Bricefio and Z. Davoudi, Phys. Rev. D 87, 094507
(2013).

[22] P. Guo and V. Gasparian, Phys. Lett. B 774, 441
(2017).

[23] P. Klos, S. Konig, H. W. Hammer, J. E. Lynn, and A.
Schwenk, Phys. Rev. C 98, 034004 (2018).

[24] P. Guo, M. Déring, and A. P. Szczepaniak, Phys. Rev. D 98,
094502 (2018).

[25] T.D. Blanton, F. Romero-Lépez, and S.R. Sharpe, Phys.
Rev. Lett. 124, 032001 (2020).

[26] M. Mai, M. Déring, C. Culver, and A. Alexandru, Phys.
Rev. D 101, 054510 (2020).

[27] M. T. Hansen and S. R. Sharpe, Annu. Rev. Nucl. Part. Sci.
69, 65 (2019).

[28] A. Rusetsky, Proc. Sci.
[arXiv:1911.01253].

[29] M. Mai, B. Hu, M. Déring, A. Pilloni, and A. Szczepaniak,
Eur. Phys. J. A 53, 177 (2017).

LATTICE2019 (2019) 281

054515-10


https://doi.org/10.1103/PhysRevD.90.116003
https://doi.org/10.1103/PhysRevD.90.116003
https://doi.org/10.1103/PhysRevD.92.114509
https://doi.org/10.1103/PhysRevD.92.114509
https://doi.org/10.1140/epja/i2017-12440-1
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1140/epja/i2012-12067-8
https://doi.org/10.1103/PhysRevD.95.074510
https://doi.org/10.1103/PhysRevD.95.074510
https://doi.org/10.1007/JHEP09(2017)109
https://doi.org/10.1007/JHEP09(2017)109
https://doi.org/10.1007/JHEP10(2017)115
https://doi.org/10.1007/JHEP10(2017)115
https://doi.org/10.1103/PhysRevD.99.014516
https://doi.org/10.1103/PhysRevD.99.014516
https://doi.org/10.1103/PhysRevD.99.074513
https://doi.org/10.1007/JHEP10(2019)007
https://doi.org/10.1007/JHEP10(2019)007
https://doi.org/10.1007/JHEP07(2020)047
https://doi.org/10.1007/JHEP07(2020)047
https://arXiv.org/abs/2007.16188
https://doi.org/10.1103/PhysRevD.97.114508
https://doi.org/10.1103/PhysRevD.98.014506
https://doi.org/10.1103/PhysRevD.98.014506
https://doi.org/10.1007/JHEP03(2019)106
https://doi.org/10.1007/JHEP03(2019)106
https://doi.org/10.1103/PhysRevLett.123.142002
https://doi.org/10.1103/PhysRevLett.123.142002
https://doi.org/10.1103/PhysRevD.101.114507
https://arXiv.org/abs/2003.12130
https://doi.org/10.1140/epjc/s10052-018-6325-8
https://doi.org/10.1140/epjc/s10052-018-6325-8
https://doi.org/10.1103/PhysRevD.87.094507
https://doi.org/10.1103/PhysRevD.87.094507
https://doi.org/10.1016/j.physletb.2017.10.009
https://doi.org/10.1016/j.physletb.2017.10.009
https://doi.org/10.1103/PhysRevC.98.034004
https://doi.org/10.1103/PhysRevD.98.094502
https://doi.org/10.1103/PhysRevD.98.094502
https://doi.org/10.1103/PhysRevLett.124.032001
https://doi.org/10.1103/PhysRevLett.124.032001
https://doi.org/10.1103/PhysRevD.101.054510
https://doi.org/10.1103/PhysRevD.101.054510
https://doi.org/10.1146/annurev-nucl-101918-023723
https://doi.org/10.1146/annurev-nucl-101918-023723
https://doi.org/10.22323/1.363.0281
https://arXiv.org/abs/1911.01253
https://doi.org/10.1140/epja/i2017-12368-4

EQUIVALENCE OF RELATIVISTIC THREE-PARTICLE ...

PHYS. REV. D 102, 054515 (2020)

[30] A. Jackura, C. Fernandez-Ramirez, V. Mathieu, M.
Mikhasenko, J. Nys, A. Pilloni, K. Saldafia, N. Sherrill,
and A. P. Szczepaniak (JPAC Collaboration), Eur. Phys. J. C
79, 56 (2019).

[31]1 A. W. Jackura, S.M. Dawid, C. Ferniandez-Ramirez, V.
Mathieu, M. Mikhasenko, A. Pilloni, S.R. Sharpe, and
A.P. Szczepaniak, Phys. Rev. D 100, 034508 (2019).

054515-11

[32] R. A. Bricefio, M.T. Hansen, S.R. Sharpe, and A.P.
Szczepaniak, Phys. Rev. D 100, 054508 (2019).

[33] S. Tan, Phys. Rev. A 78, 013636 (2008).

[34] S.R. Beane, W. Detmold, and M. J. Savage, Phys. Rev. D
76, 074507 (2007).

[35] M. T. Hansen and S.R. Sharpe, Phys. Rev. D 93, 096006
(2016); 96, 039901(E) (2017).


https://doi.org/10.1140/epjc/s10052-019-6566-1
https://doi.org/10.1140/epjc/s10052-019-6566-1
https://doi.org/10.1103/PhysRevD.100.034508
https://doi.org/10.1103/PhysRevD.100.054508
https://doi.org/10.1103/PhysRevA.78.013636
https://doi.org/10.1103/PhysRevD.76.074507
https://doi.org/10.1103/PhysRevD.76.074507
https://doi.org/10.1103/PhysRevD.93.096006
https://doi.org/10.1103/PhysRevD.93.096006
https://doi.org/10.1103/PhysRevD.96.039901

