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In this paper, we formulate the statistical mechanics in Snyder space that supports the existence of a
minimal length scale. We obtain the corresponding invariant Liouville volume which properly determines
the number of microstates in the semiclassical regime. The results show that the number of accessible
microstates drastically reduces at the high energy regime such that there is only one degree of freedom

for a particle. Using the Liouville volume, we obtain the deformed partition function and we then study
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the thermodynamical properties of the ideal gas in this setup. Invoking the equipartition theorem, we
show that 2/3 of the degrees of freedom freeze at the high temperature regime when the thermal
de Broglie wavelength becomes of the order of the Planck length. This reduction of the number of degrees

of freedom suggests an effective dimensional reduction of the space from 3 to 1 at the Planck scale.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

While general relativity and quantum mechanics are successful
in their applicability domains, it seems that there is a fundamen-
tal incompatibility between them in order to find the so-called
quantum theory of gravity. Such a theory, not completely formu-
lated so far, would reasonably describe the structure of spacetime
at the Planck scale where both of the gravitational and quan-
tum mechanical effects become important. Despite the fact that
there is no unique approach to quantum gravity, existence of a
universal minimum measurable length, preferably of the order of
the Planck length Ip; ~ 10733 m, is a common feature of quantum
gravity candidates such as string theory and loop quantum grav-
ity [1,2]. It is then widely believed that a non-gravitational theory
which includes a universal minimal length scale would appear at
the flat limit of quantum gravity. Therefore, many attempts have
been done in order to take into account a minimal length scale in
the well-known non-gravitational theories such as quantum me-
chanics and special relativity. The generalized uncertainty principle
is investigated in the context of the string theory that supports the
existence of a minimal length as a nonzero uncertainty in position
measurement [3]. Quantum field theories turn out to be naturally
ultraviolet-regularized in this setup [4]. Inspired by the seminal
work of Snyder in 1947 who was formulated a Lorentz-invariant
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noncommutative spacetime [5], a phase space with noncanonical
symplectic structure is formulated in the non-relativistic limit [6].
At the quantum level, this deformed phase space leads to the mod-
ified uncertainty relation which is very similar to one arises from
the string theory motivations [6]. Furthermore, recently, polymer
quantum mechanics was suggested in the symmetric sector of loop
quantum gravity which supports the existence of a minimal length
scale known as the polymer length scale [7]. Also, the doubly spe-
cial relativity theories are investigated in order to take into account
a minimal observer-independent length scale in special relativity
[8]. Appearance of curved energy-momentum space is the direct
consequence of the doubly special relativity theories [9] and, in-
terestingly, the Snyder noncommutative spacetime could be also
realized in this setup by a relevant gauge fixing process [10].
Apart from the details of the above mentioned phenomenolog-
ical models as a flat limit for quantum gravity, all of them suggest
the deformation to the density of states at the high energy regime
which in turn leads to the nonuniform measure over the set of
microstates. Indeed, in these setups, the number of accessible mi-
crostates will be reduced at the high energy regime due to the
existence of a minimal length as an ultraviolet cutoff for the sys-
tem under consideration. Reduction of the number of degrees of
freedom, however, immediately suggests an effective dimensional
reduction of the space. This consequence seems to be a general
feature of quantum gravity which may also open new window for
the statistical origin of black holes thermodynamics [11]. Thermo-
dynamics of black holes is widely studied in the frameworks of
phenomenological quantum gravity models such as noncommuta-
tive space [12], generalized uncertainty principle [13] and polymer

0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by

SCOAP3.


http://dx.doi.org/10.1016/j.physletb.2015.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:knozari@umz.ac.ir
mailto:v.hosseinzadeh@stu.umz.ac.ir
mailto:m.gorji@stu.umz.ac.ir
http://dx.doi.org/10.1016/j.physletb.2015.09.014
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.09.014&domain=pdf

K. Nozari et al. / Physics Letters B 750 (2015) 218-224 219

quantization scenario [14]. The reduction of the number of accessi-
ble microstates due to the universal quantum gravitational effects
would also significantly change the thermodynamical properties
of any physical system at the high temperature regime. There-
fore, quantum gravity effects on the thermodynamics of various
statistical systems are widely studied in different contexts [15].
For the special case of the ideal gas, it is natural to expect that
the quantum gravity effects would become important at the high
temperature regime, when the corresponding thermal de Broglie

wavelength A = r% h becomes of the order of the Planck length

Ipy = V/iG, where m is the particles’ mass and T denotes the tem-
perature.! The associated thermodynamical properties then will be
significantly modified in this regime. Thermodynamics of the ideal
quantum gases in noncommutative space is studied in Refs. [16,
17] and for the case of the effects that arise from the generalized
uncertainty principle see Ref. [18]. Thermodynamical properties of
the ideal gas in polymerized phase space, as a classical limit of
a polymer quantum mechanics, are also studied in Refs. [19-21].
For the case of the relativistic ideal gases in doubly special rela-
tivity framework see Refs. [22,23]. Motivated by the above stated
issues, in this paper we study the thermodynamical properties of
the ideal gas in Snyder space.

The structure of the paper is as follows: In Section 2, the sta-
tistical mechanics in the Snyder space is formulated and the corre-
sponding partition function is found. Using the partition function,
thermodynamics of the ideal gas is studied in Section 3. Section 4
is devoted to the summary and conclusions.

2. Statistical mechanics in Snyder space

The kinematics and dynamics of a classical system on the phase
space provide a suitable framework for formulating the statistical
mechanics in the semiclassical regime. The key quantity is the Li-
ouville volume that determines the density of states from which
all the thermodynamical properties of a system could be achieved.
In this section, using the symplectic geometry, we formulate the
statistical mechanics in Snyder space.

2.1. Kinematics and dynamics

Inspired by the seminal work of Snyder on noncommutative
spacetime [5], the associated deformed phase space is formulated
which also supports the existence of a minimal length [6]. A phase
space naturally admits symplectic structure and therefore is a sym-
plectic manifold. Suppose that (I',w) to be a Snyder-deformed
phase space with w as the associated symplectic structure which
is a closed nondegenerate 2-form on I'. The local form of the sym-
plectic structure in Snyder model is given by [24]

) 1 )
w=dq' ndp; — Ed(q’pi)Adln [Hﬁzpz], (1)

where ¢! and p; are the position and momentum coordinates of a
particle with i, j=1,...,3 and p?> =68Up;p;. B is the deformation
parameter with dimension of length which is usually taken to be
of the order of the Planck length as 8 = Bolp;, where By = O(1)
is the dimensionless numerical constant that should be fixed only
with experiment [25]. Taking the low energy limit § — 0 in the
relation (1), the standard well-known canonical form of the sym-
plectic structure could be recovered.

Since the symplectic structure is nondegenerate by definition,
one can assign a unique vector field Xy to any function f on I" as

1 We work in units kg = 1 =c, where kg and c¢ are the Boltzmann constant and
speed of light in vacuum respectively.

 (Xy) = df. The Poisson bracket for two real-valued functions is
defined as

{f7 g}z('()(xf!xg)' (2)

From the above definition, it is straightforward to show that the
symplectic structure (1) generates the following noncanonical Pois-
son algebra

{q.q'y=p*JY, {pi,pj} =0, (3)

where Jij =qipj —q;pi is the generator of the rotation group in
three dimensions with q; = Sijqj . The symplectic structure (1) or
equivalently the Poisson algebra (3) properly defines the kinemat-
ics of the phase space I' in Snyder model.

The dynamics of the system will be determined by specifying
a Hamiltonian function H as the generator of time evolution of
the system. The Hamiltonian system on the phase space is then
defined by the triplet (', w, H) and the dynamical evolution of the
system is governed by the equation

w(Xy)=dH, (4)

{d.pj}=085+p8p'pj,

where xy is the Hamiltonian vector field and it’s integral curves
are nothing but the Hamilton’s equations in this setup (see
Ref. [24] for more details).

Furthermore, the natural volume on the phase space is the Li-
ouville volume which for a 2n-dimensional phase space is defined
as

O"=—wA...A®

o (n times) . (5)

The Liouville volume for a particle in Snyder-deformed phase space
then could be easily obtained by substituting the symplectic struc-
ture (1) into the definition (5) which gives

dp1 Adpy Adps
(1+52p7)
The phase space (Liouville) volume determines the density of
states and then the number of accessible microstates for a statisti-
cal system. It is important to check the verification of the Liouville
theorem for the Snyder measure (6) in order to formulate the sta-
tistical mechanics in Snyder-deformed phase space. The Liouville

theorem states that the Liouville volume is invariant under the
time evolution of the system

w> =dq' Adg® Adg® A

(6)

dof 90T | " =0 7)
d — ot e

where Ly, denotes the Lie derivative with respect to xy. The
relation (7) can be traced back to the facts that " is not ex-
plicitly time-dependent, Lx, " = n(Lx,®) A @™ ! and Ly, =
d(w (Xy)) + (dw) (xy) = 0, where we have used the equation (4)
as d(w (Xy)) = d?H =0 and the closure of the symplectic structure
dw = 0. The result (7) for the Snyder measure (6) is essential for
us to formulate the statistical mechanics in Snyder space.

2.2. Number of microstates

Before obtaining the partition function, from which all the ther-
modynamical properties of a system can be obtained, we first
make a qualitative discussion about the number of microstates in
Snyder-deformed phase space regardless of the ensemble density
and the Hamiltonian function.

The number of microstates for a single-particle phase space is
given by



220 K. Nozari et al. / Physics Letters B 750 (2015) 218-224

1
Nu=ps [ @ (8)
where we have considered a region of phase space in which the
condition p < p,, with p=,/8Up;p; is satisfied in order to have a
finite number of microstates.

The quantity (8) for a system with non-deformed phase space
is N = (4 V /h3) [§* p*dp = (47 V /3h*) p3, where V is the spa-
tial volume of the system under consideration. For the case of the
Snyder-deformed phase space, substituting the Liouville volume (6)
into the relation (8), it works out as

Dx
ATV p%dp 4V
N = (

h3 1+ p2p?) EE

(ﬁp* - arctan[ﬁp*]) .9

For the low energy regime with Sp, < 1 (ps« < ppi), the rela-
tion (9) for the number of microstates behaves as N, ~ pz which
shows that it correctly coincides with the standard result of the
non-deformed case in this regime. For the high energy regime
Bps« ~ 1 (psx ~ pp), however, the number of microstates (9) be-
haves linearly with p, as Ny ~ p. (see also Fig. 1, where the
number of microstates (9) versus p, is plotted and also it is com-
pared with the standard non-deformed case). This result shows
that, at the high energy regime when the quantum gravity (min-
imal length) effects dominate, the number of microstates will be
drastically decreased. Since the number of microstates for a stan-
dard one-dimensional particle (with two dimensional phase space)
behaves linearly with the momentum, one could conclude that two
degrees of freedom will be frozen at the high energy regime and
therefore a particle has only one degree of freedom in this regime.
This result suggests an effective dimensional reduction of the space
from 3 to 1 dimension at the high energy regime in Snyder model.
Although this result is qualitatively obtained here for a general
system (without specifying a Hamiltonian function and ensemble
density), we will explicitly justify this result in the next section
for the particular case of an ideal gas in canonical ensemble in the
light of the well-known equipartition theorem of energy.

2.3. Partition function

In order to study statistical mechanics in this framework, we
generalize this setup to a many-particle system. Consider a statisti-
cal system consisting of N particles. The corresponding kinematical
phase space can be obtained by the direct coupling of the single-
particle phase spaces as

N
Foe=T1x...xTn, a)tot:zwota (10)
a=1

where w, is the symplectic structure on the phase space of the
o-th particle, T'y. Substituting the symplectic structure (10) into
the definition (5), the corresponding 6N-dimensional Liouville vol-
ume will be

N N
3N=$<Za)a>/\_n/\<2a)a>=a)?/\.../\a)13\],

a=1 a=1

(11)

where a)g‘t is the six-dimensional Liouville volume corresponding
to the o-th particle phase space and we have also used the fact
that @}, =0 for i > 3, with ], being the i-th component of the
«-th particle’s Liouville volume. The quantum gravity parameter
is universal and it will be the same for all the particles. Therefore,
the symplectic structure for all of the particles in Snyder-deformed

N
100000 -

80000 -
60000 -
40000 -

20000 -

Non-deformed
Snyder—deformed

Fig. 1. The number of microstates versus the momentum p, for a single-particle
phase space. The blue solid and red dot-dashed lines represent the number of
microstates in the Snyder-deformed and non-deformed phase spaces respectively.
Clearly, these two curves coincide at the low energy regime Bp, < 1 (p. < pp;) and
the deviation arises at the high energy regime Sp. ~ 1 (p« ~ pp). The number of
microstates in the Snyder-deformed case effectively behaves like a one-dimensional
single-particle phase space (the black dashed line) which shows that two degrees
of freedom freeze at the high energy regime due to the quantum gravity (mini-
mal length) effects. This result suggests an effective dimensional reduction of the
space from 3 to 1 dimension at the high energy regime. The figure is plotted for
B= ;7’;5' =0.1 with o =1 and pp = 10.

phase space is given by (1) and the Liouville volume is then given
by (6). Substituting the Liouville volume (6) for all of the particles
in the relation (11) gives
dBN d3N
V= TP (12)
(1+5%p?)

where clearly the standard volume d*Nqd3Np for the non-deformed
6N-dimensional phase space could be recovered in the low energy
limit B — 0. While the non-deformed phase space volume assigns
a uniform probability distribution over the set of microstates, the
Snyder-deformed phase space volume (12) assigns a nonuniform
probability distribution at the high energy regime such that the
microstates with higher energy are less probable. More precisely,
in the absence of any extra information for the system, the Laplace
principle of indifference states that all the microstates are equally
likely [26]. However, in the presence of a minimal length, as an
extra information for the system, the sufficient condition for the
Laplace’s indifference principle is no longer satisfied in the Snyder
model.

The Liouville volume (12) is invariant under the time evolution
of the system on I'yox Which can be easily deduced from the rela-
tion (7). Thus the Liouville theorem is satisfied on the phase space
of the N-particle system I'yor which allows us to study the statisti-
cal mechanics in this setup. The canonical partition function for a
system at the temperature T in Snyder model then will be

1

EN = 1ENN

/w3N exp[ — H/T], (13)
TCtot

where the Gibbs factor 1/N! is also considered. For a system in
which the particles do not interact, the total Hamiltonian function
could be decomposed as Ho = Zgzl Hy and the partition func-
tion (13) simplifies to

N
Zl

EN=Rr

, (14)
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where we have defined the single-particle partition function as

1
Z1=h—3/w3exp[—H/T]

r
1 d3p
zﬁfdgq/meXp[_H(q’P)/T]- (15)

Having the partition function (14) in hand, one could easily study
the thermodynamical properties of the statistical systems in Sny-
der space.

3. Thermodynamics of ideal gas

In this section we study the thermodynamical properties of the
ideal gas by means of the results obtained in previous section.

By considering an ideal gas consisting of N noninteracting par-
ticles confined in volume V at the temperature T, the correspond-
ing single-particle partition function can be easily obtained from
the relation (15) as

Zv.T]=

ATV ]oexp [ %]pzdp
(1+5%p7)

1
X exp [W]), (16)

where erfc[x] = (2/y/7) [° e~tdt is the complementary error
function and also we have substituted H = p?/2m for the Hamil-
tonian function. To understand the qualitative behavior of the par-
tition function (16), it is useful to rewrite the partition function in

_ _h
terms of the thermal wave length A = TomT 3
V[ A A2
Z1[V, A= — il —merfc| — |exp| —= 1], (17)
)‘1331 A APl )‘12)1

T
fined Planck scale thermal de Broglie wavelength

where we have substituted 8 = Bglp = ’S—; and also we have de-

Ap = (V/2f0) X =27 Bolpl, (18)

h
2T mp Tpl
where as we have mentioned before By = O(1) should be fixed
by experiment [25]. Expanding partition function (17) for both the
low and high temperature regimes gives

%A A
awa={s (19)
pve) Pl

As it is clear from the above relation, quantum gravity (mini-
mal length) effects are negligible at the low temperature limit
A > Ap (T « Tpy) and the standard result for the partition function
of the ideal gas is recovered. Interestingly, the high-temperature
behavior of the partition function (19) shows that two degrees of
freedom will be frozen at the Planck scale A ~ Ap; and there is only
one degree of freedom for a particle in this regime. This feature,
as we will show, leads to the effective reduction of the dimension
of space at the high temperature regime.

From the relation (14), the total partition function for the ideal
gas in Snyder space will be

U
N
r .-
140 o
[ Rat
120 s
[ ’
[ e
100 - Lo
r -,
[ o0
80 R
r ,
[ 0
L -,
60 o
[ Re
L ’
40} e
: ',
20 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100
------- Non-deformed
Snyder—deformed

Fig. 2. Internal energy versus temperature. The blue solid and red dot-dashed lines
represent the internal energy in Snyder-deformed and non-deformed phase spaces
respectively. As the temperature increases, the quantum gravity (minimal length)
effects become more and more appreciable.

ZN[V )L]_M M_ﬁerfc[i]e |:£i| ’ (20)
N A= TN A ] P ])

from which all of the thermodynamical quantities could be derived
through the standard definitions.

3.1. Internal energy and specific heat

The Helmholtz free energy F is defined as

F=—TIn[2n[V,A]]

(e o 5
=—NTi{1+In| — [ — — V/mwerfc|] — [exp| — ,
[ [N)‘1331< A VT Apl b )“51

(21)

where we have used the Stirling’s formula In[N!] ~ N In[N]— N for
large N.

From the modified Helmholtz free energy (21), the internal en-
ergy for the ideal gas gets modified as

v=-r(5:(5)),,

-1
by A A2 A2
=NT 2—r <—>erfc|:—}ex [—} - —
( Apl Al b )‘1231 )‘Iz’l

(22)

The internal energy versus the temperature is plotted in Fig. 2. As
it is clear from the figure, while the internal energy of the standard
ideal gas increases linearly with the temperature as Ugp = %NT,
which is shown by the red dot-dashed line in the figure, the inter-
nal energy increases with a decreasing rate at the high tempera-
ture regime (the blue solid line in the figure) where the associated
thermal de Broglie wavelength approaches to the Planck length [p,.
Expanding the relation (22) for both low and high temperature
regimes gives

3
3INT &> Ap,

u=1?2 & (23)
INT A~ p.
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Fig. 3. Specific heat versus the temperature. The blue solid and red dot-dashed lines
represent the specific heat in Snyder-deformed and non-deformed phase spaces re-
spectively. While the specific heat is independent of the temperature as %N for the
case of standard ideal gas, it becomes temperature-dependent at the high energy
regime in Snyder model. It asymptotically leads to the value %N at the very high
temperature regime which signals the effective dimensional reduction of space from

3 to 1 dimension in this setup. It is also clear from the figure that the specific heat

is bounded as < §¥ < 2 in Snyder model.

The high temperature behavior of the internal energy in Snyder
model could be also more precisely understood from the specific
heat that is defined as

U
“=(),
N 2(2 + :—gl) -V (Aim) (3 + 2)’}—;>erfc[%m] exp [}'}—gl]
2 (2_ﬁ(%m)erfc[%m] exp [;\_gl])z

The temperature-dependent behavior of this quantity is plotted in
Fig. 3. Expanding the specific heat (24) for low and high tempera-
ture regimes gives

(24)

3N A

Cy =
IN A~

(25)

which shows that the specific heat approaches to Cy — N/2 at the
high temperature limit (see also Fig. 3). As it is clear from Fig. 3,
the specific heat is bounded as % < CWV < % in this setup.

In order to understand the reduction of the number of degrees
of freedom in a more precise manner, we invoke the well-known
theorem of equipartition of energy which states that each number

of degree of freedom makes a contribution of %T towards the in-

ternal energy and % towards the specific heat. From the relations
(23) and (25), it is clear that the number of degrees of freedom for
the ideal gas consisting of N noninteracting particles which move
on three-dimensional Euclidean space R? (with R3N configuration
space), will be reduced from 3N to N at the high temperature
regime when the thermal de Broglie wavelength of the system be-
comes of the order of the Planck length A ~ Ip. In other words,
there is one degree of freedom for a particle at such a high tem-
perature regime and two degrees of freedom will be frozen due
to the quantum gravity (minimal length) effects. See also Fig. 4

20000 30000

Non—deformed
Snyder—deformed

40000 50000

Fig. 4. Number of degrees of freedom versus the temperature. The classical equipar-
tition theorem of energy states that the number of degrees of freedom for a particle
is given by % Thus, as it is clear from the figure, the number of degrees of free-
dom will be reduced from 3 to 1 at the high temperature regime in Snyder space.
This result suggests an effective dimensional reduction of space from 3 to 1 dimen-
sion.

which shows the temperature-dependent behavior of the number
of degrees freedom ((%12\1)) for a particle in Snyder model. Therefore,
according to the equipartition theorem, the number of degrees of
freedom for a particle is reduced from 3 to 1 at the high temper-
ature regime in the Snyder space. This result suggests an effective
high temperature dimensional reduction of space from 3 to 1 di-
mension in the Snyder model. Similar results have been obtained
in the context of the other phenomenological approaches to min-
imal length scenario. For instance, in the context of the doubly
special relativity theories, it is shown that the total number of
degrees of freedom will be finite at the high temperature regime
which shows that all of the degrees of freedom will be frozen in
this setup [22]. The associated phase space then will be compact
(with finite Liouville volume) [27] and the corresponding Hilbert
space is also finite dimensional [28] (see Ref. [29] for some cos-
mological consequences of such a framework). Furthermore, in the
context of polymer quantization, it is shown that the energy den-
sity of the photon gas will be proportional to T°/2 rather than
the standard Stephan-Boltzmann law that states the energy den-
sity will be proportional to T# [20]. This result also suggests an
effective reduction to 1.5 dimensional space at the Planck scale.
Thus, the dimensional reduction at the Planck scale seems to be a
common feature of quantum gravity proposal [11].

3.2. Pressure and equation of state

The thermal pressure could be obtained from the Helmholtz en-
ergy (21) as

oF NT
po () T -
WV )y vV

which shows that the equation of state relation preserves its stan-
dard form PV = NT in this setup. From the relations (22) and (26),

the equation of state parameter w = % works out to be
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20000 30000 40000 50000
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Fig. 5. Equation of state parameter versus the temperature. While the equation of
state parameter is constant as w = 2/3 for the standard ideal gas, it turns out to
be temperature-dependent quantity in Snyder space. As it is clear from the figure,
it approaches to w =2 at the very high temperature regime when the quantum
gravity (minimal length) effects dominate. The figure shows also that % <w<2.

-1

A A 22 22

w= 2— | — Jerfc| — |[exp| — - —
< \/—<)‘Pl> |:)"Pl:| p|:)\1231i|> )\1231

The temperature behavior of the equation of state parameter (27)
is plotted in Fig. 5. The equation of state parameter is constant as
w = % for the standard ideal gas. But, as it is clear from Fig. 5,
it becomes temperature-dependent in Snyder model at the high
temperature regime. The standard result w = 2 can be recovered
at the low temperature regime A >> Ip; and also w — 2 at the high
temperature regime XA ~ lp.. Thus, generally we have % <w<2
which could be seen from Fig. 5 (see also Refs. [20] and [30] where
the same results are obtained in the contexts of polymer quantiza-
tion and holography respectively).

(27)

3.3. Entropy

As the final thermodynamical quantity, one could obtain the
modification to the entropy from the minimal length effects. The
entropy, however, is directly related to the number of accessible
microstates and it is then natural to expect that the entropy in-
creases with a rate smaller than the standard non-deformed case
at the high temperature regime since we have shown that the
number of accessible microstates will be decreased at the high
temperature regime in Snyder space. The direct calculation of the
entropy justifies this claim. From the Helmholtz free energy (21),
the entropy of the ideal gas will be

S (dF
N \aT yy
(e e[
=1+In| —|— —+merfc| — |exp| —=
|:N)‘I3’1<A VT Al b )‘1231

-1

A A A2 A2
+ 12 -2 — Jerfc| — |exp| — - —. 28
< \/_<}"Pl) |:)‘Pl:| pl:}hl2)lj|) )hlzjl (28)

In Fig. 6, the temperature-dependent behavior of the ideal gas en-
tropy (28) is plotted. As it is clear from the figure, in contrast to
the non-deformed case, the entropy increases with smaller rate in

S
2| @

15

10

0 100 200 300 400 500

Non—deformed
Snyder—deformed

Fig. 6. Entropy versus the temperature. It is clear that, in the Snyder model the
entropy increases with a rate smaller than the standard non-deformed case. This is
because of the fact that the number of accessible microstates is decreased at the
high temperature regime due to the quantum gravity (minimal length) effects.

the Snyder model. This result is also a direct consequence of the
effective dimensional reduction of space from three to one dimen-
sion for a particle in the Snyder space.

Although, as we have shown, the minimal length effects will
become important only at the very high temperature regime when
the thermal de Broglie wavelength of the system becomes of the
order of the Planck length, it is also useful to consider the low
temperature behavior in order to estimate the order of the mag-
nitude of the quantum gravity effects on the thermodynamical
quantities of the ideal gas. It is straightforward to show that the
first order quantum gravity corrections to all of the thermody-
namical quantities such as the internal energy (22), specific heat
(24), and entropy (28) are proportional to (p;/A)%. Therefore, the
thermal de Broglie wavelength A is an appropriate parameter to
determine when quantum gravitational effects will become signif-
icant, much similar in the same way as pure quantum mechanical
effects become important in the standard statistical mechanics. In-
deed, the pure quantum mechanical effects will become important
when the thermal de Broglie wavelength becomes of the order of
the mean interparticle distance (V /N)!/3. Similarly and much in
the same way, quantum gravitational (minimal length) effects will
become important when the thermal de Broglie wavelength of the
system becomes of the order of the Planck length.

4. Summary and conclusions

Existence of a universal minimal length, preferably of the or-
der of the Planck length, is a common address of quantum gravity
candidates such as string theory and loop quantum gravity. Be-
side, this issue could be achieved from the spaces with deformed
structures. In this paper, we formulated the statistical mechanics
in Snyder space in the semiclassical regime. Existence of a minimal
length, as an extra information for the system under consideration,
significantly changes the probability distribution over the set of
microstates in this setup. We obtained the corresponding deformed
invariant Liouville volume which determines the number of acces-
sible microstates for a statistical system and we have found that
2/3 of the degrees of freedom will be frozen at the high energy
regime. Generalizing the setup into a many-particle system, we
then obtained the modified partition function for the ideal gas in
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the Maxwell-Boltzmann statistics by means of the deformed Liou-
ville volume and we have calculated the associated thermodynam-
ical quantities such as the internal energy, specific heat, equation
of state parameter, and entropy in the Snyder space. The results
show that at the high temperature regime, when the thermal de
Broglie wavelength becomes of the order of the Planck length, the
quantum gravity (minimal length) effects dominate which signif-
icantly change the thermodynamical properties of the ideal gas.
Invoking the equipartition theorem of energy, we explicitly showed
that 2/3 of the number of degrees of freedom will be frozen at the
high temperature regime for the special case of the ideal gas which
also confirms our previous claim. This result suggests an effective
dimensional reduction of the space from three to one dimension
at the high temperature regime which is also a common feature

in alternative approaches to quantum gravity proposal. Also, our

analysis shows that § < CWV <3 and 2 <w <2 for the specific

heat and the equation of state parameter respectively which are
the direct consequences of the effective dimensional reduction of
the space at the Planck scale. Although the quantum gravity effects
would become important only at the high temperature regime,
considering the low temperature limit is useful to estimate the or-
der of the magnitude of the quantum gravity corrections to the
thermodynamical quantities. Evidently, the first order corrections
to the internal energy, specific heat, and entropy are of the order
of (Ap /A)z, where Ap; is the Planck scale thermal de Broglie wave-
length (18) and A is the standard thermal de Broglie wavelength.
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