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In this paper, we formulate the statistical mechanics in Snyder space that supports the existence of a 
minimal length scale. We obtain the corresponding invariant Liouville volume which properly determines 
the number of microstates in the semiclassical regime. The results show that the number of accessible 
microstates drastically reduces at the high energy regime such that there is only one degree of freedom 
for a particle. Using the Liouville volume, we obtain the deformed partition function and we then study 
the thermodynamical properties of the ideal gas in this setup. Invoking the equipartition theorem, we 
show that 2/3 of the degrees of freedom freeze at the high temperature regime when the thermal 
de Broglie wavelength becomes of the order of the Planck length. This reduction of the number of degrees 
of freedom suggests an effective dimensional reduction of the space from 3 to 1 at the Planck scale.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

While general relativity and quantum mechanics are successful 
in their applicability domains, it seems that there is a fundamen-
tal incompatibility between them in order to find the so-called 
quantum theory of gravity. Such a theory, not completely formu-
lated so far, would reasonably describe the structure of spacetime 
at the Planck scale where both of the gravitational and quan-
tum mechanical effects become important. Despite the fact that 
there is no unique approach to quantum gravity, existence of a 
universal minimum measurable length, preferably of the order of 
the Planck length lPl ∼ 10−33 m, is a common feature of quantum 
gravity candidates such as string theory and loop quantum grav-
ity [1,2]. It is then widely believed that a non-gravitational theory 
which includes a universal minimal length scale would appear at 
the flat limit of quantum gravity. Therefore, many attempts have 
been done in order to take into account a minimal length scale in 
the well-known non-gravitational theories such as quantum me-
chanics and special relativity. The generalized uncertainty principle 
is investigated in the context of the string theory that supports the 
existence of a minimal length as a nonzero uncertainty in position 
measurement [3]. Quantum field theories turn out to be naturally 
ultraviolet-regularized in this setup [4]. Inspired by the seminal 
work of Snyder in 1947 who was formulated a Lorentz-invariant 
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noncommutative spacetime [5], a phase space with noncanonical 
symplectic structure is formulated in the non-relativistic limit [6]. 
At the quantum level, this deformed phase space leads to the mod-
ified uncertainty relation which is very similar to one arises from 
the string theory motivations [6]. Furthermore, recently, polymer 
quantum mechanics was suggested in the symmetric sector of loop 
quantum gravity which supports the existence of a minimal length 
scale known as the polymer length scale [7]. Also, the doubly spe-
cial relativity theories are investigated in order to take into account 
a minimal observer-independent length scale in special relativity 
[8]. Appearance of curved energy–momentum space is the direct 
consequence of the doubly special relativity theories [9] and, in-
terestingly, the Snyder noncommutative spacetime could be also 
realized in this setup by a relevant gauge fixing process [10].

Apart from the details of the above mentioned phenomenolog-
ical models as a flat limit for quantum gravity, all of them suggest 
the deformation to the density of states at the high energy regime 
which in turn leads to the nonuniform measure over the set of 
microstates. Indeed, in these setups, the number of accessible mi-
crostates will be reduced at the high energy regime due to the 
existence of a minimal length as an ultraviolet cutoff for the sys-
tem under consideration. Reduction of the number of degrees of 
freedom, however, immediately suggests an effective dimensional 
reduction of the space. This consequence seems to be a general 
feature of quantum gravity which may also open new window for 
the statistical origin of black holes thermodynamics [11]. Thermo-
dynamics of black holes is widely studied in the frameworks of 
phenomenological quantum gravity models such as noncommuta-
tive space [12], generalized uncertainty principle [13] and polymer 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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quantization scenario [14]. The reduction of the number of accessi-
ble microstates due to the universal quantum gravitational effects 
would also significantly change the thermodynamical properties 
of any physical system at the high temperature regime. There-
fore, quantum gravity effects on the thermodynamics of various 
statistical systems are widely studied in different contexts [15]. 
For the special case of the ideal gas, it is natural to expect that 
the quantum gravity effects would become important at the high 
temperature regime, when the corresponding thermal de Broglie 
wavelength λ =

√
2π
mT h̄ becomes of the order of the Planck length 

lPl = √
h̄G , where m is the particles’ mass and T denotes the tem-

perature.1 The associated thermodynamical properties then will be 
significantly modified in this regime. Thermodynamics of the ideal 
quantum gases in noncommutative space is studied in Refs. [16,
17] and for the case of the effects that arise from the generalized 
uncertainty principle see Ref. [18]. Thermodynamical properties of 
the ideal gas in polymerized phase space, as a classical limit of 
a polymer quantum mechanics, are also studied in Refs. [19–21]. 
For the case of the relativistic ideal gases in doubly special rela-
tivity framework see Refs. [22,23]. Motivated by the above stated 
issues, in this paper we study the thermodynamical properties of 
the ideal gas in Snyder space.

The structure of the paper is as follows: In Section 2, the sta-
tistical mechanics in the Snyder space is formulated and the corre-
sponding partition function is found. Using the partition function, 
thermodynamics of the ideal gas is studied in Section 3. Section 4
is devoted to the summary and conclusions.

2. Statistical mechanics in Snyder space

The kinematics and dynamics of a classical system on the phase 
space provide a suitable framework for formulating the statistical 
mechanics in the semiclassical regime. The key quantity is the Li-
ouville volume that determines the density of states from which 
all the thermodynamical properties of a system could be achieved. 
In this section, using the symplectic geometry, we formulate the 
statistical mechanics in Snyder space.

2.1. Kinematics and dynamics

Inspired by the seminal work of Snyder on noncommutative 
spacetime [5], the associated deformed phase space is formulated 
which also supports the existence of a minimal length [6]. A phase 
space naturally admits symplectic structure and therefore is a sym-
plectic manifold. Suppose that (�, ω) to be a Snyder-deformed 
phase space with ω as the associated symplectic structure which 
is a closed nondegenerate 2-form on �. The local form of the sym-
plectic structure in Snyder model is given by [24]

ω = dqi ∧ dpi − 1

2
d(qi pi)∧d ln

[
1 + β2 p2

]
, (1)

where qi and pi are the position and momentum coordinates of a 
particle with i, j = 1, . . . , 3 and p2 = δi j pi p j . β is the deformation 
parameter with dimension of length which is usually taken to be 
of the order of the Planck length as β = β0 lPl, where β0 = O(1)

is the dimensionless numerical constant that should be fixed only 
with experiment [25]. Taking the low energy limit β → 0 in the 
relation (1), the standard well-known canonical form of the sym-
plectic structure could be recovered.

Since the symplectic structure is nondegenerate by definition, 
one can assign a unique vector field x f to any function f on � as 

1 We work in units kB = 1 = c, where kB and c are the Boltzmann constant and 
speed of light in vacuum respectively.
ω(x f ) = df . The Poisson bracket for two real-valued functions is 
defined as

{ f , g} = ω(x f ,xg) . (2)

From the above definition, it is straightforward to show that the 
symplectic structure (1) generates the following noncanonical Pois-
son algebra

{qi,q j} = β2 J i j, {qi, p j} = δi
j + β2 pi p j, {pi, p j} = 0, (3)

where J i j = qi p j − q j pi is the generator of the rotation group in 
three dimensions with qi = δi jq j . The symplectic structure (1) or 
equivalently the Poisson algebra (3) properly defines the kinemat-
ics of the phase space � in Snyder model.

The dynamics of the system will be determined by specifying 
a Hamiltonian function H as the generator of time evolution of 
the system. The Hamiltonian system on the phase space is then 
defined by the triplet (�, ω, H) and the dynamical evolution of the 
system is governed by the equation

ω(xH ) = dH , (4)

where xH is the Hamiltonian vector field and it’s integral curves 
are nothing but the Hamilton’s equations in this setup (see 
Ref. [24] for more details).

Furthermore, the natural volume on the phase space is the Li-
ouville volume which for a 2n-dimensional phase space is defined 
as

ωn = 1

n! ω ∧ . . . ∧ ω (n times) . (5)

The Liouville volume for a particle in Snyder-deformed phase space 
then could be easily obtained by substituting the symplectic struc-
ture (1) into the definition (5) which gives

ω3 = dq1 ∧ dq2 ∧ dq3 ∧ dp1 ∧ dp2 ∧ dp3(
1 + β2 p2

) . (6)

The phase space (Liouville) volume determines the density of 
states and then the number of accessible microstates for a statisti-
cal system. It is important to check the verification of the Liouville 
theorem for the Snyder measure (6) in order to formulate the sta-
tistical mechanics in Snyder-deformed phase space. The Liouville 
theorem states that the Liouville volume is invariant under the 
time evolution of the system

dωn

dt
= ∂ωn

∂t
+LxH ωn = 0 , (7)

where LxH denotes the Lie derivative with respect to xH . The 
relation (7) can be traced back to the facts that ωn is not ex-
plicitly time-dependent, LxH ωn = n(LxH ω) ∧ ωn−1 and LxH ω =
d(ω (xH )) + (dω) (xH ) = 0, where we have used the equation (4)
as d(ω (xH )) = d2 H = 0 and the closure of the symplectic structure 
dω = 0. The result (7) for the Snyder measure (6) is essential for 
us to formulate the statistical mechanics in Snyder space.

2.2. Number of microstates

Before obtaining the partition function, from which all the ther-
modynamical properties of a system can be obtained, we first 
make a qualitative discussion about the number of microstates in 
Snyder-deformed phase space regardless of the ensemble density 
and the Hamiltonian function.

The number of microstates for a single-particle phase space is 
given by
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Nm = 1

h3

∫
p≤p∗

ω3 , (8)

where we have considered a region of phase space in which the 
condition p ≤ p∗ , with p =

√
δi j pi p j is satisfied in order to have a 

finite number of microstates.
The quantity (8) for a system with non-deformed phase space 

is Nm = (4π V /h3) 
∫ p∗

0 p2dp = (4π V /3h3) p3∗ , where V is the spa-
tial volume of the system under consideration. For the case of the 
Snyder-deformed phase space, substituting the Liouville volume (6)
into the relation (8), it works out as

Nm = 4π V

h3

p∗∫
0

p2dp(
1 + β2 p2

) = 4π V

h3β3

(
βp∗ − arctan[βp∗]

)
. (9)

For the low energy regime with βp∗ � 1 (p∗ � pPl), the rela-
tion (9) for the number of microstates behaves as Nm ∼ p3∗ which 
shows that it correctly coincides with the standard result of the 
non-deformed case in this regime. For the high energy regime 
βp∗ ∼ 1 (p∗ ∼ pPl), however, the number of microstates (9) be-
haves linearly with p∗ as Nm ∼ p∗ (see also Fig. 1, where the 
number of microstates (9) versus p∗ is plotted and also it is com-
pared with the standard non-deformed case). This result shows 
that, at the high energy regime when the quantum gravity (min-
imal length) effects dominate, the number of microstates will be 
drastically decreased. Since the number of microstates for a stan-
dard one-dimensional particle (with two dimensional phase space) 
behaves linearly with the momentum, one could conclude that two 
degrees of freedom will be frozen at the high energy regime and 
therefore a particle has only one degree of freedom in this regime. 
This result suggests an effective dimensional reduction of the space 
from 3 to 1 dimension at the high energy regime in Snyder model. 
Although this result is qualitatively obtained here for a general 
system (without specifying a Hamiltonian function and ensemble 
density), we will explicitly justify this result in the next section 
for the particular case of an ideal gas in canonical ensemble in the 
light of the well-known equipartition theorem of energy.

2.3. Partition function

In order to study statistical mechanics in this framework, we 
generalize this setup to a many-particle system. Consider a statisti-
cal system consisting of N particles. The corresponding kinematical 
phase space can be obtained by the direct coupling of the single-
particle phase spaces as

�tot = �1 × . . . × �N , ωtot =
N∑

α=1

ωα , (10)

where ωα is the symplectic structure on the phase space of the 
α-th particle, �α . Substituting the symplectic structure (10) into 
the definition (5), the corresponding 6N-dimensional Liouville vol-
ume will be

ω3N = 1

(3N)!
( N∑

α=1

ωα

)
∧ . . .∧

( N∑
α=1

ωα

)
= ω3

1 ∧ . . . ∧ω3
N ,

(11)

where ω3
α is the six-dimensional Liouville volume corresponding 

to the α-th particle phase space and we have also used the fact 
that ωi

α = 0 for i > 3, with ωi
α being the i-th component of the 

α-th particle’s Liouville volume. The quantum gravity parameter β
is universal and it will be the same for all the particles. Therefore, 
the symplectic structure for all of the particles in Snyder-deformed 
Fig. 1. The number of microstates versus the momentum p∗ for a single-particle 
phase space. The blue solid and red dot-dashed lines represent the number of 
microstates in the Snyder-deformed and non-deformed phase spaces respectively. 
Clearly, these two curves coincide at the low energy regime βp∗ � 1 (p∗ � pPl) and 
the deviation arises at the high energy regime βp∗ ∼ 1 (p∗ ∼ pPl). The number of 
microstates in the Snyder-deformed case effectively behaves like a one-dimensional 
single-particle phase space (the black dashed line) which shows that two degrees 
of freedom freeze at the high energy regime due to the quantum gravity (mini-
mal length) effects. This result suggests an effective dimensional reduction of the 
space from 3 to 1 dimension at the high energy regime. The figure is plotted for 
β = β0

pPl
= 0.1 with β0 = 1 and pPl = 10.

phase space is given by (1) and the Liouville volume is then given 
by (6). Substituting the Liouville volume (6) for all of the particles 
in the relation (11) gives

ω3N = d3Nq d3N p(
1 + β2 p2

)N
, (12)

where clearly the standard volume d3N q d3N p for the non-deformed 
6N-dimensional phase space could be recovered in the low energy 
limit β → 0. While the non-deformed phase space volume assigns 
a uniform probability distribution over the set of microstates, the 
Snyder-deformed phase space volume (12) assigns a nonuniform 
probability distribution at the high energy regime such that the 
microstates with higher energy are less probable. More precisely, 
in the absence of any extra information for the system, the Laplace 
principle of indifference states that all the microstates are equally 
likely [26]. However, in the presence of a minimal length, as an 
extra information for the system, the sufficient condition for the 
Laplace’s indifference principle is no longer satisfied in the Snyder 
model.

The Liouville volume (12) is invariant under the time evolution 
of the system on �tot which can be easily deduced from the rela-
tion (7). Thus the Liouville theorem is satisfied on the phase space 
of the N-particle system �tot which allows us to study the statisti-
cal mechanics in this setup. The canonical partition function for a 
system at the temperature T in Snyder model then will be

ZN = 1

h3N N!
∫

�tot

ω3N exp
[ − H/T

]
, (13)

where the Gibbs factor 1/N! is also considered. For a system in 
which the particles do not interact, the total Hamiltonian function 
could be decomposed as Htot = ∑N

α=1 Hα and the partition func-
tion (13) simplifies to

ZN = ZN
1 , (14)
N!
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where we have defined the single-particle partition function as

Z1 = 1

h3

∫
�

ω3 exp
[ − H/T

]

= 1

h3

∫
d3q

∫
d3 p(

1 + β2 p2
) exp

[ − H(q, p)/T
]
. (15)

Having the partition function (14) in hand, one could easily study 
the thermodynamical properties of the statistical systems in Sny-
der space.

3. Thermodynamics of ideal gas

In this section we study the thermodynamical properties of the 
ideal gas by means of the results obtained in previous section.

By considering an ideal gas consisting of N noninteracting par-
ticles confined in volume V at the temperature T , the correspond-
ing single-particle partition function can be easily obtained from 
the relation (15) as

Z1[V , T ] = 4π V

h3

∞∫
0

exp
[ − p2

2mT

]
p2dp(

1 + β2 p2
)

= V π
3
2

h3β3

(√
2mT β − √

π erfc

[
1√

2mT β

]

× exp

[
1

2mT β2

])
, (16)

where erfc[x] = (2/
√

π) 
∫ ∞

x e−t2
dt is the complementary error 

function and also we have substituted H = p2/2m for the Hamil-
tonian function. To understand the qualitative behavior of the par-
tition function (16), it is useful to rewrite the partition function in 
terms of the thermal wave length λ = h√

2πmT
as

Z1[V , λ] = V

λ3
Pl

(
λPl

λ
− √

π erfc

[
λ

λPl

]
exp

[
λ2

λ2
Pl

])
, (17)

where we have substituted β = β0 lPl = β0
TPl

and also we have de-
fined Planck scale thermal de Broglie wavelength

λPl = (
√

2β0) × h√
2πmPlTPl

= 2
√

πβ0 lPl , (18)

where as we have mentioned before β0 = O(1) should be fixed 
by experiment [25]. Expanding partition function (17) for both the 
low and high temperature regimes gives

Z1[V , λ] =
⎧⎨
⎩

V
λ3 λ 
 λPl,

V
λλ2

Pl
λ ∼ λPl.

(19)

As it is clear from the above relation, quantum gravity (mini-
mal length) effects are negligible at the low temperature limit 
λ 
 λPl (T � TPl) and the standard result for the partition function 
of the ideal gas is recovered. Interestingly, the high-temperature 
behavior of the partition function (19) shows that two degrees of 
freedom will be frozen at the Planck scale λ ∼ λPl and there is only 
one degree of freedom for a particle in this regime. This feature, 
as we will show, leads to the effective reduction of the dimension 
of space at the high temperature regime.

From the relation (14), the total partition function for the ideal 
gas in Snyder space will be
Fig. 2. Internal energy versus temperature. The blue solid and red dot-dashed lines 
represent the internal energy in Snyder-deformed and non-deformed phase spaces 
respectively. As the temperature increases, the quantum gravity (minimal length) 
effects become more and more appreciable.

ZN [V , λ] =
(

V /λ3
Pl

)N

N!

(
λPl

λ
− √

π erfc

[
λ

λPl

]
exp

[
λ2

λ2
Pl

])N

, (20)

from which all of the thermodynamical quantities could be derived 
through the standard definitions.

3.1. Internal energy and specific heat

The Helmholtz free energy F is defined as

F = −T ln
[
ZN [V , λ]]

= −NT

{
1 + ln

[
V

Nλ3
Pl

(
λPl

λ
− √

π erfc

[
λ

λPl

]
exp

[
λ2

λ2
Pl

])]}
,

(21)

where we have used the Stirling’s formula ln[N!] ≈ N ln[N] − N for 
large N .

From the modified Helmholtz free energy (21), the internal en-
ergy for the ideal gas gets modified as

U = −T 2
(

∂

∂T

(
F

T

))
N,V

= NT

⎧⎨
⎩

(
2 − √

π

(
λ

λPl

)
erfc

[
λ

λPl

]
exp

[
λ2

λ2
Pl

])−1

− λ2

λ2
Pl

⎫⎬
⎭ .

(22)

The internal energy versus the temperature is plotted in Fig. 2. As 
it is clear from the figure, while the internal energy of the standard 
ideal gas increases linearly with the temperature as U0 = 3

2 NT , 
which is shown by the red dot-dashed line in the figure, the inter-
nal energy increases with a decreasing rate at the high tempera-
ture regime (the blue solid line in the figure) where the associated 
thermal de Broglie wavelength approaches to the Planck length lPl . 
Expanding the relation (22) for both low and high temperature 
regimes gives

U =
{

3
2 NT λ 
 λPl,

1 NT λ ∼ λ .
(23)
2 Pl



222 K. Nozari et al. / Physics Letters B 750 (2015) 218–224
Fig. 3. Specific heat versus the temperature. The blue solid and red dot-dashed lines 
represent the specific heat in Snyder-deformed and non-deformed phase spaces re-
spectively. While the specific heat is independent of the temperature as 3

2 N for the 
case of standard ideal gas, it becomes temperature-dependent at the high energy 
regime in Snyder model. It asymptotically leads to the value 1

2 N at the very high 
temperature regime which signals the effective dimensional reduction of space from 
3 to 1 dimension in this setup. It is also clear from the figure that the specific heat 
is bounded as 1

2 ≤ C V
N ≤ 3

2 in Snyder model.

The high temperature behavior of the internal energy in Snyder 
model could be also more precisely understood from the specific 
heat that is defined as

C V =
(

∂U

∂T

)
V

= N

2

2
(

2 + λ2

λ2
Pl

)
− √

π
(

λ
λPl

)(
3 + 2 λ2

λ2
Pl

)
erfc

[
λ

λPl

]
exp

[
λ2

λ2
Pl

]
(

2 − √
π

(
λ

λPl

)
erfc

[
λ

λPl

]
exp

[
λ2

λ2
Pl

])2
.

(24)

The temperature-dependent behavior of this quantity is plotted in 
Fig. 3. Expanding the specific heat (24) for low and high tempera-
ture regimes gives

C V =
{

3
2 N λ 
 λPl,

1
2 N λ ∼ λPl,

(25)

which shows that the specific heat approaches to C V → N/2 at the 
high temperature limit (see also Fig. 3). As it is clear from Fig. 3, 
the specific heat is bounded as 1

2 ≤ C V
N ≤ 3

2 in this setup.
In order to understand the reduction of the number of degrees 

of freedom in a more precise manner, we invoke the well-known 
theorem of equipartition of energy which states that each number 
of degree of freedom makes a contribution of 1

2 T towards the in-
ternal energy and 1

2 towards the specific heat. From the relations 
(23) and (25), it is clear that the number of degrees of freedom for 
the ideal gas consisting of N noninteracting particles which move 
on three-dimensional Euclidean space R3 (with R3N configuration 
space), will be reduced from 3N to N at the high temperature 
regime when the thermal de Broglie wavelength of the system be-
comes of the order of the Planck length λ ∼ lPl. In other words, 
there is one degree of freedom for a particle at such a high tem-
perature regime and two degrees of freedom will be frozen due 
to the quantum gravity (minimal length) effects. See also Fig. 4
Fig. 4. Number of degrees of freedom versus the temperature. The classical equipar-
tition theorem of energy states that the number of degrees of freedom for a particle 
is given by (U/N)

(T /2)
. Thus, as it is clear from the figure, the number of degrees of free-

dom will be reduced from 3 to 1 at the high temperature regime in Snyder space. 
This result suggests an effective dimensional reduction of space from 3 to 1 dimen-
sion.

which shows the temperature-dependent behavior of the number 
of degrees freedom (U/N)

(T /2)
for a particle in Snyder model. Therefore, 

according to the equipartition theorem, the number of degrees of 
freedom for a particle is reduced from 3 to 1 at the high temper-
ature regime in the Snyder space. This result suggests an effective 
high temperature dimensional reduction of space from 3 to 1 di-
mension in the Snyder model. Similar results have been obtained 
in the context of the other phenomenological approaches to min-
imal length scenario. For instance, in the context of the doubly 
special relativity theories, it is shown that the total number of 
degrees of freedom will be finite at the high temperature regime 
which shows that all of the degrees of freedom will be frozen in 
this setup [22]. The associated phase space then will be compact 
(with finite Liouville volume) [27] and the corresponding Hilbert 
space is also finite dimensional [28] (see Ref. [29] for some cos-
mological consequences of such a framework). Furthermore, in the 
context of polymer quantization, it is shown that the energy den-
sity of the photon gas will be proportional to T 5/2 rather than 
the standard Stephan–Boltzmann law that states the energy den-
sity will be proportional to T 4 [20]. This result also suggests an 
effective reduction to 1.5 dimensional space at the Planck scale. 
Thus, the dimensional reduction at the Planck scale seems to be a 
common feature of quantum gravity proposal [11].

3.2. Pressure and equation of state

The thermal pressure could be obtained from the Helmholtz en-
ergy (21) as

P = −
(

∂ F

∂V

)
T ,N

= NT

V
, (26)

which shows that the equation of state relation preserves its stan-
dard form P V = NT in this setup. From the relations (22) and (26), 
the equation of state parameter w = P works out to be
U/V
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Fig. 5. Equation of state parameter versus the temperature. While the equation of 
state parameter is constant as w = 2/3 for the standard ideal gas, it turns out to 
be temperature-dependent quantity in Snyder space. As it is clear from the figure, 
it approaches to w = 2 at the very high temperature regime when the quantum 
gravity (minimal length) effects dominate. The figure shows also that 2

3 ≤ w ≤ 2.

w =
⎧⎨
⎩

(
2 − √

π

(
λ

λPl

)
erfc

[
λ

λPl

]
exp

[
λ2

λ2
Pl

])−1

− λ2

λ2
Pl

⎫⎬
⎭

−1

.

(27)

The temperature behavior of the equation of state parameter (27)
is plotted in Fig. 5. The equation of state parameter is constant as 
w = 2

3 for the standard ideal gas. But, as it is clear from Fig. 5, 
it becomes temperature-dependent in Snyder model at the high 
temperature regime. The standard result w = 2

3 can be recovered 
at the low temperature regime λ 
 lPl and also w → 2 at the high 
temperature regime λ ∼ lPl. Thus, generally we have 2

3 ≤ w ≤ 2
which could be seen from Fig. 5 (see also Refs. [20] and [30] where 
the same results are obtained in the contexts of polymer quantiza-
tion and holography respectively).

3.3. Entropy

As the final thermodynamical quantity, one could obtain the 
modification to the entropy from the minimal length effects. The 
entropy, however, is directly related to the number of accessible 
microstates and it is then natural to expect that the entropy in-
creases with a rate smaller than the standard non-deformed case 
at the high temperature regime since we have shown that the 
number of accessible microstates will be decreased at the high 
temperature regime in Snyder space. The direct calculation of the 
entropy justifies this claim. From the Helmholtz free energy (21), 
the entropy of the ideal gas will be

S

N
= −

(
∂ F

∂T

)
N,V

= 1 + ln

[
V

Nλ3
Pl

(
λPl

λ
− √

π erfc
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+
(

2 − 2
√

π

(
λ

λPl

)
erfc

[
λ

λPl

]
exp

[
λ2

λ2
Pl

])−1

− λ2

λ2
Pl

. (28)

In Fig. 6, the temperature-dependent behavior of the ideal gas en-
tropy (28) is plotted. As it is clear from the figure, in contrast to 
the non-deformed case, the entropy increases with smaller rate in 
Fig. 6. Entropy versus the temperature. It is clear that, in the Snyder model the 
entropy increases with a rate smaller than the standard non-deformed case. This is 
because of the fact that the number of accessible microstates is decreased at the 
high temperature regime due to the quantum gravity (minimal length) effects.

the Snyder model. This result is also a direct consequence of the 
effective dimensional reduction of space from three to one dimen-
sion for a particle in the Snyder space.

Although, as we have shown, the minimal length effects will 
become important only at the very high temperature regime when 
the thermal de Broglie wavelength of the system becomes of the 
order of the Planck length, it is also useful to consider the low 
temperature behavior in order to estimate the order of the mag-
nitude of the quantum gravity effects on the thermodynamical 
quantities of the ideal gas. It is straightforward to show that the 
first order quantum gravity corrections to all of the thermody-
namical quantities such as the internal energy (22), specific heat 
(24), and entropy (28) are proportional to (λPl/λ)2. Therefore, the 
thermal de Broglie wavelength λ is an appropriate parameter to 
determine when quantum gravitational effects will become signif-
icant, much similar in the same way as pure quantum mechanical 
effects become important in the standard statistical mechanics. In-
deed, the pure quantum mechanical effects will become important 
when the thermal de Broglie wavelength becomes of the order of 
the mean interparticle distance (V /N)1/3. Similarly and much in 
the same way, quantum gravitational (minimal length) effects will 
become important when the thermal de Broglie wavelength of the 
system becomes of the order of the Planck length.

4. Summary and conclusions

Existence of a universal minimal length, preferably of the or-
der of the Planck length, is a common address of quantum gravity 
candidates such as string theory and loop quantum gravity. Be-
side, this issue could be achieved from the spaces with deformed 
structures. In this paper, we formulated the statistical mechanics 
in Snyder space in the semiclassical regime. Existence of a minimal 
length, as an extra information for the system under consideration, 
significantly changes the probability distribution over the set of 
microstates in this setup. We obtained the corresponding deformed 
invariant Liouville volume which determines the number of acces-
sible microstates for a statistical system and we have found that 
2/3 of the degrees of freedom will be frozen at the high energy 
regime. Generalizing the setup into a many-particle system, we 
then obtained the modified partition function for the ideal gas in 
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the Maxwell–Boltzmann statistics by means of the deformed Liou-
ville volume and we have calculated the associated thermodynam-
ical quantities such as the internal energy, specific heat, equation 
of state parameter, and entropy in the Snyder space. The results 
show that at the high temperature regime, when the thermal de 
Broglie wavelength becomes of the order of the Planck length, the 
quantum gravity (minimal length) effects dominate which signif-
icantly change the thermodynamical properties of the ideal gas. 
Invoking the equipartition theorem of energy, we explicitly showed 
that 2/3 of the number of degrees of freedom will be frozen at the 
high temperature regime for the special case of the ideal gas which 
also confirms our previous claim. This result suggests an effective 
dimensional reduction of the space from three to one dimension 
at the high temperature regime which is also a common feature 
in alternative approaches to quantum gravity proposal. Also, our 
analysis shows that 1

2 ≤ C V
N ≤ 3

2 and 2
3 ≤ w ≤ 2 for the specific 

heat and the equation of state parameter respectively which are 
the direct consequences of the effective dimensional reduction of 
the space at the Planck scale. Although the quantum gravity effects 
would become important only at the high temperature regime, 
considering the low temperature limit is useful to estimate the or-
der of the magnitude of the quantum gravity corrections to the 
thermodynamical quantities. Evidently, the first order corrections 
to the internal energy, specific heat, and entropy are of the order 
of (λPl/λ)2, where λPl is the Planck scale thermal de Broglie wave-
length (18) and λ is the standard thermal de Broglie wavelength.
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