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Abstract

Astrophysical and cosmological observations have pointed strongly to the existence of dark matter in the

Universe, yet its nature remains elusive. It may be hidden in a vast unknown parameter space in which

exhaustively searching for a signal is not feasible. We are, therefore, compelled to consider a robust

program based on a wide range of new theoretical ideas and complementary strategies for detection. The

aim of this dissertation is to investigate the phenomenology of diverse dark sectors with the objective of

understanding and characterizing dark matter. We do so by exploring dark matter phenomenology under

three main frameworks of study: (I) the model dependent approach, (II) model independent approach

and (III) considering simplified models. In each framework we focus on unexplored and well motivated

dark matter scenarios as well as their prospects of detection at current and future experiments. First,

we concentrate on the model dependent method where we consider minimal dark matter in the form of

mixed fermionic stable states in a gauge extension of the standard model. In particular, we incorporate

the fermion mixings governed by gauge invariant interactions with the heavier degrees of freedom. We

find that the manner of mixing has an impact on the detectability of the dark matter at experiments.

Pursuing this model dependent direction, we explore a space-time extension of the standard model

which houses a vector dark matter candidate. We incorporate boundary terms arising from the topology

of the model and find that these control the way dark matter may interact with baryonic matter. Next

we investigate the model independent approach in which we examine a non-minimal dark sector in the

form of boosted dark matter. In this study, we consider an effective field theory involving two stable

fermionic states. We probe the sensitivity of this type of dark matter coming from the galactic center

and the center of the Sun, and investigate its detection prospects at current and future large volume

experiments. Finally, we explore an intermediate approach in the form of a simplified model. Here we
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analyze a different non-minimal dark sector in which its interactions with the standard model sector are

mediated primarily by the Higgs Boson. We discuss for the first time a vector and fermion dark matter

preserved under the same stabilization symmetry. We find that the presence of both species in the early

Universe results in rare processes contributing to the dark matter relic abundance. We conclude that

connecting these three frameworks under one main dark matter program, instead of concentrating on

them individually, could help us understand what we are missing, and may assist us to produce ground

breaking ideas which lead to the discovery of a signal in the near future.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has been perhaps one of the best triumphs of modern

physics. It has been outstanding in accurately explaining much of the microscopic phenomena observed

to date. It is a fundamental theory of elementary particles and their interactions, and is mathematically

described as a quantum field theory based on the gauge group SU(3)c× SU(2)W ×U(1)Y . Recently

the Large Hadron Collider (LHC) observed a scalar particle resembling the Higgs Boson of the SM.

The discovery of the Higgs would imply that the classification of elementary particles in the SM is

now complete. However, theoretical and experimental motivations point to the SM not being the most

fundamental theory of nature, but rather a low energy effective field theory that is borne of an underlying

fundamental quantum field theory. These observations point to unexplained fundamental questions

which seem to lie beyond our realm of understanding. Thus as a step to obtaining the full picture of

nature, we must consider new physics beyond the SM (BSM). One of the most significant and intriguing

issues which cannot be accommodated in the SM and serves as a huge motivation for new physics

beyond the SM is the question of Dark Matter (DM). The existence of DM has been unambiguously

established by multiple measurements at astrophysical and cosmological scales, yet we remain clueless

to what it is. The goal of this dissertation is to explore the phenomenology of dark matter. There is

a large number of possible DM scenarios and it is not feasible to investigate each one. Therefore, we

consider three main frameworks of study and in each, we focus on well motivated models which provide
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Introduction

new DM prospects. We note that instead of focussing on one particular framework of study, we might

be better served by connecting all three under a larger program of DM phenomenology. First we will

introduce DM and discuss its evidence, possible nature and methods of detection.

1.1 Evidence of Dark Matter

On cosmological scales, DM has been inferred with the help of temperature and polarization anisotropies

in the cosmic microwave background (CMB) radiation as well as studies of baryon acoustic oscillations

and type 1a supernovae. This gives us information on the DM relic density, i.e. how much DM is left

after it decoupled in the early universe [1, 2]. Observations of the baryon density and amplitudes of the

temperature fluctuations in the CMB illustrate that different structure formation would have occurred in

a purely baryonic universe that does not contain DM. This is further corroborated by simulations that

incorporate dark matter and can reproduce the large scale structure we see today, as opposed to purely

baryonic models which cannot [3].

Further evidence is obtained on galaxy cluster scales. In the early 1930s, astrophysicist Fritz Zwicky

was studying the radial velocities of galaxies inside the Coma Cluster of galaxies and concluded that

there was matter unaccounted for. He found that the orbital velocities of the galaxies in the Coma cluster

were much larger than their expected value as estimated from the Virial theorem [1, 2]. He then realized

that there must be a large amount of non-luminous matter acting as a sort of “cosmic glue” holding the

cluster together.

Similarly, further studies were done of different galaxy clusters, where evidence for DM was as-

certained through gravitational lensing and from studying the intra cluster gas through thermal X-ray

emissions. Gravitational lensing is a process whereby light from background objects is bent around

a foreground gravitating mass. One particular example of a system in which lensing was used is the

Bullet Cluster of galaxies, illustrated in Fig. 1.1. The Bullet Cluster is a massive system consisting of

a main cluster intersected by another smaller cluster. Lensing of the background stars and galaxies led

to the mapping of the gravitational potential where two separate regions nearer to the visible galaxies

appeared to be strongest. This is a strong indication of non-baryonic matter acting as a gravitational lens

2



1.1 Evidence of Dark Matter

Fig. 1.1 A Chandra image of the Bullet cluster of galaxies. The overlaid green contours indicate the
gravitational potential map inferred from weak gravitational lensing. The white contours indicate errors
on the center of the gravitational lens (dark matter halo) at 68.3%, 95.5% and 99.7% confidence levels.
Figure obtained from Refs. [4, 5].

for the background objects [2, 3, 6]. Moreover, through measurements of the temperatures of the X-ray

gas (the main baryonic mass component in a cluster) in the Bullet Cluster, the mass of the baryonic

material was mapped out. This is an indication of how much baryonic matter is contained in the clus-

ter as well as how much of the non-baryonic component exists. Studies of this type were extended to

many more galaxy clusters, and it was found that DM contributes roughly 85%, the intra cluster medium

contributes roughly 14% and stars and galaxies only roughly 3% of the total mass of a galaxy cluster [2].

More convincing evidence of DM can be found on galactic scales. Astrophysicist Vera Rubin was

able to deduce the existence of DM by studying the rotational velocities of galaxies. The types of

galaxies around which DM halos are mainly found include spirals, ellipticals and dwarf spheroidals.

Spiral galaxies are gravitationally bound systems in which luminous matter rotates around the galactic

center on nearly circular orbits. The rotational velocities of spirals can be traced out by using optical

(Hα) emissions or the 21 cm emission line from neutral Hydrogen or HI gas emissions. The simplest

way to measure the gravitational effect in a spiral galaxy is in the application of Kepler’s 3rd law which

3



Introduction

leads to

vr =

√
G M(r)

r
. (1.1)

Here vr is the rotational velocity of the galaxy and G is the gravitational constant 6.67×10−11m3kg−1s−2.

The quantity M(r)≡ 4π
∫

ρ(r) r2 dr is the total mass enclosed in radius r and ρ(r) is the mass density

profile of a galactic halo [1, 3, 7]. This method of observation was applied to distances beyond which

the luminous matter from the galaxy ceases and observers found that M(r) continued to increase, caus-

ing vr to remain roughly constant. They found that if the luminous matter accounted for the total matter

in the galaxy then vr would decrease as r−1/2 beyond the stage where M(r) is cut off. Since this addi-

tional mass adding to M(r) was not visible as there was no radiation associated with it, it was labelled

“dark”. Numerous galaxy rotation curves have shown this type of behavior and a particular example

is illustrated in Fig. 1.2. This near constant behavior of vr implies that there exists a dark matter halo

with M(r) ∝ r having a spherical matter distribution with ρ(r) ∝ r−2 [3, 7]. Hence, rotational curve

measurements imply that most spiral galaxies are surrounded by a DM halo, which contributes to the

bulk of the mass of the galaxy. In fact, it has been suggested that without the support of a DM halo,

spiral galaxies would self gravitate leading to bar instability and collapse [2, 3, 6].

DM in elliptical galaxies has been inferred by isolating the rotational velocities of the bright plane-

tary nebulae, which are clearly distinguishable from the rest of the matter. Dwarf spheroidals are smaller

and less luminous than the spirals and ellipticals. Studies of these types of galaxies have revealed that

their mass density is dominated by DM. In fact, they have similar luminosities and velocity dispersions

to globular clusters, however, they are much larger and have a much larger mass to light ratio indicating

they are most likely DM dominated [9, 10]. Further evidence of DM on galactic scales was found in

low surface brightness galaxies [6], lenticular galaxies [11] and binary galaxy systems. [12, 13].

1.2 Possible Nature of Dark Matter

The large amount of astrophysical evidence points to DM constituting roughly 80% of the matter density

in the Universe. All evidence of its existence are based on its gravitational interactions with baryonic

4



1.2 Possible Nature of Dark Matter

Fig. 1.2 Rotational velocity curve of the spiral galaxy NGC 6503. The dotted line is the matter contri-
bution from the galactic gas, the dashed line is the contribution from matter in the galactic disk, mostly
stars, the dot-dashed line represents the contribution from the DM halo alone. The data is obtained from
Ref. [8] and the figure is from Ref. [7].

matter, indicating it must have mass. There is no evidence indicating that DM can absorb or emit any

form of radiation, implying that DM must be neutral. Furthermore, measurements of the CMB, results

from weak microlensing as well as the structure formation in the current Universe indicate that it’s very

unlikely that dark matter could be baryonic in nature. In fact, simulations of large scale structure indi-

cate that it must be cold, i.e. non-relativistic in nature. These are some of the macroscopic properties we

have been able to learn about DM so far, yet its microstructure remains a mystery. If DM is a particle,

we don’t know at which mass scale it lies, what its spin is, or whether it’s a fundamental or composite

particle. The community has constructed a myriad of possible models which can describe what DM

may be made of. This section is dedicated to a discussion of the possible nature of dark matter, but

we will first briefly discuss the various production mechanisms of DM in an effort to understand its

possible composition.
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For many years, the most favored DM candidates were those produced thermally and had masses

in and around the electroweak scale (∼ 10 GeV - 1 TeV). These candidates are known as weakly

interacting massive particles (WIMPs) [2, 6, 14]. In the thermal production scenario, a base assumption

is that in the early Universe WIMPs were produced in collisions between particles of the thermal plasma

when the Universe was radiation dominated. At temperatures in the plasma much higher than the DM

mass (T > Mχ
1) the colliding SM particles in the plasma had enough energy to efficiently produce

WIMP pairs. Likewise, DM particles could equally annihilate to produce SM particles, so the reactions

were in equilibrium. As the Universe expanded, the temperature of the thermal bath became smaller

than the DM mass. This marked a decrease in the number density of the particles involved, which

meant that the SM particles could no longer produce DM due to the decrease in energy and pressure.

It also meant that the annihilation rate of WIMPs decreased to a point where it was below the rate of

expansion of the Universe, at which point the DM chemically froze out. Beyond this stage the number

of WIMP particles in a comoving volume remained constant. This number density is referred to as the

relic density [3, 6, 14]. The relic density of DM can be obtained by solving a first order differential

equation known as the Boltzmann equation

dnχ

dt
=−3Hnχ −⟨σv⟩(n2

χ −n2
eq). (1.2)

Here nχ is the number density of dark matter, t is the time of evolution of the DM, H is the Hubble

rate of expansion, ⟨σv⟩ is the annihilation cross-section multiplied by the velocity of the WIMPs, all

averaged over the WIMP velocity. The quantity neq is the number density of the DM particles which

was in thermal equilibrium with the SM particles in the thermal bath. The relic density, which is the

number density of DM at freeze out 2 can be determined by solving Eq. 1.2. A rough approximation

gives

n f ∼ (mχTf )
3/2e−mχ/Tf . (1.3)

1Here χ represents the dark matter particle.
2Freeze-out is defined as the time when the annihilation rate of DM is the same as the rate of expansion of the universe,

i.e. ΓA ≡ n⟨σv⟩= H
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1.2 Possible Nature of Dark Matter

The quantity n f is the number density at freeze-out, mχ is the dark matter mass and Tf is the freeze-out

temperature. It is customary to express the number density of DM in terms of the comoving number

density Y ≡ nχ

s , with s being the entropy density of the Universe. Defining variable x ≡ mχ/T , where

T is the temperature of the photons, Eq. 1.2 in terms of the comoving number density is

dY
dx

=−⟨σv⟩s
Hx

(Y 2−Y 2
eq). (1.4)

The quantity Yeq ≡ neq/s is the equilibrium comoving number density. The numerical solution of Eq.

1.4 is illustrated in Fig. 1.3. The solid line represents the equilibrium number density as the Universe

expands, while the dashed lines illustrate the different rates of freeze-out as a function of the thermally

averaged annihilation cross-section. An increase in the thermally averaged annihilation cross-section

indicates a large annihilation rate of DM into SM particles and lowers the number density of DM at the

time of freeze-out.

The WIMP relic density can, finally, be expressed in terms of the DM mass density ρχ = mχnχ and

the critical density of the Universe ρc, which is determined from the Friedmann equation following the

derivation in Refs. [3, 6, 15]. The relic density is, therefore, approximated as

Ωχh2 =
ρχh2

ρc
≈ 1.07×109GeV−1

MPl

x f√
g∗

1
a+3b/x f

. (1.5)

Here MPl = 1.22× 1019GeV is the planck mass, x f ≡ mχ/Tf is defined as the freeze-out temperature

and g∗ is the internal degrees of freedom quantifying the energy density as well as the entropy density

of the Universe [15]. The present DM relic density, Eq. 1.5 can be approximated to first order as

Ωχh2 ≈ 3×10−27cm3s−1

⟨σv⟩ . (1.6)

For masses in the electroweak scale and weak cross-sections, Eq. 1.6 gives the right order of magnitude

for the DM density as observed in experiment (Ωχh2 = 0.12± 0.0012) [16]. It should be noted that
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Fig. 1.3 A plot of the comoving number density Y of a thermal relic dark matter as it evolves in the
early universe, with ⟨σAv⟩ = ⟨σv⟩. The figure is from Ref. [18].

this approximation though it works, is a ball park argument and can be dramatically changed in more

intricate models where coannihilations, resonance effects or mass threshold effects become significant

[17].

The thermal production mechanism is not the only way to create dark matter. An alternative method

for production is one in which dark matter is produced non-thermally. Here, DM may be produced

from one of two processes. It can be formed from the decay of some heavier dark sector state or

gravitationally in the early universe, i.e., at the end of inflation [15, 19].

Other mechanisms of DM production can arise in non-standard cosmological models where the

thermal evolution of the Universe may be slightly altered. As a result the dark matter relic density and

speed before structure formation would also be impacted. This can result in the formation of smaller

DM structures where DM particles give signals that differ drastically from the signatures expected from

DM in the standard cosmology. These types of mechanisms can be obtained for example from low

temperature reheating models [20, 21].
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1.2 Possible Nature of Dark Matter

The most preferred candidate of DM has been by far the WIMP, since through its production mech-

anism we are able to naturally satisfy the observed value of the DM relic abundance. There are many

BSM theories which incorporate DM, while explaining other fundamental problems not addressed by

the SM. Supersymmetry (SUSY) [22] has been the most popular of these BSM scenarios for many

decades. The Minimal Supersymmetric extension of the Standard Model (MSSM) has been one of the

most prominent theories in the search for DM. Here the DM candidate is the lightest SUSY particle,

or LSP known as the Neutralino [23]. It is stabilized by a symmetry known as R-Parity and its mass

is of order 10 - 1000 GeV. It is theorized to be produced thermally, making it the perfect WIMP can-

didate. In SUSY there can be further variations or extensions of the MSSM in which there are other

DM candidates, such as the gravitino or axino. These particles would be very light, in orders of few to

hundred keV and can be produced non-thermally [24, 25]. Likewise, another set of models which have

been widely considered and harbor possible DM candidates are models with extra spatial dimensions.

Perhaps the most discussed of these in the literature, in terms of DM, have been models of universal

extra dimensions (UED). The DM candidate here is the lightest Kaluza-Klein particle (LKP). When the

SM is extended by one extra spatial dimension, the LKP is known as the Kaluza-Klein (KK) photon

[26–28]. The LKP is stabilized by a symmetry which emerges from the geometry of the model and is

known as KK parity. The mass of KK dark matter is of order 1 TeV. In models with two extra spatial

dimensions, the LKP is a particle called the Spinless photon [29, 30].

Many other models have been of interest. In recent years, particular attention has been paid to sim-

ple extensions of the SM in which the dark sector and the SM are connected through the kinetic mixing

of dark gauge bosons with the SM gauge bosons [31]. These have been very well motivated as they al-

low for a low mass dark photon which can explain some of the experimental anomalies seen in precision

measurements such as the proton radius puzzle and the muon g-2 discrepancy. Other scenarios have

emerged in the form of Higgs portals. These are scenarios in which dark matter interacts with the SM

primarily through the Higgs boson. In these types of model we not only explore the DM phenomenol-

ogy, but also obtain an insight to how the Higgs might interact with the dark sector. Other possible

candidates include axions [32] and sterile neutrinos [33] which would be produced non-thermally in
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the early universe. The scenarios discussed above assume that dark matter is a fundamental particle,

yet it may be possible that dark matter is, instead, composite [34]. We further note that the scenarios

discussed above need not be mutually exclusive. In principle the different models may overlap, result-

ing in two or more stable states contributing to the total DM relic abundance of the Universe. These

types of intricate models constitute multi-component dark matter and their phenomenology has been

given much attention in recent years. They have been explored at particle physics levels [35–42] and in

astrophysics as a solution to the small scale structure problems [43]. Knowing what the possible nature

of DM is gives us an idea on how to search for it. The treatment of DM as a particle has provided the

particle physics community with various strategies for its detection.

1.3 Dark Matter Detection

The possible particle nature of dark matter provides strong implications for its detection. In principle

there are four pillars on which dark matter detection is based:

• Astrophysical signatures

• Indirect detection

• Direct detection

• Collider signatures

Astrophysical signatures, discussed above, are essential because this is how we know DM exists.

The relic density sets precedence as it provides information on the amount of DM in the current Uni-

verse. Thus it is the first constraint considered when studying a particular DM species. Models in which

annihilation into the SM does not occur efficiently in the early Universe will produce too much DM.

This shows up in the determination of the relic abundance, when the theoretical quantity is larger than

the value observed. DM in such models is said to over-close the Universe. On the contrary, one can have

too much annihilation such that by the time of freeze-out, there is very little dark matter left. The relic

abundance here is much smaller than the observed value leaving room to consider another DM species
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1.3 Dark Matter Detection

to fill up the DM abundance. Such scenarios form the basis of the multicomponent DM hypothesis. In

all models where the DM species is assumed to form 100% of the DM density in the current Universe,

the value of the relic abundance must match the observed value. This is the most important constraint

for each of the models considered. The relic abundance constraint doesn’t give us any information about

the actual microscopic nature of DM, it just tells us how much DM there is. Fortunately, the other three

methods have the ability to help us discern the composition of DM.

Firstly, the method of DM indirect detection is based on the idea that if DM annihilated in the

early universe before decoupling, then it must also annihilate at present times through the process

χχ→ SMSM. There is a large spectrum of SM final states to consider. For example, DM can annihilate

to mono-energetic photons (a process that is loop induced) resulting in a striking signal in gamma-ray

telescopes. Alternatively, it can annihilate to other SM particles which upon decaying can result in a

smooth, defuse distribution in the gamma-ray spectrum. Photons from DM annihilation may also pro-

duce signals at other energies such as in X-rays, which are typically at lower energies than gamma-rays

implying that the mass of the annihilating DM particles must be lower. A further mode of annihilation

is into electrons and positrons. A number of experiments have observed an excess in their measured

positron fraction and an appealing explanation for this is DM annihilations [14, 44]. What’s more, elec-

trons and positrons from DM annihilations can radiate synchrotron photons in the presence of a strong

magnetic field, and the radiation can be detected at radio telescopes.

A particularly interesting channel of annihilation is into neutrinos. Signatures of these may be seen

from sources as close as the Sun. If DM is captured in the core of the Sun, it can annihilate into neutrinos

which, unlike their SM counterparts, are very weakly interacting and are able to escape the Sun without

much interaction. The neutrinos can then travel to the Earth where they can be detected using very large

experiments. In these detectors a neutrino can scatter off an electron leaving a Cherenkov radiation

signal. This can be observed in experiments such as Super-Kamiokande (SK) and Hyper-Kamiokande

(HK). These solar neutrinos from DM annihilations can also scatter off of electrons or protons leaving

discernible tracks in liquid argon type detectors such as the Deep Underground Neutrino Experiment
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(DUNE). A further method of detection is to scatter in ice producing radiation that can be detected by

very large experiments such as IceCube, which is imbedded in the ice and is sensitive to these signals

[14].

The second method is the direct detection of DM. The astrophysical evidence pointing to our galaxy

being surrounded by a dark matter halo allows us to look for dark matter directly on the Earth. Through

the process χSM → χSM, we can look for galactic DM scattering with nuclei in underground labo-

ratories. As the solar system moves through the galaxy, the Earth (in its frame of reference) is struck

by a DM “wind”. These DM particles can then reach an experiment deep underground 1 and scatter

off a nucleus, causing it to recoil. We can measure the recoil energy of this nucleus and kinematically

determine the properties of the initial particle.

To date no direct detection experiment has observed a convincing DM signature. They continue

to set very competitive limits as they gather more data. Many experiments have been running so far,

including DAMA/LIBRA, XENON 10, XENON 100 and CDMS among many others [45]. The most

competitive limits in the spin-independent (SI) analyses have come from the LUX collaboration [46]

followed by the PandaX team [47]. In the spin dependent (SD) analysis, the most competitive limits

have so far been set by the PICO collaboration [48]. As more and more experiments continue to set

limits with smaller and smaller cross-sections, SI DM-nucleon cross-sections start to reach an area of

the parameter space swamped by coherent neutrino-nucleon interactions. At this point, it will become

difficult to distinguish a DM signal from that of neutrinos [49]. If we continue to not find a clear

signal for DM, new methods of detection would be necessary. In the late 80’s the method of directional

dark matter detection was proposed by D. Spergel [50]. This method takes advantage of the motion of

the solar system around the galactic center. In fact, directional detection shares the same concept as

direct detection, where the recoil energy of a nucleus is measured after scattering with a DM particle.

However, in directional detection experiments, the angle of recoil is also taken into account. If this

angle is measured it will provide a lot of information about the direction from which the DM particle is

1The experiments are placed deep underground to get rid of very large seasonal backgrounds.
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coming. Additionally, the recoil angle may also be correlated with the velocity distribution of DM in our

galaxy, a quantity that carries much uncertainty. Therefore, it seems highly plausible that information

on the recoil angle may provide us further information on the behavior of DM in our galaxy. There are

also some studies which suggest that directional detection could discern DM in the region of coherent

neutrino-nucleus scattering [51].

The absence of a DM direct detection signal not only gives us more general information about DM,

but also helps us improve our detectors and search strategies for conducting better searches in the future.

Finally, DM production at particle colliders is based on the idea that we are working in a controlled

environment. At high enough energies, we can produce DM from the following reaction SMSM→ χχ .

The current running accelerator is the LHC which collides protons at center of mass energy
√

s = 13

TeV. DM particles produced in a collider would themselves not generate any signal, but only register

as missing transverse energy /ET . Though a collider is a controlled environment, the detection of DM

is still challenging. DM at colliders may be produced directly or indirectly. The former involves the

produced DM accompanying some radiation, which could be a photon or jet depending on the type

of collider. For instance, at a proton collider the signal would look like a jet plus missing momentum

while in an electron-positron collider it would show up as a photon plus missing momentum. This type

of production, however, is fraught with backgrounds, making it hard to distinguish a clear DM signal.

The latter involves producing some heavy dark sector state which cascade decays into SM and DM.

This may be the best way to produce DM at colliders as it suffers less from backgrounds, though the

interpretation of the data is quite challenging.

Utilizing each detection strategy individually may not be the best plan of action in the search for

DM. Each method has advantages and disadvantages, implying that the best method of search is to

combine all three methods in a complementary manner.
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1.4 Outline

A basic requirement for finding dark matter is knowing where to look. It is crucial to consider all aspects

that have the potential to provide important information on DM. Yet, the large amount of possible DM

candidates and the unknown mass scale at which it might lie make studying it a challenging prospect.

It is impossible to perform exhaustive dedicated searches on the entire model space in which there

are varying degrees of complexity. Therefore, we need to consider new approaches of investigation

through which we utilize all the tools available at our disposal. The effectiveness of our DM searches

might be addressed by combining frameworks of study with the most experimentally and theoretically

motivated DM scenarios, especially those with the ability to provide unusually distinct signatures in

our experiments. With the lack of a distinct signal at experiments, we are limited to either ruling out

or highlighting parts of the parameter space, essentially pointing out the characteristics that DM cannot

have.

The primary goal of this dissertation is to explore the frameworks through which we can study dark

matter. The main purpose of this is to attempt to understand and characterize its properties without

having to perform exhaustive searches in the seemingly infinite parameter space. We utilize the results

from experiments to set bounds on the DM models in each framework we consider.

Firstly, we consider the top-down or model dependent framework. In this scheme, models are typi-

cally constructed to address a fundamental question not answered in the SM while containing a mecha-

nism that produces stable or semi-stable DM particles. In such scenarios other degrees of freedom are

taken into account and frequently the bounds on the possible behavior of the DM are set based on some

critical assumptions. Secondly, we focus on bottom-up or model independent approaches in which the-

ories are constructed for the purpose of addressing the data or specific instances where a distinct signal

may arise. An example is DM effective field theories. These are generally non-renormalizable theories

where the cutoff scale of the theory is unknown. Fortunately few assumptions enter here. However, the

behavior of the DM is usually generic and it is typically difficult to gain insight on the underlying theory

as well as the scale at which the DM might lie. Finally, we investigate a “middle ground”, arising in

the form of simplified models. This scheme commonly involves a simple extension of the SM in which
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other degrees of freedom which do not contribute to the DM phenomenology are typically ignored,

allowing for a minimal way in which to study DM.

In this dissertation, we will study various DM scenarios based on the frameworks discussed above.

Of course we cannot consider all possible dark matter models available in these frameworks. Therefore,

in each framework we explore strongly theoretically and experimentally motivated examples. We find

that these provide not only great phenomenological prospects for studying DM, but also opportunities

for characterizing DM using complementary search strategies.

On the model dependent front, extensions of the SM may be completed in various ways: extending

the gauge symmetry, the space-time symmetry or the flavor symmetry, among others. Each direction

is very well motivated and may harbor rich phenomenology. For purposes of this dissertation, we

only consider gauge and spacetime extensions, which are presented in Chapters 2 and 3 respectively.

In Chapter 2, we consider a Left-right (LR) extension of the SM, based on Ref. [52]. Here the SM

gauge symmetry is extended to SU(3)c × SU(2)L × SU(2)R ×U(1)B−L. The theoretical motivation

of these models was originally to understand parity violation in the SM, i.e. the idea that the SM

contains only left handed and no right handed fermion doublets. The attractiveness of LR models

was further extended to solving the CP violation problem in the strong sector and to explaining the

masses of SM neutrinos. The latter comes from the fact that heavy right handed neutrinos naturally

arise in LR models. Furthermore, the existence of a remnant global symmetry which arises in the

breaking of the SU(2)R×U(1)B−L ensures the stability of a DM candidate. The results of previously

studied DM cases in this model motivated us to investigate DM which naturally arises in the form of

various mixed fermionic states. These multiplets interact with the extended gauge and Higgs sector in

a renormalizable and gauge invariant manner. We found that our models showed certain advantages

over the pure multiplet states considered before, especially in terms of the relic abundance and direct

detection searches. Additionally, we allow for heavy gauge bosons to decay into the dark sector such

that there is a unification of the left and right gauge couplings.

In Chapter 3, we investigate an alternative extension of the SM, i.e. extending the space-time sym-
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metry. This results in a completely new theoretical direction which comes with its own phenomenology.

A well known example of a space-time extension of the SM is supersymmetry. In this dissertation we

will limit our scope to non-supersymmetric extensions of the SM. We explore instead models with extra

spatial dimensions. In these types of scenarios, the usual (3+1)-dimensional space-time is extended

to include additional dimensions. They are very well motivated for new physics beyond the SM and

were introduced as a way to understand the gauge hierarchy problem[53, 54]. Here we focus on flat or

“universal” extra dimensions (UED) which incorporate only one extra dimension where the SM parti-

cles are allowed to propagate. DM in the context of minimal UED has been extensively studied in the

literature. Therefore, in Chapter 3, we consider a next to minimal UED (based on Ref. [55]) where we

introduce boundary terms in the electroweak gauge boson sector. Inclusion of the boundary terms af-

fords us a unique opportunity to utilize various methods to study the manner in which DM may behave

in this model. We, therefore, explore the DM phenomenology at direct detection experiments and take

into account resonance searches as well as precision electroweak measurements at the LHC. Placing all

constraints together, we found that we are able to strongly constrain the boundary terms, while placing

an upper bound on the radius of the extra dimensions.

Moving on to the bottom-up or model independent formalism, we utilize a higher dimension opera-

tor to study a novel DM scenario which has a very promising potential to provide a so-called “smoking

gun” signal. This DM strategy is discussed in Chapter 4 and is an extension of work done in Refs.

[56, 57]. It was partially motivated by the notion that the DM scenarios discussed in Chapters 2 and 3

need not be mutually exclusive. This is to say DM need not be composed of only one component. The

dark sector may be somewhat more complicated than our naive expectations. This idea which incorpo-

rates multiple DM states is in fact very well motivated at the particle physics level and in astrophysics.

The concept of multiple DM particles may imply difficulty in the search for DM, since there are even

more unknowns. On the other hand, it may pave a way to even richer phenomenology with even better

opportunities and tools to study the dark sector. Interestingly there exists the scenario of boosted dark

matter which we discuss in great detail in Chapter 4. In this formalism we study two DM states, one
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of which is heavy and is assumed to form a large part of the DM relic density of the Universe. The

other is very light and forms a very small percentage of the relic abundance in the current Universe.

The intricacies of this dark sector come about from the assumption that the heavier state is completely

secluded and only interacts with the SM through the lighter state. Furthermore, the annihilations of the

heavier DM state result in boosted light DM states which can be detected at experiments on the Earth.

We investigate the flux of boosted DM when the heavier state accumulates at the galactic center and in

the center of the Sun. We explore the possibilities of this potentially powerful signal at large volume

experiments on the Earth and find that certain detector types will be more sensitive for this type of signal

than others. Here we are particularly interested in the type of signal rather than the theory, therefore, we

assume a dimension 6 four-fermion operator whose cutoff scale is set by the correct DM thermal relic

abundance. In principle the DM need not be fermions, but can also be vectors or scalars and specific

models are left for the future. In this rich phenomenology, we have the unique opportunity to detect a

DM signal that would not be mimicked by any other known signature.

Finally, we discuss DM in the simplified model framework. It has been illustrated in the literature

that these types of models can provide a natural and minimal way of studying theory with experimental

data. Typically, simplified models involve a new particle acting as DM with some mediator particle

responsible for the interactions between the DM and the SM. By doing so, one limits the number

of parameters entering into the physics and can, therefore, efficiently map the DM experimental results

onto the theory. Some of the most widely discussed simplified models in the literature are Higgs portals.

Higgs portals are very well motivated theoretically through the low dimensional gauge and Lorentz

invariant operator H†H. Due to this bilinear operator the Higgs can serve as a unique window into

new physics beyond the SM. Motivated by a possibility that DM could be multicomponent in nature,

in Chapter 5, we consider a simplified model with two dark matter particles. This work is based on

Ref. [58]. The DM naturally arises from an ultraviolet complete theory where it interacts with the SM

degrees of freedom primarily through the SM Higgs boson. Motivated also by the secluded nature of the

dark sector in Chapter 4, we realize a vector DM which is naturally stabilized in the presence of a dark
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charge conjugation symmetry. The vector interacts only at 1 loop level with the SM through another

stable fermion state which is also stabilized by this charge conjugation. We investigate the evolution of

both particles in the early Universe and their contribution to the relic abundance. We further examine

the possibilities at direct detection experiments. However, current direct detection experiments set their

limits assuming only one DM component. It is difficult to consider additional particles when setting

such limits as there are many more assumptions to make with many uncertainties. We, therefore, rescale

the cross-sections reported in direct detection experiments and obtain conservative constraints on our

DM parameters. On a further note, it would be particularly interesting to see how experimental results

would be impacted if experiments could perform searches assuming multicomponent dark matter. This

is an intriguing problem that would require input from both theorists and experimentalists to solve and

might well lead to ground breaking discoveries. On the collider side, since the DM interacts primarily

through the Higgs Boson, we consider constraints from searches for invisible Higgs decays at the LHC.

We further point out that this is the first study incorporating a multicomponent DM model with a vector

and fermion which are stabilized under the same symmetry. We discuss our conclusions at the end.
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Part I

Model Dependent Framework
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The best way of fully understanding the nature of dark matter is by characterizing it in a complete

theory. In this way we get to determine properties such as its mass, its spin as well as how it became

stable. Building the correct dark matter model is a challenging prospect as there are many unknowns

that need to be taken into account. Our best option seems to be to start with what we know and experi-

mentally have confirmed. The standard model is a well known theory and can serve as a basis on which

we study new physics. This may be realized in many ways, for instance, two of the prominent methods

are to extend the SM gauge symmetry or its space-time symmetry. In this part of the dissertation we will

concentrate on model dependent methods of studying dark matter, focusing on novel phenomenologies

that arise in gauge and space-time extensions of the SM respectively.

We first focus on extending the gauge symmetry of the SM, which is described by SU(3)c ×

SU(2)W×U(1)Y . We do so by considering a model described by SU(3)c×SU(2)L×SU(2)R×U(1)B−L

in Chapter 2. This is known as the left-right extension of the SM and was developed primarily to un-

derstand some fundamental questions which could not be explained by the SM. These include, par-

ity violation in the SM (why the SM only accommodates left-handed fermion doublets and not right

handed ones.) and SM neutrino masses. These fundamental questions may be answered by the pres-

ence of heavier states arising in the extended gauge, Higgs and fermion sectors. These heavy states

may include dark matter which can be searched for either in direct detection, indirect detection experi-

ments or at colliders. We study three dark matter scenarios that arise when heavy right handed fermions

are able to mix with the heavy Higgs bosons. We focus on the phenomenology of these dark matter

scenarios by first studying their contribution to the observed DM relic abundance and then assessing

their bounds from direct detection experiments. To do this we first discuss the overall model, outlining

all the interactions between the different particles. Then we discuss the interaction of the dark matter

with the heavier particles in each DM scenario. We then calculate the relic abundance as well as direct

detection cross-sections. This information is then matched to the observed relic abundance as well as

the direct detection bounds from the current experiments and projections for the future experiments.

In order to obtain our figures we make certain assumptions for the parameters involved, which we dis-
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cuss in the main text. We found that the Singlet-Bidoublet DM model was the most constrained by

the current most competitive direct detection experiment, but had a lot of hope for detection in next

generation experiments. We further found that for the DM masses we considered, we were able to

evade the bounds from current indirect detection experiments. The bounds on these models are heavily

dependent on the initial assumptions and choices of parameters. Yet the results we show are also quite

important as the constrained regions in the parameter spaces we illustrate, tell us what dark matter is not.

Extending the gauge symmetry of the SM is not the only manner in which we may obtain new

physics. For Chapter 2, we focus on a space-time extension of the SM. The SM lives in a (1+3)-

dimensional universe, where the 1 represents the time coordinate and the 3 represents the (x,y,z) space

coordinates. We may consider new physics effects by extending the SM space-time by an arbitrary

amount. Indeed there are many ways to do this and each one contains its own complexities and con-

tribution to new physics. One way to extend the space-time symmetry of the SM is by one extra space

dimension. These types of scenarios are called extra dimension models. A variation of these models

comes in the form of Universal Extra Dimensions (UED) in which the SM particles are allowed to prop-

agate along the extra dimension and in turn give rise to new particles at higher energy scales. In models

of Minimal UED, the lightest of these new particles is stable and is the dark matter particle. In this

section we will focus on a Next-to-Minimal UED model in which we incorporate boundary localized

Kinetic terms (BLKTs). The BLKT’s have an effect on the dark matter phenomenology and including

them in the electroweak sector introduces a new vector dark matter candidate which is a mixture of the

extra-dimensional weak gauge boson and the extra-dimensional hypercharge gauge boson.

In order to study the DM phenomenology in this scenario, we first describe the model and the origin

of the BLKT’s. We then consider the various experimental bounds that can tell us which part of our

model is viable. We first investigate the constraints from precision electroweak measurements, which

we use to place bounds on the inverse radius of the extra dimension. Then we study the bounds from

LHC dilepton resonance searches, by calculating the cross-sections for the production of a level 2 KK
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resonance and subsequent decay into two leptons at the LHC. We match this cross-section to what has

been reported by the experimental groups at the LHC and turn this into bounds on the BLKT param-

eter space. We subsequently move on to calculate the relic abundance and the direct detection rates,

matching onto the observed relic abundance and current experimental direct detection rates respec-

tively. These help us to place complementary bounds on the BLKT parameter space. We also use our

calculated rates to study projections for the upcoming next generation direct detection experiments. For

different values of the inverse radius, we found that our DM completely evades current direct detection

experiments while having much hope for detection in future experiments. We also find that relic abun-

dance and dilepton resonance searches provide the most stringent constraints, thus excluding a large

part of the parameter space and again giving us information on what DM is not.

In this part of the dissertation we present two independent extensions of the SM, which give rise to

different phenomenologies. The constraints we obtain depend on the parameters we choose and on the

assumptions we introduce, thus potentially biasing us to certain conclusions. However if a DM signal

is confirmed a full model such as those presented here is needed to fully characterize DM and tell us

how it may interact with other new physics.

22



Chapter 2

Gauge Extension of the Standard Model

The ATLAS collaboration has recently reported an excess of events consistent with those arising from an

approximately 2 TeV resonance decaying to a pair of Standard Model (SM) gauge bosons. If interpreted

as a WZ final state, this excess has a local significance of 3.4σ , or 2.5σ after taking into account an

appropriate trials factor [59]. The possibility that this excess could be associated with new physics is

strengthened by the results of Run 1 dijet searches at CMS [60] and ATLAS [61], each of which report a

modest excess (2.2 and 1.0σ , respectively) at a similar mass of approximately 1.8 TeV. In addition, the

CMS collaboration reports 2.1 and 1.5σ excesses in their searches for leptonically-tagged resonances

decaying to HW [62] or to gauge bosons [63], respectively, both at approximately 1.8 TeV.

These anomalies have renewed interest in models with a new charged gauge boson, W ′, with a mass

of approximately 1.8 to 2 TeV, including those predicted within the context of left-right symmetric mod-

els [64–68]. Such scenarios have long been perceived as theoretically attractive [69–75], and can emerge

naturally within the context of Grand Unified Theories based on SO(10) or E6 [76–78]. At low energies,

left-right symmetric models are described by the gauge group SU(3)c×SU(2)L×SU(2)R×U(1)B−L,

and thus include new massive gauge bosons, W ′ and Z′, that couple to right-handed fermions, including

right-handed neutrinos. To be phenomenologically viable, left-right symmetric models also require an

extended Higgs sector, and often include additional fermionic particle content. It has been suggested

that the modest excess of same-sign dilepton events with multiple b-jets observed at ATLAS [79] could
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Gauge Extension of the Standard Model

be explained by the Higgs sector of such a model, while a left-right symmetric model with TeV-scale

right-handed neutrinos could account for the CMS excess of e+e− events that include a pair of jets with

an invariant mass of ∼2 TeV [80]. Although the first 13 TeV data from the LHC have not been defini-

tive [81–84], the ongoing run at the LHC is expected to reach the sensitivity required to conclusively

test these models over the coming year [64].

There are a number of potentially viable dark matter candidates that one can identify within the

context of left-right symmetric models [65, 85–88], and their supersymmetric extensions [89–91]. We

limit our scope to non-supersymmetric models, considering a wide range of dark matter candidates

contained within various SU(2)L,R fermion multiplets and their mixtures. In some respects, this follows

the previous work of Heeck and Patra, who considered dark matter candidates that are members of left-

right fermion triplets or quintuplets [85]. More recently, Garcia-Cely and Heeck extended this approach

by considering those candidates found within fermion bidoublets or bitriplets, or scalar doublets or 7-

plets [86]. In this study, we build upon this earlier work by considering dark matter candidates found

within the fermion multiplets of a left-right symmetric model, but without restricting ourselves to pure

states. In particular, we find that fermion singlet-triplet, singlet-bidoublet, and triplet-bidoublet mixtures

each constitute phenomenologically viable dark matter candidates. Furthermore, we show that such

states are automatically cosmologically stable, without the need for any additional parity or symmetry.

In contrast to pure states, mixed dark matter in left-right symmetric models can undergo significant

scattering with nuclei, potentially falling within the reach of direct detection experiments such as LUX,

LUX-ZEPLIN (LZ), and XENON1T. Additionally, whereas the mass splitting between the neutral and

charged particles of the dark sector is fixed when considering pure states, this splitting can be adjusted

more freely in mixed models, allowing us, for example, to turn on or off the effects of coannihilation in

the early universe.

Although we focus this study on the parameter space motivated by the diboson excess (mW ′ ∼ 2

TeV, gR ∼ 0.5), we note that dark matter within the context of left-right symmetric models would

remain interesting even in the absence of such a putative signal. With this in mind, we have presented

many of our results in a way that can be straightforwardly applied to other scenarios within the larger
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2.1 The Field Content of the Model

parameter space of left-right symmetric models.

The remainder of this chapter is structured as follows. In Sec. 2.1, we discuss the Higgs and gauge

sectors of left-right symmetric models, respectively, describing their particle content and interactions.

In Sec. 2.2, we consider three scenarios in which the dark matter is a mixture of fermions found in

SU(2) singlets, bidoublets and triplets, in each case finding regions of parameter space that predict an

acceptable thermal relic abundance and that are consistent with the constraints from direct detection

experiments.

2.1 The Field Content of the Model

The spontaneous symmetry breaking of SU(2)L×SU(2)R×U(1)B−L down to U(1)EM requires an ex-

tended Higgs sector (for a review, see Ref. [92]). In particular, the minimal content of a left-right

symmetric model includes a complex scalar triplet with quantum numbers ∆R : (1,3,2), and a complex

scalar bidoublet with quantum numbers φ : (2,2,0).

The electric charge of a given state is defined in relation to its weak isospin and B− L quantum

numbers:

Q = T3L +T3R +
B−L

2
. (2.1)

This can be generalized further for triplets and bidoublets, respectively, according to the following:

QT =
[1

2
σ3,T

]
+

B−L
2

T,

QB =
[1

2
σ3,B

]
+

B−L
2

B, (2.2)

where T and B are 2×2 matrices in which a generic triplet or bidoublet can be embedded. The matrix

T is further constrained to be traceless.
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Gauge Extension of the Standard Model

The charge conjugates of a triplet and a bidoublet, which we will use in Sec. 2.2, are defined as:

T̃≡ σ
2T∗σ2 =−T†,

B̃≡ σ
2B∗σ2 . (2.3)

The right-handed Higgs triplet, ∆R, breaks SU(2)L× SU(2)R×U(1)B−L down to SU(2)L×U(1)Y

after acquiring a vacuum expectation value (VEV), vR. Subsequently, the Higgs bidoublet, φ , breaks

SU(2)L×U(1)Y down to U(1)EM. The low-energy Higgs potential of this model corresponds to a re-

stricted form of a two-Higgs doublet model (2HDM) [93]. Working in unitary gauge and the alignment

limit (in which the lightest Higgs is SM-like), we parametrize these Higgs bosons as follows:

∆R =

 gR√
2 gL

mW
mW ′

c2β H+ ∆++

vR +
1√
2

∆0 − gR√
2 gL

mW
mW ′

c2β H+

 , (2.4)

φ =

cβ v+ 1√
2
(cβ h+ sβ H + isβ A) cβ H+

sβ H− sβ v+ 1√
2
(sβ h− cβ H + icβ A)

 ,

where h, H, A, and H± represent the Higgs bosons found within a generic 2HDM, while ∆0 and ∆++

denote the physical right-handed neutral and doubly charged scalars, respectively. The quantities gR

and gL are the gauge couplings associated with SU(2)R and SU(2)L, respectively, while v = 174 GeV

is the SM Higgs VEV. cNβ , sNβ are the cosine and sine of N×β , where tanβ is the ratio of the two

neutral VEVs of φ , analogous to that of a 2HDM and N is an integer. To match the observed rate and

mass of the diboson excess, we require vR ∼ 3−4 TeV and gR ∼ 0.5 [94]. In addition, matching to the

observed W ′→WZ rate also requires 0.5 ≲ tanβ ≲ 2. The masses of H,A, and H± naturally take on a

common value that can lie anywhere between the weak scale and vR .

The only renormalizable gauge invariant interactions between SM quarks and the extended Higgs
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2.1 The Field Content of the Model

sector are given by:

−L ⊃ QL
(
y φ + ỹ φ̃

)
QR +h.c. , (2.5)

which after electroweak symmetry breaking (EWSB), gives rise to the following quark mass terms:

−L ⊃ (y cβ + ỹ sβ ) v uu+(y sβ + ỹ cβ ) v dd . (2.6)

A modest tuning of these parameters is required to explain the hierarchy between the top and bottom

quark masses. For tanβ = 0.5 or 2, the Yukawa couplings must be tuned at approximately the 2% level

(allowing for a cancellation between ysβ and ỹcβ ).

Similar terms can be written for the lepton sector, but with an additional coupling to the triplet

Higgs:

−L ⊃ yM (LR)c iσ2
∆R LR +h.c. . (2.7)

After EWSB, this term gives a Majorana mass to the right-handed neutrinos and also introduces an

interaction of the form ∆++ (lR)c lR.

Expanding Eq. (2.5) in terms of the physical Higgs states, we can write the heavy Higgs interactions

with SM fermions as follows:

L ⊃ md−mus2β√
2 vc2β

H uu+
mu−mds2β√

2 vc2β

H dd− mlt2β√
2 v

H ll

+
md−mus2β√

2 vc2β

A uiγ5u− mu−mds2β√
2 vc2β

A d iγ5d +
mlt2β√

2 v
A l iγ5l

+

{
1

v c2β

H+ u
[
−
(
mu−mds2β

)
PR +

(
md−mus2β

)
PL
]

d +
mlt2β

v
H+

ν PR l +h.c.
}
. (2.8)

The renormalizable interaction in Eq. (2.5) couples both Higgs doublets within φ to up-type and

down-type quarks, and can lead to flavor changing couplings through tree-level exchange of the heavy

neutral Higgs bosons. For heavy Higgses above a few TeV in mass, however, these flavor constraints

can be avoided [95]. Alternatively, the Yukawa couplings of the quarks can be made to be those of a
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Gauge Extension of the Standard Model

Type II 2HDM if the renormalizable couplings are small and instead the quarks acquire a mass through

higher dimensional operators involving the triplet Higgs [93]. We will consider Higgs couplings as in

Eq. (2.5) and assume that all flavor constraints are satisfied.

The gauge bosons acquire masses from the VEVs of the Higgs triplet, ∆R, and bidoublet, φ . Defin-

ing W±µ

L,R ≡ 1√
2

(
W 1µ

L,R∓ iW 2µ

L,R

)
, the mass matrices for these states are given as follows:

L ⊃
(

W+µ

L W+µ

R

)
1
2 g2

L v2 −1
2 gL gR s2β v2

− 1
2 gLgR s2β v2 g2

R
(
v2

R +
1
2 v2
)



W−Lµ

W−Rµ

 , (2.9)

and

L ⊃ 1
2

(
W 3

Lµ
W 3

Rµ
Bµ

)


1
2 g2

L v2 −1
2 gL gR v2 0

− 1
2 gL gR v2 1

2 g2
R v2 +2 g2

R v2
R −2 gB−L gR v2

R

0 −2 gB−L gR v2
R 2 g2

B−L
v2

R





W 3
Lµ

W 3
Rµ

Bµ


, (2.10)

where gB−L and Bµ are the U(1)B−L gauge coupling and field.

Diagonalizing the W±L,R mass matrix in the vR≫ v limit yields two charged gauge bosons of mass

mW = gLv/
√

2 and mW ′ = gRvR . The mixing matrix between these states is given by:


W±Lµ

W±Rµ

=


cosθ+ −sinθ+

sinθ+ cosθ+




W±µ

W ′±µ

 , (2.11)

such that

sinθ+ ≡
gR

gL

(
mW

mW ′

)2

s2β . (2.12)

Here gL is equivalent to the weak SM gauge coupling, g.
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2.1 The Field Content of the Model

Diagonalizing the W 3
L , W 3

R , B mass matrix yields three neutral gauge bosons with the following

masses (again, in the vR≫ v limit):

m2
A = 0 , m2

Z =

(
g2

L +
g2

Rg2
B−L

g2
R +g2

B−L

)
v2

2
, m2

Z′ = 2
(
g2

R +g2
B−L

)
v2

R. (2.13)

Comparing the expression for mZ to that found in the SM, m2
Z =

(
g2

L +g′2
) v2

2 , we arrive at the following

definition for the SM hypercharge gauge coupling:

g′ ≡ gR gB−L√
g2

R +g2
B−L

. (2.14)

Consistency with the SM requires gL ≈ 0.65 while fixing to the diboson rate requires gR ≈ 0.45−0.6.

Together, these in turn imply gB−L ≈ 0.45−0.6.

The mass eigenstates, keeping leading order terms in v/vR , are given by:


W 3

Lµ

W 3
Rµ

Bµ

=


sw cw − gR

2gL
c3

R

(
mW
mW ′

)2

cwsR −swsR cR

cwcR −swcR −sR




Aµ

Zµ

Z′µ

 , (2.15)

where we have defined

sw ≡ sinθw ≡
g′√

g2
L +g′2

, cw ≡ cosθw , sR ≡ sinθR ≡
g′

gR
, cR ≡ cosθR . (2.16)

Expressions for the couplings of the Z′ and W ′ to SM fermions, the cubic self-interaction terms

involving non-SM gauge bosons, and the non-SM cubic gauge-Higgs interactions terms can be found in

the appendix of Ref. [52]. In what follows, we fix the parameters of the new physics to values that fit the

excess in the diboson, and related, channels. In particular, we take the SU(2)R gauge coupling gR = 0.45

and MW ′ = 1.9 TeV, which leads to MZ′ = 4.4 TeV. We take the ratio of the VEVs in the bidoublet scalar

to be tanβ = 2, and we assume that the physical scalars in the Higgs triplet are sufficiently heavy such

29



Gauge Extension of the Standard Model

SU(2) Fields Mixing Possible?
singlet-doublet ×
singlet-triplet ✓

singlet-bidoublet ✓
doublet-triplet ×

doublet-bidoublet ×
triplet-bidoublet ✓

Table 2.1 Whether or not mixing is possible through renormalizable Yukawa couplings of fermion
multiplets to the bidoublet and triplet Higgs bosons. Combinations that include multiplets larger than
those listed are not able to mix.

that they take no part in the dynamics. Although it has been shown [94] that if some of the right-handed

neutrinos have mass around 1.4–1.7 TeV then their 3-body decay to e j j can explain a CMS excess in

e+e− j j final state [96], we choose here, for simplicity, to decouple these states. Keeping them in the

mass range necessary to explain the e+e− j j excess would increase the W ′ and Z′ widths by less than

10%, which has a small effect on the dark matter relic abundance calculation.

2.2 The Dark Matter Sector

Previous studies of dark matter in (non-supersymmetric) left-right symmetric models have focused on

dark matter composed of pure multiplets. For example, the authors of Ref. [85] considered dark matter

candidates that are members of a left-right fermion triplet or quintuplet, while Ref. [86] extended this

to include those states found within a fermion bidoublet or bitriplet, or a scalar doublet or 7-plet. Such

candidates can closely resemble what is sometimes referred to as “minimal dark matter” [44, 97–99].

In this study, we extend the analysis to a wider range of scenarios by considering models in which the

dark matter candidate is not necessarily in a pure state, but may instead be a fermion that is a mixture

of two or more multiplets, similar to neutralinos in supersymmetry. For implementation of this class of

models in regards to the recently reported 750 GeV diphoton excess, see e.g., Ref. [100].

Although we restrict our analysis to fermionic dark matter (motivated, in part, by supersymmetric

completions of left-right symmetric models [101]), we consider arbitrary combinations of fermion mul-

tiplets. Mixing between the fermions is induced through the coupling to a bidoublet or triplet Higgs, φ

30



2.2 The Dark Matter Sector

Field Charges Spin
S (1,1,0) 1/2
T1 (1,3,2) 1/2
T2 (1,3,−2) 1/2

Table 2.2 The SU(2)L, SU(2)R, and B−L charge assignments in the singlet-triplet model. All fields are
colorless.

and ∆R . At the renormalizable level, gauge invariance allows only a finite set of possible combinations,

which involves only singlets, SU(2) doublets, bidoublets, and SU(2)R triplets. There are no combina-

tions that include a higher multiplet. In Table 2.1 we list all possible combinations of distinct fermion

representations that can mix via renormalizable Yukawa couplings to the bidoublet and triplet Higgses.

In light of these considerations, we restrict our analysis to the following three mixed cases: singlet-

triplet, singlet-bidoublet, and triplet-bidoublet dark matter. In the following three subsections, we will

discuss each of these cases in turn.

2.2.1 The Singlet-Triplet Model

In this scenario, we introduce three Weyl fermions: a singlet, S, and two triplets, T1,2, with charge

assignments as given in Table 2.2. The triplets are each given B−L charge so that they can couple to

the triplet Higgs, ∆R. Two triplets are needed for anomaly cancellation, which also allows a bare triplet

mass term. Note that the presence of SU(2)R triplets without corresponding SU(2)L triplets breaks the

L↔ R symmetry that is invoked in many left-right symmetric models [85, 86, 92].

The triplets can be parametrized as:

T1 =

t+1 /
√

2 t++
1

t0
1 −t+1 /

√
2

 , T2 =

t−2 /
√

2 t0
2

t−−2 −t−2 /
√

2

 , (2.17)

where the 0 and ± superscripts are labels assigned with the foresight that these components will make

up neutral or electrically charged fermions, accordingly (see Eq. 2.2). The factors of
√

2 are fixed

in order to guarantee canonical normalization of the kinetic terms. The most general renormalizable
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Lagrangian for the dark sector is given by:

L ⊃ S†iσ µ
∂µS+ tr(T †

1 iσ µDµT1)+ tr(T †
2 iσ µDµT2)

−
[

1
2

MSS2 +MT tr(T1T2)+λ1 S tr(T1∆
†
R)+λ2 S tr(T2∆R)+h.c.

]
, (2.18)

where 2-component Weyl spinor indices are implied, and traces refer to sums over SU(2)R indices.

MS and MT are the bare singlet and triplet masses, respectively, and λ1,2 are dimensionless Yukawa

couplings. After ∆R acquires a VEV, these couplings generate mass terms for three Majorana fermions

and two Dirac fermions,

−L ⊃ 1
2

(
S t0

1 t0
2

)
MS λ1 vR λ2 vR

λ1 vR 0 MT

λ2 vR MT 0




S

t0
1

t0
2

+MT t+1 t−2 +MT t++
1 t−−2 +h.c. , (2.19)

where S and t0
1,2 denote the singlet and neutral triplet components, respectively. The electrically charged

states are Dirac fermions of mass MT :

χ
+ ≡

 t+1

(t−2 )†

 and χ
++ ≡

 t++
1

(t−−2 )†

 . (2.20)

Diagonalizing the neutral mass matrix yields the following decomposition:

S = N1
S χ1 +N2

S χ2 +N3
S χ3

t0
1 = N1

t1 χ1 +N2
t1 χ2 +N3

t1 χ3

t0
2 = N1

t2 χ1 +N2
t2 χ2 +N3

t2 χ3 . (2.21)

Bearing in mind field redefinitions that fix wrong-sign mass terms such as χ→ iχ , the mixing angles in

Eq. (2.21) are promoted to complex numbers. Moving to 4-component notation, we define the Majorana
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spinors as follows:

χ
(4-comp.)
i ≡

χi

χ
†
i

 . (2.22)

Throughout the remainder of this study, we will drop the superscripts for all 4-component spinors.

To calculate the thermal relic abundance of dark matter, we utilize the publicly available programs

FeynRules and MicrOMEGAs and cross-check using MadDM, for a short description of these please see

the appendix. In Fig. 2.1, we present examples of the parameter space in which an abundance compat-

ible with the measured cosmological dark matter density is obtained. We present these results in terms

of the singlet and triplet masses, MS and MT , and for various choices of the following parameters:

yST ≡
√

λ 2
1 +λ 2

2 , (2.23)

tanθST ≡ λ1/λ2 ,

where λ1 and λ2 are the Yukawa couplings introduced in Eq. (2.18).

The process of thermal freeze-out is largely governed by the masses of χ1 and χ±. In particular, the

desired relic abundance is obtained near the W ′ or Z′ resonances, corresponding to mχ1 ≈ mW ′/2 ≈ 1

TeV or mχ1 ≈ mZ′/2 ≈ 2 TeV, respectively. In the left frame of Fig. 2.1, | tanθST| ∼ 1, in which case

there is an enhanced parity symmetry acting on the triplets T1,2. As a result, the singlet, S, mixes with

only one linear combination of t0
1 and t0

2 , while the other remains degenerate with the charged states.

For sufficiently small values of the triplet mass, MT ≲ MS, the lightest neutral and charged fermions in

the dark sector are approximately degenerate, leading to efficient coannihilations in the early universe

through the s-channel exchange of a W ′. Alternatively, in the right frame of this figure, | tanθST| ≫ 1,

and there is a significant mass splitting between the neutral and charged states, suppressing the role of

coannihilations. In each frame, we have adopted gR = 0.45, mW ′ = 1.9 TeV, and tanβ = 2, motivated

by the observed characteristics of the diboson excess. We note that if both the neutral component of the

Higgs triplet, ∆0, and the right-handed neutrinos, νR, are relatively light, dark matter annihilations to a

νRνR final state could play a significant role in the determination of the relic abundance. Throughout
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our study, however, we will assume that these states are heavy and neglect their contribution.

In this model, the elastic scattering of dark matter with nuclei is dominated by Z′ exchange. The

cross section for this process is spin-dependent, and of the following magnitude:

σSD ≈ 2×10−45 cm2 ×
(

g(1)Z′

0.1

)2(
4 TeV

mZ′

)4

, (2.24)

where g(1)Z′ is the dark matter’s coupling to the Z′ (see the appendix in Ref. [52]). Even for relatively

large values of this coupling (corresponding to a large value of |N1
t1 |2−|N1

t2 |2), the predicted cross section

is well below the reach of current and planned experiments, and likely below the so-called “neutrino

floor” [49].

Also shown in Fig. 2.1, are the regions of parameter space in which the W ′ has a large branching

fraction to the dark sector. This is motivated by the fact that the rate associated with the diboson

excess naively requires gR ≈ 0.4− 0.6, which is in contrast to some theoretical expectations favoring

gR = gL ≈ 0.65. Decays of the W ′ to particles in the dark sector could plausibly accommodate such an

equality. We estimate that this would require a branching fraction of several tens of percents. However,

given the rough nature of this estimate, in Fig. 2.1 (as well as in Figs. 2.2 and 2.3), we show, for

illustration, regions of parameter space where BR(W ′→ dark sector)>∼ 10%.

In order to ensure a viable dark matter candidate, it is imperative that the lightest dark sector state is

electrically neutral. In the decoupled limit, MT ≪MS, the lightest neutral and charged states are nearly

degenerate at tree-level, suggesting that radiative corrections are potentially important. In Ref. [52], the

full set of one-loop corrections to the dark sector masses are calculated and it is found that mχ± ,mχ±± >

mχ1 throughout the entirety of the parameter space shown in Fig. 2.1. Alternatively, for MS ≳ 50 TeV≫

MT , radiative corrections lead to mχ± ,mχ±± < mχ1 when tanθST =−1.5 and the remaining parameters

are chosen as in Fig. 2.1.

34



2.2 The Dark Matter Sector

1

1.5

2

1 2 3 4 50.5

1.0

1.5

2.0

2.5

3.0

MS @TeVD

M
T
@Te
V
D

Singlet-Triplet, yST=0.5, tanqST=-1.5

Wch2=0.12

mc1 @TeVD

GHW ¢ Æ c c ¢L

1

1.5

2

1 2 3 4 50.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

MS @TeVD
M
T
@Te
V
D

Singlet-Triplet, yST=0.5, tanqST=20

W
ch 2=0.12

m
c
1 @TeVD

GHW ¢ Æ c c ¢L

Fig. 2.1 Phenomenology of singlet-triplet dark matter. Along the solid black contours, the thermal relic
abundance is in agreement with the measured cosmological dark matter density (Ωχh2 = 0.12). Also
shown as dashed grey lines are contours of constant dark matter mass (as labeled). In this model, thermal
freeze-out is dominated by resonant annihilation through the Z′ or resonant coannihilation through the
W ′. In each frame, we have adopted gR = 0.45 and mW ′ = 1.9 TeV in order to match the rate and
energy of the diboson excess, and tanβ = 2 to accommodate the required W ′→WZ branching fraction.
The green shaded regions are those in which the W ′ decays to particles residing within the dark matter
sector with a branching fraction greater than 10%. This is not a constraint, but rather a part of the
parameter space in which we may have Left-right symmetry, i.e. gL = gR. Assuming the singlet-triplet
DM constitutes all the dark matter in the Universe, the black solid contours indicate the parts of the
parameter space where we must lie.

2.2.2 The Singlet-Bidoublet Model

In this section, we introduce two Weyl fermions: a singlet, S, and a bidoublet, B, with charge assign-

ments as given in Table 2.3. The bidoublet is parametrized as follows:

B =

b0
1 −b+2

b−1 b0
2

 , (2.25)

where the 0 and ± superscripts are labels chosen with the foresight that these fermions will make up

neutral or electrically charged fermions, accordingly (see Eq. 2.2). The most general renormalizable
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Gauge Extension of the Standard Model

Field Charges Spin
S (1,1,0) 1/2
B (2,2,0) 1/2

Table 2.3 The SU(2)L, SU(2)R, and B−L charge assignments in the singlet-bidoublet model. All fields
are colorless.

Lagrangian for the dark sector is given by:

L ⊃ S†iσ µ
∂µS+ tr(B†iσ µDµB)

−
[

1
2

MSS2 +
1
2

MB tr(BB̃†)+λ S tr(Bφ
†)+ λ̃ S tr(Bφ̃

†)+h.c.
]
, (2.26)

where 2-component Weyl spinor indices are implied, and traces refer to sums over SU(2) indices. MS

and MB denote the bare singlet and bidoublet masses, respectively, and λ and λ̃ are dimensionless

Yukawa couplings. After EWSB, the dark sector fermion masses are described by,

−L ⊃ 1
2

(
S b0

1 b0
2

)
MS v(λcβ + λ̃ sβ ) v(λ sβ + λ̃cβ )

v(λcβ + λ̃ sβ ) 0 MB

v(λ sβ + λ̃cβ ) MB 0




S

b0
1

b0
2

+MBb−1 b+2 +h.c. .

(2.27)

Whereas S and the neutral bidoublet components, b0
1,2, mix to form three Majorana fermions, the

charged components constitute a single charged Dirac fermion of mass MB:

χ
+ ≡

 b+2

(b−1 )
†

 . (2.28)

As before, we diagonalize the neutral mass matrix by decomposing the neutral gauge eigenstates in
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2.2 The Dark Matter Sector

terms of the mass eigenstates as,

S = N1
S χ1 +N2

S χ2 +N3
S χ3

b0
1 = N1

b1
χ1 +N2

b1
χ2 +N3

b1
χ3

b0
2 = N1

b2
χ1 +N2

b2
χ2 +N3

b2
χ3 , (2.29)

and we again adopt 4-component notation for the Majorana spinors. Ref. [52] provides expressions

describing the interactions between the singlet-bidoublet dark sector and gauge or Higgs bosons.

In Fig. 2.2, we explore some of the phenomenological features of this model, presenting our results

in terms of MB, MS, mA (= mH ,mH±), and the parameters:

ySB ≡
√

λ 2 + λ̃ 2, (2.30)

tanθSB ≡ λ / λ̃ ,

where λ and λ̃ are the Yukawa couplings as defined in Eq. (2.26).

Dark matter freeze-out is largely dictated by annihilations and coannihilations through the s-channel

exchange of a Z′ or W ′ gauge boson. Additional annihilation channels become active if the heavy Higgs

bosons have masses that are comparable to mχ1 , in which case a region of parameter space analogous to

the A-funnel in the MSSM is found near mχ1 ≈mA/2. This is related to our choice of Yukawa structure

in Eq. (2.8). In regions of parameter space with a light and mostly singlet dark matter candidate and

a relatively light pseudoscalar Higgs, it may be possible to generate the Galactic Center gamma-ray

excess [102–107] in this model, similar to as in the models described in Refs. [108, 109]. Furthermore,

depending on the sign of tanθ , singlet mixing allows for enhanced annihilations through heavy scalars

when mχ1 ∼MS ∼MB. If, on the other hand, the heavy Higgses are decoupled, proper freeze-out favors

regions where χ1 is predominantly bidoublet-like, and annihilations involving heavy gauge bosons lead

to the correct relic density near the W ′ and Z′ resonances.

For simplicity, we have ignored trilinear Higgs interactions involving one or more heavy scalars
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Gauge Extension of the Standard Model

since they depend explicitly on the∼ 10 parameters of the general Higgs potential. As a result, we have

purposely neglected annihilation processes such as χχ → A→ Ah in the evaluation of the dark matter

relic density. However, since we do not consider dark matter masses much greater than a few TeV, we

do not expect these interactions to dominate in any of the parameter space shown.

Elastic scattering between dark matter and nuclei is dominated by SM Higgs exchange, leading

to a spin-independent cross section that may be within the reach of current or future direct detection

experiments. The cross section for this process is spin-independent, and of the following magnitude:

σSI ≈ 2×10−44 cm2 ×
(

λ
(1)
h

0.1

)2

, (2.31)

where λ
(1)
h is the dark matter couplings to the light Higgs (see the appendix of Ref. [52]). In Fig. 2.2, the

shaded red regions are currently excluded by the constraints from LUX [110], whereas the shaded blue

regions fall within the projected reach of LZ [111]. In calculating the dark matter coupling to nucleons,

we have taken the scalar nucleon form factors as listed in Sec. 4 of Ref. [112].

Dark matter-nucleon scattering is suppressed for negative values of tanθSB. The dark matter-Higgs

coupling scales as,

λ
(1)
h ∝ (1+ sin2β sin2θSB)mχ1 +(sin2β + sin2θSB)MB . (2.32)

Note that there is a suppression of λ
(1)
h if tanβ and tanθSB are of opposite sign, as can be seen in the

right-hand plots of Fig. 2.2. Furthermore, in this regime, there may be a direct detection blind spot

(corresponding to a vanishing elastic scattering cross section) for non-trivial mixing when λ
(1)
h = 0, or

equivalently

mχ1 =−
sin2β + sin2θSB

1+ sin2β sin2θSB

MB . (2.33)

In the limit that MB ≪ MS, the lightest neutral and charged states are nearly degenerate at tree-

level. In this case, it is important to investigate whether radiative corrections guarantee that the lightest

dark sector state is electrically neutral, crucial for any dark matter candidate. At the one-loop level,
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2.2 The Dark Matter Sector

mχ± > mχ1 throughout the parameter space shown in Fig. 2.2. However, in the case that MB = 500 GeV,

ySB = 0.5, and tanθSB =−2, we find that mχ± < mχ1 for singlet masses as large as MS ≳ 50 TeV.

2.2.3 The Triplet-Bidoublet Model

In this model, we introduce two Weyl fermions: a triplet, T , and a bidoublet, B, with charges as shown

in Table 2.4. The triplet and bidoublet are parametrized as:

T =

t0/
√

2 t+2

t−1 −t0/
√

2

 , B =

b0
1 −b+2

b−1 b0
2

 , (2.34)

where the 0 and ± superscripts are labels assigned with the foresight that these fermions will make

up neutral or electrically charged fermions, accordingly (see Eq. 2.2), and the factors of
√

2 are fixed

in order to guarantee canonical normalization of the kinetic terms. The most general renormalizable

Lagrangian for the dark sector is given by:

L ⊃ tr(T †iσ µDµT )+ tr(B†iσ µDµB)

−
[

1
2

MT tr(T 2)+
1
2

MB tr(BB̃†)+λ tr(BT φ
†)+ λ̃ tr(BT φ̃

†)+h.c.
]
, (2.35)

where 2-component Weyl spinor indices are implied, and traces refer to sums over SU(2) indices. MT

and MB are bare triplet and bidoublet masses, respectively, and λ and λ̃ are dimensionless Yukawa cou-

plings. After EWSB, the neutral and charged fermions mix according to the following mass matrices:

−L ⊃ 1
2

(
t0 b0

1 b0
2

)
MT v(λcβ + λ̃ sβ )/

√
2 −v(λ sβ + λ̃cβ )/

√
2

v(λcβ + λ̃ sβ )/
√

2 0 MB

−v(λ sβ + λ̃cβ )/
√

2 MB 0




t0

b0
1

b0
2


+

(
t+2 b+2

) MT v(λ sβ + λ̃cβ )

−v(λcβ + λ̃ sβ ) MB


t−1

b−1

+h.c. . (2.36)
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Field Charges Spin
T (1,3,0) 1/2
B (2,2,0) 1/2

Table 2.4 The SU(2)L, SU(2)R, and B−L charge assignments in the triplet-bidoublet model. All fields
are colorless.

The neutral triplet, t0, and the neutral bidoublet components, b0
1,2, mix to form three Majorana fermions,

while the charged components mix to form two charged Dirac fermions. Diagonalizing the neutral mass

matrix yields the following decomposition:

t0 = N1
t χ1 +N2

t χ2 +N3
t χ3

b0
1 = N1

b1
χ1 +N2

b1
χ2 +N3

b1
χ3

b0
2 = N1

b2
χ1 +N2

b2
χ2 +N3

b2
χ3 . (2.37)

Bearing in mind field redefinitions that fix wrong-sign mass terms such as χ → iχ , the mixing angles

in Eq. (2.37) are promoted to complex numbers. Similarly, for the charged states:

t−1 =U11 χ
−
1 +U12 χ

−
2

b−1 =U21 χ
−
1 +U22 χ

−
2

t+2 =V11 χ
+
1 +V12 χ

+
2

b+2 =V21 χ
+
1 +V22 χ

+
2 . (2.38)

Above, Ui j and Vi j are orthogonal matrices that are constructed from the eigenvectors of M†M and

MM†, respectively, where M is the charged mass matrix of Eq. (2.36). Once again, we adopt 4-

component notation for the Majorana and Dirac spinors. Ref. [52] provides expressions describing

the interactions between the triplet-bidoublet dark sector and gauge or Higgs bosons.

In Fig. 2.3, we present some of the phenomenological features of this model, describing the param-
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2.2 The Dark Matter Sector

eter space in terms of MB, MT , mA (= mH ,mH±), and the following:

yTB ≡
√

λ 2 + λ̃ 2, (2.39)

tanθTB ≡ λ / λ̃ ,

where λ and λ̃ are the Yukawa couplings as defined in Eq. (2.35).

Similar to the singlet-bidoublet case described in the previous subsection, dark matter freeze-out is

governed primarily by annihilation either through s-channel W ′ or Z′ exchange. The elastic scattering

between dark matter and nuclei is also dominated by SM Higgs exchange, with a cross section that is

the same as given in Eq. (2.31) (but using the expression for λ
(1)
h found in the appendix of Ref. [52]). At

present, the limits from LUX [110] exclude only a very small portion of the otherwise viable parameter

space in this model (red shaded), although the future reach of experiments such as LZ is projected to

be much more expansive (shaded blue). Note that heavy Higgs exchange destructively interferes with

SM Higgs exchange and slightly suppresses the direct detection rate when MB ≈ MT , which is most

noticeable for tanθTB > 0. The dark matter coupling to the SM Higgs scales as

λ
(1)
h ∝ (1+ sin2β sin2θTB)mχ1− (sin2β + sin2θTB)MB. (2.40)

In the limit that MB≫MT ∼mχ1 , λ
(1)
h ∝ s2β + s2θTB

and no blind spot exists. In contrast, cancellations

are possible when MT ≫MB ∼mχ1 , which implies λ
(1)
h ∝ (1−s2β )(1−s2θTB

). The latter case explains

the lack of sensitivity for LZ when MT ≫MB and tanθTB > 0 in Fig. 2.3.

Any viable dark matter candidate must be electrically neutral. Throughout the parameter space of

Fig. 2.3, however, the lightest neutral and charged states are nearly degenerate at tree-level, implying

that radiative corrections are potentially relevant. Using the one-loop corrections to the dark sector

masses, we investigate whether this leads to m
χ
±
1
< mχ1 . Setting the MS renormalization scale to µ = 1

TeV, we find that m
χ
±
1
> mχ1 in the regions shown in Fig. 2.3. Alternatively, for larger degrees of

decoupling, MT ≪MB ≳O(10) TeV or MB≪MT ≳O(10) TeV, radiative corrections lead to m
χ
±
1
<mχ1

when the remaining parameters are set to the values given in Fig. 2.3.
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2.2.4 Indirect Detection

Constraints from searches for the annihilation products of dark matter are not particularly stringent in

the class of models presented here. Gamma-ray observations of dwarf galaxies [113] and the Galac-

tic Center [114] are currently only sensitive to thermal relics with masses below ∼100 GeV. Although

measurements of the cosmic ray anti-proton spectrum can provide a competitive constraint over a simi-

lar mass range [115–117], interpretations of cosmic ray data currently involve significant astrophysical

uncertainties.

In some of the parameter space considered here, the low-velocity dark matter annihilation cross sec-

tion may experience non-negligible Sommerfeld enhancements, most notably boosting the annihilation

rate to distinctive γγ and γZ final states. More specifically, if the dark matter is largely bidoublet-like,

Sommerfeld enhancements can result from the couplings to the W±, similar to the case of a Higgsino-

like neutralino. Even with this enhancement, however, the predicted gamma-ray signal remains beyond

the reach of current or next generation telescopes. Note that in none of the models discussed here

does the dark matter experience a large Sommerfeld enhancement of the type predicted for a wino-like

neutralino [118, 119] (as none of the models include a SU(2)L triplet).

2.2.5 Mechanism for Dark Matter Stability

Throughout this study, we have implicitly defined Lagrangians above the scale vR ∼ 3−4 TeV, which

breaks SU(2)L×SU(2)R×U(1)B−L down to SU(2)L×U(1)Y . Furthermore, the examples in Secs. 2.2.1-

2.2.3 all possess an accidental parity symmetry, under which the fermions of the dark sector are odd.

This can be understood from the fact that vR breaks U(1)B−L down to a non-trivial Z2 subgroup, and as

a result, the lightest new fermion with even B−L is automatically stable [85].

However, above the scale vR, this stabilizing symmetry need not be respected. In particular, new

physics not contained in a minimal left-right symmetric model may generate interactions that allow for

the lightest parity-odd fermion to decay. In this section, we outline a simple argument demonstrating

that any new physics that respects B−L and Lorentz invariance will not generate such processes as long

as the B−L charge of the dark matter multiplet is chosen appropriately.
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2.2 The Dark Matter Sector

We begin by assuming that the multiplet, X , is some fermionic dark matter gauge eigenstate, similar

to the ones described in Sec. 2.2, with B−L charge Q. The neutral component of X (χ) is assumed to

be the cosmological dark matter. Gauge and Lorentz invariance dictate that χ may decay only through

an operator of the form

O = X× (any # of bosons)× (odd # of SM fermions) . (2.41)

Next, we let the quantity “(odd # of SM fermions)" consist of nl SM lepton fields (each with B−L =

±1) and nq SM quarks (each with B−L = ±1/3), and imagine that some subset of the lepton and/or

quark fields cancel in B− L. We will denote the number of uncanceled leptons/quarks by n′l,q. This

cancellation can only take place among an even number of fields, and hence there are still an odd

number of uncanceled SM fermions in the product. Furthermore, at or below the scale vR, all the

bosons of a left-right model are evenly charged under B−L. These two insights imply the following

system of equations:

n′l +n′q = 2n+1 (odd # of SM fermions)

Q+2m+n′l +
1
3

n′q = 0 (B−L invariant), (2.42)

where m and n are some integers. Solving for n′l,q yields:

n′l =
−1
2
(1+3Q+6m+2n)

n′q =
3
2
(1+2(m+n)+Q) . (2.43)

n′l,q are integers by definition, and hence the second line above implies that χ may only decay if 3Q

is an odd integer. Therefore, we have shown that the lightest neutral component, χ , of a dark matter

multiplet, X , is exactly stable, if X does not possess a B−L charge of Q =±(1,3,5, . . .)/3.
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Fig. 2.2 Phenomenology of singlet-bidoublet dark matter. Along the solid black contours, the thermal
relic abundance is in agreement with the measured cosmological dark matter density (Ωχh2 = 0.12).
Also shown as dashed grey lines are contours of constant dark matter mass (as labeled). In each frame,
we have adopted gR = 0.45 and mW ′ = 1.9 TeV in order to match the rate and energy of the diboson
excess, and tanβ = 2 to accommodate the required W ′ →WZ branching fraction. The red shaded
regions are currently excluded by LUX, whereas the blue regions are predicted to fall within the reach
of LZ. The green shaded regions are those in which the W ′ decays to particles residing within the dark
matter sector with a branching fraction greater than 10%. In the figures on the left (both top and bottom),
the ratio of the yukawas, tanθSB = 2 resulting in a larger cross-section, thus a large part of the parameter
space is strongly constrained by the current LUX experiment and only a smaller part has the potential
to be observed at the Future LZ. Only the parameter space on the black lines and in the blue shaded
region will potentially be observed at LZ. The right figures represent a smaller scattering cross-section,
thus a large part of the parameter space will evade current and future experiments.
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Fig. 2.3 Phenomenology of triplet-bidoublet dark matter. Along the solid black contours, the thermal
relic abundance is in agreement with the measured cosmological dark matter density (Ωχh2 = 0.12).
Also shown as dashed grey lines are contours of constant dark matter mass (as labeled). In each frame,
we have adopted gR = 0.45 and mW ′ = 1.9 TeV in order to match the rate and energy of the diboson
excess, and tanβ = 2 to accommodate the required W ′ →WZ branching fraction. The red shaded
regions are currently excluded by LUX, whereas the blue regions are predicted to fall within the reach
of LZ. The green shaded regions are those in which the W ′ decays to particles residing within the
dark matter sector with a branching fraction greater than 10%. For the figures on the left, i.e. with
tanθT B = 2, destructive interference between the contribution of the SM Higgs and heavy CP-even
Higgs result in smaller scattering cross-section, thus evading the projected sensitivity of LZ. In the
figures on the right, there is constructive interference between the two Higgses, especially when the
triplet and bidoublet have maximal mixing. This results in a larger cross-section in this region, meaning
that LZ will be sensitive to this region. For this model, the allowed DM parameter space is the area on
the black solid lines, outside the red region. 45



Chapter 3

Space-Time Extension of the Standard

Model

A promising DM candidate is found in the minimal supersymmetric extension of the SM (MSSM)

where the lightest supersymmetric particle, the neutralino, is the DM candidate. The full properties of

DM sensitively depend on the detailed composition of the neutralino. For instance a neutralino may be

formed dominantly of electroweakinos or Higgsinos or their mixtures, in certain proportions. In fact the

singlet-triplet, singlet-bidoublet and triplet-bidoublet mixtures presented in the chapter 2 in many ways

are phenomenologically analogous to bino-wino, bino-Higgsino, and wino-Higgsino dark matter in the

MSSM, respectively. These two sets of DM scenarios result from models which are simple extensions

of the SM. One is a gauge extension (as presented in chapter 2) while the other is a spatial extension

(the MSSM).

Motivated by this abundant phenomenology, we consider in this chapter a model which has a some-

what one-to-one correspondence with the MSSM. However, we will focus on a non-SUSY extension

in the form of Kaluza-Klein (KK) DM, arising in flat extra dimensions. A minimal KK DM has been

discussed in universal extra dimension (UED) models [120] based on a TeV scale extra dimension [121]

where the entire standard model (SM) particle content is assumed to be realized as the zero KK modes

46



of scalar, fermion, and gauge fields (with the SM field quantum numbers) which propagate on a space-

time M4×X , where M4 is 4-dimensional Minkowski space and X is a compact flat space of extra di-

mension(s). In 4+1 dimensions, chiral zero mode fermions can be obtained when the extra dimensional

space is taken to be the orbifold S1/Z2 (or equivalently the interval [−L,L] where L = πR/2 with the

compactification radius R) which we focus on in this study.1 In UED, all the SM fields are accompanied

by their KK excitations with a mass gap of the order of the inverse compactification radius 1/R. One

of the attractive features of UED is KK parity conservation. KK parity is the reflection symmetry about

the mid point of the extra dimension. It represents a geometric Z2 symmetry which is stable against

quantum corrections and is thereby conserved if imposed at tree level [122, 123]. KK parity protects

the lightest KK particle (LKP) from decay [27, 28, 124–126]. In minimal UED (MUED) [123], the

first KK excitation of the photon2 with a mass M1 = 1/R is the LKP.3 The phenomenology of KK DM

[26, 132–135] becomes much richer when bulk mass terms for fermions [136–141] and the boundary

localized kinetic terms (BLKTs) [142–144] are allowed as in non-minimal UED (NMUED) [145–153].

We note that the boundary localized terms and the bulk mass terms are compatible with the Lorentz

symmetry and the gauge symmetries of the model so that such terms should be included in the generic

effective field theory action [146].

The presence of BLKTs for electroweak gauge bosons modifies the composition of the LKP, which

appears as a mixture of KK excitations of the hyper-charge gauge boson, B(1) and the neutral component

of the weak gauge boson W (1)
3 [146]. This is different from MSSM, since no KK Higgs component is

involved due to different spin of the KK partners of the KK Higgs as compared to KK gauge bosons.

Several studies have considered the KK photon and the KK Z boson LKP separately as DM candi-

dates [154–157]. Here, we consider generic mixing in electroweak KK DM sector and study various

phenomenological aspects of KK DM in a more general framework of NMUED 4. In MUED all the

1Fermions on M4× S1 are vectorlike. However by orbifolding, half of the spinor degrees of freedom are projected out
due to the boundary conditions imposed at the orbifold fixed points which results in a chiral zero mode for each fermion field
after KK decomposition.

2Actually the LKP photon (γ(1)) is very close to the KK excitation of the hypercharge gauge boson (B(1)), because the
weak mixing angle for the KK states are suppressed by a small factor (m2

W /m2
KK)≪ 1 [123].

3See Refs.[127, 128] for reviews on universal extra dimensions as well as Refs. [129–131] for the most recent LHC
bounds on MUED.

4In this chapter we focus on DM in 5D models compactified on S1/Z2. For DM in different compactifications and its
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BLKTs are chosen to vanish at the cutoff scale and quantities at electroweak scale are obtained by

renormalization group equations. In this study, we take the BLKTs as free parameters at the compacti-

fication scale instead. As a result, mixings and mass spectra are modified as compared to MUED.

This chapter is structured as follows: In section 3.1, we present the model of electroweak boson KK

DM allowing BLKTs in NMUED and examine KK spectra and mixings among KK states. In section

3.2, we discuss current collider and precision measurement bounds on the given setup focusing on the

effects of allowed four-Fermi operators, as well as collider constraints from the LHC. In section 3.3, we

study the impact of BLKTs on the relic abundance of electroweak KK DM and on the direct detection

rates taking the latest bounds into account.

3.1 Theoretical Framework

In this section we set up the model Lagrangian and discuss the KK decomposition of the electroweak

KK bosons in the presence of BLKTs. We focus on mixings among KK weak gauge bosons. We will

follow notations as in a recent review, Ref. [149].

3.1.1 Model Lagrangian

When we embed the SM in a five dimensional space M4× [−L,L], the UED action is given in the

following form:

S5 =
∫

d4x
∫ L

−L
dy [LV +LΨ +LH +LYuk] , (3.1)

where y =±L are the orbifold fixed points, which are the boundaries of the fifth dimension. The kinetic

energy of the gauge bosons and fermions propagating in 5D bulk are LV and LΨ. The Lagrangian

for the Higgs boson and the Yukawa interactions with fermions are LH and LYuk, respectively. The

phenomenology, see Refs. [29, 30, 158–164].
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explicit form of each term is given as follows:

LV =
G,W,B

∑
A

−1
4
A MN ·AMN , (3.2)

LΨ =
Q,U,D,L,E

∑
Ψ

iΨDMΓ
M

Ψ , (3.3)

LH =
(
DµH

)† DµH +µ
2
5 |H|2−λ5|H|4 , (3.4)

LYuk = λ
E
5 LHE +λ

D
5 QHD+λ

U
5 QH̃D+h.c. , (3.5)

where A denotes the five dimensional gauge bosons in the SM gauge group, i.e., the gluon (G), weak

gauge bosons (W ) and the hypercharge gauge boson (B). DM = ∂M + iĝ3λ ·GM + iĝ2τ ·WM + iĝ1Y BM is

the gauge covariant derivatives, where the ĝi’s are the five dimensional couplings of the SM, and λ ’s and

τ’s are the generators of SU(3)c and SU(2)W, respectively. The fermions, Ψ = L,E,Q,D,U are Dirac

spinors containing both chiralities in the KK decomposition as Ψ(x,y) = ∑n ψn
L(x) f n

L (y)+ψn
R(x) f n

R(y)

where ψn
L/R(x) is the n-th KK excitation mode with left-(right-) chirality, respectively and f n

L/R(y) is the

corresponding KK basis function in the fifth dimension. The model is 5D Lorentz symmetric and the

SM gauge symmetries are assumed as the internal symmetries. One should notice that the constructed

Lagrangian is invariant under the inversion (y→−y), such that the model respects the Kaluza-Klein

parity (KK-parity). From the kinetic terms one can read out the mass dimensions of the fields and

the coupling constants: [A ] = [H] = Mass3/2, [Ψ] = Mass2, [µ5] = Mass, [λ Ψ
5 ] = Mass−1/2 and [ĝi] =

Mass−1/2. The KK basis functions are dimensionful as [ f n
L/R] =Mass1/2 and the KK modes are regarded

as the conventional fields in 4D, [ψn
L/R] = Mass3/2.

Notably, the 4D spacetime symmetry and the gauge symmetries of the model allow additional

boundary localized operators. Even if the absence of such operators is assumed at tree level, they

are induced by radiative corrections [122, 123], which shows that these operators cannot be forbidden

by an underlying symmetry and their coefficients should thus be considered as additional parameters of

the model which can only be calculated from the (so far unknown) UV completion of the model. If the
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UV completion respects KK-parity, the boundary terms on the two orbifold fixed points are related.1

In this study, we focus on the boundary localized terms for the electroweak gauge bosons respecting the

KK-parity, the lightest combination of which would serve as dark matter:

Sbdy =
∫

d4x
∫ L

−L
dy
(
−rW

4
Wµν ·W µν − rB

4
BµνBµν ,

)
[δ (y−L)+δ (y+L)] , (3.6)

where rW and rB are parameters describing the strength of the boundary localized terms and their mass

dimensions are [rW ] = [rB] = Mass−1.

The boundary localized operators for the Higgs would affect the electroweak symmetry breaking in

general but the KK state of the Higgs boson would not mix with electroweak gauge bosons because of

the different spins. This makes a clear distinction from the MSSM where a neutralino is a mixture of

higgsinos and electroweakinos.

The boundary localized terms modify the KK mass spectra and the KK wave functions of the elec-

troweak gauge bosons, as will be worked out in detail in the next section. This in turn has important

implications for the dark matter phenomenology: (i) Due to the modified masses of the electroweak

gauge bosons at the first KK level, the UED dark matter candidate now becomes a linear combination

of the B(1) and the W 3(1) with the mixing angles determined by rW ,rB, and R−1, (ii) due to the modified

wave functions, the couplings amongst the electroweak gauge bosons and the fermions (which follow

from the overlap integrals of wave functions) are modified. Therefore the parameter space (rW ,rB,R−1)

will be constrained by various tests such as electroweak precision measurement and collider searches.

In this study, we only focus on the boundary terms for electroweak gauge bosons. Therefore, our

results by no means cover the entire NMUED parameter space, but rather show the main effects of

changing the LKP from a B(1) to a W 3(1) dark matter candidate, and its correlated implications for

collider searches and precision bounds.

1Apart from KK parity conserving boundary terms, UED models can also contain KK parity odd fermion masses in the
bulk whilst preserving KK parity in all interactions [136]. For studies of UED models with KK parity violating boundary
terms c.f. e.g. [165–167].
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3.1.2 Kaluza Klein Decomposition

KK masses and wave functions for the KK fermions, the KK gluon and the KK Higgs are given by the

standard UED results (no boundary terms for these)

f e(y) =


f e
0 =

√
1

2L ,

f e
2n =

√
1
L cos 2ny

R ,

f e
2n+1 =

√
1
L sin (2n+1)y

R

, (3.7)

f o(y) =

 f o
2n+1 =

√
1
L cos (2n+1)y

R ,

f o
2n =

√
1
L sin 2ny

R ,
(3.8)

where f e denote the KK wave functions of the Z2 even fields Gµ ,QL,UR,DR,LL,ER,h, and f o denote

the KK wave functions of the Z2 odd fields G5,QR,UL,DL,LR,EL. The wave functions satisfy the nor-

malization condition
∫ L
−L dy f ∗n fm = δmn, and the masses are determined by m2

Φ(n) = (n/R)2+m2
Φ(0) , with

the zero mode mass m2
Φ(0) , given by the Higgs mechanism. Note that [ f e/o] = Mass1/2 = Length−1/2,

which is consistent with the Kronecker-delta normalization for orthonormal basis.

For the electroweak gauge bosons the boundary kinetic terms modify the wave functions. The

KK decomposition of electroweak gauge bosons in the presence of boundary kinetic terms have been

performed in Ref. [146]. Treating electroweak symmetry breaking as a perturbation, the gauge fields

are decomposed as

Wµ(x,y) =
∞

∑
n=0

W (n)
µ (x) f W

n (y) , (3.9)

Bµ(x,y) =
∞

∑
n=0

B(n)
µ (x) f B

n (y) , (3.10)
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where

f W/B
n (y) =


N

W/B
0 if n = 0,

N
W/B

n sin(kW/B
n y) if n = odd,

N
W/B

n cos(kW/B
n y) if n = even,

(3.11)

with the normalization factors

N
W/B

n =



1√
2L(1+

rW/B
L )

if n = 0,

1√
L+rW/B sin2(kW/B

n L)
if n = odd,

1√
L+rW/B cos2(kW/B

n L)
if n = even.

(3.12)

The wave numbers kn are determined by

cot(kW/B
n L) = rW/BkW/B

n if n = odd, (3.13)

tan(kW/B
n L) =−rW/BkW/B

n if n = even .

Furthermore the wave functions satisfy the orthogonality relations

∫ L

−L
dy f W/B

m f W/B
n

[
1+ rW/B (δ (y+L)+δ (y−L))

]
= δmn. (3.14)

Again [ f W/B
n ] = Mass1/2 = Length−1/2, which is consistent with our normalization conditions.
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Finally, the effective 4D action of the electroweak gauge bosons is obtained after integrating over y:

S4D ∋
∫

d4x

{
∑
n

[
−1

4 ∑
n

B(n)µνB(n)
µν −

(
kB

n
)2

2
B(n)µB(n)

µ

−1
4 ∑

n
W (n)aµν ·W (n)a

µν −
(
kW

n
)2

2
W (n)aµW (n)a

µ

]
(3.15)

+∑
m,n

[
− ĝ2

1v2

8
F BB

mn B(m)µB(n)
µ −

ĝ1ĝ2v2

8
FWB

mn B(m)µW (n)3
µ

− ĝ2
2v2

8
FWW

mn W (m)aµW (n)a
µ

]}
,

where ĝ1,2 and v are the 5D U(1)Y and SU(2)W gauge couplings and the vacuum expectation value. The

mixing parameters are defined as

F BB
mn =

∫ L

−L

dy
2L

f B
m(y) f B

n (y) ,

F BW
mn =

∫ L

−L

dy
2L

f B
m(y) f W

n (y) ,

FWW
mn =

∫ L

−L

dy
2L

f W
m (y) f W

n (y) , (3.16)

where the normalization factor, 1/(2L), comes from the normalization factor of the zero mode Higgs

vacuum expectation value. The resultant mass dimensions of the mixing parameters are [FVV ′
mn ] = Mass

for V (V ′) = B or W . It should be noted that F BB
mn and FWW

mn are not orthogonal in our basis as they are

orthogonal with respect to the scalar product as in Eq. (3.14) which includes the boundary parameters.

The electroweak symmetry breaking terms having v2 thus induce KK-mode-mixing in the basis we are

using. Note that KK parity is still conserved so that even and odd modes do not mix.

We can separately analyze the mass matrices for KK even modes and odd modes. The matrix for

even modes is relevant for tree level modifications of zero mode couplings as well as the couplings of

the zero modes and the second (and higher even) KK modes. These are particularly important in Z′-like

new gauge boson searches since the production and decay of Z′ = Z2 would be decided by the matrix.

It is also important to consider 4-fermion operators among zero mode fermions, which are induced by

even KK mode exchange. They can be probed by precision measurements, which will be analyzed in
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section 3.2. The mass matrix for KK odd modes is particularly relevant for the DM physics since the

nature and the structure of the couplings of the LKP (the lightest odd mode) is determined by the mass

matrix.

3.1.3 Mass Matrices and Mixing Angles of KK Gauge Bosons

The mass matrix of the even-numbered neutral mass matrix in the B(2n) - W 3(2n) basis reads

M2
n,e =



ĝ1
2v2

4 F BB
00

ĝ1ĝ2v2

4 F BW
00

ĝ1
2v2

4 F BB
02

ĝ1ĝ2v2

4 F BW
02 . . .

ĝ1ĝ2v2

4 F BW
00

ĝ2
2v2

4 FWW
00

ĝ1ĝ2v2

4 F BW
02

ĝ2
2v2

4 FWW
02 . . .

ĝ1
2v2

4 F BB
20

ĝ1ĝ2v2

4 F BW
20

(
kB

2
)2

+ ĝ1
2v2

4 F BB
22

ĝ1ĝ2v2

4 F BW
22 . . .

ĝ1ĝ2v2

4 F BW
20

ĝ2
2v2

4 FWW
20

ĝ1ĝ2v2

4 F BW
22

(
kW

2

)2
+ ĝ2

2v2

4 FWW
22 . . .

...
...

...
...

. . .


. (3.17)

We can further simplify the mass matrix by using the fact that the zero mode wave functions are

flat. First, let us define

g1,2 = ĝ1,2N
B,W

0 , (3.18)

and the “normalized” and dimensionless overlap integrals

F̃ BB
mn ≡

F BB
mn

(N B
0 )2 , F̃WW

mn ≡
FWW

mn

(N W
0 )2 , F̃ BW

mn ≡
F BW

mn

N B
0 N W

0
. (3.19)

Then the mass matrix can be rewritten as

M2
n,e =



g2
1v2

4
g1g2v2

4
g2

1v2

4 F̃ BB
02

g1g2v2

4 F̃ BW
02 . . .

g1g2v2

4
g2

2v2

4
g1g2v2

4 F̃ BW
02

g2
2v2

4 F̃WW
02 . . .

g2
1v2

4 F̃ BB
20

g1g2v2

4 F̃ BW
20

(
kB

2
)2

+
g2

1v2

4 F̃ BB
22

g1g2v2

4 F̃ BW
22 . . .

g1g2v2

4 F̃ BW
20

g2
2v2

4 F̃WW
20

g1g2v2

4 F̃ BW
22

(
kW

2

)2
+

g2
2v2

4 F̃WW
22 . . .

...
...

...
...

. . .


. (3.20)
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Now, performing a field rotation on the zero modes

U† =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 , (3.21)

with tanθ = g1/g2, one obtains

UM2
n,eU

† =



0 0 0 0 . . .

0 (g2
1+g2

2)v
2

4
g1
√

g2
1+g2

2v2

4 F̃ BW
02

g2
√

g2
1+g2

2v2

4 F̃WW
02 . . .

0 g1
√

g2
1+g2

2v2

4 F̃ BW
20

(
kB

2
)2

+
g2

1v2

4 F̃ BB
22

g1g2v2

4 F̃ BW
22 . . .

0 g2
√

g2
1+g2

2v2

4 F̃WW
20

g1g2v2

4 F̃ BW
22

(
kW

2

)2
+

g2
2v2

4 F̃WW
22 . . .

...
...

...
...

. . .


. (3.22)

In this basis, the masslessness of the photon is explicitly seen. As it is a linear combination of B(0)

and W (0)
3 , both of which in this basis have flat wave functions, the photon wave function is also flat as

expected for a massless particle. At the same time we see that the zero mode of Z (and W as well) mixes

with the even KK modes of the B and the W3 in general.

In our phenomenological study for dark matter physics, the most relevant mass matrix is the mass

matrix for the first KK excitation of neutral gauge bosons. The lightest odd state would be the candidate

of the DM:

M2
n,odd =


(
kB

1
)2

+ ĝ1
2v̂2

4 F BB
11

ĝ1ĝ2v̂2

4 F BW
11 . . .

ĝ1ĝ2v̂2

4 F BW
11

(
kW

1

)2
+ ĝ2

2v̂2

4 FWW
11 . . .

...
...

. . .

 . (3.23)

In the limit of vanishing boundary terms, FVV
nn approaches the unity (FVV

nn → 1 for rW → 0 and rB→ 0).

In addition to the terms from electroweak symmetry breaking, the boundary parameters play important

roles here. They affect not only the overlap integrals FVV ′
11 but also the value of the wave number kB

1

and kW
1 .

The contours of the two lightest electroweak KK gauge boson masses is shown in the left panel of
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Fig. 3.1. We present the contour in the (rB,rW ) plane for R−1 = 1TeV as an example. The red solid

contour lines are for the lighter level one mass eigenstate A(1)
1 while the blue dashed contours are for

the heavier A(1)
2 state. When a boundary parameter (rW or rB) increases, the corresponding electroweak

gauge boson becomes lighter. Thus the actual composition of the lightest mass eigenstate sensitively

depends on the boundary parameters. In the right panel of Fig. 3.1 we present the level 1 KK Weinberg

angle sin2
θ
(1)
W as a function of rW/rB for R−1 = 1TeV assuming rB/L = 0.5.
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Fig. 3.1 Left: Contours of constant mass for the level 1 electroweak KK bosons A(1)
1 and A(1)

2 . The
contours were made assuming R−1 = 1 TeV, and they show the mass dependence on the boundary terms
rB and rW . Right: The level 1 KK Weinberg angle sin2

θ
(1)
W for R−1 = 1 TeV and rB/L = 0.5. This

illustrates how the KK Weinberg angle changes with the boundary terms.

We may classify the whole parameter space by three distinctive regions:

1. For kB
1 ≪ kW

1 (which occurs if rB ≫ rW ), the (11)-element of M2
n,odd is smaller than the (22)-

element, but still much larger than the off-diagonal elements. The lightest eigenstate is almost

purely B(1) and we have the “standard” MUED dark matter candidate.

2. For kB
1 ≫ kW

1 (which occurs if rB ≪ rW ), the (22)-element is smaller than the (11)-element, but

still much larger than the off-diagonal elements. The lightest eigenstate is almost purely W (1)
3 and

we have what is normally referred to as a KK Z DM candidate, which is almost mass degenerate
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with the W (1)
3 .1

3. For kB
1 = kW

1 (which occurs if rB = rW ), the contribution from the
(

kB/W
1

)2
on the diagonal entries

are identical, and as this part is proportional to the unit matrix, it does not contribute to the

mixing angle. Then, the KK Weinberg angle is identical to the zero mode (and therefore the

SM) Weinberg angle. In this case we have a mixture between the B(1) and the W (1)
3 resulting in

electroweak type KK gauge bosons, the lightest of which we call A(1)
1 and is the DM candidate.

A notable feature here is that the Weinberg angle is almost always θ (1) ≈ 0 or π/2 except the region

of degenerate rW/rB≈ 1 where the transition takes place (see Fig. 3.1.) This feature is easily understood

as the off-diagonal entries are relatively small (<∼O(v2)) compared to the diagonal entries (∼O(1/R2))

so that a small difference in rB and rW easily induce an abrupt transition of the LKP from W (1)
3 -like to

B(1)-like or vice versa.

The mass spectrum and the properties of the mixing angle of the level 2 KK bosons are analogous

to those for the first KK bosons as shown in Fig. 3.2 (left) where we present the contours for the mass

eigenstates A(2)
1 (the lighter 2nd KK EW boson) and A(2)

2 (the heavier 2nd KK EW boson), respectively

for a fixed compactification scale R−1 = 1 TeV. The Weinberg angle of the level 2 bosons, sin2
θ
(2)
W , is

depicted in Fig. 3.2 (b). We can still observe the similar sharp transition near rW/rB ≈ 1 as is expected

from the similar underlying physics in the case for the level 1 EW bosons. We will discuss the detailed

phenomenological implications in Sec. 3.2.2.

3.1.4 Coupling Between KK Bosons and Fermions

The couplings between KK gauge bosons and fermions are determined by a product of the correspond-

ing SM coupling and the wave function overlap integral of the interacting particles (A (ℓ)−ψ(m)−ψ(n)):

gA (ℓ)ψ(m)ψ(n) = gA F̃A
ℓmn (3.24)

F̃A
ℓmn ≡

1
N A

0

∫ L

−L
dy f A

ℓ (y) f ψ
m (y) f ψ

n (y), (3.25)

1The W±(1) mass always lies in between the masses of the two neutral eigenstates, such that the LKP is always neutral.

57



Space-Time Extension of the Standard Model

1300

1400

1500

1600

1700

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

rBêL

r W
êL

R-1= 1 TeV

MA1
H2L

MA2
H2L

0.90 0.95 1.00 1.05 1.10
0.0

0.2

0.4

0.6

0.8

1.0

rW /rB
S
in
2
θ
w(2
)

R
-1= 1 TeV

rB/L= 0.5

Fig. 3.2 Left: Contours of constant level 2 gauge boson masses for R−1 = 1 TeV. The red contours show
the mass of the lighter eigenstate A(2)

1 and the blue contour represents mass of heavier eigenstate A(2)
2 .

Right: The level 2 KK Weinberg angle sin2
θ
(2)
W for R−1 = 1 TeV and rB/L = 0.5.

where gA denotes g1 or g2, N A
0 is normalization factor and F̃ are the normalized overlap integrals in

Eq. (3.18), which essentially describe the relative strength of the coupling constant with respect to the

SM one. All KK number conserving interactions satisfy a ‘sum-rule’ |ℓ±m± n| = 0. However, there

are KK number violating interactions which only satisfy the rule from the KK parity conservation:

ℓ+m+n ∈ Zeven.

Among those couplings, we are first interested in the KK number conserving interactions e.g.,

A (1)ψ(1)
ψ(0). This interaction is particularly important in dark matter physics since the dark matter is

identified as a level 1 EW gauge boson and it interacts with the SM fermion and its first KK excitation

mode with the effective coupling constant

gA (1)ψ(1)ψ(0) = gA F̃A
110. (3.26)

In Fig. 3.3 (left) we plot the effective couplings gB(1)ψ(1)ψ(0) and gW (1)ψ(1)ψ(0) with respect to the SM

gauge couplings varying BLKT parameters rB and rW in the parameter range (0,L). The (110) couplings
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are reduced when the BLKTs get large.
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Fig. 3.3 Couplings of KK gauge bosons to fermions, normalized with respect to the Standard Model
gauge couplings, as a function of the boundary parameter rA . Left: The KK number conserving cou-
pling of a U(1)Y or SU(2) first KK mode gauge boson to a first KK mode fermion and a Standard
Model fermion (F̃A

110 as defined in Eq. (3.26)). Right: The KK number violating interaction of a U(1)Y
or SU(2) second KK mode gauge boson to Standard Model fermions (F̃A

200 as defined in Eq. (3.27)).
Here A represents either B or W, depending on the gauge interaction.

There are also KK number violating but KK-parity conserving interactions induced by the cou-

plings, e.g. :

gA (2n)ψ(0)ψ(0) = gA F̃A
(2n)00, (3.27)

which are absent (at tree level) when the boundary terms vanish.

The non-vanishing couplings could be probed by the precision electroweak precision measurements

and collider experiments: the even mode KK bosons mediate four fermion interactions via t-channel as

well as s-channel diagrams. The induced four Fermi operators are subject to the on-going and future

precision measurements. More directly, when BLKTs are sizable, the second level KK gauge bosons

are to be produced in high energy collisions with sizable cross sections and they may appear as new

heavy Z′-like resonances at the LHC. This is subject to resonance searches.

Before studying the phenomenological implications of BLKTs we wish to comment on the param-

eter choice in our scenario discussed here, as compared to the minimal UED scenario. In MUED, all

boundary terms are assumed to be identical to zero at a cutoff scale Λ: rW/B(µ = Λ) = 0 and induced at
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low scale through renormalization group (RG) running from Λ [123]. On the other hand, in the scenario

we study in this chapter, we explicitly consider BLKTs as parameters at low scales, such as the first KK

mode resonance scale, i.e., rW/B = rW/B(µ = kW/B
1 ) for DM phenomenology, such that we can directly

compare our analysis with the low energy observables. As we are mostly interested in the lightest KK

electroweak gauge bosons as a DM candidate in our study, we only consider the effects of rW/B but

one may straightforwardly generalize our study by taking the non-vanishing BLKTs for fermions or the

Higgs fields, which we reserve for the future.

3.2 Bounds from Collider Searches

In this section we consider experimental constraints on the BLKTs using electroweak precision data,

namely from four Fermi-operators as well as results from resonance searches at the LHC.

3.2.1 Electroweak Precision Measurements

Electroweak precision tests (EWPT) provide stringent constraints on low scale KK masses [168–170].

In the presence of BLKTs, in particular, the KK electroweak (EW) gauge bosons would have tree level

couplings with the SM fermions through KK-number violating but KK-parity conserving couplings so

that they contribute to the four Fermi contact operators below the KK scale [171, 172]. It is convenient

to parameterize the four Fermi operators following Ref. [173]:

Le f f ⊃ ∑
f 1, f 2

∑
A,B=L,R

η
s
f1 f2,AB

4π

(Λs
f 1 f 2,AB)

2 f 1,Aγ
µ f1,A f 2,Bγµ f2,B, (3.28)
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where f1,2 are fermions (leptons or quarks), ηs
f 1 f 2,AB =±1 and s =± are parameters for specific inter-

action patterns. The effective cutoff scale is given as

4π

Λ2
eq,AB

ηeq,AB = 4πNc

 ∞

∑
n=1

(F̃ B
2n00)

2 3
5

α1YeAYqB

Q2−M2
B(2n)

+
∞

∑
n=1

(F̃W
2n00)

2 α2T 3
eAT 3

qB

Q2−M2
W (2n)

3


≈ −12π

 ∞

∑
n=1

(F̃ B
2n00)

2 3
5

α1YeAYqB

M2
B(2n)

+
∞

∑
n=1

(F̃W
2n00)

2 α2T 3
eAT 3

qB

M2
W (2n)

3

 . (3.29)

The effective couplings are weighted by the factor F̃A
2n00 which is the integrated wave function

overlaps from A (2n)ψ(0)
ψ(0) couplings in Eq. (3.27) with a color factor Nc = 3. The quantum numbers

Y ’s and T ’s are the hypercharges and isospins of the interacting fermions (electron and quarks) and we

take the one-loop improved values

α1(µ) =
5
3

g2
Y (µ)

4π
=

α1(mz)

1− b1
4π

α1(mZ) log µ2

m2
Z

,

α2(µ) =
g2

ew(µ)

4π
=

α2(mZ)

1− b2
4π

α2(mZ) log µ2

m2
Z

, (3.30)

where α1(mZ) ≈ 0.017,α2(mZ) ≈ 0.034, and (b1,b2) = (41/10,−19/6) below the compactification

scale.

Equipped with the effective parameterization of four Fermi operators, we are now ready to compare

with the experimental results. We take the updated results in PDG 2016 [172] as the reference values

of experimental bounds. We summarize the relevant results in Table 3.1. The most stringent bound

arises from the eLeLqLqL interaction. Fig. 3.4 shows the bounds on R−1 in the (rW/L,rB/L) plane. The

most important ones are the results from eeuu and eedd. We draw the contours for various values of

Table 3.1 Four Fermi contact interaction bounds in TeV from PDG (2016) [172]

TeV eeee eeµµ eeττ ℓℓℓℓ qqqq eeuu eedd
Λ
+
LL > 8.3 > 8.5 > 7.9 > 9.1 > 9.0 > 23.3 > 11.1

Λ
−
LL > 10.3 > 9.5 > 7.2 > 10.3 > 12.0 > 12.5 > 26.4
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Fig. 3.4 Bounds on R−1 from four-Fermi contact interactions in rB/L and rW/L space. Left: Contours
of minimally allowed values of R−1. Right: Contours of minimally allowed values of mLKP.

R−1 ∈ (500,3000) GeV (left) and the LKP mass, mLKP ∈ (500,1500) GeV (right). The region above

the line with a given R−1 (or mLKP) is ruled out (thus the region below the line is allowed) because

the effective couplings are too large. As expected, a larger parameter space is allowed for a large R−1

(and mLKP) because of large suppression factors (∼ 1/m2
LKP) in the effective operators. We notice that

the bounds are more sensitive to the boundary parameter rW rather than rB mainly due to the large

weak coupling compared to the hypercharge coupling. For example, above mLKP ≈ 700 (1100) GeV,

essentially no stringent bound is found on rB/L but only a restricted region rW/L <∼ 0.3−0.4 (0.6−0.8)

is allowed.

3.2.2 Dilepton Resonance Searches

The resonance searches at colliders are an effective way of probing BLKTs since the KK number vio-

lating interactions, e.g., gA (2)ψ(0)ψ(0) in Eq. (3.27), allow the single production of the second KK gauge

bosons at particle collisions. When the 2nd EW gauge bosons are produced in high energy collisions,

they decay to the SM particles which can be observed as a resonance. The production cross sections

and the decay widths are all determined by the KK number violating couplings in Eq. (3.27). Here
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3.2 Bounds from Collider Searches

we focus in particular on dilepton resonances because the Standard Model background is very low and

the expected production cross sections are sizable. The dijet final state has a larger cross section in

NMUED, but it is accompanied by a huge QCD background.

To determine the relevant couplings for mass eigenstates A(2)
1,2 to the standard model fermions, we

need to diagonalize the mass matrix in Eq. (3.22). The mass matrix at the second KK mode level reads

M2
n,2 =

 (kB
2 )

2 +
g2

1v2

4 F̃ BB
22

g1g2v2

4 F̃ BW
22

g1g2v2

4 F̃ BW
22 (kW

2 )2 +
g2

2v2

4 F̃WW
22

 , (3.31)

where kB,W
2 follow from the mass quantization condition in Eq. (3.14). Wave function overlaps for

A (A ′) = B or W defined in Eq. (3.19) are

F̃A A ′
22 =

√
1+ rA /L

1+ rA
L cos2(kA

2 L)

√
1+ rA ′/L

1+ rA ′
L cos2(kA ′

2 L)

×
[

sin((kA
2 + kA ′

2 )L)
(kA

2 + kA ′
2 )L

+
sin((kA

2 − kA ′
2 )L)

(kA
2 − kA ′

2 )L

]
. (3.32)

For A = A ′, the second term in the square parenthesis becomes 1:

F̃WW
22 =

1+ rW/L
rW
L cos2(kW

2 L)

[
sin(2kW

2 L)
2kW

2 L
+1
]
, (3.33)

F̃ BB
22 =

1+ rB/L
1+ rB

L cos2(kB
2 L)

[
1+

sin(2kB
2 L)

2kB
2 L

]
. (3.34)

The mass matrix is diagonalized by a rotation by an angle θ
(2)
W , the weak rotation angle for the 2nd

level KK gauge bosons:

A(2)
1

A(2)
2

=U (2)
n

B(2)

W (2)
3

=

 cos(θ (2)
W ) sin(θ (2)

W )

−sin(θ (2)
W ) cos(θ (2)

W )


B(2)

W (2)
3

 . (3.35)

Interaction of the mass eigenstates and zero mode fermions are obtained from interaction of gauge
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eigenstates (W (2)
±,3 and B(2)), which follows from the covariant derivative,

L ⊃
∫

dyΨi /DΨ ⊃ −gW (2)ψ(0)ψ(0)ψ
(0)W (2)

3 T 3
ψL

PLψ
(0)

−gB(2)ψ(0)ψ(0)ψ
(0)B(2)(YψLPL +YψRPR)ψ

(0)

= −gW (2)ψ(0)ψ(0)ψ
(0)
(

sin(θ (2)
W )A(2)

1 + cos(θ (2)
W )A(2)

2

)
T 3

ψL
PLψ

(0) (3.36)

−gB(2)ψ(0)ψ(0)ψ
(0)
(

cos(θ (2)
W )A(2)

1 − sin(θ (2)
W )A(2)

2

)
(YψLPL +YψRPR)ψ

(0),

where

gW (2)ψ(0)ψ(0) = g2

∫ L

−L

dy
2L

f W
2 (y)
N W

0
= g2

√
2(1+ rW/L)

1+ rW
L cos2(kW

2 L)
sin(kW

2 L)
kW

2 L
, (3.37)

gB(2)ψ(0)ψ(0) = g1

∫ L

−L

dy
2L

f B
2 (y)
N B

0
= g1

√
2(1+ rB/L)

1+ rB
L cos2(kB

2 L)
sin(kB

2 L)
kB

2 L
. (3.38)

The ATLAS and CMS collaborations have searched for heavy narrow dilepton resonances at 13

TeV with 13.3 fb−1 (ATLAS) [174] and 13.0 fb−1(CMS) [175] data, respectively. The experimental

bounds are set in the combination of the production cross section of the heavy resonance particle and

the branching fraction to dileptons, σ ×BR(ℓℓ). The bounds are similar in both experiments. Here we

use the ATLAS results, which are based on a slightly larger set of data. Since the relevant production

cross sections and the branching fractions are given by three parameters rB/L,rW/L and R−1, we find

the allowed parameter space in (rB/L,rW/L) for various values of R−1. In the left panel of Fig. 3.5

we show the ATLAS upper limit on σ ×BR in the mass range (1000,5000) GeV and the expectations

for the lighter level-2 KK gauge boson A(2)
1 decaying to leptons. With a large compactification scale

R−1, a heavy dilepton resonance is expected so that a large parameter space in (rB/L,rW/L) is allowed

as shown in the right panel. For R−1 = 2.4 TeV, roughly rA /L <∼ 0.4 is allowed for A = W,B but a

smaller R−1 = 1.5 TeV for instance is compatible only with a smaller range rA <∼ 0.2 or so. When

comparing the results presented in Fig. 3.5 and Fig. 3.4, the LHC bound from the dilepton search is by

far more stringent than the results from four-Fermi contact interactions. For the calculation of signal

cross sections at leading order (pp→A → ℓℓ), we have used CalcHEP and MG5_aMC@NLO (Please see
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Fig. 3.5 Constraints from the 13 TeV ATLAS dilepton resonance search with 13.3 fb−1 luminosity [174],
and bounds on the NMUED parameter space. Left: Constraints on the cross section times branching
ratio to two leptons by ATLAS as a function of the resonance mass (black, solid). The model predictions
for A(2)

1 (lighter) resonance signals with R−1 = 1,1.3,1.5,1.8,2.4 TeV in the parameter window (rB/L∈
(0,1),rW/L ∈ (0,1)) are given by scatter plots. Low values of rB/L and rW/L correspond to low cross
sections. Right: Bounds on the NMUED parameter space from dilepton searches in the rW/L vs. rB/L
plane. The red shaded region shows the allowed parameter space assuming R−1 = 1 TeV, corresponding
to the values in red below the black line, in the left figure. The blue region is for R−1 = 1.3 TeV, the
yellow region for R−1 = 1.5 TeV, the green region for R−1 = 1.8 TeV and the larger cyan region is for
R−1 = 2.4 TeV.

Appendix for more information) with masses and couplings defined above.

While a dedicated study with double narrow resonance may provide more stringent bounds, we

include the lighter level-2 KK gauge boson, A(2)
1 , in our analysis, since current ATLAS/CMS anal-

ysis assumes a single resonance in the dilepton channel. We assume that level-2 KK gauge bosons

dominantly decay into SM fermion final states, and the decay width is computed automatically while

scanning over (rB/L,rW/L) for a given R−1. Similar or slightly weaker bounds are obtained with the

heavier KK gauge boson, A(2)
2 .

3.3 Phenomenology of Electroweak KK DM

Conventionally the KK photon has been regarded as a dark matter candidate in the literature. Here we

focus on an LKP formed from a mixture of the first KK excitation of the hypercharge gauge boson
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and the neutral component of the SU(2)W gauge boson. We have illustrated that when BLKTs are

involved, mixing can show interesting features. In this section, we examine the phenomenology of the

mixed LKP, dubbed as electroweak KK dark matter, while considering existing bounds on the BLKTs

as discussed in the previous sections.

3.3.1 Relic Abundance

In section 3.1, we investigated the mass spectra and couplings of the KK electroweak gauge bosons in

the presence of BLKTs. The masses, couplings and mixing angles sensitively depend on the BLKT

parameters rB and rW . Therefore the annihilation cross-sections and the relic density (∼ 1/⟨σv⟩) are

affected as well. The relevant interactions are

A (1)
ψ

(1)
ψ

(0) KK boson-KK fermion-SM fermion , (3.39)

A (1)A (1)H(0)H(0) KK boson-KK boson-Higgs-Higgs , (3.40)

A (1)A (1)A (0) KK boson-KK-boson-SM boson , (3.41)

where A collectively stands for the mass eigenstate of the KK electroweak gauge boson A1 or A2. As it

is clearly seen in the left panel of Fig. 3.3, the couplings monotonically decrease as a function of BLKT

parameters.

We compute the relevant couplings and identify DM candidate from the mass eigenstates, and then

rescale MUED couplings for annihilation cross sections in Ref. [26]. KK fermions and KK Higgs

masses are set to
√( 1

R

)2
+m2

SM, since we include no boundary terms for them. For rW ∼ rB, A(1)
1 and

A(1)
2 are degenerate and therefore coannihilation processes are important. Since the mass of W (1)± is

always between those of the two neutral gauge bosons, we include coannihilation processes with A(1)
2 ,

and W (1)± in addition to self-annihilation of A(1)
1 .

Our results are shown in Fig. 3.6, on the left figure as a function of the DM mass for various values

of (rB/L,rW/L). The red curve presents the relic density of the conventional DM candidate in MUED,

which is the hypercharge gauge boson [27, 154]. In this case, the dominant annihilation final states are
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Fig. 3.6 Relic abundance of A(1)
1 DM. On the left is the relic density Ωh2 as a function of DM mass M

A(1)
1

for given values of rB/L and rW/L. Different colors and line-styles indicate different (rB, rW ) values.
The green band indicates the desired Ωh2 = 0.12 from the result of Planck 2015 [176]. On the right are
constraints from the relic density in the (rB/L,rW/L) parameter space. The thickness of the contours
corresponds to the thickness of the green band in the left figure, which indicates the uncertainties on the
measured value of the relic density.

SM fermions with a small contribution from the Higgs-Higgs final state. With 1-loop corrected mass

spectrum, the Weinberg angle at level-1 is very small and therefore there is no gauge boson final state

[123]. We find the MUED results are reproduced with (rB/L,rW/L) = (0.1,0.03) which is shown as

the pink dashed line.1 The blue solid line shows a parameter choice which yields the maximum allowed

value of the DM mass around 2.4 TeV. We indicate the observed relic abundance Ωh2 from the Planck

collaboration [176] in the green band. On the right we present relic density contours for different values

of R−1 in the parameter space of the BLKT’s.

Since the KK mixing angle changes rapidly in the vicinity of the line along |rB− rW |= 0 as can be

seen in Fig. 3.1, the DM phenomenology is strongly altered when crossing this parameter region. For

rW > rB, the main component of the LKP A(1)
1 becomes W (1)

3 . Since the SU(2) coupling is stronger than

the U(1)Y , the annihilation cross section in this regime becomes greater than the value for the B(1)-like

1The MUED line is understood as follows. In MUED, it is assumed that boundary parameters are all set to be zeroes as
(rB/L,rW /L)|cut−off =(0,0) at the cut-off scale. After the renormalization group evolution, the non-zero boundary parameters
are radiatively generated at the electroweak (EW) scale. Note again that for the rest of our study, we set the boundary
parameters (rB/L,rW /L) at the electroweak scale unless otherwise stated.
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LKP, which implies that the observed relic density is reproduced at a much larger LKP mass. That

is the reason why we get smaller LKP mass for (rB/L,rW/L) = (0.2,0) shown in the orange line in

Fig. 3.6. However, if rW/L is further increased, the size of effective gauge coupling becomes smaller

and the LKP mass has to be reduced to compensate the effect. We find that the allowed upper limit on

the LKP mass gets larger up to a critical point rW/L = 0.02 and then drops down for a larger rW/L. This

feature is shown as blue solid line and blue dashed line in Fig. 3.6. The maximally allowed mass of the

electroweak gauge boson LKP is about 2.4 TeV, which is significantly higher than the “naive” MUED

value of 0.9 TeV for the KK photon LKP in MUED [154].

For (rB/L,rW/L) = (0,0.02), the masses of neutral KK bosons A(1)
1 , A(1)

2 are 2.38 and 2.43 TeV,

respectively. The lightest charged KK boson W (1)
1 has a mass only slightly higher than the LKP and

its contribution to the coannihilation is important, and is fully taken into account in our analysis. In

passing, we would mention the potential enhancement of the annihilation cross section through the

resonance of the 2nd KK excitation modes. It has been shown in MUED that 2nd KK resonance effects

can greatly enhance the annihilation cross section so that the LKP mass could be as high as ∼ 1.3

TeV [135]. However, the resonance effect becomes important only when the second KK mode masses

(m2nd) are very close to twice the mass of the first KK mode (m1st). This relation between the first and

second KK mode masses is satisfied in UED in the absence of boundary terms, but, as can be seen

when comparing Figs. 3.1 (left) and 3.2 (left), in the presence of BLKTs, the second KK resonance is

becoming heavier than twice the first KK resonance.

In Fig. 3.7 we show the parameter space for various values of R−1 ∈ (1.0,2.4) TeV, which is allowed

by dilepton resonance searches (for A(2)
1,2) and at the same time yields a relic density of ΩDMh2 < 0.12

for the dark matter candidate A(1)
1 , such that A(1)

1 does yield more than the observed DM. The bounds

from LHC and from the dark matter relic density are complementary because a large BLKT induces a

weak interaction strength thus a small annihilation cross section and a large relic abundance for a given

R−1 but the resonance search result gives a weaker bound on (rB/L,rW/L) plane for a larger R−1. Thus

from LHC searches, more parameter space in the (rB/L, rW/L) plane is allowed for larger values R−1

TeV, but the allowed parameter space shrinks back with a larger value of R−1 due to the relic density
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Fig. 3.7 Combined bounds from dilepton searches for A(2)
1 and A(2)

2 and from the relic density of the
LKP in the rW/L vs. rB/L parameter plane. The shaded regions represent the allowed parameter space
for various values of R−1. Outside the shaded region, there would be too much dark matter produced,
resulting in overclosure of the Universe, thus this region is excluded on this basis. The shaded areas
indicate the right amount of DM produced. However, if we assume the LKP is the only DM component
in the Universe, then we must lie on the edges of these contours for each value of the inverse radius.

constraints. For example for R−1 = 2.4 TeV (the sky blue region in Fig. 3.7) only small rW/L and very

small rB/L are allowed by the combined bound.

3.3.2 Direct and Indirect Detection

Despite many ongoing searches with DM direct detection experiments, no firm signals of dark matter

have been observed yet [47, 110, 111], and these experiments have set bounds on the scattering cross-

section of dark matter. The elastic scattering of KK DM and nucleon is mediated by exchange of KK

quark and the SM Higgs as shown in Fig. 3.8. The spin independent (SI) scattering cross-section is

given as

σSI =
M2

T

4π(M
A(1)

1
+MT )2 [Z fp +(A−Z) fn]

2, (3.42)
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Fig. 3.8 Tree level diagrams for the elastic scattering of A(1)
1 with quarks. In figures (a) and (b) scattering

occurs through the level 1 KK quark and in figure (c) through the SM Higgs.

where MT is the target nucleus mass, Z and A are the atomic number and atomic mass of the target

respectively. The elastic scattering form factor for the nucleon is given by

fp/n = ∑
u,d,s

(βq + γq)

Mq
Mp/n f p/n

Tq
, (3.43)

where Mp/n is the mass of the proton(neutron) and Mq is the light quark mass. We adopt the nucleon

matrix elements from Ref. [177] in our analysis. The dominant contribution to the nucleon form factors

is from light quarks, whereas the heavier quarks (c,b, t) contribute through the gluon form factor, given

as f (p/n)
TG

= 1−∑q f (p/n)
Tq

but the effects are suppressed [178].

The βq encapsulates the contributions from the left and right handed KK quarks as depicted in

Fig. 3.8 (a) and (b) and γq from the Higgs (Fig. 3.8 (c)):

βq = Mq(cosθ
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 , (3.44)

γq =
Mq[(cosθ 1

W gB(1)B(1)φ (0))2 +(sinθ 1
W gW (1)W (1)φ (0))2]

2M2
h

, (3.45)

where Mh ≃ 125GeV is the SM Higgs mass. gV (1)ψ(1)ψ(0) is the gauge coupling of the respective level 1

gauge boson V with fermions as defined in Eq. (3.26) and gV (1)V (1)φ (0) is the coupling of the gauge bosons
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with the SM Higgs. YqL/R are the values of the hypercharges of the SM quarks, with the convention

Yi = Qi−T 3
i , Qi and T 3

i being the electric charge and weak isospin respectively. θ
(1)
W is the level 1 KK

Weinberg angle and M
q(1)L/R

is the mass of the level 1 KK quark introduced in Fig 3.8. The mass gap

between the KK quark and dark matter masses are parameterized by

δq =
Mq(1)−M

A(1)
1

M
A(1)

1

≈
1−RM

A(1)
1

RM
A(1)

1

,

where we used the approximate relation Mq(1) ≈ 1/R.

The spin-dependent cross-section is given by

σSD =
M2

T

6π

(
M

A(1)
1
+MT

)2 JN(JN +1)
[

∑
u,d,s

αqλq

]2

, (3.46)

with αq and λq given as

αq = 2
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λq = ∆
p
q
⟨Sp⟩
JN

+∆
n
q
⟨Sn⟩
JN

, (3.48)

where ∆
p/n
q is the fraction of the nucleon spin carried by the quark, for which we use the values from

Ref. [177]. The ratio ⟨Sp/n⟩/JN is the fraction of the total nuclear spin carried by the spin of the nucleon,

JN being the total nuclear spin. Direct detection experiments commonly present their constraints in

terms of effective WIMP-nucleon cross sections for which λq reduces to ∆
p/n
q .

In Fig. 3.9, on the left, we show the spin independent scattering cross section within the parameter

space, which is fully compatible with the currently available experimental results from EWPT, KK
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Fig. 3.9 The expected SI cross sections (σSI) are plotted for various values of R−1 ranging from 1
TeV to 2.4 TeV. For each R−1, we vary (rB/L,rW/L) (on the left) and present in the (rB/L,rW/L)
parameter space (on the right) within the allowed parameter regions from Fig. 3.7 in order to obtain
the predicted regions of σSI . Current exclusion limits are set by LUX [110] (dark blue and black) and
PandaX-II [47] (dark green). The expected sensitivity of LZ (orange) is found in Ref. [111]. The LZ
projected sensitivity would cover the entire remaining parameter space for R−1 = 1 TeV. A large part
of the parameter space in (rB/L,rW/L) is within the testable range for a larger value of R−1, too. In the
right figure, the region of parameter space that may be probed by the LZ experiment for the larger values
of R−1 are represented by the black shaded region, while R−1 = 2.4 TeV is shown as the blue shaded
region, which has the potential to be seen at LZ, the rest of the space may be probed by experiments
beyond LZ.

resonance searches and the right relic abundance of DM. The expected cross sections are represented

in the regional plots with different colors corresponding to a given value of R−1: 1 TeV (red), 1.3 TeV

(blue), 1.5 TeV (yellow), 1.8 TeV (green) and 2.4 TeV (sky blue) from left to the right. The expectations

are compared with the limit on the spin independent dark matter-proton scattering cross-section from

the latest LUX result [110] and also from the PandaX-II result [47]. Current experiments are not quite

sensitive enough to probe DM masses above 1 TeV. We also present the projected sensitivity limit

from LUX-Zeplin (LZ), 3× 10−48cm2, which is based on the estimation of a 3 year run with 6000 kg

fiducial mass [111]. It is encouraging to notice that the future LZ sensitivity region would cover the

full parameter space for R−1 ≤ 1 TeV and also quite large portions of the parameter spaces for heavier
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3.3 Phenomenology of Electroweak KK DM

DM above 1.3 TeV. On the right we present the SI projected sensitivity for the LZ experiment in the

(rB/L,rW/L) parameter space. We present the values of R−1 from 1.3 TeV to 1.8 TeV in grey as they

roughly overlap in this parameter space, while the cyan region is reserved for R−1 = 2.4 TeV.

In Fig. 3.10, we present the remaining parameter space after taking the complementary constraints

from the collider search and also the relic abundance calculation for R−1 = 1.3,1.5,1.8 and 2.4 TeV,

respectively. The expected coverage of the 3 year run at LZ is shaded by grey. It is clear that LZ can

probe almost the entire parameter space which is compatible with current experiments. Thus, the DM

direct detection experiments will play an important complementary role to the LHC searches and other

future experiments in the search for KK DM.

Finally, we comment on indirect signals of electroweak KK DM. First, the mass of KK DM (which

is likely to be heavier than 1 TeV or even higher but still less than 2.4 TeV) is rather high compared

to the range of energies <∼ a few×O(100) GeV considered in the recent Gamma-ray studies of Dwarf

galaxies and of the milky way galactic center [114]. Other cosmic ray measurements could in principle

provide constraints on heavier masses but these observations currently involve large astrophysical un-

certainties [115, 117]. We have noticed several studies in this line: Refs. [179–182] study photon lines

(and continuous photon background) from UED models, partially with B(1), partially with Z′ DM. We

therefore do not include the Sommerfeld effect in our analysis here and reserve a detailed analysis for

future studies.
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Fig. 3.10 Combined constraints from relic abundance (left hatched), LHC collider search (right
hatched) and LZ projected direct detection sensitivity (grey shaded) for R−1 = 1.3,1.5,1.8,2.4 TeV
in (rB/L,rW/L) plane. The solid curves are limits from LHC collider search and the dashed curves are
limits from relic abundance. Here we combine all constraints on one figure, for each value of the radius.
This is to illustrate the complementarity of the different search strategies. In all the figures, anywhere
outside the dashed contour, the Universe is overclosed, this this region is excluded. For the lower val-
ues of R−1, the region outside the square area in the lower left is excluded due to dilepton resonance
searches. DM may lie in within the dashed contours and the solid black square contours.
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Model Independent Framework
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The large number of possible models available make the characterization of dark matter properties

very challenging. The lack of a clear DM signal forces us to interpret our experimental data by placing

bounds on how DM may interact with the SM. It is particularly difficult to do this based on specific

models, as these require many assumptions and are dependent on many parameters. Ideally model in-

dependent methods are free of such constraints and allow for the study of DM in a general, all inclusive

manner.

The purpose of this part of the dissertation is to present a parallel framework of studying dark mat-

ter. In this framework, we focus on exploring a potential signal of DM without worrying about the

underlying complete model. The main purpose is to study this potential physics signal and determine

which experiments would be most sensitive to it. We consider a minimal effective field theory involv-

ing two dark matter particles. For the purpose of the study we assume the two dark matter particles

are fermions and we assume that they interact via a contact four-fermion operator. We assume that one

particle is much heavier than the other and is more dominant in the Universe, i.e. forms most of the

relic abundance of DM in the Universe. We also assume that the heavier particle is secluded from the

SM and may only talk to the SM through the lighter particle. The heavier particle may accumulate in

the center of the galaxy or the Sun and annihilate into its smaller counterpart. The large mass difference

between the two means that the smaller particles will be boosted and travel relativistically to the Earth

where they can scatter off SM particles inside detectors on the Earth.

For this study, we first discuss the interactions between the two DM states in the dark sector as well

as the interaction of the boosted particles with the SM sector. We then calculate the relic abundance

of DM for the two DM states, assuming the heavier partner is the most dominant. We then match

our calculated relic abundance to the observed relic abundance in the Universe. Since the interaction

of the boosted particles with the SM particles occurs through scattering, we calculate the scattering

cross-section of the boosted DM off electrons. Boosted DM may scatter off nucleons as well, but for

purposes of this study we focus on electron scattering. We then focus on the experimental details,

discussing the properties of the detectors we would like to study and the possible background sources
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that might overwhelm or mimic our potential DM signal. After understanding the possible backgrounds

we could have, we discuss the sources of boosted DM. We then calculate the flux from each source

after annihilation of the heavier partner as well as the number of signal counts we may observe in the

detectors we are considering.

We investigate boosted DM coming from the center of our Galaxy, the center of the Sun and from

the Earth. We find that we have a higher potential to observe boosted DM coming from the Sun at

Hyper-Kamiokande or at DUNE 40. We also find that signals for boosted DM from the GC and the Sun

are complementary as the detectors would be able to probe different parts of the parameter space for the

different sources.

In this part of the dissertation, we show the importance of working in the effective field theory

framework. In this framework we can explore a potential signal without worrying about the underlying

complete model and working free of many parameters and degrees of freedom. However, if a signal

is detected it would be very hard to characterize it and a full theory would be needed to understand its

properties.
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Chapter 4

Boosted Dark Matter

The DM scenarios we investigated in chapters 2 and 3 are very attractive. Naturally the kind of phe-

nomenology they present is very abundant with large amounts of parameter space available to study

using complementary search strategies. We found that in each DM scenario there are positive prospects

for detection, providing direction on where to focus our future searches. Undoubtedly, these are not the

only DM scenarios to consider and there are many more which are highly experimentally motivated and

harbor appealing prospects.

Among the myriad possibilities, scenarios with multiple dark matter particles are well motivated

and their implications have been studied at different scales from the large in cosmology to the small

at the Large Hadron Collider (LHC) at CERN [36]. Several issues have been especially investigated

on the cosmological side in the context of multiple dark matter candidates. While N-body simulations

of structure formation based on cold dark matter (CDM) present a steep cusp density profile [183],

observations of dwarf galaxies indicate a cored density profile rather than a cusped one [184] (so-

called “core vs cusp problem”). Simulations also predict that CDM evolves to very dense sub-halos of

Milky Way type galaxies, which can not host the brightest satellites, but it would be hard to miss the

observation of these substructures (known as the “too big to fail problem”) [185]. Warm dark matter

has been proposed as a solution to the small scale conflict between the observations and the simulations

with CDM, since it is expected to develop shallower density profiles at a small scale and would avoid
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unreasonably dense sub-halos [186].

Self-interacting DM (SIDM) has been suggested as another interesting solution to those small scale

problems [187]. Cosmological simulations with SIDM [188] show that SIDM with the ratio of the

DM self-interaction cross section to the DM mass σχχ/mχ ∼ O(0.1− 1cm2/g) can reconcile the in-

consistency between simulations and observations at a small scale, while it does not modify the CDM

behavior at a large scale. Analysis of the matter distribution of the Bullet Cluster [189] provides the

most robust constraint on SIDM, σχχ/mχ < 1.25cm2/g. Another analysis based on the kinematics

of dwarf spheroidals [190] shows that SIDM resolves the small scale conflicts of CDM only when

σχχ/mχ ≳ 0.1cm2/g.

In this chapter, we investigate the detection prospects of a two-component dark matter at large

volume neutrino detectors. We focus on a scenario with a relatively large mass gap between the two

components, where the heavier candidate interacts with the standard model (SM) particles only at loop

level. Its sister (the light one) is assumed to have interactions with both the heavier counterpart and

the standard model particles. If the heavier dark matter is dominant in our current universe, the dark

sector with such candidates is secluded and all current direct and indirect bounds are evaded. Al-

though the light dark matter particles are subdominant, they may be produced via the annihilation of the

heavy sisters with a large boost due to the large mass difference. Boosted DM arises in various multi-

component DM scenarios such as semi-annihilation ψiψ j→ψkφ [42, 58, 191, 192], assisted freeze-out

ψiψi→ ψ jψ j [42], and decay ψi→ ψ j +φ . Recently a possibility of detecting a boosted dark matter

particle in large volume neutrino telescopes has been examined [56, 57, 193–197]. In Ref. [194], the

heavier DM annihilates in the center of the Galaxy, and its pair annihilation products travel to the Earth

and leave Cherenkov light in the detector via a neutral current-like interaction, which points toward the

galactic center (GC). Detection of boosted dark matter from the Sun has been studied in Refs. [195],

where a search for proton tracks pointing toward the Sun is proposed in a different model.

Implication of self-interaction in the context of solar BDM has been discussed in Ref. [56, 57].

While more recently, the sensitivity of DUNE and SK, for BDM from the GC and dwarf spheroidal

galaxies [198] was investigated. In this study, we explore the detection prospects of boosted dark matter,
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from the center of the Milky Way Galaxy. We consider as well BDM from the Sun when the heavier

component is captured in the presence of self-interactions. We study the discovery potential of Boosted

DM at Super-K, Hyper-K, PINGU, we then compare the sensitivities of near future experiments such as

the Liquid argon based Deep Underground Neutrino Experiment (DUNE) and SK as well as HK which

are Cherenkov radiation based. This chapter is therefore outlined in the following manner. We consider

the model studied in Ref. [194], which we revisit in section 4.1. We then explore the experimental

capabilities of each detector as well as the estimation of background events in section 4.2. Furthermore,

we discuss the detection of boosted DM from three sources; the GC (in section 4.3), the Sun (in section

4.4) and the Earth (in section 4.5). Finally we give our conclusions at the end of the dissertation.

4.1 Boosted Dark Matter and the Assisted Freeze-out Mechanism

In this section, we present an explicit example of a model with two-component DM in order to discuss

the detection prospects of boosted DM. We choose the model studied in Ref. [194] based on the assisted

freeze-out mechanism [42]. Additionally we introduce DM self-interaction preferred by cosmological

simulations and observations for the heavier constituent of the two DM components for observations in

the Sun. We only briefly summarize the key points of our bench mark model and refer to Ref. [194] for

details on the model.

4.1.1 Theoretical Background

We consider the case where ψA and ψB are two stable DM candidate particles with masses mA > mB.

This can be achieved with separate symmetries, for example, U(1)′⊗U(1)′′ [42] or Z2⊗Z′2 [194]. We

assume that the two DM species, ψA and ψB interact via a contact operator,

LAB =
1

Λ2 ψAψBψBψA , (4.1)

and that ψA can only annihilate into ψB and not directly into SM particles. Moreover, the heavier
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Fig. 4.1 Diagrams for (a) self-interaction of the heavier DM ψA, (b) production of the boosted DM ψB

from the annihilation of ψA, and (c) elastic scattering of ψB off an electron.

component ψA is the dominant DM constituent in the universe. The boosted DM ψB is currently pro-

duced via the contact interaction Eq. (4.1). We additionally allow a self-interaction for ψA in the range

of 0.1cm2/g < σAA/mA < 1.25cm2/g (Figure 4.1(a)), favored by simulations and observations [187–

190].

The particle ψB is charged under a hidden U(1)X gauge symmetry, with a charge QB
X = 1 for simplic-

ity, which is spontaneously broken leading to the gauge boson mass mX . In addition, a mass hierarchy,

mA > mB > mX is assumed. The gauge coupling of U(1)X , gX will be taken to be large enough, e.g.

gX = 0.5, so that the thermal relic density of ψB is small due to the large annihilation cross section of the

process ψBψB→ XX . We assume that the DM sector couples to the SM sector only through a kinetic

mixing between U(1)X and U(1)EM (originally U(1)Y ) [199, 200],1

L ⊃−1
2

sinε XµνFµν . (4.2)

Thus, ψB can scatter off SM particles via a t−channel X boson exchange.

This model can be described by a set of seven parameters:

{mA,mB,mX ,Λ,gX ,ε,σAA} , (4.3)

where Λ will be appropriately taken in our analysis to obtain the required DM relic density, ΩA≃ΩDM≈
1One can find a general and detailed analysis on a hidden sector DM and the kinetic mixing in Ref. [200].
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0.2, as done in Ref. [194]. In all the interactions between DM and SM particles, gX and ε always

appear as a simple combination, (gX · ε). As a result, our analysis will depend on five parameters,

{mA,mB,mX ,gX · ε,σAA}. For an easier comparison, we choose the same benchmark scenario as in

Ref. [194], except for ε ,

mA = 20GeV, mB = 0.2GeV, mX = 20MeV, gX = 0.5, and ε = 10−4 . (4.4)

However, we choose ε = 10−4, instead of 10−3 chosen as a reference value in Ref. [194], for

boosted ψB to avoid too much energy loss during its traversal of the Sun as explained in Section 4.4.4.

ε = 10−4 happens to be consistent with current limits on a hidden X gauge boson (or a dark photon),

ε ≲ O(10−3) for mX ≳ 10 MeV [201–206]. Furthermore, for consistency and ease of cross-checking,

we use ε2 = 2×10−7 and mX = 15 MeV for our study of BDM from the GC. We further extend this to

the Sun to evaluate the effect of this coupling on the BDM flux.

4.1.2 Relic Abundance and Scattering Cross Section

A set of coupled Boltzmann equations describes the evolution of the relic density of the two DM par-

ticles, ψA and ψB, in the assisted freeze-out mechanism [42, 194, 207]. 1 The annihilation process

ψAψA→ ψBψB (Figure 4.1(b)) determines the thermal relic abundance of ψA as well as the production

rate of boosted ψB in the current universe. The annihilation cross section for the process is obtained as

⟨σAA→BB v⟩ ≃ 1
8πΛ4 (mA +mB)

2

√
1− m2

B

m2
A
+ O(v2) (4.5)

from the contact operator in Eq. (4.1). In the limit ⟨σBB→XX v⟩ ≫ ⟨σAA→BB v⟩, the relic abundance of

ψA is given by [194]

ΩA ≃ 0.2
(

5×10−26 cm3/s
⟨σAA→BB v⟩

)
. (4.6)

1See Ref. [42] for a numerical analysis and Ref. [194] for more details on the analytic estimates.
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Indeed, ⟨σBB→XX v⟩ ≫ ⟨σAA→BB v⟩ corresponds to the case that we are interested in, and thus the

abundance of ψA dominates over that of ψB. In our numerical analysis, we will set ⟨σAA→BB v⟩ ≃

5× 10−26 cm3/s, matching the thermally averaged annihilation cross-section required for a thermal

relic.

The lighter component ψB can scatter off SM particles via a t−channel X boson exchange through

the kinetic mixing shown in Eq. (4.2). However, we cannot detect signals from scattering off nuclei by

the thermal relic ψB in dark matter direct detection experiments due to its very small abundance, e.g.,

ΩB ≈ O(10−7− 10−6) for the benchmark scenario in Eq. (4.4). As shown in Ref. [194], the boosted

ψB from the process ψAψA → ψBψB might be detected at a large volume neutrino detector through

the elastic scattering off electrons, ψBe−→ ψBe− (Figure 4.1(c)). The minimum detectable scattered

electron energy is set by the threshold energy of each experiment, Emin
e = E th

e , and the maximum energy

is given by

Emax
e = me

(EB +me)
2 +E2

B−m2
B

(EB +me)2−E2
B +m2

B
, (4.7)

where EB is the energy of boosted ψB before collision with a target electron. The differential cross

section for the process ψBe−→ ψBe− is given by

dσBe−→Be−

dt
=

1
8π

(eεgX)
2

(t−m2
X)

2

8E2
Bm2

e + t(t +2s)
s2 +m4

e +m4
B−2sm2

e−2sm2
B−2m2

em2
B
, (4.8)

where s = m2
B +m2

e +2EBme and t = 2me(me−Ee).

The heavier DM ψA can interact with the SM sector via a ψB loop even since ψA has no direct

coupling to the SM sector. The ψA-nucleon scattering cross section is expressed as

σA−nucleon =
µ2

A−p(Zεe)2

πA2
t2

(t−m2
X)

2

[
gX

48π2
log(m2

B/(λΛ)2)

Λ2

]2

, (4.9)

where µA−p is the ψA-nucleon reduced mass, A and Z denote the atomic mass and the proton number

of a target nucleus, t = −2mNER with the nucleus mass mN and the nuclear recoil energy ER. The
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quantity λ is a hidden sector Yukawa coupling of order unity, and Λ is determined by ⟨σAA→BB v⟩ ≃

5× 10−26 cm3/s [194]. The cross section σA−nucleon is suppressed by the small ε parameter and one-

loop factor, and thus the direct detection of the relic ψA is almost impossible even in a future DM direct

detection experiment, e.g. XENON1T. However, even this small cross section will contribute to the

accumulation of ψA in the Sun.

4.2 Experimental Details and Backgrounds

We discuss here the experimental specifications and provide conservative estimates for background

events at DUNE, SK, HK and PINGU.

The DUNE far detector, which consists of four LArTPC modules to be located deep underground

at the Sanford Underground Research Facility, South Dakota, provides an excellent opportunity for

particle physics beyond the primary mission of the experiment. The excellent angular resolution and

particle identification capability of the LArTPC detector will substantially reduce the background in

the direction of the expected DM-induced neutrino signal, and can potentially provide competitive

limits in the low DM-mass range. In this study, we consider the direct detection of BDM with the

DUNE LArTPC rather than detecting neutrinos induced by DM annihilation. Later we will compare

the sensitivities of DUNE against those for other neutrino detectors based on Cherenkov radiation, such

as SK and HK. We compare as well with detectors based in ice, such as the future upgrade of IceCube

called PINGU. We further mention here that we do not consider IceCube itself in this study due to

its very large energy threshold and angular resolution [194]. Table 4.1 summarizes detector volume,

threshold energy and angular resolution for SK, HK, DUNE and PINGU.

Furthermore, the dominant backgrounds for the boosted DM signal originate from the charged

current interaction of atmospheric neutrinos, i.e., νe n→ e− p in the mass range of our interests.

On the other hand, solar neutrinos dominate the background below energies around 20 MeV [215].

Further background can come from muons which do not Cherenkov-radiate but decay to neutrinos in

the SK/HK detector. The relevant energy range for the muon background is about 30–50 MeV and can

be alleviated via fiducial volume cuts [216]. Table 4.1 shows 100 MeV for threshold energy at SK/HK.
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Volume Eth θres Running Time
(kTon) (MeV) (◦) (years)

SK [208] 22.5 100 3◦ > 13.6
HK [209] 560 100 3◦

DUNE [210] 40-50 30 1◦

PINGU [211] 500 1000 23◦

Table 4.1 List of experiments (SK, HK, DUNE and PINGU) considered in this study with volume,
threshold energy, angular resolution, and running time. In principle, the threshold energy at SK/HK
could be lowered below 100 MeV at the cost of having worse energy and angular resolution. However,
in our study we use 100 MeV to reduce backgrounds from solar neutrinos and muon decays [194].
We consider two different sizes for DUNE: 10 kTon (DUNE 10) and 40 kTon (DUNE 40), since the
staged implementation of the far detector is planned as four 10 kTon modules [210, 212–214]. We also
consider here the planned implementation of PINGU, which is a future low threshold energy upgrade
of the IceCube detector.

However, in principle the threshold energy at SK can be lowered even below 10 MeV. For example, Ref.

[217] studies solar neutrinos, focusing on the 5–20 MeV range. In this case, both energy resolution and

angular resolution become poor, σ(E)
E > 0.15 and θres > 25◦ for Ee < 10 MeV [217]. We use Ee > 100

MeV in our analysis, to reject backgrounds from solar neutrino and muon decays. However, this cut

may be lowered down to 50–100 MeV with slightly poorer angular resolution [194, 217]. For DUNE,

the muon background can be distinguishable due to excellent particle ID and we use Eth = 30 MeV as

described in the DUNE CDR [210, 212–214].

For the angular resolution of SK/HK, we use θres = 3◦ following Ref. [194] but in the energy range

of our interests Ee > 100 MeV, it can be brought down to a lower value. The angular resolution of SK

(single-ring e-like events) is 3◦ for sub-GeV (< 1.33 GeV) and 1.2◦ for multi-GeV (> 1.33 GeV) [218].

Super-K has measured atmospheric neutrino events for 10.7 years [218]. Thus, to estimate the

backgrounds for BDM at SK, we use the fully contained single-ring e-like events including both sub-

GeV (0-decay electron events only), which are 7,755 in total and multi-GeV 2,105 single-ring elec-

tron events. These have been detected in the energy ranges of (0.1GeV − 1.3GeV) and (1.33GeV −

100GeV), respectively [219]. For Super-K and Hyper-K, we use all 9,860 events, in the range of

(0.1GeV − 100GeV) as conservative backgrounds although higher energy background events are less
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DUNE 10 DUNE 40 SK HK PINGU
GC 1 with 10◦ 4 with 10◦ 7.01 with 10◦ 174 with 10◦ 562 with 23◦

Sun 0.01 with 1◦ 0.04 with 1◦ 0.632 with 3◦ 15.7 with 3◦ 562 with 23◦

Table 4.2 Expected number of background events per year with appropriate angular cut and threshold
energy. For the GC, we consider only 10◦ for the angular resolution, since the GC is a diffuse region,
while the Sun is a point-like object and for its case we use the angular resolutions of the experiments.

relevant to ψB from a lighter mass of ψA which produces a less energetic event. Thus, we have a yearly

background event rate:

NBG

∆T
= 922/year

(
Vexp

2.25×104 m3

)
, (4.10)

where Vexp is the volume of the specific detector. For PINGU, we use all the events including

multi-ring and µ-like events in the (1.33GeV − 100GeV) energy range due to a higher E th
e and a poor

reconstruction efficiency of the Cherenkov rings [194]. After rescaling by the effective detector volume

of PINGU, 5×105 m3, we obtain a background rate of 14,100/year.

For our discussion in the rest of this study, we normalize the rate to 13.6 years, which is the current

exposure time at SK.1

In the case of BDM from the GC, the number of expected signal events is obtained within a cone

of half angle θC ≃ 10◦ for maximum sensitivity, and the backgrounds are calculated correspondingly,
N

θC
SK

∆T = 1−cosθC
2

Nall sky
SK
∆T ≃ 7.01 year−1 for 22.5 kTon [194]. LArTPC detectors have several advantages

over Cherenkov-based detectors, such as lower threshold energy, better angular resolution and efficient

vetoing of events with hadronic activities [198]. These features are useful in identifying BDM signals

and reduce the number of background events. A background-study at DUNE 10 (DUNE with 10 kTon)

by simulation using the GENIE neutrino Monte-Carlo software results in a conservative estimate of

background events, Nall sky
DUNE10/∆T ≃ 128 year−1 for 10 kTon [198],2 and thus for the GC, N

θC
DUNE10
∆T =

1More data has been used in Ref. [220] but it does not discriminate 0- and 1-decay electron events.
2According to DUNE CDR [210], the expected number of fully contained electron-like events including oscillations is

14053/(350 kTon·year), which corresponds to 402 year−1 for DUNE 10. In Ref. [198], they however find that less than 32%
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1−cosθC
2

Nall sky
DUNE10
∆T ≃ 1 year−1. Background rates for DUNE 40 (DUNE with 40 kTon) and HK are obtained

by a simple rescaling based on their volume. See Table 4.2 for a summary of background events used

in our study.

In the case of BDM arising from the Sun, angular resolution becomes crucial. The number of

background events within a cone of angle θ is proportional to 1−cosθ

2 ≈ θ 2/4 for θ ≪ 1, and decreases

rapidly as θ decreases. On the other hand, the number of signal events does not change, as the Sun is

effectively a point-like source. Therefore, θC can be reduced to θres as shown in Table 4.1, which will

reduce the number of background events significantly, while the number of signal events is not affected.

In comparison between SK and DUNE, the angular resolution for SK is θ SK
res = 3◦ while it is θ DUNE

res = 1◦

for DUNE. This implies that background rejection at DUNE would be nine times better than at SK, if

all other conditions are identical. A change in angular cut from 10◦ for the GC to 1◦ for the Sun reduces

background events by a factor of 100 for the same detector. Likewise, a similar analysis can be done

in comparing DUNE with PINGU. In the case for PINGU however, the large angular resolution means

that the background is not reduced much when considering the Sun compared with the GC.

Another strength of the DUNE detector is a lower threshold energy, Eth = 30 MeV. This is partly due

to excellent particle ID with the LArTPC, which also allows better background rejection, i.e., rejection

of Michel electrons from muon decays [198].

The main advantage of SK over DUNE is that it has already been running for more than 13 years

and will accumulate more data over the next few years at least. In addition, its volume is about twice

as large as that at DUNE 10, while HK might be 10 times (or more) bigger than DUNE 40. Moreover,

the volume of PINGU would be the same size as that of HK, however HK will have an advantage

over PINGU, due to its much smaller angular resolution and energy threshold. The phenomenology of

BDM with the HK detectors at two different location is also worth investigating [221]. In the following

sections we focus on the rates of boosted DM from different sources, namely the Galactic center, the

Sun and the earth.

of background events pass the hadronic cuts which are implemented after simulation. As a result, for DUNE 10, 402 year−1×
32%≃ 128 year−1 is obtained.
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4.3 Boosted Dark Matter from the Galactic Center

In this section, we discuss the sensitivity of the detectors on the boosted dark matter arising from the

galactic center. Here we report the number of events expected at PINGU as in Table 4.2.

4.3.1 Flux of Boosted DM and Signal

Following the formalism in Ref. [194], we calculate the flux of boosted DM ψB coming from the

galactic center through the annihilation ψAψA→ ψBψB as

dΦGC

dΩdEB
=

rSun

16π

(
ρ0

mA

)2

⟨σAA→BBv⟩J dNB

dEB
, (4.11)

where rSun = 8.33 kpc is the distance from the GC to the Sun, ρ0 is the local dark matter density with

a value of 0.3 GeV/cm3 and ⟨σAA→BBv⟩ is the thermally averaged annihilation cross-section of ψA into

ψB around the GC. The galactic halo information is encoded in the so-called J-factor which involves an

integral over the DM density squared along the line of sight (l.o.s):

J(θ) =
∫

l.o.s

ds
rSun

(
ρ(r(s,θ))

ρ0

)2

. (4.12)

Here ρ(r(s,θ)) is the galactic halo DM density profile and s is the l.o.s distance from the source to

the Earth, while r(s,θ) =
√

r2
Sun + s2−2rSun · s · cosθ is a coordinate distance centered on the GC and

θ is the angle between the direction of the l.o.s and the GC–Earth axis. We assume the NFW halo

profile [222, 223] following Ref. [194]. For the purposes of this study, it is in fact more robust to

consider a DM halo profile incorporating SIDM, which ensures the correct DM density at the GC

and around our solar system. Recent studies on SIDM however suggest that for the self-interaction

strengths provided by the limits from the Bullet cluster and dwarf spheroidals, density profiles of SIDM

are intimately tied with the details of the disk and bulge formation as well as the associated feed back

of a baryon dominated galaxy such as the Milky Way. SIDM profile turns out to be comparable to the

NFW profile in our region of interest [224–226]. We assume that the ψB particles from this process are
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mono-energetic and thus their differential energy spectrum is simply described by

dNB

dEB
= 2δ (EB−mA) , (4.13)

where EB is the energy of the boosted particle ψB. Finally, the boosted ψB flux over a cone of a half

angle 10◦ around the GC can be approximated by [198]

Φ
10◦
GC ≃ 4.7×10−8cm−2s−1 ×

( ⟨σAA→BBv⟩
3×10−26 cm3/s

) (
20GeV

mA

)2

. (4.14)

To mitigate backgrounds, we require the BDM events to fall within a θC cone around the GC. The

optimal choice of θC is about 10◦ for the annihilation case as discussed in Ref. [194], which is also used

in our analysis. For BDM interacting with electrons, the number of signal events is given by

NGC
sig = ∆T Ntarget Φ

θC
GC σBe−→Be− , (4.15)

where ∆T is the exposure time of the experiment and Ntarget is the total number of target electrons in

a given experiment, which is proportional to the volume of the experiment. The quantity Φ
θC
GC is the

flux of BDM particles coming from a θC cone around the GC and σBe−→Be− is the elastic scattering

cross-section between the boosted ψB and an electron in the experiment. We refer to Ref. [194] for

more details.

To compute the sensitivity of each detector for BDM coming from the GC, we use the number of

background events listed in Table 4.2. The signal significance is defined as

σ =

√
2
(
Nsig +NBG

)
log
(

1+
Nsig

NBG

)
−2Nsig , (4.16)

where Nsig is the number of signal events given by Eq. (4.15) and NBG is the number of background

events in a θC cone, given in section 4.2. We have verified that the same results are obtained with a

likelihood ratio, assuming a Poisson distribution as in Ref. [227].

In order to effectively study the dependence of the signal sensitivity on the threshold energy of
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the experiment, we reduce the cross-section σBe−→Be− to a constant cross-section having assumed a

constant scattering amplitude as discussed in Ref. [198]. In this limit, we redefine Eq. (4.15) as

NGC
sig = ∆T Ntarget Φ

θC
GC σ0

(
1− Eth

Emax

)
, (4.17)

where σ0 is the constant cross-section for σBe−→Be− . The number of signal events has been rescaled in

terms of the threshold energy of the experiment and the maximum energy imparted to an electron after

scattering which is given by Eq. 4.7 To get the sensitivity in this limit, we use Eq. (4.16) with the same

background rates.

4.3.2 Detection Prospects

We first reproduced all the results on BDM from the GC in Ref. [198], where the performance of

SK, HK and DUNE detectors are compared, assuming the same 13.6 years of physics running for

all detectors. The authors of Ref. [198] have shown the excellent performance of DUNE with 10

kTon, which is comparable to SK (with twice larger volume). Moreover, DUNE covers slightly larger

parameter space due to the lower threshold energy. In Fig. 4.2 we show in the mB vs mA parameter

space, the number of signal events expected per year at SK, HK, DUNE and PINGU. For illustration

we show the parameter space covered if we would observe 10 events per year and 100 events per year.

In Fig. 4.3, we show the 2σ signal-significance in the σ/m2
A–Emax plane (top) and in the mA–mB plane

(bottom) for the corresponding detectors. We consider two different timelines: 5 years of construction

and 10 years of physics running of DUNE in the left panel, and 10 years of construction and 3 years of

physics running of DUNE in the right panel. The total physics running time of SK would be 28.6 and

26.6 years, respectively. An approximate expression for the flux as in Eq. (4.14) is used only for the

two figures in the upper panel of Fig. 4.3 (following Ref. [198]), while the full flux in Eq. (4.11) is used

in all other figures. We used the corresponding volume, angular resolution and threshold energy for

each detector as summarized in Table 4.1. We checked however that there is no significant difference

between the results from 3◦ and 5◦ of angular resolutions for the GC analysis. We find that the increment
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Fig. 4.2 Number of signal events per year for the different experiments for ε2 = 2× 10−7 and mX =
15 MeV. In the left panel we show contours for 10 events per year and on the right 100 events per year
in the mB vs mA parameter space. These figures show that within the parameter space region covered
by the experiments, we expect to see either 10 or 100 boosted DM events coming from the direction of
the GC.

in the number of events with Eth =30 MeV to the number of events with Eth =100 MeV is about 20–50

% in the bulk of parameter space of the mA–mB plane, and the signal increases very rapidly closer to the

diagonal direction, mA ∼ mB.

Fig. 4.3 also includes the 2σ exclusion (in gray) using currently available all-sky SK data assum-

ing a 10% systematic uncertainty in the background estimation. There are other relevant but model-

dependent bounds such as the direct detection of non-relativistic ψB and CMB constraints [194]. Al-

though the relic abundance of ψB is small, it has a large ψB-nucleon scattering cross section. The

mass range of ψB that we are interested in is mB ≲ O(1) GeV, and the corresponding recoil energy is

close to the threshold energy of many direct detection experiments. The most stringent bounds come

from DAMIC [228] due to its low threshold energy. The expected elastic scattering cross section is

so large that any events above the threshold energy would be seen, even when taking into account

an effective nuclear cross section that is properly scaled down by the non-relativistic relic abundance,

σ
e f f
Bp→Bp =

ΩB
ΩDM

σBp→Bp [194]. From Ref. [228], we conclude that mB ≥ 1 GeV is disfavored by DAMIC

data if ψB couples to quarks, which is shown as the cyan shaded region. Although sub-GeV DM is better

constrained by scattering off electrons than off nuclei [229], as in XENON10 bounds [230], BDM sig-
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Fig. 4.3 95% limits on the effective cross section σ0 (top panel) and the 2σ signal-significance (bottom
panel) assuming 5 years of construction and 10 years of physics running of DUNE (left), and 10 years
of construction and 3 years of physics running of DUNE (right). The corresponding total running time
of SK would be 28.6 and 26.6 years, respectively. For comparison, we assume that the HK as well as
PINGU timeline are the same as for DUNE. The gray-shade represents the current 2σ exclusion with
all-sky data from SK, assuming 10% systematic uncertainty in the background estimation. The other
shaded areas are potential bounds from direct detection of non-relativistic ψB (in cyan, with vertical
boundary) and CMB constraints on ψB annihilation (in yellow, with diagonal boundary).

nals are not affected by XENON10 due to different kinematics, and it turns out that bounds from CMB

heating are more important [194], which is shown as the yellow-shaded area. Other constraints such as

limits on the dark photon, direct detection of non-relativistic ψA, indirect detection of non-relativistic

ψB and BBN bounds on ψB annihilation are either weaker than the CMB bound or evaded by our choice

of parameters. We note that apart from the current SK bound, all other limits are model-dependent and

it is certainly possible to avoid or weaken the bounds. For instance, DM models with p−wave annihi-

lation can easily avoid the CMB constraint due to v2 suppression with v ∼ 10−3, and direct detection
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bounds do not apply if the non-relativistic ψB does not couple to quarks.

4.4 Boosted Dark Matter Flux from the Sun

In this section, we briefly review the evolution of DM (ψA) number in the Sun, and calculate the boosted

DM (ψB) flux from the annihilation of the heavier DM component (ψA). The DM capture in the

Sun via the collisions between DM and nuclei was examined in Refs. [231, 232]. Subsequent stud-

ies discussed several important effects such as evaporation for a relatively light DM (mDM ≲ 3-5 GeV)

[233, 234] and enhancement of the DM accumulation due to self-interaction [235, 236]. Such a DM

self-interaction has been proposed to alleviate the small scale structure problems of simulations with

collisionless CDM [187]. It has also been shown that self-interaction can participate in the evaporation

process reducing the DM number [237].

4.4.1 Evolution of Dark Matter in the Sun

The time evolution of the DM number Nχ in the Sun is described by the following differential equa-

tion [237]

dNχ

dt
=Cc +(Cs−Ce)Nχ − (Ca +Cse)N2

χ , (4.18)

where Cc is the DM capture rate by the Sun, Cs is the DM self-capture rate, Ce is the DM evaporation

rate due to DM-nuclei interactions, Ca is the DM annihilation rate, and Cse is the evaporation rate due to

the self-interaction. In our analysis, we assume that the DM and nuclei inside the Sun follow a thermal

distribution and use numerical data on the solar model such as mass density ρ(r), temperature T (r),

and mass fraction of the atom i, Xi(r) inside the Sun given in Ref. [238].

If a DM particle interacts with nuclei, it loses its kinetic energy as it travels inside the Sun. The DM

particle is gravitationally captured when its final velocity after its collision with nuclei is smaller than

the escape velocity vesc(r) from the Sun. The number of DM particles in the Sun increases through this

capture process. The DM capture rate in the Sun Cc has been investigated in Refs. [234, 239, 240]. In
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our study, we use the numerical results from Ref. [234] (mχ ≲ 10 GeV) and Ref. [240] (mχ ≳ 10 GeV).

For more details on the exact calculation, see Refs. [234, 239].

The coefficient Ca describes the annihilation of two DM particles trapped inside the Sun, which

has been well studied in Refs. [231, 232]. Based on the exact numerical calculation, Refs. [234, 239]

provided fitting functions: the former is valid in the range 0.1 GeV ≲ mχ ≲ 10 GeV and the latter for

mχ ≳ a few GeV. We adopt the fitting functions from Ref. [234] (mχ ≲ 10 GeV) and Refs. [239] (mχ ≳

10 GeV).

A captured DM particle could scatter off energetic nuclei and escape from the Sun when its velocity

after the scattering is larger than the local escape velocity vesc(r), which is generally called the evapo-

ration process [232, 233]. The basic idea of evaporation is the same as capture. The main difference

is whether the final velocity is smaller (for capture) or larger (for evaporation) than the escape velocity

vesc(r). The evaporation rate Ce is effective only for a low DM mass, mχ ≲ 5 GeV and completely negli-

gible for heavier DM masses. For the evaporation rate, the fitting functions to the numerical results given

in Ref. [234] are used in our analysis. For more details on the calculation of Ce, see Refs. [233, 234].

Self-interactions of DM will also affect its capture and evaporation processes inside the Sun. The

Cs is the self-capture rate by scattering off other DM particles that have already been trapped within

the Sun. In this DM-DM scattering, a target DM particle that obtains too much kinetic energy will

be ejected from the Sun, which results in no net accumulation of DM particles unlike the capture by

collision with nuclei. However, the escape velocity from the interior of the Sun is at least two times

larger than the typical velocity of a galactic DM particle. Thus, the ejection of a target DM particle via

the DM-DM collision results in a tiny correction to the typical DM self-capture rate in the Sun [235]

Cs =

√
3
2

nχσχχvesc(R⊙)
vesc(R⊙)

v
⟨φ̂χ⟩

erf(η)

η
, (4.19)

where nχ is the local number density of galactic DM, σχχ is the self-elastic scattering cross section of

DM, vesc(R⊙) is the escape velocity at the surface of the Sun, ⟨φ̂χ⟩ is a dimensionless average solar

potential experienced by the captured DM within the Sun, and η2 = 3(v⊙/v)2/2 is a dimensionless
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variable with the velocity of the Sun v⊙ = 220 km/s and the local velocity dispersion of DM v =

270 km/s. ⟨φ̂χ⟩ ≃ 5.1 [241] is generally used in the calculation of Cs, which however deviates from the

commonly used value for smaller DM masses, mχ ≲ 10 GeV. Thus, we numerically calculate ⟨φ̂χ⟩ for

our analysis. The full expression of the self-capture rate including the small ejection effect of the target

DM particle is given in the Appendix of Ref. [235].

The last coefficient is the self-interaction induced evaporation rate Cse. A DM particle captured

in the Sun can scatter off another captured DM particle through their self-interaction, which leads to

the evaporation when one of two colliding DM particles has velocity greater than the escape velocity

vesc(r) after the collision. The authors of Ref. [237] recently investigated the self-interaction induced

evaporation and provided details of the derivation of Cse in the Appendix. We numerically calculate

Cse based on the analytic expression given in the Appendix of Ref. [237]. We assume that the DM

temperature is in thermal equilibrium with the solar temperature following Ref. [237]. Thus, we use the

solar temperature T as the DM temperature Tχ in our calculation.

4.4.2 Accumulated Dark Matter Number and Annihilation Rate

With the initial condition Nχ(0) = 0, the solution to the DM evolution equation, Eq. (4.18) is given

by [237]

Nχ(t) =
Cc tanh(t/τeq)

τ
−1
eq − (Cs−Ce) tanh(t/τeq)/2

(4.20)

with

τeq =
1√

Cc(Ca +Cse)+(Cs−Ce)2/4
, (4.21)

where the τeq is the time-scale required for the DM number Nχ(t) in the Sun to reach the equilibrium

between accumulation by Cc and Cs and dissipation by Ca,Ce, and Cse. Then, the DM annihilation rate
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inside the Sun is simply given by

Γ
χ

A =
Ca

2
N2

χ . (4.22)

For the age of the Sun t = t⊙ ≃ 4.6×109 year, we obtain the currently accumulated number and anni-

hilation rate of DM in the Sun. When the equilibrium state is attained, i.e., t ≳ τeq, Nχ and Γ
χ

A can be

simplified as

Neq
χ =

√
Cc

Ca +Cse

(√
R
4
+1±

√
R
4

)
(4.23)

and

Γ
χ

A =
1
2

CcCa

Ca +Cse

(√
R
4
+1±

√
R
4

)2

, (4.24)

where R≡ (Cs−Ce)
2/[Cc(Ca +Cse)] is a dimensionless parameter defined by 5 coefficients in the DM

evolution in Eq. (4.18), and the positive and negative signs are taken for Cs > Ce and Cs < Ce, respec-

tively [237]. Using our numerical code, we can obtain the results consistent with those in Ref. [237].

In Figure 4.4, we present the number of heavy DM ψA captured inside the Sun, Neq
A , for the bench-

mark model parameters as in Eq. (4.4). Min and Max curves respectively correspond to minimum

and maximum values of the self-interaction of ψA in the preferred range, 0.1cm2/g < σAA/mA <

1.25cm2/g [187–190]. In the case of no self-interaction, the amount of accumulated ψA is quite small

since the ψA-nucleon scattering cross section is suppressed as explained in Section 4.1.2. However, the

self-interaction of ψA, σAA can significantly enhance Neq
A .

4.4.3 Flux of Boosted Dark Matter

The flux of boosted DM ψB from the Sun through the annihilation ψAψA→ ψBψB can be expressed as

dΦSun
B

dEB
=

Γ
ψA
A

4πR2
Sun

dNB

dEB
, (4.25)
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Fig. 4.4 Number of ψA captured inside the Sun as a function of the ψA mass mA for the benchmark
parameters in Eq. (4.4). Each curve corresponds to No (σAA/mA = 0), Min (σmin

AA /mA = 0.1cm2/g),
and Max (σmax

AA /mA = 1.25cm2/g) self-interaction, respectively. This shows the importance of the DM
self-interaction in the capture and accumulation of ψA inside the Sun.

where RSun is the distance between the Sun and the Earth, Γ
ψA
A is the annihilation rate of heavy DM

ψA in the Sun, and dNB/dEB is the differential energy spectrum of boosted DM ψB at the source. The

differential spectrum is simply given by

dNB

dEB
= 2δ (EB−mA) , (4.26)

since the annihilation of heavy DM ψA, ψAψA → ψBψB produces two mono-energetic boosted ψB’s.

The annihilation rate of ψA in the Sun, Γ
ψA
A , is obtained from Eq. (4.22) (or Eq. (4.24)) with Eqs. (4.20)

and (4.21) for t = t⊙. Note that there is no need to consider the line-of-sight integration in Eq. (4.25),

since the annihilation ψAψA → ψBψB in the Sun provides a point-like source of the boosted DM ψB.

This is different from the case with the boosted DM flux from the GC as in Ref. [194], where one needs

to compute a halo-dependent integral over the line-of-sight.
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4.4.4 Energy Loss in the Sun

The boosted DM particles ψB produced from the annihilation ψAψA→ ψBψB in the Sun may lose their

kinetic energy as they pass through the Sun from their production points due to the relatively large

scattering cross section with electrons, σBe−→Be− and the large radius of the Sun, R⊙ ≃ 6.96×1010 cm.

The energy loss of the particles during propagation through matter is well discussed in Ref. [242].

The boosted DM particle propagating through matter loses its energy dominantly through ionization of

atoms, which is very similar to the energy loss of a heavy charged SM particle [194]. For βγ = p/Mc

around the range of O(10−100), the mean rate of energy loss of a muon is∼ 1 GeV/m inside the Earth

and ∼ 0.6 GeV/m inside the Sun. The boosted DM ψB scatters off SM particles via a t−channel X

boson exchange while the muon does via a t−channel photon exchange. Analogous to Ref. [194], we

can easily approximate the required travel length for the ψB to lose 1 GeV of energy by comparing the

couplings and propagator of the ψB− e scattering and those of the µ− e scattering:

LSun
ψB
≈ LSun

µ

[
ε2g2

X

e2

(
t

t−m2
X

)2
]−1

, (4.27)

where t = 2me(me−Ee) and LSun
µ ≃ (100/0.6) cm.

For the benchmark scenario in Eq. (4.4), we estimate LSun
ψB
≈ 3×1010 (0.5/gX)

2(10−4/ε)2 cm which

is about a factor of 2 smaller than R⊙ ≃ 6.96× 1010 cm. To escape from the Sun, the boosted DM ψB

of the benchmark scenario will lose ∼ 2 GeV of energy on average which corresponds to ∼ 10% of

the initial energy of ψB, E i
B ≃ mA = 20 GeV. For the above estimation, we use Ee = Epeak

e , the electron

energy corresponding to the peak of the recoil electron spectrum which is a reasonable choice since the

ψB−e scattering mostly occurs around the peak energy in the electron recoil spectrum. For comparison,

we obtain LSun
ψB
≈ 7×109 (0.5/gX)

2(10−4/ε)2 cm for the most extreme (conservative) case Ee = Emax
e .

In the following section, we will numerically compute the required energy of ψB, ∆ESun
B , to escape

from the production point to the surface of the Sun assuming that the travel distance of ψB inside the

Sun is equal to the radius of the Sun, R⊙. The ratio between the energy loss and the initial energy of

ψB, ∆ESun
B /E i

B can be larger than 0.1, even O(1), for a low ψA mass (mA ≲ 10 GeV), i.e. small Ee.
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Consequently, in our analysis, we use E f
B = E i

B−∆ESun
B = mA−∆ESun

B as the energy of ψB in a detector

and the parameter region for E i
B < ∆ESun

B is not scanned.

4.4.5 Detection Prospects

In this section, we discuss the detection prospects of boosted DM particles in neutrino detection experi-

ments. We particularly concentrate on the flux of boosted DM ψB from a point-like source, the Sun and

it detection at DUNE, SK, HK, and PINGU.

The angular resolution of each experiment is very crucial in this analysis. Thus, DUNE, SK and

HK are very well fitted experiments to detect the boosted DM flux from the Sun due to their good

angular resolution and low energy threshold as shown in Table 4.1. Though PINGU has a higher energy

threshold E th
e ≃ 1 GeV and worse angular resolution θres ≃ 23◦, it will be able to have some sensitivity

as shown in the following subsections. We will not discuss IceCube in spite of its very large volume

(∼ 103 Mton) due to its high energy threshold, E th
e > 100 GeV (here most of the boosted DM signal

would be lost). A Brief discussion on the detection prospects from the Earth is found in Section 4.5.

As discussed earlier, the signal of boosted DM ψB can be detected mainly through its elastic scatter-

ing off electrons, ψBe−→ ψBe−. Unlike the thermal relic ψA around the GC, the ψA trapped in the Sun

becomes a point-like source of boosted DM ψB, and we need no angular-cut, θC. Finally, the number

of electron signal events is given by

Nsig = ∆T Ntarget Φ
Sun
B σBe−→Be−

= ∆T
10ρtargetVexp

mH2O

2Γ
ψA
A

4πR2
Sun

∫ Emax
e

Emin
e

dEe
dσBe−→Be−

dEe
, (4.28)

where ∆T is the exposure time of the measurement, Ntarget is the total number of target electrons, ΦSun
B is

the boosted DM flux from the Sun and is dependent on the size of the self-interaction of relic ψA in the

Sun. The larger the self-interaction strength, the more ψA particles are captured in the Sun, which results

in a larger flux of boosted particles. The quantity σBe−→Be− is the ψB− e scattering cross section, and

the factor of 10 in the second line is the number of electrons per water molecule (for DUNE, this would
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Fig. 4.5 The number of signal events per year for BDM from the Sun with no self-interactions. As an
example we illustrate the number of BDM events detectable at SK with ε2 = 2× 10−7 (ε2 = 10−8) in
the left (right) panel with mX = 15 MeV, in the mA vs mB parameter space.

be replaced by the number of electrons in an Argon atom). We use a minimum energy-cut Emin
e = E th

e

as in table 4.1 and Emax
e given by Eq. 4.7. For consistency, we have reproduced all the results shown in

Ref. [56]. Figure 4.5 shows the number of events in the case of no self-interaction, showing that there

is less accumulation of the ψA species in the sun resulting in a smaller flux of boosted DM particles and

thus a very small number of events.

Using Eq. (4.28), we calculate the expected number of signal events per year. In Figure 4.6, we show

the parameter space covered for the detection of 1 signal event per year in the (mB, mA) plane for the

four experiments: Super-K, Hyper-K, DUNE and PINGU, respectively. With ε2 = 2×10−7 (ε2 = 10−8)

in the top (bottom) panel and for Min (Max) SI of ψA in the left-panel (right-panel). Naturally we can

detect more signal events in an experiment with a larger volume and a lower E th
e , and also for stronger

interactions of DM particles. Thus such an experiment is expected to cover a larger parameter space,

when all are compared on an equal footing. Here Min (Max) SI is σAA/mA = 0.1 (1.25)cm2/g. The

interesting shape of the constant number of signal events is well studied in Ref. [56]. The boundary in

the left side is set by mB > mX where mX = 15 MeV. The top edge is affected by the DM number density

∝ 1/mDM. The right-diagonal edge is determined by Emax > Emin = Eth. The bottom edge is set by the
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Fig. 4.6 The number of signal events per year expected at the discussed detectors for ε2 = 2×10−7 (ε2 =
10−8) in the top (bottom) panel for Min (Max) SI in the left-panel (right-panel). Here we show contours
illustrating the parameter space covered for the detection of one event per year at the experiments.

rapid drop in the accumulated number of DM particles inside the Sun for mDM ≲ 2–3 GeV due to the

active evaporation (log10(2.5 GeV/GeV) ≈ 0.4). The bottom edge is also affected by the energy loss

of BDM while traversing the Sun, which is especially active for a larger ε . This is shown in the upper

panel of Fig. 4.6, for a smaller value, the effect is weak as illustrated in the bottom panel. Furthermore,

the results for the case when there is maximum energy loss of boosted ψB in the Sun, ∆ESun
B can be

found in Ref. [56].

Using Eq. (4.16) and including the background rates given in Table 4.2, we calculate the 2σ signal-

significance, which is shown in Fig. 4.7 for SK, HK, DUNE and PINGU for ε2 = 2×10−7 (ε2 = 10−8)
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in the top (bottom) panel for Min (Max) SI in the left-panel (right-panel). We assume that all detectors

have been running for 13.6 years. As shown in Fig. 4.3, we include bounds from the CMB as well as

DAMIC. It turns out that current SK limit applies to maximum self-interaction only.

As shown in the figure, the performance of DUNE 10 is much better than that of SK and DUNE 10

probes more parameter space: in the upper boundary because of the smaller background due to better

angular resolution and along the diagonal direction due to the lower threshold energy. This implies that

the strength of the DUNE detector is more pronounced for Solar BDM than for GC BDM. This effect

is even more pronounced when comparing with PINGU. The low sensitivity of PINGU is due to its

large angular resolution as well as larger energy threshold, resulting in lower background reduction and

thus lower sensitivity. Similarly, DUNE 40 is comparable to HK and in fact probes more parameter

space along the diagonal direction due to the lower threshold energy. Again this result illustrates the

great performance of the DUNE detector with Solar BDM, even if the volumes of the HK and PINGU

detectors are about 14 times larger than that of DUNE 40.

For BDM from the GC, the parameter space probed by these detectors is below mA ∼ 100 GeV for

ε2 = 2×10−7 [198], while the parameter space even above mA ∼ 100 GeV would be covered for BDM

arising from the Sun. See the bottom panels of Fig. 4.3 and the top panels of Fig. 4.7.

Fig. 4.8 is the same as Fig. 4.7 but for a more realistic timeline. The 2σ significance is shown

assuming 5 years of construction and 10 years of physics running of DUNE/HK (left), 10 years of

construction and 3 years of physics running of DUNE/HK/PINGU (right) for ε2 = 2×10−7 (ε2 = 10−8)

in the top (bottom) panel. All curves assume minimum self-interaction, for which the current SK limit

is rather weak and does not constrain the mA–mB space for the given choice of other parameters. In

the second scenario with 10 years of construction and 3 years physics running, the SK-contour covers

a little more in the higher mass (larger mA) due to the longer exposure time, while a slightly larger mB

is probed at DUNE due to a lower threshold energy for a fixed value of mA. If construction time can be

reduced, i.e., 5 years, then the signal significance at DUNE is superior as shown in the left panel, even

if SK (HK) is (much) larger than DUNE 10 (DUNE 40) in volume.

Comparing results for BDM from the GC as shown in Fig. 4.3 (for ε2 = 2× 10−7), solar BDM is
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less constrained by the CMB since the relevant parameter space is slightly moved up to a higher mA

region due to the evaporation and the energy loss. However, a larger portion of the mass space is more

constrained by the direct detection of non-relativistic ψB (mB < 1 GeV from DAMIC). On the other

hand, BDM from the GC is constrained more by the CMB and less by DAMIC.

4.5 Detection of Boosted Dark Matter from the Earth

Finally we would like to comment on the detection prospects of boosted DM ψB from the Earth. As

shown in Section 9.4 of Ref. [23], the ratio between the capture rates in the Sun and Earth is given by

CEarth
c /CSun

c ≈ 10−9 , (4.29)

due to the much smaller mass (M⊕/M⊙ ≈ 3×10−6) and escape velocity (v⊕esc/v⊙esc ≈ 10−2) of the Earth.

In the case of no self-interaction and no evaporation, the boosted DM flux is simply proportional to

Cc/R2 where R is the distance between a detector and a source of the boosted DM. For the Earth, very

tiny capture rates CEarth
c can be compensated by the smaller distance from the source of the boosted DM.

In the absence of self-interaction and evaporation, we find

ΦEarth
B

ΦSun
B
≈ CEarth

c

CSun
c

R2
Sun

R2
⊕
≈ 0.5 , (4.30)

where RSun ≃ 1.5×108 km is the distance between the Sun and the Earth and R⊕ ≃ 6.4×103 km is the

radius of the Earth. The evaporation effect is efficient only for a very low DM mass mDM < 3−4 GeV

for the Sun, whereas it is important up to mDM ≲ 12 GeV for the Earth due to the much smaller escape

velocity of the Earth [232, 233, 243].

The DM self-capture rate Cs is proportional to Nχ (see Eq. (4.19)), and the seed of Nχ is determined

by Cc since Nχ(0) = 0. The smaller Cc therefore induces the smaller Cs, and consequently, self-capture

is negligible for the Earth [235] since CEarth
c /CSun

c ≈ 10−9. In summary, without self-interactions, ΦEarth
B

could be comparable to ∼ 0.5ΦSun
B or less depending on mDM. However, with self-interactions, ΦEarth

B
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is much smaller than ΦSun
B since self-capture is negligible for the Earth, while it enhances the flux

significantly in the Sun.

Moreover the Earth is not a point-like source due to the short distance from the source unlike the

Sun. Even if we consider only the inner core of the Earth, REarth
in−core ≈ 1.2×103 km, we should integrate

over a∼ 34◦ cone around the center of the Earth. Thus, the background events by atmospheric neutrinos

are governed by θ ≃ 34◦ instead of the angular resolution of each experiment θres. Thus, even for the

case of ΦEarth
B ≈ΦSun

B , the final signal significance S for the Earth signals is much less than that for the

Sun and the GC.
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Fig. 4.7 2σ sensitivities of various detectors for ε2 = 2× 10−7 (ε = 10−4) in the top (bottom) panel
for Min (Max) SI in the left-panel (right-panel). For comparison, we assume all experiments to have
been running over the same amount of time, which is 13.6 years. The gray-shaded region represents
the current 2σ exclusion with all-sky data from SK, assuming 10% systematic uncertainty in the back-
ground estimation. The other shaded areas are potential bounds from direct detection of non-relativistic
ψB (in cyan, with vertical boundary) and CMB constraints on ψB annihilation (in yellow, with diagonal
boundary). Therefore the parameter space we are still able to probe is for BDM in the Sub-GeV region.
When comparing all experiments, DUNE 40 and HK are ahead and have better sensitivity for BDM.
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Fig. 4.8 2σ sensitivities assuming 5 years of construction and 10 years of physics running of DUNE/HK
(left), and 10 years of construction and 3 years of physics running of DUNE/HK (right) for ε2 =
2× 10−7 (ε = 10−4) in the top (bottom) panel. All curves assume Min SI. The shaded areas are po-
tential bounds from direct detection of non-relativistic ψB (in cyan, with vertical boundary) and CMB
constraints on ψB annihilation (in yellow, with diagonal boundary).
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Part III

Simplified Model Framework
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Effective field theories may provide a highly efficient manner to study DM physics. However, in

case of a signal, interpretation and characterization would pose a challenge. We may therefore consider

the possibility of a framework lying between model dependence and independence. This possibility

arises in the form of simplified models. In this framework we have the ability to study DM through a

minimal extension of the SM. This is done in such a way as to accommodate DM and ignore all the

extra degrees of freedom in the model which do not have much contribution to the DM physics. In this

part of the dissertation, we consider a simplified model involving two component dark matter which

interacts with the SM through a SM Higgs boson.

We first introduce a simple U(1)′ extension of the SM where we describe the matter content of

the model and discuss how the dark matter may be stabilized. After describing the model, we discuss

the evolution of the two component DM system in the early Universe, showing which species is most

dominant in the Universe when their masses are changed relative to each other.

We then study the phenomenology of both species as dark matter. To do this, we calculate the

contribution that each species makes to the relic abundance of DM in the Universe. We further calculate

the direct detection cross-section for each species scattering off nuclei in the detector. In this two

component scenario the scattering cross-section for each DM is weighted by its contribution to the total

DM relic abundance. Finally, if the DM particles are both lighter than the SM Higgs boson, they may

contribute to the Higgs invisible width. We use the results from the invisible Higgs searches at the LHC

as well as the relic abundance and direct detection to determine which part of our model parameter

space is excluded and which is still available. We find that for a certain choice of couplings, a large part

of the parameter space is ruled out by experiments and the parameter space still allowed occurs when

the two species are of roughly equal mass. Again the excluded parts of parameter space give us an

indication of what properties DM cannot have and leaves us to search further in the available parameter

regions.

108



Chapter 5

Multicomponent Dark Matter through a

Radiative Higgs Portal

As illustrated in chapter 4, scenarios with multiple dark matter particles are very well motivated and

have illustrated very interesting phenomenology as well as the potential of providing “smoking gun"

signatures in experiments on Earth. These types of scenarios may have further huge implications on the

relic abundance of DM in the universe as well as for the detection of DM on the Earth. Studies of this

type, when two or more DM particles are available, have shown much interest and promise in recent

years.

Thus in the final chapter of this dissertation, we study a DM scenario which was in fact motivated

by the study of chapter 4 as well as the study carried out in Ref. [244]. Here we investigate vector

DM which alone cannot correctly account for the relic abundance in the current universe. The model

we consider allows for a symmetry which stabilizes another DM candidate, where processes such as

assisted freeze-out and semi-annihilation might be of importance. We investigate the interrelation of

these two species, which interact with the SM through the Higgs Boson.

The SM has proven itself an important basis for the study of new physics. One example can be seen

when studying the SM Higgs boson. The Higgs has a very important role to play in nature. As the
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facilitator of electroweak symmetry breaking (EWSB), it can provide a window into new weak-scale

physics beyond the SM. In particular, as the only elementary scalar in the SM, it can be the means

through which new physics communicates with the SM. This can occur through the gauge invariant,

low dimensional bilinear operator, H†H. As a consequence, fundamental questions such as the natu-

ralness problem and the Higgs vacuum stability may be addressed by introducing new bosons which

interact with the Higgs bilinear operator. These interactions can occur through a vector or scalar Higgs

portal in the form of λH†HΦ†Φ and λH†HV µVµ respectively, with λ being some dimensionless cou-

pling. A further possibility is to have interactions of the Higgs with new heavy fermions through higher

dimensional operators, a fermion Higgs portal. Any of these new particles can, in principle, constitute

DM allowing for a direct glimpse into the dark sector.

In this study, we consider the model outlined in Ref. [244]. The phenomenology consists of a

gauged, dark U(1)′ symmetry. The corresponding gauge boson, V , obtains a mass when the U(1)′

symmetry is spontaneously broken by a SM singlet scalar, Φ. Fermions charged under this U(1)′ and

the SM Electroweak groups, are also introduced. A dark charge conjugation symmetry is imposed,

which must not be broken when Φ receives a vev, so as to ensure stability of the vector. However, this

requires the lightest of the new fermions to also be stable. Direct coupling of the vector to the Higgs is

forbidden, which results in its interaction with the SM only at the radiative level.

This work is organized as follows. In Sec. 5.1, we provide a summary of the UV completion

presented in Ref. [244] and expand on the stability mechanism. In Sec. 5.2 we discuss the evolution of

the number density of the DM species considering different phenomenological scenarios. We evaluate

the thermal relic density, the direct detection cross-section, and the invisible Higgs width in Sec. 5.3.

This is followed by a discussion of how these observables constrain the model in Sec. 5.4.

5.1 The Radiative Higgs Model for Two Component DM

When writing down a UV completion to the typical Vector Higgs Portal (H†HV µVµ ), there are two pre-

viously proposed options. Both possibilities introduce a new gauge group, which when spontaneously
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Table 5.1 Charge assignments for (1/2,0) Weyl fermions ψ , χ , and n and complex scalar Φ.

Field (SU(2)W , U(1)Y , U(1)′) Field (SU(2)W , U(1)Y , U(1)′)
ψ1α (2, 1/2, 1) ψ2α (2, 1/2, -1)
χ1α (2, -1/2, -1) χ2α (2, -1/2, 1)
n1α (1, 0, -1) n2α (1, 0, 1)
Φ (1, 0, QΦ)

broken generates a spin-1 dark matter candidate. The first portal is through mixing between the SM

Higgs and the scalar which breaks the dark gauge group, resulting in a tree-level, mixing suppressed

coupling between the Higgs and the vector [245–255]. The second option, which is of interest in this

work, further introduces new fermions which carry dark and SM Electroweak charges. These fermions

generate a loop-level coupling between the Higgs and vector [244].

The model explored in Ref. [244] proposes a U(1)′ whose gauge field is denoted as V . The model

contains matter which is anomaly free and does not induce a kinetic mixing between the dark and SM

gauge bosons. This is detailed in Sec. II of that work, which we summarize below.

The matter content of the model is given in Table 5.1 with the following mass and Higgs interaction

terms for the fermions:

L ⊃−m ε
ab (ψ1aχ1b +ψ2aχ2b)−mn n1n2

− yψ ε
ab (ψ1aHbn1 +ψ2aHbn2)− yχ (χ1H∗n2 +χ2H∗n1)+h.c.

(5.1)

In writing down this model, a U(1)′ charge conjugation (CC′) symmetry is imposed and whose

transformation is given by the following prescription:

f1←→ f2

V −→−V (5.2)

Φ−→Φ
∗

Where f stands for the ψ , χ , and n fermions.
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Imposing CC′ removes the tree-level kinetic mixing term between hypercharge and U(1)′, FµνF ′µν ,

and aligns various Yukawa couplings and masses appearing in Eq. 5.1. Since we assume that QΦ ̸=±1

and that the Higgs is not charged under the U(1)′, neither EWSB nor the spontaneous breaking of U(1)′

lead to CC′ violating terms.

One may be concerned that Φ spontaneously breaks CC′. One is free to rotate Φ using the global

U(1)′, such that only the real component of Φ receives a vacuum expectation value. Under CC′, Φ

transforms as Im(Φ)→ −Im(Φ), therefore CC′ is left intact after U(1)′ is broken1. Note that the

imaginary component of Φ, being the U(1)′ Goldstone boson, has the same transformations properties

as V under CC′.

All perturbative processes which could break CC′ rely on a tree-level source of breaking. Therefore,

with these assumptions, once this symmetry has been imposed at tree-level, it is preserved at every order

in perturbation theory. V is odd under this symmetry, thus it can only decay to the new fermions. More

precisely, if the fermions are heavy, i.e. 2M f > MV , V is stable. This is in direct analogy to Furry’s

theorem of QED [256].

However, note that CC′ also forbids amplitudes with only one new fermion appearing in external

lines. As pointed out in Ref. [244], the lightest new fermion is also stable and, therefore, another dark

matter candidate.

Previous work on this model restricted itself to regimes where the fermions were heavy. In this

work, we wish to explore the regime where one fermion is light enough to be a relevant degree-of-

freedom in dark matter phenomenology. From the perspective of relic abundance, there are two effects

which motivate investigating this case. First, the vector candidate annihilates more efficiently for lighter

fermions, since the annihilation rate is suppressed by the mass of the fermion. Further, when the fermion

running in the h-V -V loop can be on-shell, the imaginary component of the annihilation amplitude

grows, as per the optical theorem. Second, when both the vector and fermion are present in the early

universe, new annihilation channels are available, e.g. semi-annihilation. We further expect that the

1Alternatively, this may equivalently be seen without rotating Φ. For general θ = Arg(⟨Φ⟩), both CC′ and the global
U(1)′ break. However, the subgroup whose transformation is Φ→ e2iθ Φ∗ is preserved. This would be identified as the new
CC′ symmetry.
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fermion will often develop a non negligible contribution to the thermal relic, if light enough.

Ref. [244] showed how the SM gauge interactions of the fermions could play an important role in

setting the relic abundance in this model. In that work, the gauge interactions presented themselves in

box diagrams connecting external legs such as V -V -Z-Z and V -V -W -W . When dark matter is heavy

enough, these processes further increase the dark matter annihilation cross-section. However, in the

present work we wish to focus on the role that the fermions could play in setting the relic abundance as

dark matter itself or at least as a degree-of-freedom present in the early universe. In order to better isolate

this phenomena from the SM gauge interactions, we will primarily be interested on the part of parameter

space where the SM gauge interactions are subdominant to the Higgs interactions. Further, we will

make the additional simplifying assumptions that the lightest fermion is the only relevant fermion for

the phenomenology and that the scalar degree of freedom may be ignored. This is essentially the “Single

Fermion Limit” explored in Sec. III.A. of Ref. [244]. It is important to note that the above assumptions

tend to be conservative, as including effects from the other fermions and their gauge interactions most

often reduce the relic abundance with minimal changes to other observables, further opening up viable

parameter space.

The SM gauge interactions will not be completely ignored. A coupling between the fermion and

the Z boson, can have marked effects. This coupling can be very small, in fact choosing yχ = yψ

will only generate off-diagonal couplings between the neutral fermions and Z boson, without apprecia-

bly decreasing the corresponding Higgs couplings, e.g. see the third set of benchmark parameters in

Ref. [244]. This alignment may need to be highly tuned to avoid the relevance of the Z boson, therefore

we will investigate the phenomenological effect of this coupling. It is important to note that the diago-

nal coupling of the Z to the fermions is only axial. This can be see from CC′ symmetry. Taking Ψ to

be a neutral fermion, we find that ΨγµΨ and Vµ are odd under CC′, whereas Ψγµγ5Ψ and Zµ are even.

Therefore, the Z can only have an axial coupling to a particular new fermion.

For the remainder of this chapter, we will denote the vector field as V and the lightest new fermion

as N1. The subscript on the fermion serves as a reminder that it is the lightest neutral state. Therefore

we will be concerned with five parameters in our study:
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• MV : mass of vector, V

• MN1 : mass of fermion, N1

• gV : U(1)′ gauge coupling

• YN : effective Yukawa coupling of N1 to the Higgs

• cz: parameter for N1 coupling to Z boson

The simplified interaction Lagrangian is given by:

L ⊃ gVV µN1γµN1 +
YN√

2
hN1N1 +

ecz

2cwsw
ZµN1γµγ5N1 (5.3)

Here the Z coupling has been normalized such that |cz| ≤ 1.

Where necessary, we utilize FeynArts, FormCalc and LoopTools (see Appendix) to ensure that

the full momentum and mass dependence of the loop-level processes are properly taken into account.

For vector annihilation, this includes the box diagrams which become relevant above the two Higgs

final state threshold. The full loop dependence was incorporated into MicrOMEGAS [40] to correctly

account for the temperature dependence of the annihilation cross-section.

5.2 Thermal History of the Two Component System

The annihilation diagrams for the vector are given in Fig. 5.1. There are similar diagrams for the

fermion; aside from cutting these loop diagrams, there is also a process through an s-channel Z as well

as ZZ and ZH final state channels. There are also semi-annihilation channels shown in Fig. 5.2 and

similar diagrams with the Z in place of the Higgs.

There are three classes of interactions in our model. There are the usual annihilation channels where

the final states are SM fields. There are processes that don’t involve SM fields in the final state, which

convert one species of dark matter into another. Finally, there are semi-annihilation processes where

the final state has a DM particle and a SM particle.
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Fig. 5.1 Feynman diagrams showing the main annihilation channels for the vector dark matter.
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Fig. 5.2 Representative diagrams showing the coannihilation or semi-annihilation channels, relevant
when the vector and the fermion have similar masses. Note that when considering couplings to the Z,
similar diagrams exist with the Z in place of the Higgs.

This model has two distinct semi-annihilation channels. One reduces vector density without chang-

ing fermion density, V N → XN. The second converts fermion density into vector, NN → V X . These

rates will be most relevant when X is on-shell, since X must be the Higgs or Z, these rates are most rele-

vant when V and N are relatively heavy. For V N→XN, MV ≳MX whereas N could be lighter, so long as

the vector abundance is not too Boltzmann suppressed. For NN→V X , we find that 2MN1 ≳ MV +MX .

Interestingly, this process can still be relevant for V –N1 mass splittings which would normally suggest

that co-annihilation is irrelevant. Specifically, if the vector is heavier than the fermion such that the vec-

tor abundance is highly Boltzmann suppressed, vectors may still be produced by this process thereby

reducing the total abundance. This breaks the phenomenology into three distinct regimes, where “much

greater/less than" should be interpreted as one field’s abundance being highly Boltzmann suppressed:

• MV ≫MN1 : If MV is too large to significantly effect the freeze-out of the fermion, typically

115



Multicomponent Dark Matter through a Radiative Higgs Portal

semi-annihilation is not relevant and conversion processes are not accessible. One caveat being

processes such as N1N1→ V H/Z, which can be relevant for mass differences larger than would

be expected based on typical semi-annihilation processes. Eqn. 5.4 nearly reduces to that of a

Fermion Higgs Portal. The vector relic abundance is increasingly small for larger MV , however

note that when MV > 2MN1 , the vector is no longer stable and will not retain an abundance.

• MV ≪MN1 : Likewise, if the fermion is very heavy it will not significantly effect the current

day relic abundance as a degree-of-freedom, again reducing to a single component DM scenario

composed of vector DM. However, note that the fermion is still necessary for the vector’s loop

interaction with the SM. Therefore, this interaction will be suppressed for larger fermion masses,

making it increasingly difficult for the vector to be a thermal relic.

• MV ∼MN1 : This scenario is the most phenomenologically rich. Here the masses are close enough

that semi-annihilation and conversion processes may take place. The details of the freeze-out

process will heavily depend on the couplings and masses chosen. It is this regime we wish to

study in more detail in this work.

The evolution of the number density of dark matter is described by a set of coupled Boltzmann

equations. These are parametrized in terms of the number of dark matter particles per comoving volume

and entropy density of the Universe. The coupled Boltzmann equations for the different dark matter

species is written as a function of the temperature x = MN1/T :

x2 dYN1

dx
=−λN1N1→XX

[
Y 2

N1
− (Y eq

N1
)2]−λN1N1→VV

Y 2
N1
−
(

Y eq
N1

Y eq
V

)2

Y 2
V


−λN1N1→V X

[
Y 2

N1
−

(Y eq
N1
)2

Y eq
V

YV

]
,

x2 dYV

dx
=−λVV→XX

[
Y 2

V − (Y eq
V )2]−λVV→N1N1

Y 2
V −

(
Y eq

N1

Y eq
V

)2

Y 2
N1


−1

2
λN1V→N1X YN1

[
YV −Y eq

V

]
+

1
2

λN1N1→V X

[
Y 2

N1
−

(Y eq
N1
)2

Y eq
V

YV

]
. (5.4)
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5.2 Thermal History of the Two Component System

Where λi j→kl =
s(x=1)
H(x=1)⟨σv⟩i j→kl , with ⟨σv⟩i j→kl the thermally averaged annihilation cross-section of

species i and j into species k and l. The quantity s is the entropy density of the Universe, H is the

Hubble parameter, and Y eq
i is the equilibrium number density per comoving volume for the different

species:

Y eq
V =

g1

g∗s

45
4π4 r2x2K2[rx], Y eq

N1
=

g2

g∗s

45
4π4 x2K2[x]. (5.5)

Here g1 = 3 and g2 = 8 are the number of internal degrees of freedom of the vector and fermion,

respectively. r = MV/MN1 is the ratio of the masses and K2[x] is the modified Bessel function. We

obtain the solution for the coupled Boltzmann equations numerically, using the micrOMEGAS 4.2.5

package [40].

Typical thermal histories for the DM candidates are shown in Fig. 5.3. Note that even when the

masses are degenerate, their respective thermal relics do not match. This is largely due to the fact that

the vector couples to the SM at loop-level, therefore it annihilates at a slower rate and develops a greater

thermal relic abundance. The presence of the fermion helps to maintain thermal equilibrium between

the vector and the rest of the universe. However, upon freezing out, the fermion becomes a subdominant

component of the total abundance. This phenomena is essentially the Assisted Freeze-out Mechanism

[42].
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Fig. 5.3 Representative comoving number densities of the dark matter species after solving the coupled
Boltzmann equations. The left and middle figures show the thermal history of the Universe when the
lighter particle is the vector and fermion respectively. The right figure shows the thermal history when
both the masses are degenerate. We choose YN = 1 and gV = 1 as benchmark points. The heavier species
freezes out earlier due to Boltzmann suppression, resulting in a lower relic abundance.
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5.3 Phenomenology

Here we discuss the relevant sources of bounds, their corresponding formulae, and the methodology for

setting limits.

5.3.1 Relic Abundance

In a scenario with multiple DM candidates, the relic density follows from the coupled Boltzmann equa-

tions, as discussed in Sec. 5.2, where the total predicted relic density from this model is the sum of the

two components. However in order to examine the dependence of the relic abundance of each species

on the parameters, we represent the relic abundance as a function of the masses of the DM states, as

represented in Fig. 5.4. We define a mass splitting parameter:

∆ =
MN1−MV

MV
. (5.6)

Boltzmann suppression is determined by the relative mass difference, so ∆ is useful as a crude measure

of the relevance of co-annihilation processes. From Eq. 5.6 we notice that for negative values of ∆

the fermion is lighter and therefore is typically the dominant dark matter component. Furthermore, for

∆ <−1/2, i.e. the vector mass is more than twice the fermion mass, CC′ no longer protects its stability

and thus does not contribute to the total relic density. The transition in the relative contribution of each

species to the relic abundance as a function of ∆ is illustrated in Fig. 5.5, where MV = 100 GeV.

Fig. 5.4 shows the total relic density for various parameters. In the left panel, the large dip in the

relic density is due to resonant annihilation through an s-channel Higgs into SM states, which is the

dominant annihilation process in this mass regime. At slightly larger masses, the relic density decreases

near the threshold for annihilating to WW and ZZ. Another drop in the relic density occurs near the two

Higgs final state threshold, which is mediated by both triangle and box diagrams represented in the top

panels of Fig. 5.1. Semi-annihilation processes also become important in this high mass regime.

The right panel of Fig. 5.4 shows the relic for various mass splittings. For negative ∆, the fermion

typically dominates, so the Higgs resonance will shift with the fermion mass accordingly, such that
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Fig. 5.4 Left: Relic density as function of the vector mass for different values of the Yukawa couplings
and benchmark values for the mass splitting ∆ and the gauge coupling gV : The blue dashed curve
represents YN = 0.1, red dotted YN = 0.5, green dashed YN = 1 and orange solid YN = 2. Right: Relic
density as a function of the vector mass for benchmark values of the Yukawa and gauge couplings for
different values of the mass splitting ∆; blue dot-dashed represents ∆ = −0.5, red dotted ∆ = 0 and
green dashed ∆ = 0.5. The gray solid horizontal line represents the observed relic density of 0.12 [16].

MN1 = Mh/2. The positive ∆ benchmark given, shows an absence of the HH threshold. The large

fermion mass running in the loop and the absence of a significant fermion relic density, suppresses

processes of this form.

5.3.2 Direct Detection

The vector and the fermion dark matter species interact with nucleons through Higgs exchange and thus

the scattering cross-section is spin-independent. The scattering with nucleons is illustrated in Fig. 5.6

and is calculated as:

σ
V
SI =

Y 2
Ng4

V M4
n

4π(Mn +MV )2M4
h

f 2
n

v2 |F0(MN1 ,MV )|2, (5.7)

Where F0 is a loop function defined in terms of the Passarino–Veltmann coefficients and can be found in

the appendix of Ref. [58]. The scattering of N1 with nucleons occurs through tree-level Higgs exchange

and is written as,

σ
N1
SI =

Y 2
NM2

N1
M4

n

2π(Mn +MN1)
2M4

h

f 2
n

v2 (5.8)
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Fig. 5.5 The relative contributions of the vector and the fermion to the total relic density as a function
of the mass splitting. The red dotted curve represents the contribution of the Fermion, blue dot-dashed,
the contribution of the vector and green solid is the total relic density of the two species. The orange
shaded region shows where the vector is heavy enough to decay into the fermion, while the grey dashed
vertical line shows the value of ∆ for which the vector and the fermion are degenerate. The gray solid
line, again represents the observed relic density.
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Fig. 5.6 Diagrams showing the scattering of the fermion (left panel) and of the vector, at loop level (right
panel), with SM quarks. The scattering occurs through Higgs exchange and gives spin-independent
rates.
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fn are the nucleon matrix elements defined as

fn = ∑
q=u,d,s

f (n)Tq
+

2
9

f (n)TG
, (5.9)

We use the hadronic matrix elements fTq obtained from DarkSUSY [257]. We define v in the equations

above as the standard model Higgs vacuum expectation value and Mn the mass of the nucleon.

Current direct detection experiments have provided limits assuming that the local DM density con-

sists of only one DM species. Thus, in a model with two DM candidates, those limits must be rein-

terpreted. In order to understand the limits set by experiments and properly apply them to our specific

study, we consider the recoil rates measured by the direct detection experiments. The differential recoil

rate on a target nucleus per recoil energy for a single DM particle scattering off a nucleus is defined as:

dR
dER

=
σ
(0)
χN ρ loc

χ

2Mχ µ2
χN

F2(ER)Iχ(ER). (5.10)

Where ER is the recoil energy of the target nucleus, σ
(0)
χN is the DM–nucleus cross-section at zero

momentum transfer, ρ loc
χ = 0.3 GeV/cm3 is the local energy density of dark matter. µχN is the reduced

mass of the dark matter and Nucleus system, F2(ER) is the nuclear form factor which depends on the

recoil energy ER. Iχ(ER) is the velocity integral assuming some velocity distribution of the galactic

dark matter halo, this depends on the minimum velocity required for a DM particle to cause a recoil,

Vmin =
√

2ERMN/µ2
χN .

The DM–Nucleus cross-section can be written in terms of the DM–nucleon scattering cross-section,

which is most often quoted by experiments, and atomic number A as

σ
(0)
χN =

µ2
χN

µ2
χn

σ
SI
χnA2. (5.11)

Eq. 5.10 can thus be represented as a function of the DM–nucleon scattering cross-section σSI
χn.

On the other hand when considering multiple DM particles forming part of the DM halo in the

Milky way galaxy, one has to take into account the nuclear scattering of each species in the detector,
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meaning we have to consider each particle’s contribution to the local halo density and each particle’s

velocity distribution in the galactic halo. The total recoil rate then should account for each particle’s

recoil and thus is represented as:

dR
dER

= ∑
i

σ
(0)
iN ρ loc

i

2Miµ
2
iN

F2(ER)Ii(ER). (5.12)

Note that in general the local DM density need not have the same composition as the cosmological

abundance. However, for simplicity we will assume that this is the case here, i.e. ρ loc
i /ρ loc

χ ∼ Ωi/Ωtot
χ ,

with Ωtot
χ h2 = 0.12.

Following the formalism of Dynamical Dark Matter in [258] we obtain the recoil rates for our

two component scenario as a function of the cross-section of each species scattering off nucleons. We

represent the recoil rate, after taking into account the scattering from both species, as

dR
dER

=
ρ loc

χ A2

2

[
ΩV h2

0.12
σSI

V n

µ2
V nMV

IV (ER)+
ΩN1h2

0.12
σSI

N1n

µ2
N1nMN1

IN1(ER)

]
F2(ER). (5.13)

Here σSI
V n and σSI

N1n are the spin-independent DM–nucleon scattering cross-sections for the vector and the

fermion species respectively, while IV and IN1 represent the velocity distributions of each of the species

in the galaxy. From Eq. 5.13, we find that the two species have a nontrivial effect on the recoil spectra.

To properly set direct detection limits on a two-species scenario, the full predicted recoil spectra should

be compared to data. However, very often there is a large hierarchy in the scattering rates of the two

species, such that one dominates the total scattering rate. If this is the case, an approximate limit may

be set by requiring each species to independently satisfy:

σ
SI
DD >

Ωih2

0.12
σ

SI
in . (5.14)

Here σSI
DD is the limit on the DM–nucleon scattering cross-section quoted by a direct detection experi-

ment, such as LUX. σSI
in is the scattering cross-section between species i and a nucleon, predicted by the

model. In the above, the predicted scattering cross-section has been weighted by the fractional abun-
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dance of that species in accordance with Eq. 5.13. This approximation breaks down if the scattering

rates of each species are similar, however such a scenario is rare due to the loop level scattering of

the vector candidate. Also note that when this approximation breaks down, the limit on the scattering

cross-section is underestimated by a factor of two, at most. This method leads to conservative limits on

the model parameters. Note that we do not require the sum of both species to compose the entirety of

the dark matter relic abundance. We use the most recent direct detection limits set by LUX [46] 1.

5.3.3 Invisible Higgs Width

If the mass of either of the DM species is lighter than half the Higgs, i.e. Mi < Mh/2, then that species

will contribute to the Higgs width. The Higgs partial width into vectors is given by:

Γh→VV =
Y 2

Ng4
V

√
1−4M2

V/M2
h

64πMh

[
M4

h |Ainv|2
(

1−4
M2

V

M2
h
+6

M4
V

M4
h

)

+ 6 Re[A∗invBinv] M2
h

(
1− 2M2

V

M2
h

)
+

1
2
|Binv|2

M4
h

M4
V

(
1−4

M2
V

M2
h
+12

M4
V

M4
h

)]
. (5.15)

Where Ainv and Binv are functions of the vector, fermion, and Higgs masses, the functional form of

which can be found in the appendix of Ref. [58].

The decay channels of the Higgs are further opened as it can also decay into the fermion, N1, with

the decay width:

Γh→N1N1 =
Y 2

NMh

16π

(
1−4

M2
N1

M2
h

)3/2

. (5.16)

Thus the total contribution to the invisible Higgs width becomes,

Γh→inv = Γh→VV +Γh→N1N1 . (5.17)

The ATLAS collaboration constrains Br(h→ inv)< 0.23 at 95% CL with 4.7 f b−1 of data at 7 TeV and

20.3 f b−1 at 8 TeV [259], which we use to constrain our parameter space.

1We point out here that the limits from the experiments are not rescaled, since these are what the experiments report
assuming one DM component.
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5.3.4 Z Couplings

Thus far the discussion has ignored couplings to the Z. For direct detection, the Z only induces SD and

velocity suppressed SI direct detection cross-sections due to its axial coupling to the fermion. Unless the

lightest fermion has an exceptionally small Yukawa coupling and large cz, direct detection constraints

are dominated by Higgs-exchange.

One may also consider constraints from the invisible Z width when the fermion is kinematically

accessible, where new contributions should not exceed 2 MeV [242, 260]. The most stringent constraint

on the coupling is in the limit where the fermion is massless, where the invisible Z width requires

|cz|≲ 0.08.

The most significant impact will be on setting the relic abundance. Note that s-channel annihilation

through the Z to SM fermions is helicity suppressed, therefore the cross-section is suppressed by m2
f

[261]. However, the s-channel annihilation through the Higgs has a similar suppression due to the SM

Yukawas. Therefore, such processes may be important even when the top quark is not kinematically

accessible. Fig. 5.8 shows limits when the z-couplings are included. The relic abundance constraint

shows both the Higgs and Z resonances, however as is illustrated the Z resonance is only important in

the region where the fermion is the dominant DM component as is expected. Increasing the Z coupling,

increases the weight of the processes where both the vector and the fermion annihilate through the Z

boson. In this region of annihilation through both the Higgs and Z, DM can over annihilate leaving a

smaller relic abundance. Thus in the right figure in Fig. 5.8, the relic density lines showing Higgs and

Z resonances disappears, though annihilation through the Higgs is still dominant.

5.4 Results

In Fig. 5.7, the contour of Ωh2 = 0.12 is shown in a solid black line for various benchmark parameters,

as well as limits from the invisible Higgs width shown in blue. Regions which avoid these constraints

lie inside the black contour and outside the blue shaded region.

The Higgs width excludes a large part of parameter space, nearly everywhere where the fermion
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Fig. 5.7 Constraints from both relic abundance and Invisible Higgs measurements from the LHC, as-
suming cz = 0. The orange shaded region shows where the vector decays into the fermion and we
effectively have only one thermal DM component contributing to the relic abundance. Along the solid
black curves, we have a relic abundance in agreement with the observed cosmological dark matter den-
sity. The grey dashed line represents ∆ = 0 and roughly indicates the point where there is a transition
of the relative contributions of each species to the thermal relic abundance. The blue shaded region in-
dicates the limits from the invisible Higgs searches. In order to satisfy the relic abundance requirement,
while evading the bounds, we must be in the region of parameter space on or in between the black solid
contours and outside the blue shaded region. On the outside of the contours, annihilation is not efficient
and the Universe is over-closed.
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Fig. 5.8 Constraints from both relic abundance and Invisible Higgs measurements from the LHC, as-
suming cz = 0.01 (left) and cz = 0.05 (right). The orange shaded region shows where the vector decays
into the fermion and we effectively have only one thermal DM component contributing to the relic
abundance. Along the solid black curves, we have a relic abundance in agreement with the observed
cosmological dark matter density. The grey dashed line represents ∆ = 0 and roughly indicates the point
where there is a transition of the relative contributions of each species to the thermal relic abundance.
The blue shaded region indicates the limits from the invisible Higgs searches. The left figure shows the
contribution from the Z-boson, allowing more efficient annihilation and more areas of parameter space
giving the correct relic abundance.

is kinematically accessible by Higgs decay. For relic abundance, we find a thin curved region which

corresponds to resonant fermion annihilation through the Higgs, which is almost entirely excluded by

the Higgs width. The thin vertical region with positive ∆ corresponds to resonant vector annihilation

through the Higgs. There is also a region at larger vector mass where diboson final states as well as

semi-annihilation processes are kinematically accessible and dominate. Note that this region is mostly

in the negative ∆ regime where the vector abundance is Boltzmann suppressed due to its larger relative

mass and rapid annihilation into fermions. The tree-level annihilation of the fermion allows for efficient

annihilation. However, for the region near ∆ = 0, semi-annihilation becomes important and even allows

a thermal relic up to roughly ∆ = 0.1 for some parameters.

Fig. 5.9 shows the limits from direct detection for ∆ = 0. Despite the fermion relic being a fraction
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Fig. 5.9 Rescaled scattering cross-section (in pb) as a function of the mass of each DM species, (left)
vector and (right) fermion. Each cross-section is rescaled according to its relative contribution to the
observed relic density as indicated in Eq. 5.14. Each color line represents a different Yukawa coupling
to the Higgs; for YN = 0.1 (blue dot-dashed), YN = 0.5 (red dotted), YN = 1 (green dashed) and YN = 2
(orange solid). The black solid line represents the most recent limits reported by LUX.

of the total dark matter abundance, it is not enough to suppress direct detection constraints. For typical

s-wave processes, reducing the coupling has a small effect on the predicted ⟨σDD⟩×ΩN1h2 since both

the direct detection and annihilation cross-section scale with the coupling in the same way. However,

the processes here are p-wave, where the relic abundance depends on a lower power of the freeze-out

temperature compared to s-wave processes, i.e. T−2
f rather than T−1

f . Therefore, variations in the freeze-

out temperature are more apparent, leading to deviations from the approximation that the relic density

is inversely proportional to the annihilation cross-section. In fact, decreasing the Yukawa decreases

the direct detection cross-section faster than it increases the relic abundance. In Fig. 5.9, we find that

decreasing the Yukawa can satisfy direct detection constraints, as illustrated in Fig. 5.10. Unfortunately,

in doing so this also causes these dark matter candidates to be overabundant. In fact there is very little

room to simultaneously satisfy direct detection and be a thermal relic by solely altering the Yukawa.

The only region which typically evades bounds is positive ∆ and MV ∼ Mh/2, due to the resonant

annihilation of vectors through the Higgs.

This difficulty is largely due to the presence of the fermion, which has a large direct detection
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Fig. 5.10 Rescaled scattering cross-section (in pb) as a function of the mass of each DM species, (left)
vector and (right) fermion. Each cross-section is rescaled according to its relative contribution to the
observed relic density as indicated in Eq. 5.14. Each color line represents a different mass splitting; for
∆ = 0.05 (blue dot-dashed), ∆ = 0.1 (red dotted), ∆ = 0.5 (green dashed) for benchmark values of the
Yukawa and gauge couplings. The black solid line represents the most recent limits reported by LUX.

scattering cross-section. For fermion masses above 20 GeV, the fermion must satisfy Y 2
N Ωh2 ≲ 10−4

in order to evade direct detection constraints. Masses below this are less constrained due to the direct

detection threshold, however are heavily constrained by Higgs invisible constraints. Therefore, the

fermion should be a subdominant component of the total dark matter abundance and/or have a small

Yukawa coupling.

Phenomenologically interesting regions, i.e. where this model may explain a sizable portion of

the dark matter abundance, are then restricted to scenarios where the dark matter is predominantly

composed of the vector which has a comparably small direct detection cross-section.

There are two ways to reduce the fermion relic density without increasing the direct detection cross-

section. The first is to increase gV , the U(1)′ gauge coupling. Semi-annihilation rates will increase, and

will be most effective for ∆ near zero. For positive ∆, this also increases the rate that fermions convert

into the vector candidate. However, if the fermion is too heavy to be a dynamical participant for the

freeze-out of the vector DM, it suppresses the vector annihilation as it runs in the h-V -V loop. Therefore,

the large gauge coupling is still necessary to compensate this suppression and allow for efficient vector

annihilation.
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Fig. 5.11 Constraints from relic abundance, Invisible Higgs limits, and direct detection. Along the
solid black curves, we have a relic abundance in agreement with the observed cosmological dark matter
density. The blue shaded region indicates the limits from the invisible Higgs searches. The red and
green shaded regions are excluded by the direct detection of the vector and fermion, respectively. On
the left figure, in order to potentially accommodate DM we must lie in the Higgs resonance region or on
the far right region near ∆ = 0. Decreasing the value of the Yukawa (as in the right figure) removes the
invisible Higgs constraints, while increasing the Z−N1 coupling opens more channels of annihilation
and scattering off nuclei.
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The left plot of Fig. 5.11 shows that this scenario can satisfy direct detection constraints and form a

thermal relic. For these parameters, this is successful for MV ≳ 110 GeV and 0.05 ≲ ∆ ≲ 0.15, where

N1 makes up at most 1% of the total DM abundance. Resonant vector annihilation through the Higgs,

e.g. MV ∼ Mh/2, with ∆ ≳ 0.1 can also avoid constraints. However, note that for larger values of ∆,

both gV and YN may be safely increased and can allow for a sufficiently small relic abundance for the

vector candidate.

The second promising avenue is to consider new annihilation channels induced by couplings to the

Z. Since the Z only couples directly to the fermion, this effect will be most relevant when the fermion

is comparable in mass or lighter than the vector. Similar to the previous case, increasing cz increases

fermion–fermion annihilation as well as semi-annihilation processes such as NV → NZ and NN→V Z.

A small YN will also be necessary to avoid direct detection constraints on the fermion. Further, if YN is

small enough, the invisible Higgs constraints can be evaded which allows for fermions light enough to

resonantly annihilate through the Z.

The right plot in Fig. 5.11 shows the available parameter space. In this case, the Yukawa is small

enough such that Higgs invisible constraints are not relevant in this plane. The small Yukawa also

severely reduces direct detection constraints. This set of parameters is viable for negative ∆, with

MN1 ∼ MZ/2 or Mh/2, where the fermion resonantly annihilates through an s-channel Z or Higgs,

respectively. In this region, N1 can make up all of the DM relic abundance, while V can at most make

up 10% near ∆ = 0.

This is also viable for MV ≳ 190 GeV with −0.15 ≲ ∆ ≲ −0.05, where specifically ZZ and V Z

final states allow for efficient annihilation. Here, V makes up roughly 10% of the relic, with N1 making

up 50–90%. This latter window is not accessible to Z decays and therefore may be further opened by

increasing cz.
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Chapter 6

Conclusions

Dark matter remains one of the most mysterious aspects of nature. The discovery of this elusive matter

would be another triumph of modern physics and might point us to a fundamental higher energy theory

for which the SM is a lower energy approximation. This would be a significant step in our quest to

understanding nature.

One of the ultimate objectives in the field of (astro) particle physics is to find dark matter, charac-

terize its properties and fit it to a theory which can explain how it interacts with the visible sector. Lack

of a clear experimental signature for DM and the large number of possible candidates, makes studying

and understanding its nature a challenge. The aim of this dissertation is to explore the phenomenology

of dark matter and contribute to the ongoing search for its nature. We approached this dark matter

problem by considering three main frameworks of study: (I) the model dependent direction, (II) model

independent method using an effective field theory and (III) simplified models. Instead of concentrating

on one particular framework, we explored in each direction novel DM scenarios that were highly the-

oretically and experimentally motivated. We investigated their current experimental constraints while

highlighting their available parameter spaces at future experiments.

In chapter 1, we introduced DM and discussed its evidence, possible nature and available methods

of detection. In the first part of the dissertation we focussed on the model dependent framework of

study where we explored two extensions of the SM. In chapter 2, we extended the gauge symmetry
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of the SM and studied a scenario which was motivated theoretically by parity violation in the SM and

experimentally by the faint hint of a 2 TeV resonance in the data from run 1 of the LHC. Even in the

absence of a collider signal this model favored novel dark matter signatures that had not been previ-

ously studied in the literature. Therefore, we explored dark matter in left-right extensions of the SM

and found that the DM candidate can be a mixed state of fermionic multiplets. We limited this model

to singlet-triplet, singlet-bidoublet, and triplet-bidoublet dark matter, and we found that an acceptable

thermal relic abundance can be obtained for a wide range of masses in each of these cases. New gauge

and Higgs bosons present in minimal left-right models provide the dominant interactions between the

SM and dark sector, while scattering in direct detection experiments is largely governed by the tree-level

exchange of the SM Higgs or Z′. Interestingly, stability of the lightest neutral state in the dark sector

is guaranteed to all orders by B−L gauge invariance for the models considered. The parameter space

of the singlet-triplet model will be largely unconstrained by future experiments such as LUX-ZEPLIN

and XENON1T. In contrast, these experiments will be able to thoroughly investigate models of thermal

dark matter in the singlet-bidoublet and triplet-bidoublet cases. We have also taken note of interesting

regions of parameter space where the branching fraction BR(W ′ → dark sector) ≳ 10%. Such large

invisible branching fractions are needed if we would like to have the theoretically attractive choice of

gR = gL, giving us left-right symmetry and parity restoration at higher energy scales. Continuing in

the model dependent direction, in chapter 3, we extended the space-time symmetry of the SM to in-

clude one extra spatial dimension. These types of scenarios were theoretically attractive for solving

the gauge hierarchy problem. We limited our study to non-SUSY scenarios and investigated DM in

the context of Non-Minimal Universal Extra Dimensions. We found that the inclusion of bulk masses

and boundary-localized kinetic terms significantly change the phenomenological properties of the KK

dark matter. A linear combination of the KK weak boson and KK hypercharge gauge boson forms the

lightest Kaluza-Klein particle (LKP), which we call electroweak Kaluza-Klein dark matter. Depending

on the parameter choice, the electroweak Kaluza-Klein dark matter may be mainly KK Z-boson like or

KK photon-like. In this study, we performed all the detailed derivation of KK weak mixing angles with

KK mass spectra and their couplings with the standard model particles taking only the brane localized
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kinetic terms for electroweak gauge bosons into account. We then compared our theoretical expecta-

tions with the existing experiments ranging from electroweak precision tests, LHC resonance searches

as well as dark matter direct detection experiments to determine the parameter space compatible with

current observations. We identified the upper limit on the KK dark matter mass to be 2.4 TeV, which

is significantly higher than the conventionally quoted value at 1.3 TeV in minimal UED models. The

heavier regime above a TeV will be tested at future experiments such as LUX Zeplin (LZ) as well as at

future LHC resonance searches.

In part II of the dissertation, i.e in chapter 4 we focused our attention on the model independent

approach. We studied DM in the context of multiple stable states. These types of scenario are very

well motivated, especially in the context of providing a solution to the small scale astrophysical prob-

lems and fitting astrophysical data. In order to avoid many model assumptions and to focus more on

the prospective new DM signal, we incorporated an effective field theory to study boosted DM. We

investigated a scenario where two DM candidates have a large mass gap, with the heavier one as the

dominant component in our Universe while the lighter one is subdominant. The heavier candidate is

secluded from the SM sector without any tree-level interaction, while the lighter one interacts with the

SM via light dark photon exchange. Although subdominant, the lighter DM particles are produced with

a large Lorentz boost by the present-day annihilation of the heavier counterpart in the GC or in the

center of the Sun. We determined the detection prospects of BDM from the GC at various neutrino tele-

scopes, including SK, HK, PINGU and DUNE. We investigated the discovery potential of DUNE for

BDM arising from the Sun and compared the results with those for the detectors based on Cherenkov

radiation such as SK and HK as well as at future Ice detectors such as PINGU. We found that when

searching for this type of signal LArTPC detectors are of particular interest as they provide excellent

particle identification, which can be used in the background reduction in search for a BDM signal. An

angular resolution of 1◦ which significantly reduces backgrounds while retaining the same amount of

signal events is a further advantage of a LArTPC and in particular we found that a point-like source

such as the Sun benefits greatly from this good angular resolution. Furthermore, we found that a lower

133



Conclusions

threshold energy of 30 MeV increases the signal sensitivity in the relevant parameter space. As a result,

the strength of the DUNE detector is remarkable, especially for the solar BDM.

Other potential bounds arise from dark photon searches, direct detection of non-relativistic particles

(both heavy and light ones), indirect detection of the non-relativistic candidate, CMB constraints on

the annihilation of the lighter DM candidate, BBN constraints on the lighter one, and DM searches at

colliders. In our scenario with two DM candidates, the most important bounds were obtained from the

CMB and the direct detection of the lighter DM candidate. However, these bounds are model-dependent

and can be evaded in a different setup.

We illustrated that it is very promising to look for BDM particles, especially from the Sun, at DUNE

with a LArTPC detector. We found that the performance of DUNE (10 kTon or 40 kTon) is much better

than that of SK or even HK and is especially better than that of PINGU, for the same exposure time,

even if their volumes are smaller. In order to compete with the others, PINGU due to its worse angular

resolution and higher energy threshold, would require much larger exposure times. Finally, searches

for BDM particles coming from the GC and from the center of the Sun are complementary, since the

allowed parameter space that is accessible to one is not to the other. For instance, mA ≳ 100 GeV may

be better probed with the solar BDM, while mA ≲ 100 GeV is well covered for the GC BDM.

Finally, in part III of the dissertation i.e. in chapter 5, we investigated a radiative Higgs portal

emerging from a simplified model. We explored another multicomponent DM model which comes

from a simple extension of the SM. This model is theoretically favored by the type of interactions the

SM Higgs can have with the dark sector. In this scenario we found that a vector and fermion dark matter

naturally arise from a dark sector U(1)′. Both states are stabilized by an imposed dark charge conjuga-

tion symmetry. The vector can annihilate through a Higgs portal at the radiative level, with the fermion

running in the loop and the fermion can annihilate at tree level through the Higgs. We explored the

phenomenology of this model considering relic abundance, direct detection, and constraints from Invis-

ible Higgs searches at the LHC. This model is highly constrained by the direct detection of the fermion

candidate, requiring that it compose a small fraction of the total relic abundance. Constraints may be

avoided by decreasing the Yukawa coupling while increasing the U(1)′ gauge coupling. The increased
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gauge coupling helps to enhance semi-annihilation, conversion of N1 into V , and V annihilation; while

further reducing direct detection constraints on N1.

The fermion coupling to the Z may also be increased to enhance new semi-annihilation channels as

well as annihilation through a Z resonance and ZZ final state processes. Since the Z only couples axially

to N1, contributions to direct detection are spin-dependent or velocity suppressed, therefore, increasing

this coupling may be done with little recourse from direct detection. Invisible Z width constraints are

also easily evaded. Furthermore, when studying the bounds from direct detection, experiments typically

set their bounds assuming only one DM component in the galactic halo, this assumption although based

on the minimal nature of DM need not be “cast in stone”. It has been illustrated in this study and many

others that multicomponent dark sectors are substantiative and could well be where DM lies. As such,

it would be a fair assumption for future experiments to make; that the DM in our Galaxy has more than

one component. This in turn could provide unexpected and intriguing results.

In summary, what we have done in this dissertation is tried to contribute to the ongoing search for

the answer to “what is dark matter?” Of course this is a very big question and to answer it will involve a

large amount of collaboration between the theory and experimental communities. We attempt to answer

this big question, by asking smaller questions such as “where do we begin to search for DM?” However,

this question is also particularly challenging to answer due to the vast possibilities that DM can attain,

for which exhaustive searches appear improbable.

We have illustrated in this dissertation that there are many ways to approach studies of DM and

there are several points from which to start. We showed this by considering three frameworks of study

and demonstrated that we may start from the SM and build from the top-down, extending in a model

dependent manner. Alternatively we may consider general model independent theories, constructed

from the bottom-up without worrying about the underlying theory, and finally we may simplify our

models concentrating only on the DM physics. As illustration, in each of the frameworks we focused on

DM scenarios which were very well motivated from the theoretical as well as experimental perspective.

In these scenarios we not only studied the constraints from current experiments, indicating what DM

135



Conclusions

cannot be, we also illuminated where DM might lie and might be found by future experiments. In fact, in

some of the studies considered here, we presented new physics scenarios that have wide implications for

future experiments, presenting us with unique and unambiguous signals that would provide a “smoking

gun” signature of dark matter if found.

Each of the frameworks considered in this document contain advantages and disadvantages, yet

they provide a structure in which to study DM. Concentrating our attentions only on model dependent

methods we are faced with the challenge that the phenomenology depends on certain assumptions en-

tering into the model. This makes it difficult to study the model parameter space in an unbiased manner.

However, if we do find a signal, we will be looking at particular models for characterization of the DM

properties. Model independent frameworks, on the other hand, allow us to concentrate on the potential

DM signal and physics at hand without worrying about many assumptions and theoretical constraints.

Yet, it is very difficult to interpret signals in this very general framework. Simplified models allow us

to study DM by considering very simple extension of the SM, while ignoring all the extra physics not

contributing to the DM phenomenology. Rather than focussing on the individual directions of pursuit,

we may be better served by connecting them under one main idea of a balanced phenomenological

plan. Individually each framework may only tell us a fraction of the valuable information we seek. Yet,

together they have the ability push us forward. For instance, with effective theories or simplified models

we can study and focus on potential signals or interpreting the hints we get from experimental searches.

Once a definitive signal is found, these theories may be matched onto a complete theory where the

signal can be fully characterized and the nature of DM determined.

The studies considered in this dissertation contribute to the ideas and methods of studying and find-

ing DM by illustrating a systematic approach of investigation. A systematic approach certainly maybe

what is needed to provides us with ideas which can help us understand what theories are better suited

for our experiments. By considering these types of approaches, we may even discover more exotic

possibilities and new methods of detection that would allow us to build new experiments sensitive to

dark matter. In our search for DM, we may be better served by keeping an open mind and considering

the various possibilities, from the traditional scenarios to especially those that provide less expected
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solutions.

The fields of particle physics and astrophysics are at a pivotal point. The experimental progress

we have made over the past decades have helped us better understand our theoretical models. The null

results at past and current experiments have ruled out certain parts of the DM parameter space, thus

indicating what DM is not. This has paved a way forward for us to construct better phenomenological

models and build better experiments sensitive to our searches. Thus our hunt for new physics, be it

at colliders or from astrophysical phenomena should bear some fruit within the next decade or so.

During this time, the field of (astro)particle physics will be transformed with a blast of experimental

and technological progress set to put the most promising ideas to the test. Our field is a very dynamic

one and it is simply impossible to predict the direction it will take a few years down the line. This makes

the studies contained in this dissertation as well as those of a similar nature particularly important. The

ability to study different aspects in the realm of possibility makes hunting in the dark more worthwhile

and certainly adds to the joys of being a theoretical particle physicist.
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Appendix A

Description of Public Packages

A.1 Feynrules

Feynrules is a package written in Mathematica. It is used to implement particle physics models, these

are usually very complicated and it is impossible to calculate all the observables one needs in a reason-

able amount of time, by hand. One implements the particle fields involved as well as their properties

and implements their interactions in a Lagrangian. Feynrules takes this information and calculates the

Feynman rules for every possible interaction and then produces files in the appropriate format which

can be used in other programs, i.e. MicrOMEGAs for the calculation of the relic abundance. Model

implementation is not easy as one has to know and understand the model as well as the interactions of

the different particles. For further information please see Ref. [262].

A.2 MicrOMEGAs

MicrOMEGAs is publicly available C code that takes the output from Feynrules in CH format and cal-

culates the relic abundance as well as other dark matter properties for a generic model. Please see

Refs. [40, 263] for further information. This is code is widely used in the particle physics community

and has undergone various checks against analytic results for various models.
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A.3 MadDM

A.3 MadDM

MadDM, is a fairly new dark matter tool which takes output from Feynrules in UFO format and calculates

the relic abundance as well as direct detection rates in a generic dark matter model. While MicrOMEGAs

uses the CalcHEP format, MadDM uses the MG5_aMC@NLO format which is based on Fortran and Python.

For more information please see Ref. [177]. MadDM is currently under further development and will

be able do automated loop computations for DM studies in the near future.

A.4 CalcHEP

CalcHEP is an automated package for computing tree-level decays and collisions of elementary parti-

cles. It is written in C and uses the CH output from Feynrules. Thus one starts at Lagrangian level in

Feynrules and ends up with particles physics observables, in principle simulating the type of particle

collisions that occur in particle colliders. For more information please see Ref. [264]

A.5 MadGraph5_aMC@NLO

MG5_aMC@NLO is a computational tool for simulating elementary particle collisions. It uses the UFO

output from Feynrules to compute all the necessary aspects of particle physics phenomenology. This

ranges from particle decays and cross-sections to event generation and matching. MG5_aMC@NLO can

be linked with particle showering simulation tools as well as detector simulation tools, allowing for the

most efficient studies of particle collider phenomenology. For more information please see Ref. [265]

A.6 FeynArts

FeynArts is a tool written in Mathematica for the computation and visualization of Feynman diagrams

as well as their amplitudes in a generic particle physics model. One of its main uses is the generation

of counter-terms in the computations of loop level diagrams. Please see Ref. [266].
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A.7 FormCalc

FormCalc is a Mathematica package to the calculation of Feynman diagrams. It uses the output of

FeynArts to compute the amplitudes for tree-level and loop-level diagrams in either Fortran or C (fror

numerical computations) or Mathematica (for analytical computations). Please see Ref. [267].

A.8 LoopTools

LoopTools is computational tool for the evaluation of one loop integrals. It may use the output from

FormCalc to compute the integrals. Please see Ref. [268].
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