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Abstract

Recently, Kolmogorov-Arnold Networks (KANs) have been proposed as an alternative to multilayer perceptrons, suggesting
advantages in performance and interpretability. We study a typical binary event classification task in high-energy physics
including high-level features and comment on the performance and interpretability of KANs in this context. Consistent
with expectations, we find that the learned activation functions of a one-layer KAN resemble the univariate log-likelihood
ratios of the respective input features. In deeper KANS, the activations in the first layer differ from those in the one-layer
KAN, which indicates that the deeper KANs learn more complex representations of the data, a pattern commonly observed
in other deep-learning architectures. We study KANs with different depths and widths and we compare them to multilayer
perceptrons in terms of performance and number of trainable parameters. For the chosen classification task, we do not find
that KANs are more parameter efficient. However, small KANs may offer advantages in terms of interpretability that come

at the cost of only a moderate loss in performance.

Introduction

Classifying events as signal or background is a crucial ingre-
dient of data analysis at collider experiments. At the Large
Hadron Collider (LHC), separating small signals from large
backgrounds is an omnipresent challenge. To achieve higher
precision in the analysis of collider data, excellent classifi-
ers are necessary. Machine-learning-based classifiers have a
long history in high-energy physics (HEP). For example, the
observation of electroweak production of single top quarks
in 2009 at the Tevatron [1, 2] was aided by boosted decision
trees and by shallow neural networks, i.e., multilayer percep-
trons (MLPs) with one hidden layer. With the development
of deep neural networks, MLPs with several hidden layers
have been proposed for HEP classification tasks [3] and have
become a standard tool for event classification, particle iden-
tification, fast simulations and many more applications at
the LHC [4-8].

The strong performance of MLPs comes with a trade-
off in terms of interpretability. Interpretability, i.e., the
“ability to explain or to present in understandable terms to
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a human” [9], remains a challenge for MLPs, particularly
for deep networks with many trainable parameters. At the
same time, understanding what such a model has learned
about the underlying physics is of genuine interest in phys-
ics applications. Several methods have been developed to
address this challenge of explaining the outputs of MLPs
for given input examples [10—12]. Techniques such as Shap-
ley values [13] and permutation feature importance [14] are
established methods for assessing the contribution of indi-
vidual input features to the model output. Surrogate models,
such as LIME [15], aim to explain the reasoning of complex
architectures by approximating them with simplified models.
On the other hand, approaches like Neural Additive Mod-
els [16] provide interpretability by constructing models that
are transparent by design.

Recently, Kolmogorov—Arnold Networks (KANs) have
been proposed as an alternative to MLPs [17]. While MLPs
are grounded in the universal approximation theorem [18],
KANSs are motivated by the Kolmogorov—Arnold represen-
tation theorem [19]. The layers of the KAN have learnable
activation functions on the edges that are summed on the
nodes. In contrast, MLP layers use learnable weights on the
edges as inputs to fixed activation functions on the nodes.
Many approaches have been explored to improve the expres-
siveness and performance of MLPs by introducing learn-
able activation functions. Examples include implementations
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based on splines [20, 21], other parametric functions [22-25]
or even neural networks [26] as activation functions.

While networks based on the Kolmogorov—Arnold
representation theorem were proposed before [27-34],
recently the capabilities of KANs in terms of performance
and interpretability were highlighted [17]. In Ref. [17],
KANs were found to have promising performance with a
substantially smaller number of trainable parameters than
MLPs. KANs offer advantages in terms of interpretability,
complementarily to existing explainability methods
applicable to both KANs and MLPs, due to their shallower
structures with significantly fewer nodes than typical MLPs.
Each edge in a KAN contains multiple trainable parameters
that determine the shape of a single function. Therefore, an
entire KAN can be represented as a comprehensive graph. In
addition, the potential for interpretability by approximating
the learned activation functions symbolically with a set of
known functions was discussed. Ref. [17] has sparked active
discussion on the potential advantages of KANs and their
relation to MLPs [35-86].

We apply KANSs to a typical HEP event classification
task. As an example, we choose the binary separation of
the associated production of a Higgs boson with a single
top quark (tH) and with a top quark and an anti-top quark
(ttH) at the LHC, where the Higgs boson decays to a pair of
photons (H — yy). We study the interpretability of KANs
for this classification task. In addition, we compare KANs
to MLPs in terms of performance and parameter efficiency,
where we use KANs and MLPs with different numbers of
layers and nodes per layer. We document our findings in the
practical training of KANSs. To our knowledge, this is the
first application of KANS to a task in particle physics.

Kolmogorov-Arnold Networks

For the comparison to KANs, we briefly summarize the
concept of MLPs. An MLP consists of multiple layers of
nodes, each connected to nodes in subsequent layers through
weighted edges. The core component of an MLP is the fully
connected layer, which holds the trainable parameters defining
the strength of the connections between nodes of two layers.
Each layer applies an affine transformation, represented by a
weight matrix W and a bias vector b, followed by an activation
function .A. The transformation applied in each MLP layer can

then be writtenas y = A (W} + 75), where X denotes the input

to the layer and y is its output. The activation function
introduces non-linearity in the model and is a hyperparameter
that has to be chosen. Common choices include the rectified
linear unit ReLU(x) = max (0, x), the logistic sigmoid function
o(x), and the hyperbolic tangent function.
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In contrast, KANSs are inspired by the Kolmogorov—Arnold
representation theorem, which states that any continuous
multivariate function f : [0,1]* — R can be represented
as a finite sum of continuous functions of only one
variable. Formally, for any continuous real-valued function
f(x1, x5, ..., x,), continuous functions d)i(,-) exist, such that

2n+1 n
fOx, o x) = ) ¢,.< ¢i].(xj)>, (1
i=1 1

Jj=

where n is the number of variables that parameterize the
multivariate function, and ¢, and ¢;; are univariate functions.
This representation reduces the problem of approximating a
multivariate function to a problem involving only univariate
functions and the sum operation. The objective of the
network training is to approximate these univariate functions
Pijy

Motivated by the theorem, the appropriate network
architecture to approximate a multivariate function of n
variables consists of two layers with » input nodes, 2n + 1
hidden nodes, and a single output node. However, the authors
of Ref. [17] generalized the concept by defining a KAN layer
as a basic building block. As in MLPs, the number of nodes
in these layers can be customized and layers can be stacked
arbitrarily to enhance the performance of the model. Similar
to MLPs, each node in a given layer is connected to each
node of the subsequent layer. For each edge, an individual,
learnable activation function is used. On the nodes, only the
sum operation over all incoming edges is performed.

In the implementation of Ref. [17], the learnable activation
functions are defined as the weighted sum of a B-spline,
expressed by B-spline basis functions B;, and a fixed residual
function, chosen as the sigmoid-linear unit SiLU(x) = x - o/(x):

G+k—1
activation(x) = w, - SiLU(x) + w, - Z ¢; - B;i(x). 2)
i=0

The weights w, , and the basis-function coefficients c; are
the trainable parameters of the spline. The basis functions
B; are chosen as polynomials of degree k, with default value
k = 3. The grid parameter G determines how many basis
functions build the B-spline and serves as a hyperparameter
of the KANs. Furthermore, the domain of the activation
function needs to be chosen and can be updated several
times during network training to match the input range of
the activation function. Specifically, for given parameters &,
G and the domain [#y, 5], a vector i= ((ZPTS A s)
of equidistant knot points is constructed. Then, G + k basis
functions B;‘(x) are recursively defined:

lift. <x<t.
BO — = i+1°
’(x) { 0 otherwise, S
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and for k > 0:
Bk _ X —1 Bk—] Livke1 —X Bk_l
i) =B )+ ——— B, (%). “)
i+k — L i+k+1 7 Ll

The basis functions are only non-zero over a portion of the
interval, allowing the coefficients c; to adapt and change the
overall spline locally. This enables the approximation of
functions without strong assumptions about their functional
form. More details on the implementation can be found in
Ref. [17].

Data Set

As an example for a typical HEP classification task, we use
the separation of 7H from tH production in the H — yy decay
channel at the LHC. Both processes offer complementary
sensitivity to properties of the Yukawa coupling of the top
quark [87, 88], but only #fH production has been observed
so far [89, 90]. In the search for tH production, the H — yy
decay offers one of the most sensitive channels [91, 92], for
which #7H is a major background and hence excellent binary
classification is necessary.

We simulate /7H and tH production' in proton—proton
collisions at a center-of-mass energy of 14 TeV. We use
MadGraph5 aMC@NLO [93] (version 3.5.3) at leading
order in perturbative quantum chromodynamics for the hard-
scattering processes with the NNPDF23 lo as 0130
ged [94] set of parton distribution functions. We use the
five-flavor scheme for the simulation of /fH production.
The four-flavor scheme is chosen for tHproduction for an
improved event modeling [95], where only the dominant
t-channel contribution is considered. Only events with at
least one semi-leptonic top quark decay are simulated.?
For both processes, the factorization and renormalization
scales are set event-by-event to the transverse mass of the
irreducible 2 — 2 system resulting from a k clustering of
the partons in the final state [96]. The events are interfaced
to Pythia 8.3.1 [97] for the H — yy decay, parton shower
and hadronization. We use Delphes 3.5.1 [98] for a fast
simulation of the CMS detector response with the CMS card
with default settings. These settings include jet clustering
with the anti-k; algorithm [99, 100] with a radius parameter
of R = 0.5.

We focus on final states with two photons, at least one
charged lepton (electron or muon), at least one b-jet and
at least one additional jet. The following requirements are

! For tH production, the charge-conjugate process is also included,
but we denote the sum of both processes as tH for simplicity.

2 Final states with 7 leptons are included in the event generation.

applied, where py is the transverse momentum and # is the
pseudorapidity:

e exactly two photons (ordered in py) with p(y;) > 35 GeV
and pr(y,) > 25GeV and n(y ,)| < 2.5;

e invariant diphoton mass in the range
100GeV < m(yy) < 180GeV with p(y))/m(yy) > %

and p1(y,)/m(yy) > 5
e at least one charged lepton with p(¢) > 10GeV and
()] < 2.4
e at least one b-jet with pp(b) > 25GeV and |7(b)| < 2.5;
e at least one additional jet with pp(j) > 25GeV and

[n(H| < 4.7.

After applying these selection criteria, we have 100 000
events for training the classifiers and 33 000 events for
validation during training, for each of the two processes.
To ensure small statistical uncertainties in the metrics
used in this study, we use 100 000 events per process of an
independent test set to evaluate the networks.

We use 22 input features, which include four-vector com-
ponents and high-level features based on photons, charged
leptons, the missing transverse momentum (ETT“iSS) and jets>.
Among the selected jets, we focus on the highest-p b-jet
and the leading jet of the event excluding this b-jet (“addi-
tional jet”). Ten of the features are shown in Fig. 1 for the
two event classes. As it is typical for HEP event classifi-
cation, no single feature provides sufficient discrimination
on its own. Several features show the expected differences
between #fH and tH production. For example, the number
of jets (N(jets)) is larger in #7H production given the second
top quark in the final state, and the pseudorapidity of the
additional jet (n(j)) tends towards larger absolute values for
tH due to the electroweak ¢-channel topology.

The matrix of the Pearson correlation coefficients is
shown in Fig. 2, separately for fH (lower triangle) and tH
production (upper triangle). The 22 features show a non-
trivial correlation structure with strong positive and negative
correlations between some of the features. The correlations
differ significantly in the /fH and tH data sets. For example,
while the distributions of the transverse momentum of the
diphoton system (py(yy)) in Fig. 1 are almost identical for
the two data sets, the correlations of p(yy) with other fea-
tures are not.

3 While most of the high-level features are standard observables, the
variable y/ @ y’” was proposed in Ref. [88] to disentangle ##H and tH
production when testing different CP hypotheses for the top-quark
Yukawa coupling.
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Fig. 1 Distributions of ten example features used for the classification. For distributions with overflow, the overflow is included in the last bin
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Fig.2 Matrix of the Pearson correlation coefficients of all 22 input
features. The upper triangle refers to the tH data set and the lower
triangle refers to the f/H data set. Off-diagonal coefficients with abso-
lute values of at least 10 % are shown as numbers on the plot

Results

We compare KANs and MLPs of different configurations
for the classification of fH and tH events. The KANs
are implemented using the Pykan package from
Ref. [17] in version 0.2.1 together with PyTorch [101]
version 2.3.0. All MLPs are implemented with
TensorFlow 2.17.0 [102].

We scale all input features before feeding them to the
networks. A common approach for MLPs is studentization,
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where the sample mean is subtracted from each variable and
the values are divided by the sample standard deviation.
We apply this method for all MLP trainings. For KANs,
we apply a different transformation to avoid the impact of
outliers far away from the bulk of the distributions, which
are common in typical HEP data sets. KANs require the
domain of each learnable activation function to be defined by
the range of the input for each spline. Outliers can extend the
domain boundaries beyond the bulk of the distributions. As
aresult, the spline that acts on the majority of events may be
parametrized by only a small fraction of the basis functions,
which reduces the flexibility of curve approximation for
the most relevant domain. To mitigate this, we first apply
a logarithmic transformation to all transverse momenta
and the transverse top quark mass, ¥ = In(1 + x), where
x denotes the observable in units of GeV. We then apply
min-max scaling in the range [0, 1] and initialize the spline
domains accordingly.

The output layers of all trained models consist of a single
node. Although KANs learn activation functions and a
learnable function can also be placed on the output node, we
choose the sigmoid function to normalize the model outputs
to the range (0, 1). In addition, for the MLPs, we choose the
sigmoid function as output activation. For all trainings, we
use the binary cross-entropy as a loss function. We consider
tH events as signal (label 1) and /7H as background (label 0).

We use the Adam [103] optimizer to train our models.
For the KAN trainings, we also compare with the
Limited-memory Broyden—-Fletcher—Goldfarb—Shanno
(L-BFGS) [104] optimizer, as it was used in Ref. [17]. For
Adam, we find stable trainings for all tested learning rates
in the range [10*, 1073] and select 3 X 10~* for all trainings.
The training is performed in mini-batches of batch size 256.
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Trainings with the L-BFGS optimizer are performed using
the entire data set in full-batch training with a learning rate of
1073, No significant performance differences between KANs
trained with the two optimizers were found and hence we
use Adam for all trainings discussed below due to its faster
convergence. To ensure that all models converge during
training and to allow for a fair performance comparison, we
employ early stopping. The loss obtained from the validation
data set is monitored during training and if there is no
improvement over 25 epochs, the training is terminated. The
model parameters from the epoch with the lowest loss on the
validation set are used for the comparisons.

We compare multiple KAN structures: The first model
uses the configuration inspired by the Kolmogorov—Arnold
theorem and hence consists of two layers with a node struc-
ture of 22—-45-1. This is compared to the simplest possi-
ble KAN with only a single layer (22-1), as well as other
models with varying widths and depths. For these models,
we choose node structures of 22—-3—1, 22—-10-5-2-1 and
22-45-10-5-2-1. We use the default grid parameter, G = 5,
and the default degree of the basis functions, k = 3.

The evolution of the loss and accuracy* over the training
is shown in Fig. 3 for three KANs. As expected, the single-
layer KAN shows the lowest performance among these mod-
els but still reaches an accuracy of 81.5% on the validation
set, which is only about 1.5 percentage points lower than the
accuracy of the two-layer and four-layer KANs. The latter
two models reach similar accuracies and loss values. The

* The accuracy is defined as the fraction of correctly classified exam-
ples with a decision threshold of 0.5 in the network output.

Training epoch Training epoch

two-layer KAN, with its wide second layer, has the highest
number of trainable parameters in this comparison. It con-
verges within the fewest number of training epochs and at
the same time shows the largest generalization gap. While
the range of the input variables is fixed with the min—-max
scaling, this is not the case for the input range of subsequent
layers in the networks. Therefore, we use the default setting
to update the domains ten times within the first 50 epochs
of training. Training instabilities are visible at these epochs.

The output distributions of the test data set classified by
these KANs are shown in Fig. 4. The separation of the two
classes is clearly visible with the networks accumulating
the majority of the events close to the respective label. Also
here, only slight differences are visible between the two- and
the four-layer network, while the one-layer KAN achieves a
visibly worse separation.

A possible advantage of KANs over MLPs lies in their
potential for interpretability. While the patterns learned by
MLPs are usually embedded in large matrices of trainable
parameters and thus hard to understand, multiple trained
KAN parameters can be visualized in form of a single
spline. As demonstrated in Ref. [17], patterns learned by
KANSs can often be understood more easily. However, these
examples are much lower in dimensionality and complexity
than typical HEP machine-learning tasks. In our study with
22 input features, we find that the interpretability of wide
models, such as the 22-45-1 KAN, is limited. For instance,
this particular model consists of more than 1000 learnable
activation functions. Its visualization is, hence, complex
and difficult for humans to interpret. Therefore, we focus on
shallow KAN structures for the interpretability.
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Fig.4 Output distributions
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Fig.5 Graphical representation of the trained KAN with a single
layer (KAN 22-1). The red curves represent the learned activation
functions, while the blue curve shows the sigmoid function used to

In Fig. 5, the one-layer KAN is depicted together with
its learned activation functions. The corresponding figure
for the KAN with a shallow second layer (22-3—-1) is shown
in the Appendix. In the following, we discuss the interpret-
ability of the learned activation functions.

The strength of the edges is indicated by the grayscale and
it is estimated by the L;-norms of the learned activations,
defined as the mean magnitude over the examples as

N(events)

1
=N(events) 2 ||

i=1

|p)l, &)

These values directly indicate the importance of the dif-
ferent input features for the one-layer KAN classification
output due to the simple summation of input features trans-
formed by a single activation function on its output node.
The feature importances obtained from the commonly used
techniques of permutation feature importance and Shap-
ley values yield similar patterns. This confirms that the L,
-norms in the one-layer KAN effectively capture feature
importance. This network is expected to exploit the features
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normalize the network output. The L;-norm of each spline is given,
which also defines the grayscale of each edge

with strong discrimination between the two classes. Values
of the L;-norms close to zero are found for the azimuthal
angles, which provide no discrimination power on their
own. The largest values of the L;-norms are found for the
lepton multiplicity, with which the network can identify di-
leptonic signatures present in a fraction of the 7H events but
mostly absent in the tH process, and for variables based on
(pseudo-)rapidity differences as well as the jet multiplicity.
These reflect the good separation that can be achieved with
these variables on their own. In deeper KANs, where multi-
ple learnable functions transform each feature and their out-
puts are combined in a more complex manner, the L;-norms
are not directly interpretable as feature importance scores.
In Fig. 6, the learned activation functions are shown for
five examples of features. These features were chosen to rep-
resent a set of variables with different shapes of their distri-
butions, where the corresponding splines of the single-layer
KAN have high L;-norms. The distributions of the pre-pro-
cessed features are also shown for the two classes, together
with the univariate log-likelihood ratios of the signal over
the background. As expected in binary classification, where
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Fig.6 Left: distributions of five
examples of pre-processed input
features for tH and ffH produc-
tion together with the corre-
sponding log-likelihood ratio.

A ratio is shown if there are at
least 25 examples of each pro-
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the optimal decision boundary is related to the log-likeli-
hood ratio of the classes, the activation functions learned by
the one-layer KAN resemble these univariate log-likelihood
ratios of the respective input features. This resemblance
is anticipated, because the one-layer KAN sums univari-
ate functions of each input feature, aligning with the addi-
tive form of the multivariate log-likelihood ratio, which

Scaled yi@yYY

decomposes into a sum of univariate log-likelihood ratios
when features are independent. However, due to correla-
tions, differences between the learned activation functions
and the univariate log-likelihood ratios may arise, as we find,
for example, in the normalization of the spline transforming
the #(j) variable. The corresponding splines obtained from
the training of the 22-3—1 KAN are also shown in the same
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Fig.7 ROC curves of selected models labeled with their node counts
and the AUC scores. Results from two example MLPs and three
example KANs are shown, including deep and shallow models

panels. These differ clearly from the likelihood ratios and the
22—1 KAN splines. This is consistent with the expectation
that multi-layer KANs learn more abstract representations
of the data. As the splines acting on the same input feature
are allowed to have different functional shapes or L;-norms,
each of the three nodes of the internal layer of the 22-3-1
KAN captures different aspects of the data.

For comparison to the KANs, we train several MLPs with
different configurations: two shallow MLPs, each with only
a single hidden layer of 8 and 32 nodes, respectively, as
well as deeper networks with up to five hidden layers. The
largest model has a node count of 22-256—128-64—-32-16—-1.
The hidden layers are activated by ReLU functions. The
comparison includes models with a number of trainable
parameters as small as approximately 200 to approximately
60 000.

Receiver operating characteristic (ROC) curves for
selected models are shown in Fig. 7, including models with
deep and shallow structures for both, MLPs and KANs. The
overall shape of the ROC curves of KANs and MLPs is very
similar, except for the one-layer KAN, where the area under
the curve (AUC) is considerably lower. We observe that an
MLP with only a single hidden layer reaches an AUC> of
0.906, only slightly below the AUCs obtained by our best
MLP (0.908) and the best KAN, where the 22—45-1 net-
work also reaches an AUC of 0.908. We find only slight
differences in classification performance between well-tuned
KANs and MLPs.

5 The uncertainty in the quoted AUCs from the limited size of the
test data set are approximately 6 x 107,

@ Springer

To evaluate the parameter efficiency, we compare the per-
formance of KANs and MLPs as a function of the number of
trainable model parameters. A small number of parameters
is favorable for a given performance, as smaller models are
computationally more efficient, better interpretable (if at all
possible), and less prone to overfitting. In Fig. 8, two metrics
often used in HEP for classification performance evaluation
are included: the AUC, and the background rejection for a
fixed signal efficiency, here chosen as 70 %. The rejection is
defined as the inverse of the efficiency for a given threshold
on the network output. Overall, we find that for very low
numbers of parameters, the MLPs outperform the KANSs,
while for medium and high numbers of parameters, the per-
formance of KANs and MLPs is similar. The smallest MLP
trained with only eight nodes in the hidden layer has only
193 parameters and has reached a background rejection of
12.9 already.® A similar value is achieved by the 22-3—1
KAN, which has 556 trainable parameters. While increas-
ing the number of parameters of the MLPs, their rejection
saturates at around 14.9. The KANs achieve rejections rang-
ing from 11.4 for the single-layer network to 15.2 for the
22-45-1 KAN. The deeper KANs from this study show a
similar performance. Instead of varying the node count of
KAN:Ss, the number of model parameters can be increased
as well by raising the grid parameter G. For illustration,
the 22-45-1 KAN is included in Fig. 8 when trained with
G = 10and G = 25. For KANs with grid parameters consid-
erably higher than the default of G = 5, we find that these
models overtrain faster and generalize worse.

Conclusions

We studied the application of Kolmogorov—Arnold Net-
works (KANS) to a typical binary event classification task in
high-energy physics (HEP). The data set used contains simu-
lated events of Higgs-boson production in association with
a top quark pair and with a single top quark in the H — yy
decay channel, where 22 discriminative input features were
considered in the network trainings. We presented studies on
the interpretability of KANs, compared their performance
and parameter efficiency to traditional multilayer percep-
trons (MLPs), and documented our findings in the practical
training of KANs. To our knowledge, this is the first time
KANSs have been applied in the field of particle physics.
As long as the KANs have a hidden layer with multi-
ple nodes, we observe very similar performance to MLPs.
Numerically, our best KAN is even slightly better than
the best MLP, but this difference is very small and most

% The uncertainty in the quoted rejection values from the limited size
of the test data set is approximately 0.2.
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likely practically irrelevant when considering systematic
uncertainties in a physics analysis. These findings seem to
contradict Ref. [17], where a clear improvement over the
performance of MLPs was found in several examples. In
these examples, loss values were reached that were orders of
magnitude lower than those of MLPs, for example, in fitting
f(x,y) = x - y. However, those examples are of much lower
dimensionality and complexity than our classification task.
We suppose that the examples in Ref. [17] are especially
well-suited for learning the Kolmogorov—Arnold represen-
tation of the underlying functional relationship. However,
our data set includes features with a stronger variability in
shape. The representations that have to be learned to solve
our classification task may hence not be particularly suited
for the KAN architecture.

We find that MLPs outperform KANs for a very low
number of trainable parameters. However, we note that for
our binary classification task, which we consider typical
in terms of complexity for event classification at the LHC,
using such very small models only comes at a moderate cost
regarding performance. Similar performance of MLPs and
KAN:Ss is then reached for a number of trainable parameters
above approximately 1000. We conclude that for our task
KANSs are not more parameter efficient than MLPs.

In terms of interpretability, we find that small KANs
indeed offer advantages. For a one-layer KAN, we observe
that the learned activation functions resemble the univari-
ate log-likelihood ratios of the input features which these
functions act on. In addition, the L;-norms of the activa-
tion functions offer a straightforward interpretation of the
importance of different input features for such KANs with
only one layer. Somewhat larger KANs may still offer an
illustrative visualization of the activation functions, which
we regard as an intrinsic interpretability advantage of KANS.
However, for KANSs of greater depth or with wider layers,
interpretability seems challenging.

Number of trainable parameters

Because of their better interpretability compared to
MLPs, we conclude that KANs are a promising alternative
for classification tasks in HEP when the performance of
small KANs is sufficient or when moderate performance
losses are acceptable in favor of interpretability. We believe
that more research on applying KANs in HEP tasks is neces-
sary. This study primarily focuses on the performance and
parameter efficiency of KANs compared to MLPs, as well
as the interpretability of small KANs. The interpretability of
deeper KANs should be explored in future studies to address
this limitation of our current work. Mechanistic interpret-
ability techniques may provide systematic ways to under-
stand the learned representations in these more complex
models, and exploring symbolic regression to approximate
the learned activation functions could open new avenues for
applying KANS as a tool in HEP. In addition, assessing KAN
performance and interpretability in HEP regression tasks
may further broaden their applicability beyond classification.

Appendix

The graphical representation of the trained KAN 22-3-1 is
shown in Fig. 9. We observe a clear hierarchy in the impor-
tance of the different input features for the KAN output, as
indicated by the L-norms on the input nodes. For the edges
with large L,-norms, we observe the tendency towards sim-
ple and smooth activation functions. For edges with lower
values of the L-norms, we also observe more complex acti-
vation functions with several local minima and maxima.
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Fig.9 Graphical representation of the trained KAN in the 22-3-1
configuration, i.e., with a second layer with three nodes. The red
curves represent the learned activation functions, while the blue curve
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