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Abstract

Frequency metrology represents a cornerstone of modern precision measurements and
optical atomic clocks, in particular, have emerged as one of the most precise mea-
surement devices. Correlated quantum states and measurements promise further im-
provements in the accuracy of frequency metrology and the stability of atomic clocks
by reducing quantum projection noise below the standard quantum limit imposed by
uncorrelated atoms. However, developing strategies robust under realistic conditions
remains challenging. This thesis addresses this research question by investigating
the trade-off between achieving entanglement-enhanced sensitivity and maintaining
robustness against decoherence processes and noise sources. Specifically, we consider
frequency metrology tailored to single-ensemble clocks, in which the atomic reference
is periodically interrogated utilizing identical Ramsey protocols in each clock cycle. In
this framework, this thesis aims to provide theoretical guidance for the development
of next-generation optical atomic clocks. After establishing a comprehensive theoret-
ical foundation for atomic clock operation, we identify optimal Ramsey interrogation
schemes primarily focusing on regimes limited by spontaneous decay and laser noise.

In the first part, we show that maximally entangled GHZ-like states – in con-
junction with a correlated measurement and nonlinear estimation strategy – achieve
gains of up to 2.25 dB in the presence of spontaneous decay, comparable to funda-
mental bounds for up to several tens of atoms. This result is particularly surprising
since GHZ states do not provide any enhancement under dephasing due to white fre-
quency noise compared to the standard quantum limit. The gain arises from a veto
signal, which allows for the detection and mitigation of errors caused by spontaneous
decay events. We demonstrate the robustness of these GHZ-like protocol through
comprehensive Monte-Carlo simulations of atomic clocks.

In the second part, we present progress on frequency metrology tailored to opti-
cal atomic clocks primarily limited by laser noise. By consolidating and extending
previous findings on laser noise limited atomic clocks and variational quantum cir-
cuits, we identify optimal Ramsey interrogation schemes across a variety of scenarios,
including different experimental platforms, ensemble sizes and a broad range of inter-
rogation durations and dead times. The optimal Ramsey protocols strongly depend
on the specific experimental parameters, as clock stability generally reflects a trade-
off between quantum projection noise, the coherence time limit, fringe hops and dead
time effects. Although variational quantum circuits with low complexity promise sub-
stantial enhancements in idealized settings, practical constraints in realistic scenarios
limit these advantages. As a result, only tweezer arrays with several tens of atoms
– operating in the regime dominated by quantum projection noise – benefit signifi-
cantly from these protocols, while standard protocols – utilizing coherent spin states,
spin-squeezed states and GHZ states – represent robust interrogation schemes in a
variety of experimental setups, closely approaching the ultimate lower limit.

Keywords: Frequency metrology, Optical atomic clocks, Ramsey interferometry,
Entanglement, Spontaneous decay, Laser noise, Dead time, Bayesian phase estima-
tion, GHZ states, Spin-squeezed states, Variational quantum circuits





Zusammenfassung

Die Frequenzmetrologie bildet einen Grundstein moderner Präzisionsmessungen und
optische Atomuhren gehören derzeit zu den genauesten Messinstrumente. Korrelierte
Quantenzustände und Messstrategien versprechen eine weitere Steigerung der Sta-
bilität, indem das Quantenprojektionsrauschen unter das Standard-Quanten-Limit
unkorrelierter Atome gesenkt wird. Die Entwicklung robuster Strategien unter rea-
listischen Bedingungen ist jedoch weiterhin eine zentrale Herausforderung. Diese
Dissertation widmet sich dieser Fragestellung, indem der Kompromiss zwischen ver-
schränkungsbasierter Sensitivitätssteigerung und Robustheit gegenüber Dekohärenz-
prozessen und Rauschen untersucht wird. Dabei werden Uhren mit einzelnen En-
semblen betrachtet, bei denen die atomare Referenz in jedem Uhrenzyklus periodisch
mittels identischer Ramsey-Protokolle abgefragt wird. In diesem Kontext stellt diese
Arbeit einen theoretischen Ratgeber für die Entwicklung optischer Atomuhren der
nächsten Generation dar. Aufbauend auf einer umfassenden theoretischen Beschrei-
bung von Atomuhren werden optimale Ramsey-Strategien identifiziert, mit dem Fokus
auf Regimen, die durch spontane Emission und Laserrauschen limitiert sind.

Im ersten Teil wird gezeigt, dass maximal verschränkte GHZ-ähnliche Zustände
in Kombination mit korrelierten Messungen und nichtlinearen Schätzstrategien unter
spontaner Emission einen Gewinn von bis zu 2.25 dB ermöglichen – vergleichbar
mit fundamentalen Schranken für Ensemble mit mehreren Dutzend Atomen. Dieses
Ergebnis ist insbesondere bemerkenswert, da GHZ-Zustände unter Dephasierung in-
folge von weißem Frequenzrauschen keine Vorteile gegenüber dem Standard-Quanten-
Limit bieten. Der beobachtete Gewinn beruht auf einem Veto-Signal, das Fehler durch
spontane Emission erkennt und reduziert. Die Robustheit dieser GHZ-ähnlichen Pro-
tokolle wird durch umfassende Monte-Carlo-Simulationen demonstiert.

Der zweite Teil präsentiert einen Fortschrittsbericht zur Frequenzmetrologie in
optischen Atomuhren, die primär durch Laserrauschen limitiert sind. Durch Kon-
solidierung und Erweiterung früherer Erkenntnisse zu laserrauschlimitierten Uhren
und variationellen Abfrageprotkollen werden optimale Ramsey-Protokolle für eine
Vielzahl realistischer Szenarien identifiziert – darunter verschiedene experimentelle
Plattformen, Ensemblegrößen, sowie unterschiedliche Abfragedauern und Totzeiten.
Die optimalen Protokolle hängen stark von den experimentellen Bedingungen ab, da
die Uhrenstabilität im Allgemeinen einen Kompromiss zwischen Quantenprojektions-
rauschen, Kohärenzzeitlimit, Frequenzsprüngen und Totzeiteffekten darstellt. Auf-
grund dieser experimentellen Einschränkungen bieten variationelle Abfrageprotokolle
lediglich für Tweezer-Arrays mit mehreren Dutzend Atomen signifikante Vorteile,
sofern Quantenprojektionsrauschen die dominante Limitierung darstellt. Während-
dessen repräsentieren Standardprotokolle – unter Verwendung kohärenter Zustände,
gequetschter Zustände und GHZ Zustände – in vielen Experimenten robuste Strate-
gien und erreichen Stabilitäten nahe der fundamentalen Stabilitätsgrenzen.

Schlagwörter: Frequenzmetrologie, Optische Atomuhren, Ramsey Interferome-
trie, Verschränkung, Spontane Emission, Laserrauschen, Totzeit, Bayessche Phasen-
schätzung, GHZ Zustände, Gequetschte Zustände, Variationale Quantenprotokolle
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1
Introduction

Frequency metrology constitutes a fundamental pillar in modern precision measure-

ments, driving advancements across a broad range of scientific and technological

fields [6–11]. At the forefront of this discipline are optical atomic clocks, which ex-

ploit narrow-linewidth atomic transitions in the optical domain [12, 13]. This new

generation of clocks was spurred by technological advances over the past decades,

including breakthroughs in laser technology [12], the invention of the optical fre-

quency comb [14, 15], and the development of highly controllable platforms such as

ion traps [16–18], tweezer arrays [19–22], and optical lattices [23–26]. Today, state-of-

the-art optical atomic clocks are among the most precise measurement devices ever

built, achieving stabilities on the order of 10−18 and below [18, 27–37]. To illustrate

this extraordinary precision, such clocks would gain or lose less than a second over

the age of the universe. They have surpassed traditional microwave-based Caesium

atomic clocks, which had long served as the standard for timekeeping, thereby paving

the way for the redefinition of the SI second [12, 38]. This unprecedented stability

renders optical clocks indispensable tools for a broad spectrum of applications. In

research, they are instrumental in probing fundamental physics, from testing gen-

eral relativity through gravitational redshift measurements [36, 38–42] to exploring

variations in fundamental constants [43, 44] and searching for new physics beyond

the Standard Model [45–47]. In technology, optical atomic clocks foster potential

applications ranging from enhancing global navigation satellite systems [48, 49] and

synchronizing large-scale networks [50] to supporting precision geodesy [51–54].

Quantum projection noise (QPN) is the most fundamental process limiting clock

stability, arising from the stochastic nature of quantum measurements and the dis-

crete outcomes inherent in finite-size ensembles [55,56]. For separable states of many

atoms, namely uncorrelated or classically-correlated states, the standard quantum

limit (SQL) imposes a fundamental bound on QPN [6, 12, 13, 57]. However, stability

beyond this classical limit can be achieved by introducing entanglement within the

atomic ensemble [6, 13, 57]. Three decades ago, Wineland et al. proposed in seminal

works [58,59] to entangle cold ions via their common coupling to collective modes of

1
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motion to suppress projection noise in frequency metrology, thereby overcoming the

SQL and enhancing atomic clock stability. With the momentous advancements in op-

tical atomic clocks and programmable quantum processors since then, this vision now

encounters new opportunities and challenges. In recent years, entanglement on optical

clock transitions has been demonstrated in various setups, including the generation of

spin squeezing in trapped ions [60] and in neutral atoms mediated by cavities [32,61]

or Rydberg interactions [62]. Recently, also maximally entangled GHZ states and cas-

cades thereof have been realized in optical clocks based on tweezer arrays [63,64] and

ion traps [4]. In an ideal scenario, GHZ states saturate the Heisenberg limit, which

represents the ultimate bound on quantum projection noise and yields a quadratic

improvement over the SQL in the scaling of the sensitivity with the ensemble size [6].

However, in realistic scenarios, decoherence processes and external noise degrade

the coherence of the quantum system, impairing the stability and preventing the

achievement of the Heisenberg limit [65–68]. While entanglement promises to over-

come the SQL and thereby improving clock stability, the detrimental effects of de-

coherence are particularly pronounced in entangled states, since they are highly

susceptible to the loss of coherence. Thus, a trade-off emerges between achieving

entanglement-enhanced sensitivity, which enables surpassing the SQL, and ensuring

robustness against the decoherence and noise processes. As a consequence, incor-

porating decoherence effects and external noise is essential for identifying optimal

interrogation protocols in frequency metrology.

This inherent challenge – advancing frequency metrology with entangled states in

the presence of decoherence and noise – precisely defines the central objective of this

thesis. To this end, we establish a comprehensive theoretical framework for Ramsey

interferometry and identify the optimal interrogation schemes in a variety of scenarios.

Consequently, this work essentially provides guidance for the development of next-

generation optical atomic clocks, particularly in regimes limited by spontaneous decay

and laser noise. Specifically, we focus on single-ensemble clocks in which the atomic

reference is periodically interrogated using the same protocol in each clock cycle.

Although this work is tailored to frequency metrology in atomic clocks, the developed

tools and techniques extend beyond this specific application. In particular, they

are broadly applicable to general frequency metrology and Ramsey interferometry,

including implementations in atom interferometry and magnetometry.

This thesis is organized as follows:

• Chapter 1: In the remainder of this introduction, we outline the general concept

of clocks, as they represent the primary application of frequency metrology

considered in this work.
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• Chapter 2: We introduce the theoretical foundations for describing atomic clock

operation, with a particular emphasis on the atomic reference. This chapter is

designed to provide a comprehensive background and self-contained introduc-

tion accessible to graduate students.

• Chapter 3: We investigate the impact of decoherence processes during the Ram-

sey sequence within the framework of local frequency metrology and identify

optimal interrogation schemes. In particular, we focus on spontaneous decay,

as the finite lifetime of the excited state imposes a fundamental limit, and addi-

tionally examine the crossover to regimes constrained by external noise sources

described by dephasing.

• Chapter 4: We incorporate frequency fluctuations of the laser in the framework

of Bayesian frequency metrology. In this context, we determine optimal schemes

that are robust to laser noise for a variety of scenarios, including different ex-

perimental platforms, ensemble sizes and regimes characterized by a wide range

of interrogation durations and dead times.

At this point, we intentionally kept the introduction general, framing the central

research topics within a broader context. Each chapter is written to be self-contained

to facilitate independent reading. Consequently, we explicitly motivate the specific

regimes of frequency metrology at the beginning of Chapter 3 and Chapter 4. More-

over, in both chapters we present the primary results and insights, while detailed

proofs and derivations are provided in the appendix.

1.1 A brief history of clocks

The quest for accurate timekeeping and measuring time with high precision has been

an integral aspect of human civilization, evolving from the natural rhythms observed

in celestial bodies to the sophisticated technology that underpins modern atomic

clocks. Early societies relied on nature’s clocks, solar cycles, lunar phases, and sea-

sonal changes to organize their lives. Although these natural indicators provided

rudimentary yet effective means of measuring time, their inherent variability lim-

ited precision and reliability. As civilizations advanced, so did the mechanisms of

timekeeping, evolving from sundials to the first human-made clocks. The invention

of sand glasses and water clocks provided more structured methods for measuring

time, independent of sunlight or other natural phenomena. The advent of mechanical

clocks in the Middle Ages further refined this pursuit. In particular, the invention

of the pendulum clock by Huygens in the 17th century marked a significant leap in
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precision, achieving stabilities around ten seconds a day (corresponding to a relative

uncertainty of 10−4). In the 18th century, the development of marine chronometers

by Harrison enabled precise navigation and spurred advances in exploration, trade

and science, reaching stabilities of up to a hundredth of a second a day (10−7). The

invention of quartz oscillators in the 1920s revolutionized timekeeping by utilizing the

piezoelectric properties of quartz crystals. The benefits of quartz oscillators include

their high stability of around 1 ms a day (10−8), along with low cost and compact

size, which enabled their widespread adoption in consumer electronics, telecommuni-

cations, and computing applications. Despite this impressive progress and precision,

human-made clocks, whether mechanical or electrical, remain inherently imperfect

due to variations in the components across different devices and inevitable drifts over

time. This ultimately created the need for a consistent and accurate standard to

synchronize global timekeeping: atomic clocks. In fact, Maxwell and Thomson [69]

already envisioned the concept of atomic clocks in the 1870s by arguing that atoms of

a particular species are identical and immutable, and thus, in theory, constitute the

building blocks to perfect clocks. However, it was not until the mid-twentieth century

that this concept became reality. With advances in the generation of microwaves and

Rabi’s development of the molecular beam magnetic resonance technique in 1939 [70]

(Nobel Prize 1944), the first atomic clocks were realized in the late 1940s. Within a

century, Caesium beam clocks were established in several national laboratories around

the world, employing the method of separated oscillatory fields proposed by Ramsey

in 1949 [71] (Nobel Prize 1989) and achieving uncertainties of around 10−11. In sub-

sequent years, the precision of Caesium clocks was continuously improved and this

unprecedented stability led to a redefinition of the second in 1967 by the General

Conference on Weights and Measures as “the duration of 9 192 631 770 periods of

the radiation corresponding to the transition between the two hyperfine levels of the

ground state of the Caesium 133 atom” [72]. Moreover, atomic clocks have driven ad-

vances in various fields such as communication, metrology, advanced positioning and

navigation systems. With progress in cooling techniques and extended interrogation

times achieved through the development of atomic fountains, Caesium fountain clocks

reached uncertainties around 10−15 by the end of the twentieth century and nowadays

are approaching the 10−16 level. Over the past decades, technological improvements

in laser systems [12], highly controllable platforms for trapping and manipulating

atoms [16–26] and the invention of the frequency comb [14, 15] have paved the way

for optical clocks using various atomic species. Operating at optical frequencies, sev-

eral orders of magnitude higher than the microwave transition in Caesium clocks,

these new-generation clocks achieve uncertainties of 10−18 and below, gaining or los-

ing less than a second over the age of the universe [18, 27–37]. As a consequence, in
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2022 the General Conference on Weights and Measures voted to redefine the second

based on optical clocks in the future [73]. Yet, the pursuit of even better clocks is

far from over. While optical atomic clocks still offer significant potential for improve-

ment, the recent laser excitation of the 229Th nucleus [74] already heralds the advent

of the next generation of clocks: nuclear clocks. [11,75–81]

1.2 What is a clock?

A clock, at its core, consists of two essential components (cf. Fig. 1.1): a frequency

standard – a device which generates a continuous and consistent frequency signal –

and a mechanism that counts the oscillations over time. While the clockwork de-

vice essentially translates the frequency signal into measurable time intervals, the

frequency standard represents the true heart of a clock. Frequency standards are

commonly classified as either active or passive, depending on their operational prin-

ciple. Active frequency standards generate their own oscillation at a given frequency,

as the hydrogen maser or the Helium-Neon laser, where stimulated emission results

in a highly coherent signal. Conversely, passive frequency standards require an exter-

nal source to stimulate their oscillation. While active frequency standards typically

excel in short-time stability, passive frequency standards often achieve superior long-

term stability and accuracy, because the frequency can be precisely monitored and

corrected against the reference response over time. Consequently, passive frequency

standards are commonly preferred for clocks. [9–11]

The concept of a passive frequency standard can be illustrated by imagining two

pendulums. The first pendulum is our primary noisy pendulum, whose fluctuating

frequency we aim to stabilize. The second pendulum serves as an (almost) ideal ref-

erence, though it does not oscillate on its own. Hence, the task of a passive frequency

standard is to periodically adjust the primary pendulum’s frequency to match with

the reference pendulum by repeatedly measuring the frequency difference between

the two. However, each measurement introduces some noise into the system. Hence,

it is desirable to extend the interrogation time as long as possible, thereby reduc-

ing the relative impact of this measurement noise and ultimately enhancing stability.

However, if the interrogation time is extended too far we risk missing a “tick” of

the reference, leading to synchronization errors that may accumulate over repeated

measurements. Therefore, while longer interrogation times improve stability, there is

an optimal duration beyond which stability is compromised. [10–12]

In (passive) atomic clocks (cf. Fig. 1.1), the local oscillator (LO), representing

the primary pendulum, generates an inherently noisy frequency signal ωLO(t) that

varies over time t. The LO is stabilized to an atomic transition frequency ω0, acting
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standards are commonly classified as either active or
passive, depending on their operational principle. Ac-
tive frequency standards generate their own oscillation
at a given frequency, as the hydrogen maser or the
Helium-Neon laser, where stimulated emission results in
a highly coherent signal. Conversely, passive frequency
standards require an external source to stimulate their os-
cillation. While active frequency standards typically ex-
cel in short-time stability, passive frequency standards of-
ten achieve superior long-term stability and accuracy, be-
cause the frequency can be precisely monitored and cor-
rected against the reference response over time. Conse-
quently, passive frequency standards are commonly pre-
ferred for clocks.

The concept of a passive frequency standard can be
illustrated by imagining two pendulums. The first pen-
dulum is our primary, noisy pendulum, whose fluctuat-
ing frequency we aim to stabilize. The second pendu-
lum serves as an (almost) ideal reference, though it does
not oscillate on its own. Hence, the task of a passive
frequency standard is to periodically adjust the primary
pendulum’s frequency to match that of the reference pen-
dulum by repeatedly measuring the frequency di↵erence
between the two. However, each measurement introduces
some noise into the system. Hence, it is desirable to ex-
tend the interrogation time as long as possible, thereby
reducing the relative impact of this measurement noise
and ultimately enhancing stability. If the interrogation
time is extended too far, however, we risk missing a “tick”
of the reference, leading to synchronization errors that
may accumulate over repeated measurements. Therefore,
while longer interrogation times improve stability, there
is an optimal duration beyond which stability is compro-
mised.

In (passive) atomic clocks (cf. Fig. 1), the local oscilla-
tor (LO), representing the primary pendulum, generates
an inherently noisy frequency signal !LO(t) that varies
over time t. The LO is stabilized to an atomic transition
frequency !0, acting as the reference pendulum, through
repeated interrogations of the atomic ensemble accord-
ing to a particular Ramsey interferometry scheme. Dur-
ing the Ramsey time T , the atoms accumulate a phase

� =
R t+T

t
dt0!(t0), which e↵ectively reflects the average

of the frequency deviation !(t) = !0 � !LO(t) over the
interrogation period. At the end of each interrogation
sequence, a measurement with outcome x is performed,
from which an estimate �est(x) of the monitored phase �
is derived. The control cycle is completed by the servo
that applies feedback to correct the LO frequency by
!corr, based on the phase estimate �est(x), resulting in a
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standards are commonly classified as either active or
passive, depending on their operational principle. Ac-
tive frequency standards generate their own oscillation
at a given frequency, as the hydrogen maser or the
Helium-Neon laser, where stimulated emission results in
a highly coherent signal. Conversely, passive frequency
standards require an external source to stimulate their os-
cillation. While active frequency standards typically ex-
cel in short-time stability, passive frequency standards of-
ten achieve superior long-term stability and accuracy, be-
cause the frequency can be precisely monitored and cor-
rected against the reference response over time. Conse-
quently, passive frequency standards are commonly pre-
ferred for clocks.

The concept of a passive frequency standard can be
illustrated by imagining two pendulums. The first pen-
dulum is our primary, noisy pendulum, whose fluctuat-
ing frequency we aim to stabilize. The second pendu-
lum serves as an (almost) ideal reference, though it does
not oscillate on its own. Hence, the task of a passive
frequency standard is to periodically adjust the primary
pendulum’s frequency to match that of the reference pen-
dulum by repeatedly measuring the frequency di↵erence
between the two. However, each measurement introduces
some noise into the system. Hence, it is desirable to ex-
tend the interrogation time as long as possible, thereby
reducing the relative impact of this measurement noise
and ultimately enhancing stability. If the interrogation
time is extended too far, however, we risk missing a “tick”
of the reference, leading to synchronization errors that
may accumulate over repeated measurements. Therefore,
while longer interrogation times improve stability, there
is an optimal duration beyond which stability is compro-
mised.

In (passive) atomic clocks (cf. Fig. 1), the local oscilla-
tor (LO), representing the primary pendulum, generates
an inherently noisy frequency signal !LO(t) that varies
over time t. The LO is stabilized to an atomic transition
frequency !0, acting as the reference pendulum, through
repeated interrogations of the atomic ensemble accord-
ing to a particular Ramsey interferometry scheme. Dur-
ing the Ramsey time T , the atoms accumulate a phase

� =
R t+T

t
dt0!(t0), which e↵ectively reflects the average

of the frequency deviation !(t) = !0 � !LO(t) over the
interrogation period. At the end of each interrogation
sequence, a measurement with outcome x is performed,
from which an estimate �est(x) of the monitored phase �
is derived. The control cycle is completed by the servo
that applies feedback to correct the LO frequency by
!corr, based on the phase estimate �est(x), resulting in a

atomic reference measurementlocal oscillator

frequency standard

Figure 1.1: Basic principle of an atomic clock: A local oscillator (LO) with
fluctuating frequency ωLO(t) is stabilized to an atomic transition ω0 by repeatedly
measuring the frequency difference. Based on these measurements, the servo applies
corrections to the LO frequency. This control loop constitutes the frequency stan-
dard, while the clockwork device translates the frequency signal into measurable time
intervals.

as the reference pendulum, through repeated interrogations of the atomic ensemble,

effectively measuring the frequency difference ω(t) = ω0−ωLO(t). Based on this mea-

surement, the servo applies feedback to correct the LO frequency, thereby completing

the control cycle and resulting in a stabilized frequency signal. In optical atomic

clocks, the LO is realized by an ultra-stable laser, while a frequency comb serves as a

clockwork device, converting optical frequencies to the microwave regime. [6, 9–12]

In the remainder of this thesis, we exclusively consider such passive atomic clocks.

1.3 Qualitative requirements for clocks

Despite the diverse applications of frequency standards and clocks, each with distinct

specific demands, three fundamental requirements are universal [9–12,82]:

• Reproducibility refers to the degree of agreement among a set of independent

devices of the same type, ensuring that they generate comparable frequency sig-

nals. As discussed in Sec. 1.1, human-made clock references are inherently sub-

ject to imperfections arising from natural variations in manufacturing processes.

Consequently, the advent of atomic clocks represented a significant milestone,

as all atoms of a particular species are identical.

• Accuracy characterizes how closely the generated (mean) frequency aligns with

the true reference frequency, thereby quantifying the absolute deviation. Cor-

responding systematic uncertainties refer to predictable, repeatable errors that

cause the clock frequency to deviate consistently from the true value. These

errors stem from environmental noise or clock-specific characteristics, such as
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a b

c d

Figure 1.2: Accuracy and stability: Generic variations of the local oscillator (LO)
frequency ωLO(t) over time t, illustrating frequency traces that are (a) accurate and
stable, (b) not accurate but stable, (c) accurate but not stable and (d) neither accurate
nor stable.

magnetic fields, temperature fluctuations, imperfections in laser alignment or

Stark shifts induced by electric fields. Therefore, systematic uncertainties re-

quire careful calibration and correction to align the clock signal with the true

reference frequency. To this end, there exist generally accepted procedures to

characterize systematic uncertainties [11,12].

• Stability, or precision, describes the consistency with which a frequency stan-

dard maintains its frequency over time, characterizing fluctuations relative to

its mean value. It is associated with statistical uncertainties arising from ran-

dom, unpredictable fluctuations, such as quantum projection noise or short-term

laser noise. These fluctuations typically vary between individual clock cycles

and consequently, statistical uncertainties are generally minimized by perform-

ing repeated measurements, as they tend to average out over time.

The difference between accuracy and stability is illustrated in Fig. 1.2. In this work,
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we focus exclusively on the performance of atomic clocks as determined by statistical

uncertainties, while systematic uncertainties are neglected.



2
Basics of Atomic Clocks

This chapter, as motivated in the introduction, is designed to provide a comprehen-

sive background, facilitating an easier introduction for future (graduate) students.

Hence, the knowledgeable reader may choose to proceed directly to the main results

in Chapter 3 and Chapter 4.

Here, we outline the theoretical foundations for describing atomic clock operation.

To start with, in Sec. 2.1 we introduce the Allan deviation, the primary metric for

clock stability. Subsequently, we describe the three fundamental components of an

atomic clock (as presented in Sec. 1.2):

• Sec. 2.2: The local oscillator, which produces the inherently noisy frequency

signal.

• Sec. 2.3: The atomic reference, to which the local oscillator is stabilized by

repeated interrogations.

• Sec. 2.4: The servo, which applies feedback to correct the local oscillator.

As the primary objective of this thesis is the identification of optimal interrogation

schemes, a particular emphasis is placed on the atomic reference. Note that through-

out this thesis we set ℏ ≡ 1 for simplicity, except when explicitly discussing relations

between frequencies and energies.

2.1 Allan Deviation - A Stability Measure

Before we describe the individual components of an atomic clock in detail, we first

introduce methods for characterizing atomic clocks and frequency standards. The

focus will be on the primary metric in this work: the Allan deviation, characterizing

the clock stability. This measure is essential for understanding the performance and

limitations of atomic clocks.

9
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Model— The output of an ideal local oscillator would be a pure sine wave of

an electromagnetic field E(t) = E0 sin(ω0t) with amplitude E0 and frequency ω0

being constant in time. In any realistic device, however, various unavoidable physical

processes introduce deviations from a purely sinusoidal waveform. Consequently, both

the amplitude and frequency of the oscillator fluctuate over time, and as a result,

the output signal cannot be described analytically in general. These fluctuations –

collectively referred to as noise – affect the stability of the oscillator. Since amplitude

fluctuations have no significant impact on the stability analysis [83], we model the

output of the local oscillator as

E(t) = E0 sin(ω0t− ϕ(t)), (2.1)

where the fluctuations of the phase ϕ(t) arise from random noise processes. The

corresponding local oscillator frequency ωLO(t) is linked to the phase fluctuations by

a derivative

ωLO(t) = ω0 −
dϕ(t)

dt
(2.2)

and thus, the frequency difference ω(t) reads

ω(t) =
dϕ(t)

dt
= ω0 − ωLO(t). (2.3)

Accordingly, the phase fluctuations can be obtained by integrating the frequency

deviation

ϕ(t) =

∫ t

t0

dt′ ω(t′). (2.4)

To facilitate a comparison between oscillators with different nominal frequencies ω0,

it is advantageous to introduce the dimensionless relative frequency deviation

y(t) =
ω(t)

ω0

=
ω0 − ωLO(t)

ω0

. (2.5)

Similarly, we can define relative phase fluctuations

x(t) =
ϕ(t)

ω0

. (2.6)

To be precise, x(t) represents effective time fluctuations in seconds, resulting from

phase fluctuations. However, they are usually called relative phase fluctuations for

clarity and to ease the distinction from the independent time variable t. The relation
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between relative frequency and phase deviations follows directly from the definition,

yielding

y(t) =
dx(t)

dt
or x(t) =

∫ t

t0

dt′ y(t′). (2.7)

Already from Eq. (2.5) and Eq. (2.6) it becomes evident that higher frequencies are

advantageous considering the stability of frequency standards and atomic clocks, as

the relative contribution of deviations is suppressed for larger ω0.

Naturally, the local oscillator produces a continuous noisy frequency trace y(t), as

illustrated in Fig. 2.1(a). However, in many applications – including the operation of

an atomic clock – only a sequence of discrete frequency measurements averaged over

individual clock cycles of duration TC is recorded. In general, each clock cycle can be

decomposed into two parts: the interrogation time T and the dead time TD. During

the interrogation time T , the frequency of the local oscillator is effectively compared

to the atomic transition frequency to determine deviations arising from various noise

sources. In contrast, frequency fluctuations during dead time TD – originating from

processes such as probe preparation, measurement and the application of feedback

– are not monitored and thus cannot be corrected. Although dead time will be

discussed in detail in Chapter 4 and we assume a negligible dead time in the first part

of this thesis, at this point we aim to treat the frequency trace in its most general

form. Accordingly, the frequency trace is divided into equal intervals of duration

TC = TD + T and the frequency value recorded at the end of cycle k is obtained by

averaging over this particular cycle

yk =
1

TC

∫ kTC

(k−1)TC

dt y(t) =
1

TC

[∫ (k−1)TC+TD

(k−1)TC

dt y(t) +

∫ kTC

(k−1)TC+TD

dt y(t)

]
, (2.8)

as depicted in Fig. 2.1(b). Accordingly, the relative phase deviation is given by

xk = ykTC . Moreover, we will consider the frequency averaged over a total duration

τ = nTC , corresponding to n cycles,

yj =
1

τ

∫ jτ

(j−1)τ

dt y(t) =
1

τ

jn∑

k=(j−1)n+1

∫ kTC

(k−1)TC

dt y(t) =
1

n

jn∑

k=(j−1)n+1

yk. (2.9)

In the following, we introduce statistical measures used to characterize the fluctua-

tions of the frequency.
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Standard deviation— A common approach for characterizing statistical processes

involves calculating the mean value y and the variance s2, defined by

y =
1

m

m∑

k=1

yk (2.10)

s2 =
1

m− 1

m∑

k=1

(yk − y)2, (2.11)

where m denotes the total number of fractional frequency values yk. The standard

variance often is expressed in terms of its square root, the standard deviation s.

However, the standard deviation is only a meaningful measure for uncorrelated noise.

If the noise is correlated, the deviation from its mean value is no longer stationary [84]

and thus, the standard deviation might be non-convergent. Consequently, it is not

recommended to characterize frequency standards or atomic clocks using the standard

deviation. An indication of correlated noise is that fluctuations over an averaging time

τ are significantly smaller than over the entire data set (cf. Fig. 2.1(a)).

Allan deviation— The Allan variance (AVAR) [85, 86] is the most widely used

time-domain metric for evaluating the stability of frequency standards and atomic

clocks [11, 83,84,87]. It is defined as [11,84–86]

σ2
y(τ) =

1

2
⟨(yj+1 − yj)

2⟩, (2.12)

where ⟨·⟩ denotes statistical averaging. To be precise, the Allan variance measures

frequency instability and thus, a lower value indicates reduced instability, or equiva-

lently, improved stability. It serves as a measure of fractional frequency fluctuations –

similar to the standard variance – but with the crucial benefit of converging for most

types of noise encountered in atomic clocks. The Allan variance is calculated from

the difference between two consecutive averaged frequency values yj and yj+1, each

averaged over a time interval τ , as illustrated in Fig. 2.1(c). This is in contrast to the

standard variance, which quantifies deviations from the mean value y. It is remark-

able that variation of the averaging time τ provides insight to the noise on different

time scales. While small τ ∼ TC provide information on the short-term stability, large

τ ≫ TC describe the long-term stability. Consequently, the full dependence σy(τ) has

to be considered to compare the performance of different local oscillators.

For finite data sets, the statistical averaging is practically realized as [84]

σ2
y(τ) =

1

2(M − 1)

M−1∑

j=1

(yj+1 − yj)
2, (2.13)
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Figure 2.1: Allan deviation: (a) Generic continuous relative frequency difference
y(t) as a function of t. (b) Corresponding discrete time series yk sampled in each
clock cycle with duration TC . (c) Non-Overlapping samples for the (standard) Allan
deviation (ADEV) with averaging factor n = 3 (τ = 3TC). (d) Overlapping samples
for the overlapping Allan deviation (OADEV) with averaging factor n = 3 (τ = 3TC).

where M = m
n

represents the number of consecutive frequency intervals with length

τ = nTC . The quantity usually addressed is the square root of the Allan variance,

namely the Allan deviation (ADEV). In terms of fractional phase deviations, the

Allan variance can alternatively be calculated as [84]

σ2
y(τ) =

1

2(K − 2)τ 2

K−2∑

j=1

(xj+2 − 2xj+1 + xj+1)
2, (2.14)

where yj =
xj+1−xj

τ
and K = M + 1 is the total number of phase data.

The confidence interval – or error – of the Allan deviation is typically estimated

as ±σy(τ)/M although it depends on the specific noise type in general [84].
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Overlapping Allan deviation— The overlapping Allan variance (OAVAR) ex-

tends the standard Allan variance by incorporating all possible overlapping intervals

of length τ = nTC , as illustrated in Fig. 2.1(d), thereby making maximal use of the

data set. While it yields the same value as the standard Allan variance, this approach

improves the statistical confidence of the resulting stability estimate by significantly

increasing the effective number of samples, even though the overlapping intervals

are not entirely independent [84]. This enhanced confidence comes with a trade-off in

computational complexity, as the calculations involve all possible combinations within

the data set. Nevertheless, the overlapping Allan variance is the preferred choice in

stability analysis for high-precision measurements. The overlapping Allan variance is

defined by [84]

σ2
y(τ) =

1

2n2(M − 2n+ 1)

M−2n+1∑

j=1

[
j+n−1∑

l=j

(yl+n − yl)

]2
, (2.15)

where M denotes the number of all possible overlapping intervals of length τ = nTC .

Consequently, M is significantly larger compared to the standard Allan variance (see

comparison of Fig. 2.1(c) and (d)), resulting in a substantially lower confidence in-

terval. Unfortunately, this expression is demanding in terms of computational com-

plexity due to the double summation. The necessary overhead can be reduced by

integrating the frequency data first and using [84]

σ2
y(τ) =

1

2(K − 2n)τ 2

K−2n∑

j=1

(xj+2n − 2xj+n + xj)
2 (2.16)

for fractional phase deviations with K = M+1. Again, the result is usually expressed

as the square root, which is denoted as overlapping Allan deviation (OADEV).

Note that although various other types of variances are available for stability anal-

ysis, in this thesis we will focus exclusively on the overlapping Allan deviation. For

simplicity, we refer to it as the Allan deviation and implicitly assume the overlapping

variant considering confidence intervals.

Although relative frequency deviations are the most widely used convention in

frequency metrology, absolute frequency deviations are also frequently encountered.

Furthermore, particularly in experimental contexts, frequencies ν are often used in-

stead of angular frequencies ω = 2πν. Fortunately, with the relation

y(t) =
ω(t)

ω0

=
ω0 − ωLO(t)

ω0

=
ν0 − νLO(t)

ν0
=
ν(t)

ν0
, (2.17)
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the conversion between these conventions is straightforward to derive and reads

σy(τ) =
σω(τ)

ω0

=
σν(τ)

ν0
. (2.18)

2.2 Local Oscillator

Depending on the specific application and type of clock, various local oscillators are

employed, each with its characteristic noise composition. In the following section,

we introduce methods for characterizing these noise processes and relate them to

the stability, quantified by the previously introduced Allan deviation. By combin-

ing both time-domain and frequency-domain approaches, we gain a comprehensive

understanding of the noise contributions and their impact on frequency stability. Ad-

ditionally, we introduce a single time scale that allows for the comparison of different

local oscillators, regardless of their specific noise characteristics and mean frequency.

2.2.1 Noise Characterization

Frequency domain— In the previous section, we introduced the Allan deviation

as the primary measure for the stability of frequency standards and atomic clocks, by

quantifying frequency fluctuations in the time domain. However, because the Allan

deviation averages over fluctuations, some information about the noise characteristics

is inherently lost. A more comprehensive characterization of the noise processes is

provided by the (single-sided) power spectral noise density1 (PSD) Sy(f), in units

of 1/Hz, of the frequency fluctuations, defined for Fourier frequencies 0 ≤ f < ∞.

State-of-the-art clock lasers can be modeled by a power law [11,12,83–85,87,88]

Sy(f) =
∑

α

hαf
α (2.19)

with coefficients hα, where α = 0,−1,−2 corresponds to white frequency noise (WN),

flicker frequency noise (FN) and random walk frequency noise (RWN), respectively.

This model is valid for 0 ≤ f ≤ fc, where fc is an upper cutoff frequency to maintain

integrability and can be physically motivated by finite bandwidth and duration [83].

Furthermore, it is assumed that any potential slow frequency drifts can always be cor-

rected. For a more detailed discussion and characterization or origins of the particular

noise contributions, we refer to the pertinent literature as Refs. [11,12,83–85,87,88].

1In theoretical studies, the two-sided PSD S
(2)
y (f), defined over Fourier frequencies −∞ < f <

∞, is often employed. In experimental settings, however, only positive frequencies are typically
relevant. Since the PSD is a real, non-negative, and even function, these two variants are related by

Sy(f) = 2S
(2)
y (f). Accordingly, in this work, we focus on the single-sided PSD Sy(f). [11]
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In practice, for a given frequency trace, the PSD can be calculated as [89,90]

Sy(f) = 2 lim
T →∞

1

T

∣∣∣∣
∫ T

0

dt y(t)e−i2πft

∣∣∣∣
2

(2.20)

and thus involves a Fourier transform. Again, we can convert between different fre-

quency conventions by

Sy(f) =
Sω(f)

ω2
0

=
Sν(f)

ν20
(2.21)

where Sω(f) and Sν(f) represent the spectral noise densities for angular and absolute

frequencies, respectively.

Time domain— After characterizing the frequency stability in the time domain

by the Allan deviation and the frequency noise through the spectral noise density in

the Fourier frequency domain, we aim to link these two approaches. Based on a given

spectral noise density, the Allan variance can be inferred according to [11,83,84]

σ2
y(τ) = 2

∫ ∞

0

df Sy(f)
sin4(πτf)

(πτf)2
. (2.22)

Assuming a power law model for the spectral noise density as introduced in Eq. (2.19),

an explicit form for the Allan variance of a local oscillator is given by

σ2
y,LO(τ) = σ2

y,WN(τ) + σ2
y,FN(τ) + σ2

y,RWN(τ)

=
h̃−1

τ
+ h̃0 + h̃1τ =

1∑

β=−1

h̃βτ
β.

(2.23)

Consequently, the Allan variance likewise can be modeled by a power law with scaling

β = −α− 1, depending on the averaging time τ . For white, flicker and random walk

frequency noise, the corresponding coefficients are h̃−1 = h0

2
, h̃0 = 2 ln(2)h−1 and

h̃1 = 2π2

3
h−2, respectively, which can be derived using the integrals

∫ ∞

0

df
sin4(af)

a2f 4
=
aπ

3
(2.24)

∫ ∞

0

df
sin4(af)

a2f 3
= ln(2) (2.25)

∫ ∞

0

df
sin4(af)

a2f 2
=

π

4a
. (2.26)

Hence, the different noise contributions can be identified by investigating the scaling

behavior of the Allan variance with the averaging time τ . For clarity, the individual

noise contributions to the spectral noise density and Allan variance are summarized

in Tab. 2.1. Generic examples are illustrated in Fig. 2.2(a-c).
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Noise type α Sy(f) β = −α− 1 σ2
y(τ) h̃β

WN 0 h0f
0 −1 h̃−1τ

−1 h0

2

FN −1 h−1f
−1 0 h̃0τ

0 2 ln(2)h−1

RWN −2 h−2f
−2 1 h̃1τ

1 2π2

3
h−2

Table 2.1: Noise contributions to the Allan variance: Power law scaling of the
spectral noise density and Allan variance of fractional frequency fluctuations for white
frequency noise (WN), flicker frequency noise (FN) and random walk frequency noise
(RWN).

2.2.2 Coherence Time

In the previous section we have seen that frequency fluctuations of a local oscillator

originate from a complex mixture of different noise processes. Therefore, thorough

characterization requires a comprehensive analysis of the measures introduced. In

terms of the Allan deviation, a broad range of averaging times has to be considered,

while for the spectral noise density it involves investigating a broad band of Fourier

frequencies. Nevertheless, each unique combination of noise contributions introduces

a characteristic time scale to the system, ultimately limiting the clock stability, as we

will discuss in detail in Chapter 4. Hence, it is convenient to define a coherence time

Z to facilitate a conceptual comparison of different local oscillators with distinct noise

characteristics and mean frequency. While there are several possibilities motivated by

different applications, we follow Ref. [92] and define the coherence time Z implicitly

by

σy,LO(ZC)ω0Z = 1 rad (2.27)

where ZC = Z + TD is the corresponding cycle duration, including dead time TD.

Intuitively, the coherence time is determined by the intersection of the local oscillator

stability σy,LO(τ) and 1/ω0τ at τ = Z. Consequently, as we will derive in the next

section, the coherence time can be interpreted as the interrogation time at which the

Allan deviation of the local oscillator at a single clock cycle coincides with the stability

arising from quantum projection noise of a single particle in an ideal scenario.

An exemplary evaluation of the coherence time Z is shown in Fig. 2.2(d). While

each specific noise profile σy,LO(τ) uniquely determines Z, the reverse is not necessarily

true. Distinct noise compositions can yield the same coherence time. Hence, a given

coherence time Z may arise from various noise compositions.
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a b

c d

Z = 7.5 s

Figure 2.2: Stability analysis of local oscillators: (a) Frequency traces simulated
over 104 cycles for white (gray), flicker (pink) and random walk (brown) frequency
noise. (b) Corresponding spectral noise density Sν(f) showing the characteristic scal-
ing with Fourier frequency f for the three noise processes. (c) Corresponding Allan
deviation σν(τ), highlighting the characteristic scaling with the averaging time τ for
the three noise processes. (d) Allan deviation σy,LO(τ) of a state-of-the-art clock laser

as considered in Ref. [91], with white frequency noise σy,WN(τ) = 2.5× 10−17
(
τ
s

)−1/2
,

flicker frequency noise σy,FN(τ) = 4.9 × 10−17 and random walk frequency noise

σy,RWN(τ) = 1.35 × 10−18
(
τ
s

)1/2
, based on the laser described in Ref. [88]. Dashed

colored lines indicate the individual noise contributions. The intersection of σy,LO(τ)
(solid black) with the dashed black line visualizes the laser coherence time Z. We use
ν0 = 429.228 THz considering 87Sr for calculations.

2.3 Atomic Reference

Atomic sensors are the preferred choice in frequency metrology as they represent ideal

references: they are identical, their transition frequencies are constants of nature, and

they are well described mathematically, enabling comprehensive comparisons between

theory and experiment.

In this section, we introduce the fundamental concepts and notations required to

describe the interrogation of the atomic reference. We begin by reviewing essential
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properties of spin systems in Sec. 2.3.1. Subsequently, we discuss the time evolution of

spin systems: Sec. 2.3.2 derives the unitary dynamics, while Sec. 2.3.3 addresses the

impact of decoherence processes. Furthermore, the notion of quantum measurements

is considered in Sec. 2.3.4. Building on these fundamental aspects, we introduce Ram-

sey interferometry in Sec. 2.3.5, which represents the primary interrogation scheme

considered throughout this thesis. In this context, we discuss quantum projection

noise (QPN) in Sec. 2.3.6, which imposes a fundamental limit in interferometry due

to the indeterministic nature of quantum mechanics. Finally, the three standard

Ramsey protocols are presented utilizing coherent spin states (CSS) in Sec. 2.3.7,

GHZ states in Sec. 2.3.8 and spin-squeezed states (SSS) in Sec. 2.3.9.

2.3.1 Spin Systems

The generally complex electronic structure of atoms used in precision spectroscopy

can often be reduced to a two-level system by focusing on a single, isolated atomic

transition. This simplification is valid when all other transitions are sufficiently sep-

arated in energy and are thus effectively off-resonant, allowing them to be neglected.

Additionally, ideal transitions for atomic clock application are both narrow – mini-

mizing the effects of a finite excited-state lifetime – and offer precise coherent control.

These properties are crucial for achieving high stability and accuracy, which are es-

sential for reliable interrogation and long-term frequency stability in metrological

applications.

Two level system— The Hilbert space of a two-level system, mathematically

equivalent to a (pseudo-) spin-1/2 particle [6, 59, 93], is given by H = C2. In this

space, we use two orthonormal basis states: |↓⟩ = |g⟩ = |0⟩, representing the ground

state (or lower energy level, corresponding to “spin-down”), and |↑⟩ = |e⟩ = |1⟩,
representing the excited state (or higher energy level, corresponding to “spin-up”).

Any pure state of the system can thus be expressed as a linear combination of these

basis states |ψ⟩ = c↓ |↓⟩ + c↑ |↑⟩ where the complex coefficients c↓, c↑ ∈ C satisfy

the normalization condition |c↓|2 + |c↑|2 = 1. These states can also be conveniently

represented as two-dimensional complex vectors, typically by adopting the standard

(canonical) basis vectors vectors |↑⟩ ·
=
(
1
0

)
and |↓⟩ ·

=
(
0
1

)
.

Correspondingly, observables of two-level systems are represented by hermitian

(self-adjoint) 2×2-matrices. A convenient basis for the space of observables is provided
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by the identity matrix 1 = |↑⟩⟨↑| + |↓⟩⟨↓| and the three Pauli matrices

σx = |↑⟩⟨↓| + |↓⟩⟨↑| = σ+ + σ−

σy = −i |↑⟩⟨↓| + i |↓⟩⟨↑| = −i(σ+ − σ−) (2.28)

σz = |↑⟩⟨↑| − |↓⟩⟨↓| = σee − σgg

where σ+ = σeg = |↑⟩⟨↓| and σ− = σge = |↓⟩⟨↑| are the raising and lowering operators

– which induce transitions between the ground and excited states – effectively flipping

the spin. The operators σee = |↑⟩⟨↑| and σgg = |↓⟩⟨↓| are projectors onto the excited

and ground states, respectively, and give rise to the z-component, representing the

population difference. Moreover, the spin observable is expressed in terms of the Pauli

operators S = 1
2
σ, where S = (Sx, Sy, Sz)

T and σ = (σx, σy, σz)
T , respectively,

Likewise, any mixed state of a two-level system, described by a density matrix ρ,

can be written as a linear combination of the Pauli operators

ρ =
1

2

(
1+ rTσ

)
=

1

2
(1+ r1σx + r2σy + r3σz) (2.29)

where r = (r1, r2, r3)
T = (⟨σx⟩ , ⟨σy⟩ , ⟨σz⟩)T ∈ R3, with |r| ≤ 1, forms the so called

Bloch vector. The components of r represent the expectation values of the Pauli

operators and fully characterize the mixed state ρ. In this framework, pure states are

represented by points on the Bloch sphere, since |r| = 1. Alternatively, pure states

can also be parametrized by the azimuthal angle θ and polar angle φ

|ψ⟩ = cos
(
θ
2

)
|↓⟩ + e−iφ sin

(
θ
2

)
|↑⟩ . (2.30)

In this representation, the Bloch vector is given by

r =




sin(θ) cos(φ)

sin(θ) sin(φ)

− cos(θ)


 (2.31)

since sin(π − θ) = sin(θ) and cos(π − θ) = − cos(θ). Note that the azimuthal angle θ

is measured from the negative z-axis, in contrast to the commonly used definition of

spherical coordinates. The concept of Bloch vectors on the Bloch sphere provides a

geometric representation of spin states, with r effectively describing the polarization

of the state. Consequently, it also facilitates intuitive insights into the dynamics of

spin-1/2 systems. Representative states on the Bloch sphere are illustrated in Fig. 2.3.
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where the global phase ei
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2 also can be neglected. Consequently the free evolution

results in a phase shift � between both atomic states.

(iii) To end the interferometry sequence a measurement is performed. In the standard
Ramsey protocol this is accomplished by applying a second ⇡/2-pulse with ' =

⇡/2, corresponding to a rotation around the x-axis by an angle ⌦Rt = ⇡/2. The
according time evolution is U(t) = 1p
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A consecutive measurement results in the signal

h�zi = |h" | f i|2 � |h# | f i|2 = sin(�) (2.84)

as the excitation probabilities read

p"(�) = |h" | f i|2 =
1

2
(1 + sin(�)) (2.85)

p#(�) = |h# | f i|2 =
1

2
(1 � sin(�)) . (2.86)

Maybe add a plot.

Note that instead of applying the second ⇡/2-pulse and measuring �z equivalently after
the imprint of the phase shift a measurement of �y could be performed.

2.2.5. Quantum Projection Noise (QPN)

As already mentioned in the beginning of this subsection, despite numerous advantages
using atomic sensors in quantum metrology it also restricts the precision. This limitation
is an inherent property of quantum mechanics as is not a deterministic theory although
the Schrödinger equation is deterministic. Quantum theory can not predict measurement
outcomes with certainty but rather provide probabilities. To illustrate this indeterminism
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Figure 2.3: Visualization of states on the Bloch sphere: The ground (yellow)
and excited (green) states are aligned along the ∓z-axis, while red (θ = π

2
, φ = 0)

and blue (θ = π
2
, φ = π

2
) states are polarized in x- and y-direction, respectively.

Collective spin— The generalization of the presented formalism to N spin-1/2

systems is straightforward. The composite Hilbert space H =
⊗N

k=1Hk =
⊗N

k=1C
2

is formed by the tensor product of N single particle Hilbert spaces Hk = C2. A

basis for this 2N dimensional Hilbert space can be constructed from tensor products

of single particle basis elements |i1, . . . , iN⟩ =
⊗N

i=1 |ik⟩
(k) with ik ∈ {↓, ↑}∀k. For

example, the collective ground and excited states are represented by |↓⟩⊗N and |↑⟩⊗N ,

respectively. However, numerical simulations in this full Hilbert space are limited to

relatively small particle numbers N , as the dimension of H scales exponentially with

the ensemble size N , making numerical computations increasingly demanding. This

exponential scaling presents a significant challenge in studying systems with larger

ensembles, motivating the need for efficient representations or the exploitation of

symmetries to reduce the effective dimensionality of the problem.

The collective spin operator S =
∑N

k=1 S
(k) is constructed from single particle spin

operators S(k). The spin components form an angular momentum algebra defined by

[Sj, Sk] = iϵjklSl, (2.32)

where [A,B] = AB−BA denotes the commutator and ϵjkl is the fully anti-symmetric

Levi-Civita tensor. Consequently, the total spin operator S2 = S2
x+S2

y +S2
z commutes

with each spin component [S2, Sk] = 0 for k ∈ {x, y, z}. Therefore, simultaneous

eigenstates of the total spin and one spin component can be found. Typically, eigen-

states of S2 and Sz are chosen, while the corresponding states in a different basis can

be obtained by a unitary transformation (cf. App. B). The eigenstates |S,M⟩z are
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labeled by the quantum numbers S and M , representing the total spin magnitude and

the spin projection along the z-axis, respectively. In the following, we omit the index

z for simplicity, referring implicitly to the z-basis. If a different basis is used, we will

indicate this explicitly. The states |S,M⟩ are often referred to as Dicke states [94]

and satisfy the eigenvalue equations

S2 |S,M⟩ = S(S + 1) |S,M⟩ , (2.33)

Sz |S,M⟩ = M |S,M⟩ , (2.34)

where S ∈ {N/2, N/2 − 1, . . . , Smin} and M ∈ {−S,−S + 1, . . . , S − 1, S}. The

minimal total spin is Smin = 0 for N even and Smin = 1/2 for N odd. To move

between states with different projections M , ladder operators can be constructed

from the spin components

S± = Sx ± iSy, (2.35)

which act as

S± |S,M⟩ =
√
S(S + 1) −M(M ± 1) |S,M ± 1⟩ (2.36)

and are often called raising and lowering or creation and annihilation operators, since

they increase or decrease the number of excited atoms by one. They obey the com-

mutation relations

[Sz, S±] = ±S±, [S+, S−] =2Sz,
[
S2, S±

]
=0. (2.37)

Permutational symmetry— Already for N > 2, we observe that the Dicke states

are degenerate and the quantum numbers S and M do not determine |S,M⟩ uniquely.

In fact, the total number of Dicke states is

nDS =

N/2∑

S=Smin

2S + 1 =

(
N

2
+ 1

)2

− 1

4
mod2(N), (2.38)

where the modulo term takes ensembles with N odd into account. This expression can

be derived by separately evaluating the sum for even and odd ensemble sizes. While

nDS grows quadratically with N , the dimension of the full Hilbert space increases

exponentially as 2N . Hence, each Dicke state |S,M⟩ has a degeneracy [95–100]

dSN = (2S + 1)
N !

(N
2

+ S + 1)!(N
2
− S)!

. (2.39)
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This degeneracy bridges from nDS to dim(H) via

dim(H) = 2N =

N/2∑

S=Smin

dSN(2S + 1). (2.40)

For example, for N = 4 we find d04 = 2, d14 = 3 and d24 = 1, showing that the Dicke

states for S < N/2 are degenerate.

The Dicke states with maximal spin S = N/2 are uniquely defined, as any Dicke

state represents a symmetric superposition ofN+ = N/2+M excited two-level systems

∣∣N
2
,M
〉

=
1√(
N
N+

)S
[
|↑⟩⊗N+ ⊗ |↓⟩⊗(N−N+)

]
, (2.41)

where S is the symmetrization operator and the binomial coefficient
(

N
N+

)
accounts

for all possible combinations and ensures normalization. This symmetric subspace,

denoted as HS, is permutationally invariant and has dimension dim(HS) = N+1. The

states
∣∣N
2
,M
〉

can be constructed from the collective ground state
∣∣N
2
,−N

2

〉
= |↓⟩⊗N

by repeated application of S+

∣∣N
2
,M
〉

=
1

(N
2

+M)!

(
N

N
2

+M

)−1/2

S
N
2
+M

+

∣∣N
2
,−N

2

〉
. (2.42)

The states
∣∣N
2
,M
〉

with maximal spin S = N/2 are commonly referred to as |M⟩ for

simplicity.

For S < N/2 however, there exist dSN degenerate, non-symmetric superpositions

of the N two level systems. To determine the action of single particle operators

on collective states, for example necessary for individual decoherence processes (cf.

Sec. 2.3.3), the Dicke states have to be explicitly expressed in terms of the tensor

product basis. Hence, we have to introduce more general Dicke states |S,M, αS⟩ [94],

where the additional quantum number αS accounts for the degeneracy. Unfortunately,

finding all 2N representations of this basis is computationally demanding, similar to

computations in the tensor product basis. However, permutational symmetry of the

system and its dynamics – which is assumed throughout this thesis and typically

applies to a good approximation – enables a crucial simplification, as discussed in

detail in Refs. [95–100]. In this case, the matrix elements for different αS are identical

and thus, the states |S,M, αS⟩ cannot be distinguished. Therefore, effective basis

states |S,M⟩ can be defined, and the degeneracy is eliminated. Hence, any arbitrary

density operator can then be expressed as

ρ =
∑

S,M,S′,M ′

ρSM,S′M ′ |S,M⟩⟨S ′,M ′| , (2.43)



24 Chapter 2. Basics of Atomic Clocks

with matrix elements ρSM,S′M ′ = ⟨S,M | ρ |S ′,M ′⟩. If the dynamics additionally does

not create any coherences between Dicke states with S ̸= S ′, i.e. ⟨S,M | ρ |S ′,M ′⟩ = 0,

which will be the case throughout this thesis, the density operator further simplifies

to

ρ =
∑

S,M,M ′

ρSMM ′ |S,M⟩⟨S,M ′| , (2.44)

with matrix elements ρSMM ′ = ⟨S,M | ρ |S,M ′⟩. Therefore, ρ has block-diagonal form,

as illustrated in Fig. 2.4. While the blocks become smaller with increasing S, the

number dSN of degenerate states represented by each block increases, except for dSmin
j .

Consequently, permutational invariance allows to reduce the dimension of the problem

significantly, yielding a smaller Hilbert space HPS with dim(HPS) = nDS ∈ O(N2),

rather than dim(H) = 2N . Additionally assuming the particular form in Eq. (2.44),

the total number of non-zero matrix elements reduces to

N/2∑

S=Smin

= (2S + 1)2 =
1

6
(N + 1)(N + 2)(N + 3) = O(N3), (2.45)

providing a substantial reduction compared to the 4N elements in the tensor product

or generalized Dicke basis. This reduction enables numerical studies of significantly

larger ensembles (cf. App. A for a detailed discussion).

Wigner function— Considering collective spin systems, the concept of the Bloch

sphere can be generalized to a Bloch sphere with radius S = N/2. Hence, collective

spin states can be illustrated by the Bloch vector, providing a geometrical representa-

tion of the mean spin vector. Although this visualization is intuitive, it only describes

the polarization and thus, lacks the ability to capture quantum correlations of more

complex spin states, especially entangled or non-classical states. A comprehensive

representation is provided by the Wigner function, a quasi-probability distribution

on the Bloch sphere that reveals deeper insights into the quantum nature of a state.

Additionally, this approach also applies to spin operators. Below, we briefly present

the concept following Refs. [101,102] for an arbitrary density or spin operator G.

Assuming fixed total spin S, we expand G as

G =
2S∑

k=0

+k∑

q=−k

GkqTkq (2.46)
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Figure 2.4: Block-diagonal structure in the Dicke basis: (a) The density matrix
in the Dicke basis |S,M⟩⟨S,M ′| for N = 4. Each block corresponds to a distinct
spin quantum number S, decreasing from the top left to the bottom right (S =
N/2, N/2−1, . . .). Within each block, the projections M,M ′ decrease from left (top)
to right (bottom) according to M = +S, . . . ,−S. The gray area outside of the
diagonal blocks represents matrix elements with S ̸= S ′, which are not populated as
discussed in the main text. (b) The fully excited state

∣∣N
2
,+N

2

〉
= |↑⟩⊗N . (c) The

ground state
∣∣N
2
,−N

2

〉
= |↓⟩⊗N . (d) The state |0, 0⟩.

in terms of the multipole operators

Tkq =
+S∑

M=−S

+S∑

M ′=−S

(−1)S−M
√

2k + 1


 S k S

−M q M ′


 |S,M⟩⟨S,M ′|

=
+S∑

M=−S

+S∑

M ′=−S

(−1)S−M ′ ⟨S,M ;S,−M ′|k, q⟩ |S,M⟩⟨S,M ′| .

(2.47)

Here,
(

S k S
−M q M ′

)
and ⟨S,M ;S,−M ′|k, q⟩ are the Wigner 3-j symbols and Clebsch-

Gordan coefficients, respectively [103]. The coefficients of the multipole expansion

are given by

Gkq = Tr
(
GT †

kq

)
(2.48)
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Figure 2.5: Wigner function: Bloch sphere visualization of the Wigner function W
for N = 16, illustrating (a) the collective excited state |↑⟩⊗N , (b) the coherent spin
state (CSS) polarized along the x-direction (cf. Sec. 2.3.7) and (c) the GHZ state (cf.
Sec. 2.3.8). In particular, (b) reflects (a) rotated by π

2
around the y-axis. Red regions

correspond to positive quasi-probability, while blue areas depict negative values and
thus indicate quantum correlations.

and the Wigner function associated with G is defined by

W (θ, φ) =
2S∑

k=0

+q∑

q=−k

GkqYkq(θ, φ), (2.49)

where Ykq(θ, φ) are the spherical harmonics.

In Fig. 2.5, Wigner functions for generic states are illustrated. Quantum cor-

relations between atoms manifest as regions of negative quasi-probability, whereas

classical states display a uniform distribution, a distinction we will explore further in

the following sections.

2.3.2 Unitary Dynamics

Hamiltonian of atom-field interaction— Rather than presenting the complete

derivation, which can be found in detail in standard literature such as Refs. [104,105],

we will briefly outline the main steps and approximations relevant for understanding

the atom-field interaction in this context. For a comprehensive introduction, we also

recommend Ref. [106].

As motivated before, we model the atom as a two level system. In contrast, we

treat the electromagnetic field classically, assuming an electric field of the form

E(t) = EE0

[
e−i(ωLO(t)t+φLO) + ei(ωLO(t)t+φLO)

]
(2.50)

with amplitude E0, polarization E , fluctuating frequency ωLO(t) and phase φLO. Here,

we have already applied the dipole approximation, which neglects the spatial variation
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U(t) = e�i
�
2 |"i h"| + ei

�
2 |#i h#| obtained from (2.80) yielding

| �i =
1p
2


ei

�
2 |#i + e�i

�
2 |"i

�
=

1p
2
ei

�
2

h
|#i + e�i� |"i

i
(2.82)

where the global phase ei
�
2 also can be neglected. Consequently the free evolution

results in a phase shift � between both atomic states.

(iii) To end the interferometry sequence a measurement is performed. In the standard
Ramsey protocol this is accomplished by applying a second ⇡/2-pulse with ' =

⇡/2, corresponding to a rotation around the x-axis by an angle ⌦Rt = ⇡/2. The
according time evolution is U(t) = 1p

2
1 � ip

2
�x giving the final state

| f i =
ei

�
2

2

h⇣
1 � ie�i�

⌘
|#i +

⇣
e�i� � i

⌘
|"i
i
. (2.83)

A consecutive measurement results in the signal

h�zi = |h" | f i|2 � |h# | f i|2 = sin(�) (2.84)

as the excitation probabilities read

p"(�) = |h" | f i|2 =
1

2
(1 + sin(�)) (2.85)

p#(�) = |h# | f i|2 =
1

2
(1 � sin(�)) . (2.86)

Maybe add a plot.

Note that instead of applying the second ⇡/2-pulse and measuring �z equivalently after
the imprint of the phase shift a measurement of �y could be performed.

2.2.5. Quantum Projection Noise (QPN)

As already mentioned in the beginning of this subsection, despite numerous advantages
using atomic sensors in quantum metrology it also restricts the precision. This limitation
is an inherent property of quantum mechanics as is not a deterministic theory although
the Schrödinger equation is deterministic. Quantum theory can not predict measurement
outcomes with certainty but rather provide probabilities. To illustrate this indeterminism
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Figure 2.6: Energy level structure in a two level system: Schematic energy
splitting between ground and excited states in a two level system and the relation
between the atomic transition frequency ω0, laser frequency ωLO and frequency dif-
ference ω, as defined in the main text.

of the field. This is a valid assumption when the wavelength of the field is much longer

than the atomic scale and thus, effectively does not vary over the extend of the atom.

This is the case in optical atomic clocks, as atomic dimensions are on the order of Å,

while the laser wavelengths are hundreds of nm. In this semi-classical approach, the

total Hamiltonian for the atom and field

H = HA +HAF (2.51)

can be written as a sum of the Hamiltonian of the free atom HA and the atom-field

interaction Hamiltonian HAF. With atomic transition frequency ω0 = (E↑ − E↓)/ℏ
and defining zero energy by E↓ + ℏω0

2
= 0, as illustrated in Fig. 2.6, the Hamiltonian

of the free atom reads

HA =
ω0

2
σz. (2.52)

The atom-field interaction Hamiltonian is given by

HAF = −dTE(t) (2.53)

with atomic dipole operator d, which can be expressed in terms of Pauli operators.

We proceed by moving to a rotating frame at frequency ωLO(t), in which the terms

oscillate at frequencies ±(ω0 ± ωLO(t)). Applying the rotating wave approximation

(RWA), we assume |ω0−ωLO(t)| ≪ ω0 +ωLO(t) and neglect the fast oscillating terms

±(ω0 + ωLO(t)) as they average to zero over relevant timescales.

The resulting Hamiltonian that governs the dynamics of the atom reads

H =
ω(t)

2
σz +

ΩR

2
[sin(φLO)σx − cos(φLO)σy] , (2.54)
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where ω(t) = ω0 − ωLO(t) denotes the detuning between the atomic transition fre-

quency ω0 and the local oscillator frequency ωLO(t). The Rabi frequency

ΩR = |2E0d
TE| (2.55)

quantifies the strength of the coherent driving, which is assumed to be strong and

near-resonant. Hence, we consider the frequency hierarchy |ω(t)| ≪ ΩR ≪ ωLO(t) ≈
ω0.

Extending the description from a single atom to an ensemble of N identical and

independent two-level systems interacting with a common field, we construct the total

Hamiltonian as the sum of the individual single-particle Hamiltonians. This yields

H =
N∑

k=1

ω(t)

2
σ(k)
z +

ΩR

2

[
sin(φLO)σ(k)

x − cos(φLO)σ(k)
y

]

= ω(t)Sz + ΩR [sin(φLO)Sx − cos(φLO)Sy] ,

(2.56)

where we introduced the collective spin components. Therefore, the dynamics of a

single two-level system can be generalized seamlessly to an ensemble of N atoms

by replacing individual Pauli operators with the collective spin operators, effectively

capturing the collective response of the system to the field.

Equations of motion— The time evolution of a state vectors |ψ⟩ is determined

by the Schrödinger equation

i∂t |ψ⟩ = H(t) |ψ⟩ . (2.57)

Rather than solving the Schrödinger equation directly, it is often useful to express

the time evolution in terms of the unitary time evolution operator U(t, t0), namely

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (2.58)

Assuming that the Hamiltonian commutes with itself at different times, [H(t), H(t′)] =

0, which will be the case throughout this thesis, the unitary time evolution operator

is defined by

U(t, t0) = exp

(
−i
∫ t

t0

dt′H(t′)

)
. (2.59)

Hence, the time evolution effectively corresponds to a unitary transformation gen-

erated by the mean Hamiltonian, averaged over the time interval [t0, t]. The corre-

sponding Schrödinger equation for U(t, t0) reads

∂t U(t, t0) = −iH(t)U(t, t0). (2.60)
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In several situations, we will use the density operator ρ to describe mixed states

or statistical ensembles. Its time evolution is governed by the von Neumann equation

∂tρ = −i[H, ρ]. (2.61)

A formal solution, in the same context as for the Schrödinger equation, is obtained

by

ρ(t) = U(t, t0)ρ(t0)U †(t, t0). (2.62)

For some applications, it is convenient to switch to the Heisenberg picture, where

the states are time independent, while the operators evolve in time. In this picture,

an arbitrary operator AH at time t is related to its counterpart AS ≡ A in the

Schrödinger picture by

AH(t) = U †(t, t0)AS U(t, t0) (2.63)

and follows the equation of motion

∂tAH = i[H,AH ]. (2.64)

The time evolution has the same form as the von Neumann equation, however, dif-

fering by a minus sign. Hence, operators in the Heisenberg picture evolve with the

adjoint time evolution operator of states or density operators in the Schrödinger pic-

ture. This relation can intuitively be understood by considering the expectation value

of an arbitrary operator A with respect to a state |ψ(t)⟩

⟨A(t)⟩ = ⟨ψ(t)|A |ψ(t)⟩ = ⟨ψ| U †(t, t0)AU(t, t0) |ψ⟩ = ⟨ψ|AH(t) |ψ⟩ . (2.65)

Therefore, depending on the problem, we may choose to apply the time evolution to

either the states or the operators, based on which approach is more convenient.

Unitary dynamics of the system— The unitary dynamics of the system is

obtained by applying the equations of motion to the Hamiltonian of our system.

Essential to the evaluation of the time evolution operator is the integration of the

Hamiltonian over time. For the atom-field interaction Hamiltonian HAF, which is

time independent, the integral reduces to a multiplication by the elapsed time

∫ t

t0

dt′HAF(t′) = ΩR(t− t0) [sin(φLO)Sx − cos(φLO)Sy] . (2.66)
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In contrast, the frequency fluctuations of the local oscillator vary in time and thus,

we explicitly have to integrate over the frequency difference ω(t) for the Hamiltonian

of the free atom
∫ t

t0

dt′HA(t′) =

(∫ t

t0

dt′ ω(t′)

)
Sz = ω(t− t0)Sz, (2.67)

where we introduced the time averaged frequency deviation

ω =
1

t− t0

∫ t

t0

dt′ ω(t′), (2.68)

which is consistent with the notation developed in Sec. 2.1 for the Allan deviation. By

introducing the average frequency deviation ω and implicitly incorporating the averag-

ing into the Hamiltonian, we effectively make the Hamiltonian HA = ωSz independent

of time and the time evolution operator simplifies to U(t, t0) = exp(−i(t− t0)H).

To investigate the action of the time evolution operator, we further rewrite the

Hamiltonian as

H = ωSz + ΩR [sin(φLO)Sx − cos(φLO)Sy] = Ωeffn
TS = ΩeffSn (2.69)

by defining an effective Rabi frequency Ωeff and direction n

Ωeff =
√
ω2 + Ω2

R sin2(φLO) + Ω2
R cos2(φLO) =

√
ω2 + Ω2

R

n =
1

Ωeff

(ΩR sin(φLO),−ΩR cos(φLO), ω)T .
(2.70)

Furthermore, we have introduced the notation Sn = nxSx +nySy +nzSz, representing

the projection of the spin vector S along a particular direction n, |n| = 1. As the spin

S corresponds to the angular momentum operator of the system, it is the generator

of rotations. Hence, the time evolution operator

U(t, t0) = exp(−iΩeff(t− t0)Sn) (2.71)

represents a rotation around axis n by the angle Ωeff(t− t0). This type of dynamics

implements the interrogation sequence invented by Rabi [70], where the population

for each atom oscillates between the ground and excited states (Rabi flopping) –

driven by an external field – and effectively results in the optical Bloch equations

(without spontaneous decay) [106].

In more general terms, we will denote rotations around an arbitrary axis n by the

angle θ as

Rn(θ) = exp(−iθSn), (2.72)
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a notation frequently used throughout this thesis. Exploiting properties of the Pauli

matrices, we can derive an explicit expression for a single particle rotation

R(k)
n (θ) = exp

(
−iθS(k)

n

)
= exp

(
−i θ

2
nTσ(k)

)

= cos
(
θ
2

)
1− i sin

(
θ
2

)
nTσ(k).

(2.73)

It is interesting to note that this explicitly shows that, in contrast to classical vectors,

the spin of a two level system has to be rotated by 4π instead of 2π to return to its orig-

inal state. The corresponding collective rotation is given by Rn(θ) =
⊗N

k=1R
(k)
n (θ).

Two regimes are of particular interest throughout this thesis. In the strong driving

regime |ω| ≪ ΩR, typically corresponding to pulses and transformations for state

preparation and measurement, effects of the frequency detuning ω can be neglected.

Therefore, the unitary time evolution can be approximated by

U(t, t0) = exp (−iΩR(t− t0) [sin(φLO)Sx − cos(φLO)Sy])

=
(

cos
(

ΩR(t−t0)
2

)
1− i sin

(
ΩR(t−t0)

2

)
[sin(φLO)σx − cos(φLO)σy]

)⊗N

.
(2.74)

Conversely, if no external field is applied, the system evolves freely and the time

evolution is governed solely by HA, resulting in

U(t, t0) = exp (−iω(t− t0)Sz)

=
(

cos
(

ω(t−t0)
2

)
1− i sin

(
ω(t−t0)

2

)
σz

)⊗N

.
(2.75)

In certain situations, it is also convenient to express the free evolution as

U(t, t0) =
(
e−i

ω(t−t0)
2 σee + ei

ω(t−t0)
2 σgg

)⊗N

=
(
e−i

ω(t−t0)
2 |↑⟩⟨↑| + ei

ω(t−t0)
2 |↓⟩⟨↓|

)⊗N

.

(2.76)

For free evolution times T = t − t0, the accumulated phase is given by ϕ = ωT .

Therefore, the corresponding time evolution represents a rotation around the z-axis

by an angle ϕ, denoted by Rz(ϕ). Consequently, in the remainder of this thesis, for

a unitary time evolution with duration T , we typically assume t0 = 0 and t = T , and

refer to the time evolution operator U(t, t0) = exp(−iωTSz) as Rz(ϕ) = exp(−iϕSz).

2.3.3 Decoherence Processes

The unitary dynamics described in the previous section strictly applies to isolated

quantum systems, evolving independently of any external influences. In reality, how-

ever, virtually all systems interact to some extent with an external environment,
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resulting in a non-unitary evolution. Even in a highly controlled laboratory set-

ting, residual couplings to the surroundings, including electromagnetic fields, thermal

fluctuations and material imperfections, are unavoidable. These interactions lead to

decoherence, where the system gradually loses its quantum coherence due to the con-

tinuous exchange of information with its environment. The study of open quantum

systems is a well-established field, extensively investigated in the literature, such as

Refs. [107–112]. In this section, we introduce the fundamental concepts and tools

required to model and analyze decoherence processes relevant to the framework of

this thesis, building on these references.

The general approach in studying open quantum systems is to consider the system

and its environment as a single closed composite system. Within this framework, the

dynamics of the total system is unitary. However, in many practical scenarios, explic-

itly describing both subsystems together becomes unfeasible due to the vast number

of degrees of freedom in the environment and the intricate nature of their interactions.

Furthermore, in most cases, we are primarily interested in the dynamics of the system

itself, as the evolution of the environment is either irrelevant or inaccessible. This

perspective motivates a framework where the environment is eliminated, yielding an

effective equation of motion for the system. This reduced approach allows to focus

exclusively on the system of interest, while capturing the influence of the environment

in an indirect yet effective manner.

Quantum channels— Physical processes that transform quantum states into other

quantum states can be described by maps known as quantum channels. A quantum

channel is a linear, completely positive, trace preserving map Λ that represents the

evolution of a quantum state. Every quantum channel has a decomposition

ρ 7→ Λ[ρ] =
∑

j

KjρK
†
j (2.77)

with a set of Kraus operators {Kj} satisfying the completeness relation

∑

j

K†
jKj = 1. (2.78)

The unitary dynamics described in the previous section implements a quantum chan-

nel with a single Kraus operator U .

Within the general approach of open quantum systems, the quantum channel can

be interpreted as follows: Considering the combination of system S and environment

E as a single closed system, described by the joint density operator ρSE, the dynamics

is given by a unitary evolution USE. The quantum channel of the system is obtained
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by tracing out the environment, i.e. Λ[ρ] = TrE(USEρSE U †
SE). This approach high-

lights how quantum channels capture the effects of environmental interactions while

focusing on the reduced dynamics of the system of interest.

Master equations— Suppose two quantum systems: the system S, our primary

system of interest, and its environment (often referred to as the reservoir or bath)

E. For instance, S represents the atom and E corresponds to the electromagnetic

field. The Hilbert spaces associated with these systems are denoted as HS and HE,

respectively. The combined system S+E is then described by the joint Hilbert space

HSE = HS ⊗HE. The total Hamiltonian is given by

HSE = HS +HE +HI , (2.79)

where HS and HE are the Hamiltonians of the system and the environment, respec-

tively, and HI describes their interaction. This interaction reflects an exchange of

information between S and E, leading to the emergence of decoherence and dissipa-

tion.

Since the total system evolves unitarily, its dynamics is described by the von

Neumann equation

∂tρSE = −i[HSE, ρSE] (2.80)

with density operator ρSE for S + E. While we already derived the dynamics of the

system HS in the previous section, now we are primarily interested in the interaction

HI . Hence, we transform to an interaction picture, where the rapid dynamics gener-

ated by HS +HE are separated from the comparatively slower dynamics induced by

HI . In the interaction picture, denoted by the explicit time dependence, the equa-

tion of motion reads ∂tρSE(t) = −i[HSE(t), ρSE(t)]. Integrating the von Neumann

equation formally

ρSE(t) = ρSE(0) − i

∫ t

0

dt′ [HSE(t′), ρSE(t′)] (2.81)

and substituting ρSE(t) back into the von Neumann equation results in an integro-

differential equation for the dynamics

ρ̇SE(t) = −i[HSE(t), ρSE(0)] −
∫ t

0

dt′ [HSE(t), [HSE(t′), ρSE(t′)]]. (2.82)

Taking the partial trace over the environment, we obtain an equation of motion for

the system ρS = TrE(ρSE) given by

ρ̇S(t) = −iTrE ([HSE(t), ρSE(0)]) −
∫ t

0

dt′ TrE ([HSE(t), [HSE(t′), ρSE(t′)]]) . (2.83)
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Assuming a small system and large environment as well as a weak coupling, the

perturbations to the environment are small and can be neglected on the relevant time

scales. If we further assume no correlations between the system and environment at

t = 0, the environment is virtually stationary and the total state factorizes according

to

ρSE(t) ≈ ρS(t) ⊗ ρE, (2.84)

which is referred to as the Born approximation. Additionally, we will assume that the

first term in Eq. (2.83) vanishes, i.e. TrE ([HSE(t), ρS(0) ⊗ ρE]) = 0, which can always

be arranged by a shift in the energy scale [106, 107]. Nevertheless, the equation of

motion Eq. (2.83) remains complicated since the evolution of ρS depends on its past

history through the integration over ρSE(t′) ≈ ρS(t′)ρE. To address this, we apply

the Markov approximation, which assumes that the system evolves slowly compared

to the correlation time of the environment and thus, we can substitute ρS(t′) by

ρS(t) [106,107], yielding

ρ̇S(t) = −
∫ t

0

dt′ TrE ([HSE(t), [HSE(t′), ρS(t) ⊗ ρE]]) . (2.85)

If the dynamics is governed by a completely positive, trace preserving quantum chan-

nel represented by Kraus operators – as introduced above – that arises from a time

evolution forming a one-parameter semigroup, then Lindblad’s theorem [106–108,110]

states that it is generated by a Lindblad superoperator. This yields the master equa-

tion

ρ̇S = −i[HS, ρS] +
∑

k

Lk[ρ], (2.86)

where the Lindblad superoperators Lk[ρ] are defined by

Lk[ρ] = CkρSC
†
k −

1

2
C†

kCkρS − 1

2
ρSC

†
kCk, (2.87)

with collapse or jump operators Ck.

In the following, we omit the index S for the system. Furthermore, in Chapter 3,

we will consider three different decoherence processes, namely spontaneous decay

with rate Γ and Ck =
√

Γσ
(k)
− , individual dephasing with rate γ and Ck =

√
γ

2
σ
(k)
z ,

and collective dephasing with rate γc and Ck =
√
γcSz. Hence, the master equation

for N atoms reads

ρ̇ = −i[H, ρ] + Γ
N∑

k=1

(
σ
(k)
− ρσ

(k)
+ − 1

2
σ
(k)
+ σ

(k)
− ρ− 1

2
ρσ

(k)
+ σ

(k)
−

)

+
γ

4

N∑

k=1

(
σ(k)
z ρσ(k)

z − ρ
)

+ γc

(
SzρSz −

1

2
S2
zρ−

1

2
ρS2

z

) (2.88)
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with Hamiltonian H and where we already used that σ2
z = 1. Although Eq. (2.88)

involves single particle operators, it preserves permutational symmetry as all atoms

are affected identically. Moreover, no coherences between Dicke states with S ̸= S ′

are created [99], resulting in the block-diagonal form in the Dicke basis illustrated in

Fig. 2.4.

Quantum trajectories and quantum jumps— The Lindblad master equation

provides a comprehensive framework for describing the dynamics of open quantum

systems. In particular, it captures the ensemble-average evolution of the system as it

interacts with its environment. However, it inherently lacks the capability to describe

and interpret individual realizations of this dynamics, where stochastic processes con-

stitute an essential component. Such realizations, representing the evolution of single

quantum systems, often exhibit discrete, probabilistic events intertwined with contin-

uous processes. The framework of quantum trajectories and quantum jumps unravels

the master equation into individual stochastic paths that represent the possible out-

comes of individual evolutions of the system.

The dynamics based on a general master equation is governed by

ρ̇ = −i[H, ρ] +

(
CρC† − 1

2
C†Cρ− 1

2
ρC†C

)
(2.89)

with Hamiltonian H and collapse (jump) operator C, representing an arbitrary dissi-

pative process (quantum jump). For simplicity, we consider a single jump operator,

though this formalism readily extends to multiple noise processes. It is instructive to

rewrite the master equation according to

ρ̇ = −i(Heffρ− ρH†
eff) + CρC† (2.90)

with

Heff = H − i

2
C†C. (2.91)

The dynamics can be interpreted as a combination of a continuous and a stochastic

evolution. The continuous evolution is determined by the effective Hamiltonian Heff

and does not imply any quantum jumps, i.e. no quanta are exchanged with the

environment. Nevertheless, an effective decay is caused by the non-hermitian part

of Heff . In contrast, the stochastic contribution is characterized by the term CρC†

and results in sudden quantum jumps, interrupting the continuous evolution. These

jumps reflect discrete events like the emission of a photon.
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The formal solution of the master equation can be expressed as

ρ(t, t0) = e−iHeff(t−t0)ρ(t0)e
iH†

eff(t−t0)

+ e−iHeff(t−t0)

(∫ t

t0

dt′ eiHeff(t
′−t0)Cρ(t′, t0)C

†e−iH†
eff(t

′−t0)

)
eiH

†
eff(t−t0)

= G(t, t0)ρ(t0) +

∫ t

t0

dt′ G(t, t′)J ρ(t′, t0),

(2.92)

where the superoperators G(t, t0)A = e−iHeff(t−t0)AeiH
†
eff(t−t0) and JA = CAC† rep-

resent the continuous non-unitary time propagation and the quantum jump, respec-

tively. Iteratively expanding this solution leads to a series

ρ(t, t0) = G(t, t0)ρ(t0) +

∫ t

t0

dt1 G(t, t1)JG(t1, t0)ρ(t0)

+

∫ t

t0

dt2

∫ t2

t0

dt1 G(t, t2)JG(t2, t1)JG(t1, t0)ρ(t0) + . . .

(2.93)

with terms involving an increasing number of quantum jumps in the time interval

[t0, t]. The individual terms, characterized by the number k of quantum jumps J ,

can be denoted by

ρ̃k(t, t0) =

∫ t

t0

dtk

∫ tk

t0

dtk−1 . . .

∫ t2

t0

dt1 G(t, tk)JG(tk, tk−1)J . . .G(t2, t1)JG(t1, t0)ρ(t0)

(2.94)

which generally are not normalized. In particular, the first term ρ̃0(t, t0) = G(t, t0)ρ(t0)

does not include a single quantum jump and thus is referred to as ‘no-jump dynamics’.

In this framework, the solution of the master equation, given by

ρ(t, t0) =
∞∑

k=0

pk(t, t0)ρk(t, t0), (2.95)

represents a mixture of the normalized states

ρk(t, t0) =
ρ̃k(t, t0)

Tr(ρ̃k(t, t0))
=
ρ̃k(t, t0)

pk(t, t0)
(2.96)

with probability pk(t, t0) = Tr(ρ̃k(t, t0)) for the occurrence of k quantum jumps in

the time interval [t0, t], satisfying the completeness relation
∑∞

k=0 pk(t, t0) = 1. Con-

sequently, in each individual evolution of the system, effectively one of the states or

quantum trajectories ρk is realized with probability pk.

Sampling quantum trajectories, commonly referred to as the Monte Carlo wave-

function method [113, 114], is straightforward to implement and a powerful tool for
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studying open quantum systems. This approach provides deep insights into the inter-

play between the discrete stochastic events and the continuous evolution, character-

izing the dynamics of individual quantum systems interacting with its environment.

Importantly, it is fully equivalent to the Lindblad master equation, as the ensemble

average over many trajectories exactly reproduces the results of the master equation.

2.3.4 Measurements

In the following, we briefly present the concept of quantum measurements based on

Ref. [108], establishing the conventions and notation that will be used throughout

this thesis.

General measurements— In general, quantum measurements are described by a

set of measurement operators {Ex} acting on the Hilbert space H, where x denotes the

measurement outcomes. For a quantum system in state |ψ⟩ or with density operator

ρ, the probability of obtaining outcome x is given by

P (x) = ⟨ψ|E†
xEx |ψ⟩ = Tr

(
ρE†

xEx

)
. (2.97)

This measurement results in the updated (or post-measurement) state

|ψ⟩ 7→ Ex |ψ⟩√
⟨ψ|E†

xEx |ψ⟩
(2.98)

ρ 7→ ExρE
†
x

Tr
(
ρE†

xEx

) . (2.99)

Hence, this process can be interpreted as a quantum channel that acts on the system

state, where each measurement outcome is associated with a specific Kraus operator

Ex. Here, the operators Ex satisfy the completeness relation

∑

x

E†
xEx = 1, (2.100)

ensuring normalization of the probabilities

∑

x

P (x) = 1. (2.101)

Positive operator-valued measure (POVM)— In many scenarios, particularly

when the final state of the system after the measurement is irrelevant, only the prob-

abilities P (x) are of interest. In this case, the positive operators

Πx = E†
xEx (2.102)
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with
∑

x Πx = 1, yielding P (x) = ⟨ψ|Πx |ψ⟩ = Tr (ρΠx), are sufficient to describe the

measurement probabilities. The set {Πx} is referred to as a positive operator-valued

measure (POVM). This formulation captures the probability structure of measure-

ments without requiring the specification of the post-measurement state, which is

particularly useful when the focus is explicitly on the measurement statistics.

Projection-valued measure (PVM)— A special class of POVMs is represented

by projective measurements, described by an observable X with spectral decomposi-

tion

X =
∑

x

xPx, (2.103)

where Px = |x⟩⟨x| are the projectors onto the eigenstates of X with eigenvalues x.

The probability of measurement outcome x is given by P (x) = ⟨ψ|Px |ψ⟩ = Tr (ρPx).

Rather than characterizing the projective measurement by its observable X, the set

of projectors {Px} can be specified. The projectors satisfy the completeness relation∑
x Px = 1 and are orthogonal, i.e. PxPx′ = δxx′Px. Since each projector Px = |x⟩⟨x|

can be expressed in terms of an orthonormal basis state |x⟩, a PVM can be understood

as a measurement in the basis |x⟩. This type of measurement, described by an

observable X or, equivalently, by a set of orthogonal projectors Px, is denoted as a

projection-valued measure (PVM).

Although POVMs provide the more general framework, in the remainder of this

thesis typically PVMs are considered, unless explicitly stated otherwise.

2.3.5 Ramsey Interferometry

Historically, Rabi’s molecular beam magnetic resonance technique [70] – nowadays

commonly referred to as the Rabi method or Rabi flopping – was first proposed to

realize Maxwell’s vision of atomic clocks. Although it remains a valuable tool in

specific experimental setups, Rabi’s method exhibits inherent limitations due to its

reliance on a continuous interaction between the atoms and the driving field. In

particular, resolving small frequency splittings requires long interaction times, which

introduce challenges such as maintaining uniform fields over large regions, avoiding

apparatus constraints, and mitigating energy shifts (e.g. Stark shifts). Ramsey’s

method of separated oscillatory fields [71] addresses these issues by replacing the

continuous interaction with two short π/2 pulses separated by a long interaction-

free evolution period. This approach minimizes inhomogeneities and perturbations,

resulting in narrower resonance linewidths and enhanced precision, which makes it a

widely adopted technique in modern atomic clocks.
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For a single atom in the absence of decoherence, the conventional Ramsey protocol

comprises three steps, as illustrated in Fig. 2.7:

(i) Starting from the ground state |↓⟩, a first Ramsey pulse is performed, repre-

sented by a rotation around the negative y-axis by an angle ΩRt = π/2. Hence,

the time evolution is given by Ry

(
−π

2

)
= 1√

2
(1+ iσy) and can be realized by

an application of the Hamiltonian in the strong driving regime with φLO = 0

(cf. Eq. (2.74)). The effective initial state

|ψ0⟩ =
|↓⟩ + |↑⟩√

2
(2.104)

represents an equal superposition of the ground and excited states. On the

Bloch sphere, |ψ0⟩ corresponds to a vector pointing in the x-direction, since

⟨σx⟩ = 1.

(ii) During the free evolution time T , no external field is applied and the atom

evolves according to Eq. (2.76). Hence, a phase ϕ = ωT , arising from the

average frequency difference ω of the local oscillator and atomic reference, is

accumulated, which is represented by a rotation around the z-axis Rz(ϕ). The

state after the free evolution time – commonly referred to as Ramsey dark time

– is given by

|ψϕ⟩ =
1√
2

[
ei

ϕ
2 |↓⟩ + e−i

ϕ
2 |↑⟩

]
=

1√
2
ei

ϕ
2
[
|↓⟩ + e−iϕ |↑⟩

]
, (2.105)

where the global phase ei
ϕ
2 can be neglected as it is redundant and has no

physical meaning. Consequently, the information on the phase ϕ, and thus the

frequency difference ω, is encoded in terms of a relative phase shift between the

ground and excited states.

(iii) To complete the interferometry sequence, a measurement is performed. In the

conventional Ramsey protocol, this is accomplished by applying a second π/2-

pulse with φLO = π/2, corresponding to a rotation around the x-axis by an

angle ΩRt = π/2, given by Rx

(
π
2

)
= 1√

2
(1− iσx). Hence, the final state reads

|ψf⟩ =
1

2
ei

ϕ
2
[(

1 − ie−iϕ
)
|↓⟩ +

(
e−iϕ − i

)
|↑⟩
]
. (2.106)

A consecutive measurement of the observable σz, representing the population

difference of the ground and excited states, results in the signal

⟨σz⟩ = |⟨↑|ψf⟩|2 − |⟨↓|ψf⟩|2 = sin(ϕ) (2.107)
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U(t) = e�i
�
2 |"i h"| + ei

�
2 |#i h#| obtained from (2.80) yielding

| �i =
1p
2


ei

�
2 |#i + e�i

�
2 |"i

�
=

1p
2
ei

�
2

h
|#i + e�i� |"i

i
(2.82)

where the global phase ei
�
2 also can be neglected. Consequently the free evolution

results in a phase shift � between both atomic states.

(iii) To end the interferometry sequence a measurement is performed. In the standard
Ramsey protocol this is accomplished by applying a second ⇡/2-pulse with ' =

⇡/2, corresponding to a rotation around the x-axis by an angle ⌦Rt = ⇡/2. The
according time evolution is U(t) = 1p

2
1 � ip

2
�x giving the final state

| f i =
ei

�
2

2

h⇣
1 � ie�i�

⌘
|#i +

⇣
e�i� � i

⌘
|"i
i
. (2.83)

A consecutive measurement results in the signal

h�zi = |h" | f i|2 � |h# | f i|2 = sin(�) (2.84)

as the excitation probabilities read

p"(�) = |h" | f i|2 =
1

2
(1 + sin(�)) (2.85)

p#(�) = |h# | f i|2 =
1

2
(1 � sin(�)) . (2.86)

Maybe add a plot.

Note that instead of applying the second ⇡/2-pulse and measuring �z equivalently after
the imprint of the phase shift a measurement of �y could be performed.

2.2.5. Quantum Projection Noise (QPN)

As already mentioned in the beginning of this subsection, despite numerous advantages
using atomic sensors in quantum metrology it also restricts the precision. This limitation
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Clockwork 
Device

measurementfree evolution timeinitial state preparation

Figure 2.7: Conventional Ramsey interferometry: Schematic illustration of the
conventional Ramsey protocol and visualization on the Bloch sphere for a single atom.

with variance

(∆σz)
2 ≡

〈
σ2
z

〉
− ⟨σz⟩2 = 1 − sin2(ϕ) = cos2(ϕ), (2.108)

since σ2
k = 1 holds for all Pauli matrices. The corresponding excitation proba-

bilities are given by

p↑(ϕ) = |⟨↑|ψf⟩|2 =
1

2
[1 + sin(ϕ)] (2.109)

p↓(ϕ) = |⟨↓|ψf⟩|2 =
1

2
[1 − sin(ϕ)] . (2.110)

Consequently, the second Ramsey pulse maps the relative phase to a population

difference, making it detectable in a spin measurement.

Note that instead of applying the second π/2-pulse and measuring σz, equivalently a

measurement of σy could be performed after the free evolution time (cf. App. B).

2.3.6 Quantum Projection Noise (QPN)

Atomic sensors offer numerous advantages in quantum metrology, but simultaneously

impose fundamental precision limits. This limitation arises from the inherent inde-

terminism of quantum mechanics, which is a probabilistic rather than deterministic

theory. In particular, quantum mechanics does not predict specific measurement

outcomes with certainty, but instead provides probabilities for different outcomes.

To illustrate this indeterminism, we consider the measurement process of a two

level system. Any pure state |ψ⟩ = c↓ |↓⟩ + c↑ |↑⟩ can be expressed as a linear com-

bination of the basis states {|↓⟩ , |↑⟩}, where c↓, c↑ ∈ C are normalized coefficients
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satisfying |c↓|2 + |c↑|2 = 1. Consequently, a measurement of the observable σz yields

one of the two eigenvalues. The eigenvalues −1 (corresponding to |↓⟩) and +1 (cor-

responding to |↑⟩) occur with probabilities p↓ = |c↓|2 and p↑ = |c↑|2, respectively.

Except in cases where either c↓ or c↑ vanishes, the outcome cannot be predicted

with certainty. Hence, the measurement process is mathematically equivalent to a

Bernoulli trial with binary outcomes −1 and +1 and does not give direct access to p↑
and p↓. Importantly, this indeterminism does not arise from imperfections in the state

preparation or the measurement, but is a fundamental feature of quantum mechanics.

The resulting fluctuations in measurement outcomes, known as quantum projection

noise (QPN) [55], stem from the probabilistic nature of state projections onto the

eigenstates of the measurement operator. The expectation (or mean) value p↑, which

can be expressed as p↑ = ⟨P↑⟩ with P↑ = |↑⟩⟨↑|, fluctuates with variance

(∆p↑)
2 ≡ (∆P↑)

2 =
〈
P 2
↑
〉
− ⟨P↑⟩2 = p↑(1 − p↑) (2.111)

since P↑ = P 2
↑ is a projector. This variance quantifies the inherent quantum noise

associated with probabilistic measurements.

Since the spin measurement on single atoms provides only a binary output, more

accurate estimates can be obtained by either repeating the measurement on a single

atom multiple times or using N uncorrelated and identically prepared atoms. In the

latter case, it is beneficial to consider the operator N↑ =
∑N

k=1 P
(k)
↑ , counting the

number of atoms in the excited state, where P
(k)
↑ = |↑⟩⟨↑|(k) denotes the projector

onto the excited state for atom k. Assuming that the atoms are uncorrelated, the

mean and variance follow directly from the single atom analysis

⟨N↑⟩ = Np↑ (2.112)

(∆N↑)
2 = Np↑(1 − p↑). (2.113)

Hence, the measurement outcomes are distributed according to a binomial distri-

bution, as depicted in Fig. 2.8(a). To estimate the probability p↑, an estimator

pest↑ = x/N can be defined, where x denotes a particular measurement outcome of

N↑. The expectation value
〈
pest↑
〉

= p↑ coincides with the true probability and the

corresponding variance reads (∆pest↑ )2 = (∆N↑)2/N2 = p↑(1 − p↑)/N and thus is re-

duced by a factor N compared to a single atom. The same result is obtained for N

repeated measurements with a single atom.2 The preceding discussion was based on

the probability p↑, as it is an intuitive quantity and highlights the benefits of using

an ensemble of N atoms. However, in this thesis we will primarily focus on spin

measurements.

2Since the choice of quantization axis is arbitrary, these properties apply for spin measurements
along any direction, not only restricted to Sz.
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Figure 2.8: Quantum projection noise: (a) Binomial distribution P (x) for a mea-
surement of N↑, where x denotes the number of atoms detected in the excited state.
For N = 20 and p↑ = 0.6, the distribution is centered around the mean value
⟨N↑⟩ = 12 with standard deviation ∆N↑ ≈ 2.19. (b) Error propagation from the
measurement signal ⟨Sz(ϕ)⟩ to the phase estimation uncertainty ∆ϕest.

In the context of an atomic clock, the ultimate goal of the interferometry sequence

is to estimate the phase ϕ as precisely and accurately as possible, since it comprises

the frequency difference ω, which we aim to correct for. Unfortunately, the parameter

ϕ cannot be measured directly, but has to be encoded onto an appropriate observable.

In the previous section, we have seen that in the case of Ramsey interferometry, the

phase is mapped to a population difference characterized by the spin component Sz.

Generalizing the single atom result to N uncorrelated atoms, the expectation value

of the observable reads ⟨Sz(ϕ)⟩ = N
2

sin(ϕ). If ⟨Sz(ϕ)⟩ could be obtained exactly,

the phase ϕ in the interval
[
−π

2
,+π

2

]
would be determined by an inversion of the

signal ϕest = arcsin
(

2⟨Sz(ϕ)⟩
N

)
. However, the measurement outcome of Sz is a random

variable and fluctuates with variance (∆Sz(ϕ))2 = N
4

cos2(ϕ). Consequently, quantum

projection noise causes the estimator ϕest to become a random variable as well.

In a small region around a particular phase value ϕ0, the variance of ϕest can be

derived from the mean and variance of Sz according to error propagation

∆ϕest =
∆Sz(ϕ)

|∂ϕ ⟨Sz(ϕ)⟩|

∣∣∣∣
ϕ=ϕ0

(2.114)

as illustrated in Fig. 2.8(b), where ∆Sz(ϕ) ≡
√

(∆Sz(ϕ))2 denotes the standard de-

viation of Sz. Consequently, fluctuations of estimations of the phase ϕ are a direct

consequence of quantum projection noise. The working point ϕ0 is chosen to mini-

mize ∆ϕest, which typically coincides with the point of maximal slope of the signal.3

3While the phase dependence of the numerator and denominator in Eq. (2.114) cancels out math-
ematically for the conventional Ramsey protocol, any additional technical noise makes it necessary
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Considering a single atom, the phase estimation uncertainty is given by ∆ϕest = 1,

whereas N uncorrelated atoms improve the uncertainty by a factor
√
N yielding

∆ϕSQL = ∆ϕest = 1/
√
N . This result represents the standard quantum limit (SQL) –

the lower limit on the phase estimation uncertainty considering uncorrelated atoms.

Since (∆ϕest)
2 arises from quantum projection noise of Sz, the phase estimation un-

certainty is often referred to as quantum projection noise as well. A more rigorous

framework for the phase estimation uncertainty and its fundamental bounds is pre-

sented in Chapter 3, providing a detailed discussion of phase estimation theory in

this context.

2.3.7 Coherent Spin States (CSS)

Coherent spin states (CSS) provide a compact and elegant framework to describe

states and dynamics of uncorrelated spin systems with maximal total spin S = N/2,

which corresponds to the fully symmetric subspace. They offer an intuitive interpre-

tation of the conventional Ramsey sequence and serve as a powerful tool for under-

standing collective spin dynamics. In the following, we define coherent spin states

and outline a selection of their key properties. For a more comprehensive discussion,

we refer to Refs. [115–117].

In the strong driving regime of atom-field interactions – effectively corresponding

to short pulses – the unitary transformation represents a rotation of the form

Rθ,φ = e−iθ[sin(φ)Sx−cos(φ)Sy ] (2.115)

with rotation angle θ = ΩRt and axis n = (sin(φ),− cos(ϕ), 0)T . Coherent spin states

are defined by the application of the rotation Rθ,φ to the collective ground state∣∣N
2
,−N

2

〉
= |↓⟩⊗N , i.e.

|θ, φ⟩ = Rθ,φ

∣∣N
2
,−N

2

〉
=

N⊗

k=1

[
cos
(
θ
2

)
|↓⟩(k) + e−iφ sin

(
θ
2

)
|↑⟩(k)

]
, (2.116)

where |·⟩(k) denotes the eigenstate of σz of atom k. CSS are therefore product states

with no correlations between the atoms, representing the N particle version of the

single atom state described by Eq. (2.30). Generalizing the concept of the Bloch

to choose the optimal working point at ϕ0 = 0. This choice aligns the working point with the inflec-
tion point of the signal, thereby maximizing the sensitivity to small phase fluctuations and ensuring
that these fluctuations can be accurately resolved in experimental measurements.
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sphere to an ensemble of N atoms, CSS can be illustrated by the Bloch vector4

r(θ, φ) = ⟨S⟩ =




⟨Sx⟩
⟨Sy⟩
⟨Sz⟩


 =

N

2




sin(θ) cos(φ)

sin(θ) sin(φ)

− cos(θ)


 (2.117)

on a Bloch sphere with radius S = N/2. Consequently, the CSS |θ, φ⟩ =
∣∣N
2
, N

2

〉
r

is

the eigenstate of Sr with maximal eigenvalue M = +N/2. By comparison, coherent

spin states can be understood in analogy to coherent states |α⟩ of the harmonic

oscillator, which are defined as the eigenstates of the annihilation operator a. In this

analogy, the rotation Rθ,φ, which generates |θ, φ⟩ from the collective ground state,

serves as the counterpart to the displacement operator D(α) for coherent states of

the harmonic oscillator |α⟩ = D(α) |0⟩.

Properties— Beyond the mean polarization, the variances of coherent spin states

are of particular interest, especially for evaluating the sensitivity of the conventional

Ramsey protocol. On the one hand, the variances can be derived from a single two

level system, as shown above. On the other hand, they can be inferred from the

collective ground state
∣∣N
2
,−N

2

〉
, since CSS are rotated versions of this state and

thus, the variances can be adopted accordingly. For the collective ground state, we

evaluate

〈
S2
x

〉
=

1

4

〈
N
2
,−N

2

∣∣ (S2
+ + S2

− + S+S− + S−S+)
∣∣N
2
,−N

2

〉

=
1

4

〈
N
2
,−N

2

∣∣S−S+

∣∣N
2
,−N

2

〉
=
N

4

(2.118)

and similarly
〈
S2
y

〉
= N/4. Hence, the variances of coherent spin states along any

direction k ⊥ r are given by VCSS = (∆Sk)2 = N/4. As a result, CSS exhibit

an isotropic quasi-probability distribution in spherical phase space, as illustrated in

Fig. 2.5(b) by the Wigner function. Consequently, coherent spin states |θ, φ⟩ form

minimum-uncertainty states with respect to the uncertainty relation

(∆Sk)2 (∆Sl)
2 ≥ 1

4
|⟨Sr⟩|2 (2.119)

for all k ⊥ l in the orthogonal plane to r, i.e. k ⊥ r and l ⊥ r.

Again, an analogy can be drawn to coherent states of the harmonic oscillator,

which are minimum uncertainty states with respect to the uncertainty relation of

position x and momentum p. Furthermore, coherent spin states overlap and are

4Note that the azimuthal angle θ is still measured from the negative z-axis.
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overcomplete as well. Coherent states of the harmonic oscillator are widely regarded

as the most classical-like states in quantum mechanics because their properties closely

resemble those of classical harmonic oscillations. Accordingly, coherent spin states are

the most classical-like spin states, as they represent product state with no correlations

between the atoms and achieve the standard quantum limit (SQL). This limit, already

mentioned in the previous section and further discussed in Chapter 3, defines the lower

bound for the phase estimation uncertainty ∆ϕest using uncorrelated (i.e. classical)

states.

Moreover, coherent spin states can be expressed as a superposition of Dicke basis

states
∣∣N
2
,M
〉
. The disentangling theorem [115] allows us to write the rotation Rθ,φ

as

Rθ,φ = e−iθ(sin(φ)Sx−cos(φ)Sy) = eτS+eln(1+|τ |2)Sze−τ∗S− (2.120)

with τ = e−iφ tan
(
θ
2

)
. The term e−τ∗S− has no effect on the collective ground

state, i.e. e−τ∗S−
∣∣N
2
,−N

2

〉
=
∣∣N
2
,−N

2

〉
, since S−

∣∣N
2
,−N

2

〉
= 0. Application of

the eigenvalue equation yields eln(1+|τ |2)Sz
∣∣N
2
,−N

2

〉
= e−

N
2
ln(1+|τ |2) ∣∣N

2
,−N

2

〉
= (1 +

|τ |2)−N/2
∣∣N
2
,−N

2

〉
. Using Eq. (2.42) to compute eτS+

∣∣N
2
,−N

2

〉
, coherent spin states

can be written as

|θ, φ⟩ =Rθ,φ

∣∣N
2
,−N

2

〉
=

S∑

M=−S

(
2S

S +M

)1/2
τS+M

(1 + |τ |2)S
∣∣N
2
,M
〉

=

N
2∑

M=−N
2

(
N

N
2

+M

)1/2

sin
N
2
+M
(
θ
2

)
cos

N
2
−M
(
θ
2

)
e−i(N

2
+M)φ ∣∣N

2
,M
〉
.

(2.121)

Another convenient property of coherent spin states emerges when calculating expec-

tation values of spin components. The anti-normally ordered characteristic function

(with respect to the set of spin operators {S−, Sz, S+}) is defined by [115]

XA(θ, φ) = ⟨θ, φ| eγS−eβSzeαS+ |θ, φ⟩ (2.122)

=
[
e−β/2 cos2

(
θ
2

)
+ eβ/2

(
sin
(
θ
2

)
e−iφ + α cos

(
θ
2

)) (
sin
(
θ
2

)
eiφ + γ cos

(
θ
2

))]N
.

Consequently, expectation values of combinations of spin operators and their expo-

nentials with respect to coherent spin states can be calculated according to

⟨θ, φ|Sc
−e

γ̃S−Sb
ze

β̃SzSa
+e

α̃S+ |θ, φ⟩ = ∂aα∂
b
β∂

c
γXA(θ, φ)

∣∣∣
α=α̃,β=β̃,γ=γ̃

(2.123)

where a, b, c ∈ N and α̃, β̃, γ̃ ∈ C are arbitrary coefficients.
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Conventional Ramsey protocol— The discussion of N uncorrelated atoms can,

in principle, be directly inferred from the results of a single atom, as each atom is

independent and subject to identical transformations and measurements. However,

studying conventional Ramsey interferometry using coherent spin states and collective

rotations provides an intuitive interpretation of the conventional Ramsey protocol and

prepares for potential extensions.

Starting with the collective ground state
∣∣N
2
,−N

2

〉
= |↓⟩⊗N , the first Ramsey

pulse is implemented by a rotation around the negative y-axis by an angle ΩRt =

π/2. Within the framework of coherent spin states, this corresponds to the rotation

Rθ=π/2,φ=0 = Ry(−π/2) = eiπSy/2. Therefore, the initial state |ψ0⟩ is given by

|ψ0⟩ = |θ = π/2, φ = 0⟩ = Rθ=π/2,φ=0

∣∣N
2
,−N

2

〉
z

=

[
1√
2

(|↓⟩ + |↑⟩)
]⊗N

=
∣∣N
2
, N

2

〉
x
,

(2.124)

which corresponds to a coherent spin state with mean spin polarization r = ex. During

the free evolution time, the phase is imprinted by a collective rotation Rz(ϕ) around

the z-axis. In principle, the initial state |ψ0⟩ can be expressed in terms of Dicke states

according to Eq. (2.121) and thus, the action of Rz(ϕ) becomes trivial. However, it is

conceptually instructive to interpret the free evolution time as a transformation of the

observable, rather than of the initial state. This approach aligns with the Heisenberg

picture, as discussed in Sec. 2.3.2. Likewise, the second Ramsey pulse Rx(π/2) can

be assigned to the observable Sz. Following this approach, we effectively measure the

operator

Sz(ϕ) = R†
z(ϕ)R†

x

(
π
2

)
SzRx

(
π
2

)
Rz(ϕ). (2.125)

Applying the rotation properties derived in App. B, the observable transforms ac-

cording to R†
x(π/2)SzRx(π/2) = Sy and R†

z(ϕ)SyRz(ϕ) = cos(ϕ)Sy +sin(ϕ)Sx. Thus,

the first and second moments of the observable are given by

⟨Sz(ϕ)⟩ = cos(ϕ) ⟨Sy⟩ + sin(ϕ) ⟨Sx⟩ (2.126)
〈
S2
z (ϕ)

〉
= cos2(ϕ)

〈
S2
y

〉
+ sin(ϕ) cos(ϕ) ⟨SxSy + SySx⟩ + sin2(ϕ)

〈
S2
x

〉
. (2.127)

Evaluating these expectation values with respect to the initial state
∣∣N
2
, N

2

〉
x

using

the properties of coherent spin states results in

⟨Sz(ϕ)⟩ =
N

2
sin(ϕ) (2.128)

〈
S2
z (ϕ)

〉
=
N

4
cos2(ϕ) +

N2

4
sin2(ϕ). (2.129)
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With variance (∆Sz(ϕ)) = N
4

cos2(ϕ), the phase estimation uncertainty reads ∆ϕest =

1/
√
N , as already derived before. This calculation demonstrates the utility of coher-

ent spin states combined with collective rotations and spin measurements. In par-

ticular, the expectation values of the observable can be traced back to fundamental

properties of coherent spin states.

It is worth noting that the first Ramsey pulse could also be assigned to the observ-

able, allowing the expectation values to be evaluated with respect to the collective

ground state. However, presenting both approaches provides pedagogical value by

offering a broader perspective. Furthermore, separating the initial state preparation

from the free evolution and measurement will be advantageous for the analysis of

generalized Ramsey protocols (cf. Chapter 3 and Chapter 4).

2.3.8 GHZ States

As demonstrated in the previous sections, coherent spin states saturate the standard

quantum limit (SQL), achieving a phase estimation uncertainty ∆ϕSQL = 1/
√
N .

To further enhance sensitivity and reduce the estimation error, it is necessary to

employ entangled states. As a brief reminder, entanglement emerges when quantum

correlations between particles prevent the state from being expressed as a product

of individual particle states. More precisely, a pure state |ψ⟩ ∈ H =
⊗

k H(k) is

separable if it can be factorized into single-particle states
∣∣ψ(k)

〉
∈ H(k), such that

|ψsep⟩ =
N⊗

k=1

∣∣ψ(k)
〉

=
∣∣ψ(1)

〉
⊗
∣∣ψ(2)

〉
⊗ . . .⊗

∣∣ψ(N)
〉
. (2.130)

Similarly, a mixed state is separable if it can be written as a mixture of separable

pure states [118]

ρsep =
∑

k

pk |ψsep,k⟩⟨ψsep,k| , (2.131)

where pk ≥ 0 and
∑

k pk = 1. States that cannot be decomposed in this way are

classified as entangled [119,120].

In Chapter 3, we will demonstrate that by employing entangled states, the ulti-

mate lower bound for the phase estimation uncertainty in the absence of decoherence

is given by the Heisenberg limit (HL) ∆ϕHL = 1/N , resulting in an improvement by

a factor of
√
N compared to the SQL. The HL can be saturated using the maximally

entangled Greenberger-Horne-Zeilinger (GHZ) states [121]

|GHZ⟩ =
1√
2

[
|↓⟩⊗N + |↑⟩⊗N

]
=

1√
2

[∣∣N
2
,−N

2

〉
+
∣∣N
2
, N

2

〉]
, (2.132)
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representing an equal superposition of the collective ground and excited states, as

illustrated in Fig. 2.5(c). The corresponding Ramsey sequence, initially proposed

by Wineland et al. in Ref. [122], is denoted as the standard GHZ or ‘parity-GHZ’

protocol. During the free evolution time, the accumulated phase is amplified by a

factor of N due to the maximal entanglement in the GHZ state. The evolved state

reads

|ψϕ⟩ = Rz(ϕ) |GHZ⟩ =
1√
2

[
ei

Nϕ
2 |↓⟩⊗N + e−iNϕ

2 |↑⟩⊗N
]
. (2.133)

The second Ramsey pulse, represented by a rotation Ry(π/2) around the y-axis by

an angle π/2, results in the final state

|ψf⟩ = Ry

(
π
2

)
|ψϕ⟩ =

1
√

2
N+1

[
ei

Nϕ
2 (|↓⟩ − |↑⟩)⊗N + e−iNϕ

2 (|↑⟩ + |↓⟩)⊗N
]
, (2.134)

where we used R(k)
y (π/2) = 1√

2
(1(k) − σ

(k)
+ + σ

(k)
− ) according to Eq. (2.73). Finally,

the parity operator σ⊗N
z is measured. Its eigenvalues are (−1)

N
2
−M = (−1)N− , where

N− denotes the number of atoms in the ground state. Consequently, the parity has

a binary outcome ±1, quantifying if there is an even (+1) or odd (−1) number of

atoms in the ground state. The expectation value of the observable is given by

〈
σ⊗N
z

〉
= ⟨ψf |σ⊗N

z |ψf⟩ = (−1)N cos(Nϕ). (2.135)

Unlike the conventional Ramsey protocol, the GHZ protocol yields a symmetric signal

with respect to the origin. Alternatively, as for the conventional Ramsey protocol,

the second Ramsey pulse can be absorbed in the measurement. Hence, by employing

Eq. (2.73) once again, the effective observable

Π = R†
y(π/2)σ⊗N

z Ry(π/2) = (−1)Nσ⊗N
x (2.136)

can be defined. Π is also commonly denoted as parity measurement and has expecta-

tion value ⟨Π(ϕ)⟩ = (−1)N cos(Nϕ). With σ2
k = 1 for all Pauli matrices, the second

moment simply reads ⟨Π2(ϕ)⟩ = 1. Thus, the variance is given by

(∆Π(ϕ))2 = 1 − cos2(Nϕ) = sin2(Nϕ). (2.137)

Finally, with the slope of the signal ∂ϕ ⟨Π(ϕ)⟩ = (−1)N+1N sin(Nϕ), the phase esti-

mation uncertainty becomes

∆ϕest =
∆Π(ϕ)

|∂ϕ ⟨Π(ϕ)⟩|

∣∣∣∣
ϕ=ϕ0

=
1

N
(2.138)
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and thus saturates the HL.5 The enhanced sensitivity of the GHZ protocol, in com-

parison to the conventional Ramsey protocol, can be understood from two different

perspectives: (i) In the context of N identically prepared single atoms, as discussed in

Sec. 2.3.6, the variance is reduced by a factor N using uncorrelated atoms. In contrast,

the variance is independent of N for the GHZ protocol due to the binary nature of

the parity measurement. At the same time, the N fold increased accumulated phase

in the GHZ protocol directly leads to an N times steeper slope of the signal and thus,

results in a gain of
√
N in the phase estimation uncertainty ∆ϕest compared to the

SQL. (ii) Considering the collective description using coherent spin states (CSS), as

discussed in Sec. 2.3.7, the slope of the signal for both protocols scales linearly with

N . For the GHZ protocol, this originates from the N fold increased accumulated

phase, while it naturally arises from the collective behavior of N uncorrelated atoms

for the CSS. However, the binary outcomes of the measurement in the GHZ protocol

ensures that the variance remains independent of N , unlike for CSS, where it scales

linearly with N . Hence, the GHZ protocol achieves the HL, whereas the conventional

Ramsey protocol remains limited by the SQL.

Intuitively, the GHZ protocol can be interpreted as an artificial single atom with

an effective transition frequency amplified by a factor N , leading to an enhanced

phase accumulation. However, this advantage comes with a significant trade-off. The

binary nature of the parity measurement and the increased oscillation frequency of

the Ramsey fringes make the protocol extremely susceptible to decoherence and phase

noise originating from frequency fluctuations, as will be discussed in Chapter 3 and

Chapter 4, respectively.

2.3.9 Spin-Squeezed States (SSS)

A promising approach to surpass the SQL is represented by spin squeezing. Spin-

squeezed states (SSS) form a subclass of entangled states characterized by a reduced

(squeezed) variance along one axis of the collective spin compared to coherent spin

states – at the cost of an increased (anti-squeezed) variance along an orthogonal

axis. These states have been extensively studied theoretically and implemented in

various experimental setups, establishing them as a cornerstone of modern quantum

metrology. [6, 12,58,59,123,124]

In this section, we introduce squeezing parameters to define and identify SSS.

To emphasize their relevance in quantum metrology and, in particular, their role in

5Here, the phase dependence cancels again. By the same arguments as for the conventional
Ramsey protocol, the optimal working point should be chosen at ϕ0 = π

2N . Alternatively, an
additional rotation Rz(− π

2N ) can be applied directly before or after the free evolution time to shift
the optimal working point to ϕ0 = 0.
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improving the performance of optical atomic clocks, we relate the phase estimation

uncertainty to the squeezing parameter. Finally, we explore the generation of SSS

through one-axis twisting (OAT) [125], a paradigmatic model allowing comprehensive

theoretical insights and experimental implementation in various setups [62,126–133].

Spin Squeezing Parameters— In analogy to squeezed states of the harmonic os-

cillator [105], an intuitive definition of spin squeezing arises from the spin uncertainty

relation Eq. (2.119). In this context, a natural criterion for spin squeezing is given by

(∆Sk)2 < | ⟨Sl⟩ |/2 for orthogonal directions k and l, with corresponding squeezing

parameter defined as [123,134–136]

ξn =
∆Sk√
| ⟨Sl⟩ |/2

. (2.139)

Spin squeezing occurs if ξn < 1. However, this parameter depends on the choice of

the coordinate system and thus can yield ξn < 1 even for coherent spin states [58,59,

125]. Consequently, ξn does not adequately capture quantum correlations between

the atoms. Additionally, squeezing in spin systems is inherently more complex than

in the harmonic oscillator due to the fundamentally different commutation relations.

Addressing these issues, Kitagawa and Ueda [125] proposed that a spin state is

regarded as squeezed if the variance of a spin component S⊥, orthogonal to the mean

spin vector r = ⟨S⟩, is smaller than the variance of a coherent spin state, since they are

minimum uncertainty states and most classical-like states. With the variance of a CSS

VCSS = (∆S⊥)2CSS = N/4, the condition for spin squeezing becomes (∆S⊥)2min <
N
4

,

leading to the spin squeezing parameter

ξ2S =
4(∆S⊥)2min

N
, (2.140)

where (∆S⊥)min denotes the minimum variance of a spin component orthogonal to r.

However, squeezing of the variance in a particular direction does not necessar-

ily indicate an enhanced sensitivity, as reflected by the trade-off between variance

and polarization of the estimation error in Eq. (2.114). To account for this trade-

off, Wineland et al. [58, 59] defined a spin squeezing parameter tailored to quantum

metrology in the context of Ramsey interferometry

ξ2 = N
(∆Sm)2

⟨Sr⟩2
, (2.141)

where the measurement direction m is orthogonal to both the mean spin vector r and

the free evolution rotation axis n. A value ξ2 < 1 indicates spin squeezing useful for

Ramsey interferometry. States satisfying ξ2 < 1 exhibit reduced variance (∆Sm)2,
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while preserving the uncertainty relation Eq. (2.119) through an increased variance

(∆Sn)2. Notably, ξ2 < 1 implies ξ2S < 1, since ⟨Sr⟩ ≤ N/2, but the converse does not

hold. Moreover, ξ2 < 1 is a sufficient condition for entanglement [130]. For a Ramsey

protocol where r,n,m are mutually orthogonal, the squeezing parameter ξ2 is related

to quantum projection noise, described in Eq. (2.114), by

(∆ϕest)
2 =

ξ2

N
. (2.142)

In the conventional Ramsey protocol, with r = ex, n = ez, and m = ey, the SQL

is recovered. A fundamental lower limit for ξ2 can be derived from the uncertainty

relation. From Eq. (2.119), (∆Sm)2 ≥ ⟨Sr⟩2 /4(∆Sn)2 and with (∆Sn)2 ≤ N2/4, this

yields

ξ2 ≥ 1

N
, (2.143)

which reflects the Heisenberg limit.

It is important to note that not all entangled states are spin squeezed, as SSS

merely form a subset of non-separable states. Alternative squeezing parameters and

their applications are discussed in Refs. [137, 138]. While numerous methods for

generating SSS have been proposed (see Refs. [6, 124, 138] for examples), this work

focuses on SSS generated through one-axis-twisting (OAT) interactions.

One-Axis-Twisting (OAT)— In the previous sections, we have seen that Hamil-

tonians linear in the spin operators lead to collective rotations, resulting in the notion

of coherent spin states. Hence, non-linear interactions are required to generate en-

tanglement among the atoms. The simplest non-linear interaction is represented by

one-axis-twisting (OAT), discussed in detail by Kitagawa and Ueda in Ref. [125]. One-

axis-twisting interactions receive much attention, since they give enhanced sensitivity

by generating spin-squeezed states or echo protocols and can be reliably implemented

in several experimental setups [5,62,126–133,139–143]. Below, we outline the funda-

mental concept of OAT and discuss its metrologically relevant properties.

The one-axis-twisting Hamiltonian is quadratic in Sz and reads

H = χS2
z (2.144)

where χ is the interaction strength. The corresponding dynamics is governed by the

unitary operator

Tz(µ) = exp
(
−iµ

2
S2
z

)
(2.145)
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Figure 2.9: One-axis-twisting interaction: Bloch sphere visualization of the one-
axis-twisting (OAT) interaction acting on the coherent spin state (CSS) polarized
along the x-direction, illustrated by the Wigner function for N = 16. The quasi-
probability distribution is presented for several squeezing strengths µ, ranging from
a CSS (µ = 0) via spin-squeezed states (SSS) to a rotated GHZ state (µ = π), as
discussed in the main text.

with squeezing strength µ = 2χt. This dynamics generates a variety of entangled

states. For small squeezing strengths µ, one-axis-twisting results in spin-squeezed

states by shearing the initial CSS
∣∣N
2
, N

2

〉
x

around the z-axis, as illustrated in Fig. 2.9.

As µ increases, the regime of spin-squeezed states is surpassed, indicated by the

Wigner function bending around the Bloch sphere, and strongly entangled states

are generated. In particular, rotated versions of the GHZ state are created for the

maximal twisting strength µ = π. For µ > π, the dynamics reverses. Explicit

evaluations of the properties of SSS generated by OAT are provided in Ref. [125].

As already observed in Fig. 2.9, the minimal spin variance for states generated

via one-axis-twisting (OAT) lies in the y-z-plane. To enable a direct comparison with

the conventional Ramsey protocol, the spin-squeezed states can be rotated by an

angle θ around the x-axis. The resulting state |ψ0⟩ = Rx(θ)Tz(µ)
∣∣N
2
, N

2

〉
x

exhibits a

squeezed variance V− aligned along the y-direction, while the variance along the z-axis
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a b

c d
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Figure 2.10: Spin-squeezed states: (a) Comparison of the squeezed variance V− to
the coherent spin state variance VCSS = N/4 for various N , showing V− ≤ VCSS for
all squeezing strengths µ. (b) Squeezing parameter ξ as a function of the squeezing
strength µ for several N . Metrological spin squeezing is obtained only for small µ
due to the trade-off between squeezed variance and reduced contrast. (c) Optimal
squeezing strength µopt that minimizes the squeezing parameter ξ, plotted against the
ensemble size N . (d) Corresponding optimal squeezing parameter ξ. (e) Measure-
ment signals ⟨Sz(ϕ)⟩ for a coherent spin state (black) and an optimally spin squeezed
state (orange) for N = 16. The shaded areas represent the corresponding standard
deviations ∆Sz(ϕ). (f) Dependence of the squeezing parameter ξ on the accumulated
phase ϕ for optimally spin squeezed states. The sensitivity is enhanced in the vicinity
of ϕ0 = 0 compared to CSS, but this region diminishes with increasing ensemble size.

is anti-squeezed with variance V+. Explicit calculations yield the variances [125]

V± =
N

4

{
1 +

1

4
(N − 1)

[
A±

√
A2 +B2

]}
, (2.146)
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where A = 1 − cosN−2(µ) and B = 4 sin
(
µ
2

)
cosN−2(µ

2
). The squeezed variance V−

is depicted in Fig. 2.10(a) for various ensemble sizes N , demonstrating that V− ≤
VCSS = N/4 for all squeezing strengths µ > 0. However, as pointed out before, the

sensitivity to accumulated phases in Ramsey interferometry depends not only on the

variance V− but also on the contrast of the signal, which is given by [125]

⟨Sx⟩ =
N

2
cosN−1

(
µ
2

)
. (2.147)

This contrast decreases with increasing µ, which becomes more pronounced for larger

ensembles. The squeezing parameter is given by [125]

ξ2 = N
V−

⟨Sx⟩2
=

{
1 + 1

4
(N − 1)

[
A−

√
A2 +B2

] }

cos2N−2
(
µ
2

) . (2.148)

Metrological spin squeezing, characterized by ξ < 1, is achieved only for small µ

due to the trade-off between reduced variance and decreasing contrast, as illustrated

in Fig. 2.10(b). In this regime, the phase estimation uncertainty ∆ϕest = ξ/
√
N <

1/
√
N is reduced compared to CSS, yielding a sensitivity below the SQL. One-axis-

twisted states are spin squeezed for µ ≲ 4/
√
N [125, 139], with optimal sensitivities

achieved for squeezing strengths that scale with the ensemble size N according to

µopt ∼ N−3/5, as illustrated in Fig. 2.10(c). The corresponding sensitivities – charac-

terized by the squeezing parameter ξ – scale as ξ ∼ N−1/3, as schown in Fig. 2.10(d).

In atomic clocks, frequency fluctuations require a high sensitivity not only at the

optimal working point (ϕ0 = 0), but also in its vicinity. The measurement signal for an

optimally squeezed state compared to a CSS is shown in Fig. 2.10(e), where shaded

areas represent the corresponding variance. For spin-squeezed states, the variance

is significantly reduced close to the optimal working point ϕ0, providing enhanced

sensitivity. However, the region offering this enhancement diminishes as the atom

number N increases. This behavior is further illustrated in Fig. 2.10(f), where the

squeezing parameter ξ is plotted as a function of the accumulated phase ϕ. While

stronger squeezing reduces the phase variance around ϕ0, it simultaneously narrows

the region where this enhanced sensitivity is maintained. This imposes additional

constraints on the squeezing strength µ for the application in atomic clocks. In

particular, for long interrogation times, a broad dynamic range is essential for stable

clock operation, as we will discuss in detail in Chapter 4. Consequently, spin-squeezed

states generated by one-axis-twisting enhance the sensitivity compared to coherent

spin states at the cost of reduced dynamic range.
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2.4 Feedback and Servo

After characterizing the two primary components in an atomic clock – the local os-

cillator (LO) and the atomic reference – this section describes the servo mechanism,

which implements a feedback loop to correct the LO frequency based on the Ram-

sey interrogation. We begin by reviewing the basic clock operation, as presented in

Sec. 1.2, by considering a single clock cycle and introducing the relevant frequency no-

tation. As before, we assume identical clock cycles with total duration TC = TD + T ,

comprising a potential dead time TD and the Ramsey dark time T .

In each clock cycle, the atomic reference is interrogated according to a specific

Ramsey sequence for duration T . The frequency of the LO at the end of the interro-

gation time in cycle k, prior to the measurement, is denoted by ωLO,k. This frequency

reflects stabilization in preceding cycles (j < k), but still incorporates the intrinsic

(new) noise introduced during the current cycle k. Consequently, ωLO,k gives rise

to the phase shift ϕk accumulated by the atomic ensemble, as dicussed in Sec. 2.3.

Therefore, this frequency is of primary interest for the interrogation of the atomic

reference and we refer to ωLO,k as the LO frequency throughout this thesis when con-

sidering individual clock cycles. At the end of the Ramsey sequence, ϕk is estimated

as ϕest,k based on the measurement outcome (cf. Sec. 2.3). Accordingly, an estima-

tion of the frequency ωLO,k is obtained via ωest,k = ϕest,k/T . Finally, to complete the

feedback loop, the servo applies a correction ωcorr,k based on the estimate ωest,k.6 The

resulting stabilized clock frequency is given by

ωclock,k = ωLO,k − ωcorr,k. (2.149)

In an experiment, the LO frequency is dynamically adapted during clock operation

as described above. However, to employ the methods presented in Ref. [92] and to

establish the notation required to describe the Monte Carlo simulations (cf. App. A

and Ref. [3]), we extend the model in the following. In particular, we aim to relate

the clock frequency to the free-running local oscillator. Although the free-running

LO frequency is not directly accessible in practice due to continuous stabilization,

this perspective provides a comprehensive understanding of the control loop and, in

particular, the feedback strategy.

The free-running LO generates a time-dependent frequency ωfree
LO (t), with fluctua-

tions entirely determined by the intrinsic noise characteristics of the LO, as detailed

6To be precise, only the frequency fluctuations of the LO during the Ramsey interrogation time
T are monitored and therefore can be estimated and corrected, while dead time leads to undetected
aliased frequency deviations, as we discuss further in Chapter 4.
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in Sec. 2.2. In cycle k, the average free-running LO frequency is given by

ωfree
LO,k =

1

TC

∫ kTC

(k−1)TC

dt′ωfree
LO (t′). (2.150)

Consequently, the LO frequency ωLO,k can be expressed as

ωLO,k = ωclock,k−1 + (ωfree
LO,k − ωfree

LO,k−1) = ωclock,k−1 + ωnew
LO,k, (2.151)

where we have introduced the new noise of the k-th cycle ωnew
LO,k = ωfree

LO,k − ωfree
LO,k−1.

To express the stabilized clock frequency ωclock,k in terms of the free-running LO

frequency ωfree
LO,k, we define the total (or cumulative) correction

ωtot
corr,k =

k∑

j=1

ωcorr,j, (2.152)

which additionally accounts for all past frequency corrections in clock cycles j < k.

Accordingly, ωtot
corr,k represents the total correction that would hypothetically be re-

quired to correct the free-running LO up to the k-th cycle. Hence, the clock frequency

ωclock,k can be expressed as

ωclock,k = ωfree
LO,k − ωtot

corr,k. (2.153)

Similarly, the LO frequency ωLO,k can be rewritten as

ωLO,k = ωfree
LO,k − ωtot

corr,k−1. (2.154)

Finally, we define an effective prediction for the free-running LO frequency in the

current clock cycle – prior to the correction – as

ωpred,k = ωtot
corr,k−1 + ωest,k, (2.155)

which is determined by the total correction of the previous clock cycle ωtot
corr,k−1 and

the current frequency estimation ωest,k of the LO frequency ωLO,k.

Ultimately, the stabilization of the local oscillator to the atomic reference requires

a specific choice of the servo corrections ωcorr,k, or equivalently the total corrections

ωtot
corr,k. From a theoretical perspective, optimal feedback is achieved by adjusting

the correction to precisely match the estimated frequency, i.e. ωcorr,k = ωest,k or

ωtot
corr,k = ωpred,k, as this approach maximizes the use of the available information.

However, practical clock operation has demonstrated that a weaker feedback is often

advantageous, as it provides more robust clock performance against various distur-

bances and imperfections [11, 12, 91, 92, 144]. In the remainder of this section, we

present two particular feedback strategies following Ref. [92].
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2.4.1 Double-Integrating Servo

Since the exact correction with ωest,k is unfavorable, as argued above, a natural gen-

eralization is represented by a simple integrator, with feedback corrections given

by [11,91,92,144]

ωcorr,k = g · ωest,k, (2.156)

where the dimensionless gain factor 0 < g < 1 determines the strength of the feedback.

Accordingly, the total correction reads

ωtot
corr,k = ωtot

corr,k−1 + ωcorr,k = ωtot
corr,k−1 + gωest,k = g

k∑

j=1

ωest,j. (2.157)

In terms of the predictions ωpred,k of the free-running LO frequency, defined in Eq. (2.155),

this can be expressed as

ωtot
corr,k = ωtot

corr,k−1 + gωest,k

= ωtot
corr,k−1 + g

(
ωpred,k − ωtot

corr,k−1

)

= gωpred,k + (1 − g)ωtot
corr,k−1.

(2.158)

Recursively substituting this expression for ωtot
corr,k−1, we obtain

ωtot
corr,k = gωpred,k + (1 − g)ωtot

corr,k−1

= gωpred,k + g(1 − g)ωpred,k−1 + (1 − g)2ωtot
corr,k−2

= . . .

=
∑

j=1

g(1 − g)k−jωpred,j.

(2.159)

Typically, the gain factor g is chosen heuristically, depending on the specific exper-

imental setup [91, 92, 144]. Relevant parameters include the noise profile of the LO,

quantum projection noise (QPN), interrogation time and dead time. Alternatively,

g may be determined via the optimization method for general linear integrators pre-

sented in the next section or by the approximate analytical expression provided for

known noise models in the appendix of Ref. [92].

For some local oscillators exhibiting strongly correlated noise processes, such as

slow frequency drifts or random walk frequency noise, a single integrator is insuffi-

cient to achieve reliable stabilization of the LO. In these cases, a second integrator

incorporating averages on longer time scales has to be implemented [11,92,144]. For

the double integrator, the feedback corrections are given by

ωcorr,k = gωest,k + gdr

k∑

i=1

ωest,j, (2.160)
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or equivalently

ωtot
corr,k = ωtot

corr,k−1 + ωcorr,k = ωtot
corr,k−1 + gωest,k + gdr

k∑

i=1

ωest,j, (2.161)

where gdr denotes the secondary gain factor associated with the slow integrator. To

avoid undesired servo oscillations, it is essential to ensure that gdr ≪ g [92]. The

additional term effectively aims to predict and compensate for potential long-term

drifts in the LO frequency.

2.4.2 General Linear Integrator

A more general strategy is provided by the broader class of linear integrators, dis-

cussed in detail by Leroux in Ref. [92] and briefly outlined below. In this framework,

the total correction represents a weighted linear combination of all past frequency

estimations

ωtot
corr,k =

k∑

j=1

w̃j · ωest,j, (2.162)

with coefficients w̃j. In particular, the simple integrator discussed in the previous

section emerges as a special case with uniform weights w̃j = g.

To apply the optimization method presented in Ref. [92] and to align the theoret-

ical description with the implementation of the Monte Carlo simulations (cf. App. A

and Ref. [3]), we adapt the notation as follows. We define the total correction in

terms of the predictions of the free-running LO according to

ωtot
corr,k =

k∑

j=1

wj · ωpred,j, (2.163)

where we additionally require the weights wj to satisfy the normalization condition∑
j wj = 1. Comparison to Eq. (2.159) shows that the simple integrator of the

previous section is realized in the special case wj = g(1 − g)k−j.7

The optimization of such general linear integrators has been extensively inves-

tigated in the literature, such as in Ref. [145], building on fundamental studies

of Wiener [146] and Kolmogorov [147]. For the servo corrections as defined in

Eq. (2.163), the optimal weights are explicitly derived in Ref. [92].

Due to the large number of clock cycles in realistic clock operation, it is unfeasi-

ble to incorporate all preceding estimates or predictions to calculate the subsequent

correction. Therefore, typically only the last nw estimates are used. For example, in

7Note, however, that this choice does not satisfy the normalization condition.
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the numerical simulations presented throughout this thesis, we take the most recent

nw = 50 estimates into account. While the optimal weights, in principle, need to be

computed for each individual clock cycle, they can be evaluated once in advance if

the frequency fluctuations of the local oscillator are stationary and sufficiently well

characterized. Specifically, the optimal weights depend on the LO noise, quantum

projection noise, interrogation duration and dead time. Leveraging prior knowledge

of the system, Ref. [92] provides an explicit evaluation of these optimal weights in

this context. Moreover, this method can also be used to determine an appropriate

gain for the simple integrator by identifying g = wnw , where wnw denotes the weight

associated with the most recent estimation or prediction [92].

As before, a second integrator has to be added to address strongly correlated noise

processes

ωtot
corr,k =

k∑

j=1

wj · ωpred,j + gdr

k∑

i=1

ωest,j. (2.164)

If the condition gdr ≪ maxj wj is ensured, the contribution of the additional integrator

can be neglected in the optimization of the weights [92].
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3
Frequency metrology limited
by spontaneous decay

3.1 Motivation and research problem

Current efforts to further improve the stability of optical clocks involve exploring the

use of entanglement in atomic systems to reduce quantum projection noise (QPN) and

overcome the standard quantum limit (SQL) imposed by uncorrelated atoms [6,12,13].

Unfortunately, decoherence presents a substantial obstacle in frequency metrology,

impairing the precision of measurements by compromising the coherence of quantum

systems essential for achieving entanglement-based enhancement [65–67, 148–150].

In particular, Huelga et al. have demonstrated that GHZ protocols, which are op-

timal in the absence of decoherence, suffer significantly from individual dephasing

associated with random phase changes, ultimately showing no improvement over the

SQL [149]. To address this susceptibility of entanglement-enhanced protocols, var-

ious noise sources have been taken into account to determine optimal interrogation

sequences [5,91,98,139–142,148,149,151]. Unlike magnetic field fluctuations or laser

noise, the finite lifetime of qubits in the excited state represents a fundamental limit

rather than an external noise source. Nevertheless, in contrast to the extensive treat-

ment of dephasing and frequency fluctuations, the effects of spontaneous decay have

received comparatively little attention.

State-of-the-art clock lasers achieve coherence times of several seconds [88], en-

tering the regime of the excited-state lifetime of various clock candidates, such as

In+-ions (0.2 s), Sr+-ions (0.4 s), Ca+-ions (1.1 s) and Hg-atoms (1.6 s). With further

technological improvements in the short-term laser stabilization, coherence times will

potentially approach lifetimes of further clock species as Yb-atoms (15.9 s) or Al+-

ions (20.7 s). Consequently, it is highly relevant to investigate the impact of sponta-

neous decay for the development of future clocks and identify optimal interrogation

schemes for specific setups. This aspect becomes particularly important when employ-

ing strongly entangled states, which are generally more susceptible to decoherence.

61



62 Chapter 3. Frequency metrology limited by spontaneous decay

Spontaneous decay arises from the inherent instability of excited atomic states

when interacting with the quantum fluctuations of the electromagnetic field, even in

a vacuum [107,152,153]. This process manifests as probabilistic transitions to a lower

energy state, releasing the energy difference by emitting a photon. In spin systems,

or equivalently two level systems, this results in discrete quantum jumps from the

excited to the ground state. Spontaneous decay is fundamentally explained within

the framework of quantum electrodynamics (QED) and can be rigorously described

by Wigner-Weisskopf theory [154]. For a comprehensive derivation of spontaneous

decay in this context, we refer to the literature such as Refs. [106,153–155].

Additionally, we consider individual dephasing, as this process has been the pre-

dominant focus in studies of decoherence effects throughout the literature. Individual

dephasing in spin systems is typically associated with random fluctuations in the local

environment, affecting each spin independently. Such environmental noise can origi-

nate from a variety of sources, including stray magnetic fields, spatially varying laser

noise, atomic collisions or fluctuations in trap properties. These effects induce ran-

dom phase shifts, for instance by causing instantaneous variations in the energy levels

of each spin and, consequently, in their precession frequencies. As a result, different

spins accumulate distinct quantum phases over time, leading to a gradual loss of

coherence within the ensemble, without affecting the populations. [6,56,108,149,156]

Furthermore, we explore the effect of collective dephasing on the Ramsey pro-

tocols investigated in this chapter. Collective dephasing occurs when all spins in

an ensemble experience correlated phase fluctuations due to a common noise source,

such as laser phase noise or fluctuations in a global magnetic field. In this scenario,

the dephasing acts uniformly across the ensemble, leading to a simultaneous loss of

coherence that critically undermines collective quantum correlations. [12,56,157–159]

To start with, we introduce the fundamental principles of atomic clocks and

Ramsey interferometry, establishing the connection between frequency metrology and

phase estimation theory. To set the theoretical foundation for this chapter, we out-

line the framework of local frequency metrology and examine lower bounds on the

sensitivity in the first sections. The primary results of this chapter are discussed in

Sec. 3.7. Here, we present a protocol with quantum operations of low complexity and

a highly nonlinear estimator that saturates the quantum Cramér-Rao bound (QCRB)

of the GHZ state. Surprisingly, and in contrast to dephasing, we find that GHZ states

provide a substantial enhancement compared to the SQL in the presence of sponta-

neous decay. Moreover, we compare the sensitivity of this protocol to the ultimate

lower limit and to spin-squeezed states (SSS), which are optimal in the asymptotic

limit of large particle numbers. In addition, we present a variation of this protocol
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with a GHZ-like initial state, which achieves the ultimate lower limit for ensembles

with several tens of atoms and outperforms SSS for up to 80 atoms. To demonstrate

the robustness of the measurement and estimation scheme, we perform comprehen-

sive Monte-Carlo simulations of the full feedback loop in an atomic clock. Finally, in

Sec. 3.8 we examine the crossover between regimes dominated by spontaneous decay

and dephasing.

To implement the low complexity protocols, we employ single one-axis-twisting

(OAT) [125] operations for both state preparation and as an effective measurement,

since they give rise to a variety of entangled states, ranging from spin-squeezed

states (SSS) to the GHZ state, as well as variational classes of generalized Ramsey

spectroscopy saturating the ultimate limit in sensitivity [5, 139–143]. Furthermore,

OAT interactions are accessible in several setups as in ion traps via Mølmer-Sørensen

gates [126–128], in tweezer arrays via Rydberg interactions [62,129] or Bose-Einstein

condensates via elastic collisions [130–133].

3.2 Atomic clocks and Ramsey interferometry

In atomic clocks (cf. Fig. 3.1(a)), a local oscillator (LO) generates an inherently noisy

frequency signal ωLO(t) that varies over time t. The LO is stabilized to an atomic

transition frequency ω0 through repeated interrogations of the atomic ensemble ac-

cording to a specific Ramsey interferometry scheme. Throughout this thesis we focus

on single-ensemble clocks in which the atomic reference is periodically interrogated

using the same protocol in each clock cycle. During the Ramsey time T , the atoms

accumulate a phase ϕ = ωT , which effectively reflects the average of the frequency

deviation over the interrogation period

ω =
1

T

∫ t+T

t

dt′[ω0 − ωLO(t′)]. (3.1)

At the end of each interrogation sequence, a measurement with outcome x is per-

formed, from which an estimate ϕest(x) of the monitored phase ϕ is inferred. The

control cycle is completed by the servo that applies feedback to correct the LO fre-

quency by ωcorr based on the phase estimate ϕest(x), resulting in a stabilized LO

signal. Consequently, frequency metrology is directly connected to phase estimation

theory.

In interferometry, the objective is to estimate an unknown parameter ϕ as precise

and accurate as possible. In generalized Ramsey spectroscopy (cf. Fig. 3.1(b)), the

phase ϕ is encoded onto the initial probe state ρin during the free evolution time T

(Ramsey dark time) via a completely-positive trace-preserving map Λϕ,T . Addition-

ally, this quantum channel Λϕ,T may also account for decoherence processes such as
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5

estimation error outside of the invertible range, as mod-
eled by Eq. (17), the overall asymptotic estimation error
for the OQI reads

(��asym
OQI )2 = (��⇡HL)2 + (��CTL

OQI )
2

=
⇡2

N2
+ 4⇡2


1 � erf

✓
⇡p
2��

◆�
. (19)

This result combines the fundamental limit set by the
⇡HL with the contributions from phase estimation errors
associated with transitions between Ramsey fringes, of-
fering a comprehensive characterization of the OQI’s per-
formance in the asymptotic regime. Notably, this bound
can be saturated asymptotically by the phase operator
based interferometer (POI) [7–15] (cf. Supplementary
Materials).

C. Estimators

Based on a statistical model P (x|�), defined by an
initial state ⇢in, free evolution ⇤�,T and measurement
{⇧x}, various estimation strategies can be applied. In
this work, we focus on two such strategies: the linear
estimator and the optimal Bayesian estimator. The lin-
ear estimator is renowned for its simplicity and is both
theoretically and experimentally well-established, often
arising naturally from the local approach, where it is the
standard choice. In contrast, the optimal Bayesian esti-
mator, as the name suggests, achieves the best possible
performance in Bayesian phase estimation. Add Refs

Linear estimator— The linear estimator

�linear
est (x) = a · x, (20)

with scaling factor a 2 R, originates from local phase
estimation. In this context, assuming an unbiased es-
timator and small deviations from the optimal work-
ing point �0, the signal can be approximated linearly.
In this case, the estimation error is typically character-
ized by quantum projection noise (QPN) [16] ⇠/

p
N =

�X(�0)/|@�hX(�)i|�=�0
, where ⇠ denotes the Wineland

squeezing parameter [17, 18]. This result is obtained
in the limit of narrow prior distributions (�� ! 0)
and by choosing the particular scaling factor a =
(@�hX(�)i|�=�0

)
�1

, corresponding to the inverse slope
of the signal at �0.

In the Bayesian framework, however, this approach is
poorly suited. First, the assumption of narrow prior dis-
tributions fails, as discussed above. Second, the prior
information explicitly influences the cost function and
thus, the scaling factor a has to depend on the prior dis-
tribution. For an arbitrary prior distribution with zero
mean

R
d�P(�)� = 0 and variance (��)2 =

R
d�P(�)�2,

the optimal scaling factor and corresponding BMSE are

given by (cf. Supplementary Materials)

a =

R
d�P(�)�hX(�)iR
d�P(�)hX2(�)i (21)

(��)2 = (��)2 �
⇥R

d�P(�)�hX(�)i
⇤2

R
d�P(�)hX2(�)i . (22)

As for the method of moments, the linear estimator and
its estimation error depend only on the first and second
moments of the observable X, which typically are easier
to evaluate than the full statistical model P (x|�). This
simplicity makes the linear estimator a practical choice
for phase estimation. Nevertheless, despite its advan-
tages and reliable performance in several situations, the
linear estimation strategy is not optimal in general.

Optimal Bayesian estimator— In contrast to local
phase estimation, where the Cramér-Rao bound can in
general only be saturated in the infinite-sample limit us-
ing the maximum-likelihood estimator [16], the optimal
estimator in Bayesian phase estimation can be derived
explicitly (cf. Supplementary Materials)

�opt
est (x) =

Z
d�P (�|x)�. (23)

This estimator corresponds to the average phase with
respect to the posterior distribution P (�|x), which can
be expressed in terms of the statistical model P (x|�)
and prior distribution P(�) according to Bayes theorem
Eq. (2). As a consequence, the optimal Bayesian estima-
tor can be highly non-linear. The associated BMSE is
given by

(��)2 = (��)2 �
X

x

⇥R
d�P(�)P (x|�)�

⇤2

P (x)
. (24)

Although it resembles the structure of Eq. (22), the
BMSE for the optimal Bayesian estimator explicitly de-
pends on the statistical model, rather than merely on
the first and second moments of the observable. Ad-
ditionally, Eq. (4) reduces to the average posterior vari-
ance. Since the optimal Bayesian estimator saturates the
BCRB, and thus minimizes the BMSE with respect to all
estimation strategies, it is commonly referred to as the
minimal mean squared error (MMSE) estimator.

D. Allan deviation

The long-term stability of an atomic clock is quan-
tified by the Allan deviation �y(⌧)[19, 20] characteriz-
ing the fluctuations of fractional frequency deviations
y = !(t)/!0 averaged over ⌧ � TC = T + TD. Here, the
total cycle time TC accounts for the interrogation time
T and any potential dead time TD, arising from prepa-
ration steps and application of the feedback. In local
frequency metrology, assuming short interrogation times

Clockwork 
Device

3

R
d�P(�)P (x|�) represents the probability of observing

outcome x, averaged over all possible values of �, and
thus, basically provides a normalization of the posterior
distribution. The interplay between prior information
and measurement data already becomes evident at this
stage. If P(�) varies slowly compared to P (x|�), for ex-
ample in the case of a flat prior or in the asymptotic
limit, has minimal influence on the posterior knowledge,
and the statistical model primarily governs the inference
strategy. Conversely, if the prior is sharply peaked, prior
information dominates the estimation process and signif-
icantly shapes the posterior distribution.

In Bayesian phase estimation, a common cost function
is the Bayesian mean squared error (BMSE) defined as

(��)2 =

Z +1

�1
d�P(�)

X

x

P (x|�) [�� �est(x)]
2
. (3)

The BMSE corresponds to the mean squared error (MSE)
of the estimated phase �est(x) with respect to the true
phase value �, the typical cost function of local phase
estimation, averaged over the prior distribution P(�).
This reflects a global approach by incorporating all pos-
sible values of �, which additionally makes unbiasedness
redundant. In general, for a proper estimation strat-
egy, information about the phase is gained through the
measurement. Consequently, the BMSE is bounded by
0  (��)2  (��)2. In the limit of narrow prior distri-
butions, where P(�) approximates a delta distribution
centered at the optimal working point �0, the BMSE re-
duces to the MSE. Due to its global averaging, the BMSE
is always lower bounded by the MSE evaluated at the op-
timal working point �0, where the MSE attains its max-
imum. Using Bayes theorem, we can express the BMSE
in terms of the posterior distribution according to

(��)2 =
X

x

P (x)

Z +1

�1
d�P (�|x) [�� �est(x)]

2
. (4)

For the primary investigations in this work, we assume
an unitary phase evolution through the quantum channel

⇤�,T [⇢in] = Rz(�)⇢inR†
z(�) (5)

with rotation Rz(�) = e�i�Sz , where Sx,y,z denote the
collective spin operators of N two level systems. Con-
sequently, the quantum channel, and thus the statistical
model P (x|�), with respect to the phase is 2⇡-periodic,
i.e. ⇤�,T = ⇤�+2⇡,T . In this case, it is common to use a
periodic cost function. However, in the context of atomic
clocks, we explicitly adopt a global definition of the phase
spanning �1 < � < 1, since � + 2⇡k (with k 2 Z)
originates from a di↵erent frequency di↵erence ! than
�, and thus has a distinct physical interpretation. This
distinction proves particularly useful to quantify the co-
herence time limit of the laser and to discuss fringe hops
within this framework. Furthermore, we assume a Gaus-
sian prior distribution

P(�) =
1p

2⇡(��)2
exp

✓
� �2

2(��)2

◆
(6)

with zero mean and width ��, which is a reasonable
approximation for the full feedback loop of an atomic
clock [1].

B. Bounds

The goal of Bayesian estimation is to minimize the cost
function, the Bayesian mean squared error (BMSE). For
a given prior distribution P(�), there are three degrees
of freedom to optimize: the initial state ⇢in, the measure-
ment {⇧x}, and the estimation strategy �est(x). Based
on these degrees of freedom and following Refs. xxx, we
will derive a hierarchy of lower bounds for the BMSE (see
Supplementary Material for detailed proofs), analogous
to the local estimation approach. The discussion in this
section remains general, allowing for arbitrary prior dis-
tributions P(�) and quantum channels ⇤�,T . Specific as-
sumptions and asymptotic results will be explicitly noted.

Bayesian Cramér-Rao Bound (BCRB)— For a given
initial state ⇢in and measurement {⇧x}, the Bayesian
Cramér-Rao Bound (BCRB) (��BCRB)2 represents a
lower bound on the BMSE (��)2 and thus, implicates
an optimization over all possible estimators �est. Assum-
ing standard regularity conditions

P
x @�P (x|�) = 0 and

vanishing of the prior at the boundaries lim�!±1 P(�) =
0, the BCRB results from the van Trees inequality [2] and
reads

(��)2 � (��BCRB)2 = min
�est

(��)2 =
1

F + I . (7)

Here, the measurement contribution is represented by the
Fisher information averaged over the prior distribution

F =

Z
d�P(�)F(�) =

Z
d�P(�)

X

x

1

P (x|�)

✓
dP (x|�)

d�

◆2

(8)

and

I =

Z
d�

1

P(�)

✓
dP(�)

d�

◆2

(9)

denotes the information contribution from the prior
knowledge, given by the Fisher information of the prior
distribution. From Eq. (7) it is evident that the BCRB in
turn is lower bounded by the Cramér-Rao Bound (CRB),
the corresponding bound in local phase estimation, since
I � 0 and F � F(�0) and thus (��BCRB)2 � (��CRB)2.
In contrast to the local approach, the optimal Bayesian
estimator can be derived explicitly as we will show in Sec.
xxx.

For a Gaussian prior distribution, the prior informa-
tion simplifies to I = (��)�2. Moreover, while F typi-
cally increases with the ensemble size, the prior informa-
tion I is independent of N . Consequently, in the asymp-
totic limit of large N , the prior knowledge mainly con-
tributes in the averaging of the Fisher information and

we obtain (��BCRB)2 ' F�1
.
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Standard introduction

I. MOTIVATION

A clock, at its core, consists of two essential compo-
nents: a frequency standard, a device which generates a
continuous and consistent frequency signal, and a mech-
anism that counts the oscillations over time. While the
clockwork device essentially translates the frequency sig-
nal into measurable time intervals, the frequency stan-
dard represents the true heart of a clock. Frequency

⇤ klemens.hammerer@itp.uni-hannover.de

standards are commonly classified as either active or
passive, depending on their operational principle. Ac-
tive frequency standards generate their own oscillation
at a given frequency, as the hydrogen maser or the
Helium-Neon laser, where stimulated emission results in
a highly coherent signal. Conversely, passive frequency
standards require an external source to stimulate their os-
cillation. While active frequency standards typically ex-
cel in short-time stability, passive frequency standards of-
ten achieve superior long-term stability and accuracy, be-
cause the frequency can be precisely monitored and cor-
rected against the reference response over time. Conse-
quently, passive frequency standards are commonly pre-
ferred for clocks.

The concept of a passive frequency standard can be
illustrated by imagining two pendulums. The first pen-
dulum is our primary, noisy pendulum, whose fluctuat-
ing frequency we aim to stabilize. The second pendu-
lum serves as an (almost) ideal reference, though it does
not oscillate on its own. Hence, the task of a passive
frequency standard is to periodically adjust the primary
pendulum’s frequency to match that of the reference pen-
dulum by repeatedly measuring the frequency di↵erence
between the two. However, each measurement introduces
some noise into the system. Hence, it is desirable to ex-
tend the interrogation time as long as possible, thereby
reducing the relative impact of this measurement noise
and ultimately enhancing stability. If the interrogation
time is extended too far, however, we risk missing a “tick”
of the reference, leading to synchronization errors that
may accumulate over repeated measurements. Therefore,
while longer interrogation times improve stability, there
is an optimal duration beyond which stability is compro-
mised.

In (passive) atomic clocks (cf. Fig. 1), the local oscilla-
tor (LO), representing the primary pendulum, generates
an inherently noisy frequency signal !LO(t) that varies
over time t. The LO is stabilized to an atomic transition
frequency !0, acting as the reference pendulum, through
repeated interrogations of the atomic ensemble accord-
ing to a particular Ramsey interferometry scheme. Dur-
ing the Ramsey time T , the atoms accumulate a phase

� =
R t+T

t
dt0!(t0), which e↵ectively reflects the average

of the frequency deviation !(t) = !0 � !LO(t) over the
interrogation period. At the end of each interrogation
sequence, a measurement with outcome x is performed,
from which an estimate �est(x) of the monitored phase �
is derived. The control cycle is completed by the servo
that applies feedback to correct the LO frequency by
!corr, based on the phase estimate �est(x), resulting in a
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ing to a particular Ramsey interferometry scheme. Dur-
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that applies feedback to correct the LO frequency by
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dulum is our primary, noisy pendulum, whose fluctuat-
ing frequency we aim to stabilize. The second pendu-
lum serves as an (almost) ideal reference, though it does
not oscillate on its own. Hence, the task of a passive
frequency standard is to periodically adjust the primary
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dulum by repeatedly measuring the frequency di↵erence
between the two. However, each measurement introduces
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tend the interrogation time as long as possible, thereby
reducing the relative impact of this measurement noise
and ultimately enhancing stability. If the interrogation
time is extended too far, however, we risk missing a “tick”
of the reference, leading to synchronization errors that
may accumulate over repeated measurements. Therefore,
while longer interrogation times improve stability, there
is an optimal duration beyond which stability is compro-
mised.

In (passive) atomic clocks (cf. Fig. 1), the local oscilla-
tor (LO), representing the primary pendulum, generates
an inherently noisy frequency signal !LO(t) that varies
over time t. The LO is stabilized to an atomic transition
frequency !0, acting as the reference pendulum, through
repeated interrogations of the atomic ensemble accord-
ing to a particular Ramsey interferometry scheme. Dur-
ing the Ramsey time T , the atoms accumulate a phase
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dt0!(t0), which e↵ectively reflects the average

of the frequency deviation !(t) = !0 � !LO(t) over the
interrogation period. At the end of each interrogation
sequence, a measurement with outcome x is performed,
from which an estimate �est(x) of the monitored phase �
is derived. The control cycle is completed by the servo
that applies feedback to correct the LO frequency by
!corr, based on the phase estimate �est(x), resulting in aservo correction

control loop

atomic reference estimationmeasurement

quantum

Clockwork 
Device

2

Wolt) atomic reference measurement

⑳mu D- +
Wo ↑

↓ ↑bache nicoleloop ↓
-
-

Wer- Post(x)
estimation

FIG. 1. Basic principle of an atomic clock.

stabilized LO signal. Consequently, frequency metrology
is directly connected to phase estimation theory.

Local oscillator noise plays a critical role in limiting
stability, even though it may seem counterintuitive given
that its frequency is constantly measured and corrected
based on feedback from the atomic reference. The phase
fluctuations, arising from the LO’s frequency noise, can
be modeled by a distribution P(�), depending on the
particular noise profile, by interpreting the phase � as a
random variable. As the interrogation time T increases,
the LO noise grows, causing the distribution to broaden.
Typically, the phase can only be estimated unambigu-
ously within a limited range. Hence, if the invertible
domain of the main fringe of the signal is exceeded, esti-
mation errors are accumulated and ultimately limit the
stability. In the worst case, the feedback loop passes to
an adjacent Ramsey fringe, resulting in the clock running
systematically wrong and severely degrading the clock
stability. Consequently, frequency metrology features a
trade-o↵: longer interrogation times enhance stability,
but LO frequency fluctuations introduce limitations. An
appropriate framework to investigate di↵erent interroga-
tions schemes respecting this trade-o↵ is represented by
Bayesian estimation. This approach essentially bridges
between high sensitivity at the transition frequency and
large dynamic range, based on the regime of frequency
deviations the local oscillator is likely to generate.

Outlook of the paper

II. BAYESIAN FREQUENCY METROLOGY

Building on the motivation provided above, phase es-
timation is a fundamental aspect of frequency metrol-
ogy, particularly in the context of atomic clocks. In this
section, we begin by discussing general phase estimation
theory within the Bayesian framework. We derive lower
bounds on the estimation error, drawing an analogy to
the local (frequentist) approach, and analyze di↵erent
estimation strategies. Finally, we link phase estimation
to frequency metrology in the context of atomic clocks
through the Allan deviation and discuss emerging trade-
o↵s and their implications for the clock stability.

A. Bayesian phase estimation

In interferometry, the objective is to estimate an un-
known parameter � as precise and accurate as possible.
In generalized Ramsey spectroscopy, the phase � is en-
coded during the free evolution time T (Ramsey dark
time) onto the initial probe state ⇢in via a completely-
positive trace-preserving map ⇤�,T . In the context of
an atomic clock, the phase � = !T originates from the

average frequency di↵erence ! = 1
T

R T

0
dt0[!0 � !LO(t0)]

between the atomic transition !0 and the local oscillator
!LO. Additionally, the quantum channel ⇤�,T might also
contain decoherence processes. After the free evolution,
an appropriately chosen observable X is measured. The
measurement is described by a positive operator-valued
measure (POVM) {⇧x}, where ⇧x � 0 and

P
x ⇧x = 1,

and x denotes the measurement outcome. Finally, an es-
timate �est(x, T ) of the parameter � is performed, based
on the measurement outcome x (of X) for a fixed in-
terrogation time T . Due to the inherent indeterministic
nature of quantum measurements, the outcomes x are
random and occur with conditional probability

P (x|�) = Tr (⇧x⇤�,T [⇢in]) . (1)

Consequently, the estimator �est likewise is a random
variable, as it depends on the measurement outcome
x. Unlike state preparation, free evolution, and mea-
surement, which are governed by quantum mechanics,
the estimation process involves classical post-processing
of measurement data and is thus addressed within the
framework of classical phase estimation theory.

In local (or frequentist) phase estimation, it is typically
assumed that the phase � is tightly centered around a
fixed working point �0, such that (���0)

2 ⌧ 1, and that
the estimator is locally unbiased. Additionally, probabil-
ities are defined as the infinite-sample limit of an event.
However, these assumptions are often not valid in the
context of optical atomic clocks. On the one hand, when
the finite coherence time of the laser becomes the domi-
nant limitation on clock stability, fluctuations in the ac-
cumulated phase during the free interrogation time be-
come relevant and in principle can take arbitrary values
�1 < � < 1. On the other hand, the phase has to
be estimated from a limited data set due to the fluc-
tuations, making asymptotic estimation, i.e. the collec-
tion of large amounts of data, impossible. Consequently,
Bayesian phase estimation represents the more appropri-
ate framework.

In Bayesian phase estimation, the phase � is treated as
a continuous random variable and the posterior knowl-
edge of �, represented by the posterior distribution
P (�|x), is updated according to Bayes theorem

P (�|x) =
P(�)P (x|�)

P (x)
(2)

based on the statistical model P (x|�) and a prior distri-
bution P(�), reflecting the knowledge on the phase be-
fore any measurement. The marginal likelihood P (x) =

2
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FIG. 1. Basic principle of an atomic clock.
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However, these assumptions are often not valid in the
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the finite coherence time of the laser becomes the domi-
nant limitation on clock stability, fluctuations in the ac-
cumulated phase during the free interrogation time be-
come relevant and in principle can take arbitrary values
�1 < � < 1. On the other hand, the phase has to
be estimated from a limited data set due to the fluc-
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tion of large amounts of data, impossible. Consequently,
Bayesian phase estimation represents the more appropri-
ate framework.
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edge of �, represented by the posterior distribution
P (�|x), is updated according to Bayes theorem
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(2)
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bution P(�), reflecting the knowledge on the phase be-
fore any measurement. The marginal likelihood P (x) =

5

estimation error outside of the invertible range, as mod-
eled by Eq. (17), the overall asymptotic estimation error
for the OQI reads

(��asym
OQI )2 = (��⇡HL)2 + (��CTL

OQI )
2

=
⇡2

N2
+ 4⇡2


1 � erf

✓
⇡p
2��

◆�
. (19)

This result combines the fundamental limit set by the
⇡HL with the contributions from phase estimation errors
associated with transitions between Ramsey fringes, of-
fering a comprehensive characterization of the OQI’s per-
formance in the asymptotic regime. Notably, this bound
can be saturated asymptotically by the phase operator
based interferometer (POI) [7–15] (cf. Supplementary
Materials).

C. Estimators

Based on a statistical model P (x|�), defined by an
initial state ⇢in, free evolution ⇤�,T and measurement
{⇧x}, various estimation strategies can be applied. In
this work, we focus on two such strategies: the linear
estimator and the optimal Bayesian estimator. The lin-
ear estimator is renowned for its simplicity and is both
theoretically and experimentally well-established, often
arising naturally from the local approach, where it is the
standard choice. In contrast, the optimal Bayesian esti-
mator, as the name suggests, achieves the best possible
performance in Bayesian phase estimation. Add Refs

Linear estimator— The linear estimator

�linear
est (x) = a · x, (20)

with scaling factor a 2 R, originates from local phase
estimation. In this context, assuming an unbiased es-
timator and small deviations from the optimal work-
ing point �0, the signal can be approximated linearly.
In this case, the estimation error is typically character-
ized by quantum projection noise (QPN) [16] ⇠/

p
N =

�X(�0)/|@�hX(�)i|�=�0
, where ⇠ denotes the Wineland

squeezing parameter [17, 18]. This result is obtained
in the limit of narrow prior distributions (�� ! 0)
and by choosing the particular scaling factor a =
(@�hX(�)i|�=�0

)
�1

, corresponding to the inverse slope
of the signal at �0.

In the Bayesian framework, however, this approach is
poorly suited. First, the assumption of narrow prior dis-
tributions fails, as discussed above. Second, the prior
information explicitly influences the cost function and
thus, the scaling factor a has to depend on the prior dis-
tribution. For an arbitrary prior distribution with zero
mean

R
d�P(�)� = 0 and variance (��)2 =

R
d�P(�)�2,

the optimal scaling factor and corresponding BMSE are

given by (cf. Supplementary Materials)

a =

R
d�P(�)�hX(�)iR
d�P(�)hX2(�)i (21)

(��)2 = (��)2 �
⇥R

d�P(�)�hX(�)i
⇤2

R
d�P(�)hX2(�)i . (22)

As for the method of moments, the linear estimator and
its estimation error depend only on the first and second
moments of the observable X, which typically are easier
to evaluate than the full statistical model P (x|�). This
simplicity makes the linear estimator a practical choice
for phase estimation. Nevertheless, despite its advan-
tages and reliable performance in several situations, the
linear estimation strategy is not optimal in general.

Optimal Bayesian estimator— In contrast to local
phase estimation, where the Cramér-Rao bound can in
general only be saturated in the infinite-sample limit us-
ing the maximum-likelihood estimator [16], the optimal
estimator in Bayesian phase estimation can be derived
explicitly (cf. Supplementary Materials)

�opt
est (x) =

Z
d�P (�|x)�. (23)

This estimator corresponds to the average phase with
respect to the posterior distribution P (�|x), which can
be expressed in terms of the statistical model P (x|�)
and prior distribution P(�) according to Bayes theorem
Eq. (2). As a consequence, the optimal Bayesian estima-
tor can be highly non-linear. The associated BMSE is
given by

(��)2 = (��)2 �
X

x

⇥R
d�P(�)P (x|�)�

⇤2

P (x)
. (24)

Although it resembles the structure of Eq. (22), the
BMSE for the optimal Bayesian estimator explicitly de-
pends on the statistical model, rather than merely on
the first and second moments of the observable. Ad-
ditionally, Eq. (4) reduces to the average posterior vari-
ance. Since the optimal Bayesian estimator saturates the
BCRB, and thus minimizes the BMSE with respect to all
estimation strategies, it is commonly referred to as the
minimal mean squared error (MMSE) estimator.

D. Allan deviation

The long-term stability of an atomic clock is quan-
tified by the Allan deviation �y(⌧)[19, 20] characteriz-
ing the fluctuations of fractional frequency deviations
y = !(t)/!0 averaged over ⌧ � TC = T + TD. Here, the
total cycle time TC accounts for the interrogation time
T and any potential dead time TD, arising from prepa-
ration steps and application of the feedback. In local
frequency metrology, assuming short interrogation times
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stabilized LO signal. Consequently, frequency metrology
is directly connected to phase estimation theory.

Local oscillator noise plays a critical role in limiting
stability, even though it may seem counterintuitive given
that its frequency is constantly measured and corrected
based on feedback from the atomic reference. The phase
fluctuations, arising from the LO’s frequency noise, can
be modeled by a distribution P(�), depending on the
particular noise profile, by interpreting the phase � as a
random variable. As the interrogation time T increases,
the LO noise grows, causing the distribution to broaden.
Typically, the phase can only be estimated unambigu-
ously within a limited range. Hence, if the invertible
domain of the main fringe of the signal is exceeded, esti-
mation errors are accumulated and ultimately limit the
stability. In the worst case, the feedback loop passes to
an adjacent Ramsey fringe, resulting in the clock running
systematically wrong and severely degrading the clock
stability. Consequently, frequency metrology features a
trade-o↵: longer interrogation times enhance stability,
but LO frequency fluctuations introduce limitations. An
appropriate framework to investigate di↵erent interroga-
tions schemes respecting this trade-o↵ is represented by
Bayesian estimation. This approach essentially bridges
between high sensitivity at the transition frequency and
large dynamic range, based on the regime of frequency
deviations the local oscillator is likely to generate.

Outlook of the paper

II. BAYESIAN FREQUENCY METROLOGY

Building on the motivation provided above, phase es-
timation is a fundamental aspect of frequency metrol-
ogy, particularly in the context of atomic clocks. In this
section, we begin by discussing general phase estimation
theory within the Bayesian framework. We derive lower
bounds on the estimation error, drawing an analogy to
the local (frequentist) approach, and analyze di↵erent
estimation strategies. Finally, we link phase estimation
to frequency metrology in the context of atomic clocks
through the Allan deviation and discuss emerging trade-
o↵s and their implications for the clock stability.

A. Bayesian phase estimation

In interferometry, the objective is to estimate an un-
known parameter � as precise and accurate as possible.
In generalized Ramsey spectroscopy, the phase � is en-
coded during the free evolution time T (Ramsey dark
time) onto the initial probe state ⇢in via a completely-
positive trace-preserving map ⇤�,T . In the context of
an atomic clock, the phase � = !T originates from the

average frequency di↵erence ! = 1
T

R T

0
dt0[!0 � !LO(t0)]

between the atomic transition !0 and the local oscillator
!LO. Additionally, the quantum channel ⇤�,T might also
contain decoherence processes. After the free evolution,
an appropriately chosen observable X is measured. The
measurement is described by a positive operator-valued
measure (POVM) {⇧x}, where ⇧x � 0 and

P
x ⇧x = 1,

and x denotes the measurement outcome. Finally, an es-
timate �est(x, T ) of the parameter � is performed, based
on the measurement outcome x (of X) for a fixed in-
terrogation time T . Due to the inherent indeterministic
nature of quantum measurements, the outcomes x are
random and occur with conditional probability

P (x|�) = Tr (⇧x⇤�,T [⇢in]) . (1)

Consequently, the estimator �est likewise is a random
variable, as it depends on the measurement outcome
x. Unlike state preparation, free evolution, and mea-
surement, which are governed by quantum mechanics,
the estimation process involves classical post-processing
of measurement data and is thus addressed within the
framework of classical phase estimation theory.

In local (or frequentist) phase estimation, it is typically
assumed that the phase � is tightly centered around a
fixed working point �0, such that (���0)

2 ⌧ 1, and that
the estimator is locally unbiased. Additionally, probabil-
ities are defined as the infinite-sample limit of an event.
However, these assumptions are often not valid in the
context of optical atomic clocks. On the one hand, when
the finite coherence time of the laser becomes the domi-
nant limitation on clock stability, fluctuations in the ac-
cumulated phase during the free interrogation time be-
come relevant and in principle can take arbitrary values
�1 < � < 1. On the other hand, the phase has to
be estimated from a limited data set due to the fluc-
tuations, making asymptotic estimation, i.e. the collec-
tion of large amounts of data, impossible. Consequently,
Bayesian phase estimation represents the more appropri-
ate framework.

In Bayesian phase estimation, the phase � is treated as
a continuous random variable and the posterior knowl-
edge of �, represented by the posterior distribution
P (�|x), is updated according to Bayes theorem

P (�|x) =
P(�)P (x|�)

P (x)
(2)

based on the statistical model P (x|�) and a prior distri-
bution P(�), reflecting the knowledge on the phase be-
fore any measurement. The marginal likelihood P (x) =
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based on feedback from the atomic reference. The phase
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particular noise profile, by interpreting the phase � as a
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Figure 3.1: Atomic clock and Ramsey interferometry: (a) Basic principle of an
atomic clock: A local oscillator (LO) with fluctuating frequency ωLO(t) is stabilized
in a control loop to an atomic transition ω0. During the free evolution time T , the
probe state accumulates a phase ϕ arising from the frequency deviation. Based on
the measurement outcome x, the phase is estimated by ϕest and the LO frequency
is corrected according to ωcorr by the servo. (b) Generalized Ramsey interferometry:
The phase ϕ is encoded during the interrogation time T onto the initial state ρin via
Λϕ,T . Based on the measurement outcome x of the observable X, an estimation ϕest

of the phase is conducted.

dephasing or spontaneous decay, with their impact depending on T . Unfortunately,

the phase itself is not an observable and therefore, cannot be measured directly. Con-

sequently, after the free evolution, an appropriately chosen observable X is measured.

The measurement is described by a positive operator-valued measure (POVM) {Πx},

with Πx ≥ 0 and
∑

x Πx = 1, where x denotes the measurement outcome. Due to

the inherent indeterministic nature of quantum measurements, the outcomes x are

random and occur with conditional probability

P (x|ϕ) = Tr (ΠxΛϕ,T [ρin]) , (3.2)

also referred to as the likelihood or statistical model. Finally, based on the measure-

ment outcome x (of X), an estimation ϕest(x) of the parameter ϕ is performed. Note

that since the quantum channel depends on the interrogation time T , the conditional

probabilities P (x|ϕ) and the estimator ϕest(x) generally likewise depend on T . Unlike

state preparation, free evolution, and measurement, which are governed by quantum

mechanics, the estimation process involves classical post-processing of measurement

data and is thus addressed within the framework of classical phase estimation theory.
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While the free evolution Λϕ,T is determined by the experimental setup, the estima-

tion strategy ϕest(x), the measurement {Πx}, and the initial state ρin can be chosen

arbitrarily.1 Consequently, generalized Ramsey interferometry offers three control pa-

rameters that can be adjusted to optimally determine the phase ϕ. Naturally, some

choices are better than others. In general, effective choices exhibit a high sensitivity

to changes in ϕ. This raises fundamental questions: How can we characterize the

sensitivity to changes in the phase? What distinguishes good choices from bad ones?

How precise can we ultimately become? To address these questions, we introduce

a cost function that precisely quantifies the sensitivity to changes in the phase. We

further derive bounds on this sensitivity and investigate various interrogation schemes

designed to achieve these limits.

Although we explore frequency metrology in the context of atomic clocks, we

emphasize that the majority of the results and techniques are broadly applicable to

a wide range of scenarios within the field.

3.3 Dynamics

Considering a unitary phase evolution with Hamiltonian H = ωSz, spontaneous decay

with rate Γ, individual dephasing with rate γ and collective dephasing with rate γc,

the dynamics of the system during the free evolution time T , represented by the

quantum channel Λϕ,T , is described by a master equation of the form (cf. Sec. 2.3.3)

ρ̇ = −iω [Sz, ρ] +
Γ

2

N∑

k=1

L
S
(k)
−

[ρ] +
γ

2

N∑

k=1

L
S
(k)
z

[ρ] +
γc
2
LSz [ρ], (3.3)

where S
(k)
− = σ

(k)
− , S

(k)
z = 1

2
σ
(k)
z and Sz =

∑
k S

(k)
z , with single particle Pauli operators

σj. The Lindblad superoperators are defined as LA[ρ] := 2AρA† − A†Aρ − ρA†A.

1In principle, a specific experimental setup typically imposes constraints on the available transfor-
mations for initial state preparation and measurement. However, to allow for a general investigation,
we assume that arbitrary states and measurements can be realized.
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Explicitly expanding Eq. (3.3), the master equation is expressed as

ρ̇ = −iω[Sz, ρ] +
Γ

2

N∑

k=1

(
2σ

(k)
− ρσ

(k)
+ − σ

(k)
+ σ

(k)
− ρ− ρσ

(k)
+ σ
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−

)

+
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8
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z ρσ(k)
z −
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)2
ρ+ ρ
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)2)
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2
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2SzρSz − S2

zρ− ρS2
z

)

= −iω[Sz, ρ] +
Γ
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(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee
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− γ
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N∑

k=1

(
σ(k)
ee ρσ

(k)
gg + σ(k)

gg ρσ
(k)
ee

)
+
γc
2

(
2SzρSz − S2

zρ− ρS2
z

)
,

(3.4)

where we used σ2
z = 1 and σ+σ− = σee. Furthermore, since σz = σee − σgg and

1 = σee + σgg, we obtained σzρσz − ρ = −2σeeρσgg − 2σggρσee. Here, σgg = |↓⟩⟨↓| and

σee = |↑⟩⟨↑| represent the projectors onto the ground and excited states, respectively.

Starting with an initial state ρin, the state after evolution for duration T according

to Eq. (3.4) is denoted as ρin(ϕ, T ) = Λϕ,T [ρin], with phase ϕ = ωT arising from the

average frequency deviation ω defined in Eq. (3.1). In general, solving master equa-

tions with multiple distinct terms, such as Eq. (3.4), is a complex and intricate task.

However, since all four terms of the master equation (super-)commute pairwise (cf.

App. C), the dynamics associated with each component can be solved independently,

thereby significantly simplifying the problem.

In particular, it is convenient to treat the unitary part and the decoherence pro-

cesses separately. The first term of Eq. (3.4) effectively describes the unitary phase

evolution, which is determined by the von Neumann equation

dρ

dϕ
= −i[Sz, ρ]. (3.5)

The corresponding solution is represented by a collective rotation Rz(ϕ) = exp(−iϕSz)

by an angle ϕ around the z-axis and is given by

ρin(ϕ) = Λϕ[ρin] = Λϕ,T=0[ρin] = Rz(ϕ)ρinR†
z(ϕ), (3.6)

where Λϕ denotes the quantum channel associated with Eq. (3.5). Although the

quantum channel Λϕ (and likewise Λϕ,T ) is 2π-periodic with respect to the phase,

i.e. Λϕ = Λϕ+2π, phases ϕ + 2πk (with k ∈ Z) originate from a different frequency

deviation ω than ϕ, and thus have a distinct physical interpretation, especially in

the context of frequency metrology, where the primary objective is to determine the

frequency deviation ω.
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Identifying the first term in Eq. (3.4) as the phase imprint, the effective time evo-

lution associated with the decoherence processes is governed by the master equation

ρ̇ =
Γ

2

N∑

k=1

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)

+
γ

4

N∑

k=1

(
σ(k)
z ρσ(k)

z − ρ
)

+
γc
2

(
2SzρSz − S2

zρ− ρS2
z

)
.

(3.7)

The formal solution is given by ρin(T ) = ΛT [ρin] = Λϕ=0,T [ρin], where ΛT denotes

the quantum channel associated with Eq. (3.7). Explicit solutions for the individual

terms are provided in App. C. In general, all three decoherence processes cause the

coherences to gradually diminish over time. Additionally, in the presence of sponta-

neous decay, the populations of the excited state progressively decay to the ground

state.

In this chapter, we primarily focus on spontaneous decay and additionally con-

sider individual dephasing, as the impact of decoherence processes has typically been

investigated using the example of individual dephasing (cf. Sec. 3.1). In contrast, we

address collective dephasing only in Sec. 3.8, where we discuss the crossover between

regimes with distinct dominant decoherence processes.

3.4 Local frequency metrology

In the local (frequentist) approach to frequency metrology, additional assumptions

are taken into account. Specifically, probabilities, such as the conditional probabil-

ities P (x|ϕ), are defined as the infinite sample limit of an event. Furthermore, the

frequency is regarded as a fixed, though unknown, variable. In contexts where the

frequency fluctuates – such as in atomic clocks – this assumption is generally not

valid. However, in local frequency metrology it is assumed that the frequency fluc-

tuations are not the dominant noise source. This assumption is reasonable when

the frequency fluctuations are comparatively small, and the primary limitations arise

from spontaneous decay or dephasing. Therefore, we assume that the frequency of

the local oscillator ωLO(t) is tightly centered around the atomic resonance frequency

ω0 and thus, the spread δω of the average frequency deviations ω, as defined in

Eq. (3.1), around ω = 0 is sufficiently small, ensuring δω ·T ≪ 1. The regime beyond

this assumption – where laser noise imposes the dominant limitation and frequency

fluctuations introduce estimation ambiguities – is discussed in detail in Chapter. 4.
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3.4.1 Local phase estimation

As motivated in Sec. 3.2, phase estimation theory constitutes an essential component

of frequency metrology. Accordingly, the assumptions inherent in local frequency

metrology also apply to local (frequentist) phase estimation theory. In particular,

perfect resonance ω = 0 corresponds to ϕ = 0, resulting in no phase accumulation

during the Ramsey time. Therefore, we assume that the phases ϕ are tightly centered

around ϕ = 0, characterized by a small spread δϕ≪ 1, which allows us to effectively

treat them as fixed.

As the estimator depends on the measurement outcomes x, which are distributed

according to the conditional probabilities P (x|ϕ) defined in Eq. (3.2), ϕest likewise

constitutes a random variable. Consequently, the estimator can be characterized by

a ϕ-dependent statistical mean value

ϕest =
∑

x

P (x|ϕ)ϕest(x) (3.8)

and variance

(∆ϕest)
2 =

∑

x

P (x|ϕ)
[
ϕest(x) − ϕest

]2
. (3.9)

In principle, the estimator can be chosen arbitrarily. However, to quantify whether

a particular estimator is a good or bad choice – and ultimately identify optimal

estimation schemes – it is convenient to restrict the analysis to a specific class of

estimators. To give an example, consider the constant estimator ϕest(x) = φ = const.,

independent of the measurement result. If we are lucky, ϕ = φ and our guess coincides

with the true phase ϕ, resulting in an estimator with zero variance (∆ϕest)
2 = 0.

However, for all other ϕ ̸= φ, this estimator is wrong and introduces a random bias

to the estimation. Hence, such estimators are useless in practice. To exclude these

pathological cases, in the following we require the estimators to be unbiased.

An estimator ϕest(x) is unbiased if and only if ϕest = ϕ for all ϕ, or in words: The

mean estimator returns the true value ϕ for all phases. In this case, the variance of

the estimator coincides with the mean squared error (MSE)

(∆ϕ)2 =
∑

x

P (x|ϕ) [ϕest(x) − ϕ]2 , (3.10)

which quantifies the mean squared deviation of the estimation ϕest(x) from the true

phase ϕ and therefore is denoted as phase estimation uncertainty.



3.4. Local frequency metrology 69

Unfortunately, since the phase originates from the average frequency deviation ω,

it can, in principle, take arbitrary values within the range −∞ < ϕ < +∞. How-

ever, a specific interrogation and estimation scheme generally provides only a limited

dynamic range within which the phase can be uniquely resolved. As a consequence

there generally exists no estimator that is unbiased – or even optimal – for all possi-

ble phases ϕ. However, this stringent condition can be relaxed in the context of local

phase estimation, as this approach assumes that the phases ϕ are tightly centered

around ϕ = 0. In practice, atomic clocks are operated at a specific working point ϕ0,

which does not necessarily coincide with perfect resonance ϕ = 0 and thus reflects

a constant offset. In general, the optimal working point ϕ0 is characterized by the

phase that provides the highest sensitivity to variations in ϕ. Hence, it corresponds

to the phase that minimizes the MSE, defined in Eq. (3.10), with respect to all values

of ϕ. Within local phase estimation for Ramsey protocols, this optimal working point

typically corresponds to the inflection point of the signal. Thus, anti-symmetric sig-

nals exhibit ϕ0 = 0, while for symmetric signals ϕ0 usually aligns with half the period

of the signal. Consequently, although the goal is to stabilize the clock at ω = 0, or

equivalently ϕ = 0, an artificial shift ϕ0 is frequently introduced to maximize the

sensitivity for a given Ramsey sequence. As a result, frequency fluctuations manifest

as variations in the phase ϕ around ϕ0.
2 Nevertheless, the phase is tightly centered

around ϕ0, i.e. (ϕ − ϕ0)
2 ≪ 1. As a consequence, it is instructive to introduce a

weaker condition on the estimator, which specifically focuses on the relevant domain

around ϕ0.

An estimator ϕest(x) is locally unbiased at ϕ = ϕ0 if and only if

ϕest|ϕ=ϕ0 =
∑

x

P (x|ϕ0)ϕest(x) = ϕ0 (3.11)

dϕest

dϕ

∣∣∣
ϕ=ϕ0

=
∑

x

dP (x|ϕ)

dϕ

∣∣∣
ϕ=ϕ0

ϕest(x) = 1, (3.12)

or in words: The mean estimator returns the true phase value at ϕ = ϕ0 and tracks its

variation up to the first order. Fortunately, local unbiasedness is sufficient to derive

bounds on the phase estimation uncertainty, as we demonstrate in Sec. 3.5. With a

locally unbiased estimator at ϕ0, the phase estimation uncertainty is characterized by

the MSE

(∆ϕ(T ))2 =
∑

x

P (x|ϕ0) [ϕest(x) − ϕ0]
2 , (3.13)

2In principle, ω and thus ϕ could be redefined such that the optimal working point always equals
ϕ0 = 0. However, with this redefinition, ω = 0 would not necessarily imply ω0 = ωLO and therefore,
we choose to consider cases where potentially ϕ0 ̸= 0.
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which represents the most common cost function in local (frequentist) phase estima-

tion. In the following, we will consistently present T explicitly as a parameter of the

MSE, since the dependence of the phase estimation uncertainty on the Ramsey time

T is essential for the investigations in this chapter. In general, like any variance, the

phase estimation uncertainty is bounded by 0 ≤ (∆ϕ(T ))2 < +∞. Here, the limit

∆ϕ(T ) → +∞ would represent a completely ineffective interrogation and typically

would result in severe additional consequences on the clock stability. Conversely,

a hypothetical perfect phase estimation (precluded by quantum mechanics due to

its intrinsic indeterminism) would result in a vanishing phase estimation uncertainty

∆ϕ(T ) = 0.

Up to this point, we have considered only a single interrogation sequence. By

performing n independent Ramsey schemes on identical copies, a statistical gain in

the phase estimation uncertainty according to

(∆ϕn(T ))2 =
(∆ϕ(T ))2

n
(3.14)

is obtained, where we implicitly introduced the notation (∆ϕ(T ))2 = (∆ϕn=1(T ))2.

This gain is sometimes referred to as Bienaymé’s identity [160]. Throughout this chap-

ter, we will primarily focus on the single-cycle phase estimation uncertainty (∆ϕ(T ))2

and predominantly refer to (∆ϕn(T ))2 in the context of the asymptotic limit of many

repetitions n≫ 1.

3.4.2 Local frequency estimation

After characterizing the sensitivity to phase estimation, we relate the associated un-

certainty to frequency estimation, which is the ultimate goal in frequency metrology,

such as with atomic clocks. For discrete Ramsey times T , phase and frequency are

related through ϕ = ωT , as discussed in Sec. 3.2. Consequently, averaging over n

independent and identical repetitions of a Ramsey interrogation sequence results in

an uncertainty in frequency estimation given by

∆ω(T ) =
∆ϕ(T )√
τT

, (3.15)

where we fix the total averaging time τ = nT to allow for comparisons across different

interrogation times T . Here, ∆ϕ(T ) represents the phase estimation uncertainty of a

single Ramsey interrogation, as introduced in the previous section.

At this point, before delving further into details, we discuss the scaling of ∆ω(T )

with the interrogation time T based on the general form of Eq. (3.15). In an
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ideal, decoherence-free scenario, ∆ϕ(T ) ≡ ∆ϕ is independent of T and the fre-

quency estimation uncertainty appears to decrease monotonically with longer inter-

rogation times. Unfortunately, this figure is severely compromised by decoherence

effects [65–67, 148–150]. In particular, a loss of coherence causes ∆ϕ(T ) to increase

with T . As a consequence, the frequency estimation uncertainty can only be im-

proved by longer interrogation times T as long as the decoherence effects remain

negligible. In contrast, sensitivity is lost once decoherence processes become relevant.

Consequently, ∆ω(T ) features a trade-off between increased sensitivity, i.e. decreased

frequency estimation uncertainty, achieved through long interrogation times and the

limitations imposed by decoherence. Therefore, a compromise must be found for the

optimal interrogation time Tmin that results in the minimal frequency estimation un-

certainty ∆ωmin. Indeed, optimizing ∆ωmin by identifying optimal Ramsey schemes

to achieve the associated lower bounds is the central goal of this chapter. Since fre-

quency and phase estimation are related via Eq. (3.15), lower bounds derived in phase

estimation theory can be directly applied to frequency metrology and ultimately de-

termine limits on ∆ωmin. Therefore, in Sec. 3.5, we first establish lower bounds in

local phase estimation theory and then apply these limits to determine lower bounds

on the frequency estimation uncertainty in Sec. 3.6.

3.4.3 Clock stability and Allan deviation

Naturally, the error in frequency estimation ∆ω(T ), or equivalently the phase estima-

tion uncertainty ∆ϕ(T ), will ultimately affect the clock stability. Hence, in this sec-

tion, we establish a connection between the frequency estimation uncertainty and the

clock stability characterized by the Allan deviation, introduced in detail in Sec. 2.1.

As a reminder, the Allan variance is defined as [11,84–86]

σ2
y(τ) =

1

2
⟨(yj+1 − yj)

2⟩, (3.16)

where ⟨·⟩ denotes statistical averaging. It is calculated from the difference between

two consecutive frequency values yj and yj+1, each averaged over n clock cycles with

duration TC , corresponding to a total averaging time τ = nTC . Here, the clock cycle

duration TC = TD+T additionally accounts for potential dead time TD. The averages

yj are given by

yj =
TC
τ

jn∑

k=(j−1)n+1

yk, (3.17)
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where yk = ωk/ω0 denotes the average frequency deviation ωk in cycle k relative to

the atomic transition frequency ω0. Explicitly expanding Eq. (3.16) yields

σ2
y(τ) =

T 2
C

2τ 2




(j+1)n∑

k=jn+1

(j+1)n∑

l=jn+1

⟨ykyl⟩ +

jn∑

k=(j−1)n+1

jn∑

l=(j−1)n+1

⟨ykyl⟩

+2

(j+1)n∑

k=jn+1

jn∑

l=(j−1)n+1

⟨ykyl⟩


 .

(3.18)

Assuming that the feedback loop of the atomic clock stabilizes the local oscillator

reliably to the atomic transition in the limit τ ≫ 1 s, the residual frequency fluctu-

ations primarily originate from the estimation uncertainty, effectively characterizing

quantum projection noise (QPN). Consequently, these fluctuations are independent

in each cycle, i.e. ⟨ykyl⟩ = δkl ⟨y2k⟩. Therefore, we obtain

σ2
y(τ) =

T 2
C

2τ 2




(j+1)n∑

k=jn+1

〈
y2k
〉

+

jn∑

k=(j−1)n+1

〈
y2k
〉

 . (3.19)

To establish the relation between the Allan variance and frequency estimation, we

identify yk with the residual average frequency fluctuations yk = (ωk − ωest)/ω0 after

the Ramsey sequence with duration T . For a (locally) unbiased estimator, as assumed

in local frequency metrology, the statistical average effectively results in

〈
y2k
〉

=
(∆ω(T ))2

ω2
0

, (3.20)

yielding

σ2
y(τ) =

T 2
C

τ 2
n(∆ω(T ))2

ω2
0

=
TC
τ

(∆ω(T ))2

ω2
0

=
TC
τ

(∆ϕ(T )2

(ω0T )2
. (3.21)

Consequently, the clock stability characterized by the Allan deviation is expressed as

σy(τ) =
∆ω(T )

ω0

√
TC
T

=
∆ϕ(T )

ω0T

√
TC
τ

(3.22)

and thus represents the frequency estimation uncertainty ∆ω(T ) relative to the atomic

transition ω0, with an additional correction factor
√
TC/T to account for potential

dead time. However, throughout this chapter, we restrict the analysis to the dead

time-free scenario, corresponding to TC/T = 1. Hence, the Allan deviation reads

σy(τ) =
∆ω(T )

ω0

=
∆ϕ(T )

ω0

√
τT

. (3.23)

As a result, investigating the frequency estimation uncertainty ∆ω(T ) directly pro-

vides profound insight into the clock stability.
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3.5 Bounds in local phase estimation theory

The goal in phase estimation is to estimate the phase as precisely as possible by

minimizing the cost function, the phase estimation uncertainty ∆ϕ(T ) defined in

Eq. (3.13). For a generalized Ramsey sequence, as introduced in Sec. 3.2, there are

three control parameters to optimize: the initial state ρin, the measurement {Πx}, and

the estimation strategy ϕest(x). To determine the ultimate precision with which the

phase can be estimated based on these control parameters, we review the literature

and collect a hierachy of lower bounds on the phase estimation uncertainty ∆ϕ(T ).

In particular, we present the relevant bounds from Refs. [6, 161–170], while detailed

proofs are provided in App. D. The discussion in this section remains general, allow-

ing for arbitrary quantum channels Λϕ,T , while specific assumptions and asymptotic

results will be explicitly noted.

3.5.1 Cramér-Rao Bound (CRB)

The primary objective in classical estimation theory is to determine the (locally)

unbiased estimator that minimizes the phase estimation uncertainty ∆ϕ(T ) for a

given statistical model P (x|ϕ), as defined in Eq. (3.2), with fixed initial state ρin and

measurement {Πx}. In this context, a lower bound on (∆ϕ(T ))2 is represented by the

Cramér-Rao bound (CRB) (∆ϕCRB(T ))2, which implicates an optimization over all

possible estimation strategies ϕest. Assuming a locally unbiased estimator at ϕ0 and

standard regularity conditions

∑

x

dP (x|ϕ)

dϕ
=

d

dϕ

∑

x

P (x|ϕ) = 0, (3.24)

which allows us to exchange summation and derivative, thereby trivially satisfying

the second equality due to the normalization of the conditional probabilities P (x|ϕ),

the CRB reads [161,162,164,165]

(∆ϕ(T ))2 ≥ (∆ϕCRB(T ))2 = min
ϕest

(∆ϕ(T ))2 =
1

F [Λϕ,T [ρin], {Πx}]
, (3.25)

with Fisher information [171,172] defined as

F [Λϕ,T [ρin], {Πx}] =
∑

x

1

P (x|ϕ)

(
dP (x|ϕ)

dϕ

)2

. (3.26)

Unfortunately, the CRB is generally not helpful in constructing an optimal estimation

strategy ϕest.

In principle, the Fisher information F depends on the phase ϕ. However, we are

primarily interested in the sensitivity at the optimal working point ϕ0, where the
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Fisher information is maximized, i.e. ϕ0 = argmax
ϕ

F [Λϕ,T [ρin], {Πx}]. Therefore,

in the following we omit the dependence on ϕ and implicitly refer to the Fisher

information at the optimal working point.

Fisher information (FI)— At this point, we address two important properties of

the Fisher information that have profound consequences for phase estimation.

Assuming that the state ρin(ϕ, T ) represents an arbitrary mixture

ρin(ϕ, T ) =
∑

k

pkρk(ϕ, T ), (3.27)

with weights pk ≥ 0 satisfying
∑

k pk = 1, the associated Fisher information is con-

vex [163,164]

F [ρin(ϕ, T ), {Πx}] ≤
∑

k

pk F [ρk(ϕ, T ), {Πx}], (3.28)

where F [ρk(ϕ, T ), {Πx}] denotes the Fisher information associated with the state

ρk(ϕ, T ) and measurement {Πx}. As a consequence, mixing quantum states cannot

increase the Fisher information and thus does not decrease the phase estimation

uncertainty, since equality in Eq. (3.28) is achieved for pure states ρin(ϕ, T ).

Assuming a separable time evolved state with N independent systems ρin(ϕ, T ) =⊗N
j=1 ρ

(j)
in (ϕ, T ), where ρ

(j)
in (ϕ, T ) denotes the state of the j-th system, and independent

measurements Πx =
⊗N

j=1 Π
(j)
xj , with measurement outcomes xj and POVMs Π

(j)
xj for

each system, the Fisher information is additive [164]

F [ρin(ϕ, T ), {Πx}] =
N∑

j=1

F [ρ
(j)
in (ϕ, T ), {Π(j)

x }], (3.29)

where F [ρ
(j)
in (ϕ, T ), {Π

(j)
x }] denotes the Fisher information of the j-th system. In

particular, in the case of identical systems and identical measurements, the N -system

Fisher information simply is given by N times the Fisher information of a single

system F [ρ
(1)
in (ϕ, T ), {Π

(1)
x }], i.e. F [ρin(ϕ, T ), {Πx}] = NF [ρ

(1)
in (ϕ, T ), {Π

(1)
x }].

Estimators— In general, within the framework of local phase estimation theory,

any estimator that is (locally) unbiased can be employed. Naturally, however, we aim

to identify estimators that saturate the CRB, which are known as efficient estimators.

Unfortunately, the CRB itself provides no recipe to determine an efficient estimation

strategy. Indeed, there is no guarantee that efficient estimators exist for an arbitrary

total number of measuerment repetitions n. Nevertheless, we are interested in some

universal estimation strategies that perform well across a variety of scenarios. In
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this context, we examine the maximum likelihood estimator and a linear estimator

associated with the so-called method of moments.

The maximum likelihoood (ML) estimator is defined as

ϕML
est (x) = argmax

ϕ
P (x|ϕ), (3.30)

which – as indicated by its name – maximizes the conditional probability (likelihood)

for a particular measurement outcome x. Hence, it selects the phase value for which

the event is most likely. Nevertheless, ϕML
est remains a random variable since the

measurement outcomes x are inherently random. Because the ML estimator relies

on the full statistical model P (x|ϕ), its sensitivity is not easily accessible in general.

However, as one of the most important theorems of classical estimation theory, the

ML estimator becomes asymptotically unbiased and efficient [164–166].3 Thus, it

saturates the CRB in the limit of many measurements n→ ∞ (or N → ∞ if systems,

dynamics and measurements are independent and identical). In particular, in this

regime, the distribution of the ML estimator converges to a Gaussian centered around

the true phase value ϕ0 with variance equal to the inverse of the Fisher information,

i.e. ϕML
est ∼ N (ϕ0, (nF(ϕ0))

−1) [164–166]. However, a priori it is not known how large

the sample size n has to be such that the CRB is approached.

Unfortunately, the ML estimator requires the knowledge of the full statistical

model P (x|ϕ). However, the evaluation of the conditional probabilities can be-

come difficult in several scenarios, especially for large ensembles and entanglement-

enhanced Ramsey schemes. In these cases, an analytical evaluation is typically not

possible, while numerical evaluation becomes computationally costly with increasing

ensemble size N . For instance, the conditional probabilities of entanglement enhanced

protocols even with relatively low complexity, as spin-squeezed states (SSS), are not

accessible in general. This raises the question of how to perform phase estimation

when only limited information about the system is available. The most prominent

alternative is represented by the method of moments, which – as the name suggests –

only takes advantage of the moments of a measurement. In particular, it solely relies

on the first two moments, effectively corresponding to the mean value and variance.

In the following, we outline the general concept, while a more detailed discussion

is provided in App. D.3 based on Refs. [6, 164, 167]. In particular, we consider an

observable X with known mean value ⟨X(ϕ, T )⟩ and variance (∆X(ϕ, T ))2. Sup-

pose n measurements of X with outcomes x1, . . . , xn, defining the random variable

Xn = 1
n

∑n
j=1 xj, which represents the sample mean of the measurement outcomes.

3The proof of this theorem is rather technical and since we do not make use of the ML estimator
within this work, we refer to the literature such as Refs. [164–166].
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Although the conditional probabilities are unknown, and thus the ML estimator can-

not be employed, the central limit theorem provides the asymptotic probability dis-

tribution of Xn in the limit of many repetitions n → ∞, or equivalently large en-

sembles N ≫ 1. In this regime, Xn
n→∞∼ N (⟨X(ϕ, T )⟩ , (∆X(ϕ, T ))2/n), representing

a Gaussian distribution with mean ⟨X(ϕ, T )⟩ and variance (∆X(ϕ, t))2/n. However,

this only works sufficiently well if ∂ϕ ⟨X(ϕ, T )⟩ ≫ ∂ϕ(∆X(ϕ, T ))2, ensuring that the

changes of P (x|ϕ) are primarily captured in the shift of the mean value. Conveniently,

in this asymptotic limit, the concept of the ML estimation strategy can be applied to

Xn, as we know its asymptotic probability distribution. Defining f(ϕ) = ⟨X(ϕ, T )⟩,
the corresponding estimator is given by the inverse of the signal ϕmom

est (Xn) = f−1(Xn).

In particular, this provides an asymptotically unbiased and efficient estimator for Xn,

i.e. when we only have access to the mean and variance of the observable X. In

general however, it is not optimal for measurements of X and thus does not saturate

the CRB, especially considering single Ramsey sequences rather than n ≫ 1. Nev-

ertheless, due to its simplicity and general applicability, it is both theoretically and

experimentally commonly used.

Additionally assuming that the signal can be linearized around the optimal work-

ing point ϕ0 and that ⟨X(ϕ0, T )⟩ = 0, which always can be achieved by shifting the

signal appropriately, application of this concept to individual interrogations yields

the linear estimator associated with the method of moments

ϕmom
est (x) =

x

∂ϕ ⟨X(ϕ, T )⟩ |ϕ=ϕ0

+ ϕ0. (3.31)

Here, the linear scaling factor is given by the inverse of the slope at the optimal

working point. Since ⟨X(ϕ0, T )⟩ =
∑

x xP (x|ϕ0) = 0, local unbiasedness of ϕmom
est at

ϕ0 is ensured. The corresponding phase estimation uncertainty directly follows from

Eq. (3.13) and, using ⟨X(ϕ0, T )⟩ = 0 as argued above, can be expressed as

(∆ϕmom(T ))2 =
(∆X(ϕ, T ))2

(∂ϕ ⟨X(ϕ, T )⟩)2
∣∣∣
ϕ=ϕ0

. (3.32)

Intuitively, Eq. (3.32) represents the inverse of the signal to noise ratio and equiv-

alently can be derived through error propagation (cf. Sec. 2.3.6). In the case of

projective spin measurements, the method of moments is related to the Wineland

squeezing parameter ξ [58, 59], introduced in Sec. 2.3.9, via

(∆ϕmom(T ))2 =
(∆Sm(ϕ, T ))2

(∂ϕ ⟨Sr(ϕ, T )⟩)2
∣∣∣
ϕ=ϕ0

=
ξ2

N
, (3.33)

where m, r and the rotation axis of the signal (pointing in z-direction within this

chapter) are mutually orthogonal directions. In general, however, the linear estimator
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ϕmom
est is not optimal, i.e.

(∆ϕmom(T ))2 ≥ 1

F [Λϕ,T [ρin], {Πx}]
, (3.34)

where {Πx} describes the measurement of observable X. In the remainder of this

chapter, when considering a linear estimator or the method of moments, we specifi-

cally refer to the estimator ϕmom
est .

3.5.2 Quantum Cramér-Rao Bound (QCRB)

In classical estimation theory, the goal is to identify the optimal inference strategy ϕest

based on measurement outcomes x, given the statistical model P (x|ϕ). In quantum

estimation theory, we additionally ask what the optimal measurement {Πx} is for a

given initial state ρin, resulting in the statistical model P (x|ϕ) = Tr(ΠxΛϕ,T [ρin]), as

defined in Eq. (3.2). Consequently, the quantum Cramér-Rao bound (QCRB) extends

the (classical) Cramér-Rao bound (CRB) by additionally optimizing over all possible

measurements {Πx}. Hence, for a given initial state ρin, the QCRB

(∆ϕQCRB(T ))2 = min
{Πx}

(∆ϕCRB(T ))2 = min
{Πx},ϕest

(∆ϕ(T ))2 (3.35)

provides a lower bound on the CRB and thus establishes the hierachy

(∆ϕ(T ))2 ≥ (∆ϕCRB(T ))2 ≥ (∆ϕQCRB(T ))2. (3.36)

While the (classical) Cramér-Rao bound (CRB) is expressed in terms of the (classical)

Fisher information, likewise, the quantum Cramér-Rao bound (QCRB) [161,162,164,

168,169]

(∆ϕQCRB(T ))2 =
1

FQ[Λϕ,T [ρin]]
(3.37)

is determined by the quantum Fisher information (QFI)

FQ[ρ] = Tr
(
ρL2
)
, (3.38)

where the symmetric logarithmic derivative (SLD) L is implicitly defined by

dρ

dϕ
=

1

2
(ρL+ Lρ) . (3.39)

The optimal measurement is provided by the projection-valued measure (PVM) as-

sociated with the orthonormal eigenstates of L. In contrast to the (classical) Fisher
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information, the quantum Fisher information is independent of the phase ϕ for uni-

tary time evolution, as the optimal measurement adapts accordingly, yielding the

same value for all phases.

In analogy to the phase estimation uncertainty, the quantum Fisher information

establishes an upper bound to the (classical) Fisher information by optimizing over

all measurements {Πx}, such that

FQ[ρ] = max
{Πx}

F [ρ, {Πx}]. (3.40)

Quantum Fisher information (QFI)— The quantum Fisher information (QFI),

similar to the (classical) Fisher information, exhibits both convexity and additivity:

For a mixed state ρin(ϕ, T ) =
∑

k pkρk(ϕ, T ), as defined in Eq. (3.27), with weights

pk ≥ 0 satisfying
∑

k pk = 1, the QFI is convex [164]

FQ[ρin(ϕ, T )] ≤
∑

k

pkFQ[ρk(ϕ, T )]. (3.41)

Consequently, despite optimizing over all possible measurements, mixing quantum

states cannot enhance the estimation precision, since equality in Eq. (3.41) is achieved

for pure states ρin(ϕ, T ).

If we assume N independent systems ρin(ϕ, T ) =
⊗N

j=1 ρ
(j)
in (ϕ, T ), the QFI is

additive [164]

FQ[ρin(ϕ, T )] =
N∑

j=1

FQ[ρ
(j)
in (ϕ, T )]. (3.42)

In the case of identical systems, this simplifies to FQ[ρin(ϕ, T )] = NFQ[ρ
(1)
in (ϕ, T )].

Hence, the QFI of separable states scales linearly with the ensemble size N at most.

Unitary phase evolution— Assuming a general unitary phase evolution with

generator G according to

ρin(ϕ) = e−iϕGρin e
iϕG (3.43)

and corresponding von Neumann equation

dρ

dϕ
= −i[G, ρ], (3.44)

the quantum Fisher information (QFI) can be expressed as [164,168]

FQ[ρin(ϕ, T )] = 2
∑

j,k
pj+pk>0

(pj − pk)2

pj + pk
| ⟨j|G |k⟩ |2, (3.45)
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where pk and |k⟩ are the eigenvalues and eigenstates of ρin(ϕ, T ), respectively. The

associated optimal measurement is given by

L = 2i
∑

j,k
pj+pk>0

pj − pk
pj + pk

|j⟩⟨j|G |k⟩⟨k| . (3.46)

Pure states— For pure states ρin(ϕ, T ) = |ψϕ⟩⟨ψϕ| and a unitary phase evolution

according to Eq. (3.44), the QFI simplifies to [164]

FQ[ρin(ϕ, T )] = FQ[|ψϕ⟩⟨ψϕ|] = 4(∆G)2 (3.47)

and thus is given by four times the variance of the generator G.

Furthermore, since the QFI is convex and thus mixing states can only decrease

the QFI, for an arbitrary state ρin(ϕ, T ) and unitary dynamics with generator G, as

described by Eq. (3.44), the QFI is bounded by [164]

FQ[ρin(ϕ, T )] ≤ 4(∆G)2, (3.48)

with equality holding for pure states ρin(ϕ, T ).

3.5.3 Optimal Quantum Interferometer (OQI)

The ultimate lower bound to the phase estimation uncertainty is represented by the

optimal quantum interferometer (OQI), completing the hierachy

(∆ϕ(T ))2 ≥ (∆ϕCRB(T ))2 ≥ (∆ϕQCRB(T ))2 ≥ (∆ϕOQI(T ))2. (3.49)

The OQI simultaneously optimizes over all three control parameters: the initial state

ρin, measurement {Πx} and estimator ϕest:

(∆ϕOQI(T ))2 = min
ρin

(∆ϕQCRB(T ))2 = min
ρin,{Πx}

(∆ϕCRB(T ))2 = min
ρin,{Πx},ϕest

(∆ϕ(T ))2.

(3.50)

Unfortunately, general expressions for the sensitivity of the OQI for arbitrary ensem-

ble sizes only exist in the ideal, decoherence-free scenario. In contrast, in the presence

of decoherence, complex optimization procedures are required. In the following, we

begin by discussing the ideal scenario, introducing the prominent standard quantum

limit (SQL) and the Heisenberg limit (HL). Afterwards, we present an iterative opti-

mization algorithm that efficiently determines the OQI numerically at least for small

ensembles.
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Decoherence-free scenario— In the ideal scenario, no decoherence processes are

present and thus, the dynamics is exclusively determined by the unitary evolution

described by Eq. (3.43). Consequently, the phase estimation uncertainty ∆ϕ(T ) ≡
∆ϕ is independent of the interrogation time T . As demonstrated in the previous

sections, the Fisher information and quantum Fisher information (QFI) are convex

and consequently, mixing states cannot improve the sensitivity. Therefore, we restrict

our analysis to pure states ρin = |ψin⟩⟨ψin| as the unitary dynamics preserves purity

and thus, pure initial states are optimal. Furthermore, we have seen that the QFI

for a pure state equals four times the variance of the generator G (cf. Eq. (3.47)).

Consequently, maximizing the variance (∆G)2 yields the optimal input probe state,

given by [164]

|ψin⟩ =
1√
2

[
|gmin⟩ + eiθ |gmax⟩

]
, (3.51)

where |gmin⟩ and |gmax⟩ denote the eigenvectors corresponding to the minimal and

maximal eigenvalues gmin and gmax of G, respectively, and θ is an arbitrary phase.

The associated QFI reads [164]

FQ[|ψin⟩] = (gmax − gmin)2. (3.52)

Suppose N identical probe systems subject to the unitary evolution described by

Eq. (3.43), representing N identical and independent quantum channels that act in

parallel on these probe systems. In this case, the phase is imprinted by the unitary

e−iϕG =
⊗N

j=1 exp
(
−iϕG(j)

)
= exp

(
−iϕ∑j G

(j)
)

, where G(j) denotes the respective

generators of the individual systems.

For separable states, which are represented by uncorrelated product states of the

form |ψin⟩ =
⊗N

j=1 |ψ
(j)
in ⟩, the QFI is maximized if each system is in the state described

by Eq. (3.51). In this case, due to its additivity, the QFI of separable states is bounded

by

F separable
Q [|ψin⟩] ≤ N(gmax − gmin)2, (3.53)

where gmin and gmax represent the minimal and maximal eigenvalues of the single

system generator G(j), respectively. The corresponding lower bound on the phase

estimation uncertainty is expressed as

∆ϕseparable ≥ ∆ϕSQL =
1√
N

1

|gmax − gmin|
, (3.54)

commonly referred to as the standard quantum limit (SQL). Here, the particle number

N plays the role of a statistical gain and thus is equivalent to N repetitions of the
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measurement on a single particle. As a consequence, the SQL is often referred to as

the classical limit, as it relies solely on classical correlations within the ensemble and

therefore does not achieve any quantum improvement.

A natural question that arises is whether entangled input probe states can enhance

the QFI. A condition that indicates metrologically useful entangled states can be

directly derived from Eq. (3.53), namely

FQ[|ψin⟩] > N(gmax − gmin)2. (3.55)

In fact, not all entangled states prove to be metrologically useful. While any state

that satisfies Eq. (3.55) is entangled, the converse is not true [6]. Not every entangled

state satisfies Eq. (3.55) and thus is metrologically useful. The maximal and minimal

eigenvalues of the generator of the dynamicsG =
∑N

j=1G
(j), denoted by g

(N)
max = Ngmax

and g
(N)
min = Ngmin, correspond to the eigenvectors |gmax⟩⊗N and |gmin⟩⊗N , respectively.

Consequently, the optimal input probe state is given by

|ψin⟩ =
1√
2

[
|gmin⟩⊗N + eiθ |gmax⟩⊗N

]
, (3.56)

resulting in the QFI of entangled states being bounded by

F entangled
Q [|ψin⟩] ≤ N2(gmax − gmin)2. (3.57)

This represents a potential gain of a factor N in the scaling with the ensemble size

compared to the SQL. The corresponding lower bound on the phase estimation un-

certainty, known as the Heisenberg limit (HL), is given by

∆ϕentangled ≥ ∆ϕHL =
1

N

1

|gmax − gmin|
. (3.58)

Unlike the SQL, where the ensemble size N reflects a purely statistical gain that can

be equally achieved by repeating the interrogation sequence N times with a single

particle, the improvement at the Heisenberg limit arises from quantum correlations

and cannot be attained through classical strategies alone. This enhancement is thus

a genuine quantum effect.

For two level systems where the phase is imprinted by a unitary rotation around

a fixed axis, as introduced in Sec. 3.3, we specifically have g = gmax = −gmin = 1/2.

Consequently, the bounds on the QFI and phase estimation uncertainty are explicitly

given by

F separable
Q [|ψin⟩] ≤ N (3.59)

∆ϕseparable ≥ ∆ϕSQL =
1√
N

(3.60)

F entangled
Q [|ψin⟩] ≤ N2 (3.61)

∆ϕentangled ≥ ∆ϕHL =
1

N
. (3.62)
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While the concept of coherent spin states (CSS) (see Sec. 2.3.7) provides a compact

framework for separable states with identical single-particle states, thereby achieving

the standard quantum limit (SQL), GHZ states (see Sec. 2.3.8) saturate the Heisen-

berg limit (HL).

Decoherence— In the presence of decoherence processes, the time evolved state

Λϕ,T [ρin] generally is no longer pure but instead represents a mixture. Consequently,

the SQL and HL are typically not saturable, since the convexity of the QFI causes

mixed states to achieve lower sensitivities. While the SQL can be redefined for spe-

cific noise processes to provide a tight bound for separable states, as we will dis-

cuss in Sec. 3.7, unfortunately, no explicit expressions exist for the lower bound in

entanglement-enhanced protocols, represented by the OQI, and thus numerical opti-

mization is required.

Iterative optimization algorithm— In the following, we outline an algorithm

presented in Ref. [170], which iteratively optimizes the initial probe state ρin and

the measurement {Πx}. Although numerical optimization becomes challenging with

increasing ensemble size, this algorithm enables efficient computation at least for

small N .

For a given input probe state ρin, the dynamics during the Ramsey dark time T

results in the state Λϕ,T [ρin]. In Sec. 3.5.2, we demonstrated that the measurement

achieving optimal sensitivity, i.e. maximal QFI, is determined by the projection-

valued measure (PVM) associated with the eigenbasis of the symmetric logarithmic

derivative (SLD). Conversely, for a given SLD L, we have to examine the optimal

input probe state ρin. To address this, we effectively have to map the dynamics from

the state to the measurement. By defining the adjoint quantum channel Λ†
ϕ,T via

Tr (Λϕ,T [ρin]A) = Tr
(
ρinΛ†

ϕ,T [A]
)

(3.63)

for arbitrary operators A, we can rewrite the QFI, defined in Eq. (3.38), as

FQ[ρin] = Tr
(
Λϕ,T [ρin]L2

)
= Tr

(
ρinΛ†

ϕ,T [L2]
)
. (3.64)

Consequently, the optimal input probe state ρin = |ψin⟩⟨ψin| corresponds to the eigen-

vector |ψin⟩ of the operator Λ†
ϕ,T [L2] associated with its maximal eigenvalue.4 In the

iterative algorithm, starting from an arbitrary state, the optimal measurement and

4Ref. [170] additionally suggests to rewrite this expression using the definition of the SLD in

Eq. (3.39), leading to Tr
(
ρinΛ

†
ϕ,T [2i[G,L]− L2]

)
. Within this reformulation, however, the funda-

mental principle remains unchanged.
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the corresponding optimal probe state are iteratively determined until the phase es-

timation uncertainty (∆ϕ(T ))2 converges to the OQI [170]. As a result, this finally

demonstrates that the optimal input probe state is pure. In contrast, convexity of

the QFI merely indicates that pure time-evolved states Λϕ,T [ρin] are optimal, which,

however, strongly depends on the particular dynamics and generally cannot be at-

tained.

3.6 Bounds in local frequency metrology

As discussed before, frequency and phase estimation are related via Eq. (3.15) and

therefore, lower bounds derived in phase estimation theory can be directly applied

to frequency metrology. Additionally, the optimal interrogation time Tmin has to

be identified, achieving the minimal frequency estimation uncertainty ∆ωmin. Since

numerical optimization was already required for the optimal quantum interferometer

(OQI) in phase estimation theory, it is likewise necessary to determine the ultimate

lower bounds in frequency metrology.

Although the iterative algorithm is efficient for small ensembles, it becomes com-

putationally costly with increasing N (cf. App. A). Fortunately, in the asymptotic

limit of large ensembles N ≫ 1, explicit expressions for the ultimate lower bound –

representing the optimal quantum interferometer (OQI) – can be derived for various

decoherence processes [173–179]. In the presence of dephasing [66, 67, 149] with rate

γ and spontaneous decay [68] with rate Γ, the asymptotic ultimate lower bound is

given by

(∆ωmin)2 ≥ (∆ωasym)2 ≥ Γ + γ

Nτ
. (3.65)

Interestingly, this bound scales linearly with N , providing only a constant enhance-

ment compared to the standard quantum limit (SQL) imposed by separable states.

In contrast, the decoherence-free scenario achieves the Heisenberg limit, which offers

an improvement of N and thus scales quadratically with the ensemble size.

In Ref. [149], (∆ωasym)2 was derived for individual dephasing, considering arbitrary

input states and a projective measurement of the spin in a suitable direction. The

extension to spontaneous decay yields Eq. (3.65), as we demonstrate in App. E.1,

where we additionally derive this bound considering arbitrary input states and a

parity measurement. Interestingly, this already represents the asymptotic ultimate

lower bound as derived in Refs. [66–68,176,179,180], where the tightness of this bound

has also been demonstrated.5

5Note that in the presence of spontaneous decay, a lower bound smaller by a factor of 4 compared
to Eq. (3.65) was derived in Refs. [66, 180], which might be achievable by means of additional
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3.7 Optimal Ramsey protocols in frequency metrol-

ogy limited by spontaneous decay

In the previous sections, we established the theoretical framework for local frequency

metrology and introduced lower bounds on the frequency estimation uncertainty. In

the remainder of this section, our goal is to achieve the ultimate lower bound – rep-

resented by the optimal quantum interferometer (OQI) – in the context of local fre-

quency metrology limited by spontaneous decay. Consequently, this section presents

the central results of this chapter. To draw parallels to the well-studied scenario

involving individual dephasing, we additionally include it in our analysis. To start

with, we investigate the performance of coherent spin states (CSS) and GHZ states

in Sec. 3.7.1, as they achieve the standard quantum limit (SQL) and Heisenberg limit

(HL), respectively, in the decoherence-free scenario. However, evaluating the quan-

tum Cramér-Rao bound (QCRB) for GHZ states reveals that the parity measurement

is not optimal in the presence of spontaneous decay, achieving at best a frequency

uncertainty equivalent to the SQL. To address this, in Sec. 3.7.2, we identify an al-

ternative interrogation scheme that saturates the QCRB for GHZ states employing a

correlated measurement and a highly nonlinear estimator. Furthermore, in Sec. 3.7.3,

we compare the sensitivity of this protocol to the optimal quantum interferometer

(OQI) and to spin-squeezed states (SSS) generated through one-axis-twisting (OAT)

interactions [125], as SSS are optimal in the asymptotic limit for large ensembles

and OAT interactions are accessible in several experimental setups [62,126–133]. Al-

though the protocol that saturates the QCRB of the GHZ state provides a substantial

gain over the SQL, it does not saturate the OQI. In addition, we present a variation

of this protocol with a GHZ-like initial state that approximates the OQI for small

ensembles. For the investigated GHZ(-like) states, it is essential to identify terms

associated with a specific number of spontaneous decay events, which we examine

in Sec. 3.7.4. In Sec. 3.7.5, we demonstrate the robustness of the measurement and

estimation schemes by performing Monte-Carlo simulations of the full feedback loop

in an atomic clock. Finally, we discuss the unique features of GHZ(-like) states in the

presence of spontaneous decay in Sec. 3.7.6. In the following, we present the primary

results, while detailed derivations are provided in App. E.

The trade-off between the increased sensitivity achieved through long interroga-

tion times and the limitations imposed by decoherence, as discussed in Sec. 3.4.2,

emerges for all Ramsey schemes. For the interrogation protocols we explore in the

ancilla systems or adaptive quantum feedback strategies, such as quantum error correction schemes.
However, saturability remains an open question and is beyond the scope of this work. Refs. [150,181]
give a comprehensive overview over different quantum control strategies and corresponding bounds.
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a b

Figure 3.2: Enhancement of protocols with GHZ(-like) states compared to
the SQL: (a) Generic frequency estimation uncertainty ∆ω(T ) in the presence of
spontaneous decay for N = 8, scaled to the SQL defined in Eq. (3.69), for the indi-
cated protocol types (see main text), γ = 0. The interrogation time is rescaled by the
excited-state lifetime of the atoms tspont = 1/Γ. Symbols indicate the optimal interro-
gation time Tmin. The gray shaded area represents the inaccessible sensitivity region
set by the OQI limit, while the blue shaded area indicates achievable frequency esti-
mation uncertainties using uncorrelated atoms. (b) Scaling of the relative frequency
estimation uncertainty at the optimal interrogation time Tmin with the ensemble size
N . The ratio ∆ω/∆ωSQL is independent of the decay rate Γ due to the comparison
with the SQL. As discussed in the main text, numerical evaluation of the OQI with
the employed algorithm is only feasible for N ≲ 30. Symbols correspond to the min-
ima in (a). The inset illustrates the asymptotic scaling for large ensembles N , using
the same axes and protocols.

following, the generic dependence of the frequency estimation uncertainty ∆ω(T ) on

the interrogation time T is illustrated in Fig. 3.2(a). Additionally, the scaling of the

minimal frequency estimation uncertainty ∆ωmin with the ensemble size N at opti-

mal interrogation time Tmin is presented in Fig. 3.2(b). While investigating frequency

metrology in the presence of spontaneous decay and individual dephasing, we are

primarily interested in the regime where spontaneous decay constitutes the dominant

limitation, as argued before. Consequently, we set γ = 0 in the results depicted in

the figures. To enable comparability between various setups, the interrogation time

T is rescaled by the excited-state lifetime of the atoms tspont = 1/Γ and the frequency

estimation uncertainty ∆ω(T ) is presented relative to the SQL (see below). Hence,

the ratios are independent of the particular decoherence strength and ensure that the

results are transferable to specific experimental parameters.

3.7.1 Separable and maximally entangled states

Coherent Spin States (CSS)— Coherent spin states (CSS) [115–117], introduced

in detail in Sec. 2.3.7, are product states of N qubits, with each qubit prepared iden-

tically. As indicated by the additivity of the quantum Fisher information (QFI), they
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represent the optimal separable states for phase estimation and frequency metrology

(cf. Sec. 3.5.2). As a result, the minimal frequency estimation uncertainty achieved

with CSS and an uncorrelated measurement determines the standard quantum limit

(SQL). In particular, the conventional Ramsey protocol employs CSS, complemented

by a collective projective spin measurement and a linear estimation strategy. The

phase estimation uncertainty is given by

(∆ϕCSS(T ))2 =
e(Γ+γ)T

N
, (3.66)

which coincides with the QCRB for CSS. The corresponding frequency estimation

uncertainty reads

(∆ωCSS(T ))2 =
e(Γ+γ)T

NτT
. (3.67)

The trade-off with respect to the interrogation time is illustrated in Fig. 3.2(a). In

the limit Γ + γ → 0 or equivalently T → 0, the SQL of the decoherence-free scenario

(∆ϕSQL)2 = 1/N is recovered. Conversely, when the interrogation time approaches

T ∼ 1/(Γ + γ), the decoherence processes become relevant and ultimately limit the

sensitivity. Minimization with respect to T yields the optimal interrogation time

TCSS =
1

Γ + γ
(3.68)

and minimal frequency estimation uncertainty

(∆ωSQL)2 = (∆ωCSS)2 =
e (Γ + γ)

Nτ
, (3.69)

which represents the lower bound attainable with separable states, thus defining the

SQL, as argued before. For Γ = 0, this reproduces the result determined by Huelga

et al. [149]. Consequently, despite being inherently different, spontaneous decay and

individual dephasing constrain the sensitivity of separable states in the same way,

thereby leading to the respective SQL.

GHZ States— In the decoherence-free scenario, a dramatic improvement over

separable states can be gained by preparing atoms in a GHZ state [121]

|GHZ⟩ =
1√
2

(
|↑⟩⊗N + |↓⟩⊗N

)
(3.70)

and measuring the parity Π = (−1)Nσ⊗N
x after the free evolution time (cf. Sec. 2.3.8),

as initially proposed by Wineland et al. [122]. This strategy, to which we refer in the

following as ‘parity-GHZ’ protocol, achieves a phase estimation uncertainty of

(∆ϕGHZ(T ))2 =
e(Γ+γ)NT

N2
(3.71)
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and corresponding frequency estimation uncertainty of

(∆ωparity−GHZ(T ))2 =
e(Γ+γ)NT

N2τT
. (3.72)

The dependence of ∆ωparity−GHZ(T ) on T is illustrated in Fig. 3.2(a). For short

interrogation times T ≪ tspont, or equivalently small decoherence rates Γ + γ ≪
1, the parity-GHZ protocol surpasses CSS and achieves the Heisenberg limit (HL)

(∆ϕHL)2 = 1/N2, which represents the ultimate lower bound in the decoherence-free

scenario. However, GHZ states collapse N times faster than uncorrelated states, as

decoherence processes become relevant at proportionally shorter T . This results in

the optimal interrogation time

Tparity−GHZ =
1

(Γ + γ)N
, (3.73)

exactly compensating for the gain in phase estimation, yielding the minimal frequency

estimation uncertainty

(∆ωparity−GHZ)2 =
e (Γ + γ)

Nτ
. (3.74)

Consequently, the parity-GHZ protocol completely loses its gain due to spontaneous

decay and individual dephasing, achieving at best a frequency estimation uncertainty

equivalent to the SQL, as depicted in Fig. 3.2(b). This is consistent with the result

derived for vanishing spontaneous emission rate Γ = 0 by Huelga et al. [149]. As a

consequence, this statement has often been generalized without further investigation

in the sense that GHZ states generally do not lead to any improvement in the presence

of decoherence.

3.7.2 Beating the standard quantum limit with GHZ states

Indeed, performing a parity measurement on the GHZ state in the presence of spon-

taneous decay is not optimal, as it does not saturate the QCRB. The QCRB for the

phase estimation uncertainty with a GHZ state is given by

(∆ϕGHZ
QCRB(T ))2 =

e(Γ+γ)NT

2N2

[
1 + e−ΓNT +

(
1 − e−ΓT

)N]
. (3.75)

The corresponding bound for the optimal frequency estimation uncertainty follows

from minimization with respect to the interrogation time

(∆ωGHZ
QCRB)2 = min

T

(∆ϕGHZ
QCRB(T ))2

τT
. (3.76)
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Figure 3.3: Schematic illustration of the heralded-GHZ protocol: The laser
with fluctuating frequency ωLO is stabilized to the atomic reference. During the free
evolution time T , the GHZ state accumulates a phase ϕ through a rotation around the
z-axis and is subject to spontaneous decay with rate Γ. Based on the measurement
outcome x of the observable X, an estimation ϕest of the phase is conducted to
correct the laser accordingly. The estimation strategy exclusively selects the maximal
measurement outcomes x = ±N

2
, effectively implementing an error detection and

mitigation scheme for spontaneous decay events.

In the absence of spontaneous decay (Γ = 0), this reproduces the findings of Huelga et

al. [149] that the QCRB equals the SQL. However, for Γ > 0 one finds (∆ωGHZ
QCRB)2 <

(∆ωSQL)2. Somewhat surprisingly, GHZ states do admit gains beyond the SQL when

the relevant decoherence process is spontaneous decay rather than dephasing noise.

Since these gains are not realized by parity measurements, the question arises as to

which alternative measurements do saturate the QCRB of the GHZ state described

by Eq. (3.75).

This can be achieved as follows (cf. Fig. 3.3): At the end of the Ramsey interro-

gation time T , atoms are subject to a unitary operation

UGHZ =

{
Tx(π) if N is even

Rx

(
π
2

)
Tx(π) if N is odd

(3.77)

where Tx(µ) = exp
(
−iµ

2
S2
x

)
denotes an one-axis-twisting (OAT) interaction with

twisting strength µ = π along x, whereas Rx(θ) represents a rotation around the

x-axis by an angle θ = π
2
. We note that the unitary UGHZ also corresponds to

the operation that may be used to generate the GHZ state from the ground state

|↓⟩⊗N initially. Subsequently, the spin is measured projectively along the z-direction,

effectively resulting in a measurement of the observable

X = UGHZ Sz U †
GHZ (3.78)
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with outcomes x ∈ {−N
2
, . . . , N

2
}. This procedure corresponds to the one explored

in the experiment reported by Leibfried et al. [128] and essentially implements an

exact Loschmidt echo [182], since the state preparation with UGHZ is complemented

by its corresponding adjoint transformation U †
GHZ for the measurement. Any such

measurement has to be accompanied by a suitable rule for estimating the phase ϕ for

a given outcome x. In order to saturate the QCRB, the nonlinear estimator

ϕest(x) =

{
± 1

N
e

(Γ+γ)
2

NT if x = ±N
2

0 else
(3.79)

has to be applied. ϕest estimates the phase for the maximal outcomes x = ±N
2

according to the standard linear estimator in local phase estimation, namely scaled

linearly with the inverse signal slope, while all other measurement outcomes are simply

discarded. In the context of atomic clocks, an estimated phase ϕest = 0 corresponds

to inferring no frequency deviation, and correspondingly, no error signal is generated.

Physical interpretation— The fact that this measurement and estimation strat-

egy performs well under spontaneous decay can be understood from two reasons,

which we motivate physically in the following. Additionally, they are reflected in the

conditional probabilities

P (x|ϕ) =
1

4

[
1 + e−ΓNT +

(
1 − e−ΓT

)N ∓ 2e−
Γ+γ
2

NT cos(Nϕ)
]

(3.80)

if x = ±N
2

and

P (x|ϕ) =
1

4

(
N

N−

)[
e−ΓT (N−N−)

(
1 − e−ΓT

)N−
+ e−ΓTN−

(
1 − e−ΓT

)N−N−
]

(3.81)

if x = N
2
− N−, where N− ∈ {1, . . . , N − 1} denotes the number of particles in the

ground state |↓⟩.
Firstly, the measurement outcomes can be interpreted as a flag for spontaneous

decay. If none of the particles decays, a relative phase between the states |↓⟩⊗N

and |↑⟩⊗N is accumulated during the free evolution time. Although these coherences

decrease over time due to the decoherence effects, the state remains in the subspace

spanned by the two maximal Dicke states and effectively one of the two GHZ-like

states UGHZ |↑⟩⊗N or UGHZ |↓⟩⊗N is measured, corresponding to outcomes x = ±N
2

,

respectively. Conversely, if a particle decays, the subspace spanned by the maximal

Dicke states is left and we obtain a measurement outcome x ̸= ±N
2

that depends on

the number of particles that decayed. Hence, measurement outcomes x ̸= ±N
2

can

only occur if at least one spontaneous decay event has taken place (cf. Sec. 3.7.4),
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such that selecting the x = ±N
2

events, as is done by the estimator Eq. (3.79), in

essence filters out all such cases.

Secondly, and quite remarkably, for the particular observable X, introduced in

Eq. (3.78), the conditional probabilities P (x|ϕ) turn out to be independent of ϕ for

all outcomes x ̸= ±N
2

. Thus, these cases do not provide any information on ϕ.

Hence, we only infer information about the phase for x = ±N
2

, while for x ̸= ±N
2

we effectively measure noise with a binomial(-like) distribution characterized by the

spontaneous decay rate Γ and interrogation time T . In particular, the conditional

probabilities P (x|ϕ) for x = N
2
−N− ̸= ±N

2
are directly associated to the probabilities

of N− decay events, as we will show in Sec. 3.7.4. Consequently, trying to estimate

the phase for outcomes x ̸= ±N
2

effectively corresponds to random estimates based on

this binomial(-like) noise distribution. Metaphorically speaking, this would essentially

result in a blind guess and spoil the sensitivity.

Together, these two features allow to implement an error detection and mitigation

scheme [183] tailored to frequency metrology. On the one hand, outcomes x ̸= ±N
2

can be considered as heralded errors signifying an unsuccessful, decohered Ramsey in-

terrogation. Conversely, outcomes x = ±N
2

signal a no-jump dynamics (see Sec. 3.7.4)

delivering maximal phase information. On the other hand, exclusively selecting these

events during (classical) post-processing results in enhanced sensitivity, saturating

the QCRB Eq. (3.75).6 We therefore refer to this scheme as ‘heralded-GHZ’ protocol

in the following.

Frequency estimation uncertainty— The dependence of the frequency estima-

tion uncertainty of the heralded-GHZ protocol ∆ωheralded−GHZ(T ), which coincides

with the QCRB for the GHZ state given by Eq. (3.75), on the interrogation time

T is illustrated in Fig. 3.2(a). For short interrogation times T ≪ tspont, or equiva-

lently small decoherence rates Γ ≪ 1, the heralded-GHZ protocol performs similarly

to the parity-GHZ protocol, with both achieving the HL. However, as T approaches

Tparity−GHZ = 1
(Γ+γ)N

, the heralded-GHZ protocol demonstrates its advantage and

achieves a lower frequency estimation uncertainty. Although the optimal interrogation

time for the heralded-GHZ protocol is slightly longer than for the parity-GHZ proto-

col, the maximal entanglement of the GHZ state still leads to Theralded−GHZ ≪ TCSS.

Thus, Theralded−GHZ approximately remains in the regime of Tparity−GHZ.

6Instead of emphasizing a gain compared to the parity-GHZ protocol, we can interpret the sit-
uation from the perspective of a decoherence-free scenario. In this context, this measurement and
estimation strategy is less susceptible to decoherence and thus suffers less from its effects than the
parity-GHZ protocol. In particular, it effectively extracts the maximum phase information from the
decohered state, as indicated by saturating the QCRB.
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In Fig. 3.2(b), we present the minimal frequency estimation uncertainty as a

function of the ensemble size N , optimized with respect to the interrogation time T

and scaled to the SQL. The heralded-GHZ protocol shows a substantial enhancement

over the SQL for all N . In particular, a constant gain of 1.8 dB relative to the SQL

is achieved for N ≥ 5 and thus, no loss in improvement is observed for large N .

Especially considering the scaling of small and intermediate ensembles, the resulting

increase in sensitivity is quite remarkable.

Unfortunately, the minimization of ∆ωheralded−GHZ(T ) with respect to the interro-

gation time T generally is not analytically possible. However, an explicit expression

can be obtained if the term (1− e−ΓT )N in Eq. (3.75) is negligible. This contribution

reflects the probability of N spontaneous decay events occurring during the interro-

gation time T (cf. Sec. 3.7.4), in which case the time evolved state would collapse to

|↓⟩⊗N . However, this scenario becomes increasingly unlikely for larger ensemble sizes

N . In this limit, the minimal frequency estimation uncertainty is given by

∆ωheralded−GHZ = ∆ωGHZ
QCRB =

∆ωSQL√
2eW (1/e)

. (3.82)

Here, W denotes the Lambert-W function (cf. App. E.7). The resulting gain over

the SQL of 1√
2eW (1/e)

< 1 corresponds to the observed 1.8 dB. In particular, this

approximation proves to be appropriate already for small ensembles N ≥ 5, as a

constant gain compared to the SQL is achieved (cf. Fig. 3.2(b)).

Linear-GHZ protocol— To highlight the importance of the nonlinear estimator

presented in Eq. (3.79), we compare it to the standard linear estimation strategy

ϕest(x) =
2x

N2
e

(Γ+γ)
2

NT , (3.83)

which we denote as ‘linear-GHZ’ protocol. As argued before, measurement outcomes

x ̸= N
2

provide no phase information (cf. Eq. (3.81)), leading to random phase guesses

that degrade the sensitivity. Consequently, the frequency estimation uncertainty as-

sociated with the linear-GHZ protocol, given by

(∆ϕ(T )linear−GHZ)2 =
e(Γ+γ)NT

N3

[
1 + (N − 1)

(
1 − 2e−ΓT + 2e−2ΓT

)]
, (3.84)

is compromised relative to the heralded-GHZ protocol for N > 2, as illustrated in

Fig. 3.2(b). Nevertheless, an improvement over the SQL is achieved, with maximal

gain observed for N = 3. However, this enhancement diminishes with increasing

ensemble size and the sensitivity ultimately converges to the SQL, resulting in a van-

ishing advantage in the asymptotic limit.
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Two immediate concerns arise regarding the heralded-GHZ protocol. Firstly, how

well does it compare to other potential strategies where, beyond measurements and

estimators, the initial state is also optimally chosen and may differ from a GHZ

state? Secondly, one may question the effectiveness of a strategy that ignores all but

two measurement outcomes in each interrogation cycle, particularly in the context

of atomic clocks, where the ultimate challenge is to stabilize the constantly drifting

phase of a local oscillator. We address both of these issues in the remainder of this

section.

3.7.3 Saturating the optimal quantum interferometer

The performance of the optimal quantum interferometer (OQI) is determined by opti-

mizing over all entangled initial states, measurements, and estimators. Unfortunately,

as discussed in Sec. 3.5.3, no general expressions for the OQI sensitivity exist for ar-

bitrary ensemble sizes and thus complex optimization procedures are required. In

particular, the iterative algorithm presented in Ref. [170] and outlined in Sec. 3.5.3

allows an efficient computation at least for small ensembles (cf. App. A). However,

numerical optimization becomes challenging with increasing N . In the asymptotic

limit (N ≫ 1), the ultimate lower bound is given by (cf. Sec. 3.6)

(∆ωasym)2 ≥ Γ + γ

Nτ
, (3.85)

which results in a maximal improvement of 1/e over the SQL Eq. (3.69), corresponding

to a gain of 4.3 dB. Interestingly, individual dephasing and spontaneous decay exhibit

the same asymptotic limit despite their fundamentally different nature. For individ-

ual dephasing, it was demonstrated in Ref. [148] that this bound is asymptotically

saturated by spin-squeezed states (SSS) generated by one-axis-twisting (OAT) interac-

tions [125], introduced in detail in Sec. 2.3.9. Likewise, SSS prove to be asymptotically

optimal in the presence of spontaneous decay, as shown in the inset of Fig. 3.2(b).

As a consequence, we focus on small ensembles where the OQI can be evaluated nu-

merically and benchmark the heralded-GHZ protocol against SSS generated by OAT

due to their asymptotic optimality.

Although the heralded-GHZ protocol provides a substantial enhancement com-

pared to the SQL, it does not saturate the OQI, which likewise represents a constant

improvement with respect to the SQL in the regime where numerical evaluation is

feasible (N ≤ 30), as illustrated in Fig. 3.2(b). Furthermore, in this regime, the

heralded-GHZ protocol achieves sensitivities relatively close to the OQI, despite its

low complexity. Conversely, the enhancement of SSS over the SQL increases with N .

In particular, for larger ensembles (N ≥ 42), SSS surpass the heralded-GHZ protocol
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in sensitivity and ultimately approximate the lower bound Eq. (3.85) asymptotically

(cf. inset of Fig. 3.2(b)). Consequently, the gain of the OQI over the SQL will increase

likewise for larger ensembles.

The gap between the heralded-GHZ protocol and the OQI for small ensembles

raises the question of which protocol could be used to close it and what resources

would be required to do so. The fact that the gap is independent of the number of

particles suggests that this could be possible with a fixed protocol that varies little or

not at all with N . Furthermore, the optimal interrogation time TOQI is close to the

one of the heralded-GHZ protocol (cf. Fig. 3.2(a)) and thus indicates that GHZ-like

states might be optimal. Indeed, we have identified a particular interrogation scheme

that reaches the level of the OQI for several tens of atoms and outperforms SSS for up

to about 80 atoms. Surprisingly, no deep circuit depths are necessary, but a simple

extension of the heralded-GHZ protocol involving one more twisting operation for

state preparation is sufficient. The initial state

|ψin⟩ = UGHZ Rz(θ)UGHZ|↓⟩⊗N = αθ|↓⟩⊗N + βθ|↑⟩⊗N (3.86)

is generated by an additional OAT interaction UGHZ and rotation Rz(θ) with optimal

rotation angle θ depending on the ensemble size N and the dimensionless parameter

ΓT (cf. App. E.8). Essentially, the additional transformation only modifies the

coefficients αθ and βθ, generating an unbalanced GHZ-like state (referred to as ‘uGHZ’

in the following). As limiting cases, the GHZ state is reproduced for θGHZ = π
2N

,

rendering the additional transformation redundant, while the collective excited state

|↑⟩⊗N and ground state |↓⟩⊗N are obtained for θ↑ = 0 and θ↓ = π/N , respectively.

In particular, the optimal rotation angle features a trade-off between two contrary

aspects. On the one hand, based on the ideal scenario, one would expect the highest

sensitivity if the time evolved state comprises an equal superposition of both maximal

Dicke states, which is achieved for θequal with θ↑ ≤ θequal ≤ θGHZ. Hence, this strategy

effectively aims to compensate for spontaneous decay during the free evolution time.

On the other hand, however, a higher population in the excited state at the same

time increases the decoherence effects due to spontaneous decay, counteracting the

aforementioned benefit. Ultimately, a compromise is found with the optimal rotation

angle θopt in the range θequal ≤ θopt ≤ θGHZ, as illustrated in Fig. 3.4(a), assigning a

higher weight to the excited state.

Due to its GHZ-like nature, the measurement defined in Eq. (3.77) remains opti-

mal, ensuring that the phase is encoded exclusively onto the maximal Dicke states.

Consequently, the nonlinear estimation strategy proposed in Eq. (3.79), with an ap-

propriately adapted scaling factor corresponding to the inverse of the signal slope,

is employed to filter out measurement outcomes x ̸= ±N
2

, which are associated with
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a b

Figure 3.4: Optimal rotation angle and probability of no-jump dynamics:
(a) Dependence of the minimal frequency estimation uncertainty ∆ωmin(θ), scaled to
the SQL, at optimal interrogation time Tmin on the rotation angle θ in the interval
θ↑ = 0 ≤ θ ≤ θ↑ = π

N
for N = 8. Symbols indicate the three special cases discussed

in the main text. The blue shaded area represents achievable frequency estimation
uncertainties using uncorrelated atoms. (b) Probability of the no-jump dynamics
p0 (dashed) and the quantum trajectory involving N spontaneous decay events pN
(solid) at optimal interrogation time Tmin as a function of the ensemble size N .

spontaneous decay events (cf. Sec. 3.7.4). Therefore, this protocol exhibits charac-

teristics similar to the heralded-GHZ protocol. The corresponding phase estimation

uncertainty is given by

(∆ϕheralded−uGHZ(T ))2 =
e(Γ+γ)NT

4N2

[
1 +

√
e−NΓT + (1 − e−ΓT )N

]2
, (3.87)

which coincides with the QCRB of the uGHZ state. Fig. 3.2(b) shows that this

‘heralded-uGHZ’ protocol saturates the OQI for small ensemble sizes (N ≤ 4) and

achieves a constant gain of 2.25 dB compared to the SQL for N ≥ 5, remaining close

to the OQI for intermediate N . Analogous to the heralded-GHZ protocol, an explicit

expression can be determined if the term
(
1 − e−ΓT

)N
is negligible, yielding

∆ωheralded−uGHZ = ∆ωSQL

√
1 + 2W (1/2

√
e)

4
√
eW (1/2

√
e)

, (3.88)

where the gain of

√
1+2W (1/2

√
e)

4
√
eW (1/2

√
e)

< 1 over the SQL corresponds to the observed 2.25

dB. Again, the asymptotically optimal SSS are advantageous for larger ensembles

(N > 87).

3.7.4 Spontaneous decay events in GHZ(-like) states

In the preceding sections, we identified specific expressions in the conditional prob-

abilities and estimation uncertainties with distinct numbers of spontaneous decay
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events. At this point, we aim to illustrate this association based on the framework of

quantum trajectories and quantum jumps, outlined generally in Sec. 2.3.3 and applied

to GHZ(-like) states in the presence of spontaneous decay in App. E.9.

To determine the aforementioned expressions associated with a particular number

of spontaneous decay events for GHZ(-like) states, we consider the generic initial state

ρin = ρ(N)
gg |↓⟩⟨↓|⊗N + ρ(N)

ge |↓⟩⟨↑|⊗N + ρ(N)
eg |↑⟩⟨↓|⊗N + ρ(N)

ee |↑⟩⟨↑|⊗N . (3.89)

The dynamics according to the master equation, Eq. (3.4), leads to the time evolved

state

ρin(ϕ, T ) = ρ(N)
gg |↓⟩⟨↓|⊗N + e−

ΓNT
2

(
ρ(N)
ge e

iNϕ|↓⟩⟨↑|⊗N + ρ(N)
eg e−iNϕ|↑⟩⟨↓|⊗N

)

+ ρ(N)
ee

(
e−ΓT |↑⟩⟨↑| +

[
1 − e−ΓT

]
|↓⟩⟨↓|

)⊗N
. (3.90)

In the framework of quantum trajectories and quantum jumps, the state ρin(ϕ, T ) is

expressed as a mixture

ρin(ϕ, T ) =
∞∑

k=0

pk(ϕ, T )ρk(ϕ, T ), (3.91)

where ρk(ϕ, T ) denotes the normalized state involving k quantum jumps occurring

with probability pk(ϕ, T ). For spontaneous decay, at most N quantum jumps can

occur, as this scenario would map the collective excited state |↑⟩⊗N to the collective

ground state |↓⟩⊗N . Thus, the mixture in Eq. (3.91) contains N + 1 terms with

k ∈ {0, . . . , N}.

Of particular interest for the GHZ(-like) protocols investigated in this thesis is the

‘no-jump’ dynamics, characterized by the absence of any spontaneous decay events.

This contribution is determined by

ρ0(ϕ, T ) =
1

p0(ϕ, T )

[
ρ(N)
gg |↓⟩⟨↓|⊗N + e−

ΓNT
2

(
ρ(N)
ge e

iNϕ|↓⟩⟨↑|⊗N + ρ(N)
eg e−iNϕ|↑⟩⟨↓|⊗N

)

+ ρ(N)
ee e−ΓNT |↑⟩⟨↑|⊗N

]
. (3.92)

Consequently, the subspace of the maximal Dicke states in the time evolved state

described by Eq. (3.90), ultimately resulting in outcomes x = ±N
2

for measurements

of the observable X, is not solely governed by the no-jump dynamics, as the term

ρ
(N)
ee

(
1 − e−ΓT

)N | ↓⟩⟨↓ |⊗N is not captured in ρ0(ϕ, T ). The probability of the no-

jump dynamics reads

p0(ϕ, T ) = ρ(N)
gg + ρ(N)

ee e−ΓNT . (3.93)
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In contrast, states in the expansion Eq. (3.91) with k > 0 involve k spontaneous

decay events and are given by

ρk(ϕ, T ) =
ρ
(N)
ee

pk(ϕ, T )
e−ΓT (N−k)

(
1 − e−ΓT

)k P
(
|↓⟩⟨↓|⊗k ⊗ |↑⟩⟨↑|⊗N−k

)
, (3.94)

where the permutation operator P generates the
(
N
k

)
distinct permutations of the

state |↓⟩⟨↓|⊗k ⊗ |↑⟩⟨↑|⊗N−k, with k particles in the ground state and N − k particles

in the excited state. The corresponding probabilities of dynamics with k > 0 decay

events read

pk(ϕ, T ) = ρ(N)
ee

(
N

k

)
e−ΓT (N−k)

(
1 − e−ΓT

)k
(3.95)

and are directly connected to the conditional probabilities associated with measure-

ment outcomes x ̸= ±N
2

in the GHZ(-like) protocols investigated in the previous

sections (cf. Eq. (3.81)).

In particular, the scenario of N spontaneous decay events occurs with probability

pN(ϕ, T ) = ρ(N)
ee

(
1 − e−ΓT

)N
(3.96)

and results in the system being in the collective ground state |↓⟩⊗N . Therefore, to

be precise, the nonlinear estimator in Eq. (3.79) does not exclusively select the no-

jump dynamics, but additionally takes the scenario involving N spontaneous decay

events into account. However, the probability of this event becomes increasingly

unlikely for larger ensemble sizes N . In particular, this contribution can be effectively

disregarded already for N ≥ 5, as shown in Fig. 3.4(b). Consequently, both the

heralded-GHZ and heralded-uGHZ protocols achieve their maximal gain of 1.8 dB and

2.25 dB over the SQL, respectively, once the scenario of N spontaneous decay events

becomes negligibly unlikely and thus, the nonlinear estimator in Eq. (3.79) indeed

selects the no-jump dynamics ρ0(ϕ, T ). Furthermore, Fig. 3.4(b) illustrates that a

higher initial population in the excited state increases the decoherence effects caused

by spontaneoud decay, as discussed in Sec. 3.7.3. This is reflected in the reduced

probability of the no-jump dynamics for the heralded-uGHZ protocol compared to

the heralded-GHZ protocol.

3.7.5 Performance in atomic clocks

To investigate the robustness of the presented measurement and estimation schemes to

spontaneous decay in a realistic scenario of frequency metrology, we perform numerical

Monte Carlo simulations of the full feedback loop in an atomic clock and compare the

results to the theoretical predictions. The Monte Carlo simulation implements the
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basic principles of an atomic clock, as described in Sec. 3.2. Further implementation

details are provided in App. A and Ref. [3].

As discussed in Sec. 3.4.3, the long term stability of an atomic clock in a dead

time-free scenario is well approximated by

σy(τ) =
1

ω0

∆ϕ(T )√
τT

=
∆ω(T )

ω0

(3.97)

and thus corresponds to the frequency estimation uncertainty rescaled with ω0. Con-

sequently, in Fig. 3.5, we present our results in two complementary ways: Lower

x-axis and left y-axis refer to general frequency estimation where the uncertainty is

rescaled to be independent of the particular averaging time τ and lifetime tspont = 1/Γ.

Thus, it allows for an application to several experimental setups and atomic species

as long as spontaneous decay remains the dominating decoherence effect. Upper

x-axis and right y-axis illustrate results in an atomic clock for the particular ex-

ample of Ca+-ions with lifetime tspont = 1
Γ

≃ 1.1 s [184] and transition frequency

ω0 = 2πν0 ≃ 2π × 411.042 THz [37, 185, 186]. Furthermore, we consider frequency

fluctuations corresponding to a state-of-the-art clock laser. In particular, we assume

a flicker noise limited laser with coherence time Z ≃ 7.5 s ≫ tspont [88] (cf. Sec. 2.2.2).

Results of numerical simulations (symbols) in comparison to theoretical predictions

(lines) of the investigated protocols are shown in Fig. 3.5 for the representative cases of

(a) N = 4 and (b) N = 16 particles, while the results and conclusions generally apply

to other ensemble sizes as well. As Monte Carlo simulations are stochastic processes,

resulting stabilities fluctuate around the average value. Overall, numerical simula-

tions of all discussed interrogation schemes show very good agreement with theoretical

predictions. Therefore, all schemes, including the heralded-GHZ and heralded-uGHZ

protocols in particular, are robust and thus suited for realistic scenarios as in the

context of atomic clocks. At interrogation times T ≳ Tmin, fringe hops occur due

to the impact of decoherence effects, where the feedback loop passes to an adjacent

fringe resulting in the clock running systematically wrong and consequently spoiling

the clock stability. Moreover, the comparison of N = 4 and N = 16 already indicates

the transition between the optimality of GHZ-like protocols and squeezing protocols.

3.7.6 Unique features of GHZ(-like) states in the presence of
spontaneous decay

Finally, we want to emphasize that both the measurement of the observable X (cf.

Eq. (3.78)) and the application of the nonlinear flag estimator (cf. Eq. (3.79)) are

specifically designed for GHZ(-like) states limited by spontaneous decay, achieving
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N = 4 N = 16

a b

Figure 3.5: Monte-Carlo simulations of the full feedback loop in an atomic
clock: Simulation results for (a) N = 4 and (b) N = 16 are displayed by symbols,
while theoretical predictions are shown as lines. Data points denote the average over
10 independent clock runs. Error bars indicate the corresponding standard deviations.
Upper x-axis and right y-axis illustrate results in an atomic clock for the particular
example of Ca+-ions with lifetime tspont = 1

Γ
≃ 1.1 s [184] and transition frequency

ω0 = 2πν0 ≃ 411.042 THz [37]. In each clock run, 107 cycles were performed and
the corresponding Allan deviation was evaluated. The presented values are obtained
by extrapolating the Allan deviation at τ = 1 s based on the long term stability
Eq. (3.97) at τ ≫ 1 s. The gray shaded area represents the inaccessible sensitivity
region set by the OQI limit, while the blue shaded area indicates achievable frequency
estimation uncertainties using uncorrelated atoms.

substantial enhancements over the SQL and approximating the OQI for small ensem-

bles. Unfortunately, the underlying concepts cannot be easily transferred to other

scenarios to obtain comparable improvements, as we will discuss below. In particu-

lar, we examine the impact of (i) the measurement, (ii) the initial state and (iii) the

decoherence process.

(i) Investigating measurements for GHZ(-like) states, primarily two key aspects are

essential. First, the measurement has to distinguish between different Dicke states

to detect spontaneous decay events. In particular, the parity measurement, with

its binary outcomes, does not satisfy this condition and thus is inadequate for this

purpose, as it only indicates whether there is an even or odd number of particles in the

ground state. Consequently, no estimator can be constructed which exclusively selects

the no-jump term. Second, the phase has to be imprinted solely onto the maximal

Dicke states, otherwise, phase information is lost when selecting the measurement

outcomes x = ±N
2

, as done by the flag estimator. Both requirements are addressed

by measurements of the observable X.

(ii) The implicit detection of spontaneous decay events solely based on the mea-

surement outcomes x is a key aspect of the presented protocols with GHZ(-like)

states. This feature originates from the superposition of only two Dicke states, which

are well separated in terms of the quantum number M (cf. Fig. 3.6(a) and (b)). This
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separation allows to identify measurement outcomes x ̸= ±N
2

as indicators for spon-

taneous decay events. In contrast, without such separation, measurement outcomes

cannot be uniquely associated with spontaneous decay events, preventing the detec-

tion of these quantum jumps and ultimately degrading sensitivity. Indeed, the GHZ

state is not the only state that enables this capability. In principle, superpositions of

multiple Dicke states can pursue a similar strategy, provided that there is negligible

overlap in the distributions of each time-evolved Dicke state. Conversely, CSS exhibit

a binomial-like distribution of Dicke states, preventing the unique identification of

spontaneous decay events, as no separation of the distributions of the time-evolved

Dicke states is ensured, as illustrated in Fig. 3.6(c) and (d). To identify spontaneous

decay events for CSS would require to detect them explicitly, which is further dis-

cussed in Sec. 3.10.2. However, states featuring such distinct separation are typically

highly entangled and, as indicated by Fig. 3.2(b), become less favorable for large

ensembles due to their susceptibility to decoherence processes. In contrast, weakly

entangled states, such as SSS with binomial(-like) distributions, benefit substantially

from larger ensembles due to their resilience to decoherence effects and thus become

asymptotically optimal.

(iii) In Ramsey interferometry, although entangling transformations – effectively

generating correlated measurements – may be applied after the free evolution time,

typically a projective spin measurement is performed in the end (cf. Eq. (3.78)),

yielding the population difference. Consequently, only quantum jumps that affect

the populations, such as spontaneous decay events, are detectable. Conversely, if

the decoherence process only degrades the coherences over time, as in the case of

dephasing, changes in the measurement statistics may originate from either the deco-

herence process or the phase evolution, without means to distinguish between them.

To give an example, this ambiguity also becomes evident for the heralded-GHZ and

heralded-uGHZ protocols. For dephasing, quantum jumps effectively manifest as

random phase shifts between the ground and excited states of the particles. Hence,

only the contrast of the phase information decreases, while the state remains in the

subspace spanned by the maximal Dicke states (cf. Eq. (3.80) and Eq. (3.81) for

Γ = 0). However, changes in the signal can likewise arise from variations in the phase

ϕ, despite the fundamentally different nature of these processes. Consequently, in

such cases, the changes in the measurement statistics cannot be uniquely attributed

to either quantum jumps or variations in the phase, thereby compromising sensitiv-

ity.7 In the worst-case scenario, this ambiguity can lead to a complete loss of the

7To be precise, the coherences likewise decrease for spontaneous decay and thus this particular
effect of the decoherence process cannot be detected. However, this contribution originates from the
continuous non-unitary time evolution (cf. App. E.9), while quantum jumps indeed can be detected,
as discussed before. This feature represents the fundamental difference between spontaneous decay
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a b

c d

Figure 3.6: Separation of Dicke states and detection of spontaneous decay
events: Population of the GHZ state (top) and the CSS (bottom) at T = 0 (left)
and optimal interrogation time Tmin (right). The GHZ state represents an equal
superposition of the two maximal Dicke states with M = ±N

2
(depicted in blue

and green, respectively). Consequently, the distribution of the time evolved state
remains distinctly separated with respect to M . In contrast, the CSS comprises a
superposition of several adjacent Dicke states. At Tmin, the contributions of three
generic Dicke states, indicated by corresponding colors at T = 0, to the overall
distribution (gray) are shown. In particular, these contributions exhibit a substantial
overlap, preventing the implicit detection of spontaneous decay events.

entanglement-induced enhancement, as observed for GHZ states in the presence of

dephasing.

3.8 Crossover to regimes limited by dephasing

In the previous section, we primarily focused on scenarios where spontaneous decay

with rate Γ imposed the dominant limitation. However, in experimental setups, ad-

ditionally dephasing processes may be present. To evaluate the robustness of the pre-

sented protocols employing GHZ(-like) states in the presence of both individual and

collective dephasing with rates γ and γc, respectively, we investigate the crossover be-

tween regimes dominated by spontaneous decay and those where dephasing becomes

the primary limitation. In particular, we assess the minimal frequency estimation

and dephasing.
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a b

N = 4 N = 16

c d

N = 4 N = 16

Figure 3.7: Crossover to dephasing: Crossover between regimes limited by spon-
taneous decay with rate Γ and (top) individual dephasing with rate γ and (bottom)
collective dephasing with date γc. Minimal frequency estimation uncertainty ∆ωmin,
relative to the SQL, for (left) N = 4 and (right) N = 16 as a function of γ/Γ and
γ/Γ, respectively. The ratio ∆ω/∆ωSQL is independent of the decoherence rates due
to the comparison with the SQL.

uncertainty ∆ωmin relative to the SQL for a given ensemble size N , while systemati-

cally varying the ratios γ/Γ and γc/Γ, as shown in Fig. 3.7. Small ratios correspond

to the regime where spontaneous decay is dominant, thereby reproducing the results

of the previous section, while large ratios represent regimes dominated by dephasing.

As before, we focus on small ensembles, where the OQI can be evaluated numeri-

cally and GHZ(-like) states perform close to it due to the detection and mitigation

of spontaneous decay events. This results in a pronounced difference between both

regimes since quantum jumps arising from dephasing cannot be uniquely identified,

as discussed in detail in the previous section. Consequently, the OQI demonstrates

a significantly increased gain over the SQL in the regime dominated by spontaneous

decay. For both types of dephasing, this enhancement diminishes with increasing

ratios γ/Γ and γc/Γ, respectively, as the contribution of undetectable decoherence

effects from dephasing grows. In contrast, for large ensembles (N ≫ 1), weakly en-

tangled states become optimal, as discussed in Sec. 3.7.6, and detecting quantum

jumps becomes less relevant.
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Individual dephasing— For individual dephasing and small ensembles, as illus-

trated in Fig. 3.7(a) and (b), the difference in the enhancement of the OQI over the

SQL between both regimes is particularly pronounced. Surprisingly, the heralded-

uGHZ protocol performs close to the OQI limit approximately until both decoherence

processes contribute comparably, i.e. Γ ≃ γ. The sensitivity of SSS remains inde-

pendent of the ratio γ/Γ, since spontaneous decay and individual dephasing affect

projective spin measurements with a linear estimation strategy in the same way (cf.

App. E.1.1). With increasing ensemble size, the enhancement of SSS over the SQL

grows. Although SSS become optimal only in the asymptotic limit of large ensem-

bles (N ≫ 1), the gain of the OQI in the regime dominated by individual dephasing

increases likewise. Consequently, the difference between the OQI in both regimes

diminishes and the heralded-uGHZ protocol loses its optimality at slightly smaller

ratios γ/Γ. For γ ≳ Γ, the sensitivity of the GHZ(-like) protocols converges towards

the SQL, as they lose their advantage when individual dephasing becomes dominant,

consistent with the findings in Ref. [149] for Γ = 0.

Collective dephasing— In comparison, GHZ(-like) states exhibit a substantially

enhanced susceptibility to collective dephasing, as illustrated in Fig. 3.7(c) and (d). In

particular, these states collapse N -times faster compared to individual dephasing (cf.

App. E). As a result, the critical ratio at which the heralded-(u)GHZ protocols lose

their optimality decreases accordingly with the ensemble size N and thus, GHZ(-like)

states become unfavorable for large ensembles in the presence of collective dephasing.

Furthermore, for γc/Γ ≫ 1, the sensitivity does not even converge to the SQL – as it

does for individual dephasing – but instead degrades substantially below the classical

limit. Consequently, the heralded-uGHZ protocol performs close to the OQI limit only

in the regime dominated by spontaneous decay Γ ≫ γc, while losing its optimality

already when Γ > γc. Moreover, the gain of SSS over the SQL diminishes with

increasing ratio γc/Γ. In contrast to spontaneous decay and individual dephasing, the

enhancement of SSS remains approximately independent of the ensemble size in the

regime constrained by collective dephasing. Interestingly, while the gain of the OQI

over the SQL diminishes with increasing γc/Γ, as discussed before, it unexpectedly

exhibits a minimal enhancement in the crossover region before increasing again as

collective dephasing becomes dominant. Although this gain remains smaller than

in the contrary regime – where spontaneous decay imposes the primary limitation

(i.e. γc ≪ Γ) – this behavior differs fundamentally from the scaling observed under

individual dephasing.

Phenomenologically, this can be understood as follows: For spontaneous decay

and individual dephasing, the sensitivity is primarily determined by the degree of
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entanglement in the initial state. Although correlated measurements can enhance

the sensitivity – by facilitating a higher entanglement depth in the initial state or by

enabling phase information to be encoded onto particular Dicke states, as observed

for the heralded-(u)GHZ protocol – they influence the frequency estimation uncer-

tainty only implicitly. In contrast, for collective dephasing, the measurement explic-

itly affects the sensitivity by substantially increasing the dynamic range – primarily

characterized by the optimal interrogation time Tmin. This qualitative distinction is

already evident for CSS. While a conventional projective spin measurement suffices

to saturate the QCRB in the presence of spontaneous decay and individual dephasing

(cf. App E.2), this is not the case for collective dephasing, where a correlated mea-

surement is required. This behavior is generically illustrated for N = 8 and Γ = γc in

Fig. 3.8(a). The QCRB of CSS exhibits a substantial enhancement compared to CSS

with a projective spin measurement – which imposes the SQL – achieved at a longer

optimal interrogation time Tmin. To demonstrate that this effect genuinely arises from

collective dephasing, the QCRB of CSS is compared to the SQL as a function of the

ratio γc/Γ in Fig. 3.8(b). Furthermore, the scaling of the minimal frequency estima-

tion uncertainty ∆ωmin and the corresponding optimal interrogation time Tmin with

the ensemble size N in the regime where collective dephasing imposes the primary

limitation (Γ/γc → 0) are shown in Fig. 3.8(c) and (d), respectively. Interestingly,

the maximal gain of the QCRB of CSS over the SQL is obtained for N = 4, whereas

it decreases for larger ensembles. In contrast, the ratio of the optimal interrogation

time for the QCRB of CSS and CSS with a projective spin measurements steadily

increases with N .

Consequently, the crossover between the regimes where spontaneous decay and

collective dephasing limit the sensitivity reflects a trade-off between enhancements

through initial states and measurements, ultimately resulting in the particular scaling

observed in Fig. 3.7(c) and (d). Since collective dephasing is phenomenologically

similar to the treatment of laser noise within the Bayesian framework, it affects clock

stability similarly and we refer to Chapter 4 for further details.

3.9 Conclusion

We have presented a protocol with low complexity that saturates the QCRB of GHZ

states and thus, unexpectedly, results in a substantial enhancement of 1.8 dB com-

pared to the SQL in the presence of spontaneous decay. This is achieved by a mea-

surement and estimation scheme that allows to identify and exclude spontaneous

decay events in the Ramsey sequence and thus implements an error detection and

mitigation scheme to improve frequency metrology. Additionally, we have identified
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Figure 3.8: QCRB of CSS in the presence of collective dephasing: (a) Fre-
quency estimation uncertainty ∆ω(T ) relative to the SQL for N = 8 and Γ = γc.
The QCRB for CSS demonstrates a substantial enhancement compared to the SQL,
represented by CSS with a projective spin measurement, achieved at a longer optimal
interrogation time Tmin. (b) Enhancement of the QCRB for CSS over the SQL at
optimal interrogation time Tmin as a function of the ratio γc/Γ. Unlike in the regime
dominated by spontaneous decay, a projective spin measurement does not suffice to
saturate the QCRB for CSS when collective dephasing becomes relevant. (c) Scaling
of the minimal frequency estimation uncertainty of the QCRB for CSS relative to
the SQL as function of the ensemble size N in the regime dominated by collective
dephasing (Γ = 0). (d) Corresponding ratio of the optimal interrogation times of the
QCRB for CSS TQCRB and of CSS with a projective spin measurement TCSS.

a GHZ-like protocol that saturates the OQI for small ensembles and closely approx-

imates it for intermediate ensemble sizes. The observed 2.25 dB gain over the SQL

arises from an unequal superposition of the two maximal Dicke states, which coun-

teracts spontaneous decay during the free evolution time and can be generated by a

minor modification of the GHZ state. Furthermore, the robustness of these protocols

was shown through comprehensive Monte-Carlo simulations of atomic clocks, thereby

paving the way for near-term implementations into experimental setups. Finally, we

have investigated the susceptibility of the GHZ(-like) protocols to dephasing. While

they remain robust to individual dephasing, approximating the OQI until the noise

contributions from both decoherence processes become comparable, they exhibit a sig-

nificantly higher susceptibility to collective dephasing, ultimately performing worse
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than the SQL.

GHZ(-like) states are an attractive experimental choice, since in a variation of the

protocol involving the entanglement of Zeeman states of equal magnitude but opposite

sign, they can be made first order magnetic field insensitive [4, 158], thus eliminate

dephasing, the major source of decoherence [157]. Furthermore, the shorter optimum

probe time compared to CSS reduces loss of contrast and time dilation shifts from

motional heating of the ion crystal [12], thus improving the signal-to-noise ratio and

the accuracy of such a clock. In addition to frequency metrology, the findings of this

chapter can be applied to various precision measurements where phase estimation is

limited by spontaneous decay.

3.10 Outlook

In the context of the comprehensive investigation of frequency metrology limited

by spontaneous decay in this chapter, two primary open questions remain that are

beyond the scope of this thesis.

First, as discussed before and shown in Fig. 3.2(b), while the heralded-uGHZ

protocol approaches the OQI for small ensembles, it does not fully saturate it for

N > 4. Consequently, the optimal states that do saturate the OQI have to be

identified. For instance, the population distribution of the optimal input probe state

for N = 8 is illustrated in Fig. 3.9(a). This state exhibits a uGHZ-like structure

with an additional population in the Dicke state with M = −1. In particular, this

state maintains a distinct separation in the distributions of each time-evolved Dicke

state (cf. Sec. 3.7.6) even after the free evolution time, as depicted in Fig. 3.9(b).

A detailed investigation of these optimal states could provide an intuitive physical

explanation for their specific population distributions and the corresponding optimal

measurements.

Second, the transition of the optimal Ramsey schemes, from GHZ-like protocols

for small ensembles to SSS in the asymptotic limit, has to be examined. Specifically,

the crossover from GHZ-like states, exhibiting a distinct separation of the Dicke

states, to SSS with a binomial-like distribution (cf. Sec. 3.7.6) has to be investigated.

Furthermore, it would be interesting to determine whether the OQI converges to

the asymptotic limit like SSS, or if other optimal states can be identified in the

transition regime. A first indication is provided by the evaluation of the QCRB for

SSS, illustrated in Fig. 3.10. Here, the initial state corresponds to the optimal SSS

determined with a projective measurement, while only the measurement is optimized.

Already this simple approach reveals that SSS with a projective spin measurement

are not optimal in the transition regime, suggesting the potential existence of superior
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a b

Figure 3.9: Optimal initial state: The population distribution of the optimal initial
state for N = 8 at (a) T = 0 and (b) optimal interrogation time Tmin. This state
preserves a distinct separation of the three contributing Dicke states (depicted by
different colors) during the free evolution time.

protocols. Overall, while the OQI appears to converge to the asymptotic limit for

smaller ensembles than SSS, a comprehensive analysis requires the computation of

the OQI for larger ensembles (cf. App. A).

Additionally, the model could be extended to incorporate further experimental

noise processes. For instance, imperfections in initial state preparation or measure-

ment errors could be taken into account. As explored in Refs. [5, 141], these effects

can be modeled as decoherence processes – such as dephasing during the entangling

gates. A simplified approach for implementing this in numerical simulations could

involve an additional sampling stage that determines the success or failure of each

Ramsey sequence.

Moreover, in the following, we address two particular questions raised by Shimon

Kolkowitz during a discussion.

3.10.1 Incoherent pumping

Spontaneous decay describes the probabilistic transition of an excited atom to a lower

energy state by emitting a photon (cf. Sec. 3.1). Conversely, incoherent pumping

refers to the stochastic process where an atom absorbs a photon from an incoherent

source, leading to a transition to a higher energy level. Hence, incoherent pumping

can be interpreted as spontaneous excitation and thus represents the counterpart to

spontaneous decay. Incoherent pumping can arise from the absorption of thermal

photons present in cavity quantum electrodynamics (QED) due to its thermal fluctu-

ations or field fluctuations. Additionally, blackbody radiation (BBR) is a ubiquitous

source of incoherent pumping, characterized by the thermal electromagnetic radiation
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Figure 3.10: QCRB of SSS: Scaling of the relative frequency estimation uncertainty
at the optimal interrogation time Tmin with the ensemble size N . The ratio ∆ω/∆ωSQL

is independent of the decay rate Γ due to the comparison with the SQL. The QCRB
for SSS is shown to demonstrate that SSS with a projective spin measurement are
suboptimal in the transition regime. While this suggests the potential for superior
protocols, a comprehensive investigation is required.

emitted by all objects at non-zero temperatures. Rydberg atoms are particularly sus-

ceptible to incoherent pumping by blackbody radiation at room temperature, since

the energy level spacing between adjacent Rydberg states often aligns with the peak

intensity of the BBR spectrum. [12,187–189]

In the following, we present the primary results, with detailed calculations pro-

vided in App. E.10. Considering a unitary phase evolution governed by the Hamil-

tonian H = ωSz, spontaneous decay with rate Γ and incoherent pumping with rate

Γ↑, the dynamics of the system during the free evolution time T , represented by the

quantum channel Λϕ,T , is described by a master equation of the form

ρ̇ = −iω[Sz, ρ] +
Γ
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(3.98)

Importantly, the dissipative terms corresponding to spontaneous decay and incoherent

pumping do not (super-)commute. Consequently, the dynamics cannot be separated

and solved independently.
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Analogous to our treatment of dephasing (cf. Sec. 3.8), we examine the crossover

between the regimes dominated by either spontaneous decay or incoherent pumping.

Specifically, we investigate the minimal frequency estimation uncertainty ∆ωmin rel-

ative to the SQL for a given ensemble size N as a function of the ratio Γ↑/Γ, as

illustrated in Fig. 3.11. As before, we focus on small ensembles where the bene-

fits of detecting and mitigating spontaneous decay events are more pronounced and

the evaluation of the OQI remains feasible. In the regime where spontaneous decay

is dominant, corresponding to ratios Γ↑/Γ ≪ 1, the results of Sec. 3.7 are repro-

duced. Conversely, large ratios Γ↑/Γ ≫ 1 represent the regime dominated by inco-

herent pumping. Indeed, this regime exhibits behavior precisely analogous to that

observed for spontaneous decay. This feature can be explained through fundamen-

tal arguments: Although incoherent pumping and spontaneous decay are physically

distinct processes, they are conceptually equivalent under an effective interchange

of the clock basis {| ↓⟩, | ↑⟩}. Additionally, this equivalence is explicitly evident in

Eq. (3.98), where the decoherence terms are identical except for the direction of the

transitions. As a consequence, the results obtained for spontaneous decay are directly

transferable to incoherent pumping. Furthermore, spontaneous decay and incoherent

pumping have the same impact on the frequency estimation uncertainty for CSS, SSS

and the parity-GHZ protocol. Interestingly, in the transition regime, the heralded-

(u)GHZ protocols and the OQI exhibit a larger enhancement over the SQL compared

to the regimes dominated by a single decoherence process. While the heralded-uGHZ

protocol does not perfectly saturate the OQI for N ≥ 5 in these regimes, it closely

approaches it when Γ ≃ Γ↑. This can be explained as follows: In this regime, spon-

taneous decay events and incoherent pumping events induce quantum jumps in both

directions with respect to the quantum number M . As these quantum jumps cannot

be detected and mitigated for binomial(-like) distributions (cf. Sec. 3.7.6), CSS –

which ultimately govern the SQL – exhibit increased susceptibility in the presence

of both decoherence processes. In contrast, the specific measurement and estimation

scheme of the heralded-(u)GHZ protocol enables the detection and mitigation of both

types of quantum jumps, thus exhibiting greater resilience to the increased decoher-

ence complexity. Furthermore, the GHZ state naturally becomes optimal for Γ = Γ↑,

since both decoherence processes have the same impact, rendering an unbalanced

population distribution disadvantageous.

3.10.2 Spontaneous decay events as erasure errors

As discussed in Sec. 3.7.6, only quantum jumps associated with decoherence pro-

cesses affecting the populations are, in principle, detectable. Therefore, spontaneous

decay events are potentially detectable, irrespective of the specific Ramsey sequence.
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Figure 3.11: Incoherent pumping: Crossover between regimes limited by sponta-
neous decay with rate Γ and incoherent pumping with rate Γ↑. Minimal frequency
estimation uncertainty ∆ωmin, relative to the SQL, for (a) N = 4 and (b) N = 16
as a function of Γ↑/Γ. The ratio ∆ω/∆ωSQL is independent of the decoherence rates
due to the comparison with the SQL.

However, the practicability and the experimental implementation of such detection

strongly depend on the initial state and measurement, as elaborated in Sec. 3.7.6.

Theoretically, detecting the emitted photons would allow for the identification of the

decayed atoms. However, this would require a 4π-detector, which is unfortunately

unrealistic in the contect of atomic clocks. Nevertheless, future experiments might

enable the conversion of spontaneous decay events into erasure errors [190], build-

ing on recent proposals and demonstrations of error conversion techniques in various

setups [191–198]. An erasure error refers to a noise process that takes the atom

out of the clock space {|↑⟩, |↓⟩} to an arbitrary third state |−1⟩, which can be de-

tected without perturbing the coherence within the clock space.8 In the following,

we explore the potential benefits of converting spontaneous decay events into erasure

errors, building on the foundational concept introduced in Ref. [190] and applying

this framework to spontaneous decay.

Due to the maximal entanglement inherent in GHZ(-like) states, even a single

spontaneous decay event substantially degrades the coherence of the state, resulting

in a complete loss of the imprinted phase information (cf. App. E.9). Therefore, for

GHZ(-like) states, converting spontaneous decay events into erasure errors is ineffec-

tive. As a consequence, in the remainder of this section, we focus on the conventional

Ramsey sequence employing CSS, as it allows for an analytical investigation.

Expressing the time evolved state ρin(ϕ, T ) as a mixture according to the frame-

work of quantum trajectories and quantum jumps (cf. Eq. (3.91)) and employing the

8While conceptually distinct, this is similar to atoms directly decaying to the state |−1⟩. However,
we focus on spontaneous decay within the clock space and subsequent error conversion.
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convexity of the QFI (cf. Sec. 3.5.2), the QFI of ρin(ϕ, T ) is bounded by

FQ[ρin(ϕ, T )] ≤
N∑

k=0

pk(ϕ, T )FQ[ρk(ϕ, T )], (3.99)

where ρk(ϕ, T ) denotes the state in the expansion involving k quantum jumps. Con-

verting spontaneous decay events into erasure errors for CSS (cf. App. E.11), the

frequency estimation uncertainty is determined accordingly by

(∆ω(T ))2 ≥ eΓT + 1

2NτT
, (3.100)

which is shown in Fig. 3.12(a). In the limit of Γ → 0, or equivalently T → 0,

the frequency estimation uncertainty of CSS without error conversion is reproduced,

as effectively no spontaneous decay events occur. In contrast, approaching Tmin,

error conversion facilitates a substantial enhancement, resulting in a significantly

lower frequency estimation uncertainty. In particular, the gain increases for longer

interrogation times T ≤ Tmin, as the contribution of spontaneous decay becomes

more pronounced. Furthermore, this scheme yields an optimal interrogation time

approximately 25% longer than the excited-state lifetime tspont of the atoms. As for

the heralded-(u)GHZ protocols, the minimal frequency estimation uncertainty can be

determined explicitly in terms of the Lambert-W function and is given by

(∆ωmin)2 ≥ Γ

2NτW (1/e)
=

(∆ωSQL)2

2eW (1/e)
. (3.101)

As a result, converting spontaneous decay events into erasure errors for CSS results in

a constant enhancement of 1.8 dB, independent of the ensemble size N and equivalent

to the heralded-GHZ protocol for N ≥ 5, as illustrated in Fig. 3.12(b). Consequently,

for small ensembles N < 42, this scheme achieves lower frequency estimation uncer-

tainties than obtained with SSS (without error conversion).

In principle, the derived frequency estimation uncertainty represents a theoretical

lower bound, and its saturability is not guaranteed – an aspect that is typical in local

frequency estimation. Indeed, the convexity of the QFI for mixed states reflects the

intrinsic uncertainty regarding the exact state of the system. However, converting

spontaneous decay events into erasure errors effectively allows to determine the exact

state within the mixture, thereby enabling the achievement of this lower bound in

this particular scenario, thus yielding equality in the equations above.

At first glance, it might seem counterintuitive that the presented scheme performs

below the OQI in certain regimes (cf. Fig. 3.12). However, this apparent discrepancy

arises from the differing assumptions in both approaches. The OQI is evaluated within
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Figure 3.12: Conversion of spontaneous decay events into erasure errors:
(a) Generic frequency estimation uncertainty ∆ω(T ) relative to the SQL for N = 8.
The interrogation time is rescaled by the excited-state lifetime of the atoms tspont =
1/Γ. Conversion of spontaneous decay events into erasure errors for CSS (dashed
gray) significantly reduces the susceptibility to the impact of spontaneous decay and
thus achieves a lower frequency estimation uncertainty than the conventional Ramsey
sequence (solid black). (b) Scaling of the relative frequency estimation uncertainty at
the optimal interrogation time Tmin with the ensemble size N . The ratio ∆ω/∆ωSQL

is independent of the decay rate Γ due to the comparison with the SQL. Conversion
of spontaneous decay events into erasure errors for CSS (dashed gray) results in a
constant gain of 1.8 dB over the SQL, independent of N .

the master equation framework for decoherence processes (cf. Sec. 2.3.3), which ex-

clusively considers the two clock basis states of the particles for the dynamics. In

contrast, the presented scheme effectively leverages additional information by detect-

ing spontaneous decay events through their conversion to erasure errors. Specifically,

detecting the particles that decayed is effectively equivalent to using ancilla qubits.

More intuitively, detecting the emitted photons – which is conceptually equivalent as

discussed above – constitutes a measurement of environmental information, which,

however, is explicitly traced out in the master equation approach and thus not ac-

counted for in the OQI.

The presented concept can be readily extended to other initial states such as SSS,

which, however, is beyond the scope of this outlook and typically requires numerical

evaluation.
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4
Bayesian frequency
metrology limited by laser
noise

4.1 Motivation and research problem

With state-of-the-art clock lasers reaching coherence times of several seconds [88], the

excited-state lifetime of various clock candidates becomes the limiting time scale and

spontaneous decay emerges as the dominant constraint (cf. Chapter 3). Nevertheless,

the excited-state lifetimes of several clock candidates remain far beyond the regime

of laser coherence times, ranging from minutes (Sr-atoms) to years (Yb+-ions) [27].

Moreover, the impressive level of laser coherence is often degraded during propagation

from the cavity to the location of the qubits. Consequently, many experimental setups

are currently – and will likely remain – limited by laser noise.

Naively, frequency fluctuations and the associated laser noise could be regarded

as a purely technical problem. However, stabilizing the laser is precisely the central

objective of an atomic clock, making frequency fluctuations the primary measur-

and [11]. Disregarding laser noise as a mere technical issue would thus contradict

the fundamental concept of atomic clocks and render the problem trivial. In prin-

ciple, one might further ask how laser noise can impose a limiting factor although,

by definition, it is the measurand – the quantity to be stabilized. To be precise,

only the component of laser noise that cannot be corrected through interrogation of

the atomic reference ultimately limits clock stability. Since Ramsey protocols have

a finite range within which they can unambiguously interpret frequency fluctuations,

errors arise when laser noise exceeds this range, fundamentally constraining stability.

In the worst case, the feedback loop passes to an adjacent Ramsey fringe, resulting

in the clock running systematically wrong and severely degrading the clock stabil-

ity. Consequently, frequency metrology limited by laser noise features a trade-off:

while longer interrogation times improve stability, they also amplify the impact of

laser frequency fluctuations, imposing inherent limitations. Additionally, dead time

113
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in clock operation leads to undetected aliased frequency deviations, further degrading

performance. Investigating the impact of frequency fluctuations is therefore essential

for advancing next-generation clocks. To address this challenge, various approaches

have been developed to account for frequency noise and to determine optimal inter-

rogation schemes for specific experimental setups [91, 92, 199, 200]. In this endeavor,

a particularly promising framework is the application of Bayesian estimation theory

to frequency metrology – denoted as Bayesian frequency metrology – which incorpo-

rates laser noise directly into the theoretical model and leverages prior knowledge of

frequency fluctuations for estimation [140,141,151,201].

In recent years, operationally motivated echo protocols and variational quantum

circuits have attracted significant interest, as they allow for a diverse range of inter-

rogation schemes [5, 128, 139–143, 202–208]. In particular, these approaches have the

potential to generate a high degree of entanglement while maintaining resilience to

noise [5, 139–143] and thus represent a promising class of protocols for entanglement

enhanced quantum frequency metrology. One-axis-twisting (OAT) [125] interactions

serve as a versatile tool for implementing such protocols as they give rise to a variety

of entangled states, ranging from spin-squeezed states (SSS) to GHZ states, and fa-

cilitate variational classes of generalized Ramsey protocols [5,139–143]. Furthermore,

OAT interactions are accessible in several setups as in ion traps via Mølmer-Sørensen

gates [126–128], in tweezer arrays via Rydberg interactions [62,129] or Bose-Einstein

condensates via elastic collisions [130–133].

This chapter presents a progress report on frequency metrology tailored to opti-

cal atomic clocks employing Ramsey interrogation schemes primarily limited by laser

noise. Specifically, we focus on single-ensemble clocks in which the atomic refer-

ence is periodically interrogated using the same protocol in each clock cycle. The

objective is to outline potential advancements and challenges across various Ram-

sey interrogation schemes, effectively providing a theoretical guide for clock opera-

tion on different experimental platforms. In particular, we systematically examine a

broad range of ensemble sizes and regimes defined by interrogation duration and dead

time. To incorporate frequency fluctuations into the theoretical model, we employ a

Bayesian framework for single-ensemble clocks, where the atomic reference is period-

ically interrogated using the same protocol in each clock cycle, while more general

schemes are addressed in the outlook. To establish a theoretical foundation, we re-

view Bayesian estimation theory and the corresponding fundamental bounds on clock

stability. Additionally, we incorporate previous findings on clocks limited by laser

noise, such as those in Refs. [91,92], within the Bayesian framework and extend them

in certain regimes. Building on pioneering work on variational quantum circuits in
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Refs. [140–142], we identify optimal Ramsey schemes for various experimental plat-

forms.

This chapter is structured in four parts. In the following, we provide a brief

overview of each part and outline the primary results:

• Theoretical framework: To start with, Bayesian phase estimation theory is in-

troduced in Sec. 4.2 and a hierachy of lower bounds on the estimation uncer-

tainty is collected in Sec. 4.3, drawing an analogy to the local (frequentist)

approach. In particular, the ultimate lower bound is derived, denoted as the

optimal quantum interferometer (OQI), which represents the primary bench-

mark in this work. Additionally, in Sec. 4.4 the linear estimation strategy is

discussed and the optimal Bayesian estimator is determined. In Sec. 4.5, we

explicitly connect Bayesian phase estimation theory to frequency metrology by

introducing the Allan deviation and establishing a relation between interroga-

tion time and prior knowledge of the phase. Furthermore, we discuss general

trade-offs in the context of Bayesian frequency metrology.

• Sec. 4.6: This section aims to saturate the ultimate lower bound imposed by the

optimal quantum interferometer (OQI). Initially, the standard protocols, utiliz-

ing coherent spin states (CSS), spin-squeezed states (SSS) and GHZ states, are

compared to the OQI. While GHZ states saturate the OQI at short interroga-

tion times and SSS perform close to it at intermediate durations, substantial

potential for enhancement remains across a broad range of interrogation times,

particularly at long durations. To address this, especially considering small

ensemble sizes characteristic of ion traps and tweezer arrays, we introduce gen-

eralized Ramsey protocols based on variational quantum circuits and identify

optimal interrogation schemes. We demonstrate that in this regime, even low-

depth quantum circuits suffice to approximate the OQI, which is crucial for

maintaining reasonable operational complexity and thus enabling near-term ex-

perimental implementation. While the required circuit depth to achieve OQI

stability increases with N , the performance gain diminishes with complexity,

leading to a trade-off between reduced instability and increased experimental

overhead, further motivating a focus on low circuit-complexity approaches.

• Sec. 4.7: To validate theoretical predictions on clock stability, we perform Monte

Carlo simulations of the full feedback loop in an atomic clock, from which we can

infer its long-term stability as quantified by the Allan deviation. In this context,

fringe hops emerge as a significant limitation. In particular, for small ensembles
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(N ≲ 20), characteristic of ion traps, fringe hops impose a stricter constraint

on clock stability than the coherence time limit (CTL) of the local oscillator.

As a consequence, for long interrogation times, variational protocols provide

marginal to no advantage over SSS, while GHZ states remain optimal at short

interrogation times. In contrast, for ensembles sizes in the regime of tweezer ar-

rays (N ≳ 20), fringe hops and the CTL impose comparable limitations on clock

stability at long interrogation times. Consequently, variational Ramsey proto-

cols provide a substantial improvement over SSS. Nevertheless, the variation

in stability across different clock runs – due to the stochastic nature of atomic

clocks – and the relative reduction in enhancement with increasing circuit depth

further supports the focus on low-depth quantum circuits.

• Sec. 4.8: We investigate the trade-off between quantum projection noise (QPN),

the coherence time limit (CTL) and dead time effects by incorporating dead

time into atomic clock operation within the framework of Bayesian frequency

metrology. While clock stability for short dead times or small ensembles closely

resembles the dead time-free scenario, dead time effects become increasingly

significant with growing ensemble size or dead time, ultimately limiting clock

performance. Following a general analysis, we examine specific examples with

state-of-the-art parameters relevant to different experimental platforms, such

as ion traps, tweezer arrays and lattice clocks. While GHZ states and SSS re-

main optimal for ion traps utilizing only a few ions, the potential gain from

variational quantum circuits in tweezer arrays with several tens of atoms is sub-

stantially diminished. Specifically, SSS perform close to the optimal quantum

interferometer (OQI) across a wide range of interrogation times, whereas varia-

tional quantum circuits offer an enhancement only at long interrogation times.

However, this improvement is significantly reduced compared to the dead time-

free case. Additionally, in the presence of dead time, fringe hops remain the

dominant limitation in this regime, whereas in the dead time-free case, they

constrain clock stability only at the same level as the CTL. As a consequence,

SSS emerge as the preferred choice due to their robustness and practicality. For

lattice clocks with hundreds or thousands of atoms, dead time effects strictly

constrain clock stability and thus CSS suffice to approximate the OQI.

4.2 Bayesian phase estimation

The fundamental principles of atomic clocks and Ramsey interferometry are intro-

duced in Sec. 3.2 and illustrated in Fig. 3.1, establishing the connection between

frequency metrology and phase estimation theory.
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FIG. 1. Basic principle of an atomic clock.

stabilized LO signal. Consequently, frequency metrology
is directly connected to phase estimation theory.

Local oscillator noise plays a critical role in limiting
stability, even though it may seem counterintuitive given
that its frequency is constantly measured and corrected
based on feedback from the atomic reference. The phase
fluctuations, arising from the LO’s frequency noise, can
be modeled by a distribution P(�), depending on the
particular noise profile, by interpreting the phase � as a
random variable. As the interrogation time T increases,
the LO noise grows, causing the distribution to broaden.
Typically, the phase can only be estimated unambigu-
ously within a limited range. Hence, if the invertible
domain of the main fringe of the signal is exceeded, esti-
mation errors are accumulated and ultimately limit the
stability. In the worst case, the feedback loop passes to
an adjacent Ramsey fringe, resulting in the clock running
systematically wrong and severely degrading the clock
stability. Consequently, frequency metrology features a
trade-o↵: longer interrogation times enhance stability,
but LO frequency fluctuations introduce limitations. An
appropriate framework to investigate di↵erent interroga-
tions schemes respecting this trade-o↵ is represented by
Bayesian estimation. This approach essentially bridges
between high sensitivity at the transition frequency and
large dynamic range, based on the regime of frequency
deviations the local oscillator is likely to generate.

Outlook of the paper

II. BAYESIAN FREQUENCY METROLOGY

Building on the motivation provided above, phase es-
timation is a fundamental aspect of frequency metrol-
ogy, particularly in the context of atomic clocks. In this
section, we begin by discussing general phase estimation
theory within the Bayesian framework. We derive lower
bounds on the estimation error, drawing an analogy to
the local (frequentist) approach, and analyze di↵erent
estimation strategies. Finally, we link phase estimation
to frequency metrology in the context of atomic clocks
through the Allan deviation and discuss emerging trade-
o↵s and their implications for the clock stability.

A. Bayesian phase estimation

In interferometry, the objective is to estimate an un-
known parameter � as precise and accurate as possible.
In generalized Ramsey spectroscopy, the phase � is en-
coded during the free evolution time T (Ramsey dark
time) onto the initial probe state ⇢in via a completely-
positive trace-preserving map ⇤�,T . In the context of
an atomic clock, the phase � = !T originates from the

average frequency di↵erence ! = 1
T

R T

0
dt0[!0 � !LO(t0)]

between the atomic transition !0 and the local oscillator
!LO. Additionally, the quantum channel ⇤�,T might also
contain decoherence processes. After the free evolution,
an appropriately chosen observable X is measured. The
measurement is described by a positive operator-valued
measure (POVM) {⇧x}, where ⇧x � 0 and

P
x ⇧x = 1,

and x denotes the measurement outcome. Finally, an es-
timate �est(x, T ) of the parameter � is performed, based
on the measurement outcome x (of X) for a fixed in-
terrogation time T . Due to the inherent indeterministic
nature of quantum measurements, the outcomes x are
random and occur with conditional probability

P (x|�) = Tr (⇧x⇤�,T [⇢in]) . (1)

Consequently, the estimator �est likewise is a random
variable, as it depends on the measurement outcome
x. Unlike state preparation, free evolution, and mea-
surement, which are governed by quantum mechanics,
the estimation process involves classical post-processing
of measurement data and is thus addressed within the
framework of classical phase estimation theory.

In local (or frequentist) phase estimation, it is typically
assumed that the phase � is tightly centered around a
fixed working point �0, such that (���0)

2 ⌧ 1, and that
the estimator is locally unbiased. Additionally, probabil-
ities are defined as the infinite-sample limit of an event.
However, these assumptions are often not valid in the
context of optical atomic clocks. On the one hand, when
the finite coherence time of the laser becomes the domi-
nant limitation on clock stability, fluctuations in the ac-
cumulated phase during the free interrogation time be-
come relevant and in principle can take arbitrary values
�1 < � < 1. On the other hand, the phase has to
be estimated from a limited data set due to the fluc-
tuations, making asymptotic estimation, i.e. the collec-
tion of large amounts of data, impossible. Consequently,
Bayesian phase estimation represents the more appropri-
ate framework.

In Bayesian phase estimation, the phase � is treated as
a continuous random variable and the posterior knowl-
edge of �, represented by the posterior distribution
P (�|x), is updated according to Bayes theorem

P (�|x) =
P(�)P (x|�)
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based on the statistical model P (x|�) and a prior distri-
bution P(�), reflecting the knowledge on the phase be-
fore any measurement. The marginal likelihood P (x) =
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FIG. 1. Basic principle of an atomic clock.

stabilized LO signal. Consequently, frequency metrology
is directly connected to phase estimation theory.

Local oscillator noise plays a critical role in limiting
stability, even though it may seem counterintuitive given
that its frequency is constantly measured and corrected
based on feedback from the atomic reference. The phase
fluctuations, arising from the LO’s frequency noise, can
be modeled by a distribution P(�), depending on the
particular noise profile, by interpreting the phase � as a
random variable. As the interrogation time T increases,
the LO noise grows, causing the distribution to broaden.
Typically, the phase can only be estimated unambigu-
ously within a limited range. Hence, if the invertible
domain of the main fringe of the signal is exceeded, esti-
mation errors are accumulated and ultimately limit the
stability. In the worst case, the feedback loop passes to
an adjacent Ramsey fringe, resulting in the clock running
systematically wrong and severely degrading the clock
stability. Consequently, frequency metrology features a
trade-o↵: longer interrogation times enhance stability,
but LO frequency fluctuations introduce limitations. An
appropriate framework to investigate di↵erent interroga-
tions schemes respecting this trade-o↵ is represented by
Bayesian estimation. This approach essentially bridges
between high sensitivity at the transition frequency and
large dynamic range, based on the regime of frequency
deviations the local oscillator is likely to generate.
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II. BAYESIAN FREQUENCY METROLOGY

Building on the motivation provided above, phase es-
timation is a fundamental aspect of frequency metrol-
ogy, particularly in the context of atomic clocks. In this
section, we begin by discussing general phase estimation
theory within the Bayesian framework. We derive lower
bounds on the estimation error, drawing an analogy to
the local (frequentist) approach, and analyze di↵erent
estimation strategies. Finally, we link phase estimation
to frequency metrology in the context of atomic clocks
through the Allan deviation and discuss emerging trade-
o↵s and their implications for the clock stability.

A. Bayesian phase estimation

In interferometry, the objective is to estimate an un-
known parameter � as precise and accurate as possible.
In generalized Ramsey spectroscopy, the phase � is en-
coded during the free evolution time T (Ramsey dark
time) onto the initial probe state ⇢in via a completely-
positive trace-preserving map ⇤�,T . In the context of
an atomic clock, the phase � = !T originates from the

average frequency di↵erence ! = 1
T

R T

0
dt0[!0 � !LO(t0)]

between the atomic transition !0 and the local oscillator
!LO. Additionally, the quantum channel ⇤�,T might also
contain decoherence processes. After the free evolution,
an appropriately chosen observable X is measured. The
measurement is described by a positive operator-valued
measure (POVM) {⇧x}, where ⇧x � 0 and

P
x ⇧x = 1,

and x denotes the measurement outcome. Finally, an es-
timate �est(x, T ) of the parameter � is performed, based
on the measurement outcome x (of X) for a fixed in-
terrogation time T . Due to the inherent indeterministic
nature of quantum measurements, the outcomes x are
random and occur with conditional probability

P (x|�) = Tr (⇧x⇤�,T [⇢in]) . (1)

Consequently, the estimator �est likewise is a random
variable, as it depends on the measurement outcome
x. Unlike state preparation, free evolution, and mea-
surement, which are governed by quantum mechanics,
the estimation process involves classical post-processing
of measurement data and is thus addressed within the
framework of classical phase estimation theory.

In local (or frequentist) phase estimation, it is typically
assumed that the phase � is tightly centered around a
fixed working point �0, such that (���0)

2 ⌧ 1, and that
the estimator is locally unbiased. Additionally, probabil-
ities are defined as the infinite-sample limit of an event.
However, these assumptions are often not valid in the
context of optical atomic clocks. On the one hand, when
the finite coherence time of the laser becomes the domi-
nant limitation on clock stability, fluctuations in the ac-
cumulated phase during the free interrogation time be-
come relevant and in principle can take arbitrary values
�1 < � < 1. On the other hand, the phase has to
be estimated from a limited data set due to the fluc-
tuations, making asymptotic estimation, i.e. the collec-
tion of large amounts of data, impossible. Consequently,
Bayesian phase estimation represents the more appropri-
ate framework.

In Bayesian phase estimation, the phase � is treated as
a continuous random variable and the posterior knowl-
edge of �, represented by the posterior distribution
P (�|x), is updated according to Bayes theorem

P (�|x) =
P(�)P (x|�)
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based on the statistical model P (x|�) and a prior distri-
bution P(�), reflecting the knowledge on the phase be-
fore any measurement. The marginal likelihood P (x) =

Figure 4.1: Prior broadening: Qualitative broadening of the prior distribution P(ϕ)
with longer interrogation times T , resulting from increased local oscillator noise.

In local (or frequentist) phase estimation (cf. Sec. 3.4.1), we have assumed that the

phase ϕ is tightly centered around a fixed working point ϕ0, such that (ϕ−ϕ0)
2 ≪ 1,

and that the estimator is locally unbiased. Furthermore, probabilities are defined as

the infinite-sample limit of an event. However, these assumptions are often not valid in

the context of optical atomic clocks limited by laser noise. When the finite coherence

time of the laser becomes the dominant limitation on clock stability, fluctuations in the

accumulated phase during the free interrogation time become relevant and in principle

can take arbitrary values −∞ < ϕ < ∞. Additionally, these fluctuations require

phase estimation based on single measurements to ensure unambiguous determination

of ϕ, as the phase may change significantly between measurements of consecutive

cycles, potentially preventing a unique estimation or assignment. This constraint

makes asymptotic estimation, i.e. the collection and averaging of large amounts of

data, impossible.

These phase fluctuations over different clock cycles, arising from the frequency

noise of the local oscillator, can be modeled by a phase distribution P(ϕ), depending

on the particular noise profile. As the interrogation time T increases, the LO noise

grows, causing the distribution to broaden, as illustrated in Fig. 4.1. To quantify

the impact of these phase fluctuations and the resulting limitations to the phase

estimation uncertainty, a commonly used cost function is the average mean squared

error, defined as

(∆ϕ)2 =

∫ +∞

−∞
dϕP(ϕ)

∑

x

P (x|ϕ) [ϕ− ϕest(x)]2

=

∫ +∞

−∞
dϕP(ϕ)(∆ϕQPN)2.

(4.1)

It corresponds to the mean squared error (MSE) of the estimated phase ϕest(x) with

respect to the true phase value ϕ – the typical cost function of local phase estimation1

1For clarity, in this chapter we refer to the MSE (∆ϕ(T ))2 (cf. Eq. (3.13)) as (∆ϕQPN)
2, since

it solely originates from the measurement and estimation uncertainty, and is therefore primarily
governed by quantum projection noise (QPN).
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(∆ϕQPN)2 – averaged over the phase distribution P(ϕ). The average mean squared

error reflects a global approach – extending local (frequentist) phase estimation –

by incorporating all possible values of ϕ, which additionally makes unbiasedness re-

dundant. Moreover, this approach is well-suited for arbitrary signals and estimation

strategies, as it assesses the overall performance by averaging over the entire phase

distribution, eliminating the need for specific assumptions about the signal structure

or the estimation method. In general, for a proper estimation strategy, further in-

formation about the phase is gained through the measurement. Consequently, the

average mean squared error is smaller than the variance (δϕ)2 of the prior phase dis-

tribution P(ϕ) and thus, ultimately is bounded by 0 ≤ (∆ϕ)2 ≤ (δϕ)2. In the limit of

narrow phase distributions, where P(ϕ) approximates a delta distribution centered at

the optimal working point ϕ0, the average mean squared error reduces to the MSE.

Due to its global averaging, it is always lower bounded by the MSE evaluated at the

optimal working point ϕ0, where the MSE attains its maximum.

As argued above, local (frequentist) phase estimation is poorly suited in the regime

where phase fluctuations around the optimal working point impose a substantial lim-

itation. Although the accumulated phase is fixed for each interrogation sequence, it

varies over different clock cycles and thus can be treated as a random variable, with

the prior distribution P(ϕ) reflecting the knowledge on the phase prior to any mea-

surement. Consequently, Bayesian estimation theory represents the more appropriate

framework. In Bayesian phase estimation, the posterior knowledge of ϕ, represented

by the posterior distribution P (ϕ|x) and from which the estimator is ultimately de-

termined, is updated according to Bayes theorem

P (ϕ|x) =
P(ϕ)P (x|ϕ)

P (x)
(4.2)

based on the statistical model P (x|ϕ) and the prior distribution P(ϕ). The marginal

likelihood P (x) =
∫

dϕP(ϕ)P (x|ϕ) represents the probability of observing outcome

x, averaged over all possible values of ϕ. Thus, it essentially provides a normalization

of the posterior distribution. The interplay between prior information and measure-

ment data already becomes evident at this stage. If P(ϕ) varies slowly compared

to P (x|ϕ), for example in the case of a flat prior or in the asymptotic limit of large

ensembles, it has minimal influence on the posterior knowledge, and the statistical

model primarily governs the inference strategy. Conversely, if the prior is sharply

peaked, prior information dominates the estimation process and significantly shapes

the posterior distribution.
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Using Bayes theorem, Eq. (4.1) can be expressed in terms of the posterior distri-

bution according to

(∆ϕ)2 =
∑

x

P (x)

∫ +∞

−∞
dϕP (ϕ|x) [ϕ− ϕest(x)]2 . (4.3)

In the remainder of this work, we estimate the accumulated phase within the frame-

work of Bayesian estimation theory and quantify the phase estimation uncertainty

based on this cost function. Furthermore, we review corresponding Bayesian bounds,

to which we compare the performance of the investigated Ramsey protocols. As a

consequence, we denote Eq. (4.3) – and thus likewise Eq. (4.1) due to its equivalence

– as the Bayesian mean squared error (BMSE) throughout this work, following the

literature such as Refs. [5, 140–142,209,210].

For the primary investigations in this chapter, we assume a unitary phase evolution

through the quantum channel

Λϕ,T [ρin] = Rz(ϕ)ρinR†
z(ϕ) (4.4)

with rotation Rz(ϕ) = e−iϕSz , where Sx,y,z denote the collective spin operators of

N two level systems. Consequently, the quantum channel – and thus the statistical

model P (x|ϕ) – is 2π-periodic with respect to the phase, i.e. Λϕ,T = Λϕ+2π,T . In this

case, it is common to use a periodic cost function. However, in the context of atomic

clocks, we explicitly adopt a global definition of the phase spanning −∞ < ϕ < ∞,

since ϕ+ 2πk (with k ∈ Z) originates from a different frequency deviation ω than ϕ,

and thus has a distinct physical interpretation. This distinction proves particularly

useful to quantify the coherence time limit of the local oscillator (cf. Sec. 4.3) and

to discuss fringe hops (cf. Sec. 4.7) within the Bayesian framework. Furthermore, we

assume a Gaussian prior distribution

P(ϕ) =
1√

2π(δϕ)2
exp

(
− ϕ2

2(δϕ)2

)
(4.5)

with zero mean and width δϕ, which is a reasonable approximation for the full feed-

back loop of an atomic clock [92], as we will motivate in Sec. 4.5.2.

4.3 Bounds in Bayesian phase estimation theory

The goal of Bayesian estimation is to minimize the cost function – the Bayesian

mean squared error (BMSE). For a given prior distribution P(ϕ), there are three

control parameters to optimize: the initial state ρin, the measurement {Πx} and

the estimation strategy ϕest(x). Based on these control parameters and building on
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Refs. [68, 140, 151, 161, 162, 169, 200, 209, 211–221], we collect a hierarchy of lower

bounds for the BMSE, analogous to the local estimation approach. The discussion

in this section remains general, allowing for arbitrary prior distributions P(ϕ) and

quantum channels Λϕ,T , while specific assumptions and asymptotic results will be

explicitly noted. In the following, we present the relevant bounds and key properties,

while detailed proofs are provided in App. F.

4.3.1 Bayesian Cramér-Rao Bound (BCRB)

For a given initial state ρin and measurement {Πx}, the Bayesian Cramér-Rao bound

(BCRB) (∆ϕBCRB)2 represents a lower bound on the BMSE (∆ϕ)2 and thus, impli-

cates an optimization over all possible estimators ϕest. Assuming standard regularity

conditions (cf. Eq. (3.24))

∑

x

dP (x|ϕ)

dϕ
=

d

dϕ

∑

x

P (x|ϕ) = 0 (4.6)

and vanishing of the prior at the boundaries

lim
ϕ→±∞

P(ϕ) = 0, (4.7)

the BCRB results from the van Trees inequality [211] and reads [212]

(∆ϕ)2 ≥ (∆ϕBCRB)2 = min
ϕest

(∆ϕ)2 =
1

F + I . (4.8)

Here, the measurement contribution is represented by the Fisher information averaged

over the prior distribution

F ≡ F [Λϕ,T [ρin], {Πx}] =

∫
dϕP(ϕ)F [Λϕ,T [ρin], {Πx}]

=

∫
dϕP(ϕ)

∑

x

1

P (x|ϕ)

(
dP (x|ϕ)

dϕ

)2 (4.9)

and

I =

∫
dϕ

1

P(ϕ)

(
dP(ϕ)

dϕ

)2

(4.10)

denotes the information contained in the prior knowledge, given by the Fisher in-

formation of the prior distribution. While I ≥ 0, the average Fisher information F
is upper bounded by its maximal value Fmax = F [Λϕ,T [ρin], {Πx}] achieved at the

optimal working point ϕ0, i.e. F ≤ Fmax. Hence, from Eq. (4.8) it is evident that the



4.3. Bounds in Bayesian phase estimation theory 121

BCRB in turn is lower bounded by the Cramér-Rao bound (CRB), the corresponding

bound in local phase estimation

(∆ϕBCRB)2 ≥ (∆ϕCRB)2 =
1

Fmax

. (4.11)

In contrast to the local approach, the optimal estimation strategy in the Bayesian

framework can be derived explicitly as we will show in Sec. 4.4.

As a direct consequence of the convexity of the (classical) Fisher information (cf.

Eq. (3.28)), mixing quantum states cannot increase the average Fisher information

F and thus does not decrease the BMSE.

For a Gaussian prior distribution, the prior information simplifies to I = (δϕ)−2.

Moreover, while F typically increases with the ensemble size, the prior information

I is independent of N . Consequently, in the asymptotic limit of large N , the prior

knowledge primarily contributes in the averaging of the Fisher information and we

obtain (∆ϕBCRB)2 ≃ F−1
.

4.3.2 Bayesian Quantum Cramér-Rao Bound (BQCRB)

The Bayesian quantum Cramér-Rao bound (BQCRB) extends the (classical) Bayesian

Cramér-Rao bound (BCRB) by including the optimization over all measurements

{Πx}. For a given initial state ρin, the BQCRB

(∆ϕBQCRB)2 = min
{Πx}

(∆ϕBCRB)2 = min
{Πx},ϕest

(∆ϕ)2 (4.12)

provides a lower bound on the BCRB and thus establishes the hierachy

(∆ϕ)2 ≥ (∆ϕBCRB)2 ≥ (∆ϕBQCRB)2. (4.13)

Naively, one might suggest to simply replace the average Fisher information F in

Eq. (4.8) by the average quantum Fisher information FQ =
∫

dϕFQ(Λϕ,T [ρin]). In

general, however, the optimal measurement depends on ϕ and thus, this approach

would effectively correspond to averaging over a set of measurements, each optimized

for a particular phase value ϕ. By restricting the measurements – without loss of

optimality – to the class of projection-valued measures (PVM) Πx = |x⟩⟨x|, with

orthonormal eigenstates |x⟩ of the observable X with eigenvalue x, satisfying ⟨x|x′⟩ =

δx,x′ , the BQCRB can be expressed as [151]

(∆ϕBQCRB)2 = (δϕ)2 − Tr
(
ρL2
)
. (4.14)
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Here, the double minimization over the measurement {Πx} and estimator ϕest is

combined in a single quantity L =
∑

x Πxϕest(x). The optimal L is determined by

the implicit equation

ρ′ =
1

2
(ρL+ Lρ) , (4.15)

where ρ =
∫

dϕP(ϕ)Λϕ,T [ρin] denotes the average state and ρ′ =
∫

dϕP(ϕ)Λϕ,T [ρin]ϕ.

The corresponding optimal measurement basis and estimator are given by the eigen-

basis and eigenvalues of the operator L, respectively.

Interestingly, Eq. (4.14) and Eq. (4.15) have a similar structure as the quantum

Fisher information (QFI) in local phase estimation (cf. Sec. 3.5.2). Indeed, assuming

a unitary phase evolution according to Eq. (4.4) and a Gaussian prior distribution

as defined in Eq. (4.5), the BQCRB can be related to the QFI FQ[ρ] of the average

state ρ by [214]

(∆ϕBQCRB)2 = (δϕ)2
[
1 − (δϕ)2FQ[ρ]

]
. (4.16)

In this case, the optimal measurement corresponds to the symmetric logarithmic

derivative (SLD) of the QFI approach associated with FQ[ρ], and the optimal Bayesian

estimator can be determined explicitly (cf. Sec. 4.4.). Evaluating the BQCRB thus

becomes computationally equivalent to calculating the QFI of the average state ρ.

Indeed, the relation between the BMSE and the QFI in Eq. (4.16) is an interesting

mathematical coincidence that is worth pointing out. Although this relation is only

valid in the special case of single-parameter estimation and Gaussian prior distri-

butions, it connects two conceptually different problems: On the one hand, global

phase estimation, where the parameter range is characterized by the prior distribu-

tion, and on the other hand, local phase estimation based on a probe state that has

been averaged over the prior distribution.

In analogy to classical phase estimation – despite optimizing over all possible

measurements – mixing quantum states cannot enhance the estimation precision due

to the convexity of the QFI (cf. Eq. (3.41)).

4.3.3 Optimal Quantum Interferometer (OQI)

As in the local approach, the optimal quantum interferometer (OQI) represents the

ultimate lower bound of the BMSE, completing the hierachy

(∆ϕ)2 ≥ (∆ϕBCRB)2 ≥ (∆ϕBQCRB)2 ≥ (∆ϕOQI)
2. (4.17)
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The OQI simultaneously optimizes over all three control parameters: the initial state

ρin, measurement {Πx} and estimator ϕest:

(∆ϕOQI)
2 = min

ρin
(∆ϕBQCRB)2 = min

ρin,{Πx}
(∆ϕBCRB)2

= min
ρin,{Πx},ϕest

(∆ϕ)2.
(4.18)

Unfortunately, no general expressions for the OQI sensitivity for arbitrary ensemble

sizes are available, instead, they require complex numerical optimization procedures.

In this context, we present an iterative optimization algorithm that facilitates efficient

computation for small ensembles. Furthermore, we introduce the coherence time limit

(CTL) and examine the asymptotic regime of large ensembles (N ≫ 1).

Iterative optimization algorithm— In the following, we outline an algorithm

introduced in Refs. [151, 170], which iteratively optimizes the initial probe state ρin

and measurement {Πx}, and enables an efficient computation for ensembles with up to

several hundreds of particles. However, numerical optimization becomes challenging

as the ensemble size N ≫ 1 increases and approaches the asymptotic limit. This

closely resembles the algorithm presented in Sec. 3.5.3 within the local framework,

but is specifically tailored to Bayesian phase estimation theory.

For a given input probe state ρin, the optimal projective measurement and es-

timation strategy L can be determined according to the previous discussion on the

BQCRB (cf. Sec. 4.3.2). Conversely, for a given L, the optimal ρin can be evaluated

as follows: Rewriting the BMSE by identifying L =
∑

x Πxϕest(x) yields

(∆ϕ)2 = (δϕ)2 + Tr

(∫
dϕP(ϕ)Λϕ,T [ρin](L2 − 2ϕL)

)
. (4.19)

Defining the adjoint quantum channel Λ†
ϕ,T as in the local approach (cf. Eq. (3.63)),

i.e. through Tr(Λϕ,T [ρ]A) = Tr
(
ρΛ†

ϕ,T [A]
)

for arbitrary operators A, the BMSE

becomes

(∆ϕ)2 = (δϕ)2 + Tr

(
ρin

∫
dϕP(ϕ)Λ†

ϕ,T [L2 − 2ϕL]

)
. (4.20)

Consequently, the optimal input probe state ρin = |ψin⟩⟨ψin| is pure and corresponds

to the eigenvector |ψin⟩ of the operator
∫

dϕP(ϕ)Λ†
ϕ,T [L2 − 2ϕL] associated with its

most negative eigenvalue. In the iterative algorithm, starting from an arbitrary state,

repeatedly the optimal measurement and the corresponding optimal probe state are

determined iteratively until the BMSE converges to the OQI.
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Coherence time limit (CTL)— Considering a 2π-periodic quantum channel with

respect to the phase ϕ (cf. Eq. (4.4)), the OQI allows for unambiguous phase estima-

tion within the range [−π,+π]. However, for sufficiently broad prior distributions,

the phase ϕ may exceed this invertible regime and an estimation error of (2π)2 is ac-

cumulated, associated with transitions between adjacent Ramsey fringes. Although

the Bayesian framework naturally accounts for this crossover, it is nevertheless in-

structive to examine their contribution separately. For a Gaussian prior distribution,

the estimation error associated with these events can be modeled by

(∆ϕCTL
OQI )

2 = 4π2

[
1 − erf

(
π√
2δϕ

)]
, (4.21)

where erf(z) denotes the error function. In the context of an atomic clock, in this

regime of long interrogation times, the coherence time of the local oscillator will

become relevant and ultimately limits the clock stability. Consequently, we will denote

Eq. (4.21) as the coherence time limit (CTL) of the OQI.

Asymptotic limit— In the asymptotic limit (N ≫ 1), assuming unitary phase

evolution as described by Eq. (4.4) and restricting to the invertible range [−π,+π],

it has been shown for arbitrary prior distributions that the ultimate lower bound is

given by [209,214–216]

(∆ϕπHL)2 =
π2

N2
. (4.22)

In the absence of decoherence, this asymptotic limit reflects Heisenberg scaling with

an additional factor of π, and is therefore referred to as the π-corrected Heisenberg

limit (πHL). Intuitively, the πHL can be interpreted as the maximal estimation error

associated with estimating a phase within [−π,+π] using N + 1 evenly spaced mea-

surement outcomes. Additionally taking into account the estimation error outside

of the invertible range, as modeled by Eq. (4.21), the overall asymptotic estimation

error for the OQI reads

(∆ϕasym
OQI )2 = (∆ϕπHL)2 + (∆ϕCTL

OQI )
2

=
π2

N2
+ 4π2

[
1 − erf

(
π√
2δϕ

)]
.

(4.23)

This result combines the fundamental limit set by the πHL with the contributions

from phase estimation errors associated with transitions between Ramsey fringes,

offering a comprehensive characterization of the OQI performance in the asymptotic

regime. Notably, this bound can be saturated asymptotically by the phase operator

based interferometer (POI) [140,200,215–221] (cf. App. F.3.3).
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4.4 Estimators

Based on a statistical model P (x|ϕ) – defined by an initial state ρin, free evolution

Λϕ,T and measurement {Πx} according to Eq. (3.2) – various estimation strategies can

be applied. In this chapter, we focus on two such strategies: the linear estimator and

the optimal Bayesian estimator. The linear estimator is renowned for its simplicity

and is both theoretically and experimentally commonly used and well understood.

It often arises naturally in a local approach (i.e. for a narrow prior distribution

and linear error propagation), where it is the standard choice (cf. Sec. 3.5.1). In

contrast, the optimal Bayesian estimator – as the name suggests – achieves the best

possible performance in Bayesian phase estimation. Explicit derivations are provided

in App. F.

4.4.1 Linear estimator

The linear estimator is defined by

ϕlinear
est (x) = a · x, (4.24)

with scaling factor a ∈ R. As discussed in detail in Sec. 3.5.1 and App. D.3, it origi-

nates from the method of moments in local phase estimation theory. In this context,

assuming an unbiased estimator and small deviations from the optimal working point

ϕ0, the signal can be approximated linearly and the phase estimation uncertainty

arises from quantum projection noise (QPN) (cf. Eq. (3.32))

∆ϕQPN =
∆X(ϕ)

|∂ϕ ⟨X(ϕ)⟩
∣∣∣
ϕ=ϕ0

. (4.25)

This local result is obtained in the limit of narrow prior distributions (δϕ → 0)

around the optimal working point ϕ0 and by choosing the particular scaling factor

a = (∂ϕ ⟨X(ϕ)⟩ |ϕ=ϕ0)
−1, corresponding to the inverse slope of the signal at ϕ0.

In the Bayesian framework, however, this approach is poorly suited. First, the

assumption of narrow prior distributions fails for realistic fluctuations of the phase, as

discussed before. Second, the prior information explicitly influences the cost function

and thus, the scaling factor a likewise has to depend on the prior distribution. For

an arbitrary prior distribution with zero mean
∫

dϕP(ϕ)ϕ = 0 and variance (δϕ)2 =∫
dϕP(ϕ)ϕ2, the optimal scaling factor and corresponding BMSE are given by

a =

∫
dϕP(ϕ)ϕ ⟨X(ϕ)⟩∫
dϕP(ϕ) ⟨X2(ϕ)⟩ (4.26)

(∆ϕ)2 = (δϕ)2 −
[∫

dϕP(ϕ)ϕ ⟨X(ϕ)⟩
]2

∫
dϕP(ϕ) ⟨X2(ϕ)⟩ . (4.27)
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As in the local approach, the linear estimator and its estimation error depend only

on the first and second moments of the observable X, which typically are easier

to evaluate than the full statistical model P (x|ϕ). This simplicity makes the linear

estimator a practical choice for phase estimation. Nevertheless, despite its advantages

and reliable performance in several situations, the linear estimation strategy generally

does not saturate the BCRB and thus is not optimal.

4.4.2 Optimal Bayesian estimator

In contrast to local phase estimation, where the Cramér-Rao bound can generally

only be approximated in the infinite-sample limit using the maximum-likelihood esti-

mator [6], the optimal estimator in Bayesian phase estimation can be derived explic-

itly [200]

ϕopt
est (x) =

∫
dϕP (ϕ|x)ϕ, (4.28)

saturating the BCRB with single shot measurements. This estimator corresponds to

the average phase with respect to the posterior distribution P (ϕ|x), which can be ex-

pressed in terms of the statistical model P (x|ϕ) and prior distribution P(ϕ) according

to Bayes theorem Eq. (4.2). As a consequence, the optimal Bayesian estimator can

be highly non-linear. The associated BMSE is given by

(∆ϕ)2 = (δϕ)2 −
∑

x

[∫
dϕP(ϕ)P (x|ϕ)ϕ

]2

P (x)
. (4.29)

Although this resembles the structure of Eq. (4.27), the BMSE for the optimal

Bayesian estimator explicitly depends on the statistical model, rather than merely

on the first and second moments of the observable. Additionally, for the optimal

Bayesian estimator, Eq. (4.3) reduces to the average posterior variance. Since the

optimal Bayesian estimator saturates the BCRB, and thus minimizes the BMSE with

respect to all estimation strategies, it is commonly referred to as the minimal mean

squared error (MMSE) estimator. However, we continue to use the term ‘optimal

Bayesian estimator’ throughout this work for consistency and clarity.

4.5 Bayesian frequency metrology

While the general relationship between frequency metrology and phase estimation was

introduced in Sec. 3.2, here we establish an explicit connection within the Bayesian

framework through the Allan deviation and by relating the interrogation time to

the prior width. Furthermore, we discuss the resulting trade-offs qualitatively in the

context of frequency metrology.



4.5. Bayesian frequency metrology 127

4.5.1 Clock stability and Allan deviation

The long-term stability of an atomic clock is quantified by the Allan deviation σy(τ) [11,

84–86], introduced in detail in Sec. 2.1, characterizing the fluctuations of fractional

frequency deviations y(t) = ω(t)/ω0 averaged over τ ≫ TC = T +TD. Here, the total

cycle duration TC accounts for the interrogation time T and any potential dead time

TD, arising from preparation steps and application of the feedback. In local frequency

metrology – assuming short interrogation times leading to narrow prior distributions

– the Allan deviation is well approximated by (cf. Sec. 3.4.3)

σy(τ) =
1

ω0

∆ϕQPN

T

√
TC
τ
. (4.30)

In this context, clock stability is determined by the cost function in the local approach,

the phase estimation uncertainty ∆ϕQPN– which is commonly simply referred to as

quantum projection noise (QPN) – characterizing the uncertainty associated with the

measurement process.

However, the BMSE in Bayesian frequency metrology – which leverages Bayesian

phase estimation strategies tailored to frequency metrology and directly includes the

frequency fluctuations into the theoretical model – incorporates both measurement

uncertainty and prior knowledge, preventing a straightforward substitution of ∆ϕQPN

by ∆ϕ. To isolate the measurement contribution from the prior knowledge I, we

introduce the effective measurement uncertainty motivated by the Bayesian Cramér-

Rao Bound (BCRB) in Eq. (4.8) and following Refs. [92,140]

∆ϕM =

(
1

(∆ϕ)2
− I

)−1/2

=

(
1

(∆ϕ)2
− 1

(δϕ)2

)−1/2

, (4.31)

where I = (δϕ)−2 for a Gaussian distribution. Hence, ∆ϕM quantifies the quality of

the measurement process in a single interrogation cycle. According to the discussion

of the BCRB in Sec. 4.3.1, the effective measurement uncertainty is lower bounded

by the average Fisher information (∆ϕM)2 ≥ 1/F and thus, a connection to the local

approach can be established, yielding

(∆ϕM)2 ≥ 1

F ≥ (∆ϕCRB)2 =
1

Fmax

. (4.32)

As a consequence, the clock stability in local frequency metrology – quantified by

Eq. (4.30) – emerges in the limit of narrow prior distributions (δϕ≪ 1) or equivalently

short interrogation times (T ≪ 1).

With the effective measurement uncertainty, the Allan deviation in the framework

of Bayesian frequency metrology is expressed as

σy(τ) =
1

ω0

∆ϕM

T

√
TC
τ
. (4.33)
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Consequently, the three key quantities for quantifying the sensitivity and ultimately

the clock stability in Bayesian frequency metrology are the prior width δϕ, the BMSE

∆ϕ, and the effective measurement uncertainty ∆ϕM . In the following, we will ex-

amine their relation in a qualitative discussion.

4.5.2 Qualitative scaling

Due to noise in the local oscillator, the phase diffusion grows with Ramsey dark time.

Thus, the prior width δϕ of the relative phase will be monotonically increasing with

the interrogation time T (cf. Fig. 4.1). At first glance, one might assume that δϕ is

solely determined by the characteristics of the free running LO frequency. However,

it depends even more strongly on the noise of the stabilized frequency and therefore

on the details of interrogation, estimation and feedback. Although the prior phase

distribution can generally vary over different clock cycles, it becomes stationary if

the feedback loop stabilizes the LO reliably to the atomic reference. In this case, the

residual noise can be considered to be white – to a good approximation – and thus can

be modeled by a normal distribution characterized by the spread δϕ (cf. Eq. (4.5)).

For a given finite δϕ, the interrogation protocol and estimation strategy can be

optimized to minimize the estimation error ∆ϕ. At the same time, the effective

measurement uncertainty, Eq. (4.31), and thus also the Allan deviation, Eq. (4.33),

are minimized. Consequently, ∆ϕ will ultimately determine the stabilized frequency

noise, which in turn affects δϕ. Therefore, in order to reflect the closed feedback loop

of the atomic clock, ∆ϕ has to be optimized iteratively for suitably chosen δϕ, as

detailed in Sec. 4.5.3.

The average error in phase estimation ∆ϕ depends on the prior width δϕ as well

as the particular interrogation sequence and estimation strategy. As discussed before,

∆ϕ ≤ δϕ and thus the estimation error ∆ϕ is reduced compared to the prior width

δϕ, since a proper Ramsey protocol increases the information about the phase. Here,

equality ∆ϕ = δϕ corresponds to a worst case scenario in which the effective measure-

ment variance diverges ∆ϕM → ∞. This case represents an ineffective interrogation

scheme, where the information gained through measurement and estimation fails to

improve the characterization of residual noise. Conversely, a hypothetical perfect

phase estimation (precluded by quantum mechanics due to its intrinsic indetermin-

ism) would result in a vanishing estimation error ∆ϕ → 0. Likewise, the effective

measurement uncertainty would also vanish ∆ϕM → 0, since this scenario implies a

perfect measurement.

The form of the Allan deviation in Eq. (4.33) suggests that the stability can be

improved by increasing the interrogation time T . However, this is only true as long as

the coherence time limit (CTL) of the LO remains negligible and quantum projection
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noise ∆ϕQPN of the measurement dominates the effective measurement uncertainty.

In general, three regimes can be distinguished based on the relation between the prior

width δϕ and QPN ∆ϕQPN:

(i) Considering small prior widths δϕ ≪ 1, the measurement and estimation

protocol cannot significantly improve the knowledge of the phase distribution, since

∆ϕQPN ≫ δϕ and thus ∆ϕ ≃ δϕ. In this case, ∆ϕM ≃ ∆ϕQPN and the local form of

the Allan deviation, Eq. (4.30), is reproduced.

(ii) With increasing interrogation time T , the prior width surpasses QPN δϕ >

∆ϕQPN. Nevertheless, in this regime, the information gain on the phase distribution

resulting from the measurement and estimation strategy leads to ∆ϕ≪ δϕ and thus

∆ϕM < δϕ. Hence, the optimal working point of the atomic clock is located in this

region.

(iii) At long interrogation times, the coherence time of the local oscillator will

become relevant and ultimately limits the clock stability. Here, the phase noise ex-

ceeds the domain of the measurement scheme where an unambiguous estimation is

possible, giving ∆ϕM ≫ δϕ ≃ ∆ϕ≫ ∆ϕQPN.

Consequently, the Allan deviation features a trade-off between increased stability

achieved through long interrogation times and the limitations imposed by the coher-

ence time of the local oscillator, which are characterized by the coherence time limit

(CTL). Fortunately, as previously discussed, this trade-off is inherently addressed

within the framework of Bayesian frequency metrology. In terms of clock stability,

this trade-off gives rise to an optimal interrogation time Tmin at which the minimal

Allan deviation σmin is achieved. While σmin accounts for the bias in phase estima-

tion for phases beyond the invertible range of the Ramsey sequence (via the CTL), it

nevertheless remains restricted to a single clock cycle and neglects cumulative effects

that might arise in a full feedback loop. The most prominent of these effects are

fringe hops, which are discussed in detail in Sec. 4.7 as they can only appear within

the full feedback loop.

4.5.3 Interrogation time and prior width

In the previous section, we linked the clock stability at interrogation time T – charac-

terized by the Allan deviation – with Bayesian phase estimation with prior width δϕ,

described by the BMSE. Furthermore, we qualitatively discussed that the prior width

increases with the interrogation time. To complete the connection between Bayesian

phase estimation and frequency metrology, this section aims to establish an explicit

relation between δϕ and T . This relation serves as a bridge between the frequency

fluctuations of the laser in an experiment and a theoretical representation in terms

of a Gaussian prior distribution with a specific width. Establishing this connection
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is essential for modeling experiments accurately and ensuring the applicability of

theoretical predictions to realistic scenarios.

State-of-the-art clock lasers are characterized by the spectral noise density Sy(f) =∑
α hαf

α, which can be modeled by a power law [12, 83, 84, 87], where α = 0,−1,−2

corresponds to white, flicker and random walk frequency noise, respectively (see

Sec. 2.2 for a comprehensive overview). Accordingly, the Allan variance of the free-

running LO can be expressed as σ2
y,LO(τ) = h̃ατ

−1−α. To compare different local

oscillators, a single timescale is defined characterizing the stability. As discussed in

Sec. 2.2.2, we implicitly define the laser coherence time Z following Ref. [92] by

σy,LO(ZC)2πν0Z = 1 rad. (4.34)

Here, σy,LO(ZC) denotes the Allan deviation of the local oscillator averaging over a

single cycle duration ZC = Z + TD with dead time TD.

In Ref. [92], it was demonstrated that the prior width of the full feedback loop

can be approximated by the power law

(δϕ)2 ≃ χ(α)

(
T

Z

)1−α

(4.35)

depending solely on the ratio of interrogation time T and coherence time of the

local oscillator Z, and the numerically determined factor χ(α) = 1, 1.7, 2 for α =

0,−1,−2. This approximation was derived in the limit of large ensembles and long

interrogation times using the conventional Ramsey protocol in the framework of local

phase estimation, and was successfully applied in Refs. [91,140]. However, in the full

feedback loop of an atomic clock, the prior width δϕ and estimation error ∆ϕ mutually

influence each other. Therefore, δϕ has to be adjusted iteratively to account for the

closed feedback loop dynamics, as motivated in the previous section and detailed in

App. A. This iterative procedure is employed in Sec. 4.7, where realistic Monte Carlo

simulations of the full feedback loop of an atomic clock are performed. Nevertheless,

Eq. (4.35) remains a convenient approximation for general investigations and is thus

adopted in Sec. 4.6.

In the following, motivated by state-of-the-art clock lasers [88], we assume a local

oscillator predominantly limited by flicker frequency noise. Additionally, we neglect

systematic shifts in the atomic transition frequency ω0. Moreover, we will assume

the atomic excited-state lifetime tspont to be substantially longer than the clock cycle

duration TC , such that tspont ≫ TC .
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a b

Figure 4.2: Sensitivity of standard protocols in Bayesian frequency metrol-
ogy: (a) Generic scaling of the dimensionless Allan deviation σy(τ) × ω0

√
τZ with

the interrogation time T for the example of N = 32, rescaled by the averaging time τ ,
laser coherence time Z and transition frequency ω0. Stabilities for the CSS (orange),
SSS (red) and GHZ (green) protocols are compared to the performance of the OQI
(black). For CSS and SSS, both the linear (dashed) and optimal Bayesian estimator
(solid) are depicted. The gray shaded area represents the inaccessible stability region
set by the OQI limit, while the orange shaded area indicates achievable stabilities
using uncorrelated atoms. Dotted lines correspond to the CTL for OQI (black) and
for CSS and SSS with the linear estimator (orange). Additionally, benchmarks such
as the SQL (orange), HL (green), and πHL (black) are included as dashed-dotted
lines. (b) Scaling of the dimensionless minimal Allan deviation σmin × ω0

√
τZ with

the ensemble size N . In addition to the standard protocols, the POI performance
(violet) is presented. For the OQI and POI, numerical optimization is performed
for N ≤ 100, while the asymptotic behavior, represented by the πHL (black dashed-
dotted), is shown for N > 100.

4.6 Optimal Ramsey protocols in Bayesian frequency

metrology

In this section, we aim to saturate the OQI in the context of atomic clocks. We

begin by analyzing standard protocols and compare their performance to the OQI.

Afterwards, we introduce variational classes of quantum circuits and investigate the

associated optimal Ramsey protocols.

4.6.1 Standard protocols

To start with, we examine the effective measurement uncertainty and corresponding

clock stability of standard Ramsey protocols (see App. G for detailed derivations).

Specifically, we focus on coherent spin states (CSS), spin-squeezed states (SSS), and

GHZ states, as well as the ultimate lower bound defined by the optimal quantum in-
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terferometer (OQI). For all Ramsey schemes, the dependence of clock stability on the

interrogation time T reflects the three regimes discussed in Sec. 4.5.2, representing a

trade-off between enhanced stability achieved through longer interrogation times and

the coherence time limit. These distinct regimes are depicted in Fig. 4.2(a), which

illustrates the generic dependence of stability on interrogation time. Furthermore, the

scaling of the minimal Allan deviation σmin with ensemble size N at the optimal in-

terrogation time Tmin is presented in Fig. 4.2(b). These figures are based on the work

of Kaubruegger et al. [140] and are adapted here within the framework defined above.

In particular, emphasis is placed on comparing the linear and optimal Bayesian esti-

mation strategies across different protocols, with performance benchmarked against

the OQI. To enable comparability between various setups, the achievable Allan de-

viations σy(τ) are rescaled with respect to the atomic transition frequency ω0, the

total averaging time τ and the laser coherence time Z. This rescaling ensures that

the results are transferable to specific experimental parameters.

Coherent Spin States (CSS)— The conventional clock protocol employs Ramsey

interferometry with coherent spin states (CSS) [115–117] – introduced in detail in

Sec. 2.3.7 – as initial states, a collective projective spin measurement and a linear

estimation strategy. In this scenario, the effective measurement uncertainty can be

evaluated analytically as [92]

(∆ϕCSS
M )2 =

cosh((δϕ)2)

N
+ sinh

(
(δϕ)2

)
− (δϕ)2. (4.36)

For short interrogation times T/Z ≪ 1, leading to narrow prior widths δϕ ≪ 1, the

conventional standard quantum limit (SQL) ∆ϕSQL = 1/
√
N is recovered. Conversely,

for long interrogation times T/Z ∼ 1, frequency fluctuations of the local oscillator

dominate and the first term in Eq. (4.36) becomes negligible. This regime defines the

coherence time limit (CTL) for CSS with a linear estimator,

(∆ϕCSS
CTL)2 = sinh

(
(δϕ)2

)
− (δϕ)2. (4.37)

Hence, the stability reflects a trade-off between these two regimes, as illustrated in

Fig. 4.2(a), determining the minimal Allan deviation σmin. As the ensemble size N in-

creases, the first term in Eq. (4.36) decreases, leading to shorter optimal interrogation

times Tmin to achieve σmin.

For the optimal Bayesian estimator, an explicit evaluation of the conditional prob-

abilities P (x|ϕ) is required, as discussed in Sec. 4.4. Although P (x|ϕ) can be de-

termined analytically for the CSS, the integrals in Eq. (4.29) generally have to be

evaluated numerically. For short interrogation times, the narrow prior phase distri-

bution allows for a good approximation by linearizing the signal. Thus, the optimal



4.6. Optimal Ramsey protocols in Bayesian frequency metrology 133

Bayesian estimator reproduces the linear estimator in this regime. In contrast, for

interrogation times in the region of the minimal Allan deviation, higher-order contri-

butions of the sinusoidal signal become relevant and the curvature of the signal has to

be considered. In this case, the optimal Bayesian estimator approximates the arcsin

estimator, which directly inverts the signal and thus allows to estimate the phase un-

ambiguously in the range [−π/2,+π/2]. This results in an extended dynamic range

compared to the linear estimator, which cannot account for any non-linearity of the

signal and thus exhibits a higher minimal instability. As a consequence, the opti-

mal Bayesian estimator improves the scaling of ∆ϕM with the ensemble size N to

O(N−0.47), compared to O(N−0.42) for the linear estimator, as shown in Fig. 4.2(b).

While the choice of an estimator has limited impact for small ensembles, the stabil-

ity gain from the optimal Bayesian estimator becomes significant for large ensembles

N ≫ 1. Importantly, this improvement arises solely from classical post-processing

of the measurement outcomes, while the quantum circuit remains unchanged. Nev-

ertheless, the CTL prevents both estimation strategies from achieving the SQL of

1/
√
N .

Spin-Squeezed States (SSS)— Extending the conventional Ramsey protocol

with a single one-axis-twisting (OAT) interaction [125] for state preparation, vari-

ous entangled states can be generated (see Sec 2.3.9 for a comprehensive overview).

Here, OAT interactions are denoted by Tk(µ) = exp
(
−iµ

2
S2
k

)
with twisting stength µ

around axis k, where Sk = k1Sx+k2Sy +k3Sz is the spin projection along direction k.

In particular, for small twisting strengths µ, one-axis-twisting generates spin-squeezed

states (SSS) by shearing the initial CSS around the twisting axis, characterized by

a squeezing parameter ξ < 1. Using the linear estimator, the effective measurement

uncertainty is given by

(∆ϕSSS
M )2 =

〈
S2
y

〉

⟨Sx⟩2
cosh

(
(δϕ)2

)
+

⟨S2
x⟩

⟨Sx⟩2
sinh

(
(δϕ)2

)
− (δϕ)2, (4.38)

with expectation values provided in App. G.2. SSS show enhanced stability com-

pared to CSS due to reduced fluctuations in the measured spin observable. However,

the gain comes at the cost of smaller dynamic range, as the minimal Allan deviation

is achieved at shorter interrogation times compared to CSS (cf. Fig. 4.2(a)). This

is a direct consequence of SSS sharing the same coherence time limit as CSS, since〈
S2
y

〉
/ ⟨Sx⟩2 ≪ 1 and ⟨S2

x⟩ / ⟨Sx⟩2 ≃ 1 for large prior widths δϕ and corresponding

optimal twisting strengths. Similar to the conventional Ramsey protocol, SSS with

the optimal Bayesian estimator achieve a slightly extended dynamic range at long

interrogation times. For large ensembles N ≫ 1, the asymptotic scaling of the ef-

fective measurement uncertainty with the optimal Bayesian estimator approximates
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O(N−2/3), depicted in Fig. 4.2(b), reflecting the scaling observed in decoherence-free

local phase estimation [6, 125]. In contrast, the linear estimator exhibits a scaling

O(N−0.63). Furthermore, the optimal Bayesian estimation strategy offers a remark-

able advantage at short interrogation times, where δϕ ≲ 1/N , as shown in Fig. 4.2(a).

In this regime, the estimator becomes highly non-linear, allowing for substantially

stronger twisting strengths µ, resulting in stronger squeezing and enhanced stability.

However, as δϕ approaches 1/N , the scaling of the Allan deviation with the interro-

gation time T stagnates and converges towards the stability achieved with the linear

estimator.

GHZ States— The maximally entangled Greenberger-Horne-Zeilinger (GHZ) state

|GHZ⟩ =
[
|↓⟩⊗N + |↑⟩⊗N

]
/
√

2 [121] represents an equal superposition of the collective

ground and excited states. The corresponding Ramsey sequence, initially proposed

by Wineland et al. [122], is referred to as the GHZ protocol.2 During the free evolu-

tion time, the accumulated phase is amplified by a factor of N due to the maximal

entanglement of the GHZ state. Subsequently, the parity Π is measured, resulting in

a binary outcome ±1 that indicates whether the number of atoms in the ground state

is even or odd. Since a binary outcome inevitably results in a linear estimator, both

estimation strategies coincide and result in the effective measurement uncertainty

(∆ϕGHZ
M )2 =

eN
2(δϕ)2

N2
− (δϕ)2. (4.39)

However, the optimal Bayesian estimator allows to avoid a parity measurement and

perform a conventional projective spin measurement instead. In this case, the optimal

Bayesian estimator effectively maps even and odd numbers of atoms in the ground

state to the parity ±1, thereby mimicking a parity measurement and achieving the

same sensitivity (cf. App. G.3). This strategy was essentially employed in a different

framework in Ref. [157]. Both measurement and estimation strategies are optimal,

since Eq. (4.39) aligns with the BQCRB for GHZ states. For short interrogation

times, where δϕ ≲ 1/N , the GHZ protocol achieves the conventional Heisenberg limit

(HL) ∆ϕHL = 1/N , as illustrated in Fig. 4.2(a), which corresponds to the OQI in

a decoherence-free local phase estimation scenario. However, the sensitivity of the

GHZ protocol decreases N -times faster than that of CSS as the prior width increases.

For a parity measurement, this is attributed to the N -times increased oscillation

frequency of the sinusoidal signal, yielding an accordingly reduced dynamic range.

Ultimately, the resulting ambiguities in phase estimation cause the GHZ protocol to

2In Chapter 3, we referred to this protocol as parity-GHZ protocol. However, within the Bayesian
framework, the parity-GHZ protocol already saturates the BQCRB of the GHZ state (cf. App. G.3)
and thus, a distinction between different GHZ protocols is redundant.
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be effectively insensitive to phases ϕ ≳ 1/N . Consequently, the optimal interrogation

time scales approximately as 1/(NZ), leading to a scaling of the effective measurement

uncertainty of O(N−1/2), equivalent to the SQL (cf. Fig. 4.2(b)). While the minimal

Allan deviation of the GHZ protocol provides only a minor improvement over CSS

and is outperformed by SSS, its shorter optimal interrogation time offers practical

advantages. For instance, reduced probe times mitigate contrast losses and time

dilation shifts caused by motional heating in ion crystals, thus improving the signal-

to-noise ratio and the accuracy of such a clock [12].

OQI— As discussed in Sec. 4.3, the OQI requires numerical optimization, as no an-

alytical expressions are available for arbitrary ensemble sizes. Instead, we investigate

the general scaling based on Fig. 4.2. For short interrogation times T/Z ≪ 1, where

δϕ ≲ 1/N , the OQI is saturated by the GHZ protocol, achieving the Heisenberg limit

σHL(τ) = 1/(N
√
Tτ), as shown in Fig. 4.2(a). As the interrogation time increases

and δϕ ≳ N , a characteristic plateau emerges in which the Allan deviation decreases

only marginally with T . This plateau shifts to shorter interrogation times as the

ensemble size N increases, reflecting the coherence time limit of the GHZ protocol.

Beyond this plateau, as the interrogation time increases further, the scaling of the

Allan deviation with T converges back to 1/
√
T , ultimately reaching its minimum

σmin at Tmin. In the limit of large ensembles (N ≫ 1), this minimum is determined

by the π-corrected Heisenberg limit. While the OQI significantly outperforms SSS

at Tmin, SSS perform close to the OQI in the transition regime, especially for small

ensembles. The relative gain of the OQI over SSS at Tmin increases with the ensemble

size, as illustrated in Fig. 4.2(b). In the asymptotic limit N ≫ 1, the POI, introduced

in Sec. 4.3 and further detailed in App. F.3, is optimal, saturating the πHL. In this

regime, the OQI scales as O(N−0.97), closely approaching Heisenberg scaling. At long

interrogation times, the stability ultimately converges to the coherence time limit.

In the following, we essentially distinguish between two different regimes concern-

ing the ensemble size N : The first regime covers systems ranging from N = 1 to

some tens of atoms, as relevant for ion traps [16–18] or tweezer arrays [19–22]. The

remainder of this section primarily focuses on bridging the gap between SSS and the

OQI by identifying Ramsey protocols of increasing complexity that approximate the

OQI within this regime. In contrast, for large ensembles (N ≳ 100), the regime of

lattice clocks is reached and the asymptotic scaling is approximated [12, 23–26]. In

this regime, dead time typically emerges as the dominant limitation [91], as discussed

in detail in Sec. 4.8.
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4.6.2 Variational Ramsey protocols

Recent advances in quantum information have inspired the development of vari-

ational quantum circuits as versatile tools for implementing interferometers with

setup-specific quantum gates. Typically, each layer in these circuits comprises an

entanglement-generating interaction and (single qubit) rotations that provide geomet-

ric flexibility. One-axis twisting (OAT) [125] interactions have gathered significant

attention, as they can be implemented in several experimental platforms [62,126–133]

and corresponding circuits represent a natural extension of spin-squeezed states (SSS).

Combined with collective rotations, OAT interactions form the building blocks of sev-

eral variational quantum circuits [5, 139–143]. While Ref. [5] offers a unified frame-

work for generalized echo protocols in local phase estimation, encompassing numerous

previously documented approaches [128,143,202–208], this chapter investigates vari-

ational classes specifically tailored to Bayesian frequency metrology.

In general, any variational Ramsey protocol can be expressed as

P (x|ϕ) = Tr (|xM⟩⟨xM |Λϕ,T [ρin]) (4.40)

ρin = Uprep |ψ0⟩⟨ψ0| U †
prep (4.41)

|xM⟩⟨xM | = U †
meas |M⟩⟨M | Umeas, (4.42)

with arbitrary unitary preparation and measurement operations Uprep and Umeas, re-

spectively. While Uprep generates the initial state by acting on the ground state

|ψ0⟩ = |↓⟩⊗N , Umeas effectively determines the measurement X by transforming the

Dicke states |M⟩, with spin S = N/2 and eigenvalue M of Sz, into the effective

measurement basis states |xM⟩.3 Since any alternative choice of |ψ0⟩ and Dicke basis

{|M⟩⟨M |} can be incorporated into Uprep and Umeas by additional transformations,

fixing |ψ0⟩ and {|M⟩⟨M |} does not limit the generality of the protocol. The unitaries

Uprep and Umeas are constructed from n and m layers of the variational circuit, respec-

tively. Consequently, n effectively determines the level of entanglement in the initial

state, while m governs the measurement strategy and dynamic range, ultimately de-

termining the minimal Allan deviation σmin.

Previous results— Pioneering work on Bayesian variational Ramsey protocols

was conducted in Refs. [140, 142]. These studies introduced a variational class con-

strained to be invariant under the x-parity transformation, resulting in an anti-

symmetric signal. Each layer of the quantum circuit consisted of two OAT interactions

3In this chapter, we restrict the analysis to the subspace with maximal spin S = N/2, as the
system exhibits permutational invariance and the unitary dynamics, described by Eq. (4.4), preserves
this symmetry.
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applied along orthogonal directions, combined with a collective rotation about one

of these axes. While this choice provided a diverse class of entanglement-generating

unitaries in each layer, it imposed significant geometric constraints. Nevertheless,

the quality of phase estimation was not compromised, as the main objective was

to saturate the OQI in the asymptotic limit of deep circuits. The analysis primar-

ily focused on ensembles with several tens of qubits and employed linear estimation

strategies. Kaubruegger et al. demonstrated that the minimal Allan deviation σmin

could be achieved with sufficiently deep circuits. However, this approach had two

key drawbacks: the reliance on deep circuits due to restricted geometric flexibility,

and the inclusion of two OAT interactions per layer, which are experimentally more

challenging to implement than collective rotations.

Thurtell et al. in Ref. [141] addressed these limitations by proposing a variational

class where each layer comprises a single OAT interaction around the z-axis com-

bined with global rotations. These rotations are designed to effectively transform

the OAT interaction with respect to an arbitrary axis, thereby eliminating geometric

constraints. This approach reduced both the circuit depth and the number of OAT

interactions, while achieving results comparable to those in Ref. [140]. Nevertheless, a

considerable number of OAT interactions remained necessary. Moreover, the analysis

was conducted within the framework of general Bayesian phase estimation and thus,

did not consider the trade-off with respect to the interrogation time in frequency

metrology.

Variational quantum circuits— In the following, we aim to approximate the

OQI within the framework of Bayesian estimation tailored to frequency metrology.

Instead of exploring the convergence towards the OQI with many layers for state

preparation and measurement, we focus on variational quantum circuits with mini-

mal depth. We primarily consider small ensembles relevant to ion traps and addition-

ally investigate the transition toward tweezer arrays, which have been predominantly

studied in Refs. [140,141]. Given the high degree of controllability achievable in these

systems, this represents the regime where near-term experimental implementation is

most likely. Moreover, variational protocols are less favorable in setups with many

atoms, such as in lattice clocks, as we will discuss below. In contrast to earlier studies

– relying on linear estimation strategies – we employ the optimal Bayesian estimator

to fully exploit the potential of variational Ramsey protocols. This choice is moti-

vated by the substantial improvements observed for the standard protocols, including

enhanced squeezing for SSS at short interrogation times, an extended dynamic range

for CSS and SSS, and an effective reduction in the circuit depth required to imple-

ment the GHZ protocol. Additionally, by using the optimal Bayesian estimator, we
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ensure saturation of the BCRB for any given initial state and measurement and thus

minimizing the required circuit depth. A comprehensive comparison with the linear

estimation strategy is provided in Sec. 4.7.3.

Building on the advancements in Refs. [140, 141], we define the variational class

of generalized Ramsey protocols considered in this work, as illustrated in Fig. 4.3(a),

by

Uprep = Rn

[ n⊗

j=1

Tj

]
Rπ

2

Umeas = Rm

[ n+m⊗

j=n+1

Tj

]
R†

n,

(4.43)

where we introduced the abbreviations Tj = Tkj
(µj) and Rπ

2
= Ry

(
−π

2

)
. The

π/2-pulse Rπ
2

in Uen generates the CSS polarized in x-direction |+⟩⊗N = (| ↑⟩ + | ↓
⟩)⊗N/

√
2
N

= Rπ
2
|↓⟩⊗N . The rotations Rn and Rm result in an effective phase evo-

lution around an arbitrary axis n, Sn = R†
nSzRn, and an effective measurement of

Sm = R†
mSzRm, respectively. Similarly, each one-axis-twisting Tk(µ) = R†

kTz(µ)Rk

can be expressed as an OAT with respect to the z-axis and a rotation Rk. The

resulting variational classes are not restricted by any geometric constraints.

For a given protocol class [n,m], the quantum circuit contains n+m OAT interac-

tions with associated twisting strengths µj. Together with the rotations Rn,Rm,Rkj
,

which ensure geometric generality and are each characterized by two variational pa-

rameters, the total number of variational parameters is 4 + 3(n + m). Notably, the

particular choice of the CSS |+⟩⊗N as the initial state allows us to fix the first OAT

of Uprep along the z-axis without losing any generality. This simplification reduces

the total number of variational parameters by two.

The variational class defined in Eq. (4.43) contains the standard Ramsey protocols

as limiting cases. Coherent spin states (CSS) are recovered in the [0, 0]-protocol,

while spin-squeezed states (SSS) are implemented within the [1, 0]-class. The GHZ

protocol emerges as a special case, either within the [1, 0]-class using the optimal

Bayesian estimator, as discussed in the previous section, or as part of the [1, 1]-class,

as implemented in Ref. [128].

Ramsey signals— The standard protocols, namely CSS, SSS and GHZ protocols,

exhibit sinusoidal signals. While CSS and SSS have a dynamic range of [−π/2,+π/2],

allowing for unbiased phase estimation within this interval, the phase is imprinted

N times faster for the GHZ state, leading to a correspondingly N times smaller

dynamic range. In contrast, variational quantum circuits with multiple layers for state
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Figure 4.3: Variational Ramsey protocols in Bayesian frequency metrology:
(a) Visualization of the variational Ramsey protocols defined in Eq. (4.43). The
π/2-pulse Rπ

2
= Ry(−π/2) generates the coherent spin state (CSS) polarized in x-

direction from the ground state |ψ0⟩ = |↓⟩⊗N . Entanglement in the initial state
and measurement is introduced via one-axis-twisting (OAT) interactions, denoted by
Tj = Tkj

(µj) with twisting strength µj around axis kj. During the free evolution
time T , the phase ϕ is imprinted onto the initial state via a rotation around the
z-axis. The rotations Rn and Rm result in an effective phase evolution around an
arbitrary axis n, Sn = R†

nSzRn, and an effective measurement of Sm = R†
mSzRm,

respectively. Finally, the phase is estimated based on measurement outcome M of
observable Sz. (b-d) Approximating the OQI using variational [1,m]-classes (blue)
for (a) N = 4, (b) N = 8 and (c) N = 32. For comparison, the standard protocols are
shown as they naturally emerge as specific quantum circuits within the variational
classes. Additionally, the BQCRB of SSS is shown (dashed gray). With increasing
N , the complexity of the variational circuits required to approach OQI performance
increases. (e) Scaling of the gain in clock stability compared to CSS at the optimal
interrogation time Tmin with N .
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preparation and measurement can generate arbitrary signal shapes. In particular,

the variational classes introduced above impose no restrictions on the geometry, and

therefore the signal shape is not constrained.

Generic Ramsey signals for the [1, 1] and [1, 2] protocols are illustrated in Fig. 4.4(a)

for N = 8 at interrogation time T/Z = 0.1. The signals, associated with the opti-

mal variational parameters, are compared for both the linear and optimal Bayesian

estimation strategies.

In principle, the estimation strategy does not affect the signal directly, as it is

determined solely by the initial state, free evolution dynamics and measurement.

However, the choice of the estimator influences the optimization of the variational

parameters, which in turn affects the signal. Consequently, the linear estimation

strategy typically yields anti-symmetric signals, at least within the range of the prior

distribution. In contrast, the optimal Bayesian estimator can become highly non-

linear. As a result, corresponding signals often exhibit strongly non-sinusoidal shapes,

lacking symmetry and any apparent relation to the phase. While this may initially

seem counterintuitive, this approach ultimately achieves low phase estimation uncer-

tainties when combined with the corresponding estimator, as we will explore in detail

in the next section. An example has already been discussed in Sec. 4.6.1 for the

GHZ protocol, where the optimal Bayesian estimator can effectively mimic a parity

measurement, while the signal itself vanishes. A similar behavior is observed for the

optimal [1, 2] protocol with optimal Bayesian estimator in Fig. 4.4(a).

4.6.3 Optimal protocols

For fixed ensemble size N , circuit depth [n,m] and prior phase width δϕ, the opti-

mization of the quantum circuits introduced above is performed over all variational

parameters. To enable a general discussion, we adopt the power-law scaling of the

prior width with interrogation time T , as defined in Eq. (4.35). Results for exemplary

ensemble sizes N as well as the scaling of the stability with N are presented in Fig. 4.3.

The variational protocols are primarily compared to the OQI, as its saturation is the

central goal of this section. Additionally, comparisons to standard Ramsey protocols

are provided where relevant to highlight specific advantages and limitations.

General results— We begin by examining the general behavior and scaling of the

variational classes, with a particular focus on the number of layers n and m. While

[n, 0]-protocols yield collective spin measurements with sinusoidal signals, increasing

m allows for arbitrary signal shapes, since no geometric constraints are imposed, as

discussed in the previous section and illustrated in Fig. 4.4(a). As for the standard

Ramsey protocols, variational protocols exhibit a clear trade-off between enhanced
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a b

Figure 4.4: Optimal Ramsey signals and optimization landscape: (a) Com-
parison of signals ⟨X(ϕ)⟩ of the optimal [1, 1] and [1, 2] protocols for the linear
(dashed) and optimal Bayesian estimator (solid), for N = 8 at an interrogation time
of T/Z = 0.1. The gray shaded region represents the spread of the prior distribution,
with its width δϕ corresponding to the specific interrogation time. (b) Optimization
landscape in the µ1-µ2-plane for the [1, 1] class for N = 8 at an interrogation time of
T/Z = 0.1. The Allan deviation σy(τ) is rescaled by the averaging time τ , coherence
time Z and transition frequency ω0. Darker areas correspond to better stability. The
optimization areas (I-VII) are separated by white lines, while local minima within
these regions are illustrated by symbols. In theory, the lowest instability is achieved
by the protocol indicated by the hexagon in area (III), while the other local minima
result in a comparable clock stability. Accordingly, the signal in (a) for the [1, 1]-class
with the optimal Bayesian estimator corresponds to the hexagon.

stability for increasing interrogation times and the coherence time limit of the local

oscillator.

At long interrogation times close to the minimal Allan deviation σmin, the OQI

is saturated by the BQCRB of SSS for any ensemble size N . Within the varia-

tional framework, this can be implemented using the [1,m]-classes, as the optimal

measurement of the BQCRB is approximated in the limit m ≫ 1. Increasing the

number of entangling layers n yields σmin comparable to that of the corresponding

[1,m]-protocols, consistent with findings in Ref. [141]. Consequently, to extend the

dynamic range and approximate the OQI at long interrogation times requires to in-

crease m.

In contrast, at short interrogation times, the dynamic range is negligible, and

increasing the entanglement depth of the initial state, effectively determined by n,

becomes beneficial. However, GHZ states are already optimal in this regime and

saturate the Heisenberg limit. Thus, n = 1 remains sufficient.

At the plateau of the OQI, where GHZ states become ineffective, the [1,m]-classes

generally do not saturate the OQI. This regime becomes broader for larger ensem-

bles, since the dynamic range of GHZ states reduces with N . Here, achieving the

OQI requires asymptotically deep quantum circuits, which, however, is unfavorable,
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as discussed before. Even in the limit of n+m≫ 1, as considered in Refs. [140,142],

the variational class only gradually approximates the OQI with increasing complex-

ity. Furthermore, in the plateau regime, the optimal variational parameters strongly

depend on the prior width, causing substantial variations in the interferometer se-

quence. As a consequence, even minor modifications in the interrogation time can

lead to profound changes in the form of both the signals and the associated estima-

tion strategies. In particular, as the regime of GHZ states is exceeded, the twisting

strengths decrease significantly, effectively reducing the degree of entanglement to

adapt to increased LO noise. Interestingly, this susceptibility diminishes with in-

creasing circuit complexity m. This can be interpreted as follows: For low depth

quantum circuits, the variational space is limited and thus, the optimal states and

measurements have to be extremely well tailored to a specific prior width to ensure

a sufficiently high degree of entanglement and dynamic range at the same time. As

the variational complexity increases, the variational space grows and reduces the sus-

ceptibility to small variations in the prior width. Additionally, this dependence gives

rise to a large number of local minima, as illustrated in Fig. 4.4(b), making global

optimization tedious and facilitating numerical errors, indicated by the non-smooth

curves.

As a consequence, we focus on approximating the OQI in all regimes except the

plateau using variational [1,m]-classes and strive for a minimal circuit depth m.

Protocol complexity and ensemble size— For the simplest case, N = 2, the

GHZ protocol is optimal across most interrogation times because the critical prior

width, δϕ ∼ 1/N , is relatively large. Consequently, the region between the plateau

and the minimal Allan deviation is narrow. In this transitional regime, SSS achieve

the OQI, while the minimal Allan deviation (ADEV) as well as the plateau of the

OQI are saturated by the simplest non-trivial variational class, the [1, 1]-protocols.

Hence, standard protocols are sufficient to saturate the OQI across a wide range of

interrogation times.

For N = 4, illustrated in Fig. 4.3(b), the plateau of the OQI already broadens

significantly. SSS perform close to the OQI and the variational protocols over a

narrow range of interrogation times in the transition regime. The [1, 1]-protocols

remain optimal for a broad range of interrogation times, closely approaching the OQI

at the plateau and at the minimal ADEV. Increasing the circuit complexity, the

[1, 2]-class approximates the OQI.

For N = 8, depicted in Fig. 4.3(c), the discrepancy between low-depth quantum

circuits and the OQI at the plateau becomes more pronounced. Even the BQCRB

of SSS, effectively represented by [1,m]-classes for m ≫ 1, approximates the OQI
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only closely. In the transition regime, where the OQI scaling reverts to ∼ 1/
√
T , SSS

approximate both the variational classes and the OQI, but the deviation grows with

N , as discussed in Sec. 4.6.1. At the minimal ADEV, [1, 1]-protocols substantially

extend the dynamic range, but nevertheless leave a noticeable gap to the OQI, which

is largely closed by [1, 2]-classes. Increasing the variational complexity further, the

[1, 3]-class approximates the OQI in the vicinity of σmin, but does not fully saturate

it. Consequently, already for N = 8 relatively deep quantum circuits are required to

saturate the OQI entirely. Since the gain diminishes with increasing m, and in order

to keep the quantum circuit comparably simple, we do not increase the circuit depth

further.

As N increases, this trend continues, as shown for N = 32 in Fig. 4.3(d). In

this case, even the BQCRB of SSS exhibits significant deviations from the OQI at

the plateau. In contrast, in the scaling regime of ∼ 1/
√
T , and particularly at the

minimal Allan deviation, the BQCRB saturates the OQI. The overall minimum is

approximated by increasing m, but diminishing gains make deeper circuits less ad-

vantageous. Hence, we restrict our analysis to variational classes [1,m] with m ≤ 3

as before. In general, the variational complexity required to saturate the OQI grows

with N (cf. Fig. 4.3(e)). These results align with the asymptotic analysis of OQI

saturation in Refs. [140–142].

For large ensemble sizes (N ≳ 100), reaching the regime of optical lattice clocks,

atom number fluctuations during interrogation become relevant [12]. Variational

Ramsey protocols – optimized for fixed N – are highly sensitive to such fluctuations,

making them less favorable in this regime. Instead, the POI emerges as a robust

alternative, saturating the OQI in the limit of large N .

In summary, for systems with small ensembles N , such as ion traps and tweezer

arrays, low-depth variational classes are sufficient to approximate the OQI. These

protocols generally achieve optimal performance across all interrogation times, except

at the OQI plateau. Already the simplest variational protocols from the [1, 1]-class

significantly enhance the stability at long interrogation times, particularly in the

regime of the minimal Allan deviation. The circuit depth of [1,m] protocols required

to actually saturate the OQI at long interrogation times increases with N . However,

the performance gain diminishes with m, presenting a trade-off between reduced

instability and increasing complexity. To maintain a reasonable balance between

dynamic range and circuit depth, we restrict our analysis to m ≤ 3, acknowledging

that the OQI can be fully saturated in the limit of deep circuits m≫ 1, as quantified

by the BQCRB of SSS.
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4.7 Application in the full feedback loop of an atomic

clock

The Bayesian approach captures key aspects of atomic clock operation, including fi-

nite prior information, single-shot measurements, and the trade-off between enhanced

stability achieved through longer interrogation times and the coherence time limit of

the local oscillator. However, it models only a single clock cycle and neglects cumu-

lative effects that arise in a full feedback loop. In particular, in the regime where

the invertible domain of the main fringe is exceeded by the prior distribution and

thus an unambiguous phase estimation is no longer possible, so called fringe hops

might occur. In this scenario, the feedback loop passes to an adjacent Ramsey fringe

resulting in the clock running systematically wrong and consequently degrading the

clock stability. Whether fringe hops or the coherence time limit impose the dominant

constraint depends on the specific Ramsey protocol and interrogation time. Since

fringe hops are a feature only emerging in the context of a full feedback loop, they are

not captured by the theoretical model presented above. While existing approaches,

such as those in Refs. [91, 222], provide rough estimates for the effects of fringe hops

based on single cycle properties, they are typically limited to sinusoidal signals and

lack general applicability. A rigorous treatment of fringe hops requires modeling the

complete feedback loop, as pursued in Ref. [199], but adapting this framework to

variational Ramsey protocols lies beyond the scope of this work. Instead, we perform

realistic Monte Carlo simulations of the full feedback loop to validate our theoretical

predictions on clock stability. These numerical simulations reflect the basic principles

of atomic clock operation (cf. Sec. 3.2). Further implementation details are provided

in App. A and Ref. [3]. The prior width in the full feedback loop is determined

iteratively, as discussed in Sec. 4.5.3 and App. A.

To start with, in Sec. 4.7.1 we examine the limitations imposed by fringe hops

and discuss the associated deviations between theoretical predictions and numerical

simulations. In Sec. 4.7.2, we investigate the clock stability within the full feedback

loop of an atomic clock for various Ramsey protocols and ensemble sizes, identifying

the protocols that perform best in the respective regimes. Furthermore, in Sec. 4.7.3,

we compare the linear estimation strategy with the optimal Bayesian estimator, fo-

cusing particularly on variational quantum circuits and the limitations imposed by

fringe hops.
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4.7.1 Limitation due to fringe hops

Results of numerical simulations, presented in Fig. 4.5, show good agreement with

theoretical predictions across a wide range of interrogation times. However, significant

deviations arise in two regimes.

First, for small ensembles at long interrogation times, fringe hops limit the clock

stability rather than the coherence time limit. As a result, the minimal Allan devia-

tion σmin is not achieved for the standard protocols and variational classes. Instead,

the best stability is observed at Tsim < Tmin, lying within the transition regime be-

tween the plateau of the OQI and σmin. However, as N increases, Tsim approaches

the coherence time limit at Tmin, resulting in improved stability. In particular, for

N ≳ 20, fringe hops and the coherence time limit spoil the stability at the same level

and thus, the minimal Allan deviation is achieved for the standard protocols and

variational classes. Notably, GHZ protocols remain limited by fringe hops regardless

of N due to their inherently narrow dynamic range which decreases with the ensemble

size.

Second, deviations arise in the regime of the plateau of the OQI, which primarily

can be explained by three arguments: (i) Similar to long interrogation times, fringe

hops can occur in this regime. For instance, for δϕ ≲ 1/N , the optimal variational

protocols resemble the GHZ protocol. However, as argued before, fringe hops pre-

vent GHZ protocols to achieve its minimal Allan deviation. Likewise, the optimal

variational protocols may not attain the theoretical prediction as δϕ ∼ 1/N . In this

regime, m ̸= 0 typically generates highly non-sinusoidal signals with reduced dynamic

range compared to CSS and SSS (cf. Fig. 4.4(a)), resulting in severe limitations due

to fringe hops. (ii) As described in the previous section, in the regime of the OQI

plateau, the optimal variational parameters are highly sensitive to small changes in

the interrogation time, where this susceptibility diminishes with the circuit complex-

ity m. With increasing ensemble size, this limitation increases, since the plateau gets

broader with N . Although the prior width is determined iteratively, modeling the ac-

tual prior distribution solely based on the width remains a simplified parametrization

of the prior knowledge. Furthermore, this iterative evaluation of the prior width relies

on a fixed interrogation sequence (cf. App. A), which may not capture the true prior

width of variational protocols sufficiently accurate. Consequently, the optimization

can lead to variational protocols that are more susceptible to the true residual noise

than predicted by the model, resulting in deviations between theoretical predictions

and numerical simulations. (iii) Additionally, the assumption of a Gaussian prior

distribution for the residual noise in each cycle may not reproduce the true dynamics

appropriately. In particular, for small ensembles, the number of possible measure-

ment outcomes is small and thus, the central limit theorem justifies this assumption
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to a reasonable level only in the asymptotic limit of many repetitions. Consequently,

corresponding deviations reduce with increasing N .

As a consequence, stability can be compromised in both regimes. To address these

limitations, we simulate the clock performance of several protocols for a fixed interro-

gation time T and variational class [n,m], corresponding to distinct local minima in

the parameter landscape (cf. Fig. 4.4(b)), and select the protocol that achieves the

best stability. Consequently, the best-performing protocol identified in simulations

may differ from the theoretical optimum, leading to deviations between simulation

and theory. To give an example, the variational protocol associated with the hexagon

in area (III) in Fig. 4.4(b) achieves the lowest Allan deviation in theory, while it is

limited by fringe hops in the numerically simulated full feedback loop. Instead, the

protocol corresponding to the circle in area (V) performs best in numerical simu-

lations, resulting in a significant deviation to theoretical prediction. Moreover, the

sensitivity landscape typically features numerous local minima and thus, it is not fea-

sible to simulate all emerging protocols. In extreme cases, fringe hops may affect all

simulated protocols, leading to complete stability loss. Hence, we show the least com-

plex variational class [1,m] that achieves theoretical predictions at the OQI plateau.

At long interrogation times, we include simulation results of deeper quantum circuits

where a substantial gain is observed.

4.7.2 Clock stability

Overall, numerical simulations align closely with theoretical predictions across a wide

range of interrogation times. However, as discussed in the previous section, fringe hops

impose the primary limitation at the OQI plateau. Additionally, for ensembles with

N ≲ 20 and long interrogation times, fringe hops limit the clock stability rather than

the coherence time limit of the local oscillator. As a consequence, the minimal Allan

deviation σmin is not achieved for small ensembles, and variational protocols provide

marginal to no advantage over SSS in this regime. In particular, we distinguish

between three regimes based on the ensemble size:

(i) For very small ensembles with N ≲ 4 (cf. Fig. 4.5(a)), the GHZ protocol

saturates the ultimate lower limit – represented by the OQI – for short interrogation

times, while at long interrogation times – approaching the fringe hop limit Tsim –

SSS become optimal. Hence, variational protocols provide an advantage over stan-

dard protocols only in the regime of the OQI plateau. In this regime, typically the

simplest [1, 1]-class already is sufficient to saturate the OQI. However, the optimal

protocols vary significantly with interrogation time, increasing their susceptibility to

fringe hops. Furthermore, the OQI plateau is relatively narrow for N ≲ 4. Given the

trade-off between potential stability gains and the experimental challenges involved
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in implementing more complex Ramsey protocols, the GHZ protocol at short interro-

gation times and SSS at longer interrogation times remain the preferable choices for

ensembles with N ≲ 4.

(ii) For intermediate ensembles with 4 < N ≲ 20 (cf. Fig. 4.5(b)), fringe hops con-

tinue to impose the fundamental limitation at long interrogation times. Furthermore,

the regime of the OQI plateau expands, which in turn increases the region where

variational protocols provide an advantage over SSS. Nevertheless, [1,m] protocols

remain fragile to fringe hops in this regime and additionally do not suffice to actually

saturate the OQI. At long interrogation times approaching Tsim, which itself approxi-

mates Tmin with increasing N , variational protocols offer improved stability compared

to SSS. In this regime, again the simplest [1, 1]-class is sufficient to achieve a relevant

improvement, while the additional benefit of [1,m] protocols with m > 1 is negligible

when considering the fluctuations over independent clock runs. However, to achieve

a gain compared to SSS at long interrogation times requires T ∼ Tsim. For practical

implementation in an experiment, Ref. [92] suggests to choose an interrogation time

slightly shorter than Tsim, effectively providing a safety margin against fringe hops.

As a result, similar to N ≲ 4, variational protocols for N ≲ 20 effectively enhance

clock stability primarily within the OQI plateau regime, which remains less favorable

in experimental settings, while GHZ states and SSS are beneficial at short and long

interrogation times, respectively.

(iii) As the ensemble size increases to N ≳ 20 (cf. Fig. 4.5(c)), the limitations

imposed by fringe hops and the coherence time limit become comparable. In this

regime, variational protocols succeed to achieve σmin, resulting in a substantial gain

in stability over SSS. Furthermore, as N grows, increasing the circuit complexity m

of the [1,m] protocols provides relevant gains in stability.

To conclude, variational protocols for clocks with only a few atoms, characteristic

of ion traps, primarily enhance stability within the OQI plateau. However, this

regime is less favorable due to the strong dependence of variational parameters on

interrogation time and increased susceptibility to fringe hops. In contrast, for clocks

with several tens of atoms, typical of tweezer arrays, variational Ramsey protocols

offer a significant improvement in clock stability, particularly at long interrogation

times. Here, low-depth quantum circuits are sufficient, as the benefits diminish with

increasing m, resulting in a trade-off between increased complexity and extended

dynamic range.
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N = 4

N = 8

N = 32

a

b

c

Figure 4.5: Monte Carlo simulations of Ramsey protocols in Bayesian fre-
quency metrology: Numerical simulations of the full feedback loop in an atomic
clock compared to the theoretical predictions of the Allan deviation for ensemble
sizes (a) N = 4, (b) N = 8 and (c) N = 32. The variational Ramsey protocols [n,m]
consist of n and m layers of one-axis-twisting interactions for state preparation and
measurement, respectively. Symbols represent the mean clock stability, while error
bars indicate fluctuations over independent clock runs, arising from the stochastic
nature of the Monte Carlo simulations. Fringe hops limit stability in the plateau
regime and at long interrogation times, as discussed in the main text. The associated
prior width is obtained iteratively. Further details on the numerical simulations are
provided in App. A.
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4.7.3 Comparison of linear and optimal Bayesian estimation

In Sec. 4.6.1, we observed that the optimal Bayesian estimator achieves significant

improvements over the linear estimator in several regimes for standard protocols. For

instance, it provides a larger dynamic range at long interrogation times and enables

stronger spin-squeezed states at short interrogation times due to its non-linearity.

Nevertheless, the linear estimator delivers equivalent results at interrogation times

where the signal can be linearized within the extent of the prior distribution, which

typically corresponds to T/Z ≪ 1. Moreover, the linear estimator simplifies numerical

studies (see Sec. 4.4) and has delivered remarkable results in previous works [91,92],

including applications in variational Ramsey interferometry [140–142]. Therefore, we

compare the performance of the linear and optimal Bayesian estimators in the context

of variational interrogation protocols to determine whether the potential advantages

of the optimal Bayesian estimator, while significant in some regimes for standard

protocols, translate into meaningful improvements in the case of variational quantum

circuits.

In Fig. 4.6, we compare theoretical predictions of clock stability for optimized

variational [1,m] protocols employing both estimation strategies. Surprisingly, the

linear estimator effectively achieves the same stability as the optimal Bayesian esti-

mator. In particular, the optimal Bayesian estimator does not extend the dynamic

range at long interrogation times and correspondingly does not enhance the minimal

Allan deviation, while offering only a marginal enhancement in the plateau regime of

the OQI, where GHZ protocols become ineffective. However, this gain is negligible,

especially when considering the stability issues in this regime discussed in the previous

sections. Consequently, in theory, the optimal Bayesian estimator does not provide a

relevant improvement over the linear estimator, which is consistent with findings in

Ref. [142] for exclusively anti-symmetric signals (cf. Supplementary Discussion S9 in

Ref. [142]).

While theoretical predictions offer valuable insights, their validation in realistic

scenarios is essential for a comprehensive analysis, as discussed before. Fig. 4.6 ad-

ditionally presents numerical simulations of the full feedback loop. The standard

protocols perform as predicted by theory, exhibiting the same limitation imposed

by fringe hops at long interrogation times, as observed with the optimal Bayesian

estimator. For larger ensemble sizes N ≳ 20, where the coherence time limit and

fringe hops constrain clock stability at the same level, the reduced dynamic range

of the linear estimator for sinusoidal signals becomes relevant. As a result, the opti-

mal Bayesian estimator achieves higher stabilities for CSS and SSS, as discussed in

Sec. 4.6.1. Again, variational protocols are constrained by fringe hops in two distinct

regimes. (i) At the OQI plateau, the susceptibility to fringe hops is significantly
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enhanced for the linear estimator compared to the optimal Bayesian estimator, as

indicated by larger deviations between theoretical predictions and numerical simu-

lations, as well as broader regions where deeper quantum circuits are required to

achieve theoretical predicitions. However, given the strong variation in optimal Ram-

sey schemes and the emergence of fringe hops, operating a clock in these regimes may

be experimentally unfavorable anyway, as discussed in previous sections. Thus, the

stronger limitation imposed by fringe hops in this regime is of minor practical rele-

vance. (ii) For N ≲ 20, clock stability is limited by fringe hops at the same level for

both estimation strategies, leading to comparable maximal interrogation times Tsim

(cf. Fig. 4.6(a) and (b)). In contrast to the optimal Bayesian estimator, for larger

ensembles with N ≳ 20, fringe hops remain the dominant limitation when using the

linear estimation strategy. As a consequence, the minimal Allan deviation σmin is

not achieved for [1,m] protocols, as illustrated in Fig. 4.6(c). Therefore, in clocks

with a few tens of atoms – typically realized in tweezer arrays – the linear estimation

strategy causes fringe hops to impose a stricter constraint on clock stability than the

coherence time of the local oscillator, ultimately resulting in reduced stability.

In summary, the optimal Bayesian estimator guarantees to saturate the BCRB,

thereby maximizing the use of the measurement data. Whether the linear estimation

strategy can achieve comparable performance depends strongly on the particular in-

terrogation scheme and must be evaluated for each specific scenario. For variational

Ramsey protocols, as considered in this work, the optimal Bayesian estimator proves

to be less susceptible to fringe hops and therefore achieves higher stability. While this

difference may be negligible in the regime of the OQI plateau, where these protocols

are potentially unfavorable for experimental implementation, the critical ensemble

size at which fringe hops and the coherence time limit constrain the clock stability at

the same level is larger when using the linear estimation strategy.

Moreover, it is important to note that the estimation strategy primarily affects the

classical post-processing of the measurement outcome. Consequently, the complexity

of the Ramsey sequence remains unchanged for both estimation strategies. The quan-

tum circuit itself is only indirectly influenced, as the choice of estimator affects the

optimal variational parameters. Typically, the optimal Bayesian estimator leads to

smaller total twisting strengths µ =
∑

j |µj|, particularly for variational classes [1,m]

with m > 1. Hence, the linear estimation strategy effectively requires larger twisting

strengths to compensate for the non-linearity of the optimal Bayesian estimator. As

a result, quantum circuits employing the optimal Bayesian estimator achieve shorter

gate durations, which may be of practical interest.
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Figure 4.6: Comparison of the linear and optimal Bayesian estimation strat-
egy: Numerical simulations of the full feedback loop in an atomic clock with a linear
estimation strategy for ensemble sizes (a) N = 4, (b) N = 8 and (c) N = 32 charac-
terized by the Allan deviation. The variational Ramsey protocols [n,m] consist of n
and m layers of one-axis-twisting interactions for state preparation and measurement,
respectively. Lines depict theoretical predictions with the linear (dashed) and optimal
Bayesian estimator (solid). Symbols represent the mean clock stability, while error
bars indicate fluctuations over independent clock runs, arising from the stochastic
nature of the process. Fringe hops limit stability in the plateau regime and at long
interrogation times, as discussed in the main text. Further details on the numerical
simulations are provided in App. A
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4.8 Dead time

In the previous sections, we extensively discussed the trade-off between quantum pro-

jection noise (QPN) – which decreases with the interrogation time T (cf. Eq. (4.30))

– and the coherence time limit (CTL) of the local oscillator, which constraints clock

stability at long interrogation times. Here, we extend the discussion to account for

the effect of dead time TD in atomic clock operation. Dead time typically arises from

processes such as probe preparation, measurement and the application of feedback.

During this period, frequency fluctuations of the local oscillator remain unmonitored

by the Ramsey interrogation and therefore cannot be measured or corrected. The

cumulative effect of this lack of information degrades the long-term stability of the

atomic clock, a phenomenon first described by G. J. Dick [223, 224], therefore com-

monly referred to as the Dick effect. The contribution of the Dick effect to the clock

stability is directly inferred from the spectral noise density Sy(f) of the local oscillator

and is given by [224,225]

σ2
y,Dick(τ) =

1

τ

T 2
C

T 2

∞∑

k=1

Sy

(
k

TC

)
sin2(πkT/TC)

π2k2
, (4.44)

where TC = TD + T is the clock cycle duration. The impact of the Dick effect

diminishes with longer interrogation times T , as it depends on the ratio T/TC which

decreases when the relative contribution of dead time is reduced. Taking dead time

into account, the overall clock stability is determined by the interplay between QPN,

CTL and Dick noise. Specifically, it is characterized by the total Allan deviation

σy,tot(τ) =
√
σ2
y,QPN(τ) + σ2

y,CTL(τ) + σ2
y,Dick(τ), (4.45)

where QPN and the CTL are combined in the Bayesian framework as σ2
y(τ) =

σ2
y,QPN(τ) + σ2

y,CTL(τ). While the Bayesian approach generally does not permit a

strict separation of QPN and CTL contributions – except in specific cases such as the

OQI or for CSS and SSS with a linear estimator (cf. Sec. 4.6.1) – it is, nevertheless,

advantageous to treat them formally as independent components in order to discuss

their general scaling quantitatively. The trade-off characterized by σy,tot(τ) has been

thoroughly studied for CSS and SSS with a linear estimator in Ref. [91], where QPN

was characterized using local phase estimation theory, while the CTL was modeled

via a stochastic differential equation describing the stabilized frequency of the local

oscillator. In contrast, this chapter adopts the discussion to the Bayesian framework,

which offers an intuitive and comprehensive approach to addressing these effects.

Additionally, for comparison we include the ultimate lower bound on clock stability

represented by the OQI. After analyzing the general scaling of σy,tot(τ) for standard
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protocols, we consider various experimental platforms and discuss the effect of dead

times characteristic of each setup. Furthermore, we explore the potential benefits of

variational quantum circuits in these regimes.

4.8.1 Dead time in Bayesian frequency metrology

In addition to the contribution described by Eq.(4.44), dead time affects Bayesian

frequency metrology in two distinct ways. First, and most notably, it modifies the

scaling of the Allan deviation associated with QPN and the CTL as a function of the

interrogation time T . Instead of the ideal ∼ 1/
√
T scaling, dead time reduces it to ∼√

TC/T 2, as apparent in Eq. (4.33). Second, dead time broadens the prior distribution

of the phase due to unmonitored frequency fluctuations during TD. Among these two

effects, the modified scaling with T has a substantially larger impact, whereas the

broadening of the prior distribution introduces only a relatively minor correction.

Nevertheless, incorporating the implicit broadening is crucial for accurate modeling

and for identifying optimal Ramsey protocols and estimation strategies, as the prior

width strongly influences the optimal interrogation sequence, as explored in previous

sections.

Although the prior width could, in principle, be adjusted iteratively to include

dead time as for TD = 0, this approach is computationally demanding. Moreover, our

goal is to establish a direct connection between scenarios with (TD > 0) and without

(TD = 0) dead time. Since the additional frequency fluctuations during dead time

are unmonitored by the Ramsey interrogation, the broadening of the prior distribu-

tion during dead time and during the Ramsey sequence T are independent processes.

Treating the broadening of the phase distribution during dead time as a phase diffu-

sion process, the modified prior distribution P(ϕ) = (PD ∗ PT ) (ϕ) is obtained by a

convolution of the initial prior distribution PT (ϕ), resulting from the Ramsey inter-

rogation time T with corresponding width δϕT (cf. Sec. 4.5.3), and the distribution

PD(ϕ) associated with dead time. In this context, PD(ϕ) effectively acts as a Green’s

function [160]. Although local oscillator noise in general is correlated, the additional

noise introduced during dead time within the full feedback loop is well approximated

as white noise in the asymptotic limit of many clock cycles. Consequently, PD(ϕ) is

modeled as a Gaussian distribution with zero mean and width δϕD. As a result, the

modified prior distribution P(ϕ) remains Gaussian with zero mean and variance

(δϕ)2 = (δϕD)2 + (δϕT )2. (4.46)

To fully incorporate the impact of dead time into the Bayesian framework, we

now relate the broadening of the phase distribution – characterized by δϕD – to the
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dead time TD, akin to the dead time-free case in Sec. 4.5.3. Rather than deriving

a comprehensive model for arbitrary scenarios, we establish a relation δϕD(TD) that

primarily aims to accurately predict behavior in the vicinity of the minimal Allan

deviation σmin at interrogation time Tmin. To this end, the broadening of the prior

width during dead time can be effectively modeled by translating the additional fre-

quency fluctuations into hypothetical phase shifts, as if they had occurred during a

Ramsey interrogation of duration TD. In this context, the associated prior width is

given by (cf. App. A)

(δϕD)2 ≃ 2

(
TD
Z

)1−α

, (4.47)

reflecting a power-law dependence, analogous to Eq. (4.35). Here, the parameter

α again characterizes the nature of the frequency noise, with values α = 0,−1,−2

corresponding to white, flicker and random walk frequency noise, respectively.

As a consequence, adjusting the prior width according to Eq. (4.46) extends the

Bayesian framework to incorporate dead time within the clock cycle, accounting for

both the Ramsey interrogation time T and the dead time TD. Therefore, aside from

adapting the prior width to reflect dead time TD, the findings from the previous sec-

tions remain directly applicable. Therefore, the primary remaining task is to analyze

the impact of the Dick effect σy,Dick(τ) on overall clock stability.

4.8.2 General results

In general, the total clock stability reflects a trade-off between quantum projection

noise (QPN), the coherence time limit (CTL) and the Dick effect, as described by

Eq. (4.45). While the CTL emerges at long interrogation times, limiting the clock sta-

bility as T approaches the laser coherence time Z, both QPN and Dick noise decrease

monotonically with the interrogation time T . Unlike QPN, which reduces with larger

ensembles, the CTL and Dick noise are independent of N . As a result, whether the

minimal Allan deviation σmin – achieved at optimal interrogation time Tmin – arises

from a trade-off between QPN and the CTL or between the Dick effect and the CTL

depends on the particular dead time, ensemble size and Ramsey protocol [91].

For short dead times or small ensembles, QPN typically dominates Dick noise,

leading to behavior that closely resembles the dead time-free case (cf. N = 8 in

Fig. 4.7(a)). Here, the clock stability is primarily determined by a trade-off between

QPN and the CTL and, therefore, depends on the ensemble size as well as the choice

of Ramsey sequence. However, as dead time increases or QPN decreases, at some

point, QPN is reduced to the level of Dick noise. Since Dick noise typically decreases

more slowly with the interrogation time than QPN, first, it becomes dominant at
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long interrogation times, limiting the minimal Allan deviation σmin (cf. N = 32 in

Fig. 4.7(a)). Reducing QPN further, by either increasing the ensemble size or adapting

the Ramsey interrogation, improves σmin only marginally. In the regime where dead

time effects strictly dominate over QPN – as is the case for large ensembles or long

dead times – no further improvements in clock stability are possible, as Dick noise is

independent of the particular Ramsey sequence and ensemble size. Therefore, we can

define a lower limit σlim on the clock stability, at corresponding interrogation time

Tlim, which is characterized by a trade-off between Dick noise and the CTL. Since the

CTL is protocol-dependent, σlim in general differs for distinct Ramsey protocols and

is primarily determined by their respective dynamic range.

Fig. 4.7(b) illustrates the scaling of σmin with the ensemble size N for the standard

Ramsey protocols. For small ensembles – where QPN dominates – clock stability

improves as N increases, as in the ideal scenario (TD = 0). However, as the ensemble

size grows, Dick noise becomes relevant, reducing the N -scaling and causing the clock

stability to converge to σlim. Unfortunately, explicit expressions for σlim can only be

derived for protocols where QPN and CTL are separable, such as for the OQI or

CSS and SSS with a linear estimator. Otherwise, the convergence towards σlim with

N has to be evaluated numerically. As argued before, CSS and SSS with a linear

estimator exhibit the same CTL and, consequently, identical lower limits. A similar

behavior is observed for both protocols using the optimal Bayesian estimator, which,

however, achieves an improved σlim due to the larger dynamic range (cf. Sec. 4.6.1).

GHZ protocols – already highly susceptible to local oscillator noise in dead time-free

scenarios – are further constrained by dead time, making them suitable only for small

ensembles and short dead times. In the asymptotic limit, the performance of the POI

again saturates the OQI.

To characterize the transition between the regimes dominated by either QPN or

Dick noise, we define a critical ensemble size Ncrit, at which the Allan deviation σy(τ)

(cf. Eq. (4.33)) – arising from QPN and the CTL – saturates σlim at Tlim. Beyond

Ncrit, Dick noise dominates over QPN and thus spoils the N -scaling of σmin, which

ultimately converges towards σlim without substantial improvements as N increases.

Since Ncrit depends explicitly on QPN, it differs for distinct Ramsey protocols and

estimation strategies, as generically illustrated in Fig. 4.7(c). For instance, Ncrit for

SSS is substantially smaller than for CSS, since they exhibit the same CTL, but

SSS feature significantly smaller QPN. Consequently, the required ensemble size to

approach σlim is substantially smaller for SSS compared to CSS, with a reduction

of up to two orders of magnitude for short TD, while still maintaining a significant

difference even at long dead times. In contrast, the difference between OQI and SSS is
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relatively small, amounting to less than one order of magnitude for short dead times

and becoming effectively negligible as TD increases.

For a particular dead time TD, the lower limit σlim is determined solely by the

CTL of the Ramsey protocol and the estimation strategy, essentially reflecting the

dynamic range. Consequently, CSS and SSS achieve the same lower limit for a specific

estimator. Moreover, as shown in Fig. 4.7(d), the enhancement of σlim achieved by

the OQI compared to CSS or SSS is relatively minor. Interestingly, increasing the

dynamic range of CSS and SSS by substituting the linear by the optimal Bayesian

estimation strategy yields a greater gain than the advantage provided by the OQI

over CSS or SSS with the optimal Bayesian estimator. As a result, CSS and SSS

already perform close to the OQI in the regime limited by dead time.

As TD increases, the potential enhancement of σlim diminishes further. This can

be understood as follows: In general, dead time shifts Tmin – achieving the minimal

Allan deviation σmin – to longer interrogation times. This is shown in Fig. 4.7(e) and

primarily results from the impact of σy,Dick (cf. Fig. 4.7(a)). However, in this regime,

the difference in the CTL for distinct Ramsey schemes decreases with increasing T

(cf. Fig. 4.2(a)), thereby reducing the advantage associated with a larger dynamic

range. While the OQI allows unbiased phase estimation over [−π,+π], the optimal

Bayesian strategy for CSS and SSS resembles the arcsin estimator and thus covers

the range [−π/2,+π/2] (cf. Sec. 4.6.1). As a result, the OQI and CSS or SSS with

optimal Bayesian estimator exhibit a similar behavior, where the corresponding gain

only marginally reduces with TD. In contrast, the deviation between the linear and

optimal Bayesian estimators for CSS and SSS diminishes substantially with TD, since

the corresponding Ncrit becomes smaller, leading to a reduced gain in dynamic range

for the optimal Bayesian estimator, as discussed in Sec. 4.6.1.

To summarize, for small ensembles N or short dead times TD, clock stability is

primarily limited by QPN, closely resembling the dead time-free case. However, as

N or TD increases, the Dick effect becomes the dominant noise and ultimately limits

the clock stability. Beyond the critical ensemble size Ncrit, which decreases with TD,

the minimal Allan deviation σmin converges to the lower limit σlim. In this regime,

further improvements in clock stability by increasing the ensemble size or adapting

the Ramsey sequence are marginal. As a consequence, clocks with large ensembles

(N ≫ 1) limited by Dick noise approximate the lower limit σlim sufficiently well by

employing CSS or SSS.
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Figure 4.7: Dead time effects: (a) Generic scaling of the dimensionless total Allan
deviation σy,tot(τ)×ω0

√
τZ with the interrogation time T for dead time TD/Z = 0.1.

The total stability (solid) of the OQI for N = 8 (gray) and N = 32 (black) is shown
in comparison to the trade-off between QPN and CTL (dashed). The N -independent
lower limit σlim (symbol) is imposed by a trade-off (solid brown) between Dick noise
(dashed brown) and CTL (dotted black). Consequently, the brown shaded area is
inaccessible. (b) Scaling of the total dimensionless minimal Allan deviation σmin ×
ω0

√
τZ with the ensemble size N for TD/Z = 0.1. GHZ protocols (green) achieve

no gain compared to CSS. For CSS (orange) and SSS (red), both the linear (dashed)
and optimal Bayesian estimator (solid) are depicted. The gray shaded area represents
the inaccessible stability region set by the OQI (black), while the orange shaded area
indicates achievable stabilities using uncorrelated atoms. Dotted lines correspond to
the lower limit σlim for the OQI and CSS with linear estimator, while the dashed
dotted line denotes the lower limit for CSS using the optimal Bayesian estimator.
SSS exhibit the same lower limit as discussed in the main text and seen from the
convergence. The POI (violet) saturates the OQI for N ≳ 50. For the OQI and POI,
numerical optimization is performed for N ≤ 100, while the asymptotic behavior,
represented by the πHL (black dashed-dotted), is shown for N > 100. (c) Critical
ensemble size Ncrit as a function of the dead time TD/Z for the OQI (black), CSS
(orange) and SSS (red). Again, dashed lines correspond to the linear estimator, while
solid lines represent the optimal Bayesian estimator. The evaluation of the SSS with
optimal Bayesian estimator requires the computation of the conditional probabilities
(cf. Sec. 4.4) and thus is unfeasible for large N . For N ≳ 100, the asymptotic
OQI, imposed by the πHL (black dashed-dotted), is shown. (d) Scaling of the total
dimensionless lower limit σlim ×ω0

√
τZ with dead time for the OQI (black) and CSS

(orange). For the CSS, linear (dashed) and optimal Bayesian estimator (solid) are
displayed, while SSS achieve the same limits. (e) Corresponding interrogation times
Tlim, effectively characterizing the dynamic range. SSS result in the same σlim and
Tlim as CSS (cf. discussion in the main text).
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4.8.3 Setup specific dead times

Building on the general discussion of dead time effects on clock stability in standard

protocols, this section focuses on examining specific examples relevant to particular

experimental setups, such as ion traps, tweezer arrays and lattice clocks, ranging from

a few to thousands of atoms.

In general, atomic clock operation involves three key time scales: the laser coher-

ence time Z, the dead time TD and the interrogation time T . In a given experimental

setup, Z and TD are primarily independent but fixed, defining a specific ratio TD/Z.

In contrast, T remains an adjustable parameter, which is implicitly constrained by Z.

As a consequence, findings on clock stability cannot be trivially rescaled with respect

to various laser coherence times Z – as in the dead time-free scenario – or dead times

TD, since a modification of Z or TD results in a change of the ratio TD/Z, which

in turn has a substantial impact on the clock stability, as discussed in the previous

section.

In experimental settings, the dead time TD and interrogation time T commonly

are expressed in terms of the dimensionless duty cycle

η =
T

TC
=

T

T + TD
, (4.48)

which quantifies the relative contribution of the interrogation time T to the total

duration of the clock cycle TC = TD +T . Hence, a larger duty cycle η corresponds to

a reduced relative impact of dead time. However, it is important to emphasize that,

implicitly, a specific ratio between TD and Z is always assumed.

While the laser coherence time Z is independent of the atomic reference, dead

time strongly depends on the particular experimental platform. To address this, we

investigate the clock stability for typical dead times across the three predominant

regimes: ion traps, tweezer arrays and lattice clocks. Each of these platforms exhibits

distinct time scale dynamics and operational characteristics that significantly influ-

ence clock performance. Ion traps provide the highest degree of control, including

rapid cooling and no need for reloading due to deep trap depths, resulting in rela-

tively short dead times [12]. Although recent advancements in Coulomb crystals have

facilitated multi-ion clocks [17,18], ion traps remain inherently limited in scalability,

typically operating with only a few ions. In contrast, optical lattice clocks employ

large ensembles of hundreds to thousands of atoms, enabling high precision at the

cost of experimental challenges such as atom number fluctuations and interatomic

collisions [12]. Furthermore, these systems exhibit substantially longer dead times

due to processes such as loading the lattice and cooling the atoms [23–26]. Addi-

tionally, dead time has a particularly pronounced impact on clock stability in lattice
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clocks, as QPN is typically suppressed well below the Dick effect, as discussed in the

previous section. Tweezer arrays bridge between these two contrary approaches, of-

fering a balance between the high control in ion traps and the scalability inherent in

lattice clocks [19–22]. By incorporating ensembles of several tens of atoms, they offer

a promising compromise between precision, scalability and operational efficiency.

In the following, we investigate the clock stability for representative dead times TD

and laser coherence times Z across these three distinct regimes. As discussed before,

this is equivalently expressed by fixing the ratio TD/Z. Starting with ion traps, which

feature relatively short dead times, we explicitly examine the interplay between laser

coherence time Z, dead time TD and interrogation time T – or equivalently the duty

cycle η – using state-of-the-art parameter values to develop an intuitive understanding

of the relationship between these time scales. Subsequently, we progressively increase

the dead time for setups representing tweezer arrays and lattice clocks, illustrating

how dead time increasingly constrains clock performance and how the optimal Ramsey

protocols change accordingly.

Besides the experimental platform, dead time is also affected by the particular

interrogation sequence. In practice, the preparation time required for different quan-

tum states – particularly entangled states – can vary significantly depending on the

specific initial state. Likewise, the measurement time can vary substantially between

different measurement strategies, especially for correlated measurement transforma-

tions as pursued for the variational Ramsey protocols. For instance, the conventional

Ramsey protocol – utilizing coherent spin states (CSS) and a projective spin measure-

ment – can be performed relatively quickly, as it relies on standard collective rotations

of the spin system. In contrast, spin-squeezed states (SSS) already require non-linear

interactions or measurement-based feedback for state preparation, which introduce

additional time overheads. While the variational [1,m] protocols – investigated in

the previous sections – have comparable state preparation times to SSS, as they are

also generated by a single OAT interaction, each additional layer of the quantum

circuit implementing the effective measurement involves interaction times that scale

with the corresponding twisting strength. The OQI, which represents the ultimate

lower bound and currently lacks a specific experimental implementation, potentially

requires even more demanding resources. As a consequence, for a particular exper-

imental setup, dead times arising from state preparation and measurement have to

be considered for each interrogation scheme. However, the resulting dead times are

highly individual for each experimental setup and are thus challenging to quantify

in general. To nevertheless provide theoretical insight, we compare different Ramsey

protocols assuming a fixed dead time for each experimental platform, independent of

the protocol complexity. While the results derived in the following provide general
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insight, this assumption should be kept in mind, as it may lead to an overestimation

of the performance of highly entangled states in practical scenarios.

Ion traps— In ion traps, dead times of about TD = 100 ms are routinely imple-

mented in experiments. Moreover, state-of-the-art clock lasers achieve laser coherence

times Z of several seconds. In practice, however, this impressive level of coherence

is often not entirely maintained as the laser propagates between the reference cavity

used for pre-stabilization – which not necessarily is located close to the trap or even

in the same laboratory – and the ions. While optical path-length stabilization should,

in principle, preserve coherence all the way to the ions, experimental imperfections –

such as phase noise within the vacuum chamber – typically lead to a degradation of

this quality. Therefore, we assume a laser coherence time of Z = 2 s at the location of

the ions. Hence, in this exemplary scenario we obtain a ratio TD/Z = 0.05. Further-

more, Fig. 4.5 demonstrates that fringe hops limit the clock stability at interrogation

times around Tsim ∼ 0.4− 0.5×Z. Consequently, the maximal achievable duty cycle,

given by ηmax = Tsim/(Tsim + TD), is on the order of 90%.

As discussed in the previous section, for small ensembles and short dead times,

clock stability typically resembles the dead time-free scenario (TD = 0), as illustrated

in Fig. 4.8(a) for N = 8 and TD/Z = 0.05. In this case, QPN remains the primary

limitation, while the Dick effect has only a marginal impact, leading to a behavior

similar to that shown in Fig. 4.5(b). In comparison, however, in the presence of dead

time the plateau of the OQI is substantially less pronounced and thus, fringe hops

impose a less stringent limitation in this regime. As in the TD = 0 case, SSS ap-

proximate the OQI in the transition region between the plateau and σmin. At long

interrogation times, fringe hops remain the primary constraint, limiting the interro-

gation time to Tsim < Tmin. Furthermore, variational protocols effectively provide no

significant enhancement in clock stability around Tsim. As a result, for optical atomic

clocks based on ion traps, GHZ states and SSS approach the OQI over a broad range

of interrogation times, while the deviation from the OQI or variational classes within

the plateau are reduced compared to the dead time-free scenario.

Tweezer arrays— For tweezer arrays, we consider a representative case with N =

32 in Fig. 4.8(b), assuming an increased dead time of TD/Z = 0.1. Within the

framework of the previous example, this corresponds to an absolute dead time of

TD = 200 ms and a maximal achievable duty cycle of approximately ηmax = 80%.

As already evident in Fig. 4.7(a), dead time imposes a significant limitation on clock

stability in this regime. While GHZ states are essentially ineffective, SSS already

perform close to the OQI for short and intermediate interrogation times. In this
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regime, variational protocols only provide marginal improvements in stability, whereas

a noticeable enhancement is observed primarily for [1,m] protocols in the vicinity of

Tmin. However, this gain is significantly smaller than in the dead time-free case, and

unlike the TD = 0 scenario, fringe hops constrain clock stability at interrogation

times Tsim ≲ Tmin. When additionally considering a safety margin for fringe hops, as

discussed in Sec. 4.7, the improvement becomes effectively negligible when accounting

for the increased complexity. Consequently, SSS emerge as a robust Ramsey sequence,

achieving clock stabilities close to the OQI in this regime.

Interestingly, for short interrogation times, deviations between theoretical predic-

tions and numerical simulations appear. These discrepancies stem from the assumed

prior width in the presence of dead time, which is intended to provide a reliable model

primarily for interrogation times in the vicinity of σmin.

Crossover regime— Typically, the boundaries between different platforms with

respect to the ensemble size N are not sharply defined. To explore the transition be-

tween tweezer arrays and lattice clocks, we examine the case of N = 100 in Fig. 4.7(c),

with an increased dead time TD/Z = 0.2. In the example above, this corresponds to

TD = 400 ms and an associated maximal duty cycle of approximately ηmax = 65%.

Such an increase in dead times is characteristic of lattice clocks, as discussed before,

but can also result from various processes such as the overhead of operating multi-

ple tweezer arrays simultaneously, the potential need for reloading due to shallower

trap depths or extended cooling times. Moreover, inhomogeneous interactions may

be relevant, as addressed in Ref. [140].

As the ensemble size N increases, variational classes are no longer favorable, as

discussed in previous sections. A key characteristic of this regime is that dead time

becomes the dominant limitation. However, while CSS have not yet fully converged

to the lower bound σlim, SSS already provide a close approximation. As a result,

SSS perform close to the OQI across all interrogation times, except at Tmin, where

their limited dynamic range becomes apparent. Additionally, the choice of estimation

strategy for standard protocols gains importance, as the optimal Bayesian estimator

yields significantly higher clock stability at long interrogation times compared to the

linear estimator.

Lattice clocks— Finally, we investigate the regime of lattice clocks with large

ensembles N ≫ 1, where QPN is reduced well below the Dick noise. Fig. 4.8(d)

illustrates the case of N = 1000 with TD/Z = 0.2. In this regime, both CSS and SSS

closely approximate the lower limit σlim. Consequently, at long interrogation times

both protocols achieve comparable clock stability, as already indicated in Fig. 4.7,
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whereas SSS provide a significant advantage at short interrogation times. Further-

more, the optimal Bayesian estimator results in a substantially higher stability in the

vicinity of Tmin compared to the linear estimation strategy. Notably, deviations from

theoretical predictions and numerical simulations appear for the SSS at short inter-

rogation times due to the choice of prior width (cf. Sec. 4.8.1). Additionally, since

SSS introduce correlations between atoms, unlike CSS, numerical approximations are

required to simulate the full feedback loop for N ≫ 1, which can further contribute

to discrepancies.

As a result, in the regime of large ensembles dominated by dead time, effectively

no quantum enhancement is achieved at the optimal interrogation time. To exploit

the benefits of entanglement, dead time effects have to be mitigated – for example

through dead time-free interrogation schemes, as discussed in Sec. 4.10.

In summary, for small ensembles – representing ion traps – the behavior closely

resembles the dead time-free case. Here, standard protocols as GHZ states or SSS

already achieve clock stabilities comparable to the OQI for a wide range of interro-

gation times. As the ensemble size N or dead time TD increases, Dick noise becomes

the dominant limitation, effectively reducing the potential enhancement offered by

variational quantum circuits compared to SSS. In particular, dead time results in

SSS performing close to the OQI for a variety of scenarios. In the regime of large

ensembles N ≫ 1, characteristic for lattice clocks, CSS likewise converge to the lower

limit σlim at long interrogation times and thus, are sufficient to approximate the OQI.

As a consequence, dead time significantly constraints clock stability, where the degree

of limitation increases with the ensemble size.
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Figure 4.8: Dead times characteristic for specific experimental setups: The-
oretical predictions and numercial simulations of various Ramsey protocols for (a)
N = 8 and TD/Z = 0.05, (b) N = 32 and TD/Z = 0.1, (c) N = 100 and TD/Z = 0.2,
(d) N = 1000 and TD/Z = 0.2. The variational Ramsey protocols [n,m] consist of n
and m layers of one-axis-twisting interactions for state preparation and measurement,
respectively. Theory curves (lines) are displayed for the linear (dashed) and optimal
Bayesian estimator (solid). Symbols represent numerical simulations in the full feed-
back loop of an atomic clock employing the optimal Bayesian estimation strategy. In
both cases, the total Allan deviation is rescaled with respect to the atomic transition
frequency ω0, total averaging time τ and laser coherence time Z. The lower x-axis
represents the interrogation time T relative to Z, while the upper x-axis denotes the
dimensionless duty cycle η. The gray shaded area represents the inaccessible stability
region set by the OQI limit (black), while the orange shaded area indicates achievable
stabilities using uncorrelated atoms. For (a) N = 8 and (b) N = 32 the performance
of variational quantum circuits (blue) is shown in addition to the standard protocols,
namely GHZ states (green), CSS (orange) and SSS (red). For N = 1000, the asymp-
totic regime is reached and thus, the OQI is approximated by the πHL.
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4.9 Conclusion

At this point, we briefly summarize the primary conclusion of this chapter, while

referring to the outline at the end of Sec. 4.1 for a comprehensive overview of the in-

sights and results. In general, the clock stability features a trade-off between quantum

projection noise (QPN), the coherence time limit (CTL) and dead time effects. Ad-

ditionally, fringe hops impose further constraints on stability within the full feedback

loop of an atomic clock.

For small ensembles comprising a few atoms – as encountered in ion traps – fringe

hops limit clock stability at long interrogation times. Consequently, in this regime,

GHZ states and spin-squeezed states (SSS) approximate the optimal quantum inter-

ferometer (OQI) across a broad range of interrogation times. In contrast, variational

protocols offer an advantage primarily within the plateau of the OQI. However, this

regime is less favorable due to the strong dependence of variational parameters on

interrogation time and the increased susceptibility to fringe hops. Moreover, in the

presence of dead times typical for ion traps, the behavior closely resembles the dead

time-free case, as QPN dominates the Dick effect.

For ensembles consisting of several tens of atoms – characteristic of tweezer arrays

– variational clock protocols provide a significant improvement compared to SSS at

long interrogation times. In this regime, fringe hops and the CTL constrain clock

stability at a comparable level, enabling the achievement of the minimal Allan de-

viation. Moreover, low-depth quantum circuits [1,m] are sufficient as the benefits

diminish with increasing m, leading to a trade-off between increased complexity and

extended dynamic range. However, as dead time increases, Dick noise becomes the

primary limitation, substantially reducing the potential enhancement offered by vari-

ational quantum circuits compared to SSS. In particular, the limitation due to dead

time results in SSS performing close to the OQI in a variety of scenarios.

In the regime of lattice clocks with large ensembles N ≫ 1, QPN is reduced

well below dead time effects. Consequently, any further improvements in stability by

increasing the complexity of the Ramsey sequence are marginal, and coherent spin

states (CSS) converge to the lower limit at long interrogation times, proving sufficient

to approximate the OQI. As a result, effectively no quantum enhancement is achieved

in this regime.

Overall, the optimal Ramsey protocols – and correspondingly the highest achiev-

able clock stability – strongly depend on the specific parameters of the experimental

setup. Although variational quantum circuits promise substantial enhancements in

idealized scenarios, practical constraints as fringe hops and dead time effects limit
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these improvements. As a result, variational Ramsey protocols offer a significant ad-

vantage only in the regime of tweezer arrays primarily limited by QPN. In contrast,

standard protocols utilizing GHZ states, CSS and SSS provide robust interrogation

schemes, closely approaching the OQI in a variety of scenarios.

4.10 Outlook

This chapter provided a comprehensive overview of potential advancements and chal-

lenges across a broad range of scenarios in frequency metrology tailored to optical

atomic clocks primarily limited by laser noise. Nevertheless, open questions remain

and require further investigation.

Open questions— From a theoretical perspective, a rigorous treatment of the

full feedback loop, as pursued in Ref. [199], within a Bayesian framework would

ultimately be desirable. In particular, such a model of atomic clock operation could

provide deeper insights into the following aspects:

(i) Currently, the connection between the Allan deviation, characterizing clock

stability, and the Bayesian cost function – the Bayesian mean squared error (BMSE)

– is based on mere heuristic arguments. In particular, this relation is motivated by

analogy with the local approach and guided by fundamental bounds, however, no for-

mal derivation exists. In a model of the full feedback loop, the effective measurement

variance, defined in Eq. (4.31), should – ideally – emerge naturally in the evaluation

of the Allan deviation and result in Eq. (4.33).

(ii) The prior phase distribution is typically modeled as a Gaussian distribution,

with its width determined heuristically – either by a general approach or an itera-

tive procedure. While this approximation yields reliable results in several situations,

this parametrization, nevertheless, might not capture the true prior distribution suf-

ficiently well in certain regimes, resulting in severe limitations. This issue might be

particularly relevant for highly non-classical interrogation schemes, small ensemble

sizes or in regimes where the optimal Ramsey protocol is highly susceptible to small

changes in the prior width – as at the OQI plateau. Consequently, a generalized prior

distribution could potentially enable a more accurate model of the actual frequency

fluctuations – reflected in variations of the accumulated phase – and thereby reduce

discrepancies between theoretical predictions and numerical simulations or experi-

ments. Furthermore, it would facilitate the identification of optimal interrogation

schemes tailored to the true prior distribution.

(iii) A promising approach involves full Bayesian propagation of the phase distri-

bution throughout the entire clock run [201,210], rather than treating individual clock
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cycles in isolation. In this approach, the phase distribution is updated iteratively after

each Ramsey sequence based on the measurement outcome, thereby enabling explicit

tracking of frequency (or phase) fluctuations. Crucially, a global treatment of the

phase over −∞ < ϕ < +∞ is required. Although restricting the phase to the pe-

riodic 2π interval accounts for ambiguities arising from transitions between adjacent

fringes, it prevents their explicit resolution and thus ultimately limits the detection

and potential mitigation of fringe hops.

Incorporating experimental limitations— Moreover, the concepts developed

in this chapter can be extended to incorporate additional experimental limitations,

enabling more detailed modeling of experiments. This, in turn, facilitates a deeper

understanding of the underlying limiting processes and supports the identification of

optimal Ramsey protocols tailored to specific experimental parameters. To this end,

relevant decoherence processes – such as spontaneous decay or dephasing – can be

included based on the concepts presented in Chapter 3. While numerical optimization

in the context of local (frequentist) phase estimation with decoherence already is a

fundamental challenge on its own – as discussed in detail in Chapter 3 – addition-

ally introducing the averages over the prior phase distribution, inherent in Bayesian

estimation theory, further increases the complexity. Consequently, incorporating de-

coherence effects directly into the theoretical framework of Bayesian phase estimation

– as pursued in this chapter – would combine the numerical challenges of both ap-

proaches. Furthermore, the resulting optimal protocols may change substantially and

thus would require a thorough investigation, similar to the discussion of dead time.

However, this is beyond the scope of this progress report on frequency metrology

limited by laser noise. Instead, we briefly review the literature considering deco-

herence effects. In particular, the additional effects of dephasing have already been

examined in the Bayesian framework. For instance, Ref. [151] considers additional

collective dephasing that is not associated with laser noise. Since collective dephas-

ing is phenomenologically similar to the treatment of laser noise within the Bayesian

framework, it affects stability in much the same way. The impact of uncorrelated

single-atom dephasing in the Bayesian framework has been explored in Ref. [140],

where it was observed that for moderate dephasing strengths the overall behavior re-

mains qualitatively unchanged, although stability is naturally degraded. However, the

benefit provided by variational quantum circuits – or more complex Ramsey schemes

in general – over SSS diminishes substantially as the dephasing strength increases,

leading to a behavior akin to that observed for dead time. A comparable pattern was

reported in Ref. [141] for correlated single-atom dephasing. Furthermore, finite pulse

durations – especially for clock species with ultra-narrow clock transitions yielding
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long interaction times – as well as gate imperfections – for state preparation and

measurement – might be considered. Specifically, noise affecting the twisting oper-

ations has been considered in Refs. [5, 141]. As expected, deeper quantum circuits,

which generally require stronger total twisting strengths, exhibit higher susceptibility

to noise. Ref. [226] demonstrates that the potential improvements in clock stability

through spin squeezing are significantly reduced if the squeezing is non-unitary. It

further highlights that contrast loss during the squeezing process is less detrimental

to clock stability than during the Ramsey dark time.

Overall, these observations reinforce the conclusions of this work: Standard pro-

tocols with low complexity – employing coherent spin states (CSS), GHZ states and

spin-squeezed states (SSS) in particular – achieve stabilities compatible with the ul-

timate limit across a wide range of scenarios, whereas deeper quantum circuits –

generating arbitrary states and measurements – offer a significant advantage only in

very specific parameter regimes. This is consistent with a well-established observation

in quantum sensing: In general, no single interrogation scheme is universally optimal.

Instead, there exists an optimal protocol for a given application and its specific system

parameters.

Strategies to overcome laser noise— In the framework of this chapter, laser

noise constrains clock stability in three distinct ways: through the laser coherence

time limit (CTL), the emergence of fringe hops and dead time effects. In addition

to ongoing technological improvements in laser stability [88, 227, 228], several inter-

rogation schemes have been proposed and demonstrated to address these limitations.

However, these strategies go beyond the scope of this work, which focuses on con-

ventional single-ensemble clock operation with identical interrogations of the atomic

reference in each clock cycle. They include adaptive schemes [201, 210, 229, 230] and

multi-ensemble strategies. For instance, dynamical decoupling sequences [231] and

synchronous differential clock comparisons [232–235] have been demonstrated to ex-

tend interrogation times well beyond the laser coherence time. Other approaches

involve active feedback and feedforward on the laser [236, 237], or cascaded clock

operation that allows for increasingly long interrogation times [64,237–240]. As pro-

posed by Rosenband and Leibrandt in Ref. [241], partitioning atoms into multiple

ensembles with distinct interrogation times can exponentially improve clock stability

relative to the atom number. Furthermore, synchronous out-of-phase interrogations

expand the invertible phase range and enhance the dynamic range [222, 242]. More-

over, dead time free clock operation can be achieved by asynchronously interrogating

at least two atomic ensembles [29, 237, 243, 244]. Although these approaches extend
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beyond the scope of the present work, many of their underlying principles can be in-

tegrated with the Ramsey protocols discussed in this chapter, potentially mitigating

the limitations imposed by laser noise and enabling longer interrogation times.

As a result, a variety of interrogation schemes have been developed to overcome

the limitations imposed by laser noise. Nevertheless, a fundamental comparison that

addresses the core questions of optimal scheme selection and efficient resource utiliza-

tion across specific operational regimes is still lacking.

Zero-dead-time (ZDT) clocks— Finally, we discuss a specific aspect of zero-

dead-time (ZDT) clocks, which can be readily investigated using the methods estab-

lished in this chapter. To this end, we consider a setup comprising two ensembles4,

each with an identical atom number, operated within the same experiment. Indeed,

such setups have already been experimentally realized across all three regimes dis-

cussed in this chapter – namely ion traps [245,246], tweezer arrays [64,247] and lattice

clocks [29, 244]. To begin with, we consider coherent spin states (CSS) and a linear

estimation strategy. The central question is whether it is advantageous to interrogate

both ensembles simultaneously – effectively utilizing a total number of N atoms – or

to implement a zero-dead-time clock scheme, with N/2 atoms per ensemble. This sce-

nario reflects a fundamental trade-off: On the one hand, simultaneous interrogation

reduces quantum projection noise (QPN) by leveraging the effective larger atom num-

ber and on the other hand, the ZDT approach eliminates dead time effects. Which

of the two schemes offers better stability generally depends on the specific total atom

number N , interrogation duration T and dead time TD, as illustrated in Fig. 4.9(a).

For the representative example with N = 20 atoms in total, the ZDT clock out-

performs the conventional scheme at short interrogation times. However, at longer

interrogation times, performance depends more sensitively on the actual dead time,

particularly when approaching the minimal Allan deviation. As a consequence, we

can identify a critical dead time TD,crit at which both approaches achieve equivalent

stability at their respective optimal interrogation durations. Hence, for dead times

shorter than the critical dead time (TD < TD,crit), the conventional clock scheme –

despite incorporating dead time – is advantageous. Conversely, for longer dead times

TD > TD,crit, the ZDT approach demonstrates superior stability. As expected from

the results obtained in this chapter and illustrated in Fig. 4.9(b), the critical dead

time decreases for larger ensembles, since the Dick effect becomes a relevant limitation

on clock stability at shorter dead times due to reduced QPN. As a result, consider-

ing typical dead times for each experimental platform (cf. Sec. 4.8.3), conventional

4Note that this concept can be readily generalized to configurations with more than two ensem-
bles.
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a b

Figure 4.9: Zero-dead-time clock: (a) Generic scaling of the dimensionless total
Allan deviation σy,tot(τ) × ω0

√
τZ with the interrogation time T relative to the co-

herence time Z for CSS and a linear estimation strategy. Colored lines represent
conventional clock operation with N = 20 atoms and different dead times, whereas
the black line depicts the zero-dead-time clock scheme with N/2 = 10 in each ensem-
ble interrogated asynchronously. (b) Critical dead time TD,crit as a function of the
ensemble size N for CSS and a linear estimation strategy.

clock operation remains advantageous in ion traps, where QPN imposes the primary

limitation. In contrast, the ZDT scheme is preferred in lattice clocks, where dead

time effects dominate. In the transition regime – characteristic of tweezer arrays –

the optimal strategy strongly depends on specific experimental parameters and thus

represents the crossover between the two approaches.

Increasing the complexity of the Ramsey sequence – by adapting the initial state,

the measurement or the estimation strategy – a similar qualitative behavior is ob-

served. However, the critical dead time decreases further with the complexity of

the quantum circuit, as dead time becomes the dominant limitation at progressively

shorter dead times, as examined in Sec. 4.8.
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5
Summary

Frequency metrology constitutes a cornerstone of modern precision measurements,

playing a pivotal role in advancing fundamental research and technology. In partic-

ular, optical atomic clocks represent the most precise measurement devices to date,

achieving stabilities at the level of 10−18 and below. Current efforts to further improve

their stability involve exploring the use of entanglement in atomic systems to reduce

quantum projection noise and surpass the standard quantum limit (SQL) imposed by

uncorrelated atoms. Unfortunately, decoherence and noise processes limit the sensi-

tivity in realistic scenarios and present a substantial obstacle in frequency metrology,

impairing the precision of measurements by compromising the coherence of quan-

tum systems essential for achieving entanglement-based enhancement. Consequently,

frequency metrology inherently reflects a trade-off between achieving entanglement-

enhanced sensitivity and maintaining robustness against decoherence and noise pro-

cesses. Indeed, this fundamental challenge precisely defines the central objective of

this thesis.

Specifically, we have considered single-ensemble clocks in which the atomic ref-

erence is periodically interrogated utilizing identical Ramsey protocols in each clock

cycle. After providing a comprehensive theoretical foundation for atomic clock opera-

tion in Chapter 2 – primarily intended for future (graduate) students – we investigated

regimes limited by decoherence processes in Chapter 3 – with a particular focus on

spontaneous decay – and by laser noise in Chapter 4. As these two regimes are

somewhat orthogonal, they are most effectively studied within distinct theoretical

frameworks, namely local and Bayesian frequency metrology, respectively, which are

introduced in detail at the beginning of each chapter.

In Chapter 3, we investigated the impact of spontaneous decay to frequency

metrology, motivated by recent advancements in laser technology with coherence

times of state-of-the-art clock lasers entering the regime of the excited-state life-

time of various clock candidates. This is particularly relevant as the finite lifetime
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of qubits in the excited state represents a fundamental limit rather than an external

noise source.

Surprisingly – and in contrast to dephasing – we demonstrated that maximally

entangled GHZ states provide a substantial enhancement compared to the SQL in the

presence of spontaneous decay. In particular, we identified a protocol with quantum

operations of low complexity and a highly nonlinear estimator that achieves this

remarkable improvement. This is realized by a measurement and estimation scheme

that implicitly allows to identify spontaneous decay events based on the measurement

outcomes, while the estimation strategy explicitly excludes these cases at the end

of the Ramsey sequence. Thus, it effectively implements an error detection and

mitigation scheme tailored to frequency metrology limited by spontaneous decay.

In addition, we presented a variation of this protocol utilizing a GHZ-like initial

state – with an unequal superposition of the two maximal Dicke states attributing a

higher weight to the excited state to counteract spontaneous decay during the free

evolution time – which achieves the ultimate lower limit for ensembles with several

tens of atoms and outperforms spin-squeezed states (SSS) for up to 80 atoms. We

validated the robustness of these protocols in realistic scenarios through comprehen-

sive Monte-Carlo simulations of atomic clocks, thereby paving the way for near-term

implementations into experimental setups. Moreover, we provided a detailed inter-

pretation of why GHZ(-like) protocols remain optimal in the presence of spontaneous

decay. Finally, we have examined the susceptibility of the GHZ(-like) protocols to

dephasing.

Chapter 4 presented progress in frequency metrology tailored to optical atomic

clocks primarily limited by laser noise, which currently is – and will likely remain –

the dominant constraint in many experimental setups. We consolidated and extended

previous findings on atomic clocks limited by laser noise and variational quantum

circuits to establish a comprehensive theoretical framework for this regime. In par-

ticular, we focused on approaching the ultimate lower limit in stability via low-depth

quantum circuits based on one-axis twisting operations across a variety of scenarios –

including different experimental platforms, ensemble sizes and regimes characterized

by a wide range of interrogation durations and dead times.

In general, clock stability reflects a trade-off between quantum projection noise

(QPN), the coherence time limit (CTL) and dead time effects. Furthermore, fringe

hops impose additional constraints on stability within the full feedback loop of an

atomic clock. The optimal Ramsey protocols – and correspondingly the highest

achievable clock stabilities – generally depend strongly on the specific parameters



173

of the experimental setup. Although variational quantum circuits promise substan-

tial enhancements in idealized scenarios, practical constraints as fringe hops and dead

time effects limit these advantages.

In realistic scenarios, small ensembles comprising a few atoms – characteristic for

ion traps – are limited by fringe hops at long interrogation times and thus, GHZ states

and spin-squeezed states (SSS) approximate the ultimate lower bound across a broad

range of interrogation times. Furthermore, variational Ramsey protocols are generally

unfavorable for large ensembles – entering the regime of lattice clocks – due to the

inherent particle number fluctuations. As a result, they offer a significant advantage

only for intermediate ensemble sizes of several tens of atoms – as encountered in

tweezer arrays – in the regime primarily limited by QPN. In this regime, low-depth

quantum circuits [1,m] are sufficient to approach the ultimate limit as the benefits

diminish with increasing m, leading to a trade-off between increased complexity and

extended dynamic range.

In the presence of dead times typical for ion traps, the behavior closely resembles

the dead time-free case for small ensembles, since QPN dominates the Dick effect.

In contrast, Dick noise becomes the primary limitation for tweezer arrays as dead

time increases, substantially reducing the potential enhancement offered by varia-

tional quantum circuits compared to SSS. For large ensembles in the regime of lattice

clocks, QPN is reduced well below dead time effects. As a consequence, increasing

the complexity of the Ramsey sequence is redundant and coherent spin states (CSS)

ultimately approach the lower limit at long interrogation times.

Finally, we briefly outlined clock schemes beyond the single-ensemble approach

that have the potential to address the primary limitations discussed in this chapter –

namely the laser coherence time limit (CTL), the emergence of fringe hops and dead

time effects. Although these approaches extend beyond the scope of the present work,

many of their underlying principles can be integrated with the Ramsey protocols dis-

cussed in this thesis.

As a closing statement, we hope that the results of this thesis will serve as a

reference of clock stability in current setups and provide guidance for implementing

optimal entanglement-enhanced Ramsey protocols in future clocks for a variety of

experimental regimes. Although this work is tailored to frequency metrology in atomic

clocks, the developed concepts extend to a general application in frequency metrology

and Ramsey interferometry, including implementations in atom interferometry and

magnetometry.
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A
Numerical routines

In this appendix, we present the numerical methods employed throughout this the-

sis. In particular, we discuss the optimization of Ramsey interrogation schemes in

App. A.1 and the Monte Carlo simulations of the full feedback loop in atomic clocks

in App. A.2, which are performed to validate the theoretical predictions developed

in this work. Furthermore, we present the procedure to determine the iterated prior

width and to incorporate dead time noise into the prior phase distribution in App. A.3.

The numerical studies are implemented in the widely used programming language

Python [248]. As is generally known, native Python can be comparatively slow when

operations on arrays are implemented using explicit loops. However, this limitation

is effectively addressed by the NumPy [249] library, which internally leverages opti-

mized C and Fortran routines for numerical computations, enabling efficient memory

management and vectorized operations that significantly reduce the overhead asso-

ciated with native Python loops. A particularly useful library for quantum systems

– especially for spin systems – is the Quantum Toolbox in Python (QuTiP) [250]. It

provides comprehensive tools to represent a variety of quantum states and operators,

perform quantum mechanical calculations and simulate dynamics in both closed and

open quantum systems.

Naturally, it is advantageous to evaluate the quantities of interest analytically

wherever possible to reduce the computational overhead of numerical computations.

In addition, repeated computational steps – whether within optimization routines or

clock simulations – are outsourced or precomputed to improve efficiency and ensure

that iterative procedures exhibit minimal computational complexity.
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A.1 Optimization

To perform numerical optimization of the cost functions introduced in this thesis, we

utilize the Python library SciPy [251], which provides a dedicated package for op-

timization routines. For comparably simple optimization problems – involving only

one or two parameters or when profound prior information about the optimal region

is available – we employ the minimize function, which implements standard local

optimization algorithms. In more complex scenarios, characterized by several param-

eters and a large number of local minima, global optimization techniques becomes

necessary. In such cases, we adopt a differential evolution approach.

In the following sections, we reformulate the cost functions to enable efficient nu-

merical evaluation and discuss specific limitations inherent to the numerical routines

used in the context of local and Bayesian frequency metrology.

A.1.1 Local frequency metrology

In Chapter 3, we investigate local frequency metrology in the presence of decoherence

processes during the Ramsey dark time. The treatment of such non-unitary dynam-

ics requires to consider the full 2N -dimensional Hilbert space. However, by assuming

permutational invariance (cf. Sec 2.3.1), it is sufficient to restrict the analysis to

the subspace spanned by the permutational invariant Dicke states. The dimension of

this permutational invariant subspace scales as O(N2) and thus offers a significant

reduction compared to the exponential scaling of the full Hilbert space, enabling com-

prehensive numerical studies. An efficient implementation of this subspace is provided

by the QuTiP module Permutational Invariant Quantum Solver (PIQS ) [99].

Efficient expressions for the cost functions— In a systematic optimization

procedure, the initial state and the measurement are iteratively adjusted in each op-

timization step. For the method of moments (cf. Eq. 3.32), the variance (∆X(ϕ, T ))2

of the observable X and the slope of the signal ∂ϕ ⟨X(ϕ, T )⟩ are required. While

the evaluation of the variance is straightforward, the slope can be directly computed

according to

∂ϕ ⟨X(ϕ, T )⟩ = ∂ϕ Tr
(
XRz(ϕ)ΛT [ρin]R†

z(ϕ)
)

= ∂ϕ Tr
(
R†

z(ϕ)XRz(ϕ)ΛT [ρin]
)

= iTr
(
R†

z(ϕ)[Sz, X]Rz(ϕ)ΛT [ρin]
)

= iTr ([Sz, X]Λϕ,T [ρin]) ,

(A.1)

where we assumed that the phase imprint Rz(ϕ) (super-)commutes with the dynamics

arising from the decoherence processes ΛT [ρin] (cf. App. C.1).
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As the method of moments is not optimal in general, it is often advantageous

to consider the (classical) Fisher information (cf. Sec. 3.5.1) as a cost function for

optimization. With

∂ϕP (x|ϕ) = ∂ϕ Tr
(
|x⟩⟨x|Rz(ϕ)ΛT [ρin]R†

z(ϕ)
)

= −iTr (|x⟩⟨x| [Sz,Λϕ,T [ρin]]) ,
(A.2)

the (classical) Fisher information takes the numerically more tractable form

F [ρin(ϕ, T ), {Πx}] = −
∑

x

Tr (|x⟩⟨x| [Sz,Λϕ,T [ρin]])2

Tr (|x⟩⟨x|Λϕ,T [ρin])
. (A.3)

This quantity has to be optimized with respect to the phase ϕ to determine the

optimal working point ϕ0 (cf. Sec. 3.5.1). Although the apparent minus sign might

appear confusing, the (classical) Fisher information remains positive as the numerator

yields another minus sign.

Expressing the cost functions in this form enables efficient numerical implementa-

tion. In contrast, explicit evaluations based on the fundamental definitions typically

result in substantially longer computational runtimes, which in turn restrict the ac-

cessible ensemble sizes and the complexity of the quantum operations that can be

considered.

Limitations— Although the PIQS package provides an efficient implementation

for permutational invariant quantum systems – resulting in a quadratic scaling of the

Hilbert space dimension – the time evolution remains computationally challenging.

In principle, for a fixed interrogation time T , the time evolution is identical across

all optimization steps and can therefore be evaluated once in advance. However, this

requires the explicit computation of the matrix exponential eLT of the Liouvillian

L, which contains O(N8) elements (cf. App. C.2). Unfortunately, for spontaneous

decay and individual dephasing, the time evolution is non-trivial as the dynamics

is non-diagonal in the Dicke basis. Consequently, evaluating the general solution

eLT becomes unfeasible on a standard PC already for relatively small ensemble sizes

(N ≳ 20) due to its computational complexity of O(N12).1 Interestingly, the mesolve

function of QuTiP offers an efficient computation for the explicit time evolution of a

given state [250], thereby allowing to study larger ensembles. However, this approach

1In general, for a system of Hilbert space dimension n, diagonalization – and thus evaluation of
the matrix exponential – has complexity O(n3). In the specific case of the permutational invariant
subspace, the matrix representation of the Liouvillian L has dimension O(N4) (cf. App. C.2) and
thus results in an overall complexity of O(N12).
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requires the evaluation of the time evolution in every optimization step, which ulti-

mately limits numerical studies to N ≲ 30 as pursued in Chapter 3, particularly in

the case of the optimal quantum interferometer (OQI).

It is important to emphasize that this limitation originates from evaluating the

dynamics in the Dicke basis, which is suboptimal for spontaneous decay and individ-

ual dephasing. A significant reduction in computational cost could be achieved by

evaluating the dynamics in a basis in which the Liouvillian is diagonal, as demon-

strated in Refs. [97,98]. While such an approach would allow for the investigation of

significantly larger ensembles – and thereby address the aspects discussed in Sec. 3.10

– this is beyond the scope of this thesis. Notably, this direction is currently being

pursued by our master student Marius Burgath.

A.1.2 Bayesian frequency metrology

In Chapter 4, we restrict the analysis to the subspace with maximal spin S = N/2,

which is fully symmetric under particle exchange. This symmetry is preserved by the

unitary dynamics described in Eq. (4.4). The corresponding Hilbert subspace has

dimension N + 1 and therefore scales linearly with the ensemble size. Moreover, it is

sufficient to consider pure initial states, as mixing quantum states does not enhance

the sensitivity (cf. Sec. 4.3). These simplifications enable comprehensive numerical

investigations. In particular, the evaluation of the optimal quantum interferometer

(OQI) can be performed up to the regime where the asymptotic scaling is reached.

Nevertheless, numerical evaluation becomes computationally demanding for large en-

sembles N ≫ 1, especially when considering complex quantum circuits.

In Bayesian phase estimation, averaging over the prior phase distribution requires

evaluating an integral, as discussed in detail in Sec. 4.2. Fortunately, this integration

can be performed analytically by reformulating the expressions for the Bayesian mean

squared error (BMSE) utilizing the linear and optimal Bayesian estimation strategies,

as shown below.

Linear estimator— For any operator A =
∑

M,M ′ AM,M ′ |M⟩⟨M ′| and an arbi-

trary input state |ψin⟩ =
∑

M(ψin)M |M⟩ represented in the Dicke basis |M⟩, the

expectation values can be expressed as

⟨A(ϕ)⟩ = ⟨ψin|R†
z(ϕ)ARz(ϕ) |ψin⟩

=
∑

M,M ′

(ψin)∗MAM,M ′(ψin)M ′ei(M−M ′)ϕ. (A.4)
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Assuming a Gaussian prior distribution P(ϕ) with zero mean and variance (δϕ)2, we

use the integrals
∫

dϕP(ϕ)eiaϕ = e−
1
2
a2(δϕ)2 (A.5)

∫
dϕP(ϕ)ϕeiaϕ = ia(δϕ)2e−

1
2
a2(δϕ)2 (A.6)

to obtain∫
dϕP(ϕ)ϕ ⟨X(ϕ)⟩ =

∑

M,M ′

(ψin)∗MXM,M ′(ψin)M ′i(δϕ)2(M −M ′)e−
1
2
(M−M ′)2(δϕ)2

(A.7)∫
dϕP(ϕ)

〈
X2(ϕ)

〉
=
∑

M,M ′

(ψin)∗M(X2)M,M ′(ψin)M ′e−
1
2
(M−M ′)2(δϕ)2 . (A.8)

Defining the matrices B and C by

BM,M ′ = i(δϕ)2(M −M ′)e−
1
2
(M−M ′)2(δϕ)2XM,M ′ (A.9)

CM,M ′ = e−
1
2
(M−M ′)2(δϕ)2(X2)M,M ′ (A.10)

and writing ψin = ((ψin)−N/2, . . . , (ψin)+N/2)
T , the BMSE for the linear estimation

strategy (cf. Eq. (4.27)) takes the compact form

(∆ϕ)2 = (δϕ)2 − (ψ†
inBψin)2

ψ†
inCψin

(A.11)

and is thus determined by simple scalar products.

Optimal Bayesian estimator— Similarly, for a projective measurement {|x⟩⟨x|},

represented by |x⟩ =
∑

M xM |M⟩ with coefficients xM ∈ C, and an arbitrary state

|ψ⟩, the conditional probabilities can be expressed as

P (x|ϕ) = | ⟨x|Rz(ϕ) |ψin⟩ |2

= ⟨x|Rz(ϕ) |ψin⟩⟨ψin|R†
z(ϕ) |x⟩

=
∑

M,M ′

x∗Me
−iMϕ(ψin)M(ψin)∗M ′eiM

′ϕxM ′

=
∑

M,M ′

y∗Me
i(M ′−M)ϕyM ′ ,

(A.12)

where we defined yM = xM(ψin)∗M . Using the integrals from Eq. (A.5) and Eq. (A.6),

we obtain∫
dϕP(ϕ)P (x|ϕ)ϕ =

∑

M,M ′

y∗MyM ′i(δϕ)2(M −M ′)e−
1
2
(M−M ′)2(δϕ)2 (A.13)

∫
dϕP(ϕ)P (x|ϕ) =

∑

M,M ′

y∗MyM ′e−
1
2
(M−M ′)2(δϕ)2 . (A.14)
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Defining the matrices D and E by

DM,M ′ = i(δϕ)2(M −M ′)e−
1
2
(M−M ′)2(δϕ)2 (A.15)

EM,M ′ = e−
1
2
(M−M ′)2(δϕ)2 (A.16)

and writing y = (y−N/2, . . . , y+N/2)
T , the BMSE for the optimal Bayesian estimator

(cf. Eq. (4.29)) is given by

(∆ϕ)2 = (δϕ)2 −
∑

y

(y†Dy)2

y†Ey
, (A.17)

where the summation over y effectively iterates over the measurement basis |x⟩, re-

sulting in a summation over simple scalar products.

A.2 Monte Carlo clock simulation

To validate theoretical predictions on clock stability and to assess the robustness of the

presented Ramsey schemes in realistic scenarios, we perform comprehensive numerical

Monte Carlo simulations of the full feedback loop in an atomic clock throughout this

thesis. This appendix provides a brief overview of the methods used to simulate an

atomic clock, primarily aligning with Ref. [3].

The core Python implementation of the Monte Carlo simulation was originally

developed by Ian D. Leroux, focusing on different feedback strategies in the context of

conventional Ramsey interferometry utilizing coherent spin states (CSS), as described

in Ref. [92]. This initial implementation was tailored to single-ensemble clocks, where

the atomic reference is periodically interrogated using the same protocol in each clock

cycle.

In subsequent years, Marius Schulte adapted these routines. On the one hand, the

routines where extended to incorporate the simulation of spin-squeezed states (SSS),

with primary results published in Ref. [91]. On the other hand, the performance of the

code was substantially increased by transforming it into Cython [252] code. Cython

combines the development efficiency of Python with the execution speed of C. By

extending the Python language and allowing direct compilation into C, even modest

use of type declarations and minor code adjustments typically lead to considerable

performance gains – an essential advantage for atomic clock simulations involving

vast numbers of causally connected cycles.

In recent years, we implemented several additional modifications. The feedback

loop was generalized to incorporate a wide range of interrogation strategies, from

basic schemes such as applying corrections only after several clock cycles, to advanced

multi-ensemble approaches utilizing dynamical decoupling or cascaded clocks, which,
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however, are beyond the scope of this thesis. Here, we outline a minimal working

example representative of the implementation used to obtain the results throughout

this thesis – which are published in Refs. [1, 2] – focusing on single-ensemble clock

operation with identical Ramsey protocols in each cycle. In this context, the initial

implementation was extended to support the simulation of arbitrary Ramsey schemes.

Overall, the Monte Carlo simulation implements the basic principles of an atomic

clock, as introduced in Sec. 1.2 and Sec. 3.2, and follows the framework described

in Sec. 2.4. In the following, we briefly outline the main aspects of the Monte Carlo

simulations: the feedback loop, the local oscillator, the atomic reference and the servo.

Finally, we discuss the evaluation of the long-term-stability in atomic clocks.

A.2.1 Feedback loop

In general, the Monte Carlo simulation is implemented in terms of frequencies ν

rather than angular frequencies ω or relative frequencies y. Specifically, we consider

frequency deviations ν(t) = ν0 − νLO(t) (cf. Eq. 3.1) of the local oscillator (LO)

frequency νLO with respect to the atomic transition frequency ν0.
2

Each clock cycle k comprises two frequency values, representing the average fre-

quency deviation during dead time TD

νdeadtime,k =
1

TD

∫ (k−1)TC+TD

(k−1)TC

dt′ν(t′) (A.18)

and during the Ramsey interrogation T

νk =
1

T

∫ kTC

(k−1)TC+TD

dt′ν(t′), (A.19)

where TC = TD + T denotes the total duration of the clock cycle. Since frequency

fluctuations during dead time are not monitored, we primarily focus on the frequency

deviations νk during the Ramsey interrogation, while νdeadtime,k is updated in each

clock cycle accordingly. To distinguish between different frequency deviations during

clock cycle k, representing specific aspects of the feedback loop, we use superscripts

for νk in the following.

As νk denotes the averaged frequency deviation of the LO with respect to the

atomic reference at the end of the interrogation time in cycle k, prior to the measure-

ment, it is essential for the atomic interrogation. In particular, this frequency reflects

stabilization in preceding cycles (j < k), but still incorporates the intrinsic (new)

noise introduced during the current cycle k. At the end of the Ramsey sequence,

2Although angular frequencies ω are typically used throughout this thesis, here we adapt the
notation to align with the implementation.
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νk is estimated as νestk based on the measurement outcome. Finally, to complete the

feedback loop, the servo applies a correction νcorrk based on this frequency estimate.

The resulting stabilized clock frequency is given by

νclockk = νk − νcorrk . (A.20)

Although the free-running LO frequency is not directly accessible in practice due

to continuous stabilization, it is convenient to generate the trace of average frequency

deviations associated with the free running local oscillator, denoted by νfreek , in ad-

vance (cf. App. A.2.2). The actual LO frequency νk in the presence of feedback is

related to νfreek through

νk = νfreek − νtot−corr
k−1 , (A.21)

where the total (or cumulated) correction applied up to cycle k is defined as

νtot−corr
k =

k∑

j=1

νcorrj . (A.22)

Accordingly, the clock frequency can be expressed as

νclockk = νfreek − νtot−corr
k . (A.23)

In summary, each clock cycle k consists of the following steps:

(i) Compute the frequency deviation during interrogation: νk = νfreek − νtot−corr
k−1

(ii) Estimate the frequency deviation based on a particular Ramsey sequence: νestk

(iii) Evaluate the total servo correction based on the estimate: νtot−corr
k

(iv) Correct the LO to obtain the clock frequency: νclockk = νfreek − νtot−corr
k

The generation of the free-running LO frequency trace, as well as the implemen-

tation of the atomic reference and the servo, are detailed in the following sections.

A.2.2 Local Oscillator Noise

Throughout this work and in the Monte Carlo simulations, we assume clock operation

with identical interrogation sequences in each clock cycle. In particular, both the dead

time TD and the interrogation time T are fixed during a single clock run. As a result,

the sequence of average frequency deviations associated with the free-running local

oscillator νfreek , where k labels the clock cycle, can be generated in advance for a given

spectral noise density Sy(f) or local oscillator Allan deviation σy,LO(τ). Specifically,



A.2. Monte Carlo clock simulation 183

we focus on three standard types of noise: white frequency noise, flicker frequency

noise and random walk frequency noise.

In principle, these frequency traces can be generated via a Fourier transformation

of the desired spectral noise in the frequency domain. However, this approach be-

comes computationally expensive for long traces involving many clock cycles (m≫ 1).

While white and random walk frequency noise can be generated using standard tech-

niques [84], flicker frequency noise is efficiently generated by a sum of multiple damped

random walks [92].

The main routine used to generate the frequency trace of the free-running local

oscillator takes the Allan deviation at unit averaging time as input. Specifically, for

white frequency noise (WN), flicker frequency noise (FN) and random walk frequency

noise (RWN), the respective input parameters are the Allan deviations σν,WN(τ = 1 s),

σν,FN(τ = 1 s) and σν,RWN(τ = 1 s), respectively. Importantly, these values specify

the Allan deviation in terms of absolute frequency deviations ν. A representative

example is shown in Fig. 2.2.

A.2.3 Reference

In each clock cycle k, the atomic reference is interrogated according to a specific

Ramsey sequence. The frequency deviation νk gives rise to the accumulated phase

ϕk = 2πνkT during the free evolution time (Ramsey dark time). At the end of

the Ramsey protocol, a measurement xk is performed and the frequency deviation

νk is estimated as νestk = ϕest
k /2πT , where ϕest

k denotes the phase estimation of ϕk.

While different estimation strategies are discussed in the main text, here, we focus on

sampling measurement outcomes x based on the conditional probability distribution

P (x|ϕ). To this end, we distinguish between several scenarios in the following, for

which distinct sampling techniques are convenient.

Binomial distributions— An efficient method to sample Bernoulli trials is inverse

transform sampling [253]. For a single qubit with statistical model P (x|ϕ), this

procedure is implemented as follows: A random number p is drawn from the uniform

distribution over the interval [0, 1]. If p ≤ P (x = +1
2
|ϕ), the qubit is measured in the

excited state |↑⟩, otherwise, it is measured in the ground state |↓⟩. For N independent

qubits, this process is repeated to generate a sampled measurement outcome of the

ensemble, resulting in a binomial distribution (cf. Sec. 2.3.6).

Although this technique can, in principle, be generalized to arbitrary probability

distributions [253], we primarily employ it to sample measurements of the conven-

tional Ramsey protocol, which uses coherent spin states and projective spin measure-

ments, naturally yielding binomial statistics.
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Analytical distributions— If the conditional probabilities are known analyti-

cally, they can be efficiently evaluated in each clock cycle for a specific phase ϕk.

A measurement outcome for an arbitrary statistical model P (x|ϕ) can be sampled

using the choices method from the random package in Python [254], which takes the

possible measurement outcomes and associated probabilities as input.

Exact numerical distributions— If no analytical expressions for the conditional

probabilities are available, they have to be evaluated numerically in each clock cycle

and can then be sampled using the methods describe above. In particular, it is useful

to distinguish between two scenarios:

(i) We assume pure states |ψin⟩ in the fully symmetric subspace, a unitary time

evolution Rz(ϕ) = e−iϕSz and arbitrary projective measurements within this sub-

space – represented by a projection-valued measure (PVM) {|x⟩⟨x|}. Specifically,

we represent input states |ψin⟩ =
∑

M(ψin)M |M⟩ and measurement basis states

|x⟩ =
∑

M xM |M⟩ in the Dicke basis |M⟩ with total spin S = N/2. Consequently,

the conditional probabilities can be expressed as

P (x|ϕ) = |⟨x|Rz(ϕ) |ψin⟩|2

= |
∑

M

x∗Me
−iϕM(ψin)M |2

= |x†(r ◦ ψin)|2,

(A.24)

where ◦ denotes the Hadamard product (elementwise multiplication) and the vectors

x, r and ψin have coefficients xM , rM = e−iϕM and (ψin)M , respectively.

(ii) We consider mixed states ρin(T ) and arbitrary projective measurements – rep-

resented by a projection-valued measure (PVM) {|x⟩⟨x|}. Furthermore, we assume

that the dynamics can be decomposed into a non-unitary quantum channel ρin(T ) =

ΛT [ρin] and a unitary phase evolution according to Rz(ϕ), which commute. In the

Dicke basis |S,M⟩, the evolved state and the measurement are represented as ρin(T ) =∑
SM,S′M ′ CSM,S′M ′ |S,M⟩⟨S ′,M ′| and Πx =

∑
SM,S′M ′ ASM,S′M ′ |S,M⟩⟨S ′,M ′|, re-

spectively. Hence, the conditional probabilities can be expressed as

P (x|ϕ) = Tr
(
|x⟩⟨x|Rz(ϕ)ρin(T )R†

z(ϕ)
)

=
∑

SM,S′M ′

AS′M ′,SMe
−iϕ(M−M ′)CSM,S′M ′ . (A.25)

By defining the matrix B with elements BSM,S′M ′ = e−iϕ(M−M ′) and using that Πx =

Π†
x, which implies AS′M ′,SM = A∗

SM,S′M ′ , we obtain

P (x|ϕ) =
∑

SM,S′M ′

A∗
SM,S′M ′BSM,S′M ′CSM,S′M ′ . (A.26)
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Consequently, the conditional probability P (x|ϕ) is given by a sum over the matrix

elements of the Hadamard product A∗ ◦B ◦ C, with coefficients defined above.

Note that these implementations are computationally significantly faster than

evaluating the conditional probabilities directly in QuTiP, as they take advantage of

efficient numpy array operations.

Gaussian approximation— In general, numerical evaluation of the conditional

probabilities becomes computationally demanding with increasing ensemble size, as

argued in App. A.1. However, if the statistical model P (x|ϕ) is well centered around

its mean value ⟨X(ϕ)⟩ for a given phase ϕ, characterized by a small variance (∆X(ϕ))2,

the statistics can be approximated by a Gaussian distribution with corresponding

mean value and variance. Consequently, this approximation effectively reflects an

application of the central limit theorem. The random variable associated with the

observable X is then distributed as

X ∼ N (⟨X(ϕ)⟩ , (∆X(ϕ))2), (A.27)

where N (µ, σ2) denotes a Gaussian (or normal) distribution with mean µ and variance

σ2.

However, this approximation is generally not suitable for states with populations

exhibiting strict separation – such as the GHZ state, which comprises a superposition

of the collective ground and excited states. In contrast, it applies particularly well to

binomial-like distributions, as encountered for coherent spin states (CSS) and spin-

squeezed states (SSS). Indeed, Ramsey protocols utilizing CSS and SSS emerge as

robust and effective interrogation schemes in a variety of scenarios, particularly in

the regime of large ensembles, as examined throughout this thesis. In the case of CSS

and SSS, we obtain

⟨X(ϕ)⟩ = ⟨Sx⟩ sin(ϕ) + ⟨Sy⟩ cos(ϕ) (A.28)

(∆X(ϕ))2 = (∆Sx)2 sin2(ϕ) + (∆Sy)
2 cos2(ϕ). (A.29)

Specifically, the x and y components are independent, since ⟨SxSy + SySx⟩ = 0, and

thus, Sx and Sy can be treated as independent random variables. Consequently, since

X effectively constitutes a sum of random variables, it is distributed as

X ∼ N (⟨Sx⟩ sin(ϕ), (∆Sx)2 sin2(ϕ)) + N (⟨Sy⟩ cos(ϕ), (∆Sy)
2 cos2(ϕ)). (A.30)

Additionally using that ⟨Sy⟩ = 0, measurement outcomes can be sampled based on

X ∼ [⟨Sx⟩ + ∆SxN ] sin(ϕ) + ∆Sy N cos(ϕ), (A.31)

where N denotes a standard-normally distributed random variable with zero mean

and unit variance.
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Pre-evaluating the distribution— In scenarios where an exact numerical evalu-

ation of the conditional probabilities is computationally unfeasible and the Gaussian

approximation does not apply – for instance for intermediate ensemble sizes in the

presence of decoherence – the statistical model P (x|ϕ) can be evaluated in advance

for each measurement outcome x over a discrete set of phase values {ϕ(1), . . . , ϕ(l)}. In

each clock cycle k, the phase bin ϕ(j) that is closest to the actual phase ϕ, imprinted

onto the atomic reference, is identified and the corresponding precomputed condi-

tional probability is used to sample the measurement outcome. Hence, this approach

effectively constitutes a lookup table.

Although the selected phase bin ϕ(j) typically does not exactly match the actual

phase ϕ, the resulting approximation error is negligible relative to dominant physical

noise sources such as quantum projection noise and frequency fluctuations. In partic-

ular, for Ramsey protocols with phase evolution represented by a 2π-periodic unitary

rotation, even relatively small values of l are typically sufficient to ensure accurate

sampling.

A.2.4 Servo

The servo determines the correction applied to steer the local oscillator towards the

atomic transition frequency. Specifically, the servo evaluates the total correction

νtot−corr
k based on the frequency estimate νestk , resulting from the Ramsey interrogation,

as well as the corrections applied in previous clock cycles {νtot−corr
k−1 , νtot−corr

k−2 , . . .}.

The implementation of the clock simulation incorporates two common servo types:

the double-integrating servo and the general linear integrator. Both approaches are

described in detail in Ref. [92] and are further outlined in Sec. 2.4. For the Monte

Carlo simulations performed in this thesis, we primarily employ the general linear pre-

dictor – taking into account the past 50 frequency estimates – which provides reliable

performance in several scenarios. However, the weights in the linear superposition of

previous corrections, as presented in Ref. [92], are not universally optimal, as they

rather represent a general approach. Hence, at specific interrogation times – where

numerical simulations substantially deviate from numerical simulations – it might be

advantageous to employ the double-integrating servo to reduce discrepancies.

A.2.5 Long-term stability

The (overlapping) Allan deviation is evaluated by adapting the Python package Allan-

tools [255]. Although the Allan deviation σy(τ) depends on the total averaging time

τ , clock stability is typically characterized by a single value, assuming that the Allan

deviation scales as ∼ 1/
√
τ for τ ≫ 1 s. This behavior is described by Eq. (3.23) in
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extrapolation

Figure A.1: Long term stability: The Allan deviation σν(τ) as a function of the
averaging time τ for the free-running local oscillator (pink) and a clock with N = 100
atoms (blue). The clock is stabilized using a conventional Ramsey scheme based on
coherent spin states, a projective spin measurement and a linear estimation strategy.
The local oscillator is limited by flicker frequency noise with Allan deviation σν,FN(τ =
1 s) = 1

2π
Hz, corresponding to a coherence time of Z = 1 s. The interrogation time

T/Z = 0.1 is in the regime where quantum projection noise is the dominant constraint
and we assume zero dead time TD = 0. The Allan deviation at τ = 1 s (circle) is
extrapolated from the asymptotic regime τ/T ≫ 1 using the expected τ−1/2 scaling.
Here, the Allan deviation is evaluated at 104 clock cycles (square) for a simulation
where 106 cycles were performed in total.

local frequency metrology and by Eq. (4.33) in Bayesian frequency metrology. Con-

ventionally, clock stability is quantified by the Allan deviation at unit averaging time

σy(τ = 1 s). Equivalently, the Allan deviation can be rescaled with the total averaging

time, i.e. σy(τ)
√
τ .

However, due to the delayed feedback in clock operation, significant deviations

between theoretical predictions and simulations (or experiments) arise at short av-

eraging times τ ∼ 1 s, as illustrated in Fig. A.1. The expected long-term-stability

σy(τ) ∝ 1/
√
τ is recovered only for sufficiently long averaging times τ ≫ 1 s. There-

fore, stability is evaluated at τ ≫ 1 s and then extrapolated to its hypothetical value

at τ = 1 s based on the scaling σy(τ) ∝ 1/
√
τ .

Since clock operation involves stochastic processes – such as random frequency

fluctuations of the local oscillator and quantum projection noise in the measurement

outcomes – results vary across different clock runs. To ensure robust stability esti-

mates, each configuration – defined by fixed ensemble size N , interrogation time T ,

dead time TD, and Ramsey sequence – is simulated over 10 independent clock runs.

Accordingly, the data points shown in the respective figures represent mean values,

while error bars indicate standard deviations. To include a protocol in the results, we
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impose the stringent criterion that no fringe hops occur across 108 total clock cycles,

as even a single fringe hop leads to a complete loss of clock stability.

Furthermore, if frequency fluctuations of the local oscillator constitute the domi-

nant noise source, the clock stability can be analyzed within a general framework. In

particular, by rescaling the Allan deviation with the local oscillator coherence time

Z and the atomic transition frequency ν0, the resulting stability effectively becomes

independent of the specific clock parameters, as pursued in Chapter. 4. Likewise, if

decoherence processes impose the primary limitation, the stability can be rescaled

with the corresponding decoherence rate, allowing for an equally general treatment,

as presented in Chapter 3.

A.3 Prior width

In this appendix, we outline the iterative determination of the prior width and the

incorporation of dead time noise into the prior phase distribution, as discussed in

Chapter 4.

A.3.1 Iterative prior width

Eq. (4.35) provides a good approximation for the prior phase width δϕ in the regime

of large ensembles N and long interrogation times T , as demonstrated in Refs. [91,

92, 140]. However, as discussed in the main text, the prior width δϕ and estimation

error ∆ϕ mutually influence each other in the full feedback loop of an atomic clock.

Moreover, any model of the prior width can only capture the true residual noise to

a certain degree. Consequently, an on-device optimization, as utilized in Ref. [142],

would most accurately reflect the experimental conditions and thus, yield the best

results. However, this approach has several disadvantages. First, it precludes theoret-

ical predictions and ab initio studies of clock stability, making it impossible to exclude

protocols prone to fringe hops, for instance. Second, it is exceptionally demanding in

terms of experimental time. While the variational parameters need only be optimized

for individual clock runs, evaluating the Allan deviation as a cost function requires a

sufficiently long averaging time τ for each optimization step to achieve the long-term

scaling according to 1/
√
τ . Unlike Bayesian phase estimation, which can focus on

single interrogation cycles, on-device optimization for clock stability must account

for time-varying frequency deviations ν across different clock cycles. As a result,

on-device optimization using the Allan deviation as a cost function is impractical.

To overcome these challenges, we focus on modeling the prior knowledge according

to a Gaussian distribution, as defined in Eq. (4.5), and iteratively adjust the prior

width δϕ to account for the closed feedback loop dynamics. The general strategy
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involves simulating the full feedback loop multiple times and using the results from

previous simulations to estimate the prior width for the subsequent iteration stage.

This procedure is repeated until convergence is achieved. In each iteration stage, the

frequency deviation νk at the end of the Ramsey dark time is recorded and the as-

sociated mean value is interpolated as a function of the interrogation time at a fixed

ensemble size. However, application of this iterative method to the variational pro-

tocols would lead to the same issues discussed above. Therefore, it is advantageous

to use fixed and robust protocols, such as CSS and SSS, to ensure consistency. Addi-

tionally, comparing results across protocols would be cumbersome, as each protocol

yields a distinct prior width and corresponding OQI. Instead, we approximate the

prior width δϕ for a fixed ensemble size through the following iterative stages:

• Stage 0 (Initialization): Start with a heuristic prior width, where δϕ is interpo-

lated linearly on a log-log scale between (δϕ)2 = (T/Z)4/3N−1/4 for T/Z = 0.01

and the value given by Eq. (4.35) for T/Z = 1. Using this prior width, simulate

the CSS protocol with the optimal Bayesian estimator and record the resulting

frequency deviations {νk}.

• Stage 1 (Refinement): Use the recorded {νk} from the previous simulation to

determine the corresponding prior phase distribution. Fit this distribution to a

Gaussian, as described by Eq. (4.5), to obtain an updated prior width δϕ. Plot

δϕ as a function of interrogation time and fit it with a fifth-order polynomial.

Exclude prior widths for interrogation times where fringe hops limit stability

and additionally add the value from Eq. (4.35) at T/Z = 1. Simulate the SSS

protocol with the updated prior width.

• Stages 2, 3, . . . (Iteration): Repeat the refinement process.

Convergence is typically achieved after stage 3, even for small ensembles, as the

prior width from stage 4 introduces only negligible adjustments. This convergence is

generically illustrated in Fig. A.2(a). Hence, the prior width from stage 3 is adopted

to model a realistic atomic clock scenario used in Sec. 4.7 and Sec. 4.8.3. While this

iterative approach provides a reasonable approximation of the closed feedback loop

dynamics, it remains a simplification. Consequently, deviations between theoretical

predictions and numerical simulations may still arise, as discussed above and in the

main text.
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a b

Figure A.2: Variance of the prior phase distribution: (a) Convergence of the
prior variance (δϕ)2 in the iterative approach for N = 8. The distinct iteration
stages are illustrated by colored lines. Additionally, the power law scaling Eq. (4.35)
and the SQL 1/N are shown for comparison. (b) Additional noise due to dead time
characterized by the associated prior variance (δϕD)2 given in Eq. (4.47) for white
(gray), flicker (pink) and random walk frequency noise (brown). Mean values are
averaged over 10 independent runs.

A.3.2 Prior width and dead time

As discussed in the main text, the additional noise introduced during dead time can

be approximated as white noise in the asymptotic limit of many clock cycles. The

corresponding prior width δϕD is determined by simulating the uncorrected frequency

trace of the free-running local oscillator and quantifying the noise accumulated during

the cycle duration TD. Specifically, the new frequency deviations νnewk = νfreek −
νfreek−1 are recorded for each cycle k, representing the differences between consecutive

cycles. Using the recorded values {νnewk }, the phase distribution associated with a

hypothetical phase shift during TD is evaluated, and the corresponding prior width

δϕD is extracted. Simulations confirm the power-law scaling predicted by Eq. (4.47),

as illustrated in Fig. A.2(b).



B
Rotations of Collective Spin
Operators and States

In this appendix we investigate how collective spin operators and states transform

under collective rotations.

Arbitrary rotations of spin operators— A common transformation in the

framework of generalized Ramsey protocols is the rotation Rn(θ) of a spin Sm around

an arbitrary axis n by an angle θ. As a reminder, the notation Sm = m1Sx +m2Sy +

m3Sz represents the projection of the spin vector S along a particular direction m,

|m| = 1. In the following, we derive an expression for the rotated spin operator

Sm(θ) = R†
n(θ)SmRn(θ) = eiθSnSme

−iθSn (B.1)

where the explicit dependence on the rotation angle θ denotes the transformed spin

operator. Differentiation with respect to θ yields

∂θSm(θ) = ieiθSn [Sn, Sm] e−iθSn . (B.2)

Evaluation for each individual spin component Sx, Sy, Sz results in the coupled dif-

ferential equations

∂θSx(θ) = n2Sz(θ) − n3Sy(θ)

∂θSy(θ) = −n1Sz(θ) + n3Sx(θ) (B.3)

∂θSz(θ) = n1Sy(θ) − n2Sx(θ).

191
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Rewriting this in matrix notation

∂θ




Sx(θ)

Sy(θ)

Sz(θ)


 =




0 −n3 n2

n3 0 −n1

−n2 n1 0







Sx(θ)

Sy(θ)

Sz(θ)


 =




n1

n2

n3


×




Sx(θ)

Sy(θ)

Sz(θ)


 (B.4)

shows that ∂θS(θ) = n×S(θ) and thus, the rotation of the spin in Eq. (B.1) is equiv-

alent to a rotation of the axis m around n by the angle θ. Consequently, according

to the Rodrigues rotation formula [256], the rotation of the spin results in1

Sm(θ) = (nTm)nTS + cos(θ)
[
mT − (nTm)nT

]
S− sin(θ) (n×m)TS. (B.5)

Equivalently, this expression can be derived explicitly by using Eq. (2.73). Consid-

ering the particular example of n = ex and m = ez, resembling the effective mea-

surement of the conventional Ramsey protocol (cf. Sec. 2.3.7), the transformation is

given by

Sz(θ) = Sz cos(θ) + Sy sin(θ) (B.6)

and thus, the second Ramsey π
2
-pulse is equivalent to measuring Sy instead of Sz.

To implement spin systems numerically, it is necessary to choose a particular basis.

Typically, the eigenstates of Sz are chosen, but in principle, any other spin projection

Sm works equally well. The following discussion can therefore be generalized to

any alternative basis. To determine several properties numerically – as expectation

values or probabilities of particular events – it is advantageous to express arbitrary

spin operators and states in terms of the preferred quantization axis.

Rotations of spin operators— Considering spin operators, we aim to determine

the rotation axis v and angle α such that

Sn = R†
v(α)SzRv(α). (B.7)

To generate an arbitraty axis n by appropriately rotating ez, it suffices to choose the

rotation axis v to lie in the x-y-plane. With v = (v1, v2, 0)T and using Eq. (B.5), the

right hand side becomes

R†
v(α)SzRv = cos(α)Sz − sin(α) [v2Sx − v1Sy] . (B.8)

1The difference in the sign of the sine, compared to the usual rotation formula, comes from the
choice of defining a rotation Rn(θ) = e−iθSn with a negative sign.
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Hence, we have to choose

α = arccos(n3) and v =




v1

v2

v3


 =

1√
n2
1 + n2

2




n2

−n1

0


 . (B.9)

These are indeed the proper rotation angle and axis, as can be verified by noting that

sin(arccos(n3)) =
√

1 − n2
3 =

√
n2
1 + n2

2. Consequently, to express any spin operator

Sn in terms of Sz, a rotation Rv(α) has to be applied with angle α and axis v as

derived above.

Rotations of spin states— Considering spin states, we aim to determine the

rotation axis w and angle β such that

|S,M⟩m = Rw(β) |S,M⟩z (B.10)

where |S,M⟩m denotes the eigenstate of Sm with eigenvalue M and total spin S. We

rewrite the eigenvalue equation Sm |S,M⟩m = M |S,M⟩m according to

M |S,M⟩m = Sm |S,M⟩m (B.11)

= SmRw(β) |S,M⟩z (B.12)

= Rw(β)R†
w(β)SmRw(β) |S,M⟩z (B.13)

and thus, the appropriate rotation Rw(β) is defined by the relation

R†
w(β)SmRw(β) = Sz, (B.14)

which is equivalent to

Sm = Rw(β)SzR†
w(β). (B.15)

Comparing this with Eq. (B.7) shows that effectively Rw(β) = R†
v(β) when substi-

tuting n by m. Hence, spin states transform according to the adjoint of the rotation

applied to spin operators. This distinction can be accounted for by either flipping

the sign of the rotation angle (β = −α), effectively reversing the rotation direction,

or flipping the rotation axis (w = −v).
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C
Decoherence processes

In the first part of this appendix, App. C.1, we demonstrate that the individual terms

of the master equation are independent and can therefore be treated separately. In

the second part, App. C.2, we derive general solutions for the respective contributions

to the master equation.

The dynamics of the system during the Ramsey interrogation time T considering

a unitary phase evolution, spontaneous decay with rate Γ, individual dephasing with

rate γ and collective dephasing with rate γc is governed by the master equation

Eq. (3.4). For simplicity, we introduce the following notation for the distinct terms

Lϕ[ρ] = −iω[Sz, ρ] (C.1)

LΓ[ρ] =
Γ

2

N∑

k=1

2σ
(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee (C.2)

Lγ[ρ] = −γ
2

N∑

k=1

σ(k)
ee ρσ

(k)
gg + σ(k)

gg ρσ
(k)
ee (C.3)

Lγc [ρ] =
γc
2

2SzρSz − ρϕS
2
z − S2

zρ. (C.4)

Hence, the master equation Eq. (3.4) reads

ρ̇ = Lϕ[ρ] + LΓ[ρ] + Lγ[ρ] + Lγc [ρ]. (C.5)
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C.1 Independence of the processes

In the following we show, that the four terms of the master equation (super-)commute

pairwise.1

• [Lϕ,LΓ] = 0:

Lϕ[LΓ[ρ]] = −iωΓ

4

N∑

j,k=1

[
σ(j)
z , 2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

]

= −iωΓ

4

N∑

j,k=1

[
σ(j)
z , 2σ

(k)
− ρσ

(k)
+

]
−
[
σ(j)
z , σ(k)

ee ρ
]
−
[
σ(j)
z , ρσ(k)

ee

]

= −iωΓ

4

N∑

j,k=1

2
[
σ(j)
z , σ

(k)
− ρσ

(k)
+

]
− σ(k)

ee

[
σ(j)
z , ρ

]
−
[
σ(j)
z , σ(k)

ee

]
︸ ︷︷ ︸

=0

ρ

− ρ
[
σ(j)
z , σ(k)

ee

]
︸ ︷︷ ︸

=0

−
[
σ(j)
z , ρ

]
σ(k)
ee

= −iωΓ

4

N∑

j,k=1

(
2σ

(k)
−
[
σ(j)
z , ρ

]
σ
(k)
+ − σ(k)

ee

[
σ(j)
z , ρ

]
−
[
σ(j)
z , ρ

]
σ(k)
ee

)

where we used

[
σ(j)
z , σ

(k)
− ρσ

(k)
+

]
= σ

(k)
−
[
σ(j)
z , ρ

]
σ
(k)
+ + σ

(k)
− ρ

[
σ(j)
z , σ

(k)
+

]

︸ ︷︷ ︸
=2δjkσ

(k)
+

+
[
σ(j)
z , σ

(k)
−

]

︸ ︷︷ ︸
=−2δjkσ

(k)
−

ρσ
(k)
+

= σ
(k)
−
[
σ(j)
z , ρ

]
σ
(k)
+ .

LΓ[Lϕ[ρ]] = −iωΓ

4

N∑

j,k=1

(
2σ

(k)
−
[
σ(j)
z , ρ

]
σ
(k)
+ − σ(k)

ee

[
σ(j)
z , ρ

]
−
[
σ(j)
z , ρ

]
σ(k)
ee

)

1In principle, the following calculations can be shortened by restricting to single-particle operators
for independent sums and concentrating on the relevant terms where commutation is non-trivial.
Nevertheless, we will explicitly carry out the calculations at this point for clarity and completeness.
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• [Lϕ,Lγ] = 0:

Lϕ[Lγ[ρ]] = i
ωγ

4

N∑

j,k=1

[
σ(j)
z , σ(k)

ee ρσ
(k)
gg + σ(k)

gg ρσ
(k)
ee

]

= i
ωγ

4

N∑

j,k=1

σ(k)
ee ρ

[
σ(j)
z , σ(k)

gg

]
︸ ︷︷ ︸

=0

+
[
σ(j)
z , σ(k)

ee

]
︸ ︷︷ ︸

=0

ρσ(k)
gg + σ(k)

ee

[
σ(j)
z , ρ

]
σ(k)
gg

+ σ(k)
gg ρ

[
σ(j)
z , σ(k)

ee

]
︸ ︷︷ ︸

=0

+
[
σ(j)
z , σ(k)

gg

]
︸ ︷︷ ︸

=0

ρσ(k)
ee + σ(k)

gg

[
σ(j)
z , ρ

]
σ(k)
ee

= i
ωγ

4

N∑

j,k=1

(
σ(k)
ee

[
σ(j)
z , ρ

]
σ(k)
gg + σ(k)

gg

[
σ(j)
z , ρ

]
σ(k)
ee

)

Lγ[Lϕ[ρ]] = i
ωγ

4

N∑

j,k=1

(
σ(k)
ee

[
σ(j)
z , ρ

]
σ(k)
gg + σ(k)

gg

[
σ(j)
z , ρ

]
σ(k)
ee

)

• [Lϕ,Lγc ] = 0:

Lϕ[Lγc [ρ]] = −iωγc
16

N∑

j,k,l=1

[
σ(j)
z , 2σ(k)

z ρσ(l)
z − ρσ(k)

z σ(l)
z − σ(k)

z σ(l)
z ρ
]

= −iωγc
16

N∑

j,k,l=1

2σ(j)
z σ(k)

z ρσ(l)
z − 2σ(k)

z ρσ(l)
z σ

(j)
z − σ(j)

z ρσ(k)
z σ(l)

z

− ρσ(k)
z σ(l)

z σ
(j)
z − σ(j)

z σ(k)
z σ(l)

z ρ− σ(k)
z σ(l)

z ρσ
(j)
z

Lγc [Lϕ[ρ]] = −iωγc
16

N∑

j,k,l=1

2σ(k)
z

[
σ(j)
z , ρ

]
σ(l)
z −

[
σ(j)
z , ρ

]
σ(k)
z σ(l)

z − σ(k)
z σ(l)

z

[
σ(j)
z , ρ

]

= −iωγc
16

N∑

j,k,l=1

2σ(k)
z σ(j)

z ρσ(l)
z − 2σ(k)

z ρσ(j)
z σ(l)

z − σ(j)
z ρσ(k)

z σ(l)
z

− ρσ(j)
z σ(k)

z σ(l)
z − σ(k)

z σ(l)
z σ

(j)
z ρ− σ(k)

z σ(l)
z ρσ

(j)
z

which are the same when renaming the summation indices j, k, l.
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• [LΓ,Lγ] = 0:

LΓ[Lγ[ρ]] = −Γγ

4

N∑

j,k=1

2σ
(k)
−
(
σ(j)
ee ρσ

(j)
gg + σ(j)

gg ρσ
(j)
ee

)
σ
(k)
+

− σ(k)
ee

(
σ(j)
ee ρσ

(j)
gg + σ(j)

gg ρσ
(j)
ee

)
−
(
σ(j)
ee ρσ

(j)
gg + σ(j)

gg ρσ
(j)
ee

)
σ(k)
ee

= −Γγ

4

N∑

k=1

[
2σ

(k)
− σ(k)

ee︸ ︷︷ ︸
=σ

(k)
−

ρ σ(k)
gg σ

(k)
+︸ ︷︷ ︸

=0

+2σ
(k)
− σ(k)

gg︸ ︷︷ ︸
=0

ρ σ(k)
ee σ

(k)
+︸ ︷︷ ︸

=σ
(k)
+

− σ(k)
ee σ

(k)
ee︸ ︷︷ ︸

=σ
(k)
ee

ρσ(k)
gg − σ(k)

ee σ
(k)
gg︸ ︷︷ ︸

=0

ρσ(k)
ee − σ(k)

ee ρ σ
(k)
gg σ

(k)
ee︸ ︷︷ ︸

=0

−σ(k)
gg ρ σ

(k)
ee σ

(k)
ee︸ ︷︷ ︸

=σ
(k)
ee

]

− Γγ

4

∑

j ̸=k

[
σ(j)
ee

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
gg

+ σ(j)
gg

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
ee

]

=
Γγ

4

N∑

k=1

[
σ(k)
ee ρσ

(k)
gg + σ(k)

gg ρσ
(k)
ee

]

− Γγ

4

∑

j ̸=k

[
σ(j)
ee

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
gg

+ σ(j)
gg

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
ee

]
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Lγ[LΓ[ρ]] = −Γγ

4

N∑

j,k=1

σ(j)
ee

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
gg

+ σ(j)
gg

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
ee

= −Γγ

4

N∑

k=1

[
2σ(k)

ee σ
(k)
−︸ ︷︷ ︸

=0

ρ σ
(k)
+ σ(k)

gg︸ ︷︷ ︸
=σ

(k)
+

+2σ(k)
gg σ

(k)
−︸ ︷︷ ︸

=σ
(k)
−

ρ σ
(k)
+ σ(k)

ee︸ ︷︷ ︸
=0

− σ(k)
ee σ

(k)
ee︸ ︷︷ ︸

=σ
(k)
ee

ρσ(k)
gg − σ(k)

gg σ
(k)
ee︸ ︷︷ ︸

=0

ρσ(k)
ee − σ(k)

ee ρ σ
(k)
ee σ

(k)
gg︸ ︷︷ ︸

=0

−σ(k)
gg ρ σ

(k)
ee σ

(k)
ee︸ ︷︷ ︸

=σ
(k)
ee

]

− Γγ

4

∑

j ̸=k

[
σ(j)
ee

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
gg

+ σ(j)
gg

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
ee

]

=
Γγ

4

N∑

k=1

[
σ(k)
ee ρσ

(k)
gg + σ(k)

gg ρσ
(k)
ee

]

− Γγ

4

∑

j ̸=k

[
σ(j)
ee

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
gg

+ σ(j)
gg

(
2σ

(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee

)
σ(j)
ee

]

• [LΓ,Lγc ] = 0:

LΓ[Lγc [ρ]] =
Γγc
16

N∑

j,k,l=1

2σ
(j)
−
(
2σ(k)

z ρσ(l)
z − ρσ(k)

z σ(l)
z − σ(k)

z σ(l)
z ρ
)
σ
(j)
+

− σ(j)
ee

(
2σ(k)

z ρσ(l)
z − ρσ(k)

z σ(l)
z − σ(k)

z σ(l)
z ρ
)

−
(
2σ(k)

z ρσ(l)
z − ρσ(k)

z σ(l)
z − σ(k)

z σ(l)
z ρ
)
σ(j)
ee

=
Γγc
16

N∑

j,k,l=1

4σ
(j)
− σ(k)

z ρσ(l)
z σ

(j)
+ − 2σ

(j)
− ρσ(k)

z σ(l)
z σ

(j)
+

− 2σ
(j)
− σ(k)

z σ(l)
z ρσ

(j)
+ − 2σ(j)

ee σ
(k)
z ρσ(l)

z + σ(j)
ee ρσ

(k)
z σ(l)

z + σ(j)
ee σ

(k)
z σ(l)

z ρ

− 2σ(k)
z ρσ(l)

z σ
(j)
ee + ρσ(k)

z σ(l)
z σ

(j)
ee + σ(k)

z σ(l)
z ρσ

(j)
ee
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Lγc [LΓ[ρ]] =
Γγc
16

N∑

j,k,l=1

2σ(k)
z

(
2σ

(j)
− ρσ

(j)
+ − σ(j)

ee ρ− ρσ(j)
ee

)
σ(l)
z

−
(

2σ
(j)
− ρσ

(j)
+ − σ(j)

ee ρ− ρσ(j)
ee

)
σ(k)
z σ(l)

z

− σ(k)
z σ(l)

z

(
2σ

(j)
− ρσ

(j)
+ − σ(j)

ee ρ− ρσ(j)
ee

)

=
Γγc
16

N∑

j,k,l=1

4σ(k)
z σ

(j)
− ρσ

(j)
+ σ(l)

z − 2σ(k)
z σ(j)

ee ρσ
(l)
z − 2σ(k)

z ρσ(j)
ee σ

(l)
z

− 2σ
(j)
− ρσ

(j)
+ σ(k)

z σ(l)
z + σ(j)

ee ρσ
(k)
z σ(l)

z + ρσ(j)
ee σ

(k)
z σ(l)

z

− 2σ(k)
z σ(l)

z σ
(j)
− ρσ

(j)
+ + σ(k)

z σ(l)
z σ

(j)
ee ρ+ σ(k)

z σ(l)
z ρσ

(j)
ee

The terms without σ± operators are equal since only σz and σee appear which

commute independent of the index. For the remaining terms, we have to dis-

tinguish between all five cases:

[LΓ,Lγc ][ρ] =
Γγc
16

[∑

j,k,l

. . .
]

=
Γγc
16

[ ∑

j=k=l

. . .
∑

k=l,j ̸=k

. . .+
∑

j=k,j ̸=l

. . .+
∑

j=l,j ̸=k

. . .+
∑

j ̸=k,k ̸=l,l ̸=j

. . .
]

(i) j = k = l:

Γγc
16

N∑

k=1

[
4σ

(k)
− ρσ

(k)
+ − 2σ

(k)
− ρσ

(k)
+ − 2σ

(k)
− ρσ

(k)
+ − 4σ

(k)
− ρσ

(k)
+

+ 2σ
(k)
− ρσ

(k)
+ + 2σ

(k)
− ρσ

(k)
+

]
= 0

(ii) k = l, j ̸= k:

Γγc
16

N∑

j,k=1
j ̸=k

[
4σ

(j)
− σ(k)

z ρσ(k)
z σ

(j)
+ − 2σ

(j)
− ρσ

(j)
+ − 2σ

(j)
− ρσ

(j)
+

− 4σ(k)
z σ

(j)
−︸ ︷︷ ︸

=σ
(j)
− σ

(k)
z

ρ σ
(j)
+ σ(k)

z︸ ︷︷ ︸
=σ

(k)
z σ

(j)
+

+2σ
(j)
− ρσ

(j)
+ + 2σ

(j)
− ρσ

(j)
+

]
= 0

(iii) j = k, j ̸= l:

Γγc
16

N∑

j,l=1
j ̸=l

[
4σ

(j)
− ρσ(l)

z σ
(j)
+ − 2σ

(j)
− ρ σ(j)

z σ(l)
z σ

(j)
+︸ ︷︷ ︸

=σ
(l)
z σ

(j)
+

−2σ
(j)
− σ(l)

z ρσ
(j)
+

+ 4σ
(j)
− ρ σ

(j)
+ σ(l)

z︸ ︷︷ ︸
=σ

(l)
z σ

(j)
+

−2σ
(j)
− ρ σ

(j)
+ σ(l)

z︸ ︷︷ ︸
=σ

(l)
z σ

(j)
+

+2 σ(j)
z σ(l)

z σ
(j)
−︸ ︷︷ ︸

=−σ
(l)
z σ

(j)
− =−σ

(j)
− σ

(l)
z

ρσ
(j)
+

]
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(iv) j = l, j ̸= k:

Γγc
16

N∑

j,k=1
j ̸=k

[
4σ

(j)
− σ(k)

z ρσ
(j)
+ − 2σ

(j)
− ρσ(k)

z σ
(j)
+ − 2σ

(j)
− σ(k)

z σ(j)
z︸ ︷︷ ︸

=σ
(j)
− σ

(k)
z

ρσ
(j)
+

+ 4σ(k)
z σ

(j)
−︸ ︷︷ ︸

=σ
(j)
− σ

(k)
z

ρσ
(j)
+ + 2σ

(j)
− ρ σ

(j)
+ σ(k)

z σ(j)
z︸ ︷︷ ︸

=−σ
(j)
+ σ

(k)
z

−2σ(k)
z σ

(j)
−︸ ︷︷ ︸

=σ
(j)
− σ

(k)
z

ρσ
(j)
+

]

(v) j ̸= k, k ̸= l, j ̸= l:

Γγc
16

N∑

j,k,l=1
j ̸=k,k ̸=l,j ̸=l

[
4σ

(j)
− σ(k)

z ρσ(l)
z σ

(j)
+ − 2σ

(j)
− ρσ(k)

z σ(l)
z σ

(j)
+ − 2σ

(j)
− σ(k)

z σ(l)
z ρσ

(j)
+

− 4σ(k)
z σ

(j)
−︸ ︷︷ ︸

=σ
(j)
− σ

(k)
z

ρ σ
(j)
+ σ(l)

z︸ ︷︷ ︸
=σ

(l)
z σ

(j)
+

+2σ
(j)
− ρ σ

(j)
+ σ(k)

z σ(l)
z︸ ︷︷ ︸

=σ
(k)
z σ

(l)
z σ

(j)
+

+2σ(k)
z σ(l)

z σ
(j)
−︸ ︷︷ ︸

=σ
(j)
− σ

(k)
z σ

(l)
z

ρσ
(j)
+

]
= 0

While cases (i), (ii) and (v) vanish independently, cases (iii) and (iv) add to

zero when renaming the indices k ↔ l.

• [Lγ,Lγc ] = 0:

Here it is advantageous to use the form Lγ[ρ] = γ
4

∑N
j=1 σ

(j)
z ρσ

(j)
z − ρ.

Lγ[Lγc [ρ]] =
γγc
32

N∑

j,k,l=1

σ(j)
z

(
2σ(k)

z ρσ(l)
z − ρσ(k)

z σ(l)
z − σ(k)

z σ(l)
z ρ
)
σ(j)
z

−
(
2σ(k)

z ρσ(l)
z − ρσ(k)

z σ(l)
z − σ(k)

z σ(l)
z ρ
)

=
γγc
32

N∑

j,k,l=1

2σ(j)
z σ(k)

z ρσ(l)
z σ

(j)
z − σ(j)

z ρσ(k)
z σ(l)

z σ
(j)
z − σ(j)

z σ(k)
z σ(l)

z ρσ
(j)
z

− 2σ(k)
z ρσ(l)

z + ρσ(k)
z σ(l)

z + σ(k)
z σ(l)

z ρ

Lγc [Lγ[ρ]] =
γγc
32

N∑

j,k,l=1

2σ(k)
z

(
σ(j)
z ρσ(j)

z − ρ
)
σ(l)
z −

(
σ(j)
z ρσ(j)

z − ρ
)
σ(k)
z σ(l)

z

− σ(k)
z σ(l)

z

(
σ(j)
z ρσ(j)

z − ρ
)

=
γγc
32

N∑

j,k,l=1

2σ(k)
z σ(j)

z ρσ(j)
z σ(l)

z − 2σ(k)
z ρσ(l)

z − σ(j)
z ρσ(j)

z σ(k)
z σ(l)

z

+ ρσ(k)
z σ(l)

z − σ(k)
z σ(l)

z σ
(j)
z ρσ(j)

z + σ(k)
z σ(l)

z ρ

While the terms with two σz operators are equal, for those with four σz operators

we again have to distinguish between all five cases:
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[Lγ,Lγc ][ρ] =
γγc
32

N∑

j,k,l=1

2σ(j)
z σ(k)

z ρσ(l)
z σ

(j)
z − σ(j)

z ρσ(k)
z σ(l)

z σ
(j)
z − σ(j)

z σ(k)
z σ(l)

z ρσ
(j)
z

− 2σ(k)
z σ(j)

z ρσ(j)
z σ(l)

z + σ(j)
z ρσ(j)

z σ(k)
z σ(l)

z + σ(k)
z σ(l)

z σ
(j)
z ρσ(j)

z

=
γγc
32

N∑

k=1

[
2ρ− σ(k)

z ρσ(k)
z − σ(k)

z ρσ(k)
z − 2ρ+ σ(k)

z ρσ(k)
z + σ(k)

z ρσ(k)
z

]

+
γγc
32

N∑

j,k=1
j ̸=k

[
2σ(j)

z σ(k)
z ρσ(k)

z σ(j)
z − σ(j)

z ρσ(j)
z − σ(j)

z ρσ(j)
z

− 2σ(k)
z σ(j)

z︸ ︷︷ ︸
=σ

(j)
z σ

(k)
z

ρ σ(j)
z σ(k)

z︸ ︷︷ ︸
=σ

(k)
z σ

(j)
z

+σ(j)
z ρσ(j)

z + σ(j)
z ρσ(j)

z

]

+
N∑

j,l=1
j ̸=l

[
2ρσ(l)

z σ
(j)
z − σ(j)

z ρ σ(j)
z σ(l)

z σ
(j)
z︸ ︷︷ ︸

=σ
(l)
z

−σ(l)
z ρσ

(j)
z

− 2ρ σ(j)
z σ(l)

z︸ ︷︷ ︸
=σ

(l)
z σ

(j)
z

+σ(j)
z ρσ(l)

z + σ(j)
z σ(l)

z σ
(j)
z ρσ(j)

z︸ ︷︷ ︸
=σ

(l)
z

]

+
N∑

j,k=1
j ̸=k

[
2σ(j)

z σ(k)
z ρ− σ(j)

z ρσ(k)
z − σ(j)

z σ(k)
z σ(j)

z︸ ︷︷ ︸
=σ

(k)
z

ρσ(j)
z

− 2σ(k)
z σ(j)

z ρ+ σ(j)
z ρ σ(j)

z σ(k)
z σ(j)

z︸ ︷︷ ︸
=σ

(k)
z

+σ(k)
z ρσ(j)

z

]

+
γγc
32

N∑

j,k=1
j ̸=k,k ̸=l,j ̸=l

[
2σ(j)

z σ(k)
z ρσ(l)

z σ
(j)
z − σ(j)

z ρσ(k)
z σ(l)

z σ
(j)
z − σ(j)

z σ(k)
z σ(l)

z ρσ
(j)
z

− 2σ(k)
z σ(j)

z︸ ︷︷ ︸
=σ

(j)
z σ

(k)
z

ρ σ(j)
z σ(l)

z︸ ︷︷ ︸
=σ

(l)
z σ

(j)
z

+σ(j)
z ρ σ(j)

z σ(k)
z σ(l)

z︸ ︷︷ ︸
=σ

(k)
z σ

(l)
z σ

(j)
z

+σ(k)
z σ(l)

z σ
(j)
z︸ ︷︷ ︸

=σ
(j)
z σ

(k)
z σ

(l)
z

ρσ(j)
z

]

= 0
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C.2 Time evolution

Since the individual contributions to the master equation in Eq. (C.5) (super-)commute

pairwise, as demonstrated above, the dynamics of the associated processes can be

solved separately.

Solution methods— In general, we aim to solve a master equation of the form

ρ̇ = L[ρ], governed by the Lindblad (super-)operator L, also known as the Liouvillian.

Here, we outline a generic solution strategy for a two-level system, which can be

readily extended to arbitrary ensemble sizes. Considering the state

ρ = ρee|↑⟩⟨↑| + ρeg|↑⟩⟨↓| + ρge|↓⟩⟨↑| + ρgg|↓⟩⟨↓|, (C.6)

the master equation yields four – potentially coupled – differential equations

ρ̇ee = ⟨↑| ρ̇ |↑⟩ = ⟨↑| L[ρ] |↑⟩ (C.7)

ρ̇eg = ⟨↑| ρ̇ |↓⟩ = ⟨↑| L[ρ] |↓⟩ (C.8)

ρ̇ge = ⟨↓| ρ̇ |↑⟩ = ⟨↓| L[ρ] |↑⟩ (C.9)

ρ̇gg = ⟨↓| ρ̇ |↓⟩ = ⟨↓| L[ρ] |↓⟩ , (C.10)

which can be solved using standard techniques. Alternatively, the formal solution is

given by

ρ(T ) = eLT [ρ]. (C.11)

Since the super-operator L acts linearly on the space of density matrices, it can be

represented as a matrix acting on the vectorized density matrix ρ⃗. Hence, the master

equation can be expressed as

˙⃗ρ = Lρ⃗. (C.12)

For a two level system, L is represented by a 4×4 matrix and Eq. (C.12) is explicitly

given by



ρ̇ee

ρ̇eg

ρ̇ge

ρ̇gg




=




⟨↑| L[|↑⟩⟨↑|] |↑⟩ ⟨↑| L[|↑⟩⟨↓|] |↑⟩ ⟨↑| L[|↓⟩⟨↑|] |↑⟩ ⟨↑| L[|↓⟩⟨↓|] |↑⟩
⟨↑| L[|↑⟩⟨↑|] |↓⟩ ⟨↑| L[|↑⟩⟨↓|] |↓⟩ ⟨↑| L[|↓⟩⟨↑|] |↓⟩ ⟨↑| L[|↓⟩⟨↓|] |↓⟩
⟨↓| L[|↑⟩⟨↑|] |↑⟩ ⟨↓| L[|↑⟩⟨↓|] |↑⟩ ⟨↓| L[|↓⟩⟨↑|] |↑⟩ ⟨↓| L[|↓⟩⟨↓|] |↑⟩
⟨↓| L[|↑⟩⟨↑|] |↓⟩ ⟨↓| L[|↑⟩⟨↓|] |↓⟩ ⟨↓| L[|↓⟩⟨↑|] |↓⟩ ⟨↓| L[|↓⟩⟨↓|] |↓⟩







ρee

ρeg

ρge

ρgg



.

(C.13)

More generally, for a system with Hilbert space dimension n, L is represented by a n2×
n2-matrix. In this form, the solution of Eq. (C.12) is obtained via the corresponding

matrix exponential ρ⃗(T ) = eLT ρ⃗.
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Unitary phase evolution— The unitary phase evolution described in Eq. (C.1)

results in a collective rotation by an angle ϕ = ωT around the z-axis, as described by

Eq. (3.6). This rotation acts independently and identically on all qubits and thus, it

is sufficient to solve the dynamics for a single qubit. Consequently, it is convenient

to examine the dynamics in the single-particle basis. In particular, we consider the

generic state defined in Eq. (C.6) and examine the dynamics based on the evolution

of the matrix elements. The unitary phase evolution results in (cf. Sec. 2.3.5)

ρee(ϕ) = ⟨↑| ρ(ϕ) |↑⟩ = ρee (C.14)

ρeg(ϕ) = ⟨↑| ρ(ϕ) |↓⟩ = ρege
−iϕ (C.15)

ρge(ϕ) = ⟨↓| ρ(ϕ) |↑⟩ = ρgee
iϕ (C.16)

ρgg(ϕ) = ⟨↓| ρ(ϕ) |↓⟩ = ρgg. (C.17)

Hence, only the coherences ρeg and ρge accumulate the phase ϕ, while the populations

ρee and ρgg remain unchanged.

Spontaneous decay— The dynamics associated with spontanteous decay, de-

scribed by the Lindblad operator in Eq. (C.2), is likewise independent and identical

for all qubits. The corresponding single particle master equation reads

ρ̇ =
Γ

2
(2σ−ρσ+ − σeeρ− ρσee) . (C.18)

Accordingly, the time evolution of the matrix elements is determined by

ρ̇ee = ⟨↑| ρ̇ |↑⟩ = −Γρee ⇒ ρee(t) = ρeee
−Γt (C.19)

ρ̇eg = ⟨↑| ρ̇ |↓⟩ = −Γ

2
ρeg ⇒ ρeg(t) = ρege

−Γt
2 (C.20)

ρ̇ge = ⟨↓| ρ̇ |↑⟩ = −Γ

2
ρge ⇒ ρge(t) = ρgee

−Γt
2 (C.21)

ρ̇gg = ⟨↓| ρ̇ |↓⟩ = Γρee ⇒ ρgg(t) = ρgg + ρee
[
1 − e−Γt

]
. (C.22)

As a result, for spontaneous decay, the population decays from the excited to the

ground state, while the coherences diminish with T .

Individual dephasing— Likewise, individual dephasing, described by Eq. (C.3),

acts independently and identically on all qubits. With the master equation for a

single particle

ρ̇ = −γ
2

(σeeρσgg + σggρσee) , (C.23)
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the evolution of the matrix elements results in

ρ̇ee = 0 ⇒ ρee(t) = ρee (C.24)

ρ̇eg = −γ
2
ρeg ⇒ ρeg(t) = ρege

− γt
2 (C.25)

ρ̇ge = −γ
2
ρge ⇒ ρge(t) = ρgee

− γt
2 (C.26)

ρ̇gg = 0 ⇒ ρgg(t) = ρgg. (C.27)

Thus, in the case of individual dephasing, the coherences decrease, while the popula-

tions remain unchanged.

Collective dephasing— In contrast to spontaneous decay and individual dephas-

ing, collective dephasing – as its name suggests – represents a collective decoherence

process. The master equation of the system is governed by Eq. (C.4) and thus, Dicke

states (cf. Sec. 2.3.1) represent a more convenient basis. As a consequence, we typi-

cally consider collective dephasing separately. The matrix elements evolve according

to

ρ̇S,M ;S′,M ′ = ⟨S,M | ρ̇ |S ′,M ′⟩ (C.28)

=
γc
2

(
2MM ′ −M2 − (M ′)2

)
ρS,M ;S′,M ′ (C.29)

= −γc
2

(M −M ′)2ρS,M ;S′,M ′ (C.30)

⇒ ρS,M ;S′,M ′(t) = ρS,M ;S′,M ′ exp

(
−γct

2
(M −M ′)2

)
. (C.31)

Hence, as for individual dephasing, the populations remain unchanged, while the

coherences decrease. Furthermore, no coherences between blocks with S ̸= S ′ are

created, which allows to employ the reduced Dicke basis, introduced in Sec. 2.3.1.
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D
Derivations of bounds in
local phase estimation

In this appendix, we present a collection of proofs from the literature, such as

Refs. [6, 161–170], for the lower bounds on the phase estimation uncertainty, as de-

fined in Eq. (3.13), in the context of local phase estimation theory and the funda-

mental properties of the (quantum) Fisher information. In particular, to ensure a

self-consistent understanding of the proofs, we first explicitly restate the assumptions

and results from the main text before providing the proof.

D.1 Cramér-Rao Bound (CRB)

Assuming a locally unbiased estimator at ϕ0, i.e.

ϕest|ϕ=ϕ0 =
∑

x

P (x|ϕ0)ϕest(x) = ϕ0 (D.1)

dϕest

dϕ

∣∣∣
ϕ=ϕ0

=
∑

x

dP (x|ϕ)

dϕ

∣∣∣
ϕ=ϕ0

ϕest(x) = 1, (D.2)

and standard regularity conditions

∑

x

dP (x|ϕ)

dϕ
=

d

dϕ

∑

x

P (x|ϕ) = 0, (D.3)

the CRB reads

(∆ϕ(T ))2 ≥ (∆ϕCRB(T ))2 = min
ϕest

(∆ϕ(T ))2 =
1

F [Λϕ,T [ρin], {Πx}]
, (D.4)

with Fisher information [171,172] defined by

F [Λϕ,T [ρin], {Πx}] =
∑

x

1

P (x|ϕ)

(
dP (x|ϕ)

dϕ

)2

. (D.5)

207
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Proof: The proof is based on Refs. [161, 162, 164, 165]. The product of the phase

estimation uncertainty (∆ϕ(T ))2 and the Fisher information F(ϕ) can be rewritten

as follows

(∆ϕ(T )2·F [Λϕ,T [ρin], {Πx}]

=

(∑

x

P (x|ϕ) [ϕest(x) − ϕ]2
)(∑

x

1

P (x|ϕ)

[
dP (x|ϕ)

dϕ

]2)

=

(∑

x

[√
P (x|ϕ)(ϕest(x) − ϕ)

]2
)
∑

x

[
1√

P (x|ϕ)

dP (x|ϕ)

dϕ

]2
 .

(D.6)

Application of the Cauchy-Schwarz inequality results in

(∆ϕ(T ))2 · F [Λϕ,T [ρin], {Πx}] ≥
(∑

x

[ϕest(x) − ϕ]
dP (x|ϕ)

dϕ

)2

=

(∑

x

dP (x|ϕ)

dϕ
ϕest(x) − ϕ

∑

x

dP (x|ϕ)

dϕ

)2

.

(D.7)

While the first term gives 1, since the estimator is locally unbiased and thus Eq. (D.2)

holds, the second term vanishes due to the regularity condition Eq. (D.3). Hence, the

right hand side gives unity and we obtain the CRB Eq. (D.4). □

From this derivation we conclude that saturation of the CRB is equivalent to

saturation of the Cauchy-Schwarz inequality, which is obtained for

f(ϕ)
√
P (x|ϕ)(ϕest(x) − ϕ) =

1√
P (x|ϕ)

dP (x|ϕ)

dϕ
(D.8)

with f being an arbitrary function of ϕ, independent of the measurement outcome x.

D.2 Fisher information

D.2.1 Convexity

Assuming that the state ρin(ϕ, T ) represents an arbitrary mixture

ρin(ϕ, T ) =
∑

k

pkρk(ϕ, T ), (D.9)

with weights pk ≥ 0 satisfying
∑

k pk = 1, the associated Fisher information is convex

F [ρin(ϕ, T ), {Πx}] ≤
∑

k

pk F [ρk(ϕ, T ), {Πx}], (D.10)
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where F [ρk(ϕ, T ), {Πx}] denotes the Fisher information of state ρk.

Proof: The proof is based on Refs. [163,164]. For a mixed state as defined in Eq. (D.9),

the conditional probability P (x|ϕ) is a superposition of the likelihoods Pk(x|ϕ) cor-

responding to the states ρk(ϕ, T ), since

P (x|ϕ) = Tr (ρin(ϕ, T )Πx) = Tr

(∑

k

pkρk(ϕ, T )Πx

)
(D.11)

=
∑

k

pk Tr (Πxρk(ϕ, T )) =
∑

k

pkPk(x|ϕ). (D.12)

Accordingly, the Fisher information associated with ρk is given by

F [ρk(ϕ, T ), {Πx}] =
∑

x

pk
Pk(x|ϕ)

[
dPk(x|ϕ)

dϕ

]2
. (D.13)

With this notation, the convexity of the Fisher information can be demonstrated by

by employing the Cauchy-Schwarz inequality:

[
dP (x|ϕ)

dϕ

]2
=

[∑

k

pk
dPk(x|ϕ)

dϕ

]2
=

[∑

k

√
pkPk(x|ϕ)

√
pk

Pk(x|ϕ)

dPk(x|ϕ)

dϕ

]2

≤
(∑

k

pkPk(x|ϕ)

)(∑

k

pk
Pk(x|ϕ)

[
dPk(x|ϕ)

dϕ

]2)
(D.14)

= P (x|ϕ)
∑

k

pk F [ρk(ϕ, T ), {Πx}].

Dividing by P (x|ϕ) and summation over x finally results in Eq. (D.10). □

D.2.2 Additivity

Assuming a separable time evolved state with N independent systems ρin(ϕ, T ) =⊗N
j=1 ρ

(j)
in (ϕ, T ), where ρ

(j)
in (ϕ, T ) denotes the state of the j-th system, and independent

measurements Πx =
⊗N

j=1 Π
(j)
xj , with measurement outcomes xj and POVMs Π

(j)
xj for

each system, the Fisher information is additive

F [ρin(ϕ, T ), {Πx}] =
N∑

j=1

F [ρ
(j)
in (ϕ, T ), {Π(j)

x }], (D.15)

where F [ρ
(j)
in (ϕ, T ), {Π

(j)
x }] denotes the Fisher information of the j-th system.

Proof: The proof follows Ref. [164]. For a separable time evolved state and inde-

pendent measurements, the conditional probability factorizes according to P (x|ϕ) =
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∏N
j=1 Pj(xj|ϕ), where P (j)(xj|ϕ) = Tr

(
Π

(j)
xj ρ

(j)
in (ϕ, T )

)
denotes the likelihood of the

j-th system. Hence, we obtain

F [ρin(ϕ, T ), {Πx}] =
∑

x1,...,xN

1

P (1)(x1|ϕ) · · ·P (N)(xN |ϕ)

[
dP (1)(x1|ϕ) · · ·P (N)(xN |ϕ)

dϕ

]2

=
∑

x1,...,xN

P (1)(x1|ϕ) · · ·P (N)(xN |ϕ) (D.16)

×
N∑

j,k=1

1

P (j)(xj|ϕ)P (k)(xk|ϕ)

dP (j)(xj|ϕ)

dϕ

dP (k)(xk|ϕ)

dϕ
,

where we have applied the product rule. Here, it is instructive to distinguish between

the two cases, namely j = k and j ̸= k. For j = k, the expression becomes

N∑

j=1

∑

x1,...,xN

P (1)(x1|ϕ) · · ·P (N)(xN |ϕ)
1

[P (j)(xj|ϕ)]
2

[
dP (j)(xj|ϕ)

dϕ

]2

=
N∑

j=1

∑

xj

1

P (j)(xj|ϕ)

[
dP (j)(xj|ϕ)

dϕ

]2 
 ∑

x1,...,xj−1,xj+1,...,xN

∏

k ̸=j

P (k)(xk|ϕ)


 (D.17)

=
N∑

j=1

F [ρ
(j)
in (ϕ, T ), {Π(j)

x }],

where we introduced the Fisher information of the j-th system

F [ρ
(j)
in (ϕ, T ), {Π(j)

x }] =
∑

xj

1

P (j)(xj|ϕ)

[
dP (j)(xj|ϕ)

dϕ

]2
(D.18)

and used that the last bracket in Eq. (D.17) equals 1 due to the normalization of the

conditional probabilities. Conversely, for j ̸= k, we find

∑

j ̸=k

∑

x1,...,xN

P (1)(x1|ϕ) · · ·P (N)(xN |ϕ)
N∑

j,k=1

1

P (j)(xj|ϕ)P (k)(xk|ϕ)

dP (j)(xj|ϕ)

dϕ

dP (k)(xk|ϕ)

dϕ

=
∑

j ̸=k


∑

xj

dP (j)(xj|ϕ)

dϕ



[∑

xk

dP (k)(xk|ϕ)

dϕ

]
(D.19)

×


 ∑

x1,...,xj−1,xj+1,...,xk−1,xk+1,...xN

∏

k ̸=l ̸=j

P (l)(xl|ϕ)


 .

While the last bracket equals 1, as before, the first and second bracket vanish as a

result of the regularity condition Eq. (D.3). Thus, the terms for j ̸= k vanish, yielding

Eq. (D.15). □
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D.3 Method of moments

In this appendix, we outline the linear estimation strategy based on the method of

moments, following Refs. [6, 164, 167]. Suppose an observable X with known mean

value ⟨X(ϕ, T )⟩ and variance (∆X(ϕ, t))2. Furthermore, assume n measurements of

X with results x1, . . . , xn, defining the random variable Xn = 1
n

∑n
j=1 xj which takes

the mean value of the measurement outcomes. Although the conditional probabilities

are inaccessible and thus the ML estimator cannot be employed, the central limit the-

orem nevertheless provides the probability distribution of Xn in the asymptotic limit

of many repetitions n → ∞ given by Xn
n→∞∼ N (⟨X(ϕ, T )⟩ , (∆X(ϕ, T ))2/n), rep-

resenting a Gaussian distribution with mean ⟨X(ϕ, T )⟩ and variance (∆X(ϕ, t))2/n.

However, this only works sufficiently well if ∂ϕ ⟨X(ϕ, T )⟩ ≫ ∂ϕ(∆X(ϕ, T ))2, implying

that the changes of P (x|ϕ) are primarily captured in the shift of the mean value.

Conveniently, in this asymptotic limit, the concept of the ML estimation strategy

can be applied to Xn, as we know its asymptotic probability distribution. Obviously,

the distribution of Xn is maximized for Xn = ⟨X(ϕ, T )⟩. Introducing the function

f(ϕ) = ⟨X(ϕ, T )⟩ corresponding to the signal, the estimator associated with the

method of moments ϕmom
est is thus the value of the parameter for which f(ϕmom

est ) = Xn.

By inversion of the signal, we obtain ϕmom
est = f−1(Xn). For instance, for a sinu-

soidal signal of the form f(ϕ) = ⟨X(ϕ, T )⟩ = b sin(c(ϕ− ϕ0)), the corresponding

estimator reads ϕmom
est (Xn) = 1

c
arcsin(Xn/b) + ϕ0. However, this inversion is possible

only in the regime where f(ϕ) = ⟨X(ϕ, T )⟩ is monotone. As argued before, in local

phase estimation the phase ϕ is tightly centered around the optimal working point

ϕ0, i.e. (ϕ − ϕ0)
2 ≪ 1. Hence, in this regime, the signal ⟨X(ϕ, T )⟩ can typically

be linearized around ϕ0. In particular, we approximate the signal to first order as

⟨M⟩ϕ = f(ϕ) ≃ 1
a
(ϕ−ϕ0), where the scaling factor a = (∂ϕ ⟨X(ϕ, T )⟩ |ϕ=ϕ0)

−1 reflects

the inverse slope of the signal at the optimal working point ϕ0. Consequently, the

estimator associated with the method of moments is defined as

ϕmom
est (Xn) = aXn + ϕ0 =

Xn

∂ϕ ⟨X(ϕ, T )⟩ |ϕ=ϕ0

+ ϕ0. (D.20)

In the limit n → ∞, Xn converges to the mean value Xn
n→∞→ ⟨X(ϕ, T )⟩. As a

consequence, ϕmom
est

n→∞→ ϕ and thus, the estimator ϕmom
est becomes asymptotically un-

biased. Furthermore, both sides of the condition for saturation of the CRB Eq. (D.8)

vanish, and thus, the CRB is asymptotically saturated and ϕmom
est becomes efficient.

With P (Xn|ϕ) = N (⟨X(ϕ, T )⟩ , (∆X(ϕ, T ))2/n), the Fisher information for the state
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Λϕ,T [ρin] and measurement {Πx,n}, describing the observable Xn, is given by

F [Λϕ,T [ρin], {Πx,n}] =

∫
dXn

√
2π(∆X(ϕ, T ))2

n
exp

(
n(Xn − ⟨X(ϕ, T )⟩)2

2(∆X(ϕ, T ))2

)

×
[√

n

2π(∆X(ϕ, T ))2
exp

(
−n(Xn − ⟨X(ϕ, T )⟩)2

2(∆X(ϕ, T ))2

)]2

=

∫
dXn

√
n

2π(∆X(ϕ, T ))2
exp

(
−n(Xn − ⟨X(ϕ, T )⟩)2

2(∆X(ϕ, T ))2

)

×
[
n(Xn − ⟨X(ϕ, T )⟩)2

2(∆X(ϕ, T ))2

]2 [
d ⟨X(ϕ, T )⟩

dϕ

]2

=

[
d ⟨X(ϕ, T )⟩

dϕ

]2
n

(∆X(ϕ, T ))2
, (D.21)

where we approximated the sum
∑

Xn
by an integral

∫
dXn due to the limit n≫ 1 and

furthermore used the property of Gaussian distributions
∫

dx 1√
2πσ2

x2e−x2/2σ2
= 1/σ2

to solve the integral. As a consequence, for n ≫ 1, the sensitivity of ϕmom
est at ϕ0 is

given by

(∆ϕmom(T ))2 =
(∆X(ϕ, T ))2

n (∂ϕ ⟨X(ϕ, T )⟩)2

∣∣∣∣∣
ϕ=ϕ0

(D.22)

which reproduces the well-known form. Interestingly, Eq. (D.22) can equivalently be

derived through error propagation (cf. Sec. 2.3.6). If we Taylor expand Xn around

ϕ0, we obtain

Xn ≃ ⟨X(ϕ0, T )⟩ + ∂ϕ ⟨X(ϕ, T )⟩ |ϕ=ϕ0 · (ϕmom
est − ϕ) + O

[
(ϕmom

est − ϕ)2
]

(D.23)

and thus

(Xn − ⟨X(ϕ0, T )⟩)2
(∂ϕ ⟨X(ϕ, T )⟩ |ϕ=ϕ0)

2 = (ϕmom
est − ϕ)2 . (D.24)

Identifying (Xn − ⟨X(ϕ0, T )⟩)2 = (∆X(ϕ0, T ))2/n and (ϕmom
est − ϕ)2 = (∆ϕmom(T ))2,

we reproduce Eq. (D.22). The linear estimator and associated phase estimation un-

certainty presented in the main text (cf. Sec. 3.5.1) are obtained for n = 1.

However, it is important to note that the method of moments with associated

estimator Eq. (D.20) is only optimal for Xn, i.e. when only the mean and variance of

the observable Xn are available. In general, assuming having access to the probability

distributions of each individual measurement result, it is not optimal as we show

below. With

d ⟨X(ϕ, T )⟩
dϕ

=
∑

x

x
dP (x|ϕ)

dϕ
=
∑

x

(x− ⟨X(ϕ, T )⟩)dP (x|ϕ)

dϕ

=
∑

x

√
P (x|ϕ)(x− ⟨X(ϕ, T )⟩) 1√

P (x|ϕ)

dP (x|ϕ)

dϕ
,

(D.25)
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where we effectively added zero by
∑

x ⟨X(ϕ, T )⟩ dP (x|ϕ)
dϕ

resulting from the regularity

condition Eq. (D.3), we can apply the Cauchy-Schwarz inequality

[
d ⟨X(ϕ, T )⟩

dϕ

]2
≤
[∑

x

P (x|ϕ)(x− ⟨X(ϕ, T )⟩)2
][∑

x

1

P (x|ϕ)

(
dP (x|ϕ)

dϕ

)2
]

= (∆X(ϕ, T ))2F(ϕ) (D.26)

and consequently, for a single measurement n = 1, we obtain

(∆ϕCRB(T ))2 =
1

F(Λϕ,T [ρin], {Πx})
≤ (∆X(ϕ, T ))2

(∂ϕ ⟨X(ϕ, T )⟩)2
= (∆ϕmom(T ))2, (D.27)

where {Πx} describes the measurement of the observable X.

D.4 Quantum Cramér-Rao Bound (QCRB)

For a given initial state ρin, the QCRB optimizes over all measurements {Πx} and

estimation strategies ϕest and is given by

(∆ϕ)2 ≥ (∆ϕCRB)2 ≥ (∆ϕQCRB)2 =
1

FQ[Λϕ,T [ρin]]
. (D.28)

The quantum Fisher information (QFI) is expressed as

FQ[ρ] = Tr
(
ρL2
)

(D.29)

with symmetric logarithmic derivative (SLD) L implicitly defined by

dρ

dϕ
=

1

2
(ρL+ Lρ) . (D.30)

In analogy to the phase estimation uncertainty, the quantum Fisher information es-

tablishes an upper bound to the (classical) Fisher information by optimizing over all

observables X (with associated POVMs {Πx}), such that

FQ[ρ] = max
{Πx}

F [ρ, {Πx}]. (D.31)

Proof: The proof is based on Refs. [161, 162, 164, 168, 169]. Eigendecomposition of

the state according to ρin(ϕ, T ) = Λϕ,T [ρin] =
∑

k pk |k⟩⟨k|, with ⟨j|k⟩ = δjk, pk ≥ 0

and
∑

k pk = 1, allows for the explicit evaluation of the matrix elements of the SLD.

Specifically, with

⟨j| dρin(ϕ, T )

dϕ
|k⟩ =

1

2
⟨j| ρin(ϕ, T )L+ Lρin(ϕ, T ) |k⟩ (D.32)

=
1

2
⟨j| pjL+ pkL |k⟩ =

1

2
(pj + pk) ⟨j|L |k⟩ , (D.33)
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we obtain

⟨j|L |k⟩ =
2 ⟨j| dρin(ϕ,T )

dϕ
|k⟩

pj + pk
. (D.34)

Since ρin(ϕ, T ) is hermitian, the SLD L likewise is hermitian. For a measurement

{Πx} associated to the observable X, with corresponding conditional probabilities

P (x|ϕ) = Tr(Πxρin(ϕ, T )), the (classical) Fisher information is given by

F [ρin(ϕ, T ), {Πx}] =
∑

x

1

Tr(Πxρin(ϕ, T ))

[
d Tr(Πxρin(ϕ, T ))

dϕ

]2
. (D.35)

The numerator can be rewritten as

d Tr(Πxρin(ϕ, T ))

dϕ
= Tr

(
Πx

dρin(ϕ, T )

dϕ

)

=
1

2
Tr (ΠxLρin(ϕ, T ) + Πxρin(ϕ, T )L)

=
1

2
Tr (ΠxLρin(ϕ, T ) + ρin(ϕ, T )LΠx)

=
1

2
Tr
(

ΠxLρin(ϕ, T ) + ρ†in(ϕ, T )L†Π†
x

)

=
1

2
Tr
(
ΠxLρin(ϕ, T ) + [ΠxLρin(ϕ, T )]†

)

= Re Tr (ΠxLρin(ϕ, T ))

≤ |Tr (ΠxLρin(ϕ, T )) |
= |Tr

(√
ρin(ϕ, T )

√
Πx

√
ΠxL

√
ρin(ϕ, T )

)
|,

(D.36)

where we used the cyclicity of the trace, the fact that ρin(ϕ, T ), Πx and L are hermi-

tian, and that ρin(ϕ, T ),Πx ≥ 0. In a next step, we can apply the Cauchy-Schwarz

inequality with respect to Hilbert-Schmidt matrix scalar products, i.e. |Tr
(
AB†) |2 ≤

Tr
(
A†A

)
Tr
(
B†B

)
with equality if and only if A = λB, where λ ∈ C. Hence,

[
d Tr(Πxρin(ϕ, T ))

dϕ

]2
≤ |Tr

(√
ρin(ϕ, T )

√
Πx

√
ΠxL

√
ρin(ϕ, T )

)
|2 (D.37)

≤ Tr (ρin(ϕ, T )Πx) Tr (ΠxLρin(ϕ, T )L) . (D.38)

Finally, dividing by P (x|ϕ) = Tr (ρin(ϕ, T )Πx), summation over x and using
∑

x Πx =

1, we derive

F [ρin(ϕ, T ), {Πx}] ≤
∑

x

Tr (ΠxLρin(ϕ, T )L)

= Tr
([∑

x

Πx

]
Lρin(ϕ, T )L

)

= Tr
(
ρin(ϕ, T )L2

)
= FQ[ρin(ϕ, T )],

(D.39)

which yields the QCRB Eq. (D.28). □
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D.5 Quantum Fisher information (QFI)

D.5.1 Convexity

For a mixed state ρin(ϕ, T ) =
∑

k pkρk(ϕ, T ), as defined in Eq. (D.9), with weights

pk ≥ 0 satisfying
∑

k pk = 1, the QFI is convex

FQ[ρin(ϕ, T )] ≤
∑

k

pkFQ[ρk(ϕ, T )]. (D.40)

Proof: The proof follows Ref. [164]. The convexity of the QFI follows directly from the

convexity of the classical Fisher information. For the measurement {Πx} describing

the SLD L associated with ρin(ϕ, T ), which corresponds to the optimal measurement,

we have

FQ[ρin(ϕ, T )] = F [ρin(ϕ, T ), {Πx}] ≤
∑

x

pkF [ρk(ϕ, T ), {Πx}]. (D.41)

However, the optimal measurements for the states ρk(ϕ, T ), given by {Πx,k} describing

the corresponding SLDs Lk and yielding FQ[ρk(ϕ, T )] = F [ρk(ϕ, T ), {Πx,k}], generally

do not coincide with {Πx} or L, respectively. Thus, FQ[ρk(ϕ, T )] ≥ F [ρk(ϕ, T ), {Πx}]

and we finally obtain Eq. (D.40). □

D.5.2 Additivity

If we assume N independent systems ρin(ϕ, T ) =
⊗N

j=1 ρ
(j)
in (ϕ, T ), the QFI is additive

FQ[ρin(ϕ, T )] =
N∑

j=1

FQ[ρ
(j)
in (ϕ, T )]. (D.42)

Proof: The proof is based on Ref. [164]. With the SLD L(j) of the j-th system,

differentiation of ρin(ϕ, T ) with respect to ϕ using the product rule gives

dρin(ϕ, T )

dϕ
=

d

dϕ
ρ
(1)
in (ϕ, T ) ⊗ . . .⊗ ρ

(N)
in (ϕ, T )

=
dρ

(1)
in (ϕ, T )

dϕ
⊗ . . .⊗ ρ

(N)
in (ϕ, T )

+ ρ
(1)
in (ϕ, T ) ⊗ dρ

(2)
in (ϕ, T )

dϕ
⊗ . . .⊗ ρ

(N)
in (ϕ, T ) + . . .

=
1

2

[
L(1)ρ

(1)
in (ϕ, T ) + ρ

(1)
in (ϕ, T )L(1)

]
⊗ . . .⊗ ρ

(N)
in (ϕ, T ) + . . .

=
1

2

[
L(1)ρin(ϕ, T ) + ρin(ϕ, T )L(1)

]
+ . . .

=
1

2

[
N∑

j=1

L(j)ρin(ϕ, T ) + ρin(ϕ, T )
N∑

j=1

L(j)

]

(D.43)



216 Appendix D. Derivations of bounds in local phase estimation

and thus yields L =
∑N

j=1 L
(j). Hence, the QFI becomes

FQ[ρin(ϕ, T )] = Tr
(
ρin(ϕ, T )L2

)

=
N∑

j=1

Tr
(
ρ
(j)
in (ϕ, T )(L(j))2

)
+

N∑

j,k=1
j ̸=k

Tr
(
ρ
(j)
in (ϕ, T )L(j)L(k)

)

=
N∑

j=1

FQ[ρ
(j)
in (ϕ, T )

(D.44)

and we obtain Eq. (D.42). The mixed terms j ̸= k vanish, since

N∑

j,k=1
j ̸=k

Tr
(
ρ
(j)
in (ϕ, T )L(j)L(k)

)
=

N∑

j,k=1
j ̸=k

Tr
(
ρ
(j)
in (ϕ, T )L(j)

)
Tr
(
L(k)

)
, (D.45)

and

Tr
(
ρ
(j)
in (ϕ, T )L(j)

)
=

1

2
Tr
(
ρ
(j)
in (ϕ, T )L(j) + L(j)ρ

(j)
in (ϕ, T )

)

= Tr

(
dρ

(j)
in (ϕ, T )

dϕ

)
=

d

dϕ
Tr
(
ρ
(j)
in (ϕ, T )

)
= 0

(D.46)

due to normalization of the states ρ
(j)
in (ϕ, T ). □

D.5.3 Unitary phase evolution

Assuming a general unitary phase evolution with generator G according to

ρin(ϕ) = e−iϕGρin e
iϕG (D.47)

and corresponding von Neumann equation

dρ

dϕ
= −i[G, ρ], (D.48)

the quantum Fisher information (QFI) can be expressed as

FQ[ρin(ϕ, T )] = 2
∑

j,k
pj+pk>0

(pj − pk)2

pj + pk
| ⟨j|G |k⟩ |2, (D.49)

where pk and |k⟩ are the eigenvalues and eigenstates of ρin(ϕ, T ), respectively. The

associated optimal measurement is given by

L = 2i
∑

j,k
pj+pk>0

pj − pk
pj + pk

|j⟩⟨j|G |k⟩⟨k| . (D.50)
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Proof: The proof is based on Refs. [164, 168]. In the eigendecomposition ρin(ϕ, T ) =∑
k pk |k⟩⟨k| with eigenvalues pk > 0, satisfying

∑
k pk = 1, and eigenstates |k⟩,

respectively, we derive

FQ[ρin(ϕ, T )] = Tr
(
ρin(ϕ, T )L2

)
=
∑

k

pk ⟨k|L2 |k⟩

=
∑

j,k

pk ⟨k|L |j⟩⟨j|L |k⟩

=
∑

j,k

pk| ⟨j|L |k⟩ |2

=
∑

j,k
pj+pk>0

pj + pk
2

| ⟨j|L |k⟩ |2,

(D.51)

where we effectively reordered the weights pk in the last step. Furthermore, with

Eq. (D.34) and Eq. (D.48), we obtain

FQ[ρin(ϕ, T )] =
∑

j,k
pj+pk>0

2

pj + pk
| ⟨j| dρin(ϕ, T )

dϕ
|k⟩ |2

=
∑

j,k
pj+pk>0

2

pj + pk
|(−i) ⟨j| [G, ρ] |k⟩ |2

=
∑

j,k
pj+pk>0

2

pj + pk
|(pk − pj) ⟨j|G |k⟩ |2

= 2
∑

j,k
pj+pk>0

(pk − pj)
2

pj + pk
| ⟨j|G |k⟩ |2,

(D.52)

which yields Eq. (D.49). Similarly, the matrix elements of the SLD are given by

⟨j|L |k⟩ =
2 ⟨j| dρin(ϕ,T )

dϕ
|k⟩

pj + pk
= −2i

(pk − pj)

pj + pk
⟨j|G |k⟩ , (D.53)

resulting in Eq. (D.50). □

D.5.4 Pure states

For pure states ρin(ϕ, T ) = |ψϕ⟩⟨ψϕ| and a unitary phase evolution according to

Eq. (D.48), the QFI simplifies to

FQ[ρin(ϕ, T )] = FQ[|ψϕ⟩⟨ψϕ|] = 4(∆G)2 (D.54)
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and thus is given by four times the variance of the generator G.

Proof: The proof follows Ref. [164]. For a pure state, we can express the derivative

of the state with respect to the phase as

dρin(ϕ, T )

dϕ
= |ψϕ⟩ ˙⟨ψϕ| + ˙|ψϕ⟩⟨ψϕ| =

1

2
[|ψϕ⟩⟨ψϕ|L+ L |ψϕ⟩⟨ψϕ|] . (D.55)

Using that the mixed terms vanish as a consequence of the normalization of the state,

i.e.

⟨ψϕ|ψ̇ϕ⟩ + ⟨ψ̇ϕ|ψϕ⟩ =
d

dϕ
⟨ψϕ|ψϕ⟩ =

d

dϕ
1 = 0, (D.56)

the SLD reads

L = 2
[

˙|ψϕ⟩⟨ψϕ| + |ψϕ⟩ ˙⟨ψϕ|
]
. (D.57)

The corresponding QFI is given by

FQ[|ψϕ⟩⟨ψϕ|] = Tr
(
|ψϕ⟩⟨ψϕ|L2

)

= 4 Tr
(
|ψϕ⟩⟨ψϕ|

[
˙|ψϕ⟩⟨ψϕ|ψ̇ϕ⟩⟨ψϕ| + ˙|ψϕ⟩⟨ψϕ|ψϕ⟩ ˙⟨ψϕ|

+ |ψϕ⟩⟨ψ̇ϕ|ψϕ⟩ ˙⟨ψϕ| + |ψϕ⟩⟨ψ̇ϕ|ψ̇ϕ⟩⟨ψϕ|
])

= 4
(
⟨ψϕ|ψ̇ϕ⟩2 + |⟨ψϕ|ψ̇ϕ⟩|2 + ⟨ψ̇ϕ|ψϕ⟩2 + ⟨ψ̇ϕ|ψ̇ϕ⟩

)

= 4
(
⟨ψ̇ϕ|ψ̇ϕ⟩ − |⟨ψϕ|ψ̇ϕ⟩|2

)
,

(D.58)

where we used the square of Eq. (D.56) in the last step. For a unitary dynamics

according to Eq. (D.48), we obtain ˙|ψϕ⟩ = −iG |ψϕ⟩ and thus

L = −2i (G |ψϕ⟩⟨ψϕ| − |ψϕ⟩⟨ψϕ|G) (D.59)

FQ[|ψϕ⟩⟨ψϕ|] = 4
(
⟨ψϕ|G2|ψϕ⟩ − |⟨ψϕ|G|ψϕ⟩|2

)
= 4(∆G)2, (D.60)

which proves Eq. (D.54). □

Furthermore, since the QFI is convex and thus mixing states can only decrease

the QFI, for an arbitrary state ρin(ϕ, T ) and unitary dynamics with generator G, as

described by Eq. (3.44), the QFI is bounded by

FQ[ρin(ϕ, T )] ≤ 4(∆G)2, (D.61)

with equality holding for pure states ρin(ϕ, T ).

Proof: Here, we present a phenomenological proof, while a more comprehensive proof
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is provided in Ref. [164]. For pk ≥ 0, we have (pj − pk)2 ≤ (pj + pk)2. By reordering

the weights pk again, we obtain

FQ[ρin(ϕ, T )] = 2
∑

j,k
pj+pk>0

(pk − pj)
2

pj + pk
| ⟨j|G |k⟩ |2

≤ 2
∑

j,k
pj+pk>0

(pj + pk)| ⟨j|G |k⟩ |2 = 4
∑

j,k

pk| ⟨j|G |k⟩ |2

= 4
∑

k

pk| ⟨k|G2 |k⟩ |2 = 4
〈
G2
〉
.

(D.62)

Hence, Eq. (D.61) holds when ⟨G⟩ = 0. However, ⟨G⟩ ̸= 0 essentially represents a

constant offset and thus, ⟨G⟩ = 0 can be ensured by shifting the ‘energy’ according

to G 7→ G− ⟨G⟩. □

D.5.5 Decoherence-free scenario

In the ideal scenario, where no decoherence processes are present and thus the dy-

namics is entirely determined by the unitary evolution described by Eq. (D.47), the

optimal input probe state is given by

|ψin⟩ =
1√
2

[
|gmin⟩ + eiθ |gmax⟩

]
(D.63)

with eigenvectors |gmin⟩ and |gmax⟩ corresponding to the minimal and maximal eigen-

value gmin and gmax of G, respectively, and θ is an arbitrary phase. The associated

QFI reads

FQ[|ψin⟩] = (gmax − gmin)2. (D.64)

Proof: The proof is based on Ref. [164]. As demonstrated in the previous sections,

the Fisher information and quantum Fisher information (QFI) are convex and conse-

quently, mixing states cannot improve the sensitivity. Therefore, we restrict to pure

states ρin = |ψin⟩⟨ψin| as they are optimal if no decoherence is present and potentially

would result in a mixed state. Furthermore, we have seen that the QFI of a pure

state equals four times the variance of the generator G (cf. Eq. (D.54)). We thus

only have to find the state for which the variance (∆G)2 is maximized.

To start with, we decompose the generator G in its eigenbasis, expressed as G =∑
k gk |gk⟩⟨gk|. For simplicity, we assume g := gmax = −gmin ≥ 0 ensuring that

|gk| ≤ g. This can always be achieved by a shift of the generator according to



220 Appendix D. Derivations of bounds in local phase estimation

G 7→ G− (gmin + gmax)/2, where the variance is invariant under such effective energy

shifts. For an arbitrary state |ψin⟩ =
∑

k pk |gk⟩, the QFI is given by

FQ[|ψin⟩] = 4(∆G)2 = 4
〈
G2
〉
− 4 ⟨G⟩2

≤ 4
〈
G2
〉

= 4 ⟨ψin|G2 |ψin⟩ = 4
∑

k

|pk|2g2k

≤ 4
∑

k

|pk|2g2 = 4g2
∑

k

|pk|2 = 4g2.

(D.65)

Equality of ⟨G2⟩ ≤ g2 is only achieved for three states, namely |ψin⟩ = |gmax⟩, |ψin⟩ =

|gmin⟩ and the state in Eq. (D.63). While the states |ψin⟩ = |gmax⟩ and |ψin⟩ = |gmin⟩
exhibit ⟨G⟩2 = g2, resulting in a vanishing variance (∆G)2, the state in Eq. (D.63)

features ⟨G⟩2 = 0 and thus saturates Eq. (D.65). □



E
Calculations for protocols in
local frequency metrology

E.1 Mapping the decoherence processes to the mea-

surement

Separating the unitary phase evolution ρ(ϕ) = Λϕ[ρ] = Λϕ,T=0[ρ] = R†
z(ϕ)ρRz(ϕ)

from the full dynamics Λϕ,T , described by Eq. (C.5), the effective time evolution

ΛT = Λϕ=0,T is governed by the master equation

ρ̇ = LT [ρ] = LΓ[ρ] + Lγ[ρ] + Lγc [ρ] (E.1)

with Lindblad operators LΓ, Lγ and Lγc defined in Eq. (C.2), Eq. (C.3) and Eq. (C.4),

respectively. In this section we aim to map the decoherence processes onto the mea-

surement X, thereby enabling a general treatment for a given measurement. In

particular, we consider projective spin measurements (see App. E.1.1) and parity

measurements (see App. E.1.2). This approach is particularly convenient for projec-

tive spin measurements, as both coherent spin states (CSS) and spin-squeezed states

(SSS) utilize the same measurement scheme. Furthermore, it facilitates the deriva-

tion of lower bounds for specific measurements, following Ref. [149]. Interestingly, the

bounds we derive within this approach already represent the ultimate lower bound,

as they coincide with Eq. (3.65).

We can map the decoherence processes from the initial state to the observable X

by exploiting the cyclicity of the trace

∂t ⟨X(ϕ, T )⟩ = Tr (Xρ̇(ϕ)) = Tr (XLT [ρ(ϕ)]) = Tr
(
L†

T [X]ρ(ϕ)
)

(E.2)

221
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with adjoint Lindblad (super-)operators

L†
T [X] = L†

Γ[X] + L†
γ[X] + L†

γc [X] (E.3)

L†
Γ[X] =

N∑

k=1

L†(k)
Γ [X] =

Γ

2

N∑

k=1

2σ
(k)
+ Xσ

(k)
− − σ(k)

ee X −Xσ(k)
ee (E.4)

L†
γ[X] =

N∑

k=1

L†(k)
γ [X] = −γ

2

N∑

k=1

σ(k)
ee Xσ

(k)
gg + σ(k)

gg Xσ
(k)
ee (E.5)

L†
γc [X] =

γc
2

(
2SzXSz −XS2

z − S2
zX
)
. (E.6)

For both projective spin measurements and parity measurements, the method of

moments, defined in Eq. (3.32), is employed to determine the phase estimation un-

certainty. Hence, we have to solve the differential equations for X and X2.

E.1.1 Projective spin measurement

Here, we examine projective spin measurments. Without loss of generality, we assume

a measurement of Sy. It is convenient to consider the Lindblad equations for the three

decoherence processes separately.

L†
Γ[Sy] =

Γ

2

N∑

k=1

2σ
(k)
+ Syσ

(k)
− − σ(k)

ee Sy − Syσ
(k)
ee

=
Γ

4

N∑

j,k=1

(
2σ

(k)
+ σ(j)

y σ
(k)
− − σ(k)

ee σ
(j)
y − σ(j)

y σ(k)
ee

) (E.7)

For j ̸= k, the Pauli operators with different indices commute and thus the term

vanishes since σ+σ− = σee. Furthermore, we have σ+σy = −i(σ+σ+ − σ+σ−) = iσee,

σeeσ− = 0, σeeσy = −i(σeeσ+ − σeeσ−) = −iσ+ and σyσee = iσ−, and thus

L†
Γ[Sy] =

Γ

4

N∑

k=1

(
2σ

(k)
+ σ(k)

y σ
(k)
− − σ(k)

ee σ
(k)
y − σ(k)

y σ(k)
ee

)

= −Γ

4

N∑

k=1

(−i)
(
σ
(k)
+ − σ

(k)
−

)
= −Γ

4

N∑

k=1

σ(k)
y = −Γ

2
Sy.

(E.8)
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Similarly, we obtain

L†
γ[Sy] = −γ

2

N∑

k=1

(
σ(k)
ee Syσ

(k)
gg + σ(k)

gg Syσ
(k)
ee

)

= −γ
4

N∑

j,k=1

(
σ(k)
ee σ

(j)
y σ(k)

gg + σ(k)
gg σ

(j)
y σ(k)

ee

)

= −γ
4

N∑

k=1

(
σ(k)
ee σ

(k)
y σ(k)

gg + σ(k)
gg σ

(k)
y σ(k)

ee

)

= −γ
4

N∑

k=1

σ(k)
y = −γ

2
Sy.

(E.9)

In contrast, for collective dephasing, we employ the commutation relations of the spin

operators

SySz = SzSy + [Sy, Sz] = SzSy + iSx

SyS
2
z = SzSySz + iSxSz

= Sz (SzSy + iSx) + iSzSx + i[Sx, Sz]

= S2
zSy + 2iSzSx + Sy,

(E.10)

yielding

L†
γc [Sy] =

γc
2

(
2SzSySz − SyS

2
z − S2

zSy

)
= −γc

2
Sy. (E.11)

In summary, the differential equation for the first moment is given by

∂t ⟨Sy(ϕ, t)⟩ = Tr
(
L†

T [Sy]ρ(ϕ)
)

= Tr
(
L†

Γ[Sy]ρ(ϕ)
)

+ Tr
(
L†

γ[Sy]ρ(ϕ)
)

+ Tr
(
L†

γc [Sy]ρ(ϕ)
)

= −Γ + γ + γc
2

⟨Sy(ϕ, t)⟩

(E.12)

with solution

⟨Sy(ϕ, T )⟩ = e−
Γ+γ+γc

2
T ⟨Sy(ϕ)⟩ . (E.13)

For the second moment, we proceed analogously.

L†
Γ[S2

y ] =
1

4

N∑

j,k,l=1

L†(k)
Γ [σ(j)

y σ(l)
y ]

=
1

4

∑

k

L†(k)
Γ [σ(k)

y σ(k)
y︸ ︷︷ ︸

=1(k)

] +
1

4

∑

k ̸=j

L†(k)
Γ [σ(j)

y σ(k)
y ] +

1

4

∑

k ̸=l

L†(k)
Γ [σ(k)

y σ(l)
y ]

+
1

4

N∑

j ̸=k,k ̸=l,j ̸=l

L†(k)
Γ [σ(j)

y σ(l)
y ]

(E.14)
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The first and last term vanish, since the corresponding operators commute with the

terms of the Lindblad (super-)operator. The second and third expression are identical

apart from a relabeling of the indices j ↔ l. Hence,

LΓ[S2
y ] =

1

2

∑

k ̸=j

L†(k)
Γ [σ(k)

y σ(j)
y ]

=
1

2

∑

k ̸=j

σ(j)
y L†(k)

Γ [σ(k)
y ]

︸ ︷︷ ︸
=−Γ

2
σ
(k)
y

= −Γ

4

∑

k ̸=j

σ(j)
y σ(k)

y

(E.15)

Explicitly expanding S2
y according to

S2
y =

1

4

∑

j,k

σ(j)
y σ(k)

y =
1

4

∑

k

σ(k)
y σ(k)

y︸ ︷︷ ︸
=1(k)

+
1

4

∑

j ̸=k

σ(j)
y σ(k)

y , (E.16)

which is equivalent to

1

4

∑

j ̸=k

σ(j)
y σ(k)

y = S2
y −

N

4
1, (E.17)

results in

L†
Γ[S2

y ] = −ΓS2
y +

N

4
Γ1. (E.18)

For individual dephasing, the evaluation follows the same arguments, leading to

L†
γ[S2

y ] = −γS2
y +

N

4
γ1. (E.19)

For collective dephasing, again the commutation relations in Eq. (E.10) can be applied

to obtain

L†
γc [S

2
y ] =

γc
2

(
2SzS

2
ySz − S2

yS
2
z − S2

zS
2
y

)

=
γc
2

(
2SzSy(SzSy + iSx) − Sy(S

2
zSy + 2iSzSx + Sy) − S2

zS
2
y

)

=
γc
2

(2SzSySzSy + 2iSzSySx − SyS
2
zSy

− 2iSySzSx − S2
y − S2

zS
2
y)

=
γc
2

(2Sz(SzSy + iSx)Sy + 2iSzSySx − (S2
zSy + 2iSzSx + Sy)Sy

− 2i(SzSy + iSx)Sx − S2
y − S2

zS
2
y)

=
γc
2

(2S2
zS

2
y + 2iSzSxSy + 2iSzSySx − S2

zS
2
y − 2iSzSxSy − S2

y

− 2iSzSySx + 2S2
x − S2

y − S2
zS

2
y)

= γc(S
2
x − S2

y).

(E.20)
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Consequently, the differential equation for the second moment is given by

∂t
〈
S2
y(ϕ, t)

〉
= Tr

(
L†

T [S2
y ]ρ(ϕ)

)

= Tr
(
L†

Γ[S2
y ]ρ(ϕ)

)
+ Tr

(
L†

γ[S2
y ]ρ(ϕ)

)
+ Tr

(
L†

γc [S
2
y ]ρ(ϕ)

)

= −(Γ + γ + γc)
〈
S2
y(ϕ, t)

〉
+ γc

〈
S2
x(ϕ, t)

〉
+
N

4
(Γ + γ).

(E.21)

Unfortunately, it is coupled to the differential equation for S2
x. Similar to the calcula-

tions for the moments of Sy, we determine the differential equations for the moments

of Sx.

L†
Γ[Sx] =

Γ

4

N∑

j,k=1

2σ
(k)
+ σ(j)

x σ
(k)
− − σ(k)

ee σ
(j)
x − σ(j)

x σ(k)
ee

= −Γ

4

N∑

k=1

σ(k)
y = −Γ

2
Sy,

(E.22)

where we used σ+σx = (σ+σ+ + σ+σ−) = σee, σeeσx = (σeeσ+ + σeeσ−) = σ+ and

σxσee = σ−. Similarly, we obtain

L†
γ[Sx] = −γ

4

N∑

j,k=1

(
σ(k)
ee σ

(j)
x σ(k)

gg + σ(k)
gg σ

(j)
x σ(k)

ee

)

= −γ
4

N∑

k=1

σ(i)
x = −γ

2
Sx.

(E.23)

With the commutation relations

SxSz = SzSx + [Sx, Sz] = SzSx − iSy

SxS
2
z = SzSxSz − iSySz

= Sz (SzSx − iSy) − iSzSy − i[Sy, Sz]

= S2
zSx − 2iSzSy + Sx,

(E.24)
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the Lindblad equation for collective dephasing is determined by

L†
γc [S

2
x] =

γc
2

(
2SzS

2
xSz − S2

xS
2
z − S2

zS
2
x

)

=
γc
2

(
2SzSx(SzSx − iSy) − Sx(S2

zSx − 2iSzSy + Sx) − S2
zS

2
x

)

=
γc
2

(2SzSxSzSx − 2iSzSxSy − SxS
2
zSx

+ 2iSxSzSy − S2
x − S2

zS
2
y)

=
γc
2

(2Sz(SzSx − iSy)Sx − 2iSzSxSy − (S2
zSx − 2iSzSy + Sx)Sx

+ 2i(SzSx − iSy)Sy − S2
x − S2

zS
2
x)

=
γc
2

(2S2
zS

2
x − 2iSzSySx − 2iSzSxSy − S2

zS
2
x + 2iSzSySx − S2

x

+ 2iSzSxSy + 2S2
y − S2

x − S2
zS

2
x)

= γc(S
2
y − S2

x).

(E.25)

Therefore, we obtain

∂t
〈
S2
x(ϕ, t)

〉
= −(Γ + γ + γc)

〈
S2
x(ϕ, t)

〉
+ γc

〈
S2
y(ϕ, t)

〉
+
N

4
(Γ + γ). (E.26)

This coupled linear differential equations of first order are solved by

〈
S2
x(ϕ, T )

〉
=
N

4

[
1 − e−(Γ+γ)T

]
+ e−(Γ+γ+γc)T

[
cosh(γcT )

〈
S2
x(ϕ)

〉
+ sinh(γcT )

〈
S2
y(ϕ)

〉]

(E.27)
〈
S2
y(ϕ, T )

〉
=
N

4

[
1 − e−(Γ+γ)T

]
+ e−(Γ+γ+γc)T

[
sinh(γcT )

〈
S2
x(ϕ)

〉
+ cosh(γcT )

〈
S2
y((ϕ)

〉]
.

(E.28)

To determine the phase estimation uncertainty, we additionally have to include the

unitary phase evolution according to

X(ϕ) = R†
z(ϕ)XRz(ϕ), (E.29)

which directly follows from Eq. (3.6), resulting in

Sx(ϕ) = R†
z(ϕ)SxRz(ϕ) = Sx cos(ϕ) − Sy sin(ϕ) (E.30)

Sy(ϕ) = R†
z(ϕ)SyRz(ϕ) = Sy cos(ϕ) + Sx sin(ϕ) (E.31)

S2
x(ϕ) = R†

z(ϕ)S2
xRz(ϕ) = S2

x cos2(ϕ) − (SxSy + SySx) sin(ϕ) cos(ϕ) + S2
y sin2(ϕ)

(E.32)

S2
y(ϕ) = R†

z(ϕ)S2
yRz(ϕ) = S2

y cos2(ϕ) + (SxSy + SySx) sin(ϕ) cos(ϕ) + S2
x sin2(ϕ).

(E.33)

As a consequence, the slope of the signal reads

∂ϕ ⟨Sy(ϕ, T )⟩ = e−
Γ+γ+γc

2
T [−⟨Sy⟩ sin(ϕ) + ⟨Sx⟩ cos(ϕ)] , (E.34)
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where the expectation values ⟨·⟩ are evaluated with respect to the initial state ρin, i.e.

⟨A⟩ = Tr(Aρin) for arbitrary operators A. Finally, using that the optimal working

point is ϕ0 = 0, which is the case for CSS and SSS and can be ensured otherwise by

a shift of the signal, the phase estimation uncertainty is given by

(∆ϕ(T ))2 =

〈
S2
y(ϕ, T )

〉
− ⟨Sy(ϕ, T )⟩2

(∂ϕ
〈
S2
y(ϕ, T )

〉
)2

∣∣∣∣∣
ϕ=ϕ0

=
1

e−(Γ+γ+γc)T ⟨Sx⟩2
(N

4

[
1 − e−(Γ+γ)T

]

+ e−(Γ+γ+γc)T
[
sinh(γcT )

〈
S2
x

〉
+ cosh(γcT )

〈
S2
y

〉]
− e−(Γ+γ+γc)T ⟨Sy⟩2

)

=
N
4
eγcT

[
e(Γ+γ)T − 1

]
+ sinh(γcT ) ⟨S2

x⟩ + cosh(γcT )
〈
S2
y

〉
− ⟨Sy⟩2

⟨Sx⟩2
. (E.35)

Coherent spin states (CSS)— In principle, any coherent spin state (CSS) can

be considered. However, since the phase evolution corresponds to a rotation around

the z-axis and we measure the spin along the y-direction, the CSS has to be polarized

in a direction mutually orthogonal to both axes. The CSS polarized in x-direction

(|↑⟩ + |↓⟩)⊗N /
√

2
N

has expectation values (cf. Sec. 2.3.7)

⟨Sx⟩ =
N

2
, ⟨Sy⟩ = ⟨SxSy⟩ = ⟨SySx⟩ = 0,

〈
S2
x

〉
=
N2

4
,

〈
S2
y

〉
=
N

4
. (E.36)

Thus, the phase estimation uncertainty reads

(∆ϕ(T ))2 =
N
4
eγcT

[
e(Γ+γ)T − 1

]
+ sinh(γcT )N

2

4
+ cosh(γcT )N

4
N2

4

=
eγcT

[
e(Γ+γ)T − 1

]
+N sinh(γcT ) + cosh(γcT )

N
.

(E.37)

To derive the results of the main text, it is instructive to consider collective dephasing

separately:

(∆ϕ(T ))2|γc=0 =
e(Γ+γ)T

N
(E.38)

(∆ϕ(T ))2|Γ=γ=0 =
N sinh(γcT ) + cosh(γcT )

N
=

(N + 1)eγcT − (N − 1)e−γcT

2N
. (E.39)

The frequency estimation uncertainty for spontaneous decay and individual dephasing

is given by

(∆ω(T ))2|γc=0 =
e(Γ+γ)T

NτT
. (E.40)
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Minimization with respect to the interrogation time T by

0
!

= ∂T (∆ω(T ))2|γc=0 =
e(Γ+γ)T

Nτ

(Γ + γ)T − 1

T 2
(E.41)

results in

TCSS =
1

Γ + γ
(E.42)

(∆ωCSS)2 =
e(Γ + γ)

τN
. (E.43)

As argued in the main text, this result represents the standard quantum limit (SQL).

Spin-squeezed states (SSS)— Spin-squeezed states (SSS) generated by one-axis-

twisting (OAT) have properties [125]

⟨Sx⟩ =
N

2
cosN−1

(µ
2

)
(E.44)

⟨Sy⟩ = 0 (E.45)

〈
S2
x

〉
=
N

4

[
N − 1

2
(N − 1)A

]
(E.46)

〈
S2
y

〉
=
N

4

{
1 +

1

4
(N − 1)

[
A−

√
A2 +B2

]}
(E.47)

A = 1 − cosN−2(µ) (E.48)

B = 4 sin
(µ

2

)
cosN−2

(µ
2

)
(E.49)

where the twisting strength µ has to be optimized for each interrogation time T in

order to minimize the phase estimation uncertainty described by Eq. (E.35).

Lower bound— A lower bound on the frequency estimation uncertainty con-

sidering spontaneous decay and individual dephasing can be determined following

Ref. [149]. According to Eq. (E.35), the frequency estimation uncertainty reads

(∆ω(T ))2 =
N
4

[
e(Γ+γ)T − 1

]
+ (∆Sy)

2

Tτ ⟨Sx⟩2
. (E.50)

Minimization with respect to the interrogation time T leads to the equation

N

4
(Γ + γ)e(Γ+γ)TminTmin =

N

4

[
e(Γ+γ)Tmin − 1

]
+ (∆Sy)

2 (E.51)

and thus we obtain

(∆ωmin)2 =
(Γ + γ)e(Γ+γ)Tmin

τN
(

⟨Sx⟩
N/2

)2 . (E.52)
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Finally, using e(Γ+γ)Tmin ≥ 1 and ⟨Sx⟩ ≤ N/2, we find the lower bound Eq. (3.65),

namely

(∆ωasym)2 ≥ Γ + γ

Nτ
, (E.53)

which gives a maximal improvement over the SQL of

(∆ωasym)2

(∆ωSQL)2
≥ 1

e
. (E.54)

For Γ = 0, this reproduces the result obtained in Ref. [149].

E.1.2 Parity measurement

This approach can analogously be applied to the parity measurement Π = (−1)Nσ⊗N
x .

In particular, we focus on spontaneous decay and individual dephasing, since no

explicit expressions can be derived for collective dephasing. With σ+σx = σee, σeeσ− =

0, σeeσx = σ+ and thus σxσee = σ−, we obtain

L†
Γ[Π] = (−1)N

Γ

2

N∑

k=1

2σ
(k)
+ σ⊗N

x σ
(k)
− − σ(k)

ee σ
⊗N
x − σ⊗N

x σ(k)
ee

= (−1)N
Γ

2

N∑

k=1

−σ⊗k−1
x ⊗ σ

(k)
+ ⊗ σ⊗N−k

x − σ⊗k−1
x ⊗ σ

(k)
− ⊗ σ⊗N−k

x

= −(−1)N
ΓN

2
σ⊗N
x = −ΓN

2
Π

(E.55)

and similarly

L†
γ[Π] = −(−1)N

γ

2

N∑

k=1

σ(k)
ee σ

⊗N
x σ(k)

gg + σ(k)
gg σ

⊗N
x σ(k)

ee

= −(−1)N
γ

2

N∑

k=1

σ⊗k−1
x ⊗ σ

(k)
+ ⊗ σ⊗N−k

x + σ⊗k−1
x ⊗ σ

(k)
− ⊗ σ⊗N−k

x

= −(−1)N
γN

2
σ⊗N
x = −γN

2
Π,

(E.56)

where we used σ+σgg = σ+, σggσx = σ− and σ−σee = σ−. Therefore, for the first

moment we obtain the differential equation

∂t ⟨Π(ϕ, T )⟩ = Tr
(
L†

Γ[Π]ρ(ϕ)
)

+ Tr
(
L†

γ[Π]ρ(ϕ)
)

= −Γ + γ

2
N ⟨Π(ϕ, T )⟩ (E.57)

with solution

⟨Π(ϕ, T )⟩ = e−
Γ+γ
2

Nt ⟨Π(ϕ)⟩ . (E.58)
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The unitary phase evolution is given by

R†
z(ϕ)ΠRz(ϕ) = (−1)N (cos(ϕ)σx − sin(ϕ)σy)

⊗N . (E.59)

Hence,

⟨Π(ϕ, T )⟩ = (−1)Ne−
Γ+γ
2

NT
〈

(cos(ϕ)σx − sin(ϕ)σy)
⊗N
〉
. (E.60)

Since Π2 = 1, the second moment is trivially given by ⟨Π2(ϕ, T )⟩ = 1. Consequently,

the phase estimation uncertainty reads

(∆ϕ(T ))2 =
⟨Π2(ϕ, T )⟩ − ⟨Π(ϕ, T )⟩2

(∂ϕ ⟨Π(ϕ, T )⟩)2
∣∣∣
ϕ=ϕ0

=
1 − e−(Γ+γ)Nt ⟨Π(ϕ)⟩2
e−(Γ+γ)Nt(∂ϕ ⟨Π(ϕ)⟩)2

∣∣∣
ϕ=ϕ0

=
e(Γ+γ)Nt − ⟨Π(ϕ)⟩2

(∂ϕ ⟨Π(ϕ)⟩ϕ)2

∣∣∣
ϕ=ϕ0

.

(E.61)

GHZ state— For the maximally entangled GHZ state [121]

|GHZ⟩ =
1√
2

(
|↓⟩⊗N + |↑⟩⊗N

)
, (E.62)

the expectation value of the parity operator is given by

⟨Π(ϕ)⟩ = (−1)N ⟨GHZ| (cos(ϕ)σx − sin(ϕ)σy)
⊗N |GHZ⟩

= (−1)N
1

2

[
⟨↑| cos(ϕ)σx − sin(ϕ)σy |↑⟩N + ⟨↑| cos(ϕ)σx − sin(ϕ)σy |↓⟩N

+ ⟨↓| cos(ϕ)σx − sin(ϕ)σy |↑⟩N + ⟨↓| cos(ϕ)σx − sin(ϕ)σy |↓⟩N
]

= (−1)N
1

2

[
(cos(ϕ) + i sin(ϕ))N + (cos(ϕ) − i sin(ϕ))N

]
(E.63)

= (−1)N
1

2

[
eiNϕ + e−iNϕ

]

= (−1)N cos(Nϕ),

where we used σx |↑⟩ = |↓⟩, σx |↓⟩ = |↑⟩, σy |↑⟩ = i |↓⟩ and σy |↓⟩ = −i |↑⟩, and

accordingly

∂ϕ ⟨Π(ϕ)⟩ = (−1)N+1N sin(Nϕ). (E.64)

Consequently, the phase estimation uncertainty is determined by

(∆ϕ(ϕ, T ))2 =
e(Γ+γ)NT − ⟨Π(ϕ)⟩2

(∂ϕ ⟨Π(ϕ)⟩)2 =
e(Γ+γ)NT − cos2(Nϕ)

N2 sin2(Nϕ)
, (E.65)
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which is minimal for ϕ0 = π/2N , yielding

(∆ϕ(T ))2 =
e(Γ+γ)NT

N2
. (E.66)

Hence, the frequency estimation uncertainty is given by

(∆ω(T ))2 =
e(Γ+γ)NT

τN2T
. (E.67)

Minimization with respect to the interrogation time T by

0
!

=∂T (∆ω(T ))2 =
e(Γ+γ)NT

N2τ

N(Γ + γ)T − 1

T 2
(E.68)

results in

Tparity−GHZ =
1

N

1

Γ + γ
(E.69)

(∆ωparity−GHZ)2 =
(Γ + γ)e

Nτ
. (E.70)

This minimal frequency estimation uncertainty is equivalent to the SQL, however it

is achieved at a N -times shorter interrogation time.

Lower bound— Minimizing the frequency estimation uncertainty

(∆ω(T ))2 =
e(Γ+γ)Nt − ⟨Π(ϕ)⟩2
τT (∂ϕ ⟨Π(ϕ)⟩)2

∣∣∣
ϕ=ϕ0

(E.71)

with respect to the interrogation time T leads to the equation

(Γ + γ)NTmine
(Γ+γ)NTmin = e(Γ+γ)NTmin − ⟨Π(ϕ)⟩2 (E.72)

and thus we obtain

(∆ωmin)2 =
(Γ + γ)Ne(Γ+γ)NTmin

τ(∂ϕ ⟨Π(ϕ)⟩)2
∣∣∣
ϕ=ϕ0

. (E.73)

Finally, we derive the lower bound

(∆ωmin)2 ≥ (Γ + γ)

τN
(E.74)

using ∂ϕ ⟨Π(ϕ)⟩ |ϕ=ϕ0 ≤ N and e(Γ+γ)NTmin ≥ 1. This bound is equal to the one

derived for projective spin measurements Eq. (E.53) and additionally coincides with

the asymptotic lower bound Eq. (3.65), yielding a maximal gain of 1/e over the SQL.
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E.2 Coherent spin states (CSS)

Although we have already evaluated the frequency estimation uncertainty in the pre-

vious section, the time evolved state and the conditional probabilities are required to

obtain the QCRB or CRB and to efficiently sample measurement outcomes in Monte

Carlo simulations of the full feedback loop in an atomic clock.

In principle, any coherent spin state (CSS) can be considered. However, since

the phase is imprinted by a rotation around the z-axis, the CSS has to point in the

x-y-plane. Without loss of generality, we consider the conventional Ramsey scheme

(cf. Sec. 2.3.5). Again, we focus on spontaneous decay and individual dephasing,

since the Dicke basis becomes advantageous for addressing collective dephasing, as

discussed in App. C.2.

The initial state is generated by a first π/2-pulse from the collective ground state

|CSS⟩ = Ry

(
−π

2

)
|↓⟩⊗N =

[
1√
2

(|↓⟩ + |↑⟩)
]⊗N

(E.75)

which is polarized in x-direction and where we used ei
π
4
σy = 1√

2
(1+ iσy) according to

Eq. (2.73). The state after the time evolution, according to the dynamics described

by the master equation in Eq. (3.4), is given by

ρCSS(ϕ, T ) =
1

2N

[(
2 − e−ΓT

)
|↓⟩⟨↓| + e−

Γ+γ
2

T
(
eiϕ |↓⟩⟨↑| + e−iϕ |↑⟩⟨↓|

)
+ e−ΓT |↑⟩⟨↑|

]⊗N

.

(E.76)

After the free evolution time T , a projective measurement of the spin component Sy

is performed. This is accomplished by a second π/2-pulse – this time around the

x-axis – followed by a measurement of Sz, since Sy = R†
x

(
π
2

)
SzRx

(
π
2

)
.

Conditional probabilities— With e−iπ
4
σx = 1√

2
(1− iσx), the final state reads

ρfCSS(ϕ, T ) = Rx

(π
2

)
ρCSS(ϕ, T )R†

x

(π
2

)

=
1

2N

1

2N

[(
2 − e−Γt

)
(|↓⟩⟨↓| + i |↓⟩⟨↑| − i |↑⟩⟨↓| + |↑⟩⟨↑|)

+ e−
Γ+γ
2

t
(
eiϕ (|↓⟩⟨↑| + i |↓⟩⟨↓| − i |↑⟩⟨↑|) + |↑⟩⟨↓|

+ e−iϕ (|↑⟩⟨↓| + i |↑⟩⟨↑| − i |↓⟩⟨↓| + |↓⟩⟨↑|)
)

(E.77)

+e−Γt (|↑⟩⟨↑| + i |↑⟩⟨↓| − i |↓⟩⟨↑| + |↓⟩⟨↓|)
]⊗N

=
1

2N

[
|↓⟩⟨↓|

(
1 − e−

Γ+γ
2

t sin(ϕ)
)

+ |↓⟩⟨↑|
(
i
(
1 − e−Γt

)
+ e−

Γ+γ
2

t cos(ϕ)
)

+ |↑⟩⟨↓|
(
−i
(
1 − e−Γt

)
+ e−

Γ+γ
2

t cos(ϕ)
)

+ |↑⟩⟨↑|
(

1 + e−
Γ+γ
2

t sin(ϕ)
)]⊗N

.
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Since the particles are identical and uncorrelated, it is sufficient to consider a single

particle. The conditional probabilities are given by

P (↑|ϕ) =
1

2

[
1 + e−

Γ+γ
2

T sin(ϕ)
]

(E.78)

P (↓|ϕ) =
1

2

[
1 − e−

Γ+γ
2

T sin(ϕ)
]
, (E.79)

yielding the binomial distribution

P (x =
N

2
−N−|ϕ) =

(
N

N−

)
PN−N−(↑|ϕ) · PN−(↓|ϕ) (E.80)

=
1

2N

(
N

N−

)[
1 + e−

Γ+γ
2

t sin(ϕ)
]N−N−

·
[
1 − e−

Γ+γ
2

t sin(ϕ)
]N−

for measuring x = N
2
−N−, where N− denotes the number of particles in the ground

state |↓⟩.

QCRB— Since the particles are identical and uncorrelated, with the additivity of

the QFI, we obtain

FQ[ρCSS(ϕ, T )] = NFQ[ρ
(1)
CSS(ϕ, T )] (E.81)

with single particle time evolved state

ρ
(1)
CSS(ϕ, T ) =

1

2

[(
2 − e−ΓT

)
|↓⟩⟨↓| + e−

Γ+γ
2

T
(
eiϕ |↓⟩⟨↑| + e−iϕ |↑⟩⟨↓|

)
+ e−ΓT |↑⟩⟨↑|

]
.

(E.82)

As a reminder, the QFI is defined by

FQ[ρ] = 2
∑

j,k
pj+pk>0

(pj − pk)2

pj + pk
| ⟨j|G |k⟩ |2, (E.83)

where pk and |k⟩ are the eigenvalues and eigenstates of ρ.

It is instructive to determine the QFI of a generic 2 × 2-matrix, as it will also be

required for the analysis of GHZ states. We assume a density matrix of the form

ρ
(1)
CSS(ϕ, T ) = a |↑⟩⟨↑| + b |↑⟩⟨↓| + b∗ |↓⟩⟨↑| + c |↓⟩⟨↓| ·

=


a b

b∗ c


 (E.84)

with a, b ∈ R and b ∈ C defined by

a =
1

2
e−ΓT (E.85)

b =
1

2
e−

Γ+γ
2

T e−iϕ (E.86)

c =
1

2

(
2 − e−ΓT

)
. (E.87)
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With

0
!

= det
(
ρ
(1)
CSS(ϕ, T ) − p1

)
= p2 − p(a+ c) + ac− |b|2, (E.88)

the eigenvalues p± are given by

p± =
1

2

[
a+ c±

√
(a+ c)2 − 4ac+ 4|b|2

]
=

1

2

[
a+ c±

√
(a− c)2 + 4|b|2

]
. (E.89)

The corresponding eigenvectors v± are obtained by

0
!

= (ρ
(1)
CSS(ϕ, T ) − p±1)v± =


a− p± b

b∗ c− p±




d±
e±


 =


 (a− p±)d± + be±

b∗d± + (c− p±)e±


 ,

(E.90)

yielding the condition

d± = −c− p±
b∗

e± =
1

2b∗

[
a− c±

√
(a− c)2 + 4|b|2

]
. (E.91)

Finally, the eigenvectors are given by

v± =
1

N±


d±

1


 (E.92)

with normalization

N 2
± = |d±|2 + 1 =

1

4|b|2
[
a− c±

√
(a− c)2 + 4|b|2

]2
+ 1. (E.93)

In Dirac notation, the eigenvectors read

v+
·

= |1⟩ =
1

N+

(d+ |↑⟩ + |↓⟩) (E.94)

v+
·

= |2⟩ =
1

N−
(d− |↑⟩ + |↓⟩). (E.95)

Thus,

| ⟨1|Sz |2⟩ |2 =
1

4(N+N−)2
|d∗+d− − 1|2 =

1

(N+N−)2
, (E.96)

since d∗+d− = −1. With

(N+N−)2 = |d+d−|2 + |d+|2 + |d−|2 + 1 = |d+|2 + |d−|2 + 2

=
(a− c)2 + 2|b|2

|b|2 + 2 =
(a− c)2 + 4|b|2

|b|2 ,
(E.97)
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where we used |x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2, we obtain

| ⟨1|Sz |2⟩ |2 =
|b|2

(a− c)2 + 4|b|2 . (E.98)

Finally, with p+ + p− = a+ c and (p+ − p−)2 = (a− c)2 + 4|b|2, the QFI reads

FQ[ρ
(1)
CSS(ϕ, T )] = 4

(p+ − p−)2

p+ + p−
| ⟨1|Sz |2⟩ |2 = 4

|b|2
a+ c

= e−(Γ+γ)T (E.99)

and thus

FQ[ρCSS(ϕ, T )] = Ne−(Γ+γ)T (E.100)

with associated QCRB

(∆ϕCSS
QCRB(T ))2 =

e(Γ+γ)T

N
. (E.101)

Consequently, the QCRB is saturated by a projective spin measurement and lin-

ear estimation strategy. Additionally, this once again demonstrates that the QFI is

independent of the phase ϕ.

E.3 Parity-GHZ protocol

The time evolved GHZ state is given by

ρGHZ(ϕ, T ) =
1

2

(
|↓⟩⟨↓|⊗N + e−

Γ+γ+γcN
2

NT
[
eiNϕ |↓⟩⟨↑|⊗N + e−iNϕ |↑⟩⟨↓|⊗N

]

+
[
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

]⊗N
)
. (E.102)

Here, collective dephasing can be incorporated directly since the initial GHZ state is

a superposition of the two maximal Dicke states, namely the collective ground and

excited states |↓⟩⊗N and |↑⟩⊗N , respectively.

After the free evolution time T , the parity Π = (−1)Nσ⊗N
x = R†

y

(
π
2

)
σ⊗N
z Ry

(
π
2

)

is measured. Hence, with e−iπ
4
σy = 1√

2
(1− iσy), the final state is given by

ρfGHZ(ϕ, T ) =
1

2N+1

(
[|↓⟩⟨↓| − |↓⟩⟨↑| − |↑⟩⟨↓| + |↑⟩⟨↑|]⊗N

+ e−
Γ+γ+γcN

2
NT
[
eiϕN [|↓⟩⟨↓| + |↓⟩⟨↑| − |↑⟩⟨↓| − |↑⟩⟨↑|]⊗N

+ e−iϕN [|↓⟩⟨↓| − |↓⟩⟨↑| + |↑⟩⟨↓| − |↑⟩⟨↑|]⊗N
]

+
[
e−ΓT [|↓⟩⟨↓| + |↓⟩⟨↑| + |↑⟩⟨↓| + |↑⟩⟨↑|]

+
(
1 − e−ΓT

)
[|↓⟩⟨↓| − |↓⟩⟨↑| − |↑⟩⟨↓| + |↑⟩⟨↑|]

]⊗N)
.

(E.103)
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The probability to measure N− particles in the ground state thus reads

P (N−|ϕ) =
1

2N

(
N

N−

)[
1 + (−1)N−N−e−

Γ+γ+γcN
2

NT cos(Nϕ)
]
. (E.104)

The parity has binary measurement outcomes x = ±1 which occur with conditional

probabilities

P (x = +1|ϕ) =
∑

N− even

P (N−|ϕ) =

⌊N/2⌋∑

k=0

P (N− = 2k|ϕ) (E.105)

P (x = −1|ϕ) =
∑

N− odd

P (N−|ϕ) =

⌊N/2⌋∑

k=0

P (N− = 2k + 1|ϕ). (E.106)

Naturally, out of the 2N possibilities for measurement sequences {m1, . . . ,mN}, where

mk ∈ {↑, ↓} denotes the outcome of each particle, there exists an equal number of

realizations where an even or odd number of particles is in the ground state. Therefore

also
∑

N− even

(
N
N−

)
=
∑

N− odd

(
N
N−

)
= 2N/2 and we obtain

P (x = ±1|ϕ) =
1

2

[
1 ± (−1)Ne−

Γ+γ+γcN
2

NT cos(Nϕ)
]
. (E.107)

CRB— To ensure that the linear estimation scheme, which results in the phase

estimation uncertainty described by Eq. (E.66), is optimal for a parity measurement

and does not limit the sensitivity, we determine the CRB for the parity-GHZ protocol.

With POVM {Πx} associated with the parity measurement, the (classical) Fisher

information is given by

F [ρGHZ(ϕ, T ), {Πx}] =
∑

x=±1

1

P (x|ϕ)

(
dP (x|ϕ)

dϕ

)2

=
N2

2

∑

x=±1

e−(Γ+γ+γcN)NT sin2(Nϕ)

1 ± (−1)Ne−
Γ+γ+γcN

2
NT cos(Nϕ)

.

(E.108)

The maximum is achieved at the optimal working point ϕ0 = π/2N and thus, we

obtain

F [ρGHZ(ϕ, T ), {Πx}] = N2e−(Γ+γ+γcN)NT . (E.109)

Consequently, the linear estimator is optimal for the parity-GHZ protocol since the

corresponding phase estimation uncertainty, described by Eq. (E.66), saturates the

CRB associated with Eq. (E.109).
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Comparison to the scheme in Ref. [149]— Finally, we want to show that the

interrogation scheme for the GHZ state presented in Ref. [149] is equivalent to the

parity-GHZ protocol. In Ref. [149], the scheme is implemented using controlled-NOT

(CNOT) gates UCNOT, representing a two-particle gate with transformation according

to

U (1,2)
CNOT |↓⟩(1) ⊗ |↓⟩(2) = |↓⟩(1) ⊗ |↓⟩(2) (E.110)

U (1,2)
CNOT |↓⟩(1) ⊗ |↑⟩(2) = |↓⟩(1) ⊗ |↑⟩(2) (E.111)

U (1,2)
CNOT |↑⟩(1) ⊗ |↓⟩(2) = |↑⟩(1) ⊗ |↑⟩(2) (E.112)

U (1,2)
CNOT |↑⟩(1) ⊗ |↑⟩(2) = |↑⟩(1) ⊗ |↓⟩(2) . (E.113)

In particular, it flips the spin of the second particle if the first particle is in the excited

state. Hence, a sequence of CNOT gates linking the first with each of the remaining

particles is given by

UCNOT = U (1,2)
CNOT ⊗ U (1,3)

CNOT ⊗ · · · ⊗ U (1,N)
CNOT =

N⊗

i=2

U (1,k)
CNOT, (E.114)

which flips the spin of all other particles if the first one is in the excited state. The

scheme initially starts with the collective ground state |↓⟩⊗N and performs a conven-

tional π/2-pulse on the first particle, yielding

|ψ0⟩ =
1√
2

(
|↑⟩(1) + |↓⟩(1)

)
⊗ |↓⟩⊗N−1 . (E.115)

Applying a sequence of CNOT gates results in the GHZ state

UCNOT |ψ0⟩ =
1√
2

(
|↑⟩⊗N + |↓⟩⊗N

)
= |GHZ⟩ . (E.116)

After the free evolution time, the preparation is reversed. Hence, first the sequence

of CNOT gates is applied and afterwards a π/2-pulse is applied to the first particle.

Finally, σ
(1)
z is measured. Including the second Ramsey pulse in the measurement, we

effectively measure

R†
y

(
−π

2

)
σzRy

(
−π

2

)
= σx (E.117)



238 Appendix E. Calculations for protocols in local frequency metrology

of the first particle. Additionally, also the CNOT gates can be mapped to the mea-

surement and we obtain

UCNOT

(
σ(1)
x ⊗ 1⊗N−1

)
U †
CNOT

= UCNOT

([
|↑⟩ |↓⟩(1) + |↓⟩ |↑⟩(1)

]
⊗ [|↑⟩ |↑⟩ + |↓⟩ |↓⟩]⊗N−1

)
U †
CNOT

= |↑⟩ |↓⟩(1) ⊗ [|↓⟩ |↑⟩ + |↑⟩ |↓⟩]⊗N−1

+ |↓⟩ |↑⟩(1) ⊗ [|↑⟩ |↓⟩ + |↓⟩ |↑⟩]⊗N−1 (E.118)

=
(
|↑⟩ |↓⟩(1) + |↓⟩ |↑⟩(1)

)
⊗ σ⊗N−1

x

= σ⊗N
x

= (−1)NΠ,

where we used U †
CNOT = UCNOT as can be easily seen from the definition. Hence, we

obtain the parity measurement with an additional global phase (−1)N which does not

contribute to the phase estimation uncertainty. Thus, both approaches are equivalent

and yield the same results.

E.4 QCRB of the GHZ state

As a reminder, the time evolved GHZ state reads

ρGHZ(ϕ, T ) =
1

2

(
|↓⟩⟨↓|⊗N + e−

Γ+γ+γcN
2

NT
[
eiNϕ |↓⟩⟨↑|⊗N + e−iNϕ |↑⟩⟨↓|⊗N

]

+
[
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

]⊗N
)
. (E.119)

Fortunately, this state is already almost diagonal, except for the subspace spanned

by the maximal Dicke states |↑⟩⊗N and |↓⟩⊗N , namely the four corners associated

with |↓⟩⟨↓|⊗N , |↓⟩⟨↑|⊗N , |↑⟩⟨↓|⊗N and |↑⟩⟨↑|⊗N . Hence, we only have to diagonalize

an effective 2 × 2-matrix defined by

ρeff =
1

2

( [
1 +

(
1 − e−ΓT

)N] |↓⟩⟨↓|⊗N + e−
Γ+γ+γcN

2
NT
[
eiNϕ |↓⟩⟨↑|⊗N + e−iNϕ |↑⟩⟨↓|⊗N

]

+ e−ΓNT |↑⟩⟨↑|⊗N
)

(E.120)

·
=

1

2


 e−ΓNt e−

Γ+γ+γcN
2

Nte−iNϕ

e−
Γ+γ+γcN

2
NteiNϕ 1 +

(
1 − e−Γt

)N


 =


a b

b∗ c



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with coefficients

a =
1

2
e−ΓNT (E.121)

b =
1

2
e−

Γ+γ+γcN
2

NT e−iNϕ (E.122)

c =
1

2

[
1 +

(
1 − e−ΓT

)N]
. (E.123)

Since we already diagonalized a 2 × 2-matrix in App. E.2 for the CSS state, we can

directly apply those results here. The eigenvectors are given by

|1⟩ =
1

N+

(
d+ |↑⟩⊗N + |↓⟩⊗N

)
(E.124)

∣∣2N
〉

=
1

N−

(
d− |↑⟩⊗N + |↓⟩⊗N

)
(E.125)

with corresponding eigenvalues (cf. App. E.2). It is important to note that all other

eigenvectors |k⟩ are given by the 2N − 2 permutations of |↑⟩N−N− |↓⟩N− , where N−
denotes the number of particles in the ground state, and thus are orthogonal to |1⟩
and

∣∣2N
〉
. Furthermore, the action of the generator Sz does not change the states

|k⟩ for k ̸= 1, 2N but only yields an additional factor N
2
−N−. Hence, the only non-

vanishing term of the QFI is given by | ⟨1|Sz

∣∣2N
〉
| = N2/(N+N−)2 and, analogous

to the CSS, we obtain the QFI

FQ[ρGHZ(ϕ, T )] = 4
(p+ − p−)2

p+ + p−
| ⟨1|Sz

∣∣2N
〉
|2 = 4N2 |b|2

a+ c

=
2N2e−(Γ+γ+γcN)NT

1 + e−ΓNT + (1 − e−ΓT )N

(E.126)

and associated QCRB

(∆ϕGHZ
QCRB(T ))2 =

e(Γ+γ+γcN)NT

2N2

[
1 + e−ΓNT +

(
1 − e−ΓT

)N]
. (E.127)

Indeed, the QCRB achieves a higher sensitivity than the parity-GHZ protocol (cf.

Eq. (E.66)), since
(
1 − e−ΓT

)N
+ e−ΓNT < 1 for N ≥ 2 and T > 0, and thus

(∆ϕGHZ
QCRB(T ))2 < (∆ϕparity−GHZ(T ))2. We show this by induction, using that e−x
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is monotonically decreasing for x ≥ 0:

conjecture:
(
1 − e−Γt

)N
< 1 − e−ΓNt

N = 2 :
(
1 − e−Γt

)2
= 1 − e−ΓT

︸︷︷︸
>e−2ΓT

−e−Γt + e−2Γt

︸ ︷︷ ︸
<0

< 1 − e−2Γt

N 7→ N + 1 :
(
1 − e−Γt

)N+1
=
(
1 − e−Γt

)N (
1 − e−Γt

)

<
(
1 − e−ΓNt

) (
1 − e−Γt

)

= 1 − e−ΓNt − e−Γt + e−Γ(N+1)t

= 1 − e−Γt

︸︷︷︸
>e−Γ(N+1)t

+ e−Γ(N+1)t − e−ΓNt

︸ ︷︷ ︸
<0

< 1 − e−Γ(N+1)t. (E.128)

Consequently, the parity-GHZ protocol does not saturate the QCRB in the presence

of spontaneous decay for N ≥ 2 and T > 0.

E.5 GHZ transformation UGHZ

In order to saturate the QCRB of the GHZ state and to assess the pertinent charac-

teristics of the heralded-GHZ protocol, it is advantageous to employ the identity

UGHZ =
1√
2
e−i π

4E

[
1+ iN+Eσ⊗N

x

]
(E.129)

with E = 1 (E = 2) for N even (odd), which was previously utilized in Ref. [128].

Application of UGHZ to the ground state |↓⟩⊗N yields

|ψin⟩ =
1√
2
e−i π

4E

(
|↓⟩⊗N + iN+E|↑⟩⊗N

)
. (E.130)

The exact GHZ state can be obtained by an additional trivial rotation around the

z-axis according to

|GHZ⟩ = eiαRz(θE)UGHZ|↓⟩⊗N

=
1√
2
e−i π

4E eiαRz(θE)
[
|↓⟩⊗N + iN+E|↑⟩⊗N

]

=
1√
2
e−i π

4E eiαei
NθE

2

[
|↓⟩⊗N + e−iNθE iN+E|↑⟩⊗N

]

=
1√
2
e−i π

4E eiαei
NθE

2

[
|↓⟩⊗N +

(
e−iπ

2

)N+E
iN+E|↑⟩⊗N

]

=
1√
2

[
|↓⟩⊗N + |↑⟩⊗N

]
,

(E.131)

where θE = π
2N

(N + E) and α = π
4E

− θEN
2

.
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As the identity Eq. (E.129) is essential for the protocols investigated in the re-

mainder of this appendix, we prove it here. The unitary UGHZ is defined in Eq. (3.77)

by

UGHZ =

{
Tx(π) if N is even

Rx

(
π
2

)
Tx(π) if N is odd

(E.132)

which indicates that it is beneficial to distinguish between two cases, namely N even

and odd. In particular, the identity Eq. (E.129) does not solely hold for the x-

direction, but for arbitrary axes k, as we show below.

N even— In the following we will prove that for N even, we obtain

Tk(π) = e−iπ
4

[
1+ iN+1σ⊗N

k

]
(E.133)

with σk = k1σx + k2σy + k3σz satisfying
∑

j k
2
j = 1. To show this identity, we

consider the product-eigenbasis |s1, . . . , sN⟩ of the single particle operators σ
(j)
k , where

j denotes the index of the N particles with eigenvalues sj = ±1. In particular, we

primarily exploit the eigenvalue equations

σ
(j)
k |s1, . . . , sN⟩ = sj |s1, . . . , sN⟩ (E.134)

Sk |s1, . . . , sN⟩ = M |s1, . . . , sN⟩ (E.135)

where M = 1
2

∑N
j=1 sj denotes the eigenvalue of Sk = 1

2

∑N
j=1 σ

(j)
k . Therefore,

Tk(π) |s1, . . . , sN⟩ = e−iπ
2
S2
k |s1, . . . , sN⟩ = e−iπ

2
M2 |s1, . . . , sN⟩ . (E.136)

Since N is even, M is integer. For M even, we express M = 2x with x ∈ N.

Consequently, e−iπ
2
M2

= e−2iπx2
= 1x2

= 1. For M odd, we write M = 2x + 1 with

x ∈ N. Thus, e−iπ
2
M2

= e−2iπx2
e−2iπxe−iπ

2 = 1x2
1x(−i) = −i. Together, we obtain

e−iπ
2
M2

=
1

2

[(
1 + (−1)M

)
−
(
1 − (−1)M

)
i
]

=
1

2

[
(1 − i) + (−1)M (1 + i)

]

=
1 − i

2

[
1 + (−1)M

1 + i

1 − i

]

= e−iπ
4

1√
2

[
1 + (−1)M i

]
.

(E.137)
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Furthermore, with N± denoting the numbers of particles in the excited and ground

states, respectively, we have

σ⊗N
k |s1, . . . , sN⟩ =

(
N∏

j=1

sj

)
|s1, . . . , sN⟩

= (+1)N+(−1)N− |s1, . . . , sN⟩
= (−1)N− |s1, . . . , sN⟩
= (−1)

N
2
−M |s1, . . . , sN⟩

= (−1)
N
2 (−1)−M |s1, . . . , sN⟩

= (−1)
N
2 (−1)M |s1, . . . , sN⟩ ,

(E.138)

where we used that M is integer in the last step. Since we considered an arbitrary

state |s1, . . . , sN⟩, by combining both terms we obtain the operator identity

Tk(π) = e−iπ
4

1√
2

[
1+ (−1)

N
2 iσ⊗N

k

]

= e−iπ
4

1√
2

[
1+ iN+1σ⊗N

k

]
,

(E.139)

which is equivalent to Eq. (E.129). □

N odd— For N odd, no compact expression for Tk(π) exists. This originates from

M being half integer and thus prohibiting an analogous treatment as for N even.

However, a similar identity is derived when extending the OAT interaction by an

additional rotation by π/2 around axis k, resulting in

Rk

(
π
2

)
Tk(π) = e−iπ

8

[
1+ iN+2σ⊗N

k

]
. (E.140)

Similar to the case N even, we obtain

Rk

(
π
2

)
Tk(π) |s1, . . . , sN⟩ = e−iπ

2
Ske−iπ

2
S2
k |s1, . . . , sN⟩

= e−iπ
2
Me−iπ

2
M2 |s1, . . . , sN⟩

= e−iπ
2 (M2+M) |s1, . . . , sN⟩

= ei
π
8 e−iπ

2 (M+ 1
2)

2

|s1, . . . , sN⟩ .

(E.141)

Since N is odd, M is half integer and thus M + 1
2

is integer. Hence, by the same

arguments as before, we can express this as

e−iπ
2 (M+ 1

2)
2

= e−iπ
4

1√
2

[
1 + (−1)M+ 1

2 i
]

= e−iπ
4

1√
2

[
1 + (−1)M i2

]
.

(E.142)
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Therefore, with

σ⊗N
k |s1, . . . , sN⟩ = (−1)

N
2 (−1)M |s1, . . . , sN⟩ , (E.143)

we finally derive

Rk

(
π
2

)
Tk(π) = e−iπ

8
1√
2

[
1+ (−1)

N
2 i2σ⊗N

k

]

= e−iπ
8

1√
2

[
1+ iN+2σ⊗N

k

]
,

(E.144)

which coincides with Eq. (E.129). □

E.6 Linear-GHZ protocol

In this section, we determine the final state and the moments associated with the

observable

X = UGHZ Sz U †
GHZ (E.145)

and evaluate the phase estimation uncertainty of the linear-GHZ protocol.

Initial state and time evolution— Application of UGHZ to the ground state

|↓⟩⊗N yields

|ψin⟩ =
1√
2
e−i π

4E

(
|↓⟩⊗N + iN+E|↑⟩⊗N

)
. (E.146)

The dynamics according to Eq. (3.4) leads to the time evolved state

ρin(ϕ, T ) =
1

2

(
|↓⟩⟨↓|⊗N + e−

Γ+γ
2

NT
[
(−i)N+EeiϕN |↓⟩⟨↑|⊗N + iN+Ee−iϕN |↑⟩⟨↓|⊗N

]

+
[
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

]⊗N
)
. (E.147)

Final state— Applying the measurement transformation UGHZ of the observable

X, as described in Eq.(E.145), to the time evolved state results in the final state

ρfin(ϕ, T ) = U †
GHZρ(ϕ, T )UGHZ. With the action of UGHZ on the four terms in the time

evolved state given by

U †
GHZ|↓⟩⟨↓|⊗NUGHZ =

1

2

[
|↓⟩⟨↓|⊗N + iN+E|↓⟩⟨↑|⊗N + (−i)N+E|↑⟩⟨↓|⊗N + |↑⟩⟨↑|⊗N

]

(E.148)

U †
GHZ|↓⟩⟨↑|⊗NUGHZ =

1

2

[
|↓⟩⟨↑|⊗N + iN+E|↓⟩⟨↓|⊗N + (−i)N+E|↑⟩⟨↑|⊗N + |↑⟩⟨↓|⊗N

]

(E.149)
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U †
GHZ|↑⟩⟨↓|⊗NUGHZ =

1

2

[
|↑⟩⟨↓|⊗N + iN+E|↑⟩⟨↑|⊗N + (−i)N+E|↓⟩⟨↓|⊗N + |↓⟩⟨↑|⊗N

]

(E.150)

U †
GHZ

(
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

)⊗N UGHZ =

1

2

[(
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

)⊗N

+ iN+E
(
e−ΓT |↑⟩⟨↓| +

(
1 − e−ΓT

)
|↓⟩⟨↑|

)⊗N

+ (−i)N+E
(
e−ΓT |↓⟩⟨↑| +

(
1 − e−ΓT

)
|↑⟩⟨↓|

)⊗N

+
(
e−ΓT |↓⟩⟨↓| +

(
1 − e−ΓT

)
|↑⟩⟨↑|

)⊗N
]
,

(E.151)

the final state reads

ρfin(ϕ, T ) =
1

4

{
|↓⟩⟨↓|⊗N + iN+E|↓⟩⟨↑|⊗N + (−i)N+E|↑⟩⟨↓|⊗N + |↑⟩⟨↑|⊗N

+ e−
Γ+γ+γcN

2
NT
(

(−i)N+EeiNϕ

×
[
|↓⟩⟨↑|⊗N + iN+E|↓⟩⟨↓|⊗N + (−i)N+E|↑⟩⟨↑|⊗N + |↑⟩⟨↓|⊗N

]

+ iN+Ee−iNϕ
[
|↑⟩⟨↓|⊗N + iN+E|↑⟩⟨↑|⊗N + (−i)N+E|↓⟩⟨↓|⊗N + |↓⟩⟨↑|⊗N

] )

+
[
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

]⊗N
(E.152)

+ iN+E
[
e−ΓT |↑⟩⟨↓| +

(
1 − e−ΓT

)
|↓⟩⟨↑|

]⊗N

+ (−i)N+E
[
e−ΓT |↓⟩⟨↑| +

(
1 − e−ΓT

)
|↑⟩⟨↓|

]⊗N

+
[
e−ΓT |↓⟩⟨↓| +

(
1 − e−ΓT

)
|↑⟩⟨↑|

]⊗N
}
.

Moments— The signal is given by

⟨X(ϕ, T )⟩ = tr (Xρin(ϕ, T )) = tr (Szρfinal(ϕ, T ))

=
N

8

(
− 1 + 1 + e−

Γ+γ+γcN
2

Nt
[
(−i)N+EeiNϕ

(
−iN+E + (−i)N+E

)

+ iN+Ee−iNϕ
(
iN+E − (−i)N+E

) ]
+
(
2e−Γt − 1

)
+
(
1 − 2e−Γt

) )

= −N
2
e−

Γ+γ+γcN
2

Nt cos(Nϕ), (E.153)

where we used (−i)N+E = (−1)N+EiN+E = −iN+E since N +E is always odd (E = 1

for N even and E = 2 for N odd). Furthermore,

Tr
(
Sz

[
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

]⊗N
)

=

1

2
Tr
(
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

)N−1

︸ ︷︷ ︸
=1

N∑

k=1

Tr
(
e−ΓT |↑⟩⟨↑| −

(
1 − e−ΓT

)
|↓⟩⟨↓|

)

=
N

2

(
2e−Γt − 1

)
(E.154)
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and likewise for the last term in Eq. (E.152). Accordingly, the slope of the signal

reads

∂ϕ ⟨X(ϕ, T )⟩ =
N2

2
e−

Γ+γ+γcN
2

Nt sin(Nϕ). (E.155)

Again, we have a symmetric signal with optimal working point ϕ0 = π
2N

, maximizing

the slope. With S2
z = N

4
1+ 1

4

∑
j ̸=k σ

(j)
z σ

(k)
z , where the sum

∑
j ̸=k has N(N−1) terms,

the second moment is determined by

〈
X2(ϕ, T )

〉
=
N

4
+
N(N − 1)

16

(
1 + 1 + e−

Γ+γ+γcN
2

Nt
[
(−i)N+EeiNϕ

(
iN+E + (−i)N+E

)

+ iN+Ee−iNϕ
(
(−i)N+E + iN+E

) ]
+
(
2e−Γt − 1

)2
+
(
1 − 2e−Γt

)2 )

=
N

4
+
N(N − 1)

8

[
1 +

(
2e−Γt − 1

)2]
(E.156)

=
N

4

[
1 + (N − 1)

(
1 − 2e−Γt + 2e−2Γt

)]
,

where the last terms of Eq. (E.152) are evaluated analogously to Eq. (E.154).

Phase estimation uncertainty and estimator— According to the method of

moments (cf. App. D.3), the phase estimation uncertainty is given by

(∆ϕlinear−GHZ(T ))2 =
(∆X(ϕ, T ))2

(∂ϕ ⟨X(ϕ, T )⟩)2
∣∣∣
ϕ=ϕ0

=
e(Γ+γ+γcN)NT

N3

[
1 + (N − 1)

(
1 − 2e−ΓT + 2e−2ΓT

)] (E.157)

with associated linear estimator

ϕest(x) =
x

∂ϕ ⟨X(ϕ, T )⟩ |ϕ=ϕ0

=
2x

N2
e

Γ+γ+γcN
2

NT . (E.158)

For N = 2, the linear-GHZ protocol saturates the QCRB. However, for N > 2 the

QCRB is not saturated and the SQL is asymptotically approximated (cf. Fig. 3.2(b)).

E.7 Heralded-GHZ protocol

The conditional probabilities can be directly inferred from the final state in Eq. (E.152)

and read

P (x|ϕ) =
1

4

[
1 + e−ΓNT +

(
1 − e−ΓT

)N ∓ 2e−
Γ+γ
2

NT cos(Nϕ)
]

(E.159)

if x = ±N
2

and

P (x|ϕ) =
1

4

(
N

N−

)[
e−ΓT (N−N−)

(
1 − e−ΓT

)N−
+ e−ΓTN−

(
1 − e−ΓT

)N−N−
]

(E.160)
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if x = N
2
− N−, where N− ∈ {1, . . . , N − 1} denotes the number of particles in the

ground state | ↓⟩. The conditional probabilities for x ̸= ±N
2

are symmetric in the sense

that P
(
x = +N

2
−N−|ϕ

)
= P

(
x = +N

2
− (N −N−)|ϕ

)
. It is important to note that

the phase information is solely encoded in the measurement outcomes of the maximal

Dicke states, i.e. x = ±N
2

, which has profound implications, as discussed in detail in

the main text (cf. Sec. 3.7.2). This motivates the highly nonlinear estimator

ϕest(x) =

{
±N

2
1

∂ϕ⟨X(ϕ,T )⟩|ϕ=ϕ0
if x = ±N

2

0 else
(E.161)

introduced in Eq. (3.79). In this case, according to Eq. (3.13), the phase estimation

uncertainty is given by

(∆ϕheralded−GHZ(T ))2 =
N2

4

P
(
x = +N

2
|ϕ0

)
+ P

(
x = −N

2
|ϕ0

)

(∂ϕ ⟨X(ϕ, T )⟩ |ϕ=ϕ0)
2 . (E.162)

With the conditional probabilities and the slope, determined in the previous section,

we finally obtain

ϕest(x) =

{
± 1

N
e

(Γ+γ+γcN)
2

NT if x = ±N
2

0 else
(E.163)

and

(∆ϕheralded−GHZ(T ))2 =
e(Γ+γ)NT

2N2

[
1 + e−ΓNT +

(
1 − e−ΓT

)N]
, (E.164)

which saturates the QCRB of the GHZ state described by Eq. (E.127).

Note that this measurement and estimation scheme, represented by X and the

nonlinear estimator Eq. (E.163), can alternatively be imitated by the designed ob-

servable X̃ = N
2
UGHZ

(
|↑⟩⟨↑|⊗N − |↓⟩⟨↓|⊗N

)
U †
GHZ. Interestingly, X̃ essentially cor-

responds to the SLD associated with the GHZ state ρGHZ(ϕ, T ), as described by

Eq. (D.50) with eigenbasis determined in App. E.4.

Gain over SQL— Although the minimization of Eq. (E.164) with respect to the

interrogation time T is generally not analytically possible, an explicit expression can

be obtained for γ = γc = 0 and when neglecting the term (1 − e−ΓT )N . This term

is associated with the probability of N spontaneous decay events occurring during

the interrogation time T (cf. App. E.9) and thus becomes increasingly unlikely with

increasing N , as illustrated in Fig. 3.4(b). Here, we will derive Eq. (3.82). The

frequency estimation uncertainty for the heralded-GHZ state – or equivalently the
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QCRB of the GHZ state – in the limit γ = γc = 0 and if (1−e−ΓT )N can be neglected

reads

(∆ωheralded−GHZ(T ))2 ≃ eΓNT + 1

2τN2T
. (E.165)

Differentiation with respect to T

0
!

=
1

2τN2

ΓNTeΓNT −
[
eΓNT + 1

]

T 2
(E.166)

yields the equation

ΓNTmine
ΓNTmin = eΓNTmin + 1 (E.167)

(ΓNTmin − 1)eΓNTmin = 1 (E.168)

(ΓNTmin − 1)eΓNTmin−1 =
1

e
. (E.169)

Although this equation is transcendent and thus has no closed solution, introduc-

ing the Lambert-W function [257], which can be efficiently evaluated numerically,

nevertheless provides a formal solution. The Lambert-W function is defined as the

inverse function of x 7→ xex and thus, y = W (x) represents the formal solution of the

equation xex = y. Consequently, Eq. (E.169) has the formal solution

ΓNTmin − 1 = W (1/e). (E.170)

Rewriting Eq. (E.165), at Tmin we obtain the minimal frequency estimation uncer-

tainty

(∆ωheralded−GHZ)2 ≃ 1

2τN2

eΓNTmin + 1

Tmin

=
1

2τN2

(ΓNTmin − 1)eΓNTmin + ΓNTmin − 1

Tmin(ΓNTmin − 1)

=
1

2τN

Γ

ΓNTmin − 1

=
Γ

τN

1

2W (1/e)

=
(∆ωSQL)2

2eW (1/e)
,

(E.171)

where we used Eq. (E.168) in the second and Eq. (E.170) in the third step. Conse-

quently, in this regime, the heralded-GHZ protocol ∆ωheralded−GHZ and the QCRB of

the GHZ ∆ωGHZ
QCRB state achieve a constant gain of 1√

2eW (1/e)
< 1 compared to the

SQL ∆ωSQL, which corresponds to 1.8 dB (cf. Fig. 3.2(b)).
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E.8 Heralded-uGHZ protocol

In this appendix, we discuss the heralded-uGHZ protocol. In particular, we start by

evaluating the relevant properties for an arbitrary rotation angle θ. Based on the

resulting phase estimation uncertainty, we determine the optimal rotation angle θopt

and corresponding optimal uGHZ state. Furthermore, we specify the general results

for θopt.

The heralded-uGHZ protocol is conceptually analogous to the heralded-GHZ pro-

tocol. Consequently, we primarily present the calculations, while details of individual

steps that are not explicitly provided here are adopted from the linear-GHZ protocol

(cf. Sec. E.6) and heralded-GHZ protocol (cf. Sec. E.7).

E.8.1 General uGHZ state

Initial state—

UGHZ|↓⟩⊗N =
1√
2
e−i π

4E

[
1+ iN+Eσ⊗N

x

]
|↓⟩⊗N

=
1√
2
e−i π

4E

[
|↓⟩⊗N + iN+E|↑⟩⊗N

] (E.172)

Rz(θ)UGHZ|↓⟩⊗N =
1√
2
e−i π

4E

[
ei

θN
2 |↓⟩⊗N + iN+Ee−i θN

2 |↑⟩⊗N
]

(E.173)

|ψin⟩ = UGHZRz(θ)UGHZ|↓⟩⊗N

=
1√
2
e−i π

4E

[
1+ iN+Eσ⊗N

x

] 1√
2
e−i π

4E

[
ei

θN
2 |↓⟩⊗N + iN+Ee−i θN

2 |↑⟩⊗N
]

=
1

2
e−i π

2E

[
ei

θN
2

(
|↓⟩⊗N + iN+E|↑⟩⊗N

)
+ iN+Ee−i θN

2

(
|↑⟩⊗N + iN+E|↓⟩⊗N

)]

=
1

2
e−i π

2E

[(
ei

θN
2 +

(
iN+E

)2
e−i θN

2

)
|↓⟩⊗N + iN+E

(
ei

θN
2 + e−i θN

2

)
|↑⟩⊗N

]

= e−i π
2E

[
i sin

(
θN
2

)
|↓⟩⊗N + iN+E cos

(
θN
2

)
|↑⟩⊗N

]
(E.174)

where we used that
(
iN+E

)2
= (−1)N+E = −1, since E = 1 for N even and E = 2

for N odd and thus N + E is odd in both cases.

ρin = sin2
(
θN
2

)
|↓⟩⟨↓|⊗N + sin

(
θN
2

)
cos
(
θN
2

) [
i(−i)N+E|↓⟩⟨↑|⊗N + (−i)iN+E|↑⟩⟨↓|⊗N

]

+ cos2
(
θN
2

)
|↑⟩⟨↑|⊗N

= sin2
(
θN
2

)
|↓⟩⟨↓|⊗N + iN+E+1 sin

(
θN
2

)
cos
(
θN
2

) [
(−1)N+E|↓⟩⟨↑|⊗N − |↑⟩⟨↓|⊗N

]

+ cos2
(
θN
2

)
|↑⟩⟨↑|⊗N (E.175)

= sin2
(
θN
2

)
|↓⟩⟨↓|⊗N − iN+E+1 sin

(
θN
2

)
cos
(
θN
2

) [
|↓⟩⟨↑|⊗N + |↑⟩⟨↓|⊗N

]

+ cos2
(
θN
2

)
|↑⟩⟨↑|⊗N
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Hence, the initial state is GHZ-like with populations

P+
in (θ) = Tr

(
|↑⟩⟨↑|⊗Nρin

)
= cos2

(
θN
2

)
(E.176)

P−
in (θ) = Tr

(
|↓⟩⟨↓|⊗Nρin

)
= sin2

(
θN
2

)
. (E.177)

Consequently, we refer to these states with P+
in (θ) ̸= P−

in (θ) as unbalanced GHZ

(uGHZ) states. In particular, we obtain the following special cases:

• θ↑ = 0: P+
in (θ) = 1 and P−

in (θ) = 0. Thus, ρin = |↑⟩⟨↑|⊗N and U2
GHZ simply

transfers the population from the ground state to the excited state and conse-

quently acts equivalent to a π-pulse around the x- or y-axis.

• θGHZ = π
2N

: P+
in (θ) = P−

in (θ) = 1
2

resulting in the GHZ state and thus making

the second UGHZ transformation redundant.

• θ↓ = π
N

: P+
in (θ) = 0 and P−

in (θ) = 1. Thus, ρin = |↓⟩⟨↓|⊗N and consequently

UGHZRz(θ↓)UGHZ acts as the identity when applied to the ground state.

Note that the off-diagonal terms in the expression for the input state may not initially

appear to be complex conjugates of each other. However, this is indeed the case, as

demonstrated by

(
iN+E+1

)∗
= (−i)N+E+1 = (−1)N+E+1iN+E+1 = iN+E+1, (E.178)

where we used the fact that N +E + 1 is even in all scenarios, since N +E is odd in

all cases, as discussed before.

Due to its GHZ-like nature, the same measurement and estimation strategy as

for the heralded-GHZ protocol turns out to be optimal. Therefore, we denote the

corresponding Ramsey scheme as heralded-uGHZ protocol.

Time evolution—

ρin(ϕ, T ) = sin2
(
θN
2

)
|↓⟩⟨↓|⊗N − iN+E+1e−

Γ+γ+γcN
2

NT sin
(
θN
2

)
cos
(
θN
2

) [
eiϕN |↓⟩⟨↑|⊗N

+ e−iϕN |↑⟩⟨↓|⊗N
]

+ cos2
(
θN
2

) [
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

]⊗N

(E.179)

Again, we can determine the populations

P+
in (θ, T ) = Tr

(
|↑⟩⟨↑|⊗Nρin(ϕ, T )

)
= cos2

(
θN
2

)
e−NΓT (E.180)

P−
in (θ, T ) = Tr

(
|↓⟩⟨↓|⊗Nρin(ϕ, T )

)
= sin2

(
θN
2

)
+ cos2

(
θN
2

) (
1 − e−ΓT

)N
. (E.181)
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To compensate for spontaneous decay during the Ramsey time T , the initial state has

to give a higher weight to the collective excited state to obtain an equal distribution

in the populations of the maximal Dicke states after T , associated with the rotation

angle θequal. Consequently, θ↑ = 0 < θequal < θGHZ = π/2N . In particular, θequal is

given by

θequal =
2

N
arctan

(√
e−NΓT − (1 − e−ΓT )N

)
. (E.182)

Final state—

ρfin(ϕ, T ) = U †
GHZ ρin(ϕ, T )UGHZ

=
1

2

[
1+ (−i)N+Eσ⊗N

x

]
ρin(ϕ, T )

[
1+ iN+Eσ⊗N

x

]

=
1

2
sin2

(
θN
2

) [
|↓⟩⟨↓|⊗N + iN+E|↓⟩⟨↑|⊗N + (−i)N+E|↑⟩⟨↓|⊗N + |↑⟩⟨↑|⊗N

]

− 1

2
iN+E+1e−

Γ+γ+γcN
2

NT sin
(
θN
2

)
cos
(
θN
2

)

×
(
eiϕN

[
|↓⟩⟨↑|⊗N + iN+E|↓⟩⟨↓|⊗N + (−i)N+E|↑⟩⟨↑|⊗N + |↑⟩⟨↓|⊗N

]

+ e−iϕN
[
|↑⟩⟨↓|⊗N + iN+E|↑⟩⟨↑|⊗N + (−i)N+E|↓⟩⟨↓|⊗N + |↓⟩⟨↑|⊗N

] )

+
1

2
cos2

(
θN
2

) [ (
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

)⊗N

+ iN+E
(
e−ΓT |↑⟩⟨↓| +

(
1 − e−ΓT

)
|↓⟩⟨↑|

)⊗N

+ (−i)N+E
(
e−ΓT |↓⟩⟨↑| +

(
1 − e−ΓT

)
|↑⟩⟨↓|

)⊗N

+
(
e−ΓT |↓⟩⟨↓| +

(
1 − e−ΓT

)
|↑⟩⟨↑|

)⊗N
]

(E.183)

Conditional probabilities—

P
(
x = ±N

2
|ϕ
)

=
1

2

[
sin2

(
θN
2

)
+ cos2

(
θN
2

) (
e−NΓT +

(
1 − e−ΓT

)N)]

± e−
Γ+γ+γcN

2
NT sin

(
θN
2

)
cos
(
θN
2

)
sin(Nϕ)

(E.184)

and

P
(
x = +N

2
−N−|ϕ

)
=

1

2
cos2

(
θN
2

)( N
N−

)
(E.185)

×
[
e−ΓT (N−N−)

(
1 − e−ΓT

)N−
+ e−ΓTN−

(
1 − e−ΓT

)N−N−
]

for 1 ≤ N− ≤ N − 1, where N− denotes the number of particles in the ground state.

Again, only the maximal outcomes provide information about the phase. Hence, it is

advantageous to employ the flag estimator. Furthermore, the conditional probabilities
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for the non-maximal outcomes are symmetric in the sense that P
(
x = +N

2
−N−|ϕ

)
=

P
(
x = +N

2
− (N −N−)|ϕ

)
. As discussed before, for θGHZ = π

2N
we obtain the same

result as for the heralded-GHZ protocol.

Signal and slope— The moments of the observable X can either be determined di-

rectly based on the final state ρfin(ϕ, T ) or by using the conditional probabilities, since

generally
〈
Xk(ϕ, T )

〉
=
∑

x x
kP (x|ϕ). Here, the approach utilizing the conditional

probabilities is beneficial due to the symmetry of P (x|ϕ), resulting in

⟨X(ϕ, T )⟩ =
N

2

[
P
(
x = N

2
|ϕ
)
− P

(
x = −N

2
|ϕ
)]

= Ne−
Γ+γ+γcN

2
NT sin

(
θN
2

)
cos
(
θN
2

)
sin(Nϕ).

(E.186)

In contrast to the parity-GHZ protocol and heralded-GHZ protocol, this signal is

anti-symmetric. The slope of the signal is given by

∂ϕ ⟨X(ϕ, T )⟩ = N2e−
Γ+γ+γcN

2
NT sin

(
θN
2

)
cos
(
θN
2

)
cos(Nϕ), (E.187)

which is maximized for the optimal working point ϕ0 = 0.

Estimator— The flag estimator for the heralded-uGHZ protocol is given by

ϕest(x) =





± e
Γ+γ+γcN

2 NT

2N sin

(
θN
2

)
cos

(
θN
2

) for x = ±N
2

0 else.

(E.188)

Phase estimation uncertainty— The phase estimation uncertainty at the opti-

mal working point thus reads

(∆ϕheralded−uGHZ(T ))2 =
N2

4

P
(
x = +N

2
|ϕ0

)
+ P

(
x = −N

2
|ϕ0

)

(∂ϕ ⟨X(ϕ, T )⟩ |ϕ=ϕ0)
2 (E.189)

=
e(Γ+γ+γcN)NT

4N2

sin2
(
θN
2

)
+ cos2

(
θN
2

) [
e−NΓT +

(
1 − e−ΓT

)N]

sin2
(
θN
2

)
cos2

(
θN
2

)

(E.190)

=
e(Γ+γ+γcN)NT

4N2

[
1

cos2
(
θN
2

) +
e−NΓT +

(
1 − e−ΓT

)N

sin2
(
θN
2

)
]
.

(E.191)



252 Appendix E. Calculations for protocols in local frequency metrology

QCRB— The QCRB for the uGHZ state can be evaluated analogously to the GHZ

state. With modified coefficients

a = cos2
(
θN
2

)
e−NΓT (E.192)

b = −iN+E+1e−
Γ+γ+γcN

2
NT sin

(
θN
2

)
cos
(
θN
2

)
e−iϕN (E.193)

c = sin2
(
θN
2

)
+ cos2

(
θN
2

) (
1 − e−ΓT

)N
, (E.194)

the QCRB of the state ρin(ϕ, T ) equals Eq. (E.191) and thus, the heralded-uGHZ

protocol saturates the QCRB for arbitrary rotation angles θ.

E.8.2 Optimal uGHZ state

Optimal rotation angle— Based on the phase estimation uncertainty for a gen-

eral uGHZ state with arbitrary θ, we can determine the optimal rotation angle θopt.

Differentiation of the phase estimation uncertainty

∂θ(∆ϕheralded−uGHZ(T ))2 =

− 2
e(Γ+γ+γcN)NT

4N2

N

2

[
− sin

(
θN
2

) 1

cos3
(
θN
2

) + cos
(
θN
2

) e−NΓT +
(
1 − e−ΓT

)N

sin3
(
θN
2

)
]

= −2
e(Γ+γ+γcN)NT

4N2

N

2



− sin4

(
θN
2

)
+ cos4

(
θN
2

) (
e−NΓT +

(
1 − e−ΓT

)N)

sin3
(
θN
2

)
cos3

(
θN
2

)




(E.195)

yields the equation

tan4
(

θoptN

2

)
= e−NΓT +

(
1 − e−ΓT

)N
. (E.196)

Hence, the optimal rotation angle is determined by

θopt =
2

N
arctan

(
4

√
e−NΓT + (1 − e−ΓT )N

)
. (E.197)

Interestingly, the optimal rotation angle is different from the angle that provides an

equal superposition of both maximal Dicke state after the free evolution time. In

particular, θ↑ = 0 < θequal < θopt < θGHZ = π/2N . As discussed in Sec. 3.7.3, the

optimal rotation angle represents a trade-off between compensating for spontaneous

decay by enhancing the weight of the collective excited state and the associated in-

crease in decoherence due to spontaneous decay. Specifically, this trade-off is captured

in Eq. (E.189), where the numerator effectively characterizes the noise, and the de-

nominator represents the signal. In particular, the numerator becomes minimal for θ↑,

while the denominator is maximal for the GHZ state θGHZ. Ultimately, a compromise
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is found with the optimal rotation angle θopt, resulting in a smaller phase estimation

uncertainty than for θequal.

In the following we will re-express all quantities determined above for the optimal

rotation angle using the trigonometric identities

sin2(x) =
tan2(x)

1 + tan2(x)
(E.198)

cos2(x) =
1

1 + tan2(x)
. (E.199)

Initial state—

ρin =

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

|↓⟩⟨↓|⊗N

− iN+E+1

4

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

[
|↓⟩⟨↑|⊗N + |↑⟩⟨↓|⊗N

]

+
1

1 +
√
e−NΓT + (1 − e−ΓT )N

|↑⟩⟨↑|⊗N

(E.200)

P+
in =

1

1 +
√
e−NΓT + (1 − e−ΓT )N

(E.201)

P−
in =

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

(E.202)

Time evolution—

ρin(ϕ, T ) =

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

|↓⟩⟨↓|⊗N

− iN+E+1e−
Γ+γ+γcN

2
NT

4

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

×
[
eiϕN |↓⟩⟨↑|⊗N + e−iϕN |↑⟩⟨↓|⊗N

]

+
1

1 +
√
e−NΓT + (1 − e−ΓT )N

(
e−ΓT |↑⟩⟨↑| +

(
1 − e−ΓT

)
|↓⟩⟨↓|

)⊗N

(E.203)
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P+
in (T ) =

e−NΓT

1 +
√
e−NΓT + (1 − e−ΓT )N

(E.204)

P−
in (T ) =

√
e−NΓT + (1 − e−ΓT )N +

(
1 − e−ΓT

)N

1 +
√
e−NΓT + (1 − e−ΓT )N

(E.205)

Conditional probabilities—

P
(
x = ±N

2
|ϕ
)

=
1

2

√
e−NΓT + (1 − e−ΓT )N + e−NΓT +

(
1 − e−ΓT

)N

1 +
√
e−NΓT + (1 − e−ΓT )N

︸ ︷︷ ︸
=
√

e−NΓT+(1−e−ΓT )N

± e−
Γ+γ+γcN

2
NT

4

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

sin(Nϕ)

=
1

2

√
e−NΓT + (1 − e−ΓT )N

± e−
Γ+γ+γcN

2
NT

4

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

sin(Nϕ)

(E.206)

and

P
(
x = +N

2
−N−|ϕ

)
=

1

2

1

1 +
√
e−NΓT + (1 − e−ΓT )N

(
N

N−

)
(E.207)

×
[
e−ΓT (N−N−)

(
1 − e−ΓT

)N−
+ e−ΓTN−

(
1 − e−ΓT

)N−N−
]

for 1 ≤ N− ≤ N−1. We can also determine the probability of measuring any outcome

other than the maximal ones. This effectively reflects the probability that no phase

information is obtained from the interrogation scheme, which is given by

P
(
x ̸= ±N

2
|ϕ, T

)
= 1 − P

(
x = +N

2
|ϕ, T

)
− P

(
x = −N

2
|ϕ, T

)

= 1 −
√
e−NΓT + (1 − e−ΓT )N .

(E.208)

Signal and slope—

⟨X(ϕ, T )⟩ = Ne−
Γ+γ+γcN

2
NT

4

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

sin(Nϕ) (E.209)
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∂ϕ ⟨X(ϕ, T )⟩ = N2e−
Γ+γ+γcN

2
NT

4

√
e−NΓT + (1 − e−ΓT )N

1 +
√
e−NΓT + (1 − e−ΓT )N

cos(Nϕ) (E.210)

Estimator—

ϕest(x) =




± e

Γ+γ+γcN
2 NT

2N

1+
√

e−NΓT+(1−e−ΓT )N

4
√

e−NΓT+(1−e−ΓT )N
for x = ±N

2

0 else
(E.211)

Phase estimation uncertainty—

(∆ϕheralded−uGHZ(T ))2 =
e(Γ+γ+γcN)NT

4N2

[
1 +

√
e−NΓT + (1 − e−ΓT )N

]2
(E.212)

E.8.3 Gain over SQL

As for the heralded-GHZ protocol, the minimization of Eq. (E.212) with respect to the

interrogation time T generally is not analytically possible, but an explicit expression

can be obtained for γ = γc = 0 and when neglecting the term (1 − e−ΓT )N . The

concept is the same as for the heralded-GHZ protocol. However, due to the square

in Eq. (E.212), it is convenient to optimize ∆ωheralded−uGHZ(T ) with respect to the

interrogation time. Differentiation of

∆ωheralded−uGHZ(T ) ≃ e
ΓNT

2 + 1

2N
√
τT

(E.213)

with respect to T leads to the equation

ΓNTmin

2
e

ΓNTmin
2 =

1

2

[
e

ΓNTmin
2 + 1

]

(
ΓNTmin

2
− 1

2

)
e

ΓNTmin
2 =

1

2
(E.214)

(
ΓNTmin

2
− 1

2

)
e

ΓNTmin
2

− 1
2 =

1

2
√
e

and thus

ΓNTmin

2
− 1

2
= W (1/2

√
e) (E.215)

or equivalently

Tmin =
1 + 2W (1/2

√
e)

ΓN
. (E.216)
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Hence, the the minimal frequency estimation uncertainty is given by

∆ωheralded−uGHZ ≃ 1

2N
√
τ

e
ΓNTmin

2 + 1√
Tmin

=
1

2N
√
τ

(
ΓNTmin

2
− 1

2

)
e

ΓNTmin
2 +

(
ΓNTmin

2
− 1

2

)
√
Tmin

(
ΓNTmin

2
− 1

2

)

=

√
Γ

2
√
τN

1
2

+W (1/2
√
e)√

1 +W (1/2
√
e)W (1/2

√
e)

=

√
Γ

τN

√
1 + 2W (1/2

√
e)

4W (1/2
√
e)

= ∆ωSQL

√
1 + 2W (1/2

√
e)

4
√
eW (1/2

√
e)

(E.217)

where we used Eq. (E.214), Eq. (E.215) and Eq. (E.216) in the second step. Con-

sequently, in this regime, the heralded-uGHZ protocol ∆ωheralded−uGHZ achieves a

constant gain of

√
1+2W (1/2

√
e)

4
√
eW (1/2

√
e)

< 1 over the SQL ∆ωSQL, which corresponds to 2.25

dB (cf. Fig. 3.2(b)).

E.9 Spontaneous decay events in GHZ(-like) states

In the preceding appendices, as well as throughout the main text, we have identified

specific expressions in the conditional probabilities and estimation uncertainties with

distinct numbers of spontaneous decay events. At this point, we aim to illustrate

this association. To address this, we apply the framework of quantum trajectories

and quantum jumps, as outlined generally in Sec. 2.3.3, to GHZ(-like) states in the

presence of spontaneous decay. As a reminder, in this framework the time dynamics

represents a mixture

ρin(ϕ, T ) =
∞∑

k=0

pk(T )ρk(T ) (E.218)

of normalized states

ρk(ϕ, T ) =
ρ̃k(ϕ, T )

Tr(ρ̃k(ϕ, T ))
=
ρ̃k(ϕ, T )

pk(ϕ, T )
(E.219)

with

ρ̃k(ϕ, T ) =

∫ T

0

dtk

∫ tk

0

dtk−1 . . .

∫ t2

0

dt1 G(T, tk)JG(tk, tk−1)J . . .G(t2, t1)JG(t1, 0)ρin

(E.220)
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and corresponding probabilities pk(ϕ, T ). In particular, the state ρ̃k(ϕ, T ) results

from k quantum jumps within the interrogation time T and non-unitary dynamics in

between. For spontaneous decay, the master equation can be expressed as

ρ̇ = −iω[Sz, ρ] − Γ

2

N∑

k=1

σ(k)
ee ρ− ρ

Γ

2

N∑

k=1

σ(k)
ee + Γ

N∑

k=1

σ
(k)
− ρσ

(k)
+

= −i
(
ωSz − i

Γ

2

N∑

k=1

σ(k)
ee

)
ρ+ iρ

(
ωSz

Γ

2

N∑

k=1

σ(k)
ee

)
+ Γ

N∑

k=1

σ
(k)
− ρσ

(k)
+

= −iHeffρ+ iρH†
eff + Γ

N∑

k=1

σ
(k)
− ρσ

(k)
+

(E.221)

with effective non-hermitian Hamiltonian

Heff = ωSz − i
Γ

2

N∑

k=1

σ(k)
ee . (E.222)

Hence, the continuous non-unitary time propagation G and the discrete quantum

jumps J , associated with actual decay events, are given by

G(t, t0)ρ = e−iHeff(t−t0)ρeiH
†
eff(t−t0) (E.223)

and

J ρ = Γ
N∑

k=1

σ
(k)
− ρσ

(k)
+ , (E.224)

respectively. Furthermore, at most N quantum jumps can occur, as this scenario

would map the collective excited state | ↑⟩⊗N to the collective ground state | ↓⟩⊗N .

Thus, the mixture in Eq. (E.218) contains N + 1 terms with k ∈ {0, . . . , N}.

To determine the aforementioned expressions associated with a particular number

of spontaneous decay events for GHZ(-like) states, we consider the generic initial state

ρin = ρ(N)
gg |↓⟩⟨↓|⊗N + ρ(N)

ge |↓⟩⟨↑|⊗N + ρ(N)
eg |↑⟩⟨↓|⊗N + ρ(N)

ee |↑⟩⟨↑|⊗N . (E.225)

The dynamics according to the master equation results in the time evolved state

ρin(T ) = ρ(N)
gg |↓⟩⟨↓|⊗N + e−

ΓNT
2

(
ρ(N)
ge e

iNϕ|↓⟩⟨↑|⊗N + ρ(N)
eg e−iNϕ|↑⟩⟨↓|⊗N

)

+ ρ(N)
ee

(
e−ΓT |↑⟩⟨↑| +

[
1 − e−ΓT

]
|↓⟩⟨↓|

)⊗N
.

(E.226)

To identify the individual terms in ρin(ϕ, T ) with a certain number of quantum jumps,

we have to evaluate the expansion described by Eq. (E.218). Of particular interest
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for the GHZ(-like) protocols investigated in this thesis is the ‘no-jump’ term with no

spontaneous decay event, which is given by

ρ̃0(ϕ, T ) = G(T, 0)ρin

= ρ(N)
gg |↓⟩⟨↓|⊗N + e−

ΓNT
2

(
ρ(N)
ge e

iNϕ|↓⟩⟨↑|⊗N + ρ(N)
eg e−iNϕ|↑⟩⟨↓|⊗N

)

+ ρ(N)
ee e−ΓNT |↑⟩⟨↑|⊗N ,

(E.227)

where ϕ = ωT . Consequently, the subspace of the maximal Dicke states in the

time evolved state, which ultimately results in outcomes x = ±N
2

for measurements

of the observable X, is not solely governed by the no-jump dynamics, as the term

ρ
(N)
ee

(
1 − e−ΓT

)N | ↓⟩⟨↓ |⊗N is not captured in ρ̃0(ϕ, T ). The probability of the no-

jump dynamics is determined by

p0(ϕ, T ) = Tr(ρ̃0(ϕ, T )) = ρ(N)
gg + ρ(N)

ee e−ΓNT . (E.228)

Furthermore, it is interesting to note that the population of the collective excited state

decreases, even in the absence of any decay events. This scenario can be understood

through an analogy to Schrödinger’s cat: the initial state represents a superposition

of both the collective ground and excited states. As long as no measurement is

performed, the exact state of the system remains unknown. However, as time elapses

without any decay events occurring, the probability that the system was initially in

the collective ground state increases.

In contrast, terms with k > 0 involve k spontaneous decay events. To understand

the general structure of the terms, we examine ρ̃k(ϕ, T ) exemplarily for k = 1, 2, 3.

With J |↓⟩⟨↓|⊗N = J |↓⟩⟨↑|⊗N = J |↑⟩⟨↓|⊗N = 0, we obtain

ρ̃1(ϕ, T ) =

∫ T

0

dt1G(T, t1)JG(t1, 0)ρin

= ρ(N)
ee Γ

∫ T

0

dt1e
−ΓNt1e−Γ(T−t1)(N−1)

N∑

j1

|j1⟩⟨j1|

= ρ(N)
ee e−ΓT (N−1)Γ

∫ T

0

dt1e
−Γt1

N∑

j1

|j1⟩⟨j1| ,

(E.229)

where we introduced the notation

|j1⟩⟨j1| =
N∑

j1=1

σ
(j1)
− |↑⟩|↑⟩⊗Nσ

(j1)
+ . (E.230)

In more general, we define

|j1, . . . , jk⟩⟨j1, . . . , jk| =
N∑

j1,...,jk=1
pairwise distinct

σ
(jk)
− . . . σ

(j1)
− |↑⟩⟨↑|⊗Nσ

(j1)
+ . . . σ

(jk)
+ . (E.231)
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The second term reads

ρ̃2(ϕ, T ) =

∫ T

0

dt2

∫ t2

0

dt1G(T, t2)JG(t2, t1)JG(t1, 0)ρin

= ρ(N)
ee Γ2

∫ T

0

dt2

∫ t2

0

dt1e
−Γt2(N−1)e−Γt1e−Γ(T−t2)(N−2)

N∑

j1,j2
pairwise distinct

|j1, j2⟩⟨j1, j2|

= ρ(N)
ee e−ΓT (N−2)Γ2

∫ T

0

dt2

∫ t2

0

dt1e
−Γ(t1+t2)

N∑

j1,j2
pairwise distinct

|j1, j2⟩⟨j1, j2| .

(E.232)

This structure continues for the third term as well

ρ̃3(ϕ, T ) =

∫ T

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1G(T, t3)JG(t3, t2)JG(t2, t1)JG(t1, 0)ρin

= ρ(N)
ee Γ3

∫ T

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1e
−Γt3(N−2)e−Γ(t1+t2)e−Γ(T−t3)(N−3)

×
N∑

j1,j2,j3
pairwise distinct

|j1, j2, j3⟩⟨j1, j2, j3|

= ρ(N)
ee e−ΓT (N−3)Γ3

∫ T

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1e
−Γ(t1+t2+t3)

×
N∑

j1,j2,j3
pairwise distinct

|j1, j2, j3⟩⟨j1, j2, j3|

(E.233)

and thus, in general, for arbitrary k > 0 we obtain

ρ̃k(ϕ, T ) =

∫ T

0

dtk

∫ tk

0

dtk−1 . . .

∫ t2

0

dt1 G(T, tk)JG(tk, tk−1)J . . .G(t2, t1)JG(t1, 0)ρin

= ρ(N)
ee e−ΓT (N−k)Γk

∫ T

0

dtk

∫ tk

0

dtk−1 . . .

∫ t2

0

dt1

k∏

j=1

e−Γtj (E.234)

×
N∑

j1,...,jk
pairwise distinct

|j1, . . . , jk⟩⟨j1, . . . , jk| .

It is instructive to examine the summation over the jump terms in more detail. Es-

sentially, it iterates over all distinct permutations with k particles in the ground

state and N − k particles in the excited state. These
(
N
k

)
terms can be expressed in

a compact form using the permutation operator P , since P
(
|↓⟩⟨↓|⊗k ⊗ |↑⟩⟨↑|⊗N−k

)

precisely generates these
(
N
k

)
distinct variations of the state |↓⟩⟨↓|⊗k ⊗ |↑⟩⟨↑|⊗N−k.
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However, each permutation appears with a multiplicity factor k!, since Eq. (E.231)

accounts for the specific sequence in which the k particles decay, even though the

resulting state is the same. Overall, there are k! possible sequences for this order.

To give an example, for N = 3 and k = 2, the state | ↑⟩ ⊗ | ↓⟩ ⊗ | ↓⟩ results from

the two terms σ
(3)
− σ

(2)
− |↑⟩⟨↑|⊗3σ

(2)
+ σ

(3)
+ and σ

(2)
− σ

(3)
− |↑⟩⟨↑|⊗3σ

(3)
+ σ

(2)
+ , both appearing in

Eq. (E.231). Consequently, Eq. (E.231) alternatively can be expressed as

|j1, . . . , jk⟩⟨j1, . . . , jk| = k!P
(
|↓⟩⟨↓|⊗k ⊗ |↑⟩⟨↑|⊗N−k

)
. (E.235)

Hence, the state with k > 0 decay events is given by

ρ̃k(ϕ, T ) = ρ(N)
ee e−ΓT (N−k)k!Γk

×
∫ T

0

dtk

∫ tk

0

dtk−1 . . .

∫ t2

0

dt1

k∏

j=1

e−ΓtjP
(
|↓⟩⟨↓|⊗k ⊗ |↑⟩⟨↑|⊗N−k

)

= ρ(N)
ee e−ΓT (N−k)IkP

(
|↓⟩⟨↓|⊗k ⊗ |↑⟩⟨↑|⊗N−k

)
. (E.236)

As a consequence, we have to evaluate the integrals

Ik = k!Γk

∫ tk+1

0

dtk

∫ tk

0

dtk−1 . . .

∫ t2

0

dt1

k∏

j=1

e−Γtj , (E.237)

where we used the notation tk+1 = T . We conjecture that

Ik =
(
1 − e−Γtk+1

)k
. (E.238)

We prove this by induction. For k = 1, Eq. (E.238) is satisfied, since

I1 = Γ

∫ t2

0

dt1e
−Γt1 = 1 − e−Γt2 . (E.239)

For k 7→ k + 1, we obtain

Ik+1 = (k + 1)!Γk+1

∫ tk+2

0

dtk+1

∫ tk+1

0

dtk

∫ tk

0

dtk−1 . . .

∫ t2

0

dt1

k+1∏

j=1

e−Γtj

= (k + 1)Γ

∫ tk+2

0

dtk+1e
−Γtk+1

(
1 − e−Γtk+1

)k

= (k + 1)

∫ 1−e−Γtk+2

0

dxxk

=
(
1 − e−Γtk+2

)k+1
,

(E.240)

where we used the substitution x = 1 − e−Γtk+1 with dx
dtk+1

= Γe−Γtk+1 . Hence,

Eq. (E.238) holds for arbitrary k.
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Consequently, the terms for k > 0 in the expansion described by Eq. (E.218) are

given by

ρ̃k(ϕ, T ) = ρ(N)
ee e−ΓT (N−k)

(
1 − e−ΓT

)k P
(
|↓⟩⟨↓|⊗k ⊗ |↑⟩⟨↑|⊗N−k

)
. (E.241)

The corresponding probabilities of dynamics with k > 0 jumps are determined by

pk(ϕ, T ) = Tr(ρ̃k(ϕ, T )) = ρ(N)
ee

(
N

k

)
e−ΓT (N−k)

(
1 − e−ΓT

)k
, (E.242)

which are directly connected to the conditional probabilities of the GHZ(-like) pro-

tocols investigated in the previous sections. In particular, the scenario of N spon-

taneous decay events occurs with probability pN(ϕ, T ) = ρ
(N)
ee

(
1 − e−ΓT

)N
and the

system results to be in the collective ground state |↓⟩⊗N . Therefore, to be precise,

the nonlinear estimator in Eq. (3.79) does not exclusively select the no-jump dynam-

ics, but additionally takes the scenario involving N spontaneous decay events into

account. However, the probability of this event becomes increasingly unlikely with

increasing ensemble size N . In particular, this scenario can be effectively disregarded

already for N ≥ 5, as illustrated in Fig. 3.4(b).

To cross-check the result, we can verify the normalization of the time evolved

state:

N∑

k=0

pk(ϕ, T ) = ρ(N)
gg + ρ(N)

ee

N∑

k=0

(
N

k

)
e−ΓT (N−k)

(
1 − e−ΓT

)k

= ρ(N)
gg + ρ(N)

ee

(
e−ΓT + 1 − e−ΓT

)N
= ρ(N)

gg + ρ(N)
ee = 1,

(E.243)

where we used the binomial theorem.

E.10 Incoherent pumping

In this appendix, we derive the results presented for incoherent pumping and spon-

taneous decay in Sec. 3.10.1. Specifically, we begin in App. E.10.1 by demonstrating

that the terms of the master equation for these two decoherence processes do not

(super-)commute. Subsequently, we provide the simultaneous solution of the master

equation in App. E.10.2. Furthermore, we map the decoherence process to projec-

tive spin measurements in App. E.10.3 and parity measurements in App. E.10.4 to

determine the frequency estimation uncertainty for CSS, SSS and the parity-GHZ

protocol. Finally, we examine the performance of the heralded-(u)GHZ protocols in

App. E.10.5.
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E.10.1 Non-commutativity of the master equation

The dynamics of the system during the Ramsey interrogation time T considering

a unitary phase evolution, spontaneous decay with rate Γ and incoherent pumping

with rate Γ↑ is governed by the master equation Eq. (3.98). As in App. C, we use the

following notation for the distinct terms

Lϕ[ρ] = −iω[Sz, ρ] (E.244)

LΓ[ρ] =
Γ

2

N∑

k=1

2σ
(k)
− ρσ

(k)
+ − σ(k)

ee ρ− ρσ(k)
ee (E.245)

and additionally define

LΓ[ρ] =
Γ↑
2

N∑

k=1

2σ
(k)
+ ρσ

(k)
− − σ(k)

gg ρ− ρσ(k)
gg . (E.246)

Hence, the master equation can be expressed as

ρ̇ = Lϕ[ρ] + LΓ[ρ] + LΓ↑ [ρ]. (E.247)

As for spontaneous decay, the term for incoherent pumping (super-)commutes with

the unitary evolution since

Lϕ[LΓ↑ [ρ]] = −iωΓ↑
4

N∑

j,k=1

[
σ(j)
z , 2σ

(k)
+ ρσ

(k)
− − σ(k)

gg ρ− ρσ(k)
gg

]

= −iωΓ↑
4

N∑

j,k=1

[
σ(j)
z , 2σ

(k)
+ ρσ

(k)
−

]
−
[
σ(j)
z , σ(k)

gg ρ
]
−
[
σ(j)
z , ρσ(k)

gg

]

= −iωΓ↑
4

N∑

j,k=1

2
[
σ(j)
z , σ

(k)
+ ρσ

(k)
−

]
− σ(k)

gg

[
σ(j)
z , ρ

]
−
[
σ(j)
z , σ(k)

gg

]
︸ ︷︷ ︸

=0

ρ (E.248)

− ρ
[
σ(j)
z , σ(k)

gg

]
︸ ︷︷ ︸

=0

−
[
σ(j)
z , ρ

]
σ(k)
gg

= −iωΓ↑
4

N∑

j,k=1

(
2σ

(k)
+

[
σ(j)
z , ρ

]
σ
(k)
− − σ(k)

gg

[
σ(j)
z , ρ

]
−
[
σ(j)
z , ρ

]
σ(k)
gg

)
,

where we used
[
σ(j)
z , σ

(k)
+ ρσ

(k)
−

]
= σ

(k)
+

[
σ(j)
z , ρ

]
σ
(k)
− + σ

(k)
+ ρ

[
σ(j)
z , σ

(k)
−

]

︸ ︷︷ ︸
=−2δjkσ

(k)
−

+
[
σ(j)
z , σ

(k)
+

]

︸ ︷︷ ︸
=2δjkσ

(k)
+

ρσ
(k)
−

= σ
(k)
+

[
σ(j)
z , ρ

]
σ
(k)
− ,

(E.249)
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and

LΓ[Lϕ[ρ]] = −iωΓ

4

N∑

j,k=1

(
2σ

(k)
+

[
σ(j)
z , ρ

]
σ
(k)
− − σ(k)

gg

[
σ(j)
z , ρ

]
−
[
σ(j)
z , ρ

]
σ(k)
gg

)
. (E.250)

In contrast, however, the terms for spontaneous decay and incoherent pumping do

not (super-)commute. Evaluating LΓ[LΓ↑ [ρ]] and LΓ↑ [LΓ[ρ]], we focus on the terms

for a single particle, as commutation for distinct particles is trivially satisfied. Hence,

on the one hand for LΓ[LΓ↑ [ρ]] we obtain

4σ
(k)
+ σ

(k)
−︸ ︷︷ ︸

=σ
(k)
ee

ρ σ
(k)
+ σ

(k)
−︸ ︷︷ ︸

=σ
(k)
ee

−2σ
(k)
+ σ(k)

ee︸ ︷︷ ︸
=0

ρσ
(k)
− − 2σ

(k)
+ ρ σ(k)

ee σ
(k)
−︸ ︷︷ ︸

=0

−2σ(k)
gg σ

(k)
−︸ ︷︷ ︸

=σ
(k)
−

ρσ
(k)
+

+ σ(k)
gg σ

(k)
ee︸ ︷︷ ︸

=0

ρ+ σ(k)
gg ρσ

(k)
ee − 2σ

(k)
− ρ σ

(k)
+ σ(k)

gg︸ ︷︷ ︸
=σ

(k)
+

+σ(k)
ee ρσ

(k)
gg + ρ σ(k)

ee σ
(k)
gg︸ ︷︷ ︸

=0

(E.251)

and analogously for LΓ↑ [LΓ[ρ]]

4σ
(k)
− σ

(k)
+︸ ︷︷ ︸

=σ
(k)
gg

ρ σ
(k)
− σ

(k)
+︸ ︷︷ ︸

=σ
(k)
gg

−2σ
(k)
− σ(k)

gg︸ ︷︷ ︸
=0

ρσ
(k)
+ − 2σ

(k)
− ρ σ(k)

gg σ
(k)
+︸ ︷︷ ︸

=0

−2σ(k)
ee σ

(k)
+︸ ︷︷ ︸

=σ
(k)
+

ρσ
(k)
−

+ σ(k)
ee σ

(k)
gg︸ ︷︷ ︸

=0

ρ+ σ(k)
ee ρσ

(k)
gg − 2σ

(k)
+ ρ σ

(k)
− σ(k)

ee︸ ︷︷ ︸
=σ

(k)
−

+σ(k)
gg ρσ

(k)
ee + ρ σ(k)

gg σ
(k)
ee︸ ︷︷ ︸

=0

.
(E.252)

Consequently, the (super-)commutator does not vanish since

[LΓ↑ ,LΓ][ρ] =
ΓΓ↑

4

N∑

k=1

4σ(k)
ee ρσ

(k)
ee + 4σ(k)

gg ρσ
(k)
gg − 4σ

(k)
− ρσ

(k)
+ − 4σ

(k)
+ ρσ

(k)
− ̸= 0 (E.253)

and thus, the master equation has to be solved simultaneously for spontaneous decay

and incoherent pumping.

E.10.2 Solution of the master equation

For a single particle, the master equation for spontaneous decay and incoherent pump-

ing is given by

ρ̇ =
Γ

2
(2σ−ρσ+ − σeeρ− ρσee) +

Γ↑
2

(2σ+ρσ− − σggρ− ρσgg) . (E.254)

Hence, the time evolution for the matrix elements is determined by

ρ̇ee = −Γρee + Γ↑ρgg (E.255)

ρ̇eg = −Γ + Γ↑
2

ρeg (E.256)

ρ̇ge = −Γ + Γ↑
2

ρge (E.257)

ρ̇gg = Γρee − Γ↑ρgg. (E.258)
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While the coherences can be directly integrated, the coupled differential equations for

the populations can be solved using standard techniques, finally resulting in

ρee(t) =
1

Γ + Γ↑
ρee(0)

[
Γe−(Γ+Γ↑)t + Γ↑

]
+

Γ↑
Γ + Γ↑

ρgg(0)
[
1 − e−(Γ+Γ↑)t

]
(E.259)

ρeg(t) = ρeg(0)e−
Γ+Γ↑

2
t (E.260)

ρge(t) = ρge(0)e−
Γ+Γ↑

2
t (E.261)

ρgg(t) =
Γ

Γ + Γ↑
ρee(0)

[
1 − e−(Γ+Γ↑)t

]
+

1

Γ + Γ↑
ρgg(0)

[
Γ + Γ↑e

−(Γ+Γ↑)t
]
. (E.262)

E.10.3 Projective spin measurements

Following App. E.1.1, we map the decoherence process from the initial state to the

observable X by defining the adjoint Lindblad (super-)operator

L†
Γ↑ [X] =

Γ↑
2

N∑

k=1

2σ
(k)
− ρσ

(k)
+ − σ(k)

gg X −Xσ(k)
gg . (E.263)

As before, we consider a measurement of Sy and thus have to determine

L†
Γ↑ [Sy] =

Γ↑
2

N∑

k=1

2σ
(k)
− Syσ

(k)
+ − σ(k)

gg Sy − Syσ
(k)
gg

=
Γ↑
4

N∑

j,k=1

(
2σ

(k)
− σ(j)

y σ
(k)
+ − σ(k)

gg σ
(j)
y − σ(j)

y σ(k)
gg

)
.

(E.264)

Again, only the terms with j = k contribute since σ−σ+ = σgg. Using σ−σy =

−i(σ−σ+ − σ−σ−) = −iσgg, σggσ+ = 0, σggσy = −i(σggσ+ − σggσ−) = iσ− and

σyσgg = −iσ+, we obtain

L†
Γ[Sy] =

Γ

4

N∑

k=1

(
2σ

(k)
− σ(k)

y σ
(k)
+ − σ(k)

gg σ
(k)
y − σ(k)

y σ(k)
gg

)

= −Γ

4

N∑

k=1

(−i)
(
σ
(k)
+ − σ

(k)
−

)
= −Γ↑

4

N∑

k=1

σ(k)
y = −Γ↑

2
Sy.

(E.265)

Additionally taking spontaneous decay into account (cf. App. E.1.1), the differential

equation for the first moment is given by

∂t ⟨Sy(ϕ, t)⟩ = Tr
(
L†

Γ[Sy]ρ(ϕ)
)

+ Tr
(
L†

Γ↑ [Sy]ρ(ϕ)
)

= −Γ + Γ↑
2

⟨Sy(ϕ, t)⟩ (E.266)

with solution

⟨Sy(ϕ, T )⟩ = e−
Γ+Γ↑

2
T ⟨Sy(ϕ)⟩ . (E.267)
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For the second moment, we proceed analogously.

L†
Γ↑ [S2

y ] =
1

4

N∑

j,k,l=1

L†(k)
Γ↑ [σ(j)

y σ(l)
y ]

=
1

4

∑

k

L†(k)
Γ↑ [σ(k)

y σ(k)
y︸ ︷︷ ︸

=1(k)

] +
1

4

∑

k ̸=j

L†(k)
Γ↑ [σ(j)

y σ(k)
y ] +

1

4

∑

k ̸=l

L†(k)
Γ↑ [σ(k)

y σ(l)
y ]

+
1

4

N∑

j ̸=k,k ̸=l,j ̸=l

L†(k)
Γ↑ [σ(j)

y σ(l)
y ]

(E.268)

The first and last term vanish, since the corresponding operators commute with the

terms of the Lindblad (super-)operator. The second and third expression are identical

apart from a relabeling of the indices j ↔ l. Hence,

LΓ↑ [S2
y ] =

1

2

∑

k ̸=j

L†(k)
Γ↑ [σ(k)

y σ(j)
y ]

=
1

2

∑

k ̸=j

σ(j)
y L†(k)

Γ↑ [σ(k)
y ]

︸ ︷︷ ︸
=−Γ↑

2
σ
(k)
y

= −Γ↑
4

∑

k ̸=j

σ(j)
y σ(k)

y .

(E.269)

Explicitly expanding S2
y according to

S2
y =

1

4

∑

j,k

σ(j)
y σ(k)

y =
1

4

∑

k

σ(k)
y σ(k)

y︸ ︷︷ ︸
=1(k)

+
1

4

∑

j ̸=k

σ(j)
y σ(k)

y , (E.270)

which is equivalent to

1

4

∑

j ̸=k

σ(j)
y σ(k)

y = S2
y −

N

4
1, (E.271)

yielding

L†
Γ↑ [S2

y ] = −Γ↑S
2
y +

N

4
Γ1. (E.272)

As a result, the differential equation for the second moment is given by

∂t
〈
S2
y(ϕ, t)

〉
= Tr

(
L†

Γ[S2
y ]ρ(ϕ)

)
+ Tr

(
L†

Γ↑ [S2
y ]ρ(ϕ)

)

= −(Γ + Γ↑)
〈
S2
y(ϕ, t)

〉
+
N

4
(Γ + Γ↑).

(E.273)
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Therefore, we obtain

〈
S2
y(ϕ, T )

〉
=
N

4

[
1 − e−(Γ+Γ↑)T

]
+ e−(Γ+Γ↑)T

〈
S2
y((ϕ)

〉
. (E.274)

Consequently, incoherent pumping has the same effect on projective spin measure-

ments as spontaneous decay and individual dephasing. Ultimately, the phase estima-

tion uncertainty reads

(∆ϕ(T ))2 =
N
4

[
e(Γ+Γ↑)T − 1

]
+ (∆Sy)

2

⟨Sx⟩2
, (E.275)

where the expectation value ⟨Sx⟩ and variance (∆Sy)
2 depend on the specific initial

state. In particular, for CSS we obtain

(∆ϕCSS(T ))2 =
e(Γ+Γ↑)T

N
(E.276)

TCSS =
1

Γ + Γ↑
(E.277)

(∆ωCSS)2 =
e(Γ + Γ↑)

τN
. (E.278)

As argued in the main text, this result represents the standard quantum limit (SQL).

E.10.4 Parity measurement

We can proceed analogously for the parity measurement Π = (−1)Nσ⊗N
x . With

σ−σx = σgg, σggσ+ = 0, σggσx = σ− and σxσgg = σ+, we obtain

L†
Γ↑ [Π] = (−1)N

Γ↑
2

N∑

k=1

2σ
(k)
− σ⊗N

x σ
(k)
+ − σ(k)

gg σ
⊗N
x − σ⊗N

x σ(k)
gg

= (−1)N
Γ↑
2

N∑

k=1

−σ⊗k−1
x ⊗ σ

(k)
− ⊗ σ⊗N−k

x − σ⊗k−1
x ⊗ σ

(k)
+ ⊗ σ⊗N−k

x

= −(−1)N
Γ↑N

2
σ⊗N
x = −Γ↑N

2
Π.

(E.279)

Consequently, incoherent pumping also has the same effect as spontaneous decay

and individual dephasing with regard to parity measurements, resulting in the phase

estimation uncertainty

(∆ϕ(T ))2 =
e(Γ+Γ↑)Nt − ⟨Π(ϕ)⟩2

(∂ϕ ⟨Π(ϕ)⟩ϕ)2

∣∣∣
ϕ=ϕ0

. (E.280)



E.10. Incoherent pumping 267

For a GHZ state, we finally determine

(∆ϕparity−GHZ(T ))2 =
e(Γ+Γ↑)NT

N2
(E.281)

Tparity−GHZ =
1

N

1

Γ + Γ↑
(E.282)

(∆ωparity−GHZ)2 =
(Γ + Γ↑)e

Nτ
. (E.283)

This minimal frequency estimation uncertainty is equivalent to the SQL, however it

is achieved at a N -times shorter interrogation time.

E.10.5 Heralded-(u)GHZ protocol

For the protocols with GHZ(-like) states, we consider the initial state

ρin = ρ(N)
gg |↓⟩⟨↓|⊗N + ρ(N)

eg

[
|↓⟩⟨↑|⊗N + |↑⟩⟨↓|⊗N

]
+ ρ(N)

ee |↑⟩⟨↑|⊗N , (E.284)

where we assume that ρ
(N)
eg = ρ

(N)
ge . The time evolved state is given by

ρin(ϕ, T ) =
ρ
(N)
gg

Γ + Γ↑

([
Γ + Γ↑e

−(Γ+Γ↑)T
]
|↓⟩⟨↓| + Γ↑

[
1 − e−(Γ+Γ↑)T

]
|↑⟩⟨↑|

)⊗N

+ ρ(N)
eg e−

Γ+Γ↑
2

T
[
eiNϕ|↓⟩⟨↑|⊗N + e−iNϕ|↑⟩⟨↓|⊗N

]
(E.285)

+
ρ
(N)
ee

Γ + Γ↑

([
Γe−(Γ+Γ↑)NT + Γ↑

]
|↑⟩⟨↑| + Γ

[
1 − e−(Γ+Γ↑)T

]
|↓⟩⟨↓|

)⊗N
.
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Application of the measurement transformation U †
GHZ results in the final state

ρfin(ϕ, T ) =
ρ
(N)
gg

2

1

Γ + Γ↑

{
([

Γ + Γ↑e
−(Γ+Γ↑)T

]
|↓⟩⟨↓| + Γ↑

[
1 − e−(Γ+Γ↑)T

]
|↑⟩⟨↑|

)⊗N

+ (−i)N+E
([

Γ + Γ↑e
−(Γ+Γ↑)T

]
|↑⟩⟨↓| + Γ↑

[
1 − e−(Γ+Γ↑)T

]
|↓⟩⟨↑|

)⊗N

+ iN+E
([

Γ + Γ↑e
−(Γ+Γ↑)T

]
|↓⟩⟨↑| + Γ↑

[
1 − e−(Γ+Γ↑)T

]
|↑⟩⟨↓|

)⊗N

+
([

Γ + Γ↑e
−(Γ+Γ↑)T

]
|↑⟩⟨↑| + Γ↑

[
1 − e−(Γ+Γ↑)T

]
|↓⟩⟨↓|

)⊗N

}

+
ρ
(N)
eg

2
e−

Γ+Γ↑
2

NT

×
[
eiNϕ

{
|↓⟩⟨↑|⊗N + (−i)N+E|↑⟩⟨↑|⊗N + iN+E|↓⟩⟨↓|⊗N + |↑⟩⟨↓|⊗N

}

+ e−iNϕ
{
|↑⟩⟨↓|⊗N + (−i)N+E|↓⟩⟨↓|⊗N + iN+E|↑⟩⟨↑|⊗N + |↓⟩⟨↑|⊗N

}]

+
ρ
(N)
ee

2

1

Γ + Γ↑

{
([

Γe−(Γ+Γ↑)T + Γ↑
]
|↑⟩⟨↑| + Γ

[
1 − e−(Γ+Γ↑)T

]
|↓⟩⟨↓|

)⊗N

+ (−i)N+E
([

Γe−(Γ+Γ↑)T + Γ↑
]
|↓⟩⟨↑| + Γ

[
1 − e−(Γ+Γ↑)T

]
|↑⟩⟨↓|

)⊗N

+ iN+E
([

Γe−(Γ+Γ↑)T + Γ↑
]
|↑⟩⟨↓| + Γ

[
1 − e−(Γ+Γ↑)T

]
|↓⟩⟨↑|

)⊗N

+
([

Γe−(Γ+Γ↑)T + Γ↑
]
|↓⟩⟨↓| + Γ

[
1 − e−(Γ+Γ↑)T

]
|↑⟩⟨↑|

)⊗N

}
. (E.286)

From the final state, we can directly read off the conditional probabilities. In partic-

ular, only the conditional probabilities for the maximal Dicke states are required.

P
(
x = ±N

2
|ϕ
)

=
ρ
(N)
gg

2

1

(Γ + Γ↑)N

[(
Γ + Γ↑e

−(Γ+Γ↑)T
)N

+ ΓN
↑
(
1 − e−(Γ+Γ↑)T

)N]

+
ρ
(N)
eg

2
e−

Γ+Γ↑
2

NT
[
eiNϕ(∓i)N+E + e−iNϕ(±i)N+E

]
(E.287)

+
ρ
(N)
ee

2

1

(Γ + Γ↑)N

[(
Γe−(Γ+Γ↑)T + Γ↑

)N
+ ΓN

(
1 − e−(Γ+Γ↑)T

)N]

Since N + E is odd, this can be expressed as

P
(
x = ±N

2
|ϕ
)

=
ρ
(N)
gg

2

1

(Γ + Γ↑)N

[(
Γ + Γ↑e

−(Γ+Γ↑)T
)N

+ ΓN
↑
(
1 − e−(Γ+Γ↑)T

)N]

+
ρ
(N)
ee

2

1

(Γ + Γ↑)N

[(
Γe−(Γ+Γ↑)T + Γ↑

)N
+ ΓN

(
1 − e−(Γ+Γ↑)T

)N]

∓ 2iN+E+1ρ
(N)
eg

2
e−

Γ+Γ↑
2

NT sin(Nϕ). (E.288)
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Thus, the signal is determined by

⟨X(ϕ, T )⟩ =
N

2

[
P
(
x = N

2
|ϕ
)
− P

(
x = −N

2
|ϕ
)]

= −4iN+E+1N

2

ρ
(N)
eg

2
e−

Γ+Γ↑
2

NT sin(Nϕ)

= −iN+E+1Nρ(N)
eg e−

Γ+Γ↑
2

T sin(Nϕ)

(E.289)

and the slope is given by

∂ϕ ⟨X(ϕ, T )⟩ = −iN+E+1N2ρ(N)
eg e−

Γ+Γ↑
2

NT cos(Nϕ), (E.290)

which is maximized for the optimal working point ϕ0 = 0. Ultimately, the phase

estimation uncertainty is obtained

(∆ϕ(T ))2 =
N2

4

P
(
x = +N

2
|ϕ
)

+ P
(
x = −N

2
|ϕ
)

|∂ϕ ⟨X(ϕ, T )⟩ |2
∣∣∣
ϕ=ϕ0

=
e(Γ+Γ↑)NT

4N2(ρ
(N)
eg )2

1

(Γ + Γ↑)N

{
ρ(N)
gg

[(
Γ + Γ↑e

−(Γ+Γ↑)T
)N

+ ΓN
↑
(
1 − e−(Γ+Γ↑)T

)N]

+ ρ(N)
ee

[(
Γe−(Γ+Γ↑)T + Γ↑

)N
+ ΓN

(
1 − e−(Γ+Γ↑)T

)N]}
. (E.291)

Heralded-GHZ protocol— For the GHZ state, the matrix elements of the initial

state are given by ρ
(N)
gg = ρ

(N)
ee = ρ

(N)
eg = 1

2
and thus, the phase estimation uncertainty

reads

(∆ϕheralded−GHZ(T ))2 =
e(Γ+Γ↑)NT

2N2

1

(Γ + Γ↑)N

[ (
Γ + Γ↑e

−(Γ+Γ↑)T
)N

(E.292)

+
(
Γe−(Γ+Γ↑)T + Γ↑

)N
+ (ΓN + ΓN

↑ )
(
1 − e−(Γ+Γ↑)T

)N ]
.

For Γ↑ = 0, we reproduce the result without incoherent pumping, as given by

Eq. (E.164). Furthermore, for Γ = 0, we obtain the analogous result with Γ↑ re-

placing Γ, which is further explained in the main text (cf. Sec. 3.10.1).

Heralded-uGHZ protocol— According to Eq. (E.175), the matrix elements for

the uGHZ state are given by ρ
(N)
gg = sin2

(
θN
2

)
, ρ

(N)
ee = cos2

(
θN
2

)
and ρ

(N)
ge = ρ

(N)
eg =
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−iN+E+1 sin
(
θN
2

)
cos
(
θN
2

)
. Hence, the phase estimation uncertainty is determined by

(∆ϕ(T ))2 =
e(Γ+Γ↑)NT

4N2 sin2
(
θN
2

)
cos2

(
θN
2

) 1

(Γ + Γ↑)N

×
{

sin2
(
θN
2

) [(
Γ + Γ↑e

−(Γ+Γ↑)T
)N

+ ΓN
↑
(
1 − e−(Γ+Γ↑)T

)N]

+ cos2
(
θN
2

) [(
Γe−(Γ+Γ↑)T + Γ↑

)N
+ ΓN

(
1 − e−(Γ+Γ↑)T

)N]}

=
e(Γ+Γ↑)NT

4N2

1

(Γ + Γ↑)N

×
{ 1

cos2
(
θN
2

)
[(

Γ + Γ↑e
−(Γ+Γ↑)T

)N
+ ΓN

↑
(
1 − e−(Γ+Γ↑)T

)N]

+
1

sin2
(
θN
2

)
[(

Γe−(Γ+Γ↑)T + Γ↑
)N

+ ΓN
(
1 − e−(Γ+Γ↑)T

)N]}
.

(E.293)

As before, the optimal rotation angle θopt can be evaluated analytically to read

θopt =
2

N
arctan


 4

√√√√
(
Γe−(Γ+Γ↑)T + Γ↑

)N
+ ΓN

(
1 − e−(Γ+Γ↑)T

)N
(
Γ + Γ↑e−(Γ+Γ↑)T

)N
+ ΓN

↑
(
1 − e−(Γ+Γ↑)T

)N


 . (E.294)

Using the trigonometric identities

sin2(x) =
tan2(x)

1 + tan2(x)
(E.295)

cos2(x) =
1

1 + tan2(x)
(E.296)

and rewriting θopt = 2
N

arctan

(
4

√
β
α

)
, with

α =
(
Γ + Γ↑e

−(Γ+Γ↑)T
)N

+ ΓN
↑
(
1 − e−(Γ+Γ↑)T

)N
(E.297)

β =
(
Γe−(Γ+Γ↑)T + Γ↑

)N
+ ΓN

(
1 − e−(Γ+Γ↑)T

)N
, (E.298)

we can express the phase estimation uncertainty as

(∆ϕ(T ))2 =
e(Γ+Γ↑)NT

4N2

1

(Γ + Γ↑)N

[
1 + tan2

(
θoptN

2

)]

α +

β

tan2
(

θoptN

2

)




=
e(Γ+Γ↑)NT

4N2

1

(Γ + Γ↑)N

[
1 +

√
β

α

]
α +

β√
β
α




=
e(Γ+Γ↑)NT

4N2

1

(Γ + Γ↑)N
α

[
1 +

√
β

α

]2
.

(E.299)
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Ultimately, we obtain

(∆ϕ(T ))2 =
e(Γ+Γ↑)NT

4N2

(
Γ + Γ↑e−(Γ+Γ↑)T

)N
+ ΓN

↑
(
1 − e−(Γ+Γ↑)T

)N

(Γ + Γ↑)N

×


1 +

√√√√
(
Γe−(Γ+Γ↑)T + Γ↑

)N
+ ΓN

(
1 − e−(Γ+Γ↑)T

)N
(
Γ + Γ↑e−(Γ+Γ↑)T

)N
+ ΓN

↑
(
1 − e−(Γ+Γ↑)T

)N




2

.

Again, for Γ↑ = 0, we reproduce the result without incoherent pumping, as determined

by Eq. (E.212). Although not directly apparent, for Γ = 0, we also obtain the

analogous result with Γ↑ replacing Γ, as argued in the main text (cf. Sec. 3.10.1).

E.11 Spontaneous decay events as erasure errors

In the following, we derive the results presented in Sec. 3.10.2. Specifically, we apply

the framework of quantum trajectories (cf. Sec. 3.7.4) to CSS in the presence of

spontaneous decay in App. E.11.1. Furthermore, we convert quantum jumps into

erasure errors and determine the frequency estimation uncertainty in App. E.11.2,

following the fundamental approach introduced in Ref. [190].

E.11.1 Spontaneous decay events in CSS

Since the individual particles in a CSS are independent and identical, it is sufficient

to study the dynamics of a single particle. Starting from the initial state

ρ
(1)
CSS =

1

2
[|↓⟩⟨↓| + |↓⟩⟨↑| + |↑⟩⟨↓| + |↑⟩⟨↑|] , (E.300)

the mixture after free evolution time T consists of two terms, reflecting either the

absence of any spontaneous decay events or the occurrence of exactly one. With the

continuous non-unitary evolution G and discrete jumps J , as defined in App. E.9, we

obtain

ρ̃
(1)
0 (ϕ, T ) = G(T, 0)ρ

(1)
CSS

=
1

2

[
|↓⟩⟨↓| + e−

ΓT
2

(
eiϕ |↓⟩⟨↑| + e−iϕ |↑⟩⟨↓|

)
+ e−ΓT |↑⟩⟨↑|

]
(E.301)

p
(1)
0 (ϕ, T ) =

1

2

[
1 + e−ΓT

]
(E.302)

ρ
(1)
0 (ϕ, T ) =

1

1 + e−ΓT

[
|↓⟩⟨↓| + e−

ΓT
2

(
eiϕ |↓⟩⟨↑| + e−iϕ |↑⟩⟨↓|

)
+ e−ΓT |↑⟩⟨↑|

]
(E.303)
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and

ρ̃
(1)
1 (ϕ, T ) =

∫ T

0

dt1G(T, t1)JG(t1, 0)ρ
(1)
CSS

=
1

2
Γ

∫ T

0

dt1e
−Γt1 |↓⟩⟨↓| (E.304)

=
1

2

(
1 − e−ΓT

)
|↓⟩⟨↓|

p
(1)
1 (ϕ, T ) =

1

2

[
1 − e−ΓT

]
(E.305)

ρ
(1)
1 (ϕ, T ) = |↓⟩⟨↓|. (E.306)

Consequently, the N -particle CSS after the free evolution time can be expressed as

the mixture given by

ρCSS(ϕ, T ) =
N∑

k=0

pk(ϕ, T )ρk(ϕ, T ) (E.307)

pk(ϕ, T ) =

(
N

k

)[
p
(1)
0 (ϕ, T )

]N−k [
p
(1)
1 (ϕ, T )

]k
(E.308)

=
1

2N

(
N

k

)[
1 + e−ΓT

]N−k [
1 − e−ΓT

]k
(E.309)

ρk(ϕ, T ) =
1(
N
k

)P
([
ρ
(1)
0 (ϕ, T )

]⊗N−k

⊗
[
ρ
(1)
1 (ϕ, T )

]⊗k
)
, (E.310)

where P denotes the permutation operator generating the
(
N
k

)
permutations.

E.11.2 Conversion of spontaneous decay events into erasure
errors

As argued in the main text, we aim to explore the advantages of converting sponta-

neous decay events into erasure errors. In this approach, the particles that decayed –

characterized by the state ρ
(1)
1 – are effectively taken out of the clock space without

perturbing the remaining particles. The corresponding state is given by

ρk(ϕ, T ) =
1(
N
k

)P
([
ρ
(1)
0 (ϕ, T )

]⊗N−k

⊗ |−1⟩⟨−1|⊗k

)
. (E.311)

As the k particles in the state |−1⟩⟨−1| no longer contribute in the Ramsey sequence,

they can be traced out and we effectively obtain

ρk(ϕ, T ) =
[
ρ
(1)
0 (ϕ, T )

]⊗N−k

. (E.312)

Note, however, that ρk(ϕ, T ) now represents a N − k-particle state.
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Using Eq. (E.99) with a = e−ΓT

1+eΓT , c = 1
1+eΓT and b = e−

ΓT
2

1+eΓT e
−iϕ, the QFI of the

state ρ
(1)
0 is determined by

FQ[ρ
(1)
0 (ϕ, T )] =

4e−ΓT

(1 + e−ΓT )2
. (E.313)

Consequently, due to the additivity of the QFI, we obtain

FQ[ρk(ϕ, T )] = (N − k)FQ[ρ
(1)
0 (ϕ, T )] = (N − k)

4e−ΓT

(1 + e−ΓT )2
. (E.314)

In the following, we prove that the QFI is saturated by a projective spin mea-

surement with linear estimator. Applying the second π/2-pulse, given by Rx

(
π
2

)
=

1√
2

(1− iσx), to the state ρ
(1)
0 (ϕ, T ), the final state reads

ρ
(1)
0,f (ϕ, T ) =

1

2

1

1 + e−ΓT

{
|↓⟩⟨↓| − i|↑⟩⟨↓| + i|↓⟩⟨↑| + |↑⟩⟨↑|

+ e−
ΓT
2

(
eiϕ [|↓⟩⟨↑| − i |↑⟩⟨↑| + i |↓⟩⟨↓| + |↑⟩⟨↓|] +

+ e−iϕ [|↑⟩⟨↓| − i |↓⟩⟨↓| + i |↑⟩⟨↑| + |↓⟩⟨↑|]
)

+ e−ΓT [|↑⟩⟨↑| − i |↓⟩⟨↑| + i |↑⟩⟨↓| + |↓⟩⟨↓|]
}
.

(E.315)

Hence, we directly infer the signal

⟨Sz(ϕ, T )⟩ =
1

2
tr
(
σzρ

(1)
0,f (ϕ, T )

)
=

1

2

1

1 + e−ΓT
e−

ΓT
2 sin(ϕ), (E.316)

while the second moment trivially reads ⟨S2
z (ϕ, T )⟩ = 1, since σ2

z = 1. Consequently,

we obtain the phase estimation uncertainty at optimal working point ϕ0 = 0 given by

(∆ϕ(T ))2 =
⟨S2

z (ϕ, T )⟩ − ⟨Sz(ϕ, T )⟩2
(∂ϕ ⟨S2

z (ϕ, T )⟩)2

∣∣∣∣∣
ϕ=ϕ0

=
1

4

(
1 + e−ΓT

)2

e−ΓT
, (E.317)

which saturates the QFI.

Finally, we evaluate the QFI of the state ρCSS(ϕ, T ) within the framework in

which spontaneous decay events have been converted into erasure errors. Utilizing
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the convexity of the QFI, we obtain

FQ[ρCSS(ϕ, T )] ≤
N∑

k=0

pk(ϕ, T )FQ[ρk(ϕ, T )]

=
N∑

k=0

pk(ϕ, T )(N − k)FQ[ρ
(1)
0 (ϕ, T )]

=
4e−ΓT

(1 + e−ΓT )2
1

2N

N∑

k=0

(N − k)

(
N

k

)[
1 + e−ΓT

]N−k [
1 − e−ΓT

]k

=
4e−ΓT

(1 + e−ΓT )2
1

2N

(
N

N∑

k=0

(
N

k

)[
1 + e−ΓT

]N−k [
1 − e−ΓT

]k

−
N∑

k=0

k

(
N

k

)[
1 + e−ΓT

]N−k [
1 − e−ΓT

]k
)

(E.318)

=
4e−ΓT

(1 − e−ΓT )2
N

[
1 − 1

2

(
1 − e−ΓT

)]

=
4e−ΓT

(1 − e−ΓT )2
N

1

2

(
1 + e−ΓT

)

=
2Ne−ΓT

1 + e−ΓT
,

where we used the binomial theorem and
∑N

k=0 k
(
N
k

)
aN−kbk = bN(a + b)N−1 in

Eq. (E.318). Accordingly, the frequency estimation uncertainty is given by

(∆ω(T ))2 ≥ 1 + e−ΓT

2NτTe−ΓT
=
eΓT + 1

2NτT
. (E.319)

This expression has the same structure as the frequency estimation uncertainty of the

heralded-GHZ protocol in the limit where the N -jump contribution is disregarded (cf.

Eq. (E.165)). Hence, the minimal frequency estimation uncertainty can be derived

explicitly and expressed using the Lambert-W function. Differentiation with respect

to T

0
!

= ∂T (∆ω(T ))2 =
1

2Nτ

ΓTeΓT −
(
eΓT + 1

)

T 2
(E.320)

yields the transcendent equation

(ΓTmin − 1)eΓTmin = 1, (E.321)

which is equivalent to

(ΓTmin − 1)eΓTmin−1 =
1

e
. (E.322)
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With the formal solution ΓTmin − 1 = W (1/e), we derive

(∆ωmin)2 ≥ 1

2Nτ

eΓTmin + 1

Tmin

=
1

2Nτ

(ΓTmin − 1)eΓTmin + (ΓTmin − 1)

(ΓTmin − 1)Tmin

=
1

2Nτ

Γ

ΓTmin − 1

=
Γ

2NτW (1/e)

=
(∆ωSQL)2

2eW (1/e)
,

(E.323)

where we used Eq. (E.321) in the second step. Consequently, converting spontaneous

decay events into erasure errors using the CSS results in a constant enhancement

compared to the SQL, which, interestingly, is equivalent to the gain achieved by the

heralded-GHZ protocol (cf. App. E.7).
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F
Derivations of bounds and
estimators in Bayesian phase
estimation

In this appendix, we present a collection of proofs and derivations from the literature,

such as Refs. [68,140,151,161,162,169,200,209,211–221], for the lower bounds on the

BMSE, as defined in Eq. (4.1). Furthermore, we derive explicit expressions for the

linear and optimal Bayesian estimators, as presented in Sec. 4.4.

F.1 Bayesian Cramér-Rao Bound (BCRB)

Assuming standard regularity conditions (cf. Eq. (D.3))

∑

x

dP (x|ϕ)

dϕ
=

d

dϕ

∑

x

P (x|ϕ) = 0 (F.1)

and vanishing of the prior at the boundaries

lim
ϕ→±∞

P(ϕ) = 0, (F.2)

the BCRB reads

(∆ϕ)2 ≥ (∆ϕBCRB)2 = min
ϕest

(∆ϕ)2 =
1

F + I . (F.3)

Here, the measurement contribution is represented by the Fisher information averaged

over the prior distribution

F ≡ F [Λϕ,T [ρin], {Πx}] =

∫
dϕP(ϕ)F [Λϕ,T [ρin], {Πx}]

=

∫
dϕP(ϕ)

∑

x

1

P (x|ϕ)

(
dP (x|ϕ)

dϕ

)2 (F.4)

277
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and

I =

∫
dϕ

1

P(ϕ)

(
dP(ϕ)

dϕ

)2

(F.5)

denotes the information contained in the prior knowledge, given by the Fisher infor-

mation of the prior distribution.

Proof: The proof is based on Refs. [211,212]. By defining the function

f(ϕ, x) =
√

P(ϕ)P (x|ϕ) [ϕ− ϕest(x)] , (F.6)

the BMSE can be expressed as a squared norm

(∆ϕ)2 =

∫
dϕ
∑

x

f 2(ϕ, x). (F.7)

Furthermore, we define

g(ϕ, x) =
1√

P(ϕ)P (x|ϕ)

dP(ϕ)P (x|ϕ)

dϕ
(F.8)

such that

∫
dϕ
∑

x

g2(ϕ, x) =

∫
dϕ
∑

x

1

P(ϕ)P (x|ϕ)

(
P(ϕ)

dP (x|ϕ)

dϕ
+ P (x|ϕ)

dP(ϕ)

dϕ

)2

=

∫
dϕP(ϕ)

∑

x

1

P (x|ϕ)

(
dP (x|ϕ)

dϕ

)2

+

∫
dϕ

1

P(ϕ)

(
dP(ϕ)

dϕ

)2∑

x

P (x|ϕ) + 2

∫
dϕ

dP(ϕ)

dϕ

∑

x

dP (x|ϕ)

dϕ

(F.9)

= F + I.

In the last step, we introduced the average Fisher information F and prior knowledge

I defined in Eq. (F.4) and Eq. (F.5), respectively. Furthermore, the last term in

Eq. (F.9) vanishes as a consequence of the regularity condition Eq. (F.1). Using

partial integration, Eq. (F.2) and normalization of the probability distributions, we

evaluate
∫

dϕ
∑

x

f(ϕ, x)g(ϕ, x) =

∫
dϕ
∑

x

[ϕ− ϕest(x)]
dP(ϕ)P (x|ϕ)

dϕ

=

[∑

x

[ϕ− ϕest(x)]P(ϕ)P (x|ϕ)

]+∞

−∞
−
∫

dϕP(ϕ)
∑

x

P (x|ϕ)

= −1. (F.10)
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Finally, application of the Cauchy-Schwarz inequality yields

(∫
dϕ
∑

x

f(ϕ, x)g(ϕ, x)

)2

≤
(∫

dϕ
∑

x

f 2(ϕ, x)

)(∫
dϕ
∑

x

g2(ϕ, x)

)
(F.11)

which – with the definitions from above – is equivalent to 1 ≤ (∆ϕ)2
[
F + I

]
and

ultimately results in the van Trees inequality Eq. (F.3). □

F.2 Bayesian Quantum Cramér-Rao Bound

(BQCRB)

By restricting the measurements – without loss of optimality – to the class of projection-

valued measures (PVM) Πx = |x⟩⟨x|, with orthonormal eigenstates |x⟩ of the observ-

able X with eigenvalue x, satisfying ⟨x|x′⟩ = δx,x′ , the BQCRB can be expressed

as

(∆ϕBQCRB)2 = (δϕ)2 − Tr
(
ρL2
)
. (F.12)

Here, the double minimization over the measurement {Πx} and estimator ϕest is

combined in a single quantity L =
∑

x Πxϕest(x). The optimal L is determined by

the implicit equation

ρ′ =
1

2
(ρL+ Lρ) , (F.13)

where ρ =
∫

dϕP(ϕ)Λϕ,T [ρin] denotes the average state and ρ′ =
∫

dϕP(ϕ)Λϕ,T [ρin]ϕ.

Proof: The proof follows Ref. [151]. We start by rewriting the BMSE as

(∆ϕ)2 =

∫
dϕP(ϕ)

∑

x

Tr (Λϕ,T [ρin]Πx) [ϕ− ϕest(x)]2

= (δϕ)2 + Tr

(∫
dϕP(ϕ)Λϕ,T [ρin]

∑

x

Πxϕ
2
est(x)

)

− 2 Tr

(∫
dϕP(ϕ)ϕΛϕ,T [ρin]

∑

x

Πxϕest(x)

)

= (δϕ)2 + Tr(ρL2) − 2 Tr(ρ′L1),

(F.14)

where (δϕ)2 represents the variance of the prior distribution, ρ =
∫

dϕP(ϕ)Λϕ,T [ρin]

denotes the average state and ρ′ =
∫

dϕP(ϕ)Λϕ,T [ρin]ϕ. Furthermore, we have com-

bined the measurement {Πx} and estimator ϕest by defining the operators L1 =∑
x Πxϕest(x) and L2 =

∑
x Πxϕ

2
est(x).
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In a first step, following Refs. [151, 161, 213], we demonstrate that – without loss

of optimality – the measurement can be restricted to the class of projection-valued

measures (PVM), i.e. projective von Neumann measurements Πx = |x⟩⟨x|, with

orthonormal eigenstates |x⟩, ⟨x|x′⟩ = δx,x′ , of the observable X with eigenvalue x.

We denote the projective strategy by LPVM
1,2 , where LPVM

1 = L1 =
∑

x ϕest(x) |x⟩⟨x|
effectively corresponds to the eigendecomposition. Based on Eq. (F.14), we have to

show that Tr
(
ρLPVM

2

)
≤ Tr(ρL2) to prove that we do not lose any optimality by

restricting to the projective strategy. Using that L1 is hermitian and Πx ≥ 0, we can

consider the inequality

∑

x

(ϕest(x) − L1)Πx(ϕest(x) − L1) ≥ 0

∑

x

ϕ2
est(x)Πx −

∑

x

ϕest(x)ΠxL1 − L1

∑

x

ϕest(x)Πx + L1

∑

x

ΠxL1 ≥ 0 (F.15)

L2 − L2
1 ≥ 0

L2 ≥ L2
1, (F.16)

where we have identified L1 and L2 in Eq. (F.15) and used the completeness re-

lation
∑

x Πx = 1. However, equality in Eq. (F.16) is achieved specifically for

the projective strategy, since LPVM
2 =

∑
x ϕ

2
est(x) |x⟩⟨x| = (LPVM

1 )2. Therefore,

Tr
(
ρLPVM

2

)
≤ Tr(ρL2) and it is always optimal to choose the measurement to be

projective.

In a second step, we derive the BQCRB Eq. (F.12). Choosing the projective

strategy discussed above and accordingly labeling L = L1 and thus L2 = L2, the

BMSE reads

(∆ϕ)2 = (δϕ)2 + Tr
(
ρL2
)
− 2 Tr(ρ′L). (F.17)

Hence, the task of finding the optimal measurement and estimation reduces to the

optimization of the operator L, containing both. Variation of L according to L 7→
L+ ϵδL with infinitesimal parameter ϵ and hermitian δL yields

(∆ϕ)2 = (δϕ)2 + Tr
(
ρ[L2 + ϵLδL+ ϵδLL+ ϵ2δL2]

)
− 2 Tr(ρ′[L+ ϵδL]). (F.18)

Differentiation with respect to ϵ and evaluation at ϵ = 0 results in

0 = Tr([ρL+ Lρ− 2ρ′]δL). (F.19)

Since Eq. (F.19) must hold for any δL, it implies

ρ′ =
1

2
(Lρ+ ρL) , (F.20)
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reproducing Eq. (F.13). Substituting this expression for ρ′ in Eq. (F.17), we find

(∆ϕ)2 = (δϕ)2 + Tr
(
ρL2
)
− 2 Tr(ρ′L)

= (δϕ)2 + Tr
(
ρL2
)
− Tr

(
ρL2
)
− Tr(LρL)

= (δϕ)2 − Tr
(
ρL2
)
,

(F.21)

which corresponds to the BQCRB Eq. (F.12). □

F.2.1 Unitary phase evolution and Gaussian prior distribu-
tion

Assuming a unitary phase evolution according to Eq. (4.4) and a Gaussian prior

distribution as defined in Eq. (4.5), the BQCRB can be related to the QFI FQ[ρ] of

the average state ρ by

(∆ϕBQCRB)2 = (δϕ)2
[
1 − (δϕ)2FQ[ρ]

]
. (F.22)

Proof: The proof is based on Ref. [214]. The unitary phase evolution according to

Eq. (4.4) corresponds to the von Neumann equation

∂ϕΛϕ,T [ρin] = −i[Sz,Λϕ,T [ρin]]. (F.23)

Hence, we can rewrite ρ′ as

ρ′ =

∫
dϕP(ϕ)ϕΛϕ,T [ρin]

= −(δϕ)2
∫

dϕ (∂ϕP(ϕ))Λϕ,T [ρin]

= −(δϕ)2 [P(ϕ)Λϕ,T [ρin]]+∞
−∞ + (δϕ)2

∫
dϕP(ϕ)∂ϕΛϕ,T [ρin] (F.24)

= −i(δϕ)2
[
Sz,

∫
dϕP(ϕ)Λϕ,T [ρin]

]

= −i(δϕ)2 [Sz, ρ] , (F.25)

where we exploited the property ∂ϕP(ϕ) = −(δϕ)−2ϕP(ϕ) of a Gaussian prior distri-

bution. Furthermore, we used partial integration in the second step and Eq. (F.2) as

well as Eq. (F.23) in Eq. (F.24). With Eq. (F.13) and Eq. (F.25), we obtain

1

2
(Lρ+ ρL) = −i(δϕ)2 [Sz, ρ] . (F.26)

Substituting L := (δϕ)2Llocal, the BQCRB Eq. (F.12) and the implicit equation

Eq. (F.26) become

(∆ϕ)2 = (δϕ)2
[
1 − (δϕ)2 Tr

(
ρL2

local

)]
(F.27)

1

2
(Llocalρ+ ρLlocal) = −i [Sz, ρ] . (F.28)
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Comparison to the QFI approach in local phase estimation (cf. App. D.4) shows

that Llocal defines the symmetric logarithmic derivative (SLD) and thus, Tr(ρL2
local) =

FQ[ρ] corresponds to the quantum Fisher information of the average state ρ, resulting

in Eq. (F.22). □

F.3 Optimal Quantum Interferometer (OQI)

The optimal quantum interferometer (OQI) represents the ultimate lower bound of

the BMSE. However, no general expressions for arbitrary ensemble sizes exist. In

this appendix, we derive the explicit expressions for the specific scenarios discussed

in the main text (cf. Sec. 4.3.3). In particular, we determine the coherence time

limit (CTL) in App. F.3.1. Furthermore, we present an intuitive derivation of the

π-corrected Heisenberg limit (πHL) in App. F.3.2, representing the ultimate lower

bound in the asymptotic limit. Finally, we introduce the concept of the phase operator

based interferometer (POI) in App. F.3.3, which saturates the πHL in the asymptotic

regime.

F.3.1 Coherence time limit (CTL)

In the following, we derive Eq. (4.21). Considering a 2π-periodic quantum channel

with respect to the phase ϕ as described by Eq. (4.4), the OQI allows for unambiguous

phase estimation within the range [−π,+π]. Exceeding this invertible regime, an

estimation error is accumulated which increases with the distance from the primary

Ramsey fringe. In particular, an estimation error of ϵk = (2πk)2 is accumulated if

the phase slips in the region [−(2k+ 1)π,−(2k− 1)π] or [+(2k− 1)π,+(2k+ 1)π] for

k ∈ N. The estimation error associated with these events can be modeled by

(∆ϕOQI
CTL)2 =

∞∑

k=1

ϵkPk, (F.29)

which effectively represents the average of the estimation error ϵk weighted with its

corresponding probability

Pk =

∫ −(2k−1)π

−(2k+1)π

dϕP(ϕ) +

∫ (2k+1)π

(2k−1)π

dϕP(ϕ). (F.30)

Consequently, Eq. (F.29) constitutes an asymptotic limit for broad prior distribu-

tions. In the context of atomic clocks, this regime corresponds to long interrogation

times, where the coherence time of the local oscillator will become relevant and ulti-

mately limits the clock stability. Therefore, we will denote Eq. (4.21) as the coherence
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time limit (CTL) of the OQI. Assuming a Gaussian prior distribution as defined in

Eq. (4.5), the probabilities Pk can be evaluated explicitly to read

Pk = 2

∫ (2k+1)π

(2k−1)π

dϕP(ϕ) = 2

∫ (2k+1)π

0

dϕP(ϕ) − 2

∫ (2k−1)π

0

dϕP(ϕ)

= erf

(
(2k + 1)π√

2δϕ

)
− erf

(
(2k − 1)π√

2δϕ

)
,

(F.31)

where we substituted t = ϕ√
2δϕ

and introduced the error function erf(z) =
∫ z

0
dte−t2 .

In the relevant regime of prior widths considered in Chapter 4, where typically only

the adjacent fringes around ϕ = 0 contribute, the prior distribution P(ϕ) is effec-

tively limited to the region [−3π,+3π]. As a result, the CTL simplifies significantly

compared to the general form in Eq. (F.29), which accounts for contributions from all

Ramsey fringes. Restricting to the error associated with the adjacent fringes around

ϕ = 0, the CTL reduces to

(∆ϕOQI
CTL)2 = 4π2

[∫ −π

−∞
dϕP(ϕ) +

∫ ∞

π

dϕP(ϕ)

]
= 4π2

[
1 −

∫ π

−π

dϕP(ϕ)

]

= 4π2

[
1 − erf

(
π√
2δϕ

)]
.

(F.32)

F.3.2 Asymptotic limit

With increasing ensemble size, the numerical algorithm presented in the main text

becomes computationally challenging. However, in the asymptotic limit (N ≫ 1), an

explicit analytical expression for the OQI can be derived. Assuming unitary phase

evolution as described by Eq. (4.4) and restricting to the invertible range [−π,+π], it

has been shown for arbitrary prior distributions [209,214–216] that the ultimate lower

bound is given by the π-corrected Heisenberg limit (πHL), as defined in Eq. (4.22).

An intuitive derivation for Gaussian prior distributions is given in Ref. [214] and is

reproduced here. Based on Eq. (F.22), the optimization of the BQCRB over all input

probe states ρin is equivalent to optimizing the QFI over all averaged states ρ. This

averaging can be formally associated with a collective dephasing process, where the

dephasing rate is identified with the variance of the prior distribution [151, 214]. By

combining this perspective with the asymptotic result for collective dephasing derived

in Ref. [68], the asymptotic OQI can be expressed as

(∆ϕOQI)
2 N≫1≃ (δϕ)2

[
1 − 1

1 + π2

N2(δϕ)2

]
N≫1≃ (δϕ)2

[
1 −

(
1 − π2

N2(δϕ)2

)]
=

π2

N2
,

(F.33)
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where we used the expansion 1
1+x

x≪1≃ 1 − x. This result is valid for Gaussian prior

distributions with widths δϕ ≪ N , which encompasses all relevant widths in the

asymptotic regime N ≫ 1. It is therefore reasonable to expect that this result

generalizes to arbitrary prior distributions, as the fundamental characteristics of the

estimation problem in this regime remain largely unaffected by the specific shape of

the prior [209,214].

F.3.3 Phase operator based interferometer (POI)

Finally, we aim to identify the protocol that saturates the asymptotic limit of the

OQI. As discussed above, simultaneously determining the optimal measurement, in-

put probe state and estimation strategy is a highly non-trivial problem. However,

assuming a flat prior distribution and a periodic cost function in the interval [−π,+π],

the concept of covariant measurements [162,215] provides an explicit solution for the

optimal measurement operator – the so-called phase operator [140,200,215–221]. The

phase operator Φ is defined as

Φ =

N/2∑

s=−N/2

ϕs |s⟩⟨s|

ϕs =
2πs

N + 1
(F.34)

|s⟩ =
1√
N + 1

N/2∑

M=−N/2

e−iϕsM |M⟩

where ϕs are the eigenvalues with corresponding eigenstates |s⟩, constructed from

the eigenstates |M⟩ of Sz with eigenvalue M and total spin N/2. An interferometer

based on Φ is referred to as phase operator based interferometer (POI). Furthermore,

under these assumptions, the optimal input states in the asymptotic regime (N ≫ 1),

known as sine states [140,200,215–221] and saturating the πHL, can also be explicitly

determined by

|ψΦ⟩ =

√
2

N + 1

N/2∑

M=−N/2

sin

(
π(M + 1/2)

N + 1

)
|M⟩ . (F.35)

However, since the assumptions of a periodic cost function and flat prior distribution

are contrary to the framework introduced in Sec. 4.2, namely a global BMSE with

phases −∞ < ϕ < +∞ and Gaussian prior distributions, these measurements and

states are not necessarily optimal in the approach pursued in Chapter 4. Therefore,

the optimal initial states and measurements must be explicitly evaluated. Never-

theless, it is instructive to investigate the performance of the POI and compare it
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to the standard protocols as well as variational classes discussed in the main text.

Notably, this scenario is contrary to the BQCRB, since the measurement is fixed

by Φ, while we aim to optimize over all initial states. For a fixed prior width, the

optimal state |ψΦ⟩ can be identified by adapting the iterative algorithm presented in

Sec. 4.3.3 and building on methods from Ref. [140]: Starting with an arbitrary initial

state |ψ(0)
in ⟩, such as |ψ(0)

in ⟩ = |s = 0⟩, the optimal Bayesian estimator (cf. Sec. 4.4)

ϕ
(0)
est(s) is computed. Based on ϕ

(0)
est(s), the subsequent input probe state |ψ(1)

in ⟩ in the

iterative algorithm is evaluated by selecting the eigenstate corresponding to the most

negative eigenvalue of the operator
∫

dϕP(ϕ)Λ†
ϕ,T [L2 − 2ϕL] defined in Eq. (4.20).

This ensures that the state |ψ(1)
in ⟩ is optimal for a given measurement and estimator.

This process is repeated until convergence to the optimal state |ψΦ⟩ – tailored to the

framework considered in Chapter 4 – is achieved. Numerical evaluation of this itera-

tive algorithm shows that the POI saturates the OQI in the limit of large ensembles

within the framework of Chapter 4, as discussed in the main text and depicted in

Fig. 4.2(b).

F.4 Estimators

F.4.1 Linear estimator

With the linear estimator defined in Eq. (4.24) by ϕlinear
est (x) = a · x, the BMSE is

expressed as

(∆ϕ)2 = (δϕ)2 − 2a

∫
dϕP(ϕ)ϕ

∑

x

xP (x|ϕ) + a2
∫

dϕP(ϕ)
∑

x

x2P (x|ϕ)

= (δϕ)2 − 2a

∫
dϕP(ϕ)ϕ ⟨X(ϕ)⟩ + a2

∫
dϕP(ϕ)

〈
X2(ϕ)

〉
.

(F.36)

Here, the moments of the observable X are defined by ⟨Xn(ϕ)⟩ =
∑

x x
nP (x|ϕ).

The optimal scaling factor a is determined by minimizing the BMSE. Differentiating

Eq. (F.36) and solving for a yields

a =

∫
dϕP(ϕ)ϕ ⟨X(ϕ)⟩∫
dϕP(ϕ) ⟨X2(ϕ)⟩ . (F.37)

Hence, from Eq. (F.36), the corresponding BMSE is given by Eq. (4.27), i.e.

(∆ϕ)2 = (δϕ)2 −
[∫

dϕP(ϕ)ϕ ⟨X(ϕ)⟩
]2

∫
dϕP(ϕ) ⟨X2(ϕ)⟩ . (F.38)

Due to the linearity of the estimator, the scaling factor and BMSE only depend on the

first and second moments of the observable X, rather than the full statistical model
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P (x|ϕ). This dependence significantly simplifies practical computations, while re-

taining reliable performance in several situations. Nevertheless, the linear estimation

strategy is not optimal in general.

F.4.2 Optimal Bayesian estimator

This derivation follows Ref. [200]. To start with, we expand Eq. (4.3) according to

(∆ϕ)2 =
∑

x

P (x)

[∫
dϕP (ϕ|x)ϕ2 − 2ϕest(x)

∫
dϕP (ϕ|x)ϕ+ ϕ2

est(x)

∫
dϕP (ϕ|x)

]
.

(F.39)

As before, the first term results in the prior variance (δϕ)2, while the last integral

simplifies to unity due to the normalization of the posterior distribution. To minimize

the BMSE, the optimal Bayesian estimator has to minimize the term in the brackets

for each measurement outcome x, since P (x) ≥ 0 and ϕest(x) is independent for

different x. Differentiating and solving for the estimator yields the optimal Bayesian

estimator given in Eq. (4.28), namely ϕopt
est (x) =

∫
dϕP (ϕ|x)ϕ. Thus, the optimal

Bayesian estimator corresponds to the mean posterior phase. With this result, the

BMSE becomes

(∆ϕ)2 = (δϕ)2 −
∑

x

P (x)
(
ϕopt
est (x)

)2
. (F.40)

Equivalently, the BMSE can be expressed in terms of the statistical model P (x|ϕ) and

prior distribution P(ϕ) according to Bayes theorem Eq. (4.2), resulting in Eq. (4.29).

Unlike the linear estimator, the optimal Bayesian estimator as well as the correspond-

ing BMSE depend explicitly on the statistical model, rather than just the first and

second moments of the observable. While this dependence ensures optimality, it also

increases computational complexity.



G
Calculations for protocols in
Bayesian frequency
metrology

In the following, we derive the sensitivities of the CSS, SSS and GHZ protocols

introduced in Sec. 4.6.1.

G.1 Coherent Spin States (CSS)

For a measurement of the collective spin operator Sy and unitary phase evolution

through a rotation around the z-axis, according to Eq. (4.4), the first and second

moments of the observable are given by

⟨X(ϕ)⟩ = ⟨Sy(ϕ)⟩ = ⟨Sy⟩ cos(ϕ) + ⟨Sx⟩ sin(ϕ) (G.1)
〈
X2(ϕ)

〉
=
〈
S2
y(ϕ)

〉
=
〈
S2
y

〉
cos2(ϕ) + ⟨SySx + SxSy⟩ sin(ϕ) cos(ϕ) +

〈
S2
x

〉
sin2(ϕ),

(G.2)

where the expectation values ⟨·⟩ are evaluated with respect to the initial state |ψin⟩
and thus are independent of the phase ϕ. Assuming a Gaussian prior distribution, as

defined in Eq. (4.5), the integrals in Eq. (4.27) become
∫

dϕP(ϕ)ϕ ⟨X(ϕ)⟩ =

∫
dϕP(ϕ)ϕ [⟨Sy⟩ cos(ϕ) + ⟨Sx⟩ sin(ϕ)] = ⟨Sx⟩ (δϕ)2e−(δϕ)2/2

(G.3)∫
dϕP(ϕ)

〈
X2(ϕ)

〉
=

∫
dϕP(ϕ)

[ 〈
S2
y

〉
cos2(ϕ) + ⟨SySx + SxSy⟩ sin(ϕ) cos(ϕ)

+
〈
S2
x

〉
sin2(ϕ)

]

= e−(δϕ)2
[〈
S2
y

〉
cosh

(
(δϕ)2

)
+
〈
S2
x

〉
sinh

(
(δϕ)2

)]
, (G.4)

287
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where terms with odd integrands vanish directly. Thus, the optimal linear scaling

factor, corresponding BMSE and effective measurement uncertainty are given by

a =
⟨Sx⟩ (δϕ)2e(δϕ)

2/2

〈
S2
y

〉
cosh ((δϕ)2) + ⟨S2

x⟩ sinh ((δϕ)2)

(∆ϕ)2 = (δϕ)2

[
1 − (δϕ)2

⟨Sx⟩2〈
S2
y

〉
cosh((δϕ)2) + ⟨S2

x⟩ sinh((δϕ)2)

]
(G.5)

(∆ϕM)2 =

〈
S2
y

〉

⟨Sx⟩2
cosh

(
(δϕ)2

)
+

⟨S2
x⟩

⟨Sx⟩2
sinh

(
(δϕ)2

)
− (δϕ)2.

For the conventional Ramsey protocol, a coherent spin state (CSS) polarized in

x-direction is prepared by a π/2-pulse applied to the collective ground state

|CSS⟩ = Ry

(
−π

2

)
|↓⟩⊗N = |+⟩⊗N =

[
1√
2

(|↓⟩ + |↑⟩)
]⊗N

(G.6)

which represents N uncorrelated atoms, each in an equal superposition of the ground

and excited states. CSS and their properties are discussed in detail in Refs. [115–117],

while a comprehensive overview is provided in Sec. 2.3.7. With expectation values

⟨Sx⟩ =
N

2
, ⟨Sy⟩ = ⟨Sz⟩ = 0,

〈
S2
x

〉
=
N2

4
, (G.7)

〈
S2
y

〉
=
N

4
=
〈
S2
z

〉
, ⟨SxSy⟩ = 0 = ⟨SxSz⟩ , (G.8)

we derive

aCSS =
2e(δϕ)

2/2

cosh((δϕ)2) +N sinh((δϕ)2)
(G.9)

(∆ϕCSS)2 = (δϕ)2
[
1 − (δϕ)2

N

cosh((δϕ)2) +N sinh((δϕ)2)

]
(G.10)

(∆ϕCSS
M )2 =

cosh((δϕ)2)

N
+ sinh

(
(δϕ)2

)
− (δϕ)2. (G.11)

Rewriting the first term, we recover the result from Ref. [92]

(∆ϕCSS
M )2 =

e(δϕ)
2

N
+

(
1 − 1

N

)
sinh

(
(δϕ)2

)
− (δϕ)2. (G.12)

G.2 Spin-Squeezed States (SSS)

The application of an one-axis-twisting (OAT) interaction Tz(µ) = exp
(
−iµ

2
S2
z

)
with

small twisting strength µ to the CSS, defined in Eq. (G.6), generates a spin-squeezed
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state (SSS). To align the minimal spin variance along the y-axis, an additional rotation

Rx(θ) around the x-axis by an angle θ is applied. Thus, the initial state reads

|SSS⟩ = Rx(θ)Tz(µ) |CSS⟩ . (G.13)

These states are introduced and discussed in detail in Ref. [125], while a compre-

hensive overview is provided in Sec. 2.3.9. In comparison to CSS, the SSS differs

primarily in its polarization and spin variances, while other properties remain un-

changed. Hence, the optimal linear scaling factor, BMSE and effective measurement

uncertainty are given by Eq. (G.5) with expectation values

⟨Sx⟩ =
N

2
cosN−1

(
µ
2

)
(G.14)

〈
S2
x

〉
=
N

4

[
N − 1

2
(N − 1)A

]
(G.15)

〈
S2
y

〉
=
N

4

{
1 +

1

4
(N − 1)

[
A−

√
A2 +B2

]}
, (G.16)

where A = 1 − cosN−2(µ) and B = 4 sin
(
µ
2

)
cosN−2

(
µ
2

)
.

G.3 GHZ States

The GHZ state [121] is defined by

|GHZ⟩ =
1√
2

[
|↓⟩⊗N + |↑⟩⊗N

]
, (G.17)

which represents an equal superposition of the collective ground and excited states

and thus, is maximally entangled. After the free evolution, the state reads

|ψϕ⟩ = Rz

(
− π

2N

)
Rz(ϕ) |GHZ⟩ =

1√
2

[
ei

N
2
ϕ−iπ

4 |↓⟩⊗N + e−iN
2
ϕ+iπ

4 |↑⟩⊗N
]
, (G.18)

where the additional rotation Rz

(
− π

2N

)
is applied to shift the optimal working point

to ϕ0 = 0, since the prior is centered around ϕ = 0. Equivalently, the prior distribution

could be shifted by π/2N . The expectation value of the parity Π = (−1)Nσ⊗N
x is

given by

⟨Π(ϕ)⟩ = (−1)N sin(Nϕ). (G.19)

Since σ2
x = 1, the second moment directly yields ⟨Π2(ϕ)⟩ = 1. Hence, the integrals in

Eq. (4.27) become
∫

dϕP(ϕ)ϕ ⟨X(ϕ)⟩ = (−1)N
∫

dϕP(ϕ)ϕ sin(Nϕ) = (−1)NN(δϕ)2e−N2(δϕ)2/2

(G.20)∫
dϕP(ϕ)

〈
X2(ϕ)

〉
= 1. (G.21)
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Consequently, the corresponding optimal linear scaling factor, BMSE and effective

measurement uncertainty are given by

aGHZ = (−1)NN(δϕ)2e−N2(δϕ)2/2 (G.22)

(∆ϕGHZ)2 = (δϕ)2
[
1 −N2(δϕ)2e−N2(δϕ)2

]
(G.23)

(∆ϕGHZ
M )2 =

eN
2(δϕ)2

N2
− (δϕ)2. (G.24)

Due to the binary nature of the parity measurement, the linear estimator is already

optimal and thus saturates the BCRB and coincides with the optimal Bayesian esti-

mator.

However, the parity measurement can also be mimicked by a projective spin mea-

surement and application of the corresponding optimal Bayesian estimator: For N

even, a Ramsey pulse is applied after the free evolution time, implemented by a

rotation of π/2 around the x-axis, resulting in the final state

|ψf⟩ = Rx

(
π
2

)
|ψϕ⟩ =

1√
2

1
√

2
N

[
ei

N
2
ϕ−iπ

4 (|↓⟩ − i|↑⟩)⊗N + e−iN
2
ϕ+iπ

4 (|↑⟩ − i|↓⟩)⊗N
]
.

(G.25)

For N odd, calculations are analogous with final rotation around the y-axis. Finally,

a projective measurement of Sz is performed. Note that the final Ramsey pulse can

equivalently be absorbed in the observable, leading to an effective measurement of

Sy, as for the CSS and SSS protocol. The conditional probabilities are evaluated to

read

P
(
x = +N

2
−N−|ϕ

)
=

1

2N

(
N

N−

)[
1 + (−1)

N
2
+N− sin (Nϕ)

]
(G.26)

where N− denotes the number of atoms in the ground state. Interestingly, the con-

ditional probabilities for N− and N −N− are equal (since N is even), resulting in a

vanishing signal ⟨X(ϕ)⟩ ≡ 0. Nevertheless, with

P
(
x = +N

2
−N−

)
=

∫
dϕP (x|ϕ)P(ϕ) =

1

2N

(
N

N−

)
, (G.27)

the optimal Bayesian estimator is given by

ϕest

(
x = +N

2
−N−

)
=

1

P (x)

∫
dϕP (x|ϕ)P(ϕ)ϕ = (−1)

N
2
+N−N(δϕ)2e−N(δϕ)2/2

(G.28)

and an efficient estimation is possible. Consequently, the optimal estimation strategy

distinguishes between even and odd numbers of atoms in the ground state and thus
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effectively mimics a parity measurement. Note that we performed the calculations

for N even, ensuring that N/2 is integer and consequently (−1)
N
2 ∈ R. Analogous

results are obtained for N odd.

As a final step, we determine the BQCRB for the GHZ state. Using Eq. (G.18),

we find

Λϕ,T [ρin] =
1

2

[
|↓⟩⟨↓|⊗N + eiNϕ|↓⟩⟨↑|⊗N + e−iNϕ|↑⟩⟨↓|⊗N + |↑⟩⟨↑|⊗N

]
, (G.29)

which leads to the average state

ρ =
1

2

[
|↓⟩⟨↓|⊗N + e−N2(δϕ)2/2

(
|↓⟩⟨↑|⊗N + |↑⟩⟨↓|⊗N

)
+ |↑⟩⟨↑|⊗N

]
. (G.30)

Interestingly, Eq. (G.30) is no longer pure due to the averaging. As it effectively

corresponds to a (real) 2x2-matrix, the QFI of ρ can be evaluated analogously to that

of the GHZ state in the local approach (cf. App. E.4). Using Eq. (4.16), the BQCRB

directly follows from

FQ[ρ] = N2e−N2(δϕ)2 (G.31)

and results in the same value as in Eq. (G.23).
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G. Barwood, E. Benkler, M. Bober, M. Borkowski, W. Bowden, R. Ciury lo,
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[53] T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker.

Atomic clocks for geodesy. Reports on Progress in Physics, 81(6):064401, April

2018. URL: http://dx.doi.org/10.1088/1361-6633/aab409, doi:10.1088/

1361-6633/aab409.

[54] J. Grotti, I. Nosske, S. Koller, S. Herbers, H. Denker, L. Timmen, G. Vish-

nyakova, G. Grosche, T. Waterholter, A. Kuhl, S. Koke, E. Benkler,

M. Giunta, L. Maisenbacher, A. Matveev, S. Dörscher, R. Schwarz, A. Al-
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segmented Paul trap with minimized micromotion for an optical multiple-ion

clock. Applied Physics B, 114(1–2):231–241, July 2013. URL: http://dx.doi.

org/10.1007/s00340-013-5580-5, doi:10.1007/s00340-013-5580-5.

[247] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski,

A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin.
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C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti,

E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price,

G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich,
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