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Abstract

Quantum Chromodynamics (QCD) is the widely accepted theory governing the dynamics
of quarks and gluons, the force carriers of the strong interaction. While many properties of
hadrons, composite states of quarks bound by gluons, may be understood in terms of their
quark content, gluons play a prominent role in mass generation, high-energy scattering
processes, and the very nature of confinement itself. One of the most striking predictions of
QCD is the existence of bound states comprised solely of valence gluons, known as glueballs.
While their existence is supported by computer simulations, experimental evidence remains
elusive, with theoretical computations often yielding conflicting results.

The development of high-energy colliders, culminating in the Large Hadron Collider (LHC)
at CERN, has revealed a rich landscape of gluon-dominated phenomena. The Pomeron,
initially postulated to explain rising total scattering cross sections in high-energy data, is
now recognized as a fundamental prediction of QCD, reflecting collective gluon dynamics
at high energies. Furthermore, the recent claim of the Odderon discovery at the LHC
and Tevatron, the Pomeron’s C-odd partner, has the potential to significantly deepen our
understanding of the strong interaction by studying fundamental processes associated
with it, though this claim is not without controversy.

Over the last three decades, a novel approach to understanding the fundamental nature of
strongly coupled systems has emerged, known as the AdS/CFT correspondence. This dual-
ity, initially formulated between highly symmetric superstring and field theories, has found
successful applications in less symmetric systems, which eventually led to the construction
of holographic QCD. In this thesis, we explore the extent to which QCD in the confining
phase may be described by a weakly coupled, higher-dimensional gravitational theory.
We investigate glueball properties using holographic hadron spectroscopy within a type
IIA superstring theory brane construction. This approach allows for the determination of
glueball masses, decay channels, and mixing. We further apply holographic Regge physics
through bottom-up models to analyze high-energy collider data, with a particular focus on
the physics of the Pomeron and Odderon. By deepening our theoretical understanding and
providing testable predictions for collider experiments, this research aims to contribute to
our understanding of the strong interaction and rich gluon dynamics in the high-energy
regime.
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Kurzfassung

Quantenchromodynamik (QCD) ist die weithin akzeptierte Theorie, die die Dynamik von
Quarks und Gluonen, den Austauschteilchen der starken Wechselwirkung, beschreibt.
Während viele Eigenschaften von Hadronen, Bindungszuständen ausQuarks und Gluonen,
durch die konstituierenden Quarks erklärt werden können, spielen Gluonen eine promi-
nente Rolle bei der Erzeugung von Masse, hochenergetischen Streuprozessen und dem
zugrundeliegenden Confinement. Eine der bemerkenswertesten Vorhersagen der QCD
ist die Existenz von Glueballs, Bindungszuständen, die nur aus Valenzgluonen bestehen.
Während ihre Existenz von Computersimulationen bestätigt wird, sind eindeutige exper-
imentelle Nachweise ausstehend und theoretische Vorhersagen oft nicht untereinander
kompatibel.

Die Entwicklung von Hochenergiebeschleunigern, die in dem Bau des Large Hadron
Colliders (LHC) am CERN gipfelte, hat eine breite Landschaft an gluonendominierten
Phänomenen offenbart. Das Pomeron, welches ursprünglich postuliert wurde, um den
Anstieg totaler Wirkungsquerschnitte in Hochenergiedaten zu erklären, wird heute als
eine fundamentale Vorhersage der QCD in Form von kollektiven Wechselwirkungen
von Gluonen verstanden. Obwohl nicht unumstritten, hat die jüngste Entdeckung des
Odderons am LHC und Tevatron, der Partner des Pomerons mit ungerader Ladungsparität,
das Potenzial, unser Verständnis der starken Wechselwirkung durch die Untersuchung
grundlegender Prozesse, die mit ihm verbunden sind, erheblich zu vertiefen.

In den letzten drei Jahrzehnten hat sich ein neuer Ansatz zum Verständnis der grundlegen-
den Natur stark gekoppelter Systeme entwickelt, der als AdS/CFT-Korrespondenz bekannt
ist. Diese Dualität, die ursprünglich zwischen hochsymmetrischen Superstring- und
Feldtheorien formuliert wurde, hat erfolgreiche Anwendungen in weniger symmetrischen
Systemen gefunden, was zur Konstruktion der holographischen QCD führte. In dieser
Arbeit untersuchen wir, inwieweit die stark gekoppelte Phase der QCD durch eine schwach
gekoppelte, höherdimensionale Gravitationstheorie beschrieben werden kann. Wir unter-
suchen die Eigenschaften von Glueballs durch holographische Hadronenspektroskopie mit-
tels einer Branenkonstruktion in Typ IIA Superstringtheorie. Dieser Ansatz ermöglicht die
Bestimmung von Massen, Zerfallskanälen und Mischungen von Glueballs. Darüber hinaus
konstruieren wir holographische Bottom-up-Modelle, um Daten von Hochenergiebeschle-
unigern im Regge-Regime zu analysieren, wobei besonderes Augenmerk auf die Physik
des Pomerons und Odderons gelegt wird. Durch die Vertiefung unseres theoretischen
Verständnisses und die Bereitstellung überprüfbarer Vorhersagen für Beschleuingerexperi-
mente soll diese Forschung zu unserem Verständnis der starken Wechselwirkung und der
Dynamik der Gluonen im Hochenergiebereich beitragen.
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The Unexpected Journey of
Hadron Physics:
Quarks, Strings and the
Holographic Principle

1

„ Alles ist Wechselwirkung.”

— Alexander von Humboldt
Scientist

Hadron physics is the study of particles composed of quarks and gluons. The latter are
the force carriers of the strong interaction whose dynamics and interactions with quarks
are governed by QCD. The most well-known hadrons are mesons and baryons. Mesons,
such as pions and kaons, are composed of a quark-antiquark pair. Their discovery by
Powell1 et al. [1] in 1947 confirmed Yukawa’s2 prediction of a particle mediating the
strong force [2]. Like the familiar proton and neutron, baryons consist of three valence
quarks. The quark model, independently proposed by Gell-Mann [3] and Zweig [4] in 1964,
successfully explained the observed patterns in hadron properties and their classification
into these two main categories based on valence quarks. While a hadron is a complicated
bound state of a myriad of quarks and gluons, many of their properties, and in particular
their quantum numbers, may be understood in terms of their valence quark content. A
unique characteristic of the strong interaction is its varying strength depending on the
distance between quarks. At short distances, it becomes weaker, a phenomenon known
as asymptotic freedom that was demonstrated by Gross, Wilczek, and Politzer in 19733.
Conversely, at large distances, it strengthens, leading to confinement. This intriguing
behavior underpins the formation of hadrons and their complex dynamics. Beyond mesons
and baryons, QCD also predicts the existence of more exotic hadrons, such as tetraquarks
(composed of two quarks and two antiquarks) and pentaquarks (composed of four quarks
and one antiquark), which can not be described within the framework of the standard
1 Powell received the 1950 Nobel Prize in Physics for developing the experimental method that led to the
discovery of the pion.

2 Yukawa received the 1949 Nobel Prize in Physics for his theoretical work on mesons and the strong force.
3 They jointly received the 2004 Nobel Prize in Physics for their work on asymptotic freedom.
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quark model. While theoretically possible, these states are more difficult to form and detect
due to their complex internal structure and potential instability. However, significant
experimental advances have also beenmade on that front. Among the most elusive hadrons
are glueballs, hypothetical particles whose valence constituents are solely gluons. Despite
their solid theoretical foundation already at an early stage during the formulation of QCD
[5–8], experimental confirmation of glueballs remains a challenge due to their complex
nature and mixing with conventional mesons. Thus, experimental searches at high-energy
colliders and dedicated glueball experiments have yielded no undisputed signals so far.
While the number of experimentally identified hadrons was once manageable, the Particle
Data Group (PDG) [9] currently lists a whole zoo of hadrons with 149 established mesons4

and 125 established baryons5, with many additional states appearing and disappearing
over time. Lattice QCD calculations have provided strong evidence for the existence
of glueballs, predicting their masses [10–14] and decay properties. While lattice QCD
has made significant advances due to improved algorithms and increased computational
power, glueball observables are still plagued by large uncertainties. Analytical approaches
like Schwinger-Dyson equations are similarly advancing [15–18] (see Ref. [19] for a
review), but involve uncontrollable approximations. Therefore, complementary methods
for determining decay and mixing patterns remain highly sought after.

Already conceived in 1959, Regge theory [20] provided a framework to describe the
scattering of hadrons and their mass spectra. Regge trajectories, relating the mass and
spin of hadrons in a linear fashion, were first observed experimentally in the 1960s [21,22].
These trajectories found a natural explanation within the framework of string theory,
where hadrons are viewed as vibrating strings. Although initially developed to describe
hadronic interactions, it was later discovered to provide a candidate for a consistent theory
of quantum gravity. In light of this connection, the holographic principle, first conjectured
within string theory [23], has opened up a new avenue to study hadrons. This principle
asserts that the properties of strongly interacting field theories may be understood by
studying a higher-dimensional gravitational theory.

The search for glueballs and other exotic hadrons, alongside the study of conventional
mesons and baryons, continues to be an active area of research. It is driven by the desire
to understand the complex dynamics of quarks and gluons and to test the predictive power
of QCD in its non-perturbative regime. The exploration of hadron physics promises to
reveal deeper insights into the fundamental forces of nature and drives our understanding
of the very ”glue” that binds us all.

4 Non qq states, such as potential glueballs, tetra-, and pentaquarks, are also listed in this category.
5 Only counting states categorized as ”Existence is certain” and ”Existence varies from very likely to certain”.

4 Chapter 1 The Unexpected Journey of Hadron Physics
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The Status of Glueballs 2
Glueballs, hypothetical particles composed solely of gluons, have been a subject

of intense theoretical and experimental interest since the inception of QCD [5–8].
While QCD predicts their existence, the definitive identification of glueballs

within the hadron spectrum remains an open challenge [24–28].

The discovery of glueballs would confirm the existence of a new class of particles beyond
the conventional mesons and baryons. Dedicated experiments such as WA102, GAMS,
Crystal Barrel and BES III have been conducted to search for glueballs, with potential
scalar f0 candidates identified in central production processes in proton-proton collisions,
antiproton-proton annihilations, and radiative J/ψ decays [29–31]. Beyond the scalar
states, other potential glueball candidates include the pseudoscalar η(1405), η(1475), and
ι(1440)1, and the tensor f2(1950), all observed in various production mechanisms and
exhibiting properties suggestive of a glueball nature [34].

Lattice QCD has been instrumental in providing predictions for the glueball spectrum
[10–14, 35]. These calculations, mostly performed in the quenched approximation, suggest
the existence of a scalar glueball as the lightest state, followed by a tensor glueball playing
a crucial role as the lightest state associated with the Pomeron [36]. Additionally, a
pseudoscalar glueball is predicted to participate in the manifestation of theU(1)A anomaly,
which is responsible for the large mass of the η′ meson [37]. Furthermore, lattice QCD
anticipates towers of glueball states with arbitrary integer spin and parity.

However, differentiating glueball states from quark-antiquark bound states (mesons)
with the same quantum numbers has proven difficult due to the potential for mixing
between these states. The various phenomenological models available offer divergent
interpretations, particularly for the lightest glueballs. The identification of the ground-state
scalar glueball has been a subject of ongoing debate. Initially, the f0(1500) meson was
favored as the primary glueball candidate, albeit with significant mixing with quarkonia
[38–40]. However, alternative models propose the f0(1710) meson as the dominant
glueball state, with a higher glue content [41–43]. This interpretation is supported by the
enhanced production rate of f0(1710) in radiative J/ψ decays, which are believed to be
1 Historically ι(1440) and E(1420), which stands for Europe, were both considered to be pseudoscalar
glueball states. This view was challenged with the discovery of the η′ meson. Later on it turned out that
E(1420) is an axial vector meson state consisting primarily of ss and was renamed f1(1420) [32, 33].
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gluon-rich environments [44]. Nevertheless, recent analyses suggest that the glue content
may be distributed across multiple scalar mesons, including a newly identified f0(1770)

meson previously lumped together with the established f0(1710) [27, 45, 46].

For reviews, see Refs. [25, 26, 47].
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Chiral Effective Theory 3

The accurate holographic description of the rich hadron spectrum, together with its
effective low-energy interactions, necessitates the inclusion of quarks of various
flavors. In this chapter, we will review some key features that are seen to follow

from this in the chiral limit. The global U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R ×
U(1)V × U(1)A flavor symmetry of massless QCD permits the formulation of chiral
effective theories (see [48] for a review). In nature, the SU(Nf )L × SU(Nf )R symmetry
is only partly realized since the formation of a chiral condensate

〈ψaLψbR〉 = v3δab, (3.1)

dynamically breaks this symmetry down to its diagonal subgroup SU(Nf )V . This is
reflected in the wildly different masses of the 0−+ and 1−− meson spectrum when com-
pared to their parity partners. Thus, the magnitude of chiral symmetry breaking v may
be used as an order parameter to formulate effective theories. The U(1)A symmetry is
anomalous and, in turn, gives rise to a pseudoscalar meson that is much heavier than the
rest: the η′ meson. As was shown by ’t Hooft, the breaking of U(1)A and the mass of the
η′ meson can be understood in terms of instantons [49, 50] or, in the large N limit, as the
Witten-Veneziano mechanism [51,52]. It is thus driven by gluons, which signals a possibly
large gluonic component in the wavefunction of the η′ meson.

In QCD with massive fermions, chiral symmetry is also explicitly broken by the quark
masses, which are given by [9]

mu = 2.16+0.49
−0.26 MeV, md = 4.67+0.48

−0.17 MeV, ms = 93.4+8.6
−3.4 MeV

mc = 1.27+0.02
−0.02 GeV, mb = 4.18+0.03

−0.02 GeV, mt = 172.69+0.3
−0.3 GeV.

(3.2)

Taken at face value, the explicit breaking of SU(3)L×SU(3)R for the three lightest flavors
is fairly strong, though a comparison of results from chiral effective theory with experiment
suggests that this approximation is still justified [48]. The following computations will
also utilize the approximate three-flavor symmetry.
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In chiral perturbation theory one expands the interactions in powers of the pion decay
constant over momenta through interactions of the form

LχPT ⊃ −
1

4
f2
π tr ∂µU(x)∂µU †(x), (3.3)

where
U(x) = eiΠ(x)/fπ , Π(x) = Πa(x)λa, (3.4)

and λa = 2T a are the Gell-Mann matrices including λ0 =
√

2/Nf1. For the pseudoscalar
sector, one thus has

Π(x) =
1

2











π0 + η8 1√
3

+ η0
√

2
3

√
2π+

√
2K+

√
2π− −π0 + η8 1√

3
+ η0

√

2
3

√
2K0

√
2K− √

2K̄0 −2η8 1√
3

+ η0
√

2
3











, (3.5)

for Nf = 3. To justify a perturbative (derivative) expansion, the experimental value of

fπ = 130.2(1.2)/
√

2 = 92.07(0.85)MeV (3.6)

quoted by the PDG [9] does not seem high enough compared to the actual mass of the
pionmπ = 134.98 MeV. However, a systematic loop expansion of interactions resulting
from (3.3) sets the effective expansion parameter to 4πfπ ≈ 1 GeV. The chiral Lagrangian
in (3.3) is supplemented by the anomalous Wess-Zumino-Witten (WZW) [53, 54] term
coupled to photons

LWZW ⊃−
iNc

240π2
ǫMNOPQtr (U †∂MU)(U †∂NU)(U †∂OU)(U †∂PU)(U †∂QU)

− ie2Nc

48π2
ǫMNOPAMFNOtr

(

Q2(∂PU)U † +Q2U †(∂PU)

+QUQU †(∂PU)U †
)

(3.7)

where e is the electromagnetic coupling constant andQ is the electric charge matrix, given
as

Q = 1
3









2

−1

−1









(3.8)

for the Nf = 3 case. The WZW term successfully captures the physics responsible for the
decays of pseudoscalars, most prominently π0, into two photons1. The WZW Lagrangian

1 This process is used to fix the prefactor of Nc in (3.7).
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gives a topological interpretation of the chiral anomaly in terms of a 5-dimensional theory,
making holographic models particularly suited to describe the physics of this action.

One can further include mass terms for the pseudoscalars via

Lm = v3tr (MU(x) + h.c.) , M = diag(mu,md,ms) (3.9)

which results in the Gell-Mann-Oakes-Renner relation [55]

f2
πm

2
π = 2(mu +md)v

3. (3.10)

Note that the quark masses, as well as v, are renormalization scheme dependent. However,
their product on the right-hand side of (3.10) is not. Further, (3.10) displays the intimate
relation between fπ and the order parameter of chiral symmetry breaking v in (3.1).

Since chiral effective theory has stood the test of time, holographic models of QCD
necessarily need to capture at least some of its features. In the next chapter, we shall turn
to the formulation of the holographic principle.
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The Holographic Principle 4

The AdS/CFT correspondence, also known as the holographic principle or, in a
somewhat more general form, as gauge/gravity duality, is a conjecture that pro-
poses a connection between two seemingly disparate theories: quantum gravity

in Anti de-Sitter (AdS) space and a Conformal Field Theory (CFT) on its boundary. The
correspondence states that these two theories are equivalent, meaning one can completely
describe a quantum gravitational system in the bulk AdS space by studying a CFT living
on its boundary and vice versa.

It arose from studying low-energy string theory, specifically from the study of D-branes
in the 1990s. D-branes are extended objects in string theory on which open strings can
end. Originally proposed as a means to impose boundary conditions for the open string
sector [56, 57], their dynamical importance was only later realized by Polchinski [58],
which triggered the second superstring revolution and marked the advent of M-theory [59].
In 1997, Maldacena made the remarkable observation that the low-energy dynamics of
the open string states of a stack of D3 branes in type IIB superstring theory, which are
described by a four-dimensional (maximal) supersymmetric Yang-Mills theory1, are in
one-to-one correspondence with the closed string excitations of the AdS5 × S5 geometry
generated by the same branes. At low energies, these excitations are described by type
IIB supergravity, a theory of quantum gravity. Maldacena thus conjectured that these
two descriptions are equivalent, as depicted in Fig. 4.1, marking the birth of the AdS/CFT
correspondence. Shortly after this proposal, Gubser, Klebanov, and Polyakov [61] as well
as Witten [62], put the AdS/CFT correspondence on a strong theoretical foundation by
demonstrating how correlation and partition functions may be computed.

Since the literature on this topic is vast, with numerous important contributions over
the last few decades, we refrain from giving a complete historical account of this topic
but restrict ourselves to recapitulating key ingredients and insights necessary for the
computations presented in this thesis. For a comprehensive review of the AdS/CFT
correspondence, we refer the reader to Refs. [63, 64] for formal developments and to
Refs. [60, 65] for phenomenological applications, respectively

1 Due to this highly symmetric setup, the theory is conformal
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open string
closed string

AdS5×S5

Nc D3

closed string

g

g

g

t

t
closed strings 
in D3 brane throat

AdS/CFT correspondence

4πgs = gYM2

AdS5×S5

R

 λ=gsNc ≫ 1

 λ=gYM2Nc ≫ 1

low
 energy
 lim

it

low
 energy
 lim

it

duality

=4 SU(Nc) Yang-Mills  

Fig. 4.1.: A sketch of the AdS/CFT correspondence. Taken from Ref. [60].
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xM 0 1 2 3 4 5 6 7 8 9
N D3 • • • •

Table 4.1.: Brane configuration of the AdS5/CFT4 correspondence.

4.1 Formal Developments

Some identifications are necessary to relate the two sides of the gauge/gravity duality.
As first proposed by Maldacena [23], the correspondence relates N = 4 super Yang-
Mills theory with gauge group SU(N) and coupling gYM in flat spacetime to type IIB
superstring theory on AdS5 × S5 with curvature radius RD3, string length ls and non-
trivial 5-form flux F5. This is seen to arise from studying the low-energy limit of a stack of
N D3 branes, as depicted in Table 4.1. There are two ways to view the physics described
by the brane background. On the one hand, we have the open string perspective, which is
valid at small coupling gsN . Neglecting massive excitations, the theory is described by
a supersymmetric gauge theory with gauge field Aµ corresponding to string excitations
longitudinal to the brane, and scalar fields encoding the transverse excitations, as well as
the closed string action in the supergravity limit. In the Maldacena limit of α′ → 0 but
with field theory quantities fixed, the low-energy effective actions are seen to reduce to
that of flat N = 4 super Yang-Mills theory and type IIB supergravity on R

(9,1)2.

On the other hand, we have the closed string perspective that treats D-branes as solitonic
solutions to type IIB supergravity for large RD3 or, equivalently, gsN ≫ 1. For low
energies and at strong coupling, the metric sourced by the D3 branes is seen to asymptote
to flat 10-dimensional Minkowski spacetime for distances far away from the horizon and
to AdS5 × S5 in the so-called near-horizon limit. As shown below, this limit corresponds
to the large N limit on the field theory side.

To summarize, at weak coupling one obtains the conformal N = 4 SU(N) super Yang-
Mills theory as well as type IIB supergravity on R

(9,1). At strong coupling, one finds the
same flat supergravity theory and additionally type IIB supergravity on AdS5 × S5. Since
the flat supergravity theories match and describe the same physics, irrespective of the limit,
one might conjecture that the same holds true for AdS5 and CFT4. It is straightforward
to check that the symmetries on both sides agree.

Considering the low-energy effective actions of this theory allows us to identify the
Yang-Mills coupling

g2
YM = 2πgs (4.1)

2 Note that in the naive limit of α′
→ 0, the Yang-Mills and supergravity fields do not interact.
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in terms of the string coupling gs. The 5-form flux

F5 = dC4, C4 =
(

H(r)−1 − 1
)

dx0 ∧ · · · ∧ dx3, H(r) = 1 +

(

RD3

r

)4

, (4.2)

where r2 = x2
4 + · · ·+ x2

9, stabilizes the AdS5 geometry and is quantized as

N

(2π)3gsl4s
=

1

(2π)7g2
s l

8
s

∫

S5

⋆F5. (4.3)

This enables us to determine the AdS radius RD3 in terms of field theory quantities

2g2
YMN = 2λ = R4

D3e/α
′2, (4.4)

where we defined the ’t Hooft coupling λ ≡ g2
YMN and the Regge slope α′ = l2s . Note

that this identification involves taking the limits described above. In particular, we took
N → ∞ and λ large or, equivalently, gs → 0 and α′/R2

D3 → 0. In other words, we
are considering weakly coupled string theory in a classical gravitational background
that does not resolve the string scale. This is known as the weak form of the AdS/CFT
correspondence, but it is believed that the strong form, for any N and λ, is also valid.
The latter form would involve the daunting task of carrying out quantized string theory
computations in a curved background, a problem that is, to date, unsolved.

To establish a formal relation between the two theories, one needs what is commonly
referred to as holographic dictionary. This one-to-one map is provided by matching
the symmetries on both sides of the correspondence and allows us to relate field theory
operators to certain string states. Following Ref. [64], consider for example the operator

O∆(x) ≡ STr (φi1(x) · · ·φi∆(x)) , (4.5)

where, for the sake of simplicity, we only consider the scalar fields φi(x) of N = 4 super
Yang-Mills theory and STr denotes the symmetrized trace over color indices. Equivalently,
on the gravity side, we consider supergravity fields in the same representation as O∆(x)

and perform a Kaluza-Klein decomposition according to the symmetries of the underlying
AdS5 × S5 geometry

ϕ(x, z,Ω5) =
∞
∑

I=0

ϕI(x, z)Y I(Ω5), (4.6)

where (xµ, z) are the coordinates on AdS5 and Y I(Ω5) denotes the spherical harmonics
on S5 which satisfy

�S5Y
I(Ω5) = − 1

R2
D3

l(l + 4)Y I(Ω5). (4.7)
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For the sake of explicitness, consider the trace of the graviton and the Ramond-Ramond
4-form

h2(x, z,Ω5) =
∞
∑

I=0

hI2(x, z)Y I(Ω5), Cαβγδ =
∞
∑

I=0

bI(x, z)ǫαβγδǫ∇ǫY I(Ω5). (4.8)

The relevant equation of motion in type IIB supergravity

RMN =
1

3!
FMOPQRF

OPQR
N (4.9)

reduces to a Klein-Gordon equation

�AdS5s
I(x, z) =

1

R2
D3

l(l − 4)sI(x, z) (4.10)

for the field
sI =

1

20(l + 2)

(

hI2 − 10(l + 4)bI
)

. (4.11)

The mass of the scalar field sI is related to the AdS radius RD3 and the mode number of
Y I(Ω5) as m2R2

D3 = l(l − 4). Upon the identification ∆ = l, (4.5) and (4.11) are in the
same representation, and thus we have established a field-operator map. Of particular
importance for the present work is the energy-momentum tensor TMN , which naturally
couples to metric fluctuations

gMN ↔ TMN . (4.12)

Analogously, one can establish the map by considering the boundary asymptotics of a
bulk field. For a field in AdSd they are given by

φ(x, z)|z→0 ∼ φ0(x)zd−∆ + φ+(x)z∆, (4.13)

where φ0(x) is referred to as non-normalizable mode and φ+ as normalizable mode,
respectively. On dimensional grounds, the latter mode may be identified with the vacuum
expectation value of a field theory operator O∆. On the other hand, the non-normalizable
mode is identified with the source of this operator. This can be shown explicitly by
evaluating the on-shell gravity action at the boundary and leads to the Gubser-Klebanov-
Polyakov-Witten (GKPW) formula3 [61, 62]

Z[Φ0] = e−W [Φ0] =

〈

exp

(∫

ddxΦ0O(x)

)〉

CFT
, (4.14)

where Φ0 denotes the boundary value of an arbitrary 5-dimensional supergravity field in
AdS5,W [Φ0] = SSUGRA|Φ0(x) is the generating functional of connected Green’s functions

3 Here we give the formula in Euclidean signature, as in its original form.
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φ(q1; z
′) φ(q2; z

′)

φ(p1; z) φ(p2; z)

G0(p, q, z, z
′)

Fig. 4.2.: Exemplary Witten diagram contributing to the scalar 4-point correlator. The dashed
lines connecting to the boundary (outer circle) denote bulk-to-boundary propagators,
while the dashed line connecting the vertices in the interior corresponds to a bulk-to-bulk
propagator.

pertinent to the dimensionally reduced type IIB supergravity action on AdS5 × S5, and O
is a composite operator matching the representation of Φ0. Specifically, (4.14) equates the
generating functional of the CFT correlators to the action of the dual gravitational theory,
evaluated on a particular classical solution that satisfies boundary conditions determined
by the sources in the CFT. The connected Green’s function for some composite operators
Oi are now following from

〈O1(x1) . . .On(xn)〉 = −δ
nW

(

Φ1
0(x1), . . . ,Φn

0 (xn)
)

δΦ1
0(x1) · · · δΦn

0 (xn)
. (4.15)

Further, (4.14) allows for a diagrammatical way to compute the field theory correlators
on the gravity side in a similar fashion to Feynman diagrams. These diagrams are known
as Witten diagrams, with vertices representing interactions in the bulk AdS space and
lines representing the propagation of bulk fields. The boundary is represented by a circle,
while the interior corresponds to AdS spacetime. An exemplary Witten diagram is given
in Fig. 4.2. In the following chapters, some of these identifications will be made explicit
for particular backgrounds that are suitable to describe QCD in the confining phase.

16 Chapter 4 The Holographic Principle
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Introduction 5
„ It’s a dangerous business, Frodo, going out your door.

You step onto the road, and if you don’t keep your
feet, there’s no knowing where you might be swept
off to.”

— J. R. R. Tolkien
The Fellowship of the Ring

Shortly after its conception in 1997 [23], the holographic principle was applied to
study numerous aspects of strongly coupled field theories [62, 63, 66, 67]. While in
its original form, it has yielded valuable insights that lead to a better understanding

of strongly coupled systems, such as deconfined quark-gluon plasma, the absence of
confinement and chiral symmetry breaking in superconformal gauge theories necessitates
a more refined holographic model to connect to real-world QCD. Already soon after
Maldacena’s seminal paper, Witten formulated a brane construction that is dual to pure-
glue QCD in the large N limit [68] which successfully incorporates a mass gap. We will
recapitulate this model in Chapter 6. A few years later, Sakai and Sugimoto [69] included
chiral quarks by open strings stretching between color and flavor branes. As we will revisit
in Chapter 7, it successfully reproduces chiral symmetry breaking in a geometrical fashion
and leads to an effective chiral hadronic model (see Chapter 3) that semiquantitatively
captures numerous features of hadron spectroscopy together with decay patterns.

In Chapter 6we briefly recapitulate theWittenmodel. Next, wewill turn to the construction
of the Witten-Sakai-Sugimoto (WSS) model and present important results for the following
glueball computations of II.
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No Strings Attached:
Witten's Model of Large-N
Yang-Mills Theory

6

The to datemost successful top-down construction dual to largeN Yang-Mills theory
is due to Witten [68]. It is based on an M-theory construction in AdS7×S4, which
is dual to a 6-dimensional superconformal theory on M5-branes. The superfluous

dimensions are compactified in a way that breaks supersymmetry and, at low energies,
is dual to a 4-dimensional large N Yang-Mills theory. In the following, we shall briefly
review its construction.

The near horizon limit of a stack of N M5-branes compactified on a supersymmetry
breaking ”thermal” circle of radiusM−1

KK in the fourth spatial coordinate x4 ≡ τ ,

τ ≃ τ + δτ = τ +
2π

MKK
, MKK = 3rKK/L

2, (6.1)

is given by the geometry of a doubly Wick-rotated black hole [70]

ds2 =
r2

L2

[

f(r)dx2
4 + ηµνdxµdxν + dx2

11

]

+
L2

r2

dr2

f (r)
+
L2

4
dΩ2

4, (6.2)

where L is the AdS radius. The metric in (6.2) is stabilized by the 4-form flux

Fαβγδ =
6

L

√
gS4ǫαβγδ, (6.3)

which is sourced by the N M5-branes. Asymptotically, this space reduces to AdS7 × S4

with a radius half that of the AdS space. Freund and Rubin previously encountered this
configuration in [71] when they were searching for Kaluza-Klein reductions of unified
theories to 4D. The background in (6.2) is a solution to the equations of motion following
from the unique 11D IIA supergravity action whose bosonic part reads

S11 =
1

2κ2
11

∫

dx
√
−G

(

R− 1

2
|F4|2

)

− 1

3!

∫

A3 ∧ F4 ∧ F4. (6.4)

with 2κ2
11 = (2π)8l9s the 11-dimensional Newton constant. The Witten model was shown

to reproduce numerous features of low-energy Yang-Mills theory like a mass gap [68], a
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gluon condensate [72] and a spectrum of glueballs [73, 74] in qualitative agreement with
lattice QCD [11, 12]. In holographic models, glueballs arise as fluctuations of the fields
in the closed string sector of the theory. However, QCD is not only a theory of glue, but
a theory of quarks bound by gluons. To understand, and therefore be able to search for
glueballs, one must study their interactions with mesons, bound states of quarks of various
flavors. Before turning to the glueball spectrum in Chapter 9, we will thus introduce quark
flavors via open strings.

22 Chapter 6 No Strings Attached: Witten’s Model of Large-N Yang-Mills Theory
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Strings Attached: The
Witten-Sakai-Sugimoto
Model

7

In Refs. [69,75] Sakai and Sugimoto have extended Witten’s D4-brane model to include
Nf chiral quarks by a D-brane construction in the so-called probe limit Nc ≫ Nf ,
where the flavor branes do not backreact on the original geometry. The daunting issue

of going beyond the probe limit has been tackled in [76, 77]. The WSS model, sometimes
also referred to as the D4-D8-brane system, not only reproduces qualitatively numerous
aspects of low-energy QCD and chiral effective theory but frequently achieves semi-
quantitative agreement, all with a minimal number of free parameters. In this chapter, we
briefly recapitulate the WSS model, carry out computations of masses and decay rates,
and compare them to experiment. For a review, see Ref. [78].

After reduction of the 11-dimensional background of (6.2) to 10D by compactifying x11 =

2πgsls and employing the coordinate transformation U = r2/2L, RD4 = L/2 we arrive
at the metric

ds2 =

(

U

RD4

)3/2 [

ηµνdxµdxν + f(U)dτ2
]

+

(

RD4

U

)3/2
[

dU2

f(U)
+ U2dΩ2

4

]

,

eφ = gs

(

U

RD4

)3/4

, F4 = dC3 =
(2πls)

3Nc

V4
ǫ4, f(U) = 1− U3

KK
U3

, (7.1)

with dilaton φ and Ramond-Ramond three-form field1 C3. Later on, the dimensionless
variable u = U/UKK will also be frequently used. Here xµ, µ = 0, 1, 2, 3, are the coordi-
nates in the flat four-dimensional directions, U is the radial holographic direction, where
regularity at U = UKK fixes

MKK =
3

2

U
1/2
KK

R
3/2
D4

. (7.2)

1 Using standard string-theory conventions [79] for the normalization of Ramond-Ramond fields rather than
the rescaled version of Ref. [69].
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The AdS radius RD4 is related to the string coupling gs and the string length ls via the
quantized charge of the 4-form flux

1

(2π)2l3s

∫

S4

F4 = 2πNc, (7.3)

which gives R3
D4 = πgsNcl

3
s .

Through the Kaluza-Klein reductions of Sτ × Sx11 , the D4-brane system of (7.1) can be
viewed as M5-branes wrapped on T 2. The dimensionally reduced action of (6.4) now
reads [79]

SIIA = SNS + SR + SCS,

SNS =
1

2κ2
10

∫

d10x
√−ge−2φ

(

R+ 4∇Mφ∇Mφ−
1

2
|H3|2

)

,

SR =
1

2κ2
10

∫

d10x
√−g

(

−1

2
|F2|2 −

1

2
|F̃4|2

)

,

SCS = − 1

2κ2
10

∫

d10x
1

2
B2 ∧ F4 ∧ F4,

(7.4)

where

F2 = dC1, F4 = dC3,

F̃4 = F4−C1 ∧H3, H3 = dB2,
(7.5)

and 2κ2
10 = (2π)7l8s . The actions SNS and SR refer to the Neveu-Schwarz (NS) and Ra-

mond (R) sectors of the theory, respectively. They arise from the Gliozzi-Scherk-Olive
(GSO) projection in the Ramond–Neveu–Schwarz (RNS) formulation of superstring theory;
a consistency condition imposed that removes the tachyon from the spectrum and simul-
taneously ensures spacetime supersymmetry. The GSO projection acts on the fermionic
states in the closed string sector, where fermions with anti-periodic boundary conditions
live in the NS sector and those with periodic boundary conditions in the R sector. The
NS-NS strings give rise to the graviton, dilaton, and Kalb-Ramond fields, while the R-R
strings bring about various p-form fields. For details on the RNS formalism and the GSO
projection, see Ref. [70]. Some calculations of the dimensional reduction that are relevant
for this thesis have been relegated to Appendix A.

The probe (Nf ≪ Nc) D8 and D8-branes extend along xµ, U , S4, as indicated in Table 7.1,
and are located in an antipodal configuration on the τ -circle. Since the geometry is cut off
at a finite value of U , the branes join smoothly at UKK

2 as depicted in Fig. 7.1a and thereby
implement spontaneous chiral symmetry breaking U(Nf )L ×U(Nf )R → U(Nf )V in a
2 If one were to choose a non-antipodal embedding, the branes would join at U0 > UKK (see e.g. Ref. [80])
and thus introduce an additional mass scale.
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(a)

D8 D8

D4

L

x

x

x4

0−3

5−9

(b)

Fig. 7.1.: (a) The near-horizon geometry in (7.1) forces the D8-branes to join smoothly at UKK. (b)
Brane configuration of the D4/D8 system, includingNc−Nf open strings. The coordinate
x4 ≡ τ is understood as periodic. Courtesy of Andreas Schmitt.

geometrical way. As low energy modes, the Nc −Nf strings involve chiral quarks, as

xM 0 1 2 3 4 5 6 7 8 9
Nc D4 • • • • •
Nf D8−D8 • • • • • • • • •

Table 7.1.: Brane configuration of the D4-D8 system.

depicted in Fig. 7.1b. At strong coupling and low energies, they are described by their
bound states in terms of fields living on a stack of Nf coincident Dp-branes, where p = 8

for theWSSmodel. Their interactions are characterized by the sum of the Dirac-Born-Infeld
(DBI) and Chern-Simons (CS) action [79]

SDp
DBI = −Tp

∫

dp+1xe−φTr
√

−det (gMN + 2πα′FMN +BMN ),

SDp
CS = Tp

∑

q

∫

Dp

√

Â(R)Tr exp
(

2πα′F +B
) ∧ Cq,

(7.6)

where Tp = (2π)−pl−(p+1)
s is the brane tension, F = dA− iA ∧A the non-abelian field

strength of the brane gauge fields and Â(R) the A-roof genus arising through anomaly
inflow [81]. The latter is given by a sum over Pontryagin classes

Â(R) = 1− 1

24
p1(R) +

1

5760

(

7p1(R)2 − 4p2(R)
)

+ . . . , (7.7)

where

p1(R) = − 1

8π2
Tr R∧R

p2(R) =
1

128π4

(

(Tr R∧R)2 − 2Tr R∧R ∧R ∧R
)

,
(7.8)
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and Riemann curvature 2-formR is related to the Riemann tensor via

RAB =
1

2
RABCDdxC ∧ dxD. (7.9)

The (symmetrized) trace in (7.6) runs over the U(N) as well as Minkowski indices, and the
sum over Ramond-Ramond q-form gauge fields in the Chern-Simons term is understood
in a formal sense where the integral picks out the (p+1)-form contributions. Note that
the appearance of the Kalb-Ramond field together with F is attributed to the underlying
(broken) supersymmetry of the theory [70].

By dimensionally reducing the action of a probe D4-brane on Sτ

SD4 ⊃− T4
2π

MKK
Tr

∫

d4xe−φ√−g (2πα′)2

2
|FYM|2

+ T4(2πα′)2
∫

C1 ∧ FYM ∧ FYM,

(7.10)

the boundary theory at U →∞ is identified with a 3+1-dimensional Yang-Mills theory,
including a θ-term

LD4 = − 1

2g2
YM

Tr |FYM|2 +
1

2

θ

(2π)2
Tr FYM ∧ FYM. (7.11)

The ’t Hooft coupling λ and Yang-Mills coupling gYM are hence given by

λ = g2
YMNc = 2πgslsMKKNc. (7.12)

The Ramond-Ramond field C1 is vanishing for the Witten background, leading to θ = 0.
However, when the action of 8-branes is considered, an additional term arises through
Hodge duality of F8 = dC7 = ⋆F2 that modifies the equation of motion for C1, eventually
giving rise to the Witten-Veneziano mechanism [51, 52].

As QCD lacks a quantum number associated with SO(5), we restrict the spectrum to
trivial fluctuations on the S4. The terms quadratic in the field strength of the DBI action for
p = 8 in (7.6) can be reduced to a 5-dimensional Yang-Mills theory with action [69, 75]3

SDBI
D8 ⊃ −κ

∫

d4x dz tr
(

1

2
K−1/3F 2

µν +M2
KKKF

2
µz

)

, (7.13)

where
κ ≡ λNc

216π3
, K(z) ≡ 1 + z2 = U3/U3

KK, (7.14)

3 In (7.13) the Minkowski metric ηµν in the mostly plus convention is used to contract the four-dimensional
spacetime indices. Unless stated otherwise, this convention will be used throughout.

26 Chapter 7 Strings Attached: The Witten-Sakai-Sugimoto Model

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


and the remaining trace over the U(Nf ) indices. To arrive at (7.13), we performed a
Kaluza-Klein decomposition of the flavor gauge fields

Aµ(xµ, z) =
∞
∑

n=1

B(n)
µ (xµ)ψn(z), Az(x

µ, z) =
∞
∑

n=0

ϕ(n)(xµ)φn(z), (7.15)

using the complete sets {ψn(z)}n≥1 and {φn(z)}n≥0. The holographic wavefunctions are
normalized as

κ

∫

dzK−1/3ψmψn = δmn, κ

∫

dzKφmφn = δmn. (7.16)

and satisfy the completeness relations

κ
∑

n

K−1/3ψn(z)ψn(z′) = δ(z − z′), κ
∑

n

Kφn(z)φn(z′) = δ(z − z′). (7.17)

The eigenvalue equation following from (7.13)

−K−1/3∂z (K∂zψn) = λnψn, λn = m2
n/M

2
KK (7.18)

can be used to relate the two complete sets via φn(z) ∝ ∂zψn(z) for (n ≥ 1) and the
remaining massless mode is given by

φ0(z) =
1√

πκMKKK(z)
. (7.19)

Inserting the separation ansatz (7.15) into the DBI action (7.13) and integrating over z, we
obtain

SDBI
D8 ⊃ −tr

∫

d4x





(

∂µϕ
(0)
)2

+
∞
∑

n=1





1

2

(

f (n)
µν

)2
+m2

n

(

B(n)
µ − ∂µϕ

(n)

mn

)2






 ,

(7.20)
with the abelian field strength f (n)

µν = ∂µB
(n)
ν − ∂νB(n)

µ . Absorbing the remaining pseu-
doscalar fields ϕ(n) with (n ≥ 1) by the fields B(n)

µ , we obtain a quadratic Lagrangian of
massless pseudoscalar fields and (axial) vector meson fields with massesmn =

√
λnMKK

determined by the eigenvalue equation (7.18). Since (7.13) is invariant under (x1, x2, x3, z)→
(−x1,−x2,−x3,−z), we can utilize the z-parity of solutions to (7.18) to determine their
transformation property in the 4-dimensional theory, to wit

v(n)
µ ≡ B(2n−1)

µ , a(n)
µ ≡ B(2n)

µ , (7.21)

where v(n)
µ and a(n)

µ refer to vector and axial vector mesons, respectively. The lightest
vector meson is identified with the rho meson of mass mρ = m1 =

√
0.669314MKK,

27

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


with the traditional value [69, 75] ofMKK = 949 MeV corresponding tomρ = 776.4 MeV.
The remaining field ϕ(0) is identified as the multiplet of massless pion fields produced
by chiral symmetry breaking. The U(Nf )A-valued Goldstone boson field is given by the
holonomy

U(x) = eiΠ
a(x)λa/fπ = P exp i

∫ ∞

−∞
dz Az(z, x), (7.22)

with Π(x) already given in (3.5) and Az = Π(xµ)K−1/
√

κπM2
KK.

The pion decay constant is determined by matching to an expansion of the kinetic part of
the chiral action4

Skinchiral =

∫

f2
π

4
tr
(

U−1∂µU
)2
, (7.23)

and given by
f2
π =

λNc

54π4
M2

KK. (7.24)

Conventionally fixing fπ ≈ 92.4 MeV one obtains λ ≈ 16.63. Matching instead the string
tension

σs =
1

2πl2s

√−gttgxx
∣

∣

∣

∣

U=UKK

=
2

27π
λM2

KK (7.25)

to the large-Nc lattice result of √σs ≈ 440 MeV [83], gives a smaller ’t Hooft coupling
λ ≈ 12.55 and thus also pion decay constant fπ ≈ 80.3 MeV. Studies of the spectrum
of higher-spin mesons in the WSS model [84] also seem to favor a smaller value. In the
following, the variation of λ ≈ 16.63 . . . 12.55 shall serve as an error estimate of the
predictions of the model.

7.1 Massive Pseudoscalar Mesons

In holographic models, the anomalous breaking of U(1)A is tied to the lowest Ramond-
Ramond p-form Cp [85–87] in the Chern-Simons action in (7.6). 5. In QCD, the U(1)A

transformation of the quark fields may be compensated by a shift of the θ parameter.
As was shown in (7.11), the θ parameter is identified with Ramond-Ramond 1-form C1.
This gives rise to a Witten-Veneziano [51, 52] mass term for the singlet pseudoscalar η0.
In particular, anomaly cancellation [81] requires a gauge invariant redefinition of the
Ramond-Ramond field strength F2

F̃2 = 3 ls
U3

KK
U4

MKK
2π

(

θ +

√

2Nf

fπ
η0

)

dU ∧ dx4. (7.26)

4 In Ref. [69] it was shown that (7.13) also reproduce the full Skyrme action [82].
5 This action is of order 1/Nc and thus U(1)A is restored in the strict large-Nc limit.
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Correspondingly, the correct kinetic term in the bulk action is now given by

SC1 = − 1

2κ2
10

∫

d10x
√−g|F̃2|2, (7.27)

from which one obtains the Witten-Venziano mass6 [69]

m2
0 =

2Nf

f2
π

χg =
λ2

27π2

Nf

Nc
M2

KK, (7.28)

where χg is the topological susceptibility. Using Nf = Nc = 3, and λ = 16.63 . . . 12.55

we obtain
m0 = 967 . . . 730 MeV. (7.29)

A deformation resulting in mass terms for the other pseudoscalar mesons may be generated
through either worldsheet instantons [88,89] or non-normalizable modes of bifundamental
fields corresponding to open-string tachyons [80, 90–92]. The resulting Lagrangian can be
shown to be of the form in (3.9) and hence reproduces the Gell-Mann-Oakes-Renner rela-
tion. Without a precise understanding of how this deformation is achieved, we tentatively
propose an isospin symmetric Lagrangian of the form

LM
m = µTr (MU(x) + h.c.) ,

M = diag(mu,md,ms),
(7.30)

where mu = md = m̂ and an unfixed overall scale µ. The resulting masses in the
pseudoscalar meson sector are given by [93]

m2
π = 2m̂µ, m2

K = (m̂+ms)µ,

m2
1 =

2

3
m2
K +

1

3
m2
π, m2

8 =
4

3
m2
K −

1

3
m2
π,

(7.31)

and

m2
η,η′ =

1

2
m2

0 +m2
K ∓

√

m4
0

4
− 1

3
m2

0(m2
K −m2

π) + (m2
K −m2

π)2, (7.32)

for the mass eigenstates

η = η8 cos θP − η0 sin θP ,

η′ = η8 sin θP + η0 cos θP ,
(7.33)

6 We see that the limit Nc → ∞ indeed restores the broken U(1)A symmetry by yielding a massless Nambu-
Goldstone boson.
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with mixing angle

θP =
1

2
arctan

2
√

2

1− 3
2m

2
0/(m

2
K −m2

π)
. (7.34)

Using the isospin symmetric parameters

m2
π = m2

π0
≈ (135 MeV)2, (7.35)

and
m2
K =

1

2
(m2

K±
+m2

K0
)− 1

2
(m2

π±
−m2

π0
) ≈ (495 MeV)2, (7.36)

as well as the pseudoscalar singlet mass in (7.29), we obtain θP ≈ −14.31◦ · · · − 24.15◦

and mη ≈ 520 . . . 470, mη′ ≈ 1080 . . . 890 MeV. In the following, we shall vary θP in
(7.34) together with λ, but fixmη andmη′ to their experimental values in the evaluation
of phase space integrals. Further, the explicit quark masses will not modify the results for
the chiral couplings, but only appear in phase space factors.

7.2 Vector Meson Dominance

The holographic principle relates non-normalizable modes to external sources. By utilizing
the local U(1)V bulk symmetry, electromagnetic interactions are obtained by asymptotic
values of the corresponding gauge field on the D8-brane [75]

lim
z→±∞

Aµ(x, z) = AL,Rµ(x) = eQAem
µ (x). (7.37)

The ansatz in (7.15) is thus now given by

Aµ(xµ, z) =ALµ(xµ)ψ+(z) +ARµ(xµ)ψ−(z) +
∞
∑

n=1

v(n)
µ (xµ)ψn(z), (7.38)

with the non-normalizable zero modes ψ±(z), ∂zψ±(z) ∝ φ0(z) defined as

ψ±(z) ≡ 1

2
(1± ψ0(z)) , ψ0(z) ≡ 2

π
arctan z. (7.39)

To distinguish between the different fields we introduce the notation

Vµ ≡
1

2
(ALµ +ARµ) , Aµ ≡

1

2
(ALµ −ARµ) , (7.40)
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for photons and would-be axial photons, such that

Aµ(xµ, z) = Vµ(xµ) +Aµ(xµ)ψ0(z) +
∞
∑

n=1

v(n)
µ (xµ)ψ2n−1(z) +

∞
∑

n=1

a(n)
µ (xµ)ψ2n(z).

(7.41)

The first term in (7.13) can thus be expanded as

κ

2

∫

dzK−1/3F 2
µν ⊃

aVV
2

tr (∂µVν − ∂νVµ)2 +
aAA

2
tr (∂µAν − ∂νAµ)2

+
1

2
tr
(

∂µv
(n)
ν − ∂νv(n)

µ

)2
+

1

2
tr
(

∂µa
(n)
ν − ∂νa(n)

µ

)2

+ aVvntr
(

(∂µVν − ∂νVµ)
(

∂µv
(n)
ν − ∂νv(n)

µ

))

+ aAantr
(

(∂µAν − ∂νAµ)
(

∂µa
(n)
ν − ∂νa(n)

µ

))

,

(7.42)

with coupling constants

aVvn = κ

∫

dzK−1/3ψ2n−1, aVV = κ

∫

dzK−1/3,

aAan = κ

∫

dzK−1/3ψ2nψ0, aAA = κ

∫

dzK−1/3ψ2
0.

(7.43)

Due to the non-diagonal terms in (7.42), the photon field is mixed with the diagonal states
of the vector meson nonet, ρ0, ω and φ. Higher order terms omitted in (7.42) correspond
to interactions. They do, however, not include the photon, which only couples through
the mixing terms in (7.42), thereby realizing Vector Meson Dominance (VMD) [94–97].

7.3 Hadronic and Radiative Meson Decays

In this section, some exemplary decay rates previously studied in Ref. [98], to which the
interested reader is referred for details, are presented. On the one hand, they serve as a
prelude for the following glueball computations and, on the other hand, to gauge to what
extent the results of the WSS model are credible. Some shortcomings will be addressed,
together with modifications that may be used to account for them. If not stated otherwise,
masses of particles are taken from the averages listed in the PDG [9] as well as the JPC

naming convention7 of pseudoscalar 0+− and vector 1−− for qq states with vanishing
angular momentum (l = 0) and scalar 0++, axial vector 1++ and pseudovector 1+− for
their orbital excitations (l = 1). The same naming convention will be used for the glueball
states later on.
7 See Chapter 15 of [9] for details.
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7.3.1 Hadronic Vector and Axial Vector Meson Decays

We obtain vertices between vector, axial vector, and pseudoscalar mesons through the
commutator terms in the DBI action (7.13). Restricting to two flavors, the ρmeson couples
to two pions via

Lρππ = −gρππεabc(∂µπa)ρbµπc,

gρππ =

∫

dz 1

πK
ψ1 = 33.98λ− 1

2N
− 1

2
c .

Using the kinematic relations and formulas given in Appendix D, we readily obtain the
spin averaged, squared amplitude

|Mρ→ππ|2 =
∑

λρ

1

3
ǫ(ρ)
µ ǫ(ρ)∗

ν Mµ
ρππMν∗

ρππ

=
g2
ρππ

3
m2
ρ

(

1− 4m2
π

m2
ρ

) (7.44)

and the partial decay rate

Γρ→ππ =
1

8π

|pπ|
m2
ρ

|Mρ→ππ|2 , (7.45)

yielding Γρ→ππ = 98.0 . . . 130 MeV for λ = 16.63 . . . 12.55. This somewhat underesti-
mates the experimental result of about 150 MeV.

Analogously, we obtain interactions involving an axial vector meson

La1ρπ = ga1ρπεabca
a
µρ

bµπc,

ga1ρπ = 2MKK

√

κ

π

∫

dzψ′
2ψ1 = −34.43λ− 1

2N
− 1

2
c MKK.

(7.46)

Note that these interactions can also be obtained via the substitution ∂µAz → −anµ∂zψ2n

in (7.44). The decay rate of isotriplet axial vector mesons into ρπ is obtained from

Γa1→ρπ = 2× 1

8π

|pπ|
m2
a1

|Mρ→ππ|2 , (7.47)

with a factor of 2 to account for the two differently charged combinations ρ±π∓ and

|Ma1→ρπ|2 =
1

3

(

ga1ρπ

2ma1mρ

)2 (

m4
a1
− 2m2

a1

(

m2
π − 5m2

ρ

)

+
(

m2
π −m2

ρ

)2
)

(7.48)

The WSS model predicts the mass of the a1 meson relatively close to its experimental value
of 1186.5 MeV. However, the partial decay rate of 425 . . . 563 MeV resulting from (7.46)
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already saturates the experimental total width of 420(35) MeV8 [9] . Whereas, according
to [99], only roughly 60% of its width is due to S-wave ρπ decays with subsequent decays
into three pions9. Due to its large width, we shall treat the a1 meson as a resonant
contribution to the three-body decays computed in Chapter 10.

From the discussion above, we can conclude that the WSS model reproduces hadronic
decays quite well when restricted to the light quark flavors withNf = 2. With the strange
quark included, several shortcomings arise. While the ρ and ωmeson are nearly degenerate
in mass, the φmeson is significantly heavier. Nevertheless, we shall consider the caseNf =

3, giving rise to theK, η, and η′ pseudoscalar,K∗, ω, and φ vector, and f1, f
′
1, K1(1270),

andK1(1400) axial vector mesons with their masses raised accordingly when evaluating
phase space integrals, but assuming the same coupling gK∗Kπ = gφKK = gρππ , and so on.
For example, this gives Γ(K∗ → Kπ) = 28 . . . 37 MeV and Γ(φ→ KK̄) = 2.12 . . . 2.82

MeV, which are about 40% and 20% smaller than the results quoted by the PDG [9] ,
respectively. Besides extrapolating to their experimental masses, we consider mixing in
the pseudoscalar (see Section 7.1) and axial vector meson sector. In particular the f1 and
f ′

1 mesons mix according to

|f1(1285)〉 = cos θf |n̄n〉 − sin θf |s̄s〉
|f1(1420)〉 = sin θf |n̄n〉+ cos θf |s̄s〉, (7.49)

so that ideal mixing corresponds to θf = 0. Later on, in Section 7.3.3, we will fix the
mixing angle from its equivalent photon rate to θf = 20.4|26.4◦.

The physical strange axial vector mesonsK1(1270) andK1(1400) are mixtures ofK1A

(1++) and the excited axial vector mesonK1B (1+−) [100]. Because in the WSS model,
there is no 1+− nonet of ordinary mesons, only K1A is present, which couples to the
physicalK1 mesons according to their mixing defined by

|K1A〉 = cos θK |K1(1400)〉+ sin θK |K1(1270)〉. (7.50)

Due to this shortcoming, we will not attempt to compute the hadronic and radiative decays
ofK1(1270) andK1(1400). However, they will be considered as physical states appearing
via (7.50) when computing decays of glueballs in Chapter 10. In Refs. [100,101] the favored
mixing angle is quoted as |θK | ≈ 33◦, which we will adopt in the following.

The ω and φ meson are almost ideally mixed, which will be assumed in all decay rates
collected in tables. We shall, however, sometimes comment in the continuous text on the
effects of a small mixing. For easier reference, we have collected the mixing angles in
8 Albeit with experimental results varying from 250 to 600 MeV.
9 The ρ meson almost exclusively decays into a charged pion pair [9] .
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θf θP θV θK
20.4 | 26.4◦ −14.31…−24.15◦ 35.26◦ 33◦

Table 7.2.: Parameter table of mixing angles used. The dots correspond to the variation in λ =
16.63 . . . 12.55, while the vertical line separates the two values obtained from fitting to
the equivalent photon rate (see Section 7.3.3). The vector meson sector is assumed to
mix ideally.

Table 7.2. Unless stated otherwise, we shall exclusively use those values. The pseudoscalar
mesons of the Nf = 3 nonet are too light to decay into pairs of vector mesons. However,
through VMD, these interactions will give rise to the anomalous π → 2γ decays. The
corresponding Lagrangian including vector mesons is obtained from the CS-term

SCS ⊃T8

∫

tr
(

exp
(

2πα′F2 +B2
) ∧ C3

)

⊃ Nc

96π2
ǫµνρσz

∫

tr (3AzFµνFρσ − 4Aµ∂zAνFρσ) , (7.51)

and given by

LΠvmvn =
Nc

4π2fπ
cvnvmǫµνρσtr

(

Π∂µv
(n)
ν ∂ρv

(m)
σ

)

, (7.52)

with coupling constants

cvnvm =
1

π

∫

dzK−1ψ2n−1ψ2m−1 =

{

1350.83

λNc
, . . .

}

, (7.53)

as originally studied in [75]. Only the decay φ→ πρ would be above the mass threshold
but is forbidden due to the assumed ideal mixing. We shall return to this particular decay
channel later on when also discussing the decay φ → πγ, which is inherited from this
reaction.

As was the case for the pseudoscalars, the axial vector mesons for Nf = 3 are below
the mass threshold for decays into two vector mesons. However, the CS-term in (7.51)
contains interactions between two vector mesons and one axial vector meson

Lvmvnap =− Nc

4π2
dvmvnapǫµνρσtr

(

v(m)
µ a(p)

ν ∂ρv
(n)
σ

)

, (7.54)

with

dvmvnap =

∫

dzψ2m−1ψ
′
2n−1ψ2p, , (7.55)

that will, through VMD, give rise to radiative decays.
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7.3.2 Radiative Pseudoscalar Meson Decays

The heaviest pseudoscalar meson described by the WSS model with Nf = 3 is the η′

meson. With a mass of about 1 GeV, it lies below the mass threshold for the production of
two vector mesons. However, through VMD, one can obtain from (7.52) decays into two
photons realized through the interaction

LΠVV =− Nc

4π2fπ
cVVǫµνρσtr (Π∂µVν∂ρVσ) , (7.56)

where the sum over the entire tower of vector mesons yields

cVV =
∑

m

cVvmaVvm =
1

π

∫

dzK−1 = 1. (7.57)

The decay rate is obtained as

ΓΠ→γγ =
1

2

1

8π

|pγ |
m2

Π

1

2
|MΠ→VV |2 (7.58)

with

|MΠ→VV |2 =
e4N2

c

2π4f2
π

(

tr
(

TΠQ
2
))2

m4
Π, (7.59)

where the additional factor of 1/2 is due to identical outgoing states. In Table 7.3 we
collect various radiative decays rates of pseudoscalar mesons for λ = 16.63 . . . 12.55

and compare them to the experimental values quoted by the PDG [9] . Since the choice
λ = 16.63 corresponds to the correct pion decay constant, only the first value matches
the experimental decay rate for π0 → 2γ. Due to the mixing angle θP given in (7.34),
the variation in λ = 16.63 . . . 12.55 is non-monotonic for decays involving η or η′. The
extremal value is also given for intermediate values of λ exceeding the bound.

7.3.3 Radiative Vector and Axial Vector Meson Decays

Using VMD, the interaction between a photon, a vector meson, and a pseudoscalar meson
is obtained from (7.52) as

LΠVvn =
Nc

4π2fπ
cVvnǫµνρσtr

(

Π∂µv
(n)
ν ∂ρVσ + Π∂µVν∂ρv(n)

σ

)

, (7.60)

with coupling constant

cVvn =
1

π

∫

dzK−1ψ2n−1 = {33.9839, . . . }(Ncλ)−1/2. (7.61)
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Γexp.[keV] ΓWSS[keV]
π0 → 2γ 0.00780(12) 0.00773…0.0102
η → 2γ 0.515(18) 0.480…0.978
η′ → 2γ 4.34(14) 5.72…5.87…5.75
ρ0 → π0γ 70(12) 56.2…98.6
ρ± → π±γ 68(7) 56.2…98.6
ρ0 → ηγ 45(3) 40.3…90.5
ω → π0γ 725(34) 521…915
ω → ηγ 3.9(4) 4.87…10.9
η′ → ρ0γ 55.4(1.9)fit,68(7)av. 54.1…59.2…58.5
η′ → ωγ 4.74(20)fit,5.8(7)av. 5.37…5.89…5.81
φ→ π0γ 5.6(2) 0
φ→ ηγ 55.3(1.2) 84.7…92.8…91.6
φ→ η′γ 0.264(10) 0.525…1.18
K∗0 → K0γ 116(10) 124…218
K∗± → K±γ 50(5) 31.0…54.5

Table 7.3.: Radiative decay widths of pseudoscalar and vector mesons with ’t Hooft coupling
λ = 16.63 . . . 12.55. For nonmonotonic dependence on λ intermediate extremal values
are also given. Ideal mixing is assumed for ω and φ. Except for the π0 width [106], all
experimental results are taken from the PDG [9] .

Note that one may use again the completeness relation (7.17) to eliminate the summed-over
modes. The partial width following from (7.60) is obtained as

Γvn→Πγ =
1

8π
|Mvn→ΠV |2

|pV |
m2
v

, (7.62)

with the spin-averaged squared amplitude

|Mvn→ΠV |2 =
c2

Vvne2N2
c

96π4f2
π

(tr (TΠTvnQ) + tr (TΠQTvn))2
(

m2
Π −m2

vn

)2
. (7.63)

In Table 7.3 we list the radiative decays involving a pseudoscalarmeson, a vectormeson, and
one photon. As stated above, themixing angle θV is assumed to be ideal θV = arctan 1/

√
2.

Fitting it, for example, through the ratio of their decay widths into π0γ [9] , 5.6/725, one
obtains an (almost ideal) mixing angle of θV = θideal

V + 3.32◦, as in [102]. This would
give ΓWSS(φ→ πγ) = 4 . . . 7 keV and ΓWSS(ω → ηγ) = 3.94 . . . 9.46, consistent with
experiment, but at the cost of overestimating ΓWSS(η′ → ωγ) = 6.92 . . . 8.29. For the
hadronic decay φ→ ρπ, which is the dominant decay channel in φ→ 3π [103–105], we
obtain Γφ→ρπ = 189 . . . 440 keV. Currently, the PDG lists no average for either process. A
common feature shared by many holographic models [75, 107–109], and also the hidden
local symmetry approach [110], is the vanishing of the coupling of an axial vector meson
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to a pseudoscalar meson and one photon. In the WSS model, this interaction arises from
(7.46) with coupling

ga1πV = 2MKK

√

κ

π

∫

dzψ′
2 = 0, (7.64)

which integrates to zero due to the negative z-parity of the integrand. This is in agreement
with the rather small a±

1 → π±γ width observed in experiment that cannot be explained
by naive VMD models [111].

Employing VMD on (7.54), the interaction Lagrangian between one axial vector meson,
one vector meson, and one photon is readily obtained

LVvnap =− Nc

4π2
dVvnapǫµνρσtr

(

v(n)
µ a(p)

ν ∂ρVσ
)

, (7.65)

with

dVvnap =

∫

dzψ′
2n−1ψ2p = {−2497.14, . . . }N−1

c λ−1. (7.66)

Carrying out the spin-averaging and the polarization sums gives

|Map→vnV |2 =
d2

Vvnap

(

m2
ap −m2

vn

)2 (
m2
ap +m2

vn

)

N2
c

96π4m2
apm2

vn

(tr (eQTapTvn))2 . (7.67)

The numerical results for the decay width

Γap→vnγ =
1

8π

|pV |
m2
ap

|Map→vnV |2 (7.68)

are listed in Table 7.4. Again, ideal mixing between ω and φ is assumed. Non-ideal mixing
with θV ≈ 38.6◦ would marginally increase φγ over ωγ for f1(1285), at the cost of
decreasing it for f1(1420). In accordance with the Landau-Yang theorem [114, 115], the
would-be two-photon interactions resulting from (7.54) vanish, since the radial derivative
would act on the constant bulk-to-boundary propagator of one of the on-shell photons.
If either of the photons is off-shell, we may use the equation of motion of the bulk-to-
boundary propagator

(

1 + z2
)1/3

∂z
[(

1 + z2
)

∂zJ (Q, z)
]

=
Q2

M2
KK
J (Q, z), (7.69)

and expand (7.69) for small momenta Q

J (Q, z) = 1 +
Q2

M2
KK
β(z) +O(Q4). (7.70)
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Γexp[keV] ΓWSS[keV]
a1(1260)→ ργ 28.9…50.8
a1(1260)→ ωγ 247…434
f1(1285)→ ργ 1380(300)…640(240) 295…518|270…473
f1(1285)→ ωγ 31.3…54.9|28.6…50.2
f1(1285)→ φγ 17(7) 2.44…4.29|3.97…6.98
f1(1420)→ ργ 73.0…128|119…209
f1(1420)→ ωγ 7.80…13.7|12.7…22.3
f1(1420)→ φγ 164(55) 52.9…92.9|48.3…84.8

Table 7.4.: Radiative axial vector meson decay with λ = 16.63 . . . 12.55 and two values of the f1

mixing angle θf = 20.4◦|26.4◦. Experimental values are from the PDG [9] except the
lower values for f1(1285)→ ργ, which are from VES [112]; Zanke et al. [113] propose
here as experimental average 950(280) keV.

The function β(z) is now seen to follow from

∂zβ =
z

(1 + z2)
2F1

(

1

3
,
1

2
,
3

2
,−z2

)

, (7.71)

and we obtain a non-vanishing coupling

dVv∗ap =
Q2

M2
KK

∫

dz∂zβ(z)ψap +O(Q4)

=
Q2

M2
KK
cVv∗ap , cVv∗ap = 101.309N−1/2

c λ−1/2.

(7.72)

The corresponding partial decay widths for a longitudinal γ∗
L or transversal γ∗

T virtual
photon are given by

Γf1(1285)→γ∗
LγT

=
2

3

(

cVv∗am
2
aNc

8π2M2
KK

)2
1

8π

|p|
m2
a

(

5e2

18
cos θf −

e2

9
√

2
sin θf

)2

Q2,

Γf1(1285)→γ∗
T γT

=O
(

Q6
)

,

(7.73)

and

Γf1(1420)→γ∗
LγT

=
2

3

(

cVv∗am
2
aNc

8π2M2
KK

)2
1

8π

|p|
m2
a

(

5e2

18
sin θf +

e2

9
√

2
cos θf

)2

Q2, (7.74)

up to O(Q4). The so-called equivalent photon rate is given by

Γ̃γγ = lim
Q2→0

m2
a

Q2

1

2
Γ (a→ γ∗

LγT ) , (7.75)
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Γ̃
exp
γγ [keV] Γ̃WSS

γγ [keV]
a1 (1260) - 1.60…2.12|1.39…1.85
f1 (1285) 3.5(8) 3.84…5.09|2.39…3.17
f1 (1420) 3.2(9) 3.50…4.64|2.19…2.90

Table 7.5.: Equivalent photon rates of axial vector mesons for two values of the f1 mixing angle
θf = 20.4◦|26.4◦ (in the latter case with MKK rescaled such that ma is raised to
the experimental value which reduces ξ in (7.76) to zero); the range denoted by dots
corresponds again to λ = 16.63 . . . 12.55, where only the first value is matching the
axial anomaly exactly. Experimental values from L3 [116, 117], see also [113].

and listed in Table 7.5. Using (7.73) and (7.74) we can determine the mixing angle via

tan2

(

θf − arctan

√
2

5

)

=

(

mf1

mf ′
1

)1+ξ
Γ̃
f ′

1exp
γγ

Γ̃
f1exp
γγ

, (7.76)

where we introduced an additional parameter ξ to account for the additional powers of
M−2

KK in the coupling dVv∗ap . The traditional form of (7.76) with ξ = 0 leads to θf = 26.4◦

[113], while ξ = 4, as in the WSS model, leads to θf = 20.4◦. Both in Table 7.4 and
Table 7.5 θf is thus varied as θf = 20.4◦|26.4◦ to account for the extrapolation of masses
of f1(1285) and f1(1420) to their realistic values, in conjunction with a rescaling ofMKK

bymexp
a /mWSS

a , therefore setting ξ = 0 in (7.76). For both choices of λ = 16.63 . . . 12.55,
the WSS model shows quite good agreement with experiment, somewhat favoring a higher
value of λ for f1(1285) and a lower value for f1(1285). No experimental data is available
for the equivalent photon rate of the isotriplet axial vector mesons.
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Part II

Holographic Glueball Physics

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Introduction 8
„ People assume that time is a strict progression of

cause to effect, but actually, from a non-linear,
non-subjective viewpoint, it’s more like a big ball of
wibbly-wobbly, timey-wimey stuff.”

— The Doctor
Doctor Who

In this part we continue the analytical explorations made using gauge/gravity duality,
which has been employed for studying glueball spectra in strongly coupled nonabelian
theories shortly after the discovery of the AdS/CFT correspondence [73, 74, 118–122].

After setting up the holographic model due to Witten, Sakai, and Sugimoto and testing
its validity in Part I, we will now turn to holographic glueball physics. In Chapter 9 we
compute the holographic glueball spectrum as originally obtained in [74]. For the glueball
sector with even C parity, we will utilize the 11-dimensional formulation of the theory
presented in Chapter 6. For the C-odd sector, the computations are carried out in the
10-dimensional formulation of Chapter 7. After determining the mass spectrum, we will
study mixing with mesons and mass corrections arising from the DBI action. Next, we will
turn to interactions arising from the DBI and CS action of the D8-branes, compute various
hadronic and radiative decay rates, and compare them to the available experimental data.

This part is based on the results in Refs. [123, 124] and structured as follows. In Chapter 9
we compute the holographic glueball spectrum and in Chapter 10 we consider hadronic
and radiative glueball decays.
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The Holographic Glueball
Spectrum

9

Triggered by the seminal works of Refs. [118, 119], the computation of the glueball
spectrum based on the AdS/CFT correspondence has been an active area of research
[73, 74, 120–122]. While this initial top-down approach lead to valuable insights,

they miss the connection to QCD at high energies. This inspired bottom-up model building
for glueball physics [125–131], with either AdS5 geometries using a cut-off (”hard wall”) or
by introducing a non-constant background dilaton field (”soft wall”) to model confinement.
Soft wall models introduce a crucial ingredient of QCD: a running coupling. While for
now, we shall restrict ourselves to top-down holographic QCD, in Part III we will explore
soft wall models in more detail and show that the resulting mass spectra reproduce the
Regge behavior observed in the hadron spectrum. The results presented in this chapter are
based on the computations from Ref. [74] and, in the case of the form fields, rederived in
the string frame. The states are grouped in sections according to their spin and arranged
in order of increasing mass for easier reference. This organizing scheme will be used
throughout this part of the thesis.

From the string theory perspective, the color singlet states of the pure Yang-Mills theory are
comprised of states pertaining to the closed string sector. As such, and in the supergravity
limit, they arise as fluctuations of the metric GAB and 3-form potential AABC in the
11-dimensional M-theory lift. In the 10-dimensional string frame, they are identified
with fluctuations of the metric gMN , dilaton φ, Kalb-Ramond BMN , and Ramond-Ramond
CM , CMNO fields. Especially for themetric fluctuations, the computation in 11 dimensions
is more tractable since the numerous scalar fluctuations are easier to disentangle. The
equation of motion following from the variation of the action (6.4) with respect to the
metric is given by

RAB −
1

2
RGAB =

1

2 · 4!

(

F A1A2A3
A FBA1A2A3 −

1

2
FA1A2A3A4FA1A2A3A4GAB

)

(9.1)

It is readily checked that the background (6.2) together with the 4-form flux F4 induced by
the M5-branes solves the equations of motion. The latter serves as a cosmological constant
that stabilizes the AdS space, realizing the venerable idea of Freund-Rubin compactifications
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[71]. To proceed with the computation of the spectrum, (9.1) is linearized in fluctuations
of GAB → GAB + δGAB , where δGAB corresponds to the graviton. In particular, one
obtains

−1

2
∇2δGAB −

1

2
∇A∇BδG+

1

2
∇C(∇AδGBC +∇BδGAC)

−
(

R− 1

4
FA1A2A3A4FA1A2A3A4

)

δGAB = 0
(9.2)

where δG = GABδGAB is the trace. Note that (6.2) represents an Einstein space, being
the product space of AdS7 × S4. Using RAdSD

AB = −(D − 1)/L2GAB and RSn
AB = (n −

1)/(L/2)2GAB one readily obtains R = 6/L2. Further FA1A2A3A4FA1A2A3A4 = 36/L2

and hence, for the particular background (6.2), the linearized equations of motion governing
the dynamics of the metric fluctuations are given by

−1

2
∇2δGAB −

1

2
∇A∇BδG+

1

2
∇C(∇AδGBC +∇BδGAC) +

6

L2
δGAB = 0

(9.3)

Note that in the above equation, as well as for the following equations, the transverse-
traceless gauge for δGMN was employed. This drastically simplifies the computations.
In particular, it enforces vanishing fluctuations of the Ricci scalar, which would be given
by

R(1) = ∇A∇BδGAB −∇2δG− δGABRAB. (9.4)

For the form fields, working in the 10D string frame is more convenient. The equations of
motion follow by variation of (7.4) with respect to the various form fields and are given
by

∇M F̃MN − 1

3!
F̃NO1O2O3HO1O2O3 = 0,

∇O
(

e−2φHOMN + CP F̃
OPMN

)

− 1

2! · (4!)2
√−g ǫ

MNO1...O8FO1...O4FO5...O8 = 0

∇P F̃PMNO − 1

3! · 4!
√−g ǫ

MNOP1...P7HP1P2P3F̂P4...P7 = 0.

(9.5)

The complete set of equations of motion, including the ones for the dilaton and metric,
can be found in Appendix B. Linearizing these equations with respect to the fluctuations
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of C1, B2 and C3, and taking into account that neither C1 nor B2 are sourced by the
D4-branes, one obtains

∇MFMN = 0,

∇O
(

e−2φHOMN
)

− 3R3
D4

√

ĝS4

2! · 4!
√−ggs

ǫMNO1...O4FO1...O4 = 0,

∇PFPMNO − 3R3
D4

√

ĝS4

3! · √−ggs
ǫMNOP1...P3HP1P2P3 = 0.

(9.6)

It will further prove useful to transform the components of the various dynamical fields of
the preceding actions to an orthonormal basis. After this transformation, the covariant
derivatives can be replaced by ordinary derivatives. This can be achieved by utilizing
tetrads eÂA and EÂA , which are defined through the relation

gMN = ηM̂N̂e
M̂
Me

N̂
N , GAB = ηÂB̂E

Â
AE

B̂
B, (9.7)

where the hatted indices pertain to the ”flat” coordinates, as opposed to the ”curved”
indices without hat.

Witten’s construction, which has been briefly summarized in Chapter 6, involves a su-
persymmetry breaking compactification that leads to gauginos and, at the one-loop level,
adjoint scalars with masses above the compactification scale MKK. However, most of
the glueball states lie above this scale as well. On the other hand, as originally found in
Refs. [73, 74], the dimensionless ratio of masses between various glueball states is in quali-
tative agreement with lattice QCD [11, 12]. The compactified, supersymmetry breaking
coordinate τ introduces an additional parity transformation, which has no interpretation
for the closed string states and also no analog in QCD. Hence, and since there are various
superfluous states which do not seem to be reproduced on the lattice, the glueball states
with odd τ parity will be discarded.

Due to the supergravity limit, the spectrum truncates at states with spin-2. Their quantum
numbers, and in particular their charge and parity assignments, can be deduced from their
couplings to the 4D boundary gauge theory and are summarized in Table 9.1. We shall not
make these computations explicit since they are already thoroughly documented in the
existing literature [73, 74, 119].
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GAB AABC

GMN GM,11 G11,11

√
λi = Mi

MKK
AMN,11 AMNO

√
λi = Mi

MKK
Gµν Cµ φ Bµν Cµνρ
2++ 1++

(−) 0++ 1.567 1+− 0+−
(−) 2.435

Gµτ Cτ Bµτ Cµντ
1−+

(−) 0−+ 1.886 1−−
(−) 1−− 3.037

Gττ Gαα
0++ 0.901 0++ 3.575

Table 9.1.: The holographic glueball spectrum as obtained in [74] but with eigenvalues λi given in
units ofMKK. The − subscript denotes states with odd τ -parity that will be discarded in
the following.

9.1 Spin-0

9.1.1 The "Exotic" Scalar Glueball

The lightest glueball state, which is dubbed ”exotic” [73] due to having one polarization
along the compactified τ direction, is obtained from

δGττ = − r2

NE L2
f(r)S4(r)GE(xσ),

δGµν =
r2

NE L2
S4(r)

[

1

4
ηµν −

(

1

4
+

3r6
KK

5r6 − 2r6
KK

)

∂µ∂ν
M2

]

GE(xσ),

δG11,11 =
r2

NE 4L2
S4(r)GE(xσ),

δGrr = − L2

NE r2f(r)

3r6
KK

5r6 − 2r6
KK
S4(r)GE(xσ),

δGrµ = δGµr =
90r7r6

KK

NEM2L2
(

5r6 − 2r6
KK
)2S4(r)∂µGE(xσ), (9.8)

where S4(r) obeys the eigenvalue equation

d
dr
(

r7 − r r6
KK

) d
drS4(r) +

(

L4M2
Er

3 +
432r5r12

KK
(

5r6 − 2r6
KK

)2

)

S4(r) = 0. (9.9)

The boundary conditions S′
4(r = rKK) = 0, S4(r = ∞) = 0 give a mass ofME = 855

MeV for the lowest mode, significantly lighter than the roughly 1700 MeV obtained using
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quenched lattice QCD [11, 12].
The normalization constant NE is inferred through the kinetic term

L4|G2
E

= C
∫

dr r
3S4(r)2

2L3N 2
E

5

8
GE

(

�−M2
E

)

GE , (9.10)

where the constant C arising from the dimensional reduction is given by

C =

(

L

2

)4

Ω4
1

2κ2
11

(2π)2R4R11. (9.11)

Requiring a canonical normalization

L4|G2
E

=
1

2
GE

(

�−M2
E

)

GE (9.12)

the normalization is obtained as

NE = 0.008751λ
1
2NcMKK, (9.13)

where we used
∫

dr5

8

r3S4(r)2

L3
= 0.0918315

r4
KK
L3

. (9.14)

9.1.2 The Dilaton Scalar Gluebal

The (predominantly) dilatonic 0++ glueball is obtained from

δGµν =
r2

ND L2
T4(r)

(

ηµν −
∂µ∂ν
�

)

GD(xσ),

δG11,11 = −3
r2

ND L2
T4(r)GD(xσ),

with an undetermined normalization parameter ND . The mode equation is found to be

d
dr
(

r7 − r r6
KK

) d
drT4(r) + L4M2

Dr
3T4(r) = 0, (9.15)

with a mass ofMD = 1487 MeV, after imposing the boundary conditions T ′
4(r = rKK) =

0, T4(r =∞) = 0. This is to be compared to the lattices result of about 1700 MeV [11,12]1

and in the right ballpark for the usually quoted glueball candidates f0(1500) and f0(1710).
The mass of the former seems almost to match exactly, which makes an identification
1 In Ref. [13] it was found that unquenching effects are mostly negligible, especially for the 0++ glueball.
We comment on unquenching effects in Appendix C by utilizing a geometry that includes the first-order
backreaction of the flavor branes on the original background in (7.1).
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with f0(1500) quite tempting. However, as we shall see later in Section 10.2.1, the decay
pattern instead matches that of f0(1710) rather well.

The kinetic and mass term for GD reads

L4|G2
D

= C
∫

dr6r3T4(r)2

L3N 2
D

GD
(

�−M2
D

)

GD (9.16)

The radial integration for the lightest mode yields the constant

∫

dr6r3T4(r)2

L3
= 1.35282

r4
KK
L3

, (9.17)

which fixes the normalization to

ND = 0.0335879λ
1
2NcMKK. (9.18)

9.1.3 The Pseudoscalar Glueball

For the form fields, it is more convenient to work in the 10D string frame with the equations
of motion following from the action (7.4). The pseudoscalar 0−+ glueball is obtained from
the Ramond-Ramond sector of the theory. In particular, it is given by the τ component
of C1 = Cτdτ or from δGτ11 of the 11-dimensional theory, sometimes referred to as
graviphoton. Note that C1 is the only Ramond-Ramond form field that does not result
from a compactification of A3. The linearized equations of motion are solved by the
ansatz

Cτ = e−φeτ̂τV4(u)G̃(xµ) =

√

f(u)

gs
V4(u)G̃(xµ), (9.19)

provided that V4(u) obeys

∂u(u4 − u)V ′
4(u) +

9

4
u

(

M2
PS

M2
KK

+
1

u2 − u5

)

V4(u) = 0, (9.20)

Note that the appearance of the dilaton in (9.19) is purely conventional and was introduced
to match the mode equation of [74] after transforming u = r2/r2

KK. This is due to the
conventional form of the Ramond-Ramond action of (7.4), which does not contain explicit
powers of gs and hence the dilaton. As a leading order expansion in terms of the string
coupling, one would expect a spherical string worldsheet with genus k = 0 and hence
Euler characteristic of χ = 2, leading to a prefactor of e−χφ. A simple field redefinition
of C1 = e−φC̃1, F2 = e−φF̃2 = e−φdC̃1 − dφ ∧ C̃1, and analogously for C3, leads to the
same prefactor of e−2φ for all actions [70]. The normalizable modes C(2)

τ corresponding to
glueball fluctuations obey the boundary conditions C(2)

τ (U =∞) = C
(2)
τ (U = UKK) =
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0, ∂UC
(2)
τ (U = UKK) 6= 0, with the mass of the lowest lying state given byMPS = 1789

MeV. This is about 800 MeV below the mass obtained using quenched lattice QCD [11, 12].
However, as discussed in Section 9.4, the pseudoscalar glueball receives a small mass
correction through its mixing with the η′ meson due to the Witten-Veneziano mechanism.
To quadratic order, the Lagrangian is given by

L(2)
R |G̃ = − 2π

MKKN 2
PSg

2
s

V4

2κ2
10

∫ ∞

1
du1

2
U2

KKR
3
D4uV4(u)2G̃(xµ)

(

�−M2
PS

)

G̃(xµ)

=
1

2
G̃(xµ)

(

�−M2
PS

)

G̃(xµ)

(9.21)

where
N 2
PS =

λM2
KKN

2
c

486π2

∫ ∞

1
duV4(u)2, (9.22)

and thus
NPS = 0.00642887MKKNc

√
λ. (9.23)

9.2 Spin-1

9.2.1 The Pseudovector Glueball

The 1+− pseudovector glueball is obtained from the fluctuations

aµν11 = Bµν = gs
c(u)

NPV
B̃µν(x

µ), aµτr = Cµτr =
3

2NPV�
2c(u)

u
ηµνǫ

νρσκ∂ρB̃σκ(xµ),

(9.24)
where c(u) = u3/2/gsN4(u) obeys the mode equation

∂u(u4 − u)N ′
4(u) +

9

4
u

(

M2
PV

M2
KK

+
1− 3u3

u2

)

N4(u) = 0. (9.25)

The appearance of both Cµτr and Bµν is tied to the topological mass term in the CS action
of (7.4). A consistent solution to the linearized equations of motion and a canonical kinetic
term in the action of (7.4) is only obtained when both fluctuations are included. The
quadratic Lagrangian in (7.4) reduces to

(L(2)
NS + L(2)

R )|GP V
= − 1

2κ2
10

1

4g2
s

R6
D4

UKK

√

ĝS4

u

u3 − 1
a(u)2B̃µν

(

M2 −�
)

B̃µν . (9.26)

By imposing the boundary conditionsN ′
4(UKK) = 0 andN4(∞) = 0, the lightest mode has

massMPV = 2311 MeV, which is about 600 MeV below the quenched lattice result [11,12]
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and about 1 GeV below the unquenched result [13]. Further, the normalization is found to
be

N 2
PV =

3

16

λN2
c

(2π)2M4
KKR

6
D4

∫ ∞

1
duuN4(u)2, u =

U

UKK
(9.27)

with
NPV = 0.0332045

√
λNc

M2
KKR

3
D4

(9.28)

differing from [132] by a factor of r3
KK through the dimensionless ansatz in (9.24).

9.2.2 The Vector Gluebal

The 1−− vector glueball is obtained from the fluctuations

Cµντ =
a(u)

NV
C̃µν(x

µ), Bµu =
3gs

2NV�
u2

u3 − 1
a(u)ηµκǫ

κνρσ∂νC̃ρσ(xµ), (9.29)

where a(u) = e−φ
(

ex̂x

)2
eτ̂τM4(u) =

√
u3 − 1/gsM4(u). As was the case for the pseu-

dovector glueball, the appearance of both Cµντ and Bµu is tied to the topological mass
term in the CS action of (7.4). M4(u) obeys the mode equation

∂u(u4 − u)M ′
4(u) +

9

4
u

(

M2
V

M2
KK

(2− 3u3)u

u3 − 1

)

M4(r) = 0, (9.30)

which slightly differs from the one obtained in [74] after transforming to u = r2/r2
KK

but a matching mass spectrum, hinting at a typo. By imposing the boundary conditions
M ′

4(UKK) = 1 andM4(∞) = 0, the lightest mode has massMV = 2882 MeV, which is
about 1 GeV below the (quenched) lattice result [11,12]. The quadratic Lagrangian reduces
to

(L(2)
NS + L(2)

R )|GV
= − 1

2κ2
10

1

4g2
s

R6
D4

UKK

√

ĝS4

u

u3 − 1
a(u)2C̃µν

(

M2
V −�

)

C̃µν . (9.31)

leading to the normalization condition

N 2
V =

3

16

λN2
c

(2π)2M4
KKR

6
D4

∫ ∞

1
duuM4(u)2, u =

U

UKK
, (9.32)

with
NV = 0.0142218

√
λNc

M2
KKR

3
D4

(9.33)

for the ground state vector glueball. Recall that the holographic coordinate z of the joined
D8-brane system covers the radial coordinate U twice, therefore the parity under z → −z
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reflects the τ parity. The glueball modes under consideration in this thesis all have even τ
parity. However, the transformation to an orthonormal frame employed above corresponds
to a(z) = zM4(z), and therefore,M4(z) has odd parity on the joint flavor branes.

9.3 Spin-2

Tensor Glueball

The 2++ tensor glueball fluctuation reads

δGµν = qµν
r2

L2NT
T4(r)GT (xσ), (9.34)

where qµν is a symmetric, transverse, and traceless polarization tensor, which is normalized
such that qµνqµν = 1, differing from [133] .
T4(r) satisfies the same eigenvalue equation and boundary conditions as in the case of
the dilatonic scalar glueball, (9.15), but it acquires a different normalization. To second
order in fluctuations, the Lagrangian reads

L4|G2
T

= C
∫

dr r
3T4(r)2

4L3N 2
T

GT
(

�−M2
)

GT

=
1

2
GT

(

�−M2
)

GT , (9.35)

with
∫

dr r
3T4(r)2

2L3
= 0.112735

r4
KK
L3

, (9.36)

fixing the normalization to

NT = 0.00969598λ
1
2NcMKK =

ND
2
√

3
. (9.37)

The degeneracy in mass of some glueball states is a feature shared by many holographic
models due to the high symmetry of the considered backgrounds. In the WSS model,
the dilaton scalar and tensor glueball are around 1500 MeV, while quenched lattice QCD
[11, 134] finds 1700 and 2400 MeV, respectively. The unquenched result of [13] points to
an even higher value of 2600 MeV.
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9.4 Glueball-Meson Mixing and Mass corrections

TheDBI action in (7.6) leads tomass corrections for fluctuations involving the Kalb-Ramond
field B2. Additionally, this field leads to mixing with the flavor gauge fields. Within the
WSS model, the pseudoscalar and vector glueball are the only states with even τ parity that
mix with ordinary mesons. In the following section, we shall compute these corrections
and gauge their importance for the evaluation of decay rates in Chapter 10.

9.4.1 Pseudoscalar glueball

In Ref. [135] it was shown that the Witten-Veneziano mechanism (see Section 7.1) gives
rise to a kinetic mixing term

SR ⊃
∫

d4xζ2∂µη0∂µG̃, ζ2 = 0.0112λ

√

Nf

Nc
(9.38)

between the pseudoscalar glueball and the abelian part of the pseudoscalar meson nonet.
To orderNf/Nc, the Lagrangian of this system can be diagonalized via a non-unitary field
redefinition

η0 → η0ζ2G̃, G̃→ G̃, (9.39)

therefore raising the mass of the pseudoscalar glueball to

M2
PS(1 + ζ2

2 ) = (1819.7 . . . 1806.5 MeV)2, (9.40)

and passing on the interactions of η0 to the pseudoscalar glueball. Since the dominant
decay modes of the pseudoscalar glueball arise through this mixing, we shall also consider
the mass correction of the pseudoscalar glueball when computing decay rates.

9.4.2 Pseudovector Glueball

The terms bilinear in the Kalb-Ramond field B2 of the DBI action in (7.6) generate a mass
correction for the pseudovector glueball of orderO(Nf/Nc)

SDBI = −
∫

d4x
1

2
δλPVM

2
KKη

µν ṼµṼν ,

δλPV =
λ3NfNc

54(2π)5M2
KKR

6
D4M

2
V

∫

dz(1 + z2)2/3N4(z)2 = 0.00351λ2Nf

Nc
.

(9.41)
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This amounts to an increase in mass of about 8%, which will not be considered when
evaluating decay rates. As opposed to the previous case, there is no mixing since the
1+− spin-1 nonet, which would include the b1, h1 andK1B mesons, is absent in the WSS
model.

9.4.3 Vector Glueball

Mass Correction

As for the pseudovector glueball, the DBI action gives rise to a term quadratic in the
Kalb-Ramond field B2. Since we are working in the probe approximation, this term will be
treated as a perturbation, with the holographic wave functionM4(z) unchanged. Explicitly,
it is given by

SDBI = −T8tr
∫

d9xe−φ
√

−gMN + (2πα′)FMN +BMN

⊃ −T8Nf

(

8π2

3

)

∫

d4xdz
√−gD8e

−φ 1

2
gµνgzzBµzBνz

= − 2λ3NfNc

27(2π)5R6
D4

∫

d4xdz(1 + z2)M4(z)2 1

2�
ηµνVµVν

= −
∫

d4x
1

2
δλVM

2
KKη

µνVµVν ,

δλV =
2λ3NfNc

27(2π)5M2
KKR

6
D4M

2
V

∫

dz(1 + z2)M4(z)2 = 0.00233λ2Nf

Nc
,

(9.42)

where we projected out the spin-1 part of C̃ρσ(xµ) with C̃ρσ(xµ) = 1√
�
ǫ κλ
ρσ ∂κVλ(xµ).

For Nf = 3, Nc = 3, λ = 16.63 . . . 12.55 this amounts to an increase of the mass of the
vector glueball of 100 . . . 57 MeV, i.e., only 3.4 . . . 2%. However, these mass corrections
would need to be considered in conjunction with the mass mixing of the next section.
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Mixing With Vector Mesons

Additionally, there is a parametrically more important term of order
√

Nf/Nc, mixing the
vector glueball and the singlet flavor gauge field v̂ = va=0. It is given by

SDBI = −T8tr
∫

d9xe−φ
√

−gMN + (2πα′)FMN +BMN

⊃ −
∫

d4xξnη
µν v̂nµ(xµ)Vν(x

µ),

ξn =
κλ

2πMV

MKK
R3

D4

trT 0
∫

dz(1 + z2)M4(z)ψ′
2n−1(z)

= {−0.0180,−0.0165, 0.005, . . .}λM2
KK

√

Nf

Nc
,

(9.43)

for the first three vector meson modes. To fully decouple the singlet vector mesons from
the vector glueball, one would need to solve the eigenvalue problem for the whole tower
of vector mesons and also the higher vector glueball modes. To gauge the importance of
this term, we shall restrict ourselves to the ground state wave functions. The combined
Lagrangian of the singlet vector meson-vector glueball system reads to quadratic order

L(2)
V,v̂ = −

∫

d4x

(

1

4
f̂2
µν +

1

2
m2ηµν v̂µv̂ν + ξ1η

µν v̂µVν +
1

4
F 2
µν +

1

2
M2
V η

µνVµVν

)

,

(9.44)
with degenerate vector meson masses. The Lagrangian is readily diagonalized by a unitary
field redefinition

Vµ → Ṽµ cos θ − ṽµ sin θ,

v̂µ → Ṽµ sin θ + ṽµ cos θ,
(9.45)

with mixing angle
θ =

1

2
arctan

2ξ1

M2
V −m2

, (9.46)

and masses

m̃2 = m2

(

cos2 θ +
M2
V

m2
sin2 θ − 2ξ1

m2
sin θ cos θ

)

,

M̃2
V = M2

V

(

cos2 θ +
m2

M2
V

sin2 θ +
2ξ1

M2
V

sin θ cos θ

)

.

(9.47)

For example, for Nf = 2, where ρ and ω are approximately degenerate, we obtain

θ = −(1.52 . . . 1.18)◦ (9.48)
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with MV =
√
λV + δλVMKK = (2949 . . . 2921) MeV. After the diagonalization, the

masses are only slightly changed and given by

m̃ = 773 . . . 774 MeV

M̃V = 2950 . . . 2921 MeV,
(9.49)

which would make the ω meson 2-3 MeV lighter than the ρ, while in reality it is roughly
12 MeV heavier. The mass corrections (9.42) and (9.47) as well as the mixing (9.45) are
rather small; we shall, therefore, stick to the leading order results when computing decay
rates.

The effects may be more significant when the corresponding meson modes are similar in
mass to the vector glueball, as is the case for charmonia. However, in reality, the latter
owe much of their mass to their quarks, which are massless in the WSS model. Despite
this limitation, it is still possible to explore the extra decay modes of vector charmonia that
could result from a mixing with vector glueballs. After determining the decay channels
in Chapter 10, we can assess whether certain mesons could owe some decay modes to a
mixing with the vector glueball.
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Glueball Decays 10
The interactions between glueballs and ordinary mesons are obtained by expanding

(7.6) in perturbations of the metric hMN , dilaton φ, and form fields C1, C3, B2.
Three- and four-point vertices containing only a single glueball field solely arise

from the DBI action and the CS action for metric and form field fluctuations, respectively.
Besides possible mixing terms, the latter thus only contain anomalous interactions.

The fluctuations of G and A3 of the 11-dimensional theory can be translated according to
the M-theory lift discussed in Appendix A. For the particular metric of (6.2) and linearized
in perturbations, one obtains the perturbed string frame metric

gµν =
r3

L3

[(

1 +
L2

2r2
δG11,11

)

ηµν +
L2

r2
δGµν

]

gττ =
r3f

L3

[

1 +
L2

2r2
δG11,11 +

L2

r2f
δG44

]

grr =
L

rf

[

1 +
L2

2r2
δG11,11 +

r2f

L2
δGrr

]

grµ =
r

L
δGrµ

gΩΩ =
r

L

(

L

2

)2
(

1 +
L2

2r2
δG11,11

)

e4φ/3 =
r2

L2

(

1 +
L2

r2
δG11,11

)

,

(10.1)

and the form fields

CM = δGM11, BMN = aMN11, C3 = AMNO + aMNO, (10.2)

up to conventional factors of e−φ.

Decays of the lightest, ”exotic” scalar glueball, as described by the WSS model, have
first been considered in Ref. [136] and revisited and extended in Ref. [133]. There, it
was found to have rather large partial decay widths, neither permitting an identification
with the f0(1500) or f0(1710) meson, which are alternatingly quoted as the lightest
glueball state. However, it might fit the proposed ”fragmented” glueball of Refs. [27,45,46],
which corresponds to a broad scalar glueball state that is distributed over the resonances
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f0(1710), the recently discovered f0(1770), f0(2020), and f0(2100). This lead Ref. [133]
to the conclusion that the lowest scalar glueball, be it either f0(1500) or f0(1710), should
instead be identified with the predominantly dilatonic metric fluctuation. From these
holographic computations and the ones in Refs. [93, 137], it appears that f0(1710) is the
favored scalar glueball candidate. The computations of Ref. [133] were revisited and
extended to radiative decays in Ref. [98] , where they were found to have surprisingly
large radiative decay widths in the keV range instead of the often quoted eV range.

Decays of the pseudoscalar glueball, which was historically thought to be the lightest
glueball1, were considered in the holographic computations of Ref. [139] and in Ref. [135]
together with a small kinetic mixing with the η0 meson from the Witten-Veneziano
mechanism. The latter work found that it predominantly decays into pairs of vector mesons,
with decays into pseudoscalars strongly suppressed. Conventionally, the pseudoscalar
glueball is considered to have a mass mixing [37, 140], which is absent in the WSS model.
On the lattice, one usually finds values around 2600 MeV [11, 12], which is also gaining
support by other theoretical computations [141] as well as experiment [142]. Though,
based on the lattice computations of Ref. [143], a recent study carried out by the BES III
collaboration [144] claims a resonance around 2395MeV to be the long-sought pseudoscalar
glueball2. In the following, we shall thus consider extrapolations to both values.

In Ref. [132] decays of the pseudovector glueball arising from fluctuations of B2 were
considered, which found it to be a rather broad resonance. However, there are additional
couplings to axial vector and vector mesons as well as a contribution that arises from the
dualization of C3 in the CS term, which has been overlooked and was considered only later
in Ref. [124] together with decays of the vector glueball. These additional contributions
somewhat reduce the total width of the pseudovector glueball, though it is probably still
too broad to be identified in experiment. Nevertheless, the spin-1 fluctuations play a
prominent role in the physics of the Odderon, which will be discussed in Part III.

Tensor glueball decays within the WSS were also first considered in [133] , together with
extrapolations of the glueball mass to 2000 MeV, motivated by Pomeron physics [36] (see
Part III) and 2400 MeV, as suggested from (quenched) lattice computations [11,12]3. Indeed,
with a mass of 1936 MeV, f2(1950) is close to the value motivated by Pomeron physics
and has also been argued for in Ref. [145].
1 Prominent candidates include η(1405) and ι(1440), which was later split into η(1405) and η(1475) [138].
2 In their partial wave analysis they quote the significance of the resonance X(2600) initially observed in
Ref. [142] as 4.2σ, but do not include it in the optimal solution.

3 The partial results on the unquenched glueball spectrum in [13] suggest an even heavier state with mass of
2620(50) MeV. Since backreaction effects are neglected in the following computations of decay rates, we
shall instead stick to the result of quenched lattice QCD when performing extrapolations. Some preliminary
results on backreaction effects of the flavor branes on the mass spectrum are given in Appendix C.
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Except for the scalar glueball candidates f0(1500), f0(1710) and the tensor glueball, when
identified with the leading state on the pomeron trajectory with a mass of 2000 MeV [36],
there are only predictions for masses from lattice QCD and functional methods [17]
available. Since both methods seem to agree qualitatively, we shall, therefore, give results
for decay rates not only using the pristine WSS model masses but also extrapolate to the
aforementioned values or altogether restrict to dimensionless ratios instead.

This chapter is a comprehensive review and, in some cases, also an extension of the decay
rates obtained in Refs. [93, 98, 124, 132, 133, 135, 137]. The three-body decays originally
neglected in Ref. [98] will be discussed, as well as results from Refs. [93, 133, 137] extended
to the case of massive pseudoscalars. Additionally, the minor differences in the notation
of the aforementioned publications have been standardized.

10.1 Extrapolations to Realistic Glueball Masses

Aswas shown in the preceding chapter, the glueball spectrum is unambiguously determined
by dimensionless eigenvalue equations. As such, their physical masses are given by
eigenvalues in units ofM2

KK. The latter is fixed by the mass of the ρ meson, as is required
from the pole in the time-like photon propagator in VMD theories. While the ratio
of mass eigenvalues qualitatively agrees with lattice QCD results, the overall scale is
mismatched whenMKK is fixed by the mass of the ρ meson. The eigenvalues of the wave
equations are a measure of how deep the holographic wave functions penetrate into the
bulk. Correspondingly, the results of overlap integrals between states with a large mass
difference are probably overestimated. To account for this shortcoming, the factors of
MKK in the normalization factors of the holographic glueball wave functions are rescaled
asMKK →MKKMG/M

WSS
G . All other explicit factors ofMKK, in particular those in the

DBI action, are considered to be fixed.

10.2 Hadronic Glueball Decays

We shall restrict ourselves to the leading interactions arising through expansion of the
D8-brane action in (7.6). Higher order contributions have, for example, been studied in
Refs. [132, 133] and found not only to be parametrically suppressed in Nc and λ but are
also accompanied by numerically small values of the corresponding overlap integrals.
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10.2.1 Spin-0

Exotic Scalar Glueball

By inducing the fluctuations of (9.8) in the DBI action of (7.6), one obtains the couplings
of pseudoscalars to GE given by

LGEΠΠ − tr
{

c1

[

∂µΠ∂νΠ
∂µ∂ν
M2
E

GE +
1

2
(∂µΠ)2

(

1− �

M2
E

)

GE

]

+ c̆1∂µΠ∂µΠGE

}

(10.3)
with coupling constants (HE ≡ S4/NE)

c1 =

∫

dzHE

πK
=

62.6554√
λMKKNc

, c̆1 =

∫

dz HE

4πK

16.3904√
λMKKNc

. (10.4)

Through the Witten-Veneziano mass term (7.27), one obtains an additional coupling be-
tween the scalar glueballs and η0. For the exotic scalar glueball, it is given by

Lη0 ⊃ −
5

2
m2

0η
2
0 c̆0GE , (10.5)

with
c̆0 =

3

4
U3

KK

∫ ∞

UKK
dUHE(U)U−4 =

15.829√
λNcMKK

. (10.6)

Assuming that this coupling of the exotic scalar glueball to the pseudoscalar singlet carries
over to quark masses

LGEqq̄ = 5c̆mGELM
m (10.7)

with c̆m being of the same order as c̆0, i.e.

c̆m = xc̆0, x = O(1), (10.8)

we get
LGEηη′ =

5

2
(1− x)c̆0 sin(2θP )m2

0GEηη
′. (10.9)

As discussed in Ref. [93], this correlates the flavor asymmetries in the decay pattern in
two pseudoscalars with the ηη′ partial width. Note that this term with x 6= 0 reflects the
flavor asymmetries originally absent in the chiral WSS model.
All together we obtain the coupling of the exotic scalar glueball to ηη as

LGEηη =
5

2
c̆0m

2
0(x− 1) sin θ2

PGEηη −
5

2
c̆0xm

2
ηGEηη

−c1

2
∂µη∂νη

(

1

2
ηµν

(

1− �

M2
E

)

+
∂µ∂ν

M2
E

)

GE −
c̆1

2
∂µη∂

µηGE . (10.10)
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For pions and kaons, we have

|MGE→PP | =
1

4

∣

∣

∣20c̆0m
2
Px+ 2c̆1(M2

E − 2m2
P ) + c1M

2
E

∣

∣

∣ , (10.11)

and for η

|MGE→ηη| =
1

4

∣

∣

∣−20c̆0m
2
0(x− 1) sin θ2

P + 20c̆0m
2
Px+ 2c̆1(M2

E − 2m2
P ) + c1M

2
E

∣

∣

∣ ,

(10.12)
from which the η′ amplitude is obtained by the replacement sin θP → cos θP . In both
cases, the decay width is given by

ΓGE→PP =
nP
2

1

8π
|MGE→PP |2

|pP |
M2
E

, (10.13)

where P refers to pions (nP = 3), kaons (nP = 4) or η(′) (nP = 1) mesons.
The interaction Lagrangian of the exotic scalar glueball with two vector mesons is given
by

LGEvv =− tr
{

cmn2 M2
KK

[

v(m)
µ v(n)

ν

∂µ∂ν
M2
E

GE +
1

2
v(m)
µ v(n)µ

(

1− �

M2
E

)

GE

]

+ cmn3

[

F (m)
µρ F (n)

νρ

∂µ∂ν
M2
E

GE −
1

4
F (m)
µν F (n)

µν

(

1 +
�

M2
E

)

GE

]

+ 3cmn4

M2
KK

M2
E

v(n)
µ F (m)

µν ∂νGE + c̆mn2 M2
KKv

(m)
µ v(n)

µ GE

+
1

2
c̆mn3 F (m)

µν F (n)
µν GE

}

,

(10.14)

with coupling constants

cmn2 = κ

∫

dzKψ′
2m−1ψ

′
2n−1HE =

{7.116, . . . }√
λMKKNc

,

cmn3 = κ

∫

dzK−1/3ψ2m−1ψ2n−1HE =
{69.769, . . . }√
λMKKNc

cmn4 = κ

∫

dz 20zK

(5K − 2)2ψ2m−1ψ
′
2n−1HE =

{−10.5798, . . . }√
λMKKNc

,

c̆mn2 =
κ

4

∫

dzKψ′
2m−1ψ

′
2n−1HE =

{2.966, . . . }√
λMKKNc

c̆mn3 =
κ

4

∫

dzK−1/3ψ2m−1ψ2m−1HE =
{18.122, . . . }√
λMKKNc

,

(10.15)
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where we have defined

HE =

[

1

4
+

3

5K − 2

]

HE . (10.16)

The numerical results for the coupling constants in (10.15) are form = n, a convention that
will be used throughout. From (10.14) we obtain the spin-averaged squared amplitude

|MGE→vv|2 =
trTvT 2

v

4m4
v

(

2m4
v(2M

4
KK(4(3c̆2

2 + 2c̆2c2 + c2
2) + 12c4(c̆2 − c2) + 27c2

4)

+ 4M2
EM

2
KK(6c̆2c̆3 − 2c̆2c3 + c2c̆3 + 6c̆3c4 − 3c3c4) +M4

E(c3 − 2c̆3)2)

− 16m6
v(M

2
KK(6c̆2c̆3 − 4c̆2c3 + 2c2c̆3 + 3c̆3c4 − 6c3c4)

+M2
E(2c̆2

3 − 3c̆3c3 + c2
3))− 4M2

EM
4
KK(2c̆2 + c2)m2

v(2(c̆2 + c2)− 3c4)

+M4
EM

4
KK(2c̆2 + c2)2 + 16(3c̆2

3 − 4c̆3c3 + 2c2
3)m8

v

)

,

(10.17)

where we restricted to the case v1 = v2 and suppressed the superscripts mn on the
couplings for better readability. Tv denotes the generators of the vector meson nonet (c.f.
(3.5)). In the following, we shall also use Ta and Ts for the axial vector4 and pseudoscalar
mesons, respectively. When evaluating the decay rate

ΓGE→vv =
1

2

1

8π

|pv|
M2
E

|MGE→vv|2, (10.18)

and also for all the following decay rates, we restrict to couplings only involving the
ground state (axial) vector mesons, i.e., m = n = 1. For decay rates involving non-
chiral interactions, as in (10.13), we will give explicit formulas. Otherwise, we refer to
Appendix D for the suitable formulas.

The coupling of the exotic scalar glueball to one axial vector meson and one pseudoscalar
meson is given by

LGEaΠ = 2cm6 MKKtr
(

∂µΠa(m)
ν

) ∂µ∂ν

M2
E

GE , (10.19)

with

cm6 =

√

κ

π

∫

dz ψ′
2m

[

1

4
+

3

5K − 2

]

HE =
{57.659, . . . }
MKKNc

√
λ
.

4 Recall that only K1A is present in the WSS model.
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The spin-averaged squared amplitude following from (10.19) is given by

|MGE→aΠ|2 = (c6MKKtrTsTa)2

(

1− m2
a +m2

Π

M2
E

)2(

M2
E −

(

M2
E +m2

a −m2
Π

)2

4m2
a

)

,

(10.20)
As we will discuss shortly, the decay into a1π should be considered with subsequent decay
into ρππ, since the latter also appears as a direct decay channel.
The four-point vertices coupling the exotic scalar glueball to two pseudoscalars and one
vector meson are obtained from

LGEΠΠv = 2icm5

[

∂µΠ[Π, v(m)
ν ]

∂µ∂ν
M2
E

GE +
1

2
∂µΠ[Π, v(m)

µ ]

(

1− �

M2
E

)

GE

]

+ 2ic̆m5 ∂µΠ[Π, v(m)
µ ]GE

(10.21)

with

cm5 =
1

π

∫

dz K−1ψ2m−1HE =
{2856.25, . . . }
λMKKN

3/2
c

,

c̆m5 =
1

4π

∫

dzK−1ψ2m−1HE =
{718.659, . . . }
λMKKN

3/2
c

.

(10.22)

The spin-averaged, squared amplitude is given by

|MGE→ΠΠv|2 =
trTs1 [Ts2 , Tv]

2

4M4
Em

2
v

(

− 2M2
E(m2

v + s12) +M4
E + (m2

v − s12)2
)

×
(

c5(3M2
E −m2

v + s12) + 2c̆5M
2
E

)2

,

(10.23)

where s12 is the squared center of mass energy of the pseudoscalar meson subsystem, and
we neglected the resonant contribution from GE → aΠ→ vΠΠ.

Discussion
Restricting ourselves to two- and three-body decays, the resulting hadronic partial decay
widths are collected in Table 10.1. Even when the mass is raised above the mass threshold
of two ρ mesons, the dominant decay channel is that into two pseudoscalar mesons, with
the strongest decay into pairs of Kaons for x = 1. In the phenomenological analysis of
Ref. [146], the reaction G → a1π is the dominant decay channel of the scalar glueball.
Explicitly, we obtain ΓGE→a1π = 0.61 . . . 0.81 MeV for a glueball of mass 1600 MeV,
which was used there. This is much lower than their quoted result of 177 MeV. The other
decay channels of the scalar glueball in [146] also do not match the decay pattern of
the exotic scalar glueball in the WSS model. Albeit sharing the significantly suppressed
decays into a1π of the exotic scalar glueball, the dilaton glueball, whose decay rates are
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GE/D/T

π0

π±

ρ∓

a0
1

GE/D/T

π0

π±

ρ∓

GE/D/T

π±

π∓

ρ0

a∓
1

GE/D/T

π±

π∓

ρ0

Fig. 10.1.: Feynman diagrams contributing to the hadronic three-body decay of the exotic, diltaon,
and tensor glueball into ρππ
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computed in the following section, seems to fit the decay patterns of their analysis better.
We also note that the corresponding decay rates in Ref. [98] are too small by a factor
of 1/3 since the charged contributions were not summed over. This does, however, not
change the conclusion. Recall that the a1 meson is a rather broad resonance, whose
width and mass are well captured by the WSS model (see Section 7.3). It is therefore
summed as a resonant contribution for the decays GE,D,T → ρππ with a width given by
(7.47). The corresponding Feynman diagrams are depicted in Fig. 10.1. The interference
effects in these processes are rather mild, leading to an increase of the partial width of
about 15%. However, in Section 10.2.2, we shall see an example where the interference
effects resulting from the a1 meson are relatively strong and might help in experimental
identification. The decay of the exotic scalar glueball into 4π, including the resonant decay
into ρππ, worked out in Ref. [133] , have been found to be negligible even in the case of
massless pseudoscalars. However, with the glueball mass adjusted to higher values, as
suggested by lattice QCD and in Ref. [45], the partial decay widths into two pseudoscalar
and one vector meson are again in the MeV range. This decay channel will become even
more important when considering radiative decays in Section 10.3, which were omitted
in Ref. [98] . Overall, the exotic scalar glueball, even though being the lightest glueball
of the WSS model, has a relatively large hadronic decay width, neither fitting the decay
patterns of the usually quoted glueball candidates f0(1500) and f0(1710) for either value
of x = 0 or x = 1. In Refs. [133, 137] it was thus concluded to be dismissed as a glueball
candidate. It might, however, play a role in the scenario of a fragmented scalar glueball,
which will be discussed in Section 10.2.1. At this point, we refrain from giving a thorough
comparison with recent measurements involving the resonances f0(1500) and f0(1710)

since they do not match the decay patterns of the exotic scalar glueball well. We shall,
however, make a more detailed comparison with experimental data for the dilaton scalar
glueball in the next section.

Dilaton Scalar Glueball

By inducing the fluctuations of (9.15) in the D8-brane action (7.6), the coupling of two
pseudoscalar mesons to GD is obtained as

LGDΠΠ = d1tr ∂µΠ∂νΠ

(

ηµν − ∂µ∂ν

�

)

GD, (10.24)

where
d1 =

17.2261√
λMKKNc

. (10.25)
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ΓGE(1506)[MeV] ΓGE(1712)[MeV]
GE → ππ 135…179|142…189 154…205|161…213
GE → KK 120…158|229…304 152…202|255…338
GE → ηη 31.3…45.4|57.7…76.4 40.0…56.9|65.1…86.3
GE → ηη′ 0.21…0.22|0 3.12…3.26|0
GE → ρρ - 0.77…1.02
GE → ωω - 0.19…0.26
GE → a1π, ρππ 28.2…48.6 86.8…149
GE → K∗Kπ - 3.29…5.77
GE → Hadrons 314…432|458…619 424…598 | 556…769

Table 10.1.: Hadronic decays of the exotic scalar glueball GE alternatively identified with
f0(1500) and f0(1710) with masses 1506 MeV and 1712 MeV, respectively, for
λ = 16.63 . . . 12.55. In decays into two pseudoscalar mesons, the two sets of val-
ues correspond to x = 0 and x = 1 in the coupling to the quark mass term (10.7).
Four-body decays have been found to be strongly suppressed [133] and are hence not
listed. Partial decay widths much smaller than 1 MeV are left out.

As was the case for the exotic scalar glueball in the previous section, through the η0 mass
term of (7.27), one obtains additional couplings between the dilaton scalar glueball and
η0 [93, 137]

Lη0 ⊃
3

2
m2

0η
2
0d0GD, (10.26)

with (HD ≡ T4/ND)

d0 = 3U3
KK

∫ ∞

UKK
dUHD(U)U−4 =

17.915√
λNcMKK

. (10.27)

As in Refs. [93, 137], a scalar glueball coupling to the quark mass terms of the form

LGDqq̄ = −3dmGDLM
m (10.28)

is assumed, with dm being of the same order as d0, i.e.

dm = xd0, x = O(1). (10.29)

This leads to a GDηη′ interaction given by

LGDηη′ = −3

2
(1− x)d0 sin(2θP )m2

0GDηη
′. (10.30)
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With these modifications, we get the coupling of the dilaton glueball to ηη as

LGDηη =
3

2
d0m

2
0(1− x) sin θ2

PGDηη +
3

2
d0xm

2
ηGDηη

+
d1

2
∂µη∂νη

(

ηµν − ∂µ∂µ

�

)

GD.
(10.31)

The coupling to the η′ meson is obtained by the substitution cos θ2
P → sin θ2

P . The partial
decay width for GD decaying into two identical pseudoscalar mesons is obtained as

ΓGD→PP =
nP
2

d2
1M

3
D

256π

(

1− 4
m2
P

M2
D

)1/2(

1 + α
m2
P

M2
D

)2

, (10.32)

where
α = 4

(

3
d0

d1
x− 1

)

, (10.33)

for pions and kaons, and

α = 4

[

3
d0

d1

(

x+
m2

0

m2
P

sin2 θP (1− x)

)

− 1

]

, (10.34)

for ηη, and again with the replacement sin θP → cos θP for η′η′.
The trilinear coupling of a dilatonic scalar glueball to one axial vector and one pseudoscalar
meson is given by

LGDΠ =− 2dm6 MKKtr
(

∂µΠa(m)
ν

)

(

ηµν − ∂µ∂ν

�

)

GD, (10.35)

with
dm6 =

√

κ

π

∫

dz ψ′
2mHD =

{11.768, . . . }
MKKNc

√
λ
. (10.36)

The pertinent squared amplitude is given by

|MGD→aΠ|2 =

(

d6MKKtrTsTa
2M2

Dma

)2
(

M2
D +m2

a −m2
Π

)2

×
(

M4
D − 2M2

D

(

m2
a +m2

Π

)

+
(

m2
a −m2

Π

)2
)

.

(10.37)

In a similar fashion, we obtain the interaction terms of the dilatonic scalar glueball with
two vector mesons as

LGDvv =tr
∫

d4x
(

dmn3 ηρσF (m)
µρ F (n)

νσ + dmn2 M2
KKv

(m)
µ v(n)

ν

)

(

ηµν − ∂µ∂ν

�

)

GD,

(10.38)
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where the coupling constants are given by

dmn2 = κ

∫

dz Kψ′
2n−1ψ

′
2m−1HD =

{4.3714, . . . }
λ

1
2NcMKK

,

dmn3 = κ

∫

dz K−1/3ψ2n−1ψ2m−1HD =
{18.873, . . . }
λ

1
2NcMKK

.

(10.39)

For the case of identical outgoing states, the spin-averaged, squared amplitude following
from (10.38) is given by

|MGD→vv|2 =

( trTvTv
2m2

v

)2 (

d2
2M

4
KK(M4

D + 32m4
v)

+ 8d2d3M
2
KKm

4
v(7M

2
D − 16m2

v)

+ 6d2
3m

4
v(3M

4
D − 16M2

Dm
2
v + 24m4

v)

)

(10.40)

Interactions between the dilaton scalar glueball, two pseudoscalars, and one vector meson
are given by

LGDΠΠv = 2i tr dm5 ∂µΠ[Π, v(m)
ν ]

(

ηµν −
∂µ∂ν
M2
D

)

GD, (10.41)

with coupling

dm5 =
1

π

∫

dzK−1ψ2m−1HD =
{724.367, . . . }
λMKKN

3/2
c

. (10.42)

The squared amplitude for the three-body decay into a pair of pseudoscalars and a vector
meson is given by

|MGD→vΠΠ|2 =

(

d5trTs1 [Ts2 , Tv]

2M2
Dmv

)2
(

m2
Π1

+m2
Π2
− s13 − s23

)2

×
(

2MDmv +m2
Π1

+m2
Π2
− s13 − s23

)

×
(

2MDmv −m2
Π1
−m2

Π2
+ s13 + s23

)

,

(10.43)

where sij is the squared center of mass energy of the subsystem of vector meson and
pseudoscalar, and we neglected the resonant contribution from GD → aΠ→ vΠΠ

Discussion
In Table 10.2 the hadronic two- and three-body decays are collected for ideal mixing in the
vector meson sector5. Above the threshold of two ρmesons, when the mass is extrapolated
5 See the discussion in Section 10.2.1 for non-ideal mixing
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to that of f0(1710)6, the decay channel GD → ρρ is dominant, even exceeding the decays
into kaon pairs. Coming back to the comparison with [146], where the decaysG→ a1π are
quoted as the dominant decay channels of a scalar glueball, we find a remarkable agreement
with their results into two vector mesons. However, for a scalar glueball with mass of 1600
MeV, as in [146], one obtains ΓGD→a1π = 1.11 . . . 1.48 MeV, which is well below their
result of 177 MeV. On the experimental side stand measurements made by Crystal Barrel
[149] that quote a branching ratio Γf0(1500)→a1π/Γf0(1500)→4π of 12(5)%, which amounts
to 6.34(38) MeV. This is about an order of magnitude above the WSS model result of
ΓGD→a1π = 0.51 . . . 0.68 MeV.We also note that the corresponding decay rates in Ref. [98]
are too small by a factor of 1/3 since the charged contributions were not summed over. This
does, however, not change the conclusion therein. Our results for decays into two vector
mesons are compatible with those of Ref. [150], but as we shall see later in Section 10.3.1,
the radiative decay rates obtained therein differ from ours by an order of magnitude. The
PDG [9] lists an average for the partial decay width f0(1500)→ ππ with a central value
of 3̃7 MeV, which is underestimated by the WSS model for this particular glueball mass.
On the other hand, for vanishing ηη′ decay rates (x ∼ 1), the decay patterns of f0(1710)

(or f0(1770)) seem to match the branching ratio of B(f0(1710) → ηη′)/B(f0(1710) →
ππ) < 1.61 × 10−3 obtained by BES III [151]. The latter also contradicts the results of
the phenomenological analysis found in Refs. [45, 46]. Additionally, the PDG [9] lists
an average for the branching ratio Γ(f0(1710) → ππ)/Γ(f0(1710) → KK) = 0.23(5)

and [148] found Γ(f0(1710)→ ηη)/Γ(f0(1710)→ KK) = 0.48(15), both of which are
only 5% below the WSS model result with x ∼ 1. The decay rates into two vector mesons
obtained in Ref. [150] (44.4 MeV for ρρ and 34.6 MeV for ωω) are close to our findings.
The WSS model prediction for f0(1710)→ ωω aligns well with the measured branching
ratios of radiative J/ψ decays in γf0(1710) → γKK̄ and γf0(1710) → γωω [9]. The
PDG [9] lists the measurement B(KK̄) = 0.38+0.09

−0.19 [152] and 0.36(12) obtained in
the phenomenological analysis of Ref. [153] for the same branching ratio. Both values
are consistent with the WSS model result from Ref. [137] of approximately 0.35. With
B(KK̄) = 0.36(12) and the total decay width of f0(1710) [9] of 123(18) MeV, the partial
decay width for f0(1710)→ ωω is about 15(8) MeV. On the other hand, the holographic
prediction for GD is between 16.6 and 22.0 MeV. We thus identify f0(1710) with the
(dilaton) scalar glueball with quark mass coupling of x ∼ 1. As was the case for the exotic
scalar glueball, decays into one vector meson and two pseudoscalars with subsequent
decays into four pions are strongly suppressed [133] 7. For the decays GD → ππρ, the
resonant contribution of a1 with width given by (7.47) was coherently summed, as depicted
in the Feynman diagrams of Fig. 10.1. The interference is more strongly pronounced as in
6 This is assumed to be 1712 MeV based on the average of the T -matrix pole results of [147] and [148].
7 For massive pseudoscalars the results for GD → 4π, which is dominated by the resonant decay GD →

ρππ → 4π, would be smaller by a factor of about 2.

10.2 Hadronic Glueball Decays 71

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


0

0.2

0.4

0.6

0.8

1.0

(a)

0

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 10.2.: Dalitz plots for the three-body decay GD → ρππ including a charged (a) and neutral (b)
a1 resonance.

.

the corresponding decay of the exotic scalar glueball, reducing the partial decay width
by almost 50%. However, since this decay channel is subleading, it might prove difficult
to discern from the background in an experiment. Nevertheless, in Fig. 10.2 we show the
Dalitz plot for the decay channel GD → ρππ.

A Fragmented Scalar Glueball?

In Refs. [27, 45, 46] it was proposed that the scalar glueball is an even broader resonance
than the WSS model suggests and is instead distributed over numerous other resonances,
including f0(1500) and f0(1710). This so-called fragmented glueball is supposed to have a
mass of 1865 MeV and a width of 370(50) MeV. In the following section, we shall entertain
this idea by extrapolating the decay widths of the dilaton and exotic scalar glueball to
the proposed fragmented scalar glueball. Especially the exotic scalar glueball is too broad
to be identified with either f0(1500) or f0(1710), making its interpretation in terms of a
fragmented glueball particularly suited.

In Table 10.3 and Table 10.4 the partial decay rates for the model masses as well as an ex-
trapolation to 1865 MeV are collected for the exotic and dilaton scalar glueball, respectively.
Depending on the magnitude of the coupling to quark mass terms, parametrized by x,
both fluctuations seem to match this scenario, when their masses are adjusted accordingly.
The exotic scalar glueball even exceeds the width of 370(50) MeV by over a factor 2, while
the dilaton scalar glueball is only for x = 1 slightly above the lower bound. Considering
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ΓGD(1506)[MeV] ΓGD(1712)[MeV]
GD → ππ 12.6…16.7|15.4…20.4 14.6…19.3|17.0…22.5
GD → KK 4.43…5.87|50.4…66.8 7.49…9.93|49.4…65.4
GD → ηη 1.93…3.82|14.1…18.7 2.77…4.96|13.9…18.4
GD → ηη′ 0.29…0.30|0 4.35…4.54|0
GD → ρρ - 53.5…71.0
GD → ωω - 16.6…22.0
GD → a1π, ρππ 0.96…1.67 2.92…4.81
GD → Hadrons 20.2…28.3| 80.8…107 102…137|153…204

Table 10.2.: Hadronic decays of the dilatonic scalar glueball GD alternatively identified with
f0(1500) and f0(1710) with masses 1506 MeV and 1712 MeV, respectively, for
λ = 16.63 . . . 12.55. In decays into two pseudoscalar mesons, the two sets of val-
ues correspond to x = 0 and x = 1 in the coupling to the quark mass term (10.28).
Four-body decays have been found to be strongly suppressed [133] and are hence not
listed. Partial decay widths much smaller than 1 MeV are left out.

the previously neglected mixing of the scalar glueball sector induced by the DBI action,
might remedy this slight mismatch. This is, however, beyond the scope of this work.

Pseudoscalar Glueball

The pseudoscalar glueball arises as fluctuation of the Ramond-Ramond 1-form field C1

and obtains a kinetic mixing with the singlet η0 (see Section 9.4.1)

η0 → η0 + ζ2GPS = η0 + 0.01118
√

Nf/Nc λGPS . (10.44)

In Ref. [135], it was shown that the pseudoscalar glueball’s primary decay mode, the decay
into two vector mesons, is inherited from the singlet pseudoscalar meson through mixing.
The relevant interaction Lagrangian originating from (7.52) reads

LGP Svv = GPSǫ
µνρσtr

[

kv
(m)v(n)

1 ∂µv
(m)
ν ∂ρv

(n)
σ

]

, (10.45)

with
kv

1v1

1 = 19.6184N−1
c λ−1/2M−1

KK (10.46)

and thus
|MGP S→vv|2 = 2(kv

1v1

1 M2
PStrTvTv)2

(

1− 4m2
v

M2
PS

)

, (10.47)

for vector mesons with equal masses.
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ΓWSS
GE

[MeV] ΓGE(1865)[MeV]
GE → ππ 72.2…95.7|84.9…113 169…224|175…231
GE → KK - 176…233|273…362
GE → ηη - 45.9…64.6|69.8…92.5
GE → ηη′ - 3.01…3.14|0
GE → ρρ - 2.91…3.86
GE → ωω - 0.84…1.12
GE → K∗K∗ - 0.15…0.20
GE → a1π, ππρ - 161…274
GE → K∗Kπ - 19.3…33.9
GE → Hadrons 72.2…95.7|84.9…113 558…803|680…964

Table 10.3.: Hadronic two-body decays of the exotic scalar glueball GE with model mass of 855
MeV and extrapolated toM = 1865 MeV for the proposed fragmented scalar glueball
in [45]. λ = 16.63 . . . 12.55. In decays into two pseudoscalar mesons, the two sets of
values correspond to x = 0 and x = 1 in the coupling to the quark mass term (10.7).
Four-body decays have been found to be strongly suppressed [133] and are hence not
listed. Partial decay widths much smaller than 1 MeV are left out but considered in the
total hadronic decay rate.

ΓWSS
GD

[MeV] ΓGD(1865)[MeV]
GD → ππ 12.4…16.5|15.2…20.1 16.1…21.3|18.3…24.2
GD → KK 4.16…5.51|50.5…67.0 9.87…13.1|48.8…64.7
GD → ηη 1.85…3.71|14.1…18.7 3.38…5.75|13.7…18.1
GD → ηη′ - 4.19…4.38|0
GD → ρρ - 90.1…119
GD → ωω - 28.7…38.1
GD → K∗K∗ - 42.6…56.4
GD → a1π, ππρ 0.84…1.48 5.32…8.55
GD → K∗Kπ - 0.64…1.13
GD → Hadrons 19.3…27.2|80.6…107 200…267|247…329

Table 10.4.: Hadronic two-body decays of the dilatonic scalar glueball GD with WSS model mass
and extrapolated to M = 1865 MeV for the proposed fragmented scalar glueball
in [45]. λ = 16.63 . . . 12.55. In decays into two pseudoscalar mesons, the two sets of
values correspond to x = 0 and x = 1 in the coupling to the quark mass term (10.28).
Four-body decays have been found to be strongly suppressed [133] and are hence not
listed. Partial decay widths much smaller than 1 MeV are left out but considered in the
total hadronic decay rate.

74 Chapter 10 Glueball Decays

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


ΓGWSS
P S

[MeV] ΓGP S(2359)[MeV] ΓGP S(2600)[MeV]
GPS → ρρ 36.8…45.0 150…195 190…248
GPS → ωω 11.3…13.8 48.8…63.8 62.2…81.3
GPS → K∗K∗ 2.69…1.81 83.3…195 188…246
GPS → φφ - 16.3…21.2 29.2…38.2
GPS → Hadrons 50.6…60.6 349…455 470…613

Table 10.5.: Decays of the pseudoscalar glueball into two vector mesons λ = 16.63 . . . 12.55.
Besides the WSS model result for the pseudoscalar mass, MG = 1813 ± 7MeV, an
extrapolation to 2600 MeV (motivated by lattice results) is considered. Partial decay
widths much smaller than 1 MeV have been left out and can be found in [135].

Discussion
In Table 10.5 we show the hadronic decay rates into two vector mesons, which in Ref. [135]
were found to be dominant compared to other decay channels, such as that into three
pseudoscalars. This is in stark contrast to the analysis of Refs. [154, 155], where the three-
body decay intoKKπ is dominant and decays into (axial) vector mesons were assumed
to be negligible. More recently, Ref. [141] carried out computations of decay rates of the
pseudoscalar glueball using a Dilute Gas of Instantons (DGI). Comparing their results on
Γ(G̃→ KKπ) ≈ 0.24 GeV and Γ(G̃→ η′ππ) ≈ 0.05 GeV to the WSS model predictions
of Γ(G̃→ KKπ) ≈ 0.5 MeV and Γ(G̃→ η′ππ) ≈ 0.002 . . . 0.001 MeV [135], the results
disagree by three orders of magnitude. However, to some extent, a disagreement is to be
expected since the ’t Hooft instanton mechanism is different from the Witten-Veneziano
mechanism. In a recent partial wave analysis of J/Ψ→ K0

SK
0
Sη

′ decays [144], the BES
III collaboration identified the state X(2370) to be a pseudoscalar with mass and width
of about 2395 MeV and 188 MeV, respectively. They found their results to be consistent
with a lattice computation of the production of a pseudoscalar glueball in radiative J/Ψ
decays [143]. Besides the model mass prediction of 1813±7 MeV, with corrections through
mixing included, we thus extrapolate to 2395 MeV and 2600 MeV, motivated by the recent
analysis of Ref. [144] and lattice QCD [11, 12], respectively. The width of 188 MeV found
by [144] is already saturated by decays into two ρ mesons. The extrapolation ofMKK for
higher mass glueballs works quite well for the dilaton scalar and tensor glueball but seems
insufficient for the pseudoscalar glueball. However, one needs to keep in mind that in
the WSS model, the interactions with two vector mesons arise from a formal expansion
in
√

Nf/Nc, which is not a small parameter in real QCD. Extrapolations of the results
of Ref. [141] to 2395 MeV would be welcome and could offer valuable insights into the
nature of the mixing between the pseudoscalar glueball and the η′ meson. Due to the stark
contrast between the DGI and WSS model results, experimental data could give a clue on
which mechanism is more relevant

10.2 Hadronic Glueball Decays 75

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


10.2.2 Spin-1

To leading order, the interactions of the pseudovector glueball with ordinary mesons arise
from the CS term of the D8-brane since those originating from the DBI action vanish due
to taking the trace of commutator terms. As the CS term involves a formal sum over all
the form fields in the Ramond-Ramond sector of the theory, a subtlety arises due to the
duality relations between their field strengths. For the field strengths with p > 4 we have
the non-dynamical twisted field strengths [156, 157]

Fp+1 = dCp −H ∧ Cp−2 = (−1)p(p−1)/2 ⋆ F9−p, p > 4 (10.48)

of the Ramond-Ramond form fields appearing in the CS term. Expanding (7.6) in B2, C3

and C5, we obtain the contributions

SD8
CS = T8

∑

p

∫

D8

√

Â(R)Tr exp
(

2πα′F +B
) ∧ Cp

⊃ T8

∫

D8
Tr (2πα′)2

2!
F ∧ F ∧ C5 + Tr (2πα′)2

2!
F ∧ F ∧B2 ∧ C3,

(10.49)

which can be rearranged via partial integration

F ∧ F ∧ C5 = A ∧ F ∧ dC5 = A ∧ F ∧ ⋆dC3 (10.50)

F ∧ F ∧B2 ∧ C3 = A ∧ F ∧B2 ∧ F4. (10.51)

The D8-brane action extends over the S4, which greatly restricts the index structure for
non-vanishing results. In (10.50) the Hodge dual is used to fill the indices on the S4. In
(10.51), the F4 field strength from the background (7.1) ensures a non-trivial result.

Pseudovector Glueball

For the pseudovector glueball, we obtain from (10.50)

A ∧ F ∧ ⋆dC3 =
1

4!

√−gAMFNOF τMNO
4 d4xdzdΩ4

=
1

3!MPV

√−ggzzgττ (AzFµν + 2AµFνz)F
µν

Ṽ

3

2gs
z2c(z)d4xdzdΩ4,

(10.52)
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where we projected onto the physical spin-1 polarizations via B̃µν = 1
2
√
�
ǫ ρσ
µν F Ṽρσ and

used
(

∂µ ⋆ F
V
νρ + ∂ν ⋆ F

V
ρµ + ∂ρ ⋆ F

V
µν

)

= −1

2
ǫµνρσǫ

σαβγ∂α ⋆ F
V
βγ

= −1

4
ǫµνρσǫ

σαβγ∂αǫβγλκF
λκ
V = −ǫµνρσ∂αFασV = −ǫµνρσ�V σ.

(10.53)

Additionally we obtain from (10.51)

A ∧ F ∧B2 ∧ F4 = − c(z)

2MPV
(AzFµν + 2AµFνz)F

Ṽ
µν

(

3R3
D4

gs

)

d4xdzdΩ4. (10.54)

Collecting all contributions, we have

LGP V →Πv = −
(

1− 1

3!

)

1

MPV
bm1 tr

(

v(m)
µ ∂νΠ + Π∂µv

(m)
ν

)

F Ṽµν , (10.55)

with (HPV (z) ≡ N4(z)/NPV )

bm1 = T8
(2πα′)2

2!

3R3
D4

gs

(

8π2

3

)

∫

dzK−1/2ψ2m−1(z)HPV (z)

=
27

4

√

κ

π

1

M2
KKR

3
D4

∫ dz√
1 + z2

ψ2m−1(z)HPV (z) =
{112.054, . . .}√

λNc

.

(10.56)

The first term in (10.55) was already obtained in Ref. [132], but the second term involving
−1/3!, arising through the dualization of C3, was only considered later in Ref. [124] .

Interactions between the pseudovector glueball, one axial vector, and one vector meson
are given by

LGP V →va = −5

6

1

MPV
bmn3 tr

(

v(m)
µ a(n)

ν

)

F Ṽµν (10.57)

with

bmn3 =
27

4

κ

MKKR3
D4

∫

dz
√

1 + z2(ψ2m−1(z)ψ′
2n(z)− ψ′

2m−1(z)ψ2n(z))N4(z)

=
{118.66, . . .}MKK√

λNc

.

(10.58)

From (10.57) we obtain

|MGP V →av|2 =

(

b3trTaTv
2MPVmamv

)2 (

M6
PV + 2

(

m2
a −m2

v

)2 (

m2
a +m2

v

)

−M2
PV

(

3m4
a + 10m2

am
2
v + 3m4

v

)

)

.

(10.59)
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Note that sinceMPV ∝ MKK, (10.57) does not depend on the compactification scale. A
similar argument holds for the vector glueball. When extrapolating their masses, we shall,
therefore, restrict ourselves to giving ratios of decay rates instead of their absolute values.
Three-body decays result from the interactions arising through the commutator terms of
FMN = ∂MAN − ∂NAM − i [AM , AN ] and are governed by

LGP V Πvv =
5

6

i

MV
bmn2 tr

(

Π
[

v(m)
µ , v(n)

ν

])

F Ṽµν , (10.60)

where8

bmn2 =
81

8

√

κ

π

1

M2
KKR

3
D4

∫

dzψ2m−1(z)ψ2n−1(z)HPV (z) =
{7257.92, . . .}

λN
3/2
c

, (10.61)

from which we obtain

|MGP V →v1v2Π|2 =

(

b2 trTs[Tv1 , Tv2 ]

MPVmv1mv2

)2

×
(

M6
PV +M4

PV (m2
Π + 2(m2

v1
+m2

v2
− s12 − s23))

+M2
PV (m2

Π(m2
v1

+m2
v2
− s12 − s23)

−m2
v1

(11m2
v2

+ 4s12 + s23)

−m2
v2
s12 − 4m2

v2
s23 + s2

12 + 3s12s23 + s2
23)

+ s23(s12(m2
Π +m2

v1
+m2

v2
)− (m2

v2
(m2

Π + 3m2
v1

))− s2
12)

+m2
v1

(m2
v2

(m2
Π +m2

v1
+m2

v2
)− s12(m2

Π + 3m2
v2

) + 2s2
12)

+ s2
23(2m2

v2
− s12)

)

,

(10.62)

where sij is the squared center of mass energy of the vector meson-pseudoscalar meson
subsystem.

To leading order, there would also be interactions of the pseudovector glueball with one
axial vector and two vector mesons. They are, however, above the mass threshold obtained
by using model masses and are thus not considered here.

Discussion
In Table 10.6, we have collected the results for the various hadronic decay rates of the pseu-
dovector glueball. Table 10.7 shows the decay patterns when the mass of the pseudovector
glueball is raised to 2980 MeV, the value obtained from quenched lattice QCD [12]. The
8 Our results for bm

1 and bmn
2 for m = n = 1 differ from the ones in [132] by factors of 2 and 23/2, respectively,

due to the different normalization of the SU(Nf ) generators.
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ΓGWSS
P V

[MeV]
GPV → ρπ 585…775
GPV → K∗K 259…338
GPV → ηω 83.2…141
GPV → ηφ 13.8…11.3
GPV → η′ω 31.9…26.0
GPV → η′φ 5.21…8.83
GPV → a1ρ, ρρπ 433…751
GPV → K1(1270)K∗ 26.9…35.6
GPV → K1(1400)K∗ 1.72…2.82
GPV → f1ω 40.9…54.2
GPV → f ′

1ω 1.32…1.75
GPV → K∗K∗π 37.6…66.0
GPV → K∗ρK 5.85…10.3
GPV → K∗ωK 1.66…2.91
GPV → Hadrons 1476…2162

Table 10.6.: Hadronic decays of the pseudovector glueball with WSS model mass ofMPV = 2311
MeV.

three-body decay rates ΓGP V →ρρπ again include the a1 resonance contribution shown in
the Feynman diagrams of Fig. 10.3 with width given by (7.47) and the pertinent Dalitz plots
are displayed in Fig. 10.4. The interference effects amount to a reduction of the decay rate
of about 30%. Decays into mesons involving strangeness, like the physicalK1(1270) and
K1(1400) as well as f1 and f ′

1, which are all rather sharp resonances in real QCD, are not
summed resonantly but displayed separately. Despite the negative interference with the
a1 meson as well as the reduced coupling constant due to the contribution of the dualized
field strength in (10.50), the pseudovector glueball turns out to be the broadest resonance
of the WSS model, making its experimental identification difficult. However, in Chapter 14
we explore its role as a soft exchange in the threshold region of photoproduction of heavy
pseudoscalar mesons using a bottom-up holographic construction. This process has been
argued to be sensitive to pseudovector glueball exchange [158–160].

Vector Glueball

As was the case for the pseudovector glueball, the interactions of the vector glueball are
purely anomalous and originate from the CS term in (7.6). The expansion of the latter
is again given by (10.49) since the pseudovector and vector glueball only differ by their
polarizations of the respective fields B2 and C3.
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Γ
GWSS

P V
→...

Γ
GWSS

P V
→ρπ

ΓGP V (2980→...

ΓGP V (2980)→ρπ

ρπ 1 1
K∗K 0.55 0.75
ωη 0.14…0.18 0.17…0.21
φη 0.02…0.01 0.04…0.03
ωη′ 0.05…0.03 0.09…0.06
φη′ 0.009…0.01 0.04…0.05
a1ρ, ρρπ 0.74…0.97 2.64…3.35
K1(1270)K∗ 0.05 0.16
K1(1400)K∗ 0.003 0.24
f1ω 0.07 0.16
f ′

1ω 0.002 0.015
f1φ - 0.01
f ′

1φ - 0.04
K∗K∗π 0.06…0.09 0.43…0.57
K∗ρK 0.010…0.013 0.52…0.69
K∗ωK 0.003…0.004 0.17…0.22
K∗K∗η - 0.11…0.12
φK∗K - 0.04…0.06

Table 10.7.: Hadronic decays of the pseudovector glueball withWSSmodel massMPV = 2311 MeV
and the quenched lattice value of 2980 MeV.
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GV/PV

ρ+

π0

ρ−

a±
1

GV/PV

ρ∓

π0

ρ±

GV/PV

ρ0

π±

ρ∓

a0
1

GV/PV

ρ0

π±

ρ∓

Fig. 10.3.: Feynman diagrams contributing to the hadronic three-body decay of the pseudovector
and vector glueball into ρρπ.
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Fig. 10.4.: Dalitz plots for the three-body decay GPV → ρρπ including a charged (a) and neutral
(b) a1 resonance.
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From (10.50) we obtain

A ∧ F ∧ ⋆dC3 =
d4xdzdΩ4

6gs

√−ggττ
(

a(z)

2
gµκgνλgρδAµFνρǫκλδσ

√
�ησαVα

−gzzgµκgνλ
(

Az∂µAν +Aµ∂νAz −Aµ∂zAν −
3i

2
Az[Aµ, Aν ]

)

∂z
a(z)√
�
⋆ F Vκλ

)

,

(10.63)

and from (10.51)

A ∧ F ∧B2 ∧ F4 =
a(z)

z
ǫµνρσAµFνρ

1√
�
Vσ

(

3R3
D4

gs

)

d4xdzdΩ4, (10.64)

where ⋆F Vµν =
√
�C̃µν .

The interaction Lagrangian coupling the vector glueball to pseudoscalar and vector mesons
is thus given by

LGV Πv = − 1

MV
gm1 tr

(

Π∂µv
(m)
ν + v(m)

µ ∂νΠ
)

⋆ F Vµν , (10.65)

where (HV (z) ≡M4(z)/NV )

gm1 =
9

16

√

κ

π

1

M2
KKR

3
D4

∫

dz 1

z
ψ2m−1(z)∂z(zHV (z)) =

{15.04, . . . }√
λNc

, (10.66)

with the mass dependence explicitly given in the Lagrangian. The spin-averaged, squared
amplitude is given by

|MGV →vmΠ|2 =
2

3
(gm1 MV trTsTv)2



1− 2
m2

Π +m2
v

M2
V

+

(

m2
Π −m2

v

M2
V

)2


 (10.67)

Similarly, interactions with vector and axial vector mesons are governed by

LGV →av =
1

MV
fmn1 ǫµνρσtr

(

vmµ ∂νa
n
ρ + anµ∂νv

m
ρ

)

Vσ +
1

MV
fmn2 tr

(

vmµ a
n
ν

)

⋆ Fµν ,

(10.68)
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where

fmn1 =
3

8

κ

MKKR3
D4

∫

dz
(

3

2
(1 + z2)−1/3 M

2
V

M2
KK

+ 36

)

ψ2m−1(z)ψ2n(z)HV (z)

=
{177.83, . . .}MKK

Nc

√
λ

fmn2 =
3

8

κ

MKKR3
D4

∫

dz
(

3

2

1 + z2

z

)

(

ψ2m−1ψ
′
2n − ψ′

2m−1ψ2n
)

∂z(zHV (z))

=
{16.60, . . .}MKK

Nc

√
λ

.

(10.69)

Note again thatMV ∝MKK and hence (10.68) does not depend explicitly on the compact-
ification scale. Carrying out the polarization sums and spin averaging, we obtain

|MGV →av|2 =
1

6

(

trTvTa
M2
Vmamv

)2 [

m6
v

(

4f2
1m

2
a +M2

V (f1 − f2)2
)

+m2
a(f1 + f2)2

(

M3
V −MVm

2
a

)2

−m4
v(M

2
Vm

2
a(−15f2

1 + 18f1f2 + f2
2 )

+ 8f2
1m

4
a + 2M4

V (f1 − f2)2)

+m2
v

(

4M4
Vm

2
a

(

2f2
2 − 3f2

1

)

+M2
Vm

4
a

(

15f2
1 + 18f1f2 − f2

2

)

+ 4f2
1m

6
a +M6

V (f1 − f2)2
)]

,

(10.70)

We obtain the leading order quartic coupling to two vector mesons and one pseudoscalar
meson from the commutator terms of the meson field strengths. Explicitly we have

LGV →Πvv =
i

MV
gmn1 tr

(

Π
[

v(m)
µ , v(n)

ν

])

⋆ F Vµν , (10.71)

with

gmn1 =
9

16

√

κ

π

1

M2
KKR

3
D4

∫

3

2
dz 1

z
ψ2m−1(z)ψ2n−1(z)∂z(zHV (z)) =

{1061, . . .}
λN

3/2
c

,

(10.72)
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and the resulting spin-averaged squared amplitude, with resonance contributions neglected,
is given by

|MGV →v1v2Π|2 =
g2

1

m2
v1
m2
v2
M2
V

(trTs[Tv1 , Tv2 ])2
[

+m2
Π

(

m2
v1

(

m2
v2

+M2
V − s12

)

+M2
V

(

m2
v2
−M2

V + s12

)

+ s23

(

M2
V −m2

v2
+ s12

)

)

+m2
v2
M2
V

(

2M2
V − s12

)

+ s23

(

m2
v2

(

s12 − 4M2
V

)

+ s12

(

M2
V − s12

)

)

+m2
v1

(

m2
v2

(

17M2
V − 3(s12 + s23)

)

+m4
v2

+ (M2
V − s12)(2M2

V − 2s12 − s23)

)

−m4
Π −M2

V + s2
23

(

2m2
v2
− s12

)

+m4
v1
m2
v2

]

,

(10.73)

where sij is the center of mass energy of the vector meson and pseudoscalar subsystem.
The interactions of the vector glueball with one axial vector and two vector mesons
are close to the mass threshold when model masses are used. Hence, they will not be
considered in the following.

Discussion
The resulting decay rates are collected in Table 10.8. Again, the a1 meson is summed
as a resonant contribution with width given by the WSS model prediction in (7.47). For
the case of the vector glueball, we find almost maximal negative interference between
the direct process and the resonant contribution. The decay GV → a1ρ would have
a partial width of 822…1089 MeV, making it the dominant decay channel of the vector
glueball. However, as a resonant contribution together with the direct interaction (see
Fig. 10.3), the partial width of GV → ρρπ is only about 60% of that. In the corresponding
Dalitz plot of Fig. 10.5, the resonance is clearly visible and might help in experimental
identification. We hope that the obtained Dalitz plots for decays into ρρπ prove useful
to experimentalists, although isolating the channel GV → ρρπ → 5π in, for example,
J/Ψ decays, seems like a formidable task. When computing decays into axial vector
mesons involving strangeness, the latter are again treated non-resonantly due to their
small widths. When instead considered as resonant contributions using their experimental
widths, the interference effects indeed turn out to be negligible. In Ref. [161], ratios of
partial decay widths of the vector glueball were considered in the Extended Linear Sigma
Model (eLSM) [42,154,155,162]. The couplings obtained therein do not directly compare to

84 Chapter 10 Glueball Decays

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


ΓGWSS
V

[MeV]
GV → ρπ 34.3…45.4
GV → K∗K 37.8…50.1
GV → ωη 5.78…9.80
GV → φη 3.45…2.81
GV → ωη′ 3.06…2.50
GV → φη′ 3.22…5.46
GV → a1ρ, ρρπ 339…417
GV → K1(1270)K∗ 185…246
GV → K1(1400)K∗ 320…424
GV → f1ω 212…281
GV → f ′

1ω 22.4…29.7
GV → f1φ 9.51…12.6
GV → f ′

1φ 47.8…63.3
GV → K∗K∗π 22.7…39.9
GV → K∗ρK 30.3…53.2
GV → K∗ωK 9.85…17.3
GV → K∗K∗η 7.77…12.1
GV → φK∗K 3.87…6.80
GV → Hadrons 1301…1725

Table 10.8.: Hadronic decays of the vector glueball withWSSmodel massMV = 2882 MeV (mixing
between vector glueball and singlet vector mesons neglected). Because of the large
width of a1 → ρπ, the strongly interfering direct and resonant decays into ρρπ have
been combined.
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Fig. 10.5.: Dalitz plots for the three-body decay GV → ρρπ including a charged (a) and neutral (b)
a1 resonance.
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Γ
GWSS

V
→...

Γ
GWSS

V
→ρπ

ΓGV (3830)→...

ΓGV (3830)→ρπ
Ref. [161]

ρπ 1 1 1
K∗K 1.1 1.21 1.3
ωη 0.17…0.22 0.18…0.23 0.16
φη 0.10…0.062 0.12…0.07 0.21
ωη′ 0.089…0.055 0.11…0.07 0.13
φη′ 0.094…0.12 0.14…0.18 0.18
a1ρ, ρρπ 9.88…9.18 17.0…15.3 1.8
K1(1270)K∗ 5.40 12.0
K1(1400)K∗ 9.32 23.8
f1ω 6.2 11.8 0.55
f ′

1ω 0.65 1.41 0.82
f1φ 0.28 0.83
f ′

1φ 1.4 4.92
K∗K∗π 0.66…0.88 1.92…2.54
K∗ρK 0.88…1.17 3.48…4.62
K∗ωK 0.29…0.38 1.14…4.62
K∗K∗η 0.23…0.27 1.19…1.40
φK∗K 0.11…0.15 0.70…0.93

Table 10.9.: Relative branching ratios of the hadronic decays of the vector glueball with WSS model
massMV = 2882 MeV and with quenched lattice QCD result [12] 3830 MeV, the latter
for the sake of comparison with Ref. [161].

those obtained in the WSS model. In particular, there are two dimension-4 operators that
are absent in our computations, which we thus interpret as subleading decay channels. On
the other hand, there are terms in (10.68) that do not involve the dualized field strength,
which are not reproduced by the eLSM computation. For comparison, we give in Table 10.9
the ratios obtained in [161] together with the results of the WSS model. While they agree
on the dominant decay channel being GV → a1π, the WSS model predicts a much more
pronounced strength of these decays, differing even by an order of magnitude9.

Implications for the ρπ puzzle
The vector glueball is often quoted as a possible resolution to the long-standing ρπ puzzle
[163–168]. The latter is the experimental fact of a relative suppression of decays of
ψ′ = ψ(2S) = ψ(3686) into ρπ and K∗K , compared to the same decays of its radial
ground state J/Ψ. Considering them as non-relativistic bound states of c and c̄, one would
instead expect a ratio that is roughly compatible with the ”12%” rule [134, 169]. A certain
small mixing of J/Ψ with the vector glueball could explain this suppression by a resonant
9 Again we take into account the negative interference with non-resonant GV → ρρπ decays in the WSS
model, whereas Ref. [161] considered only two-body decays.
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enhancement (cf. (9.46)) but requires a rather narrow vector glueball that is close in mass
to that of J/Ψ. Unfortunately, the WSS model is unable to capture the behavior of cc̄
states since they acquire most of their mass through their quark content, while the latter
are massless in the WSS model. Our predictions also indicate a rather broad resonance,
which is incompatible with the assumptions made in Ref. [165]. Another problem is the
mass of the vector glueball, which in the WSS model is rather close to that of J/Ψ, but
lattice computations predict a mass difference of about 700 MeV. On the other hand, in
Section 9.4.3, we found a strong dependence of the mixing parameter on the mode number,
so the situation for charmonia might be quite different from the computations presented
above. Taking the decay patterns of Table 10.8 at face value, the vector glueball appears to
be rather unsuitable for an explanation of the ρπ puzzle due to the strong decays into a1π

andK1(1400)K∗, which have not been observed in the hadronic decays of J/ψ [9] .

10.2.3 Spin-2

Tensor Glueball

Except for the couplings from the pseudoscalar mass terms that vanish for traceless
polarizations, the tensor glueball has the same interactions as the dilaton scalar glueball of
Section 10.2.1. In particular, the coupling to two pseudoscalar mesons is given by

LGT ΠΠ = t1tr (∂µΠ∂νΠ)GµνT , (10.74)

with (HT ≡ T4/NT )

t1 =
1

π

∫

dzK−1HT =
59.6729√
λMKKNc

= 2
√

3d1. (10.75)

Averaging over the spin and carrying out the polarization sums, we obtain the partial
decay width

ΓGT →ΠΠ =
|pΠ|

8πM2
T

|MGT →ΠΠ|2, (10.76)

where

|MGT →ΠΠ|2 =
1

5

t21
6M4

T

(

M4
T − 2M2

T (m2
Π1

+m2
Π2

) + (m2
Π1
−mΠ2)2

)2
. (10.77)

Note that the factor of 1/5 in (10.76) is due to averaging over the spin-2 polarization.
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The coupling to two vector mesons is again obtained from the DBI part of (7.6)

LGT vv =tr
[

t2M
2
KKv

(m)
µ v(n)

ν GµνT + t3F
(m)
µρ Fnρν GµνT

]

, (10.78)

with

tmn2 =

∫

dzKψ′
2m−1ψ

′
2n−1HT = 2

√
3dmn2 ,

tmn3 =

∫

dzK−1/3ψ2m−1ψ2n−1HT = 2
√

3dmn3 ,
(10.79)

and dmn2,3 given in (10.39). The spin-averaged squared amplitude is readily obtained as

ΓGT →vv =
1

S

{

t22
120

M4
KK

m4
v

(M4
T + 12m2

vM
2
T + 56m4

v)

+
2

3
t2t3M

2
KK(M2

T −m2
v)

+
t23
10

(M4
T − 3m2

vM
2
T + 6m4

v)

} |pv|
8πM2

G

,

where S is again the symmetry factor for identical particles.

There is also a coupling of the tensor glueball to one axial vector and one pseudoscalar
meson,

LGT Πa = −2tm6 MKKtr
(

∂µΠa(m)
ν

)

GµνT , (10.80)

with
tm6 =

√

κ

π

∫

dzψ′
2mHT =

{40.764, . . . }
MKKNc

√
λ
, (10.81)

and pertinent spin-averaged squared amplitude

|MGT →aΠ|2 =
1

5

1

6

(

M2
KKt

2
6trTsTa

M2
Tma

)2

(MT −ma −mΠ)(MT +ma −mΠ)

× (MT −ma +mΠ)(MT +ma +mΠ)

× (M4
T − 2m2

Π(M2
T +m2

a) + 8M2
Tm

2
a +m4

a +m4
Π).

(10.82)

Three-body decays result from the Lagrangian

LGT ΠΠv = 2i tr tm5 ∂µΠ[Π, v(m)
ν ]GµνT , (10.83)

with coupling

tm5 =
1

π

∫

dzK−1ψ2m−1HT =
{724.367, . . . }
λMKKN

3/2
c

= 2
√

3dm5 . (10.84)
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From (10.83) we obtain

|MGT →vΠ1Π2 |2 =
1

5

t25
6M4

Tm
2
v

trTs1 [Ts2 , v]2

×
(

M4
T +M2

T

(

8m2
v − 2s12

)

+
(

m2
v − s12

)2
)

×
(

(MT −mv)
2 − s12

) (

(MT +mv)
2 − s12

)

,

(10.85)

where we neglected resonant contributions and s12 is the center of mass energy of the
pseudoscalar meson subsystem

Discussion
Restricting ourselves to two- and three-body decays, the resulting partial decay widths
are collected in Table 10.10 with ideal mixing in the ωφ system assumed10. Again, we
note that the corresponding decay rates into a1π in Ref. [98] are smaller by a factor of 1/3
since the charged contributions were not summed over. However, the conclusion therein
is left unchanged. The eLSM computations of Ref. [145] do not give absolute values for the
decay rates but similarly found dominating decays into pairs of vector mesons, although
much more pronounced. For example, in the WSS model for a tensor glueball of mass
2000 and 2400 MeV, respectively, we obtain ρρ : ππ ∼ 10 − 11 whereas in Ref. [145] it
varies between 60 and 50. Similarly, ρρ : a1π ∼ 17 − 16 whereas Ref. [145] quotes a
result between 325 and 200. As was the case for the scalar glueballs, the decay GT → a1π

is considered as a resonant contribution to decays into GT → ρππ, as shown in the
Feynman diagrams of Fig. 10.1. In Ref. [145], it was argued that the resonance f2(1950) is
predominantly gluonic. For this resonance, the PDG quotes a width of about 464 MeV [9] ,
which is indeed in the right ballpark when compared to the WSS prediction for an unmixed
tensor glueball of 2000 MeV.

10.3 Radiative Glueball Decays

Due to the absence of valence quarks, it is widely believed that radiative decay widths of
glueballs are extremely small. Correspondingly, a sizeable radiative decay width of a given
hadron is usually taken as evidence against its glueball nature11. As previously discussed
in Section 7.2, and when confronted with experimental data in Section 7.3, the WSS model
quite successfully reproduces numerous radiative decay widths of mesons. Through the
10See the discussion in Section 10.2.1 for non-ideal mixing.
11See for example the study by the BELLE collaboration [170] where it was argued that f0(1710) is not a
glueball because of its sizeable two-photon width.
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ΓWSS
GT

[MeV] ΓGT (2000)[MeV] ΓGT (2400)[MeV]
GT → ππ 19.9…26.3 27.7…36.8 33.8…44.7
GT → KK 6.66…8.83 19.2…25.4 29.2…38.6
GT → ηη 1.02…1.35 3.97…5.26 6.48…8.58
GT → ρρ - 270…358 382…507
GT → ωω - 88.2…117 127…169
GT → K∗K∗ - 240…318 417…552
GT → f1η - 0.98…1.71 3.97…6.89
GT → η′η′ - - 0.92…1.22
GT → φφ - - 76.7…102
GT → a1π, ρππ 2.34…3.79 14.2…18.6 25.1…32.8
GT → K∗Kπ - 3.01…5.28 13.4…23.6
GT → KKρ - - 3.26…5.72
GT → Hadrons 29.9…40.1 666…883 1109…1474

Table 10.10.: Hadronic decays of the tensor glueball GT with WSS model 1487 MeV mass and
extrapolated to masses of 2000 and 2400 MeV, for λ = 16.63 . . . 12.55. In decays
involving f1 we additionally vary θf = 20.4◦ . . . 26.4◦. Partial decay widths much
smaller than 1 MeV are left out.

couplings of glueballs to the (abelian) vector meson fields in Section 10.2, the relevant
couplings to photons are obtained via VMD by substituting the vector fields with photon
fields and their holographic wave functions by unity12. We shall now continue with our
analysis of glueball decay patterns in order to make quantitative predictions for radiative
decays.

10.3.1 Spin-0

Exotic Scalar Glueball

Decays into one vector meson and one photon are inherited from (10.14) and thus governed
by

LGEvV = −tr
{

cmV
3

[

2ηρσF (m)
µρ FV

νσ

∂µ∂ν

M2
E

GE −
1

2
F (m)
µν FVµν

(

1 +
�

M2
E

)

GE

]

+ 3cVn
4

M2
KK

M2
E

v(n)
µ FVµν∂νGE +c̆mV

3 F (m)
µν FVµνGE

}

, (10.86)

12For off-shell photons, one instead uses the bulk-to-boundary propagator in (7.69) to obtain transition form
factors that encode the internal structure of bound states.
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with

cmV
3 =κ

∫

dzK−1/3ψ2m−1HE =
{1.551, . . .}
MKKN

1
2
c

,

cVm
4 =κ

∫

dz 20ZK

(5K − 2)2ψ
′
2m−1HE =

{−0.262, . . .}
MKKN

1
2
c

,

c̆mV
3 =

κ

4

∫

dzK−1/3ψ2m−1HE =
{0.425, . . .}
MKKN

1
2
c

.

(10.87)

The corresponding spin-averaged amplitude is given by

|MGE→vV |2 =

(

1− m2
v

M2
E

)2

2

[

3cVn
4 M2

KK + 2c̆mV
3 M2

E + cmV
3

(

m2
v −M2

E

)]2
tr (eQTvm)2 .

(10.88)
The two-photon decay rate is obtained from interactions governed by

LGEVV =− tr
{

cVV
3

[

FV
µρF

Vρ
ν

∂µ∂ν

M2
E

GE −
1

4
FV
µνF

Vµν
(

1 +
�

M2
E

)

GE

]

+
1

2
c̆VV

3 FV
µνF

VµνGE

}

, (10.89)

with couplings

cVV
3 = κ

∫

dzK−1/3HE = 0.0355

√
λ

MKK
,

c̆VV
3 =

κ

4

∫

dzK−1/3HE = 0.0106

√
λ

MKK
.

(10.90)

From (10.89) we obtain

|MGE→VV |2 =
M4
E

2

(

cVV
3 − 2c̆VV

3

)2
tr
(

e2Q2
)2
. (10.91)

As mentioned in Section 10.2.1, the hadronic three-body decays are rather strongly sup-
pressed. However, through VMD, the would-be suppression in λ and Nc is traded for
an electric charge, and simultaneously, the phase space is enlarged. The corresponding
Lagrangian describing interactions between the exotic scalar glueball, two pseudoscalars,
and a photon follows from (10.23) and is given by

LGEΠΠV =2icV
5

{

tr ∂µΠ[Π,Vν ]
∂µ∂ν
M2
E

GE +
1

2
∂µΠ[Π,Vµ]

(

1− �

M2
E

)

GE

+2ic̆V
5 ∂µΠ[Π,Vµ]GE

}

,

(10.92)
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with couplings

cV
5 =

∫

dzHE

πK
=

62.6554√
λMKKNc

, c̆V
5 =

∫

dz HE

4πK
=

16.39√
λMKKNc

. (10.93)

Carrying out the polarization sums, we obtain

|MGE→Π1Π2V |2 =

(

4mA(cV
5 + c̆V

5 ) e tr Ts [Ts, Q]

m2
Π1

+m2
Π2
− s13 − s23

)2 (
(

m2
Π1
− s13

) (

m2
Π2
− s23

)

−
(

m2
Π1

+m2
Π2
− s13 − s23

) (

m2
Π1
m2

Π2
− s13s23

)

)

,

(10.94)

with sij the center of mass energies of the pseudoscalar-photon subsystem. Note that due
to the vanishing coupling of an axial vector meson to a pseudoscalar meson and a photon
(cf. Section 7.3.3), there are no resonant axial vector contributions.

Discussion
In Table 10.11 the results for the partial widths for the radiative decays of the exotic scalar
glueball are given. Again, these are evaluated for the mass of f0(1500) and f0(1710) with
ideal mixing assumed for the ωφ system13. With this assumption, we approach the ratios
9 : 1 for ργ and ωγ decays, but the ωγ and φγ ratio deviates strongly from 2:1 due to
the heavy mass of the φ meson. As was the case for the hadronic decays in Section 10.2,
using a more realistic value for the ωφ mixing angle θV ≈ 28◦, the partial width for ωγ
increases by about 17% while simultaneously decreasing φγ by about 8.5%. This is also true
for the corresponding computations in the following sections. As we will see shortly, the
radiative widths of GE are much smaller than those of GD at equal mass; see Table 10.12.
On the other hand, the three-body decays into ππγ and KKγ, originally neglected in
Ref. [98] , are the dominant radiative decay channels.

Dilaton Scalar Glueball

Using the interaction Lagrangian in (10.38), we obtain the coupling to one vector meson
and one photon

LGDVv =2dmV
3 ηρσtr

(

F (m)
µρ FV

νσ

)

(

ηµν − ∂µ∂ν

�

)

GD, (10.95)

13See the discussion in Section 10.2.1 for non-ideal mixing
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ΓGE(1506)[keV] ΓGE(1712)[keV]
GE → ργ 13.4 20.7
GE → ωγ 1.4 2.23
GE → φγ 0.30 0.98
GE → ππγ 114…151 134…177
GE → KKγ 14.5…19.2 29.8…39.5
GE → γγ 0.076…0.058 0.087…0.066
GE → Radiative 128…170 163…216

Table 10.11.: Radiative decays of the exotic scalar glueball GE extrapolated to the masses of
f0(1500), f0(1710) .

with

dmV
3 ≡κ

∫

dz K−1/3ψ2m−1HD =
{0.46895, . . . }
MKK
√
Nc

. (10.96)

The would-be coupling dmV
2 vanishes at zero virtuality due to the derivative acting on a

constant bulk-to-boundary propagator. Nevertheless, it becomes important when comput-
ing transition form factors that may be used to estimate the contributions of the dilaton
scalar glueball to hadronic light-by-light scattering [98] .
The spin-averaged squared amplitude is given by

|MGD→vV |2 =
dmV

3

(

m4
v − 4m2

vM
2
D + 3M4

D

)2

2M4
D

tr (eQTv)
2 . (10.97)

Replacing both vector mesons in (10.38) with photons by means of VMD, we obtain the
2γ interactions

LGDVV =dVV
3 ηρσtr

(

FV
µρF

V
νσ

)

(

ηµν − ∂µ∂ν

�

)

GD, (10.98)

with

dVV
3 ≡κ

∫

dz K−1/3HD = 0.0130195λ1/2M−1
KK , (10.99)

and the amplitude

|MGD→VV |2 =
9

2

(

dVV
3 M2

Dtr (e2Q2)
)2
. (10.100)
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Radiative three-body decays are seen to follow from

LGDΠΠV = 2i tr dV
5 ∂µΠ[Π,Vν ]

(

ηµν −
∂µ∂ν
M2
D

)

GD, (10.101)

with coupling
dV

5 =
1

π

∫

dzK−1HD =
17.2261√
λMKKNc

, (10.102)

and pertinent spin-averaged squared amplitude

|MGD→ΠΠV |2 =

(

4dV
5 etrS1[S2, Q]

m2
Π1

+m2
Π2
− s13 − s23

)2

×
(

M2
D

(

m2
Π1
− s13

) (

m2
Π2
− s23

)

−
(

m2
Π1

+m2
Π2
− s13 − s23

) (

m2
Π1
m2

Π2
− s13s23

)

)

,

(10.103)

with sij the squared center of mass energy of the pseudoscalar-photon subsystem and
again no contributions from resonant axial vector mesons.

Discussion
The results for the partial widths are displayed in Table 10.12, where the dilaton scalar
glueball is alternatingly identified with f0(1500) and f0(1710) and again with assumed
ideal mixing for ω and φ14. For both extrapolations, we find two-photon widths in the
keV range, with dominating decays into ργ. Our predictions are somewhat in between
the results of a few hundred eV to roughly up to 15 keV found in the literature [171,
172]. Interestingly, the decay rates into two-vector mesons obtained in Section 10.2.1 are
comparable with the results of Ref. [150]. Unfortunately, no data for decays of f0(1710)

involving a single photon appear to be available. The BELLE collaboration, however,
reports a measurement for two-photon decays: ΓγγB(KK̄) = 12+3+227

−2−8 eV [170]. The
conclusion therein is that due to its large two-photon width, f0(1710) is unlikely to be a
glueball. On the contrary, the holographic prediction of the WSS model suggests an even
larger branching fraction of ΓγγB(KK̄) ≈ 690 . . . 520 eV that is about 2-3 sigma above
the measurements quoted by BELLE. Another upper limit for this branching fraction is
480 eV from ARGUS [173]. BELLE obtains a central value for Γf0(1710)→γγ of a few tens
of eV. This discrepancy with the WSS model prediction could be explained by f0(1710)

containing a possibly large ss admixture, as, for example, found in the study of Ref. [174].
On the other hand, since the dilaton scalar glueball matches the hadronic decay patterns of
f0(1710) remarkably well for x ∼ 1, the BELLE result would seem to indicate that VMD
14See the discussion in Section 10.2.1 for non-ideal mixing.
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ΓGD(1506)[keV] ΓGD(1712)[keV]
GD → ργ 184 276
GD → ωγ 19.9 30.1
GD → φγ 14.1 29.4
GD → ππγ 8.17…10.8 9.59…12.7
GD → KKγ 1.04…1.38 2.14…2.83 5.67
GD → γγ 1.74…1.32 1.98…1.50
GD → Radiative 231…233 352…355

Table 10.12.: Radiative scalar glueball decay with GD identified alternatively with f0(1500) and
f0(1710) with masses 1506 MeV and 1712 MeV, respectively, for λ = 16.63 . . . 12.55.

ΓGWSS
E

[keV] ΓGE(1865)[keV]
GE → ργ 0.047 26.4
GE → ωγ 0.003 2.86
GE → φγ - 1.72
GE → ππγ 47.9…63.5 148…196
GE → KKγ - 43.3…57.3
GE → γγ 0.043…0.033 0.095…0.071
GE → Radiative 47.9…63.5 191…253

Table 10.13.: Radiative decays of the exotic scalar glueball GE with WSS model mass 855 MeV and
extrapolated to the scalar glueball at 1865 MeV proposed in Ref. [45].

does not apply for radiative decays of f0(1710). A further complication not captured by
the WSS is mixing with the novel f0(1770) resonance.

Fragmented Scalar Glueball

In Table 10.13, we show the resulting partial widths for the exotic scalar glueball with
model mass as well as an extrapolation to the proposed fragmented scalar glueball of [45]
with a mass of 1865 MeV.The radiative decay rates turn out to be negligible compared to the
hadronic decays obtained in Section 10.2.1. For completeness, we also list the corresponding
results for the dilaton scalar glueball in Table 10.14. They are again negligible compared to
the hadronic decays computed in Section 10.2.1 with the conclusion that the exotics scalar
glueball is a good fit for the fragmented scalar glueball, left unchanged.
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ΓGWSS
D

[keV] ΓGD(1865)[keV]
GD → ργ 175 346
GD → ωγ 19.0 37.9
GD → φγ 12.9 42.8
GD → ππγ 8.03…10.6 10.6…14.1
GD → KKγ 0.96…1.27 3.11…4.12
GD → γγ 1.72…1.30 2.16…1.63
GD → Radiative 218…221 443…447

Table 10.14.: Radiative decays of the dilaton scalar glueballGD with WSS model mass of 1487 MeV
and extrapolated to the scalar glueball at 1865 MeV proposed in Ref. [45].

Pseudoscalar Glueball

From (10.45) one obtains couplings to one or two photons, respectively. They are given
by

LGP SvV = GPSǫ
µνρσtr

[

2kvV
1 ∂µvν∂ρVσ

]

, (10.104)

where
kv

1V
1 = 0.493557N−1/2

c M−1
KK , (10.105)

and
LGP SVV = GPSǫ

µνρσtr
[

kVV
1 ∂µVν∂ρVσ

]

(10.106)

where
kVV

1 = 0.0145232λ1/2M−1
KK . (10.107)

The spin-averaged squared amplitudes following from (10.104) and (10.106) are given by

|MGP S→vV |2 = 2
(

kv
1V

1 etrTvQM2
PS

)2
(

1− m2
v

M2
PS

)2

(10.108)

and
|MGP S→VV |2 = 2

(

kVV
1 e2trQ2M2

PS

)2
(10.109)

respectively.

Discussion
In Table 10.15 we show the resulting partial decay widths for the WSS model mass of
1813MeV ± 7 MeV together with two extrapolations to 2395 MeV, motivated by the study
of [144], and the (quenched) lattice result of 2600 MeV. There appear to be no results for
radiative decays of pseudoscalar glueball (candidates) with which we could compare.
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ΓGWSS
P S

[keV] ΓGP S(2395)[keV] ΓGP S(2600)[keV]
GPS → ργ 272…263 468…461 536…528
GPS → ωγ 29.8…28.9 51.7…50.9 59.2…58.3
GPS → φγ 35.6…34.1 79.6…78.4 95.4…94.0
GPS → γγ 1.75…1.30 2.30…1.71 2.49…1.86
GPS → Radiative 339…328 602…592 693…682

Table 10.15.: Radiative pseudoscalar glueball decays for λ = 16.63 . . . 12.55. Besides the WSS
model result for the pseudoscalar mass, MG = 1813 ± 7MeV, extrapolations to
X(2370) with mass 2395 MeV and 2600 MeV motivated by the analysis in [144] and
lattice results, respectively, are considered.

10.3.2 Spin-1

Pseudovector Glueball

From (10.55) we obtain the couplings between the pseudovector glueball, a pseudoscalar
meson, and a photon

LGP V →ΠV = −5

6

1

MPV
bV

1 tr (Vµ∂νΠ + Π∂µVν)F Ṽµν , (10.110)

where
bV

1 =
27

4

√

κ

π

1

M2
KKR

3
D4

∫ dz√
1 + z2

N4(z) =
2.70√
Nc
. (10.111)

Since the form field interactions originate from the non-gauge invariant CS term, care
must be taken when evaluating photon polarization sums. Explicitly, we obtain

|MGP V →ΠV |2 = 2

(

bV
1

MPV
e trTsQm2

Π

)2

, (10.112)

where we employed the photon polarization sum in axial gauge

∑

λ

ǫµ(k)ǫ∗ν(k) = −gµν − n2 k
µkν

(k · n)
+
kµnν + kνnµ

k · n (10.113)

to sum over the physical degrees of freedom. Note that n in (10.113) is an arbitrary auxiliary
vector that is seen to drop out of the final result.

Equation (10.57) implies, via VMD, an interaction involving one axial vector meson and a
photon

LGP V →Va = −5

6

1

MPV
bmV

3 tr
(

Vµa(m)
ν

)

F Ṽµν (10.114)

10.3 Radiative Glueball Decays 97

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


with

bmV
3 =

27

4

κ

MKKR3
D4

∫

dz
√

1 + z2ψ2m−1(z)ψ′
2n(z)N4(z) =

{1.75, . . .}MKK√
Nc

, (10.115)

leading to

|MGP V →aV |2 = 2

(

bmV
3

MPV
m2
ae trTaQ

)2(

1− M2
PV

m2
a

)2

, (10.116)

Analogously, from (10.60), we derive the relevant interaction involving a photon, a pseu-
doscalar, and a vector meson

LGP V ΠvV =
5

6

i

MV
2bmV

2 tr
(

Π
[

v(m)
µ ,Vν

])

F Ṽµν , (10.117)

where
bmV

2 =
{168.081, . . .}√

λNc

. (10.118)

Disregarding resonance effects, the spin-averaged squared amplitude is expressed as

|MGP V →ΠvV |2 = 2

(

bmV
2 e trTs[Tv, Q]

MPVmv

)2 (
(

−m2
Π + s12 + s23

)2
− 4M2

PVm
2
v

)

.

(10.119)

Due to the appearance of a trace together with a commutator in the meson field strengths,
there are no couplings to two photons.

Discussion
In Table 10.16 we collect the resulting radiative partial decay widths of the pseudovector
glueball. For the three-body decays, we consider once more the a0

1 meson as a resonant
contribution as shown in Fig. 10.6, and its width is provided by (7.47). Similar to the
hadronic decays discussed in Section 10.2.2, the radiative decays are found to be fairly
significant. The primary radiative decay channels are into πργ, exhibiting nearly maximal
constructive interference between the resonant a1γ decay and the direct process.

Vector Glueball

The couplings to one photon and one pseudoscalar meson follow via VMD from (10.65)

LGV ΠV =
1

MV
gV

1 tr (Π∂µVν + Vµ∂νΠ) ⋆ F Vµν (10.120)
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ΓGWSS
P V

[keV]
GPV → π0γ 0.01
GPV → ηγ 1.11…0.98
GPV → η′γ 0.59…1.62
GPV → a1γ, ρπγ 1395…1848
GPV → f1γ 5.16
GPV → f ′

1γ 1.40
GPV → K∗Kγ 266…353
GPV → X + γ 1669…2209

Table 10.16.: Radiative decays of the pseudovector glueball with WSS model mass ofMPV = 2311
MeV.

GV/PV

γ

π±

ρ∓

a0
1

GV/PV

γ

π±

ρ∓

Fig. 10.6.: Feynman diagrams contributing to the radiative three-body decay of the (pseudo)vector
glueball into πργ.

10.3 Radiative Glueball Decays 99

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


where
gV

1 =
9

16

√

κ

π

1

M2
KKR

3
D4

∫

dz 1

z
∂z(zM4(z)) =

0.31√
Nc
. (10.121)

and the spin-averaged, squared amplitude is given by

|MGV →ΠV |2 =
2

3

(

egV
1 trTsQ

)2
M2
V

(

1− m2
Π

M2
V

)2

. (10.122)

Analogously, from (10.68) we obtain couplings of the vector glueball to an axial vector
meson and one photon as

LGV aV =
1

MV
fVn

1 ǫµνρσtr
(

Vµ∂νanρ + anµ∂νVρ
)

Vσ+
1

MV
fVn

2 ǫµνρσtr
(

Vµ∂νanρ − anµ∂νVρ
)

Vσ,

(10.123)
where

fVn
1 =

3

8

κ

MKKR3
D4

∫

dz
(

3

2
(1 + z2)−1/3 M

2
V

M2
KK

+ 36

)

ψ2n(z)M4(z) =
{5.88, . . .}MKK√

Nc

fVn
2 =

3

8

κ

MKKR3
D4

∫

dz
(

3

2

1 + z2

z

)

ψ′
2n(z) ∂z(zM4(z)) =

{0.36, . . .}MKK√
Nc

(10.124)

and the pertinent spin-averaged squared amplitude

|MGV →aV |2 =
1

3 · 2

(

trTaQ2

maM2
V

)2 (

− 2M2
V f

nV
1 fnV

2

(

−2m2
aM

2
V − 7m4

a +M4
V

)

+ (fnV
1 )2

(

9m4
aM

2
V − 6m2

aM
4
V + 4m6

a +M6
V

)

+M2
V (fnV

2 )2
(

6m2
aM

2
V +m4

a +M4
V

)

)

.

(10.125)

Note that the Lagrangian in (10.123) is again independent of the compactification scale.

Additionally, from (10.71) we get the quartic coupling including one photon

LGV →ΠvV =
i

MV
gmV

1 2tr
(

Π
[

Vµ, v(m)
ν

])

⋆ F Vµν , (10.126)

where

gmV
1 =

27

32

√

κ

π

1

M2
KKR

3
D4

∫

dz 1

z
ψ2m−1(z)∂z(zM4(z)) =

{22.55, . . .}√
λNc

. (10.127)
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Ignoring resonant contributions, the squared amplitude for the three-body decays resulting
from (10.126) is given by

|MGV →ΠvnV |2 =
2(gmV

1 etrTs[Q,Tv])2

m2
vM

2
V (M2

V − s12)2

×
(

2m2
vM

2
V

[

(s12 −M2
V )(m2

Π − 3M2
V + 2s12)− s23(M2

V + s12)
]

+ (m2
Π − s12)2(M2

V − s12)2 + 2s12s23(m2
Π − s12)(M2

V − s12)

+ 2m4
vM

4
V + s2

23(M4
V + s2

12)

)

.

(10.128)

To leading order, there are no three-body decays involving two photons due to the com-
mutator terms in (10.126).

Decays into one pseudoscalar and two vector mesons are above the mass threshold.
However, by replacing one of the external vector mesons with a photon, the phase space
enlarges and allows for decays into one photon together with a vector and pseudoscalar
meson

LGV →avV = − 3i

MV
fmn1 ǫµνρσtrVµ[vmν , a

n
ρ ]Vσ (10.129)

and fmn1 given in (10.69). Interestingly enough, this coupling is absent for the pseudovector
glueball of the previous section. Carrying out the polarization sums and spin-averaging,
we obtain from (10.129)

∣

∣MGV →avV
∣

∣

2
= 3

(

f1etrQ[Tv, Ta]

2mamvMV

(

M2
V − s12

)

)2
(

2
∣

∣M̃T
GV →avV

∣

∣

2
+
∣

∣M̃L
GV →avV

∣

∣

2
)

,

(10.130)
with the transverse

∣

∣M̃T
GV →avV

∣

∣

2
= m4

a

(

M2
V − s12

) (

M2
V + 4m2

v − s12 − 4s13

)

− 2m2
a

(

M4
V

(

3m2
v + s12

)

− 2M2
V s12

(

m2
v + s12 + 2s13

)

+ s12

(

2m4
v −m2

v(s12 + 4s13) + s2
12 + 4s12s13 + 2s2

13

)

)

−
(

m2
v − s12

)

(

M4
V

(

3m2
v + s12

)

+M2
V

(

4m4
v − 2m2

v(s12 + 2s13)− 2s12(s12 + 2s13)
)

+ s12

(

(s12 + 2s13)2 −m2
v(s12 + 4s13)

)

)

,

(10.131)
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and longitudinal

∣

∣M̃L
GV →avV

∣

∣

2
= 2m6

a

(

M2
V − s12

) (

M2
V + 2m2

v − s12 − 2s13

)

− 2m4
a

[

M4
V

(

m2
v + 2(s12 + s13)

)

+ 2M2
V

(

m4
v +m2

v(s12 + s13)− 2(s12 + s13)2
)

+ s12

(

2
(

s2
12 + 3s12s13 + 3s2

13

)

− 3m2
v(s12 + 2s13)

)

]

−m2
a

[

M6
V

(

11m2
v + s13

)

+M4
V

(

4m4
v −m2

v(25s12 + 4s13)

− (s12 + 2s13)(2s12 + 3s13)

)

+M2
V

(

m2
v

(

13s2
12 + 4s2

13

)

− 8m4
v(s12 + s13) + 4s3

12

+ 15s2
12s13 + 20s12s

2
13 + 4s3

13

)

+ s12

(

m2
v

(

s2
12 + 12s12s13 + 12s2

13

)

− 2s3
12 − 9s2

12s13 − 18s12s
2
13 − 12s3

13

)

]

+M8
Vm

2
v +M6

V

(

3m4
v +m2

v(s13 − s12) + s12s13

)

+M4
V

(

4m6
v − 2m4

vs12 −m2
v(s12 + 2s13)(s12 + 3s13)− s12s13(3s12 + 5s13)

)

+M2
V

(

m2
v(s12 + 2s13)

(

s2
12 + s12s13 + 2s2

13

)

−
(

m4
v

(

s2
12 + 8s12s13 + 4s2

13

))

+ s12s13(s12 + 2s13)(3s12 + 4s13)

)

+ s12s13

(

m2
v

(

s2
12 + 6s12s13 + 4s2

13

)

− (s12 + s13)(s12 + 2s13)2
)

(10.132)

contributions of the vector glueball polarizations, respectively. The squared center of mass
energy s12 is that of the axial and vector meson subsystem and s13 that of the vector
meson-photon subsystem, respectively.

Discussion
Restricting ourselves to two- and three-body decays, we display the results for the partial
widths in Table 10.17. As depicted in Fig. 10.6, the a0

1 meson is summed resonantly together
with the direct process into ρπγ, although in this case, the interference is less significant
than in the hadronic decay. Due to the large mass of the vector glueball, we find quite
sizeable radiative widths, but still smaller than those of the pseudovector glueball, despite
being about 500 MeV heavier in the WSS model. Again, the radiative widths are negligible
compared to the hadronic decays obtained in Section 10.2.2.
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ΓGWSS
V

[keV]
GV → π0γ 27.8
GV → ηγ 7.85…6.96
GV → η′γ 0.40…1.10
GV → a1γ, ρπγ 358…361
GV → f1γ 41.5
GV → f ′

1γ 11.4
GV → K∗Kγ 78.2…104
GV → a1ργ 338…447
GV → K1(1270)K∗γ 47.2…62.6
GV → K1(1400)K∗γ 47.3…62.7
GV → X + γ 958…1126

Table 10.17.: Radiative decays of the vector glueball with WSS model massMV = 2882 MeV.

10.3.3 Spin-2

Tensor Glueball

Couplings of the tensor glueball to photons are of particular importance in high-energy
scattering processes like lepto- and photoproduction, where the tensor glueball may
be identified with the leading state on the Pomeron trajectory (see III). Restricting the
discussion, for now, to just the tensor glueball, we obtain its coupling to one photon and
one vector meson from (10.78) as

LGT vnV =2tVn3 GµνT ηρσtr
(

FV
µρF

(n)
νσ

)

, (10.133)

with

tVn3 =

∫

dzK−1/3ψ2n−1HT = 2
√

3dVn
3 , (10.134)

dVn
3 as given in (10.96) and the spin-averaged, squared amplitude follows as

|MGT →vγ |2 =
1

5

1

3M4
T

(

etrQTv
(

M2
T −m2

v

))2 (

6M4
T + 3M2

Tm
2
v + 2m4

v

)

. (10.135)

In a similar fashion, we obtain from (10.78)

LGT VV =tVV
3 GµνT ηρσtr

(

FV
µρF

V
νσ

)

, (10.136)
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ΓGWSS
T

[keV] ΓGT (2000)[keV] ΓGT (2400)[keV]
GT → ργ 260 522 716
GT → ωγ 28.3 57.5 79.1
GT → φγ 24.7 81.1 127
GT → ππγ 8.31…11.0 12.4…16.4 15.49…20.5
GT → KKγ 0.57…0.75 3.03…4.02 5.77…7.65
GT → γγ 1.84…1.39 2.47…1.86 2.97…2.24
GT → Radiative 324…327 681…685 949…955

Table 10.18.: Radiative tensor glueball decays for λ = 16.63 . . . 12.55. Besides the pristine results
for the WSS model mass of 1487 MeV, their extrapolations to glueball masses of 2000
and 2400 MeV are given.

with

tVV
3 =

∫

dzK−1/3HT = 2
√

3dVV
3 (10.137)

dVV
3 as given in (10.99). Carrying out the polarization sums and averaging over the spin,

(10.136) leads to
|MGT →γγ |2 =

1

5

[

tVV
3 M2

Gtr
(

e2Q2
)]2

. (10.138)

Discussion
In Table 10.18 we list the resulting partial decay widths for a tensor glueball of the WSS
model mass 1487 MeV together with extrapolations to 2000 MeV, motivated by Pomeron
physics [36], as well as 2400 MeVmotivated by lattice QCD [12]. The vector meson sector is
again assumed to be ideally mixed15. The radiative decay widths of the tensor glueball are
comparable with those of the dilaton scalar glueball in Table 10.12. Surprisingly, Ref. [172]
obtained single photon decay widths that agree with ours, despite the large discrepancy in
decays into two vector mesons pointed out previously in Section 10.2.3. The two-photon
width of 2-3 keV is about an order of magnitude larger than the one obtained in Ref. [171]
but comparable to those obtained in Refs. [172, 175] (1.72-0.96 keV).

15See the discussion in Section 10.2.1 for a more realistic mixing angle.
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Part III

Reggeons, Pomeron, and
Odderon
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Introduction 11
„ Getretener Quark wird breit, nicht stark”

— Johann Wolfgang von Goethe
Westöstlicher Divan

The calculations in Part II have indicated that, according to the WSS model, glue-
balls are broad resonances, making their experimental identification challenging.
Although we have narrowed down the search area, it is prudent to explore different

areas, such as high-energy scattering. Regge theory is a sophisticated framework that
provides crucial insights into high-energy scattering processes and the fundamental nature
of the scattered particles. Developed in the late 1950s by Tullio Regge [20], this theory
has deepened our understanding of scattering amplitudes and their connections to bound
states and resonances. Central to Regge theory is the concept of complex angular momen-
tum. Normally, angular momentum is treated as a discrete quantum number. However,
Regge demonstrated that allowing angular momentum to take complex values unveils
profound structures and relationships within scattering amplitudes. In particular, the
theory identifies specific complex values of angular momentum, known as Regge poles,
where the scattering amplitude exhibits pole-like behavior. These poles correspond to
families of particles with the same quantum numbers but different spins. Later, Chew and
Frautschi [21, 22] indeed found that squared masses of baryons and mesons, when plotted
against their spin, fall on trajectories that can be linearly approximated. The connections
between these poles are traced by Regge trajectories, which are curves in the complex
angular momentum plane and, in good approximation, parametrized by

J(t) = α(0) + α′|t| (11.1)

where α(0) is the intercept, α′ is the slope parameter, and t is the Mandelstam variable
parametrizing the momentum transfer between the scattered particles, respectively. The
poles are located at discrete values of spin, thus relating it to its mass

Jn = α(0) + α′m2
n, (11.2)
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Fig. 11.1.: High-energy total cross sections from various experiments. Displayed is the combined
data set of the PDG [9] .

where Jn, mn are the spin and mass of the n-th bound state, respectively. The properties
of these trajectories, such as their slopes and intercepts, encode valuable information about
the underlying dynamics of particle interactions and the exchanged trajectory is referred to
as Reggeon. Regge theory provides a systematic way to analyze the high-energy behavior
of scattering amplitudes. In particular, one finds for sufficiently high energies

σtot(s) ∼ (α′s)α(0)−1. (11.3)

At very high center of mass energies
√
s, the experimental total cross sections σtot for pp

and pp scattering shown in Fig. 11.1, can no longer be described by exchanges of ordinary
meson trajectories with intercept below or at 1. These observations led to the proposal
of the Pomeron, the Regge trajectory with the highest intercept and vacuum quantum
numbers [176]. Experimentally, one finds αP(0) ≈ 1.08, a value seemingly incompatible
with unitarity constraints. However, as will also be shown in the holographic computations
below, the strong shadowing brought about by multiple Pomeron exchanges leads to a
depletion of σtot(s) for s→∞. The PomeronGlueball Hypothesis (PGH) asserts that at low
momentum transfers, the Pomeron is a glueball trajectory, with the lowest state identified
with the tensor glueball. In Perturbative QCD (pQCD), it is obtained by resumming the
rapidity ordered collinear gluon emissions, also known as Balitskii-Fadin-Kuraev-Lipatov
(BFKL) ladder [177–180]. A more subtle contribution to high-energy pp and pp scattering is
due to the Odderon. In pQCD it is parametrized by a C-odd exchange with intercept at, or
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slightly below, 1, corresponding to the Janik-Wosiek (JW) [181] and Bartels-Lipatov-Vacca
(BLV) [182] solutions of the Bartels-Kwiecinski-Praszalowicz (BKP) equation [183, 184],
respectively. The Odderon arises as the C-odd resummation of two (Lipatov rung) and three
gluon ladder diagrams in perturbative QCD. For completeness, we note that the Pomeron
and Odderon are also established concepts in the framework of the Color Glass Condensate
(CGC) [185–187] (see Ref. [188] for a review). Reggeons with positive signature add in pp
and pp scattering, while odd signature Reggeons subtract in the latter. At high energies,
differences in observables of pp and pp scattering are thus attributed to the presence of
Odderon exchanges. Indeed, a recent publication by the TOTEM and D/O collaboration
claims to have discovered the Odderon [189], though it is not fully undisputed [190]. In this
part, we will address this claim by using a holographic bottom-up construction. Further,
we will consider the 1+− pseudovector glueball exchange, which has been argued to play
a central role in diffractive photoproduction of heavy pseudoscalar mesons and at the
high center of mass energies transmutes into one of the two branches of the holographic
Odderon [191].

For reviews on the physics of the Pomeron and Odderon, see Refs. [36, 192–194].

The computations and discussion laid out in this part are based on Refs. [123, 195].

This part is structured as follows. In Chapter 12 we will formally introduce the concept
of the Pomeron and Odderon in Gauge/Gravity duality. Next, we will consider general
bottom-up model building in holographic QCD in Chapter 12.1. In Chapter 13, we will
construct such a model to address the recently claimed Odderon observation at the LHC
and Tevatron within a holographic framework. Lastly, we will turn to threshold production
of heavy pseudoscalar mesons, a process that is argued to be sensitive to the exchange of
a pseudovector glueball, in Chapter 14.
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Pomeron and Odderon in
Gauge/Gravity Duality

12

In the context of gauge/gravity duality, initial investigations into the Pomeron and
Odderon were conducted in a series of seminal works focusing on the conformal
limit in Refs. [191, 196–198]. Therein, the leading state on the Pomeron trajectory

was identified with a 2++ graviton in the dual gravitational theory, while the leading
state on the Odderon trajectory is associated with a 1±− Kalb-Ramond field exchange.
According to the holographic principle, the bulk fields thus couple to the corresponding
QCD boundary operators [191]

hµν [2++] : GaµαGaνα

Bµν [1+−] : dabcGaαβGbαβG
cµν

Cµν [1−−] : dabcGaαβGbαβG̃
cµν ,

(12.1)

with all traces subtracted. Consequently, the Pomeron and Odderon are sourced by the
analytically continued spin-j boundary operators

hµνj [(2 + j)++] : GaµαDα1 ...DαjG
aν
α

Bµν
j [(1 + j)+−] : dabcGaαβDα1 ...DαjG

b
αβG

cµν

Cµνj [(1 + j)−−] : dabcGaαβDα1 ...DαjG
b
αβG̃

cµν ,

(12.2)

with the proper symmetrization assumed. The conformal dimensions and twist thus follow
as ∆h = 4 + j and τh = 2 + j for hj , and ∆b = 6 + j and τb = 5 + j for Bj and Cj ,
respectively.

Using type IIB supergravity onAdS5×S5, the strong coupling expansions of the Pomeron
(+) and Odderon (-) intercept for a conformal theory were to leading order in λ found to
be [191, 196]

j
(+)
0 = 2− 2√

λ
, j

(−)
0,(i) = 1−

m2
AdS,(i)

2
√
λ

, (12.3)

where
m2

AdS,(1) = (k + 4)2, m2
AdS,(2) = k2, k ∈ N0 (12.4)
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is the squared AdS mass of the two possible solutions for the equations of motion of the
Kalb-Ramond field, and the integer k corresponds to the mode number of the spherical
harmonics on the S5. For λ→∞, the intercepts correspond to that of a pure spin-2 and
spin-1 exchange, respectively. As demonstrated in Ref. [196], this shift in the intercept
away from integer values can be understood in the bulk theory in terms of diffusion in the
transverse space with diffusion constantD = 1/(2

√
λ). Consider for example the product

space AdS5 × S5 with metric

ds2 =

(

r

RD3

)2

ηµνdxµdxν +

(

RD3

r

)2

dr2 + ds2
S5
, (12.5)

and r identified with some energy scale. The curved background in (12.5) leads to an
effective slope parameter since the Mandelstam variables are red-shifted

s̃ =

(

RD3

r

)2

s, t̃ =

(

RD3

r

)2

t (12.6)

and we may thus identify

α′
eff (r) =

(

RD3

r

)2

α′. (12.7)

Hence, the higher-dimensional nature of the Pomeron and Odderon gives rise to a contin-
uum of their four-dimensional counterparts for each value of r. At high center of mass
energies s and for t > 0, the dominant trajectory in a scattering amplitude of the form

A(s, t) ∼
(

s

s0

)j±+
α′

eff
2

t

(12.8)

is the one with minimal value of r and thus determined by the confinement scale r0,
highlighting the connection to glueballs. The situation is reversed for t < 0, where
large values of r dominate and the effective slope in (12.7) vanishes. We further note
that for k = 0, the strong coupling results in (12.3) already bear a striking resemblance
to the pQCD picture, where, to leading order, the weak coupling expansion is found to
be [181, 182, 199]

j
(+)
0 = 1 +

λ

π2
ln 2, j

(−)
0,(1) = 1− λ

π
0.247, j

(−)
0,(1) = 1. (12.9)

Interestingly enough, the Odderon solutions with intercept at j = 1 persist even for
higher order expansions in λ, both at strong and weak coupling [182,198]. This connection
between the ”hard” and ”soft” Pomeron, dominating above or below the confinement
scale, respectively, is not accidental. Using Gauge/String duality, Ref. [196] found the
remarkable result that a running coupling leads to a transition between the soft and
hard Pomeron in certain kinematical ranges of s and t and demonstrated that the curved
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geometry leads to the expected power law behavior of amplitudes expected in gauge
theories, instead of the exponential suppression found from string scattering in flat space
[200]. In Refs. [201, 202] this formalism was used to compute structure functions of Deep
Inelastic Scattering (DIS) and confronted with measurements from HERA in the range
of 0.1 GeV2 < Q2 < 650 GeV2. Upon identifying the virtuality Q2 with the holographic
coordinate r2 ≃ Q2, they were able to show that the observed running of the Pomeron
intercept in ZEUS data [203] can be attributed to diffusion effects in AdS for large Q2 and
confinement effects at low virtualities.

Even though it has been heuristically demonstrated in Refs. [191, 196] that the Reggeon
”form factors”

(

s

s0

)α′t/2

(12.10)

arise from string scattering in AdS, the confining hard-wall model based on type IIB
supergravity on AdS5 × S5 considered therein does not display this behavior. This is
because the appearance of (12.10) in a scattering amplitude crucially depends on the
detailed nature of the confinement. In Chapter 13 we shall thus construct a holographic
model that successfully reproduces this behavior while simultaneously incorporating all
the features described above.

For additional important developments relevant for this part, see Refs. [200–202, 204–
207].

12.1 Top-Down vs. Bottom-Up

Top-down holographic constructions, like the WSS model, which has been extensively
discussed in Part II in the context of glueball physics, only partly lend themselves to Regge
phenomenology. This is mostly due to the mass spectra not scaling linearly width mode
number (c.f. (11.2)), but also due to their complexity. Nevertheless, they were with partial
success applied to pp scattering [208, 209] and central production of η, η′ [210, 211] as
well as f1 [212] and J/Ψ production near threshold [213]. For an attempt to describe
DIS in the Regge regime within the WSS model, see Appendix E. In contrast, bottom-up
models are simplified versions of top-down constructions, retaining only the essential
ingredients to describe specific phenomena. This simplification facilitates calculations and
allows for a more realistic Ultraviolet (UV) behavior of certain observables, albeit at the
expense of theoretical rigor. Early attempts related to glueball physics within bottom-up
models can be found in Refs. [125–131]. For bottom-up holographic Regge phenomenology
see Refs. [214, 215]. In the following chapters, we will employ the soft-wall model [216]
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together with a slight variation thereof, referred to as the repulsive-wall model, to address
Pomeron and Odderon physics within a holographic framework.
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Holographic Odderon at
TOTEM?

13

In this chapter, we investigate the potential role of the Odderon in diffractive pp and
pp elastic scattering, building upon the recently claimed observation of the Odderon
reported by the D/O and TOTEM collaborations [189] in the data shown in Fig. 13.1.

The plot shows a distinctive diffractive pattern with a bump-to-dip ratio that appears to
decrease with

√
s for the pp data and about constant for the pp data. A feature usually

attributed to the presence of an Odderon exchange. Our approach utilizes a dual gravity
formulation of QCD, incorporating a repulsive wall to account for confinement, which
turned out to be a crucial ingredient in achieving Reggeization together with Gribov
diffusion. Previous work has partially examined the Odderon’s contribution in pp and pp
scattering using effective string theory and AdS/CFT in the conformal limit, as discussed
in Refs. [218, 219].

In Fig. 13.2 we show the pertinent Reggeized glueball exchanges for diffractive pp and
pp̄ scattering. As stated above, the C-even and -odd contributions add in the elastic pp
scattering amplitude and subtract in the crossed pp̄ amplitude

App = AP
pp +AO

pp

App̄ = AP
pp −AO

pp.
(13.1)

To analyze (13.1), we set up a holographic bottom-up model.

13.1 The Repulsive-Wall Model

As shown in Appendix F, the soft-wall model fails to capture Gribov diffusion, which is
necessary to describe the data in the off-forward region. In a sense, the soft-wall model
with metric

ds2 = e2A(z)(dz2 + ηµνdxµdxν),

e2A(z) =

(

R

z

)2

eaκ
2z2
,

(13.2)

115

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


TOTEM √
s = 13 TeV√
s = 8 TeV√
s = 7 TeV√
s = 2.76 TeV√
s = 1.96 TeV (extrap.)

0.4 0.5 0.6 0.7 0.8 0.9 1

|t| (GeV2)

10−2

10−1

100

d
σ
/d

t
(m
b
/G
eV
2
)

(a) (b)

Fig. 13.1.: Differential cross sections at different center of mass energies for pp scattering from the
TOTEM collaboration (a) and for pp̄ scattering from the D/O collaboration (b) [189, 217]

.

p p

p p

P

(a)

p p

p p

O

(b)

Fig. 13.2.: Feynman diagrams for diffractive pp scattering through (a) Pomeron and (b) Odderon
exchange
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is too confining to capture the diffusive behavior in AdS. We will thus linearize the bulk
equations of motion in the dilaton, which has been absorbed into the metric. The constant
prefactor a serves to discriminate between open |a| = 12 and closed |a| = 22 string
fluctuations as well as attractive a < 0 and repulsive a > 0 dilaton. The parameter R will
be matched using the duality between type IIB supergravity on AdS5 × S5 and N = 4

super Yang-Mills theory
R2 ≡ R2

D3 =
√
λα′, (13.3)

with R = 1 in the following.

13.2 Reggeization of the Even and Odd Spin-j
Exchanges

13.2.1 Even Spin-j

The even spin-j exchanges arise through the Reggeization of the transverse-traceless spin-2
graviton ǫTTµν hj=2 with equations of motions following by linearizing the Einstein-Hilbert
action and anomalous dimension of

∆g(j = 2) = 2 +
√

4 +m2
5R

2 (13.4)

where m2
5R

2 = 0. To resum the even spin-j exchanges, we deform the anomalous
dimension

∆g(j) = 2 +
√

4 +m2
5R

2 +m2
jR

2 (13.5)

by using the quantized mass spectrum of the closed string

j = 2 +
1

2
α′m2

j . (13.6)

The anomalous dimension (13.5) is thus given by

∆g(j) = 2 +
√

2
√
λ(j − jP) (13.7)

with
jP = 2− 4

2
√
λ
. (13.8)

For completeness, we note that in Ref. [198] higher order corrections in 1/
√
λ to the

Pomeron intercept have been computed. Based on the original BFKL analysis, we assume
that j is the Mellin inverse of the squared center of mass energy s. The holographic
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Pomeron Kernel G2(j, t, z, z′) will be computed using the bulk equations of motion for a
scalar field analytically continued to spin-j by (13.5). To obtain the bulk-to-bulk propa-
gator G2(s, t, z, z′), we resum the entire tower of even signature spin-j contributions by
performing a Mellin transform together with a Sommerfeld-Watson transform

G2(s, t, z, z′) =

∮ dj
4πi

(α′s)j−2 + (−α′s)j−2

sin π(j − 2)
G2(j, t, z, z′). (13.9)

In (13.9) we have performed a shift in j such that the leading state on the Pomeron
trajectory corresponds to a spin-2 exchange. The distinction between G2(j, t, z, z′) and
its even signature Mellin transform G2(s, t, z, z′) is made through its argument. The
rightmost part of the contour in (13.9) is determined by the branch point of G2(j, t, z, z′).
In order to resum the trajectory, we will close the contour to the left. The poles to the
right of the branch point, at non-negative integers, correspond to glueball modes.

13.2.2 Odd Spin-j

Similarly to the even signature contributions, the anomalous dimension for C-odd vector
exchange is given by [215]

∆g(j = 1) = 2 +
√

4 +m2
5R

2 (13.10)

withm2
5R

2 = −4+m2
k andwherewe identified the physical polarizations of theC2 ∼ ⋆dC

Ramond-Ramond field with the gauge field C1. Note that we addedm2
k = k2, (4 + k)2

with k ∈ N0, corresponding to the two branches of the holographic Odderon [191]. The
branch with m2

k = k2 has been argued to be unphysical since it does not correspond
to propagating degrees of freedom. However, as was already argued in Ref. [191], upon
analytically continuing to spin-j, they become physical, as can be seen by explicitly
computing the bare type IIB B2 propagator (see (3.23) in [218]). On the other hand, this
branch sources the boundary operator O(16)

k ∼ trF+X
k+1 and is thus more sensitive

to the adjoint scalars of the supersymmetry theory. In contrast, the m2
k = (4 + k)2

branch sources O(16)
k ∼ trF+F

2
−X

k, in accordance with (12.1-12)2. The C-odd closed
string exchange of Cj gauge fields is thus again resummed by shifting its anomalous
dimension

∆g(j) = 2 +
√

4 +m2
5R

2 + m̃2
jR

2 (13.11)

1 The B2 and C2 fields of type IIB supergravity mix, similarly to the case of B2 and C3 in the type IIA
computations of Part II

2 See for example Table 7 of Ref. [220].
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by the quantized mass spectrum of the closed string

j = 1 +
1

2
α′m̃2

j . (13.12)

The anomalous dimension (13.11) is hence given by

∆g(j) = 2 +
√

2
√
λ(j − jO) (13.13)

with
jO = 1− m2

k

2
√
λ
. (13.14)

The higher-order corrections considered in Ref. [198] showed that, in accordance with the
JW and BLV solutions of pQCD and (13.14), the Odderon has one solution with intercept
precisely at 1 and another solution with intercept slightly below 1. We proceed in a similar
fashion as for the Pomeron. Reggeizing the Kalb-Ramond field via Mellin transform and
pertinent projection onto odd-signature exchanges via Sommerfeld-Watson transform, we
have

G1(s, t, z, z′) =

∫ dj
4πi

(α′s)j−1 + (−α′s)j−1

sin π(j − 1)
G1(j, t, z, z′). (13.15)

We shifted the trajectory so that the leading state on the Odderon trajectory corresponds
to a spin-1 exchange.

To summarize, the even and odd signature exchanges can be Reggeized by

Gj±(s, t, z, z′) =

∮ dj
4πi

(α′s)j−j± + (−α′s)j−j±

sin π(j − j±)
Gj±(j, t, z, z′), (13.16)

with j+ = 2 and j− = 1.

13.2.3 Resummed Bulk-to-Bulk Propagator

In a holographic scattering amplitude, states with four-dimensional spin σ contribute
an extra factor of pσ compared to four-dimensional scalars, where p ∼ eA(z) is the red-
shifted four-dimensional energy [200]. Thus, the analytically continued spin-2 and spin-0
bulk-to-bulk propagator are related by

G2(j, t, z, z′) = e−(j−2)(A(z)+A(z′))G0(j, t, z, z′) (13.17)

where the scalar propagator obeys the Sturm-Liouville equation

LzG0(z, z′) =
δ(z − z′)
w(z)

(13.18)
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with
Lz =

1

w(z)
dz(w(x) p0(z) dz) + p2(z). (13.19)

The two linearly independent solutions, one regular and one singular, of the homogeneous
equation (13.18)

Lz y1,2(z) = 0 (13.20)

can be utilized to obtain the Green’s function as

G(z, z′) =
1

wp0W
y1(z<)y2(z>), (13.21)

with the Wronskian given by W = (y′
1y2 − y′

2y1). Note that the combination wp0W is a
constant independent of z, z′, and that (13.21) is symmetric in z, z′. This becomes more
evident when we employ the solutions derived from the eigenvalue problem Lzyn = λnyn,
with

G(z, z′) =
∑

n

yn(z)y∗
n(z′)

λn
, (13.22)

and the normalizations
∫

dz w(z)y∗
n(z)ym(z) = δnm, (13.23)

following from the hermiticity of Lz = L†
z in R.

For the particular background in (13.2), the weights are given by

w(z) =
√
g

p0(z) = −gzz(z)
p2(z) = Sj − tz2,

(13.24)

where Sj = m2
5R

2 +m2
jR

2. To solve (13.19), we employ a rescaling of the form

G0(j, t, z, z′)→ (zz′)
3
2 e

3
4
κ2(z2+z′2)G0(j, t, v, v′) (13.25)

with v = 3/2κ2z2. Upon expansion of the dilaton to linear order e2av/3 = 1 + 2av/3, this
leads to the Whittaker equation

K ′′
0 (v) +

(

−Sj(1 + 2
3v)

4v2
+
v(2− v)− 3

4v2
+
t/a

2v

)

K0(v) =
δ(v − v′)√

6aκ
. (13.26)
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The homogeneous solutions of (13.26) are readily obtained

K1(v) = e− v
2 v

1
2

+α
M

(

1

2
+ α− β, 1 + 2α, v

)

K2(v) = e− v
2 v

1
2

+α
U

(

1

2
+ α− β, 1 + 2α, v

)
(13.27)

with the Kummer function M, regular at the origin, and the Tricomi function U, irregular
and with a branch cut at the origin, and where

α =
∆g(j)− 2

2
, β =

3− Sj −m2
5 + 3t̃/a

6
. (13.28)

To obtain the inhomogeneous solution to (13.26), we glue together the regular and irregular
solution

K0(v, v′) =
1

2
AK2(v)K1(v′) v > v′

K0(v, v′) =
1

2
AK1(v)K2(v′) v < v′,

(13.29)

and fix the normalization by the Wronskian

A−1 = −
√

6aκW(K2,K1) = −
√

6aκΓ(1 + 2α)

Γ

(

1
2 + α− β

) . (13.30)

By linearizing the dilaton, the conformal intercept resulting from the gamma function is
shifted

jP(t) = j+ −
3

2
√
λ

+
α′

2
t, (13.31)

where we identified 5aκ2R2 = 2. The intercept is shifted slightly below what one would
obtain for the soft-wall model or pure AdS (see Appendix F). The positive root of the
argument of the gamma function gives a pole with higher intercept

jP(t) = j+ +
6√
λ

+
α′

2
t (13.32)

that is outside the contour of the Sommerfeld-Watson transform in Fig. 13.3. Reverting
to the original coordinates and functions, we obtain the analytically continued scalar
bulk-to-bulk propagator

G0(j, t, z, z′) = −(zz′)2

2
(3aκ2zz′/2)∆g(j)−2 Γ(

3∆g(j)+Sj−6+3t̃/a
6 )

Γ(∆g(j)− 1)
M(z)U(z′), (13.33)
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Rej

Imj

1 3 5jO

Fig. 13.3.: Complex j-plane structure for the odd spin-j bulk-to-bulk propagator. The poles give
rise to the vector glueball spectrum, and the cut gives rise to the Odderon.

where the shorthand

M(z) = M

(

Sj + 3∆g(j)− 6− 3t̃/a

6
,∆g(j)− 1, aκ2z2

)

(13.34)

and similarly for U(z), was introduced. The branch cut of

Γ

(

1

2
+ α− β

)

= Γ(iy) ≈ e−iγEy/iy (13.35)

is chosen to the left of the integration contour, along the negative real axis as shown
in Fig. 13.3. In the Regge limit of large s and small t, the integral is dominated by the
saddle point. Recalling thatm2

5 = 0 for the Pomeron, we evaluate (13.16) by a saddle point
approximation with the fully symmetric result

G2(s, t, z, z′) = −3

5
f+(λ)

√

3D
5πτ

(zz′)2

2
e− a

2
(jP(t)−2)κ2(z2+z′2)(3aκ2zz′/2)e(jP(t)−2)τ ,

(13.36)
with τ = ln(α′szz′) = χ + ln zz′ and χ = ln(α′s) the rapidity. For the evaluation we
used M(0, 0, z) = U(0, 0, z) = 1 and defined the signature factor

f+(λ) = i+
4
√
λ

3π
− π

4
√
λ
. (13.37)

For the Odderon, we continue analogously. By relating the analytically continued spin-1
and spin-0 by

G1(j, t, z, z′) = e−(j−1)(A(z)+A(z′)) G̃0(j, t, z, z′) (13.38)

with the rescaled scalar field

G̃0(j, t, z, z′) = (zz′)−1G0(j, t, z, z′), (13.39)

and
∆g(j) = 2 +

√

4 + Sj = 2 +mk, (13.40)
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we obtain
jO(t) = j− −

m2
k − 1

2
√
λ

+
α′

2
t. (13.41)

The JW and BLV solutions of perturbative QCD are also reflected in the two branches
of the holographic Odderon with m2

k = k2 and m2
k = (k + 4)2 obtained from type IIB

supergravity. For k = 0, the intercept in (13.41) is either greater than 1, and hence outside
the contour of Fig. 13.3, or subleading. The solution with k = 1 has an intercept precisely
at 1 and is thus the leading branch cut that will be picked up when evaluating (13.16) via
saddle-point approximation. Note that the top-down construction of Ref. [218] found a
similar intercept, though their solution only captures the forward behavior. Carrying out
the integration of (13.16) along the contour in Fig. 13.3 in the saddle-point approximation
and by using (13.38) and (13.41), the Odderon bulk-to-bulk propagator is given by

G1(s, t, z, z′) = −3

5
f−(λ)

√

3D
5πτ

(zz′)
2

e− a
2

(jO(t)−1)κ2(z2+z′2)(3aκ2zz′/2)e(jO(t)−1)τ ,

(13.42)
with the odd signature factor

f−(λ) = i+
4
√
λ

(m2
k − 1)π

− (m2
k − 1)π

12
√
λ

. (13.43)

Note that there is a pole at k = 1, which is apparent from the form of (13.16). This pole is
in the literature referred to as maximal Odderon and may be regulated by constructing
an amplitude whose numerator has a 0 at j = 1. Unfortunately, in our case it is not
regulated. A different geometry might be able to cure the problem and allow for a study
of the maximal holographic Odderon. Interestingly enough, the k = 2 branch of (13.37)
and (13.43) coincide for large λ.

13.2.4 Conformal Limit

The conformal limit of (13.18) is obtained by taking κ→ 0

− d2

dz2
G0 +

(

Sj + 15
4

z2
− t
)

G0(z) = δ(z − z′) (13.44)

where we rescaled the bulk-to-bulk propagator as

G0(j, t, z, z′)→ (zz′)3/2G0(j, t, z, z′). (13.45)
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The two independent homogeneous solutions to (13.44) are given by the regular and
singular Bessel functions J and Y , respectively. Explicitly we have

G1(z) =
√
z J−

√

Sj+4
(
√
tz)

G2(z) =
√
z Y−

√

Sj+4
(
√
tz),

(13.46)

and hence

G0(j, t, z, z′) = A(zz′)2J−ν(
√
tz<), Y−ν(

√
tz>)

ν = ∆g(j)− 2,
(13.47)

with the normalization fixed by the Wronskian

A−1 =W(G1(z), G2(z)) =
2

π
. (13.48)

Reverting the rescaling, we obtain the scalar AdS bulk-to-bulk propagator

G0(j, t, z, z′) =
π

2
(zz′)j± J2−∆g(j)(

√
tz<)Y2−∆g(j)(

√
tz>). (13.49)

In the Regge limit x =
√
t z ≪ 1 the Bessel functions simplify

J−ν(x) ≈ 1

Γ(1− ν)

(

x

2

)−ν
,

Y−ν(x) ≈ − 1

π
cos(νπ) Γ(ν)

(

x

2

)−ν
.

(13.50)

The Sommerfeld-Watson transform (13.16) thus reduces to

Gj±(s, t, z, z′) = −
∫ dj

4πi

1 + e−iπ(j−j±)

sin π(j − j±)

cosπ(∆g(j)− 2)

Γ(3−∆g(j))
Γ(2−∆g(j))

×
(

tzz′

4

)2−∆g(j)

(α′szz′)j−j±
(13.51)

We proceed to evaluate (13.51) in the saddle point approximation. The branch cut of
Γ(2 − ∆g(j)) = Γ(iy) ≈ e−iγEy/iy at ∆g(j) − 2 = −iy = is chosen to the left of
the integration contour, along the negative real axis. In the Regge limit, the integral is
dominated by the saddle point located at

∆g(j)− 2 =

(

ln(zz′|t|)
2Dχ

)2

→ 0, (13.52)
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which we can use to approximate

Gj±(j, t, z, z′) = f±(λ)

√

D
4πχ

(zz′)j±

2
(α′szz′)jP/O−j±e− ln(zz′|t|)2

4Dχ (13.53)

for fixed but large rapidity χ, and with jP/O given by (13.8-13.14). The signature factors
are now given by

f+(λ) = i+

√
λ

π
− π

3
√
λ

(13.54)

and
f−(λ) = i+

4
√
λ

πm2
k

− m2
kπ

12
√
λ
. (13.55)

Once more, the signature factor for the k = 2 branch coincides with that of the Pomeron.
As with the repulsive-wall scenario, the presence of the pole prevents fixing the intercept at
1 withm2

k = 0. In the AdS limit, diffusion becomes logarithmic in z, where the latter may
be identified with the size of the transverse dipoles or strings composing the exchanged
Pomeron/Odderon.

Forward Region

Restricting to the forward region, the solution to (13.44) is given by a superposition of
conformal plane waves

G0(j, 0, z, z′) =

∫

dν

2π

eiν(ρ−ρ′)

4ν2 + 4 +m2
±

(13.56)

with z = e− ρ
2 and m2

+ = m2
jR

2, m2
− = m2

kR
2 + m2

jR
2. Inserting (13.56) into (13.16)

yields

Gj±(s, 0, z, z′) =

√

D
4πχ

(zz′)j±(α′szz′)jO/P−j± e
− (ρ−ρ′)2

4Dχ , (13.57)

with the shifted Pomeron jP and Odderon jO intercepts. The shift of the intercept is seen
to follow from the diffusion in rapidity in AdS space

τ = ln(α′szz′) ∼ χ = ln(α′s) (13.58)

with diffusion constant
D =

1

2
√
λ
, (13.59)

in agreement with the original analysis in [191, 196].
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Finite Impact Parameter

The bulk-to-bulk propagator for forward scattering may alternatively be derived from
its representation in impact parameter space. To demonstrate this, consider the Fourier
inverse of (13.44)
(

− 1√−g∂z g
zz√−g ∂z−z2∂2

⊥ +Sj

)

G̃0(j, b, z, b′, z′) =
δ(z − z′)√−g δ2(b⊥−b′

⊥) (13.60)

For the sake of simplicity, our discussion will focus on the Odderon propagator; the
Pomeron propagator can be derived in a similar manner. The solution to (13.60) is given
by

G̃0(j, b, z, b′, z′) =
1

4πzz′
e−
√

Sjξ

sinhξ
(13.61)

with ξ fixed by the chordal distance in AdS

cosh ξ = 1 +
(z − z′)2 + (b− b′)2

2zz′ (13.62)

Recall that Sj = 2
√
λ(j − jO) develops a branch point at j = jO as displayed in Fig. 13.3.

The Sommerfeld-Watson transform (13.16) of the solution (13.61) is given by

G1(s, t, z, z′) =

∫

d2b⊥ e
iq·b⊥

∫ dj
4πi

(

sj−1 + (−s)j−1

sin(π(j − 1))

)

(α′zz′)j−1 G̃0(j, b⊥, z, b
′
⊥, z

′),

(13.63)
and integrated along the contour in Fig. 13.3. In the forward limit, we may transform from
b⊥ to ξ using (13.62) and

d2b⊥ = 2πzz′sinhξ dξ, (13.64)

to obtain

G1(s, 0, z, z′) =

∫ ∞

ξ0

2πzz′dξ
∫

CL

dj
4πi

(

1− e−iπ(j−1)

sin(π(j − 1))

)

(α′szz′)j−1 e
(2−∆g(j))ξ

4π
,

(13.65)
with ξ0 = | ln z/z′|. In the double limit of large rapidities τ = ln

(

α′szz′)≫ 1, and strong
coupling

√
λ≫ 1, the j-integration can be evaluated to leading order in

√
λ/τ ≪ 1 by

following the original arguments presented in Ref. [197]. The resulting expression is

G1(s, 0, z, z′) ≈ zz′

4

(

α′szz′)jO−1
f−(λ)

(

√
λ

2π

)

1
2
∫ ∞

ξ0

dξ ξ
e− ξ2

4Dτ

τ
3
2

. (13.66)
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The remaining Gaussian integral is readily carried out with the result

G1(s, 0, z, z′) ≈ f−(λ)
(

α′szz′)jO−1 zz′

2

√

D
4πτ

e− ξ2
0

4Dτ . (13.67)

Following the analogous steps for the Pomeron, we obtain

G2(s, 0, z, z′) ≈ f+(λ)
(

α′szz′)jP−2 (zz′)2

2

√

D
4πτ

e− ξ2
0

4Dτ (13.68)

in agreement with (13.57).

13.3 Bulk Dirac Fields

We identify the proton and its antiparticle with bulk Dirac fermions. The nucleon is
described by the chiral spinor pair Ψ1,2, where the index 1, 2 refers to the boundary
chirality 1, 2 = ± = R,L. The bulk fields source the QCD boundary operators O± with
anomalous dimension±M = ±(∆− 2) = ±(τ − 3/2) and where τ is the twist. The bulk
fermion action is given by

SF =
1

g2
5

∫

d5x
√
g

(

i

2
Ψ1,2e

M
M̂

ΓM̂
←→
DMΨ1,2 − (±M) Ψ1,2Ψ1,2

)

, (13.69)

with 1
2 ln g(z) = 2A(z) = 2 ln R

z + aκ2z2 and covariant derivative

DM = ∂M +
1

8
ω AB
M [ΓA,ΓA] . (13.70)

Index contractions involving the (flat) gamma matrix algebra

ΓM̂ = (γµ,−iγ5),
{

ΓM̂ ,ΓN̂
}

= 2ηM̂N̂ (13.71)

are performed by using the tetrads

eM
M̂

= e−A(z)δM
M̂
. (13.72)

Using the above relations, (13.69) reduces to

SF =
1

g2
5

∫

d4xdze4A(z)
{

− i
2

Ψ1,2
[

/∂ − 2iγ5A
′(z)− iγ5∂z

]

Ψ1,2 + eA(z)MΨ1,2Ψ1,2

}

.

(13.73)
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We eliminate the metric factors in the kinetic term by redefining the field

Ψ→ g5e
−2A(z)Ψ (13.74)

and arrive at

SF =

∫

d4xdz
{

− i
2

Ψ1,2
[

/∂ − iγ5∂z
]

Ψ1,2 + eA(z)MΨ1,2Ψ1,2 + h.c.

}

. (13.75)

The equations of motion following from (13.75) are given by
[

−i/∂ − γ5∂z +MeA(z)
]

Ψ = 0. (13.76)

By performing a chiral Kaluza-Klein decomposition

Ψ1(p, z;n) = ψR(z;n)Ψ0
R(p) + ψL(z;n)Ψ0

L(p)

Ψ2(p, z;n) = ψR(z;n)Ψ0
L(p) + ψL(z;n)Ψ0

R(p),
(13.77)

with
Ψ0
L/R =

∑

n

eiknx 1∓ γ5

2
us(k)fL/R(z), (13.78)

their respective chiral projections, they reduce to a coupled differential equation for the
mode functions

(

∂z ±MeA(z)
)

fL/R = ±mnfR/L (13.79)

which is decoupled by iteration
(

∂2
z ±MA′(z)eA(z) −M2e2A(z)

)

fL/R(z) = m2
nfL/R(z). (13.80)

As in Section 13.2, we linearize the dilaton e2A(z) ≈
(

R
z

)2 (
1 + aκ2

Nz
2
)

, in (13.80) to
get

(

−∂2
z +

M(M ± 1)

z2
+ a2κ4

Nz
2 − m̃2

n

)

fL/R(z) = 0, (13.81)

where m̃2
n = m2

n +M(M ± 1)aκ2
N . Note that we did not expand eA(z) since this would

result in a chirally antisymmetric mass spectrum. Further, we introduced a new mass scale
κN to account for the different Regge trajectories of the baryon and the glueball spectrum.
Transforming coordinates

u = aκ2
Nz

2, (13.82)

and performing one final field redefinition

fL/R(u) = e− u
2 u

1+

√

1+4M(M±1)

4 fL/R(u), (13.83)
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we obtain the Sturm-Liouville normal form for the associated Laguerre polynomials
Lαn(u)

uf ′′
L/R(u) + (α+ 1− u)f ′

L/R(u) + nfL/R(u) = 0, (13.84)

where

α =
1

2

√

1 + 4M(M ± 1)

n =
m̃2
n

4aκ2
N

− 2 +
√

1 + 4M(M ± 1)

4
.

(13.85)

The mass eigenvalues are thus given by

m2
n = 4aκ2

N

(

n+
1

2
− M(M ± 1/2) +

√

1 + 4M(M ± 1)

4

)

. (13.86)

Choosing the positive parity solution with M = ∆ − d
2 , τ = 3 and ∆ = τ + 1

2 , we
obtain

m2
n = 4aκ2

N

(

n+
3

4

)

, α =
2± 1

2
, (13.87)

Reverting the rescalings and coordinate transformations, the holographic chiral baryon
wave functions are given by

ψL(n, z) = nLaκ
2
Nz

4e− 3
2
aκ2

Nz
2
L3/2
n (aκ2

Nz
2)

ψR(n, z) = nRaκ
2
Nz

4e− 3
2
aκ2

Nz
2
L1/2
n (aκ2

Nz
2),

(13.88)

with the normalization fixed by
∫

dznL/RnL/R∗fnL/R(z)fmL/R(z) = δmn, (13.89)

and thus

nL =

√

2
√
aκn!

Γ(n+ 5/2)
, nR = nnL

√

n+ 3/2. (13.90)

Positivity of the squared mass eigenvalues restricts the background to the repulsive-wall
with a > 0. The squared mass eigenvalues display the anticipated Regge behavior, scaling
linearly with the mode number. The non-normalizable solutions of (13.81) are given in
terms of Kummer functions

ψ̃R(n, z) = NR U

(

− n, 3/2, aκ2
Nz

2
)

,

ψ̃L(n, z) = NL U

(

− n, 1/2, aκ2
Nz

2
)

,

(13.91)
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which can be recast as a sum over Regge poles

ψ̃R(p, z) =
∞
∑

n=0

fnpψ̃R(n, z)

p2 −m2

ψ̃L(p, z) =
∞
∑

n=0

fnmnψ̃R(n, z)

p2 −m2
,

(13.92)

with fn = κN/nR. Performing the Lehmann–Symanzik–Zimmermann (LSZ) reduction of
the amplitude will project out the pertinent external states, thus effectively reducing the
bulk-to-boundary propagator to

ψ̃L/R(p, z) = f0 mpψL/R(0, z) (13.93)

13.4 Diffractive pp and pp Scattering

Fig. 13.2 illustrates the Feynman graphs for elastic pp and pp scattering. In the Regge
limit, they involve an exchange of a Pomeron P and Odderon O. In the framework
of dual gravity, these Feynman graphs are replaced by the Witten diagrams depicted
in Fig. 13.4, where the Pomeron and Odderon propagators are replaced by the bulk-to-
bulk propagators G2(s, t, z, z′) and G1(s, t, z, z′), respectively. Building on our previous
analysis in Section 13.2, the Pomeron is associated with a summation of massive even-spin
glueballs, while the Odderon corresponds to a sum of massive odd-spin glueballs. The
solid lines denote the bulk-to-boundary Dirac fermion propagator originating from the
chiral Kaluza-Klein modes of the bulk Dirac fermions discussed earlier in Section 13.3.

The even and odd spin-j contributions to Fig. 13.2 are

App→pp(s, t) =
∑

j=2,4,..

AP(j, s, t) +
∑

j=1,3,..

AO(j, s, t),

App̄→pp̄(s, t) =
∑

j=2,4,..

AP(j, s, t)−
∑

j=1,3,..

AO(j, s, t),
(13.94)

which we will now set up.

13.4.1 Even Spin-j

The even spin-j contribution to diffractive pp scattering in Fig. 13.4a may be factorized
into

iAP(j, s, t) = (−i)VµνjΨΨ(q1, q2, k,mn)G̃µν,αβ(k)(−i)VαβjΨΨ(p1, p2, k,mn). (13.95)
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with the bulk Pomeron-nucleon vertex for the repulsive-wall given by

Vαβ
PΨΨ(p1, p2, k,mn) = −1

2

√
2κ2

∫

dz√ge−3A(z) Ψ(p2, z)γ
αpβΨ(p1, z) Jh(mn, z)).

(13.96)
The coupling is dictated by the holographic principle, where the graviton couples to the
QCD energy momentum tensor. The functions Jh(mn, z) follow from a decomposition of
the Pomeron bulk-to-bulk propagator G2(s, t, z, z′) into pieces depending on z using

Jh(mn, z) ≡
√

3

4
aκz3e−(jP(t)−2)aκ2z2/2, (13.97)

and a Pomeron propagator

G̃µν,αβ(mnk) = −3

5
f+(λ)

√

3D
5πτ

e(jP(t)−2)τ (−i)Pµν,αβ(k), (13.98)

where the relevant flat 4-dimensional spin-2 propagator is

Pµν,αβ(k) =
1

2

(

PµαPνβ+PµβPνα−
2

3
PµνPαβ

)

(k), Pµν(k) = −ηµν+
kµkν
k2

. (13.99)

The 5-dimensional Pomeron exchange is given by

Gµν,αβ(mn, k, z, z
′) = G2(s, t, z, z′)Pµν,αβ(k)

= Jh(mn, z)G̃µν,αβ(mn(j), k)Jh(mn, z
′).

(13.100)

In the Regge limit, we may utilize the high-energy relation for spinor products

u(p2)γµu(p1) = (p1 + p2)µδs1s2 (13.101)

and after reducing the chiral bulk spinors to 4D, the amplitude reduces to

AP(s, t) =
3

5
f+(λ)

√

3D
5πτ

κ2

2
g2
PΨΨ

4s2

(

1 +
t− 4m2

p

s

)

e(jP(t)−2)τδs1s2δs′
1s

′
2

≡ N f+(λ)e(jP(t)−2)τVP(s, t),

(13.102)

where

g
PΨΨ =

729f0mpκ
4
Nκ(n2

L + n2
R)

4(3κ2
N + 8(jP(0)− 2)κ2)5

, N =
3

5

√

3D
5πτ

κ2

2
. (13.103)

Note that we used a = 4 for the closed string exchange and a = 1 for the baryon, which
originates from the open string sector.
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Ψ(q1; z
′) Ψ(q2; z

′)

Ψ(p1; z) Ψ(p2; z)

G2(s, t, z, z
′)

(a)

Ψ(q1; z
′) Ψ(q2; z

′)

Ψ(p1; z) Ψ(p2; z)

G1(s, t, z, z
′)

(b)

Fig. 13.4.: Witten diagrams for diffractive pp elastic scattering through (a) Pomeron and (b) Odderon
exchange

13.4.2 Odd Spin-j

For the odd spin-j contributions, we proceed similarly. We decompose the Odderon bulk-
to-bulk propagator into functions depending on z and a Regge propagator with pertinent
4-dimensional Lorentz structure. The amplitude for diffractive pp scattering is thus given
by

iAO(s, t) =
∑

m≤n
(−i)V(n)µ

jΨΨ(q1, q2, k,mn)H̃µν(mn, k)(−i)V(m)ν
jΨΨ (p1, p2, k,mn)

(13.104)
where

V(1)β
OΨΨ(p1, p2, k,mn) = +

√
2κ2

1

2

∫

dz√g e−2A(z) Ψ(p2, z)σ
αβγ5Ψ(p1, z)kα Jh(mn, z))

V(2)β
OΨΨ(p1, p2, k,mn) = −

√
2κ2

1

2

∫

dz√g e−2A(z) Ψ(p2, z)γ
βγ5Ψ(p1, z) Jh(mn, z)),

(13.105)

with
Jh(mn, z) =

√

3

4
aκz2e−(jO(t)−1)aκ2z2/2, (13.106)

are now the bulk Odderon-nucleon vertices. They follow from an assumed minimal
coupling of the boundary sources BMN and CMN in (12.1) to the chiral Dirac fermion
current

ΨσABΨ, σAB =
i

2

[

ΓA,ΓB
]

. (13.107)

The reduced Odderon exchange is given by

Hµν(mn, k, z, z
′) = Jh(mn, z)H̃µν(k, z, z

′)Jh(mn, z
′), (13.108)
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where

H̃µν(k, z, z
′) = −3

5
f−(λ)

√

3D
5πτ

e(jO(t)−1)τ (−i)Pµν(k). (13.109)

As was the case for the spin-1 glueballs in Part II, the equations of motion of the Kalb-
Ramond B2 and Ramond-Ramond fields C2, C3 are tied through a topological mass term
that originates from a Chern-Simons type interaction (c.f. (7.4) for type IIA supergravity).
In particular, the fluctuationsCµν andBµz form the 1−− vector glueball, which transmutes
into the Odderon upon Reggeization. To project onto the physical degrees of freedom for
a vector exchange, we utilize Cµν ∼ ǫµνρσF ρσ , up to factors depending on the particular
string theoretic origin of this coupling. In the forward limit, only the 5-dimensional axial
Dirac coupling will survive and thus encodes contributions to the total cross sections,
as well as their difference ∆σtot = σpptot − σpptot. Recall that in pQCD, the BKP Odderon
is a Reggeized 1−− exchange arising from the resummation of the soft, collinear, and
rapidity ordered gluon emissions. As such, it corresponds to the (1

2 ,
1
2) representation of

the complexified Lorentz group SO(3, 1). This coupling of the Kalb-Ramond and Ramond-
Ramond fields is absent in type II supergravity actions3, which makes a direct comparison
between pQCD and top-down holography difficult. Of course, if the assumed holographic
principle holds, there should be a clear relation between them. Ref. [218] first encountered
this problem and obtained a baryon coupling on the light-cone through the polarization
B+z on AdS5×S5, which furnishes a (0, 1) representation of the complex SO(3, 1). One
way to determine a vector-like coupling in top-down holographic QCD would be to use
the WSS model of Part I where baryons are represented by instanton configurations of
the flavor gauge fields [222], which naturally couple to the vector glueball through the CS
term.

We again reduce the chiral bulk Dirac spinors to 4D and utilize the LSZ formula to obtain

g
(1)

OΨΨ
=

∫

dz√g e−2A(z)
(

ψL(z)2 + ψR(z)2
)

Jh(mn, z) =
7776f0mpκ

4
Nκ(n2

L + n2
R)

(9κ2
N + 32(jO(0)− 1)κ2)4

g
(2)

OΨΨ
=

∫

dz√g e−2A(z) 2ψL(z)ψR(z) Jh(mn, z) =
15552f0mp

√
3πκκ4

NnLnR
(9κ2

N + 32(jO(0)− 1)κ2)4

(13.110)
3 See for example Ref. [220] or the Appendix of Ref. [221]
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In the Regge limit, the amplitude is given by

AO(s, t) =
3

5
f−(λ)

√

3D
5πτ

e(jO(t)−1)τ κ
2

2

×
[

g
(1)2

OΨΨ
4kµkαu(p2)σµνu(p1)Pνβ(k)u(q2)σαβu(q1)

+ g
(2)2

OΨΨ
(p1 + p2)µPµν(k)(q1 + q2)νδs1s2δs′

1s
′
2

+ ig
(1)

OΨΨ
g

(2)

OΨΨ

(

kαu(q2)σαβu(q1)Pβν(p1 + p2)νδs1s2

+ kµu(p2)σµνu(p1)Pνβ(k)(q1 + q2)βδs′
1s

′
2

)

]

≡Nf−(λ)e(jO(t)−1)τVO(s, t),

(13.111)

where we once more used u(p2)γµu(p1) = (p1 + p2)µδs1s2 for s→∞. In particular, the
forward limit of the amplitude is given by

AO(s, 0) = Nf−(λ)
(

g
(2)

OΨΨ

)2
e(jO(t)−1)τ2s

(

1− 4m2
p

2s

)

. (13.112)

13.4.3 Total Cross Sections

Recall that, after evaluating the Sommerfeld-Watson transform via saddle point approxi-
mation, the signature factors are given by

f+(λ) = i+
4
√
λ

3π
− π

4
√
λ
, f−(λ) = i+

4
√
λ

(m2
k − 1)π

− (m2
k − 1)π

12
√
λ

. (13.113)

For the following analytical computations, we will work strictly in the limit of large ’t
Hooft coupling λ and drop everything subleading. We will, however, keep the subleading
piece in the numerical analysis. By utilizing the optical theorem, we obtain the total cross
sections for pp and pp scattering

σ±(s) =
1

s
Im(AP(s, 0)±AO(s, 0)). (13.114)
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Explicitly, using (13.102) and (13.112) for large s and at t = 0, we obtain

σ±(s) =
6

5

√

2D
5πτ

κ2

2

(

2g2
PΨΨ

e(jP(0)−1)τ

(

1− 4m2
p

s

)

± g(1)2

OΨΨ
e(jO(0)−1)τ

(

1− 4m2
p

2s

)

)

= 2N e(jP(0)−1)τ

(

g2
PΨΨ

(

1− 4m2
p

s

)

± g(1)2

OΨΨ
e(jO(0)−jP(0))τ

(

1− 4m2
p

2s

))

.

(13.115)

The rho-parameters are given by

ρ±(s) =
ReA±(s, 0)

ImA±(s, 0)

=

4
√
λ

3π (1− 4m2
p

s )g2
PΨΨ

e(jP(0)−1)τ ± 4
√
λ

(m2
k

−1)π
(1− 4m2

p

2s )g2
OΨΨ

e(jO(0)−1)τ

(1− 4m2
p

s )g2
PΨΨ

e(jP(0)−1)τ ± (1− 4m2
p

2s )g2
OΨΨ

e(jO(0)−1)τ
,

(13.116)

which approaches the constant
4
√
λ

3π
(13.117)

in the large rapidity limit. This constant is incompatible with data from high-energy
scattering [9] , which instead suggests ρ(s) ∼ 0.1 for

√
s ≥ 100 GeV [223] (and references

therein). In Section 13.5 we will show that, by resumming multi Reggeon exchange in
the eikonal limit, the strong shadowing brought about by the Reggeons decreases the rho
parameter to 0, in accordance with expectations from experiment.

13.4.4 Elastic Differential Cross sections

Carrying out the spin and polarization sums, we obtain the squared amplitude for elastic
scattering of pp and pp as

∣

∣

∣A±
E(s, t)

∣

∣

∣

2
=

s2

4g2
5

[

e2jP(t)τg4
PΨΨ

(

1 +
2t− 8m2

p

s
+

21

16

(

t

s

)2

− 10m2
pt

s2

)

+4e2jO(t)τ

(

g
(2)

OΨΨ

)4

s2
± 4

s
(g

PΨΨg
(2)

OΨΨ
)2e(jP(t)+jO(t))τ + 64e2jO(t)τ

(

g
(1)

OΨΨ

)4
(

t

s

)2






.

(13.118)

13.4 Diffractive pp and pp Scattering 135

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


The interference between the Pomeron and Odderon exchange is highly suppressed in the
strict Regge limit but is still parametrically more important than the Odderon exchange
on its own. The elastic differential cross sections are given by

dσ±
dt

=
1

16πs2
|A±(s, t)|2. (13.119)

This allows us to determine the elastic slope parameter at large rapidity

B±(s, t = 0) =
d

dt

(

ln dσ±
dt

(s, t)

)

t=0

→ 2τ

(

d

dt
jP(t)

)

t=0
= α′τ, (13.120)

and matches the logarithmic value usually found in the literature [223]

B(s, t = 0) = 1GeV−2 ln

(

s

1 GeV2

)

(13.121)

for both the Pomeron and the Odderon with α′ = 1GeV−2.

13.5 Eikonal Elastic Scattering

It is well known that single Pomeron exchange leads to a violation of the Froissart-Martin
bound [224, 225]

σtot . ln

(

s

s0

)2

, (13.122)

and thus unitarity. A simple way to address this issue in the Regge limit is through
the resummation of all t-channel exchanges, a process known as eikonalization [192].
Following Ref. [205], we rewrite the respective total cross sections for Pomeron and
Odderon exchange as

σR(s) =
1

s

∫

d2b⊥dzdz′(
√

g(z)ψ12(jR, z)
)(

√

g(z′)ψ34(jR, z
′)
)

2s Imχ(jR, s, b⊥, z, z
′).

(13.123)
The vertex and metric factors e−3A(z) and e−2A(z), e−A(z) for the Pomeron and Odderon,
respectively, are left implicit. The eikonal phase χ(jR, s, b⊥, z, z′) for the Reggeon R =

P,O, follows from the truncated Born amplitude

χ(jR, s, b⊥, z, z
′) = sj±−1G(jR, s, b⊥, z, z

′) (13.124)
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with j± = 2, 1 for the Pomeron and Odderon, respectively. To ease up on notation, we
introduce the shorthand χR ≡ χ(jR, s, b⊥, z, z′). After Fourier transforming to impact
parameter space with coordinates b⊥, we obtain from (13.36) and (13.42)

s1G2 =
3

5
f+(λ)

√

3D
5πτ

(zz′)2

2
e− a

2
(jP(0)−2)κ2(z2+z′2)(3aκ2zz′/2)e(jP(0)−1)τ e− b2

⊥
2α′τ̃

4π

α′τ̃

s0G1 =
3

5
f−(λ)

√

3D
5πτ

(zz′)
2

e− a
2

(jO(0)−1)κ2(z2+z′2)(3aκ2zz′/2)e(jO(0)−1)τ e− b2
⊥

2α′τ̃
4π

α′τ̃
,

(13.125)

with
τ̃ = τ

(

1− 1

5τ

z2 + z′2

R2

)

, (13.126)

and G2 = G(jP, s, b⊥, z, z′), G1 = G(jO, s, b⊥, z, z′). Notably, the exponent in (13.125)
displays the celebrated Gribov diffusion in impact parameter. After carrying out the
eikonalization, the pp and pp scattering amplitudes are given by

App(s, b⊥, z, z
′) = −2is

(

ei(χP+χO) − 1

)

App̄(s, b⊥, z, z
′) = −2is

(

ei(χP−χO) − 1

)

.

(13.127)

The transformation back to momentum space yields the eikonalized amplitudes

App(s, t) = −2is

∫

d2b⊥ e
−iq⊥·b⊥

(

ei(χP+χO) − 1

)

App̄(s, t) = −2is

∫

d2b⊥ e
−iq⊥·b⊥

(

ei(χP−χO) − 1

)
(13.128)

To further ease up on notation, we introduce

χR(s, b⊥, z, z
′) = aRe

− b2
⊥

2α′τ̃

aP = Ñf+(λ)3aκ2 (zz′)3

2
e− a

2
(jP(0)−2)κ2(z2+z′2)e(jP(0)−1)τs−j+VP(s, t, z, z′)

aO = Ñf−(λ)3aκ2 (zz′)2

2
e− a

2
(jO(0)−1)κ2(z2+z′2)e(jO(0)−1)τs−j−VO(s, t, z, z′)

Ñ =
6

5α′

√

3πD
5τ3

a± = aP ± aO
(13.129)
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withR = P,O and VP(s, t, z, z′), VO(s, t, z, z′) given in (13.102) and (13.111), respectively.
After carrying out the angular integration, we can proceed to integrate over b to get

A±(s, t, z, z′) = −4isπ

∫

bdbJ0(qb)
∞
∑

n=1

(ia±)n

n!
e− nb2

2α′τ̃ = −4iπsα′τ̃
∞
∑

n=1

(ia±)n

nn!
e− α′

2n
q2τ̃ .

(13.130)

However, for the numerical evaluation later on, it proved better to work with (13.128)
instead and carry out the integration numerically, rather than the sum in (13.130).

13.5.1 Eikonalized Cross Sections

For forward scattering, the sum in (13.130) may be carried out analytically

∑

n

(ia±)n

n · n!
= − ( ln(−ia±) + γE + Γ(0,−ia±)) , (13.131)

where Γ(a, b) is the incomplete Gamma function. Working at fixed z, z′, we obtain the
forward amplitude

A±(s, 0, z, z′) = 4iπα′sτ̃
(

ln(−ia±) + γE +O(eia±)

)

, (13.132)

with the incomplete Gamma function strongly suppressed at large rapidities. From (13.132)
and (13.123) we readily obtain the eikonalized total cross sections

σ±(s) =

〈

1

s
Im
(

AP(s, 0, z, z′)±AO(s, 0, z, z′)
)

.

〉

(13.133)

The averaging over the external states in (13.133) for each exchanged Reggeon R = P,O

is carried out via
∫

dzdz′(
√

g(z)ψ12(jR, z)
)(

√

g(z′)ψ34(jR, z
′)
)

, (13.134)

which amounts to

〈a±〉 = Ñ
(

e(jP(0)−1)τf+(λ)s−j+VP(s, t)± e(jO(0)−1)τf−(λ)s−j−VO(s, t)
)

. (13.135)

The eikonalized total cross sections are thus given by

σ±(s) = 4πα′τ̃ Re
(

ln(−i 〈a±〉) + γE +O(ei〈a±〉)
)

, (13.136)
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or, more explicitly

σ±(s) = 4πα′τ
(

(jP(0)−1)τ− 3

2
lnτ+ ln

∣

∣h+±h− e(jO(0)−jP(0))τ
∣

∣+γE+O
)

, (13.137)

with
h± = s−j±VR(s, 0) f±(λ) ≡ h̄± f±(λ) (13.138)

At large rapidities (13.136) asymptotes to the Froissart-Martin bound (13.122)

σ±(s)→ 4πα′ (jP(0)− 1) τ2, (13.139)

and thus, unitarity is restored. Note that the proportionality constant in (13.136) is solely
fixed by the Pomeron intercept.

The difference between the pp̄ and pp cross sections, becomes exponentially small at large
rapidities

∆σ =σ+ − σ− = 4πα′τ ln
∣

∣

∣

∣

1 + h−

h+
e(jO−jP)τ

1− h−

h+
e(jO−jP)τ

∣

∣

∣

∣

→ 8πα′τ
1 + 16λ

3(m2
k

−1)π2

1 + 16λ
9π

h̄−
h̄+

e(jO(0)−jP(0))τ .

(13.140)

∆σ is negative for the Odderon branchm2
k = k2 → 0, corresponding to an intercept of

jO(0) = 1 + 1
2
√
λ
. However, this branch is not picked up by the contour CL in Fig. 13.3.

The leading contribution without a pole in the signature factor (13.43) is from k = 2, which
gives ∆σ > 0. The same holds true for higher values of k, as well as for all values of k for
them2

k = (4 + k)2 branch. This is in qualitative agreement with Ref. [218]4, who traced
this result back to the geometry and polarization Bµz , which we also used. Unfortunately,
no pp and pp measurements or extrapolations at the same center of mass energy exist to
check the above results.

13.5.2 rho and B Parameters

The rho parameters for pp and pp scattering are readily obtained by using (13.132)

ρ±(s) =
ReA±(s, 0)

ImA±(s, 0)
=
−1

2 Im ln(−i 〈a±〉 /+i 〈a±〉∗)

Re ln| 〈a±〉 |+ γE +O . (13.141)

4 Note that they defined ∆σ with an opposite sign.
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g
(2)

OΨΨ
α′ ( GeV−2) g

PΨΨ Nσ Nρ
0 1.098(2) 2.1856(40) 4.6 · 10−3(07) 0.787(190)
15 1.098(2) 2.1856(40) 4.6 · 10−3(07) 0.787(190)
25 1.098(2) 2.1857(40) 4.6 · 10−3(07) 0.787(190)

Table 13.1.: Best-fit parameters for forward quantitites in pp and pp̄ scattering for different input
values of g(2)

OΨΨ
.

At large rapidities, this reduces to

ρ+(s)→
π
2 (1 +O( 1√

λ
))

(jP(0)− 1) τ

ρ−(s)→
O( 1√

λ
)

(jP(0)− 1) τ
.

(13.142)

The strong shadowing caused by the eikonalization of the Born amplitude for a single
Pomeron exchange depletes both quantities to zero, in accordance with expectations from
experiment. Note that the eikonalization does not change the B parameter in (13.120).

For the numerical evaluation, we fix the ’t Hooft coupling to the Lüscher contribution
obtained by using the (time-like) Nambu-Goto string estimate in Ref. [226]

2− 3

2
√
λ

= 1 +
1

6
. (13.143)

The value for the Pomeron intercept is thus close to the phenomenological Donnachie-
Landshoff intercept of 1.08 [227]. The pole of the signature factor f−(λ) in (13.43) prevents
us from exploring the physics of the maximal Odderon. Thus, there is only a subtle
dependence on g(2)

OΨΨ
and we refrain from fitting it to the data. Instead, we will use it as

input in the following fits to obtain an upper bound on this coupling. We perform a global
fit to the total cross sections in (13.136), rho parameters in (13.141) and slope parameter
B(s, t = 0) in (13.120) for the available pp and pp scattering data with

√
s ≥ 1 TeV

[228–235]. The results are collected in Table 13.1. Besides fitting α′, g
PΨΨ we introduced

overall scale factors for the total cross section Nσ and rho parameter Nρ. The results
confirm the very subtle dependence on g(2)

OΨΨ
, which are almost independent in the range of

0 ≤ g(2)

OΨΨ
≤ 25. In Fig. 13.5, Fig. 13.6a and Fig. 13.6b, we show plots of the fitted quantities

for g(2)

OΨΨ
= 15, which showed the fastest convergence, together with the empirical data.
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Fig. 13.5.: Total cross sections for pp and pp̄ scattering, with the parameters given in Table 13.1 for
g

(2)

OΨΨ
= 15.

pp
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Fig. 13.6.: Results for the rho (a) and slope (b) parameters versus
√
s with the parameters given in

Table 13.1 for g(2)

OΨΨ
= 15.
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13.5.3 Elastic Differential Cross Sections

Using the eikonalized amplitudes (13.130), the spin-averaged elastic differential cross
sections are given by

dσ±(s, t)

dt
=

1

16πs2

〈∣

∣A±(s, t, z, z′)
∣

∣

2〉
, (13.144)

where averaging is performed using (13.134). In particular, at large rapidities we have

dσ±(s, t)

dt
=

(2πα′τ̃)2

16πs2

∞
∑

m,n=1

〈gm± a∗n
± 〉

mnm!n!
e

α′tτ̃
2

( 1
m

+ 1
n

)

→ (2πα′τ̃)2

16πs2
〈|a±|2〉 eα

′tτ .

(13.145)

The diffractive nature of the differential cross section (13.144) is best understood in impact
parameter space

dσ±(s, t)

dt
=

1

4π

〈∣

∣

∣

∣

∫

d2b⊥ e
−iq⊥·b⊥

(

1− ei(χP±χO))(s, b⊥, z, z
′)
∣

∣

∣

∣

2〉

(13.146)

with t = −q2
⊥. At large rapidities, the Froissart-Martin (13.139) is saturated, and the

T-matrix in (13.146) approaches the black disc limit to wit

〈 ReT±(s, b⊥)〉 =〈 Re(1− ei(χP±χO))(s, b⊥)〉
→ θ(b(s)− |b⊥|),

(13.147)

with radius proportional to rapidity τ

b(s) =
√

2α′(jP(0)− 1)τ, (13.148)

for both pp and pp̄. Fig. 13.7a illustrates the behavior of the T-matrix as a function of b⊥
for fixed

√
s, and with vertex factors set to unity. Notably, the black-disc limit is reached

at
√
s ∼ 1 PeV. The parameters employed in this analysis are those listed in Table 13.2,

with g
OΨΨ = 15. These values were obtained by a global fit to the empirical differential

cross sections provided by TOTEM [236–240] and D/O [217]. The ratio τ/
√
λ, which we

previously argued to be large for the validity of the saddle point approximation, ranges
between 4.2 and 5.3 for the datasets used in the fits. To further test the validity of this
approximation, data at higher center of mass energies would be welcome.

Similarly, in Fig. 13.7b we illustrate the behavior of the differential cross section

dσ+

d2b⊥
= 2〈ReT+(s, b⊥)〉 (13.149)
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Fig. 13.7.: (a) The real part of the pp T-matrix approaches a step function at large rapidities and
large λ. (b) The differential pp cross section in (13.149) crosses the saturation (dashed)
line at large rapidities and fixed b⊥ for pp.

for different impact parameters values b⊥ = 0.8, 1, 1.2 fm and over χ = lns. The (dashed)
saturation line follows from the condition

dσ+

d2b⊥

∣

∣

∣

∣

S

= 2(1− e− 1
2 ) = 0.79. (13.150)

For b⊥ = 0.8, 1, and 1.2fm, the crossing occurs within the rapidity range χS = 14− 20,
aligning with a recent estimate derived using the standard Nambu-Goto string model (see
Figure 2 in Ref. [241]).

Asymptotically, we obtain from (13.147) and (13.146)

dσ±(s, t)

dt
→ πb2(s)

J2
1 (
√

|t| b(s))
|t| , (13.151)

with the expected diffractive patterns. In the black-disc limit, the first diffractive minimum
is located at

t min(s) ≈ 14.67

b2(s)
. (13.152)

For increasing
√
s it decreases, in accordance with the measurements shown in Fig. 13.1.

Again, (13.151) saturates the Froissart-Martin bound (13.139), in accordance with unitarity.
The total cross sections σ±(s) are directly related to the elastic differential cross section

σ±(s) =

(

16π

1 + ρ2
±(s)

(

dσ±(s, t)

dt

))

1
2

t=0

→ 2πb2(s). (13.153)

The rightmost result is only valid in the large rapidity limit, where the rho parameter
(13.142) depletes to zero.
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Fig. 13.8.: (a) Results for the differential pp cross section (13.146), together with a weighted linear
extrapolation of the results to

√
s = 1.96 TeV and a comparison to the corresponding

TOTEM data and extrapolation [236–240]. (b) Results for the differential pp̄ cross section
(13.146) compared to the data from D/O [217].

√
s α′ [GeV−2] g

PΨΨ Ndσ
1.96 TeV 0.640(21) 1.071(15) 0.003
2.76 TeV 0.715(27) 1.009(3) 0.007
7 TeV 0.607(5) 1.089(3) 0.002
8 TeV 0.626(15) 1.046(9) 0.003
13 TeV 0.587(5) 1.0782(3) 0.002

Table 13.2.: Best fit parameters for the differential cross section data from TOTEM [236–240] and
D/O [217] with a fixed Odderon coupling of g(2)

OΨΨ
= 15. The standard error on Ndσ is

negligible.

Fig. 13.8a displays the fit results for the holographic eikonalized elastic differential pp
cross-section at center-of-mass energies of

√
s = 2.76, 7, 8, and 13 TeV, using data

from [236–240]. Additionally, a linear extrapolation of the fit parameters from Table 13.2
with weighted errors is shown for

√
s = 1.96 TeV, in qualitative agreement with Fig. 13.1.

The diffractive tail is accurately reproduced for scattering data with
√
s ≥ 7 TeV. Above

this center of mass energy, the model parameters appear to converge. The bump-dip region
is less pronounced and exhibits relatively large errors in the TOTEM data at

√
s = 2.76

TeV. Varying the input values for g(2)

OΨΨ
in the fit reveals that, due to the low intercept, the

dependence on this coupling is even less pronounced than for the forward quantities in
Table 13.1.

Our results for the holographic eikonalized elastic differential pp̄ cross section at
√
s = 1.96

TeV, shown in Fig. 13.8b, are compared to those reported by the D/O collaboration. The
diffractive peak is nearly absent in this channel and at this energy. Fig. 13.9 presents
extrapolations of the pp differential cross section to

√
s = 2.76, 7, 8, and 13 TeV, with

the diffractive pattern still evident. Further data to test our predictions at these higher
energies would be desirable.
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Fig. 13.9.: Extrapolated differential pp̄ cross section

Conclusions

We have constructed the elastic pp and pp scattering amplitudes in a Gauge/Gravity dual
approach and confronted them with experimental data. Our construction is based on
Reggeized exchanges of a graviton and Kalb-Ramond field coupled to Dirac fermions
in the bulk using a repulsive-wall background. The graviton is coupled to the baryon
through its energy momentum tensor, while the Kalb-Ramond field couples through a
five-dimensional Pauli coupling.

Upon eikonalization of the leading Witten diagrams, we successfully reproduced the
forward quantities ρ,B and σtot as well as the differential cross sections measurements and
extrapolations reported by TOTEM and D/O. Instead of fitting the gravity dual parameters
α′, λ and g5 to the glueball mass spectrum, we have instead fitted the couplings to
experimental data and obtained an upper bound for the Dirac coupling of a non-maximal
Odderon. However, the first diffractive oscillation in the differential cross section is very
well reproduced by solely using an eikonalized Pomeron exchange. At

√
s = 1.96 TeV,

the diffractive pattern is absent for both pp and pp scattering.

Based on our model, we extracted the proton saturation rapidity and found it to be in the
range 14 < χS < 20. This suggests a parton-x saturation of xS < 10−6, which poses a
challenging task for future colliders.

Although our holographic results for pp and pp̄ elastic cross sections at high energies
align with the reported TOTEM data, they do not definitively support the contributions of
both a Pomeron and an Odderon exchange. This is primarily due to the inability to fix the
Odderon intercept at 1, which prevents us from studying the strongest contribution the
Odderon might make.
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Threshold Photoproduction
of Heavy Pseudoscalar
Mesons

14

The holographic computations on pp and pp scattering in the previous chapter
showed that there is no significant contribution from Odderon exchange with
intercept below 1 in the data from TOTEM and D/O. Another process that has

been argued to be sensitive to Odderon exchange is threshold photoproduction of heavy
pseudoscalar mesons like ηc and ηb. In this chapter, we examine this process via the
exchange of a pseudovector glueball in the reaction γp→ ηc,bp, as depicted in Fig. 13.2b.
At threshold and for intermediate energies, the amplitude is thought to be dominated
by a gluon rich 1+− exchange with a subleading contribution from a nearly on-shell
photon, called the Primakoff effect (see Fig. 14.1b). Whether the pseudovector exchange
is discernable from the Primakoff exchange is an open question that we now try to
address using holographic QCD. Additionally, previous studies usually found that the
differential and total cross sections are in the picobarn range [159, 160, 242–244], posing
a challenging task for experimentalists. To shed light on this issue, we will set up a
holographic framework to compute the corresponding Witten diagrams in Fig. 14.2.

As in the previous chapter, we follow Ref. [191] and identify the gluonic boundary operators
with dimension ∆ = 6

Bµν →dabcGaαβGbαβGcµν

B̃µν →dabcGaαβGbαβG̃cµν .
(14.1)

They are interpreted as C-odd twist-5 operators on the light front. In pQCD, on the other
hand, factorization arguments show that the leading contribution to this process stems
from a C-odd local twist-3 operator [245]

dabcGaα+Gb+α Gc+ν . (14.2)

We will work with the standard soft-wall model with metric

ds2 =

(

1

z

)2

(ηµνdxµdxν − dz2) = e2A(z)(ηµνdxµdxν − dz2), (14.3)
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γ ηc,b

p p

B2 = 1
+−

(a)

γ ηc,b

p p

γ
∗
= 1

−−

(b)

Fig. 14.1.: Threshold photoproduction of ηc,b through (a) s-wave pseudovector glueball exchange
and (b) p-wave photon exchange.

V(q1; z
′) ηc,b(mηc,b

; z′)

Ψ(p1; z) Ψ(p2; z)

G
O

1
(s, t, z, z′)

(a)

V(q1; z
′) ηc,b(mηc,b

; z′)

Ψ(p1; z) Ψ(p2; z)

G
γ
1
(s, t, z, z′)

(b)

Fig. 14.2.: Witten diagrams for threshold production of ηc,b through (a) Odderon and (b) photon
exchange.

and dilaton φ(z) = κ2z2. Consequently, we obtain from (14.3) the tetrads eM
M̂

= zδM
M̂

. To
proceed with the computation of the holographic amplitudes, we need to define the field
content, determine the mass spectrum, and specify interaction terms.

14.1 Bulk Action and Fields

14.1.1 Bulk Pseudoscalar Fields

In the original soft-wall model [216], the massive tower of physical pseudoscalar mesons
arises through chiral symmetry breaking induced by a bifundamental scalar field together
with a mixing of the longitudinal components of the axial vector meson fields. Focusing
on heavy pseudoscalar mesons, we will simplify our analysis by approximating them with
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the fluctuations of the singlet part of Az = 1√
Nf
η, with1 Nf = 1 + 2 of the 5-dimensional

gauge field AM with quadratic action given by

SA = −
∫

d5x
√
ge−φ 1

4g2
5

FMNFMN (14.4)

and ensuing equations of motion

∂M
(√

ge−φFMN
)

= 0. (14.5)

After performing a Kaluza-Klein decomposition with respect to the 4-dimensional and
holographic coordinate, the bulk wave function is seen to solve

�Aµ + zeφ∂z

(

e−φ 1

z
∂zA

µ
)

= 0,

�Az − ∂z (∂µA
µ) = 0,

(14.6)

subject to the gauge condition

∂µA
µ + zeφ∂z

(

e−φ 1

z
Az

)

= 0. (14.7)

The normalizable modes are readily obtained

φn(z) = cnκzLn(κ2z2), (14.8)

and their normalization is fixed by
∫ √

ge−φe−4A(z)φm(z)φn(z) = δmn, (14.9)

giving cn = 1
2 . The mass spectrum displays the anticipated Regge behavior

m2
n = 4κ2(n+ 1). (14.10)

Note that we obtain a divergent decay constant at z′ = 0 given by

Fn =
1

g5

(

e−φ 1

z′∂z′φn(z′)
) ∣

∣

∣

∣

z′=0

. (14.11)

1 The notation 1+2 refers to one heavy and two light flavor branes.
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Assuming that the UV boundary condition is set at z′ ∼ 1
mc

, wheremc is the charm quark
mass2, the result is finite. The bulk wavefunction is thus given by

φn(z) = − fn
mn
× 4g5(n+ 1)κzLn(κ2z2), (14.12)

with fn = −Fn/mn fixed by experiment later on.

14.1.2 Bulk Dirac Fields

We obtain similar formulas for the bulk Dirac fields as in Section 13.3. In particular, the
dynamics of the bulk Dirac fields follow from the action in Section 13.69 but with the
dilaton now explicit

SF =
1

2g2
5

∫

d5xe−φ(z)√g
(

i

2
Ψ1,2e

N
AΓA

(−→
DL,R
N −←−DL/R

N

)

Ψ1,2 − (±M + V (z))Ψ1,2Ψ1,2

)

,

(14.13)
with V (z) = κ2

Nz
2, ωµνz = −1/zηµν and

−→
DL,R
N =

−→
∂ N +

1

8
ωNAB

[

ΓA,ΓB
]

− iAaNT a

←−
DL,R
N =

←−
∂ N +

1

8
ωNAB

[

ΓA,ΓB
]

+ iAaNT
a.

(14.14)

The equations of motion following from (14.13) are given by
(

ieNAΓADL,R
N − i

2
(∂Nφ)eNAΓA − (±M + V (z)

)

Ψ1,2 = 0, (14.15)

and their normalizable solutions are

Ψ1(p, z;n) = ψR(z;n)Ψ0
R(p) + ψL(z;n)Ψ0

L(p)

Ψ2(p, z;n) = ψR(z;n)Ψ0
L(p) + ψL(z;n)Ψ0

R(p),
(14.16)

where

ψR(z;n) = z∆ × ψ̃R(z;n) = z∆ ×
(

nR ξ
τ− 3

2
N L(τ−2)

n (ξN )

)

ψL(z;n) = z∆ × ψ̃L(z;n) = z∆ ×
(

nL ξ
τ−1
N L(τ−1)

n (ξN )

)

,

(14.17)

2 Note that in the case of a bifundamental scalar field, mc should be properly introduced via its non-
normalizable mode.
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with L(α)
n (ξN ) the generalized Laguerre polynomials and we introduced the shorthand

ξN = κ2
Nz

2. The free boundary spinors are normalized such that

u(p)u(p) = 2MN , (14.18)

whereas the bulk fields ψ̃L,R satisfy
∫

dz e−κ2
Nz

2 1

z2τ−3
ψ̃L,R(z;n)ψ̃L,R(z;n′) = δnn′ , (14.19)

giving

nR = nL
√
τ − 1 + n,

nL =
1

κN (τ−2)

(

2Γ(n+ 1)

Γ(τ + n)

)

1
2

.
(14.20)

The fermionic mass spectrum Reggeizes, and we obtain

m2
n = 4κ2

N (n+ τ − 1). (14.21)

The bulk-to-boundary propagator is obtained from the non-normalizable solutions to
(14.15) in terms of Kummer functions

ψ̃R(p, z) = NR U

(

− p2

4κ2
N

, 3− τ, ξN
)

,

ψ̃L(p, z) = NL U

(

− p2

4κ2
N

, 2− τ, ξN
)

,

(14.22)

with NR/NL = p/2κN and

NL =

Γ

(

τ − 1− p2

4κ2
N

)

Γ(τ − 1)
. (14.23)

The bulk-to-boundary propagator in (14.22) can be rewritten as a sum over Regge poles

ψ̃R(p, z) =
∞
∑

n=0

fnp ψ̃R(n; z)

p2 −m2
n

ψ̃L(p, z) =
∞
∑

n=0

fnmn ψ̃L(n; z)

p2 −m2
n

(14.24)

with decay constant fn = 2κN/(nRΓ(τ − 1)) = −Fn/mn.
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14.1.3 Bulk Spin-1 Fields

Soft-Wall

The pseudovector glueball previously considered in Section 9.2.1 arises as fluctuation of
the Kalb-Ramond B2 field with an admixture of the Ramond-Ramond field C3 through
the topological mass term. For simplicity, we consider only the part of the action

SB = −
∫

d5x
√
g

1

12g̃2
5

e−2φHMNOHMNO, (14.25)

which is seen to reduce to that of a massive spin-1 field in 5d as given in (14.4). Note
that the axial gauge field ṼM = (0, Vµ) is obtained through the projection Bµν =

1/
√
−∂2ǫµνρσ∂

ρṼ σ onto the three physical degrees of freedom of a massive spin-1 field
and also gives a correct kinetic term in (14.25). As in 7.2, the photon field follows via VMD
from the polarizations along the 4-dimensional subspace Aµ with open-string coupling
κγ fixed by the rho meson pole in the time-like bulk-to-boundary propagator. Thus, the
following formulas hold equally for the pseudovector glueball and the photon field and
only differ by the respective string couplings. In the following, quantities associated with
a pseudovector glueball will be denoted by an index b. Following [246], we obtain the
normalizable solutions

φn(z) = cnκ
2z2L1

n(κ2z2) ≡ J(mn, z), (14.26)

with the coupling of the closed string sector given by twice that of the open string sector.
The dilaton is thus given by φ = κ2

bz
2 = (2κγ)2z2 = (2κ)2z2 for the corresponding

pseudovector glueball quantities. The normalization is fixed by
∫

dz√ge−φe−4A(z)φm(z)φn(z) = δmn, (14.27)

giving cn =
√

2/(n+ 1) and the resulting decay constant is

Fn =
1

g5

(

e−φ 1

z′∂z′φn(z′)
) ∣

∣

∣

∣

z′=0

= − 2

g5
cn(n+ 1)κ2. (14.28)

The fermionic mass spectrum Reggeizes, and we obtain

m2
n = 4κ2(n+ 1). (14.29)
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We now proceed to fix the mass scale of the spin-1 sector through the rho meson mass of
mρ = 0.775 GeV [9] giving

κγ = 0.3875 GeV−1, κb = 2κγ = 0.775 GeV−1. (14.30)

The bulk wave function may thus be rewritten as

φn(z) =
fn
mn
× 2g5κ

2z2L1
n(κ2z2), (14.31)

where fn = −Fn/mn. The bulk-to-bulk propagator in Fig. 14.2a can be simplified for
threshold production. In particular, the mode sum representation

G1(z, z′) =
∑

n

φn(z)φn(z′)
k2 −m2

n

(14.32)

reduces to

G1(z → 0, z′) ≈ φn(z → 0)

−g5Fn

∑

n

−g5Fnφn(z′)
k2 −m2

n

=
z2

2
× V (k, z′).

(14.33)

For spacelike momenta k2 = −K2, the bulk-to-bulk pseudovector propagator in Fig. 14.2a
with one leg at the boundary is thus given by

G1(z → 0, z′) ≈ z2

2

∑

n

g5Fnφn(z′)
K2 +m2

n

=
z2

2
× Vb(K, z′), (14.34)

with

Vb(K, z) = κ2
bz

2Γ(1 + aK)U(1 + aK , 2, κ
2
bz

2)

= κ2
bz

2
∫ 1

0

dx
(1− x)2

xaK exp

[

− x

1− xκ
2
bz

2
]

, Vb(0, z) = Vb(K, 0) = 1,

(14.35)

where aK = K2/4κ2
b and U(a, b, c) is the confluent hypergeometric function of the second

kind. Analogous formulas hold for the Primakoff exchange.

Hard-Wall

The expansion in (14.34) will lead to divergent z integrals in some couplings. Additionally,
the dilaton, which acts as a regulator in the soft-wall model, is absent in interactions arising
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from the Chern-Simons term. We will thus utilize a hard-wall3 cut-off for said quantities
to only integrate up to a physically reasonable value of z. In the bulk, the normalizable
solutions following from (14.6) with φ = 0 are given in terms of Bessel functions of the
first kind

φn(z) = cnzJ1(mnz), (14.36)

where cn =
√

2/z0J1(mnz0). The position of the hard-wall z0, and thus themass spectrum,
is fixed by the roots of the Bessel function

J0(mnz0) = 0. (14.37)

Again, we fix it by rho meson mass and obtain z0 = 3.103 GeV−1. This will serve as a
hard-wall cut-off for divergent integrals in the Chern-Simons term.

14.1.4 Interactions

The Kalb-Ramond field couples to the flavor branes through the Chern-Simons term in
(7.6). In particular, when reduced to a 5-dimensional theory, we have

SCS = T8

∫

Tr
(

eF ∧
∑

j

C2j+1

)

→ T̃8

∫

d5xǫMNOPQ Tr
(

AMFNOBPQ), (14.38)

where we absorbed constant factors arising from the integration in T̃8 and with F =

2πα′F +B. We will assume that a similar coupling holds for heavy pseudoscalar mesons
like ηc,b, as well as assume a coupling to fermions through their magnetic moment. The
interaction terms of the Kalb-Ramond field with bulk pseudoscalars and Dirac fermions
are thus given by

SB =

∫

d5x
√
g

(

1

2
gCS Tr ǫMNOPAzFMNBOP

+ e−φgBψ
∑

1,2

(±)Ψ1,2e
M
M̂
eN
N̂
σM̂N̂Ψ1,2BMN

)

.
(14.39)

3 The formulas for the hard-wall model are equivalent to those of the soft-wall model but with a vanishing
dilaton (κ → 0). Though this limit must sometimes be taken with care.
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Similarly, we obtain for the U(1) gauge fields

SA =

∫

d5x
√
g

(

e−φ∑

1,2

i

2g2
5

Ψ1,2e
M
M̂

ΓM̂Ψ1,2AM

+
1

2
gCS Tr ǫMNOPAzFMNFOP

+ e−φηP
∑

1,2

(±)Ψ1,2e
M
M̂
eN
N̂
σM̂N̂Ψ1,2 FMN

)

,

(14.40)

which, through VMD, will lead to photon couplings. The couplings gCS and the 5D Newton
constant are given by gCS = Nc

24π2 and g̃5
2 = 2κ2 = 16πGN = 8π2/N2

c , respectively. The
Pauli parameter ηP will be fixed by matching the Pauli form factor to its experimental
value. The trace runs over the flavors and selects the pertinent charges for charmonia
ec = 2/3 e or bottomonia eb = −1/3 e production, respectively.

14.2 Holographic Photoproduction of ηc and ηb

The amplitude displayed in Fig. 14.2 following from the interactions given in (14.39-14.40)
for the production of ηc is given by

iA(s, t)γp→ηp =
∑

n

iÃγp→ηp(mn, s, t) (14.41)

iÃγp→ηp(mn, s, t) = (−i)V µ
Oγη(q1, q2, k,mn) P̃µν(m

O
n ,∆) (−i)V ν

OΨΨ
(p1, p2, k,mn)

+ (−i)V µ
γγ∗η(q1, q2, k,mn) P̃µν(m

γ
n,∆) (−i)V ν

γ∗ΨΨ
(p1, p2, k,mn),

where we defined the bulk vertices

V µ
Oγη(q1, q2, k) = gCS

ec,b

2
√

NfK2

∫

dzφ(z)Jb(mn, z)ǫ
µνρσkνFρσ

V σ
OΨΨ

(p1, p2, k) =
ǫµνρλk

ρηλσ

2
√
K2

∫

dz√ge−φ∑

1,2

(±)Ψ1,2(p2, z)σ
µνΨ1,2(p1, z)Jb(mn, z).

(14.42)

The field strength Fρσ = iqρǫσ(q) − iqσǫρ(q) is now to be understood in terms of the
polarizations ǫµ(q) of the external photon with momentum q and the reduced spin-1 bulk
propagator following from (14.32) is

G1(mn, t, z, z
′)µν = Jb(mn, z)P̃µνJb(mn, z

′),

P̃µν(mn, k) =
−i

k2 −m2
n

Pµν(k), Pµν(k) = ηµν − kµkν

k2
.

(14.43)
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The photon vertices follow in a similar fashion as

V µ
γ⋆γη(q1, q2,K) =

e2
c,b

2
√

Nf

∫

dzφ(z)× z2

2
ǫµνρσFµνFρσ

V
ν(1)

γ⋆ΨΨ
(p1, p2,K) =

ec,b
2g2

5

∫

dz√ge−φ∑

1,2

Ψ±(p2, z)γ
νΨ±(p1, z)J(mn, z)

V
ν(2)

γ⋆ΨΨ
(p1, p2,K) = ηP

e

2

∫

dz√ge−φ∑

1,2

(±)Ψ±(p2, z)σ
µνΨ±(p1, z)KµJ(mn, z)

V
ν(3)

γ⋆ΨΨ
(p1, p2,K) = ηP

e

2

∫

dz√ge−φ∑

1,2

Ψ±(p2, z)γ
νiγ5Ψ±(p1, z)∂zJ(mn, z).

The bulk couplings to ηc,b in (14.42) and (14.44) originate from the Chern-Simons term in
(14.38) and neither include metric nor dilaton factors to regulate the integrals over the
radial coordinate. On the other hand, the couplings to baryons arise from the DBI part of
the action since they are identified with instanton configurations of the flavor gauge fields
and are thus finite4.

With the holographic pseudoscalar wave functions localized at the boundary, we may take
z′ → 0 and for spacelike momenta t = −K2 we can use (14.34) in (14.41) to obtain

iA(s, t)γp→ηp =iÃγp→ηp(s, t)

iÃγp→ηp(s, t) = (−i)Vµ
Oγη(q1, q2, k)× Pµν(∆)× (−i)Vν

OΨΨ
(p1, p2, k)

+ (−i)Vµγγ∗η(q1, q2, k)× Pµν(∆)× (−i)Vν
γ∗ΨΨ

(p1, p2, k)

(14.44)

The normalizable modes in (14.42) are now to be substituted with their non-normalizable
counterparts V(Q, z). For spacelike momenta, we thus get

Vµ
Oγη(q1, q2,K) = gCS

ec,b
2
√

Nf

∫

dzϕ(z)× z2

2
ǫµνρσkνFρσ,

Vσ
OΨΨ

(p1, p2,K) =
gBΨ

2
√
K2

∫

dz√ge−φ2ψL(z)ψR(z)Vb(K, z)u(p2)γ5σρλu(p1)Kρηλσ.

(14.45)
4 Though they receive 1/Nc corrections from the Chern-Simons term that stabilize them at finite size [222].
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Analogous vertices follow for the Primakoff exchange

Vµγ⋆γη(q1, q2,K) =
e2
c,b

2
√

Nf

∫

dzϕ(z)× z2

2
ǫµνρσηFµνFρσ,

Vν(1)

γ⋆ΨΨ
(p1, p2,K) =

e

2g2
5

∫

dz√ge−φz
(

ψ2
R(z) + ψ2

L(z)
)

V(K, z)u(p2)γνu(p1),

Vν(2)

γ⋆ΨΨ
(p1, p2,K) = ηP

e

2

∫

dz√ge−φ (2ψL(z)ψR(z))V(K, z)u(p2)σµνu(p1)Kµ,

Vν(3)

γ⋆ΨΨ
(p1, p2,K) = ηP

e

2

∫

dz√ge−φz
(

ψ2
L(z)− ψ2

R(z)
)

V(K, z)u(p2)γνu(p1).

(14.46)

14.2.1 Form Factors

As in Section 10.3, for an off-shell photon we obtain transition form factors that describe
the internal structure of composite particles. After projecting the chiral bulk spinors
to 4D and performing the relevant LSZ reduction of the 3-point functions, we obtain,
for example, the Dirac form factor that arises through the current associated with the
covariant derivative

Wµ(K2)EMDirac = u(p2)γµu(p1)× eN × C1(K) ≡ 1

FN (p2)FN (p1)

δSEMDirac
δǫµ

, (14.47)

with eN the electric charge of the nucleon, FN (p) = 〈0| ON (0) |N(p)〉 the nucleon source
constant and

C1(K) =
1

2

∫

e−κ2z2
z3−2τ (ψ̃2

L + ψ̃2
R)V(Q, z)

=
(aK + 2τ)Γ(aK + 1)Γ(τ)

2Γ(aK + τ + 1)
.

(14.48)

From

〈

N(p2)|JµEM (0)|N(p1)
〉

= u(p2)

(

F1(K)γµ + F2(K)
iσµν

2MN
kν

)

u(p1) (14.49)

we obtain the electromagnetic Dirac and Pauli form factors

F1(Q) = C1(K) + ηPC2(K)

F2(Q) = ηPC3(K)
(14.50)
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where

C2(K) =
1

2

∫

e−κ2z2
z3−2τ (ψ̃2

L − ψ̃2
R)z∂zV(K, z)

=
aK(aK(τ − 1)− 1)Γ(aK + 1)Γ(τ)

Γ(aK + τ + 2)
,

(14.51)

and

C3(K) = 2MN

∫

e−κ2z2
z3−2τ ψ̃Lψ̃RzV(Q, z)

=
4(τ − 1)τΓ(aK + 1)Γ(τ)

Γ(aK + τ + 1)
.

(14.52)

For details we refer the reader to Ref. [247]. Note that the 5-dimensional Pauli term σµz

in (14.40) leads to an additional contribution to F1(Q). Fixing these form factors to their
experimental values in units of the nuclear magneton

F1(0) = 1, F2(0) = (µp − 1) = 1.7928, µp = 2.7928 (14.53)

we obtain
ηP = 1.7928/C3(0) = 1.7928/4(τ − 1), (14.54)

Analogously, we obtain the C-odd gluonic form factor via the exchange of a Kalb-Ramond
field

Fb(K) =

∫

dzz−2τ+3e−φ2MN ψ̃Rψ̃LVb(K, z)

= 16(τ − 1)Γ(τ + 1)Γ (aK + 1)× 2F̃1 (τ + 1, aK + 1; τ + aK + 1;−3) ,

(14.55)

with a factor of 2MN pulled out in analogy with the electromagnetic Pauli form factor
and pF̃q is the regularized hypergeometric function. We fix Fb(K) through the nucleon
tensor charge, which is a measure for the net transverse spin of the quark content of the
nucleus at a given energy scale. It is defined through

〈P S|ψ̄iσµνγ5ψ|P S〉 = 2δq(PµSν − P νSµ), (14.56)

where P and S refer to the momentum and spin of the nucleon, respectively. The nucleon
tensor charge, and thus also its intrinsic spin, is deeply related to the U(1)A anomaly

〈P S|ψ̄iγµγ5ψ|P S〉 = 2MNΣ(0)Sµ, (14.57)
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where Σ(0) is the net quark helicity of the u, d and s quarks5. On the lattice, one
obtains [249]

δq = δu+ δd ≈ 0.839− 0.231 = 0.608, (14.58)

which we use to fix the normalization

Fb(0) = 0.608. (14.59)

The C-odd charge radius is obtained from

〈r2〉 = −6

(d lnFb(K)

dK2

)

K2=0

, (14.60)

and explicitly given by

〈r2〉 =
3

2κ2
b

(

γE − 4Γ(τ + 1)

×
(

2F
(0,0,1,0)
1 (1, τ + 1, τ + 1,−3) + 2F

(1,0,0,0)
1 (1, τ + 1, τ + 1,−3)

))

,

(14.61)

where γE = 0.5772... is the Euler-Mascheroni constant, and the superscript indices denote
derivatives with respect to the argument. Using τ = 3 and κγ = 0.3875 GeV we obtain

√

〈r2〉 = 2.733 GeV−1 = 0.540 fm, (14.62)

Comparisons with the existing literature are in order. The 1+− nucleon form factor without
Reggeization in Ref. [242] is assumed to be monopole-like and normalized to unity. The
dipole analysis of Ref. [159] with a Reggeized pseudovector glueball exchange fixes this
form factor to the leading twist quark Generalized PDF (GPD), also normalized to unity.
These analyses, as well as ours, are in stark contrast to the relatively large value obtained
in Ref. [158] that even displays a sign change near the origin.

In Fig. 14.3 we display the various form factors after fixing them as described above. The
open string couplings obey the relations φ(z) = κ2

Nz
2 = κ2

γz
2 = κ2z2, and for the closed

string sector, we recall that φ = κ2
bz

2 = 4κ2z2. As mentioned above, the remaining
coupling κ is fixed by the rho meson mass, which gives

(κb, κγ , κN ) = (0.775, 0.3875, 0.3875) GeV. (14.63)
5 At this point it is worth mentioning the famous result of the EMC which implies Σ(3.5 − 29.5 GeV2) =

0.14(3)(10) [248]. This result is consistent with 0 and led to the proton spin crisis. It might be argued
that this crisis is resolved since current theoretical predictions agree with the most recent measurements.
However, the exact spin decomposition and its energy dependence are still open problems.
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Fig. 14.3.: C-even and C-odd nucleon form factors in the approximation κN = κγ with the normal-
ization fixed by the charge, magnetic moment and (14.59).

Notably, at intermediateK2, the dominant form factor is F1, in analogy to the Primakoff
effect. At larger momentum transfer, the C-odd form factor Fb(K2) becomes slightly
more dominant. Additionally, the corresponding part of the action in (14.39) leads to a
kinematical enhancement of this contribution, in agreement with pQCD [159, 160].

14.2.2 Threshold Vertices

For space-like momentum transfers, the vertex between the pseudovector glueball, ηc,b
and a photon is given by

VOηγ(K) =
ec,b

2
√

Nf

∫

dzϕ(z)× z2

2
. (14.64)

Amputation of the amplitude effectively leads to a substitution of the bulk-to-boundary
propagator by

ϕ(q, z)→ φn(z) = g5cnκzLn(κ2z2)− fn
mn
× 4g5(n+ 1)κzLn(κ2z2), (14.65)

and thus (14.64) reduces to

VOηγ(K) ≈ ec,b
2
√

Nf

∫

dzφn(z)× z2

2
≡ ec,b

(

fηc,b

Mηc,b

)

VOηγ . (14.66)

Since we approximated the full bulk-to-bulk propagator for small z, the limit in (14.34)
leads to a divergent integral for the coupling in (14.66). To obtain a rough estimate for
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this coupling, we cut off the integral at a physically reasonable value z0 determined by the
hard-wall mass spectrum in (14.37) with which we obtain

VOηγ = − g5
√

Nf
κγz

4
0/4. (14.67)

Analogously, we obtain for the vertex involving a photon instead of a glueball

Vηγγ∗(K) =
e2
c,b

2
√

Nf

∫

dzϕn(z)× z2

2
, (14.68)

with the same vertex as in (14.66)

Vηγγ∗(K) ≈
e2
c,b

2
√

Nf

∫

dzφn(z)× z2

2

≡ e2
c,b

(

fηc,b

Mηc,b

)

Vγγη,

(14.69)

and
Vγγη = − g5

√

Nf

κγz
4
0

4
. (14.70)

To proceed with the numerical analysis, we fix fηc by the leading value obtained from
pQCD [250]

Γη→γγ = 4πQ4
cα

2 f
2
ηc

Mηc

, (14.71)

with Qc the charm quark charge. The PDG quotes the ηc two-photon decay width as
Γηc→γγ = 5.376× 10−6 GeV [9] from which one obtains

fηc = 0.327 GeV, (14.72)

where we usedMηc = 2.9839 GeV. No experimental result is available for the equivalent
quantity involving ηb. However, we can fix this constant by using heavy quark symmetry

fηb

fηc

=

√

Mηc

Mηb

, (14.73)

which amounts to
fηb

= 0.184 GeV, (14.74)

whereMηb
= 9.3897 GeV was used.
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14.3 Differential Cross Section

Averaging over the initial state spins and polarizations and summing over those of the
outgoing states, we obtain the differential cross section from

dσ
dt =

1

16π(s−M2
N )2

1

2

∑

pol

1

2

∑

spin
|A(s, t)γp→ηp|2 . (14.75)

and the cross sections from
σ(s) =

∫ −t max

−t min

dσ
dt , (14.76)

with the kinematical bounds tmin/max fixed as in Appendix D.3. Explicitly we obtain

dσ
dt =

2e2e2
c,bg

2
CS

16π(s−M2
N )2
×
(

fX
MX

)2

×
(

FO(s, t) + Fγ(s, t) + FOγ(s, t)

)

, (14.77)

with the C-odd FO, photon Fγ , and mixed FOγ contributions

FO(s, t) =−
Fb(K)2g2

BψV
2
Oγη

K2M2
N

×
(

M2
NK

2(M2
X −M2

N ) +M4
X −K2s2

+K2s(K2 + 2M2
N +M2

X)

)

,

Fγ(s, t) =e4e2
XV

2
γγη

×
[

F2(K)2K2
(−K2s(K2 + 2M2

N +M2
X) +K2s2

M2
N

+ (K2(2K2 +M2
N ) + 3K2M2

X +M4
X)

)

+ 4F2(K)F1(K)K2(K2 +M2
X)2

+ 2F1(K)2
(

K6 + 2K4(M2
X − s)− 2M2

NM
4
X

+K2(−2M2
N (M2

X + 2s) + 2M4
N − 2sM2

X +M4
X + 2s2)

)]

,

FOγ(s, t) =0,

(14.78)

respectively.
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14.3.1 Estimate of gBψ

The overall scale of the cross section in (14.76) is dictated by gBψ , the strength of the
coupling of the Odderon to the nucleon. As a closed string exchange in AdS5 × S5, one
would expect gBψ ∼

√
gs with gs = λ/4πNc. In holographic models, one typically

encounters ’t Hoof couplings around λ ∼ 10, yielding gBψ ∼ 0.5. Alternatively, one could
estimate this coupling via the boundary operator in (14.1) using instantons [251]

〈P ′S|dabcGaαβGbαβGcµν |PS〉 ∼
κ2
I+Ī

ρ3
f(qρ) 〈P ′S|ψσµνψ|PS〉, (14.79)

where f(qρ) represents the form factor induced by an instanton of size ρ. Within the
relevant kinematic range for threshold production of ηc and ηb, we have ρ

√

|tmin| ∼ 1

and f(q minρ) ∼ 1. Notably, for a dense instanton ensemble as described in Ref. [252], the
packing fraction of instantons is κI+Ī ∼ 0.7, with a mean instanton size of ρ ∼ 1

3 fm. This
leads to an estimate for the dual coupling of gBψ ∼ κ2

I+Ī
∼ 0.5, which aligns with the

string estimate.

14.3.2 Numerical Results

As discussed above, we shall consider the range gBψ = {1, 0.5} where the first value
corresponds to the pure soft-wall coupling and the second value encodes a possible sup-
pression due to its stringy origin. Additionally, we have fixed κ to the rho meson mass,
as is required by VMD, and the closed string couplings to twice that of the open string
sector. Fig. 14.4a displays the various contributions to the differential cross section for
threshold production of ηc at W = 4.3GeV as well as the sum of all contributions. In
Fig. 14.4b we compare our results to Ref. [160] (open-blue-dots), which are comparable in
magnitude. The latter analysis is dominated by the Primakoff photon exchange, which, in
our model, starts to take over only for higher momentum transfers. The integrated cross
section is σ(W = 4.3 GeV) = {10.3, 2.76} pb, which is in line with previous estimates
found in the literature [159, 160, 242–244]. Fig. 14.5a displays the same quantity but at a
higher center of mass energy ofW = 10 GeV. At this energy, the non-Reggeized Odderon
exchange is dominant for the whole kinematically allowed range, and the integrated cross
section is given by σ(W = 10 GeV) = {202, 50} pb. In Fig. 14.5b, we compare with the
dipole approximation of Ref. [159], which considered Odderon (red-triangle) as well as
photon (green-diamond) exchange and their coherent sum (black-diamond). At t = tmin,
the magnitude of both models seems to agree but deviates at larger momentum transfers,
with the model of Ref. [159] depleting much sooner. Note that the photon contributions
are of different nature, since the model of Ref. [159] displays the Primakoff effect, which is
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Fig. 14.4.: (a) Holographic differential cross section for threshold photoproduction of ηc atW = 4.3
GeV. The solid and dotted green lines correspond to the Dirac and Pauli contributions
of p-wave photon exchange, respectively. The solid red line corresponds to the non-
Reggeized Odderon exchange with gBψ = {1, 0.5} and the solid black line to the sum of
all contributions. (b) Holographic differential cross section as in (a) but with the photon
contribution summed. The data points are from the Primakoff photon exchange estimate
(open blue circles) in Ref. [160].

absent in VMD-like models. In Fig. 14.6 we show the differential cross section relevant for
the future Electron-Ion Collider (EIC) [253, 254] atW = 50 GeV. At this energy, the cross
section is given by σ(W = 50 GeV) = {242, 59} pb. At higher center of mass energies,
say, atW = 300 GeV, the integrated cross section starts to diverge, and one would need
to Reggeize the Odderon exchange. Nevertheless, in Fig. 14.7a we show the holographic
results for the different contributions to ηc productions as well as their sum. In Fig. 14.7b
we compare with the pQCD analysis of Ref. [160], which considered photon exchange
(open blue circles) and the Odderon models of Ref. [244] (green triangles) and Ref. [243]
(orange diamonds). They are comparable in magnitude and UV behavior, though the
model of Ref. [244] displays a cusp due to the sign change in their Odderon-nucleon form
factor. Moving on to the production of ηb, we display in Fig. 14.8a the differential cross
section at the kinematical threshold ofW = 11 GeV. Again, the p-wave photon exchange
corresponds to the green line (Dirac: solid, Pauli: dotted), a solid red line denotes the
pseudovector glueball exchange, and the solid black line gives their sum. The differential
cross section integrates to σ(W = 11 GeV) = {0.002, 0.001}. Interestingly, for the
kinematical range allowed for ηb production, the photon contribution crosses the Odderon
contribution twice for gBψ = 0.5.
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Fig. 14.5.: (a) Holographic differential cross section for threshold photoproduction of ηc atW = 10
GeV with the same color coding as in Fig. 14.4a.
(b) Holographic differential cross section as in (a) but with the photon contribution
summed. The data points correspond to the Primakoff photon exchange (green diamonds)
and Odderon exchange (red triangles), as well as their sum (black diamonds) of Ref. [159].
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Fig. 14.6.: (a) Holographic differential cross section for threshold photoproduction of ηc atW = 50
GeV with the same color coding as in Fig. 14.4a.
(b) Holographic differential cross section as in (a) but with the photon contribution
summed.
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Fig. 14.7.: (a) Holographic differential cross section for threshold photoproduction of ηc atW = 300
GeV with the same color coding as in Fig. 14.4a.
(b) Holographic differential cross section as in (a) but with the photon contribution
summed. The data points correspond to the Primakoff photon exchange (blue open
circles) from Ref. [160] and the Odderon models of Ref. [243] (orange diamonds) and of
Ref. [244] (green-triangles).
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Fig. 14.8.: (a) Holographic differential cross section for threshold photoproduction of ηb atW = 11
GeV with the same color coding as in Fig. 14.4a. (b) Holographic differential cross section
as in (a) but with the photon contribution summed.

A similar process involving Pomeron exchange is the production of vector mesons like
J/Ψ and Υ, through which one might extract the gravitational form factor of the proton.
We thus compare in Fig. 14.9 our holographic computations for ηc production with the
holographic computations of J/Ψ production (blue) of Ref. [215] for different center of
mass energies: (a)W = 4.58 GeV, (b)W = 4.30 GeV, (c)W = 10 GeV, (d)W = 50 GeV
and (e)W = 300 GeV. In Fig. 14.9f we show the integrated cross sections for ηc and J/Ψ
for different center of mass energies W . The data points correspond to measurements
from SLAC [255] and Cornell [256]. The differential and integrated photoproduction cross
sections for ηc are well below those for J/Ψ for the whole kinematical range considered.
While measuring this process poses a challenging task for experimentalists, extracting the
C-odd gluonic form factor Fb(K), which probes the nucleon spin budget, from the data
and comparing it to our prediction would be interesting.
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Fig. 14.9.: Holographic differential and total cross sections for threshold photoproduction of J/Ψ
(shaded blue) [215], and the present results for ηc (shaded black with gBψ = {1, 0.5}) at
W = 4.58 GeV (a),W = 4.30 GeV (b),W = 10 GeV (c),W = 50 GeV (d) andW = 300
GeV (e). (f) Integrated holographic cross sections for threshold photoproduction of ηc
(shaded black) and J/Ψ (shaded blue) [215]. The data points are from GlueX [257] (black),
SLAC [255] (magenta) and Cornell [256] (green), respectively.
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In the first part of this thesis, we considered the Witten-Sakai-Sugimoto model to compute
hadronic and radiative decay rates of various glueballs. Overall, they turned out to be rather
broad resonances with surprisingly large radiative decay widths in the keV range. The
latter is usually taken as evidence against the glueball nature of a resonance. A comparison
of our model predictions with measurements reported by the PDG [9] showed that the
resonance f0(1710) fits a glueball identification rather well once identified with the dilaton
scalar glueball. Unfortunately, since the scalar meson nonet is absent in the WSS model,
we cannot comment in more detail on the scenario of the fragmented scalar glueball, which
is a resonance mixing strongly with the scalar isoscalar mesons. However, the reported
mass and width computed in Ref. [45] seem to fit rather well when the fragmented scalar
glueball is identified with the lightest, exotic scalar glueball of theWSS model once its mass
is suitably adjusted. The pseudoscalar glueball inherits its interactions through mixing
with the singlet η0 meson and plays a prominent role in the realization of the Witten-
Veneziano mechanism. When compared to the glueball candidateX(2370), we found that
the hadronic decays into two rho mesons already saturate the recently extracted width by
the BES III collaboration [144]. On the other hand, the interactions of the pseudoscalar
glueball with ordinary mesons arise through a formal expansion in Nf/Nc, which is not
a small parameter in QCD. Already to this order, there may be significant corrections
through the backreaction of the flavor branes on the original geometry or higher order
effects, which the WSS model may not capture. The pseudovector glueball turned out
to be the broadest resonance within the framework of the WSS model. Identifying it
in experiment may thus prove extremely difficult, to say the least. A more promising
candidate might be the vector glueball, which transpired to possess a rather peculiar
enhancement of decays into a pair of an axial vector and vector meson. Upon adjusting
the mass of the highest-spin state allowed by the supergravity limit, the decay pattern of
the tensor glueball was found to be compatible with that of f2(1950).

To further look for evidence of glueballs, we turned to Regge physics in Part III. Therein,
we identified the C-even Pomeron with a Reggeized tensor glueball trajectory and its
C-odd counterpart, the Odderon, with a Reggeized spin-1 glueball trajectory. In the
framework of holography, these states arise from the Reggeization of the exchange of a
graviton and Kalb-Ramond field, respectively. We developed the repulsive wall model, a
holographic bottom-up model capturing the essential features of Regge phenomenology,
including Gribov diffusion, to formally address the physics of the Pomeron and Odderon.
We assumed a coupling of the graviton to the QCD energy momentum tensor and coupled
the Kalb-Ramond field through a 5-dimensional Pauli coupling to the Baryon. The resulting
pp and pp (differential) cross sections and various forward quantities were confronted
with numerous experimental measurements. While there may be a maximal Odderon
contribution to these processes, we found that the current experimental data is very well
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described by using an eikonalized Pomeron exchange, without significant admixtures of
an Odderon with intercept below 1. This is opposed to the conclusion by TOTEM and
D/O [189], which attributes the diffractive pattern to an underlying Odderon exchange,
but in line with the findings of Ref. [190]. We aim to develop a suitable holographic
model for the maximal Odderon with intercept at 1 to further elucidate this issue in future
research.

Finally, we considered diffractive photoproduction of heavy pseudoscalar mesons, which
is argued to be sensitive to soft gluon exchanges in the threshold region. We have set
up a holographic soft wall model for the Kalb-Ramond field and assumed a minimal 5-
dimensional Pauli coupling to baryons. After fixing the C-odd gluonic form factor at the
optical point to the nucleon tensor charge, we found that at center of mass energies above
10 GeV, the contribution from photon exchange is overtaken by a non-Reggeized Odderon:
the pseudovector glueball. The resulting differential and integrated cross sections were
found to be in the pb range, thus posing a formidable challenge for experimentalists.

While this thesis presents only a small step in the arduous journey to discovering the long
anticipated but still elusive glueballs, it has successfully refined the parameter space for
future investigations. The decay patterns computed in Part II suggest a significant gluonic
content of the resonances f0(1710) and f2(1950). Additionally, the analysis in Part III
suggests that the field of low-x physics at intermediate energies, where the Pomeron
contribution does not obscure that of the Odderon, might be a suitable area for future
investigations. In that regard, studying processes with polarized beams or targets are
particularly promising since one can extract observables insensitive to C-even exchanges
and thus provide a cleaner environment for Odderon physics. The study of these processes
may also shed light on the gluonic contribution to the spin of the proton, as well as the
observed single spin asymmetries, which are encoded in Generalized Parton Distribution
Functions (GPDs) and Transverse Momentum Distributions (TMDs). The future EIC [253],
which is currently under construction at BNL, is poised to be an exceptional tool for
probing these phenomena with unprecedented detail.
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M-Theory Lift and
Dimensional Reduction

A

The lift of a type IIA string-frame metric to 11-dimensional supergravity is given by the
relation [79]

ds2 = GABdxAdxB

= e−2φ/3gMNdxMdxN + e4φ/3
(

dx11 + CMdxM
)2
,

(A.1)

withM,N = 0, . . . 9, omitting the 11th index and A,B = 0, . . . 10. The tetrads following
from the decomposition in (A.1) are related via

EÂA =

(

e−φ/3eM̂M 0

e2φ/3CM e2φ/3

)

(A.2)

By introducing the radial coordinate r related to U by U = r2

2L , one obtains the lifted
metric

ds2 =
r2

L2

[

f(r)dx2
4 + ηµνdxµdxν + dx2

11

]

+
L2

r2

dr2

f (r)
+
L2

4
dΩ2

4, (A.3)

with f(r) = 1 − r6
KK/r

6. In the limit r → ∞, this geometry reduces to the of pure
AdS7 × S4. The 4-form flux of the background (7.1) is now given by

F4 =
6

L
ǫ4. (A.4)

Depending on whether the indices pertain to the 10-dimensional subspace or the com-
pactified direction x11 ≃ x11 + 2πR11 with R11 = gsls, the form field decomposes
into

AMNO = CMNO, AMN11 = BMN (A.5)

and its field strength into

F
(11)
MNOP = FMNOP , FMNO11 = HMNO. (A.6)
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Since the metric in (A.1) is non-diagonal, we obtain the twisted field strength

FM̂N̂ÔP̂ = e4φ/3
(

FM̂N̂ÔP̂ + 4C[M̂HN̂ÔP̂ ]

)

,

FM̂N̂Ô1̂1 = eφ/3HM̂N̂Ô,
(A.7)

where we used flat indices to simplify the computations. For easier reference, we give (6.4)
again

S11 =
1

2κ2
11

∫

dx
√
−G

(

R− 1

2
|F4|2

)

− 1

3!

∫

A3 ∧ F4 ∧ F4,

where 2κ11 = (2π)7l8P , lP = g
1/3
s ls. Using (A.1) and (A.7), the 11-dimensional supergrav-

ity action (6.4) reduces to

SIIA = SNS + SR + SCS ,

SNS =
1

2κ2
10

∫

d10x
√−ge−2φ

(

R+ 4∇Mφ∇Mφ−
1

2
|H3|2

)

,

SR =
1

2κ2
10

∫

d10x
√−g

(

−1

2
|F2|2 −

1

2
|F̃4|2

)

,

SCS = − 1

2κ2
10

∫

d10x
1

2
B2 ∧ F4 ∧ F4,

as already given in (7.4).
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Type IIA Supergravity
Equations of Motion

B
The equations of motion following from (7.4) are given by

RMN + 2∇M∇Nφ−
1

2
H OP
M HNOP −

e2φ

2

(

F̃ O
M F̃NO −

1

2
|F2|2

)

−e
2φ

2

(

4

3!
F OPQ
M FNOPQ −

1

2
gMN |F4|2

)

= 0,

R+ 4∇M∇Mφ− 4∇Mφ∇Mφ−
1

2
|H3|2 = 0,

∇M F̃MN − 1

3!
F̃NO1O2O3HO1O2O3 = 0,

∇O
(

e−2φHOMN + CP F̃
OPMN

)

− 1

2! · (4!)2
√−g ǫ

MNO1...O8FO1...O4FO5...O8 = 0

∇P F̃PMNO − 1

3! · 4!
√−g ǫ

MNOP1...P7HP1P2P3F̂P4...P7 = 0.

(B.1)

Linearizing these equations with respect to the fluctuations of gMN , φ, C1, B2, C3, and
taking into account that neither C1 nor B2 are sourced by the D4-branes, one obtains

RMN + 2∇M∇Nφ−
e2φ

2

(

4

3!
F OPQ
M FNOPQ −

1

2
|F4|2

)

gMN = 0,

R+ 4∇M∇Mφ− 4∇Mφ∇Mφ = 0,

∇MFMN = 0,

∇O
(

e−2φHOMN
)

− 3R3
√

ĝS4

2! · 4!
√−ggs

ǫMNO1...O4FO1...O4 = 0,

∇PFPMNO − 3R3
√

ĝS4

3! · √−ggs
ǫMNOP1...P3HP1P2P3 = 0.

(B.2)
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Towards the Unquenched
Glueball Spectrum from
Holographic QCD

C

Lattice QCD calculations of the glueball spectrum often employ the quenched approxi-
mation, neglecting the dynamic effects of sea quarks [11, 134]. However, going beyond
this approximation poses significant challenges due to computationally costly simulations
and large uncertainties. While some progress on computing the unquenched glueball
spectrum on the lattice has been made, results remain inconclusive, though they suggest
minimal changes to the mass spectrum [13, 14, 35, 258]. In this appendix, we address
this problem using holographic QCD, where only recently the first steps towards the
unquenched glueball spectrum have been made [259].

The WSS model considered in Chapter 7 is formulated in the probe approximation, where
the flavor branes do not backreact on the original geometry induced by the color branes.
To leading order in Nf/Nc, the backreacted geometry has been worked out for localized
branes in Ref. [76] and for smeared branes, where the branes are homogeneously smeared
out over the compactified τ direction, in Ref. [77]. Limiting to the τ -odd fluctuation hMτ ,
for which the computations are somewhat less complex, Ref. [259] carried out the first
computations of the unquenched glueball spectrum utilizing the smeared approximation.
As a first step towards the full unquenched glueball spectrum for states with even τ parity,
we will also consider the smeared approximation and partly use the formalism developed
in [259].

The closed string action in (7.4) is no longer sufficient when backreaction effects are taken
into account. This is due to the D8 branes coupling to a 9-form potential C9, whose
dual field strength is a constant. This introduces a term in the equations of motion that
is amenable to a cosmological constant and a mass term for the Kalb-Ramond field B2.
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The consistent action that includes this potential is that of Romans massive type IIA
supergravity [260]. Its bosonic part is given by [79]

SMIIA = SNS + SR + SCS + SM

SNS =
1

2κ2
10

∫

d10x
√−ge−2φ

(

R+ 4∇Mφ∇Mφ−
1

2
|H3|2

)

SR =
1

2κ2
10

∫

d10x
√−g

(

−1

2
|F̃2|2 −

1

2
|F̃4|2

)

SCS = − 1

2κ2
10

∫

d10x
1

2
B2 ∧ F̂4 ∧ F̂4

SM = − 1

2κ2
10

∫

d10x
√−g1

2
M2
R +

1

2κ2
10

∫

MRF10,

(C.1)

where

F̃2 = F2 +MRB2, F2 = dC1

F̂4 = F4 +
1

2
MRB2 ∧B2, F4 = dC3

F̃4 = F4 − C1 ∧H3 +
1

2
MRB2 ∧B2., H3 = dB2.

(C.2)

and
MR = ± Nf

4πls
(C.3)

is the Romans mass. The signs refer to the charge of the D8 and D8 branes, respectively.
From (C.2) we see thatF2 can be completely reabsorbed intoB2 whenMR 6= 0, introducing
a Higgs-like effect where C1 corresponds to the longitudinal mode of B2.
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The field equations following from (C.1) are given by

RMN + 2∇M∇Nφ−
1

2
H OP
M HNOP −

e2φ

2

(

F̃ O
M F̃NO −

1

2
|F2|2

)

− e2φ

2

(

4

3!
F OPQ
M FNOPQ −

1

2
gMN |F4|2

)

+
1

2
e2φM2

RgMN = 0,

R+ 4∇M∇Mφ− 4∇Mφ∇Mφ−
1

2
|H3|2 = 0,

∇O
(

e−2φHOMN + CP F̃
OPMN

)

− 1

2! · (4!)2
√−g ǫ

MNO1...O8FO1...O4FO5...O8

−MRF̃
MN − 1

2
MRBOP F̃

OPMN

− MR
√−g−1

2 · 2! · 4!
ǫMNO1...O8BO1O2BO3O4F̂O5...O8 = 0,

∇M F̃MN − 1

3!
F̃NO1O2O3HO1O2O3 = 0,

∇P F̃PMNO − 1

3! · 4!
√−g ǫ

MNOP1...P7HP1P2P3F̂P4...P7

− MR

4!
√−g ǫ

MNOP1...P7BP1P2BP3P4HP5P6P7 = 0,

⋆ F10 −
1

2
BMN F̃

MN − 3

4!
BMNBOP F̃

MNOP

− 3
√−g−1

2!(4!)2
ǫM1...M10BM1M2BM3M4BM5M6FM7...M8 −MR = 0,

dM = 0.

(C.4)

Working to first order in Nf/Nc, we see from (C.4) that C9 does not modify the equations
of motion for the dilaton and metric. Additionally, we need to take the contributions from
the DBI action into account, which, in the smeared approximation, reads

SDBI = −NfT8MKK
π

∫

d10x

√−g√
g44

e−φ, (C.5)

where the integration region now extends over the full spacetime. For simplicity, we adopt
the notation of Ref. [77] and write the line element as

ds2 =

(

UKK
RD4

)3/2 [

e2ληµνdx
µdxν + e2λ̃dx2

4

]

+R
3/2
D4 U

1/2
KK

[

e−2ϕdr2 + e2νdΩ2
4

]

, (C.6)

with all constant factors explicit. The functions

λ(r), λ̃(r), ϕ(r), ν(r) (C.7)
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only depend on the radial coordinate, which is related to the standard WSS coordinate
as1

e−3r = 1− UKK
U

3

(C.8)

They are given in terms of a series expansion in Nf/Nc as

Ψ(u) = Ψ0(u) + ǫFψ1(u) +O(ǫ2F ), (C.9)

with the effective expansion parameter given by

ǫF =
λ2

12π3

Nf

Nc
. (C.10)

The backreacted solutions Ψ1(u) are given in terms of hypergeometric functions, and their
complete expressions can be found in Ref. [77]. Before turning to the glueball modes, we
will set up the formalism using the meson spectrum.

C.1 Spin-1 Mesons

The (axial) vector mesons again arise as fluctuations of the gauge fields living on the D8
brane. Pulling out the constant parts we have

SDBI ⊃− T8

∫

d9xe−φ√−g8

[

1 +
1

4
(2πα′2)gMNgOPFMOFNP

]

=− κ
∫

d4xdz

[

1

2

eǫF (−ϕ1+4ν1−φ1)

(1 + z2)1/3
F 2
µν +

9

4

UKK
R3

D4

eǫF (ϕ1+4ν1+2λ1−φ1)(1 + z2)F 2
µz

]

,

(C.11)

where we performed the substitutions

r = −1

3
log

z2

1 + z2
, dr = − 2

3Z

1

1 + z2
dZ. (C.12)

This reduces to the familiar DBI action of the WSS model when evaluated at ǫF = 0

SDBI = −κ
∫

d4xdz

[

1

2
K−1/3F 2

µν +KM2
KKF

2
µz

]

, K = 1 + z2. (C.13)

1 And not to be confused with the radial coordinate of the Witten model r2 = 2UL.
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Following Ref. [259] we define

a(z) =
eǫF (−ϕ1+4ν1−φ1)

(1 + z2)1/3

b(z) = eǫF (ϕ1+4ν1+2λ1−φ1)(1 + z2)

(C.14)

to write
−κ

∫

d4xdz

[

1

2
a(z)F 2

µν +
9

4

UKK
R3

D4

b(z)F 2
µz

]

, (C.15)

and expand the vector meson fields as

Aµ(xµ, z) =
∑

n

ψn(z)
√

a(z)
Bµ(xµ). (C.16)

This leads to the trivial normalization condition of the vector meson fields

κ

∫

dzψn(z)ψm(z) = δnm. (C.17)

Plugging this ansatz into the action and partially integrating the potential term gives
∫

d4xdz
∑

n

[

−1

2

(

F (n)
µν

)2
+

1

2
λnM

2
KK

(

B(n)
µ

)2
]

, (C.18)

where the eigenvalue λn is obtained from the Hamiltonian

Ĥψψn(z) = − 1
√

a(z)
∂Z

[

b(z)∂Z

(

ψn(z)
√

a(z)

)]

= λnψn(z) (C.19)

Expanding all functions as

χ(z) = χ(0)(z) + ǫFχ
(1)(z) (C.20)

we obtain the correction to the mass by numerically solving

Ĥ
(0)
ψ ψ(0)

n (z) = − 1
√

a0(z)
∂Z

[

b0(z)∂Z

(

ψn(z)
√

a0(z)

)]

= λ(0)
n ψ(0)

n (z), (C.21)

and then perturbatively calculating

λn = λ(0)
n + ǫF δλn = λ(0)

n + ǫF 〈n| δĤ(0)
ψ |n〉0 (C.22)

We can easily compute the overlap integral by implementing a shooting method for the
first five vector meson modes. In Table C.1 we show the results for the first five modes.
The ratio of masses between vector and axial vector mesons is decreasing compared to
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n λ2n−1
ψ δλ2n−1

ψ λ2n
ψ δλ2n

ψ

1 0.669 +0.181 1.569 -0.197
2 2.874 -0.333 4.546 -0.825
3 6.581 -1.080 9.008 -1.786
4 11.797 -4.443 14.958 -3.627
5 18.491 -5.878 22.397 -5.279

Table C.1.: Numerical results for vector meson masses.

the quenched approximation. For ǫF = 0.02, the ratio of masses between m2
a1
/m2

ρ =

(2.346, 2.327) is further away from its experimental value of 2.519. However, the mass
ratiom2

ρ(1450)/m
2
ρ = (4.302, 4.268) is closer to its experimental value of 3.573. The bold

extrapolation to Nf = 2 would match this, though it needs to be taken with a grain of
salt. However, one must be cautious when comparing with experimental data since the
smearing approximation breaks U(Nf )→ U(1)Nf . Thus, it can only be considered the
first mode in a Kaluza-Klein expansion of the backreaction of the localized brane solution
of Ref. [76].

C.2 Dilaton Scalar Glueball

The equation of motion for the dilaton following from (C.4) and (C.5) is given by

R+ 4∇M∇Mφ− 4∇Mφ∇Mφ−
λ

8π3

Nf

Nc

1

l2s
eφ−λ̃ = 0. (C.23)

Linearizing this expression, we obtain the dilaton equation of motion

4∇M∇M φ̃− 8∇Mφ∇M φ̃−
λ

8π3

Nf

Nc

1

l2s
eφ−λ̃ = 0, (C.24)

where φ̃ denotes the fluctuation and φ the background value. Decomposing the dilaton
fluctuation into a holographic and 4-dimensional mode, we obtain

−D′′
4(r)− R3

D4

UKK
e−2λ−2ϕM2

DD4(r) +
1

8
ǫF e

φ−λ̃−2ϕD4(r) = 0. (C.25)

Treating ǫF as a parameter, we expand (C.61) to first order in ǫF and solve it using a
shooting method. To compactify the interval, we transform using2

r = −2

3
log sin(x) (C.26)

2 This is equivalent to z = tan(x) used in the main text.
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After checking that the solutions scale linear in ǫF , we can extract the mass correction
as

M2
D = λDM

2
KK, λD = λ

(0)
D + ǫFλ

(1)
D (C.27)

where
λ

(0)
D = 2.455165, λ

(1)
D = −50.1073 · 10−6. (C.28)

The mass correction is negative, which does not fit the change in mass of either scalar
glueball in [13]. The reason for this could be that the dilaton and exotic scalar glueball,
which are already difficult to disentangle when the closed string sector alone is considered,
are no longer diagonal when flavor-brane effects are taken into account. Unfortunately, we
have not yet succeeded in diagonalizing the scalar sector of the backreacted Lagrangian.
We leave this topic for future work.

C.3 Pseudovector Glueball

Since the 1+− nonet of ordinary mesons is absent in the WSS model, it is sufficient to
consider the linearized equations of motion for the pseudovector glueball. Taking into
account that even with the backreaction included, only C3 is sourced by the background,
the relevant equations in (C.4) reduce to

∇O
(

e−2φHOMN
)

− 1

2! · (4!)2
√−g ǫ

MNO1...O8FO1...O4FO5...O8 = 0,

√−g∇PFPMNO − 1

3! · 4!
ǫMNOP1...P7HP1P2P3FP4...P7 = 0.

(C.29)

They are solved by using the ansatz

Bµν = a(r)B̃µν(x
µ),

Cντr =
3a(r)

2gsM2
eλ̃−ϕ−4νǫ µρσν ∂µB̃ρσ(xµ),

(C.30)

where B̃µν denotes the polarization and the xµ dependence is implicitly understood in
the following. From the bulk Lagrangian, we obtain

a′′(r)− 4λ′a′(r) +
R3

D4

UKK
M2e−2ϕ−2λa(r)− 9e8λ+2λ̃−2φa(r) = 0, (C.31)

and the contribution from the DBI action is given by

SD8 ⊃ −T8Nf

∫

d9xe−φ
√−g8

4
gMNgOPBMOBNP . (C.32)
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The full mode equation is thus

a′′(r)−4λ′a′(r)+
R3

D4

UKK
M2e−2ϕ−2λa(r)−9e8λ+2λ̃−2φa(r)−ǫF eφ−λ̃−2ϕa(r) = 0. (C.33)

For the numerical solution, it is prudent to rescale a(r) using

a(r)→ e3r/2

√
e3r − 1

N4(r). (C.34)

To obtain the mass correction, we again expand in terms of

M2
PV = λPVM

2
KK, λPV = λ

(0)
PV + ǫFλ

(1)
PV (C.35)

where
λ

(0)
PV = 5.930777, λ

(1)
PV = −138 · 10−6. (C.36)

The mass correction is again negative, in disagreement with Ref. [13].

C.4 Vector Glueball

Employing the same procedure as was used for the spin-1 mesons to the bulk Lagrangian
for the vector glueball, we obtain

LVbulk =
λN2

c

32π2M4
KKR

6
D4

∫

d4xdz)
[

−1

4
c(z)

(

F Vµν

)2
M4(z)2

−1

2
ηµνVµVνM

2
KK

(

−z∂z (e(z)∂z(zM4(z)))M4(z) + d(z)M4(z)2
)

]

(C.37)

where

e(z) =
1 + z2

z
eǫF (ϕ1−λ̃1+4ν1)

d(z) =4zeǫF (2φ1−λ̃1−ϕ1−4ν1)

c(z) =
z

(1 + z2)1/3
eǫF (−2λ1−λ̃1−ϕ1+4ν1)

(C.38)

Expanding the DBI action to second order in B2, the correction to the mass from the
D8-branes is given by

− 2κλ2Nf

(2π)2R6

∫

d4xdz 9

16
g(z)

1

2
M4(z)2ηµνVµVν , (C.39)

186 Chapter C Towards the Unquenched Glueball Spectrum from Holographic QCD

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


where
g(z) =

16

9

(1 + z2)

�
eǫF (2λ−2λ̃−4ν+3φ−ϕ). (C.40)

Similarly, as in Section 9.4, the mixing contribution is now given by

−κλ
2π

MKK
R3

D4

tr
∫ ∞

0
d4xdz 3

2
h(z)M4(z)ηµν∂zAµ(z)Vν(x

µ), (C.41)

with
h(z) =

2

3

(1 + z2)√
�

eǫF (2λ+φ−λ̃) (C.42)

Note that both corrections are already present in the original WSS model, as discussed in
Section 9.4.3. Rescaling the wave function via

M4(z) =

√

4

27πNc
M2

KKR
3
D4

M̃4(z)
√

c(z)
, (C.43)

the vector glueball mode has a trivial normalization condition, and we obtain

Lbulk =κ

∫

d4xdz
{

− 1

2
ηµνVµVνM

2
KK

[

− z∂z
(

e(z)∂z

(

z
M̃4(z)
√

c(z)

)

)

M̃4(z)
√

c(z)

+ d(z)
M̃2

4 (z)

c(z)

]

− 1

4

(

F Vµν

)2
M̃4(z)2

}

=

∫

d4xdz
[

−1

4

(

F Vµν

)2
M̃4(z)2 − 1

2
λ(n)VM

2
KKM̃4(z)2ηµνVµVν

]

.

(C.44)

The mass eigenvalues are obtained from the Hamiltonian

ĤV M̃4(z) = − z
√

c(z)
∂z

[

e(z)∂z

(

z
M̃4(z)
√

c(z)

)]

+
d(z)

c(z)
M̃4(z) = λ(n)V M̃4(z) (C.45)

Pulling out the factors of MKK contained in �V (xµ), we can further simplify the DBI
contributions to

SV
2

DBI =− ǫFM2
KKκ

∫

d4xdz g(z)

c(z)

1

2
M̃4(z)2ηµνVµVν , (C.46)

and
SvVDBI = −√ǫFM2

KKκ

∫ ∞

0
d4xdz h(z)

√

c(z)
∂z

(

ψn(z)
√

a(z)

)

M̃4(z), (C.47)
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where we used trT 0 =
√

Nf/2. The quadratic action is now given by

S
(2)
V =κ

∫

d4xdz
∑

n

[

−1

4

(

F (n)
µν

)2
− 1

2
m2
n

(

B(n)
µ

)2

−1

4

(

F V (n)
µν

)2
− 1

2
ηµνV (n)

µ V (n)
ν M2

KK

(

λV (n) + ǫF
g(z)

c(z)

)]

=

∫

d4x
∑

n

[

−1

4

(

F (n)
µν

)2
− 1

2
m2
n

(

B(n)
µ

)2

−1

4

(

F V (n)
µν

)2
− 1

2
ηµνV (n)

µ V (n)
ν M2

KK

(

λV (n) + ǫF δλ
DBI
V (n)

)

]

,

(C.48)

and the mixing term

Smixing = κ

∫

d4xdz
∑

m,n

√
ǫFM

2
KK

h(z)
√

c(z)
∂z

(

ψm(z)
√

a(z)

)

M̃
(n)
4 (z)ηµνv(m)

µ V (n)
ν

= −
∫

d4x
∑

m,n

√
ǫF ξ

mn
1 ηµνv(m)

µ V (n)
ν ,

(C.49)

where we defined

δλDBIV (n) ≡
〈

n

∣

∣

∣

∣

g(z)

c(z)

∣

∣

∣

∣

n

〉

, ξmn1 ≡ −M2
KK

〈

n

∣

∣

∣

∣

∣

h(z)
√

c(z)
∂z

1
√

a(z)

∣

∣

∣

∣

∣

ψm

〉

, (C.50)

and generalized the action to include the higher radial modes as well. Note that it is
sufficient to take the original background for the corrections arising from the DBI action
on the D8-branes.
As in Section 9.4.3, the action is diagonalized by

Vµ → Vµ cos θ − vµ sin θ,

vµ → Vµ sin θ + vµ cos θ,
(C.51)

with the squared masses now given by

m̃2 = m2

(

cos θ2 +
M2
V

m2
sin θ2 − 2ξ1

m2
sin θ cos θ

)

,

M̃2
V = M2

V

(

cos θ2 +
m2

M2
V

sin θ2 +
2ξ1

M2
V

sin θ cos θ

)

.

(C.52)

Using

MV = M2
KK

(

λ
(0)
V + ǫF δλ

(1)
V + ǫF δλ

DBI
V

)

m = M2
KK

(

λ(0) + ǫF δλ
(1)
) (C.53)
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n λ2n−1
ψ δλ2n−1

ψ λnV δλnV δλDBIV (n)

1 0.669 +0.181 9.227 -2.533 +0.867
2 2.874 -0.333 15.954 -4.837 +1.234
3 6.581 -1.064 24.155 -7.429 +1.737
4 11.797 -4.316 33.837 -9.288 +2.353
5 18.491 -5.644 45.001 -10.79 +3.072

Table C.2.: Numerical results for vector meson and vector glueball masses.

and (9.46), as well as the the mixing contribution from (C.50) for n = 1, we obtain the
mixing angle

|θ| = 2.76 . . . 2.55◦ (C.54)

and the corrected masses

m̃2 = 0.798 . . . 0.7422M2
KK = (845 . . . 818)2 MeV2

M̃2
V = 7.995 . . . 8.526M2

KK = (2684 . . . 2771)2 MeV2
(C.55)

where we expanded to linear order in ǫF .

The results for the mass corrections are collected in Table C.2. They are consistent with the
observations in Ref. [259] that glueball masses are corrected downwards. The correction
from the DBI action, however, is positive. The general statement that the total mass
correction is always negative is thus not true (see Section C.5) The mixing term in (C.50)
for and 1 ≤ m,n ≤ 5 is given by

ξ1 = M2
KK



















−0.346849 −0.242167 0.0611645 −0.00716388 0.00148879

0.403661 −0.427151 −0.669275 0.0811266 −0.018741

−0.517088 0.779097 −0.019303 −0.00195332 0.147257

0.563727 −1.21228 0.584095 −1.63627 −0.126371

−0.638369 1.46602 −1.36052 1.49765 −1.85748



















(C.56)
The overlap integrals involving the modem = 5 are relatively large, signaling that this
mode is already beyond a perturbative approach. In principle, one would need to carry
out a full diagonalization of this system, including the higher modes in n and up tom = 4.
We leave this for future work. While there exists no result from unquenched lattice QCD
for the vector glueball, the corrections for states where they have been computed are
of the order of 10% for almost all states [13]. We view the numerical smallness of the
perturbations in Table C.2 as a further indication that unquenching effects on the glueball
mass spectrum remain small. Furthermore, the overlap integral that generates mixing
between the vector glueball and singlet vector mesons is small, signaling a mostly unmixed
vector glueball.
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C.5 Tensor Glueball

Linearizing the bulk equations of motion (C.4) with the DBI contribution in (C.5) in terms
of metric fluctuations, we obtain

1

2

(

∇O∇MhON +∇O∇NhMO

)

− 1

2
∇2hMN −

1

2
∇M∇Nh

−
(

∇Mh O
N +∇Nh O

M −∇OhMN

)

∇Oφ

+

[

9

4

(

UKKR
3
D4

)−1/2
e2φ−8ν +

λ

16π3l2s

Nf

Nc
eφ−λ̃

]

hMN = 0.

(C.57)

The ansatz for the tensor mode is given by

hµν =

(

UKK
RD4

)3/2

e2λT4(r)Tµνe
ikx, k2 = −M2

T TµνT
µν = 1 wrt ηµν (C.58)

and seen to solve the mode equation

T ′′
4 (r) +

(

R3
D4

UKK
M2
T e

−2λ−2ϕ − 9

2
e2φ−8ν−2ϕ + 2λ′′

)

T4(r) =
9

8
ǫFT4(r)eφ−λ̃−2ϕ.

(C.59)

We can simplify this further by utilizing the equation of motion for λ, which, in our
convention with all constant factors explicit, reads

λ′′(r) =
9

4
e2φ−8ν−2ϕ +

ǫF
4
eφ−λ̃−2ϕ, (C.60)

to get

T ′′
4 (r) +

R3
D4

UKK
M2e−2λ−2ϕT4(r) =

5

8
ǫF e

φ−λ̃−2ϕT4(r). (C.61)

We solve (C.61) by using a shooting method for various values of ǫF . After checking that
the results scale linear in ǫF , we can extract the mass correction as

M2
T = λTM

2
KK, λT = λ

(0)
T + ǫFλ

(1)
T (C.62)

where
λ

(0)
T = 2.455165, λ

(1)
T = 15.0609 · 10−6. (C.63)
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Themass correction for the tensor glueball is positive, in agreement with expectations from
lattice QCD [13]. Comparing (C.57) and (C.25), we see that they obey a Schrödinger-type
equation with slightly different potentials

−H ′′(r) + V (r)H(r) = 0, V (r) = − R3

UKK
e−2λ−2ϕM2

D/T +







1
8ǫF e

φ−λ̃−2ϕ Dilaton

5
8ǫF e

φ−λ̃−2ϕ Tensor,

(C.64)
The degeneracy, which originally arose through the isometries of the background, is seen to
be lifted in the backreacted case, even in the smeared approximation. We further note that
the potentials in (C.64) become strictly positive forM2 < 0, which excludes a tachyonic
glueball state. The backreaction reinforces this behavior even further.
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Kinematics D
D.1 Two-Body Decay

Consider the reaction
A→ 1 + 2 (D.1)

which is depicted in Fig. D.1. The scattering direction is chosen to be in the z-direction

pA

p1

p2

Fig. D.1.: Kinematics of the two-body decay.

such that the momenta are given by pµA = (mA, 0, 0, 0), pµ1 = (k1, 0, 0, p) and pµ2 =

(k2, 0, 0,−p) with

k1,2 =
m2
A −m2

2,1 +m2
1,2

2mA

p =

√

(m2
A − (m1 +m2)2)(m2

A − (m1 −m2)2)

2mA

(D.2)

satisfying p1 + p2 = pA and p2
i = −m2

i . The corresponding polarization vectors read
q

(m=1)µ
A,1,2 = − 1√

2
(0, 1, i, 0), q(m=−1)µ

A,1,2 = 1√
2

(0, 1,−i, 0), q(m=0)µ
1,2 = 1

m1,2
(p, 0, 0, k1,2)
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and q(m=0)µ
A = (0, 0, 0, 1). For massless particles, we drop the (m = 0) polarization. For

spin-2 particles, we define the polarization tensors by

q
(m=2)µν
i = q

(m=1)µ
i q

(m=1)ν
i

q
(m=1)µν
i =

1√
2

(

q
(m=1)µ
i q

(m=0)ν
i + q

(m=0)µ
i q

(m=1)ν
i

)

q
(m=0)µν
i =

1√
6

(

q
(m=1)µ
i q

(m=−1)ν
i + 2q

(m=0)µ
i q

(m=0)ν
i + q

(m=−1)µ
i q

(m=1)ν
i

)

q
(m=−1)µν
i =

1√
2

(

q
(m=−1)µ
i q

(m=0)ν
i + q

(m=0)µ
i q

(m=−1)ν
i

)

q
(m=−2)µν
i = q

(m=−1)µ
i q

(m=−1)ν
i ,

which amounts to replacing the spin-2 polarization sums by

2
∑

m=−2

q
(m)µν
i

(

q
(m)ρσ
i

)⋆
→ 1

2

(

Pµρ(ki)P
νσ(ki) + Pµσ(ki)P

νρ(ki)−
2

3
(Pµν(ki)P

ρσ(ki)

)

(D.3)
where Pµν(ki) = −ηµν +

kµ
i k

ν
i

k2
i

. Note the different normalization from [133] by a factor

of 2:
(

q
(m)
i

)2
= 1.

To obtain the decay rate, one needs to integrate over the two-body phase space

ΓA→1 2 =
(2π)4

2mA

∫ d3p1

(2π)32k1

d3p2

(2π)32k2
|MA→1 2|2, (D.4)

which can be carried out analytically, with the result

ΓA→1 2 =
|p|
8π
|MA→1 2|2, (D.5)

since the on-shell relations fix all angles.

D.2 Three-Body Decay

Following [261] (see also [9] ), we consider the reaction

A→ 1 + 2 + 3 (D.6)

which is depicted in Fig. D.2. Working in the rest frame of the decaying particle, the
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pA

p1

pA − p1 p2

p3

Fig. D.2.: Kinematics of the three-body decay.

three-body decay width is given by

dΓ =
1

2mA

d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

|M|2
2E12E22E3

(2π)4δ4(pA − p1 − p2 − p3)

=
1

(2π)5

|M|2
2mA

d3p1

2E1

~p2
2

2E2

d|~p2|d cos θ12dφ12

2E3
δ(mA − E1 − E2 − E3).

(D.7)

Using ~p3 = −~p1 − ~p2 we can rewrite E3 as

E2
3 = m2

3 + ~p1
2 + ~p2

2 + 2|~p1||~p2| cos θ12 (D.8)

to obtain
E3dE3 = |~p1||~p2|d cos θ12, (D.9)

which can be used to integrate over the energy-conserving delta function. Furthermore,
we can also carry out the integration over φ12

dΓ =
1

(2π)4

|M|2
2mA

|~p1|d|~p1|
2E1

|~p2|d|~p2|
2E2

d cos θ1dφ1. (D.10)

Integrating over the remaining angles, we obtain

dΓ =
1

(2π)3

|M|2
2mA

|~p1|d|~p1|
2E1

|~p2|d|~p2|
2E2

. (D.11)

Using EidEi = |~pi|d|~pi| we are left with

dΓ =
1

(2π)3

|M|2
2mA

dE1dE2. (D.12)
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It is now convenient to define the center of mass energies of the subsystems as

sij = −(pi + pj)
2, Ei =

m2
A +m2

i − sjk
2mA

m2
A +m2

1 +m2
2 +m2

3 = s12 + s23 + s13

(D.13)

with which we finally arrive at

dΓ =
1

(2π)3

|M|2
32m3

A

dsijdsjk, (D.14)

where the integration region is bounded by

(m1 +m2)2 ≤s12 ≤ (mA −m3)2,

(E∗
23)2 − (k∗

2 + k∗
3)2 ≤s23 ≤ (E∗

23)2 − (k∗
2 − k∗

3)2

E∗
23 ≡E∗

2 + E∗
3

~k∗
i =

√

(E∗
i )2 −m2

i .

(D.15)

Note the dependence of s23 on s12 through the energies of the particles in the s12 rest
frame

E∗
2 =

s12 −m2
1 +m2

2

2
√
s12

, E∗
3 =

m2
A − s12 −m2

3

2
√
s12

. (D.16)

A plot of (D.14) over sij and sjk with the proper kinematical bounds in (D.15) is known as
Dalitz plot. The kinematics are fixed by the on-shell relations

p2
A = −m2

A, p2
i = −m2

i , sij = −(pi − pj)2

pi · pj =
1

2
(m2

i +m2
j − sij) pA · pi =

1

2
(sjk −m2

A −m2
i ),

(D.17)

and the momenta

|~pi| =

√

λ(m2
A,m

2
i , sjk)

2mA
, Ei =

m2
A +m2

i − 2jk
2mA

,

p1,2 = (E1,2, p1,2 cos θ1,2, p1,2 sin θ1,2, 0), q
(1)
1,2 = (0, 0, 0, 1),

q
(2)
1,2 = (0,− sin θ1,2,− cos θ1,2, 0), q

(3)
1,2 = 1/m1,2|(~p1,2|, E1,2 cos θ1,2, E1,2 sin θ1,2, 0)

p3 = (E3, p3, 0, 0), q
(1)
3 = (0, 0, 0, 1) (D.18)

q
(2)
3 = (0, 0, 1, 0), q

(3)
3 = 1/m3(|~p3|, E3, 0, 0),
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-tMax

-tMin

4.0 4.5 5.0 5.5 6.0
W [GeV]0

1

2

3

4

5

-t [GeV]

(a)

-tMax

-tMin

11 12 13 14
W [GeV]0

2

4

6

8

10

-t [GeV]

(b)

Fig. D.3.: Minimal and maximal transverse momentum transfer tmin, tmax in the physical region
for ηc (a) and ηb (b) versus W =

√
s. The photon momentum is taken to be at the

optical point q2 = −Q2 = 0, and the hadron masses are given by MN = 0.938 GeV,
Mηb

= 2.984 GeV andMηb
= 9.399 GeV.

given in the rest frame of the decaying particle with the reaction plane aligned by particle
A and 3 and where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc is the Källén function.
Momentum conservation then implies

cos θi =
|~pj |2 − |~pi|2 − |~p3|2

2|~pi||~p3|
. (D.19)

D.3 Photoproduction at Threshold

The meson photoproduction process is characterized by two Lorentz-invariant quantities,
s and t. The Mandelstam variable s is defined as the square of the total center-of-mass
energy s = (q1 + p1)2, and is related to the center-of-mass energy by W =

√
s. The

variable t = ∆2 is the square of the four-momentum transfer, where ∆µ = (p2−p1)µ. For
photoproduction, the virtuality of the photon is zeroQ2 = 0, while leptoproduction, which
involves a virtual photon, can also be studied with slight modifications of the following
formulas. The external states are fixed by the on-shell conditions1

p2
1 = p2

2 = M2
N , q2

1 =0 , q2
2 = M2

X .

1 This time with the metric in mostly minus convention.
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With these conditions, one may parametrize the four-momenta in the center of mass frame
as

q1 =

(

s−M2
N

2
√
s

, 0, −s−M
2
N

2
√
s

)

(D.20)

q2 =

(

s+M2
X −M2

N

2
√
s

, −|~pX | sin θ, −|~pX | cos θ

)

p1 =

(

s+M2
N

2
√
s

, 0,
s−M2

N

2
√
s

)

p2 =

(

s−M2
X +M2

N

2
√
s

, |~pX | sin θ, |~pX | cos θ

)

where MN is the nucleon mass, MX is the mass of the produced meson, and θ is the
scattering angle in the center of mass frame. The magnitude of the outgoing three-
momentum reads

|~pX | =
(

[s− (MX +MN )2][s− (MX −MN )2]

4s

)1/2

, (D.21)

and the scattering angle is fixed by

cos θ =
2st+ (s−M2

N )2 −M2
X(s+M2

N )

2
√
s|~pX |(s−M2

N )

(D.22)

with pµ = 1
2(p1 + p2)µ. At threshold

√
s→MN +MX and the momentum transfer t is

near the threshold value tth
tth = − MNM

2
X

MN +MX
(D.23)

In Fig. D.3 we display the kinematically allowed region in (W,
√−t) for threshold pro-

duction of ηc and ηb, respectively. Near threshold s & (MN + MX)2 and the proton
factorizes into parton degrees of freedom, provided the produced meson is heavy enough.
In this limit, the incoming and outgoing nucleons are on the light cone, up toM2

N/M
2
X

corrections. In this kinematical region, the outgoing meson has a skewness of order 1,
leading to the suppression of higher-twist contributions [245, 262–264].
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Deep Inelastic Scattering in
the Witten-Sakai-Sugimoto
Model

E

DIS is a cornerstone of high-energy physics, providing crucial insights into the fundamental
structure of matter. In a DIS experiment, a target particle (typically a proton or neutron)
is bombarded with a lepton beam (electrons, muons, or neutrinos), and the resulting
scattering patterns are analyzed. This process is inelastic, meaning that the internal state
of the target particle is altered, allowing for the investigation of its constituents. The term
”deep” refers to the high energies involved, which enable probing the target at very small
distance scales.

The parton model, a fundamental theoretical framework for understanding DIS, posits
that the target particle is composed of point-like constituents called partons (quarks and
gluons) [265]. DIS experiments have provided compelling evidence for the existence of
these partons and their interactions [266].

The low-x regime, where the parton struck by the lepton carries a small fraction of the
target’s momentum, is of particular interest [267]. It is theorized that as x decreases, the
density of gluons within the proton increases significantly. Understanding this high gluon
density regime is essential for testing the limits of QCD. In the extreme low-x limit, gluon
density saturation may occur [267, 268], potentially leading to novel phenomena that
could offer insights into the fundamental nature of matter. Moreover, the low-x regime is
relevant for interpreting the interactions of high-energy cosmic rays with atmospheric
nuclei.

The HERA collider at DESY (Germany) was pivotal for investigating low-x DIS, colliding
electrons or positrons with protons [269]. The data collected at HERA have significantly
advanced our understanding of proton structure in this regime. Future experiments, such
as the EIC at BNL (US), are poised to further explore the low-x frontier over a wide
kinematical range [253, 254].

In this appendix, we explore to what extent a soft Pomeron exchange within the WSS
model can describe the data gathered by HERA. To this end, we focus on low virtualities
and thus describe the soft Pomeron as a Reggeized tensor glueball exchange coupled to
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l(k)
l(k′)

N(p)

γ(q)

X(p′)

Fig. E.1.: Deep inelastic lepton-proton scattering into a collection of final states X .

baryons. The latter are modelled by a holographic fermion action that arises through
quantization of the instanton moduli space of the flavor gauge fields [209, 222, 270–272].

E.1 Kinematics

The standard kinematical variables to describe the deep inelastic scattering of Fig. E.1 are
given by1 [266]

s = −(p+ k)2,

q = k − k′,

q2 ≡ Q2

W 2 = −p′2 = −(p+ q)2,

ν = −p · q
mp

=
W 2 +Q2 −m2

p

2mp
,

x = − Q2

2p · q =
Q2

W 2 +Q2 −m2
p

,

y =
p · q
p · k =

W 2 +Q2 −m2
p

s−m2
p

.

(E.1)

Furthermore, we define the ratio of longitudinal and transverse polarization strengths of
the virtual photon as [273]

ε =
2(1− y)− y2δ(W 2, Q2)

1 + (1− y)2 + y2δ(W 2, Q2)
, (E.2)

1 Recall that we use the mostly plus convention of the metric
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where
δ(W 2, Q2) =

2m2
pQ

2

(W 2 +Q2 −m2
p)

2
. (E.3)

E.2 Differential cross section

Following Ref. [274], the differential cross section is given by

dσ =
∑

X

∫ d3k′

(2π)32E′ (2π)4δ(k + p− k′ − p′)
|M|2

2E2M

=
∑

X

∫ d3k′

(2π)32E′
(2π)4δ(k + p− k′ − p′)

2E2M

e4

q4

× 〈p, λ| jµh (0) |X〉 〈X| jνh(0) |p, λ〉 〈k, sl| jlµ(0) |k′〉 〈k′| jlν(0) |k, sl〉 ,

(E.4)

where we sum over the collection of final states X . It can be decomposed into a leptonic
tensor lµν defined by

lµν =
∑

sl

〈k, sl| jlµ(0) |k′〉 〈k′| jlν(0) |k, sl〉 , (E.5)

and a hadronic tensorWµν defined by2

Wµν
λλ′(p, q) =

1

4π

∫

d4xeiqx 〈p, λ′| [jµ†(x), jν(0)] |p, λ〉 (E.6)

where λ, λ′ are the helicities of the in- and outgoing proton, respectively, and jµ(x) is
the hadronic current. Inserting a complete set of states gives

Wµν
λλ′(p, q) =

1

4π

∫

d4xeiqx
[

〈p, λ′| (jµ†(x) |X〉 〈X| jν(0)) |p, λ〉

− 〈p, λ′| (jµ(x) |X〉 〈X| j†ν(0)) |p, λ〉
]

.
(E.7)

Due to translational invariance, we have

〈p, λ′| jµ(x) |X〉 = 〈p, λ′| jµ(0) |X〉 ei(p−p′)x

〈X| jµ(x) |p, λ′〉 = 〈p, λ′| jµ(0) |X〉 ei(p′−p)x.
(E.8)

Energy conservation implies p′
0 ≥ p0 and since q0 > 0 we obtain

Wµν
λλ′(p, q) =

1

4π

∑

X

[

(2π)4δ(q + p− p′) 〈p, λ′| jµ(0) |X〉 〈X| jν(0) |p, λ〉
]

, (E.9)

2 There are different conventions including a factor of 1/mp in the amplitude where the hadronic tensor has
then a dimension of [mass]−1. See e.g. [275]
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N(p) N(p)

γ∗

µ
(q) γ∗

ν
(q)

p

q

p

q

Fig. E.2.: Double virtual forward Compton scattering.

which corresponds to the term in (E.4) up to a factor of 1/(4π).

E.2.1 Relation to Forward Compton Scattering

The hadronic tensor is related to the absorptive part of the double virtual forward Compton
process [274] as depicted in Fig. E.2. We thus consider the reaction

γ∗(q) + p(p, λ)→ γ∗(q) + p(p, λ′), (E.10)

with the amplitude given by

Tµν = i

∫

d4xeiqx 〈p, λ′| T̂ (jµ(x)jν(0) |p, λ〉 . (E.11)

Since Tµν andWµν share the same symmetries, they have an equivalent Lorentz decom-
position. Considering only the symmetric, spin independent part, we can write

Tµν = F̃1(x,Q2)

(

ηµν − qµqν

Q2

)

+
2x

Q2
F̃2(x,Q2)

(

pµ +
qµ

2x

)(

pν +
qν

2x

)

. (E.12)

By utilizing the optical theorem, the DIS cross section is obtained by integrating over the
Lorentz Invariant Phase Space (LIPS) given by

∑

X

∫

dLIPS|Mγp→X |2 = 2ImMγp→γp(s, t = 0), (E.13)

from which we obtain the relations

2ImTµν = 4πWµν =⇒ ImF̃1 = 2πF1, ImF̃2 = 2π.F2 (E.14)
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We therefore find another equivalent definition of the hadronic tensor in terms of the
(virtual) forward Compton scattering amplitude

Wµν
λλ′(p, q) =

i

2π

∫

d4xeiqx 〈p, λ′| T̂ (jµ(x)jν(0)) |p, λ〉 . (E.15)

E.2.2 Hadronic Tensor

Averaging the absorptive part over the proton helicities gives the unpolarized hadronic
tensor

Wµν(p, q) =
∑

s,s′

1

2
δss′ImTµνss′ (p, q) =

1

2i
[Tµνss (p, q)− (T νµss (p, q))∗] (E.16)

Due to Lorentz invariance, the symmetric contributions of the hadronic tensor may be
decomposed as

Wµν = ηµνW1 −
pµpν

m2
p

W2 −
qµqν

m2
p

W4 −
pµqν + pνqµ

m2
p

W5, (E.17)

where current conservation implies

W4 =
m2
p

Q2
W1 +

(

p · q
Q2

)2

W2,

W5 = −p · q
Q2

W2,

(E.18)

and hence

Wµν(p, q) = W1(ν,Q2)

(

ηµν − qµqν

Q2

)

− 1

m2
p

W2(ν,Q2)

(

pµ − p · q
Q2

qµ
)(

pν − p · q
Q2

qν
)

.

(E.19)
Equivalently it may be written using the dimensionless structure functions F1 and F2

Wµν(p, q) = F1(x,Q2)

(

ηµν − qµqν

Q2

)

+
2x

Q2
F2(x,Q2)

(

pµ +
qµ

2x

)(

pν +
qν

2x

)

,

(E.20)
where F1 = W1 and F2 = −(ν/mp)W2. 3

3 Note that in the other convention for the hadronic tensor this would be F1 = mpW1 and F2 = νW2, which
would also be dimensionless.
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The total cross sections for the transversely and longitudinally polarized virtual photons
are given by [266]4

σT =
4π2αem
mpκγ

F1(Q2, ν)

σL =
4π2αem
mpκγ

[

−F1(Q2, ν) +
mp

ν

(

1 +
ν2

Q2

)

F2(Q2, ν)

]

,

(E.21)

with the flux factor κγ given by κγ =
√

ν2 +Q2 (Gilman convention), κγ = ν−Q2/(2mp)

(Hand convention).

HERA measured the reduced cross section, which for a neutral current exchange is given
by

σNCred (Q2,W 2, y) =
q4x

2πα2
em(1 + (1− y)2)

d2σ

dxdQ2
(e p→ e X) . (E.22)

It can be expressed in terms of longitudinal σL and transverse σT cross section as [273]

σNCred (Q2,W 2, y) =
1 + (1− y)2 + y2δ(W 2, Q2)

(1 + (1− y)2)(1 + 2δ(W 2, Q2))

Q2

4π2αem
(1− x)

× [σT (W 2, Q2) + σL(W 2, Q2)− (1− ε)σL(W 2, Q2)]

(E.23)

The total photoproduction cross section can be extracted from

σγp(W
2) = σT (W 2, 0). (E.24)

E.3 Low-Energy Couplings and Pomeron propagator

E.3.1 Tensor Glueball 2γ-couplings

The bulk-to-boundary propagator for an off-shell photon is obtained by solving (7.69) with
the boundary condition J (0, z) = 1. Interactions between the tensor glueball and two
virtual photons following from (10.78) are thus given by

LGT VV =tr
[

tV
∗V∗

2 (Q1, Q2)
Q2

1Q
2
2

M2
KK
VµVνGµνT + tV∗V∗

3 (Q1, Q2)GµνT tr
(

FV
µρF

Vρ
ν

)

]

,

(E.25)
4 This reference is missing a factor of 4π2 above Eq.(17).
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with the double-virtual transition form factors

tV
∗V∗

2 (Q1, Q2) =
M4

KK
Q2

1Q
2
2

κ

∫

dzKJ ′(Q1, z)J ′(Q2, z)HT ,

tV∗V∗
3 (Q1, Q2) = κ

∫

dzK−1/3J (Q1, z)J (Q2, z)HT ,

(E.26)

where we pulled out a factor of M4
KK

Q2
1Q

2
2
for convenience.

E.3.2 Tensor Glueball Proton Coupling

As dictated by the holographic principle, the tensor glueball couples predominantly to the
stress-energy tensor of QCD via

Sint = λP

∫

d4xδGµνT
µν , (E.27)

where the vertex structure is determined by the matrix element of Tµν which, by current
conservation, can be written as

〈p′, s′|Tµν(0) |p, s〉 = u

[

A(t)γ(µPν) +
i

2mp
B(t)P(µσν)ρk

ρ + C(t)
(kµkν − ηµνk2)

mp

]

u,

(E.28)
where

P = (p+ p′)/2, k = p− p′, u′ = u(p′, s′), u = u(p, s) (E.29)

and

T(µ1...µn) =
1

n!

∑

σ∈Sn

Tµσ1 ...µσn
, T[µ1...µn] =

1

n!

∑

σ∈Sn

(−1)sign(σ)Tµσ1 ...µσn
, (E.30)

denote symmetrization and antisymmetrization with respect to the indices in brackets,
respectively. Following Refs. [209, 222, 271] we model baryons as charge one instantons of
the SU(2) gauge fields. Upon quantization of the moduli space, they are identified with
spin 1/2 fermions of mass

mcl
B = MKK



8π2κ+

√

22

6
+

2

15
Nc



+O(1/λ) (E.31)

In curved spacetime, however, the mass is to be identified in terms of proper time as

S =

∫

m5dτ, (E.32)
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giving a radially dependent mass

m5(U) =
mcl

B√−g00
= mcl

B

(

RD4

U

)3/4

. (E.33)

To simplify the further analysis, we bring the 5d metric into a conformally flat form

ds2
5 = H(w)(dw2 + ηµνdxµdxν) (E.34)

with H(w) = (U(w)/RD4)3/2 and

w(U) =

∫ U

UKK

R
3/2
D4 dU ′

√

U ′3 − U3
KK

. (E.35)

Treating the instanton solution as an effective fermion field living on the D8 world volume,
we can reduce the action to a 5-dimensional Lagrangian

Sf = −iN
∫

d5xe−φVolS4(U)
√
g5

[

ψemâ ΓâDmψ +m5ψψ
]

, (E.36)

where unhatted indices pertain to the 5d world volume, and hatted indices correspond to
tangent space indices. The radially dependent S4 volume is given by VolS4(U) = R3

D4UV4

and N denotes the prefactors that arise from dimensional reduction, which will later be
absorbed into the normalization of the baryon wave function. Note that the covariant
derivative in (E.36) also induces interactions between baryons and the 5-dimensional gauge
fields [271]. Omitting these couplings for simplicity, the covariant derivative is given by

Dmψ =

(

∂m −
i

4
ω âb̂
m σâb̂

)

ψ, (E.37)

with
σâb̂ =

i

2

[

Γâ,Γb̂
]

, [Γâ,Γb̂] = 2ηâb̂. (E.38)

From the tetrads
eâ = H(w)1/2δâmdxm (E.39)

the Cartan connections are readily obtained as

ωµ̂ν̂ = 0, ωµ̂ŵ =
1

2
∂w lnH(w)dxµ. (E.40)

Identifying Γµ̂ = γµ and Γŵ = γ5 we obtain

Sf = −iN
∫

d4xdw
(

VolS4(w)e−φ√g5H
−5/2

)

H−1/2(w)

×
(

ψ

[

γµ∂µ + γ5∂w +
∂wH

H
γ5
]

ψ +m5(w)H1/2ψψ

)

.
(E.41)
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The factors depending on w may be reabsorbed into ψ by

ψ =
1

H(w)
B. (E.42)

Without the contribution from the Chern-Simons term, the baryon wave function is
localized at w = 0 (U = UKK) [222]. We can thus approximate the expression in the first
brackets in (E.41) with its value at w = 0 and absorb all constants into the normalization
of B to obtain

Sf − i
∫

d4xdw
[

Bγm∂mB +mB(w)BB
]

, (E.43)

wheremB = mcl
B
(

U(w)
UKK

)

. For smallw themass gets a correction ofmB = mcl
B
(

1 +
wM2

KK
3

)

.
We can rewrite this expression by symmetrizing the indices pertaining to Minkowski space
to obtain

Sf ⊃ −
i

2

∫

d4xdwBηµν(γµ∂ν+γν∂µ)B = − i
2

∫

d4xdwBH−1(w)gµν(γ
µ∂ν+γν∂µ)B.

(E.44)
Identifying

TµνB = − i
2
B(γµ∂ν + γν∂µ)B (E.45)

with the 5d fermionic stress-energy tensor and inducing fluctuations of the background
metric, we find the linearized interaction Lagrangian

Slinf =

∫

d4xdwH−1(w)hµνT
µν
B . (E.46)

By performing a chiral Kaluza-Klein decomposition, the equations of motion following
from (E.43) are given by

(±∂w +mB(w))f± = mN f∓. (E.47)

To get a canonically normalized action, we impose the normalization condition
∫

dw|f±(w)|2 = 1, (E.48)

In [271] it was shown that (E.47) can be decoupled and brought into the dimensionless
form



−∂2
w̃ −

λNc

27π
∂w̃Ũ(w̃) +

(

λNc

27π
Ũ(w̃) +

√

2

15
Nc

)2


 f−(w̃) =

(

mB
MKK

)2

f−(w̃).

(E.49)
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For large λNc one encounters a steep potential with a minimum localized at w̃min ∼
O(1/λNc). Therefore, we approximate

|f±(w)|2 = δ(w), (E.50)

and thus
Slinf = λP

∫

d4xqµνT
µν (E.51)

with
λP =

1

NT

∫

dwT (w)δ(w) =
1

NT
=

103.136

MKKNc

√
λ

= 8.88 GeV−1. (E.52)

where we used the boundary condition T (UKK) = 1. Hence, we find the glueball proton
vertex to be given by

Γµν = λP

[

A(t)
γµPν + γνPµ

2
+B(t)

i(Pµσνρ + Pνσµρ)k
ρ

4mp
+ C(t)

(kµkν − ηµνk2)

mp

]

,

(E.53)
where, again, k = p′ − p, P = (p + p′)/2 and λP = 8.88. This value differs from
Ref. [211] by about 1.5%, which we attribute to numerical uncertainties. However, the
value quoted in Ref. [209] is off by a factor of

√
2, which we believe stems from an

inconsistent normalization of the glueball polarization. Matching this to a spin 1/2 particle
gives the constraints A(0) = 1, B(0) = 0. Note that since in the forward limit k → 0,
B(t) and C(t) will play no role in our analysis.

E.3.3 Reggeized Tensor Glueball Propagator

Following Ref. [208], we use the Pomeron propagator obtained by taking the Regge limit
of the Virasoro-Shapiro amplitude. This amounts to the replacement

−i
t−m2

G

→ iα′
g

2

e− iπ
2
αg(t)Γ[−χ]Γ[1− αg(t)

2 ]

Γ[
αg(t)

2 − 1− χ]

(

α′
gs

2

)αg(t)−2

, (E.54)

where αg(t) = 1 + ǫg + α′
gt and χ = α′

g(4m
2
p − 3M2

T ). For the following numerical
analysis, we shall fix to fit results obtained in Ref. [208] who obtained

ǫg = 0.08, α′ = 0.3 GeV−2, (E.55)

and use the mass of the tensor glueball obtained in the WSS model. Note that the data
gathered by ZEUS [203] suggests a Pomeron intercept slowly varying with Q2 but about
constant below Q2 < 1 GeV2, as is the case for the data used in the following section.
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E.4 Structure Functions from Holographic QCD

Using the vertices (E.26), (E.53) and the Pomeron propagator (E.54) we find

TµνWSS(p, q) =
(−iα′

gW
2)ǫg

2πW 2

(

−ηµµ′
+
qµqµ

′

Q2

)(

−ηνν′
+
qνqν

′

Q2

)

trQ2

× 2

[

tV
∗V∗

2

M2
KK
q4(ηµ

′σην
′ρ + ηµ

′ρην
′σ)− tVV

3

(

−Q2ηµ
′σην

′ρ −Q2ηµ
′ρην

′σ

+ qµ
′
qρην

′σ + qν
′
qρηµ

′σ − 2qρqσηµ
′ν′

+ qµ
′
qσην

′ρ + qν
′
qσηµ

′ρ
)]

× 1

2
(ηκσηλρ + ηκρηλσ − 1

2
ηκληρσ)2λPA(t)pκpλ

(E.56)

From this, we obtain the structure functions

F1 = NP
[

tVV
3

(

(W 2 +Q2)2 +m4
p − 2m2

pW
2
)

+ tV
∗V∗

2 m2
pM

2
KK

(

Q2
)2
]

,

F2 =
NP
2

4Q2(W 2 +Q2 −m2
p)

(

tVV
3 +

tV
∗V∗

2

M2
KK
Q2

)

,

(E.57)

or, equivalently,

W1 = NP
[

tVV
3

(

(W 2 +Q2)2 +m4
p − 2m2

pW
2
)

+
tV

∗V∗

2

M2
KK
m2
p

(

Q2
)2
]

,

W2 =
NP
2

(

tVV
3 +

tV
∗V∗

2

M2
KK
Q2

)

(

−4Q2
)

,

(E.58)

where we defined NP ≡ λP
2πW 2 trQ2 cos

(

π
2 ǫg
)

(α′
gW

2)ǫg .

E.5 Results

A direct comparison of our theoretical predictions with measurements from H1, ZEUS,
FNAL and astroparticle data [269, 276–280] leads to a rather significant mismatch. The
reasons for this are manifold. The predominant contributor is the rapid decrease of the
transition form factors at high virtualities. This could be remedied by increasing MKK,
a procedure that is indeed favored when addressing glueball physics (see Chapter 10).
However, the scale of the photon bulk-to-boundary propagator is unambiguously fixed
by the rho meson mass, which enforces the standard value ofMKK = 0.949 GeV. We will
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λP t
V∗V∗

2 t
V∗V∗

3

9.38(9)[GeV−1] 8.40(11) 2.13(4)
Table E.1.: Best fit results for a global fit of the photoproduction cross section, reduced cross

section, and F2(Q2,W ) to the data of [269, 276–280] above
√
s = 300 GeV and for

Q2 ≤ 0.5 GeV2.

50 100 200
0

50

100

150

200

250

300

W [GeV]

σ γp[μ
b
]

H1 ZEUS Astro

Fig. E.3.: Photoproduction cross section with the parameters from Table E.1 through exchange of a
Reggeized tensor glueball compared to data from [278–280].

thus refrain from fitting this quantity5 and instead only fit λP , tV
∗V∗

2 and tV∗V∗

3 . The other
quantities are fixed by the top-down Pomeron analysis of [208] using CDF data. Explicitly
they are given by α′

g = 0.3 and ǫg = 0.086 with resulting χ ≈ −0.93.

For the global fit, we use data in the range of
√
s ≥ 300 GeV and 0 ≤ Q2 ≤ 0.5GeV2.

The fit results are displayed in Table E.1 where the values for tV
∗V∗

2 and tV
∗V∗

3 correspond
to an increase in the scale of the pristine WSS results in (E.26), but with the Q2 behavior
fixed. In Fig. E.3 we show the photoproduction cross section (E.24) together with data
from [278–280]. We note that the data is very well reproduced even when using the WSS
model predictions but with the scale adjusted accordingly. Fig. E.4 displays the reduced
cross section at

√
s = 300 GeV together with the corresponding data from [269, 276, 277]

for various virtualities. At virtualities above Q2 ∼ 0.35 GeV2 the predictions start
to deviate, since the scale factors tV

∗V∗

2 and tV
∗V∗

3 can no longer compensate the UV
behavior of the photon bulk-to-boundary propagator J (Q, z). In Fig. E.5 we show the
reduced cross sections for various virtualities Q2 at

√
s = 318 GeV and compare it to the

data from [269, 276, 277]. At this slightly higher center of mass energy, the agreement
is better even for virtualities above Q2 ∼ 0.5 GeV2. The hadronic structure function
F2(Q2,W ) together with data from [269, 276, 277] is shown in E.6. Unfortunately, no
measurements for virtualities above Q2 = 0.25 GeV2 are reported. Below this value,
5 Fitting MKK gives a value of about 1.7 GeV and a resulting tensor glueball mass of roughly 2.6 GeV.
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Fig. E.4.: Fit of the reduced cross sections within a 90% confidence interval compared to data from
HERA [269, 276, 277] at a center of mass energy of

√
s = 300 GeV and 0.045 GeV2 ≤

Q2 ≤ 0.40 GeV2.
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Fig. E.5.: Fit of the reduced cross sections within a 90% confidence interval compared to data from
HERA [269,276,277] at a center of mass energy of

√
s = 318 GeV and 0.15 GeV2 ≤ Q2 ≤

0.40 GeV2.
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Fig. E.6.: Fit of the structure function F2(Q2,W ) within a 90% confidence interval compared
to data from HERA [269, 276, 277] at a center of mass energy of

√
s = 300 GeV and

0.11 GeV2 ≤ Q2 ≤ 0.25 GeV2.

the fit reproduces the data well. The analysis laid out in this appendix shows that the
WSS model is unfit to describe the low-x data by HERA. This was seen to be primarily
due to the wrong UV behavior, which only to some extent could be compensated by
increasing the couplings. The predictions deviate strongly from the data above virtualities
of 0.5 GeV2. However, a similar behavior was found in the phenomenological Tensor
Pomeron Model (TPM) [273, 281], which attributed this behavior to a transition from
soft to hard Pomeron at these virtualities. The overall scale, effectively governed by the
tensor glueball coupling to the proton, is too small, as seen from the photoproduction
cross section results. Whether a complete computation using instantons could remedy this
shortcoming would be interesting. Especially the Chern-Simons term yields corrections of
O(1/Nc) and stabilizes the instanton at a finite size, which would yield a more substantial
overlap with the holographic wave function of the tensor glueball in the corresponding
integrals for the transition form factors. A more suitable avenue to describe the data would
be to improve the UV behavior by constructing a soft-wall model (see [214] for an attempt)
and use the WSS model to determine the Lorentz structure of the interactions as well as
fix the couplings at Q2 = 0.
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Bulk-to-Bulk Propagator in
the Soft-Wall Model

F
To contrast with the findings in the main text using a repulsive wall, we offer a thorough
derivation of the bulk-to-bulk propagator within the soft-wall model. While numerous
characteristics of the analogous computations using a repulsive wall reappear, Gribov
diffusion is absent.

Consider the soft-wall model with dilaton φ(z) = (2κz)2. The Reggeized scalar propagator
is obtained by solving the Sturm-Liouville problem

Lzy(z) =
δ(z − z′)
w(z)

(F.1)

with
Lz =

1

w(z)
dz(w(x) p0(z) dz) + p2(z), (F.2)

and

w(z) =
√
ge−φ(z)

p0(z) = −gzz(z)
p2(z) = Sj − tz2,

(F.3)

where we recall that Sj = m2
5R

2 +m2
jR

2. Explicitly, we have

(

− z3e4κ2z2
∂z

(

1

z3
e−4κ2z2

∂z

)

− t+
Sj
z2

)

G0(j, t, z, z′) = z3e4κ2z2
δ(z − z′) (F.4)

with t = K2. To simplify the differential equation (F.4), we rescale the spin-j propagator
as

G0(j, t, z, z′)→ (zz′)
3
2 e

3
4
κ2(z2+z′2)G0(j, t, u, u′) (F.5)

with u = κz and κ2 → 8
3κ

2, which now solves

− d2

du2
G0 +

(

Sj + 15
4

u2
+

9

4
u2 − t

κ2
+ 3

)

G0 =
e

3
4

(u2−u′2)

κ

(

u

u′

)3/2

δ(u− u′) (F.6)
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Using the delta function, the right hand side evaluates to a constant, leading to a standard
Green’s function problem. Upon rescaling u→

√
3u and t̃ = t/3κ2, (F.6) now reads

− d2

du2
G0 +

(

Sj + 15
4

u2
+
u2

4
− t̃+ 1

)

G0 =
1√
3κ
δ(u− u′) (F.7)

Performing one final coordinate transformation v = 1
2u

2 and subsequently rescaling the
propagator as

G0(j, t, v, v′) =
1

(vv′)
1
4

K0(j, t, v, v′) (F.8)

(13.18) reduces to the Whittaker equation

d2K0

dv2
+

( 1
4 − α2

v2
+
β

v
− 1

4

)

K0 = −δ(v − v
′)√

6κ
(F.9)

with
α =

1

2
(∆g(j)− 2) β =

1

2
(t̃− 1) (F.10)

The independent homogeneous solutions to (F.9) are given by the Whittaker functions

K1(v) = e− v
2 v

1
2

+α
M

(

1

2
+ α− β, 1 + 2α, v

)

K2(v) = e− v
2 v

1
2

+α
U

(

1

2
+ α− β, 1 + 2α, v

)
(F.11)

in terms of the regular Kummer M and irregular Tricomi U hypergeometric functions.
The inhomogeneous solution to ((F.9)) is now obtained from

K0(v, v′) =
1

2
AK2(v)K1(v′) v > v′

K0(v, v′) =
1

2
AK1(v)K2(v′) v < v′

(F.12)

with the normalization fixed by the Wronskian

A−1 = −
√

6κW(K2,K1) = − 4κΓ(1 + 2α)

Γ

(

1
2 + α− β

) . (F.13)

The confining bulk-to-bulk propagator is thus given by

G0(j, t, z, z′) = −(zz′)2(4κ2zz′)∆g(j)−2 Γ(
∆g(j)−t̃

2 )

Γ(∆g(j)− 1)
M(z)U(z′) (F.14)
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where we introduced the shorthand M(z) = M(
∆g(j)−t̃

2 ,∆g(j)− 1, 4κ2z2) . Before we
proceed to evaluate the Sommerfeld-Watson formula, we express the Whittaker function
involving U in terms of M by using the identity

K2(v) = e− v
2 v

1
2

+α

(Γ(−2α)M

(

1
2 + α− β, 1 + 2α, v

)

Γ(1
2 − α− β)

+

Γ(2α)M

(

1
2 − α− β, 1− 2α, v

)

Γ(1
2 + α− β)

v−2α

)

.

(F.15)

The singular part in v is subleading when the integral is evaluated in the saddle-point
approximation. We will thus drop it in the subsequent analysis. After reverting the
rescalings and transforming to the original z coordinate, the bulk-to-bulk propagator is
symmetric

G0(j, t, z, z′) = −(zz′)2(4κ2zz′)∆g(j)−2 Γ(
∆g(j)−t̃

2 )Γ(2−∆g(j))

Γ(
4−t̃−∆g(j)

2 )Γ(∆g(j)− 1)
M(z)M(z′),

(F.16)
where we introduced the shorthand

M(z) = M

(

∆g(j)− t̃
2

,∆g(j)− 1, 4κ2z2

)

. (F.17)

F.1 Conformal Limit

In the confining case considered above, the bulk-to-bulk propagator is given by

G0(j, t, z, z′) = −(zz′)2(4κ2zz′)b−1 Γ(a)Γ(1− b)
Γ(1 + a− b)Γ(b)

×M(a, b, 4κ2z2)M(a, b, 4κ2z′2)

(F.18)

where a =
∆g(j)−t̃

2 and b = ∆g(j)−1. Takingκ→ 0, and simultaneously t̃ = t/8κ2 →∞
we may use the identity

lim
a→∞M(a, b,−x/a) = Γ(b)x

1−b
2 Jb−1(2

√
x), (F.19)
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where x = |t|z2/4. To leading order in κ, we thus obtain

G0(j, t, z, z′) = −(zz′)2(4κ2zz′)∆g(j)−2 Γ(2−∆g(j))

Γ(∆g(j)− 1)

( |t|zz′

2

)2−∆g(j)

× J∆−2

(

√

|t|z
)

J∆−2

(

√

|t|z′
)

(F.20)

Resumming the Regge trajectory using a Sommerfeld-Watson transform

G2(s, t, z, z′) =− (zz′)2
∫ dj

4πi

[

1 + e−iπj

sin πj
(α′szz′)j(4κ2zz′)∆g(j)−2

× Γ(2−∆g(j))

Γ(∆g(j)− 1)

( |t|zz′

2

)2−∆g(j)

J∆−2

(

√

|t|z
)

J∆−2

(

√

|t|z′
)]

(F.21)

we obtain

G2(j, t, z, z′) = −f
+(λ)

2

√

D
4πχ

(zz′)2(α′szz′)jPe− log(zz′|t|)2

4Dτ J0

(

√

|t|z
)

J0

(

√

|t|z′
)

.

(F.22)
Upon taking the Regge limit, the Bessel functions become trivial at the saddle point, thus
reproducing the conformal result presented in (13.53). Notably, the Regge limit must be
applied after evaluating the Sommerfeld-Watson transform; otherwise, the dependence on
t would vanish entirely, as evident in equation (13.50).

An ambiguity arises in the sign of α in (F.9) and (13.44), given that α = (∆ − 2)/2 =
√

Sj + 4/2, and both the Whittaker and Bessel equations are symmetric under α→ −α.
However, this ambiguity is resolved in the saddle point approximation and the limit of
small

√
λ/τ . In this regime, the order of the Bessel function becomes integer, allowing the

use of reflection formulas to establish the correct symmetry in z and z′, a requirement for
the Green’s function of a self-adjoint operator. The Whittaker functionMβ,α, equivalent
toK1 in our analysis, is symmetric under α→ −α for all values of α.

F.2 Mode Sum Representation

The spin-j bulk-to-bulk propagator may be decomposed as [282]

G0(j,K, z, z′) = −
∑

n

ψn(j, z)ψn(j, z′)
K2 +m2

n(j)
. (F.23)
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The normalizable modes ψn(j, z) are given in terms of associated Laguerre polynomials
Lαn(y). Explicitly, they are given by

ψn(j, z) = cn(j) z∆g(j)L∆g(j)−2
n (4κ2z2), (F.24)

where
∆g(j) = 2 +

√

2
√
λ(j − jP) (F.25)

and the normalization is

cn(j) =

(

2(4κ2)∆q(j)−1Γ(n+ 1)

Γ(n+ ∆q(j)− 1)

)
1
2

. (F.26)

The squared glueball mass spectrum is given by

m2
n(j) = 16κ2

(

n+
1

2
∆g(j)

)

. (F.27)

Decomposed in this way, the role of Regge poles is evident. However, the process of
Reggeization necessitates a summation over the entirety of the Regge trajectory. The
Sommerfeld-Watson transform of the bulk-to-bulk propagator in impact parameter space
is given by

G1(s, t, z, z′) =

∫

d2b⊥e
−iqb⊥

∫

CL

dj
4πi

(

1− e−iπ(j−1)

sin(π(j − 1))

)

(α′szz′)j−1G̃0(j, b, z, z′).

(F.28)
Fourier transforming (F.23) by utilizing

∫

d2q
eiqb⊥

q2 +m2
n(j)

=
K0(mn(j)b)

2π
, (F.29)

we obtain the scalar bulk-to-bulk propagator in impact parameter space

G̃0(j, b, z, z′) =
∑

n

ψn(j, z)ψn(j, z′)
K0(mn(j)b)

2πzz′ , (F.30)

whereK0(y) is the modified Bessel function of the second kind. The mass spectrum for
the odd-spin glueballs in (F.24) is given by

m2
n(j) = (4κ)2(n+

1

2
∆g(j)) ≡ m2

0

(

n+ 1 +
1

2

√

2
√
λ(j − jO)

)

. (F.31)

At large impact parameter b, the Bessel functionK0 in (F.28) may be approximated with

K0(mn(j)b) ≈ e−mn(j)b

√

π

2mn(j)b
. (F.32)
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The steep potential introduced by the soft-wall leads to a localization of the wavefunctions
ψn(j, z) at small z. In this case, we may take the limit of the z-dependent piece in (F.24)
to approximate

z∆L∆−2
n (z2) =

z−2ez
2

Γ(n+ 1)

∫

dxe−xxn+α/2J∆−2(2
√
xz)

≈ z∆

Γ(n+ 1)Γ(∆− 1)

∫

dxexxn+∆−2

= z∆ Γ(n+ ∆− 1)

Γ(∆− 1)Γ(n+ 1)
.

(F.33)

As was the case for the conformal limit, the gamma functions are trivial when evaluated
at the saddle point. To leading order, we thus have

G1(s, t, z, z′) ≈
∫

d2b⊥e
−iqb⊥ ×

∫

CL

dj
4πi

(

1− e−iπ(j−1)

sin(π(j − 1))

)

(α′szz′)j−1

×
∑

n

ψn(j, z)ψn(j, z′)
e−mn(j)b

2πzz′

(

π

2mn(j)b

)

1
2

(F.34)

The contour CL in (F.28) is defined to the left of the branch point j = jO as illustrated
in Fig. 13.3. Considering the arguments presented above (13.36) in the main text and
for τ/

√
λ≫ 1, the j-integration along CL is evaluated by a saddle point approximation,

resulting in

G1(s, t, z, z′) ≈ −f−(λ)

∫

d2b⊥e
−iqb⊥

1

8

√

m0b

32π2(n+ 1)Dτ3

×
∑

n

ψn(jO, z)ψn(jO, z
′)

zz′ e
(jO−1)τ−m0b

√
n+1− (m0b)2

64(n+1)Dτ .

(F.35)

We did not succeed in analytically evaluating this expression, though numerically, it agrees
reasonably well with (F.16) when the first few modes are summed over.
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LHC Large Hadron Collider
LIPS Lorentz Invariant Phase Space
LSZ Lehmann–Symanzik–Zimmermann
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NS Neveu-Schwarz

P

PDF Parton Distribution Function
PDG Particle Data Group
PGH Pomeron Glueball Hypothesis
pQCD perturbative QCD
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QCD Quantum Chromodynamics
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R Ramond
RHIC Relativistic Heavy-Ion Collider
RNS Ramond–Neveu–Schwarz

S

SSA Single Spin Asymmetry
SYM Super Yang-Mills

T
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TOTEM Total Elastic and Diffractive Cross
Section Measurement at the LHC
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V
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29
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