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Abstract
Recently, Kolmogorov-Arnold Networks (KANs) have been proposed as an alternative to multilayer perceptrons, suggesting 
advantages in performance and interpretability. We study a typical binary event classification task in high-energy physics 
including high-level features and comment on the performance and interpretability of KANs in this context. Consistent 
with expectations, we find that the learned activation functions of a one-layer KAN resemble the univariate log-likelihood 
ratios of the respective input features. In deeper KANs, the activations in the first layer differ from those in the one-layer 
KAN, which indicates that the deeper KANs learn more complex representations of the data, a pattern commonly observed 
in other deep-learning architectures. We study KANs with different depths and widths and we compare them to multilayer 
perceptrons in terms of performance and number of trainable parameters. For the chosen classification task, we do not find 
that KANs are more parameter efficient. However, small KANs may offer advantages in terms of interpretability that come 
at the cost of only a moderate loss in performance. 

Introduction

Classifying events as signal or background is a crucial ingre-
dient of data analysis at collider experiments. At the Large 
Hadron Collider (LHC), separating small signals from large 
backgrounds is an omnipresent challenge. To achieve higher 
precision in the analysis of collider data, excellent classifi-
ers are necessary. Machine-learning-based classifiers have a 
long history in high-energy physics (HEP). For example, the 
observation of electroweak production of single top quarks 
in 2009 at the Tevatron [1, 2] was aided by boosted decision 
trees and by shallow neural networks, i.e., multilayer percep-
trons (MLPs) with one hidden layer. With the development 
of deep neural networks, MLPs with several hidden layers 
have been proposed for HEP classification tasks [3] and have 
become a standard tool for event classification, particle iden-
tification, fast simulations and many more applications at 
the LHC [4–8].

The strong performance of MLPs comes with a trade-
off in terms of interpretability. Interpretability, i.e., the 
“ability to explain or to present in understandable terms to 

a human” [9], remains a challenge for MLPs, particularly 
for deep networks with many trainable parameters. At the 
same time, understanding what such a model has learned 
about the underlying physics is of genuine interest in phys-
ics applications. Several methods have been developed to 
address this challenge of explaining the outputs of MLPs 
for given input examples [10–12]. Techniques such as Shap-
ley values [13] and permutation feature importance [14] are 
established methods for assessing the contribution of indi-
vidual input features to the model output. Surrogate models, 
such as LIME [15], aim to explain the reasoning of complex 
architectures by approximating them with simplified models. 
On the other hand, approaches like Neural Additive Mod-
els [16] provide interpretability by constructing models that 
are transparent by design.

Recently, Kolmogorov–Arnold Networks (KANs) have 
been proposed as an alternative to MLPs [17]. While MLPs 
are grounded in the universal approximation theorem [18], 
KANs are motivated by the Kolmogorov–Arnold represen-
tation theorem [19]. The layers of the KAN have learnable 
activation functions on the edges that are summed on the 
nodes. In contrast, MLP layers use learnable weights on the 
edges as inputs to fixed activation functions on the nodes. 
Many approaches have been explored to improve the expres-
siveness and performance of MLPs by introducing learn-
able activation functions. Examples include implementations 
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based on splines [20, 21], other parametric functions [22–25] 
or even neural networks [26] as activation functions.

While networks based on the Kolmogorov–Arnold 
representation theorem were proposed before  [27–34], 
recently the capabilities of KANs in terms of performance 
and interpretability were highlighted [17]. In Ref.  [17], 
KANs were found to have promising performance with a 
substantially smaller number of trainable parameters than 
MLPs. KANs offer advantages in terms of interpretability, 
complementarily to existing explainability methods 
applicable to both KANs and MLPs, due to their shallower 
structures with significantly fewer nodes than typical MLPs. 
Each edge in a KAN contains multiple trainable parameters 
that determine the shape of a single function. Therefore, an 
entire KAN can be represented as a comprehensive graph. In 
addition, the potential for interpretability by approximating 
the learned activation functions symbolically with a set of 
known functions was discussed. Ref. [17] has sparked active 
discussion on the potential advantages of KANs and their 
relation to MLPs [35–86].

We apply KANs to a typical HEP event classification 
task. As an example, we choose the binary separation of 
the associated production of a Higgs boson with a single 
top quark ( tH ) and with a top quark and an anti-top quark 
( tt̄H ) at the LHC, where the Higgs boson decays to a pair of 
photons ( H → �� ). We study the interpretability of KANs 
for this classification task. In addition, we compare KANs 
to MLPs in terms of performance and parameter efficiency, 
where we use KANs and MLPs with different numbers of 
layers and nodes per layer. We document our findings in the 
practical training of KANs. To our knowledge, this is the 
first application of KANs to a task in particle physics.

Kolmogorov–Arnold Networks

For the comparison to KANs, we briefly summarize the 
concept of MLPs. An MLP consists of multiple layers of 
nodes, each connected to nodes in subsequent layers through 
weighted edges. The core component of an MLP is the fully 
connected layer, which holds the trainable parameters defining 
the strength of the connections between nodes of two layers. 
Each layer applies an affine transformation, represented by a 
weight matrix W and a bias vector b⃗ , followed by an activation 
function A . The transformation applied in each MLP layer can 
then be written as y⃗ = A

(
Wx⃗ + b⃗

)
 , where x⃗ denotes the input 

to the layer and y⃗ is its output. The activation function 
introduces non-linearity in the model and is a hyperparameter 
that has to be chosen. Common choices include the rectified 
linear unit ReLU(x) = max (0, x) , the logistic sigmoid function 
�(x) , and the hyperbolic tangent function.

In contrast, KANs are inspired by the Kolmogorov–Arnold 
representation theorem, which states that any continuous 
multivariate function f ∶ [0, 1]n → ℝ can be represented 
as a finite sum of continuous functions of only one 
variable. Formally, for any continuous real-valued function 
f (x1, x2,… , xn) , continuous functions �i(j) exist, such that

where n is the number of variables that parameterize the 
multivariate function, and �i and �ij are univariate functions. 
This representation reduces the problem of approximating a 
multivariate function to a problem involving only univariate 
functions and the sum operation. The objective of the 
network training is to approximate these univariate functions 
�i(j).

Motivated by the theorem, the appropriate network 
architecture to approximate a multivariate function of n 
variables consists of two layers with n input nodes, 2n + 1 
hidden nodes, and a single output node. However, the authors 
of Ref. [17] generalized the concept by defining a KAN layer 
as a basic building block. As in MLPs, the number of nodes 
in these layers can be customized and layers can be stacked 
arbitrarily to enhance the performance of the model. Similar 
to MLPs, each node in a given layer is connected to each 
node of the subsequent layer. For each edge, an individual, 
learnable activation function is used. On the nodes, only the 
sum operation over all incoming edges is performed.

In the implementation of Ref. [17], the learnable activation 
functions are defined as the weighted sum of a B-spline, 
expressed by B-spline basis functions Bi , and a fixed residual 
function, chosen as the sigmoid-linear unit SiLU(x) = x ⋅ �(x):

The weights w1,2 and the basis-function coefficients ci are 
the trainable parameters of the spline. The basis functions 
Bi are chosen as polynomials of degree k , with default value 
k = 3 . The grid parameter G determines how many basis 
functions build the B-spline and serves as a hyperparameter 
of the KANs. Furthermore, the domain of the activation 
function needs to be chosen and can be updated several 
times during network training to match the input range of 
the activation function. Specifically, for given parameters k , 
G and the domain [t0, tG] , a vector t⃗ = (t−k,… , t0,… , tG+k) 
of equidistant knot points is constructed. Then, G + k basis 
functions Bk

i
(x) are recursively defined:

(1)f (x1, x2,… , xn) =

2n+1∑

i=1

�i

(
n∑

j=1

�ij(xj)

)
,

(2)activation(x) = w1 ⋅ SiLU(x) + w2 ⋅

G+k−1∑

i=0

ci ⋅ Bi(x).

(3)B0
i
(x) =

{
1 if ti ≤ x < ti+1,

0 otherwise,
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and for k > 0:

The basis functions are only non-zero over a portion of the 
interval, allowing the coefficients ci to adapt and change the 
overall spline locally. This enables the approximation of 
functions without strong assumptions about their functional 
form. More details on the implementation can be found in 
Ref. [17].

Data Set

As an example for a typical HEP classification task, we use 
the separation of tt̄H from tH production in the H → �� decay 
channel at the LHC. Both processes offer complementary 
sensitivity to properties of the Yukawa coupling of the top 
quark [87, 88], but only tt̄H production has been observed 
so far [89, 90]. In the search for tH production, the H → �� 
decay offers one of the most sensitive channels [91, 92], for 
which tt̄H is a major background and hence excellent binary 
classification is necessary.

We simulate tt̄H and tH production1 in proton–proton 
collisions at a center-of-mass energy of 14 TeV . We use 
MadGraph5_aMC@NLO [93] (version 3.5.3) at leading 
order in perturbative quantum chromodynamics for the hard-
scattering processes with the NNPDF23_lo_as_0130_
qed [94] set of parton distribution functions. We use the 
five-flavor scheme for the simulation of tt̄H production. 
The four-flavor scheme is chosen for tHproduction for an 
improved event modeling [95], where only the dominant 
t-channel contribution is considered. Only events with at 
least one semi-leptonic top quark decay are simulated.2 
For both processes, the factorization and renormalization 
scales are set event-by-event to the transverse mass of the 
irreducible 2 → 2 system resulting from a kT clustering of 
the partons in the final state [96]. The events are interfaced 
to Pythia 8.3.1 [97] for the H → �� decay, parton shower 
and hadronization. We use Delphes 3.5.1 [98] for a fast 
simulation of the CMS detector response with the CMS card 
with default settings. These settings include jet clustering 
with the anti-kT algorithm [99, 100] with a radius parameter 
of R = 0.5.

We focus on final states with two photons, at least one 
charged lepton (electron or muon), at least one b-jet and 
at least one additional jet. The following requirements are 

(4)Bk
i
(x) =

x − ti

ti+k − ti
Bk−1
i

(x) +
ti+k+1 − x

ti+k+1 − ti+1
Bk−1
i+1

(x).

applied, where pT is the transverse momentum and � is the 
pseudorapidity:

•	 exactly two photons (ordered in pT ) with pT(𝛾1) > 35GeV 
and pT(𝛾2) > 25GeV and |𝜂(𝛾1,2)| < 2.5;

•	 i nva r i a n t  d i p h o t o n  m a s s  i n  t h e  r a n ge 
100GeV < m(𝛾𝛾) < 180GeV with pT(𝛾1)∕m(𝛾𝛾) >

1

3
 

and pT(𝛾2)∕m(𝛾𝛾) >
1

4
;

•	 at least one charged lepton with pT(�) > 10GeV and 
|𝜂(�)| < 2.4;

•	 at least one b-jet with pT(b) > 25GeV and |𝜂(b)| < 2.5;
•	 at least one additional jet with pT(j) > 25GeV and 

|𝜂(j)| < 4.7.

After applying these selection criteria, we have 100 000 
events for training the classifiers and 33 000 events for 
validation during training, for each of the two processes. 
To ensure small statistical uncertainties in the metrics 
used in this study, we use 100 000 events per process of an 
independent test set to evaluate the networks.

We use 22 input features, which include four-vector com-
ponents and high-level features based on photons, charged 
leptons, the missing transverse momentum ( Emiss

T
 ) and jets3. 

Among the selected jets, we focus on the highest-pT b-jet 
and the leading jet of the event excluding this b-jet (“addi-
tional jet”). Ten of the features are shown in Fig. 1 for the 
two event classes. As it is typical for HEP event classifi-
cation, no single feature provides sufficient discrimination 
on its own. Several features show the expected differences 
between tt̄H and tH production. For example, the number 
of jets ( N(jets) ) is larger in tt̄H production given the second 
top quark in the final state, and the pseudorapidity of the 
additional jet ( �(j) ) tends towards larger absolute values for 
tH due to the electroweak t-channel topology.

The matrix of the Pearson correlation coefficients is 
shown in Fig. 2, separately for tt̄H (lower triangle) and tH 
production (upper triangle). The 22 features show a non-
trivial correlation structure with strong positive and negative 
correlations between some of the features. The correlations 
differ significantly in the tt̄H and tH data sets. For example, 
while the distributions of the transverse momentum of the 
diphoton system ( pT(��) ) in Fig. 1 are almost identical for 
the two data sets, the correlations of pT(��) with other fea-
tures are not.

1  For tH production, the charge-conjugate process is also included, 
but we denote the sum of both processes as tH for simplicity.
2  Final states with � leptons are included in the event generation.

3  While most of the high-level features are standard observables, the 
variable yj ⊕ y𝛾𝛾 was proposed in Ref. [88] to disentangle tt̄H and tH 
production when testing different CP hypotheses for the top-quark 
Yukawa coupling.
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Results

We compare KANs and MLPs of different configurations 
for the classification of tt̄H  and tH  events. The KANs 
are implemented using the Pykan  package from 
Ref. [17] in version 0.2.1 together with PyTorch [101] 
version 2.3.0. All MLPs are implemented with 
TensorFlow 2.17.0 [102].

We scale all input features before feeding them to the 
networks. A common approach for MLPs is studentization, 

where the sample mean is subtracted from each variable and 
the values are divided by the sample standard deviation. 
We apply this method for all MLP trainings. For KANs, 
we apply a different transformation to avoid the impact of 
outliers far away from the bulk of the distributions, which 
are common in typical HEP data sets. KANs require the 
domain of each learnable activation function to be defined by 
the range of the input for each spline. Outliers can extend the 
domain boundaries beyond the bulk of the distributions. As 
a result, the spline that acts on the majority of events may be 
parametrized by only a small fraction of the basis functions, 
which reduces the flexibility of curve approximation for 
the most relevant domain. To mitigate this, we first apply 
a logarithmic transformation to all transverse momenta 
and the transverse top quark mass, x̃ = ln (1 + x) , where 
x denotes the observable in units of GeV . We then apply 
min–max scaling in the range [0, 1] and initialize the spline 
domains accordingly.

The output layers of all trained models consist of a single 
node. Although KANs learn activation functions and a 
learnable function can also be placed on the output node, we 
choose the sigmoid function to normalize the model outputs 
to the range (0, 1) . In addition, for the MLPs, we choose the 
sigmoid function as output activation. For all trainings, we 
use the binary cross-entropy as a loss function. We consider 
tH events as signal (label 1) and tt̄H as background (label 0).

We use the Adam [103] optimizer to train our models. 
For the KAN trainings, we also compare with the 
Limited-memory Broyden–Fletcher–Goldfarb–Shanno 
(L-BFGS) [104] optimizer, as it was used in Ref. [17]. For 
Adam, we find stable trainings for all tested learning rates 
in the range [10−4, 10−3] and select 3 × 10−4 for all trainings. 
The training is performed in mini-batches of batch size 256. 

Fig. 1   Distributions of ten example features used for the classification. For distributions with overflow, the overflow is included in the last bin

Fig. 2   Matrix of the Pearson correlation coefficients of all 22 input 
features. The upper triangle refers to the tH data set and the lower 
triangle refers to the tt̄H data set. Off-diagonal coefficients with abso-
lute values of at least 10% are shown as numbers on the plot
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Trainings with the L-BFGS optimizer are performed using 
the entire data set in full-batch training with a learning rate of 
10−3 . No significant performance differences between KANs 
trained with the two optimizers were found and hence we 
use Adam for all trainings discussed below due to its faster 
convergence. To ensure that all models converge during 
training and to allow for a fair performance comparison, we 
employ early stopping. The loss obtained from the validation 
data set is monitored during training and if there is no 
improvement over 25 epochs, the training is terminated. The 
model parameters from the epoch with the lowest loss on the 
validation set are used for the comparisons.

We compare multiple KAN structures: The first model 
uses the configuration inspired by the Kolmogorov–Arnold 
theorem and hence consists of two layers with a node struc-
ture of 22–45–1. This is compared to the simplest possi-
ble KAN with only a single layer (22–1), as well as other 
models with varying widths and depths. For these models, 
we choose node structures of 22–3–1, 22–10–5–2–1 and 
22–45–10–5–2–1. We use the default grid parameter, G = 5 , 
and the default degree of the basis functions, k = 3.

The evolution of the loss and accuracy4 over the training 
is shown in Fig. 3 for three KANs. As expected, the single-
layer KAN shows the lowest performance among these mod-
els but still reaches an accuracy of 81.5% on the validation 
set, which is only about 1.5 percentage points lower than the 
accuracy of the two-layer and four-layer KANs. The latter 
two models reach similar accuracies and loss values. The 

two-layer KAN, with its wide second layer, has the highest 
number of trainable parameters in this comparison. It con-
verges within the fewest number of training epochs and at 
the same time shows the largest generalization gap. While 
the range of the input variables is fixed with the min–max 
scaling, this is not the case for the input range of subsequent 
layers in the networks. Therefore, we use the default setting 
to update the domains ten times within the first 50 epochs 
of training. Training instabilities are visible at these epochs.

The output distributions of the test data set classified by 
these KANs are shown in Fig. 4. The separation of the two 
classes is clearly visible with the networks accumulating 
the majority of the events close to the respective label. Also 
here, only slight differences are visible between the two- and 
the four-layer network, while the one-layer KAN achieves a 
visibly worse separation.

A possible advantage of KANs over MLPs lies in their 
potential for interpretability. While the patterns learned by 
MLPs are usually embedded in large matrices of trainable 
parameters and thus hard to understand, multiple trained 
KAN parameters can be visualized in form of a single 
spline. As demonstrated in Ref. [17], patterns learned by 
KANs can often be understood more easily. However, these 
examples are much lower in dimensionality and complexity 
than typical HEP machine-learning tasks. In our study with 
22 input features, we find that the interpretability of wide 
models, such as the 22–45–1 KAN, is limited. For instance, 
this particular model consists of more than 1000 learnable 
activation functions. Its visualization is, hence, complex 
and difficult for humans to interpret. Therefore, we focus on 
shallow KAN structures for the interpretability.

Fig. 3   Evolution of the loss 
(upper row) and the accuracy 
(lower row) of three KAN 
models of depth one, two and 
four, respectively. Due to the 
early-stopping approach, the 
epoch from which the model 
parameters are used appears 25 
epochs before the end of the 
optimization. Instabilities occur 
in training epochs, where the 
spline domains of multi-layer 
KANs are adapted

4  The accuracy is defined as the fraction of correctly classified exam-
ples with a decision threshold of 0.5 in the network output.
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In Fig. 5, the one-layer KAN is depicted together with 
its learned activation functions. The corresponding figure 
for the KAN with a shallow second layer (22–3–1) is shown 
in the Appendix. In the following, we discuss the interpret-
ability of the learned activation functions.

The strength of the edges is indicated by the grayscale and 
it is estimated by the L1-norms of the learned activations, 
defined as the mean magnitude over the examples as

These values directly indicate the importance of the dif-
ferent input features for the one-layer KAN classification 
output due to the simple summation of input features trans-
formed by a single activation function on its output node. 
The feature importances obtained from the commonly used 
techniques of permutation feature importance and Shap-
ley values yield similar patterns. This confirms that the L1
-norms in the one-layer KAN effectively capture feature 
importance. This network is expected to exploit the features 

(5)|�(x)|1 =
1

N(events)

N(events)∑

i=1

||�(xi)||.

with strong discrimination between the two classes. Values 
of the L1-norms close to zero are found for the azimuthal 
angles, which provide no discrimination power on their 
own. The largest values of the L1-norms are found for the 
lepton multiplicity, with which the network can identify di-
leptonic signatures present in a fraction of the tt̄H events but 
mostly absent in the tH process, and for variables based on 
(pseudo-)rapidity differences as well as the jet multiplicity. 
These reflect the good separation that can be achieved with 
these variables on their own. In deeper KANs, where multi-
ple learnable functions transform each feature and their out-
puts are combined in a more complex manner, the L1-norms 
are not directly interpretable as feature importance scores.

In Fig. 6, the learned activation functions are shown for 
five examples of features. These features were chosen to rep-
resent a set of variables with different shapes of their distri-
butions, where the corresponding splines of the single-layer 
KAN have high L1-norms. The distributions of the pre-pro-
cessed features are also shown for the two classes, together 
with the univariate log-likelihood ratios of the signal over 
the background. As expected in binary classification, where 

Fig. 4   Output distributions 
on the test data set for the two 
classes for three KANs with 
structures 22–1, 22–45–1 and 
22–10–5–2–1, respectively

Fig. 5   Graphical representation of the trained KAN with a single 
layer (KAN  22–1). The red curves represent the learned activation 
functions, while the blue curve shows the sigmoid function used to 

normalize the network output. The L
1
-norm of each spline is given, 

which also defines the grayscale of each edge
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the optimal decision boundary is related to the log-likeli-
hood ratio of the classes, the activation functions learned by 
the one-layer KAN resemble these univariate log-likelihood 
ratios of the respective input features. This resemblance 
is anticipated, because the one-layer KAN sums univari-
ate functions of each input feature, aligning with the addi-
tive form of the multivariate log-likelihood ratio, which 

decomposes into a sum of univariate log-likelihood ratios 
when features are independent. However, due to correla-
tions, differences between the learned activation functions 
and the univariate log-likelihood ratios may arise, as we find, 
for example, in the normalization of the spline transforming 
the �(j) variable. The corresponding splines obtained from 
the training of the 22–3–1 KAN are also shown in the same 

Fig. 6   Left: distributions of five 
examples of pre-processed input 
features for tH and tt̄H produc-
tion together with the corre-
sponding log-likelihood ratio. 
A ratio is shown if there are at 
least 25 examples of each pro-
cess from the training data set 
in the respective bin. Right: the 
learned spline for these input 
features in KAN 22–1 (red) 
and the three learned splines in 
the first layer of KAN 22–3–1 
(green)
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panels. These differ clearly from the likelihood ratios and the 
22–1 KAN splines. This is consistent with the expectation 
that multi-layer KANs learn more abstract representations 
of the data. As the splines acting on the same input feature 
are allowed to have different functional shapes or L1-norms, 
each of the three nodes of the internal layer of the 22–3–1 
KAN captures different aspects of the data.

For comparison to the KANs, we train several MLPs with 
different configurations: two shallow MLPs, each with only 
a single hidden layer of 8 and 32 nodes, respectively, as 
well as deeper networks with up to five hidden layers. The 
largest model has a node count of 22–256–128–64–32–16–1. 
The hidden layers are activated by ReLU functions. The 
comparison includes models with a number of trainable 
parameters as small as approximately 200 to approximately 
60 000.

Receiver operating characteristic (ROC) curves for 
selected models are shown in Fig. 7, including models with 
deep and shallow structures for both, MLPs and KANs. The 
overall shape of the ROC curves of KANs and MLPs is very 
similar, except for the one-layer KAN, where the area under 
the curve (AUC) is considerably lower. We observe that an 
MLP with only a single hidden layer reaches an AUC​5 of 
0.906 , only slightly below the AUCs obtained by our best 
MLP ( 0.908 ) and the best KAN, where the 22–45–1 net-
work also reaches an AUC of 0.908 . We find only slight 
differences in classification performance between well-tuned 
KANs and MLPs.

To evaluate the parameter efficiency, we compare the per-
formance of KANs and MLPs as a function of the number of 
trainable model parameters. A small number of parameters 
is favorable for a given performance, as smaller models are 
computationally more efficient, better interpretable (if at all 
possible), and less prone to overfitting. In Fig. 8, two metrics 
often used in HEP for classification performance evaluation 
are included: the AUC, and the background rejection for a 
fixed signal efficiency, here chosen as 70% . The rejection is 
defined as the inverse of the efficiency for a given threshold 
on the network output. Overall, we find that for very low 
numbers of parameters, the MLPs outperform the KANs, 
while for medium and high numbers of parameters, the per-
formance of KANs and MLPs is similar. The smallest MLP 
trained with only eight nodes in the hidden layer has only 
193 parameters and has reached a background rejection of 
12.9 already.6 A similar value is achieved by the 22–3–1 
KAN, which has 556 trainable parameters. While increas-
ing the number of parameters of the MLPs, their rejection 
saturates at around 14.9. The KANs achieve rejections rang-
ing from 11.4 for the single-layer network to 15.2 for the 
22–45–1 KAN. The deeper KANs from this study show a 
similar performance. Instead of varying the node count of 
KANs, the number of model parameters can be increased 
as well by raising the grid parameter G . For illustration, 
the 22–45–1 KAN is included in Fig. 8 when trained with 
G = 10 and G = 25 . For KANs with grid parameters consid-
erably higher than the default of G = 5 , we find that these 
models overtrain faster and generalize worse.

Conclusions

We studied the application of Kolmogorov–Arnold Net-
works (KANs) to a typical binary event classification task in 
high-energy physics (HEP). The data set used contains simu-
lated events of Higgs-boson production in association with 
a top quark pair and with a single top quark in the H → �� 
decay channel, where 22 discriminative input features were 
considered in the network trainings. We presented studies on 
the interpretability of KANs, compared their performance 
and parameter efficiency to traditional multilayer percep-
trons (MLPs), and documented our findings in the practical 
training of KANs. To our knowledge, this is the first time 
KANs have been applied in the field of particle physics.

As long as the KANs have a hidden layer with multi-
ple nodes, we observe very similar performance to MLPs. 
Numerically, our best KAN is even slightly better than 
the best MLP, but this difference is very small and most 

Fig. 7   ROC curves of selected models labeled with their node counts 
and the AUC scores. Results from two example MLPs and three 
example KANs are shown, including deep and shallow models

5  The uncertainty in the quoted AUCs from the limited size of the 
test data set are approximately 6 × 10

−4.
6  The uncertainty in the quoted rejection values from the limited size 
of the test data set is approximately 0.2.
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likely practically irrelevant when considering systematic 
uncertainties in a physics analysis. These findings seem to 
contradict Ref. [17], where a clear improvement over the 
performance of MLPs was found in several examples. In 
these examples, loss values were reached that were orders of 
magnitude lower than those of MLPs, for example, in fitting 
f (x, y) = x ⋅ y . However, those examples are of much lower 
dimensionality and complexity than our classification task. 
We suppose that the examples in Ref. [17] are especially 
well-suited for learning the Kolmogorov–Arnold represen-
tation of the underlying functional relationship. However, 
our data set includes features with a stronger variability in 
shape. The representations that have to be learned to solve 
our classification task may hence not be particularly suited 
for the KAN architecture.

We find that MLPs outperform KANs for a very low 
number of trainable parameters. However, we note that for 
our binary classification task, which we consider typical 
in terms of complexity for event classification at the LHC, 
using such very small models only comes at a moderate cost 
regarding performance. Similar performance of MLPs and 
KANs is then reached for a number of trainable parameters 
above approximately 1000. We conclude that for our task 
KANs are not more parameter efficient than MLPs.

In terms of interpretability, we find that small KANs 
indeed offer advantages. For a one-layer KAN, we observe 
that the learned activation functions resemble the univari-
ate log-likelihood ratios of the input features which these 
functions act on. In addition, the L1-norms of the activa-
tion functions offer a straightforward interpretation of the 
importance of different input features for such KANs with 
only one layer. Somewhat larger KANs may still offer an 
illustrative visualization of the activation functions, which 
we regard as an intrinsic interpretability advantage of KANs. 
However, for KANs of greater depth or with wider layers, 
interpretability seems challenging.

Because of their better interpretability compared to 
MLPs, we conclude that KANs are a promising alternative 
for classification tasks in HEP when the performance of 
small KANs is sufficient or when moderate performance 
losses are acceptable in favor of interpretability. We believe 
that more research on applying KANs in HEP tasks is neces-
sary. This study primarily focuses on the performance and 
parameter efficiency of KANs compared to MLPs, as well 
as the interpretability of small KANs. The interpretability of 
deeper KANs should be explored in future studies to address 
this limitation of our current work. Mechanistic interpret-
ability techniques may provide systematic ways to under-
stand the learned representations in these more complex 
models, and exploring symbolic regression to approximate 
the learned activation functions could open new avenues for 
applying KANs as a tool in HEP. In addition, assessing KAN 
performance and interpretability in HEP regression tasks 
may further broaden their applicability beyond classification.

Appendix

The graphical representation of the trained KAN 22–3–1 is 
shown in Fig. 9. We observe a clear hierarchy in the impor-
tance of the different input features for the KAN output, as 
indicated by the L1-norms on the input nodes. For the edges 
with large L1-norms, we observe the tendency towards sim-
ple and smooth activation functions. For edges with lower 
values of the L1-norms, we also observe more complex acti-
vation functions with several local minima and maxima.
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