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We show that a recently derived alternative form of the relativistic three-particle quantization condition
for identical particles can be rewritten in terms of the R matrix introduced to give a unitary representation of
the infinite-volume three-particle scattering amplitude. Combined with earlier work, this shows the
equivalence of the relativistic effective field theory approach of Refs. [M. T. Hansen and S. R. Sharpe,
Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015)] and the
“finite-volume unitarity” approach of Refs. [M. Mai and M. Döring, Eur. Phys. J. A 53, 240 (2017);
M. Mai and M. Döring, Phys. Rev. Lett. 122, 062503 (2019)]. It also provides a generalization of the latter
approach to arbitrary angular momenta of two-particle subsystems.
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I. INTRODUCTION

The study of resonant three-particle systems using lattice
QCD (LQCD) is becoming feasible, due to advances in the
underlying theoretical formalism [1–13] and its practical
application [4,14–16], as well as in algorithmic and
computational methods necessary to extract three-particle
spectra (see, for example, the recent results presented in
Refs. [17–19]).1 The present frontier is the application to
the 3πþ system [18,25,26]. For recent reviews, see
Refs. [27,28].
One of the key steps in the formalism is the derivation of

three-particle quantization conditions, equations whose
solutions give the finite-volume spectrum of three-particle
states as functions of infinite-volume two- and three-
particle K matrices. These K matrices can then be related
to two- and three-particle scattering amplitudes by solving
integral equations. Three different approaches have been
followed to obtain the quantization conditions.
The first is based on an all-orders diagrammatic analysis

in a generic relativistic field theory and is usually denoted
the RFT approach. It was initially developed for identical
scalar particles with a G-parity-like Z2 symmetry [1,2], and
subsequently extended to allow 2 → 3 processes [6], the
inclusion of poles in the two-particle K matrix [9,11], and

nonidentical but degenerate scalars [12]. In all cases, the
formalism allows arbitrary interactions in two-particle
subsystems (which we henceforth refer to as “dimers”).
In a companion paper [13], henceforth referred to as BS1,
we have presented an alternative, simpler, derivation of the
RFT quantization condition in the presence of the Z2

symmetry, including an alternative form of the quantization
condition itself. This new form, which depends on an
unsymmetrized three-particle K matrix, will play a crucial
role in the present work.
The second approach uses nonrelativistic effective field

theory (NREFT), allowing a much simplified derivation of
the quantization condition [7,8]. The formalism has so far
only been developed for identical scalars with s-wave
dimers and no 2 → 3 transitions.
The third approach, developed in Refs. [3,4], is based on

a unitary parametrization of the three-particle scattering
amplitude, M3, in terms of a K-matrix-like real quantity
called the R matrix (and denoted Rðu;uÞ below) [29,30].
Following Ref. [27], we call this method the “finite-volume
unitarity” (FVU) approach. It leads to a quantization
condition that incorporates relativistic effects, and has so
far only been developed for scalars with s-wave dimers and
no 2 → 3 transitions.
A natural question is whether there are relations between

the approaches, particularly between the two relativistic
approaches (RFT and FVU). In addition, as stressed in
Ref. [27], it is not clear in the FVU approach whether all
sources of power-law volume dependence have been
accounted for. Thus an alternative derivation of the FVU
result would be welcome.
The relationship between approaches was first addressed

in Ref. [8], where it was shown that the nonrelativistic limit
of the RFT quantization condition of Ref. [1], restricted to
s-wave dimers, reproduced the NREFT result, aside from
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certain technical differences. The agreement also required
that the quantities describing three-particle interactions in
the two approaches were restricted to their simplest,
momentum-independent form. This agreement was repro-
duced in Ref. [27] using a simplified method. In addition,
Ref. [27] showed that, when restricted to s-wave dimers,
and assuming a constant three-particle interaction, the RFT
quantization condition could be manipulated into a form
that agreed with that from the FVU approach (again aside
from certain technical differences).
Our aim here is to extend these results to general two-

and three-particle interactions. In particular, we are able to
derive the FVU form of the quantization condition starting
from the RFT result, and thus to generalize the FVU
approach to dimers in all partial waves. The key inputs here
are, first, the new form of the RFT quantization condition
that we obtained in BS1, and, second, a generalization we
derive here of the relation between the K matrix of the RFT
approach and the R matrix obtained in Ref. [31]. Our final
result, given in Eq. (45), is a form of the quantization
condition given explicitly in terms of Rðu;uÞ.
This article is organized as follows. In the following

section we summarize the relativistic quantization con-
ditions obtained previously, in both the RFT approach
(Sec. II A) and the FVU approach (Sec. II B). Additionally,
in Sec. II A we rewrite the new form of the quantization
condition from BS1 in an alternate form. In Sec. III we
derive the infinite-volume relationship between asymmetric
forms of the three-particle K matrix and the R matrix,
Rðu;uÞ. Using these, in Sec. IV we rewrite the RFT
quantization condition (in its asymmetric form) in terms
of Rðu;uÞ, thus obtaining the general form of the FVU
quantization condition. In a concluding section, Sec. V,
we briefly compare the advantages of the different forms
of the quantization condition for practical applications.
Appendix A summarizes notation and definitions, while
Appendix B discusses subtleties concerning infinite-
volume limits.

II. RECAP OF PRIOR FORMS OF THE
RELATIVISTIC QUANTIZATION CONDITION

A. Results in the RFT approach

The RFT quantization condition of Ref. [1] is given by

det ½1þKdf;3F3� ¼ 0; ð1Þ
where Kdf;3 and F3 are matrices in the space of on-shell
three-particle states, with F3 containing the two-particle K
matrix as well as known kinematical factors,

F3 ¼ F̃

�
1

3
−

1

H̃
F̃

�
; H̃ ¼ 1=K̄2;L þ F̃ þ G̃; ð2Þ

whileKdf;3 is a three-particle K matrix. The notation here is
that of BS1, which differs somewhat from that of Ref. [1].

We summarize the relevant definitions in Appendix A, and
only note here that K̄2;L contains the two-particle K matrix,
while F̃ and G̃ are known kinematic functions. All three
quantities depend on the box size L, with the dependence of
K̄2;L being of a simple kinematic nature [see Eq. (A2)]
while F̃ and G̃ contain the nontrivial volume dependence.
A key property ofKdf;3 is that it is symmetric under particle
exchange, separately for both the initial and final three-
particle states. Thus it has the same symmetry properties as
the three-particle scattering amplitude M3.
In BS1 we show that the quantization condition of

Eq. (1) is equivalent to a form written in terms of the

asymmetric K matrixKðu;uÞ
df;3 . Here the right (left) superscript

“u” indicates that one of the three incoming (outgoing)
momenta is being singled out as being the “spectator” in
cases where the initial interaction involves only two

particles. The precise definition of Kðu;uÞ
df;3 is given con-

structively in Ref. [1], but is not important here. In fact, to
write the asymmetrized quantization condition in a simple
form, one must use a new version of the asymmetric K

matrix, denoted K0ðu;uÞ
df;3 , which is obtained from Kðu;uÞ

df;3 by
solving an integral equation containing K2 and given
explicitly in BS1. Then the new form of the RFT quan-
tization condition is

det ½1þ ðK̄2;L þK0ðu;uÞ
df;3 ÞðF̃ þ G̃Þ� ¼ 0: ð3Þ

We stress that no information is lost in the transition from

Kðu;uÞ
df;3 to K0ðu;uÞ

df;3 , since we do not have an explicit form for
either. In practical applications of the quantization con-
dition, both must be parametrized. They are both related to
M3 by (different) integral equations, and both are Lorentz
invariant if the relativistic form of G̃ is used.
It turns out to be useful to rewrite the asymmetrized

quantization condition as follows2:

det ½H̃ − Xðu;uÞ� ¼ 0; ð4Þ

Xðu;uÞ ¼ K̄−1
2;L − ½K̄2;L þK0ðu;uÞ

df;3 �−1 ð5Þ

¼ K̄−1
2;LK

0ðu;uÞ
df;3 K̄−1

2;L
1

1þK0ðu;uÞ
df;3 K̄−1

2;L

: ð6Þ

We return below to the issue of whether Xðu;uÞ is an infinite-
volume object, i.e., whether the matrix products in its
definition can be replaced by integrals.
BS1 also presents an alternative ab initio derivation of

the asymmetric form of the quantization condition,

2To obtain this form, we are assuming that det½K̄2;Lþ
K0ðu;uÞ

df;3 � ≠ 0, which we expect to be true in general.
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det ½1þ ðK̄2;L þ K̃ðu;uÞ
df;3 ÞðF̃ þ G̃Þ� ¼ 0: ð7Þ

This differs from Eq. (3) only in the three-particle K matrix

that enters: here it is K̃ðu;uÞ
df;3 , whileK0ðu;uÞ

df;3 appears in Eq. (3).3

These two asymmetric K matrices are similar, but differ in

their detailed definitions. K̃ðu;uÞ
df;3 is defined using an asym-

metry based on diagrams in time-ordered perturbation

theory, while that for K0ðu;uÞ
df;3 is based on Feynman pertur-

bation theory, together with additional complications.4 As
discussed in BS1, the fact that the same form of the
quantization condition can hold with different asymmetric
K matrices is a reflection of an intrinsic ambiguity in the
definition of asymmetric quantities. We return to this point
below. Finally, we note that Eq. (7) can also be manipulated
into the form of Eq. (4), with Xðu;uÞ now given by Eq. (6)

with K0ðu;uÞ
df;3 replaced by K̃ðu;uÞ

df;3 .

B. The FVU quantization condition

The FVU form of the quantization condition has been
written explicitly so far only when the particles in the
dimer interact in the s wave. The original forms given in
Refs. [3,4] are quite complicated, but it is shown in
Ref. [27] that the FVU quantization condition can be
rewritten as

det ½H̃s − ð2ωL3Þ−1C̃ðu;uÞ
s ð2ωL3Þ−1� ¼ 0; ð8Þ

where ω is the on-shell single-particle energy (defined in
Appendix A), H̃s is the s-wave restriction of H̃ (i.e., with l

and m set to zero on both sides), and C̃ðu;uÞ
s ðk;pÞ is a

smooth, real function of the spectator momenta. Using the
definition of Rðu;uÞ given in Refs. [4,31] together with

results from Ref. [27], one can show that C̃ðu;uÞ
s ¼ Rðu;uÞ

s ,

withRðu;uÞ
s the s-wave restriction of R̃ðu;uÞ. We have added

the “ðu; uÞ” superscript (which is absent in the original
FVU works and in Ref. [27]) in order to emphasize that this
is an intrinsically asymmetric object, since it parametrizes
the smooth part of the dimer-particle contact interaction.
In writing the result (8) in terms of F̃ and G̃, we are

implicitly assuming that we are using the smooth cutoff
function that is built into the approach of Ref. [1]. The
introduction of this cutoff function is essential in that work

(and in the alternative approach of BS1) in order to argue
that all power-law volume dependence is accounted for. By
contrast, in the FVU approach, a hard cutoff is introduced
by hand. There is, however, no technical reason not to use
the smooth cutoff in the FVU approach, and we assume
henceforth that this has been done.
Aside from this technical issue, Eqs. (4) and (8) are

clearly very similar and suggest a relation between the

s-wave restriction of Xðu;uÞ and Rðu;uÞ
s . In the following

sections we will make this concrete, using a variant of the

relationship between Kðu;uÞ
df;3 and the matrix R introduced

in Ref. [31].

III. THE Rðu;uÞ MATRIX AND ITS RELATION

TO K0ðu;uÞ
df;3 AND K̃ðu;uÞ

df;3

One of the results of the RFT approach is an integral
equation relating Kdf;3 to the physical three-particle scat-
tering amplitude M3 [2]. This provides a representation of
M3 in terms of a real function that is devoid of s-channel
unitary cuts (up to the five-particle threshold) and of on-
shell singularities. An important check on this result was
the demonstration, in Ref. [32], that it provided a repre-
sentation of M3 that satisfied the constraints of s-channel
unitarity.5 A similar, but different, parametrization of M3,
in terms of a real K-matrix-like asymmetric6 amplitude
Rðu;uÞ, had previously been suggested in the context of
amplitude analyses of experimental results for resonances
that decay to three particles [29,30]. This parametrization
was developed in order to satisfy s-channel unitarity. In
Ref. [31], it was shown that these two parametrizations are
equivalent, and the relationship between Kdf;3 and Rðu;uÞ

was derived.
Here we need to extend the analysis of Ref. [31] to relate

the asymmetric RFT amplitudes K0ðu;uÞ
df;3 and K̃ðu;uÞ

df;3 to the
FVU amplitude Rðu;uÞ. This brings to light two technical
issues that were overlooked in Ref. [31], although it turns
out that they do not impact the final conclusion of that
work. We will describe these in the course of our
discussion.
The desired relationships are determined by equating

expressions for asymmetric forms of the three-particle

scattering amplitude. We use two such amplitudes: Mðu;uÞ
3

defined in Ref. [2] in the context of a Feynman diagram

analysis, and M̃ðu;uÞ
3 defined in BS1 in an analysis using

time-ordered perturbation theory (TOPT). We present the
results for these quantities in turn, and then compare them
to the corresponding expressions in terms of Rðu;uÞ.

3Another technical difference is that the BS1 derivation defines
G̃ using a different boost to the dimer center-of-mass frame than
that used in Ref. [1]. However, the derivation of Eq. (3) goes
through using either boost. The equations in the remainder of the
paper also hold using either boost—although one must use the
same choice throughout.

4One implication of this difference is that K̃ðu;uÞ
df;3 is not Lorentz

invariant (irrespective of the choice of G̃), because it is defined in
a frame-dependent way in terms of the diagrams of time-ordered
perturbation theory.

5This demonstration remains valid when G̃ is defined with the
boost used in BS1.

6As with C̃ðu;uÞ
s , we have added the superscript ðu; uÞ, which

is not present in the original works, to emphasize the asymmetry
of Rðu;uÞ.
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A. Expression for Mðu;uÞ
3

Mðu;uÞ
3 is defined in Ref. [2] using a skeleton expansion

in terms of Bethe-Salpeter kernels. The external particles
can be directly connected to either two- or three-particle
kernels. The asymmetry arises because two-particle kernels
are connected to the external momenta such that the
spectator momentum is always associated with the non-
interacting propagator. The connection to the three-particle
kernel does not lead to asymmetry, since this kernel is
symmetric.

In Ref. [2], an expression for Mðu;uÞ
3 is obtained that

depends on both Kðu;uÞ
df;3 and Kdf;3. In particular, it does not

depend solely on the symmetric form Kdf;3 alone. This
brings up the first technical issue alluded to above. In the

analysis of Ref. [31], a different expression for Mðu;uÞ
3 is

used that is given wholly in terms of Kdf;3 [see Eqs. (20)

and (21) of [31], in which Mðu;uÞ
3 is called A]. This is, in

fact, not the correct expression for Mðu;uÞ
3 , but rather

describes a related (and implicitly defined) quantity, in
which a certain subclass of diagrams has been sym-
metrized. This change does not impact the final results
of Ref. [31] because both the correct and the incorrect

expressions for Mðu;uÞ
3 symmetrize to the same quantity,

M3, and this is all that is required for the derivation.

Here we use the correct expression for Mðu;uÞ
3 . To

determine this, we start from the finite-volume version

of the amplitude, Mðu;uÞ
3;L (also defined in Ref. [2]), which

goes over to Mðu;uÞ
3 in the appropriate L → ∞ limit. It was

shown in BS1 how to asymmetrize the result for Mðu;uÞ
3;L

given in Ref. [2] so as to write it solely in terms of Kðu;uÞ
df;3 .

After further manipulation this is rewritten in BS1 in terms

of K0ðu;uÞ
df;3 ,

Mðu;uÞ
df;3;L ¼ Mðu;uÞ

3;L −Dðu;uÞ
L ð9Þ

¼ 1

1þ K̄2;LðF̃ þ G̃ÞK
0ðu;uÞ
df;3

×
1

1þ ðF̃ þ G̃Þ 1
1þK̄2;LðF̃þG̃ÞK

0ðu;uÞ
df;3

1

1þ ðF̃ þ G̃ÞK̄2;L
:

ð10Þ

Here we have switched to using the divergence-free form of
the three-particle amplitude, whose difference from the
original form is given by the multiple two-particle scatter-
ing contribution

Dðu;uÞ
L ¼ −M̄2;LG̃M̄2;L

1

1þ G̃M̄2;L
; ð11Þ

where M2;L is defined in Eq. (A12).

Taking the infinite-volume limit of Eq. (10) using the iϵ
prescription described in Ref. [2], we obtain

Mðu;uÞ
df;3 ¼ LK0ðu;uÞ

df;3
1

1þ ðρ̃PV þ G∞ÞLK0ðu;uÞ
df;3

LT; ð12Þ

L ¼ 1

1þ K̄2ðρ̃PV þ G∞Þ ; ð13Þ

LT ¼ 1

1þ ðρ̃PV þG∞ÞK̄2

: ð14Þ

This is written in a highly compact notation, adapted from
that of Ref. [31], which we now explain. All quantities
depend implicitly on initial and final on-shell variables,

each in the fk;l; mg space. For example, K0ðu;uÞ
df;3 is given

explicitly by

K0ðu;uÞ
df;3 ðk;pÞlm;l0m0 ¼ lim

L→∞
½K0ðu;uÞ

df;3 �klm;pl0m0 ; ð15Þ

with Mðu;uÞ
df;3 defined similarly. The explicit forms for the

other quantities are

K̄2ðk;pÞlm;l0m0 ¼ lim
L→∞

½K̄2;L�klm;pl0m0

¼ δ̄ðk − pÞδll0δmm0KðlÞ
2 ðq�2;kÞ; ð16Þ

ρ̃PVðk;pÞlm;l0m0 ¼ δ̄ðk − pÞδll0δmm0 ρ̃ðlÞPVðq�22;kÞ; ð17Þ

G∞ðk;pÞlm;l0m0 ¼ Ylmðp�
kÞ

q�l2;k

HðkÞHðpÞ
b2pk −m2 þ iϵ

Yl0m0 ðk�
pÞ

q�l02;p

;

ð18Þ

where

δ̄ðk − pÞ ¼ 2ωkð2πÞ3δ3ðk − pÞ; ð19Þ

and KðlÞ
2 , ρ̃ðlÞPV, and the kinematic variables are defined in

Appendix A. The products appearing in Eqs. (12)–(14)
should be viewed as matrix products in the on-shell index
space. Angular momentum indices are summed as usual,
while the spectator momenta (which are now continuous
variables) are integrated with the Lorentz-invariant mea-
sure7

R
r≡

R
d3r=ð2ωr½2π�3Þ. Thus

½XZ�ðk;pÞlm;l0m0 ≡ X
l00m00

Z
r
Xðk; rÞlm;l00m00Zðr;pÞl00m00;l0m0 ;

ð20Þ

7This differs from the notation of BS1, where the 1=ð2ωrÞ
factor is not included in the definition of

R
r.
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where X, Z ∈ fK̄2; ρ̃PV; G∞;K0ðu;uÞ
df;3 g. Finally, the inverses

in Eqs. (12)–(14), which are well defined as matrix inverses
for finite L, become integral equations in the infinite-
volume limit. Thus, for example, L satisfies

L ¼ 1 − K̄2ðρ̃PV þG∞ÞL: ð21Þ

Further details on how the infinite-volume limit of

Mðu;uÞ
df;3;L leads to Eq. (12) are provided in Appendix B.

In addition, we describe there how the inverses of K̄2,

K0ðu;uÞ
df;3 , and related quantities are defined, since these are

needed below.

B. Expression for fMðu;uÞ
3

An alternative version of the asymmetric scattering

amplitude is introduced in BS1 and denoted fMðu;uÞ
3 . Its

asymmetry is defined in terms of two- and three-particle
irreducible TOPT amplitudes, which differ from the cor-
responding Bethe-Salpeter kernels. Thus it differs from

Mðu;uÞ
3 , although both symmetrize to the physical scattering

amplitude M3.

The expression for M̃ðu;uÞ
3 (given in Appendix E of BS1)

is identical to that for Mðu;uÞ
3 , Eq. (12), except with K0ðu;uÞ

df;3

replaced by eKðu;uÞ
df;3 :

M̃ðu;uÞ
df;3 ¼ LK̃ðu;uÞ

df;3
1

1þ ðρ̃PV þ G∞ÞLK̃ðu;uÞ
df;3

LT: ð22Þ

Here K̃ðu;uÞ
df;3 is the asymmetric K matrix appearing in

Eq. (7), the new form of the RFT quantization condition
obtained in BS1.

C. Result for asymmetric amplitudes in terms of Rðu;uÞ

We now recall the expression for the asymmetric
scattering amplitude in terms of the R matrix [29,30].
For reasons that will become clear shortly, we give the
amplitude a different name from those discussed earlier,

calling itMR;ðu;uÞ
df;3 . We use the form given in Eqs. (15)–(19)

of Ref. [31], which, converted into our notation, becomes8

MR;ðu;uÞ
df;3 ¼ L̃Rðu;uÞ 1

1 − L̃Rðu;uÞ L̃; ð23Þ

L̃ ¼ M̄2

1

1þG∞M̄2

¼ 1

1þ M̄2G∞ M̄2; ð24Þ

where

M̄2ðk;pÞlm;l0m0 ¼ δ̄ðk − pÞδll0δmm0MðlÞ
2 ðq�2;kÞ; ð25Þ

with MðlÞ
2 being the lth partial wave of the two-particle

scattering amplitude. Using the result

M̄2 ¼ K̄2

1

1þ ρ̃PVK̄2

; ð26Þ

which follows from Eq. (A6), we find

L̃ ¼ 1

1þ K̄2ðρ̃PV þ G∞Þ K̄2 ¼ K̄2

1

1þ ðρ̃PV þ G∞ÞK̄2

:

ð27Þ

Before comparing to the earlier expressions (12) and
(22), we discuss the second technical issue alluded to

above. This issue is whetherMR;ðu;uÞ
df;3 should be equated to

Mðu;uÞ
df;3 or to M̃ðu;uÞ

df;3 . All three amplitudes symmetrize to the
same quantity, Mdf;3, but this does not guarantee equiv-
alence before symmetrization. Furthermore, as we have
already noted, the analysis of Ref. [31] uses a different,

partially symmetrized version of Mðu;uÞ
df;3 (which also

symmetrizes to Mdf;3). In Ref. [31], it is implicitly
assumed that this last version of the asymmetric amplitude

is equal to MR;ðu;uÞ
df;3 . However, since the R-matrix para-

metrization is not obtained using Feynman or TOPT
diagrams, but rather is a form constructed solely to satisfy
s-channel unitarity, we see no fundamental way of con-
necting it to any of the diagram-based definitions. We also

see no sense in which either Mðu;uÞ
df;3 or M̃ðu;uÞ

df;3 (or the
partially symmetrized version of the former) is better suited
to an R-matrix parametrization.
We propose that the resolution to this conundrum is that

Rðu;uÞ is intrinsically ambiguous, and that, with suitable

choices of this quantity, we can equate MR;ðu;uÞ
df;3 to either

Mðu;uÞ
df;3 or M̃ðu;uÞ

df;3 (or to the partially symmetrized version of
the former, as done in Ref. [31]). To say it differently, we
propose that the parametrization of M3 in terms of Rðu;uÞ
involves a redundancy, such that a family of choices of
Rðu;uÞ leads to the same physical scattering amplitude.
We stress that we are not suggesting that any ambiguity

arises in the relation between Rðu;uÞ and MR;ðu;uÞ
df;3 —for a

given choice of the latter quantity (including its subthresh-
old continuation), we expect that Rðu;uÞ is uniquely
determined. The ambiguity arises in the definition of

8In the original works that introduce this form [29,30], a
different choice ofG∞ was used than that we use here, Eq. (A10).
In particular, the cutoff function HðkÞ was replaced with a hard
cutoff, and barrier factors were not included. However, as noted
in Ref. [31], the derivation of s-channel unitarity—which is the
essential property of this form—goes through for all choices of
G∞ that have the same residues of the on-shell poles, which is the
case for the choices used here.
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MR;ðu;uÞ
df;3 itself.9 The relations derived below demonstrate

a posteriori the validity of our proposal, because they show

that the expressions given above for both Mðu;uÞ
df;3 and

M̃ðu;uÞ
df;3 can be rewritten exactly in the R-matrix form.

D. Combining results

Returning to the main line of argument, we note that the
external integral operators in the two expressions, Eqs. (12)
and (23), are related by

L̃ ¼ LK̄2 ¼ K̄2LT: ð28Þ

Thus, Eq. (23) can be rewritten as10

MR;ðu;uÞ
df;3 ¼ LK̄2Rðu;uÞ 1

1 − LK̄2Rðu;uÞ K̄2LT ð29Þ

¼ L
1

K̄−1
2 ½Rðu;uÞ�−1K̄−1

2 − K̄−1
2 L

LT: ð30Þ

Comparing this to a slightly rewritten version of Eq. (12),

Mðu;uÞ
df;3 ¼ L

1

½K0ðu;uÞ
df;3 �−1 þ ðρ̃PV þG∞ÞL

LT; ð31Þ

we observe that these expressions match if and only if

½K0ðu;uÞ
df;3 �−1 ¼ K̄−1

2 ½Rðu;uÞ�−1K̄−1
2 − ðK̄−1

2 þ ρ̃PV þ G∞ÞL
ð32Þ

¼ K̄−1
2 ½Rðu;uÞ�−1K̄−1

2 − K̄−1
2 ; ð33Þ

where the second step follows from Eq. (13). This can be
rewritten as

K0ðu;uÞ
df;3 ¼ K̄2Rðu;uÞK̄2

1

1 −Rðu;uÞK̄2

; ð34Þ

or, equivalently, as an integral equation

K0ðu;uÞ
df;3 ¼ K̄2Rðu;uÞK̄2 þ K̄2Rðu;uÞK0ðu;uÞ

df;3 : ð35Þ

The inverse relation can also be given, as discussed below.

Reversing the algebraic steps, we conclude that, if K0ðu;uÞ
df;3

and Rðu;uÞ are related in this manner, then Mðu;uÞ
df;3 can be

written in the R-matrix form of Eq. (23).
We can follow exactly the same steps if we equate the

result for M̃ðu;uÞ
df;3 , Eq. (22), to MR;ðu;uÞ

df;3 . Thus, with a

different choice of Rðu;uÞ, we have

K̃ðu;uÞ
df;3 ¼ K̄2Rðu;uÞK̄2

1

1 −Rðu;uÞK̄2

: ð36Þ

The relations (34) and (36) are simpler than that between
(a third choice of) Rðu;uÞ and Kdf;3 obtained in Ref. [31].
This is perhaps to be expected as both are asymmetric
quantities. We note that the new relations are consistent
with the fact that both the R and K matrices are purely real.
The appearance of factors of K̄2 “wrapping” Rðu;uÞ is a
result of the choice in the R-matrix approach of pulling
out the dimer scattering amplitude as an explicit external
factor—see Fig. 2(a) of Ref. [31].
A technical point concerns the integrals over intermedi-

ate momenta that are implicit in Eqs. (34) and (36).
Expanding the geometric series, there are terms of the
form …Rðu;uÞK̄2Rðu;uÞ…, which lead to an integral over

the spectator-momentum associated with KðlÞ
2 . If there are

narrow resonances in a given channel, then KðlÞ
2 can have

poles on the real axis, and one must specify how to do the
integrals. These can be dealt with either by using a pole
prescription or by generalizing the principal value (PV)

prescription used to define KðlÞ
2 , which can move the poles

out of the relevant kinematic range [11]. We prefer the latter
approach, as this generalized PV prescription is needed to
derive the quantization condition of Eq. (4) in the case

where KðlÞ
2 has poles.

In fact, although KðlÞ
2 and K0ðu;uÞ

df;3 both depend on the
choice of PV prescription, it turns out that all choices of
Rðu;uÞ are prescription independent. The key fact here is
that the combination K̄−1

2;L þ F̃ is, by construction, inde-

pendent of the prescription. This in turn implies that L̃ is
also prescription independent, since it can be written

L̃ ¼ lim
L→∞

1

K̄−1
2;L þ F̃ þ G̃

: ð37Þ

Finally, using Eq. (23) and the fact that MR;ðu;uÞ
df;3 is

prescription independent (which follows from the prescrip-
tion independence of M3 and Dðu;uÞ), we see that Rðu;uÞ
must also be independent of the PV prescription. In this

sense, Rðu;uÞ is a “more physical” quantity than K0ðu;uÞ
df;3 or

K̃ðu;uÞ
df;3 . We note, however, that Rðu;uÞ does depend on the

cutoff function, since that dependence enters through G∞

and is not canceled.

9A potentially confusing point is that, in Ref. [31], the
amplitude MR;ðu;uÞ

df;3 is called Ap0p, with no explicit indication
that it is an asymmetric quantity. We stress that Ap0p is
asymmetric and is related to M3 by the symmetrization pro-
cedure of Eq. (7) of Ref. [31].

10The inverses appearing in this section and the next are
defined in Appendix B.
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IV. EXPRESSING THE QUANTIZATION
CONDITION IN TERMS OF Rðu;uÞ

We are now ready to combine the results obtained above
to rewrite the quantization condition in terms of Rðu;uÞ.
For definiteness, we first consider the choice of Rðu;uÞ that
is related to K0ðu;uÞ

df;3 by Eq. (34), and thus consider the
form of the quantization condition containing the latter
quantity, Eq. (4). We discuss the other choices of Rðu;uÞ
subsequently.
We start from Eq. (33), from which follows

½Rðu;uÞ�−1 ¼ K̄2 þ K̄2½K0ðu;uÞ
df;3 �−1K̄2: ð38Þ

This can be rewritten as

Rðu;uÞ ¼ K̄−1
2 − ½K̄2 þK0ðu;uÞ

df;3 �−1 ð39Þ

¼ K̄−1
2 K0ðu;uÞ

df;3 K̄−1
2

1

1þK0ðu;uÞ
df;3 K̄−1

2

: ð40Þ

The key observation is that the quantity Xðu;uÞ appearing in
the quantization condition, Eq. (6), satisfies

lim
L→∞

ð2ωL3ÞXðu;uÞð2ωL3Þ ¼ Rðu;uÞ; ð41Þ

where the factors of ð2ωL3Þ arise from Eq. (B7). It follows
that, if the finite-volume corrections to this result are
exponentially suppressed, i.e., if

½ð2ωL3ÞXðu;uÞð2ωL3Þ�klm;pl0m0 ¼ ½Rðu;uÞ�klm;pl0m0

þOðe−mLÞ; ð42Þ

then the quantization condition (4) can be rewritten as

det ½H̃ − ð2ωL3Þ−1Rðu;uÞð2ωL3Þ−1� ¼ 0: ð43Þ

Here Rðu;uÞ is the matrix form of the infinite-volume
amplitude, obtained in the usual way

½Rðu;uÞ�klm;pl0m0 ≡Rðu;uÞðk;pÞlm;l0m0 ;

fk;pg ∈ ð2π=LÞZ3; ð44Þ

i.e., by restricting the momenta to the finite-volume set.
To discuss the validity of Eq. (42), we consider the

definition of Xðu;uÞ, Eq. (6). Expanding out the geometric

series, we find terms of the form…K0ðu;uÞ
df;3 K̄−1

2;LK
0ðu;uÞ
df;3 …. As

shown in Eq. (B8) this goes over to …K0ðu;uÞ
df;3 K̄−1

2 K0ðu;uÞ
df;3 …

in the infinite-volume limit, with the intermediate momen-
tum sums over spectator momenta converted to integrals.

However, if KðlÞ
2 has zeros within the kinematic range

of interest (which ranges up to the four pion threshold for
two-particle scattering), then the difference between sum
and integral over the resulting poles in K−1

2 will lead to
power-law corrections to Eq. (42), which would invalidate

the quantization condition (43). Zeros in KðlÞ
2 (along the

real q�22;k axis) occur when the phase shift passes through nπ
with n ∈ Z and have no particular physical significance.
Excluding such cases would be a major restriction on the
applicability of Eq. (43).
In fact, we do not think that such cases need to be

excluded. The point is that we expectRðu;uÞ to be finite in the
vicinity of positions where KðlÞ

2 (and thus MðlÞ
2 ) has zeros.

This is because, as noted above, Rðu;uÞ is defined in the

expression forMdf;3 with factors ofM
ðlÞ
2 pulled out on both

sides [as can be seen from Eq. (23)]. Thus the effects of a

vanishing MðlÞ
2 are already included. Assuming so, then

Eq. (34) shows that K0ðu;uÞ
df;3 vanishes at such positions—

specifically, K0ðu;uÞ
df;3 ðk;pÞlm;l0m0 ¼ 0 if K2ðkÞlm ¼ 0 or

K2ðpÞl0m0 ¼ 0. This implies that the divergences in K̄−1
2

occurring in the expression for Xðu;uÞ are canceled by the

behavior of K0ðu;uÞ
df;3 . Thus we conclude that Eq. (43) is a

legitimate form of the quantization condition.
We can repeat the arguments just given using the

quantization condition written in terms of K̃ðu;uÞ
df;3 , Eq. (7),

and the relation between K̃ðu;uÞ
df;3 and a different choice for

Rðu;uÞ given in Eq. (36). The result is that the quantization
condition can be written in exactly the form of Eq. (43),
except with the new choice of Rðu;uÞ. One disadvantage of
this choice of Rðu;uÞ is that it is not Lorentz invariant. This
follows because it is defined in terms of the TOPT

asymmetric amplitude M̃ðu;uÞ
3 , which depends on the

choice of frame used to define the time axis. By contrast,

the form ofRðu;uÞ obtained by equatingMR;ðu;uÞ
df;3 toMðu;uÞ

df;3

is Lorentz invariant, as long as the relativistic form of G̃
is used.

V. SUMMARY AND OUTLOOK

The main result of this work is the demonstration that the
three-particle quantization condition for scalar particles
with a Z2 symmetry obtained in the RFT approach in
Ref. [1] (and extended in BS1) can be rewritten in terms of
the R matrix of Refs. [29,30] in the simple form

det ½K̄−1
2;L þ F̃ þ G̃ − ð2ωL3Þ−1Rðu;uÞð2ωL3Þ−1� ¼ 0:

ð45Þ

This provides the generalization of the s-wave FVU result
of Refs. [3,4], Eq. (8), to all angular momenta of the dimer,
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and shows the equivalence of the RFTand FVU approaches
in general.11 We stress that the derivation of Eq. (45)
requires the use of a smooth cutoff function (as opposed to
a hard cutoff) as well as the presence of the “barrier factors”
in the definition of G̃ [see discussion below Eq. (A10)]. We
note that, while the two-particle interaction enters with a
factor of 1=L3 (contained in K̄2;L), the three-particle
interaction term comes with a 1=L6. This is as expected
based on the overlap amplitudes of particles with wave
functions distributed throughout the volume, and it is
consistent with the results of the threshold expansion
[33–35]. We expect that by taking the nonrelativistic limit
of this form of the quantization condition, one will obtain
the generalization of the NREFT quantization condition of
Refs. [7,8] to all dimer angular momenta.
We have also found that the R matrix is not unique, but

rather that Eq. (45) holds for two different choices ofRðu;uÞ,
which are in turn related to the two different asymmetric
forms of the three-particle K matrix that we have discussed,

namely K0ðu;uÞ
df;3 and K̃ðu;uÞ

df;3 . We have argued that the lack of
uniqueness ofRðu;uÞ is an example of the general result that
asymmetric forms of amplitudes are intrinsically ambigu-
ous, since the process of symmetrization is not invertible.
This is most obviously seen in the fact that one can consider
two different asymmetric forms of the three-particle scat-

tering amplitude, Mðu;uÞ
3 and M̃ðu;uÞ

3 , whose definitions
differ by whether the asymmetry is defined with respect to a
Feynman-diagram-based skeleton expansion [2] or an
expansion in terms of time-ordered perturbation theory
(see BS1).
Looking forward, an important question is how the new,

asymmetric form of the quantization condition, Eq. (45),
compares in practice with the original, symmetric form of
Eq. (1). The advantages of the new form include its
simplicity and the fact that Rðu;uÞ is independent of the
choice of PV prescription. It is also closely connected to
phenomenological analyses of scattering amplitudes,
through which intuition and experience concerning appro-
priate parametrizations of Rðu;uÞ have been developed. The
disadvantage of the new form is that Rðu;uÞ is an asym-
metric amplitude, whose general description requires addi-
tional parameters in comparison to the symmetric K matrix
Kdf;3 that enters Eq. (1). This is clear, for example, in the
threshold expansion worked out in Ref. [16], where a
significant reduction in parameters occurs because of the
symmetry of Kdf;3.

12
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APPENDIX A: SUMMARY OF NOTATION
AND DEFINITIONS

We collect here the definitions of quantities used in the
main text and explain the notation that is used. These
results are drawn from Refs. [1,2,13], and we use the
notation of the latter work (referred to as BS1 in the main
text). We present a bare-bones description here—see these
references for further details.
Configurations of three on-shell particles are described

by denoting one of the particles as the spectator and the
other two as the interacting pair, or “dimer” for short. These
designations are intrinsically asymmetric, and this is used
when defining the asymmetric kernels such as Rðu;uÞ and
K0ðu;uÞ

df;3 , where any initial two-particle interaction is always
chosen to involve the dimer, although subsequently all
three particles interact. For symmetric quantities such as
Kdf;3, the choice of which momentum is denoted the
spectator is irrelevant.
In more detail, for a given total 4-momentum Pμ ¼

ðE;PÞ, the momentum dependence of quantities is speci-
fied by giving the momentum of the spectator, call it k, and
then boosting to the center-of-mass frame (CMF) of the
dimer and decomposing the momentum dependence of
one particle in the dimer into spherical harmonics. Thus
the variables are fk;l; mg. A similar set of variables is
used for both initial and final momenta, so that, for
example, the on-shell scattering amplitude can be written
M3ðk;pÞlm;l0m0 . In infinite volume, k and p are continu-
ous variables.
In the quantization conditions, the spectator momenta are

constrained by the boundary conditions, here chosen to be
periodic in the box size L. Then k ¼ 2π

L n, with n ∈ Z3.
Thus all of the variables become discrete, and we denote the
full set by fklmg, with k a shorthand for the discrete
choices of k. All quantities in the quantization condition
are then matrices in which each of the indices runs over the
set fklmg. For quantities that are initially defined in
infinite volume, the restriction to the finite-volume matrix
versions is exemplified by

Rðu;uÞ
klm;pl0m0 ¼ Rðu;uÞðk;pÞlm;l0m0 ; fk;pg ∈

2π

L
Z3:

ðA1Þ
Two-particle quantities that enter the quantization con-

dition naturally come with associated factors of 2ωkL3,
where ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, with m the particle mass. These

quantities are overlined, to distinguish them from the

11As noted earlier, Eq. (8) is obtained from the original result
for the FVU quantization condition, given in Refs. [3,4], only
after some algebraic manipulations [27]. Presumably, our gen-
eralized result could be rewritten in a form similar to that of the
original works, but we have not attempted this.

12One can also see this in the result for Kðu;uÞ
df;3 one obtains in

leading-order chiral perturbation theory, by extending the calcu-
lations described in Ref. [25].
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infinite-volume two-particle amplitude that they contain,
and given a subscript “L” to emphasize their volume
dependence. For example,

½K̄2;L�klm;pl0m0 ¼ ½ð2ωL3ÞK2�klm;pl0m0 ; ðA2Þ

½K2�klm;pl0m0 ¼ δkpδll0δmm0KðlÞ
2 ðq�2;kÞ; ðA3Þ

½2ωL3�klm;pl0m0 ¼ δkpδll0δmm02ωkL3; ðA4Þ

where KðlÞ
2 is the lth partial wave of the infinite-volume

two-particle K matrix, which depends on the dimer CMF
relative momentum,

q�2;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
2;k=4 −m2

q
; E�2

2;k ¼ ðE − ωkÞ2 − ðP − kÞ2:
ðA5Þ

Following Refs. [1,11], we define K2 using a generalized
PV pole prescription, such that its relation to the physical
two-particle scattering amplitude M2 is

½KðlÞ
2 ðq�2;kÞ�−1 ¼ ½MðlÞ

2 ðq�2;kÞ�−1 − ρ̃ðlÞPVðq�22;kÞ; ðA6Þ

where

ρ̃ðlÞPVðq�22;kÞ ¼ HðkÞ
�
ρ̃ðq�22;kÞ þ

1

32π2
IðlÞPVðq�22;kÞ

�
; ðA7Þ

with the phase space factor given by

ρ̃ðq�22;kÞ ¼
1

16πE�
2;k

(
−ijq�2;kj q�22;k > 0

jq�2;kj q�22;k ≤ 0
: ðA8Þ

IðlÞPV is an arbitrary real, smooth function, which is used to
move poles in K2 out of the kinematic range of interest.
HðkÞ is a smooth cutoff function, which cuts off the sum
over k for jkj ∼m. Examples are given in Refs. [1,6].
The kinematic functions F̃ and G̃ are

F̃klm;pl0m0 ¼ δkp
HðkÞ
2ωkL3

�
1

L3

XUV
a

−PV
Z

UV d3a
ð2πÞ3

�
×
Ylmða�kÞ
q�l2;k

1

2!2ωaðb2ka −m2Þ
Yl0m0 ða�kÞ

q�l02;k

;

ðA9Þ

G̃klm;pl0m0 ¼ 1

2ωkL3

Ylmðp�
kÞ

q�l2;k

HðkÞHðpÞ
b2pk −m2

Yl0m0 ðk�
pÞ

q�l02;p

1

2ωpL3
:

ðA10Þ

Here bμka ≡ Pμ − kμ − aμ is a four vector, with kμ ¼
ðωk;kÞ and aμ ¼ ðωa; aÞ, and bkp is defined analogously.

The sum over a in F̃ runs over the finite-volume set.
Momenta with an asterisk, e.g., a�k and p

�
k, are boosted from

the original frame (with total momentum P) into the CMF
of the dimer. There is some flexibility in the choice of
boost, with two examples being given in Refs. [1] and BS1.
The former leads to a relativistically covariant G̃, in the
sense that the vectors p�

k and k�
p are unchanged (up to

global rotations) when the initial frame is given an arbitrary
boost. We refer to this form of G̃ as the “relativistic form” in
the main text. The harmonic polynomials are defined by

YlmðaÞ ¼
ffiffiffiffiffiffi
4π

p
YlmðâÞjajl; ðA11Þ

with the spherical harmonics chosen to be in the real basis.
The factors of jp�

kjl=q�l2;k in G̃ are called “barrier factors” in
the main text and are needed to assure the smoothness of G̃
when jp�

kj → 0. The superscript UVon the sum and integral
in F̃ indicate an ultraviolet regularization, the nature of
which affects F̃ only at the level of exponentially sup-
pressed terms. Finally, the integral in F̃ is defined by the
generalized pole prescription mentioned above [11].
With these definitions, the finite-volume two-particle

scattering amplitude (defined in Ref. [2]) is given by

½M̄2;L�−1 ¼ ½K̄2;L�−1 þ F̃; ðA12Þ

which in the appropriate L → ∞ limit goes over
to Eq. (A6).

APPENDIX B: INFINITE-VOLUME LIMITS

In this Appendix we provide further details of the
infinite-volume limit needed to obtain Eq. (12) from
Eq. (10), and we discuss the properties of the inverses
that appear in Secs. III D and IV.
To obtain Eq. (12) we need to show that

lim
L→∞

XLðF̃þG̃ÞZL¼ lim
L→∞

XL
1

ð2ωL3Þð2ωL
3ÞðF̃þG̃Þð2ωL3Þ

×
1

ð2ωL3ÞZL ðB1Þ

¼ X∞ðρ̃PV þG∞ÞZ∞; ðB2Þ

with XL; ZL ∈ fK0ðu;uÞ
df;3 ; K̄2;Lg being finite-volume matri-

ces, and X∞, Z∞ their corresponding infinite volume limits,
given in Eqs. (15) and (16). The factors of 1=ð2ωL3Þ
convert the sums over intermediate momenta into the
Lorentz-invariant integrals that are implicit in the
infinite-volume form, Eq. (B2). The remainder of the result
can be obtained using

lim
L→∞

2ωkL3F̃klm;pl0m02ωpL3 ¼ ρ̃PVðk;pÞlm;l0m0 ; ðB3Þ
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lim
L→∞

2ωkL3G̃klm;pl0m02ωpL3 ¼ G∞ðk;pÞlm;l0m0 : ðB4Þ

The first line follows from the results in Appendix B of
BS1, while the second follows from the definitions of G̃,
Eq. (A10), and G∞, Eq. (18).
We now turn to the definition of inverses of infinite-

volume quantities, beginning with K̄−1
2 . Given our integra-

tion measure, this should satisfyX
l00m00

Z
r
K̄−1

2 ðk; rÞlm;l00m00K̄2ðr;pÞl0m00;l0m0

¼ δ̄ðk − pÞδll0δmm0 ; ðB5Þ

from which it follows that

K̄−1
2 ðk;pÞlm;l0m0 ≡ δ̄ðk − pÞδll0δmm0 ½KðlÞ

2 ðq�2;kÞ�−1: ðB6Þ

A drawback of our notation is that, although the infinite-
volume limit of K̄2;L, given in Eq. (16), looks natural, the
same is not true of the inverse

lim
L→∞

ð2ωL3Þ½K̄2;L�−1ð2ωL3Þ ¼ K̄−1
2 : ðB7Þ

The extra factors of ð2ωL3Þ are, however, needed so that
the limit of matrix products is as expected. For example, we
have

lim
L→∞

½K0ðu;uÞ
df;3 K̄−1

2;LK
0ðu;uÞ
df;3 �klm;pl0m0

¼ ½K0ðu;uÞ
df;3 K̄−1

2 K0ðu;uÞ
df;3 �ðk;pÞlm;l0m0 ; ðB8Þ

with the matrix multiplications converted to Lorentz-
invariant integrals by the induced factors of ð2ωL3Þ−1.
The only places where these extra factors are not absorbed
are on the ends of expressions, such as in Eq. (41).

The inverses ofK0ðu;uÞ
df;3 andRðu;uÞ appearing in Sec. IVare

defined as in Eq. (B5), e.g.,

X
l00m00

Z
r
½Rðu;uÞ�−1ðk; rÞlm;l00m00Rðu;uÞðr;pÞl0m00;l0m0

¼ δ̄ðk − pÞδll0δmm0 : ðB9Þ

The relation of these inverses to the inverses of their finite-
volume versions display similar peculiarities to that seen in
Eq. (B7), but these relations are not needed in the argu-
ments of the main text.
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