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Abstract

Frequency metrology represents a cornerstone of modern precision measurements and
optical atomic clocks, in particular, have emerged as one of the most precise mea-
surement devices. Correlated quantum states and measurements promise further im-
provements in the accuracy of frequency metrology and the stability of atomic clocks
by reducing quantum projection noise below the standard quantum limit imposed by
uncorrelated atoms. However, developing strategies robust under realistic conditions
remains challenging. This thesis addresses this research question by investigating
the trade-off between achieving entanglement-enhanced sensitivity and maintaining
robustness against decoherence processes and noise sources. Specifically, we consider
frequency metrology tailored to single-ensemble clocks, in which the atomic reference
is periodically interrogated utilizing identical Ramsey protocols in each clock cycle. In
this framework, this thesis aims to provide theoretical guidance for the development
of next-generation optical atomic clocks. After establishing a comprehensive theoret-
ical foundation for atomic clock operation, we identify optimal Ramsey interrogation
schemes primarily focusing on regimes limited by spontaneous decay and laser noise.

In the first part, we show that maximally entangled GHZ-like states — in con-
junction with a correlated measurement and nonlinear estimation strategy — achieve
gains of up to 2.25 dB in the presence of spontaneous decay, comparable to funda-
mental bounds for up to several tens of atoms. This result is particularly surprising
since GHZ states do not provide any enhancement under dephasing due to white fre-
quency noise compared to the standard quantum limit. The gain arises from a veto
signal, which allows for the detection and mitigation of errors caused by spontaneous
decay events. We demonstrate the robustness of these GHZ-like protocol through
comprehensive Monte-Carlo simulations of atomic clocks.

In the second part, we present progress on frequency metrology tailored to opti-
cal atomic clocks primarily limited by laser noise. By consolidating and extending
previous findings on laser noise limited atomic clocks and variational quantum cir-
cuits, we identify optimal Ramsey interrogation schemes across a variety of scenarios,
including different experimental platforms, ensemble sizes and a broad range of inter-
rogation durations and dead times. The optimal Ramsey protocols strongly depend
on the specific experimental parameters, as clock stability generally reflects a trade-
off between quantum projection noise, the coherence time limit, fringe hops and dead
time effects. Although variational quantum circuits with low complexity promise sub-
stantial enhancements in idealized settings, practical constraints in realistic scenarios
limit these advantages. As a result, only tweezer arrays with several tens of atoms
— operating in the regime dominated by quantum projection noise — benefit signifi-
cantly from these protocols, while standard protocols — utilizing coherent spin states,
spin-squeezed states and GHZ states — represent robust interrogation schemes in a
variety of experimental setups, closely approaching the ultimate lower limit.

Keywords: Frequency metrology, Optical atomic clocks, Ramsey interferometry,
Entanglement, Spontaneous decay, Laser noise, Dead time, Bayesian phase estima-
tion, GHZ states, Spin-squeezed states, Variational quantum circuits






Zusammenfassung

Die Frequenzmetrologie bildet einen Grundstein moderner Prazisionsmessungen und
optische Atomuhren gehoren derzeit zu den genauesten Messinstrumente. Korrelierte
Quantenzustande und Messstrategien versprechen eine weitere Steigerung der Sta-
bilitat, indem das Quantenprojektionsrauschen unter das Standard-Quanten-Limit
unkorrelierter Atome gesenkt wird. Die Entwicklung robuster Strategien unter rea-
listischen Bedingungen ist jedoch weiterhin eine zentrale Herausforderung. Diese
Dissertation widmet sich dieser Fragestellung, indem der Kompromiss zwischen ver-
schrankungsbasierter Sensitivitatssteigerung und Robustheit gegeniiber Dekoharenz-
prozessen und Rauschen untersucht wird. Dabei werden Uhren mit einzelnen En-
semblen betrachtet, bei denen die atomare Referenz in jedem Uhrenzyklus periodisch
mittels identischer Ramsey-Protokolle abgefragt wird. In diesem Kontext stellt diese
Arbeit einen theoretischen Ratgeber fiir die Entwicklung optischer Atomuhren der
nachsten Generation dar. Aufbauend auf einer umfassenden theoretischen Beschrei-
bung von Atomuhren werden optimale Ramsey-Strategien identifiziert, mit dem Fokus
auf Regimen, die durch spontane Emission und Laserrauschen limitiert sind.

Im ersten Teil wird gezeigt, dass maximal verschrankte GHZ-ahnliche Zustande
in Kombination mit korrelierten Messungen und nichtlinearen Schatzstrategien unter
spontaner Emission einen Gewinn von bis zu 2.25 dB ermoglichen — vergleichbar
mit fundamentalen Schranken fiir Ensemble mit mehreren Dutzend Atomen. Dieses
Ergebnis ist insbesondere bemerkenswert, da GHZ-Zustande unter Dephasierung in-
folge von weiflem Frequenzrauschen keine Vorteile gegeniiber dem Standard-Quanten-
Limit bieten. Der beobachtete Gewinn beruht auf einem Veto-Signal, das Fehler durch
spontane Emission erkennt und reduziert. Die Robustheit dieser GHZ-ahnlichen Pro-
tokolle wird durch umfassende Monte-Carlo-Simulationen demonstiert.

Der zweite Teil prasentiert einen Fortschrittsbericht zur Frequenzmetrologie in
optischen Atomuhren, die primér durch Laserrauschen limitiert sind. Durch Kon-
solidierung und Erweiterung fritherer Erkenntnisse zu laserrauschlimitierten Uhren
und variationellen Abfrageprotkollen werden optimale Ramsey-Protokolle fiir eine
Vielzahl realistischer Szenarien identifiziert — darunter verschiedene experimentelle
Plattformen, Ensemblegrofien, sowie unterschiedliche Abfragedauern und Totzeiten.
Die optimalen Protokolle hangen stark von den experimentellen Bedingungen ab, da
die Uhrenstabilitdt im Allgemeinen einen Kompromiss zwischen Quantenprojektions-
rauschen, Kohérenzzeitlimit, Frequenzspringen und Totzeiteffekten darstellt. Auf-
grund dieser experimentellen Einschrankungen bieten variationelle Abfrageprotokolle
lediglich fiir Tweezer-Arrays mit mehreren Dutzend Atomen signifikante Vorteile,
sofern Quantenprojektionsrauschen die dominante Limitierung darstellt. Wahrend-
dessen reprasentieren Standardprotokolle — unter Verwendung kohérenter Zustande,
gequetschter Zustande und GHZ Zustéande — in vielen Experimenten robuste Strate-
gien und erreichen Stabilitaten nahe der fundamentalen Stabilitatsgrenzen.

Schlagworter: Frequenzmetrologie, Optische Atomuhren, Ramsey Interferome-
trie, Verschrankung, Spontane Emission, Laserrauschen, Totzeit, Bayessche Phasen-
schatzung, GHZ Zustinde, Gequetschte Zustande, Variationale Quantenprotokolle
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Introduction

Frequency metrology constitutes a fundamental pillar in modern precision measure-
ments, driving advancements across a broad range of scientific and technological
fields [6-11]. At the forefront of this discipline are optical atomic clocks, which ex-
ploit narrow-linewidth atomic transitions in the optical domain [12,13]. This new
generation of clocks was spurred by technological advances over the past decades,
including breakthroughs in laser technology [12], the invention of the optical fre-
quency comb [14,15], and the development of highly controllable platforms such as
ion traps [16-18], tweezer arrays [19-22], and optical lattices [23-26]. Today, state-of-
the-art optical atomic clocks are among the most precise measurement devices ever
built, achieving stabilities on the order of 107! and below [18,27-37]. To illustrate
this extraordinary precision, such clocks would gain or lose less than a second over
the age of the universe. They have surpassed traditional microwave-based Caesium
atomic clocks, which had long served as the standard for timekeeping, thereby paving
the way for the redefinition of the SI second [12,38]. This unprecedented stability
renders optical clocks indispensable tools for a broad spectrum of applications. In
research, they are instrumental in probing fundamental physics, from testing gen-
eral relativity through gravitational redshift measurements [36, 38-42] to exploring
variations in fundamental constants [43,44] and searching for new physics beyond
the Standard Model [45-47]. In technology, optical atomic clocks foster potential
applications ranging from enhancing global navigation satellite systems [48,49] and
synchronizing large-scale networks [50] to supporting precision geodesy [51-54].
Quantum projection noise (QPN) is the most fundamental process limiting clock
stability, arising from the stochastic nature of quantum measurements and the dis-
crete outcomes inherent in finite-size ensembles [55,56]. For separable states of many
atoms, namely uncorrelated or classically-correlated states, the standard quantum
limit (SQL) imposes a fundamental bound on QPN [6,12,13,57]. However, stability
beyond this classical limit can be achieved by introducing entanglement within the
atomic ensemble [6,13,57]. Three decades ago, Wineland et al. proposed in seminal
works [58,59] to entangle cold ions via their common coupling to collective modes of
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motion to suppress projection noise in frequency metrology, thereby overcoming the
SQL and enhancing atomic clock stability. With the momentous advancements in op-
tical atomic clocks and programmable quantum processors since then, this vision now
encounters new opportunities and challenges. In recent years, entanglement on optical
clock transitions has been demonstrated in various setups, including the generation of
spin squeezing in trapped ions [60] and in neutral atoms mediated by cavities [32,61]
or Rydberg interactions [62]. Recently, also maximally entangled GHZ states and cas-
cades thereof have been realized in optical clocks based on tweezer arrays [63,64] and
ion traps [4]. In an ideal scenario, GHZ states saturate the Heisenberg limit, which
represents the ultimate bound on quantum projection noise and yields a quadratic
improvement over the SQL in the scaling of the sensitivity with the ensemble size [6].

However, in realistic scenarios, decoherence processes and external noise degrade
the coherence of the quantum system, impairing the stability and preventing the
achievement of the Heisenberg limit [65-68]. While entanglement promises to over-
come the SQL and thereby improving clock stability, the detrimental effects of de-
coherence are particularly pronounced in entangled states, since they are highly
susceptible to the loss of coherence. Thus, a trade-off emerges between achieving
entanglement-enhanced sensitivity, which enables surpassing the SQL, and ensuring
robustness against the decoherence and noise processes. As a consequence, incor-
porating decoherence effects and external noise is essential for identifying optimal
interrogation protocols in frequency metrology.

This inherent challenge — advancing frequency metrology with entangled states in
the presence of decoherence and noise — precisely defines the central objective of this
thesis. To this end, we establish a comprehensive theoretical framework for Ramsey
interferometry and identify the optimal interrogation schemes in a variety of scenarios.
Consequently, this work essentially provides guidance for the development of next-
generation optical atomic clocks, particularly in regimes limited by spontaneous decay
and laser noise. Specifically, we focus on single-ensemble clocks in which the atomic
reference is periodically interrogated using the same protocol in each clock cycle.
Although this work is tailored to frequency metrology in atomic clocks, the developed
tools and techniques extend beyond this specific application. In particular, they
are broadly applicable to general frequency metrology and Ramsey interferometry,
including implementations in atom interferometry and magnetometry.

This thesis is organized as follows:

e Chapter 1: In the remainder of this introduction, we outline the general concept
of clocks, as they represent the primary application of frequency metrology

considered in this work.
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e Chapter 2: We introduce the theoretical foundations for describing atomic clock
operation, with a particular emphasis on the atomic reference. This chapter is
designed to provide a comprehensive background and self-contained introduc-
tion accessible to graduate students.

e Chapter 3: We investigate the impact of decoherence processes during the Ram-
sey sequence within the framework of local frequency metrology and identify
optimal interrogation schemes. In particular, we focus on spontaneous decay,
as the finite lifetime of the excited state imposes a fundamental limit, and addi-
tionally examine the crossover to regimes constrained by external noise sources
described by dephasing.

e Chapter 4: We incorporate frequency fluctuations of the laser in the framework
of Bayesian frequency metrology. In this context, we determine optimal schemes
that are robust to laser noise for a variety of scenarios, including different ex-
perimental platforms, ensemble sizes and regimes characterized by a wide range

of interrogation durations and dead times.

At this point, we intentionally kept the introduction general, framing the central
research topics within a broader context. Each chapter is written to be self-contained
to facilitate independent reading. Consequently, we explicitly motivate the specific
regimes of frequency metrology at the beginning of Chapter 3 and Chapter 4. More-
over, in both chapters we present the primary results and insights, while detailed
proofs and derivations are provided in the appendix.

1.1 A brief history of clocks

The quest for accurate timekeeping and measuring time with high precision has been
an integral aspect of human civilization, evolving from the natural rhythms observed
in celestial bodies to the sophisticated technology that underpins modern atomic
clocks. Early societies relied on nature’s clocks, solar cycles, lunar phases, and sea-
sonal changes to organize their lives. Although these natural indicators provided
rudimentary yet effective means of measuring time, their inherent variability lim-
ited precision and reliability. As civilizations advanced, so did the mechanisms of
timekeeping, evolving from sundials to the first human-made clocks. The invention
of sand glasses and water clocks provided more structured methods for measuring
time, independent of sunlight or other natural phenomena. The advent of mechanical
clocks in the Middle Ages further refined this pursuit. In particular, the invention

of the pendulum clock by Huygens in the 17th century marked a significant leap in
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precision, achieving stabilities around ten seconds a day (corresponding to a relative
uncertainty of 107%). In the 18th century, the development of marine chronometers
by Harrison enabled precise navigation and spurred advances in exploration, trade
and science, reaching stabilities of up to a hundredth of a second a day (10~"). The
invention of quartz oscillators in the 1920s revolutionized timekeeping by utilizing the
piezoelectric properties of quartz crystals. The benefits of quartz oscillators include
their high stability of around 1 ms a day (107%), along with low cost and compact
size, which enabled their widespread adoption in consumer electronics, telecommuni-
cations, and computing applications. Despite this impressive progress and precision,
human-made clocks, whether mechanical or electrical, remain inherently imperfect
due to variations in the components across different devices and inevitable drifts over
time. This ultimately created the need for a consistent and accurate standard to
synchronize global timekeeping: atomic clocks. In fact, Maxwell and Thomson [69]
already envisioned the concept of atomic clocks in the 1870s by arguing that atoms of
a particular species are identical and immutable, and thus, in theory, constitute the
building blocks to perfect clocks. However, it was not until the mid-twentieth century
that this concept became reality. With advances in the generation of microwaves and
Rabi’s development of the molecular beam magnetic resonance technique in 1939 [70]
(Nobel Prize 1944), the first atomic clocks were realized in the late 1940s. Within a
century, Caesium beam clocks were established in several national laboratories around
the world, employing the method of separated oscillatory fields proposed by Ramsey
in 1949 [71] (Nobel Prize 1989) and achieving uncertainties of around 107, In sub-
sequent years, the precision of Caesium clocks was continuously improved and this
unprecedented stability led to a redefinition of the second in 1967 by the General
Conference on Weights and Measures as “the duration of 9 192 631 770 periods of
the radiation corresponding to the transition between the two hyperfine levels of the
ground state of the Caesium 133 atom” [72]. Moreover, atomic clocks have driven ad-
vances in various fields such as communication, metrology, advanced positioning and
navigation systems. With progress in cooling techniques and extended interrogation
times achieved through the development of atomic fountains, Caesium fountain clocks
reached uncertainties around 1071® by the end of the twentieth century and nowadays
are approaching the 10716 level. Over the past decades, technological improvements
in laser systems [12], highly controllable platforms for trapping and manipulating
atoms [16-26] and the invention of the frequency comb [14,15] have paved the way
for optical clocks using various atomic species. Operating at optical frequencies, sev-
eral orders of magnitude higher than the microwave transition in Caesium clocks,
these new-generation clocks achieve uncertainties of 107!® and below, gaining or los-

ing less than a second over the age of the universe [18,27-37]. As a consequence, in
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2022 the General Conference on Weights and Measures voted to redefine the second
based on optical clocks in the future [73]. Yet, the pursuit of even better clocks is
far from over. While optical atomic clocks still offer significant potential for improve-
ment, the recent laser excitation of the ?Th nucleus [74] already heralds the advent
of the next generation of clocks: nuclear clocks. [11,75-81]

1.2 What is a clock?

A clock, at its core, consists of two essential components (cf. Fig. 1.1): a frequency
standard — a device which generates a continuous and consistent frequency signal —
and a mechanism that counts the oscillations over time. While the clockwork de-
vice essentially translates the frequency signal into measurable time intervals, the
frequency standard represents the true heart of a clock. Frequency standards are
commonly classified as either active or passive, depending on their operational prin-
ciple. Active frequency standards generate their own oscillation at a given frequency,
as the hydrogen maser or the Helium-Neon laser, where stimulated emission results
in a highly coherent signal. Conversely, passive frequency standards require an exter-
nal source to stimulate their oscillation. While active frequency standards typically
excel in short-time stability, passive frequency standards often achieve superior long-
term stability and accuracy, because the frequency can be precisely monitored and
corrected against the reference response over time. Consequently, passive frequency
standards are commonly preferred for clocks. [9-11]

The concept of a passive frequency standard can be illustrated by imagining two
pendulums. The first pendulum is our primary noisy pendulum, whose fluctuating
frequency we aim to stabilize. The second pendulum serves as an (almost) ideal ref-
erence, though it does not oscillate on its own. Hence, the task of a passive frequency
standard is to periodically adjust the primary pendulum’s frequency to match with
the reference pendulum by repeatedly measuring the frequency difference between
the two. However, each measurement introduces some noise into the system. Hence,
it is desirable to extend the interrogation time as long as possible, thereby reduc-
ing the relative impact of this measurement noise and ultimately enhancing stability.
However, if the interrogation time is extended too far we risk missing a “tick” of
the reference, leading to synchronization errors that may accumulate over repeated
measurements. Therefore, while longer interrogation times improve stability, there is
an optimal duration beyond which stability is compromised. [10-12]

In (passive) atomic clocks (cf. Fig. 1.1), the local oscillator (LO), representing
the primary pendulum, generates an inherently noisy frequency signal wyo(t) that

varies over time ¢. The LO is stabilized to an atomic transition frequency wy, acting
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Figure 1.1: Basic principle of an atomic clock: A local oscillator (LO) with
fluctuating frequency wro(t) is stabilized to an atomic transition wy by repeatedly
measuring the frequency difference. Based on these measurements, the servo applies
corrections to the LO frequency. This control loop constitutes the frequency stan-
dard, while the clockwork device translates the frequency signal into measurable time
intervals.

as the reference pendulum, through repeated interrogations of the atomic ensemble,
effectively measuring the frequency difference w(t) = wy —wro(t). Based on this mea-
surement, the servo applies feedback to correct the LO frequency, thereby completing
the control cycle and resulting in a stabilized frequency signal. In optical atomic
clocks, the LO is realized by an ultra-stable laser, while a frequency comb serves as a
clockwork device, converting optical frequencies to the microwave regime. [6,9-12]
In the remainder of this thesis, we exclusively consider such passive atomic clocks.

1.3 Qualitative requirements for clocks

Despite the diverse applications of frequency standards and clocks, each with distinct
specific demands, three fundamental requirements are universal [9-12, 82]:

e Reproducibility refers to the degree of agreement among a set of independent
devices of the same type, ensuring that they generate comparable frequency sig-
nals. As discussed in Sec. 1.1, human-made clock references are inherently sub-
ject to imperfections arising from natural variations in manufacturing processes.
Consequently, the advent of atomic clocks represented a significant milestone,

as all atoms of a particular species are identical.

e Accuracy characterizes how closely the generated (mean) frequency aligns with
the true reference frequency, thereby quantifying the absolute deviation. Cor-
responding systematic uncertainties refer to predictable, repeatable errors that
cause the clock frequency to deviate consistently from the true value. These

errors stem from environmental noise or clock-specific characteristics, such as
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Figure 1.2: Accuracy and stability: Generic variations of the local oscillator (LO)
frequency wro(t) over time ¢, illustrating frequency traces that are (a) accurate and
stable, (b) not accurate but stable, (¢) accurate but not stable and (d) neither accurate
nor stable.

magnetic fields, temperature fluctuations, imperfections in laser alignment or
Stark shifts induced by electric fields. Therefore, systematic uncertainties re-
quire careful calibration and correction to align the clock signal with the true
reference frequency. To this end, there exist generally accepted procedures to
characterize systematic uncertainties [11,12].

e Stability, or precision, describes the consistency with which a frequency stan-
dard maintains its frequency over time, characterizing fluctuations relative to
its mean value. It is associated with statistical uncertainties arising from ran-
dom, unpredictable fluctuations, such as quantum projection noise or short-term
laser noise. These fluctuations typically vary between individual clock cycles
and consequently, statistical uncertainties are generally minimized by perform-
ing repeated measurements, as they tend to average out over time.

The difference between accuracy and stability is illustrated in Fig. 1.2. In this work,
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we focus exclusively on the performance of atomic clocks as determined by statistical

uncertainties, while systematic uncertainties are neglected.



Basics of Atomic Clocks

This chapter, as motivated in the introduction, is designed to provide a comprehen-
sive background, facilitating an easier introduction for future (graduate) students.
Hence, the knowledgeable reader may choose to proceed directly to the main results
in Chapter 3 and Chapter 4.

Here, we outline the theoretical foundations for describing atomic clock operation.
To start with, in Sec. 2.1 we introduce the Allan deviation, the primary metric for
clock stability. Subsequently, we describe the three fundamental components of an
atomic clock (as presented in Sec. 1.2):

e Sec. 2.2: The local oscillator, which produces the inherently noisy frequency

signal.

e Sec. 2.3: The atomic reference, to which the local oscillator is stabilized by
repeated interrogations.

e Sec. 2.4: The servo, which applies feedback to correct the local oscillator.

As the primary objective of this thesis is the identification of optimal interrogation
schemes, a particular emphasis is placed on the atomic reference. Note that through-
out this thesis we set h = 1 for simplicity, except when explicitly discussing relations

between frequencies and energies.

2.1 Allan Deviation - A Stability Measure

Before we describe the individual components of an atomic clock in detail, we first
introduce methods for characterizing atomic clocks and frequency standards. The
focus will be on the primary metric in this work: the Allan deviation, characterizing
the clock stability. This measure is essential for understanding the performance and

limitations of atomic clocks.
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Model— The output of an ideal local oscillator would be a pure sine wave of
an electromagnetic field E(t) = Epsin(wyt) with amplitude E, and frequency wo
being constant in time. In any realistic device, however, various unavoidable physical
processes introduce deviations from a purely sinusoidal waveform. Consequently, both
the amplitude and frequency of the oscillator fluctuate over time, and as a result,
the output signal cannot be described analytically in general. These fluctuations —
collectively referred to as noise — affect the stability of the oscillator. Since amplitude
fluctuations have no significant impact on the stability analysis [83], we model the
output of the local oscillator as

E(t) = Eysin(wot — (1)), (2.1)

where the fluctuations of the phase ¢(t) arise from random noise processes. The
corresponding local oscillator frequency wro(t) is linked to the phase fluctuations by

a derivative
wLo(t> =Wy — —F— (22)

and thus, the frequency difference w(t) reads

w(t) = %(tt) = wy — wro(t). (2.3)

Accordingly, the phase fluctuations can be obtained by integrating the frequency

deviation

t
o(t) = / dt' w(t'). (2.4)
to
To facilitate a comparison between oscillators with different nominal frequencies wy,
it is advantageous to introduce the dimensionless relative frequency deviation

w(t)  wo—wro(t)

y(t) = T o (2.5)

(2.6)

To be precise, x(t) represents effective time fluctuations in seconds, resulting from
phase fluctuations. However, they are usually called relative phase fluctuations for
clarity and to ease the distinction from the independent time variable t. The relation
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between relative frequency and phase deviations follows directly from the definition,
yielding

t
y(t) = or () :/ dt’ y(t'). (2.7)
dt to
Already from Eq. (2.5) and Eq. (2.6) it becomes evident that higher frequencies are
advantageous considering the stability of frequency standards and atomic clocks, as
the relative contribution of deviations is suppressed for larger wy.

Naturally, the local oscillator produces a continuous noisy frequency trace y(t), as
illustrated in Fig. 2.1(a). However, in many applications — including the operation of
an atomic clock — only a sequence of discrete frequency measurements averaged over
individual clock cycles of duration T is recorded. In general, each clock cycle can be
decomposed into two parts: the interrogation time 7" and the dead time 7. During
the interrogation time 7', the frequency of the local oscillator is effectively compared
to the atomic transition frequency to determine deviations arising from various noise
sources. In contrast, frequency fluctuations during dead time T — originating from
processes such as probe preparation, measurement and the application of feedback
— are not monitored and thus cannot be corrected. Although dead time will be
discussed in detail in Chapter 4 and we assume a negligible dead time in the first part
of this thesis, at this point we aim to treat the frequency trace in its most general
form. Accordingly, the frequency trace is divided into equal intervals of duration
Te = Tp + T and the frequency value recorded at the end of cycle k is obtained by
averaging over this particular cycle

(k—1)Tc+Tp kTc
/ dty(t)+/ dty(t)] . (2.8)
( (

E-1)Tc k—1)Tc+Tp

1 kTco

dty(t) =

Yk _TTC

- Te Jonr

as depicted in Fig. 2.1(b). Accordingly, the relative phase deviation is given by
xr = yrlc. Moreover, we will consider the frequency averaged over a total duration

T = nl¢, corresponding to n cycles,

i 1L [ 1 &
7, = - / dty(t) = - Z / dty(t) = ” Z Yk (2.9)
G-Dr k=(j—1)nt1” (k=DTc k=(j—1)n+1

In the following, we introduce statistical measures used to characterize the fluctua-
tions of the frequency.
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Standard deviation— A common approach for characterizing statistical processes
involves calculating the mean value 7 and the variance s?, defined by

m

y= izyk (2.10)

k=1

3

S

where m denotes the total number of fractional frequency values y,. The standard
variance often is expressed in terms of its square root, the standard deviation s.
However, the standard deviation is only a meaningful measure for uncorrelated noise.
If the noise is correlated, the deviation from its mean value is no longer stationary [84]
and thus, the standard deviation might be non-convergent. Consequently, it is not
recommended to characterize frequency standards or atomic clocks using the standard
deviation. An indication of correlated noise is that fluctuations over an averaging time

7 are significantly smaller than over the entire data set (cf. Fig. 2.1(a)).

Allan deviation— The Allan variance (AVAR) [85, 86] is the most widely used
time-domain metric for evaluating the stability of frequency standards and atomic
clocks [11,83,84,87]. It is defined as [11,84-80]
2 L, _ —\2

o37) = 5@ — 7, (212
where () denotes statistical averaging. To be precise, the Allan variance measures
frequency instability and thus, a lower value indicates reduced instability, or equiva-
lently, improved stability. It serves as a measure of fractional frequency fluctuations —
similar to the standard variance — but with the crucial benefit of converging for most
types of noise encountered in atomic clocks. The Allan variance is calculated from
the difference between two consecutive averaged frequency values y; and y;,, each
averaged over a time interval 7, as illustrated in Fig. 2.1(c). This is in contrast to the
standard variance, which quantifies deviations from the mean value 7. It is remark-
able that variation of the averaging time 7 provides insight to the noise on different
time scales. While small 7 ~ T provide information on the short-term stability, large
7 > Te describe the long-term stability. Consequently, the full dependence o, (7) has
to be considered to compare the performance of different local oscillators.

For finite data sets, the statistical averaging is practically realized as [84]

M-1
0,(7) = Z Uip1 — 7;)° (2.13)
j:l
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Figure 2.1: Allan deviation: (a) Generic continuous relative frequency difference
y(t) as a function of t. (b) Corresponding discrete time series y;, sampled in each
clock cycle with duration T¢. (¢) Non-Overlapping samples for the (standard) Allan
deviation (ADEV) with averaging factor n = 3 (7 = 31¢). (d) Overlapping samples
for the overlapping Allan deviation (OADEV) with averaging factor n = 3 (7 = 31¢).

where M = ™ represents the number of consecutive frequency intervals with length
7 = nTe. The quantity usually addressed is the square root of the Allan variance,
namely the Allan deviation (ADEV). In terms of fractional phase deviations, the

Allan variance can alternatively be calculated as [84]

=

-2
9 1

o (1) = 2(K —2)72 (Tjy2 — 2T + Tj1a)?, (2.14)

j=1

Y

<
Il

where y; = @“%@ and K = M + 1 is the total number of phase data.
The confidence interval — or error — of the Allan deviation is typically estimated
as +o0,(7)/M although it depends on the specific noise type in general [84].
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Overlapping Allan deviation— The overlapping Allan variance (OAVAR) ex-
tends the standard Allan variance by incorporating all possible overlapping intervals
of length 7 = nT¢, as illustrated in Fig. 2.1(d), thereby making maximal use of the
data set. While it yields the same value as the standard Allan variance, this approach
improves the statistical confidence of the resulting stability estimate by significantly
increasing the effective number of samples, even though the overlapping intervals
are not entirely independent [84]. This enhanced confidence comes with a trade-off in
computational complexity, as the calculations involve all possible combinations within
the data set. Nevertheless, the overlapping Allan variance is the preferred choice in

stability analysis for high-precision measurements. The overlapping Allan variance is
defined by [84]

1 M—2n+1 [j+n—1 2
2(r) = Yoo — T 2.15
a,(7) 2n2(M — 20 +1) ; [ lz:j: (Frn ?Jl)] ; (2.15)

where M denotes the number of all possible overlapping intervals of length 7 = nT¢.
Consequently, M is significantly larger compared to the standard Allan variance (see
comparison of Fig. 2.1(c) and (d)), resulting in a substantially lower confidence in-
terval. Unfortunately, this expression is demanding in terms of computational com-
plexity due to the double summation. The necessary overhead can be reduced by
integrating the frequency data first and using [84]

K—2n
1 — — —
) = s g O Tive — Win + 7, (2.16)
7j=1

for fractional phase deviations with K = M +1. Again, the result is usually expressed
as the square root, which is denoted as overlapping Allan deviation (OADEV).

Note that although various other types of variances are available for stability anal-
ysis, in this thesis we will focus exclusively on the overlapping Allan deviation. For
simplicity, we refer to it as the Allan deviation and implicitly assume the overlapping

variant considering confidence intervals.

Although relative frequency deviations are the most widely used convention in
frequency metrology, absolute frequency deviations are also frequently encountered.
Furthermore, particularly in experimental contexts, frequencies v are often used in-
stead of angular frequencies w = 27v. Fortunately, with the relation

w(t) wo—wro(t) wvo—ro(t) v(t)
y(t) = = = = —, (2.17)

Wo Wo o )
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the conversion between these conventions is straightforward to derive and reads

o,(7) = UZ)(OT) - 0”507). (2.18)

2.2 Local Oscillator

Depending on the specific application and type of clock, various local oscillators are
employed, each with its characteristic noise composition. In the following section,
we introduce methods for characterizing these noise processes and relate them to
the stability, quantified by the previously introduced Allan deviation. By combin-
ing both time-domain and frequency-domain approaches, we gain a comprehensive
understanding of the noise contributions and their impact on frequency stability. Ad-
ditionally, we introduce a single time scale that allows for the comparison of different

local oscillators, regardless of their specific noise characteristics and mean frequency.

2.2.1 Noise Characterization

Frequency domain— In the previous section, we introduced the Allan deviation
as the primary measure for the stability of frequency standards and atomic clocks, by
quantifying frequency fluctuations in the time domain. However, because the Allan
deviation averages over fluctuations, some information about the noise characteristics
is inherently lost. A more comprehensive characterization of the noise processes is
provided by the (single-sided) power spectral noise density’ (PSD) S,(f), in units
of 1/Hz, of the frequency fluctuations, defined for Fourier frequencies 0 < f < oo.
State-of-the-art clock lasers can be modeled by a power law [11,12,83-85,87, 88|

Sy(f) = haf® (2.19)

with coefficients h,, where & = 0, —1, —2 corresponds to white frequency noise (WN),
flicker frequency noise (FN) and random walk frequency noise (RWN), respectively.
This model is valid for 0 < f < f., where f. is an upper cutoff frequency to maintain
integrability and can be physically motivated by finite bandwidth and duration [83].
Furthermore, it is assumed that any potential slow frequency drifts can always be cor-
rected. For a more detailed discussion and characterization or origins of the particular
noise contributions, we refer to the pertinent literature as Refs. [11,12,83-85,87,88].

'In theoretical studies, the two-sided PSD 5752)( f), defined over Fourier frequencies —oo < f <
o0, is often employed. In experimental settings, however, only positive frequencies are typically
relevant. Since the PSD is a real, non-negative, and even function, these two variants are related by

Sy(f) = 25;52)(10). Accordingly, in this work, we focus on the single-sided PSD S, (f). [11]
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In practice, for a given frequency trace, the PSD can be calculated as [89,90]

T .
/ dt y(t)e—z%rft
0

and thus involves a Fourier transform. Again, we can convert between different fre-

(2.20)

T—o0

S,(f) = 2 lim %

quency conventions by

Sy(f) = =— (2.21)

where S, (f) and S, (f) represent the spectral noise densities for angular and absolute

frequencies, respectively.

Time domain— After characterizing the frequency stability in the time domain
by the Allan deviation and the frequency noise through the spectral noise density in
the Fourier frequency domain, we aim to link these two approaches. Based on a given
spectral noise density, the Allan variance can be inferred according to [11,83,84]

sin(77f)
(7 f)*

Assuming a power law model for the spectral noise density as introduced in Eq. (2.19),

wir =2 [ ars,() (222)

an explicit form for the Allan variance of a local oscillator is given by

05,L0(7'> = U;,WN<T) + U;,FN<T) + O-Z,RWN<T>

- - .
:T—i‘ho—i-hﬂ':ﬁzlh[ﬂ'ﬁ.

(2.23)

Consequently, the Allan variance likewise can be modeled by a power law with scaling
£ = —a — 1, depending on the averaging time 7. For white, flicker and random walk
frequency noise, the corresponding coefficients are h_; = %, ho = 2In(2)h_; and
hy = %h,g, respectively, which can be derived using the integrals

/O deH;z(jif) _%” (2.24)

/O df%:ln@) (2.25)
sin'(af)

/0 U= =10 (2.26)

Hence, the different noise contributions can be identified by investigating the scaling
behavior of the Allan variance with the averaging time 7. For clarity, the individual
noise contributions to the spectral noise density and Allan variance are summarized
in Tab. 2.1. Generic examples are illustrated in Fig. 2.2(a-c).
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Noise type | « Sy(f) b=—-a—1 05(7') Bﬁ
WN 0 ho f° ~1 hoyr! ko
FN —1 hoyf! 0 hot° 21n(2)h_,

RWN | —2 hof 2 1 hyrt 2 h_y

Table 2.1: Noise contributions to the Allan variance: Power law scaling of the
spectral noise density and Allan variance of fractional frequency fluctuations for white

frequency noise (WN), flicker frequency noise (FN) and random walk frequency noise
(RWN).

2.2.2 Coherence Time

In the previous section we have seen that frequency fluctuations of a local oscillator
originate from a complex mixture of different noise processes. Therefore, thorough
characterization requires a comprehensive analysis of the measures introduced. In
terms of the Allan deviation, a broad range of averaging times has to be considered,
while for the spectral noise density it involves investigating a broad band of Fourier
frequencies. Nevertheless, each unique combination of noise contributions introduces
a characteristic time scale to the system, ultimately limiting the clock stability, as we
will discuss in detail in Chapter 4. Hence, it is convenient to define a coherence time
Z to facilitate a conceptual comparison of different local oscillators with distinct noise
characteristics and mean frequency. While there are several possibilities motivated by
different applications, we follow Ref. [92] and define the coherence time Z implicitly
by

oyro(Zo)woZ =1 rad (2.27)

where Z¢o = Z + Tp is the corresponding cycle duration, including dead time T'p.
Intuitively, the coherence time is determined by the intersection of the local oscillator
stability o, o(7) and 1/weT at 7 = Z. Consequently, as we will derive in the next
section, the coherence time can be interpreted as the interrogation time at which the
Allan deviation of the local oscillator at a single clock cycle coincides with the stability
arising from quantum projection noise of a single particle in an ideal scenario.

An exemplary evaluation of the coherence time Z is shown in Fig. 2.2(d). While
each specific noise profile o, 1,0(7) uniquely determines Z, the reverse is not necessarily
true. Distinct noise compositions can yield the same coherence time. Hence, a given

coherence time Z may arise from various noise compositions.
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Figure 2.2: Stability analysis of local oscillators: (a) Frequency traces simulated
over 10* cycles for white (gray), flicker (pink) and random walk (brown) frequency
noise. (b) Corresponding spectral noise density S, (f) showing the characteristic scal-
ing with Fourier frequency f for the three noise processes. (c¢) Corresponding Allan
deviation o, (7), highlighting the characteristic scaling with the averaging time 7 for
the three noise processes. (d) Allan deviation o, 1,0(7) of a state-of-the-art clock laser

as considered in Ref. [91], with white frequency noise o, wn(7) = 2.5 x 1077 (g)_l/Q,
flicker frequency noise o,px(7) = 4.9 x 107'7 and random walk frequency noise

oyrwN(T) = 1.35 x 10718 (£)1/2’ based on the laser described in Ref. [88]. Dashed
colored lines indicate the individual noise contributions. The intersection of o, 1,0(7)
(solid black) with the dashed black line visualizes the laser coherence time Z. We use
vy = 429.228 THz considering 3"Sr for calculations.

2.3 Atomic Reference

Atomic sensors are the preferred choice in frequency metrology as they represent ideal
references: they are identical, their transition frequencies are constants of nature, and
they are well described mathematically, enabling comprehensive comparisons between
theory and experiment.

In this section, we introduce the fundamental concepts and notations required to
describe the interrogation of the atomic reference. We begin by reviewing essential
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properties of spin systems in Sec. 2.3.1. Subsequently, we discuss the time evolution of
spin systems: Sec. 2.3.2 derives the unitary dynamics, while Sec. 2.3.3 addresses the
impact of decoherence processes. Furthermore, the notion of quantum measurements
is considered in Sec. 2.3.4. Building on these fundamental aspects, we introduce Ram-
sey interferometry in Sec. 2.3.5, which represents the primary interrogation scheme
considered throughout this thesis. In this context, we discuss quantum projection
noise (QPN) in Sec. 2.3.6, which imposes a fundamental limit in interferometry due
to the indeterministic nature of quantum mechanics. Finally, the three standard
Ramsey protocols are presented utilizing coherent spin states (CSS) in Sec. 2.3.7,
GHZ states in Sec. 2.3.8 and spin-squeezed states (SSS) in Sec. 2.3.9.

2.3.1 Spin Systems

The generally complex electronic structure of atoms used in precision spectroscopy
can often be reduced to a two-level system by focusing on a single, isolated atomic
transition. This simplification is valid when all other transitions are sufficiently sep-
arated in energy and are thus effectively off-resonant, allowing them to be neglected.
Additionally, ideal transitions for atomic clock application are both narrow — mini-
mizing the effects of a finite excited-state lifetime — and offer precise coherent control.
These properties are crucial for achieving high stability and accuracy, which are es-
sential for reliable interrogation and long-term frequency stability in metrological
applications.

Two level system— The Hilbert space of a two-level system, mathematically
equivalent to a (pseudo-) spin-1/2 particle [6,59,93], is given by H = C?. In this
space, we use two orthonormal basis states: |]) = |g) = |0), representing the ground
state (or lower energy level, corresponding to “spin-down”), and [1) = [e) = |1),
representing the excited state (or higher energy level, corresponding to “spin-up”).
Any pure state of the system can thus be expressed as a linear combination of these
basis states |¢)) = ¢ |}) + ¢ |T) where the complex coefficients ¢|,¢; € C satisty
the normalization condition |c||* + |¢;/? = 1. These states can also be conveniently
represented as two-dimensional complex vectors, typically by adopting the standard
(canonical) basis vectors vectors [1) = (;) and |]) = *).

Correspondingly, observables of two-level systems are represented by hermitian

(self-adjoint) 2x 2-matrices. A convenient basis for the space of observables is provided
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by the identity matrix 1T = [1)(1] + |{) (| and the three Pauli matrices

or = U + 1)1 = 0y + 0
oy = —i (U +i 1) (] = —i(oy — o) (2.28)
o = [T = ) = 0ce — 0gg

where 0} = 0¢y = [1)(}| and 0_ = 04 = |]) (1] are the raising and lowering operators
— which induce transitions between the ground and excited states — effectively flipping
the spin. The operators oee = [1)(1] and o4 = |1)(}| are projectors onto the excited
and ground states, respectively, and give rise to the z-component, representing the
population difference. Moreover, the spin observable is expressed in terms of the Pauli
operators S = %a’, where S = (S,,S,,5.)" and o = (0,,0,,0.)T, respectively,
Likewise, any mixed state of a two-level system, described by a density matrix p,
can be written as a linear combination of the Pauli operators
(1 + 7m0, + rooy +1302) (2.29)

p==(1+170) =

| =
N —

where r = (r1,r2,73)" = ((02),(0,),(0.))" € R?, with |r| < 1, forms the so called
Bloch vector. The components of r represent the expectation values of the Pauli
operators and fully characterize the mixed state p. In this framework, pure states are
represented by points on the Bloch sphere, since |r| = 1. Alternatively, pure states

can also be parametrized by the azimuthal angle # and polar angle ¢

) =cos (§) |4) + e “sin(£) 7). (2.30)

In this representation, the Bloch vector is given by

sin(#) cos(p)
r = | sin(f) sin(yp) (2.31)
—cos(0)

since sin(m — #) = sin(f) and cos(m — 0) = — cos(#). Note that the azimuthal angle 0
is measured from the negative z-axis, in contrast to the commonly used definition of
spherical coordinates. The concept of Bloch vectors on the Bloch sphere provides a
geometric representation of spin states, with r effectively describing the polarization
of the state. Consequently, it also facilitates intuitive insights into the dynamics of
spin-1/2 systems. Representative states on the Bloch sphere are illustrated in Fig. 2.3.
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Figure 2.3: Visualization of states on the Bloch sphere: The ground (yellow)
and excited (green) states are aligned along the Fz-axis, while red (0 = 7, ¢ = 0)
and blue (0 = 7, ¢ = ) states are polarized in 2- and y-direction, respectively.

Collective spin— The generalization of the presented formalism to N spin-1/2
systems is straightforward. The composite Hilbert space H = ®5€V:1 Hy = ®5€V:1 C?
is formed by the tensor product of N single particle Hilbert spaces H;, = C2. A
basis for this 2V dimensional Hilbert space can be constructed from tensor products
of single particle basis elements |i, ..., iy) = N, i)™ with i, € {},1}Vk. For
example, the collective ground and excited states are represented by |¢>®N and |T>®N,
respectively. However, numerical simulations in this full Hilbert space are limited to
relatively small particle numbers N, as the dimension of H scales exponentially with
the ensemble size N, making numerical computations increasingly demanding. This
exponential scaling presents a significant challenge in studying systems with larger
ensembles, motivating the need for efficient representations or the exploitation of
symmetries to reduce the effective dimensionality of the problem.

The collective spin operator S = Zszl S() is constructed from single particle spin
operators S®). The spin components form an angular momentum algebra defined by

[Sj, Sk] = iEjlel, (2.32)

where [A, B] = AB — BA denotes the commutator and €y, is the fully anti-symmetric
Levi-Civita tensor. Consequently, the total spin operator S? = 52 +S§+S§ commutes
with each spin component [S?,S;] = 0 for k¥ € {z,y,z}. Therefore, simultaneous
eigenstates of the total spin and one spin component can be found. Typically, eigen-
states of S? and S, are chosen, while the corresponding states in a different basis can
be obtained by a unitary transformation (cf. App. B). The eigenstates |S, M) are

z
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labeled by the quantum numbers S and M, representing the total spin magnitude and
the spin projection along the z-axis, respectively. In the following, we omit the index
z for simplicity, referring implicitly to the z-basis. If a different basis is used, we will
indicate this explicitly. The states |S, M) are often referred to as Dicke states [94]
and satisfy the eigenvalue equations

S?|S, M) =S(S+1)|S,M), (2.33)
S.18, M)y = M S, M), (2.34)
where S € {N/2,N/2 —1,...,Sun} and M € {-S,—S+1,...,5—1,5}. The
minimal total spin is Sy = 0 for NV even and Sy, = 1/2 for N odd. To move

between states with different projections M, ladder operators can be constructed

from the spin components
Sy =5, £1i5,, (2.35)

which act as

Sy|S, M)y =+/S(S+1)— M(M+1)|S, M+ 1) (2.36)

and are often called raising and lowering or creation and annihilation operators, since
they increase or decrease the number of excited atoms by one. They obey the com-

mutation relations

[S.,S4] = £S5, [S,,S_] =285, [S%,54] =0. (2.37)

Permutational symmetry— Already for N > 2, we observe that the Dicke states
are degenerate and the quantum numbers S and M do not determine |S, M) uniquely.
In fact, the total number of Dicke states is

N/2 N 2y
nps = »  25+1= (5 + 1) — g mods(N), (2.38)
S:Smin

where the modulo term takes ensembles with N odd into account. This expression can
be derived by separately evaluating the sum for even and odd ensemble sizes. While
nps grows quadratically with N, the dimension of the full Hilbert space increases
exponentially as 2. Hence, each Dicke state |S, M) has a degeneracy [95-100]

N
A rs+ A -9

dy = (25 +1) (2.39)
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This degeneracy bridges from npg to dim(H) via

N/2
dim(H) =2V = > d3(25+1). (2.40)
S:Smin

For example, for N = 4 we find d = 2, d} = 3 and d? = 1, showing that the Dicke
states for S < N/2 are degenerate.

The Dicke states with maximal spin S = N/2 are uniquely defined, as any Dicke
state represents a symmetric superposition of N, = N/2+4 M excited two-level systems

1
(v)

where S is the symmetrization operator and the binomial coefficient ( ]\]]\i ) accounts

¥ M) = —==5 || @ |, (2.41)

for all possible combinations and ensures normalization. This symmetric subspace,

denoted as Hg, is permutationally invariant and has dimension dim(Hg) = N+1. The

states |%, M > can be constructed from the collective ground state ‘%, —%> = H)@N
by repeated application of S,
1 N\ xiy
N N _N
> M) = ————— S =, —5). 2.42

The states !%, M) with maximal spin S = N/2 are commonly referred to as |M) for
simplicity.

For S < N/2 however, there exist d3 degenerate, non-symmetric superpositions
of the N two level systems. To determine the action of single particle operators
on collective states, for example necessary for individual decoherence processes (cf.
Sec. 2.3.3), the Dicke states have to be explicitly expressed in terms of the tensor
product basis. Hence, we have to introduce more general Dicke states |.S, M, ag) [94],
where the additional quantum number ag accounts for the degeneracy. Unfortunately,
finding all 2V representations of this basis is computationally demanding, similar to
computations in the tensor product basis. However, permutational symmetry of the
system and its dynamics — which is assumed throughout this thesis and typically
applies to a good approximation — enables a crucial simplification, as discussed in
detail in Refs. [95-100]. In this case, the matrix elements for different g are identical
and thus, the states |S, M, ag) cannot be distinguished. Therefore, effective basis
states |\S, M) can be defined, and the degeneracy is eliminated. Hence, any arbitrary
density operator can then be expressed as

P = Z pSM,S/M"S, M><S/,M/’, (2.43)
S,M,S’" M’
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with matrix elements pgar g = (S, M| p|S’, M'). If the dynamics additionally does
not create any coherences between Dicke states with S # S’ i.e. (S, M|pl|S’,M') =0,
which will be the case throughout this thesis, the density operator further simplifies
to

p= Z IOSMM’|S7M><S7M/|7 (244>
S,M, M’

with matrix elements pgyar = (S, M| p|S, M'). Therefore, p has block-diagonal form,
as illustrated in Fig. 2.4. While the blocks become smaller with increasing S, the
number d3, of degenerate states represented by each block increases, except for df min
Consequently, permutational invariance allows to reduce the dimension of the problem
significantly, yielding a smaller Hilbert space Hpg with dim(Hps) = nps € O(N?),
rather than dim(H) = 2V. Additionally assuming the particular form in Eq. (2.44),
the total number of non-zero matrix elements reduces to
N/2 ]

Y o=(@5+1)7= VDV +2)(N +3) = O(N?), (2.45)
S=Smin

providing a substantial reduction compared to the 4" elements in the tensor product
or generalized Dicke basis. This reduction enables numerical studies of significantly
larger ensembles (cf. App. A for a detailed discussion).

Wigner function— Considering collective spin systems, the concept of the Bloch
sphere can be generalized to a Bloch sphere with radius S = N/2. Hence, collective
spin states can be illustrated by the Bloch vector, providing a geometrical representa-
tion of the mean spin vector. Although this visualization is intuitive, it only describes
the polarization and thus, lacks the ability to capture quantum correlations of more
complex spin states, especially entangled or non-classical states. A comprehensive
representation is provided by the Wigner function, a quasi-probability distribution
on the Bloch sphere that reveals deeper insights into the quantum nature of a state.
Additionally, this approach also applies to spin operators. Below, we briefly present
the concept following Refs. [101,102] for an arbitrary density or spin operator G.
Assuming fixed total spin S, we expand G as

25 +k

G=> > GiTy (2.46)

k=0 qg=—k
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Figure 2.4: Block-diagonal structure in the Dicke basis: (a) The density matrix
in the Dicke basis |S, M)(S, M'| for N = 4. Each block corresponds to a distinct
spin quantum number S, decreasing from the top left to the bottom right (S =
N/2,N/2—1,...). Within each block, the projections M, M' decrease from left (top)
to right (bottom) according to M = +S,...,—S. The gray area outside of the
diagonal blocks represents matrix elements with S # S’, which are not populated as
discussed in the main text. (b) The fully excited state |5, +5) = [1)®N. (c) The
ground state |5, =) = [[)®N. (d) The state [0,0).
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in terms of the multipole operators

S k S
Z Z )5S MV2k + 1 S, M)(S, M|
s -M q M
=S 1 (2.47)

Z Z )SMUS M S, — M|k, q) | S, MY{(S, M'|.
M=-S M'=-8

Here, (3\4 ’; ]\‘/9[/) and (S, M;S,—M'|k,q) are the Wigner 3-j symbols and Clebsch-
Gordan coefficients, respectively [103]. The coefficients of the multipole expansion

are given by

Gy = Tt (GT,jq) (2.48)
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S " - - o

Figure 2.5: Wigner function: Bloch sphere visualization of the Wigner function W
for N = 16, illustrating (a) the collective excited state [1)®Y, (b) the coherent spin
state (CSS) polarized along the z-direction (cf. Sec. 2.3.7) and (c) the GHZ state (cf.
Sec. 2.3.8). In particular, (b) reflects (a) rotated by 7 around the y-axis. Red regions
correspond to positive quasi-probability, while blue areas depict negative values and
thus indicate quantum correlations.

and the Wigner function associated with G is defined by

25  +q

W(@, 90) = Z Z quy}ﬂq(& 90)7 (2'49)

k=0 g=—k

where Y, (0, ¢) are the spherical harmonics.

In Fig. 2.5, Wigner functions for generic states are illustrated. Quantum cor-
relations between atoms manifest as regions of negative quasi-probability, whereas
classical states display a uniform distribution, a distinction we will explore further in
the following sections.

2.3.2 Unitary Dynamics

Hamiltonian of atom-field interaction— Rather than presenting the complete
derivation, which can be found in detail in standard literature such as Refs. [104,105],
we will briefly outline the main steps and approximations relevant for understanding
the atom-field interaction in this context. For a comprehensive introduction, we also
recommend Ref. [106].

As motivated before, we model the atom as a two level system. In contrast, we

treat the electromagnetic field classically, assuming an electric field of the form
E(t) = EE, [e_i(WLO(t)t'HPLO) + ei(wLo(t)t+<PLO)] (2.50)

with amplitude Ejy, polarization £, fluctuating frequency w0 (t) and phase ¢ro. Here,
we have already applied the dipole approximation, which neglects the spatial variation
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Figure 2.6: Energy level structure in a two level system: Schematic energy
splitting between ground and excited states in a two level system and the relation
between the atomic transition frequency wy, laser frequency wro and frequency dif-
ference w, as defined in the main text.

of the field. This is a valid assumption when the wavelength of the field is much longer
than the atomic scale and thus, effectively does not vary over the extend of the atom.
This is the case in optical atomic clocks, as atomic dimensions are on the order of A,
while the laser wavelengths are hundreds of nm. In this semi-classical approach, the
total Hamiltonian for the atom and field

H = Hp + Hyp (2.51)

can be written as a sum of the Hamiltonian of the free atom H, and the atom-field
interaction Hamiltonian Hap. With atomic transition frequency wy = (Ey — E|)/h
and defining zero energy by F| + WTO = 0, as illustrated in Fig. 2.6, the Hamiltonian
of the free atom reads

Hy = ?az. (2.52)

The atom-field interaction Hamiltonian is given by
Hyp = —d"E(t) (2.53)

with atomic dipole operator d, which can be expressed in terms of Pauli operators.
We proceed by moving to a rotating frame at frequency wro(t), in which the terms
oscillate at frequencies +(wy £+ wro(t)). Applying the rotating wave approximation
(RWA), we assume |wy —wrLo(t)| < wo + wro(t) and neglect the fast oscillating terms
+(wo + wro(t)) as they average to zero over relevant timescales.
The resulting Hamiltonian that governs the dynamics of the atom reads
w(t) Q

=5 0 + TR [sin(ypro)o. — cos(ero)oy] (2.54)
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where w(t) = wy — wro(t) denotes the detuning between the atomic transition fre-
quency wy and the local oscillator frequency wro(t). The Rabi frequency

Qr = |2E,d” €| (2.55)

quantifies the strength of the coherent driving, which is assumed to be strong and
near-resonant. Hence, we consider the frequency hierarchy |w(t)| < Qr < wro(t) ~
Wo-

Extending the description from a single atom to an ensemble of NV identical and
independent two-level systems interacting with a common field, we construct the total
Hamiltonian as the sum of the individual single-particle Hamiltonians. This yields

w(t)

QR k k
_ kz T Z [SIH(SOLO> (k) _ COS(SOLO)UZ(/ )} (2.56)

= w(t)S, + Qg [sin(pro)Ss — cos(vro)Sy|

where we introduced the collective spin components. Therefore, the dynamics of a
single two-level system can be generalized seamlessly to an ensemble of N atoms
by replacing individual Pauli operators with the collective spin operators, effectively
capturing the collective response of the system to the field.

Equations of motion— The time evolution of a state vectors [¢) is determined
by the Schrédinger equation

0 ) = H(t) |[4) - (2.57)

Rather than solving the Schrodinger equation directly, it is often useful to express
the time evolution in terms of the unitary time evolution operator U(t,ty), namely

[p(t)) = Ut to) [P (to)) - (2.58)

Assuming that the Hamiltonian commutes with itself at different times, [H(t), H(t')] =
0, which will be the case throughout this thesis, the unitary time evolution operator
is defined by

Ut ty) = exp (-@ /t: dt’H(t’)) . (2.59)

Hence, the time evolution effectively corresponds to a unitary transformation gen-
erated by the mean Hamiltonian, averaged over the time interval [to,¢]. The corre-

sponding Schrédinger equation for U(t,ty) reads

DUt to) = —iH(£)U(t, to). (2.60)
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In several situations, we will use the density operator p to describe mixed states

or statistical ensembles. Its time evolution is governed by the von Neumann equation
Op = —ilH, p]. (2.61)

A formal solution, in the same context as for the Schrodinger equation, is obtained
by

p(t) = UL, to)p(to) U (L, 1o). (2.62)

For some applications, it is convenient to switch to the Heisenberg picture, where
the states are time independent, while the operators evolve in time. In this picture,
an arbitrary operator Ay at time t is related to its counterpart Ag = A in the
Schrodinger picture by

Ag(t) = U'(t,t0) As U(t, To) (2.63)
and follows the equation of motion
0, Ay = i[H, Ayl. (2.64)

The time evolution has the same form as the von Neumann equation, however, dif-
fering by a minus sign. Hence, operators in the Heisenberg picture evolve with the
adjoint time evolution operator of states or density operators in the Schrodinger pic-
ture. This relation can intuitively be understood by considering the expectation value
of an arbitrary operator A with respect to a state | (t))

(A1) = (W) Al()) = (WIU(E t) AU o) [¥) = (W] Au(t) [¥).  (2.65)

Therefore, depending on the problem, we may choose to apply the time evolution to

either the states or the operators, based on which approach is more convenient.

Unitary dynamics of the system— The unitary dynamics of the system is
obtained by applying the equations of motion to the Hamiltonian of our system.
Essential to the evaluation of the time evolution operator is the integration of the
Hamiltonian over time. For the atom-field interaction Hamiltonian Hap, which is

time independent, the integral reduces to a multiplication by the elapsed time

/t dt' Hap(t') = Qr(t — to) [sin(ero) Sz — cos(pro)S,] - (2.66)

to
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In contrast, the frequency fluctuations of the local oscillator vary in time and thus,
we explicitly have to integrate over the frequency difference w(t) for the Hamiltonian
of the free atom

/ 4 HA (1) = ( /t t dt’w(t’)) S. = w(t —t,)S., (2.67)

to

where we introduced the time averaged frequency deviation

R / Cat (), (2.68)

Ct—to Sy,

which is consistent with the notation developed in Sec. 2.1 for the Allan deviation. By
introducing the average frequency deviation w and implicitly incorporating the averag-
ing into the Hamiltonian, we effectively make the Hamiltonian H4 = wS, independent
of time and the time evolution operator simplifies to U(t,tg) = exp(—i(t — to)H ).

To investigate the action of the time evolution operator, we further rewrite the

Hamiltonian as
H = wS, + Qg [sin(pro)S; — cos(pro)S,] = Qegn’S = Qe Sy (2.69)
by defining an effective Rabi frequency 2.¢ and direction n

Qet = \/w2 + 02 sin2(p10) + Q2 cos(pro) = m

n=

(2.70)
(Qr sin(¢ro), —Qr cos(¢ro), w)T

Qeff

Furthermore, we have introduced the notation S, = n,S; +n,S, +n.S, representing
the projection of the spin vector S along a particular direction n, n| = 1. As the spin
S corresponds to the angular momentum operator of the system, it is the generator
of rotations. Hence, the time evolution operator

U(t, 1) = exp(—iQui (t — t0)Sn) (2.71)

represents a rotation around axis n by the angle Qqg(t — ). This type of dynamics
implements the interrogation sequence invented by Rabi [70], where the population
for each atom oscillates between the ground and excited states (Rabi flopping) —
driven by an external field — and effectively results in the optical Bloch equations
(without spontaneous decay) [106].

In more general terms, we will denote rotations around an arbitrary axis n by the

angle 0 as

Ru(0) = exp(—ifSy), (2.72)
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a notation frequently used throughout this thesis. Exploiting properties of the Pauli

matrices, we can derive an explicit expression for a single particle rotation

RE () = eXp(—iQSI(lk)) = exp (—ignTJ(k))

2.73
= cos (g) 1 —¢sin (g) n’a®. ( )

It is interesting to note that this explicitly shows that, in contrast to classical vectors,
the spin of a two level system has to be rotated by 47 instead of 27 to return to its orig-
inal state. The corresponding collective rotation is given by R,(0) = ®]kV:1 Rglk)(ﬁ).

Two regimes are of particular interest throughout this thesis. In the strong driving
regime |w| < Qg, typically corresponding to pulses and transformations for state
preparation and measurement, effects of the frequency detuning w can be neglected.
Therefore, the unitary time evolution can be approximated by

U(t,ty) = exp (—iQgr(t — to) [sin(¢ro) Sz — cos(¢Lo)Sy])

= (cos (M) 1 —isin <w> [sin(pro)o, — cos(gpLO)gyD@N. (2.74)

Conversely, if no external field is applied, the system evolves freely and the time

evolution is governed solely by H 4, resulting in
U(t, to) = exp (—iw(t — tg)S,)

®N 2.75
= <COS (@) 1 —isin (@) 02> . ( )

In certain situations, it is also convenient to express the free evolution as

- w(t—tg) .w(t—tg)

QN
L{(t,to):<e” T Op + €' 2 O'gg)

(2.76)

w(t—tg)

= (=5 i+ = )

For free evolution times 7' = t — ty, the accumulated phase is given by ¢ = wT.
Therefore, the corresponding time evolution represents a rotation around the z-axis
by an angle ¢, denoted by R.(¢). Consequently, in the remainder of this thesis, for
a unitary time evolution with duration 7', we typically assume ¢, = 0 and ¢ = T, and
refer to the time evolution operator U(t, ty) = exp(—iwT'S,) as R.(¢) = exp(—ipS,).

2.3.3 Decoherence Processes

The unitary dynamics described in the previous section strictly applies to isolated
quantum systems, evolving independently of any external influences. In reality, how-

ever, virtually all systems interact to some extent with an external environment,
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resulting in a non-unitary evolution. Even in a highly controlled laboratory set-
ting, residual couplings to the surroundings, including electromagnetic fields, thermal
fluctuations and material imperfections, are unavoidable. These interactions lead to
decoherence, where the system gradually loses its quantum coherence due to the con-
tinuous exchange of information with its environment. The study of open quantum
systems is a well-established field, extensively investigated in the literature, such as
Refs. [107-112]. In this section, we introduce the fundamental concepts and tools
required to model and analyze decoherence processes relevant to the framework of
this thesis, building on these references.

The general approach in studying open quantum systems is to consider the system
and its environment as a single closed composite system. Within this framework, the
dynamics of the total system is unitary. However, in many practical scenarios, explic-
itly describing both subsystems together becomes unfeasible due to the vast number
of degrees of freedom in the environment and the intricate nature of their interactions.
Furthermore, in most cases, we are primarily interested in the dynamics of the system
itself, as the evolution of the environment is either irrelevant or inaccessible. This
perspective motivates a framework where the environment is eliminated, yielding an
effective equation of motion for the system. This reduced approach allows to focus
exclusively on the system of interest, while capturing the influence of the environment

in an indirect yet effective manner.

Quantum channels— Physical processes that transform quantum states into other
quantum states can be described by maps known as quantum channels. A quantum
channel is a linear, completely positive, trace preserving map A that represents the
evolution of a quantum state. Every quantum channel has a decomposition

pr Alp = D K;pK] (2.77)

with a set of Kraus operators {K} satisfying the completeness relation
Y KIK;=1. (2.78)
J

The unitary dynamics described in the previous section implements a quantum chan-
nel with a single Kraus operator .

Within the general approach of open quantum systems, the quantum channel can
be interpreted as follows: Considering the combination of system S and environment
E as a single closed system, described by the joint density operator pgg, the dynamics

is given by a unitary evolution Usg. The quantum channel of the system is obtained
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by tracing out the environment, i.e. Alp] = Trg(Usppse Z/lgE) This approach high-
lights how quantum channels capture the effects of environmental interactions while
focusing on the reduced dynamics of the system of interest.

Master equations— Suppose two quantum systems: the system S, our primary
system of interest, and its environment (often referred to as the reservoir or bath)
E. For instance, S represents the atom and E corresponds to the electromagnetic
field. The Hilbert spaces associated with these systems are denoted as Hg and Hpg,
respectively. The combined system S+ F is then described by the joint Hilbert space
Hsp = Hs ® Hp. The total Hamiltonian is given by

Hgy = Hg + Hp + H, (2.79)

where Hg and Hg are the Hamiltonians of the system and the environment, respec-
tively, and H; describes their interaction. This interaction reflects an exchange of
information between S and FE, leading to the emergence of decoherence and dissipa-
tion.

Since the total system evolves unitarily, its dynamics is described by the von

Neumann equation

Owpse = —i[Hsg, psE| (2.80)

with density operator pgg for S + E. While we already derived the dynamics of the
system Hg in the previous section, now we are primarily interested in the interaction
H;. Hence, we transform to an interaction picture, where the rapid dynamics gener-
ated by Hg + Hp are separated from the comparatively slower dynamics induced by
Hj;. In the interaction picture, denoted by the explicit time dependence, the equa-
tion of motion reads Oipsg(t) = —i[Hsk(t), pse(t)]. Integrating the von Neumann
equation formally

psi(t) = pss(0) i At (He(t), psu®) (2.81)

and substituting pgg(t) back into the von Neumann equation results in an integro-
differential equation for the dynamics

t

pse(t) = —i[Hsg(t), pse(0)] — /0 dt' [Hsg(t), [Hse(t'), pse(t)]]. (2.82)

Taking the partial trace over the environment, we obtain an equation of motion for
the system pg = Trg(psg) given by

ps(t) = —iTl“E([HSE(t)mSE(O)])—/O dt’' Trg ([Hse(t), [Hse(t), pse(t)]]) . (2.83)
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Assuming a small system and large environment as well as a weak coupling, the
perturbations to the environment are small and can be neglected on the relevant time
scales. If we further assume no correlations between the system and environment at
t = 0, the environment is virtually stationary and the total state factorizes according
to

pse(t) = ps(t) @ pe, (2.84)

which is referred to as the Born approximation. Additionally, we will assume that the
first term in Eq. (2.83) vanishes, i.e. Trg ([Hsg(t), ps(0) ® pg]) = 0, which can always
be arranged by a shift in the energy scale [106,107]. Nevertheless, the equation of
motion Eq. (2.83) remains complicated since the evolution of pg depends on its past
history through the integration over psp(t’) ~ ps(t')pr. To address this, we apply
the Markov approximation, which assumes that the system evolves slowly compared
to the correlation time of the environment and thus, we can substitute pg(t') by
ps(t) [106,107], yielding

ps(t) = — /Ot dt' Trg ([Hse(t), [Hse(t), ps(t) @ pel]) - (2.85)

If the dynamics is governed by a completely positive, trace preserving quantum chan-
nel represented by Kraus operators — as introduced above — that arises from a time
evolution forming a one-parameter semigroup, then Lindblad’s theorem [106-108,110]
states that it is generated by a Lindblad superoperator. This yields the master equa-

tion
ps = —ilHs, ps) + > Llp], (2.86)
k
where the Lindblad superoperators Ly[p| are defined by

1 1
Li[p] = CrpsCl — §C;ickps - §psCIICk, (2.87)

with collapse or jump operators Cy.

In the following, we omit the index S for the system. Furthermore, in Chapter 3,
we will consider three different decoherence processes, namely spontaneous decay
with rate I’ and C), = VT 0(_k), individual dephasing with rate v and C), = Qaﬁk),
and collective dephasing with rate 7, and Cj = /7.S.. Hence, the master equation
for N atoms reads

N
. : B L k) ® L)

p=—i[H,p]+T g (a(_)pasr) — Eai)a(_)p — épagr)a(_))
k=1

(2.88)
+

|2
WE

1 1
(0®pal® = p) + 7. (Sszz - 552 - 5[)53)

B
Il

1
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with Hamiltonian H and where we already used that o2 = 1. Although Eq. (2.88)
involves single particle operators, it preserves permutational symmetry as all atoms
are affected identically. Moreover, no coherences between Dicke states with S # S’
are created [99], resulting in the block-diagonal form in the Dicke basis illustrated in
Fig. 2.4.

Quantum trajectories and quantum jumps— The Lindblad master equation
provides a comprehensive framework for describing the dynamics of open quantum
systems. In particular, it captures the ensemble-average evolution of the system as it
interacts with its environment. However, it inherently lacks the capability to describe
and interpret individual realizations of this dynamics, where stochastic processes con-
stitute an essential component. Such realizations, representing the evolution of single
quantum systems, often exhibit discrete, probabilistic events intertwined with contin-
uous processes. The framework of quantum trajectories and quantum jumps unravels
the master equation into individual stochastic paths that represent the possible out-
comes of individual evolutions of the system.
The dynamics based on a general master equation is governed by

p=—ilH,p|] + (CpC’T — %CTC,O — %pC’TC’) (2.89)

with Hamiltonian H and collapse (jump) operator C, representing an arbitrary dissi-
pative process (quantum jump). For simplicity, we consider a single jump operator,
though this formalism readily extends to multiple noise processes. It is instructive to

rewrite the master equation according to
p=—i(Heap — pHly) + CpC" (2.90)
with
Hg=H — %CTC’. (2.91)

The dynamics can be interpreted as a combination of a continuous and a stochastic
evolution. The continuous evolution is determined by the effective Hamiltonian Hg
and does not imply any quantum jumps, i.e. no quanta are exchanged with the
environment. Nevertheless, an effective decay is caused by the non-hermitian part
of H.g. In contrast, the stochastic contribution is characterized by the term CpCT
and results in sudden quantum jumps, interrupting the continuous evolution. These

jumps reflect discrete events like the emission of a photon.
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The formal solution of the master equation can be expressed as
plt to) = e~ Honlt=10) gy ) eien(t10

¢
—iHog (t— iHeg (t'— M (= (1=
4 ¢~ iHen(t=to) (/ dt’ eea =) C (¢! 1) CTe ™ Hen (! tO)) ¢! Hen110) (2.92)

to

t

—G(t.)plte) + [ A G(L.E)T o o)
to

where the superoperators G(t,t)A = e~ it (t—to) Aeitllg(t=t0) and JTA = CACT rep-

resent the continuous non-unitary time propagation and the quantum jump, respec-

tively. Iteratively expanding this solution leads to a series

mm@—gwmmmﬁ+/5uaamjmmmm%>
fo (2.93)

t to
+ / dt2/ dt; G(t,t2) TG (ta, t1) T G(t1, to)p(te) + ...
to to

with terms involving an increasing number of quantum jumps in the time interval
[to,t]. The individual terms, characterized by the number k of quantum jumps J,
can be denoted by

t tr to
px(t to) = / dtk/ dtg—1... / dty G(t, te) TG (th, th1)T .. G(ta, 1) TG (t1, o) p(to)
to to to
(2.94)
which generally are not normalized. In particular, the first term gy (t, to) = G(t, to)p(to)

does not include a single quantum jump and thus is referred to as ‘no-jump dynamics’.

In this framework, the solution of the master equation, given by

p(t.to) = prlt,to)pr(t to), (2.95)

k=0

represents a mixture of the normalized states

_ Pr(t, to) - pr(t, to)
P10 = R G te)) ~ el o) (296

with probability px(t,t0) = Tr(pk(t,t9)) for the occurrence of k quantum jumps in
the time interval [to, t], satisfying the completeness relation ). pi(t, o) = 1. Con-
sequently, in each individual evolution of the system, effectively one of the states or
quantum trajectories pj is realized with probability p.

Sampling quantum trajectories, commonly referred to as the Monte Carlo wave-

function method [113,114], is straightforward to implement and a powerful tool for
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studying open quantum systems. This approach provides deep insights into the inter-
play between the discrete stochastic events and the continuous evolution, character-
izing the dynamics of individual quantum systems interacting with its environment.
Importantly, it is fully equivalent to the Lindblad master equation, as the ensemble
average over many trajectories exactly reproduces the results of the master equation.

2.3.4 Measurements

In the following, we briefly present the concept of quantum measurements based on
Ref. [108], establishing the conventions and notation that will be used throughout
this thesis.

General measurements— In general, quantum measurements are described by a
set of measurement operators { £, } acting on the Hilbert space H, where 2 denotes the
measurement outcomes. For a quantum system in state |¢)) or with density operator
p, the probability of obtaining outcome x is given by

P(x) = (6| BLE, [4) = Tr (pELE,) (2.97)

This measurement results in the updated (or post-measurement) state

) = Ee V) (2.98)
(V| BLE, |v)
T (2.99)

Tr (pElEgC) '

Hence, this process can be interpreted as a quantum channel that acts on the system
state, where each measurement outcome is associated with a specific Kraus operator
E,.. Here, the operators E, satisfy the completeness relation

Y ElE, =1, (2.100)

x

ensuring normalization of the probabilities

> Plr)=1. (2.101)

Positive operator-valued measure (POVM)— In many scenarios, particularly
when the final state of the system after the measurement is irrelevant, only the prob-

abilities P(x) are of interest. In this case, the positive operators

I, = ElE, (2.102)
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with > 1II, = 1, yielding P(x) = (|11, [¢) = Tr (pll,), are sufficient to describe the
measurement probabilities. The set {II,} is referred to as a positive operator-valued
measure (POVM). This formulation captures the probability structure of measure-
ments without requiring the specification of the post-measurement state, which is
particularly useful when the focus is explicitly on the measurement statistics.

Projection-valued measure (PVM)— A special class of POVMs is represented
by projective measurements, described by an observable X with spectral decomposi-

tion
X=> aP, (2.103)

where P, = |z)(x| are the projectors onto the eigenstates of X with eigenvalues x.
The probability of measurement outcome x is given by P(x) = (| P, |¢)) = Tr (pFy).
Rather than characterizing the projective measurement by its observable X, the set
of projectors { P,} can be specified. The projectors satisfy the completeness relation
>, Px =1 and are orthogonal, i.e. P,Py = 04,/ P,. Since each projector P, = |z)(x|
can be expressed in terms of an orthonormal basis state |z), a PVM can be understood
as a measurement in the basis |z). This type of measurement, described by an
observable X or, equivalently, by a set of orthogonal projectors P,, is denoted as a
projection-valued measure (PVM).

Although POVMs provide the more general framework, in the remainder of this
thesis typically PVMs are considered, unless explicitly stated otherwise.

2.3.5 Ramsey Interferometry

Historically, Rabi’s molecular beam magnetic resonance technique [70] — nowadays
commonly referred to as the Rabi method or Rabi flopping — was first proposed to
realize Maxwell’s vision of atomic clocks. Although it remains a valuable tool in
specific experimental setups, Rabi’s method exhibits inherent limitations due to its
reliance on a continuous interaction between the atoms and the driving field. In
particular, resolving small frequency splittings requires long interaction times, which
introduce challenges such as maintaining uniform fields over large regions, avoiding
apparatus constraints, and mitigating energy shifts (e.g. Stark shifts). Ramsey’s
method of separated oscillatory fields [71] addresses these issues by replacing the
continuous interaction with two short 7/2 pulses separated by a long interaction-
free evolution period. This approach minimizes inhomogeneities and perturbations,
resulting in narrower resonance linewidths and enhanced precision, which makes it a

widely adopted technique in modern atomic clocks.
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For a single atom in the absence of decoherence, the conventional Ramsey protocol

comprises three steps, as illustrated in Fig. 2.7:

(i)

(i)

Starting from the ground state |}), a first Ramsey pulse is performed, repre-
sented by a rotation around the negative y-axis by an angle Q gt = 7/2. Hence,
the time evolution is given by R, (—’—2’) = \/Ai (1 +io,) and can be realized by
an application of the Hamiltonian in the strong driving regime with ppo = 0
(cf. Eq. (2.74)). The effective initial state

)+ 11

|2o) = T (2.104)

represents an equal superposition of the ground and excited states. On the
Bloch sphere, |¢)y) corresponds to a vector pointing in the z-direction, since

(0,) = 1.

During the free evolution time T, no external field is applied and the atom
evolves according to Eq. (2.76). Hence, a phase ¢ = wT, arising from the
average frequency difference w of the local oscillator and atomic reference, is
accumulated, which is represented by a rotation around the z-axis R,(¢). The
state after the free evolution time — commonly referred to as Ramsey dark time
— is given by

) = % {e’% DEs eit IT>] = %e’% [[4) + e ], (2.105)

¢
where the global phase €'2 can be neglected as it is redundant and has no
physical meaning. Consequently, the information on the phase ¢, and thus the
frequency difference w, is encoded in terms of a relative phase shift between the

ground and excited states.

To complete the interferometry sequence, a measurement is performed. In the
conventional Ramsey protocol, this is accomplished by applying a second /2-
pulse with ¢ro = m/2, corresponding to a rotation around the z-axis by an

angle Qpt = 7/2, given by R, (%) = % (1 —io,). Hence, the final state reads

1,2 L » )
[Yg) = €72 [(1—ie™) [1) + (e7 —4) |1)] - (2.106)
A consecutive measurement of the observable ., representing the population
difference of the ground and excited states, results in the signal

(o) = [(Mwp) ) = [(Lwp)]? = sin(g) (2.107)
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initial state preparation free evolution time measurement
z z z

Figure 2.7: Conventional Ramsey interferometry: Schematic illustration of the
conventional Ramsey protocol and visualization on the Bloch sphere for a single atom.

with variance
(Ac,)? = (07) — (0.)* =1 —sin®(¢) = cos*(¢), (2.108)

since o = 1 holds for all Pauli matrices. The corresponding excitation proba-

bilities are given by

pr(9) = |(H1gn)F = 5 [1-+ sins)] (2.109)
pu(é) = (g} = 3 [1 —sin(6)] (2110)

Consequently, the second Ramsey pulse maps the relative phase to a population
difference, making it detectable in a spin measurement.

Note that instead of applying the second 7/2-pulse and measuring o, equivalently a
measurement of o, could be performed after the free evolution time (cf. App. B).

2.3.6 Quantum Projection Noise (QPN)

Atomic sensors offer numerous advantages in quantum metrology, but simultaneously
impose fundamental precision limits. This limitation arises from the inherent inde-
terminism of quantum mechanics, which is a probabilistic rather than deterministic
theory. In particular, quantum mechanics does not predict specific measurement
outcomes with certainty, but instead provides probabilities for different outcomes.
To illustrate this indeterminism, we consider the measurement process of a two
level system. Any pure state |¢)) = ¢ [) + ¢4+ |1) can be expressed as a linear com-
bination of the basis states {||),|1)}, where ¢|,¢; € C are normalized coefficients
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satisfying |c;|* + |¢1[* = 1. Consequently, a measurement of the observable o, yields
one of the two eigenvalues. The eigenvalues —1 (corresponding to |})) and +1 (cor-
responding to [1)) occur with probabilities p; = |c¢;|? and pr = |c4]?, respectively.
Except in cases where either ¢ or ¢y vanishes, the outcome cannot be predicted
with certainty. Hence, the measurement process is mathematically equivalent to a
Bernoulli trial with binary outcomes —1 and +1 and does not give direct access to py
and p;. Importantly, this indeterminism does not arise from imperfections in the state
preparation or the measurement, but is a fundamental feature of quantum mechanics.
The resulting fluctuations in measurement outcomes, known as quantum projection
noise (QPN) [55], stem from the probabilistic nature of state projections onto the
eigenstates of the measurement operator. The expectation (or mean) value ps, which
can be expressed as pr = (Py) with P = |1)(1], fluctuates with variance

(Apy)® = (APy)? = (P}) — (P)* = pr(1 — py) (2.111)

since P = Pf is a projector. This variance quantifies the inherent quantum noise
associated with probabilistic measurements.

Since the spin measurement on single atoms provides only a binary output, more
accurate estimates can be obtained by either repeating the measurement on a single
atom multiple times or using /N uncorrelated and identically prepared atoms. In the
latter case, it is beneficial to consider the operator Ny = Zszl PT(k), counting the
number of atoms in the excited state, where PT(k) = [1)(1|* denotes the projector
onto the excited state for atom k. Assuming that the atoms are uncorrelated, the
mean and variance follow directly from the single atom analysis

(Nt) = Npy (2.112)
(AN;)? = Npi(1 = py). (2.113)

Hence, the measurement outcomes are distributed according to a binomial distri-
bution, as depicted in Fig. 2.8(a). To estimate the probability p;, an estimator
pft = x/N can be defined, where x denotes a particular measurement outcome of
N;. The expectation value <p$3t> = p; coincides with the true probability and the
corresponding variance reads (Ap$™*)* = (AN;)?/N? = py(1 — py)/N and thus is re-
duced by a factor N compared to a single atom. The same result is obtained for NV
repeated measurements with a single atom.? The preceding discussion was based on
the probability ps, as it is an intuitive quantity and highlights the benefits of using
an ensemble of N atoms. However, in this thesis we will primarily focus on spin

measurements.

2Since the choice of quantization axis is arbitrary, these properties apply for spin measurements
along any direction, not only restricted to S,.
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Figure 2.8: Quantum projection noise: (a) Binomial distribution P(z) for a mea-
surement of N4, where z denotes the number of atoms detected in the excited state.
For N = 20 and p; = 0.6, the distribution is centered around the mean value
(N4) = 12 with standard deviation AN; ~ 2.19. (b) Error propagation from the
measurement signal (5,(¢)) to the phase estimation uncertainty A@est.

In the context of an atomic clock, the ultimate goal of the interferometry sequence
is to estimate the phase ¢ as precisely and accurately as possible, since it comprises
the frequency difference w, which we aim to correct for. Unfortunately, the parameter
¢ cannot be measured directly, but has to be encoded onto an appropriate observable.
In the previous section, we have seen that in the case of Ramsey interferometry, the
phase is mapped to a population difference characterized by the spin component S..
Generalizing the single atom result to N uncorrelated atoms, the expectation value

of the observable reads (S.(¢)) = ¥ sin(¢). If (S.(¢)) could be obtained exactly,

the phase ¢ in the interval [—g, +E] would be determined by an inversion of the

2
signal ¢es = arcsin (W) However, the measurement outcome of S, is a random

variable and fluctuates with variance (AS,(¢))? = I cos?(¢). Consequently, quantum
projection noise causes the estimator ¢ to become a random variable as well.
In a small region around a particular phase value ¢q, the variance of ¢ can be

derived from the mean and variance of S, according to error propagation

AS.(9)
|8¢> <SZ<¢)>‘ d=do

as illustrated in Fig. 2.8(b), where AS,(¢) = 1/(AS.(¢))? denotes the standard de-
viation of S,. Consequently, fluctuations of estimations of the phase ¢ are a direct

Ados; = (2.114)

consequence of quantum projection noise. The working point ¢q is chosen to mini-

mize Ades, which typically coincides with the point of maximal slope of the signal.?

3While the phase dependence of the numerator and denominator in Eq. (2.114) cancels out math-
ematically for the conventional Ramsey protocol, any additional technical noise makes it necessary
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Considering a single atom, the phase estimation uncertainty is given by A¢ey = 1,
whereas N uncorrelated atoms improve the uncertainty by a factor VN yielding
Apsar, = Adest = 1/v/N. This result represents the standard quantum limit (SQL) —
the lower limit on the phase estimation uncertainty considering uncorrelated atoms.
Since (Ages)? arises from quantum projection noise of S., the phase estimation un-
certainty is often referred to as quantum projection noise as well. A more rigorous
framework for the phase estimation uncertainty and its fundamental bounds is pre-
sented in Chapter 3, providing a detailed discussion of phase estimation theory in

this context.

2.3.7 Coherent Spin States (CSS)

Coherent spin states (CSS) provide a compact and elegant framework to describe
states and dynamics of uncorrelated spin systems with maximal total spin S = N/2,
which corresponds to the fully symmetric subspace. They offer an intuitive interpre-
tation of the conventional Ramsey sequence and serve as a powerful tool for under-
standing collective spin dynamics. In the following, we define coherent spin states
and outline a selection of their key properties. For a more comprehensive discussion,
we refer to Refs. [115-117].

In the strong driving regime of atom-field interactions — effectively corresponding
to short pulses — the unitary transformation represents a rotation of the form

Ry o= e~ W0lsin(p) Sz —cos(p) Sy (2.115)

with rotation angle § = Qpt and axis n = (sin(y), — cos(¢), 0)T. Coherent spin states

are defined by the application of the rotation Ry, to the collective ground state

%7 _%> - H/>®N7 Le.

N
0,0) = Roo| 3. ~5) = @ [cos (3) 1™ + e sin () 1)) (2.116)

k=1

where |-)*) denotes the eigenstate of o of atom k. CSS are therefore product states
with no correlations between the atoms, representing the N particle version of the
single atom state described by Eq. (2.30). Generalizing the concept of the Bloch

to choose the optimal working point at ¢g = 0. This choice aligns the working point with the inflec-
tion point of the signal, thereby maximizing the sensitivity to small phase fluctuations and ensuring
that these fluctuations can be accurately resolved in experimental measurements.
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sphere to an ensemble of N atoms, CSS can be illustrated by the Bloch vector?

(Sy) sin(f) cos(yp)
N
r(0,0) = (S) = | (S,) | = 5 [ sin(®0)sin(y) (2.117)
(S.) —cos(0)
on a Bloch sphere with radius S = N/2. Consequently, the CSS [0,¢) = |§, 5

the eigenstate of S, with maximal eigenvalue M = +N/2. By comparison, coherent
spin states can be understood in analogy to coherent states |a) of the harmonic
oscillator, which are defined as the eigenstates of the annihilation operator a. In this
analogy, the rotation Ry, which generates |0, ¢) from the collective ground state,
serves as the counterpart to the displacement operator D(«) for coherent states of
the harmonic oscillator |a) = D(«) |0).

Properties— Beyond the mean polarization, the variances of coherent spin states
are of particular interest, especially for evaluating the sensitivity of the conventional
Ramsey protocol. On the one hand, the variances can be derived from a single two
level system, as shown above. On the other hand, they can be inferred from the

collective ground state ’%, —ﬂ>, since CSS are rotated versions of this state and

2
thus, the variances can be adopted accordingly. For the collective ground state, we

evaluate
1
(S2) = T (B - (S2+ 82+ 8,5+ 5.5, |5, -5)
L N (2.118)
= (&3S S5 -9 =7

and similarly <S§> = N/4. Hence, the variances of coherent spin states along any
direction k L r are given by Vegs = (ASk)? = N/4. As a result, CSS exhibit
an isotropic quasi-probability distribution in spherical phase space, as illustrated in
Fig. 2.5(b) by the Wigner function. Consequently, coherent spin states |6, ) form
minimum-uncertainty states with respect to the uncertainty relation

(ASK (AS)* > T](5) (2.119)

for all k L 1 in the orthogonal plane to r, i.e. k L rand 1 L r.
Again, an analogy can be drawn to coherent states of the harmonic oscillator,
which are minimum uncertainty states with respect to the uncertainty relation of

position x and momentum p. Furthermore, coherent spin states overlap and are

4Note that the azimuthal angle 6 is still measured from the negative z-axis.
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overcomplete as well. Coherent states of the harmonic oscillator are widely regarded
as the most classical-like states in quantum mechanics because their properties closely
resemble those of classical harmonic oscillations. Accordingly, coherent spin states are
the most classical-like spin states, as they represent product state with no correlations
between the atoms and achieve the standard quantum limit (SQL). This limit, already
mentioned in the previous section and further discussed in Chapter 3, defines the lower
bound for the phase estimation uncertainty A¢es using uncorrelated (i.e. classical)
states.

Moreover, coherent spin states can be expressed as a superposition of Dicke basis

states |5, M). The disentangling theorem [115] allows us to write the rotation Rg,

as

Ry, = o~ t0(sin () Sa—cos(9)Sy) _ eTS+eln(1+|T\2>SZ€fT*S_ (2.120)
with 7 = e “tan (g) The term e 7 % has no effect on the collective ground
state, i.e. e T - %,—%> = %,—%>, since S,‘%,—%> = 0. Application of

In(1+/72)s. NNy o= 5 n(1+7?) | X -8y = (1+

TSy | N
2

the eigenvalue equation yields e

o) |

5 —%> Using Eq. (2.42) to compute e —%>, coherent spin states

can be written as

0.0) =Rg,, | ¥, — ) = i ( 25 )mﬂw M)
) P20 2 = S+M (1+|T|2)S 27

N (2.121)
2 N \Y? 4 N N
N

N
E—FM

M=-X

Another convenient property of coherent spin states emerges when calculating expec-
tation values of spin components. The anti-normally ordered characteristic function
(with respect to the set of spin operators {S_,S,, S, }) is defined by [115]

Xa(0,0) = (0, ¢ €5 e"Fe*5+ |0, ) (2.122)
= [6_5/2 cos? (g) + €P/2 (sin (g) e " + acos (g)) (sin (g) '’ 4 7 cos (g))}N .

Consequently, expectation values of combinations of spin operators and their expo-
nentials with respect to coherent spin states can be calculated according to

(0, | S €75 5865 59675+ |9, o) = OLOKIEX A (0, ) (2.123)

a=a,6=p,y=7

where a,b,¢ € N and &, §3, 7 € C are arbitrary coefficients.
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Conventional Ramsey protocol— The discussion of N uncorrelated atoms can,
in principle, be directly inferred from the results of a single atom, as each atom is
independent and subject to identical transformations and measurements. However,
studying conventional Ramsey interferometry using coherent spin states and collective
rotations provides an intuitive interpretation of the conventional Ramsey protocol and
prepares for potential extensions.

Starting with the collective ground state |%, —%> = |¢>®N, the first Ramsey
pulse is implemented by a rotation around the negative y-axis by an angle Qgt =
7/2. Within the framework of coherent spin states, this corresponds to the rotation
Ro—r/2.pm0 = Ry(—7/2) = €™5v/2. Therefore, the initial state |¢)o) is given by

|¢0> = |0 = 7T/2a ¥ = O> = Re:ﬂ/?,(pzo ‘%a _%>

<m+mﬂ LN

z

1 (2.124)
-t
which corresponds to a coherent spin state with mean spin polarization r = e,. During
the free evolution time, the phase is imprinted by a collective rotation R,(¢) around
the z-axis. In principle, the initial state 1)) can be expressed in terms of Dicke states
according to Eq. (2.121) and thus, the action of R,(¢) becomes trivial. However, it is
conceptually instructive to interpret the free evolution time as a transformation of the
observable, rather than of the initial state. This approach aligns with the Heisenberg
picture, as discussed in Sec. 2.3.2. Likewise, the second Ramsey pulse R,(7/2) can
be assigned to the observable S,. Following this approach, we effectively measure the
operator

S.(¢) = RUARL (3) S:-R. (5) Ra(0). (2.125)

Applying the rotation properties derived in App. B, the observable transforms ac-
cording to Rl (7/2)S,R.(7/2) = S, and Ri(¢)S,R.(¢) = cos(¢)S, +sin(¢)S,. Thus,

the first and second moments of the observable are given by

(5:(¢)) = cos(9) (Sy) +sin(¢) (S) (2.126)
(S2(¢)) = cos*(¢) (S2) + sin(¢) cos(¢) (SuSy + Sy Sy +sin’(¢) (S2).  (2.127)

Evaluating these expectation values with respect to the initial state |%, %>x using

the properties of coherent spin states results in

(S:(9)) = gsin(cb) (2.128)
(S2(¢)) = gcos%gzﬁ) + NT sin?(¢). (2.129)
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With variance (AS.(¢)) = & cos?*(¢), the phase estimation uncertainty reads Ageg =
1/ VN, as already derived before. This calculation demonstrates the utility of coher-
ent spin states combined with collective rotations and spin measurements. In par-
ticular, the expectation values of the observable can be traced back to fundamental
properties of coherent spin states.

It is worth noting that the first Ramsey pulse could also be assigned to the observ-
able, allowing the expectation values to be evaluated with respect to the collective
ground state. However, presenting both approaches provides pedagogical value by
offering a broader perspective. Furthermore, separating the initial state preparation
from the free evolution and measurement will be advantageous for the analysis of

generalized Ramsey protocols (cf. Chapter 3 and Chapter 4).

2.3.8 GHZ States

As demonstrated in the previous sections, coherent spin states saturate the standard
quantum limit (SQL), achieving a phase estimation uncertainty A¢sqr = 1/ V'N.
To further enhance sensitivity and reduce the estimation error, it is necessary to
employ entangled states. As a brief reminder, entanglement emerges when quantum
correlations between particles prevent the state from being expressed as a product
of individual particle states. More precisely, a pure state |[¢) € H = ®k7-[('“) is
separable if it can be factorized into single-particle states ‘¢(k)> € H®, such that

=2

Wsep) = ) [0™) = [v V) @ [pP) @ ... @ ™). (2.130)
k=1
Similarly, a mixed state is separable if it can be written as a mixture of separable
pure states [118]

Psep = Zpk |¢sep,k><1/}sep,k’ 5 (2131)
k

where p; > 0 and ), p, = 1. States that cannot be decomposed in this way are
classified as entangled [119,120].

In Chapter 3, we will demonstrate that by employing entangled states, the ulti-
mate lower bound for the phase estimation uncertainty in the absence of decoherence
is given by the Heisenberg limit (HL) A¢pr, = 1/N, resulting in an improvement by
a factor of /N compared to the SQL. The HL can be saturated using the maximally
entangled Greenberger-Horne-Zeilinger (GHZ) states [121]

S = SIE-D+EDL e

IGHZ) = NG
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representing an equal superposition of the collective ground and excited states, as
illustrated in Fig. 2.5(c). The corresponding Ramsey sequence, initially proposed
by Wineland et al. in Ref. [122], is denoted as the standard GHZ or ‘parity-GHZ’
protocol. During the free evolution time, the accumulated phase is amplified by a
factor of V due to the maximal entanglement in the GHZ state. The evolved state
reads

y) = R.(¢) |GHZ) = % [é@ 1Y 4 et |T>®N] . (2.133)

The second Ramsey pulse, represented by a rotation R,(7/2) around the y-axis by

an angle 7/2, results in the final state

1
\/§N+1

where we used R (m/2) = \/Lﬁ(]l('“) — O'_(,f) + 0™ according to Eq. (2.73). Finally,

&N is measured. Its eigenvalues are (—1)2 ™ = (—1)V- where

N¢
2

[9r) =Ry (3) [0) = —r [F (1) = D) + e (1 + 1)°Y] . 2134)

the parity operator o
N_ denotes the number of atoms in the ground state. Consequently, the parity has
a binary outcome +1, quantifying if there is an even (+1) or odd (—1) number of

atoms in the ground state. The expectation value of the observable is given by

(o) = (W o2V [¢oy) = (—1)" cos(N ). (2.135)

Unlike the conventional Ramsey protocol, the GHZ protocol yields a symmetric signal
with respect to the origin. Alternatively, as for the conventional Ramsey protocol,
the second Ramsey pulse can be absorbed in the measurement. Hence, by employing
Eq. (2.73) once again, the effective observable

I =RI(n/2)0"R,(r/2) = (—1)N 2N (2.136)

T

can be defined. II is also commonly denoted as parity measurement and has expecta-
tion value (II(¢)) = (=1)" cos(N¢). With o2 = 1 for all Pauli matrices, the second
moment simply reads (IT?(¢)) = 1. Thus, the variance is given by

(ATI(4))? = 1 — cos?’(N¢) = sin?(N¢). (2.137)

Finally, with the slope of the signal 9, (IT1(¢)) = (—1)V T N sin(N¢), the phase esti-
mation uncertainty becomes
ATl(¢) 1

Agest = RG] - =5 (2.138)
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and thus saturates the HL.> The enhanced sensitivity of the GHZ protocol, in com-
parison to the conventional Ramsey protocol, can be understood from two different
perspectives: (i) In the context of N identically prepared single atoms, as discussed in
Sec. 2.3.6, the variance is reduced by a factor N using uncorrelated atoms. In contrast,
the variance is independent of N for the GHZ protocol due to the binary nature of
the parity measurement. At the same time, the N fold increased accumulated phase
in the GHZ protocol directly leads to an N times steeper slope of the signal and thus,
results in a gain of V/N in the phase estimation uncertainty A¢es compared to the
SQL. (ii) Considering the collective description using coherent spin states (CSS), as
discussed in Sec. 2.3.7, the slope of the signal for both protocols scales linearly with
N. For the GHZ protocol, this originates from the N fold increased accumulated
phase, while it naturally arises from the collective behavior of N uncorrelated atoms
for the CSS. However, the binary outcomes of the measurement in the GHZ protocol
ensures that the variance remains independent of N, unlike for CSS, where it scales
linearly with N. Hence, the GHZ protocol achieves the HL, whereas the conventional
Ramsey protocol remains limited by the SQL.

Intuitively, the GHZ protocol can be interpreted as an artificial single atom with
an effective transition frequency amplified by a factor N, leading to an enhanced
phase accumulation. However, this advantage comes with a significant trade-off. The
binary nature of the parity measurement and the increased oscillation frequency of
the Ramsey fringes make the protocol extremely susceptible to decoherence and phase
noise originating from frequency fluctuations, as will be discussed in Chapter 3 and
Chapter 4, respectively.

2.3.9 Spin-Squeezed States (SSS)

A promising approach to surpass the SQL is represented by spin squeezing. Spin-
squeezed states (SSS) form a subclass of entangled states characterized by a reduced
(squeezed) variance along one axis of the collective spin compared to coherent spin
states — at the cost of an increased (anti-squeezed) variance along an orthogonal
axis. These states have been extensively studied theoretically and implemented in
various experimental setups, establishing them as a cornerstone of modern quantum
metrology. [6,12,58,59,123,124]

In this section, we introduce squeezing parameters to define and identify SSS.

To emphasize their relevance in quantum metrology and, in particular, their role in

SHere, the phase dependence cancels again. By the same arguments as for the conventional
Ramsey protocol, the optimal working point should be chosen at ¢9 = 5%. Alternatively, an
additional rotation R.(—35}) can be applied directly before or after the free evolution time to shift
the optimal working point to ¢y = 0.
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improving the performance of optical atomic clocks, we relate the phase estimation
uncertainty to the squeezing parameter. Finally, we explore the generation of SSS
through one-axis twisting (OAT) [125], a paradigmatic model allowing comprehensive
theoretical insights and experimental implementation in various setups [62, 126-133].

Spin Squeezing Parameters— In analogy to squeezed states of the harmonic os-
cillator [105], an intuitive definition of spin squeezing arises from the spin uncertainty
relation Eq. (2.119). In this context, a natural criterion for spin squeezing is given by
(ASK)? < | (S))|/2 for orthogonal directions k and 1, with corresponding squeezing
parameter defined as [123,134-130]

n = A%k (2.139)

VIS /2

Spin squeezing occurs if &, < 1. However, this parameter depends on the choice of
the coordinate system and thus can yield &, < 1 even for coherent spin states [58,59,
125]. Consequently, &, does not adequately capture quantum correlations between
the atoms. Additionally, squeezing in spin systems is inherently more complex than
in the harmonic oscillator due to the fundamentally different commutation relations.

Addressing these issues, Kitagawa and Ueda [125] proposed that a spin state is
regarded as squeezed if the variance of a spin component S|, orthogonal to the mean
spin vector r = (S), is smaller than the variance of a coherent spin state, since they are
minimum uncertainty states and most classical-like states. With the variance of a CSS

Voss = (AS))2gs = N/4, the condition for spin squeezing becomes (AS )2, < &,
leading to the spin squeezing parameter
4(AS )2,

where (AS] )min denotes the minimum variance of a spin component orthogonal to r.
However, squeezing of the variance in a particular direction does not necessar-
ily indicate an enhanced sensitivity, as reflected by the trade-off between variance
and polarization of the estimation error in Eq. (2.114). To account for this trade-
off, Wineland et al. [58,59] defined a spin squeezing parameter tailored to quantum

metrology in the context of Ramsey interferometry
£ = N%, (2.141)

(Sr)

where the measurement direction m is orthogonal to both the mean spin vector r and
the free evolution rotation axis n. A value £2 < 1 indicates spin squeezing useful for
Ramsey interferometry. States satisfying &2 < 1 exhibit reduced variance (ASm)?,
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while preserving the uncertainty relation Eq. (2.119) through an increased variance
(ASy,)?. Notably, €2 < 1 implies 2 < 1, since (Sy) < N/2, but the converse does not
hold. Moreover, 2 < 1 is a sufficient condition for entanglement [130]. For a Ramsey
protocol where r, n, m are mutually orthogonal, the squeezing parameter £2 is related
to quantum projection noise, described in Eq. (2.114), by
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(Agest)? = N (2.142)

In the conventional Ramsey protocol, with r = e,, n = e,, and m = e,, the SQL
is recovered. A fundamental lower limit for €2 can be derived from the uncertainty
relation. From Eq. (2.119), (ASwm)? > (S;)? /4(ASy)? and with (AS,)? < N?2/4, this
yields

5 1
&> N’ (2.143)
which reflects the Heisenberg limit.

It is important to note that not all entangled states are spin squeezed, as SSS
merely form a subset of non-separable states. Alternative squeezing parameters and
their applications are discussed in Refs. [137, 138]. While numerous methods for
generating SSS have been proposed (see Refs. [6, 124, 138] for examples), this work

focuses on SSS generated through one-axis-twisting (OAT) interactions.

One-Axis-Twisting (OAT)— In the previous sections, we have seen that Hamil-
tonians linear in the spin operators lead to collective rotations, resulting in the notion
of coherent spin states. Hence, non-linear interactions are required to generate en-
tanglement among the atoms. The simplest non-linear interaction is represented by
one-axis-twisting (OAT), discussed in detail by Kitagawa and Ueda in Ref. [125]. One-
axis-twisting interactions receive much attention, since they give enhanced sensitivity
by generating spin-squeezed states or echo protocols and can be reliably implemented
in several experimental setups [5,62,126-133,139-143]. Below, we outline the funda-
mental concept of OAT and discuss its metrologically relevant properties.

The one-axis-twisting Hamiltonian is quadratic in S, and reads
H = xS? (2.144)

where x is the interaction strength. The corresponding dynamics is governed by the

unitary operator

T.(1) = exp (—i4S?) (2.145)
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Figure 2.9: One-axis-twisting interaction: Bloch sphere visualization of the one-
axis-twisting (OAT) interaction acting on the coherent spin state (CSS) polarized
along the z-direction, illustrated by the Wigner function for N = 16. The quasi-
probability distribution is presented for several squeezing strengths p, ranging from
a CSS (u = 0) via spin-squeezed states (SSS) to a rotated GHZ state (u = ), as
discussed in the main text.

with squeezing strength p = 2yt. This dynamics generates a variety of entangled

states. For small squeezing strengths p, one-axis-twisting results in spin-squeezed
N N
202
As p increases, the regime of spin-squeezed states is surpassed, indicated by the

states by shearing the initial CSS ‘ >x around the z-axis, as illustrated in Fig. 2.9.
Wigner function bending around the Bloch sphere, and strongly entangled states
are generated. In particular, rotated versions of the GHZ state are created for the
maximal twisting strength 4 = m. For pu > m, the dynamics reverses. Explicit
evaluations of the properties of SSS generated by OAT are provided in Ref. [125].
As already observed in Fig. 2.9, the minimal spin variance for states generated
via one-axis-twisting (OAT) lies in the y-z-plane. To enable a direct comparison with
the conventional Ramsey protocol, the spin-squeezed states can be rotated by an
angle 6 around the z-axis. The resulting state |1h) = R.(6)T. (1) |5, ). exhibits a
squeezed variance V_ aligned along the y-direction, while the variance along the z-axis
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Figure 2.10: Spin-squeezed states: (a) Comparison of the squeezed variance V_ to
the coherent spin state variance Vigs = N/4 for various N, showing V_ < Vigg for
all squeezing strengths . (b) Squeezing parameter £ as a function of the squeezing
strength p for several N. Metrological spin squeezing is obtained only for small pu
due to the trade-off between squeezed variance and reduced contrast. (c) Optimal
squeezing strength fi.,¢ that minimizes the squeezing parameter £, plotted against the
ensemble size N. (d) Corresponding optimal squeezing parameter £. (e) Measure-
ment signals (5,(¢)) for a coherent spin state (black) and an optimally spin squeezed
state (orange) for N = 16. The shaded areas represent the corresponding standard
deviations AS,(¢). (f) Dependence of the squeezing parameter £ on the accumulated
phase ¢ for optimally spin squeezed states. The sensitivity is enhanced in the vicinity
of ¢g = 0 compared to CSS, but this region diminishes with increasing ensemble size.

is anti-squeezed with variance V.. Explicit calculations yield the variances [125]

Vi:g{uiuv—n Ai\/m}}, (2.146)
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where A = 1 — cos™2(p) and B = 4sin(4) cosV2(4). The squeezed variance V_
is depicted in Fig. 2.10(a) for various ensemble sizes N, demonstrating that V_ <
Voss = N/4 for all squeezing strengths p > 0. However, as pointed out before, the
sensitivity to accumulated phases in Ramsey interferometry depends not only on the

variance V_ but also on the contrast of the signal, which is given by [125]

(Sy) = gcosN_1 (4). (2.147)

2

This contrast decreases with increasing p, which becomes more pronounced for larger

ensembles. The squeezing parameter is given by [125]

1 — A — /A2 2
L

Metrological spin squeezing, characterized by & < 1, is achieved only for small p
due to the trade-off between reduced variance and decreasing contrast, as illustrated
in Fig. 2.10(b). In this regime, the phase estimation uncertainty A¢e = £/vVN <
1/ V/N is reduced compared to CSS, yielding a sensitivity below the SQL. One-axis-
twisted states are spin squeezed for p < 4/v/N [125,139], with optimal sensitivities
achieved for squeezing strengths that scale with the ensemble size N according to
fopt ~ N73/% as illustrated in Fig. 2.10(c). The corresponding sensitivities — charac-
terized by the squeezing parameter £ — scale as & ~ N~/3, as schown in Fig. 2.10(d).

In atomic clocks, frequency fluctuations require a high sensitivity not only at the
optimal working point (¢y = 0), but also in its vicinity. The measurement signal for an
optimally squeezed state compared to a CSS is shown in Fig. 2.10(e), where shaded
areas represent the corresponding variance. For spin-squeezed states, the variance
is significantly reduced close to the optimal working point ¢q, providing enhanced
sensitivity. However, the region offering this enhancement diminishes as the atom
number N increases. This behavior is further illustrated in Fig. 2.10(f), where the
squeezing parameter £ is plotted as a function of the accumulated phase ¢. While
stronger squeezing reduces the phase variance around ¢y, it simultaneously narrows
the region where this enhanced sensitivity is maintained. This imposes additional
constraints on the squeezing strength p for the application in atomic clocks. In
particular, for long interrogation times, a broad dynamic range is essential for stable
clock operation, as we will discuss in detail in Chapter 4. Consequently, spin-squeezed
states generated by one-axis-twisting enhance the sensitivity compared to coherent
spin states at the cost of reduced dynamic range.
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2.4 Feedback and Servo

After characterizing the two primary components in an atomic clock — the local os-
cillator (LO) and the atomic reference — this section describes the servo mechanism,
which implements a feedback loop to correct the LO frequency based on the Ram-
sey interrogation. We begin by reviewing the basic clock operation, as presented in
Sec. 1.2, by considering a single clock cycle and introducing the relevant frequency no-
tation. As before, we assume identical clock cycles with total duration T = Tp + T,
comprising a potential dead time Tp and the Ramsey dark time 7T'.

In each clock cycle, the atomic reference is interrogated according to a specific
Ramsey sequence for duration 7. The frequency of the LLO at the end of the interro-
gation time in cycle k, prior to the measurement, is denoted by w0 . This frequency
reflects stabilization in preceding cycles (j < k), but still incorporates the intrinsic
(new) noise introduced during the current cycle k. Consequently, wio, gives rise
to the phase shift ¢, accumulated by the atomic ensemble, as dicussed in Sec. 2.3.
Therefore, this frequency is of primary interest for the interrogation of the atomic
reference and we refer to wro as the LO frequency throughout this thesis when con-
sidering individual clock cycles. At the end of the Ramsey sequence, ¢y, is estimated
as Qest x based on the measurement outcome (cf. Sec. 2.3). Accordingly, an estima-
tion of the frequency wro is obtained via West x = Gest /1. Finally, to complete the
feedback loop, the servo applies a correction weer; based on the estimate west,k.ﬁ The
resulting stabilized clock frequency is given by

Welock,k = WLO,k — Weorr, k- (2149)

In an experiment, the LO frequency is dynamically adapted during clock operation
as described above. However, to employ the methods presented in Ref. [92] and to
establish the notation required to describe the Monte Carlo simulations (cf. App. A
and Ref. [3]), we extend the model in the following. In particular, we aim to relate
the clock frequency to the free-running local oscillator. Although the free-running
LO frequency is not directly accessible in practice due to continuous stabilization,
this perspective provides a comprehensive understanding of the control loop and, in
particular, the feedback strategy.

The free-running LO generates a time-dependent frequency wiee(¢), with fluctua-
tions entirely determined by the intrinsic noise characteristics of the LO, as detailed

5To be precise, only the frequency fluctuations of the LO during the Ramsey interrogation time
T are monitored and therefore can be estimated and corrected, while dead time leads to undetected
aliased frequency deviations, as we discuss further in Chapter 4.
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in Sec. 2.2. In cycle k, the average free-running LO frequency is given by

1 kTo
wiree, = — / At wiE (t'). (2.150)
" Te Je-nre

Consequently, the LO frequency wr,o ; can be expressed as

free free ne
WLOk = Welock,k—1 T (WLO & = WLOk—1) = Welock,k—1 + WO & (2.151)

where we have introduced the new noise of the k-th cycle wigy, = wirgek — wffgek 1

To express the stabilized clock frequency weioek x in terms of the free-running LO

frequency wlffg‘ik, we define the total (or cumulative) correction

Weork = Z Weorn s (2.152)

which additionally accounts for all past frequency corrections in clock cycles j < k.

tot
corr,k

Accordingly, w represents the total correction that would hypothetically be re-
quired to correct the free-running LO up to the k-th cycle. Hence, the clock frequency

Welock,k; can be expressed as

free tot
Welock,k = WLO k wcorr,k' (2153)

Similarly, the LO frequency wro ; can be rewritten as

free tot
WLOk = WLok — Weorr,k—1- (2154)

Finally, we define an effective prediction for the free-running LO frequency in the

current clock cycle — prior to the correction — as

tot
Wpred,k = wcorr,kfl + West, ks (2155)

tot

which is determined by the total correction of the previous clock cycle weoy, ;.

, and
the current frequency estimation wes ; of the LO frequency wio k.

Ultimately, the stabilization of the local oscillator to the atomic reference requires
a specific choice of the servo corrections weeyr x, Or equivalently the total corrections

tot

w From a theoretical perspective, optimal feedback is achieved by adjusting

corr,k*
the correction to precisely match the estimated frequency, i.e. weorrk = Westk OF
Wik k = Wpred,k, as this approach maximizes the use of the available information.

However, practical clock operation has demonstrated that a weaker feedback is often
advantageous, as it provides more robust clock performance against various distur-
bances and imperfections [11,12,91,92,144]. In the remainder of this section, we
present two particular feedback strategies following Ref. [92].
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2.4.1 Double-Integrating Servo

Since the exact correction with weg 1 is unfavorable, as argued above, a natural gen-
eralization is represented by a simple integrator, with feedback corrections given
by [11,91,92, 144]

Weorr,k = g * West, ks (2156)

where the dimensionless gain factor 0 < g < 1 determines the strength of the feedback.
Accordingly, the total correction reads

k
tot tot tot
wcorr,k = wcorr,k—l + Wcorr,kz = wcorr,k—l + gwest,k =g Zwest,j- (2157)
j=1

In terms of the predictions wpyeq . of the free-running LO frequency, defined in Eq. (2.155),
this can be expressed as

tot __, tot
corr,k — wcorr,k—l + GWest, k:

tot tot

= wcorr,k—l + g (Wpred,k - wcorr,k,‘—l) (2158)

_ tot
= YWpred, k + (1 - g)wcorr,k’—l'

W,

tot

o k15 We obtain

Recursively substituting this expression for w

tot _ tot
wcorr,k = YWpred,k + (1 - g>wcorr,k—l
2, tot

= gWpred k + g(l - g)wpred,kfl + (1 - 9) Weorr,k—2
(2.159)

= Zg(l - g>k7jwpred,j-
j=1

Typically, the gain factor g is chosen heuristically, depending on the specific exper-
imental setup [91,92,144]. Relevant parameters include the noise profile of the LO,
quantum projection noise (QPN), interrogation time and dead time. Alternatively,
g may be determined via the optimization method for general linear integrators pre-
sented in the next section or by the approximate analytical expression provided for
known noise models in the appendix of Ref. [92].

For some local oscillators exhibiting strongly correlated noise processes, such as
slow frequency drifts or random walk frequency noise, a single integrator is insuffi-
cient to achieve reliable stabilization of the LO. In these cases, a second integrator
incorporating averages on longer time scales has to be implemented [11,92,144]. For

the double integrator, the feedback corrections are given by

k
Weorr,k = JWest k 1 Gdr Z West,j 5 (2160)

i=1
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or equivalently

k
tot __, tot

__, tot
corr,k wcorr,k—l + Weorr,k = wcorr,k—l + GWest, k + gdr E West,,j » (2161)
i=1

w

where g4, denotes the secondary gain factor associated with the slow integrator. To
avoid undesired servo oscillations, it is essential to ensure that g¢, < ¢ [92]. The
additional term effectively aims to predict and compensate for potential long-term
drifts in the LO frequency.

2.4.2 General Linear Integrator

A more general strategy is provided by the broader class of linear integrators, dis-
cussed in detail by Leroux in Ref. [92] and briefly outlined below. In this framework,
the total correction represents a weighted linear combination of all past frequency

estimations
k
tot _ ~
wcorr,k - ij * West,j » (2162)
j=1

with coefficients ;. In particular, the simple integrator discussed in the previous
section emerges as a special case with uniform weights w; = g.

To apply the optimization method presented in Ref. [92] and to align the theoret-
ical description with the implementation of the Monte Carlo simulations (cf. App. A
and Ref. [3]), we adapt the notation as follows. We define the total correction in
terms of the predictions of the free-running LO according to

k
tot -
Weorr,k = Z Wj + Wpred,j (2163)
i=1

where we additionally require the weights w; to satisfy the normalization condition
> jw; = 1. Comparison to Eq. (2.159) shows that the simple integrator of the
previous section is realized in the special case w; = g(1 — g)*=7.7

The optimization of such general linear integrators has been extensively inves-
tigated in the literature, such as in Ref. [145], building on fundamental studies
of Wiener [146] and Kolmogorov [147]. For the servo corrections as defined in
Eq. (2.163), the optimal weights are explicitly derived in Ref. [92].

Due to the large number of clock cycles in realistic clock operation, it is unfeasi-
ble to incorporate all preceding estimates or predictions to calculate the subsequent

correction. Therefore, typically only the last n,, estimates are used. For example, in

"Note, however, that this choice does not satisfy the normalization condition.
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the numerical simulations presented throughout this thesis, we take the most recent
ny = 0 estimates into account. While the optimal weights, in principle, need to be
computed for each individual clock cycle, they can be evaluated once in advance if
the frequency fluctuations of the local oscillator are stationary and sufficiently well
characterized. Specifically, the optimal weights depend on the LO noise, quantum
projection noise, interrogation duration and dead time. Leveraging prior knowledge
of the system, Ref. [92] provides an explicit evaluation of these optimal weights in
this context. Moreover, this method can also be used to determine an appropriate
gain for the simple integrator by identifying g = w,,,, where w,,, denotes the weight
associated with the most recent estimation or prediction [92].

As before, a second integrator has to be added to address strongly correlated noise
processes

k k
tot
wcorr,k - E Wy - Wpred,j + gdr E West,j - (2164)
j=1 =1

If the condition gq, < max; w; is ensured, the contribution of the additional integrator
can be neglected in the optimization of the weights [92].



60

Chapter 2. Basics of Atomic Clocks




Frequency metrology limited
by spontaneous decay

3.1 Motivation and research problem

Current efforts to further improve the stability of optical clocks involve exploring the
use of entanglement in atomic systems to reduce quantum projection noise (QPN) and
overcome the standard quantum limit (SQL) imposed by uncorrelated atoms [6,12,13].
Unfortunately, decoherence presents a substantial obstacle in frequency metrology,
impairing the precision of measurements by compromising the coherence of quantum
systems essential for achieving entanglement-based enhancement [65-67, 148—-150].
In particular, Huelga et al. have demonstrated that GHZ protocols, which are op-
timal in the absence of decoherence, suffer significantly from individual dephasing
associated with random phase changes, ultimately showing no improvement over the
SQL [149]. To address this susceptibility of entanglement-enhanced protocols, var-
ious noise sources have been taken into account to determine optimal interrogation
sequences [5,91,98,139-142,148,149, 151]. Unlike magnetic field fluctuations or laser
noise, the finite lifetime of qubits in the excited state represents a fundamental limit
rather than an external noise source. Nevertheless, in contrast to the extensive treat-
ment of dephasing and frequency fluctuations, the effects of spontaneous decay have
received comparatively little attention.

State-of-the-art clock lasers achieve coherence times of several seconds [88], en-
tering the regime of the excited-state lifetime of various clock candidates, such as
In*-ions (0.2s), Srt-ions (0.4s), Cat-ions (1.1s) and Hg-atoms (1.6s). With further
technological improvements in the short-term laser stabilization, coherence times will
potentially approach lifetimes of further clock species as Yb-atoms (15.9s) or Al'-
ions (20.7s). Consequently, it is highly relevant to investigate the impact of sponta-
neous decay for the development of future clocks and identify optimal interrogation
schemes for specific setups. This aspect becomes particularly important when employ-
ing strongly entangled states, which are generally more susceptible to decoherence.

61
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Spontaneous decay arises from the inherent instability of excited atomic states
when interacting with the quantum fluctuations of the electromagnetic field, even in
a vacuum [107,152,153]. This process manifests as probabilistic transitions to a lower
energy state, releasing the energy difference by emitting a photon. In spin systems,
or equivalently two level systems, this results in discrete quantum jumps from the
excited to the ground state. Spontaneous decay is fundamentally explained within
the framework of quantum electrodynamics (QED) and can be rigorously described
by Wigner-Weisskopf theory [154]. For a comprehensive derivation of spontaneous
decay in this context, we refer to the literature such as Refs. [106, 153-155].

Additionally, we consider individual dephasing, as this process has been the pre-
dominant focus in studies of decoherence effects throughout the literature. Individual
dephasing in spin systems is typically associated with random fluctuations in the local
environment, affecting each spin independently. Such environmental noise can origi-
nate from a variety of sources, including stray magnetic fields, spatially varying laser
noise, atomic collisions or fluctuations in trap properties. These effects induce ran-
dom phase shifts, for instance by causing instantaneous variations in the energy levels
of each spin and, consequently, in their precession frequencies. As a result, different
spins accumulate distinct quantum phases over time, leading to a gradual loss of
coherence within the ensemble, without affecting the populations. [6,56,108,149,156]

Furthermore, we explore the effect of collective dephasing on the Ramsey pro-
tocols investigated in this chapter. Collective dephasing occurs when all spins in
an ensemble experience correlated phase fluctuations due to a common noise source,
such as laser phase noise or fluctuations in a global magnetic field. In this scenario,
the dephasing acts uniformly across the ensemble, leading to a simultaneous loss of
coherence that critically undermines collective quantum correlations. [12,56,157-159]

To start with, we introduce the fundamental principles of atomic clocks and
Ramsey interferometry, establishing the connection between frequency metrology and
phase estimation theory. To set the theoretical foundation for this chapter, we out-
line the framework of local frequency metrology and examine lower bounds on the
sensitivity in the first sections. The primary results of this chapter are discussed in
Sec. 3.7. Here, we present a protocol with quantum operations of low complexity and
a highly nonlinear estimator that saturates the quantum Cramér-Rao bound (QCRB)
of the GHZ state. Surprisingly, and in contrast to dephasing, we find that GHZ states
provide a substantial enhancement compared to the SQL in the presence of sponta-
neous decay. Moreover, we compare the sensitivity of this protocol to the ultimate
lower limit and to spin-squeezed states (SSS), which are optimal in the asymptotic

limit of large particle numbers. In addition, we present a variation of this protocol
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with a GHZ-like initial state, which achieves the ultimate lower limit for ensembles
with several tens of atoms and outperforms SSS for up to 80 atoms. To demonstrate
the robustness of the measurement and estimation scheme, we perform comprehen-
sive Monte-Carlo simulations of the full feedback loop in an atomic clock. Finally, in
Sec. 3.8 we examine the crossover between regimes dominated by spontaneous decay
and dephasing.

To implement the low complexity protocols, we employ single one-axis-twisting
(OAT) [125] operations for both state preparation and as an effective measurement,
since they give rise to a variety of entangled states, ranging from spin-squeezed
states (SSS) to the GHZ state, as well as variational classes of generalized Ramsey
spectroscopy saturating the ultimate limit in sensitivity [5, 139-143]. Furthermore,
OAT interactions are accessible in several setups as in ion traps via Mglmer-Sgrensen
gates [126-128], in tweezer arrays via Rydberg interactions [62,129] or Bose-Einstein

condensates via elastic collisions [130-133].

3.2 Atomic clocks and Ramsey interferometry

In atomic clocks (cf. Fig. 3.1(a)), a local oscillator (LO) generates an inherently noisy
frequency signal wro(t) that varies over time ¢. The LO is stabilized to an atomic
transition frequency wy through repeated interrogations of the atomic ensemble ac-
cording to a specific Ramsey interferometry scheme. Throughout this thesis we focus
on single-ensemble clocks in which the atomic reference is periodically interrogated
using the same protocol in each clock cycle. During the Ramsey time 7', the atoms
accumulate a phase ¢ = wT', which effectively reflects the average of the frequency
deviation over the interrogation period

w= f/t dt'[wo — wro(t)]. (3.1)

At the end of each interrogation sequence, a measurement with outcome x is per-
formed, from which an estimate ¢q(z) of the monitored phase ¢ is inferred. The
control cycle is completed by the servo that applies feedback to correct the LO fre-
quency by weorr based on the phase estimate ¢eg (), resulting in a stabilized LO
signal. Consequently, frequency metrology is directly connected to phase estimation
theory.

In interferometry, the objective is to estimate an unknown parameter ¢ as precise
and accurate as possible. In generalized Ramsey spectroscopy (cf. Fig. 3.1(b)), the
phase ¢ is encoded onto the initial probe state py, during the free evolution time T
(Ramsey dark time) via a completely-positive trace-preserving map A, . Addition-
ally, this quantum channel A7 may also account for decoherence processes such as
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Figure 3.1: Atomic clock and Ramsey interferometry: (a) Basic principle of an
atomic clock: A local oscillator (LO) with fluctuating frequency wro(t) is stabilized
in a control loop to an atomic transition wy. During the free evolution time 7', the
probe state accumulates a phase ¢ arising from the frequency deviation. Based on
the measurement outcome x, the phase is estimated by ¢ and the LO frequency
is corrected according to weorr by the servo. (b) Generalized Ramsey interferometry:
The phase ¢ is encoded during the interrogation time 7" onto the initial state p;, via
Ay 7. Based on the measurement outcome x of the observable X, an estimation e
of the phase is conducted.

dephasing or spontaneous decay, with their impact depending on 7'. Unfortunately,
the phase itself is not an observable and therefore, cannot be measured directly. Con-
sequently, after the free evolution, an appropriately chosen observable X is measured.
The measurement is described by a positive operator-valued measure (POVM) {I1, },
with II, > 0 and ) II, = 1, where x denotes the measurement outcome. Due to
the inherent indeterministic nature of quantum measurements, the outcomes = are

random and occur with conditional probability

P(x|¢) = Tr (I Ay rlowm]) , (3.2)

also referred to as the likelihood or statistical model. Finally, based on the measure-
ment outcome x (of X), an estimation @e () of the parameter ¢ is performed. Note
that since the quantum channel depends on the interrogation time 7', the conditional
probabilities P(z|¢) and the estimator ¢es () generally likewise depend on T'. Unlike
state preparation, free evolution, and measurement, which are governed by quantum
mechanics, the estimation process involves classical post-processing of measurement

data and is thus addressed within the framework of classical phase estimation theory.
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While the free evolution Ay r is determined by the experimental setup, the estima-
tion strategy ¢es;(x), the measurement {II,}, and the initial state p;, can be chosen
arbitrarily.! Consequently, generalized Ramsey interferometry offers three control pa-
rameters that can be adjusted to optimally determine the phase ¢. Naturally, some
choices are better than others. In general, effective choices exhibit a high sensitivity
to changes in ¢. This raises fundamental questions: How can we characterize the
sensitivity to changes in the phase? What distinguishes good choices from bad ones?
How precise can we ultimately become? To address these questions, we introduce
a cost function that precisely quantifies the sensitivity to changes in the phase. We
further derive bounds on this sensitivity and investigate various interrogation schemes
designed to achieve these limits.

Although we explore frequency metrology in the context of atomic clocks, we
emphasize that the majority of the results and techniques are broadly applicable to

a wide range of scenarios within the field.

3.3 Dynamics

Considering a unitary phase evolution with Hamiltonian H = w.S,, spontaneous decay
with rate I', individual dephasing with rate v and collective dephasing with rate .,
the dynamics of the system during the free evolution time 7', represented by the

quantum channel Ay 7, is described by a master equation of the form (cf. Sec. 2.3.3)

p=—iwlS,,p| +

| =

N N
'7 Ye
; Lgwlol + 3 > Lowlp) + 5 Ls.lpl, (3.3)

where S® = 0(_k), S = 1 o) and S. =5 (k) , with single particle Pauli operators
oj. The Lindblad superoperators are defined as L4[p] := 24pAT — ATAp — pATA.

'n principle, a specific experimental setup typically imposes constraints on the available transfor-
mations for initial state preparation and measurement. However, to allow for a general investigation,
we assume that arbitrary states and measurements can be realized.
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Explicitly expanding Eq. (3.3), the master equation is expressed as

N
. . r k) (k k) _(k k) (k
p = —iwl[S,, p] + 5 E <20(,)p0£r) - Ji)ag)p — po?a@)

N
+ % > <za§k>pa§k) () p4p (ggm)z) 4 % (25.pS. — S%p — pS?)

" (3.4)
= —iw[SZ, ,0] + 5 Z (20(_k)p(7f) — Ué’;)p _ pa’ég))
k=1
v = 7
= 2> (oWpol) + 0l pol) + T (25.p8. — 52— pS2)
k=1
where we used 02 = 1 and 0,0_ = 0. Furthermore, since o, = ¢ — 0gs and
1 = 0ce + 04y, wWe obtained 0,00, — p = —20eep0gy — 2045p0cc. Here, 04 = |1)(]| and

Oee = |T) (1| represent the projectors onto the ground and excited states, respectively.
Starting with an initial state py,, the state after evolution for duration 7" according
to Eq. (3.4) is denoted as pin(¢,T) = Ay r[pin], With phase ¢ = wT arising from the
average frequency deviation w defined in Eq. (3.1). In general, solving master equa-
tions with multiple distinct terms, such as Eq. (3.4), is a complex and intricate task.
However, since all four terms of the master equation (super-)commute pairwise (cf.
App. C), the dynamics associated with each component can be solved independently,
thereby significantly simplifying the problem.

In particular, it is convenient to treat the unitary part and the decoherence pro-
cesses separately. The first term of Eq. (3.4) effectively describes the unitary phase
evolution, which is determined by the von Neumann equation

dp

— = —i|S,, p|. 3.5

T = —ils.. (35
The corresponding solution is represented by a collective rotation R, (¢) = exp(—ipS.,)
by an angle ¢ around the z-axis and is given by

pn(8) = Aglpim] = Ag.r=olpin] = R:()puRL(9), (3.6)

where A, denotes the quantum channel associated with Eq. (3.5). Although the
quantum channel A, (and likewise Ay 7) is 2m-periodic with respect to the phase,
i.e. Ay = Npion, phases ¢ + 2rk (with k& € Z) originate from a different frequency
deviation w than ¢, and thus have a distinct physical interpretation, especially in
the context of frequency metrology, where the primary objective is to determine the

frequency deviation w.



3.4. Local frequency metrology 67

Identifying the first term in Eq. (3.4) as the phase imprint, the effective time evo-
lution associated with the decoherence processes is governed by the master equation

T
P=3

(2090 = 0lp — pold))
(3.7)

_l_

M- 11

2

(e®pe® — p) + % (25.pS. — S%p — pS2) .

e
Il

1

The formal solution is given by pin(T) = Ar[pm] = Ap—or[pm], Where Ap denotes
the quantum channel associated with Eq. (3.7). Explicit solutions for the individual
terms are provided in App. C. In general, all three decoherence processes cause the
coherences to gradually diminish over time. Additionally, in the presence of sponta-
neous decay, the populations of the excited state progressively decay to the ground
state.

In this chapter, we primarily focus on spontaneous decay and additionally con-
sider individual dephasing, as the impact of decoherence processes has typically been
investigated using the example of individual dephasing (cf. Sec. 3.1). In contrast, we
address collective dephasing only in Sec. 3.8, where we discuss the crossover between
regimes with distinct dominant decoherence processes.

3.4 Local frequency metrology

In the local (frequentist) approach to frequency metrology, additional assumptions
are taken into account. Specifically, probabilities, such as the conditional probabil-
ities P(x|¢p), are defined as the infinite sample limit of an event. Furthermore, the
frequency is regarded as a fixed, though unknown, variable. In contexts where the
frequency fluctuates — such as in atomic clocks — this assumption is generally not
valid. However, in local frequency metrology it is assumed that the frequency fluc-
tuations are not the dominant noise source. This assumption is reasonable when
the frequency fluctuations are comparatively small, and the primary limitations arise
from spontaneous decay or dephasing. Therefore, we assume that the frequency of
the local oscillator wro(t) is tightly centered around the atomic resonance frequency
wo and thus, the spread dw of the average frequency deviations w, as defined in
Eq. (3.1), around w = 0 is sufficiently small, ensuring dw -7 < 1. The regime beyond
this assumption — where laser noise imposes the dominant limitation and frequency

fluctuations introduce estimation ambiguities — is discussed in detail in Chapter. 4.
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3.4.1 Local phase estimation

As motivated in Sec. 3.2, phase estimation theory constitutes an essential component
of frequency metrology. Accordingly, the assumptions inherent in local frequency
metrology also apply to local (frequentist) phase estimation theory. In particular,
perfect resonance w = 0 corresponds to ¢ = 0, resulting in no phase accumulation
during the Ramsey time. Therefore, we assume that the phases ¢ are tightly centered
around ¢ = 0, characterized by a small spread d¢ < 1, which allows us to effectively
treat them as fixed.

As the estimator depends on the measurement outcomes x, which are distributed
according to the conditional probabilities P(z|¢) defined in Eq. (3.2), ¢dest likewise
constitutes a random variable. Consequently, the estimator can be characterized by

a ¢-dependent statistical mean value
g_best = Z P(x’¢)¢est('x) (38)
and variance

(Adest)® = Y P(]0) [Pest () — Gost] - (3.9)

In principle, the estimator can be chosen arbitrarily. However, to quantify whether
a particular estimator is a good or bad choice — and ultimately identify optimal
estimation schemes — it is convenient to restrict the analysis to a specific class of
estimators. To give an example, consider the constant estimator ¢eg () = ¢ = const.,
independent of the measurement result. If we are lucky, ¢ = ¢ and our guess coincides
with the true phase ¢, resulting in an estimator with zero variance (A¢es)? = 0.
However, for all other ¢ # o, this estimator is wrong and introduces a random bias
to the estimation. Hence, such estimators are useless in practice. To exclude these
pathological cases, in the following we require the estimators to be unbiased.

¢ for all ¢, or in words: The
mean estimator returns the true value ¢ for all phases. In this case, the variance of

An estimator ¢egs () is unbiased if and only if ¢ =

the estimator coincides with the mean squared error (MSE)

(A¢)* =) P(|9) [pest() — 9], (3.10)

which quantifies the mean squared deviation of the estimation ¢eg(z) from the true
phase ¢ and therefore is denoted as phase estimation uncertainty.
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Unfortunately, since the phase originates from the average frequency deviation w,
it can, in principle, take arbitrary values within the range —oco < ¢ < +o00. How-
ever, a specific interrogation and estimation scheme generally provides only a limited
dynamic range within which the phase can be uniquely resolved. As a consequence
there generally exists no estimator that is unbiased — or even optimal — for all possi-
ble phases ¢. However, this stringent condition can be relaxed in the context of local
phase estimation, as this approach assumes that the phases ¢ are tightly centered
around ¢ = 0. In practice, atomic clocks are operated at a specific working point ¢y,
which does not necessarily coincide with perfect resonance ¢ = 0 and thus reflects
a constant offset. In general, the optimal working point ¢q is characterized by the
phase that provides the highest sensitivity to variations in ¢. Hence, it corresponds
to the phase that minimizes the MSE, defined in Eq. (3.10), with respect to all values
of ¢. Within local phase estimation for Ramsey protocols, this optimal working point
typically corresponds to the inflection point of the signal. Thus, anti-symmetric sig-
nals exhibit ¢g = 0, while for symmetric signals ¢q usually aligns with half the period
of the signal. Consequently, although the goal is to stabilize the clock at w = 0, or
equivalently ¢ = 0, an artificial shift ¢q is frequently introduced to maximize the
sensitivity for a given Ramsey sequence. As a result, frequency fluctuations manifest
as variations in the phase ¢ around ¢y.2 Nevertheless, the phase is tightly centered
around ¢y, i.e. (¢ — @g)> < 1. As a consequence, it is instructive to introduce a
weaker condition on the estimator, which specifically focuses on the relevant domain
around ¢y.

An estimator @e () is locally unbiased at ¢ = ¢y if and only if

Pesilo=so = ) Pl]d0)dest () = o (3.11)
Qo) _ 5~ dP(l0) _
g lo=se Z do ‘¢:¢0¢est(x> =1, (3.12)

or in words: The mean estimator returns the true phase value at ¢ = ¢y and tracks its
variation up to the first order. Fortunately, local unbiasedness is sufficient to derive
bounds on the phase estimation uncertainty, as we demonstrate in Sec. 3.5. With a

locally unbiased estimator at ¢g, the phase estimation uncertainty is characterized by

the MSE

(AG(T))? = P(x|¢o) [fesi(r) — o], (3.13)

2In principle, w and thus ¢ could be redefined such that the optimal working point always equals
¢o = 0. However, with this redefinition, w = 0 would not necessarily imply wy = wpo and therefore,
we choose to consider cases where potentially ¢y # 0.
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which represents the most common cost function in local (frequentist) phase estima-
tion. In the following, we will consistently present T" explicitly as a parameter of the
MSE, since the dependence of the phase estimation uncertainty on the Ramsey time
T is essential for the investigations in this chapter. In general, like any variance, the
phase estimation uncertainty is bounded by 0 < (A¢(T))? < +oo. Here, the limit
A¢(T) — +oo would represent a completely ineffective interrogation and typically
would result in severe additional consequences on the clock stability. Conversely,
a hypothetical perfect phase estimation (precluded by quantum mechanics due to
its intrinsic indeterminism) would result in a vanishing phase estimation uncertainty
AY(T) = 0.

Up to this point, we have considered only a single interrogation sequence. By
performing n independent Ramsey schemes on identical copies, a statistical gain in
the phase estimation uncertainty according to

(g (myy = LD (3.14)

n

is obtained, where we implicitly introduced the notation (A¢(T))? = (A¢n=1(T))%
This gain is sometimes referred to as Bienaymé’s identity [160]. Throughout this chap-
ter, we will primarily focus on the single-cycle phase estimation uncertainty (A¢(T'))?
and predominantly refer to (A¢,(7"))? in the context of the asymptotic limit of many
repetitions n > 1.

3.4.2 Local frequency estimation

After characterizing the sensitivity to phase estimation, we relate the associated un-
certainty to frequency estimation, which is the ultimate goal in frequency metrology,
such as with atomic clocks. For discrete Ramsey times 7', phase and frequency are
related through ¢ = w7, as discussed in Sec. 3.2. Consequently, averaging over n
independent and identical repetitions of a Ramsey interrogation sequence results in
an uncertainty in frequency estimation given by
Aw(T) = A¢—m, (3.15)
ﬁ
where we fix the total averaging time 7 = nT to allow for comparisons across different
interrogation times 7. Here, A¢(T') represents the phase estimation uncertainty of a
single Ramsey interrogation, as introduced in the previous section.
At this point, before delving further into details, we discuss the scaling of Aw(T)
with the interrogation time 7 based on the general form of Eq. (3.15). In an
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ideal, decoherence-free scenario, A¢(T) = A¢ is independent of T and the fre-
quency estimation uncertainty appears to decrease monotonically with longer inter-
rogation times. Unfortunately, this figure is severely compromised by decoherence
effects [65-67,148-150]. In particular, a loss of coherence causes A¢(T) to increase
with 7. As a consequence, the frequency estimation uncertainty can only be im-
proved by longer interrogation times 7' as long as the decoherence effects remain
negligible. In contrast, sensitivity is lost once decoherence processes become relevant.
Consequently, Aw(T') features a trade-off between increased sensitivity, i.e. decreased
frequency estimation uncertainty, achieved through long interrogation times and the
limitations imposed by decoherence. Therefore, a compromise must be found for the
optimal interrogation time T},;, that results in the minimal frequency estimation un-
certainty Awpin. Indeed, optimizing Awy, by identifying optimal Ramsey schemes
to achieve the associated lower bounds is the central goal of this chapter. Since fre-
quency and phase estimation are related via Eq. (3.15), lower bounds derived in phase
estimation theory can be directly applied to frequency metrology and ultimately de-
termine limits on Awpi,. Therefore, in Sec. 3.5, we first establish lower bounds in
local phase estimation theory and then apply these limits to determine lower bounds
on the frequency estimation uncertainty in Sec. 3.6.

3.4.3 Clock stability and Allan deviation

Naturally, the error in frequency estimation Aw(7'), or equivalently the phase estima-

tion uncertainty A¢(7T'), will ultimately affect the clock stability. Hence, in this sec-

tion, we establish a connection between the frequency estimation uncertainty and the

clock stability characterized by the Allan deviation, introduced in detail in Sec. 2.1.
As a reminder, the Allan variance is defined as [11,84-86]

1

0, (7) = 5{Fe1 = 7,)°); (3.16)

where (-) denotes statistical averaging. It is calculated from the difference between
two consecutive frequency values 7, and ¥, ,, each averaged over n clock cycles with
duration T, corresponding to a total averaging time 7 = nT. Here, the clock cycle
duration T = Tp+T additionally accounts for potential dead time Tp. The averages
y, are given by

Tc
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where y, = wi/wo denotes the average frequency deviation wy in cycle k relative to
the atomic transition frequency wy. Explicitly expanding Eq. (3.16) yields

G+D)n (j+D)n

U;(T)ZQT—T% Z Z ykyl>‘|‘ Z Z (Y1)

k=jn+1l=jn+1 =(j—1)n+11=(j—1)n+1
(3.18)

(J+1)n

+2 ) Z (Yryr)

k=jn+11=(j—1)n+1

Assuming that the feedback loop of the atomic clock stabilizes the local oscillator
reliably to the atomic transition in the limit 7 > 1 s, the residual frequency fluctu-
ations primarily originate from the estimation uncertainty, effectively characterizing
quantum projection noise (QPN). Consequently, these fluctuations are independent

in each cycle, i.e. (yry;) = 0 (y2). Therefore, we obtain

T2 (G+1)n jin
=551 > W+t X )| (3.19)
k=jn+1 k=(j—1)n+1

To establish the relation between the Allan variance and frequency estimation, we
identify y;, with the residual average frequency fluctuations y, = (W — west ) /wo after
the Ramsey sequence with duration T'. For a (locally) unbiased estimator, as assumed

in local frequency metrology, the statistical average effectively results in

(y2) = %7 (3.20)
yielding
o2(r) = %H(AZ(E;T)) _ %% _ %% (3.21)

Consequently, the clock stability characterized by the Allan deviation is expressed as

oy(T) = A(Z—ET) % = AfT(TT)\/? (3.22)

and thus represents the frequency estimation uncertainty Aw(7') relative to the atomic
transition wy, with an additional correction factor \/W to account for potential
dead time. However, throughout this chapter, we restrict the analysis to the dead
time-free scenario, corresponding to T¢/T = 1. Hence, the Allan deviation reads

Aw(T) _ AY(T)
Wo wox/ﬁ.

As a result, investigating the frequency estimation uncertainty Aw(7") directly pro-

(3.23)

oy (T) =

vides profound insight into the clock stability.
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3.5 Bounds in local phase estimation theory

The goal in phase estimation is to estimate the phase as precisely as possible by
minimizing the cost function, the phase estimation uncertainty A¢(7T") defined in
Eq. (3.13). For a generalized Ramsey sequence, as introduced in Sec. 3.2, there are
three control parameters to optimize: the initial state pi,, the measurement {II, }, and
the estimation strategy @es(z). To determine the ultimate precision with which the
phase can be estimated based on these control parameters, we review the literature
and collect a hierachy of lower bounds on the phase estimation uncertainty A¢(7).
In particular, we present the relevant bounds from Refs. [6,161-170], while detailed
proofs are provided in App. D. The discussion in this section remains general, allow-
ing for arbitrary quantum channels A, 7, while specific assumptions and asymptotic
results will be explicitly noted.

3.5.1 Cramér-Rao Bound (CRB)

The primary objective in classical estimation theory is to determine the (locally)
unbiased estimator that minimizes the phase estimation uncertainty A¢(7") for a
given statistical model P(z|¢), as defined in Eq. (3.2), with fixed initial state py, and
measurement {II,}. In this context, a lower bound on (A¢(T))? is represented by the
Cramér-Rao bound (CRB) (A¢crp(T))?, which implicates an optimization over all
possible estimation strategies ¢es;. Assuming a locally unbiased estimator at ¢, and
standard regularity conditions

> %ZM’) = % > P(z]¢) =0, (3.24)

which allows us to exchange summation and derivative, thereby trivially satisfying

T

the second equality due to the normalization of the conditional probabilities P(x|¢),
the CRB reads [161,162, 164, 165]

1
A¢(T))* > (A T))? = min(A¢(T))* = :
(Ag(T))" 2 (Agern(T)” = min(Ag(T)) Flhg o] (LT
with Fisher information [171,172] defined as

Fitealoul (13 = s () (3.26)

(3.25)

zlg) \  d¢

Unfortunately, the CRB is generally not helpful in constructing an optimal estimation
strategy @est-

In principle, the Fisher information F depends on the phase ¢. However, we are
primarily interested in the sensitivity at the optimal working point ¢y, where the
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Fisher information is maximized, i.e. ¢ = argmax F[Ayr[pin], {II.}]. Therefore,
¢

in the following we omit the dependence on ¢ and implicitly refer to the Fisher
information at the optimal working point.

Fisher information (FI)— At this point, we address two important properties of
the Fisher information that have profound consequences for phase estimation.
Assuming that the state pi,(¢,T') represents an arbitrary mixture

Pin(P Z Prpr(@ (3.27)

with weights p;, > 0 satisfying ), pr = 1, the associated Fisher information is con-
vex [163,164]

Flpin(e, T), {11, }] <Zpkfpk T), {11, }], (3.28)

where Flpi(6,T),{II,}] denotes the Fisher information associated with the state
pr(6, T) and measurement {II,}. As a consequence, mixing quantum states cannot
increase the Fisher information and thus does not decrease the phase estimation
uncertainty, since equality in Eq. (3.28) is achieved for pure states pi, (¢, T).
Assuming a separable time evolved state with NV independent systems pi, (¢, T) =
®§V:1 pgi) (¢, T), where pm (qb, T') denotes the state of the j-th system, and independent
measurements 11, = ® =1 H;j), with measurement outcomes x; and POVMs Hg) for

each system, the Fisher information is additive [164]

Flpin(o, T),{1ls}] = prm ¢, T), {1}, (3.29)

where F [pm (p,T), {Héj)}] denotes the Fisher information of the j-th system. In
particular, in the case of identical systems and identical measurements, the N-system

Fisher information simply is given by N times the Fisher information of a single

system Flpi (6, ), {TEV}], ie. Flom(9,T),{IL}] = NF[oly) (6, T), {TEV}].

Estimators— In general, within the framework of local phase estimation theory,
any estimator that is (locally) unbiased can be employed. Naturally, however, we aim
to identify estimators that saturate the CRB, which are known as efficient estimators.
Unfortunately, the CRB itself provides no recipe to determine an efficient estimation
strategy. Indeed, there is no guarantee that efficient estimators exist for an arbitrary
total number of measuerment repetitions n. Nevertheless, we are interested in some

universal estimation strategies that perform well across a variety of scenarios. In
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this context, we examine the maximum likelihood estimator and a linear estimator
associated with the so-called method of moments.
The maximum likelihoood (ML) estimator is defined as
st (7) = argmax P(z¢), (3.30)
@

which — as indicated by its name — maximizes the conditional probability (likelihood)

for a particular measurement outcome x. Hence, it selects the phase value for which

ML

ot emains a random variable since the

the event is most likely. Nevertheless, ¢
measurement outcomes = are inherently random. Because the ML estimator relies
on the full statistical model P(x|¢), its sensitivity is not easily accessible in general.
However, as one of the most important theorems of classical estimation theory, the
ML estimator becomes asymptotically unbiased and efficient [164-166].> Thus, it
saturates the CRB in the limit of many measurements n — oo (or N — oo if systems,
dynamics and measurements are independent and identical). In particular, in this
regime, the distribution of the ML estimator converges to a Gaussian centered around
the true phase value ¢, with variance equal to the inverse of the Fisher information,
i.e. oML~ N (o, (nF(dg))~t) [164-166]. However, a priori it is not known how large
the sample size n has to be such that the CRB is approached.

Unfortunately, the ML estimator requires the knowledge of the full statistical
model P(z|¢). However, the evaluation of the conditional probabilities can be-
come difficult in several scenarios, especially for large ensembles and entanglement-
enhanced Ramsey schemes. In these cases, an analytical evaluation is typically not
possible, while numerical evaluation becomes computationally costly with increasing
ensemble size N. For instance, the conditional probabilities of entanglement enhanced
protocols even with relatively low complexity, as spin-squeezed states (SSS), are not
accessible in general. This raises the question of how to perform phase estimation
when only limited information about the system is available. The most prominent
alternative is represented by the method of moments, which — as the name suggests —
only takes advantage of the moments of a measurement. In particular, it solely relies
on the first two moments, effectively corresponding to the mean value and variance.

In the following, we outline the general concept, while a more detailed discussion
is provided in App. D.3 based on Refs. [6,164, 167]. In particular, we consider an
observable X with known mean value (X(¢,7T)) and variance (AX(¢,T))?. Sup-
pose n measurements of X with outcomes x4,...,z,, defining the random variable
X, =1 Z?Zl xj, which represents the sample mean of the measurement outcomes.

T on

3The proof of this theorem is rather technical and since we do not make use of the ML estimator
within this work, we refer to the literature such as Refs. [164-166].
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Although the conditional probabilities are unknown, and thus the ML estimator can-
not be employed, the central limit theorem provides the asymptotic probability dis-
tribution of X, in the limit of many repetitions n — oo, or equivalently large en-
sembles N > 1. In this regime, X,, "~ N ((X(4,T)), (AX (¢, T))?/n), representing
a Gaussian distribution with mean (X (¢,T))) and variance (AX(¢,t))?/n. However,
this only works sufficiently well if 9, (X (¢, T)) > 0,(AX (4, T))?, ensuring that the
changes of P(x|¢) are primarily captured in the shift of the mean value. Conveniently,
in this asymptotic limit, the concept of the ML estimation strategy can be applied to
X,, as we know its asymptotic probability distribution. Defining f(¢) = (X (¢, T)),
the corresponding estimator is given by the inverse of the signal ¢mo™(X,,) = f~1(X,,).
In particular, this provides an asymptotically unbiased and efficient estimator for X,,,
i.e. when we only have access to the mean and variance of the observable X. In
general however, it is not optimal for measurements of X and thus does not saturate
the CRB, especially considering single Ramsey sequences rather than n > 1. Nev-
ertheless, due to its simplicity and general applicability, it is both theoretically and
experimentally commonly used.

Additionally assuming that the signal can be linearized around the optimal work-
ing point ¢y and that (X (¢g, 7)) = 0, which always can be achieved by shifting the
signal appropriately, application of this concept to individual interrogations yields
the linear estimator associated with the method of moments

mom T

et (%) = 0y (X (0, T)) |o=g0

+ ¢o. (3.31)

Here, the linear scaling factor is given by the inverse of the slope at the optimal
working point. Since (X (¢o,T)) = >, xP(x|¢y) = 0, local unbiasedness of ¢pe™ at
¢ is ensured. The corresponding phase estimation uncertainty directly follows from

Eq. (3.13) and, using (X (¢o, 7)) = 0 as argued above, can be expressed as

(AX(¢,T))?
(0 (X(0,T)))* lo=00

Intuitively, Eq. (3.32) represents the inverse of the signal to noise ratio and equiv-

(A¢mom(T))2 = (332)

alently can be derived through error propagation (cf. Sec. 2.3.6). In the case of
projective spin measurements, the method of moments is related to the Wineland
squeezing parameter & [58,59], introduced in Sec. 2.3.9, via

(ASm(9,T))? _ &
(0 (Se(0,T)))?lo=¢0 N’

(Adumom(T))* = (3.33)

where m, r and the rotation axis of the signal (pointing in z-direction within this
chapter) are mutually orthogonal directions. In general, however, the linear estimator
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mom
est

is not optimal, i.e.
1
Adpom(T))? > , 3.34
(Bmon (1)) 2 R ol LY (3:34)

where {II,} describes the measurement of observable X. In the remainder of this

chapter, when considering a linear estimator or the method of moments, we specifi-

mom

cally refer to the estimator ¢ ™.

3.5.2 Quantum Cramér-Rao Bound (QCRB)

In classical estimation theory, the goal is to identify the optimal inference strategy @est
based on measurement outcomes x, given the statistical model P(z|¢). In quantum
estimation theory, we additionally ask what the optimal measurement {II,} is for a
given initial state pi,, resulting in the statistical model P(x|¢) = Tr(II, Ay r[pin]), as
defined in Eq. (3.2). Consequently, the quantum Cramér-Rao bound (QCRB) extends
the (classical) Cramér-Rao bound (CRB) by additionally optimizing over all possible
measurements {II,}. Hence, for a given initial state p;,, the QCRB

(Adgenn(T))* = min(Adcnn(T)* = min (Ag(T))? (3.35)

provides a lower bound on the CRB and thus establishes the hierachy
(AG(T))* = (Adern(T))* = (Adqern(T))* (3.36)

While the (classical) Cramér-Rao bound (CRB) is expressed in terms of the (classical)
Fisher information, likewise, the quantum Cramér-Rao bound (QCRB) [161,162,164,
168, 169]

1
(Agqers(T))* = =—————— (3.37)
FalAsrlpul]
is determined by the quantum Fisher information (QFT)
Folpl = Tr(pL?), (3.38)
where the symmetric logarithmic derivative (SLD) L is implicitly defined by
dp 1
— =—(pL+ Lp). .
=5 oL+ Lp) (3.39)

The optimal measurement is provided by the projection-valued measure (PVM) as-

sociated with the orthonormal eigenstates of L. In contrast to the (classical) Fisher



78 Chapter 3. Frequency metrology limited by spontaneous decay

information, the quantum Fisher information is independent of the phase ¢ for uni-
tary time evolution, as the optimal measurement adapts accordingly, yielding the
same value for all phases.

In analogy to the phase estimation uncertainty, the quantum Fisher information
establishes an upper bound to the (classical) Fisher information by optimizing over
all measurements {II,}, such that

Folol = max S [p, {IL}]. (3.40)

Quantum Fisher information (QFI)— The quantum Fisher information (QFT),
similar to the (classical) Fisher information, exhibits both convexity and additivity:

For a mixed state pin(¢,T) = >, prpr(¢, T'), as defined in Eq. (3.27), with weights
pr > 0 satisfying >, pr = 1, the QFI is convex [164]

Folpn (e, T)] < Zpka[Pk(¢7 T)]. (3.41)

Consequently, despite optimizing over all possible measurements, mixing quantum
states cannot enhance the estimation precision, since equality in Eq. (3.41) is achieved
for pure states pi, (¢, T).

If we assume N independent systems pi,(¢,T) = ®j\[:1 pi(i)(gb, T), the QFT is
additive [164]

N

Folow(.T)] =Y Folold (6.7)). (3.42)

j=1
In the case of identical systems, this simplifies to Folpm(¢,T)] = NFg [pi(i)(qﬁ, T)).
Hence, the QFI of separable states scales linearly with the ensemble size N at most.
Unitary phase evolution— Assuming a general unitary phase evolution with
generator G according to

pin(9) = €7 pip '%¢ (3.43)

and corresponding von Neumann equation

dp
— = —i|G 3.44
T = -Gl (3.44)
the quantum Fisher information (QFT) can be expressed as [164, 168]
(pj — i), . 2
Falpn(o, T)] =2 ——=[ (|G, 3.45
Qlpin(0, T)] Ejk pj+pk|<| k) | (3.45)

b
pj+pk>0
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where py and |k) are the eigenvalues and eigenstates of pi,(¢,T'), respectively. The

associated optimal measurement is given by

. Dj =Dk .\,

L=2 —— || G |k)(k]. 3.46
%:pj+pk|><||><| (3.46)
pj+177k>0

Pure states— For pure states pi,(¢, 1) = |14) (4| and a unitary phase evolution
according to Eq. (3.44), the QFI simplifies to [164]

Falpn(, T)] = Follvs) (o] = 4(AG)? (3.47)

and thus is given by four times the variance of the generator G.

Furthermore, since the QFI is convex and thus mixing states can only decrease
the QFI, for an arbitrary state pi,(¢,T") and unitary dynamics with generator G, as
described by Eq. (3.44), the QFI is bounded by [164]

Folom(¢, T)] < 4(AG)?, (3.48)

with equality holding for pure states py, (¢, T).

3.5.3 Optimal Quantum Interferometer (OQI)

The ultimate lower bound to the phase estimation uncertainty is represented by the

optimal quantum interferometer (OQI), completing the hierachy
(AH(T))* = (Aders(T))* = (Adqers(T))* = (Adoai(T))*. (3.49)

The OQI simultaneously optimizes over all three control parameters: the initial state
Pin, measurement {I1,} and estimator @eg:

(Agoqi(T))? = min(Agqers(T))? = min (A¢crs(T))* = min  (Ad(T))%
Pin pinv{HfE} Pin7{Hoc}7¢est
(3.50)

Unfortunately, general expressions for the sensitivity of the OQI for arbitrary ensem-
ble sizes only exist in the ideal, decoherence-free scenario. In contrast, in the presence
of decoherence, complex optimization procedures are required. In the following, we
begin by discussing the ideal scenario, introducing the prominent standard quantum
limit (SQL) and the Heisenberg limit (HL). Afterwards, we present an iterative opti-
mization algorithm that efficiently determines the OQI numerically at least for small

ensembles.
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Decoherence-free scenario— In the ideal scenario, no decoherence processes are
present and thus, the dynamics is exclusively determined by the unitary evolution
described by Eq. (3.43). Consequently, the phase estimation uncertainty A¢(T') =
A¢ is independent of the interrogation time 7. As demonstrated in the previous
sections, the Fisher information and quantum Fisher information (QFI) are convex
and consequently, mixing states cannot improve the sensitivity. Therefore, we restrict
our analysis to pure states py, = |[ti) (| as the unitary dynamics preserves purity
and thus, pure initial states are optimal. Furthermore, we have seen that the QFI
for a pure state equals four times the variance of the generator G (cf. Eq. (3.47)).
Consequently, maximizing the variance (AG)? yields the optimal input probe state,
given by [164]

|win> = % |:|gm1n> + eiH |gmax>} ) (351)

where |gmin) and |gmax) denote the eigenvectors corresponding to the minimal and
maximal eigenvalues gni, and gmax of G, respectively, and 6 is an arbitrary phase.
The associated QFI reads [164]

Folltin)] = (max — Gunin)*. (3.52)

Suppose N identical probe systems subject to the unitary evolution described by
Eq. (3.43), representing N identical and independent quantum channels that act in
parallel on these probe systems. In this case, the phase is imprinted by the unitary
eiG = ®j\;1 exp (—i¢pGY)) = exp (—igzﬁ >, G(j)>, where GU) denotes the respective
generators of the individual systems.

For separable states, which are represented by uncorrelated product states of the
form |¢y,) = ®jvzl y¢§§)>, the QFI is maximized if each system is in the state described
by Eq. (3.51). In this case, due to its additivity, the QFI of separable states is bounded
by

féeparable[|¢in>] S N(gmax - gmin)27 (353)

where gnin and gmax represent the minimal and maximal eigenvalues of the single
system generator GV, respectively. The corresponding lower bound on the phase

estimation uncertainty is expressed as

1 1
\/N |gmax - gmin| 7

Astseparable > AQSSQL = (354)

commonly referred to as the standard quantum limit (SQL). Here, the particle number
N plays the role of a statistical gain and thus is equivalent to N repetitions of the
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measurement on a single particle. As a consequence, the SQL is often referred to as
the classical limit, as it relies solely on classical correlations within the ensemble and
therefore does not achieve any quantum improvement.

A natural question that arises is whether entangled input probe states can enhance
the QFI. A condition that indicates metrologically useful entangled states can be
directly derived from Eq. (3.53), namely

‘FQ[WJIHH > N(gmax - gmin)Q- (355)

In fact, not all entangled states prove to be metrologically useful. While any state
that satisfies Eq. (3.55) is entangled, the converse is not true [6]. Not every entangled
state satisfies Eq. (3.55) and thus is metrologically useful. The maximal and minimal
eigenvalues of the generator of the dynamics G = Zjvzl GU), denoted by gr(xﬁzc = NGmax

and gl(nj\flz = N @min, correspond to the eigenvectors | gmax>®N and | gmin>®N, respectively.
Consequently, the optimal input probe state is given by
1 ®N 0 ®N]
in/ — — = min + el max 9 356
|Yin) 7 | Gmin) | Gmax) (3.56)
resulting in the QFI of entangled states being bounded by
entangled
fQ e me” < Nz(gmax - gmin)z- (357)

This represents a potential gain of a factor N in the scaling with the ensemble size
compared to the SQL. The corresponding lower bound on the phase estimation un-
certainty, known as the Heisenberg limit (HL), is given by
A@entangled > Adur, = l;
N |gmax = Jmin|
Unlike the SQL, where the ensemble size N reflects a purely statistical gain that can

(3.58)

be equally achieved by repeating the interrogation sequence N times with a single
particle, the improvement at the Heisenberg limit arises from quantum correlations
and cannot be attained through classical strategies alone. This enhancement is thus
a genuine quantum effect.

For two level systems where the phase is imprinted by a unitary rotation around

a fixed axis, as introduced in Sec. 3.3, we specifically have ¢ = gmax = —Gmin = 1/2.
Consequently, the bounds on the QFI and phase estimation uncertainty are explicitly
given by
separable
For i) < N (8:59)
1
A(bseparable > A@bSQL = \/N (360)
entangled
Fo E |ehin)] < N2 (3.61)
1

A(bentangled > A(bHL = N (362)
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While the concept of coherent spin states (CSS) (see Sec. 2.3.7) provides a compact
framework for separable states with identical single-particle states, thereby achieving
the standard quantum limit (SQL), GHZ states (see Sec. 2.3.8) saturate the Heisen-
berg limit (HL).

Decoherence— In the presence of decoherence processes, the time evolved state
Ay 1[pm] generally is no longer pure but instead represents a mixture. Consequently,
the SQL and HL are typically not saturable, since the convexity of the QFI causes
mixed states to achieve lower sensitivities. While the SQL can be redefined for spe-
cific noise processes to provide a tight bound for separable states, as we will dis-
cuss in Sec. 3.7, unfortunately, no explicit expressions exist for the lower bound in
entanglement-enhanced protocols, represented by the OQI, and thus numerical opti-

mization is required.

Iterative optimization algorithm— In the following, we outline an algorithm
presented in Ref. [170], which iteratively optimizes the initial probe state p;, and
the measurement {II,}. Although numerical optimization becomes challenging with
increasing ensemble size, this algorithm enables efficient computation at least for
small N.

For a given input probe state pi,, the dynamics during the Ramsey dark time T'
results in the state Ay r[pim]. In Sec. 3.5.2, we demonstrated that the measurement
achieving optimal sensitivity, i.e. maximal QFI, is determined by the projection-
valued measure (PVM) associated with the eigenbasis of the symmetric logarithmic
derivative (SLD). Conversely, for a given SLD L, we have to examine the optimal
input probe state p;,. To address this, we effectively have to map the dynamics from

the state to the measurement. By defining the adjoint quantum channel A;T via

T (Agrlpn]4) = T (Al £[4]) (3.63)
for arbitrary operators A, we can rewrite the QFI, defined in Eq. (3.38), as
Falpwl = Tr (Agrlpn]L?) = Tr(puhlo[27]). (3.64)

Consequently, the optimal input probe state pi, = |t ) (5| corresponds to the eigen-
vector |1y,) of the operator A;T[LQ] associated with its maximal eigenvalue.! In the

iterative algorithm, starting from an arbitrary state, the optimal measurement and

4Ref. [170] additionally suggests to rewrite this expression using the definition of the SLD in
Eq. (3.39), leading to Tr (pinA;T[%[G, L] - L2]). Within this reformulation, however, the funda-

mental principle remains unchanged.
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the corresponding optimal probe state are iteratively determined until the phase es-
timation uncertainty (A¢(7T))? converges to the OQI [170]. As a result, this finally
demonstrates that the optimal input probe state is pure. In contrast, convexity of
the QFI merely indicates that pure time-evolved states Ay r[pm| are optimal, which,
however, strongly depends on the particular dynamics and generally cannot be at-
tained.

3.6 Bounds in local frequency metrology

As discussed before, frequency and phase estimation are related via Eq. (3.15) and
therefore, lower bounds derived in phase estimation theory can be directly applied
to frequency metrology. Additionally, the optimal interrogation time 7T, has to
be identified, achieving the minimal frequency estimation uncertainty Awpm,. Since
numerical optimization was already required for the optimal quantum interferometer
(OQI) in phase estimation theory, it is likewise necessary to determine the ultimate
lower bounds in frequency metrology.

Although the iterative algorithm is efficient for small ensembles, it becomes com-
putationally costly with increasing N (cf. App. A). Fortunately, in the asymptotic
limit of large ensembles N > 1, explicit expressions for the ultimate lower bound —
representing the optimal quantum interferometer (OQI) — can be derived for various
decoherence processes [173-179]. In the presence of dephasing [66,67,149] with rate
v and spontaneous decay [68] with rate I', the asymptotic ultimate lower bound is
given by

'+~
Nt~

(Awmin)2 > (Awasym)2 > (365)

Interestingly, this bound scales linearly with N, providing only a constant enhance-
ment compared to the standard quantum limit (SQL) imposed by separable states.
In contrast, the decoherence-free scenario achieves the Heisenberg limit, which offers
an improvement of N and thus scales quadratically with the ensemble size.

In Ref. [149], (Awasym)? was derived for individual dephasing, considering arbitrary
input states and a projective measurement of the spin in a suitable direction. The
extension to spontaneous decay yields Eq. (3.65), as we demonstrate in App. E.1,
where we additionally derive this bound considering arbitrary input states and a
parity measurement. Interestingly, this already represents the asymptotic ultimate
lower bound as derived in Refs. [66-68,176,179,180], where the tightness of this bound
has also been demonstrated.’

5Note that in the presence of spontanecous decay, a lower bound smaller by a factor of 4 compared
to Eq. (3.65) was derived in Refs. [66, 180], which might be achievable by means of additional
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3.7 Optimal Ramsey protocols in frequency metrol-
ogy limited by spontaneous decay

In the previous sections, we established the theoretical framework for local frequency
metrology and introduced lower bounds on the frequency estimation uncertainty. In
the remainder of this section, our goal is to achieve the ultimate lower bound — rep-
resented by the optimal quantum interferometer (OQI) — in the context of local fre-
quency metrology limited by spontaneous decay. Consequently, this section presents
the central results of this chapter. To draw parallels to the well-studied scenario
involving individual dephasing, we additionally include it in our analysis. To start
with, we investigate the performance of coherent spin states (CSS) and GHZ states
in Sec. 3.7.1, as they achieve the standard quantum limit (SQL) and Heisenberg limit
(HL), respectively, in the decoherence-free scenario. However, evaluating the quan-
tum Cramér-Rao bound (QCRB) for GHZ states reveals that the parity measurement
is not optimal in the presence of spontaneous decay, achieving at best a frequency
uncertainty equivalent to the SQL. To address this, in Sec. 3.7.2, we identify an al-
ternative interrogation scheme that saturates the QCRB for GHZ states employing a
correlated measurement and a highly nonlinear estimator. Furthermore, in Sec. 3.7.3,
we compare the sensitivity of this protocol to the optimal quantum interferometer
(OQI) and to spin-squeezed states (SSS) generated through one-axis-twisting (OAT)
interactions [125], as SSS are optimal in the asymptotic limit for large ensembles
and OAT interactions are accessible in several experimental setups [62,126-133]. Al-
though the protocol that saturates the QCRB of the GHZ state provides a substantial
gain over the SQL, it does not saturate the OQI. In addition, we present a variation
of this protocol with a GHZ-like initial state that approximates the OQI for small
ensembles. For the investigated GHZ(-like) states, it is essential to identify terms
associated with a specific number of spontaneous decay events, which we examine
in Sec. 3.7.4. In Sec. 3.7.5, we demonstrate the robustness of the measurement and
estimation schemes by performing Monte-Carlo simulations of the full feedback loop
in an atomic clock. Finally, we discuss the unique features of GHZ(-like) states in the
presence of spontaneous decay in Sec. 3.7.6. In the following, we present the primary
results, while detailed derivations are provided in App. E.

The trade-off between the increased sensitivity achieved through long interroga-
tion times and the limitations imposed by decoherence, as discussed in Sec. 3.4.2,

emerges for all Ramsey schemes. For the interrogation protocols we explore in the

ancilla systems or adaptive quantum feedback strategies, such as quantum error correction schemes.
However, saturability remains an open question and is beyond the scope of this work. Refs. [150,181]
give a comprehensive overview over different quantum control strategies and corresponding bounds.
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Figure 3.2: Enhancement of protocols with GHZ(-like) states compared to
the SQL: (a) Generic frequency estimation uncertainty Aw(7’) in the presence of
spontaneous decay for N = 8, scaled to the SQL defined in Eq. (3.69), for the indi-
cated protocol types (see main text), v = 0. The interrogation time is rescaled by the
excited-state lifetime of the atoms tspony = 1/I'. Symbols indicate the optimal interro-
gation time T;,. The gray shaded area represents the inaccessible sensitivity region
set by the OQI limit, while the blue shaded area indicates achievable frequency esti-
mation uncertainties using uncorrelated atoms. (b) Scaling of the relative frequency
estimation uncertainty at the optimal interrogation time 7},;, with the ensemble size
N. The ratio Aw/Awsqy, is independent of the decay rate I' due to the comparison
with the SQL. As discussed in the main text, numerical evaluation of the OQI with
the employed algorithm is only feasible for N < 30. Symbols correspond to the min-
ima in (a). The inset illustrates the asymptotic scaling for large ensembles N, using
the same axes and protocols.

following, the generic dependence of the frequency estimation uncertainty Aw(7") on
the interrogation time T is illustrated in Fig. 3.2(a). Additionally, the scaling of the
minimal frequency estimation uncertainty Awy, with the ensemble size N at opti-
mal interrogation time T, is presented in Fig. 3.2(b). While investigating frequency
metrology in the presence of spontaneous decay and individual dephasing, we are
primarily interested in the regime where spontaneous decay constitutes the dominant
limitation, as argued before. Consequently, we set v = 0 in the results depicted in
the figures. To enable comparability between various setups, the interrogation time
T is rescaled by the excited-state lifetime of the atoms ts,ont = 1/I" and the frequency
estimation uncertainty Aw(7) is presented relative to the SQL (see below). Hence,
the ratios are independent of the particular decoherence strength and ensure that the

results are transferable to specific experimental parameters.

3.7.1 Separable and maximally entangled states

Coherent Spin States (CSS)— Coherent spin states (CSS) [115-117], introduced
in detail in Sec. 2.3.7, are product states of N qubits, with each qubit prepared iden-
tically. As indicated by the additivity of the quantum Fisher information (QFI), they
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represent the optimal separable states for phase estimation and frequency metrology
(cf. Sec. 3.5.2). As a result, the minimal frequency estimation uncertainty achieved
with CSS and an uncorrelated measurement determines the standard quantum limit
(SQL). In particular, the conventional Ramsey protocol employs CSS, complemented
by a collective projective spin measurement and a linear estimation strategy. The
phase estimation uncertainty is given by

6(F+7)T

(Adoss(T))* = N (3.66)

which coincides with the QCRB for CSS. The corresponding frequency estimation

uncertainty reads

e(F+'Y)T
N7T °
The trade-off with respect to the interrogation time is illustrated in Fig. 3.2(a). In

(A(JJCSS (T))2 = (367)

the limit I' ++ — 0 or equivalently 7" — 0, the SQL of the decoherence-free scenario
(Apsqr)? = 1/N is recovered. Conversely, when the interrogation time approaches
T ~ 1/(I' 4+ ), the decoherence processes become relevant and ultimately limit the
sensitivity. Minimization with respect to T yields the optimal interrogation time

1

Toss = —— 3.68
Css = 1y 5 (3.68)
and minimal frequency estimation uncertainty
e(I'+
(Awsqr)? = (Awess)® = el +7) NT 7), (3.69)

which represents the lower bound attainable with separable states, thus defining the
SQL, as argued before. For I' = 0, this reproduces the result determined by Huelga
et al. [149]. Consequently, despite being inherently different, spontaneous decay and
individual dephasing constrain the sensitivity of separable states in the same way,
thereby leading to the respective SQL.

GHZ States— In the decoherence-free scenario, a dramatic improvement over

separable states can be gained by preparing atoms in a GHZ state [121]

1 QN QN
GHZ) = == (11 + 1)) (3.70)

and measuring the parity Il = (—1)Vo®" after the free evolution time (cf. Sec. 2.3.8),
as initially proposed by Wineland et al. [122]. This strategy, to which we refer in the
following as ‘parity-GHZ’ protocol, achieves a phase estimation uncertainty of

(T+~)NT
(AdanalT))? = g (3.71)
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and corresponding frequency estimation uncertainty of

e(F+'y)NT

(Awparity—cuz(T))? = N

(3.72)

The dependence of Awpaity—cuz(Z) on T' is illustrated in Fig. 3.2(a). For short
interrogation times 7" < tgpont, Or equivalently small decoherence rates I' + v <
1, the parity-GHZ protocol surpasses CSS and achieves the Heisenberg limit (HL)
(A¢nr)? = 1/N?, which represents the ultimate lower bound in the decoherence-free
scenario. However, GHZ states collapse N times faster than uncorrelated states, as
decoherence processes become relevant at proportionally shorter 7. This results in
the optimal interrogation time

1
T

arity — = 5 3.73
parity—GHZ (F—’-’}/)N ( )

exactly compensating for the gain in phase estimation, yielding the minimal frequency
estimation uncertainty
e(l'+7)

(Awparity—GHZ)Z = N (3.74)

Consequently, the parity-GHZ protocol completely loses its gain due to spontaneous
decay and individual dephasing, achieving at best a frequency estimation uncertainty
equivalent to the SQL, as depicted in Fig. 3.2(b). This is consistent with the result
derived for vanishing spontaneous emission rate I' = 0 by Huelga et al. [149]. As a
consequence, this statement has often been generalized without further investigation
in the sense that GHZ states generally do not lead to any improvement in the presence

of decoherence.

3.7.2 Beating the standard quantum limit with GHZ states

Indeed, performing a parity measurement on the GHZ state in the presence of spon-
taneous decay is not optimal, as it does not saturate the QCRB. The QCRB for the
phase estimation uncertainty with a GHZ state is given by

e(l+YNT

(Aggenn(T))” = —a |Lte (- e_FT)N} : (3.75)

The corresponding bound for the optimal frequency estimation uncertainty follows

from minimization with respect to the interrogation time

(ApGcag(T))?
T '

(AwggFZ{B)Q = mjin (3.76)
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Figure 3.3: Schematic illustration of the heralded-GHZ protocol: The laser
with fluctuating frequency wr,o is stabilized to the atomic reference. During the free
evolution time 7', the GHZ state accumulates a phase ¢ through a rotation around the
z-axis and is subject to spontaneous decay with rate I'. Based on the measurement
outcome x of the observable X, an estimation ¢.y of the phase is conducted to
correct the laser accordingly. The estimation strategy exclusively selects the maximal
measurement outcomes r = :I:%, effectively implementing an error detection and
mitigation scheme for spontaneous decay events.

In the absence of spontaneous decay (I' = 0), this reproduces the findings of Huelga et
al. [149] that the QCRB equals the SQL. However, for I' > 0 one finds (Awgegp)? <
(Awsqr)?. Somewhat surprisingly, GHZ states do admit gains beyond the SQL when
the relevant decoherence process is spontaneous decay rather than dephasing noise.
Since these gains are not realized by parity measurements, the question arises as to
which alternative measurements do saturate the QCRB of the GHZ state described
by Eq. (3.75).

This can be achieved as follows (cf. Fig. 3.3): At the end of the Ramsey interro-

gation time 7', atoms are subject to a unitary operation

T () if N is even
U, = 3.77
o {R (2) To(x) if N is odd (3.77)

where T,(1) = exp (—i4S5?) denotes an one-axis-twisting (OAT) interaction with
twisting strength p = 7 along x, whereas R, (6) represents a rotation around the
r-axis by an angle § = 7. We note that the unitary Ugnz also corresponds to
the operation that may be used to generate the GHZ state from the ground state
[L)®Y initially. Subsequently, the spin is measured projectively along the z-direction,

effectively resulting in a measurement of the observable

X = Ugnz S. Ul (3.78)
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N
5y

in the experiment reported by Leibfried et al. [128] and essentially implements an

with outcomes =z € {— ,%} This procedure corresponds to the one explored
exact Loschmidt echo [182], since the state preparation with Ugyy is complemented
by its corresponding adjoint transformation UéHz for the measurement. Any such
measurement has to be accompanied by a suitable rule for estimating the phase ¢ for
a given outcome x. In order to saturate the QCRB, the nonlinear estimator

L Lo EENT g = 4 X
¢est(fl7) = { Ne n 2 (379)

0 else

has to be applied. ¢es estimates the phase for the maximal outcomes = = i%
according to the standard linear estimator in local phase estimation, namely scaled
linearly with the inverse signal slope, while all other measurement outcomes are simply
discarded. In the context of atomic clocks, an estimated phase ¢t = 0 corresponds

to inferring no frequency deviation, and correspondingly, no error signal is generated.

Physical interpretation— The fact that this measurement and estimation strat-
egy performs well under spontaneous decay can be understood from two reasons,
which we motivate physically in the following. Additionally, they are reflected in the
conditional probabilities

Palo) = 7 [1+e ™ 4 (1= e ) 320 F N cos(Ng)| (3.80)

P

ifx = i% and

P (z|¢) = i(]{]v) [e—FT(N—N_) (1- e—FT)Nf +e TN (1 - 6—I‘T)N—Nf] (3.81)

if v = % — N_, where N_ € {1,..., N — 1} denotes the number of particles in the
ground state |]).

Firstly, the measurement outcomes can be interpreted as a flag for spontaneous
decay. If none of the particles decays, a relative phase between the states ||)®V
and |1)®V is accumulated during the free evolution time. Although these coherences
decrease over time due to the decoherence effects, the state remains in the subspace
spanned by the two maximal Dicke states and effectively one of the two GHZ-like
states Ugnz [1)®Y or Ugnz 1)V is measured, corresponding to outcomes z = +%,
respectively. Conversely, if a particle decays, the subspace spanned by the maximal
Dicke states is left and we obtain a measurement outcome = # :I:% that depends on
the number of particles that decayed. Hence, measurement outcomes = # j:% can
only occur if at least one spontaneous decay event has taken place (cf. Sec. 3.7.4),
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such that selecting the x = j:% events, as is done by the estimator Eq. (3.79), in
essence filters out all such cases.

Secondly, and quite remarkably, for the particular observable X, introduced in
Eq. (3.78), the conditional probabilities P(x|¢) turn out to be independent of ¢ for
all outcomes x # j:%. Thus, these cases do not provide any information on ¢.
Hence, we only infer information about the phase for x = j:%, while for = # i%
we effectively measure noise with a binomial(-like) distribution characterized by the
spontaneous decay rate I' and interrogation time 7. In particular, the conditional
probabilities P(x|¢p) for z = % —N_# :i:% are directly associated to the probabilities
of N_ decay events, as we will show in Sec. 3.7.4. Consequently, trying to estimate
the phase for outcomes = # :l:% effectively corresponds to random estimates based on
this binomial(-like) noise distribution. Metaphorically speaking, this would essentially
result in a blind guess and spoil the sensitivity.

Together, these two features allow to implement an error detection and mitigation
scheme [183] tailored to frequency metrology. On the one hand, outcomes x # i%
can be considered as heralded errors signifying an unsuccessful, decohered Ramsey in-
terrogation. Conversely, outcomes x = :i:% signal a no-jump dynamics (see Sec. 3.7.4)
delivering maximal phase information. On the other hand, exclusively selecting these
events during (classical) post-processing results in enhanced sensitivity, saturating
the QCRB Eq. (3.75).5 We therefore refer to this scheme as ‘heralded-GHZ’ protocol

in the following.

Frequency estimation uncertainty— The dependence of the frequency estima-
tion uncertainty of the heralded-GHZ protocol Awneralded—cnz(1"), which coincides
with the QCRB for the GHZ state given by Eq. (3.75), on the interrogation time
T is illustrated in Fig. 3.2(a). For short interrogation times 7' < tspont, Or equiva-
lently small decoherence rates I' < 1, the heralded-GHZ protocol performs similarly
to the parity-GHZ protocol, with both achieving the HL.. However, as T approaches
Toarity—GHZ = m, the heralded-GHZ protocol demonstrates its advantage and
achieves a lower frequency estimation uncertainty. Although the optimal interrogation
time for the heralded-GHZ protocol is slightly longer than for the parity-GHZ proto-
col, the maximal entanglement of the GHZ state still leads to Theralded—cuz < Tess.

Thus, Theralded—cHz approximately remains in the regime of Tyarity—cnz.

6Instead of emphasizing a gain compared to the parity-GHZ protocol, we can interpret the sit-
uation from the perspective of a decoherence-free scenario. In this context, this measurement and
estimation strategy is less susceptible to decoherence and thus suffers less from its effects than the
parity-GHZ protocol. In particular, it effectively extracts the maximum phase information from the
decohered state, as indicated by saturating the QCRB.
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In Fig. 3.2(b), we present the minimal frequency estimation uncertainty as a
function of the ensemble size N, optimized with respect to the interrogation time 7T°
and scaled to the SQL. The heralded-GHZ protocol shows a substantial enhancement
over the SQL for all N. In particular, a constant gain of 1.8 dB relative to the SQL
is achieved for N > 5 and thus, no loss in improvement is observed for large N.
Especially considering the scaling of small and intermediate ensembles, the resulting
increase in sensitivity is quite remarkable.

Unfortunately, the minimization of Awperalded—cnz(7") with respect to the interro-
gation time T generally is not analytically possible. However, an explicit expression
can be obtained if the term (1 —e 7)Y in Eq. (3.75) is negligible. This contribution
reflects the probability of N spontaneous decay events occurring during the interro-
gation time 7" (cf. Sec. 3.7.4), in which case the time evolved state would collapse to
| 1)®N. However, this scenario becomes increasingly unlikely for larger ensemble sizes

N. In this limit, the minimal frequency estimation uncertainty is given by

GHZ _ Awsqr .
QERB e (1)
Here, W denotes the Lambert-W function (cf. App. E.7). The resulting gain over

the SQL of W < 1 corresponds to the observed 1.8 dB. In particular, this

approximation proves to be appropriate already for small ensembles N > 5, as a
constant gain compared to the SQL is achieved (cf. Fig. 3.2(b)).

A("}heralded—GHZ = Aw (382)

Linear-GHZ protocol— To highlight the importance of the nonlinear estimator

presented in Eq. (3.79), we compare it to the standard linear estimation strategy

_ Q.T (F;’Y) NT
N2 ’

which we denote as ‘linear-GHZ’ protocol. As argued before, measurement outcomes

Pest () (3.83)

T # % provide no phase information (cf. Eq. (3.81)), leading to random phase guesses
that degrade the sensitivity. Consequently, the frequency estimation uncertainty as-
sociated with the linear-GHZ protocol, given by

6(F+’y)NT
N3

is compromised relative to the heralded-GHZ protocol for N > 2, as illustrated in

(AG(T)tinear—cuz)* = [1+ (N —=1)(1—2e""" +2e77)], (3.84)

Fig. 3.2(b). Nevertheless, an improvement over the SQL is achieved, with maximal
gain observed for N = 3. However, this enhancement diminishes with increasing
ensemble size and the sensitivity ultimately converges to the SQL, resulting in a van-
ishing advantage in the asymptotic limit.
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Two immediate concerns arise regarding the heralded-GHZ protocol. Firstly, how
well does it compare to other potential strategies where, beyond measurements and
estimators, the initial state is also optimally chosen and may differ from a GHZ
state? Secondly, one may question the effectiveness of a strategy that ignores all but
two measurement outcomes in each interrogation cycle, particularly in the context
of atomic clocks, where the ultimate challenge is to stabilize the constantly drifting
phase of a local oscillator. We address both of these issues in the remainder of this

section.

3.7.3 Saturating the optimal quantum interferometer

The performance of the optimal quantum interferometer (OQI) is determined by opti-
mizing over all entangled initial states, measurements, and estimators. Unfortunately,
as discussed in Sec. 3.5.3, no general expressions for the OQI sensitivity exist for ar-
bitrary ensemble sizes and thus complex optimization procedures are required. In
particular, the iterative algorithm presented in Ref. [170] and outlined in Sec. 3.5.3
allows an efficient computation at least for small ensembles (cf. App. A). However,
numerical optimization becomes challenging with increasing N. In the asymptotic
limit (N > 1), the ultimate lower bound is given by (cf. Sec. 3.6)

'+~
Nt '’

(AWasym)? > (3.85)

which results in a maximal improvement of 1/e over the SQL Eq. (3.69), corresponding
to a gain of 4.3 dB. Interestingly, individual dephasing and spontaneous decay exhibit
the same asymptotic limit despite their fundamentally different nature. For individ-
ual dephasing, it was demonstrated in Ref. [148] that this bound is asymptotically
saturated by spin-squeezed states (SSS) generated by one-axis-twisting (OAT') interac-
tions [125], introduced in detail in Sec. 2.3.9. Likewise, SSS prove to be asymptotically
optimal in the presence of spontaneous decay, as shown in the inset of Fig. 3.2(b).
As a consequence, we focus on small ensembles where the OQI can be evaluated nu-
merically and benchmark the heralded-GHZ protocol against SSS generated by OAT
due to their asymptotic optimality.

Although the heralded-GHZ protocol provides a substantial enhancement com-
pared to the SQL, it does not saturate the OQI, which likewise represents a constant
improvement with respect to the SQL in the regime where numerical evaluation is
feasible (N < 30), as illustrated in Fig. 3.2(b). Furthermore, in this regime, the
heralded-GHZ protocol achieves sensitivities relatively close to the OQI, despite its
low complexity. Conversely, the enhancement of SSS over the SQL increases with V.
In particular, for larger ensembles (N > 42), SSS surpass the heralded-GHZ protocol
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in sensitivity and ultimately approximate the lower bound Eq. (3.85) asymptotically
(cf. inset of Fig. 3.2(b)). Consequently, the gain of the OQI over the SQL will increase
likewise for larger ensembles.

The gap between the heralded-GHZ protocol and the OQI for small ensembles
raises the question of which protocol could be used to close it and what resources
would be required to do so. The fact that the gap is independent of the number of
particles suggests that this could be possible with a fixed protocol that varies little or
not at all with N. Furthermore, the optimal interrogation time Toqr is close to the
one of the heralded-GHZ protocol (cf. Fig. 3.2(a)) and thus indicates that GHZ-like
states might be optimal. Indeed, we have identified a particular interrogation scheme
that reaches the level of the OQI for several tens of atoms and outperforms SSS for up
to about 80 atoms. Surprisingly, no deep circuit depths are necessary, but a simple
extension of the heralded-GHZ protocol involving one more twisting operation for

state preparation is sufficient. The initial state

i) = Uz R-(0) Ucuz| L)EY = gl 1)V + Bo| 1)V (3.86)

is generated by an additional OAT interaction Ugpyz and rotation R, (0) with optimal
rotation angle # depending on the ensemble size N and the dimensionless parameter
I'T (cf. App. E.8). Essentially, the additional transformation only modifies the
coefficients ay and fy, generating an unbalanced GHZ-like state (referred to as ‘uGHZ’
in the following). As limiting cases, the GHZ state is reproduced for Ognz = 3y,
rendering the additional transformation redundant, while the collective excited state
| M)®N and ground state |})®V are obtained for 6; = 0 and 6, = 7/N, respectively.
In particular, the optimal rotation angle features a trade-off between two contrary
aspects. On the one hand, based on the ideal scenario, one would expect the highest
sensitivity if the time evolved state comprises an equal superposition of both maximal
Dicke states, which is achieved for Oequa; With 04 < Ocquar < Ocnz. Hence, this strategy
effectively aims to compensate for spontaneous decay during the free evolution time.
On the other hand, however, a higher population in the excited state at the same
time increases the decoherence effects due to spontaneous decay, counteracting the
aforementioned benefit. Ultimately, a compromise is found with the optimal rotation
angle O,p in the range Oequal < Oopt < Ocnz, as illustrated in Fig. 3.4(a), assigning a
higher weight to the excited state.

Due to its GHZ-like nature, the measurement defined in Eq. (3.77) remains opti-
mal, ensuring that the phase is encoded exclusively onto the maximal Dicke states.
Consequently, the nonlinear estimation strategy proposed in Eq. (3.79), with an ap-
propriately adapted scaling factor corresponding to the inverse of the signal slope,

is employed to filter out measurement outcomes x # :I:%, which are associated with
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Figure 3.4: Optimal rotation angle and probability of no-jump dynamics:
(a) Dependence of the minimal frequency estimation uncertainty Awp,(6), scaled to
the SQL, at optimal interrogation time 7,;, on the rotation angle 6 in the interval
th =0<0<0; =% for N =38. Symbols indicate the three special cases discussed
in the main text. The blue shaded area represents achievable frequency estimation
uncertainties using uncorrelated atoms. (b) Probability of the no-jump dynamics
po (dashed) and the quantum trajectory involving N spontaneous decay events py
(solid) at optimal interrogation time Ty, as a function of the ensemble size N.

spontaneous decay events (cf. Sec. 3.7.4). Therefore, this protocol exhibits charac-
teristics similar to the heralded-GHZ protocol. The corresponding phase estimation

uncertainty is given by

eT+NNT 2

(A¢reradea—ucnz(T))? = —INT {1 + \/e_NFT +(L—e )N (3.87)

which coincides with the QCRB of the uGHZ state. Fig. 3.2(b) shows that this
‘heralded-uGHZ’ protocol saturates the OQI for small ensemble sizes (N < 4) and
achieves a constant gain of 2.25 dB compared to the SQL for N > 5, remaining close
to the OQI for intermediate N. Analogous to the heralded-GHZ protocol, an explicit

expression can be determined if the term (1 — e*FT)N is negligible, yielding

15 2W (1/2v/2)
AWheralded—uGHz = Awsqr, \/4 NN

(3.88)

where the gain of —W < 1 over the SQL corresponds to the observed 2.25
dB. Again, the asymptotically optimal SSS are advantageous for larger ensembles

(N > 87).

3.7.4 Spontaneous decay events in GHZ(-like) states

In the preceding sections, we identified specific expressions in the conditional prob-
abilities and estimation uncertainties with distinct numbers of spontaneous decay
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events. At this point, we aim to illustrate this association based on the framework of
quantum trajectories and quantum jumps, outlined generally in Sec. 2.3.3 and applied
to GHZ(-like) states in the presence of spontaneous decay in App. E.9.

To determine the aforementioned expressions associated with a particular number
of spontaneous decay events for GHZ(-like) states, we consider the generic initial state

pin = P4 LY EY 4 oD LY EN 4 plD 1) (LEY + pl0 1) (1Y, (3.80)

The dynamics according to the master equation, Eq. (3.4), leads to the time evolved
state

pin(0,T) = PV LY e (pDe 2N¢|¢><T|®N+p£g TN (LN
+ p0 (TN 4 1= e T ) (3.90)

In the framework of quantum trajectories and quantum jumps, the state py, (¢, T) is

expressed as a mixture

where pi(¢,T) denotes the normalized state involving &k quantum jumps occurring
with probability py(¢,T). For spontaneous decay, at most N quantum jumps can
occur, as this scenario would map the collective excited state |1)®V to the collective
ground state [})®N. Thus, the mixture in Eq. (3.91) contains N + 1 terms with
ke{0,...,N}.

Of particular interest for the GHZ(-like) protocols investigated in this thesis is the
‘no-jump’ dynamics, characterized by the absence of any spontaneous decay events.

This contribution is determined by

_ 1 (N) N —LyT iN¢ N (N) _—iN¢ N
(6, T) = s [P + 57 (oD A1 + eI (L)

+ PN ) (Y], (3.92)

Consequently, the subspace of the maximal Dicke states in the time evolved state
described by Eq. (3.90), ultimately resulting in outcomes z = £ for measurements
of the observable X, is not solely governed by the no-jump dynamics, as the term
i) (1- G*FT)N | 1)} |®Y is not captured in pg(¢,T). The probability of the no-
jump dynamics reads

po(6, T) = pl) + pVe ™. (3.93)
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In contrast, states in the expansion Eq. (3.91) with £ > 0 involve k spontaneous
decay events and are given by

(V)
or(6,T) = 2= __e"TTW=0) (1 _ e TT) P (|2 o [ (1PY ), (3.94)

pk(¢7 )
where the permutation operator P generates the (]]X) distinct permutations of the
state | L) (L|F @ [ 1) (1]|®N~F, with k particles in the ground state and N — k particles
in the excited state. The corresponding probabilities of dynamics with k& > 0 decay

events read

pr(6,T) = py) (],Z) e TR (1 o TT)F (3.95)

and are directly connected to the conditional probabilities associated with measure-
ment outcomes x # i—% in the GHZ(-like) protocols investigated in the previous
sections (cf. Eq. (3.81)).

In particular, the scenario of N spontaneous decay events occurs with probability

pn(6,T) = p) (1 — e TT)" (3.96)

and results in the system being in the collective ground state |¢)®N. Therefore, to
be precise, the nonlinear estimator in Eq. (3.79) does not exclusively select the no-
jump dynamics, but additionally takes the scenario involving N spontaneous decay
events into account. However, the probability of this event becomes increasingly
unlikely for larger ensemble sizes N. In particular, this contribution can be effectively
disregarded already for N > 5, as shown in Fig. 3.4(b). Consequently, both the
heralded-GHZ and heralded-uGHZ protocols achieve their maximal gain of 1.8 dB and
2.25 dB over the SQL, respectively, once the scenario of N spontaneous decay events
becomes negligibly unlikely and thus, the nonlinear estimator in Eq. (3.79) indeed
selects the no-jump dynamics po(¢,T). Furthermore, Fig. 3.4(b) illustrates that a
higher initial population in the excited state increases the decoherence effects caused
by spontaneoud decay, as discussed in Sec. 3.7.3. This is reflected in the reduced
probability of the no-jump dynamics for the heralded-uGHZ protocol compared to
the heralded-GHZ protocol.

3.7.5 Performance in atomic clocks

To investigate the robustness of the presented measurement and estimation schemes to
spontaneous decay in a realistic scenario of frequency metrology, we perform numerical
Monte Carlo simulations of the full feedback loop in an atomic clock and compare the
results to the theoretical predictions. The Monte Carlo simulation implements the
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basic principles of an atomic clock, as described in Sec. 3.2. Further implementation
details are provided in App. A and Ref. [3].

As discussed in Sec. 3.4.3, the long term stability of an atomic clock in a dead
time-free scenario is well approximated by

(r) = 1 A¢(T)  Aw(T)
7T _wo \/ﬁ B Wo

and thus corresponds to the frequency estimation uncertainty rescaled with wy. Con-

(3.97)

sequently, in Fig. 3.5, we present our results in two complementary ways: Lower
r-axis and left y-axis refer to general frequency estimation where the uncertainty is
rescaled to be independent of the particular averaging time 7 and lifetime tg,one = 1/
Thus, it allows for an application to several experimental setups and atomic species
as long as spontaneous decay remains the dominating decoherence effect. Upper

r-axis and right y-axis illustrate results in an atomic clock for the particular ex-
1
T
wo = 27y ~ 21 x 411.042 THz [37, 185, 186]. Furthermore, we consider frequency

ample of Ca*-ions with lifetime tgpont = ¢ =~ 1.1s [184] and transition frequency
fluctuations corresponding to a state-of-the-art clock laser. In particular, we assume
a flicker noise limited laser with coherence time Z o~ 7.5 8 > tspont [88] (cf. Sec. 2.2.2).
Results of numerical simulations (symbols) in comparison to theoretical predictions
(lines) of the investigated protocols are shown in Fig. 3.5 for the representative cases of
(a) N =4 and (b) N = 16 particles, while the results and conclusions generally apply
to other ensemble sizes as well. As Monte Carlo simulations are stochastic processes,
resulting stabilities fluctuate around the average value. Overall, numerical simula-
tions of all discussed interrogation schemes show very good agreement with theoretical
predictions. Therefore, all schemes, including the heralded-GHZ and heralded-uGHZ
protocols in particular, are robust and thus suited for realistic scenarios as in the
context of atomic clocks. At interrogation times T 2 Ty, fringe hops occur due
to the impact of decoherence effects, where the feedback loop passes to an adjacent
fringe resulting in the clock running systematically wrong and consequently spoiling
the clock stability. Moreover, the comparison of N = 4 and N = 16 already indicates

the transition between the optimality of GHZ-like protocols and squeezing protocols.

3.7.6 Unique features of GHZ(-like) states in the presence of
spontaneous decay

Finally, we want to emphasize that both the measurement of the observable X (cf.
Eq. (3.78)) and the application of the nonlinear flag estimator (cf. Eq. (3.79)) are
specifically designed for GHZ(-like) states limited by spontaneous decay, achieving
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Figure 3.5: Monte-Carlo simulations of the full feedback loop in an atomic
clock: Simulation results for (a) N =4 and (b) N = 16 are displayed by symbols,
while theoretical predictions are shown as lines. Data points denote the average over
10 independent clock runs. Error bars indicate the corresponding standard deviations.
Upper z-axis and right y-axis illustrate results in an atomic clock for the particular
example of CaT-ions with lifetime tspon = % ~ 1.1 s [184] and transition frequency
wo = 27y =~ 411.042 THz [37]. In each clock run, 107 cycles were performed and
the corresponding Allan deviation was evaluated. The presented values are obtained
by extrapolating the Allan deviation at 7 = 1 s based on the long term stability
Eq. (3.97) at 7 > 1 s. The gray shaded area represents the inaccessible sensitivity
region set by the OQI limit, while the blue shaded area indicates achievable frequency
estimation uncertainties using uncorrelated atoms.

substantial enhancements over the SQL and approximating the OQI for small ensem-
bles. Unfortunately, the underlying concepts cannot be easily transferred to other
scenarios to obtain comparable improvements, as we will discuss below. In particu-
lar, we examine the impact of (i) the measurement, (ii) the initial state and (iii) the
decoherence process.

(i) Investigating measurements for GHZ(-like) states, primarily two key aspects are
essential. First, the measurement has to distinguish between different Dicke states
to detect spontancous decay events. In particular, the parity measurement, with
its binary outcomes, does not satisfy this condition and thus is inadequate for this
purpose, as it only indicates whether there is an even or odd number of particles in the
ground state. Consequently, no estimator can be constructed which exclusively selects
the no-jump term. Second, the phase has to be imprinted solely onto the maximal
Dicke states, otherwise, phase information is lost when selecting the measurement
outcomes xr = j:%, as done by the flag estimator. Both requirements are addressed
by measurements of the observable X.

(ii) The implicit detection of spontaneous decay events solely based on the mea-
surement outcomes x is a key aspect of the presented protocols with GHZ(-like)
states. This feature originates from the superposition of only two Dicke states, which
are well separated in terms of the quantum number M (cf. Fig. 3.6(a) and (b)). This



3.7. Optimal Ramsey protocols in frequency metrology limited by spontaneous decay 99

separation allows to identify measurement outcomes x # j:% as indicators for spon-
taneous decay events. In contrast, without such separation, measurement outcomes
cannot be uniquely associated with spontaneous decay events, preventing the detec-
tion of these quantum jumps and ultimately degrading sensitivity. Indeed, the GHZ
state is not the only state that enables this capability. In principle, superpositions of
multiple Dicke states can pursue a similar strategy, provided that there is negligible
overlap in the distributions of each time-evolved Dicke state. Conversely, CSS exhibit
a binomial-like distribution of Dicke states, preventing the unique identification of
spontaneous decay events, as no separation of the distributions of the time-evolved
Dicke states is ensured, as illustrated in Fig. 3.6(c) and (d). To identify spontaneous
decay events for CSS would require to detect them explicitly, which is further dis-
cussed in Sec. 3.10.2. However, states featuring such distinct separation are typically
highly entangled and, as indicated by Fig. 3.2(b), become less favorable for large
ensembles due to their susceptibility to decoherence processes. In contrast, weakly
entangled states, such as SSS with binomial(-like) distributions, benefit substantially
from larger ensembles due to their resilience to decoherence effects and thus become
asymptotically optimal.

(iii) In Ramsey interferometry, although entangling transformations — effectively
generating correlated measurements — may be applied after the free evolution time,
typically a projective spin measurement is performed in the end (cf. Eq. (3.78)),
yielding the population difference. Consequently, only quantum jumps that affect
the populations, such as spontaneous decay events, are detectable. Conversely, if
the decoherence process only degrades the coherences over time, as in the case of
dephasing, changes in the measurement statistics may originate from either the deco-
herence process or the phase evolution, without means to distinguish between them.
To give an example, this ambiguity also becomes evident for the heralded-GHZ and
heralded-uGHZ protocols. For dephasing, quantum jumps effectively manifest as
random phase shifts between the ground and excited states of the particles. Hence,
only the contrast of the phase information decreases, while the state remains in the
subspace spanned by the maximal Dicke states (cf. Eq. (3.80) and Eq. (3.81) for
[' = 0). However, changes in the signal can likewise arise from variations in the phase
¢, despite the fundamentally different nature of these processes. Consequently, in
such cases, the changes in the measurement statistics cannot be uniquely attributed
to either quantum jumps or variations in the phase, thereby compromising sensitiv-
ity.” In the worst-case scenario, this ambiguity can lead to a complete loss of the

"To be precise, the coherences likewise decrease for spontaneous decay and thus this particular
effect of the decoherence process cannot be detected. However, this contribution originates from the
continuous non-unitary time evolution (cf. App. E.9), while quantum jumps indeed can be detected,
as discussed before. This feature represents the fundamental difference between spontaneous decay
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Figure 3.6: Separation of Dicke states and detection of spontaneous decay
events: Population of the GHZ state (top) and the CSS (bottom) at 7' = 0 (left)
and optimal interrogation time T, (right). The GHZ state represents an equal
superposition of the two maximal Dicke states with M = :i:% (depicted in blue
and green, respectively). Consequently, the distribution of the time evolved state
remains distinctly separated with respect to M. In contrast, the CSS comprises a
superposition of several adjacent Dicke states. At T, the contributions of three
generic Dicke states, indicated by corresponding colors at 7' = 0, to the overall
distribution (gray) are shown. In particular, these contributions exhibit a substantial
overlap, preventing the implicit detection of spontaneous decay events.

entanglement-induced enhancement, as observed for GHZ states in the presence of

dephasing.

3.8 Crossover to regimes limited by dephasing

In the previous section, we primarily focused on scenarios where spontaneous decay
with rate I' imposed the dominant limitation. However, in experimental setups, ad-
ditionally dephasing processes may be present. To evaluate the robustness of the pre-
sented protocols employing GHZ(-like) states in the presence of both individual and
collective dephasing with rates v and 7., respectively, we investigate the crossover be-
tween regimes dominated by spontaneous decay and those where dephasing becomes

the primary limitation. In particular, we assess the minimal frequency estimation

and dephasing.
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Figure 3.7: Crossover to dephasing: Crossover between regimes limited by spon-
taneous decay with rate I' and (top) individual dephasing with rate v and (bottom)
collective dephasing with date ~.. Minimal frequency estimation uncertainty Awpin,
relative to the SQL, for (left) N = 4 and (right) N = 16 as a function of v/I" and
v/, respectively. The ratio Aw/Awsqr is independent of the decoherence rates due
to the comparison with the SQL.

uncertainty Awp,;, relative to the SQL for a given ensemble size N, while systemati-
cally varying the ratios «/I" and ./, as shown in Fig. 3.7. Small ratios correspond
to the regime where spontaneous decay is dominant, thereby reproducing the results
of the previous section, while large ratios represent regimes dominated by dephasing.
As before, we focus on small ensembles, where the OQI can be evaluated numeri-
cally and GHZ(-like) states perform close to it due to the detection and mitigation
of spontaneous decay events. This results in a pronounced difference between both
regimes since quantum jumps arising from dephasing cannot be uniquely identified,
as discussed in detail in the previous section. Consequently, the OQI demonstrates
a significantly increased gain over the SQL in the regime dominated by spontaneous
decay. For both types of dephasing, this enhancement diminishes with increasing
ratios v/I" and ~./T", respectively, as the contribution of undetectable decoherence
effects from dephasing grows. In contrast, for large ensembles (N > 1), weakly en-
tangled states become optimal, as discussed in Sec. 3.7.6, and detecting quantum

jumps becomes less relevant.
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Individual dephasing— For individual dephasing and small ensembles, as illus-
trated in Fig. 3.7(a) and (b), the difference in the enhancement of the OQI over the
SQL between both regimes is particularly pronounced. Surprisingly, the heralded-
uGHZ protocol performs close to the OQI limit approximately until both decoherence
processes contribute comparably, i.e. I' >~ . The sensitivity of SSS remains inde-
pendent of the ratio /I', since spontaneous decay and individual dephasing affect
projective spin measurements with a linear estimation strategy in the same way (cf.
App. E.1.1). With increasing ensemble size, the enhancement of SSS over the SQL
grows. Although SSS become optimal only in the asymptotic limit of large ensem-
bles (N > 1), the gain of the OQI in the regime dominated by individual dephasing
increases likewise. Consequently, the difference between the OQI in both regimes
diminishes and the heralded-uGHZ protocol loses its optimality at slightly smaller
ratios v/I". For v 2 T, the sensitivity of the GHZ(-like) protocols converges towards
the SQL, as they lose their advantage when individual dephasing becomes dominant,
consistent with the findings in Ref. [149] for I = 0.

Collective dephasing— In comparison, GHZ(-like) states exhibit a substantially
enhanced susceptibility to collective dephasing, as illustrated in Fig. 3.7(c) and (d). In
particular, these states collapse N-times faster compared to individual dephasing (cf.
App. E). As a result, the critical ratio at which the heralded-(u)GHZ protocols lose
their optimality decreases accordingly with the ensemble size N and thus, GHZ(-like)
states become unfavorable for large ensembles in the presence of collective dephasing.
Furthermore, for 7./T" > 1, the sensitivity does not even converge to the SQL — as it
does for individual dephasing — but instead degrades substantially below the classical
limit. Consequently, the heralded-uGHZ protocol performs close to the OQI limit only
in the regime dominated by spontaneous decay I' > ~,., while losing its optimality
already when I' > ~.. Moreover, the gain of SSS over the SQL diminishes with
increasing ratio 7. /I". In contrast to spontaneous decay and individual dephasing, the
enhancement of SSS remains approximately independent of the ensemble size in the
regime constrained by collective dephasing. Interestingly, while the gain of the OQI
over the SQL diminishes with increasing ~./T", as discussed before, it unexpectedly
exhibits a minimal enhancement in the crossover region before increasing again as
collective dephasing becomes dominant. Although this gain remains smaller than
in the contrary regime — where spontaneous decay imposes the primary limitation
(i.e. 7. < I') — this behavior differs fundamentally from the scaling observed under
individual dephasing.

Phenomenologically, this can be understood as follows: For spontaneous decay
and individual dephasing, the sensitivity is primarily determined by the degree of
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entanglement in the initial state. Although correlated measurements can enhance
the sensitivity — by facilitating a higher entanglement depth in the initial state or by
enabling phase information to be encoded onto particular Dicke states, as observed
for the heralded-(u)GHZ protocol — they influence the frequency estimation uncer-
tainty only implicitly. In contrast, for collective dephasing, the measurement explic-
itly affects the sensitivity by substantially increasing the dynamic range — primarily
characterized by the optimal interrogation time T),;,. This qualitative distinction is
already evident for CSS. While a conventional projective spin measurement suffices
to saturate the QCRB in the presence of spontaneous decay and individual dephasing
(cf. App E.2), this is not the case for collective dephasing, where a correlated mea-
surement is required. This behavior is generically illustrated for N = 8 and I' = ~, in
Fig. 3.8(a). The QCRB of CSS exhibits a substantial enhancement compared to CSS
with a projective spin measurement — which imposes the SQL — achieved at a longer
optimal interrogation time Ty,;,. To demonstrate that this effect genuinely arises from
collective dephasing, the QCRB of CSS is compared to the SQL as a function of the
ratio 7./I" in Fig. 3.8(b). Furthermore, the scaling of the minimal frequency estima-
tion uncertainty Awp;, and the corresponding optimal interrogation time T},;, with
the ensemble size N in the regime where collective dephasing imposes the primary
limitation (I'/~. — 0) are shown in Fig. 3.8(c) and (d), respectively. Interestingly,
the maximal gain of the QCRB of CSS over the SQL is obtained for N = 4, whereas
it decreases for larger ensembles. In contrast, the ratio of the optimal interrogation
time for the QCRB of CSS and CSS with a projective spin measurements steadily
increases with V.

Consequently, the crossover between the regimes where spontaneous decay and
collective dephasing limit the sensitivity reflects a trade-off between enhancements
through initial states and measurements, ultimately resulting in the particular scaling
observed in Fig. 3.7(c) and (d). Since collective dephasing is phenomenologically
similar to the treatment of laser noise within the Bayesian framework, it affects clock

stability similarly and we refer to Chapter 4 for further details.

3.9 Conclusion

We have presented a protocol with low complexity that saturates the QCRB of GHZ
states and thus, unexpectedly, results in a substantial enhancement of 1.8 dB com-
pared to the SQL in the presence of spontaneous decay. This is achieved by a mea-
surement and estimation scheme that allows to identify and exclude spontaneous
decay events in the Ramsey sequence and thus implements an error detection and

mitigation scheme to improve frequency metrology. Additionally, we have identified
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Figure 3.8: QCRB of CSS in the presence of collective dephasing: (a) Fre-
quency estimation uncertainty Aw(7") relative to the SQL for N = 8 and I' = ~..
The QCRB for CSS demonstrates a substantial enhancement compared to the SQL,
represented by CSS with a projective spin measurement, achieved at a longer optimal
interrogation time T,,. (b) Enhancement of the QCRB for CSS over the SQL at
optimal interrogation time T}, as a function of the ratio 7./I". Unlike in the regime
dominated by spontaneous decay, a projective spin measurement does not suffice to
saturate the QCRB for CSS when collective dephasing becomes relevant. (c) Scaling
of the minimal frequency estimation uncertainty of the QCRB for CSS relative to
the SQL as function of the ensemble size N in the regime dominated by collective
dephasing (I' = 0). (d) Corresponding ratio of the optimal interrogation times of the
QCRB for CSS Thcrp and of CSS with a projective spin measurement 7¢gs.

a GHZ-like protocol that saturates the OQI for small ensembles and closely approx-
imates it for intermediate ensemble sizes. The observed 2.25 dB gain over the SQL
arises from an unequal superposition of the two maximal Dicke states, which coun-
teracts spontaneous decay during the free evolution time and can be generated by a
minor modification of the GHZ state. Furthermore, the robustness of these protocols
was shown through comprehensive Monte-Carlo simulations of atomic clocks, thereby
paving the way for near-term implementations into experimental setups. Finally, we
have investigated the susceptibility of the GHZ(-like) protocols to dephasing. While
they remain robust to individual dephasing, approximating the OQI until the noise
contributions from both decoherence processes become comparable, they exhibit a sig-
nificantly higher susceptibility to collective dephasing, ultimately performing worse
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than the SQL.

GHZ(-like) states are an attractive experimental choice, since in a variation of the
protocol involving the entanglement of Zeeman states of equal magnitude but opposite
sign, they can be made first order magnetic field insensitive [4,158], thus eliminate
dephasing, the major source of decoherence [157]. Furthermore, the shorter optimum
probe time compared to CSS reduces loss of contrast and time dilation shifts from
motional heating of the ion crystal [12], thus improving the signal-to-noise ratio and
the accuracy of such a clock. In addition to frequency metrology, the findings of this
chapter can be applied to various precision measurements where phase estimation is

limited by spontaneous decay.

3.10 Outlook

In the context of the comprehensive investigation of frequency metrology limited
by spontaneous decay in this chapter, two primary open questions remain that are
beyond the scope of this thesis.

First, as discussed before and shown in Fig. 3.2(b), while the heralded-uGHZ
protocol approaches the OQI for small ensembles, it does not fully saturate it for
N > 4. Consequently, the optimal states that do saturate the OQI have to be
identified. For instance, the population distribution of the optimal input probe state
for N = 8 is illustrated in Fig. 3.9(a). This state exhibits a uGHZ-like structure
with an additional population in the Dicke state with M = —1. In particular, this
state maintains a distinct separation in the distributions of each time-evolved Dicke
state (cf. Sec. 3.7.6) even after the free evolution time, as depicted in Fig. 3.9(b).
A detailed investigation of these optimal states could provide an intuitive physical
explanation for their specific population distributions and the corresponding optimal
measurements.

Second, the transition of the optimal Ramsey schemes, from GHZ-like protocols
for small ensembles to SSS in the asymptotic limit, has to be examined. Specifically,
the crossover from GHZ-like states, exhibiting a distinct separation of the Dicke
states, to SSS with a binomial-like distribution (cf. Sec. 3.7.6) has to be investigated.
Furthermore, it would be interesting to determine whether the OQI converges to
the asymptotic limit like SSS, or if other optimal states can be identified in the
transition regime. A first indication is provided by the evaluation of the QCRB for
SSS, illustrated in Fig. 3.10. Here, the initial state corresponds to the optimal SSS
determined with a projective measurement, while only the measurement is optimized.
Already this simple approach reveals that SSS with a projective spin measurement

are not optimal in the transition regime, suggesting the potential existence of superior
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Figure 3.9: Optimal initial state: The population distribution of the optimal initial
state for N = 8 at (a) T'= 0 and (b) optimal interrogation time Tp,,. This state
preserves a distinct separation of the three contributing Dicke states (depicted by
different colors) during the free evolution time.

protocols. Overall, while the OQI appears to converge to the asymptotic limit for
smaller ensembles than SSS, a comprehensive analysis requires the computation of
the OQI for larger ensembles (cf. App. A).

Additionally, the model could be extended to incorporate further experimental
noise processes. For instance, imperfections in initial state preparation or measure-
ment errors could be taken into account. As explored in Refs. [5,141], these effects
can be modeled as decoherence processes — such as dephasing during the entangling
gates. A simplified approach for implementing this in numerical simulations could
involve an additional sampling stage that determines the success or failure of each
Ramsey sequence.

Moreover, in the following, we address two particular questions raised by Shimon
Kolkowitz during a discussion.

3.10.1 Incoherent pumping

Spontaneous decay describes the probabilistic transition of an excited atom to a lower
energy state by emitting a photon (cf. Sec. 3.1). Conversely, incoherent pumping
refers to the stochastic process where an atom absorbs a photon from an incoherent
source, leading to a transition to a higher energy level. Hence, incoherent pumping
can be interpreted as spontaneous excitation and thus represents the counterpart to
spontaneous decay. Incoherent pumping can arise from the absorption of thermal
photons present in cavity quantum electrodynamics (QED) due to its thermal fluctu-
ations or field fluctuations. Additionally, blackbody radiation (BBR) is a ubiquitous
source of incoherent pumping, characterized by the thermal electromagnetic radiation
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Figure 3.10: QCRB of SSS: Scaling of the relative frequency estimation uncertainty
at the optimal interrogation time Ty, with the ensemble size N. The ratio Aw/Awsqr
is independent of the decay rate I' due to the comparison with the SQL. The QCRB
for SSS is shown to demonstrate that SSS with a projective spin measurement are
suboptimal in the transition regime. While this suggests the potential for superior
protocols, a comprehensive investigation is required.

emitted by all objects at non-zero temperatures. Rydberg atoms are particularly sus-
ceptible to incoherent pumping by blackbody radiation at room temperature, since
the energy level spacing between adjacent Rydberg states often aligns with the peak
intensity of the BBR spectrum. [12,187-189]

In the following, we present the primary results, with detailed calculations pro-
vided in App. E.10. Considering a unitary phase evolution governed by the Hamil-
tonian H = wS.,, spontaneous decay with rate I' and incoherent pumping with rate
I+, the dynamics of the system during the free evolution time 7', represented by the
quantum channel Ay, is described by a master equation of the form

N
p=—iw[S,, p] + = Z (20@p0$€) — af)a(_k)p — pai’”a@)

2 k=1
b (3.98)
— (k) (k)
= —iw[S, ] + 5 ; (209 po — 0B — pold))
r. N
T (k) (k) (k) (k)
+7;(20+ PO = Og P pagg>

Importantly, the dissipative terms corresponding to spontaneous decay and incoherent
pumping do not (super-)commute. Consequently, the dynamics cannot be separated
and solved independently.
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Analogous to our treatment of dephasing (cf. Sec. 3.8), we examine the crossover
between the regimes dominated by either spontaneous decay or incoherent pumping.
Specifically, we investigate the minimal frequency estimation uncertainty Awy;, rel-
ative to the SQL for a given ensemble size N as a function of the ratio I't/T", as
illustrated in Fig. 3.11. As before, we focus on small ensembles where the bene-
fits of detecting and mitigating spontaneous decay events are more pronounced and
the evaluation of the OQI remains feasible. In the regime where spontaneous decay
is dominant, corresponding to ratios I'y/I" < 1, the results of Sec. 3.7 are repro-
duced. Conversely, large ratios I'y/I" > 1 represent the regime dominated by inco-
herent pumping. Indeed, this regime exhibits behavior precisely analogous to that
observed for spontaneous decay. This feature can be explained through fundamen-
tal arguments: Although incoherent pumping and spontaneous decay are physically
distinct processes, they are conceptually equivalent under an effective interchange
of the clock basis {|]),|1)}. Additionally, this equivalence is explicitly evident in
Eq. (3.98), where the decoherence terms are identical except for the direction of the
transitions. As a consequence, the results obtained for spontaneous decay are directly
transferable to incoherent pumping. Furthermore, spontaneous decay and incoherent
pumping have the same impact on the frequency estimation uncertainty for CSS, SSS
and the parity-GHZ protocol. Interestingly, in the transition regime, the heralded-
(u)GHZ protocols and the OQI exhibit a larger enhancement over the SQL compared
to the regimes dominated by a single decoherence process. While the heralded-uGHZ
protocol does not perfectly saturate the OQI for N > 5 in these regimes, it closely
approaches it when I' ~ I';. This can be explained as follows: In this regime, spon-
taneous decay events and incoherent pumping events induce quantum jumps in both
directions with respect to the quantum number M. As these quantum jumps cannot
be detected and mitigated for binomial(-like) distributions (cf. Sec. 3.7.6), CSS —
which ultimately govern the SQL — exhibit increased susceptibility in the presence
of both decoherence processes. In contrast, the specific measurement and estimation
scheme of the heralded-(u)GHZ protocol enables the detection and mitigation of both
types of quantum jumps, thus exhibiting greater resilience to the increased decoher-
ence complexity. Furthermore, the GHZ state naturally becomes optimal for I' = Ty,
since both decoherence processes have the same impact, rendering an unbalanced
population distribution disadvantageous.

3.10.2 Spontaneous decay events as erasure errors

As discussed in Sec. 3.7.6, only quantum jumps associated with decoherence pro-
cesses affecting the populations are, in principle, detectable. Therefore, spontaneous

decay events are potentially detectable, irrespective of the specific Ramsey sequence.
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Figure 3.11: Incoherent pumping: Crossover between regimes limited by sponta-
neous decay with rate I' and incoherent pumping with rate I'y. Minimal frequency
estimation uncertainty Awp,, relative to the SQL, for (a) N = 4 and (b) N = 16
as a function of I'y/T". The ratio Aw/Awgqy, is independent of the decoherence rates
due to the comparison with the SQL.

However, the practicability and the experimental implementation of such detection
strongly depend on the initial state and measurement, as elaborated in Sec. 3.7.6.
Theoretically, detecting the emitted photons would allow for the identification of the
decayed atoms. However, this would require a 4w-detector, which is unfortunately
unrealistic in the contect of atomic clocks. Nevertheless, future experiments might
enable the conversion of spontaneous decay events into erasure errors [190], build-
ing on recent proposals and demonstrations of error conversion techniques in various
setups [191-198]. An erasure error refers to a noise process that takes the atom
out of the clock space {|1),|{)} to an arbitrary third state |—1), which can be de-
tected without perturbing the coherence within the clock space.® In the following,
we explore the potential benefits of converting spontaneous decay events into erasure
errors, building on the foundational concept introduced in Ref. [190] and applying
this framework to spontaneous decay.

Due to the maximal entanglement inherent in GHZ(-like) states, even a single
spontaneous decay event substantially degrades the coherence of the state, resulting
in a complete loss of the imprinted phase information (cf. App. E.9). Therefore, for
GHZ(-like) states, converting spontaneous decay events into erasure errors is ineffec-
tive. As a consequence, in the remainder of this section, we focus on the conventional
Ramsey sequence employing CSS, as it allows for an analytical investigation.

Expressing the time evolved state pi,(¢,T) as a mixture according to the frame-

work of quantum trajectories and quantum jumps (cf. Eq. (3.91)) and employing the

8While conceptually distinct, this is similar to atoms directly decaying to the state |—1). However,
we focus on spontaneous decay within the clock space and subsequent error conversion.
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convexity of the QFI (cf. Sec. 3.5.2), the QFI of pi,(¢, T) is bounded by

]: pln S Z ]:Q pk(¢7 )]7 (399)
k=0

where pr(¢,T) denotes the state in the expansion involving k£ quantum jumps. Con-
verting spontaneous decay events into erasure errors for CSS (cf. App. E.11), the
frequency estimation uncertainty is determined accordingly by

et +1

(AW(T))Q > ONT

(3.100)
which is shown in Fig. 3.12(a). In the limit of ' — 0, or equivalently 7" — 0,
the frequency estimation uncertainty of CSS without error conversion is reproduced,
as effectively no spontaneous decay events occur. In contrast, approaching Ty,
error conversion facilitates a substantial enhancement, resulting in a significantly
lower frequency estimation uncertainty. In particular, the gain increases for longer
interrogation times T < T, as the contribution of spontaneous decay becomes
more pronounced. Furthermore, this scheme yields an optimal interrogation time
approximately 25% longer than the excited-state lifetime tg,on of the atoms. As for
the heralded-(u)GHZ protocols, the minimal frequency estimation uncertainty can be
determined explicitly in terms of the Lambert-W function and is given by

2
(Awmin>2 > r - (AWSQL)

T 2NTW(1/e)  2eW(1/e)’ (8101)

As a result, converting spontaneous decay events into erasure errors for CSS results in
a constant enhancement of 1.8 dB, independent of the ensemble size N and equivalent
to the heralded-GHZ protocol for N > 5, as illustrated in Fig. 3.12(b). Consequently,
for small ensembles N < 42, this scheme achieves lower frequency estimation uncer-
tainties than obtained with SSS (without error conversion).

In principle, the derived frequency estimation uncertainty represents a theoretical
lower bound, and its saturability is not guaranteed — an aspect that is typical in local
frequency estimation. Indeed, the convexity of the QFI for mixed states reflects the
intrinsic uncertainty regarding the exact state of the system. However, converting
spontaneous decay events into erasure errors effectively allows to determine the exact
state within the mixture, thereby enabling the achievement of this lower bound in
this particular scenario, thus yielding equality in the equations above.

At first glance, it might seem counterintuitive that the presented scheme performs
below the OQI in certain regimes (cf. Fig. 3.12). However, this apparent discrepancy
arises from the differing assumptions in both approaches. The OQI is evaluated within
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Figure 3.12: Conversion of spontaneous decay events into erasure errors:
(a) Generic frequency estimation uncertainty Aw(7) relative to the SQL for N = 8.
The interrogation time is rescaled by the excited-state lifetime of the atoms tspony =
1/T". Conversion of spontaneous decay events into erasure errors for CSS (dashed
gray) significantly reduces the susceptibility to the impact of spontaneous decay and
thus achieves a lower frequency estimation uncertainty than the conventional Ramsey
sequence (solid black). (b) Scaling of the relative frequency estimation uncertainty at
the optimal interrogation time 7., with the ensemble size N. The ratio Aw/Awsqr,
is independent of the decay rate I' due to the comparison with the SQL. Conversion
of spontaneous decay events into erasure errors for CSS (dashed gray) results in a
constant gain of 1.8 dB over the SQL, independent of N.

the master equation framework for decoherence processes (cf. Sec. 2.3.3), which ex-
clusively considers the two clock basis states of the particles for the dynamics. In
contrast, the presented scheme effectively leverages additional information by detect-
ing spontaneous decay events through their conversion to erasure errors. Specifically,
detecting the particles that decayed is effectively equivalent to using ancilla qubits.
More intuitively, detecting the emitted photons — which is conceptually equivalent as
discussed above — constitutes a measurement of environmental information, which,
however, is explicitly traced out in the master equation approach and thus not ac-
counted for in the OQI.

The presented concept can be readily extended to other initial states such as SSS,
which, however, is beyond the scope of this outlook and typically requires numerical

evaluation.
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Bayesian frequency
metrology limited by laser
noise

4.1 Motivation and research problem

With state-of-the-art clock lasers reaching coherence times of several seconds [88], the
excited-state lifetime of various clock candidates becomes the limiting time scale and
spontaneous decay emerges as the dominant constraint (cf. Chapter 3). Nevertheless,
the excited-state lifetimes of several clock candidates remain far beyond the regime
of laser coherence times, ranging from minutes (Sr-atoms) to years (Yb*-ions) [27].
Moreover, the impressive level of laser coherence is often degraded during propagation
from the cavity to the location of the qubits. Consequently, many experimental setups
are currently — and will likely remain — limited by laser noise.

Naively, frequency fluctuations and the associated laser noise could be regarded
as a purely technical problem. However, stabilizing the laser is precisely the central
objective of an atomic clock, making frequency fluctuations the primary measur-
and [11]. Disregarding laser noise as a mere technical issue would thus contradict
the fundamental concept of atomic clocks and render the problem trivial. In prin-
ciple, one might further ask how laser noise can impose a limiting factor although,
by definition, it is the measurand — the quantity to be stabilized. To be precise,
only the component of laser noise that cannot be corrected through interrogation of
the atomic reference ultimately limits clock stability. Since Ramsey protocols have
a finite range within which they can unambiguously interpret frequency fluctuations,
errors arise when laser noise exceeds this range, fundamentally constraining stability.
In the worst case, the feedback loop passes to an adjacent Ramsey fringe, resulting
in the clock running systematically wrong and severely degrading the clock stabil-
ity. Consequently, frequency metrology limited by laser noise features a trade-off:
while longer interrogation times improve stability, they also amplify the impact of
laser frequency fluctuations, imposing inherent limitations. Additionally, dead time

113
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in clock operation leads to undetected aliased frequency deviations, further degrading
performance. Investigating the impact of frequency fluctuations is therefore essential
for advancing next-generation clocks. To address this challenge, various approaches
have been developed to account for frequency noise and to determine optimal inter-
rogation schemes for specific experimental setups [91,92,199,200]. In this endeavor,
a particularly promising framework is the application of Bayesian estimation theory
to frequency metrology — denoted as Bayesian frequency metrology — which incorpo-
rates laser noise directly into the theoretical model and leverages prior knowledge of
frequency fluctuations for estimation [140,141,151,201].

In recent years, operationally motivated echo protocols and variational quantum
circuits have attracted significant interest, as they allow for a diverse range of inter-
rogation schemes [5,128,139-143,202-208]. In particular, these approaches have the
potential to generate a high degree of entanglement while maintaining resilience to
noise [5,139-143] and thus represent a promising class of protocols for entanglement
enhanced quantum frequency metrology. One-axis-twisting (OAT) [125] interactions
serve as a versatile tool for implementing such protocols as they give rise to a variety
of entangled states, ranging from spin-squeezed states (SSS) to GHZ states, and fa-
cilitate variational classes of generalized Ramsey protocols [5,139-143|. Furthermore,
OAT interactions are accessible in several setups as in ion traps via Mglmer-Sgrensen
gates [126-128], in tweezer arrays via Rydberg interactions [62,129] or Bose-Einstein
condensates via elastic collisions [130-133].

This chapter presents a progress report on frequency metrology tailored to opti-
cal atomic clocks employing Ramsey interrogation schemes primarily limited by laser
noise. Specifically, we focus on single-ensemble clocks in which the atomic refer-
ence is periodically interrogated using the same protocol in each clock cycle. The
objective is to outline potential advancements and challenges across various Ram-
sey interrogation schemes, effectively providing a theoretical guide for clock opera-
tion on different experimental platforms. In particular, we systematically examine a
broad range of ensemble sizes and regimes defined by interrogation duration and dead
time. To incorporate frequency fluctuations into the theoretical model, we employ a
Bayesian framework for single-ensemble clocks, where the atomic reference is period-
ically interrogated using the same protocol in each clock cycle, while more general
schemes are addressed in the outlook. To establish a theoretical foundation, we re-
view Bayesian estimation theory and the corresponding fundamental bounds on clock
stability. Additionally, we incorporate previous findings on clocks limited by laser
noise, such as those in Refs. [91,92], within the Bayesian framework and extend them

in certain regimes. Building on pioneering work on variational quantum circuits in
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Refs. [140-142], we identify optimal Ramsey schemes for various experimental plat-

forms.

This chapter is structured in four parts. In the following, we provide a brief
overview of each part and outline the primary results:

e Theoretical framework: To start with, Bayesian phase estimation theory is in-
troduced in Sec. 4.2 and a hierachy of lower bounds on the estimation uncer-
tainty is collected in Sec. 4.3, drawing an analogy to the local (frequentist)
approach. In particular, the ultimate lower bound is derived, denoted as the
optimal quantum interferometer (OQI), which represents the primary bench-
mark in this work. Additionally, in Sec. 4.4 the linear estimation strategy is
discussed and the optimal Bayesian estimator is determined. In Sec. 4.5, we
explicitly connect Bayesian phase estimation theory to frequency metrology by
introducing the Allan deviation and establishing a relation between interroga-
tion time and prior knowledge of the phase. Furthermore, we discuss general

trade-offs in the context of Bayesian frequency metrology.

e Sec. 4.6: This section aims to saturate the ultimate lower bound imposed by the
optimal quantum interferometer (OQI). Initially, the standard protocols, utiliz-
ing coherent spin states (CSS), spin-squeezed states (SSS) and GHZ states, are
compared to the OQI. While GHZ states saturate the OQI at short interroga-
tion times and SSS perform close to it at intermediate durations, substantial
potential for enhancement remains across a broad range of interrogation times,
particularly at long durations. To address this, especially considering small
ensemble sizes characteristic of ion traps and tweezer arrays, we introduce gen-
eralized Ramsey protocols based on variational quantum circuits and identify
optimal interrogation schemes. We demonstrate that in this regime, even low-
depth quantum circuits suffice to approximate the OQI, which is crucial for
maintaining reasonable operational complexity and thus enabling near-term ex-
perimental implementation. While the required circuit depth to achieve OQI
stability increases with N, the performance gain diminishes with complexity,
leading to a trade-off between reduced instability and increased experimental
overhead, further motivating a focus on low circuit-complexity approaches.

e Sec. 4.7: To validate theoretical predictions on clock stability, we perform Monte
Carlo simulations of the full feedback loop in an atomic clock, from which we can
infer its long-term stability as quantified by the Allan deviation. In this context,

fringe hops emerge as a significant limitation. In particular, for small ensembles
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(N < 20), characteristic of ion traps, fringe hops impose a stricter constraint
on clock stability than the coherence time limit (CTL) of the local oscillator.
As a consequence, for long interrogation times, variational protocols provide
marginal to no advantage over SSS, while GHZ states remain optimal at short
interrogation times. In contrast, for ensembles sizes in the regime of tweezer ar-
rays (N 2 20), fringe hops and the CTL impose comparable limitations on clock
stability at long interrogation times. Consequently, variational Ramsey proto-
cols provide a substantial improvement over SSS. Nevertheless, the variation
in stability across different clock runs — due to the stochastic nature of atomic
clocks — and the relative reduction in enhancement with increasing circuit depth
further supports the focus on low-depth quantum circuits.

e Sec. 4.8: We investigate the trade-off between quantum projection noise (QPN),
the coherence time limit (CTL) and dead time effects by incorporating dead
time into atomic clock operation within the framework of Bayesian frequency
metrology. While clock stability for short dead times or small ensembles closely
resembles the dead time-free scenario, dead time effects become increasingly
significant with growing ensemble size or dead time, ultimately limiting clock
performance. Following a general analysis, we examine specific examples with
state-of-the-art parameters relevant to different experimental platforms, such
as ion traps, tweezer arrays and lattice clocks. While GHZ states and SSS re-
main optimal for ion traps utilizing only a few ions, the potential gain from
variational quantum circuits in tweezer arrays with several tens of atoms is sub-
stantially diminished. Specifically, SSS perform close to the optimal quantum
interferometer (OQI) across a wide range of interrogation times, whereas varia-
tional quantum circuits offer an enhancement only at long interrogation times.
However, this improvement is significantly reduced compared to the dead time-
free case. Additionally, in the presence of dead time, fringe hops remain the
dominant limitation in this regime, whereas in the dead time-free case, they
constrain clock stability only at the same level as the CTL. As a consequence,
SSS emerge as the preferred choice due to their robustness and practicality. For
lattice clocks with hundreds or thousands of atoms, dead time effects strictly

constrain clock stability and thus CSS suffice to approximate the OQIL.

4.2 Bayesian phase estimation

The fundamental principles of atomic clocks and Ramsey interferometry are intro-
duced in Sec. 3.2 and illustrated in Fig. 3.1, establishing the connection between
frequency metrology and phase estimation theory.
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71T .

Figure 4.1: Prior broadening: Qualitative broadening of the prior distribution P(¢)
with longer interrogation times 7', resulting from increased local oscillator noise.

In local (or frequentist) phase estimation (cf. Sec. 3.4.1), we have assumed that the
phase ¢ is tightly centered around a fixed working point ¢, such that (¢ — ¢g)? < 1,
and that the estimator is locally unbiased. Furthermore, probabilities are defined as
the infinite-sample limit of an event. However, these assumptions are often not valid in
the context of optical atomic clocks limited by laser noise. When the finite coherence
time of the laser becomes the dominant limitation on clock stability, fluctuations in the
accumulated phase during the free interrogation time become relevant and in principle
can take arbitrary values —oo < ¢ < oo. Additionally, these fluctuations require
phase estimation based on single measurements to ensure unambiguous determination
of ¢, as the phase may change significantly between measurements of consecutive
cycles, potentially preventing a unique estimation or assignment. This constraint
makes asymptotic estimation, i.e. the collection and averaging of large amounts of
data, impossible.

These phase fluctuations over different clock cycles, arising from the frequency
noise of the local oscillator, can be modeled by a phase distribution P(¢), depending
on the particular noise profile. As the interrogation time 7' increases, the LO noise
grows, causing the distribution to broaden, as illustrated in Fig. 4.1. To quantify
the impact of these phase fluctuations and the resulting limitations to the phase
estimation uncertainty, a commonly used cost function is the average mean squared

error, defined as

+o0
o) = [ doP(0) S Plalé) o dra(o))

> (4.1)
- / 46 P(0)(Adary ).

[e.9]

It corresponds to the mean squared error (MSE) of the estimated phase ¢eg () with

respect to the true phase value ¢ — the typical cost function of local phase estimation®

1For clarity, in this chapter we refer to the MSE (A¢(T))? (cf. Eq. (3.13)) as (Apqen)?, since
it solely originates from the measurement and estimation uncertainty, and is therefore primarily
governed by quantum projection noise (QPN).
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(Apqpx)? — averaged over the phase distribution P(¢). The average mean squared
error reflects a global approach — extending local (frequentist) phase estimation —
by incorporating all possible values of ¢, which additionally makes unbiasedness re-
dundant. Moreover, this approach is well-suited for arbitrary signals and estimation
strategies, as it assesses the overall performance by averaging over the entire phase
distribution, eliminating the need for specific assumptions about the signal structure
or the estimation method. In general, for a proper estimation strategy, further in-
formation about the phase is gained through the measurement. Consequently, the
average mean squared error is smaller than the variance (§¢)? of the prior phase dis-
tribution P(¢) and thus, ultimately is bounded by 0 < (A¢)? < (§¢)?. In the limit of
narrow phase distributions, where P(¢) approximates a delta distribution centered at
the optimal working point ¢y, the average mean squared error reduces to the MSE.
Due to its global averaging, it is always lower bounded by the MSE evaluated at the
optimal working point ¢y, where the MSE attains its maximum.

As argued above, local (frequentist) phase estimation is poorly suited in the regime
where phase fluctuations around the optimal working point impose a substantial lim-
itation. Although the accumulated phase is fixed for each interrogation sequence, it
varies over different clock cycles and thus can be treated as a random variable, with
the prior distribution P(¢) reflecting the knowledge on the phase prior to any mea-
surement. Consequently, Bayesian estimation theory represents the more appropriate
framework. In Bayesian phase estimation, the posterior knowledge of ¢, represented
by the posterior distribution P(¢|z) and from which the estimator is ultimately de-

termined, is updated according to Bayes theorem

P(9)P(z]9)

(4.2)
based on the statistical model P(z|¢) and the prior distribution P(¢). The marginal
likelihood P(x) = [ d¢P(¢)P(x|p) represents the probability of observing outcome
x, averaged over all possible values of ¢. Thus, it essentially provides a normalization
of the posterior distribution. The interplay between prior information and measure-
ment data already becomes evident at this stage. If P(¢) varies slowly compared
to P(z|¢), for example in the case of a flat prior or in the asymptotic limit of large
ensembles, it has minimal influence on the posterior knowledge, and the statistical
model primarily governs the inference strategy. Conversely, if the prior is sharply
peaked, prior information dominates the estimation process and significantly shapes
the posterior distribution.
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Using Bayes theorem, Eq. (4.1) can be expressed in terms of the posterior distri-
bution according to

+00
B0 =Y P@) [ 40 P(61n) [0 - duao)). (43)
In the remainder of this work, we estimate the accumulated phase within the frame-
work of Bayesian estimation theory and quantify the phase estimation uncertainty
based on this cost function. Furthermore, we review corresponding Bayesian bounds,
to which we compare the performance of the investigated Ramsey protocols. As a
consequence, we denote Eq. (4.3) — and thus likewise Eq. (4.1) due to its equivalence
— as the Bayesian mean squared error (BMSE) throughout this work, following the
literature such as Refs. [5,140-142,209,210].

For the primary investigations in this chapter, we assume a unitary phase evolution
through the quantum channel

Agrlpi] = R.(0)pnRL(9) (4.4)

with rotation R.(¢) = e~*%  where Szy,» denote the collective spin operators of
N two level systems. Consequently, the quantum channel — and thus the statistical
model P(z|¢) — is 2m-periodic with respect to the phase, i.e. Ay = Apior 7. In this
case, it is common to use a periodic cost function. However, in the context of atomic
clocks, we explicitly adopt a global definition of the phase spanning —oco < ¢ < o0,
since ¢ + 27k (with k € Z) originates from a different frequency deviation w than ¢,
and thus has a distinct physical interpretation. This distinction proves particularly
useful to quantify the coherence time limit of the local oscillator (cf. Sec. 4.3) and
to discuss fringe hops (cf. Sec. 4.7) within the Bayesian framework. Furthermore, we

assume a Gaussian prior distribution

_ v
PO = o (a5a7) (45

with zero mean and width d¢, which is a reasonable approximation for the full feed-
back loop of an atomic clock [92], as we will motivate in Sec. 4.5.2.

4.3 Bounds in Bayesian phase estimation theory

The goal of Bayesian estimation is to minimize the cost function — the Bayesian
mean squared error (BMSE). For a given prior distribution P(¢), there are three
control parameters to optimize: the initial state pi,, the measurement {II,} and
the estimation strategy ¢esi (7). Based on these control parameters and building on
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Refs. [68, 140, 151, 161, 162, 169, 200, 209, 211-221], we collect a hierarchy of lower
bounds for the BMSE, analogous to the local estimation approach. The discussion
in this section remains general, allowing for arbitrary prior distributions P(¢) and
quantum channels A, 7, while specific assumptions and asymptotic results will be
explicitly noted. In the following, we present the relevant bounds and key properties,
while detailed proofs are provided in App. F.

4.3.1 Bayesian Cramér-Rao Bound (BCRB)

For a given initial state p;, and measurement {II,}, the Bayesian Cramér-Rao bound
(BCRB) (A¢pcrp)? represents a lower bound on the BMSE (A¢)? and thus, impli-
cates an optimization over all possible estimators ¢es. Assuming standard regularity
conditions (cf. Eq. (3.24))

dedw ¢ZP /) = 0 (4.6)

xT

and vanishing of the prior at the boundaries

lim P(¢) = (4.7)

¢p—Foo

the BCRB results from the van Trees inequality [211] and reads [212]

(A¢)2 > (A¢BCRB)2 = min(A¢)2 = 1

. (4.8)
¢est F+I

Here, the measurement contribution is represented by the Fisher information averaged
over the prior distribution

7 = Flaalpu) (1LY = [ d6P(6) Flkslpul {IL)
2 (19)
) 1 (dP(lo)
-/ dw’((b);zﬂmqﬁ)( a0 >

- oty (522

denotes the information contained in the prior knowledge, given by the Fisher in-

and

formation of the prior distribution. While Z > 0, the average Fisher information F
is upper bounded by its maximal value Fax = F[As7[pim], {IL;}] achieved at the
optimal working point ¢, i.e. F < Fpax. Hence, from Eq. (4.8) it is evident that the
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BCRB in turn is lower bounded by the Cramér-Rao bound (CRB), the corresponding
bound in local phase estimation

1

(Adsers)’ > (Adons)” = 2 —.

(4.11)

In contrast to the local approach, the optimal estimation strategy in the Bayesian
framework can be derived explicitly as we will show in Sec. 4.4.

As a direct consequence of the convexity of the (classical) Fisher information (cf.
Eq. (3.28)), mixing quantum states cannot increase the average Fisher information
F and thus does not decrease the BMSE.

For a Gaussian prior distribution, the prior information simplifies to Z = (6¢) 2.
Moreover, while F typically increases with the ensemble size, the prior information
7 is independent of N. Consequently, in the asymptotic limit of large N, the prior
knowledge primarily contributes in the averaging of the Fisher information and we
obtain (A¢pcrp)? ~ F .

4.3.2 Bayesian Quantum Cramér-Rao Bound (BQCRB)

The Bayesian quantum Cramér-Rao bound (BQCRB) extends the (classical) Bayesian
Cramér-Rao bound (BCRB) by including the optimization over all measurements
{Il,}. For a given initial state p;,, the BQCRB

A 2 — min(A 2= min (A¢)? 4.12
( ¢BQCRB) {Hi}( ¢BCRB) {Hz}’%st( ¢) ( )

provides a lower bound on the BCRB and thus establishes the hierachy
(A¢)* > (A¢ners)” > (Adpqers)’. (4.13)

Naively, one might suggest to simply replace the average Fisher information F in
Eq. (4.8) by the average quantum Fisher information F = [d¢ Fo(Ayz[om]). In
general, however, the optimal measurement depends on ¢ and thus, this approach
would effectively correspond to averaging over a set of measurements, each optimized
for a particular phase value ¢. By restricting the measurements — without loss of
optimality — to the class of projection-valued measures (PVM) II, = |z)(z|, with
orthonormal eigenstates |z) of the observable X with eigenvalue x, satisfying (x|z') =
dz0, the BQCRB can be expressed as [151]

(A¢BQCRB)2 = ((qu)z - TI‘(ELQ) (414)
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Here, the double minimization over the measurement {II,} and estimator ¢eg is
combined in a single quantity L = ) Il ¢et(x). The optimal L is determined by
the implicit equation

7 =5 L+ 1), (4.15)
where p = [ d¢p P(¢)Asr[pim) denotes the average state and g’ = [ dop P(¢) Ay r[pin)¢-
The corresponding optimal measurement basis and estimator are given by the eigen-
basis and eigenvalues of the operator L, respectively.

Interestingly, Eq. (4.14) and Eq. (4.15) have a similar structure as the quantum
Fisher information (QFI) in local phase estimation (cf. Sec. 3.5.2). Indeed, assuming
a unitary phase evolution according to Eq. (4.4) and a Gaussian prior distribution
as defined in Eq. (4.5), the BQCRB can be related to the QFI Fy[p] of the average
state p by [214]

(A¢qcers)® = (60)% [1 — (0¢)* Fqlp]] - (4.16)

In this case, the optimal measurement corresponds to the symmetric logarithmic
derivative (SLD) of the QFI approach associated with F¢[p], and the optimal Bayesian
estimator can be determined explicitly (cf. Sec. 4.4.). Evaluating the BQCRB thus
becomes computationally equivalent to calculating the QFI of the average state p.
Indeed, the relation between the BMSE and the QFI in Eq. (4.16) is an interesting
mathematical coincidence that is worth pointing out. Although this relation is only
valid in the special case of single-parameter estimation and Gaussian prior distri-
butions, it connects two conceptually different problems: On the one hand, global
phase estimation, where the parameter range is characterized by the prior distribu-
tion, and on the other hand, local phase estimation based on a probe state that has
been averaged over the prior distribution.

In analogy to classical phase estimation — despite optimizing over all possible
measurements — mixing quantum states cannot enhance the estimation precision due
to the convexity of the QFI (cf. Eq. (3.41)).

4.3.3 Optimal Quantum Interferometer (OQI)

As in the local approach, the optimal quantum interferometer (OQI) represents the
ultimate lower bound of the BMSE, completing the hierachy

(A¢)? > (Adpcrp)® > (Adpqers)® > (Adoqr)* (4.17)
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The OQI simultaneously optimizes over all three control parameters: the initial state

Pin, measurement {II,} and estimator @eg:

(Agoqr)? = H{}in(AﬁbBQCRB)Q = min (A¢pcrp)’

pin:{Hz}
= min (A¢)>.
piny{HCL‘}7¢)est( ¢>

(4.18)

Unfortunately, no general expressions for the OQI sensitivity for arbitrary ensemble
sizes are available, instead, they require complex numerical optimization procedures.
In this context, we present an iterative optimization algorithm that facilitates efficient
computation for small ensembles. Furthermore, we introduce the coherence time limit
(CTL) and examine the asymptotic regime of large ensembles (N > 1).

Iterative optimization algorithm— In the following, we outline an algorithm
introduced in Refs. [151,170], which iteratively optimizes the initial probe state p,
and measurement {II,}, and enables an efficient computation for ensembles with up to
several hundreds of particles. However, numerical optimization becomes challenging
as the ensemble size N > 1 increases and approaches the asymptotic limit. This
closely resembles the algorithm presented in Sec. 3.5.3 within the local framework,
but is specifically tailored to Bayesian phase estimation theory.

For a given input probe state p;,, the optimal projective measurement and es-
timation strategy L can be determined according to the previous discussion on the
BQCRB (cf. Sec. 4.3.2). Conversely, for a given L, the optimal p;, can be evaluated
as follows: Rewriting the BMSE by identifying L = Y Il ¢ex () yields

(AG)? = (66) + Tr ( [ a6P@ Al - 2¢L>) | (4.19)

Defining the adjoint quantum channel ALT as in the local approach (cf. Eq. (3.63)),

i.e. through Tr(Asr[p]A) = Tr (pA;T[A]) for arbitrary operators A, the BMSE
becomes

(807 = 607+ (g [ a0 PO} (17 — 201 (420)

Consequently, the optimal input probe state py, = |¥in) (| is pure and corresponds
to the eigenvector |iy,) of the operator [ d(;ﬁP(gb)A;T[LQ — 2¢L] associated with its
most negative eigenvalue. In the iterative algorithm, starting from an arbitrary state,
repeatedly the optimal measurement and the corresponding optimal probe state are
determined iteratively until the BMSE converges to the OQI.
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Coherence time limit (CTL)— Considering a 27-periodic quantum channel with
respect to the phase ¢ (cf. Eq. (4.4)), the OQI allows for unambiguous phase estima-
tion within the range [—m,+n|. However, for sufficiently broad prior distributions,
the phase ¢ may exceed this invertible regime and an estimation error of (27)? is ac-
cumulated, associated with transitions between adjacent Ramsey fringes. Although
the Bayesian framework naturally accounts for this crossover, it is nevertheless in-
structive to examine their contribution separately. For a Gaussian prior distribution,

the estimation error associated with these events can be modeled by

AGCETEN? — g {1 —erf (L)} , 421
(A5E) N (1.21)
where erf(z) denotes the error function. In the context of an atomic clock, in this
regime of long interrogation times, the coherence time of the local oscillator will
become relevant and ultimately limits the clock stability. Consequently, we will denote
Eq. (4.21) as the coherence time limit (CTL) of the OQL.

Asymptotic limit— In the asymptotic limit (N > 1), assuming unitary phase
evolution as described by Eq. (4.4) and restricting to the invertible range [—m, +7],
it has been shown for arbitrary prior distributions that the ultimate lower bound is
given by [209,214-216]

7],2

(Admn) = T (4.22)
In the absence of decoherence, this asymptotic limit reflects Heisenberg scaling with
an additional factor of m, and is therefore referred to as the m-corrected Heisenberg
limit (7HL). Intuitively, the THL can be interpreted as the maximal estimation error
associated with estimating a phase within [—m, +7| using N + 1 evenly spaced mea-
surement outcomes. Additionally taking into account the estimation error outside
of the invertible range, as modeled by Eq. (4.21), the overall asymptotic estimation

error for the OQI reads
(AGSH)? = (Adrn)” + (Adgar)”

- ;—22 + 4 [1 — orf (\/g&b)] ‘ (4.23)

This result combines the fundamental limit set by the 7HL with the contributions

from phase estimation errors associated with transitions between Ramsey fringes,
offering a comprehensive characterization of the OQI performance in the asymptotic
regime. Notably, this bound can be saturated asymptotically by the phase operator
based interferometer (POT) [140,200,215-221] (cf. App. F.3.3).
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4.4 Estimators

Based on a statistical model P(z|¢) — defined by an initial state p;,, free evolution
Ay 1 and measurement {II, } according to Eq. (3.2) — various estimation strategies can
be applied. In this chapter, we focus on two such strategies: the linear estimator and
the optimal Bayesian estimator. The linear estimator is renowned for its simplicity
and is both theoretically and experimentally commonly used and well understood.
It often arises naturally in a local approach (i.e. for a narrow prior distribution
and linear error propagation), where it is the standard choice (cf. Sec. 3.5.1). In
contrast, the optimal Bayesian estimator — as the name suggests — achieves the best
possible performance in Bayesian phase estimation. Explicit derivations are provided

in App. F.

4.4.1 Linear estimator
The linear estimator is defined by

e (1) = q - (4.24)

est

with scaling factor a € R. As discussed in detail in Sec. 3.5.1 and App. D.3, it origi-
nates from the method of moments in local phase estimation theory. In this context,
assuming an unbiased estimator and small deviations from the optimal working point
¢o, the signal can be approximated linearly and the phase estimation uncertainty
arises from quantum projection noise (QPN) (cf. Eq. (3.32))

AX(9)
|05 (X () lo=00

This local result is obtained in the limit of narrow prior distributions (6¢ — 0)

Adgpy = (4.25)

around the optimal working point ¢ and by choosing the particular scaling factor
a = (0y (X(®)) lo=go) ", corresponding to the inverse slope of the signal at ¢;.

In the Bayesian framework, however, this approach is poorly suited. First, the
assumption of narrow prior distributions fails for realistic fluctuations of the phase, as
discussed before. Second, the prior information explicitly influences the cost function
and thus, the scaling factor a likewise has to depend on the prior distribution. For
an arbitrary prior distribution with zero mean [ d¢ P(¢)¢ = 0 and variance (6¢)* =
[ dopP(¢)¢?, the optimal scaling factor and corresponding BMSE are given by

[ d6P(0) (X(9))
[a6P () (X*(9))

2o L[d9P(@)9(X(9)]
(BN =00 = M aeP(e) (@)

(4.26)

(4.27)
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As in the local approach, the linear estimator and its estimation error depend only
on the first and second moments of the observable X, which typically are easier
to evaluate than the full statistical model P(z|¢). This simplicity makes the linear
estimator a practical choice for phase estimation. Nevertheless, despite its advantages
and reliable performance in several situations, the linear estimation strategy generally
does not saturate the BCRB and thus is not optimal.

4.4.2 Optimal Bayesian estimator

In contrast to local phase estimation, where the Cramér-Rao bound can generally
only be approximated in the infinite-sample limit using the maximum-likelihood esti-
mator [6], the optimal estimator in Bayesian phase estimation can be derived explic-
itly [200]

¢ () = / 46 P(6]r)o, (4.28)

saturating the BCRB with single shot measurements. This estimator corresponds to
the average phase with respect to the posterior distribution P(¢|z), which can be ex-
pressed in terms of the statistical model P(z|¢) and prior distribution P(¢) according
to Bayes theorem Eq. (4.2). As a consequence, the optimal Bayesian estimator can
be highly non-linear. The associated BMSE is given by

(802 = ooy - 30 LLOTOPLCL (4.29)

T

Although this resembles the structure of Eq. (4.27), the BMSE for the optimal
Bayesian estimator explicitly depends on the statistical model, rather than merely
on the first and second moments of the observable. Additionally, for the optimal
Bayesian estimator, Eq. (4.3) reduces to the average posterior variance. Since the
optimal Bayesian estimator saturates the BCRB, and thus minimizes the BMSE with
respect to all estimation strategies, it is commonly referred to as the minimal mean
squared error (MMSE) estimator. However, we continue to use the term ‘optimal
Bayesian estimator’ throughout this work for consistency and clarity.

4.5 Bayesian frequency metrology

While the general relationship between frequency metrology and phase estimation was
introduced in Sec. 3.2, here we establish an explicit connection within the Bayesian
framework through the Allan deviation and by relating the interrogation time to
the prior width. Furthermore, we discuss the resulting trade-offs qualitatively in the
context of frequency metrology.



4.5. Bayesian frequency metrology 127

4.5.1 Clock stability and Allan deviation

The long-term stability of an atomic clock is quantified by the Allan deviation o, (7) [11,
84-86], introduced in detail in Sec. 2.1, characterizing the fluctuations of fractional

frequency deviations y(t) = w(t)/wy averaged over 7 > T = T+ Tp. Here, the total

cycle duration T accounts for the interrogation time 7" and any potential dead time

Tp, arising from preparation steps and application of the feedback. In local frequency

metrology — assuming short interrogation times leading to narrow prior distributions

— the Allan deviation is well approximated by (cf. Sec. 3.4.3)

ay(r) = i%@. (4.30)

In this context, clock stability is determined by the cost function in the local approach,
the phase estimation uncertainty A¢qpn— which is commonly simply referred to as
quantum projection noise (QPN) — characterizing the uncertainty associated with the
measurement process.

However, the BMSE in Bayesian frequency metrology — which leverages Bayesian
phase estimation strategies tailored to frequency metrology and directly includes the
frequency fluctuations into the theoretical model — incorporates both measurement
uncertainty and prior knowledge, preventing a straightforward substitution of A¢qpn
by A¢. To isolate the measurement contribution from the prior knowledge Z, we
introduce the effective measurement uncertainty motivated by the Bayesian Cramér-
Rao Bound (BCRB) in Eq. (4.8) and following Refs. [92, 140]

son = ((age ) - (mop <5<1b>2)1/2’ 431)

where Z = (§¢) 2 for a Gaussian distribution. Hence, A¢y; quantifies the quality of

the measurement process in a single interrogation cycle. According to the discussion
of the BCRB in Sec. 4.3.1, the effective measurement uncertainty is lower bounded
by the average Fisher information (A¢y,)? > 1/F and thus, a connection to the local
approach can be established, yielding
1 1
(Agn)? > = > (A¢crp)’ = Fo

As a consequence, the clock stability in local frequency metrology — quantified by

(4.32)

Eq. (4.30) — emerges in the limit of narrow prior distributions (d¢ < 1) or equivalently
short interrogation times (7' < 1).

With the effective measurement uncertainty, the Allan deviation in the framework
of Bayesian frequency metrology is expressed as

1 Ady [T,
ay(7) = E#VTC‘ (4.33)
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Consequently, the three key quantities for quantifying the sensitivity and ultimately
the clock stability in Bayesian frequency metrology are the prior width 6¢, the BMSE
A¢, and the effective measurement uncertainty A¢y,. In the following, we will ex-

amine their relation in a qualitative discussion.

4.5.2 Qualitative scaling

Due to noise in the local oscillator, the phase diffusion grows with Ramsey dark time.
Thus, the prior width d¢ of the relative phase will be monotonically increasing with
the interrogation time 7" (cf. Fig. 4.1). At first glance, one might assume that d¢ is
solely determined by the characteristics of the free running LO frequency. However,
it depends even more strongly on the noise of the stabilized frequency and therefore
on the details of interrogation, estimation and feedback. Although the prior phase
distribution can generally vary over different clock cycles, it becomes stationary if
the feedback loop stabilizes the LO reliably to the atomic reference. In this case, the
residual noise can be considered to be white — to a good approximation — and thus can
be modeled by a normal distribution characterized by the spread d¢ (cf. Eq. (4.5)).

For a given finite d¢, the interrogation protocol and estimation strategy can be
optimized to minimize the estimation error A¢. At the same time, the effective
measurement uncertainty, Eq. (4.31), and thus also the Allan deviation, Eq. (4.33),
are minimized. Consequently, A¢ will ultimately determine the stabilized frequency
noise, which in turn affects d¢. Therefore, in order to reflect the closed feedback loop
of the atomic clock, A¢ has to be optimized iteratively for suitably chosen d¢, as
detailed in Sec. 4.5.3.

The average error in phase estimation A¢ depends on the prior width d¢ as well
as the particular interrogation sequence and estimation strategy. As discussed before,
A¢ < §¢ and thus the estimation error A¢ is reduced compared to the prior width
d¢, since a proper Ramsey protocol increases the information about the phase. Here,
equality A¢ = d¢ corresponds to a worst case scenario in which the effective measure-
ment variance diverges A¢y; — oo. This case represents an ineffective interrogation
scheme, where the information gained through measurement and estimation fails to
improve the characterization of residual noise. Conversely, a hypothetical perfect
phase estimation (precluded by quantum mechanics due to its intrinsic indetermin-
ism) would result in a vanishing estimation error A¢ — 0. Likewise, the effective
measurement uncertainty would also vanish A¢y; — 0, since this scenario implies a
perfect measurement.

The form of the Allan deviation in Eq. (4.33) suggests that the stability can be
improved by increasing the interrogation time 7'. However, this is only true as long as

the coherence time limit (CTL) of the LO remains negligible and quantum projection
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noise Agqpn of the measurement dominates the effective measurement uncertainty.
In general, three regimes can be distinguished based on the relation between the prior
width d¢ and QPN Agqpn:

(i) Considering small prior widths d¢ < 1, the measurement and estimation
protocol cannot significantly improve the knowledge of the phase distribution, since
Apqgpn > 0¢ and thus A¢p ~ d¢. In this case, Ay ~ Apgpn and the local form of
the Allan deviation, Eq. (4.30), is reproduced.

(7) With increasing interrogation time 7', the prior width surpasses QPN d¢ >
Ag¢qpn. Nevertheless, in this regime, the information gain on the phase distribution
resulting from the measurement and estimation strategy leads to A¢ < d¢ and thus
Aoy < 0¢. Hence, the optimal working point of the atomic clock is located in this
region.

(7i) At long interrogation times, the coherence time of the local oscillator will
become relevant and ultimately limits the clock stability. Here, the phase noise ex-
ceeds the domain of the measurement scheme where an unambiguous estimation is
possible, giving Agy > 6¢ ~ A¢p > Apgpn.

Consequently, the Allan deviation features a trade-off between increased stability
achieved through long interrogation times and the limitations imposed by the coher-
ence time of the local oscillator, which are characterized by the coherence time limit
(CTL). Fortunately, as previously discussed, this trade-off is inherently addressed
within the framework of Bayesian frequency metrology. In terms of clock stability,
this trade-off gives rise to an optimal interrogation time T},;, at which the minimal
Allan deviation o, is achieved. While o,,;, accounts for the bias in phase estima-
tion for phases beyond the invertible range of the Ramsey sequence (via the CTL), it
nevertheless remains restricted to a single clock cycle and neglects cumulative effects
that might arise in a full feedback loop. The most prominent of these effects are
fringe hops, which are discussed in detail in Sec. 4.7 as they can only appear within
the full feedback loop.

4.5.3 Interrogation time and prior width

In the previous section, we linked the clock stability at interrogation time 7" — charac-
terized by the Allan deviation — with Bayesian phase estimation with prior width d¢,
described by the BMSE. Furthermore, we qualitatively discussed that the prior width
increases with the interrogation time. To complete the connection between Bayesian
phase estimation and frequency metrology, this section aims to establish an explicit
relation between d¢ and T'. This relation serves as a bridge between the frequency
fluctuations of the laser in an experiment and a theoretical representation in terms

of a Gaussian prior distribution with a specific width. Establishing this connection
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is essential for modeling experiments accurately and ensuring the applicability of
theoretical predictions to realistic scenarios.

State-of-the-art clock lasers are characterized by the spectral noise density S, (f) =
Y o o f®, which can be modeled by a power law [12,83,84,87], where v = 0, —1, —2
corresponds to white, flicker and random walk frequency noise, respectively (see
Sec. 2.2 for a comprehensive overview). Accordingly, the Allan variance of the free-
running LO can be expressed as O'iLO(T) = hor~ 7. To compare different local
oscillators, a single timescale is defined characterizing the stability. As discussed in
Sec. 2.2.2, we implicitly define the laser coherence time Z following Ref. [92] by

oyro(Zc)2mvyZ = 1 rad. (4.34)

Here, 0, 1.0(Z¢) denotes the Allan deviation of the local oscillator averaging over a
single cycle duration Zo = Z + Tp with dead time T'p.

In Ref. [92], it was demonstrated that the prior width of the full feedback loop
can be approximated by the power law

(50 = xta) (3 (435)

depending solely on the ratio of interrogation time 7T and coherence time of the
local oscillator Z, and the numerically determined factor x(«) = 1,1.7,2 for a =
0,—1,—2. This approximation was derived in the limit of large ensembles and long
interrogation times using the conventional Ramsey protocol in the framework of local
phase estimation, and was successfully applied in Refs. [91,140]. However, in the full
feedback loop of an atomic clock, the prior width d¢ and estimation error A¢ mutually
influence each other. Therefore, ¢ has to be adjusted iteratively to account for the
closed feedback loop dynamics, as motivated in the previous section and detailed in
App. A. This iterative procedure is employed in Sec. 4.7, where realistic Monte Carlo
simulations of the full feedback loop of an atomic clock are performed. Nevertheless,
Eq. (4.35) remains a convenient approximation for general investigations and is thus
adopted in Sec. 4.6.

In the following, motivated by state-of-the-art clock lasers [88], we assume a local
oscillator predominantly limited by flicker frequency noise. Additionally, we neglect
systematic shifts in the atomic transition frequency wy. Moreover, we will assume
the atomic excited-state lifetime 5p0n: to be substantially longer than the clock cycle
duration T, such that ts,on, > Te.
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Figure 4.2: Sensitivity of standard protocols in Bayesian frequency metrol-
ogy: (a) Generic scaling of the dimensionless Allan deviation o, (7) x wyv/7Z with
the interrogation time 7" for the example of N = 32, rescaled by the averaging time 7,
laser coherence time Z and transition frequency wy. Stabilities for the CSS (orange),
SSS (red) and GHZ (green) protocols are compared to the performance of the OQI
(black). For CSS and SSS, both the linear (dashed) and optimal Bayesian estimator
(solid) are depicted. The gray shaded area represents the inaccessible stability region
set by the OQI limit, while the orange shaded area indicates achievable stabilities
using uncorrelated atoms. Dotted lines correspond to the CTL for OQI (black) and
for CSS and SSS with the linear estimator (orange). Additionally, benchmarks such
as the SQL (orange), HL: (green), and 7HL (black) are included as dashed-dotted
lines. (b) Scaling of the dimensionless minimal Allan deviation oy, X wox/ﬁ with
the ensemble size N. In addition to the standard protocols, the POI performance
(violet) is presented. For the OQI and POI, numerical optimization is performed
for N < 100, while the asymptotic behavior, represented by the mHL (black dashed-
dotted), is shown for N > 100.

4.6 Optimal Ramsey protocols in Bayesian frequency
metrology

In this section, we aim to saturate the OQI in the context of atomic clocks. We
begin by analyzing standard protocols and compare their performance to the OQI.
Afterwards, we introduce variational classes of quantum circuits and investigate the

associated optimal Ramsey protocols.

4.6.1 Standard protocols

To start with, we examine the effective measurement uncertainty and corresponding
clock stability of standard Ramsey protocols (see App. G for detailed derivations).
Specifically, we focus on coherent spin states (CSS), spin-squeezed states (SSS), and
GHZ states, as well as the ultimate lower bound defined by the optimal quantum in-
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terferometer (OQI). For all Ramsey schemes, the dependence of clock stability on the
interrogation time 7" reflects the three regimes discussed in Sec. 4.5.2, representing a
trade-off between enhanced stability achieved through longer interrogation times and
the coherence time limit. These distinct regimes are depicted in Fig. 4.2(a), which
illustrates the generic dependence of stability on interrogation time. Furthermore, the
scaling of the minimal Allan deviation oy,;, with ensemble size N at the optimal in-
terrogation time 7T, is presented in Fig. 4.2(b). These figures are based on the work
of Kaubruegger et al. [140] and are adapted here within the framework defined above.
In particular, emphasis is placed on comparing the linear and optimal Bayesian esti-
mation strategies across different protocols, with performance benchmarked against
the OQI. To enable comparability between various setups, the achievable Allan de-
viations o,(7) are rescaled with respect to the atomic transition frequency wy, the
total averaging time 7 and the laser coherence time Z. This rescaling ensures that

the results are transferable to specific experimental parameters.

Coherent Spin States (CSS)— The conventional clock protocol employs Ramsey
interferometry with coherent spin states (CSS) [115-117] — introduced in detail in
Sec. 2.3.7 — as initial states, a collective projective spin measurement and a linear
estimation strategy. In this scenario, the effective measurement uncertainty can be
evaluated analytically as [92]

cosh((6¢)?)
N

For short interrogation times 7//Z < 1, leading to narrow prior widths d¢ < 1, the

(ApP5)? = + sinh((6¢)%) — (59). (4.36)

conventional standard quantum limit (SQL) A¢gqr, = 1/ VN is recovered. Conversely,
for long interrogation times T'/Z ~ 1, frequency fluctuations of the local oscillator
dominate and the first term in Eq. (4.36) becomes negligible. This regime defines the
coherence time limit (CTL) for CSS with a linear estimator,

(Agcry,)* = sinh((69)?) — (3¢)”. (4.37)

Hence, the stability reflects a trade-off between these two regimes, as illustrated in
Fig. 4.2(a), determining the minimal Allan deviation oy,;,. As the ensemble size N in-
creases, the first term in Eq. (4.36) decreases, leading to shorter optimal interrogation
times Ty, to achieve oyiy.

For the optimal Bayesian estimator, an explicit evaluation of the conditional prob-
abilities P(x|¢) is required, as discussed in Sec. 4.4. Although P(z|¢) can be de-
termined analytically for the CSS, the integrals in Eq. (4.29) generally have to be
evaluated numerically. For short interrogation times, the narrow prior phase distri-
bution allows for a good approximation by linearizing the signal. Thus, the optimal
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Bayesian estimator reproduces the linear estimator in this regime. In contrast, for
interrogation times in the region of the minimal Allan deviation, higher-order contri-
butions of the sinusoidal signal become relevant and the curvature of the signal has to
be considered. In this case, the optimal Bayesian estimator approximates the arcsin
estimator, which directly inverts the signal and thus allows to estimate the phase un-
ambiguously in the range [—m/2, +m/2]. This results in an extended dynamic range
compared to the linear estimator, which cannot account for any non-linearity of the
signal and thus exhibits a higher minimal instability. As a consequence, the opti-
mal Bayesian estimator improves the scaling of A¢,, with the ensemble size N to
O(N7%47) compared to O(N~%42) for the linear estimator, as shown in Fig. 4.2(b).
While the choice of an estimator has limited impact for small ensembles, the stabil-
ity gain from the optimal Bayesian estimator becomes significant for large ensembles
N > 1. Importantly, this improvement arises solely from classical post-processing
of the measurement outcomes, while the quantum circuit remains unchanged. Nev-

ertheless, the CTL prevents both estimation strategies from achieving the SQL of

1/V/N.

Spin-Squeezed States (SSS)— Extending the conventional Ramsey protocol
with a single one-axis-twisting (OAT) interaction [125] for state preparation, vari-
ous entangled states can be generated (see Sec 2.3.9 for a comprehensive overview).
Here, OAT interactions are denoted by Ti (1) = exp (—i4SZ) with twisting stength p
around axis k, where Sy = k1.5, + k2.5, + k35, is the spin projection along direction k.
In particular, for small twisting strengths pu, one-axis-twisting generates spin-squeezed
states (SSS) by shearing the initial CSS around the twisting axis, characterized by
a squeezing parameter ¢ < 1. Using the linear estimator, the effective measurement

uncertainty is given by

(Sz)” (Sz)”

with expectation values provided in App. G.2. SSS show enhanced stability com-

cosh((0¢)%) + sinh((6¢)?) — (69)?, (4.38)

pared to CSS due to reduced fluctuations in the measured spin observable. However,
the gain comes at the cost of smaller dynamic range, as the minimal Allan deviation
is achieved at shorter interrogation times compared to CSS (cf. Fig. 4.2(a)). This
is a direct consequence of SSS sharing the same coherence time limit as CSS, since
(S2) /(S;)* < 1 and (S2) /(S,)* ~ 1 for large prior widths d¢ and corresponding
optimal twisting strengths. Similar to the conventional Ramsey protocol, SSS with
the optimal Bayesian estimator achieve a slightly extended dynamic range at long
interrogation times. For large ensembles N > 1, the asymptotic scaling of the ef-

fective measurement uncertainty with the optimal Bayesian estimator approximates
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O(N—2/3), depicted in Fig. 4.2(b), reflecting the scaling observed in decoherence-free
local phase estimation [6,125]. In contrast, the linear estimator exhibits a scaling
O(N7%63). Furthermore, the optimal Bayesian estimation strategy offers a remark-
able advantage at short interrogation times, where d¢ < 1/N, as shown in Fig. 4.2(a).
In this regime, the estimator becomes highly non-linear, allowing for substantially
stronger twisting strengths p, resulting in stronger squeezing and enhanced stability.
However, as d¢ approaches 1/N, the scaling of the Allan deviation with the interro-
gation time T' stagnates and converges towards the stability achieved with the linear

estimator.

GHZ States— The maximally entangled Greenberger-Horne-Zeilinger (GHZ) state
IGHZ) = [|[1)®N + [1)®N] /v/2 [121] represents an equal superposition of the collective
ground and excited states. The corresponding Ramsey sequence, initially proposed
by Wineland et al. [122], is referred to as the GHZ protocol.? During the free evolu-
tion time, the accumulated phase is amplified by a factor of N due to the maximal
entanglement of the GHZ state. Subsequently, the parity II is measured, resulting in
a binary outcome +1 that indicates whether the number of atoms in the ground state
is even or odd. Since a binary outcome inevitably results in a linear estimator, both

estimation strategies coincide and result in the effective measurement uncertainty
N2(5¢)
N2

2 _ ¢

(A65H) - (50" (439)
However, the optimal Bayesian estimator allows to avoid a parity measurement and
perform a conventional projective spin measurement instead. In this case, the optimal
Bayesian estimator effectively maps even and odd numbers of atoms in the ground
state to the parity £1, thereby mimicking a parity measurement and achieving the
same sensitivity (cf. App. G.3). This strategy was essentially employed in a different
framework in Ref. [157]. Both measurement and estimation strategies are optimal,
since Eq. (4.39) aligns with the BQCRB for GHZ states. For short interrogation
times, where 0¢ < 1/N, the GHZ protocol achieves the conventional Heisenberg limit
(HL) A¢nr = 1/N, as illustrated in Fig. 4.2(a), which corresponds to the OQI in
a decoherence-free local phase estimation scenario. However, the sensitivity of the
GHZ protocol decreases N-times faster than that of CSS as the prior width increases.
For a parity measurement, this is attributed to the N-times increased oscillation
frequency of the sinusoidal signal, yielding an accordingly reduced dynamic range.
Ultimately, the resulting ambiguities in phase estimation cause the GHZ protocol to

2In Chapter 3, we referred to this protocol as parity-GHZ protocol. However, within the Bayesian
framework, the parity-GHZ protocol already saturates the BQCRB of the GHZ state (cf. App. G.3)
and thus, a distinction between different GHZ protocols is redundant.
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be effectively insensitive to phases ¢ 2 1/N. Consequently, the optimal interrogation
time scales approximately as 1/(N Z), leading to a scaling of the effective measurement
uncertainty of O(N~%/2), equivalent to the SQL (cf. Fig. 4.2(b)). While the minimal
Allan deviation of the GHZ protocol provides only a minor improvement over CSS
and is outperformed by SSS, its shorter optimal interrogation time offers practical
advantages. For instance, reduced probe times mitigate contrast losses and time
dilation shifts caused by motional heating in ion crystals, thus improving the signal-

to-noise ratio and the accuracy of such a clock [12].

OQI— Asdiscussed in Sec. 4.3, the OQI requires numerical optimization, as no an-
alytical expressions are available for arbitrary ensemble sizes. Instead, we investigate
the general scaling based on Fig. 4.2. For short interrogation times T/Z < 1, where
d¢ S 1/N, the OQI is saturated by the GHZ protocol, achieving the Heisenberg limit
our(7) = 1/(NVTT), as shown in Fig. 4.2(a). As the interrogation time increases
and d¢ = N, a characteristic plateau emerges in which the Allan deviation decreases
only marginally with 7. This plateau shifts to shorter interrogation times as the
ensemble size N increases, reflecting the coherence time limit of the GHZ protocol.
Beyond this plateau, as the interrogation time increases further, the scaling of the
Allan deviation with T converges back to 1/ VT, ultimately reaching its minimum
Omin @t Tnin. In the limit of large ensembles (N > 1), this minimum is determined
by the m-corrected Heisenberg limit. While the OQI significantly outperforms SSS
at Thin, SSS perform close to the OQI in the transition regime, especially for small
ensembles. The relative gain of the OQI over SSS at T},;, increases with the ensemble
size, as illustrated in Fig. 4.2(b). In the asymptotic limit N > 1, the POI, introduced
in Sec. 4.3 and further detailed in App. F.3, is optimal, saturating the 7HL. In this
regime, the OQI scales as O(N~%97), closely approaching Heisenberg scaling. At long
interrogation times, the stability ultimately converges to the coherence time limit.

In the following, we essentially distinguish between two different regimes concern-
ing the ensemble size N: The first regime covers systems ranging from N = 1 to
some tens of atoms, as relevant for ion traps [16-18] or tweezer arrays [19-22]. The
remainder of this section primarily focuses on bridging the gap between SSS and the
OQI by identifying Ramsey protocols of increasing complexity that approximate the
OQI within this regime. In contrast, for large ensembles (N 2 100), the regime of
lattice clocks is reached and the asymptotic scaling is approximated [12,23-26]. In
this regime, dead time typically emerges as the dominant limitation [91], as discussed
in detail in Sec. 4.8.
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4.6.2 Variational Ramsey protocols

Recent advances in quantum information have inspired the development of vari-
ational quantum circuits as versatile tools for implementing interferometers with
setup-specific quantum gates. Typically, each layer in these circuits comprises an
entanglement-generating interaction and (single qubit) rotations that provide geomet-
ric flexibility. One-axis twisting (OAT) [125] interactions have gathered significant
attention, as they can be implemented in several experimental platforms [62,126-133]
and corresponding circuits represent a natural extension of spin-squeezed states (SSS).
Combined with collective rotations, OAT interactions form the building blocks of sev-
eral variational quantum circuits [5,139-143]. While Ref. [5] offers a unified frame-
work for generalized echo protocols in local phase estimation, encompassing numerous
previously documented approaches [128,143,202-208], this chapter investigates vari-
ational classes specifically tailored to Bayesian frequency metrology.

In general, any variational Ramsey protocol can be expressed as

P(z|¢) = Tr (|zar) (x| Ap 1 [pin]) (4.40)
Pin = uprep |,¢)0><77/}0| Z/[I])Lrep (441)
|Tar) (@ar| = U sgus | M) (M| Unneas, (4.42)

with arbitrary unitary preparation and measurement operations Uprep and Ueas, Te-
spectively. While U,ep generates the initial state by acting on the ground state
[10) = 1), Unneas effectively determines the measurement X by transforming the
Dicke states |M), with spin S = N/2 and eigenvalue M of S., into the effective
measurement basis states |z,/).> Since any alternative choice of |1y) and Dicke basis
{|M){M]|} can be incorporated into Upep and Umeas by additional transformations,
fixing |1o) and {|M)(M]|} does not limit the generality of the protocol. The unitaries
Uprep and Uneas are constructed from n and m layers of the variational circuit, respec-
tively. Consequently, n effectively determines the level of entanglement in the initial
state, while m governs the measurement strategy and dynamic range, ultimately de-

termining the minimal Allan deviation o,.

Previous results— Pioneering work on Bayesian variational Ramsey protocols
was conducted in Refs. [140,142]. These studies introduced a variational class con-
strained to be invariant under the z-parity transformation, resulting in an anti-

symmetric signal. Each layer of the quantum circuit consisted of two OAT interactions

3In this chapter, we restrict the analysis to the subspace with maximal spin S = N/2, as the
system exhibits permutational invariance and the unitary dynamics, described by Eq. (4.4), preserves
this symmetry.



4.6. Optimal Ramsey protocols in Bayesian frequency metrology 137

applied along orthogonal directions, combined with a collective rotation about one
of these axes. While this choice provided a diverse class of entanglement-generating
unitaries in each layer, it imposed significant geometric constraints. Nevertheless,
the quality of phase estimation was not compromised, as the main objective was
to saturate the OQI in the asymptotic limit of deep circuits. The analysis primar-
ily focused on ensembles with several tens of qubits and employed linear estimation
strategies. Kaubruegger et al. demonstrated that the minimal Allan deviation o;,
could be achieved with sufficiently deep circuits. However, this approach had two
key drawbacks: the reliance on deep circuits due to restricted geometric flexibility,
and the inclusion of two OAT interactions per layer, which are experimentally more
challenging to implement than collective rotations.

Thurtell et al. in Ref. [141] addressed these limitations by proposing a variational
class where each layer comprises a single OAT interaction around the z-axis com-
bined with global rotations. These rotations are designed to effectively transform
the OAT interaction with respect to an arbitrary axis, thereby eliminating geometric
constraints. This approach reduced both the circuit depth and the number of OAT
interactions, while achieving results comparable to those in Ref. [140]. Nevertheless, a
considerable number of OAT interactions remained necessary. Moreover, the analysis
was conducted within the framework of general Bayesian phase estimation and thus,
did not consider the trade-off with respect to the interrogation time in frequency

metrology.

Variational quantum circuits— In the following, we aim to approximate the
OQI within the framework of Bayesian estimation tailored to frequency metrology.
Instead of exploring the convergence towards the OQI with many layers for state
preparation and measurement, we focus on variational quantum circuits with mini-
mal depth. We primarily consider small ensembles relevant to ion traps and addition-
ally investigate the transition toward tweezer arrays, which have been predominantly
studied in Refs. [140,141]. Given the high degree of controllability achievable in these
systems, this represents the regime where near-term experimental implementation is
most likely. Moreover, variational protocols are less favorable in setups with many
atoms, such as in lattice clocks, as we will discuss below. In contrast to earlier studies
— relying on linear estimation strategies — we employ the optimal Bayesian estimator
to fully exploit the potential of variational Ramsey protocols. This choice is moti-
vated by the substantial improvements observed for the standard protocols, including
enhanced squeezing for SSS at short interrogation times, an extended dynamic range
for CSS and SSS, and an effective reduction in the circuit depth required to imple-
ment the GHZ protocol. Additionally, by using the optimal Bayesian estimator, we
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ensure saturation of the BCRB for any given initial state and measurement and thus
minimizing the required circuit depth. A comprehensive comparison with the linear
estimation strategy is provided in Sec. 4.7.3.

Building on the advancements in Refs. [140, 141], we define the variational class
of generalized Ramsey protocols considered in this work, as illustrated in Fig. 4.3(a),
by

(4.43)

A
B

|
o
z
b
E —

where we introduced the abbreviations 7; = T, (u;) and Rz = R, (-%). The
m/2-pulse Rz in Uey generates the CSS polarized in z-direction N = (1) + |1

)N/ V2 = R=|])®N. The rotations Ry and Ry, result in an effective phase evo-
lution around an arbitrary axis n, S, = RLSZRH, and an effective measurement of
Sm = RI,S.Rum, respectively. Similarly, each one-axis-twisting Ty (1) = RET: (1) Ric
can be expressed as an OAT with respect to the z-axis and a rotation Ry. The
resulting variational classes are not restricted by any geometric constraints.

For a given protocol class [n, m], the quantum circuit contains n+m OAT interac-
tions with associated twisting strengths ;. Together with the rotations Ry, Rm, Ry;,
which ensure geometric generality and are each characterized by two variational pa-
rameters, the total number of variational parameters is 4 + 3(n + m). Notably, the
particular choice of the CSS |[+)®" as the initial state allows us to fix the first OAT
of Uprep along the z-axis without losing any generality. This simplification reduces
the total number of variational parameters by two.

The variational class defined in Eq. (4.43) contains the standard Ramsey protocols
as limiting cases. Coherent spin states (CSS) are recovered in the [0, 0]-protocol,
while spin-squeezed states (SSS) are implemented within the [1,0]-class. The GHZ
protocol emerges as a special case, either within the [1,0]-class using the optimal
Bayesian estimator, as discussed in the previous section, or as part of the [1, 1]-class,

as implemented in Ref. [128].

Ramsey signals— The standard protocols, namely CSS, SSS and GHZ protocols,
exhibit sinusoidal signals. While CSS and SSS have a dynamic range of [—7/2, +7/2],
allowing for unbiased phase estimation within this interval, the phase is imprinted
N times faster for the GHZ state, leading to a correspondingly N times smaller
dynamic range. In contrast, variational quantum circuits with multiple layers for state
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Figure 4.3: Variational Ramsey protocols in Bayesian frequency metrology:
(a) Visualization of the variational Ramsey protocols defined in Eq. (4.43). The
m/2-pulse Rz = R,(—7/2) generates the coherent spin state (CSS) polarized in -
direction from the ground state o) = [/)®Y. Entanglement in the initial state
and measurement is introduced via one-axis-twisting (OAT) interactions, denoted by
T; = Tx,(1;) with twisting strength j; around axis k;. During the free evolution
time 7', the phase ¢ is imprinted onto the initial state via a rotation around the
z-axis. The rotations R, and R, result in an effective phase evolution around an
arbitrary axis n, S, = RLSZRH, and an effective measurement of S, = RInSsz,
respectively. Finally, the phase is estimated based on measurement outcome M of
observable S,. (b-d) Approximating the OQI using variational [1,m]-classes (blue)
for (a) N =4, (b) N =8and (c¢) N = 32. For comparison, the standard protocols are
shown as they naturally emerge as specific quantum circuits within the variational
classes. Additionally, the BQCRB of SSS is shown (dashed gray). With increasing
N, the complexity of the variational circuits required to approach OQI performance
increases. (e) Scaling of the gain in clock stability compared to CSS at the optimal
interrogation time 7T},;, with N.
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preparation and measurement can generate arbitrary signal shapes. In particular,
the variational classes introduced above impose no restrictions on the geometry, and
therefore the signal shape is not constrained.

Generic Ramsey signals for the [1, 1] and [1, 2] protocols are illustrated in Fig. 4.4(a)
for N = 8 at interrogation time 7/Z = 0.1. The signals, associated with the opti-
mal variational parameters, are compared for both the linear and optimal Bayesian
estimation strategies.

In principle, the estimation strategy does not affect the signal directly, as it is
determined solely by the initial state, free evolution dynamics and measurement.
However, the choice of the estimator influences the optimization of the variational
parameters, which in turn affects the signal. Consequently, the linear estimation
strategy typically yields anti-symmetric signals, at least within the range of the prior
distribution. In contrast, the optimal Bayesian estimator can become highly non-
linear. As a result, corresponding signals often exhibit strongly non-sinusoidal shapes,
lacking symmetry and any apparent relation to the phase. While this may initially
seem counterintuitive, this approach ultimately achieves low phase estimation uncer-
tainties when combined with the corresponding estimator, as we will explore in detail
in the next section. An example has already been discussed in Sec. 4.6.1 for the
GHZ protocol, where the optimal Bayesian estimator can effectively mimic a parity
measurement, while the signal itself vanishes. A similar behavior is observed for the
optimal [1,2] protocol with optimal Bayesian estimator in Fig. 4.4(a).

4.6.3 Optimal protocols

For fixed ensemble size N, circuit depth [n,m] and prior phase width §¢, the opti-
mization of the quantum circuits introduced above is performed over all variational
parameters. To enable a general discussion, we adopt the power-law scaling of the
prior width with interrogation time 7', as defined in Eq. (4.35). Results for exemplary
ensemble sizes N as well as the scaling of the stability with NV are presented in Fig. 4.3.
The variational protocols are primarily compared to the OQI, as its saturation is the
central goal of this section. Additionally, comparisons to standard Ramsey protocols

are provided where relevant to highlight specific advantages and limitations.

General results— We begin by examining the general behavior and scaling of the
variational classes, with a particular focus on the number of layers n and m. While
[n, 0]-protocols yield collective spin measurements with sinusoidal signals, increasing
m allows for arbitrary signal shapes, since no geometric constraints are imposed, as
discussed in the previous section and illustrated in Fig. 4.4(a). As for the standard
Ramsey protocols, variational protocols exhibit a clear trade-off between enhanced
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Figure 4.4: Optimal Ramsey signals and optimization landscape: (a) Com-
parison of signals (X(¢)) of the optimal [1,1] and [1,2] protocols for the linear
(dashed) and optimal Bayesian estimator (solid), for N = 8 at an interrogation time
of T/Z = 0.1. The gray shaded region represents the spread of the prior distribution,
with its width d¢ corresponding to the specific interrogation time. (b) Optimization
landscape in the pi-po-plane for the [1, 1] class for N = 8 at an interrogation time of
T/Z = 0.1. The Allan deviation o,(7) is rescaled by the averaging time 7, coherence
time Z and transition frequency wy. Darker areas correspond to better stability. The
optimization areas (I-VII) are separated by white lines, while local minima within
these regions are illustrated by symbols. In theory, the lowest instability is achieved
by the protocol indicated by the hexagon in area (III), while the other local minima
result in a comparable clock stability. Accordingly, the signal in (a) for the [1, 1]-class
with the optimal Bayesian estimator corresponds to the hexagon.

stability for increasing interrogation times and the coherence time limit of the local
oscillator.

At long interrogation times close to the minimal Allan deviation o.,;,, the OQI
is saturated by the BQCRB of SSS for any ensemble size N. Within the varia-
tional framework, this can be implemented using the [1,m]-classes, as the optimal
measurement, of the BQCRB is approximated in the limit m > 1. Increasing the
number of entangling layers n yields o.,;, comparable to that of the corresponding
[1, m]-protocols, consistent with findings in Ref. [141]. Consequently, to extend the
dynamic range and approximate the OQI at long interrogation times requires to in-
crease m.

In contrast, at short interrogation times, the dynamic range is negligible, and
increasing the entanglement depth of the initial state, effectively determined by n,
becomes beneficial. However, GHZ states are already optimal in this regime and
saturate the Heisenberg limit. Thus, n = 1 remains sufficient.

At the plateau of the OQI, where GHZ states become ineffective, the [1, m]-classes
generally do not saturate the OQI. This regime becomes broader for larger ensem-
bles, since the dynamic range of GHZ states reduces with N. Here, achieving the
OQI requires asymptotically deep quantum circuits, which, however, is unfavorable,
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as discussed before. Even in the limit of n+m > 1, as considered in Refs. [140,142],
the variational class only gradually approximates the OQI with increasing complex-
ity. Furthermore, in the plateau regime, the optimal variational parameters strongly
depend on the prior width, causing substantial variations in the interferometer se-
quence. As a consequence, even minor modifications in the interrogation time can
lead to profound changes in the form of both the signals and the associated estima-
tion strategies. In particular, as the regime of GHZ states is exceeded, the twisting
strengths decrease significantly, effectively reducing the degree of entanglement to
adapt to increased LO noise. Interestingly, this susceptibility diminishes with in-
creasing circuit complexity m. This can be interpreted as follows: For low depth
quantum circuits, the variational space is limited and thus, the optimal states and
measurements have to be extremely well tailored to a specific prior width to ensure
a sufficiently high degree of entanglement and dynamic range at the same time. As
the variational complexity increases, the variational space grows and reduces the sus-
ceptibility to small variations in the prior width. Additionally, this dependence gives
rise to a large number of local minima, as illustrated in Fig. 4.4(b), making global
optimization tedious and facilitating numerical errors, indicated by the non-smooth
curves.

As a consequence, we focus on approximating the OQI in all regimes except the
plateau using variational [1,m]-classes and strive for a minimal circuit depth m.

Protocol complexity and ensemble size— For the simplest case, N = 2, the
GHZ protocol is optimal across most interrogation times because the critical prior
width, d¢ ~ 1/N, is relatively large. Consequently, the region between the plateau
and the minimal Allan deviation is narrow. In this transitional regime, SSS achieve
the OQI, while the minimal Allan deviation (ADEV) as well as the plateau of the
OQI are saturated by the simplest non-trivial variational class, the [1, 1]-protocols.
Hence, standard protocols are sufficient to saturate the OQI across a wide range of
interrogation times.

For N = 4, illustrated in Fig. 4.3(b), the plateau of the OQI already broadens
significantly. SSS perform close to the OQI and the variational protocols over a
narrow range of interrogation times in the transition regime. The [1, 1]-protocols
remain optimal for a broad range of interrogation times, closely approaching the OQI
at the plateau and at the minimal ADEV. Increasing the circuit complexity, the
[1,2]-class approximates the OQLI.

For N = 8, depicted in Fig. 4.3(c), the discrepancy between low-depth quantum
circuits and the OQI at the plateau becomes more pronounced. Even the BQCRB
of SSS, effectively represented by [1,m]-classes for m > 1, approximates the OQI
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only closely. In the transition regime, where the OQI scaling reverts to ~ 1/v/T, SSS
approximate both the variational classes and the OQI, but the deviation grows with
N, as discussed in Sec. 4.6.1. At the minimal ADEV, [1, 1]-protocols substantially
extend the dynamic range, but nevertheless leave a noticeable gap to the OQI, which
is largely closed by [1,2]-classes. Increasing the variational complexity further, the
[1, 3]-class approximates the OQI in the vicinity of oy, but does not fully saturate
it. Consequently, already for N = 8 relatively deep quantum circuits are required to
saturate the OQI entirely. Since the gain diminishes with increasing m, and in order
to keep the quantum circuit comparably simple, we do not increase the circuit depth
further.

As N increases, this trend continues, as shown for N = 32 in Fig. 4.3(d). In
this case, even the BQCRB of SSS exhibits significant deviations from the OQI at
the plateau. In contrast, in the scaling regime of ~ 1/ VT, and particularly at the
minimal Allan deviation, the BQCRB saturates the OQI. The overall minimum is
approximated by increasing m, but diminishing gains make deeper circuits less ad-
vantageous. Hence, we restrict our analysis to variational classes [1,m] with m < 3
as before. In general, the variational complexity required to saturate the OQI grows
with N (cf. Fig. 4.3(e)). These results align with the asymptotic analysis of OQI
saturation in Refs. [140-142].

For large ensemble sizes (N 2 100), reaching the regime of optical lattice clocks,
atom number fluctuations during interrogation become relevant [12]. Variational
Ramsey protocols — optimized for fixed N — are highly sensitive to such fluctuations,
making them less favorable in this regime. Instead, the POI emerges as a robust

alternative, saturating the OQI in the limit of large N.

In summary, for systems with small ensembles N, such as ion traps and tweezer
arrays, low-depth variational classes are sufficient to approximate the OQI. These
protocols generally achieve optimal performance across all interrogation times, except
at the OQI plateau. Already the simplest variational protocols from the [1, 1]-class
significantly enhance the stability at long interrogation times, particularly in the
regime of the minimal Allan deviation. The circuit depth of [1,m] protocols required
to actually saturate the OQI at long interrogation times increases with N. However,
the performance gain diminishes with m, presenting a trade-off between reduced
instability and increasing complexity. To maintain a reasonable balance between
dynamic range and circuit depth, we restrict our analysis to m < 3, acknowledging
that the OQI can be fully saturated in the limit of deep circuits m > 1, as quantified
by the BQCRB of SSS.
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4.7 Application in the full feedback loop of an atomic
clock

The Bayesian approach captures key aspects of atomic clock operation, including fi-
nite prior information, single-shot measurements, and the trade-off between enhanced
stability achieved through longer interrogation times and the coherence time limit of
the local oscillator. However, it models only a single clock cycle and neglects cumu-
lative effects that arise in a full feedback loop. In particular, in the regime where
the invertible domain of the main fringe is exceeded by the prior distribution and
thus an unambiguous phase estimation is no longer possible, so called fringe hops
might occur. In this scenario, the feedback loop passes to an adjacent Ramsey fringe
resulting in the clock running systematically wrong and consequently degrading the
clock stability. Whether fringe hops or the coherence time limit impose the dominant
constraint depends on the specific Ramsey protocol and interrogation time. Since
fringe hops are a feature only emerging in the context of a full feedback loop, they are
not captured by the theoretical model presented above. While existing approaches,
such as those in Refs. [91,222], provide rough estimates for the effects of fringe hops
based on single cycle properties, they are typically limited to sinusoidal signals and
lack general applicability. A rigorous treatment of fringe hops requires modeling the
complete feedback loop, as pursued in Ref. [199], but adapting this framework to
variational Ramsey protocols lies beyond the scope of this work. Instead, we perform
realistic Monte Carlo simulations of the full feedback loop to validate our theoretical
predictions on clock stability. These numerical simulations reflect the basic principles
of atomic clock operation (cf. Sec. 3.2). Further implementation details are provided
in App. A and Ref. [3]. The prior width in the full feedback loop is determined
iteratively, as discussed in Sec. 4.5.3 and App. A.

To start with, in Sec. 4.7.1 we examine the limitations imposed by fringe hops
and discuss the associated deviations between theoretical predictions and numerical
simulations. In Sec. 4.7.2, we investigate the clock stability within the full feedback
loop of an atomic clock for various Ramsey protocols and ensemble sizes, identifying
the protocols that perform best in the respective regimes. Furthermore, in Sec. 4.7.3,
we compare the linear estimation strategy with the optimal Bayesian estimator, fo-
cusing particularly on variational quantum circuits and the limitations imposed by
fringe hops.
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4.7.1 Limitation due to fringe hops

Results of numerical simulations, presented in Fig. 4.5, show good agreement with
theoretical predictions across a wide range of interrogation times. However, significant
deviations arise in two regimes.

First, for small ensembles at long interrogation times, fringe hops limit the clock
stability rather than the coherence time limit. As a result, the minimal Allan devia-
tion omi, is not achieved for the standard protocols and variational classes. Instead,
the best stability is observed at Ty, < Tmin, lying within the transition regime be-
tween the plateau of the OQI and o,,;,. However, as N increases, T, approaches
the coherence time limit at T}, resulting in improved stability. In particular, for
N = 20, fringe hops and the coherence time limit spoil the stability at the same level
and thus, the minimal Allan deviation is achieved for the standard protocols and
variational classes. Notably, GHZ protocols remain limited by fringe hops regardless
of N due to their inherently narrow dynamic range which decreases with the ensemble
size.

Second, deviations arise in the regime of the plateau of the OQI, which primarily
can be explained by three arguments: (i) Similar to long interrogation times, fringe
hops can occur in this regime. For instance, for d¢ < 1/N, the optimal variational
protocols resemble the GHZ protocol. However, as argued before, fringe hops pre-
vent GHZ protocols to achieve its minimal Allan deviation. Likewise, the optimal
variational protocols may not attain the theoretical prediction as d¢ ~ 1/N. In this
regime, m # 0 typically generates highly non-sinusoidal signals with reduced dynamic
range compared to CSS and SSS (cf. Fig. 4.4(a)), resulting in severe limitations due
to fringe hops. (ii) As described in the previous section, in the regime of the OQI
plateau, the optimal variational parameters are highly sensitive to small changes in
the interrogation time, where this susceptibility diminishes with the circuit complex-
ity m. With increasing ensemble size, this limitation increases, since the plateau gets
broader with N. Although the prior width is determined iteratively, modeling the ac-
tual prior distribution solely based on the width remains a simplified parametrization
of the prior knowledge. Furthermore, this iterative evaluation of the prior width relies
on a fixed interrogation sequence (cf. App. A), which may not capture the true prior
width of variational protocols sufficiently accurate. Consequently, the optimization
can lead to variational protocols that are more susceptible to the true residual noise
than predicted by the model, resulting in deviations between theoretical predictions
and numerical simulations. (iii) Additionally, the assumption of a Gaussian prior
distribution for the residual noise in each cycle may not reproduce the true dynamics
appropriately. In particular, for small ensembles, the number of possible measure-
ment outcomes is small and thus, the central limit theorem justifies this assumption
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to a reasonable level only in the asymptotic limit of many repetitions. Consequently,
corresponding deviations reduce with increasing V.

As a consequence, stability can be compromised in both regimes. To address these
limitations, we simulate the clock performance of several protocols for a fixed interro-
gation time T" and variational class [n,m], corresponding to distinct local minima in
the parameter landscape (cf. Fig. 4.4(b)), and select the protocol that achieves the
best stability. Consequently, the best-performing protocol identified in simulations
may differ from the theoretical optimum, leading to deviations between simulation
and theory. To give an example, the variational protocol associated with the hexagon
in area (III) in Fig. 4.4(b) achieves the lowest Allan deviation in theory, while it is
limited by fringe hops in the numerically simulated full feedback loop. Instead, the
protocol corresponding to the circle in area (V) performs best in numerical simu-
lations, resulting in a significant deviation to theoretical prediction. Moreover, the
sensitivity landscape typically features numerous local minima and thus, it is not fea-
sible to simulate all emerging protocols. In extreme cases, fringe hops may affect all
simulated protocols, leading to complete stability loss. Hence, we show the least com-
plex variational class [1,m] that achieves theoretical predictions at the OQI plateau.
At long interrogation times, we include simulation results of deeper quantum circuits
where a substantial gain is observed.

4.7.2 Clock stability

Overall, numerical simulations align closely with theoretical predictions across a wide
range of interrogation times. However, as discussed in the previous section, fringe hops
impose the primary limitation at the OQI plateau. Additionally, for ensembles with
N < 20 and long interrogation times, fringe hops limit the clock stability rather than
the coherence time limit of the local oscillator. As a consequence, the minimal Allan
deviation o, is not achieved for small ensembles, and variational protocols provide
marginal to no advantage over SSS in this regime. In particular, we distinguish
between three regimes based on the ensemble size:

(i) For very small ensembles with N < 4 (cf. Fig. 4.5(a)), the GHZ protocol
saturates the ultimate lower limit — represented by the OQI — for short interrogation
times, while at long interrogation times — approaching the fringe hop limit T, —
SSS become optimal. Hence, variational protocols provide an advantage over stan-
dard protocols only in the regime of the OQI plateau. In this regime, typically the
simplest [1,1]-class already is sufficient to saturate the OQI. However, the optimal
protocols vary significantly with interrogation time, increasing their susceptibility to
fringe hops. Furthermore, the OQI plateau is relatively narrow for N < 4. Given the

trade-off between potential stability gains and the experimental challenges involved



4.7. Application in the full feedback loop of an atomic clock 147

in implementing more complex Ramsey protocols, the GHZ protocol at short interro-
gation times and SSS at longer interrogation times remain the preferable choices for
ensembles with NV < 4.

(ii) For intermediate ensembles with 4 < N < 20 (cf. Fig. 4.5(b)), fringe hops con-
tinue to impose the fundamental limitation at long interrogation times. Furthermore,
the regime of the OQI plateau expands, which in turn increases the region where
variational protocols provide an advantage over SSS. Nevertheless, [1,m] protocols
remain fragile to fringe hops in this regime and additionally do not suffice to actually
saturate the OQI. At long interrogation times approaching Tj;,,,, which itself approxi-
mates Ty,;, with increasing IV, variational protocols offer improved stability compared
to SSS. In this regime, again the simplest [1, 1]-class is sufficient to achieve a relevant
improvement, while the additional benefit of [1, m] protocols with m > 1 is negligible
when considering the fluctuations over independent clock runs. However, to achieve
a gain compared to SSS at long interrogation times requires 7" ~ T,. For practical
implementation in an experiment, Ref. [92] suggests to choose an interrogation time
slightly shorter than T, effectively providing a safety margin against fringe hops.
As a result, similar to N < 4, variational protocols for N < 20 effectively enhance
clock stability primarily within the OQI plateau regime, which remains less favorable
in experimental settings, while GHZ states and SSS are beneficial at short and long
interrogation times, respectively.

(iii) As the ensemble size increases to N 2 20 (cf. Fig. 4.5(c)), the limitations
imposed by fringe hops and the coherence time limit become comparable. In this
regime, variational protocols succeed to achieve o, resulting in a substantial gain
in stability over SSS. Furthermore, as N grows, increasing the circuit complexity m
of the [1,m] protocols provides relevant gains in stability.

To conclude, variational protocols for clocks with only a few atoms, characteristic
of ion traps, primarily enhance stability within the OQI plateau. However, this
regime is less favorable due to the strong dependence of variational parameters on
interrogation time and increased susceptibility to fringe hops. In contrast, for clocks
with several tens of atoms, typical of tweezer arrays, variational Ramsey protocols
offer a significant improvement in clock stability, particularly at long interrogation
times. Here, low-depth quantum circuits are sufficient, as the benefits diminish with
increasing m, resulting in a trade-off between increased complexity and extended

dynamic range.
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Figure 4.5: Monte Carlo simulations of Ramsey protocols in Bayesian fre-
quency metrology: Numerical simulations of the full feedback loop in an atomic
clock compared to the theoretical predictions of the Allan deviation for ensemble
sizes (a) N =4, (b) N =8 and (¢) N = 32. The variational Ramsey protocols [n,m]
consist of n and m layers of one-axis-twisting interactions for state preparation and
measurement, respectively. Symbols represent the mean clock stability, while error
bars indicate fluctuations over independent clock runs, arising from the stochastic
nature of the Monte Carlo simulations. Fringe hops limit stability in the plateau
regime and at long interrogation times, as discussed in the main text. The associated
prior width is obtained iteratively. Further details on the numerical simulations are
provided in App. A.
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4.7.3 Comparison of linear and optimal Bayesian estimation

In Sec. 4.6.1, we observed that the optimal Bayesian estimator achieves significant
improvements over the linear estimator in several regimes for standard protocols. For
instance, it provides a larger dynamic range at long interrogation times and enables
stronger spin-squeezed states at short interrogation times due to its non-linearity.
Nevertheless, the linear estimator delivers equivalent results at interrogation times
where the signal can be linearized within the extent of the prior distribution, which
typically corresponds to T'/Z < 1. Moreover, the linear estimator simplifies numerical
studies (see Sec. 4.4) and has delivered remarkable results in previous works [91,92],
including applications in variational Ramsey interferometry [140-142]. Therefore, we
compare the performance of the linear and optimal Bayesian estimators in the context
of variational interrogation protocols to determine whether the potential advantages
of the optimal Bayesian estimator, while significant in some regimes for standard
protocols, translate into meaningful improvements in the case of variational quantum
circuits.

In Fig. 4.6, we compare theoretical predictions of clock stability for optimized
variational [1,m] protocols employing both estimation strategies. Surprisingly, the
linear estimator effectively achieves the same stability as the optimal Bayesian esti-
mator. In particular, the optimal Bayesian estimator does not extend the dynamic
range at long interrogation times and correspondingly does not enhance the minimal
Allan deviation, while offering only a marginal enhancement in the plateau regime of
the OQI, where GHZ protocols become ineffective. However, this gain is negligible,
especially when considering the stability issues in this regime discussed in the previous
sections. Consequently, in theory, the optimal Bayesian estimator does not provide a
relevant improvement over the linear estimator, which is consistent with findings in
Ref. [142] for exclusively anti-symmetric signals (cf. Supplementary Discussion S9 in
Ref. [142]).

While theoretical predictions offer valuable insights, their validation in realistic
scenarios is essential for a comprehensive analysis, as discussed before. Fig. 4.6 ad-
ditionally presents numerical simulations of the full feedback loop. The standard
protocols perform as predicted by theory, exhibiting the same limitation imposed
by fringe hops at long interrogation times, as observed with the optimal Bayesian
estimator. For larger ensemble sizes N 2 20, where the coherence time limit and
fringe hops constrain clock stability at the same level, the reduced dynamic range
of the linear estimator for sinusoidal signals becomes relevant. As a result, the opti-
mal Bayesian estimator achieves higher stabilities for CSS and SSS, as discussed in
Sec. 4.6.1. Again, variational protocols are constrained by fringe hops in two distinct
regimes. (i) At the OQI plateau, the susceptibility to fringe hops is significantly
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enhanced for the linear estimator compared to the optimal Bayesian estimator, as
indicated by larger deviations between theoretical predictions and numerical simu-
lations, as well as broader regions where deeper quantum circuits are required to
achieve theoretical predicitions. However, given the strong variation in optimal Ram-
sey schemes and the emergence of fringe hops, operating a clock in these regimes may
be experimentally unfavorable anyway, as discussed in previous sections. Thus, the
stronger limitation imposed by fringe hops in this regime is of minor practical rele-
vance. (i) For N < 20, clock stability is limited by fringe hops at the same level for
both estimation strategies, leading to comparable maximal interrogation times T,
(cf. Fig. 4.6(a) and (b)). In contrast to the optimal Bayesian estimator, for larger
ensembles with N = 20, fringe hops remain the dominant limitation when using the
linear estimation strategy. As a consequence, the minimal Allan deviation o, is
not achieved for [1,m] protocols, as illustrated in Fig. 4.6(c). Therefore, in clocks
with a few tens of atoms — typically realized in tweezer arrays — the linear estimation
strategy causes fringe hops to impose a stricter constraint on clock stability than the
coherence time of the local oscillator, ultimately resulting in reduced stability.

In summary, the optimal Bayesian estimator guarantees to saturate the BCRB,
thereby maximizing the use of the measurement data. Whether the linear estimation
strategy can achieve comparable performance depends strongly on the particular in-
terrogation scheme and must be evaluated for each specific scenario. For variational
Ramsey protocols, as considered in this work, the optimal Bayesian estimator proves
to be less susceptible to fringe hops and therefore achieves higher stability. While this
difference may be negligible in the regime of the OQI plateau, where these protocols
are potentially unfavorable for experimental implementation, the critical ensemble
size at which fringe hops and the coherence time limit constrain the clock stability at
the same level is larger when using the linear estimation strategy.

Moreover, it is important to note that the estimation strategy primarily affects the
classical post-processing of the measurement outcome. Consequently, the complexity
of the Ramsey sequence remains unchanged for both estimation strategies. The quan-
tum circuit itself is only indirectly influenced, as the choice of estimator affects the
optimal variational parameters. Typically, the optimal Bayesian estimator leads to
smaller total twisting strengths =, |p;], particularly for variational classes [1,m]
with m > 1. Hence, the linear estimation strategy effectively requires larger twisting
strengths to compensate for the non-linearity of the optimal Bayesian estimator. As
a result, quantum circuits employing the optimal Bayesian estimator achieve shorter

gate durations, which may be of practical interest.
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Figure 4.6: Comparison of the linear and optimal Bayesian estimation strat-
egy: Numerical simulations of the full feedback loop in an atomic clock with a linear
estimation strategy for ensemble sizes (a) N =4, (b) N =8 and (c¢) N = 32 charac-
terized by the Allan deviation. The variational Ramsey protocols [n, m| consist of n
and m layers of one-axis-twisting interactions for state preparation and measurement,
respectively. Lines depict theoretical predictions with the linear (dashed) and optimal
Bayesian estimator (solid). Symbols represent the mean clock stability, while error
bars indicate fluctuations over independent clock runs, arising from the stochastic
nature of the process. Fringe hops limit stability in the plateau regime and at long
interrogation times, as discussed in the main text. Further details on the numerical
simulations are provided in App. A
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4.8 Dead time

In the previous sections, we extensively discussed the trade-off between quantum pro-
jection noise (QPN) — which decreases with the interrogation time 7" (cf. Eq. (4.30))
— and the coherence time limit (CTL) of the local oscillator, which constraints clock
stability at long interrogation times. Here, we extend the discussion to account for
the effect of dead time T in atomic clock operation. Dead time typically arises from
processes such as probe preparation, measurement and the application of feedback.
During this period, frequency fluctuations of the local oscillator remain unmonitored
by the Ramsey interrogation and therefore cannot be measured or corrected. The
cumulative effect of this lack of information degrades the long-term stability of the
atomic clock, a phenomenon first described by G. J. Dick [223,224], therefore com-
monly referred to as the Dick effect. The contribution of the Dick effect to the clock
stability is directly inferred from the spectral noise density S, (f) of the local oscillator
and is given by [224,225]

1T2 & k\ sin®(wkT/T¢)
2 _ C C
O'y,Dick(T) = ;ﬁ ;Sy (FC) T, (444)

where T = Tp + T is the clock cycle duration. The impact of the Dick effect
diminishes with longer interrogation times 7', as it depends on the ratio T'/T which
decreases when the relative contribution of dead time is reduced. Taking dead time
into account, the overall clock stability is determined by the interplay between QPN,
CTL and Dick noise. Specifically, it is characterized by the total Allan deviation

Ty tot(T) = \/US,QPN<T> + JZQ;,CTL<T> + U;,Dick(7—>7 (4.45)

where QPN and the CTL are combined in the Bayesian framework as 05(7’) =
O’E’QPN(T> + O'SCTL(T). While the Bayesian approach generally does not permit a
strict separation of QPN and CTL contributions — except in specific cases such as the
OQI or for CSS and SSS with a linear estimator (cf. Sec. 4.6.1) — it is, nevertheless,
advantageous to treat them formally as independent components in order to discuss
their general scaling quantitatively. The trade-off characterized by o, 40t(7) has been
thoroughly studied for CSS and SSS with a linear estimator in Ref. [91], where QPN
was characterized using local phase estimation theory, while the CTL was modeled
via a stochastic differential equation describing the stabilized frequency of the local
oscillator. In contrast, this chapter adopts the discussion to the Bayesian framework,
which offers an intuitive and comprehensive approach to addressing these effects.
Additionally, for comparison we include the ultimate lower bound on clock stability
represented by the OQI. After analyzing the general scaling of o, (7) for standard
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protocols, we consider various experimental platforms and discuss the effect of dead
times characteristic of each setup. Furthermore, we explore the potential benefits of

variational quantum circuits in these regimes.

4.8.1 Dead time in Bayesian frequency metrology

In addition to the contribution described by Eq.(4.44), dead time affects Bayesian
frequency metrology in two distinct ways. First, and most notably, it modifies the
scaling of the Allan deviation associated with QPN and the CTL as a function of the
interrogation time 7. Instead of the ideal ~ 1/4/T scaling, dead time reduces it to ~
\/Tc/T?, as apparent in Eq. (4.33). Second, dead time broadens the prior distribution
of the phase due to unmonitored frequency fluctuations during 7. Among these two
effects, the modified scaling with T has a substantially larger impact, whereas the
broadening of the prior distribution introduces only a relatively minor correction.
Nevertheless, incorporating the implicit broadening is crucial for accurate modeling
and for identifying optimal Ramsey protocols and estimation strategies, as the prior
width strongly influences the optimal interrogation sequence, as explored in previous
sections.

Although the prior width could, in principle, be adjusted iteratively to include
dead time as for Tp = 0, this approach is computationally demanding. Moreover, our
goal is to establish a direct connection between scenarios with (7 > 0) and without
(Tp = 0) dead time. Since the additional frequency fluctuations during dead time
are unmonitored by the Ramsey interrogation, the broadening of the prior distribu-
tion during dead time and during the Ramsey sequence T are independent processes.
Treating the broadening of the phase distribution during dead time as a phase diffu-
sion process, the modified prior distribution P(¢) = (Pp * Pr) (¢) is obtained by a
convolution of the initial prior distribution Pr(¢), resulting from the Ramsey inter-
rogation time 7" with corresponding width d¢r (cf. Sec. 4.5.3), and the distribution
Pp(¢) associated with dead time. In this context, Pp(¢) effectively acts as a Green’s
function [160]. Although local oscillator noise in general is correlated, the additional
noise introduced during dead time within the full feedback loop is well approximated
as white noise in the asymptotic limit of many clock cycles. Consequently, Pp(¢) is
modeled as a Gaussian distribution with zero mean and width d¢p. As a result, the
modified prior distribution P(¢) remains Gaussian with zero mean and variance

(6¢)* = (36p)" + (d07)". (4.46)

To fully incorporate the impact of dead time into the Bayesian framework, we

now relate the broadening of the phase distribution — characterized by d¢p — to the
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dead time Tp, akin to the dead time-free case in Sec. 4.5.3. Rather than deriving
a comprehensive model for arbitrary scenarios, we establish a relation d¢p(7Tp) that
primarily aims to accurately predict behavior in the vicinity of the minimal Allan
deviation o, at interrogation time T,,;,. To this end, the broadening of the prior
width during dead time can be effectively modeled by translating the additional fre-
quency fluctuations into hypothetical phase shifts, as if they had occurred during a
Ramsey interrogation of duration 7. In this context, the associated prior width is

given by (cf. App. A)

o0 =2(72) (1.47)

reflecting a power-law dependence, analogous to Eq. (4.35). Here, the parameter
« again characterizes the nature of the frequency noise, with values a = 0, —1, —2
corresponding to white, flicker and random walk frequency noise, respectively.

As a consequence, adjusting the prior width according to Eq. (4.46) extends the
Bayesian framework to incorporate dead time within the clock cycle, accounting for
both the Ramsey interrogation time 7" and the dead time 7. Therefore, aside from
adapting the prior width to reflect dead time T, the findings from the previous sec-
tions remain directly applicable. Therefore, the primary remaining task is to analyze

the impact of the Dick effect oy, pick(7) on overall clock stability.

4.8.2 General results

In general, the total clock stability reflects a trade-off between quantum projection
noise (QPN), the coherence time limit (CTL) and the Dick effect, as described by
Eq. (4.45). While the CTL emerges at long interrogation times, limiting the clock sta-
bility as T approaches the laser coherence time Z, both QPN and Dick noise decrease
monotonically with the interrogation time 7'. Unlike QPN, which reduces with larger
ensembles, the CTL and Dick noise are independent of N. As a result, whether the
minimal Allan deviation o.,;, — achieved at optimal interrogation time T,,;, — arises
from a trade-off between QPN and the CTL or between the Dick effect and the CTL
depends on the particular dead time, ensemble size and Ramsey protocol [91].

For short dead times or small ensembles, QPN typically dominates Dick noise,
leading to behavior that closely resembles the dead time-free case (cf. N = 8 in
Fig. 4.7(a)). Here, the clock stability is primarily determined by a trade-off between
QPN and the CTL and, therefore, depends on the ensemble size as well as the choice
of Ramsey sequence. However, as dead time increases or QPN decreases, at some
point, QPN is reduced to the level of Dick noise. Since Dick noise typically decreases
more slowly with the interrogation time than QPN, first, it becomes dominant at
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long interrogation times, limiting the minimal Allan deviation o, (cf. N = 32 in
Fig. 4.7(a)). Reducing QPN further, by either increasing the ensemble size or adapting
the Ramsey interrogation, improves oy,;, only marginally. In the regime where dead
time effects strictly dominate over QPN — as is the case for large ensembles or long
dead times — no further improvements in clock stability are possible, as Dick noise is
independent of the particular Ramsey sequence and ensemble size. Therefore, we can
define a lower limit oy, on the clock stability, at corresponding interrogation time
Tlim, which is characterized by a trade-off between Dick noise and the CTL. Since the
CTL is protocol-dependent, oy, in general differs for distinct Ramsey protocols and
is primarily determined by their respective dynamic range.

Fig. 4.7(b) illustrates the scaling of o, with the ensemble size N for the standard
Ramsey protocols. For small ensembles — where QPN dominates — clock stability
improves as N increases, as in the ideal scenario (Tp = 0). However, as the ensemble
size grows, Dick noise becomes relevant, reducing the N-scaling and causing the clock
stability to converge to oy,. Unfortunately, explicit expressions for oy, can only be
derived for protocols where QPN and CTL are separable, such as for the OQI or
CSS and SSS with a linear estimator. Otherwise, the convergence towards oy, with
N has to be evaluated numerically. As argued before, CSS and SSS with a linear
estimator exhibit the same CTL and, consequently, identical lower limits. A similar
behavior is observed for both protocols using the optimal Bayesian estimator, which,
however, achieves an improved oy, due to the larger dynamic range (cf. Sec. 4.6.1).
GHZ protocols — already highly susceptible to local oscillator noise in dead time-free
scenarios — are further constrained by dead time, making them suitable only for small
ensembles and short dead times. In the asymptotic limit, the performance of the POI
again saturates the OQIL.

To characterize the transition between the regimes dominated by either QPN or
Dick noise, we define a critical ensemble size N, at which the Allan deviation o, (7)
(cf. Eq. (4.33)) — arising from QPN and the CTL — saturates oy, at Tji,. Beyond
Neit, Dick noise dominates over QPN and thus spoils the N-scaling of o,;,, which
ultimately converges towards oy, without substantial improvements as N increases.
Since N depends explicitly on QPN, it differs for distinct Ramsey protocols and
estimation strategies, as generically illustrated in Fig. 4.7(c). For instance, Ny for
SSS is substantially smaller than for CSS, since they exhibit the same CTL, but
SSS feature significantly smaller QPN. Consequently, the required ensemble size to
approach oy, is substantially smaller for SSS compared to CSS, with a reduction
of up to two orders of magnitude for short T, while still maintaining a significant

difference even at long dead times. In contrast, the difference between OQI and SSS is
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relatively small, amounting to less than one order of magnitude for short dead times
and becoming effectively negligible as T increases.

For a particular dead time T, the lower limit oy, is determined solely by the
CTL of the Ramsey protocol and the estimation strategy, essentially reflecting the
dynamic range. Consequently, CSS and SSS achieve the same lower limit for a specific
estimator. Moreover, as shown in Fig. 4.7(d), the enhancement of oy, achieved by
the OQI compared to CSS or SSS is relatively minor. Interestingly, increasing the
dynamic range of CSS and SSS by substituting the linear by the optimal Bayesian
estimation strategy yields a greater gain than the advantage provided by the OQI
over CSS or SSS with the optimal Bayesian estimator. As a result, CSS and SSS
already perform close to the OQI in the regime limited by dead time.

As T increases, the potential enhancement of oy;, diminishes further. This can
be understood as follows: In general, dead time shifts 7,,;, — achieving the minimal
Allan deviation o, — to longer interrogation times. This is shown in Fig. 4.7(e) and
primarily results from the impact of oy, piex (cf. Fig. 4.7(a)). However, in this regime,
the difference in the CTL for distinct Ramsey schemes decreases with increasing T’
(cf. Fig. 4.2(a)), thereby reducing the advantage associated with a larger dynamic
range. While the OQI allows unbiased phase estimation over [—m, +7], the optimal
Bayesian strategy for CSS and SSS resembles the arcsin estimator and thus covers
the range [—m/2,+7/2] (cf. Sec. 4.6.1). As a result, the OQI and CSS or SSS with
optimal Bayesian estimator exhibit a similar behavior, where the corresponding gain
only marginally reduces with 7. In contrast, the deviation between the linear and
optimal Bayesian estimators for CSS and SSS diminishes substantially with T, since
the corresponding N, becomes smaller, leading to a reduced gain in dynamic range
for the optimal Bayesian estimator, as discussed in Sec. 4.6.1.

To summarize, for small ensembles N or short dead times T, clock stability is
primarily limited by QPN, closely resembling the dead time-free case. However, as
N or Tp increases, the Dick effect becomes the dominant noise and ultimately limits
the clock stability. Beyond the critical ensemble size N, which decreases with T,
the minimal Allan deviation o, converges to the lower limit oy;,. In this regime,
further improvements in clock stability by increasing the ensemble size or adapting
the Ramsey sequence are marginal. As a consequence, clocks with large ensembles
(N > 1) limited by Dick noise approximate the lower limit oy, sufficiently well by
employing CSS or SSS.
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Figure 4.7: Dead time effects: (a) Generic scaling of the dimensionless total Allan
deviation oy 1ot (7) X woV/TZ with the interrogation time 7" for dead time T /Z =0.1.
The total stability (solid) of the OQI for N = 8 (gray) and N = 32 (black) is shown
in comparison to the trade-off between QPN and CTL (dashed). The N-independent
lower limit oy, (symbol) is imposed by a trade-off (solid brown) between Dick noise
(dashed brown) and CTL (dotted black). Consequently, the brown shaded area is
inaccessible. (b) Scaling of the total dimensionless minimal Allan deviation oy, X
woV/TZ with the ensemble size N for Tp/Z = 0.1. GHZ protocols (green) achieve
no gain compared to CSS. For CSS (orange) and SSS (red), both the linear (dashed)
and optimal Bayesian estimator (solid) are depicted. The gray shaded area represents
the inaccessible stability region set by the OQI (black), while the orange shaded area
indicates achievable stabilities using uncorrelated atoms. Dotted lines correspond to
the lower limit oy, for the OQI and CSS with linear estimator, while the dashed
dotted line denotes the lower limit for CSS using the optimal Bayesian estimator.
SSS exhibit the same lower limit as discussed in the main text and seen from the
convergence. The POI (violet) saturates the OQI for N 2 50. For the OQI and POI,
numerical optimization is performed for N < 100, while the asymptotic behavior,
represented by the 7HL (black dashed-dotted), is shown for N > 100. (c) Critical
ensemble size N as a function of the dead time Tp/Z for the OQI (black), CSS
(orange) and SSS (red). Again, dashed lines correspond to the linear estimator, while
solid lines represent the optimal Bayesian estimator. The evaluation of the SSS with
optimal Bayesian estimator requires the computation of the conditional probabilities
(cf. Sec. 4.4) and thus is unfeasible for large N. For N 2 100, the asymptotic
OQI, imposed by the 7HL (black dashed-dotted), is shown. (d) Scaling of the total
dimensionless lower limit oy, X wov/7Z with dead time for the OQI (black) and CSS
(orange). For the CSS, linear (dashed) and optimal Bayesian estimator (solid) are
displayed, while SSS achieve the same limits. (e) Corresponding interrogation times
Tlim, effectively characterizing the dynamic range. SSS result in the same oy, and
Tiim as CSS (cf. discussion in the main text).
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4.8.3 Setup specific dead times

Building on the general discussion of dead time effects on clock stability in standard
protocols, this section focuses on examining specific examples relevant to particular
experimental setups, such as ion traps, tweezer arrays and lattice clocks, ranging from
a few to thousands of atoms.

In general, atomic clock operation involves three key time scales: the laser coher-
ence time Z, the dead time Tp and the interrogation time 7'. In a given experimental
setup, Z and T are primarily independent but fixed, defining a specific ratio Tp/Z.
In contrast, T remains an adjustable parameter, which is implicitly constrained by Z.
As a consequence, findings on clock stability cannot be trivially rescaled with respect
to various laser coherence times Z — as in the dead time-free scenario — or dead times
Tp, since a modification of Z or Tp results in a change of the ratio Tp/Z, which
in turn has a substantial impact on the clock stability, as discussed in the previous
section.

In experimental settings, the dead time T and interrogation time 7' commonly
are expressed in terms of the dimensionless duty cycle

T T

L 4.48
T T (4.48)

n

which quantifies the relative contribution of the interrogation time 7" to the total
duration of the clock cycle Tc = Tp +T'. Hence, a larger duty cycle n corresponds to
a reduced relative impact of dead time. However, it is important to emphasize that,
implicitly, a specific ratio between Tp and Z is always assumed.

While the laser coherence time Z is independent of the atomic reference, dead
time strongly depends on the particular experimental platform. To address this, we
investigate the clock stability for typical dead times across the three predominant
regimes: ion traps, tweezer arrays and lattice clocks. Each of these platforms exhibits
distinct time scale dynamics and operational characteristics that significantly influ-
ence clock performance. Ion traps provide the highest degree of control, including
rapid cooling and no need for reloading due to deep trap depths, resulting in rela-
tively short dead times [12]. Although recent advancements in Coulomb crystals have
facilitated multi-ion clocks [17,18], ion traps remain inherently limited in scalability,
typically operating with only a few ions. In contrast, optical lattice clocks employ
large ensembles of hundreds to thousands of atoms, enabling high precision at the
cost of experimental challenges such as atom number fluctuations and interatomic
collisions [12]. Furthermore, these systems exhibit substantially longer dead times
due to processes such as loading the lattice and cooling the atoms [23-26]. Addi-
tionally, dead time has a particularly pronounced impact on clock stability in lattice
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clocks, as QPN is typically suppressed well below the Dick effect, as discussed in the
previous section. Tweezer arrays bridge between these two contrary approaches, of-
fering a balance between the high control in ion traps and the scalability inherent in
lattice clocks [19-22]. By incorporating ensembles of several tens of atoms, they offer
a promising compromise between precision, scalability and operational efficiency.

In the following, we investigate the clock stability for representative dead times Tp
and laser coherence times Z across these three distinct regimes. As discussed before,
this is equivalently expressed by fixing the ratio Tp/Z. Starting with ion traps, which
feature relatively short dead times, we explicitly examine the interplay between laser
coherence time 7, dead time T and interrogation time 7" — or equivalently the duty
cycle n — using state-of-the-art parameter values to develop an intuitive understanding
of the relationship between these time scales. Subsequently, we progressively increase
the dead time for setups representing tweezer arrays and lattice clocks, illustrating
how dead time increasingly constrains clock performance and how the optimal Ramsey
protocols change accordingly.

Besides the experimental platform, dead time is also affected by the particular
interrogation sequence. In practice, the preparation time required for different quan-
tum states — particularly entangled states — can vary significantly depending on the
specific initial state. Likewise, the measurement time can vary substantially between
different measurement strategies, especially for correlated measurement transforma-
tions as pursued for the variational Ramsey protocols. For instance, the conventional
Ramsey protocol — utilizing coherent spin states (CSS) and a projective spin measure-
ment — can be performed relatively quickly, as it relies on standard collective rotations
of the spin system. In contrast, spin-squeezed states (SSS) already require non-linear
interactions or measurement-based feedback for state preparation, which introduce
additional time overheads. While the variational [1,m] protocols — investigated in
the previous sections — have comparable state preparation times to SSS, as they are
also generated by a single OAT interaction, each additional layer of the quantum
circuit implementing the effective measurement involves interaction times that scale
with the corresponding twisting strength. The OQI, which represents the ultimate
lower bound and currently lacks a specific experimental implementation, potentially
requires even more demanding resources. As a consequence, for a particular exper-
imental setup, dead times arising from state preparation and measurement have to
be considered for each interrogation scheme. However, the resulting dead times are
highly individual for each experimental setup and are thus challenging to quantify
in general. To nevertheless provide theoretical insight, we compare different Ramsey
protocols assuming a fixed dead time for each experimental platform, independent of

the protocol complexity. While the results derived in the following provide general
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insight, this assumption should be kept in mind, as it may lead to an overestimation
of the performance of highly entangled states in practical scenarios.

Ion traps— In ion traps, dead times of about Tp = 100 ms are routinely imple-
mented in experiments. Moreover, state-of-the-art clock lasers achieve laser coherence
times Z of several seconds. In practice, however, this impressive level of coherence
is often not entirely maintained as the laser propagates between the reference cavity
used for pre-stabilization — which not necessarily is located close to the trap or even
in the same laboratory — and the ions. While optical path-length stabilization should,
in principle, preserve coherence all the way to the ions, experimental imperfections —
such as phase noise within the vacuum chamber — typically lead to a degradation of
this quality. Therefore, we assume a laser coherence time of Z = 2 s at the location of
the ions. Hence, in this exemplary scenario we obtain a ratio 7p/Z = 0.05. Further-
more, Fig. 4.5 demonstrates that fringe hops limit the clock stability at interrogation
times around Ty, ~ 0.4 —0.5 x Z. Consequently, the maximal achievable duty cycle,
given by Nmax = Tsim/(Tsim + Tp), is on the order of 90%.

As discussed in the previous section, for small ensembles and short dead times,
clock stability typically resembles the dead time-free scenario (Tp = 0), as illustrated
in Fig. 4.8(a) for N = 8 and Tp/Z = 0.05. In this case, QPN remains the primary
limitation, while the Dick effect has only a marginal impact, leading to a behavior
similar to that shown in Fig. 4.5(b). In comparison, however, in the presence of dead
time the plateau of the OQI is substantially less pronounced and thus, fringe hops
impose a less stringent limitation in this regime. As in the Tp = 0 case, SSS ap-
proximate the OQI in the transition region between the plateau and o.,;,. At long
interrogation times, fringe hops remain the primary constraint, limiting the interro-
gation time to Ty, < Twin. Furthermore, variational protocols effectively provide no
significant enhancement in clock stability around Ti;,,. As a result, for optical atomic
clocks based on ion traps, GHZ states and SSS approach the OQI over a broad range
of interrogation times, while the deviation from the OQI or variational classes within
the plateau are reduced compared to the dead time-free scenario.

Tweezer arrays— For tweezer arrays, we consider a representative case with N =
32 in Fig. 4.8(b), assuming an increased dead time of Tp/Z = 0.1. Within the
framework of the previous example, this corresponds to an absolute dead time of
Tp = 200 ms and a maximal achievable duty cycle of approximately 7., = 80%.
As already evident in Fig. 4.7(a), dead time imposes a significant limitation on clock
stability in this regime. While GHZ states are essentially ineffective, SSS already
perform close to the OQI for short and intermediate interrogation times. In this
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regime, variational protocols only provide marginal improvements in stability, whereas
a noticeable enhancement is observed primarily for [1, m] protocols in the vicinity of
Timin- However, this gain is significantly smaller than in the dead time-free case, and
unlike the Tp = 0 scenario, fringe hops constrain clock stability at interrogation
times Ty < Tiin- When additionally considering a safety margin for fringe hops, as
discussed in Sec. 4.7, the improvement becomes effectively negligible when accounting
for the increased complexity. Consequently, SSS emerge as a robust Ramsey sequence,
achieving clock stabilities close to the OQI in this regime.

Interestingly, for short interrogation times, deviations between theoretical predic-
tions and numerical simulations appear. These discrepancies stem from the assumed
prior width in the presence of dead time, which is intended to provide a reliable model

primarily for interrogation times in the vicinity of oiy.

Crossover regime— Typically, the boundaries between different platforms with
respect to the ensemble size N are not sharply defined. To explore the transition be-
tween tweezer arrays and lattice clocks, we examine the case of N = 100 in Fig. 4.7(c),
with an increased dead time Tp/Z = 0.2. In the example above, this corresponds to
Tp = 400 ms and an associated maximal duty cycle of approximately ny.x = 65%.
Such an increase in dead times is characteristic of lattice clocks, as discussed before,
but can also result from various processes such as the overhead of operating multi-
ple tweezer arrays simultaneously, the potential need for reloading due to shallower
trap depths or extended cooling times. Moreover, inhomogeneous interactions may
be relevant, as addressed in Ref. [140].

As the ensemble size N increases, variational classes are no longer favorable, as
discussed in previous sections. A key characteristic of this regime is that dead time
becomes the dominant limitation. However, while CSS have not yet fully converged
to the lower bound oy, SSS already provide a close approximation. As a result,
SSS perform close to the OQI across all interrogation times, except at Ti,,, where
their limited dynamic range becomes apparent. Additionally, the choice of estimation
strategy for standard protocols gains importance, as the optimal Bayesian estimator
yields significantly higher clock stability at long interrogation times compared to the

linear estimator.

Lattice clocks— Finally, we investigate the regime of lattice clocks with large
ensembles N > 1, where QPN is reduced well below the Dick noise. Fig. 4.8(d)
illustrates the case of N = 1000 with Tp/Z = 0.2. In this regime, both CSS and SSS
closely approximate the lower limit oy;,. Consequently, at long interrogation times
both protocols achieve comparable clock stability, as already indicated in Fig. 4.7,
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whereas SSS provide a significant advantage at short interrogation times. Further-
more, the optimal Bayesian estimator results in a substantially higher stability in the
vicinity of T}, compared to the linear estimation strategy. Notably, deviations from
theoretical predictions and numerical simulations appear for the SSS at short inter-
rogation times due to the choice of prior width (cf. Sec. 4.8.1). Additionally, since
SSS introduce correlations between atoms, unlike CSS, numerical approximations are
required to simulate the full feedback loop for N > 1, which can further contribute
to discrepancies.

As a result, in the regime of large ensembles dominated by dead time, effectively
no quantum enhancement is achieved at the optimal interrogation time. To exploit
the benefits of entanglement, dead time effects have to be mitigated — for example
through dead time-free interrogation schemes, as discussed in Sec. 4.10.

In summary, for small ensembles — representing ion traps — the behavior closely
resembles the dead time-free case. Here, standard protocols as GHZ states or SSS
already achieve clock stabilities comparable to the OQI for a wide range of interro-
gation times. As the ensemble size N or dead time T increases, Dick noise becomes
the dominant limitation, effectively reducing the potential enhancement offered by
variational quantum circuits compared to SSS. In particular, dead time results in
SSS performing close to the OQI for a variety of scenarios. In the regime of large
ensembles NV > 1, characteristic for lattice clocks, CSS likewise converge to the lower
limit oy;;, at long interrogation times and thus, are sufficient to approximate the OQI.
As a consequence, dead time significantly constraints clock stability, where the degree

of limitation increases with the ensemble size.
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Figure 4.8: Dead times characteristic for specific experimental setups: The-
oretical predictions and numercial simulations of various Ramsey protocols for (a)
N =8and Tp/Z = 0.05, (b) N =32 and Tp/Z = 0.1, (c) N = 100 and Tp/Z = 0.2,
(d) N =1000 and Tr/Z = 0.2. The variational Ramsey protocols [n, m] consist of n
and m layers of one-axis-twisting interactions for state preparation and measurement,
respectively. Theory curves (lines) are displayed for the linear (dashed) and optimal
Bayesian estimator (solid). Symbols represent numerical simulations in the full feed-
back loop of an atomic clock employing the optimal Bayesian estimation strategy. In
both cases, the total Allan deviation is rescaled with respect to the atomic transition
frequency wy, total averaging time 7 and laser coherence time Z. The lower z-axis
represents the interrogation time 7' relative to Z, while the upper z-axis denotes the
dimensionless duty cycle 7. The gray shaded area represents the inaccessible stability
region set by the OQI limit (black), while the orange shaded area indicates achievable
stabilities using uncorrelated atoms. For (a) N =8 and (b) N = 32 the performance
of variational quantum circuits (blue) is shown in addition to the standard protocols,
namely GHZ states (green), CSS (orange) and SSS (red). For N = 1000, the asymp-
totic regime is reached and thus, the OQI is approximated by the 7HL.
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4.9 Conclusion

At this point, we briefly summarize the primary conclusion of this chapter, while
referring to the outline at the end of Sec. 4.1 for a comprehensive overview of the in-
sights and results. In general, the clock stability features a trade-off between quantum
projection noise (QPN), the coherence time limit (CTL) and dead time effects. Ad-
ditionally, fringe hops impose further constraints on stability within the full feedback
loop of an atomic clock.

For small ensembles comprising a few atoms — as encountered in ion traps — fringe
hops limit clock stability at long interrogation times. Consequently, in this regime,
GHZ states and spin-squeezed states (SSS) approximate the optimal quantum inter-
ferometer (OQI) across a broad range of interrogation times. In contrast, variational
protocols offer an advantage primarily within the plateau of the OQI. However, this
regime is less favorable due to the strong dependence of variational parameters on
interrogation time and the increased susceptibility to fringe hops. Moreover, in the
presence of dead times typical for ion traps, the behavior closely resembles the dead
time-free case, as QPN dominates the Dick effect.

For ensembles consisting of several tens of atoms — characteristic of tweezer arrays
— variational clock protocols provide a significant improvement compared to SSS at
long interrogation times. In this regime, fringe hops and the CTL constrain clock
stability at a comparable level, enabling the achievement of the minimal Allan de-
viation. Moreover, low-depth quantum circuits [1,m] are sufficient as the benefits
diminish with increasing m, leading to a trade-off between increased complexity and
extended dynamic range. However, as dead time increases, Dick noise becomes the
primary limitation, substantially reducing the potential enhancement offered by vari-
ational quantum circuits compared to SSS. In particular, the limitation due to dead
time results in SSS performing close to the OQI in a variety of scenarios.

In the regime of lattice clocks with large ensembles N > 1, QPN is reduced
well below dead time effects. Consequently, any further improvements in stability by
increasing the complexity of the Ramsey sequence are marginal, and coherent spin
states (CSS) converge to the lower limit at long interrogation times, proving sufficient
to approximate the OQI. As a result, effectively no quantum enhancement is achieved
in this regime.

Overall, the optimal Ramsey protocols — and correspondingly the highest achiev-
able clock stability — strongly depend on the specific parameters of the experimental
setup. Although variational quantum circuits promise substantial enhancements in

idealized scenarios, practical constraints as fringe hops and dead time effects limit
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these improvements. As a result, variational Ramsey protocols offer a significant ad-
vantage only in the regime of tweezer arrays primarily limited by QPN. In contrast,
standard protocols utilizing GHZ states, CSS and SSS provide robust interrogation
schemes, closely approaching the OQI in a variety of scenarios.

4.10 Owutlook

This chapter provided a comprehensive overview of potential advancements and chal-
lenges across a broad range of scenarios in frequency metrology tailored to optical
atomic clocks primarily limited by laser noise. Nevertheless, open questions remain
and require further investigation.

Open questions— From a theoretical perspective, a rigorous treatment of the
full feedback loop, as pursued in Ref. [199], within a Bayesian framework would
ultimately be desirable. In particular, such a model of atomic clock operation could
provide deeper insights into the following aspects:

(i) Currently, the connection between the Allan deviation, characterizing clock
stability, and the Bayesian cost function — the Bayesian mean squared error (BMSE)
— is based on mere heuristic arguments. In particular, this relation is motivated by
analogy with the local approach and guided by fundamental bounds, however, no for-
mal derivation exists. In a model of the full feedback loop, the effective measurement
variance, defined in Eq. (4.31), should — ideally — emerge naturally in the evaluation
of the Allan deviation and result in Eq. (4.33).

(ii) The prior phase distribution is typically modeled as a Gaussian distribution,
with its width determined heuristically — either by a general approach or an itera-
tive procedure. While this approximation yields reliable results in several situations,
this parametrization, nevertheless, might not capture the true prior distribution suf-
ficiently well in certain regimes, resulting in severe limitations. This issue might be
particularly relevant for highly non-classical interrogation schemes, small ensemble
sizes or in regimes where the optimal Ramsey protocol is highly susceptible to small
changes in the prior width — as at the OQI plateau. Consequently, a generalized prior
distribution could potentially enable a more accurate model of the actual frequency
fluctuations — reflected in variations of the accumulated phase — and thereby reduce
discrepancies between theoretical predictions and numerical simulations or experi-
ments. Furthermore, it would facilitate the identification of optimal interrogation
schemes tailored to the true prior distribution.

(iii) A promising approach involves full Bayesian propagation of the phase distri-
bution throughout the entire clock run [201,210], rather than treating individual clock
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cycles in isolation. In this approach, the phase distribution is updated iteratively after
each Ramsey sequence based on the measurement outcome, thereby enabling explicit
tracking of frequency (or phase) fluctuations. Crucially, a global treatment of the
phase over —oco < ¢ < 400 is required. Although restricting the phase to the pe-
riodic 27 interval accounts for ambiguities arising from transitions between adjacent
fringes, it prevents their explicit resolution and thus ultimately limits the detection

and potential mitigation of fringe hops.

Incorporating experimental limitations— Moreover, the concepts developed
in this chapter can be extended to incorporate additional experimental limitations,
enabling more detailed modeling of experiments. This, in turn, facilitates a deeper
understanding of the underlying limiting processes and supports the identification of
optimal Ramsey protocols tailored to specific experimental parameters. To this end,
relevant decoherence processes — such as spontaneous decay or dephasing — can be
included based on the concepts presented in Chapter 3. While numerical optimization
in the context of local (frequentist) phase estimation with decoherence already is a
fundamental challenge on its own — as discussed in detail in Chapter 3 — addition-
ally introducing the averages over the prior phase distribution, inherent in Bayesian
estimation theory, further increases the complexity. Consequently, incorporating de-
coherence effects directly into the theoretical framework of Bayesian phase estimation
— as pursued in this chapter — would combine the numerical challenges of both ap-
proaches. Furthermore, the resulting optimal protocols may change substantially and
thus would require a thorough investigation, similar to the discussion of dead time.
However, this is beyond the scope of this progress report on frequency metrology
limited by laser noise. Instead, we briefly review the literature considering deco-
herence effects. In particular, the additional effects of dephasing have already been
examined in the Bayesian framework. For instance, Ref. [151] considers additional
collective dephasing that is not associated with laser noise. Since collective dephas-
ing is phenomenologically similar to the treatment of laser noise within the Bayesian
framework, it affects stability in much the same way. The impact of uncorrelated
single-atom dephasing in the Bayesian framework has been explored in Ref. [140],
where it was observed that for moderate dephasing strengths the overall behavior re-
mains qualitatively unchanged, although stability is naturally degraded. However, the
benefit provided by variational quantum circuits — or more complex Ramsey schemes
in general — over SSS diminishes substantially as the dephasing strength increases,
leading to a behavior akin to that observed for dead time. A comparable pattern was
reported in Ref. [141] for correlated single-atom dephasing. Furthermore, finite pulse
durations — especially for clock species with ultra-narrow clock transitions yielding
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long interaction times — as well as gate imperfections — for state preparation and
measurement — might be considered. Specifically, noise affecting the twisting oper-
ations has been considered in Refs. [5,141]. As expected, deeper quantum circuits,
which generally require stronger total twisting strengths, exhibit higher susceptibility
to noise. Ref. [226] demonstrates that the potential improvements in clock stability
through spin squeezing are significantly reduced if the squeezing is non-unitary. It
further highlights that contrast loss during the squeezing process is less detrimental
to clock stability than during the Ramsey dark time.

Overall, these observations reinforce the conclusions of this work: Standard pro-
tocols with low complexity — employing coherent spin states (CSS), GHZ states and
spin-squeezed states (SSS) in particular — achieve stabilities compatible with the ul-
timate limit across a wide range of scenarios, whereas deeper quantum circuits —
generating arbitrary states and measurements — offer a significant advantage only in
very specific parameter regimes. This is consistent with a well-established observation
in quantum sensing: In general, no single interrogation scheme is universally optimal.
Instead, there exists an optimal protocol for a given application and its specific system

parameters.

Strategies to overcome laser noise— In the framework of this chapter, laser
noise constrains clock stability in three distinct ways: through the laser coherence
time limit (CTL), the emergence of fringe hops and dead time effects. In addition
to ongoing technological improvements in laser stability [88,227,228], several inter-
rogation schemes have been proposed and demonstrated to address these limitations.
However, these strategies go beyond the scope of this work, which focuses on con-
ventional single-ensemble clock operation with identical interrogations of the atomic
reference in each clock cycle. They include adaptive schemes [201,210,229,230] and
multi-ensemble strategies. For instance, dynamical decoupling sequences [231] and
synchronous differential clock comparisons [232-235] have been demonstrated to ex-
tend interrogation times well beyond the laser coherence time. Other approaches
involve active feedback and feedforward on the laser [236,237], or cascaded clock
operation that allows for increasingly long interrogation times [64,237-240]. As pro-
posed by Rosenband and Leibrandt in Ref. [241], partitioning atoms into multiple
ensembles with distinct interrogation times can exponentially improve clock stability
relative to the atom number. Furthermore, synchronous out-of-phase interrogations
expand the invertible phase range and enhance the dynamic range [222,242]. More-
over, dead time free clock operation can be achieved by asynchronously interrogating
at least two atomic ensembles [29,237,243,244]. Although these approaches extend



168 Chapter 4. Bayesian frequency metrology limited by laser noise

beyond the scope of the present work, many of their underlying principles can be in-
tegrated with the Ramsey protocols discussed in this chapter, potentially mitigating
the limitations imposed by laser noise and enabling longer interrogation times.

As a result, a variety of interrogation schemes have been developed to overcome
the limitations imposed by laser noise. Nevertheless, a fundamental comparison that
addresses the core questions of optimal scheme selection and efficient resource utiliza-

tion across specific operational regimes is still lacking.

Zero-dead-time (ZDT) clocks— Finally, we discuss a specific aspect of zero-
dead-time (ZDT) clocks, which can be readily investigated using the methods estab-
lished in this chapter. To this end, we consider a setup comprising two ensembles?,
each with an identical atom number, operated within the same experiment. Indeed,
such setups have already been experimentally realized across all three regimes dis-
cussed in this chapter — namely ion traps [245,246], tweezer arrays [64,247] and lattice
clocks [29,244]. To begin with, we consider coherent spin states (CSS) and a linear
estimation strategy. The central question is whether it is advantageous to interrogate
both ensembles simultaneously — effectively utilizing a total number of N atoms — or
to implement a zero-dead-time clock scheme, with N/2 atoms per ensemble. This sce-
nario reflects a fundamental trade-off: On the one hand, simultaneous interrogation
reduces quantum projection noise (QPN) by leveraging the effective larger atom num-
ber and on the other hand, the ZDT approach eliminates dead time effects. Which
of the two schemes offers better stability generally depends on the specific total atom
number N, interrogation duration 7" and dead time T, as illustrated in Fig. 4.9(a).
For the representative example with N = 20 atoms in total, the ZDT clock out-
performs the conventional scheme at short interrogation times. However, at longer
interrogation times, performance depends more sensitively on the actual dead time,
particularly when approaching the minimal Allan deviation. As a consequence, we
can identify a critical dead time Tp ¢ at which both approaches achieve equivalent
stability at their respective optimal interrogation durations. Hence, for dead times
shorter than the critical dead time (Tp < Tp i), the conventional clock scheme —
despite incorporating dead time — is advantageous. Conversely, for longer dead times
Tp > Tp eit, the ZDT approach demonstrates superior stability. As expected from
the results obtained in this chapter and illustrated in Fig. 4.9(b), the critical dead
time decreases for larger ensembles, since the Dick effect becomes a relevant limitation
on clock stability at shorter dead times due to reduced QPN. As a result, consider-

ing typical dead times for each experimental platform (cf. Sec. 4.8.3), conventional

4Note that this concept can be readily generalized to configurations with more than two ensem-
bles.
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Figure 4.9: Zero-dead-time clock: (a) Generic scaling of the dimensionless total
Allan deviation oy ot (7) X woV'TZ with the interrogation time T relative to the co-
herence time Z for CSS and a linear estimation strategy. Colored lines represent
conventional clock operation with N = 20 atoms and different dead times, whereas
the black line depicts the zero-dead-time clock scheme with N/2 = 10 in each ensem-
ble interrogated asynchronously. (b) Critical dead time T i as a function of the
ensemble size N for CSS and a linear estimation strategy.

clock operation remains advantageous in ion traps, where QPN imposes the primary
limitation. In contrast, the ZDT scheme is preferred in lattice clocks, where dead
time effects dominate. In the transition regime — characteristic of tweezer arrays —
the optimal strategy strongly depends on specific experimental parameters and thus
represents the crossover between the two approaches.

Increasing the complexity of the Ramsey sequence — by adapting the initial state,
the measurement or the estimation strategy — a similar qualitative behavior is ob-
served. However, the critical dead time decreases further with the complexity of
the quantum circuit, as dead time becomes the dominant limitation at progressively
shorter dead times, as examined in Sec. 4.8.
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Summary

Frequency metrology constitutes a cornerstone of modern precision measurements,
playing a pivotal role in advancing fundamental research and technology. In partic-
ular, optical atomic clocks represent the most precise measurement devices to date,
achieving stabilities at the level of 107'® and below. Current efforts to further improve
their stability involve exploring the use of entanglement in atomic systems to reduce
quantum projection noise and surpass the standard quantum limit (SQL) imposed by
uncorrelated atoms. Unfortunately, decoherence and noise processes limit the sensi-
tivity in realistic scenarios and present a substantial obstacle in frequency metrology,
impairing the precision of measurements by compromising the coherence of quan-
tum systems essential for achieving entanglement-based enhancement. Consequently,
frequency metrology inherently reflects a trade-off between achieving entanglement-
enhanced sensitivity and maintaining robustness against decoherence and noise pro-
cesses. Indeed, this fundamental challenge precisely defines the central objective of
this thesis.

Specifically, we have considered single-ensemble clocks in which the atomic ref-
erence is periodically interrogated utilizing identical Ramsey protocols in each clock
cycle. After providing a comprehensive theoretical foundation for atomic clock opera-
tion in Chapter 2 — primarily intended for future (graduate) students — we investigated
regimes limited by decoherence processes in Chapter 3 — with a particular focus on
spontaneous decay — and by laser noise in Chapter 4. As these two regimes are
somewhat orthogonal, they are most effectively studied within distinct theoretical
frameworks, namely local and Bayesian frequency metrology, respectively, which are

introduced in detail at the beginning of each chapter.

In Chapter 3, we investigated the impact of spontaneous decay to frequency
metrology, motivated by recent advancements in laser technology with coherence
times of state-of-the-art clock lasers entering the regime of the excited-state life-

time of various clock candidates. This is particularly relevant as the finite lifetime

171



172 Chapter 5. Summary

of qubits in the excited state represents a fundamental limit rather than an external
noise source.

Surprisingly — and in contrast to dephasing — we demonstrated that maximally
entangled GHZ states provide a substantial enhancement compared to the SQL in the
presence of spontaneous decay. In particular, we identified a protocol with quantum
operations of low complexity and a highly nonlinear estimator that achieves this
remarkable improvement. This is realized by a measurement and estimation scheme
that implicitly allows to identify spontaneous decay events based on the measurement
outcomes, while the estimation strategy explicitly excludes these cases at the end
of the Ramsey sequence. Thus, it effectively implements an error detection and
mitigation scheme tailored to frequency metrology limited by spontaneous decay.

In addition, we presented a variation of this protocol utilizing a GHZ-like initial
state — with an unequal superposition of the two maximal Dicke states attributing a
higher weight to the excited state to counteract spontaneous decay during the free
evolution time — which achieves the ultimate lower limit for ensembles with several
tens of atoms and outperforms spin-squeezed states (SSS) for up to 80 atoms. We
validated the robustness of these protocols in realistic scenarios through comprehen-
sive Monte-Carlo simulations of atomic clocks, thereby paving the way for near-term
implementations into experimental setups. Moreover, we provided a detailed inter-
pretation of why GHZ(-like) protocols remain optimal in the presence of spontaneous
decay. Finally, we have examined the susceptibility of the GHZ(-like) protocols to
dephasing.

Chapter 4 presented progress in frequency metrology tailored to optical atomic
clocks primarily limited by laser noise, which currently is — and will likely remain —
the dominant constraint in many experimental setups. We consolidated and extended
previous findings on atomic clocks limited by laser noise and variational quantum
circuits to establish a comprehensive theoretical framework for this regime. In par-
ticular, we focused on approaching the ultimate lower limit in stability via low-depth
quantum circuits based on one-axis twisting operations across a variety of scenarios —
including different experimental platforms, ensemble sizes and regimes characterized
by a wide range of interrogation durations and dead times.

In general, clock stability reflects a trade-off between quantum projection noise
(QPN), the coherence time limit (CTL) and dead time effects. Furthermore, fringe
hops impose additional constraints on stability within the full feedback loop of an
atomic clock. The optimal Ramsey protocols — and correspondingly the highest

achievable clock stabilities — generally depend strongly on the specific parameters



173

of the experimental setup. Although variational quantum circuits promise substan-
tial enhancements in idealized scenarios, practical constraints as fringe hops and dead
time effects limit these advantages.

In realistic scenarios, small ensembles comprising a few atoms — characteristic for
ion traps — are limited by fringe hops at long interrogation times and thus, GHZ states
and spin-squeezed states (SSS) approximate the ultimate lower bound across a broad
range of interrogation times. Furthermore, variational Ramsey protocols are generally
unfavorable for large ensembles — entering the regime of lattice clocks — due to the
inherent particle number fluctuations. As a result, they offer a significant advantage
only for intermediate ensemble sizes of several tens of atoms — as encountered in
tweezer arrays — in the regime primarily limited by QPN. In this regime, low-depth
quantum circuits [1,m| are sufficient to approach the ultimate limit as the benefits
diminish with increasing m, leading to a trade-off between increased complexity and
extended dynamic range.

In the presence of dead times typical for ion traps, the behavior closely resembles
the dead time-free case for small ensembles, since QPN dominates the Dick effect.
In contrast, Dick noise becomes the primary limitation for tweezer arrays as dead
time increases, substantially reducing the potential enhancement offered by varia-
tional quantum circuits compared to SSS. For large ensembles in the regime of lattice
clocks, QPN is reduced well below dead time effects. As a consequence, increasing
the complexity of the Ramsey sequence is redundant and coherent spin states (CSS)
ultimately approach the lower limit at long interrogation times.

Finally, we briefly outlined clock schemes beyond the single-ensemble approach
that have the potential to address the primary limitations discussed in this chapter —
namely the laser coherence time limit (CTL), the emergence of fringe hops and dead
time effects. Although these approaches extend beyond the scope of the present work,
many of their underlying principles can be integrated with the Ramsey protocols dis-

cussed in this thesis.

As a closing statement, we hope that the results of this thesis will serve as a
reference of clock stability in current setups and provide guidance for implementing
optimal entanglement-enhanced Ramsey protocols in future clocks for a variety of
experimental regimes. Although this work is tailored to frequency metrology in atomic
clocks, the developed concepts extend to a general application in frequency metrology
and Ramsey interferometry, including implementations in atom interferometry and

magnetometry.
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Numerical routines

In this appendix, we present the numerical methods employed throughout this the-
sis. In particular, we discuss the optimization of Ramsey interrogation schemes in
App. A.1 and the Monte Carlo simulations of the full feedback loop in atomic clocks
in App. A.2, which are performed to validate the theoretical predictions developed
in this work. Furthermore, we present the procedure to determine the iterated prior
width and to incorporate dead time noise into the prior phase distribution in App. A.3.

The numerical studies are implemented in the widely used programming language
Python [248]. As is generally known, native Python can be comparatively slow when
operations on arrays are implemented using explicit loops. However, this limitation
is effectively addressed by the NumPy [249] library, which internally leverages opti-
mized C and Fortran routines for numerical computations, enabling efficient memory
management and vectorized operations that significantly reduce the overhead asso-
ciated with native Python loops. A particularly useful library for quantum systems
— especially for spin systems — is the Quantum Toolbox in Python (QuTiP) [250]. It
provides comprehensive tools to represent a variety of quantum states and operators,
perform quantum mechanical calculations and simulate dynamics in both closed and
open quantum systems.

Naturally, it is advantageous to evaluate the quantities of interest analytically
wherever possible to reduce the computational overhead of numerical computations.
In addition, repeated computational steps — whether within optimization routines or
clock simulations — are outsourced or precomputed to improve efficiency and ensure

that iterative procedures exhibit minimal computational complexity.
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A.1 Optimization

To perform numerical optimization of the cost functions introduced in this thesis, we
utilize the Python library SciPy [251], which provides a dedicated package for op-
timization routines. For comparably simple optimization problems — involving only
one or two parameters or when profound prior information about the optimal region
is available — we employ the minimize function, which implements standard local
optimization algorithms. In more complex scenarios, characterized by several param-
eters and a large number of local minima, global optimization techniques becomes
necessary. In such cases, we adopt a differential evolution approach.

In the following sections, we reformulate the cost functions to enable efficient nu-
merical evaluation and discuss specific limitations inherent to the numerical routines

used in the context of local and Bayesian frequency metrology.

A.1.1 Local frequency metrology

In Chapter 3, we investigate local frequency metrology in the presence of decoherence
processes during the Ramsey dark time. The treatment of such non-unitary dynam-
ics requires to consider the full 2¥-dimensional Hilbert space. However, by assuming
permutational invariance (cf. Sec 2.3.1), it is sufficient to restrict the analysis to
the subspace spanned by the permutational invariant Dicke states. The dimension of
this permutational invariant subspace scales as O(N?) and thus offers a significant
reduction compared to the exponential scaling of the full Hilbert space, enabling com-
prehensive numerical studies. An efficient implementation of this subspace is provided
by the QuTiP module Permutational Invariant Quantum Solver (PIQS) [99].

Efficient expressions for the cost functions— In a systematic optimization
procedure, the initial state and the measurement are iteratively adjusted in each op-
timization step. For the method of moments (cf. Eq. 3.32), the variance (AX (¢, T))?
of the observable X and the slope of the signal 04 (X (¢,T)) are required. While
the evaluation of the variance is straightforward, the slope can be directly computed

according to

0y (X (6, T)) = 0y Tr (XR.(¢) Ar[pia] RL(9))
= 0, Tr (RU($) X R.(¢) Ar[pin])
=d'Tr (Ri(ﬁb) [S., X|R.(¢)Ar [pin])
=i Tr ([S:, X]Ag r[pm))

(A.1)

where we assumed that the phase imprint R, (¢) (super-)commutes with the dynamics
arising from the decoherence processes Ar[pm] (cf. App. C.1).
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As the method of moments is not optimal in general, it is often advantageous
to consider the (classical) Fisher information (cf. Sec. 3.5.1) as a cost function for
optimization. With

04 P(}0) = 0, T (o) (o] R.(0)Ar[pn] RL(®)) "
= =i Tr (Jz) (2] [52; Ag.rlpin]])
the (classical) Fisher information takes the numerically more tractable form
T Sza A in ?

Tr () (| Ag.rlpin])

T

This quantity has to be optimized with respect to the phase ¢ to determine the
optimal working point ¢ (cf. Sec. 3.5.1). Although the apparent minus sign might
appear confusing, the (classical) Fisher information remains positive as the numerator
yields another minus sign.

Expressing the cost functions in this form enables efficient numerical implementa-
tion. In contrast, explicit evaluations based on the fundamental definitions typically
result in substantially longer computational runtimes, which in turn restrict the ac-
cessible ensemble sizes and the complexity of the quantum operations that can be

considered.

Limitations— Although the PIQS package provides an efficient implementation
for permutational invariant quantum systems — resulting in a quadratic scaling of the
Hilbert space dimension — the time evolution remains computationally challenging.
In principle, for a fixed interrogation time 7', the time evolution is identical across
all optimization steps and can therefore be evaluated once in advance. However, this
requires the explicit computation of the matrix exponential e“” of the Liouvillian
L, which contains O(N?®) elements (cf. App. C.2). Unfortunately, for spontaneous
decay and individual dephasing, the time evolution is non-trivial as the dynamics
is non-diagonal in the Dicke basis. Consequently, evaluating the general solution
e“T becomes unfeasible on a standard PC already for relatively small ensemble sizes
(N = 20) due to its computational complexity of O(N'?).! Interestingly, the mesolve
function of QuTiP offers an efficient computation for the explicit time evolution of a

given state [250], thereby allowing to study larger ensembles. However, this approach

'In general, for a system of Hilbert space dimension 7, diagonalization — and thus evaluation of
the matrix exponential — has complexity O(n3). In the specific case of the permutational invariant
subspace, the matrix representation of the Liouvillian £ has dimension O(N*) (cf. App. C.2) and
thus results in an overall complexity of O(N12).
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requires the evaluation of the time evolution in every optimization step, which ulti-
mately limits numerical studies to N < 30 as pursued in Chapter 3, particularly in
the case of the optimal quantum interferometer (OQI).

It is important to emphasize that this limitation originates from evaluating the
dynamics in the Dicke basis, which is suboptimal for spontaneous decay and individ-
ual dephasing. A significant reduction in computational cost could be achieved by
evaluating the dynamics in a basis in which the Liouvillian is diagonal, as demon-
strated in Refs. [97,98]. While such an approach would allow for the investigation of
significantly larger ensembles — and thereby address the aspects discussed in Sec. 3.10
— this is beyond the scope of this thesis. Notably, this direction is currently being
pursued by our master student Marius Burgath.

A.1.2 Bayesian frequency metrology

In Chapter 4, we restrict the analysis to the subspace with maximal spin S = N/2,
which is fully symmetric under particle exchange. This symmetry is preserved by the
unitary dynamics described in Eq. (4.4). The corresponding Hilbert subspace has
dimension N + 1 and therefore scales linearly with the ensemble size. Moreover, it is
sufficient to consider pure initial states, as mixing quantum states does not enhance
the sensitivity (cf. Sec. 4.3). These simplifications enable comprehensive numerical
investigations. In particular, the evaluation of the optimal quantum interferometer
(OQI) can be performed up to the regime where the asymptotic scaling is reached.
Nevertheless, numerical evaluation becomes computationally demanding for large en-
sembles NV > 1, especially when considering complex quantum circuits.

In Bayesian phase estimation, averaging over the prior phase distribution requires
evaluating an integral, as discussed in detail in Sec. 4.2. Fortunately, this integration
can be performed analytically by reformulating the expressions for the Bayesian mean
squared error (BMSE) utilizing the linear and optimal Bayesian estimation strategies,

as shown below.

Linear estimator— For any operator A = >, Ayar |[M)(M'| and an arbi-
trary input state |¢i) = D, (¥in)m |M) represented in the Dicke basis |M), the
expectation values can be expressed as

(A(9)) = (thin] RUP)AR()) [thin)
= 3 W) irAnar (i)™ 02, (A4)

M, M’



A.1. Optimization 179

Assuming a Gaussian prior distribution P(¢) with zero mean and variance (5¢)?, we
use the integrals

/ dgP(¢)e® = ¢~ 797 (09)° (A.5)
/ AP (¢)pe? = ia(5¢)2e 29" 09)" (A.6)
to obtain

[ AP (X(6) = 3 )iy Xavar (hn)ari(G9)2 (M — Mr)e 4707
. (A7)
[ 4P@) (X)) = 3 ()X )aran (i) AP0, (A9)
Busar = i(6¢)2(M — M')e 2 M=M007° x (A.9)
Chpap = e 2M-MPO8 (x2y (A.10)

and writing ¥ = ((Yim)-n/2, - - -, (Yim)4n/2)", the BMSE for the linear estimation
strategy (cf. Eq. (4.27)) takes the compact form

Ul Bt

() = (5¢)? — WinBn)” (A11)
Ul Cim

and is thus determined by simple scalar products.

Optimal Bayesian estimator— Similarly, for a projective measurement {|z)(z|},

represented by |x) = >, xa | M) with coefficients zp, € C, and an arbitrary state
|1), the conditional probabilities can be expressed as

P(z|¢) = | (x| R=(¢) [t)
= (2| R.(9) [thin) (in| RL(9) |)

Z aj e_ZM(b wm (¢1n)M’€ ¢xM’ (A.12)
M, M’

- Z yare' M M0y,
M, M’

where we defined yy = 2 (Yin)},. Using the integrals from Eq. (A.5) and Eq. (A.6),

we obtain

[ AP@PEI0)6 = 3 wiari(56P (0 ~ M) KU
M, M’
[a6P@)P10) = 3 g3 (A14)

MM’
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Defining the matrices D and E by

Daap = i(6¢)2(M — M)~ zM-M)?(50)? (A.15)
Eypap = e 2M-M)?(59)° (A.16)
and writing y = (y_ny2, - - ,y+N/2)T, the BMSE for the optimal Bayesian estimator
(cf. Eq. (4.29)) is given by

(A¢)* = (69)* = Y | =t (A.17)

where the summation over y effectively iterates over the measurement basis |z), re-

sulting in a summation over simple scalar products.

A.2 Monte Carlo clock simulation

To validate theoretical predictions on clock stability and to assess the robustness of the
presented Ramsey schemes in realistic scenarios, we perform comprehensive numerical
Monte Carlo simulations of the full feedback loop in an atomic clock throughout this
thesis. This appendix provides a brief overview of the methods used to simulate an
atomic clock, primarily aligning with Ref. [3].

The core Python implementation of the Monte Carlo simulation was originally
developed by Ian D. Leroux, focusing on different feedback strategies in the context of
conventional Ramsey interferometry utilizing coherent spin states (CSS), as described
in Ref. [92]. This initial implementation was tailored to single-ensemble clocks, where
the atomic reference is periodically interrogated using the same protocol in each clock
cycle.

In subsequent years, Marius Schulte adapted these routines. On the one hand, the
routines where extended to incorporate the simulation of spin-squeezed states (SSS),
with primary results published in Ref. [91]. On the other hand, the performance of the
code was substantially increased by transforming it into Cython [252] code. Cython
combines the development efficiency of Python with the execution speed of C. By
extending the Python language and allowing direct compilation into C, even modest
use of type declarations and minor code adjustments typically lead to considerable
performance gains — an essential advantage for atomic clock simulations involving
vast numbers of causally connected cycles.

In recent years, we implemented several additional modifications. The feedback
loop was generalized to incorporate a wide range of interrogation strategies, from
basic schemes such as applying corrections only after several clock cycles, to advanced
multi-ensemble approaches utilizing dynamical decoupling or cascaded clocks, which,
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however, are beyond the scope of this thesis. Here, we outline a minimal working
example representative of the implementation used to obtain the results throughout
this thesis — which are published in Refs. [1, 2] — focusing on single-ensemble clock
operation with identical Ramsey protocols in each cycle. In this context, the initial
implementation was extended to support the simulation of arbitrary Ramsey schemes.

Overall, the Monte Carlo simulation implements the basic principles of an atomic
clock, as introduced in Sec. 1.2 and Sec. 3.2, and follows the framework described
in Sec. 2.4. In the following, we briefly outline the main aspects of the Monte Carlo
simulations: the feedback loop, the local oscillator, the atomic reference and the servo.

Finally, we discuss the evaluation of the long-term-stability in atomic clocks.

A.2.1 Feedback loop

In general, the Monte Carlo simulation is implemented in terms of frequencies v
rather than angular frequencies w or relative frequencies y. Specifically, we consider
frequency deviations v(t) = vy — vo(t) (cf. Eq. 3.1) of the local oscillator (LO)
frequency 1,0 with respect to the atomic transition frequency 1.2

Each clock cycle k comprises two frequency values, representing the average fre-

quency deviation during dead time T

1 (k=1)Tc+Tp

Vdeadtime,k = ZT dt,’/(t/> (Alg)
D J(k-1)Tc
and during the Ramsey interrogation 7’
1 kTe
v, = —/ dt'v(t'), (A.19)
T Jo—1vyro+1

where T = Tp + T denotes the total duration of the clock cycle. Since frequency
fluctuations during dead time are not monitored, we primarily focus on the frequency
deviations v, during the Ramsey interrogation, while Vgeadtimex 15 updated in each
clock cycle accordingly. To distinguish between different frequency deviations during
clock cycle k, representing specific aspects of the feedback loop, we use superscripts
for v, in the following.

As v, denotes the averaged frequency deviation of the LO with respect to the
atomic reference at the end of the interrogation time in cycle k, prior to the measure-
ment, it is essential for the atomic interrogation. In particular, this frequency reflects
stabilization in preceding cycles (j < k), but still incorporates the intrinsic (new)

noise introduced during the current cycle k. At the end of the Ramsey sequence,

2Although angular frequencies w are typically used throughout this thesis, here we adapt the
notation to align with the implementation.
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vy, is estimated as v{* based on the measurement outcome. Finally, to complete the
feedback loop, the servo applies a correction v based on this frequency estimate.
The resulting stabilized clock frequency is given by

clock corr
v =y, — v (A.20)

Although the free-running LO frequency is not directly accessible in practice due
to continuous stabilization, it is convenient to generate the trace of average frequency
deviations associated with the free running local oscillator, denoted by v in ad-
vance (cf. App. A.2.2). The actual LO frequency v} in the presence of feedback is

free

related to v,/* through
v = Ve — ppot e (A.21)

where the total (or cumulated) correction applied up to cycle k is defined as

k

tot—corr __ corr

v, —E 2 (A.22)
j=1

Accordingly, the clock frequency can be expressed as
V]zlock — V]gree . V]i;otfcorr. <A23)

In summary, each clock cycle k consists of the following steps:

(i) Compute the frequency deviation during interrogation: v, = viree — pot o™

(ii) Estimate the frequency deviation based on a particular Ramsey sequence: g™

(iii) Evaluate the total servo correction based on the estimate: 1"~

clock free tot—corr

(iv) Correct the LO to obtain the clock frequency: vg°* = 1,/ — v,

The generation of the free-running LO frequency trace, as well as the implemen-
tation of the atomic reference and the servo, are detailed in the following sections.

A.2.2 Local Oscillator Noise

Throughout this work and in the Monte Carlo simulations, we assume clock operation

with identical interrogation sequences in each clock cycle. In particular, both the dead

time Tp and the interrogation time 7" are fixed during a single clock run. As a result,

the sequence of average frequency deviations associated with the free-running local
free

oscillator v,'*°, where k labels the clock cycle, can be generated in advance for a given
spectral noise density S,(f) or local oscillator Allan deviation o, 1,0(7). Specifically,
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we focus on three standard types of noise: white frequency noise, flicker frequency
noise and random walk frequency noise.

In principle, these frequency traces can be generated via a Fourier transformation
of the desired spectral noise in the frequency domain. However, this approach be-
comes computationally expensive for long traces involving many clock cycles (m > 1).
While white and random walk frequency noise can be generated using standard tech-
niques [84], flicker frequency noise is efficiently generated by a sum of multiple damped
random walks [92].

The main routine used to generate the frequency trace of the free-running local
oscillator takes the Allan deviation at unit averaging time as input. Specifically, for
white frequency noise (WN), flicker frequency noise (FN) and random walk frequency
noise (RWN), the respective input parameters are the Allan deviations o, wn (7 = 1 8),
o,rn(T = 1 s) and 0, gwn(T = 1 ), respectively. Importantly, these values specify
the Allan deviation in terms of absolute frequency deviations . A representative

example is shown in Fig. 2.2.

A.2.3 Reference

In each clock cycle k, the atomic reference is interrogated according to a specific
Ramsey sequence. The frequency deviation v gives rise to the accumulated phase
¢r = 2mT during the free evolution time (Ramsey dark time). At the end of
the Ramsey protocol, a measurement z; is performed and the frequency deviation
vk, is estimated as v = ¢$t/27T, where ¢ denotes the phase estimation of ¢y.
While different estimation strategies are discussed in the main text, here, we focus on
sampling measurement outcomes z based on the conditional probability distribution
P(z|¢). To this end, we distinguish between several scenarios in the following, for
which distinct sampling techniques are convenient.

Binomial distributions— An efficient method to sample Bernoulli trials is inverse
transform sampling [253]. For a single qubit with statistical model P(z|¢), this
procedure is implemented as follows: A random number p is drawn from the uniform
distribution over the interval [0, 1]. If p < P(z = +1|¢), the qubit is measured in the
excited state |1), otherwise, it is measured in the ground state |]). For N independent
qubits, this process is repeated to generate a sampled measurement outcome of the
ensemble, resulting in a binomial distribution (cf. Sec. 2.3.6).

Although this technique can, in principle, be generalized to arbitrary probability
distributions [253], we primarily employ it to sample measurements of the conven-
tional Ramsey protocol, which uses coherent spin states and projective spin measure-
ments, naturally yielding binomial statistics.
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Analytical distributions— If the conditional probabilities are known analyti-
cally, they can be efficiently evaluated in each clock cycle for a specific phase ¢.
A measurement outcome for an arbitrary statistical model P(z|¢) can be sampled
using the choices method from the random package in Python [254], which takes the
possible measurement outcomes and associated probabilities as input.

Exact numerical distributions— If no analytical expressions for the conditional
probabilities are available, they have to be evaluated numerically in each clock cycle
and can then be sampled using the methods describe above. In particular, it is useful
to distinguish between two scenarios:

(i) We assume pure states |¢)y,) in the fully symmetric subspace, a unitary time
evolution R.(¢) = e "= and arbitrary projective measurements within this sub-
space — represented by a projection-valued measure (PVM) {|z)(z|}. Specifically,
we represent input states |¢in) = > ,,(¥in)m |M) and measurement basis states
|z) = >y, xm |M) in the Dicke basis |[M) with total spin S = N/2. Consequently,
the conditional probabilities can be expressed as

P(z|¢) = (2| R:(9) [¢m)]*

=1 ahe M (W)l (A.24)
M
= [x'(r o ),
where o denotes the Hadamard product (elementwise multiplication) and the vectors

~@M and (vin)ar, Tespectively.

x, r and ¢y, have coefficients s, ryr = e

(ii) We consider mixed states py,(7") and arbitrary projective measurements — rep-
resented by a projection-valued measure (PVM) {|z)(z|}. Furthermore, we assume
that the dynamics can be decomposed into a non-unitary quantum channel p;, (7)) =
A7[pi] and a unitary phase evolution according to R,(¢), which commute. In the
Dicke basis |5, M), the evolved state and the measurement are represented as pi, (1') =
ZSM,S’M’ Csnsrnr |, M)(S', M'| and 11, = ZSM,S’M’ Asnrsir |5, M)(S", M|, re-
spectively. Hence, the conditional probabilities can be expressed as

P(z]¢) = Tr(|z) (2| R.(¢)pwm(T)RL(9))
= Z AS’M’,SMG_M)(M_M/)CSM,S/M/. <A25>
SM,S' M’

—ip(M—M")

By defining the matrix B with elements Bgargar = € and using that II, =

1T}, which implies Ag/ay sar = A%y g0p> We Obtain

P(z|p) = Z Asn,sr Bsmsiv Csasia- (A.26)
SM, "M
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Consequently, the conditional probability P(z|¢) is given by a sum over the matrix
elements of the Hadamard product A* o B o C', with coefficients defined above.

Note that these implementations are computationally significantly faster than
evaluating the conditional probabilities directly in QuT%P, as they take advantage of
efficient numpy array operations.

Gaussian approximation— In general, numerical evaluation of the conditional
probabilities becomes computationally demanding with increasing ensemble size, as
argued in App. A.1. However, if the statistical model P(x|¢) is well centered around
its mean value (X (¢)) for a given phase ¢, characterized by a small variance (AX (¢))?,
the statistics can be approximated by a Gaussian distribution with corresponding
mean value and variance. Consequently, this approximation effectively reflects an
application of the central limit theorem. The random variable associated with the
observable X is then distributed as

X~ N((X(9)) . (AX(9))), (A.27)

where N (1, 0%) denotes a Gaussian (or normal) distribution with mean ; and variance
a2

However, this approximation is generally not suitable for states with populations
exhibiting strict separation — such as the GHZ state, which comprises a superposition
of the collective ground and excited states. In contrast, it applies particularly well to
binomial-like distributions, as encountered for coherent spin states (CSS) and spin-
squeezed states (SSS). Indeed, Ramsey protocols utilizing CSS and SSS emerge as
robust and effective interrogation schemes in a variety of scenarios, particularly in
the regime of large ensembles, as examined throughout this thesis. In the case of CSS

and SSS, we obtain
(X(9)) = (i) sin(¢) + (5y) cos(o) (A.28)
(AX(9))? = (AS,)?sin*(¢) + (AS,)? cos*(¢). (A.29)

Specifically, the « and y components are independent, since (S,S, + S,5;) = 0, and
thus, S, and S, can be treated as independent random variables. Consequently, since
X effectively constitutes a sum of random variables, it is distributed as

X ~ N((S,)sin(¢), (AS,)?*sin®(¢)) + N ((S,) cos(¢), (AS,)? cos?(¢)). (A.30)
Additionally using that (S,) = 0, measurement outcomes can be sampled based on
X ~ [(Sz) + AS, Nsin(¢) + AS, N cos(¢), (A.31)

where N denotes a standard-normally distributed random variable with zero mean

and unit variance.
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Pre-evaluating the distribution— In scenarios where an exact numerical evalu-
ation of the conditional probabilities is computationally unfeasible and the Gaussian
approximation does not apply — for instance for intermediate ensemble sizes in the
presence of decoherence — the statistical model P(z|¢) can be evaluated in advance
for each measurement outcome x over a discrete set of phase values {¢™, ..., ¢(®}. In
each clock cycle k, the phase bin ¢ that is closest to the actual phase ¢, imprinted
onto the atomic reference, is identified and the corresponding precomputed condi-
tional probability is used to sample the measurement outcome. Hence, this approach
effectively constitutes a lookup table.

Although the selected phase bin ¢U) typically does not exactly match the actual
phase ¢, the resulting approximation error is negligible relative to dominant physical
noise sources such as quantum projection noise and frequency fluctuations. In partic-
ular, for Ramsey protocols with phase evolution represented by a 27-periodic unitary
rotation, even relatively small values of [ are typically sufficient to ensure accurate

sampling.

A.2.4 Servo

The servo determines the correction applied to steer the local oscillator towards the
atomic transition frequency. Specifically, the servo evaluates the total correction

v;° " based on the frequency estimate v{™, resulting from the Ramsey interrogation,
as well as the corrections applied in previous clock cycles {v;°" ™, 1%, <™, .. .}.

The implementation of the clock simulation incorporates two common servo types:
the double-integrating servo and the general linear integrator. Both approaches are
described in detail in Ref. [92] and are further outlined in Sec. 2.4. For the Monte
Carlo simulations performed in this thesis, we primarily employ the general linear pre-
dictor — taking into account the past 50 frequency estimates — which provides reliable
performance in several scenarios. However, the weights in the linear superposition of
previous corrections, as presented in Ref. [92], are not universally optimal, as they
rather represent a general approach. Hence, at specific interrogation times — where
numerical simulations substantially deviate from numerical simulations — it might be

advantageous to employ the double-integrating servo to reduce discrepancies.

A.2.5 Long-term stability

The (overlapping) Allan deviation is evaluated by adapting the Python package Allan-
tools [255]. Although the Allan deviation o,(7) depends on the total averaging time
7, clock stability is typically characterized by a single value, assuming that the Allan
deviation scales as ~ 1/4/7 for 7 > 1 s. This behavior is described by Eq. (3.23) in
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Figure A.1: Long term stability: The Allan deviation o,(7) as a function of the
averaging time 7 for the free-running local oscillator (pink) and a clock with NV = 100
atoms (blue). The clock is stabilized using a conventional Ramsey scheme based on
coherent spin states, a projective spin measurement and a linear estimation strategy.
The local oscillator is limited by flicker frequency noise with Allan deviation o, pn(7 =
1s)= % Hz, corresponding to a coherence time of Z = 1 s. The interrogation time
T/Z = 0.1 is in the regime where quantum projection noise is the dominant constraint
and we assume zero dead time Tp = 0. The Allan deviation at 7 = 1 s (circle) is
extrapolated from the asymptotic regime 7/7 > 1 using the expected 772 scaling.
Here, the Allan deviation is evaluated at 10? clock cycles (square) for a simulation
where 10° cycles were performed in total.

local frequency metrology and by Eq. (4.33) in Bayesian frequency metrology. Con-
ventionally, clock stability is quantified by the Allan deviation at unit averaging time
o,(7 = 1s). Equivalently, the Allan deviation can be rescaled with the total averaging
time, i.e. 0,(7)\/T.

However, due to the delayed feedback in clock operation, significant deviations
between theoretical predictions and simulations (or experiments) arise at short av-
eraging times 7 ~ 1 s, as illustrated in Fig. A.1. The expected long-term-stability
0,(T) o 1/4/T is recovered only for sufficiently long averaging times 7 > 1 s. There-
fore, stability is evaluated at 7 > 1 s and then extrapolated to its hypothetical value
at 7 = 1 s based on the scaling o,(7) x 1/4/7.

Since clock operation involves stochastic processes — such as random frequency
fluctuations of the local oscillator and quantum projection noise in the measurement
outcomes — results vary across different clock runs. To ensure robust stability esti-
mates, each configuration — defined by fixed ensemble size NN, interrogation time T,
dead time T, and Ramsey sequence — is simulated over 10 independent clock runs.
Accordingly, the data points shown in the respective figures represent mean values,

while error bars indicate standard deviations. To include a protocol in the results, we
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impose the stringent criterion that no fringe hops occur across 10® total clock cycles,
as even a single fringe hop leads to a complete loss of clock stability.

Furthermore, if frequency fluctuations of the local oscillator constitute the domi-
nant noise source, the clock stability can be analyzed within a general framework. In
particular, by rescaling the Allan deviation with the local oscillator coherence time
Z and the atomic transition frequency vq, the resulting stability effectively becomes
independent of the specific clock parameters, as pursued in Chapter. 4. Likewise, if
decoherence processes impose the primary limitation, the stability can be rescaled
with the corresponding decoherence rate, allowing for an equally general treatment,

as presented in Chapter 3.

A.3 Prior width

In this appendix, we outline the iterative determination of the prior width and the
incorporation of dead time noise into the prior phase distribution, as discussed in
Chapter 4.

A.3.1 [Iterative prior width

Eq. (4.35) provides a good approximation for the prior phase width §¢ in the regime
of large ensembles N and long interrogation times 7', as demonstrated in Refs. [91,
92,140]. However, as discussed in the main text, the prior width d¢ and estimation
error A¢ mutually influence each other in the full feedback loop of an atomic clock.
Moreover, any model of the prior width can only capture the true residual noise to
a certain degree. Consequently, an on-device optimization, as utilized in Ref. [142],
would most accurately reflect the experimental conditions and thus, yield the best
results. However, this approach has several disadvantages. First, it precludes theoret-
ical predictions and ab initio studies of clock stability, making it impossible to exclude
protocols prone to fringe hops, for instance. Second, it is exceptionally demanding in
terms of experimental time. While the variational parameters need only be optimized
for individual clock runs, evaluating the Allan deviation as a cost function requires a
sufficiently long averaging time 7 for each optimization step to achieve the long-term
scaling according to 1/4/7. Unlike Bayesian phase estimation, which can focus on
single interrogation cycles, on-device optimization for clock stability must account
for time-varying frequency deviations v across different clock cycles. As a result,
on-device optimization using the Allan deviation as a cost function is impractical.
To overcome these challenges, we focus on modeling the prior knowledge according
to a Gaussian distribution, as defined in Eq. (4.5), and iteratively adjust the prior
width 0¢ to account for the closed feedback loop dynamics. The general strategy
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involves simulating the full feedback loop multiple times and using the results from
previous simulations to estimate the prior width for the subsequent iteration stage.
This procedure is repeated until convergence is achieved. In each iteration stage, the
frequency deviation v at the end of the Ramsey dark time is recorded and the as-
sociated mean value is interpolated as a function of the interrogation time at a fixed
ensemble size. However, application of this iterative method to the variational pro-
tocols would lead to the same issues discussed above. Therefore, it is advantageous
to use fixed and robust protocols, such as CSS and SSS, to ensure consistency. Addi-
tionally, comparing results across protocols would be cumbersome, as each protocol
yields a distinct prior width and corresponding OQI. Instead, we approximate the
prior width d¢ for a fixed ensemble size through the following iterative stages:

e Stage 0 (Initialization): Start with a heuristic prior width, where d¢ is interpo-
lated linearly on a log-log scale between (d¢)? = (T/Z)*3N~'4 for T/Z = 0.01
and the value given by Eq. (4.35) for T'/Z = 1. Using this prior width, simulate
the CSS protocol with the optimal Bayesian estimator and record the resulting

frequency deviations {vy}.

e Stage 1 (Refinement): Use the recorded {v;} from the previous simulation to
determine the corresponding prior phase distribution. Fit this distribution to a
Gaussian, as described by Eq. (4.5), to obtain an updated prior width d¢. Plot
d¢ as a function of interrogation time and fit it with a fifth-order polynomial.
Exclude prior widths for interrogation times where fringe hops limit stability
and additionally add the value from Eq. (4.35) at T'/Z = 1. Simulate the SSS
protocol with the updated prior width.

e Stages 2,3, ... (Iteration): Repeat the refinement process.

Convergence is typically achieved after stage 3, even for small ensembles, as the
prior width from stage 4 introduces only negligible adjustments. This convergence is
generically illustrated in Fig. A.2(a). Hence, the prior width from stage 3 is adopted
to model a realistic atomic clock scenario used in Sec. 4.7 and Sec. 4.8.3. While this
iterative approach provides a reasonable approximation of the closed feedback loop
dynamics, it remains a simplification. Consequently, deviations between theoretical
predictions and numerical simulations may still arise, as discussed above and in the

mailn text.
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Figure A.2: Variance of the prior phase distribution: (a) Convergence of the
prior variance (§¢)? in the iterative approach for N = 8. The distinct iteration
stages are illustrated by colored lines. Additionally, the power law scaling Eq. (4.35)
and the SQL 1/N are shown for comparison. (b) Additional noise due to dead time
characterized by the associated prior variance (§¢p)? given in Eq. (4.47) for white
(gray), flicker (pink) and random walk frequency noise (brown). Mean values are
averaged over 10 independent runs.

A.3.2 Prior width and dead time

As discussed in the main text, the additional noise introduced during dead time can
be approximated as white noise in the asymptotic limit of many clock cycles. The
corresponding prior width d¢p is determined by simulating the uncorrected frequency
trace of the free-running local oscillator and quantifying the noise accumulated during
the cycle duration Tp. Specifically, the new frequency deviations P = piree —
viree are recorded for each cycle k, representing the differences between consecutive
cycles. Using the recorded values {vp*V}, the phase distribution associated with a
hypothetical phase shift during T is evaluated, and the corresponding prior width
d¢p is extracted. Simulations confirm the power-law scaling predicted by Eq. (4.47),
as illustrated in Fig. A.2(b).



Rotations of Collective Spin
Operators and States

In this appendix we investigate how collective spin operators and states transform

under collective rotations.

Arbitrary rotations of spin operators— A common transformation in the
framework of generalized Ramsey protocols is the rotation R,(6) of a spin Sy, around
an arbitrary axis n by an angle 6. As a reminder, the notation Sy, = m1.S; +maS, +
mg3S, represents the projection of the spin vector S along a particular direction m,
|lm| = 1. In the following, we derive an expression for the rotated spin operator

Sm(0) = RI(0)SmRa(0) = ¢ Spye ™50 (B.1)

where the explicit dependence on the rotation angle # denotes the transformed spin

operator. Differentiation with respect to 6 yields
DpSm(0) = ie" [Sy, S €75, (B.2)

Evaluation for each individual spin component S,,S,, S, results in the coupled dif-
ferential equations
0pSz(0) = n2S,(0) — n3Sy(0)
0pSy(0) = —n1.5.(8) + n3S,(0) (B.3)
0pS:(0) = n15y(0) — 1S, ().

191
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Rewriting this in matrix notation

89 Sy<9) = ng 0 —ny Sy(ﬁ) = | ng X Sy(e) (B4)

shows that 9yS(f) = n x S(A) and thus, the rotation of the spin in Eq. (B.1) is equiv-
alent to a rotation of the axis m around n by the angle 6. Consequently, according

to the Rodrigues rotation formula [256], the rotation of the spin results in'
Sm(0) = (n"m)n"S + cos(d) [(m” — (n"m)n”] S —sin(f) (n x m)”S. (B.5)

Equivalently, this expression can be derived explicitly by using Eq. (2.73). Consid-
ering the particular example of n = e, and m = e,, resembling the effective mea-
surement of the conventional Ramsey protocol (cf. Sec. 2.3.7), the transformation is
given by

S.(0) =S, cos(f) + S, sin(6) (B.6)

and thus, the second Ramsey 7-pulse is equivalent to measuring S, instead of S..

To implement spin systems numerically, it is necessary to choose a particular basis.
Typically, the eigenstates of S, are chosen, but in principle, any other spin projection
Sm works equally well. The following discussion can therefore be generalized to
any alternative basis. To determine several properties numerically — as expectation
values or probabilities of particular events — it is advantageous to express arbitrary
spin operators and states in terms of the preferred quantization axis.

Rotations of spin operators— Considering spin operators, we aim to determine

the rotation axis v and angle « such that
Sp = RI(2)S.Ry(a). (B.7)

To generate an arbitraty axis n by appropriately rotating e, it suffices to choose the
rotation axis v to lie in the z-y-plane. With v = (vy,v5,0)7 and using Eq. (B.5), the
right hand side becomes

RI(a)S Ry = cos(a)S, — sin(a) [v2S, — 115,] . (B.8)

IThe difference in the sign of the sine, compared to the usual rotation formula, comes from the
choice of defining a rotation Ry (#) = e~?*» with a negative sign.



193

Hence, we have to choose

U1 U
1
a = arccos(ng) and v=|upn|l=——7—7==|-n |- (B.9)
2 12 1
Vs 0

These are indeed the proper rotation angle and axis, as can be verified by noting that

sin(arccos(nz)) = \/1 — n2 = \/n? + n3. Consequently, to express any spin operator
Sy in terms of S, a rotation Ry («) has to be applied with angle o and axis v as
derived above.

Rotations of spin states— Considering spin states, we aim to determine the
rotation axis w and angle  such that

|9, M) = Rw(B) |5, M), (B.10)

where |S, M) . denotes the eigenstate of Sy, with eigenvalue M and total spin S. We
rewrite the eigenvalue equation Sy, |S, M) = M |S, M), according to

M S, M), = Sw|S, M), (B.11)
= SR (8)]S, M), (B.12)
= Rw(B)RL,(8)SmRw () |S, M), (B.13)

and thus, the appropriate rotation Ry () is defined by the relation
RL(8)SmRu(8) = S.. (B.14)
which is equivalent to
Sm = Rw(B)S:RL,(8). (B.15)

Comparing this with Eq. (B.7) shows that effectively Ry, (8) = R () when substi-
tuting n by m. Hence, spin states transform according to the adjoint of the rotation
applied to spin operators. This distinction can be accounted for by either flipping
the sign of the rotation angle (8 = —a), effectively reversing the rotation direction,

or flipping the rotation axis (w = —v).
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Decoherence processes

In the first part of this appendix, App. C.1, we demonstrate that the individual terms
of the master equation are independent and can therefore be treated separately. In
the second part, App. C.2, we derive general solutions for the respective contributions

to the master equation.

The dynamics of the system during the Ramsey interrogation time 7' considering
a unitary phase evolution, spontaneous decay with rate I', individual dephasing with
rate 7 and collective dephasing with rate <. is governed by the master equation
Eq. (3.4). For simplicity, we introduce the following notation for the distinct terms

Lylp] = —iw|S, p] (C.1)
T N
Lrlpl =5 Y200 p0 —oldp — pold (C2)
k=1
~ N
Lolpl = =5 D> olpo ) + o pold) (C.3)
k=1
Lo.lp) = £25.pS. = psS% = S2p. (C.4)

Hence, the master equation Eq. (3.4) reads

p = Lylp] + Lrlp] + L[p] + L..[p]. (C.5)

195
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C.1 Independence of the processes

In the following we show, that the four terms of the master equation (super-)commute

pairwise.
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'In principle, the following calculations can be shortened by restricting to single-particle operators
for independent sums and concentrating on the relevant terms where commutation is non-trivial.
Nevertheless, we will explicitly carry out the calculations at this point for clarity and completeness.
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which are the same when renaming the summation indices j, k, (.
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The terms without o operators are equal since only o, and o, appear which
commute independent of the index. For the remaining terms, we have to dis-
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While the terms with two o, operators are equal, for those with four o, operators

we again have to distinguish between all five cases:
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C.2 Time evolution

Since the individual contributions to the master equation in Eq. (C.5) (super-)commute
pairwise, as demonstrated above, the dynamics of the associated processes can be

solved separately.

Solution methods— In general, we aim to solve a master equation of the form
p = L]p|, governed by the Lindblad (super-)operator £, also known as the Liouvillian.
Here, we outline a generic solution strategy for a two-level system, which can be
readily extended to arbitrary ensemble sizes. Considering the state

P = Pee| T) (T + peg| 1) (L] + pgel L) (1] + pggl 1) (LI, (C.6)
the master equation yields four — potentially coupled — differential equations
pee = (T I1) = (T Llp] 1) (C.7)
peg = (T 11) = (P Lo 1) (C.8)
Pge = (LT = (LI LA T) (C.9)
Pag = (o) = (LI, (C.10)

which can be solved using standard techniques. Alternatively, the formal solution is

given by
p(T) = e p). (C.11)

Since the super-operator £ acts linearly on the space of density matrices, it can be
represented as a matrix acting on the vectorized density matrix p. Hence, the master

equation can be expressed as

= Lp. (C.12)

For a two level system, L is represented by a 4 x 4 matrix and Eq. (C.12) is explicitly
given by

Pee LI CATLIN T GTLOD AT ALLID T | [ pee

peg | _ [ CHLEIMCHTID - CHLLIM QT LI AT CHTLID G | | peg

Pge LI LI T LD AT LI T | ] rge

Pag LI LI TR GLLID AT GLID T ) \pgg

(C.13)

More generally, for a system with Hilbert space dimension n, £ is represented by a n? x

n?-matrix. In this form, the solution of Eq. (C.12) is obtained via the corresponding

matrix exponential p(T) = e*7 .
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Unitary phase evolution— The unitary phase evolution described in Eq. (C.1)
results in a collective rotation by an angle ¢ = w7 around the z-axis, as described by
Eq. (3.6). This rotation acts independently and identically on all qubits and thus, it
is sufficient to solve the dynamics for a single qubit. Consequently, it is convenient
to examine the dynamics in the single-particle basis. In particular, we consider the
generic state defined in Eq. (C.6) and examine the dynamics based on the evolution

of the matrix elements. The unitary phase evolution results in (cf. Sec. 2.3.5)

Pee(®) = (T]p(9) [T) = pec (C.14)
peg(0) = (11 p(0) 1) = pege™ (C.15)
poe(0) = (L p(0) [T) = pyec™ (C.16)
Pgg(9) = (L p(0) 1) = pyg (C.17)

Hence, only the coherences pe, and pg. accumulate the phase ¢, while the populations

Pee and pge remain unchanged.

Spontaneous decay— The dynamics associated with spontanteous decay, de-
scribed by the Lindblad operator in Eq. (C.2), is likewise independent and identical
for all qubits. The corresponding single particle master equation reads

. T
p=3 (20_pOy — Oeep — POee) - (C.18)

Accordingly, the time evolution of the matrix elements is determined by

Pee = (T P[1) = —Tpee = Pee(t) = peee_rt (C.19)
r re

Peg = (T pIL) = _§peg = Peg(t) = pege™ 2 (C.20)
r Tt

Pge = (L pI1) = —5Pge = Pge(t) = pge€” 2 (C.21)

Pgg = (L P = Tpee = Pag(t) = Pgg + Pec [1 - e_rt] . (C.22)

As a result, for spontaneous decay, the population decays from the excited to the
ground state, while the coherences diminish with 7.

Individual dephasing— Likewise, individual dephasing, described by Eq. (C.3),
acts independently and identically on all qubits. With the master equation for a
single particle

. Y
pP= _§ (Ueepagg + Ugng'ee> ) (C23>
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the evolution of the matrix elements results in

Pee =0 = Peelt) = pee (C.24)
Peg = _%peg = Peg(t) = pege_%t (C.25)
Pge = —%pge = peelt) = pgee? (C.26)
Pgg =0 = Pag(t) = Pgg (C.27)

Thus, in the case of individual dephasing, the coherences decrease, while the popula-

tions remain unchanged.

Collective dephasing— In contrast to spontaneous decay and individual dephas-
ing, collective dephasing — as its name suggests — represents a collective decoherence
process. The master equation of the system is governed by Eq. (C.4) and thus, Dicke
states (cf. Sec. 2.3.1) represent a more convenient basis. As a consequence, we typi-

cally consider collective dephasing separately. The matrix elements evolve according

to
psprsr = (S, M| plS', M') (C.28)
= % (2MM' — M? — (M")?) ps.arsr (C.29)
= —%(M — M")?ps a5 aar (C.30)
= psarst e (t) = psas ar €Xp (—%J(M - M/)2) : (C.31)

Hence, as for individual dephasing, the populations remain unchanged, while the
coherences decrease. Furthermore, no coherences between blocks with S # S’ are
created, which allows to employ the reduced Dicke basis, introduced in Sec. 2.3.1.
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Derivations of bounds in

local phase estimation

In this appendix, we present a collection of proofs from the literature, such as

Refs. [6,161-170], for the lower bounds on the phase estimation uncertainty, as de-

fined in Eq. (3.13), in the context of local phase estimation theory and the funda-

mental properties of the (quantum) Fisher information. In particular, to ensure a

self-consistent understanding of the proofs, we first explicitly restate the assumptions

and results from the main text before providing the proof.

D.1 Cramér-Rao Bound (CRB)

Assuming a locally unbiased estimator at ¢y, i.e.

aestlfb:(ﬁo = Z P<m|¢0)¢est(‘r) = ¢0

dPei|  _ N~ dP(2l9) _
dg lo=g0 ZT: d¢ ‘¢¢o¢e“(x) -

and standard regularity conditions

S~ Y Plale) o

the CRB reads

(A6(T))* = (Adors(T))* = min(Ag(T))* = f[A¢T[plin] {TL.}]”

with Fisher information [171,172] defined by

Fitoalpnl (L1 = % 5z (Fyn ) -

207
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Proof: The proof is based on Refs. [161, 162, 164, 165]. The product of the phase
estimation uncertainty (A¢(7))? and the Fisher information F(¢) can be rewritten
as follows

(AG(T)*F[Aprlpin] {1 }]

_ (Z P(2|®) [pest () — ¢]2) (Z P(;Iﬂﬁ) [dp‘gzw)} )

(D.6)
- (s lvriaatn o) ([ i
Application of the Cauchy-Schwarz inequality results in
(A(T))* - FlAgrlpw], {11:}] = (Z (e () — &) dPéf;lszﬁ))
' (D.7)

2
_ (Z dP<Z|¢ ble ¢>Z dP( a:|¢ ) |

xT

While the first term gives 1, since the estimator is locally unbiased and thus Eq. (D.2)
holds, the second term vanishes due to the regularity condition Eq. (D.3). Hence, the
right hand side gives unity and we obtain the CRB Eq. (D.4). O

From this derivation we conclude that saturation of the CRB is equivalent to

saturation of the Cauchy-Schwarz inequality, which is obtained for

1 dP(zle)
F()V P(2]0)(Pesi(2) — ¢) = TG 44 (D.8)

with f being an arbitrary function of ¢, independent of the measurement outcome x.

D.2 Fisher information

D.2.1 Convexity

Assuming that the state py,(¢,T) represents an arbitrary mixture

with weights p, > 0 satisfying > ©, px = 1, the associated Fisher information is convex
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where Flpy(¢,T), {11, }] denotes the Fisher information of state py.

Proof: The proof is based on Refs. [163,164]. For a mixed state as defined in Eq. (D.9),
the conditional probability P(x|¢) is a superposition of the likelihoods Py(z|¢) cor-
responding to the states pg(¢, T), since

P(z|¢) = Tr (pin(¢, T)IL,) = Tr (Zpkpk(qﬁ, T)m) (D.11)
= Zpk Tr (I px (0, T Zkak x|o). (D.12)

Accordingly, the Fisher information associated with pj is given by

Flplo. 7). A1) = 3 s |0 (013

With this notation, the convexity of the Fisher information can be demonstrated by

by employing the Cauchy-Schwarz inequality:

dP(z|p)]? AP, (x k. dPu(z
[ S@W} _ lzpk |¢] lz\/m / px|¢ |¢]

k

< (Zpkpk@:w) (Z e | )] ) (D14
= Pli9) e Fly(o. ). L)

Dividing by P(z|¢) and summation over x finally results in Eq. (D.10). O

D.2.2 Additivity

Assuming a separable time evolved state with N independent systems py, (¢, T) =
®§V:1 pi(i) (¢, T), where pi(fl) (¢, T) denotes the state of the j-th system, and independent
/)

measurements 11, = ®§V:1 Hg), with measurement outcomes x; and POVMs H(IJJ for

each system, the Fisher information is additive
N .
Flom(¢, T) ALY = D Flpl (6, T), {19}, (D.15)
j=1

where F[pY (¢, T), {T1¥}] denotes the Fisher information of the j-th system.
Proof: The proof follows Ref. [164]. For a separable time evolved state and inde-
pendent measurements, the conditional probability factorizes according to P(x|¢) =
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H] L Pi(7;]¢), where PY(z;|¢) = ( & ,om ((b, )) denotes the likelihood of the
J-th system. Hence, we obtain

1 W (z1]¢) - - PV (zy|0) ]
./T'.{pin((m T)7 {Hm}] = Z P(l)(l’1|¢) e P(N) ('TN|¢) [ 1 d¢ -
_ Z PW(z1]¢) - - - PN (2 y]|0) (D.16)
y i | 1 dPY)(z;]¢) dP(k)(fﬁk|¢)’
A PO al0) PO (zg]0)  do dé

where we have applied the product rule. Here, it is instructive to distinguish between

the two cases, namely j = k and j # k. For j = k, the expression becomes

a 1 APV (z]¢)]’
Z Z PO (z1]¢) - -- PN (an|¢) — 2{ 10 }

P [PU)(z5]9)]
. 1 [dPY(]¢)]"

:ZZ o [ } > [1P% (ko) (D.17)
j=1 z; ( |¢> d¢ T1 ey 1,4 150N kFE]

_Z-Fpm T }]7

where we introduced the Fisher information of the j-th system

, @D (161>
Flpi (6, 1) A{TIVY] Z P(J {dP d((ﬁ”‘ﬁ)} (D.18)

and used that the last bracket in Eq. (D.17) equals 1 due to the normalization of the
conditional probabilities. Conversely, for j # k, we find

N

(1) ), dPY) (z]¢) AP (x1|9)
dPY (1. dpP®)
o 2—]

Y S [T PO lo)

T1geensTj— 158§ 1y Th— 1Tk 150 TN KFEIFET

While the last bracket equals 1, as before, the first and second bracket vanish as a
result of the regularity condition Eq. (D.3). Thus, the terms for j # k vanish, yielding
Eq. (D.15). O
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D.3 Method of moments

In this appendix, we outline the linear estimation strategy based on the method of
moments, following Refs. [6, 164, 167]. Suppose an observable X with known mean
value (X (¢,T)) and variance (AX(¢,t))%. Furthermore, assume n measurements of
X with results x4, ..., ,, defining the random variable X,, = % Z?:l x; which takes
the mean value of the measurement outcomes. Although the conditional probabilities
are inaccessible and thus the ML estimator cannot be employed, the central limit the-
orem nevertheless provides the probability distribution of X, in the asymptotic limit
of many repetitions n — oo given by X, "~° N((X(4,T)), (AX (¢, T))?/n), rep-
resenting a Gaussian distribution with mean (X (¢,T)) and variance (AX (¢,t))*/n.
However, this only works sufficiently well if 9, (X (¢, T)) > 0,(AX (¢, T))?, implying
that the changes of P(x|¢) are primarily captured in the shift of the mean value.
Conveniently, in this asymptotic limit, the concept of the ML estimation strategy
can be applied to X,,, as we know its asymptotic probability distribution. Obviously,
the distribution of X, is maximized for X,, = (X(¢,T)). Introducing the function
f(¢) = (X(¢,T)) corresponding to the signal, the estimator associated with the
method of moments ¢p2°™ is thus the value of the parameter for which f(p2o™) = X,.

est est

By inversion of the signal, we obtain ¢m°™ = f~1(X,). For instance, for a sinu-

soidal signal of the form f(¢) = (X(¢,T)) = bsin(c(¢p — ¢p)), the corresponding

mom( X ) = Larcsin(X,,/b) + ¢o. However, this inversion is possible

estimator reads ¢p.¢ c

only in the regime where f(¢) = (X (¢, 7)) is monotone. As argued before, in local
phase estimation the phase ¢ is tightly centered around the optimal working point
bo, i.e. (¢ — ¢g)* < 1. Hence, in this regime, the signal (X (¢,T)) can typically
be linearized around ¢y. In particular, we approximate the signal to first order as
(M), = f(¢) = 2(¢— ¢o), where the scaling factor a = (9 (X (¢, T)) |g=g,) " reflects
the inverse slope of the signal at the optimal working point ¢y. Consequently, the
estimator associated with the method of moments is defined as

X

Pmo™(X,) = aX,, + ¢o = 85 (X (6. T)) loon

+ do. (D.20)

In the limit n — oo, X, converges to the mean value X, "= (X(4,T)). As a

— . .
consequence, Qo™ "2 ¢ and thus, the estimator Pet™ becomes asymptotically un-

biased. Furthermore, both sides of the condition for saturation of the CRB Eq. (D.8)

vanish, and thus, the CRB is asymptotically saturated and ¢¢™ becomes efficient.

With P(X,|¢) = N((X(¢,T)),(AX(4,T))*/n), the Fisher information for the state
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Ay r|pin] and measurement {II, , }, describing the observable X, is given by

barind = O ey (MR )

' W 27r<AXTz¢, )2 P (‘n();?l)éf;fq;gg W)]Q

- [ s (M nr )

[ o]

_ [d<X<¢,T>>r n
d¢ (AX(¢,T))*
where we approximated the sum | x, by an integral [ dX,, due to the limit n > 1 and

(D.21)

furthermore used the property of Gaussian distributions [ dx \/;7302@”2/ 20° — 1 /g2

to solve the integral. As a consequence, for n > 1, the sensitivity of ¢ple™ at ¢ is

given by
(AX(¢,T))
n (@ (XGNP,

which reproduces the well-known form. Interestingly, Eq. (D.22) can equivalently be

(A¢mom(T))2 = (D'22)

derived through error propagation (cf. Sec. 2.3.6). If we Taylor expand X, around
o, We obtain

X = (X (00, T)) + 05 (X (6, 7)) g0 - (D™ = &) + O [(4" = 6)*]  (D.23)
and thus
(Xn — (X(¢0, 7))
(D6 (X (6, 7)) l6=g0)*
Identifying (X, — (X (¢0,7)))? = (AX(¢0,T))*/n and (2™ — ¢)* = (Admom(T))?,

est

= (ga" —9)". (D.24)

we reproduce Eq. (D.22). The linear estimator and associated phase estimation un-
certainty presented in the main text (cf. Sec. 3.5.1) are obtained for n = 1.
However, it is important to note that the method of moments with associated
estimator Eq. (D.20) is only optimal for X,,, i.e. when only the mean and variance of
the observable X, are available. In general, assuming having access to the probability
distributions of each individual measurement result, it is not optimal as we show
below. With
LX) _ 5 AP, g,y S0

do d¢
v . (D.25)

B Blad 1 dP(z|p)
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where we effectively added zero by > (X (¢,T)) %ﬂ‘é) resulting from the regularity

condition Eq. (D.3), we can apply the Cauchy-Schwarz inequality

d(X(¢,T))]* 2 L (4Pl
{_gé} < ;P(m|¢)(x—<X(¢,T))) ;p@:w)( d¢ )

d
— (AX(6,T))* F(9) (D.26)

and consequently, for a single measurement n = 1, we obtain

1 < (AX(6.T))"

F(Agrlpm], ATl }) = (95 (X(9,T)))

where {II,} describes the measurement of the observable X.

(Adcrn(T))* = 7 = (Abuon(T))*,  (D.27)

D.4 Quantum Cramér-Rao Bound (QCRB)

For a given initial state pi,, the QCRB optimizes over all measurements {II,} and
estimation strategies ¢.s; and is given by

1

(A¢)* > (A¢crs)’ > (Adqers)’ = = (D.28)
! Falborlonl]
The quantum Fisher information (QFI) is expressed as
Folpl = Tr(pL?) (D.29)
with symmetric logarithmic derivative (SLD) L implicitly defined by
dp 1
— = —(pL+ Lp). D.
12 (pL + Lp) (D.30)

In analogy to the phase estimation uncertainty, the quantum Fisher information es-
tablishes an upper bound to the (classical) Fisher information by optimizing over all
observables X (with associated POVMs {II,}), such that

Folpl = max Flp, {IL }] (D.31)

Proof: The proof is based on Refs. [161, 162,164, 168, 169]. Eigendecomposition of
the state according to pin(¢,T) = Agr(pm) = D,k |k)(k|, with (j|k) = 0k, pr > 0
and ), pr = 1, allows for the explicit evaluation of the matrix elements of the SLD.
Specifically, with

dpin(¢7 T) 1

Gl PRS2 = 5 Gl ou(@. T)L + Low(@.T) ) (D32)

1, 1 .
=3 (Jlp;L + prL|k) = §(pj + i) (G| L |K), (D.33)
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we obtain

GIL ) = <J|dp‘“¢T)|k> (D.34)
] .
by +pk

Since pin(¢,T) is hermitian, the SLD L likewise is hermitian. For a measurement

{II,.} associated to the observable X, with corresponding conditional probabilities
P(z|¢) = Tr(ILpin(¢, T)), the (classical) Fisher information is given by

Flpw (6, T), {11,}] = Z Tr(Hzpilnw,T)) {dTr(Hmél;l(Q 1 (D.35)
The numerator can be rewritten as
dTr(Hwé);l(cb,T)) . <H%§ZT) )
= & T (L Lp(9, T) + TWapia(, 7))
%Tr (e Lpin (6, T) + pin(¢, T) LIL)
= T (Lo (0, ) + ply (6, )LL) (D.36)
= T (I Lpia(6.T) + [ Lpia(6.T)]')

= ReTr (IL, Lpin (¢, T'))
< | Tr (I, Lpin (¢, 7)) |

= 1T (V& VIV TLL (6T ) |

where we used the cyclicity of the trace, the fact that p,(¢,T), I, and L are hermi-

tian, and that pi,(¢, T), I, > 0. In a next step, we can apply the Cauchy-Schwarz

inequality with respect to Hilbert-Schmidt matrix scalar products, i.e. | Tr (ABT) > <

Tr (ATA) Tr(BTB) with equality if and only if A = AB, where A € C. Hence,

S T))r < 1T (Voulo TWIVILL (6. 1)) P (D7)

Finally, dividing by P(z|¢) = Tr (pin(¢, T)11,), summation over = and using > __1I, =

1, we derive

Flpm(o, T),{IL,}] < ZTr (o Lpin (e, T)L)

—Tr ([ZH }me 6, T ) (D.39)

=Tr (pin(¢; T) ) = fQ[pin(¢7 T)],
which yields the QCRB Eq. (D.28). O
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D.5 Quantum Fisher information (QFI)

D.5.1 Convexity

For a mixed state pi,(¢,T) = >, prpr(¢,T), as defined in Eq. (D.9), with weights
pr > 0 satisfying ), pr = 1, the QFT is convex

Folpn(e,T)] < Zpk]:Q pr(6,T)]. (D.40)

Proof: The proof follows Ref. [164]. The convexity of the QFI follows directly from the
convexity of the classical Fisher information. For the measurement {II,} describing
the SLD L associated with p;,(¢,T'), which corresponds to the optimal measurement,

we have

Falow(9,T)] = Flow(d, T), {TLY] < > peFlow(s, T), {IL}]. (D.41)

However, the optimal measurements for the states pi (¢, T'), given by {I1, x} describing
the corresponding SLDs Ly and yielding Fq[px(¢, T)] = Flpr(o, T), {11, }], generally
do not coincide with {IL,} or L, respectively. Thus, Fqpi(¢,T)] > Flpr(o,T), {IL,}]
and we finally obtain Eq. (D.40). O

D.5.2 Additivity

If we assume N independent systems pi, (¢, T) = ®;V_1 pf?(gb, T), the QFI is additive

pln Z‘FQ pln 7 <D42>

Proof: The proof is based on Ref. [164]. With the SLD LY of the j-th system,
differentiation of py,(¢,T") with respect to ¢ using the product rule gives

dpm(0,T) _ d (V)

d¢ _d¢pin <¢7T)®®p1n (gva)

_ dpfi)(qsaT) Q... ®p(N)(¢ T)

(2)

dpind(jv T) Q... ® (N)(¢, )
(D.43)

LOp0,7) + ply) (6, T)L“)] ®...0 o (6.T) +
[

LY pin(6,T) + pin(¢, T)LW] + ...

N
[Z L9 (6. T) + pia(, T ZL”]

j=1
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and thus yields L = Zjvzl LY. Hence, the QFI becomes

fQ[Pm(d), T)] =Tr (pin(¢7 T)L2)

:iﬂ®WmWW%§Z(%%>””U
=" Falpl (0.7)

J=1

and we obtain Eq. (D.42). The mixed terms j # k vanish, since

N N
> (o) (6, T)EILD) = 37 T (p0) (6, T)LD) T (LW,

jk=1 jk=1
and

T (6 (6. 1)) = 5T (66, T)LD) + 190 (6, 7))

:ﬂ(%%gﬂ>:$ r (b(6.7)) = 0

due to normalization of the states p (gb, T).

D.5.3 Unitary phase evolution

Assuming a general unitary phase evolution with generator G' according to
Pin(9) = €% pyy ¢

and corresponding von Neumann equation

dp
- _ il
0 ilG, pl,
the quantum Fisher information (QFT) can be expressed as
p] 2
Folpn(,T)] =2 Z (JlG k) I,
pj+plz>0

(D.44)

(D.45)

(D.46)

(D.47)

(D.48)

(D.49)

where p;, and |k) are the eigenvalues and eigenstates of pi,(¢,T'), respectively. The

associated optimal measurement is given by

—%}j“ P\ iy G G R G

p]+pk>0

(D.50)
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Proof: The proof is based on Refs. [164,168]. In the eigendecomposition py,(¢,T) =
>« Pr|k) (k| with eigenvalues p, > 0, satisfying >, pr = 1, and eigenstates |k),
respectively, we derive

fQ[pin(¢7 T)] Tr(pm Zpk ]{7| L2 |]{Z
—mewmmm
_Zpk’ GIL k) |? (D.51)

Zﬁ%ﬁmum%
gk
Pj+pE>0

where we effectively reordered the weights p; in the last step. Furthermore, with
Eq. (D.34) and Eq. (D.48), we obtain

2 . dpln(¢aT> 2
F in ¢,T = Vi k‘
alpin(9, 1)) %;pﬁpklﬂ 10 k) |
Pj+pp>0
= Y =) Gl AR P
o Dj + Pk
pj+pk>0
) (D.52)
- — ) G| G k) |?
Z/; pj+pkl(pk p;) (Gl G k) |
Js
pj+pk>0
=2 Gk
; BB Gl P,
p]+pk>0

which yields Eq. (D.49). Similarly, the matrix elements of the SLD are given by

2 (j| 227 |k) (k= py)
| L|k) = = 21— (j| G |k D.53
Gl L) = == DI I, (D.53)

resulting in Eq. (D.50). O

D.5.4 Pure states

For pure states pin(¢, 1) = [1y) (Y| and a unitary phase evolution according to
Eq. (D.48), the QFT simplifies to

Folon (9. T)] = Fallvs) (Wsl] = 4AG)* (D.54)
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and thus is given by four times the variance of the generator G.
Proof: The proof follows Ref. [164]. For a pure state, we can express the derivative
of the state with respect to the phase as

dpin (o, T . . 1
LoOT) ool + 1) (el = 5 [0l L+ L6 (D59
Using that the mixed terms vanish as a consequence of the normalization of the state,
ie.
) ) _d -4 D.56
(Voltg) + (Vglthy) = @(%W@ “ul=" (D.56)
the SLD reads
L =2 [Wo{tbol + o)l | (D.57)

The corresponding QFI is given by

Fallvs) (sl] = Tr(|vs) (sl L?)
= 47Tr (1) (ol |[906) ) (] + 166 oo 10} ()

o 160 (Wi 156 (W] + 6 (Wl o) (1) (D.58)
=4 ((%W@Q + (o) + (slte)® + WH%))
= 4 ((Waldho) = [Walba)?)

where we used the square of Eq. (D.56) in the last step. For a unitary dynamics
according to Eq. (D.48), we obtain |14) = —iG |1)4) and thus

L = =2i (G [Yg)(Yg] — [t0g) (¥g] G) (D.59)
Follbe) (Wol] = 4 ((Ws|G?[1hg) — [(0o|Glibg)|?) = 4(AG)?, (D.60)
which proves Eq. (D.54). O

Furthermore, since the QFI is convex and thus mixing states can only decrease
the QFI, for an arbitrary state pi,(¢,T") and unitary dynamics with generator G, as
described by Eq. (3.44), the QFI is bounded by

Folom(¢, T)] < 4(AG)?, (D.61)

with equality holding for pure states py, (¢, T).
Proof: Here, we present a phenomenological proof, while a more comprehensive proof



D.5. Quantum Fisher information (QFI) 219

is provided in Ref. [164]. For py > 0, we have (p; — pr)? < (p; + px)?. By reordering
the weights py again, we obtain

Folm(@ T =2 3 P22 g p

4.k p]_l_p
Pj+17k>0
<2 3 (i +pl GIGIRY P =4 pel GIG k) [ (D.62)
pj-gplz>0 3k

—4Zpk| (k| G? k) |* = 4(G?).

Hence, Eq. (D.61) holds when (G) = 0. However, (G) # 0 essentially represents a
constant offset and thus, (G) = 0 can be ensured by shifting the ‘energy’ according
to G — G — (G). O

D.5.5 Decoherence-free scenario

In the ideal scenario, where no decoherence processes are present and thus the dy-
namics is entirely determined by the unitary evolution described by Eq. (D.47), the

optimal input probe state is given by

) = % gt + €7 |G (D.63)

with eigenvectors |gmin) and |gmax) corresponding to the minimal and maximal eigen-
value gmin and gnax of G, respectively, and 0 is an arbitrary phase. The associated
QFTI reads

Faolltn)] = (gmax — Gumin)*- (D.64)

Proof: The proof is based on Ref. [164]. As demonstrated in the previous sections,
the Fisher information and quantum Fisher information (QFI) are convex and conse-
quently, mixing states cannot improve the sensitivity. Therefore, we restrict to pure
states pin = |1 ) (¥in| as they are optimal if no decoherence is present and potentially
would result in a mixed state. Furthermore, we have seen that the QFI of a pure
state equals four times the variance of the generator G (cf. Eq. (D.54)). We thus
only have to find the state for which the variance (AG)? is maximized.

To start with, we decompose the generator GG in its eigenbasis, expressed as G =
> w9k |9k)(gr|. For simplicity, we assume ¢ := gmax = —gmin > 0 ensuring that
lgi] < g. This can always be achieved by a shift of the generator according to
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G +— G — (Gmin + gmax)/2, where the variance is invariant under such effective energy
shifts. For an arbitrary state |in) = >, pk |gk), the QFI is given by

Folltm)] = 4(AG)? = 4(G?) — 4(G)*
<4(G?) = 4 (Y| G? [Pn) = 42 Ipi|2g2

<4 Ipelg® =497 Il = 4g%.
k k

Equality of (G?) < ¢* is only achieved for three states, namely |i) = |gmax), |Vin) =
|gmin) and the state in Eq. (D.63). While the states |{i,) = |gmax) and [¥im) = |gmin)
exhibit (G)* = ¢?, resulting in a vanishing variance (AG)?, the state in Eq. (D.63)
features (G)* = 0 and thus saturates Eq. (D.65). O

(D.65)



Calculations for protocols in
local frequency metrology

E.1 Mapping the decoherence processes to the mea-
surement

Separating the unitary phase evolution p(¢) = Aglp] = Apr—olp] = RI(¢)pR.(0)
from the full dynamics A, 7, described by Eq. (C.5), the effective time evolution

Ap = Ay—or is governed by the master equation

p = Lr[p] = Lrlp] + L,[p] + L..[p] (E.1)

with Lindblad operators Lr, £, and £, defined in Eq. (C.2), Eq. (C.3) and Eq. (C.4),
respectively. In this section we aim to map the decoherence processes onto the mea-
surement X, thereby enabling a general treatment for a given measurement. In
particular, we consider projective spin measurements (see App. E.1.1) and parity
measurements (see App. E.1.2). This approach is particularly convenient for projec-
tive spin measurements, as both coherent spin states (CSS) and spin-squeezed states
(SSS) utilize the same measurement scheme. Furthermore, it facilitates the deriva-
tion of lower bounds for specific measurements, following Ref. [149]. Interestingly, the
bounds we derive within this approach already represent the ultimate lower bound,
as they coincide with Eq. (3.65).

We can map the decoherence processes from the initial state to the observable X

by exploiting the cyclicity of the trace

0, (X(6.1)) = Tr (Xp(0)) = Tr (XLrlp(0))) = Tr (£H[X]o(0))  (E:2)

221
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with adjoint Lindblad (super-)operators

@m=4m+ﬂu+ﬂ[] (E.3)
N

Hx) ="l x] Zz ) x cM X — Xgb) (E.4)
k=1
N

= Zﬁi(k)[ =7 Za(k XO' )+ a(k)Xa( ) (E.5)
Ve

£l X = 5 (25.X8, — Xsf — S2X). (E.6)

For both projective spin measurements and parity measurements, the method of
moments, defined in Eq. (3.32), is employed to determine the phase estimation un-

certainty. Hence, we have to solve the differential equations for X and X?2.

E.1.1 Projective spin measurement

Here, we examine projective spin measurments. Without loss of generality, we assume
a measurement of S,. It is convenient to consider the Lindblad equations for the three
decoherence processes separately.

ZQ g —o®Ms, — 85,0k
- i (E.7)
=7 3 ( oo™ — 5®) 1) _ a§j>0§§>>

7,k=1

For j # k, the Pauli operators with different indices commute and thus the term

vanishes since 0,0_ = 0. Furthermore, we have 0,0, = —i(0104 — 0,0_) = (0,
Oee0— =0, Oee0y = —1(0ee04 — Oee0_) = —io4 and 0,0 = i0_, and thus
N
Lhs,] = gz (ZUf)Jék)a(_k) — aélg)oék) - 05“02?)
k=t (E.8)
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Similarly, we obtain

N
'CL [Sy] _% Z (Ugf) Sygé? + Ug(;];)syaglg))
kzjvl
- _% 3 (6BoW o) 1 o®e)
e (E.9)
— _%Z (6®e® s 4 51505 E)
k;l
= —%Zaék) = —%Sy.

In contrast, for collective dephasing, we employ the commutation relations of the spin

operators
SyS, = 8,5y + [Sy, S:] = 5.5, + 15,
S,8% =8.5,S. +1iS,S.
. . . (E.10)
=5, (5,Sy +1iSy) + 5,5 + i[5Sz, Ss)
= 828, +2iS.S, + S,
yielding
Ve Ve
LLO [Sy] = 5 (2SZSySZ - 5,82 — SfSy) = —§Sy. (E.11)
In summary, the differential equation for the first moment is given by
00 (8,(6,1)) = Tr(L}[S,)p(0) )
= Tx(£HS,1p(0)) + Tr(£][S)p(@) + Tr(£] [S)p(@)  (E12)
L'+9+7
= T (5, 0,0)
with solution
_T+r+7e
(Sy(0,T)) =€ = (Sy(9)). (E.13)
For the second moment, we proceed analogously
,CT 52 _ Z ,CT J (l)
] k,l=1
(E.14)

1 t(k 1 TR (5 1 t(k
=2 a0 g D L o)+ g > A
k — k47 kAl

=1 (k)

N
1 k .
+1 E /J}( ) [Uz(/] )O'z(/l)]

J#kkF£LF#L
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The first and last term vanish, since the corresponding operators commute with the
terms of the Lindblad (super-)operator. The second and third expression are identical

apart from a relabeling of the indices 7 <> [. Hence,

1 )
5= 3 S o)

Py

1 _
_ = (1) pIHE)[ (k)
2 2 \L[fy_l (E.15)

T
S
I )
_ = (4) 5 (F)
=7 g oo
k#j
Explicitly expanding S; according to

sziz ZO’ R 4- ZUJ)Jk (E.16)

gk ( ) J#k
which is equivalent to
1205 =8 -1, (E.17)
7k
results in
cifs? = -rs?+ Yy E.18)
F[ y] - Y + Z . ( .
For individual dephasing, the evaluation follows the same arguments, leading to
N
LHSﬂ::—q65+~Zvﬂ. (E.19)

For collective dephasing, again the commutation relations in Eq. (E.10) can be applied

to obtain
chs? =2 © (25,528, — 5252 = 5257)

- 5 © (25.5,(S.8, +iSy) — S,(S2S, + 2i8.5, + S,) — 5257)

- %(zszsyszsy +2iS.5,5, — 8,528,
—~2i5,8.5, — 52 — §25?)

- %(zsz(szsy +i8,)S, + 2i8.5,S, — (S2S, + 2iS.S, + S,)S,
— 2i(S.9, +i5,)S, — 52 — 5252)

= %(25355 +2i5.5,5, + 2i5.5,5, — S252 — 2i5.5,5, — S,
—2i5.5,S, + 257 — 52 — 5252

= 7(S; = S;).

(E.20)
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Consequently, the differential equation for the second moment is given by
9 (S3(6.1)) = Tr (L4 [S2]0(0)
= Te (LHS2p(0)) + Te (L1[S2]p(0)) + e (L1 [S2)0(0))  (B.21)
= (074 7) {5206, 0)) + 7 (S6,1)) + 3 (T +7).

Unfortunately, it is coupled to the differential equation for S2. Similar to the calcula-

tions for the moments of S,,, we determine the differential equations for the moments
of S,.

(E.22)

where we used 0,0, = (0104 + 010_) = Ocey Oee0s = (0ee04 + 0ee0_) = 04 and

0,06 = 0_. Similarly, we obtain

% Y (oWoPo® + oWV o))
k=1
N (E.23)
-igeh-
k=1
With the commutation relations
S8y = S8:.8; + [Sz, S2] = 5.5, — 1S,
Schf = 5.5,5. — 15,5,
(E.24)

=S, (5.8, —iS,) —iS.S, —i[S,, S.]
= 528, — 2i5.S, + S,,
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the Lindblad equation for collective dephasing is determined by
cis =2 © (25,528, — 5252 — 525)

- 5 © (25.8,(5.8, — iS,) — Sp(S2S, — 2iS.8, + S,) — S2S?)

- %(25259552595 — 2i5.8,8, — SyS2S,
+2i9,5.9, — 52 — §252)

- %(25@(52530 —iS,) Sy — 2iS.5,S, — (S28, — 2iS.S, + Su)Sa
+2i(S.S, —iS,)S, — S? — 5252

- %(25533 —2iS5.8,S, — 2iS.8,S, — S2S2 + 2iS.S5,S, — S
+2i5.5,9, + 257 — 52 — 5257

= (S5 — 52).

(E.25)

Therefore, we obtain

0 (S3(d,1)) = —(T 47 +79) (520, 1)) + 7 (S5 (6, 1)) + g(r +7).  (E.26)

This coupled linear differential equations of first order are solved by

<S§(¢, T)> = % [1 — e_(rﬂ)T} + e~ Ty 4e)T [cosh ~vT <52 > + sinh(v.T' <S2 )>]
(E.27)

[1— e TIT] 4 e HIT [ginh (4, T) (S2(¢)) + cosh(v.T) (S2((¢))] -
(E.28)

==

(S%(p,T)) =

To determine the phase estimation uncertainty, we additionally have to include the

unitary phase evolution according to
X(¢) = RUG)XR-(9), (E.29)

which directly follows from Eq. (3.6), resulting in

S.(¢) = RL($)S:R.(¢) = S, cos(¢) — S sin(¢) (E.30)
Sy(¢) = RL(6)S,R-(¢) = S, cos(¢) + S, sin(¢) (E.31)
S2(¢) = RL(#)S2R.(¢) = S2 cos*(¢) — (S.S, + S,S.) sin(¢) cos(p) + 52 sin?(¢)
(E.32)
Sj(gb) = Ri(qb)S;RZ(gb) = Sj cos®(@) + (SuS, + S,S,) sin() cos(p) + S2 sin?(¢).
(E.33)

As a consequence, the slope of the signal reads

Dy (Sy(#,T)) = e 2 T [=(S,) sin(@) + (S.) cos(@)], (E.34)
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where the expectation values (-) are evaluated with respect to the initial state piy,, i.e.
(A) = Tr(Apy,) for arbitrary operators A. Finally, using that the optimal working
point is ¢g = 0, which is the case for CSS and SSS and can be ensured otherwise by
a shift of the signal, the phase estimation uncertainty is given by

_ (S50, 1)) = (Sy(6, 1))’
(Do (3. TI)? |,

= 1 (ﬂ [1 — e—(FH)T]
e~ T+v+7e)T <Sx>2

(Ap(T))?

4
+ e~ Ty [sinh(7.T) (S2) + cosh(v.T) (S})] — e~ Ty (Sy>2)
ZereT [T — 1] + sinh(y.T) (S2) + cosh(7.T) {S2) — (S,)?
(S2)”

. (E.35)

Coherent spin states (CSS)— In principle, any coherent spin state (CSS) can
be considered. However, since the phase evolution corresponds to a rotation around
the z-axis and we measure the spin along the y-direction, the CSS has to be polarized
in a direction mutually orthogonal to both axes. The CSS polarized in z-direction
(1) + [IN=Y /\/§N has expectation values (cf. Sec. 2.3.7)

N N? N
<Sx> = 57 <Sy> = <Sx5y> = <Sy5x> =0, <S§> = T» <S§> = Z (E-36)
Thus, the phase estimation uncertainty reads
NereT [e@NT _ 1] 4 sinh(v.T) 2 + cosh(y,T) &
(A¢(T))2 —_ 4 [ ] e 4 4
4 (E.37)
T [T — 1] 4+ N sinh(v.T) + cosh(y.T)
= N .
To derive the results of the main text, it is instructive to consider collective dephasing
separately:
9 €(F+'Y)T
(AGT)Phemo = GEY
N sinh(y.T) + cosh(v.T) (N +1)e*? — (N — 1)e T
AP(T))?r=yeo = = . (E.
(AG(T)Vlr=1m0 - — (.39)
The frequency estimation uncertainty for spontaneous decay and individual dephasing
is given by
e(T+NT

(Aw(T))? =0 = (E.40)

NtT
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Minimization with respect to the interrogation time 7' by

eTNT (T + )T — 1

0= 8T<AM(T))2|%:0 = N T2 (E41)
results in
1
Togg = —— E.42
oss = T ( )
e(l" +
(Awess)® = % (E.43)

As argued in the main text, this result represents the standard quantum limit (SQL).

Spin-squeezed states (SSS)— Spin-squeezed states (SSS) generated by one-axis-
twisting (OAT) have properties [125]

(Sy) = gcosN_1 (g) (E.44)
(Sy) =0 (E.45)
(52) = % [N — %(N — 1)A] (E.46)
<S§>=g{1+}l(z\f—1) [A_m]} (E.47)
A=1—cosV2(n) (E.48)
B = 4sin (g) cos™ 2 (g) (E.49)

where the twisting strength p has to be optimized for each interrogation time 7" in
order to minimize the phase estimation uncertainty described by Eq. (E.35).

Lower bound— A lower bound on the frequency estimation uncertainty con-
sidering spontaneous decay and individual dephasing can be determined following
Ref. [149]. According to Eq. (E.35), the frequency estimation uncertainty reads

N [T 1] 4 (AS,)?

(A1) = T (E:50)
Minimization with respect to the interrogation time 7T leads to the equation
%(F +y)eT N i = % [T Tmin — 1] 4 (AS,)? (E.51)
and thus we obtain
(Awmin)® = (L + e (E.52)

[~

2
Sz
TN <<N/2)
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Finally, using e *"Tmin > 1 and (S,) < N/2, we find the lower bound Eq. (3.65),

namely

'+~
Awygym )? > —, E.53
(Aam)? = —- (E.5)
which gives a maximal improvement over the SQL of
A asym 2 1
(Aasym)” > = (E.54)
(AWSQL) 6

For I = 0, this reproduces the result obtained in Ref. [149].

E.1.2 Parity measurement

This approach can analogously be applied to the parity measurement IT = (—1)No®V.
In particular, we focus on spontaneous decay and individual dephasing, since no
explicit expressions can be derived for collective dephasing. With 0,0, = 0ce, Tec0_ =
0, 0ee0r = 04 and thus 0,0, = 0_, we obtain

CL' ee x x ee

yalini i8] Z 20 (k) J@N (k) (k) ;ON _ J®N (k)

Z 0®k1®g)® ®Nk; ®k 1®0()®0®Nk (E.55)

FN I'N
— ()Y e = -
2 2
and similarly
U = (G S ool + ool

_ N’Y Z Bh-1 o O+) ® PN 4 o® 1 " g gEN—k (E.56)

N N
= fN:—LH
2 2

where we used 0,04 = 04, 0gs0, = 0_ and 0_0, = 0_. Therefore, for the first

moment we obtain the differential equation

'+~

0 (6, T)) = Tr (LHp(0) ) + Tr (£ Mp(@) = ———N (M6, T)) ~ (B.57)

with solution

((6, 7)) = e 2 NV (I(9)) . (E.58)
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The unitary phase evolution is given by
RUGIR. () = (~1) (cos($)o, — sin(@)a,) > (E.59)
Hence,
(6, T)) = (~1)e™ 3T ((cos(@), — sin(#)a,)* ) (E.60)

Since IT? = 1, the second moment is trivially given by (IT>(¢,T)) = 1. Consequently,

the phase estimation uncertainty reads

(I1%(¢, 7)) — ((¢, T))
(BT = =T TN o
1= e TINH(TI(g))”
T, () oo (.61)
_ L M)
(9o (T1(9)) )% lo=s0
GHZ state— For the maximally entangled GHZ state [121]
GHZ) = L (J1)N & [1)8), (E.62)

V2

the expectation value of the parity operator is given by

(I(9)) = (=) (GHZ| (cos(¢)o, — sin(6)a,)*" |GHZ)

= ()Y [t eos(@)a — sin(@)a, 1) + (1] cos(6)a — sin(e)o [1)"

F {1 cos(8)0, — sin(@)ay 1) + (1] cos(6)o — sin(@)ay [1)* ]
= (1) [(cos(6) + isin(6))" + (cos(0) — isin(0))"] (.63
= ()G [ 4+ e

(=1)" cos(No),

where we used o, |1) = [}), o [4) = |1), o, 1) = i|l) and o,|}) = —i|T), and
accordingly

9, (T1()) = (—1)V ' N sin(Ng). (E64)

Consequently, the phase estimation uncertainty is determined by

- e(F—s—w)NT . <H(¢)>2 B e(F—s—v)NT . COSQ(Nqb)
e N T N e R
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which is minimal for ¢y = 7/2N, yielding

€(F+7)NT

(Ag(T))* = N (E.66)
Hence, the frequency estimation uncertainty is given by
9 e(r""'Y)NT
Aw(T))* = ———. E.
(Bl = (E.67)
Minimization with respect to the interrogation time 7' by
TEDNT N(T + )T — 1
! 2 € T+9)
0 =0r(Aw(T))* = s T3 (E.68)
results in
1 1
Toarity-GHZ = E.
parity-GHZ = T (E.69)
(C'+v)e
(AwparitnyHZ)2 = Nt . (E70)

This minimal frequency estimation uncertainty is equivalent to the SQL, however it
is achieved at a N-times shorter interrogation time.

Lower bound— Minimizing the frequency estimation uncertainty
TN (11())*
Aw(T))? = = E.71
B = 0@, W0 e (E.71)
with respect to the interrogation time 7' leads to the equation
(L ) N el TV o = (T 0V o (1152 (E.72)
and thus we obtain
(D)2 = LEDNE ) (B.73)
(0 (IL(9)))*  lo=eo
Finally, we derive the lower bound
I'+1)
Awpin)? > ( E.74
(Ain)? > 1 (B.74

using 9y (I(#)) |p=p, < N and e*+VNTmin > 1. This bound is equal to the one
derived for projective spin measurements Eq. (E.53) and additionally coincides with
the asymptotic lower bound Eq. (3.65), yielding a maximal gain of 1/e over the SQL.
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E.2 Coherent spin states (CSS)

Although we have already evaluated the frequency estimation uncertainty in the pre-
vious section, the time evolved state and the conditional probabilities are required to
obtain the QCRB or CRB and to efficiently sample measurement outcomes in Monte
Carlo simulations of the full feedback loop in an atomic clock.

In principle, any coherent spin state (CSS) can be considered. However, since
the phase is imprinted by a rotation around the z-axis, the CSS has to point in the
x-y-plane. Without loss of generality, we consider the conventional Ramsey scheme
(cf. Sec. 2.3.5). Again, we focus on spontaneous decay and individual dephasing,
since the Dicke basis becomes advantageous for addressing collective dephasing, as
discussed in App. C.2.

The initial state is generated by a first 7/2-pulse from the collective ground state

0SS) =R, (=2) 119N = | (uy + |¢>>] (E.75)

7

which is polarized in z-direction and where we used e'i% = \%(]1 +i0,) according to
Eq. (2.73). The state after the time evolution, according to the dynamics described
by the master equation in Eq. (3.4), is given by

(2= e ) [+ e 5T ([ 0+ e 1) + e ] h
(E.76)

pess(¢, 1) = N

After the free evolution time 7', a projective measurement of the spin component .S,
is performed. This is accomplished by a second m/2-pulse — this time around the
z-axis — followed by a measurement of S, since S, = Rl (g) S.R. (g)

Conditional probabilities— With ¢~#7% = \/iﬁ(ll — i0,), the final state reads
7r m
plss(6,T) = Rq <§> poss(¢, T)YRE (5)

= g (2= ™) (DU =i 1+ 10D

e (@ (1A 4+ W =i 1D AD + 1)

e (M I = Y+ [ () (E.77)
eIV +a I — [ (] + 1WA
=2—N[|¢><¢| (1= e sin(o)) + (1] (i (1= ™) + e 5 cos(9))

+v

I (=i (1= )+ e e eos(9)) + 1] (14 e Fraine)]
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Since the particles are identical and uncorrelated, it is sufficient to consider a single

particle. The conditional probabilities are given by

P(t16) = 5 [1+¢ 57 sin(9)] (E.78)
P(L1g) = 3 [1— e T sin(g)] (E.79)
vielding the binomial distribution
Plo= =Nl = (3 )P" 110 P (Ulo) (650
- QLN (]Ci) [1 b sin(qs)] R [1 _ et sin(¢)] "

¥ _ N_, where N_ denotes the number of particles in the ground

for measuring z = 3

state |{).

QCRB— Since the particles are identical and uncorrelated, with the additivity of
the QFI, we obtain

Falpess(6,T)] = NFqlpds (6, T)] (E.81)

with single particle time evolved state

Bs(6T) = 5 [(2 = ™Y O+ e T (¢ 1141+ 1) + e i) ]
(E.82)

As a reminder, the QFT is defined by

—2 Y B (.83)

‘k p] + Pr
17]+Pk>0
where p; and |k) are the eigenvalues and eigenstates of p.
It is instructive to determine the QFI of a generic 2 x 2-matrix, as it will also be

required for the analysis of GHZ states. We assume a density matrix of the form

Pods(@.T) = a [ D) (1 + b IV + 5" [D) (1] + e [ (L] = b b (E.84)
with a,b € R and b € C defined by
a= %eFT (E.85)
b= %e—rﬁ”Te—w (E.86)
c= % (2—e7). (E.87)
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With
0 = det (ps(6,T) = p1) = 5 = pla+ ) +ac — bl (E.88)

the eigenvalues py are given by

1 1
pe=3 [a—i—cj: V(a+c)? —4ac+4|b|2] =3 [a+ci Via—c)? +4b?| . (E.89)

The corresponding eigenvectors v are obtained by

! a—p+ b d+ (@ —ps)ds + bey
0= (ngs(cb,T) —prl)vy = = ,
b* c—pt ey b*dy + (¢ — pi)ex
(E.90)
yielding the condition
— 1
de = ¢ b*piei =5 [a —c++/(a—c)? +4[p2|. (E.91)

Finally, the eigenvectors are given by

1 dy
= E.92
Vi Nj: 1 ( )
with normalization
1 2
Nj:|di|2+1zw [a—c:l: \/(a—c)2+4\b|2] Y (E.93)

In Dirac notation, the eigenvectors read

Vi = 1) = 3 1)+ 1) (E:94)
Ve = 2= 51+ ). (E.95)
Thus,
2 1 . 2 1
| (1] S:[2) |7 = m|d+d— — 1" = NN (E.96)

since d d_ = —1. With

(NAND)? = [dyd P+ |dy P+ |d-|? + 1 = |dy | + |d|* + 2
_ (a — c)* + 2/b)? too (a —c)* + 4/b)? (E.97)
1] ]2 ’
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where we used |z + y|> + |x — y|* = 2|z|* + 2|y|?, we obtain

2
s, 2= —

M= (E.98)

Finally, with p; +p_ = a+c and (p; — p_)? = (a — ¢)* + 4]b|?, the QFI reads
|b]*

(1) (py —p-)? 2 —(T4y)T
T))=4——|(1]S.]12)|* =4 = v E.
Falpts(0. 1) =42 (5.2 = 4 = e (£.99)
and thus
Folpcss(,T)] = Ne T (E.100)
with associated QCRB
CSS 2 err
(A¢QCRB( )) = (E.l()l)

N

Consequently, the QCRB is saturated by a projective spin measurement and lin-
ear estimation strategy. Additionally, this once again demonstrates that the QFT is

independent of the phase ¢.

E.3 Parity-GHZ protocol

The time evolved GHZ state is given by

panal6.7) = 5 (INGHEN o+ e SFFENT [y qyoN o cmive gy o0
e TN 4 (1= ) ) ). (E.102)

Here, collective dephasing can be incorporated directly since the initial GHZ state is
a superposition of the two maximal Dicke states, namely the collective ground and
excited states H>®N and ]T>®N, respectively.

After the free evolution time T, the parity II = (—1)Vo¥" = R (3) 0¥V R, (5)

is measured. Hence, with e %1% = \/Li(]l — i0y), the final state is given by

phua(6.T) = grzr (1D = 11 = U+ 1))
e TERENT [N (1) (4] G = [0 = 1Y
e U = T+ I = Y] (E.103)
[T U+ [+ G+ 11

+ (L= ) = e = I+ e ] 7).
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The probability to measure N_ particles in the ground state thus reads

]' N YTYc
P(N_|¢) = 2—N<N ) [1 F(— 1)V TENT o5(N )| (E.104)
The parity has binary measurement outcomes x = 41 which occur with conditional
probabilities
LN/2]
P(z=+1l¢)= >  P(N_|¢)= > P(N_=2k|¢) (E.105)
N_ even k=0
LN/2]
P(z=-1l¢)= Y  P(N_|¢)= Y P(N_=2k+1|p). (E.106)
N_ odd k=0
Naturally, out of the 2V possibilities for measurement sequences {my, ..., my}, where

my € {T,]} denotes the outcome of each particle, there exists an equal number of
realizations where an even or odd number of particles is in the ground state. Therefore

also ZN, even (]\]/V_) - ZN, odd (]\]/V_) = 2N/2 and we obtain

1 YTc
Plo = #1[9) = 5 [1 £ (—1)Ne TN (o5 (N )| (E.107)
CRB— To ensure that the linear estimation scheme, which results in the phase

estimation uncertainty described by Eq. (E.66), is optimal for a parity measurement
and does not limit the sensitivity, we determine the CRB for the parity-GHZ protocol.
With POVM {II,} associated with the parity measurement, the (classical) Fisher

information is given by

B N2 e—<F+V+%N>NT sin®(N¢)

2 A 14 (—1)Ne TENT cog(N )

The maximum is achieved at the optimal working point ¢y = 7/2N and thus, we

(E.108)

obtain
Floanz(¢, T), {11, }] = N?e THrTeNNT, (E.109)

Consequently, the linear estimator is optimal for the parity-GHZ protocol since the
corresponding phase estimation uncertainty, described by Eq. (E.66), saturates the
CRB associated with Eq. (E.109).
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Comparison to the scheme in Ref. [149]— Finally, we want to show that the
interrogation scheme for the GHZ state presented in Ref. [149] is equivalent to the
parity-GHZ protocol. In Ref. [149], the scheme is implemented using controlled-NOT
(CNOT) gates Ucnor, representing a two-particle gate with transformation according

to
Usior WY @ 1P = [0 @ [)® (E.110)
Usir WP @1 =[O @ [1)® (E.111)
Usior MY @11 = MO o [1)® (E.112)
Usior MY @ 1P =m0 e ()® (E.113)

In particular, it flips the spin of the second particle if the first particle is in the excited
state. Hence, a sequence of CNOT gates linking the first with each of the remaining
particles is given by

1,2) 1,3)
uCNOT - u((jNOT MC()NOT & - CNOT = ®MCNOT7 <E114)

which flips the spin of all other particles if the first one is in the excited state. The
scheme initially starts with the collective ground state |¢)®N and performs a conven-
tional 7/2-pulse on the first particle, yielding

o) = —= (IND + V) @ 11" (E.115)

1
V2
Applying a sequence of CNOT gates results in the GHZ state

Uoxor lto) = —= (1IN +11)°Y) = |GHZ) (E.116)

1
V2
After the free evolution time, the preparation is reversed. Hence, first the sequence
of CNOT gates is applied and afterwards a 7/2-pulse is applied to the first particle.
Finally, ng) is measured. Including the second Ramsey pulse in the measurement, we
effectively measure
RI(-Z)o.R, (%) =0, (E.117)

Y
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of the first particle. Additionally, also the CNOT gates can be mapped to the mea-

surement and we obtain

Ucxor (08 @ 15V Ny or
= Uowor (|1 10D+ NP @ 1) 1) + 11 1) thxon
=N ID @ [ 1) + 1) [N

+ N @ 1) 10+ 1) 1Y (B.118)
= (I + ) IY) @ o
-

where we used L{(TJNOT = UcnoT as can be easily seen from the definition. Hence, we
obtain the parity measurement with an additional global phase (—1)" which does not
contribute to the phase estimation uncertainty. Thus, both approaches are equivalent
and yield the same results.

E.4 QCRB of the GHZ state

As a reminder, the time evolved GHZ state reads

pora(,T) = 5 (HYUIEY 4 ¢ “5F=NT [oie ooy g e=ive gy )]
TN 4 (1= T ). (E.119)

Fortunately, this state is already almost diagonal, except for the subspace spanned
by the maximal Dicke states [D)®" and [|)®", namely the four corners associated
with [L) (Y, OGN, (1Y and [1)(1®Y. Hence, we only have to diagonalize
an effective 2 x 2-matrix defined by

put = 5 ([1 (1= €T RIS e SERENT [0 ) P g ey g o

+ eIy 4P (E.120)

_ _D4+y+9eN i
e—T'Nt e F1eM Nt ,—iNG a b

1
5 6—7F+7J2F'YCNNt€iN¢ 1+ (1 . e—Ft)N b ¢
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with coefficients

1
o= Lo (E.121)
b %GWNTeiNqb (E.122)
1
=1 [1 . e—FT)N] . (E.123)

Since we already diagonalized a 2 x 2-matrix in App. E.2 for the CSS state, we can

directly apply those results here. The eigenvectors are given by

1) = 57 (4 D™ + 1)) (E.124)
2V) Zm(d— 1N+ 11)=Y) (E.125)

with corresponding eigenvalues (cf. App. E.2). It is important to note that all other
cigenvectors |k) are given by the 2V — 2 permutations of |[1)V " [})"~, where N_
denotes the number of particles in the ground state, and thus are orthogonal to |1)
and ‘QN > Furthermore, the action of the generator S, does not change the states
|k) for k # 1,2" but only yields an additional factor & — N_. Hence, the only non-
vanishing term of the QFI is given by | (1] S [2V) | = N?/(N.N_)? and, analogous
to the CSS, we obtain the QFI

Folpcuz(0,T)] = 4M | (1] S. ‘2N> ? = 4N2ﬂ

pQ]\_;p—_(F-l-'Y-&-%N)NT e (E.126)
B 14+ e INT 4 (1— efl“T)N
and associated QCRB
e(T+7+7eN)NT N
(MGG = 5 [1+e ™ + (1 -] (E.127)

Indeed, the QCRB achieves a higher sensitivity than the parity-GHZ protocol (cf.
Eq. (E.66)), since (1 —e*FT)N +e ™I < 1 for N > 2and T > 0, and thus
(APGeEs(T))? < (A¢parity—cuz(T))?. We show this by induction, using that e™*
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is monotonically decreasing for x > 0:

conjecture: (1 — e*Ft)N <1 — e INt
N=2: (1 _ e*Ft)Q =1— e*FT _eth + 6721‘1‘, <1— efQFt
~— \—,_/
>6721"T <0
< (1 — e’FNt) (1 — e’rt)
=1— efFNt . efl"t 4 e—F(N+1)t
_ oIt +\67F(N+1)t B eeri
Se-T(N+1)t 20
<1— 6—I‘(N+1)t. (E128)

Consequently, the parity-GHZ protocol does not saturate the QCRB in the presence
of spontaneous decay for N > 2 and 7" > 0.

E.5 GHZ transformation Ugyy

In order to saturate the QCRB of the GHZ state and to assess the pertinent charac-
teristics of the heralded-GHZ protocol, it is advantageous to employ the identity

1 _x
Ucrz = —=e 18 [1 +iVHEgEN] (E.129)

\/5 T
with £ =1 (E = 2) for N even (odd), which was previously utilized in Ref. [128].
Application of Ugyz to the ground state |])® yields

) = % (19N +iN+E|3)eN) (E.130)

The exact GHZ state can be obtained by an additional trivial rotation around the

z-axis according to
|GHZ) = ¢"*R,(0p)Ugnz|1)*N
1 _.x
— — e TEOR,(0 ON | NHE|pyeN
NG (0g) [I4) 1]

_ ie—i&eiaeiNgE U*L>®N + e_iNeEiN+E|T)®N}

(E.131)

_ %e—z‘&emez‘]\’? [|¢>®N n (e—z‘g>N+E iN+E|T>®N]

1 QN QN
ZE[M +[1)N],

where 0p = 5% (N + E) and o = & — 28,
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As the identity Eq. (E.129) is essential for the protocols investigated in the re-
mainder of this appendix, we prove it here. The unitary Ugnyz is defined in Eq. (3.77)
by

U — T () if N is even
TR (2) Ta(x) i N s odd

which indicates that it is beneficial to distinguish between two cases, namely N even
and odd. In particular, the identity Eq. (E.129) does not solely hold for the z-
direction, but for arbitrary axes k, as we show below.

(E.132)

N even— In the following we will prove that for NV even, we obtain
Te(m) = 73 [1 + VPN (E.133)

with ox = ki, + keoy + k3o, satisfying 3 i k]? = 1. To show this identity, we
consider the product-eigenbasis |s1, ..., sy) of the single particle operators al(j , where
J denotes the index of the N particles with eigenvalues s; = 1. In particular, we

primarily exploit the eigenvalue equations

al((j) 51,...,5Nn) = Sj|s1,...,5N) (E.134)
Sk [81y...,8n) = M |s1,...,5Nn) (E.135)

where M = 2 Z =1 8j denotes the eigenvalue of S = : Z i1 ak Therefore,
Te(m) |s1, ... sn) = e 5% sy, sn) = e EM sy, L sy) (E.136)

Since N is even, M is integer. For M even, we express M = 2z with x € N.
2

Consequently, e 2M* = ¢=2im® — 12 — 1 For M odd, we write M = 2z + 1 with
z € N. Thus, e 3M°* = =22’ g=2ime =i — 12°12(_j) = —;. Together, we obtain

eI = (14 (1)) — (1 - (~1)M) 4
= [ — i)+ ()M (1 +)]
R Rt o
= e i ! [1 + (—1)Mz}
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Furthermore, with N, denoting the numbers of particles in the excited and ground
states, respectively, we have

N
oM |s1,...,8N) = (Hsj> |s1, ..., SN)

j=1
- (+]‘>N+(_1)N7 |817 78N>
= (=DM s1,...,5n) (E.138)
N
- (_]‘) 2 M ’817' . 7SN>
N _
:(_1)2(_1) M|817 78N>
N
= (=12 (=DM |s1,...,sn),
where we used that M is integer in the last step. Since we considered an arbitrary
state |s1,...,Sn), by combining both terms we obtain the operator identity
1

Tlm) = e T — |14 (=1) Fiog"|

? (E.139)
= e [1 4+ VoM,
SRS
which is equivalent to Eq. (E.129). O
N odd— For N odd, no compact expression for 7y (m) exists. This originates from

M being half integer and thus prohibiting an analogous treatment as for N even.
However, a similar identity is derived when extending the OAT interaction by an
additional rotation by 7 /2 around axis k, resulting in

Ruc (5) Tulm) = ¢ % [1+¥420] (©140)

Similar to the case N even, we obtain

Ric (Z) Ta(m) |1, .., sn5) = e 35135 51 L sy)
= ¢ 1EMmiE M |1, .., SN)
() oy (E.141)
= 6%6_1‘%(1\“%)2 |s1,..., SN} -

Since N is odd, M is half integer and thus M + % is integer. Hence, by the same

arguments as before, we can express this as

(E.142)
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Therefore, with

N sy, sn) = (=12 (=DM sy, ..., sn), (E.143)
we finally derive
T =T 1 o N .o oN
Ric (5) Talm) = 75 = [+ (-1) i
1 (E.144)
— e*l%_ |:]1 +,iN+20.®N] 7
2
which coincides with Eq. (E.129). O

E.6 Linear-GHZ protocol

In this section, we determine the final state and the moments associated with the

observable
X = Ugnz S. Uy, (E.145)
and evaluate the phase estimation uncertainty of the linear-GHZ protocol.

Initial state and time evolution— Application of Ugnz to the ground state
|1)EN yields

[in) = —ze T8 (J1)ON +iVTE|)EN) (E.146)

1
—e
V2
The dynamics according to Eq. (3.4) leads to the time evolved state

a6, T) = 3 (VI e ENT (i) VPV 1) (1] 4 4 Fe 0N ) | 2]

[T (1= T ). (E.147)

Final state— Applying the measurement transformation Ugny of the observable
X, as described in Eq.(E.145), to the time evolved state results in the final state
pl(6,T) = ULy, p(6, T)UGHz. With the action of Uy on the four terms in the time
evolved state given by

D HEY + B 1Y 4 (=) 2 Y+ 1) (2]
(E.148)

N | —

Ul | 1) (LN Uz, =

Usi [ V) (1P Uanz = 5 [N + Y PL Y + ()N PN + (1) (L]

(E.149)

N | —



244 Appendix E. Calculations for protocols in local frequency metrology

Ubsia DU Uz = 5 [ QY 4PN 4+ (i) F Y + 411
(E.150)
Ubsry (7T + (1= ) D)D) ™ Uanz =
5 [T+ (=) )
+NE (T U+ (1 - e W)Y (E.151)
+ (=N (T + (1= e )Y
F T+ (=T )Y

the final state reads

P& T) = LY 4 PL N + (i) " P IS + 1) (11

_TtytyeN . ;
Te : NT((_Z)NJrEesz)

X (YN P+ ()P0 (1Y 4+ 1) (4=
N I LN 4 1N 4 (LY P )

+ [T+ (1= e T [ (E.152)
A E [ T (U 4 (L — e TT) [ (1]

+ (=M [T + (1= TT) DA™Y

+ [ TN+ (1= e TT) 1]

Moments— The signal is given by

<X<¢7 T)> =tr (Xpin(d); T)) =tr (Szpﬁnal(¢7 T))

_ g< e A [(_Z-)N-‘:-EeiNqb (—iN+E 4 (—i)N+E)

4 NTE—iNG ( NYE i)N+E)] L (2€—I‘t _ 1) X (1 _ 2€—Ft) )

N YT
= —Ee_ﬁ N cos(N¢), (E.153)

where we used (—i)VTE = (=1)NTENTE — _iN+E gince N + E is always odd (F =1
for N even and FE = 2 for N odd). Furthermore,

T (. [ IR ]+ (1= 7)) =
ST (TN (=) DEDY S T (e T - (1 e ) [1L)

-~

=1

| =

(27 —1) (E.154)
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and likewise for the last term in Eq. (E.152). Accordingly, the slope of the signal
reads

N? e
8¢ <X(¢’ T)> _ 7€71‘+7§w N Nt
Again, we have a symmetric signal with optimal working point ¢y = 75, maximizing
the slope. With S2 = J1+43°. o6 where the sum >+, has N(N —1) terms,

the second moment is determined by

sin(No). (E.155)

<X2(¢,T)> _ g n N(]\176— 1) (1 1 B_WNt[(_i)N—i-EeiN(b (Z-N—i—E n (_Z-)N+E)
4 NTE—iNG ((_i)N-&-E i Z-N+E) } n (26_Ft B 1)2 n (1 B 2€—Ft)2>
N N(N-1
=+ NN 1) 3 ) [1 + (271 — 1)2} (E.156)
N

-7 [1 + (N —1) (1 — 27Tt 4 26’2”)} ,

where the last terms of Eq. (E.152) are evaluated analogously to Eq. (E.154).

Phase estimation uncertainty and estimator— According to the method of

moments (cf. App. D.3), the phase estimation uncertainty is given by
(AX(¢, 7))
(05 (X (9, T)))?

¢=¢0
T +7+7eN)NT (E-157)

=——m [+ (V=1 (127" 4277

with associated linear estimator

¢est (SL’)

(A¢linear—GHZ (T) ) 2=

B x 2z LtatreN N,
T %Xl N |
For N = 2, the linear-GHZ protocol saturates the QCRB. However, for N > 2 the
QCRB is not saturated and the SQL is asymptotically approximated (cf. Fig. 3.2(b)).

(E.158)

E.7 Heralded-GHZ protocol

The conditional probabilities can be directly inferred from the final state in Eq. (E.152)
and read

P (z|¢) = }l [1 +e ™ (1- e_FT)N T2 2 NT COS(NQS)} (E.159)

ifx = i% and

P (z|¢) = i(ﬁ) [e’FT(N’N‘) (1- e’FT)Nf +e TN (1- e’FT)N_N*} (E.160)
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if v = % — N_, where N_ € {1,..., N — 1} denotes the number of particles in the
ground state | ). The conditional probabilities for z # :i:% are symmetric in the sense
that P (z = +% — N_|¢) = P (z = +5 — (N = N_)|¢). It is important to note that
the phase information is solely encoded in the measurement outcomes of the maximal
Dicke states, i.e. z = j:%, which has profound implications, as discussed in detail in
the main text (cf. Sec. 3.7.2). This motivates the highly nonlinear estimator

Gest (1) = {;: 2 9y(X(&,T))lp=g0 (E.161)

else

introduced in Eq. (3.79). In this case, according to Eq. (3.13), the phase estimation

uncertainty is given by

_ N?P(z=+5%) + P (z=—F[¢0)
4 (05 (X (6, T)) |g=g)”

With the conditional probabilities and the slope, determined in the previous section,

(Adneraded—cnz(T))? (E.162)

we finally obtain

fest(2) =4 N n 2 (E.163)
0 else
and
2 eTONT INT N
(Abrataea-cnz(T)) = o |1+ 4 (1 - 1)), (E.164)

which saturates the QCRB of the GHZ state described by Eq. (E.127).

Note that this measurement and estimation scheme, represented by X and the
nonlinear estimator Eq. (E.163), can alternatively be imitated by the designed ob-
servable X = SUcnz, (]T) AN =11 (H®N> Uy, Interestingly, X essentially cor-
responds to the SLD associated with the GHZ state pguz(¢,T), as described by
Eq. (D.50) with eigenbasis determined in App. E.4.

Gain over SQL— Although the minimization of Eq. (E.164) with respect to the
interrogation time 7' is generally not analytically possible, an explicit expression can
be obtained for v = 4. = 0 and when neglecting the term (1 — e '7)N. This term
is associated with the probability of N spontaneous decay events occurring during
the interrogation time 7' (cf. App. E.9) and thus becomes increasingly unlikely with
increasing N, as illustrated in Fig. 3.4(b). Here, we will derive Eq. (3.82). The
frequency estimation uncertainty for the heralded-GHZ state — or equivalently the
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QCRB of the GHZ state — in the limit v = v, = 0 and if (1 — e ') can be neglected
reads

,  ePNT 41
(Awneratdea—cnz(1'))” ~ SN (E.165)
Differentiation with respect to T’
| 1 FNT@FNT . [eFNT + 1}
= o2 T2 (E.166)
yields the equation
DN Tpe M = MV min (E.167)
(DN Ty — 1)tV min = 1 (E.168)
1
(DN Ty — 1)t Nmin=t = = (E.169)
e

Although this equation is transcendent and thus has no closed solution, introduc-
ing the Lambert-W function [257], which can be efficiently evaluated numerically,
nevertheless provides a formal solution. The Lambert-W function is defined as the
inverse function of x +— xe” and thus, y = W (x) represents the formal solution of the
equation ze® = y. Consequently, Eq. (E.169) has the formal solution

TNTpin — 1= W(1/e). (E.170)

Rewriting Eq. (E.165), at Ty, we obtain the minimal frequency estimation uncer-
tainty

1 e™NTmin 41
27 N2 Trin
1 (PNTy, — 1)V min + TNT i — 1
~ 27N? Tin(CN T, — 1)
1 r
" 2TNT'NTpm — 1
T 1
TN 2W(1/e)
~ (Awsqr)?

2eW(1/e)’

(Awheralded—GHZ)z =

(E.171)

where we used Eq. (E.168) in the second and Eq. (E.170) in the third step. Conse-

quently, in this regime, the heralded-GHZ protocol Awperaiged—cuz and the QCRB of
GHZ ~ - 1

the GHZ Awgcgp state achieve a constant gain of NV

SQL Awsqr,, which corresponds to 1.8 dB (cf. Fig. 3.2(b)).

< 1 compared to the
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E.8 Heralded-uGHZ protocol

In this appendix, we discuss the heralded-uGHZ protocol. In particular, we start by
evaluating the relevant properties for an arbitrary rotation angle 6. Based on the
resulting phase estimation uncertainty, we determine the optimal rotation angle &
and corresponding optimal uGHZ state. Furthermore, we specify the general results
for Ops.

The heralded-uGHZ protocol is conceptually analogous to the heralded-GHZ pro-
tocol. Consequently, we primarily present the calculations, while details of individual
steps that are not explicitly provided here are adopted from the linear-GHZ protocol
(cf. Sec. E.6) and heralded-GHZ protocol (cf. Sec. E.7).

E.8.1 General uGHZ state
Initial state—

1 = .
Usnzl )Y = Nk i [1+ VT EaPN] )N

| (E.172)
— Ee—i& [H>®N + Z'NJFE‘T>®N}
R (0)Uanz| 1) = % [N iV Ee e | (E.173)

i) = UanzR.(0)Uanz|1)*N

1 - T 1 . T - ON - ON
i [ 4 NTEGON] iy [e’T ON | jN+E—if) ®N]
5 | 1% B B

T

_ le—i;;ﬂ [ 0N (|¢>®N i ZN+E|T>®N) 4 i NtE, —i?¥ (|T>®N _}_Z-N+EH/>®N)]

2
_ %e’@% [(e (i N+E) e z%) | J)EN 4 N+E (ei% _i_efi%) H>®N]
= ¢ 28 [isin (%) [ 1) + iV F cos (1) [1)®N] (E.174)
where we used that (: N+E) = (=1)N*F = 1, since E = 1 for N even and E = 2

for N odd and thus N + F is odd in both cases.

pin = sin? (L) | 1) (42N 4 sin (2Y) cos (29) [i(—a) VB (112N + (=) B 1) (42N
+ cos” (%7) [T (1]#
= sin? (&) [1) (LY + ¥ F sin (5F) cos (5F) [(=DMEI) (1Y = 1) (4*Y]
+ cos® (45 ) (1= (E.175)
EE) T (Y = B+ sin (8F) cos (5F) [ (T=Y + 1) (LY
+ cos” (%0) 1) (1]*Y

= sin (
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Hence, the initial state is GHZ-like with populations

PO) =Tr (|11)(1*" pin) = cos® () (E.176)
Tr (|4) (4®N pi) = sin® (£Y) . (E.177)

2

A

—~
)

~
I

Consequently, we refer to these states with P (0) # P_(f) as unbalanced GHZ

(uGHZ) states. In particular, we obtain the following special cases:

e 0, =0: PH(#) =1 and P (0) = 0. Thus, pi, = [D)(®Y and Usy, simply
transfers the population from the ground state to the excited state and conse-
quently acts equivalent to a m-pulse around the z- or y-axis.

e Oanz = 55 Pl(0) = P, (6) = i resulting in the GHZ state and thus making

in in 2

the second Ugnyz transformation redundant.

e, =T: PH() =0and P_(0) = 1. Thus, pi = |4){|®N and consequent]
i N m n p y

UcnzR.(0)) Ucnz acts as the identity when applied to the ground state.

Note that the off-diagonal terms in the expression for the input state may not initially
appear to be complex conjugates of each other. However, this is indeed the case, as

demonstrated by
(Z.N+E+1)* = (—g)NFEFL = (_1)NFEFNFES] _ N+B+L (E.178)

where we used the fact that N + E' + 1 is even in all scenarios, since N + F is odd in

all cases, as discussed before.

Due to its GHZ-like nature, the same measurement and estimation strategy as
for the heralded-GHZ protocol turns out to be optimal. Therefore, we denote the
corresponding Ramsey scheme as heralded-uGHZ protocol.

Time evolution—

pin(6,T) = sin? (20) [ L) (4[5 — NTEFLe= 25N T iy () s (00) [e9N] 1) (45N

NN 4 eos? () [N+ (1) )
(E.179)

Again, we can determine the populations

PHO,T) =Tr (1) (1*Ypin (9, T)) = cos® (&) e N7 (E.180)
PL(0,T) = Tr (1) (LN pin(6, T)) = sin® (2X) + cos® () (1—e ™M)V (E.181)

>
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To compensate for spontaneous decay during the Ramsey time T, the initial state has
to give a higher weight to the collective excited state to obtain an equal distribution
in the populations of the maximal Dicke states after 7', associated with the rotation
angle fequa. Consequently, 6y = 0 < Oequal < Ocnz = 7/2N. In particular, Gequa is
given by

2
Oecqual = —y arctan (\/e—NFT -(1- e—FT)N) : (E.182)

Final state—

pifr1(¢7 T) = uéHZ Pin(¢, T) Ucnz

= L[+ (V0B (0,T) [1 4402

= 2 sin? (9) [ Y LGN 4+ (i) E Y + 1) (11

— %iN“;“eWNT sin (%Y%) cos (£Y)

(€Y TN 4N 4+ I+ 1LY
TN U I+ (DT (1] )

+ %COSQ (%) [ (I + (1= ) D)™™

+Z~N+E (G_FT|T><¢| + (1 o e—FT) |¢><T|)®N
+ (=M (T (L= T IN )T

(I (=) )Y (E.183)
Conditional probabilities—
P(x=+¥]9) = £ [sin® (%) + cos? () (V7 4 (1 e ™T)")] Es)
e T N gin (2Y) cos () sin(Ne)
and
P(r=+5-N_|p) = %cosP (4) (]]\D (E.185)

% [G—FT(N—N,) (1 _ e—FT)N— | e TTN- (1 _ e—FT)N*N—:|

for 1 < N_ < N — 1, where N_ denotes the number of particles in the ground state.
Again, only the maximal outcomes provide information about the phase. Hence, it is

advantageous to employ the flag estimator. Furthermore, the conditional probabilities
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for the non-maximal outcomes are symmetric in the sense that P (SL’ = —i—ﬂ — N_ ]qﬁ) =
P(z=+%5 — (N — N_)|¢). As discussed before, for Ocnz =
result as for the heralded-GHZ protocol.

o3 we obtain the same

Signal and slope— The moments of the observable X can either be determined di-
rectly based on the ﬁnal state plfn(cﬁ, T') or by using the conditional probabilities, since
generally <X (o, T > = 2*P(x|¢). Here, the approach utilizing the conditional
probabilities is beneficial due to the symmetry of P(x|¢), resulting in
(X(6.7)) = [P (2 = 510) ~ P (x = ~¥10)]
2 N 2 (E.186)
=Ne =z Nlgin (9;\7) cos (9;\/) sin(N o).

In contrast to the parity-GHZ protocol and heralded-GHZ protocol, this signal is
anti-symmetric. The slope of the signal is given by

F+"/+’YCN NT

sin (2Y) cos (%) cos(Ng), (E.187)

95 (X(¢,T)) = N?e~

which is maximized for the optimal working point ¢q = 0.

Estimator— The flag estimator for the heralded-uGHZ protocol is given by

C+y+veN

+—e 2 for z = +&
(6N oN 2
Pest () = QNSIH(T) (7) (E.188)
0 else.
Phase estimation uncertainty— The phase estimation uncertainty at the opti-
mal working point thus reads
N2 P (z=+5|do) + P (z =%
(Adneraded—ucnz(T))* = T ( 2| 0) ( | 0) (E.189)
(0 (X (6, T)) lg=00)°
e(T+y+7N)NT sin (HN) + cos (TN) [ —NIT 4 (1 — e‘FT)N}
i s () cov? (%)
(E.190)
e(T+7+7N)NT 1 N e NTT (1 _ e—I‘T)N
I A ORI
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QCRB— The QCRB for the uGHZ state can be evaluated analogously to the GHZ
state. With modified coefficients

a = cos® (%) e~ T (E.192)
b= —NHEH = TIEENT iy (%Y%) cos (¥) e~*oN (E.193)
¢ = sin? () 4 cos? () (1 — e )", (E.194)

the QCRB of the state pi,(¢,T) equals Eq. (E.191) and thus, the heralded-uGHZ
protocol saturates the QCRB for arbitrary rotation angles 6.

E.8.2 Optimal uGHZ state

Optimal rotation angle— Based on the phase estimation uncertainty for a gen-
eral uGHZ state with arbitrary 6, we can determine the optimal rotation angle 0.
Differentiation of the phase estimation uncertainty

89 (A¢heralded—uGHZ (T) ) L

i _ N
B e(F+7+%N)NTE . (G_N) 1 s (9_N) e NTT (1 e FT)
4N? 2 27 cos? (%) 2 sin® (%)
- 2€(F+’y+'ycN)NT N [ gin? (2Y) + cos* (&Y) (e‘NFT + (1- e‘FT)N>
4N? 2 sin® (%) cos3 (QTN)
(E.195)
yields the equation
tan® <w> =e M+ (1- e’FT)N. (E.196)
Hence, the optimal rotation angle is determined by
2 4/ o~ NTT -rT\N
Oopt = N arctan | \/e +(1—e )" ). (E.197)

Interestingly, the optimal rotation angle is different from the angle that provides an
equal superposition of both maximal Dicke state after the free evolution time. In
particular, 0y = 0 < Oequal < Oopt < Oz = 7/2N. As discussed in Sec. 3.7.3, the
optimal rotation angle represents a trade-off between compensating for spontaneous
decay by enhancing the weight of the collective excited state and the associated in-
crease in decoherence due to spontaneous decay. Specifically, this trade-off is captured
in Eq. (E.189), where the numerator effectively characterizes the noise, and the de-
nominator represents the signal. In particular, the numerator becomes minimal for 6y,

while the denominator is maximal for the GHZ state 6qpz. Ultimately, a compromise
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is found with the optimal rotation angle 0, resulting in a smaller phase estimation

uncertainty than for fequar.

In the following we will re-express all quantities determined above for the optimal

rotation angle using the trigonometric identities

.2 . tanQ(x)
) = a2 (E.198)
1
2 =
s =g + tan2(z)’ (E.199)
Initial state—
efNFT + (1 o e,FT)N
& (e
1+ \/e—NFT +(1— e—FT)N
_ Ve ety @Y + ey (E200)
1+ \/e_NFT + (1 — e—FT)N
" 1 ) (e
1+ \/e*NFT + (1 . €,FT>N
1
B = (E.201)
1+ \/e—NFT + (1 . e—FT)N
\/efNFT + (1 _ e,FT)N
P = (E.202)
1+ \/e_NFT + (1 - e—FT)N
Time evolution—
e NIT 4 (1 — e—FT)N
pio 1= e
1+ \/e—NI‘T + (1 . e—FT)N
_ Z'N+E+1€7WNT (L/G_NFT + (1 - e—FT)N
1+ \/Q*NFT + (1 . e,FT)N
X [ewNH) %N + e_i¢N|T> <¢|®N}
1
+ (e*FT’TMN + (1 _ efI‘T) |¢><¢|)®N

1+ \/efNFT +(1— 67FT)N

(E.203)
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e—Nl"T

1+ \/e—NFT + (1 —e TN
\/ ~NTT 4 (1 —FT) + (1 _ efFT)N

1+ \/ NFT+(1 —FT)N

P(T) =

(E.204)

(E.205)

Conditional probabilities—

1 \/ NFT_|_ _e—FT)N+€—NFT+ (1 _e—FT)N

P(z=+%[p) = N
L /e NI 4 (1 T7)
:\/e_NFTjrr(lfe_FT)N
4 o~ TN N ( ) sin(N¢) (E.206)
L4 eI 4 (1= eTT)Y
1
= 5\/€_NFT + (1 - e_FT)
4/ _NTT —TT\N
+ (11—
R \/6 (- sin(N¢)
L4 e M 4 (1= )Y
and
1 1 N
P(z=+5—-N_|p) = (N ) (207
214\ feNIT 4 (1 - ety ¥ AN

X [efFT(NfN—) (1 _ efFT) N- 4+ e TTN- (1 _ efI‘T)N—N—:|

for 1 < N_ < N—1. We can also determine the probability of measuring any outcome
other than the maximal ones. This effectively reflects the probability that no phase
information is obtained from the interrogation scheme, which is given by

P(z#+5|0,T)=1=P(x=+%¢,T) = P (x = =56, T)
=1- \/G—NI‘T + (1 - e—FT)N‘

(E.208)

Signal and slope—

. 4/ _NTT 1 — e-IT)N
(X(¢,T)) = Nem— 2= NT \/e ta-e) sin(No) (E.209)
1+ \/efNFT + (1 _ efFT)N
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4/ ,—NT'T 1 -4
D4+y+7eN \/6 ( e T)
2 - TtracN yp

05 (X (0, T)) = N7e
’ 1+ \/e—NFT +(1— e—FT)N

cos(No) (E.210)

Estimator—
I EEI YRS
Pest () = Ve NIT4(1-e-TT) (E.211)
0 else
Phase estimation uncertainty—
) 6(I‘+’y+'ycN)NT . 2
(A@neralded—ucnz(T))” = N [1 + \/e—NFT + (1 —eTT) (E.212)

E.8.3 Gain over SQL

As for the heralded-GHZ protocol, the minimization of Eq. (E.212) with respect to the
interrogation time T generally is not analytically possible, but an explicit expression
can be obtained for ¥ = 7, = 0 and when neglecting the term (1 — e 7). The
concept is the same as for the heralded-GHZ protocol. However, due to the square
in Eq. (E.212), it is convenient to optimize Awperalded—ucnz(1) with respect to the
interrogation time. Differentiation of

I'NT
ez +1
AWheralded—u T)~ ——— E.213
heralded—uGHZ (1) INVT ( )
with respect to T leads to the equation
FNTmln INThin ]. TNThin 1
2 = — 2
2 - 2 g }
FNTmm 1 min ]_
e (B.214)
2 2 2
FNTmln 1 PNTmin _ 1 ]_
[ e 2 2 = —
2 2 2\/e
and thus
NTum 1
5 —3= W(1/2v/e) (E.215)

or equivalently

14+ 2W(1/24/e)
Thin = o . (E.216)
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Hence, the the minimal frequency estimation uncertainty is given by

FNTmin
1 e 2 +1

AWheralded—uGHZ ~
2N \/F V Tmin

L (B ) FR o (2 )

CANVE T ()
VT Eewa2ve) 217

2N T+ W(I/2/e)W (1/2/e)
_ ¢L VIT2W (/274

TN AW (1/2/e)
V14 2W (1/2+/e)
LW (1/2/e)

where we used Eq. (E.214), Eq. (E.215) and Eq. (E.216) in the second step. Con-
sequently, in this regime, the heralded-uGHZ protocol Awperalded—uwaHz achieves a
constant gain of v4\1/J[§VW1(;2/\2/ < 1 over the SQL Awsqr,, which corresponds to 2.25
dB (cf. Fig. 3.2(b)).

= AWSQL

E.9 Spontaneous decay events in GHZ(-like) states

In the preceding appendices, as well as throughout the main text, we have identified
specific expressions in the conditional probabilities and estimation uncertainties with
distinct numbers of spontaneous decay events. At this point, we aim to illustrate
this association. To address this, we apply the framework of quantum trajectories
and quantum jumps, as outlined generally in Sec. 2.3.3, to GHZ(-like) states in the
presence of spontaneous decay. As a reminder, in this framework the time dynamics

represents a mixture

of normalized states

@D = Rp@ 1) ~ pe(@ 1) (E.219)

with

T tE to
pi(0p,T) = / dtk/ dtg—1... / dt1 G(T,t1) TGtk ti—1)T ... G(ta, t1) T G(t1,0)pin
0 0 0
(E.220)
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and corresponding probabilities py(¢,T). In particular, the state pg(¢,T) results
from k£ quantum jumps within the interrogation time 7" and non-unitary dynamics in

between. For spontaneous decay, the master equation can be expressed as

& I &
p=—iwlS..pl =5 D oldp— pgzae +FZO po

k=1 k=1
r r N N
= — (wSZ - ZE Z agf)) p+ip (wSZE Z aé?) +T Z a(_k)paf) (E.221)
k=1 k=1 k=1
N
= —iH.gp + ipHeTﬂr +T Z U(_k)pO'_(f)
with effective non-hermitian Hamiltonian
r N
Hey = wS. — i > ol (E.222)

Hence, the continuous non-unitary time propagation G and the discrete quantum

jumps J, associated with actual decay events, are given by

G(t, to)p = e Hen(=10) peitig(i=to) (E.223)
and
N
Tp=1% oWpsl", (E.224)
k=1

respectively. Furthermore, at most N quantum jumps can occur, as this scenario
would map the collective excited state | 1)V to the collective ground state |])®V
Thus, the mixture in Eq. (E.218) contains N + 1 terms with k£ € {0,..., N}.

To determine the aforementioned expressions associated with a particular number
of spontaneous decay events for GHZ(-like) states, we consider the generic initial state

pin = S [ LIEN + oSN 4+ oGO (LEY + p80 1) (=Y. (E.225)

The dynamics according to the master equation results in the time evolved state

I'NT

pi(T) = pgg“m (LN ez (plDeNO ) (EN + pDe N 1) (1|#N)
+ o (TN A+ [L =TT )Y

To identify the individual terms in py, (¢, T') with a certain number of quantum jumps,

(E.226)

we have to evaluate the expansion described by Eq. (E.218). Of particular interest
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for the GHZ(-like) protocols investigated in this thesis is the ‘no-jump’ term with no
spontaneous decay event, which is given by

po(0,T) = G(T,0)pin

_INT ; i
= pW Y + e (™) (11PN + ple ™M 1) (LIFY) - (B.227)
+ eI (Y,
where ¢ = wT'. Consequently, the subspace of the maximal Dicke states in the

time evolved state, which ultimately results in outcomes = = :I:% for measurements
of the observable X, is not solely governed by the no-jump dynamics, as the term
Pt (1- e‘FT)N | 1)L ®Y is not captured in po(¢,T). The probability of the no-
jump dynamics is determined by

po(9, T) = Tr(po(¢, T)) = p{) + p{le TNT. (E.228)

Furthermore, it is interesting to note that the population of the collective excited state
decreases, even in the absence of any decay events. This scenario can be understood
through an analogy to Schrodinger’s cat: the initial state represents a superposition
of both the collective ground and excited states. As long as no measurement is
performed, the exact state of the system remains unknown. However, as time elapses
without any decay events occurring, the probability that the system was initially in
the collective ground state increases.

In contrast, terms with &£ > 0 involve k spontaneous decay events. To understand
the general structure of the terms, we examine gy (¢, T) exemplarily for £ = 1,2, 3.

With J[1) (LY = T {1 = T (LY = 0, we obtain

T
,51(¢,T)=/0 dt1G(T,t1)TG(t1,0) pin

T
— T / dtye TNt T (Tt Z\Jl il (E.229)
0

— pge\f)e—FT(N—l)F/ dt;e™"" Z i) Ul
0 Ji

where we introduced the notation

N
)G =Y N e, (E.230)
j1=1
In more general, we define
N . .
g Gl =Y e eI ENe P (B231)
J1yejr=1

pairwise distinct
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The second term reads

T to
p2(o,T) = / dt2/ dt1G(T,t2) TG (ta2, 1) T G(t1,0) pin
0 0

T to N
= pgff)f‘z/ dtQ/ dt e T2V =D e T =TT =t2) (N =2) Z 715 J2) (1, J2|
J1,J2
pairwise distinct
T to N
= pgév)e_FT(N_2)F2/ dtQ/ dtyeThte) Z |71, J2) (1, J2| -
0 0 Ji,J2
pairwise distinct
(E.232)
This structure continues for the third term as well
T t3 to
p3(p,T) = / dt3/ dtz/ dt1G(T,t3)TG(ts,t2) TG (ta, t1)TG(t1,0)pin
0 0 0
T t3 to
— pgé\[)l‘\?)/ dt3/ dtg/ dtle—Ft3(N—Q)e—r(tl—‘rtQ)e—F(T—tg)(N—3)
0 0 0
N
X Z 715 2, J3) (d1, J2, sl
J1,J2,33 (E'233>

pairwise distinct

T t3 to
= p{De TTN=? / dt; / dt; / dtyetizts)
0 0 0
N

X Z |j17j27j3><j1’j27j3|
J1,J2,33

pairwise distinct
and thus, in general, for arbitrary £ > 0 we obtain

to
0

T tr
pr(0,T) :/ dtk/ dtk—l---/ dt1 G(T,tx) TG (tk, ti—1)T ... G(ta, t1) T G(t1,0)pin
0 0
T tr t2 k
= pMe TTN=R)pk / dty, / dtp_y ... / dt [Je™ (E.234)
0 0 0 i1
N

S W VIR S 1C S A

JiseeasJk

pairwise distinct

It is instructive to examine the summation over the jump terms in more detail. Es-
sentially, it iterates over all distinct permutations with k particles in the ground
state and N — k particles in the excited state. These (JZ ) terms can be expressed in
a compact form using the permutation operator P, since P (|1)(L|%* @ [1)(1|®NF)
precisely generates these (7)) distinct variations of the state |)(}|®F @ [1)(1|®N~*,



260 Appendix E. Calculations for protocols in local frequency metrology

However, each permutation appears with a multiplicity factor k!, since Eq. (E.231)
accounts for the specific sequence in which the k particles decay, even though the
resulting state is the same. Overall, there are k! possible sequences for this order.
To give an example for N = 3 and k = 2, the state |1) ® H) |J) results from
the two terms oo [1)(1#3¢?¢® and 0(2) @1 (11236051 both appearing in
Eq. (E.231). Consequently, Eq. (E.231) alternatively can be expressed as

[t G (s el = RIP ([ @ [T (HP7F) (E.235)

Hence, the state with £ > 0 decay events is given by

(¢> ) = pee) 7FT(N7k)k‘!Fk

to k
/ dt; / Aty . / dty [T P (1) (1= @ 1) (1= F)
j=1

= plD e TTENLP (I P @ [ (V). (E.236)

As a consequence, we have to evaluate the integrals

tht1 tr to k
Ik = k'Fk/ dtk/ dtk_l ce / dtl H B_th, (E237)
0 0 0 Jaie
where we used the notation ¢;,; = 7. We conjecture that

T = (1—e )" (E.238)

We prove this by induction. For k = 1, Eq. (E.238) is satisfied, since

to
7,=T / dtje™ =1 —¢ Tt (E.239)
0

For k — k 4 1, we obtain

k+1

B —— tkt2 k1 73 to o
Ik+1 = (k‘ + 1)F dthrl dity, dip_q1... dty H e
0 0 0 0 ey
(7]
= (k + 1)F - dity, 13*Ftk+1 (1 _ e*].—‘tkjtl)k
i + (E.240)

1—e Tlet2
=(k+1) / dza®
0

_ (1 . B_Ftk+2)k+l

Y

where we used the substitution z = 1 — e '+ with
Eq. (E.238) holds for arbitrary k.

= TeTt+1 Hence
dtk 1 ’
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Consequently, the terms for £ > 0 in the expansion described by Eq. (E.218) are
given by

(e, T) = pWe TTN=8) (1 — ¢ ITY P (| )10 @ 1) (2N F) . (E.241)

The corresponding probabilities of dynamics with & > 0 jumps are determined by

n(6.7) = (0. 1) =20 () TP e (B2
which are directly connected to the conditional probabilities of the GHZ(-like) pro-
tocols investigated in the previous sections. In particular, the scenario of N spon-
taneous decay events occurs with probability py(¢,T) = pgév) (1 — e‘FT)N and the
system results to be in the collective ground state |¢>®N. Therefore, to be precise,
the nonlinear estimator in Eq. (3.79) does not exclusively select the no-jump dynam-
ics, but additionally takes the scenario involving N spontaneous decay events into
account. However, the probability of this event becomes increasingly unlikely with
increasing ensemble size N. In particular, this scenario can be effectively disregarded
already for N > 5, as illustrated in Fig. 3.4(b).

To cross-check the result, we can verify the normalization of the time evolved

state:

N
> (@, T) = piy) + oL Z ( > “TT(N-R) (1 _ ¢ TT)*
k=0

—p§§)+pé)( T 1= e = 0 4 ) =1,

(E.243)

where we used the binomial theorem.

E.10 Incoherent pumping

In this appendix, we derive the results presented for incoherent pumping and spon-
taneous decay in Sec. 3.10.1. Specifically, we begin in App. E.10.1 by demonstrating
that the terms of the master equation for these two decoherence processes do not
(super-)commute. Subsequently, we provide the simultaneous solution of the master
equation in App. E.10.2. Furthermore, we map the decoherence process to projec-
tive spin measurements in App. E.10.3 and parity measurements in App. E.10.4 to
determine the frequency estimation uncertainty for CSS, SSS and the parity-GHZ
protocol. Finally, we examine the performance of the heralded-(u)GHZ protocols in
App. E.10.5.
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E.10.1 Non-commutativity of the master equation

The dynamics of the system during the Ramsey interrogation time 7' considering
a unitary phase evolution, spontaneous decay with rate I' and incoherent pumping
with rate Iy is governed by the master equation Eq. (3.98). As in App. C, we use the
following notation for the distinct terms

Lylp] = —iw(S, p] (E.244)
F N

=5 >_2000 —ol0p — pol? (E.245)
=1

and additionally define

It Z QJJr ) oo™ — gg)p pagg) (E.246)

Hence, the master equation can be expressed as
p = Lylpl + Lr[p] + Lr,[p]- (B.247)

As for spontaneous decay, the term for incoherent pumping (super-)commutes with

the unitary evolution since

N
wl ; k) (k
LylLr o] = —i—1 ) [02]),20(+)p0(_)— o®p— paé’;)}

4 k=1
)
— _ZTT 3 [Ugﬁy%i ) g )} — [0e9,6®p] — [0, po®)]
k=1
Wl &
= —ZTT Z 2 [afj),ai)pag)] gg) o ij),p} [U(j),dgg)} p (E.248)
jk=1 N———

where we used

00,0 pa®] = ol [0, p] 0 + 0 |01, 5k)]+[0§j’,af)] po
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and
N

Lrltalol) = i< S (208 [0, 4] o — o) [09), ] ~ [0, ] o)) . (B.250)
k=1

In contrast, however, the terms for spontaneous decay and incoherent pumping do

not (super-)commute. Evaluating Lr[Lr, [p]] and Lr,[Lr[p]], we focus on the terms

for a single particle, as commutation for distinct particles is trivially satisfied. Hence,

on the one hand for Lr[Lr, [p]] we obtain

4U(k)() (k)() ) (k) . (k) (k) (k) (_) 20_(k)() (k)

polio” 205r Opa PO — 20 D0 T poy
—— ——
=0t =olt) =0 =0 =
(E.251)
+ ag?aés) p+ Ué’;)paée) 20'(k),0 U_(f) g;) —l—aée)pag;) + pa(k) (k)
=0 —o9) =0
and analogously for Lr. [Lr[p]]
46®) g ()pa()a() 9ok )a(k)poi) 20(),00() (k) za(k) ()pa()
—aF) —o (0 =0 =0 —o(® : )
E.252
+ O-(Ee) (k )p—i— Jée)p(;g’;) 20( )pg( )J(k) —I—O(k)paée) + pg(k‘) (k)
\‘,_./ W—/ \ﬁ,_/
=0 _o®) =0
Consequently, the (super—)commutator does not vanish since
Fﬁ k), (k) _ 4 ), (K) (k)
[Lr., Lr]lp Z40‘ee pok) + 4oy, pogg — 40 poy 4cr+ po) £ 0 (E.253)

and thus, the master equation has to be solved simultaneously for spontaneous decay
and incoherent pumping.
E.10.2 Solution of the master equation

For a single particle, the master equation for spontaneous decay and incoherent pump-
ing is given by

p= g (20_p0y — Oeep — POece) + % (204 p0_ — Ogep — POgg) - (E.254)
Hence, the time evolution for the matrix elements is determined by
Pee = —L'pee + T'1pge (E.255)
s
w257

gs = L' Pee — D'pgg- (E.258)
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While the coherences can be directly integrated, the coupled differential equations for

the populations can be solved using standard techniques, finally resulting in

1 r
=T+t T (Tt
pee(t) r + FTpee(O) [Fe + FT} + T 4 FTpgg(O) [1 € } (E259)
rry,
Peg(t) = peg(0)e” 2 (E.260)
rry,
Pee(t) = pge(0)e™ 2 (E.261)
Pes(t) = 7 FTpee(O) [1— e T n FTpgg(O) [0 4 Tpe T L (E.262)

E.10.3 Projective spin measurements

Following App. E.1.1, we map the decoherence process from the initial state to the
observable X by defining the adjoint Lindblad (super-)operator

£} [X] i Z 20Wpol — oW X — Xol®), (E.263)

As before, we consider a measurement of S, and thus have to determine

k=1
. (E.264)
_ -t ) (k) ;) _ 50) ;)
_ZZ< JJ Ugggyj) Uy)fgfg>
7,k=1
Again, only the terms with j = k contribute since 0_0y; = 04. Using o_o, =
—i(0_04 — 0_0_) = —i0gy, Oge01 = 0, 0ge0, = —i(0ge04 — 0ge0_) = i0_ and
0y0ge = —104, We Obtain
r X
k
cl[s,] = 1 <20£)035k)05r) — Mgk 0';“0;?)
= N (E.265)
r - I I,
D N YR B SR RS
k=1 k=1

Additionally taking spontaneous decay into account (cf. App. E.1.1), the differential
equation for the first moment is given by

0,(5,(0,1) = Te(LLS0(0)) + Tr (L [5,]0(0)) = 11 (5,0,1))  (B.266)

with solution

T+4T4 T

(Sy(¢,T)) = e~ (Sy(¢)) - (E.267)
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For the second moment, we proceed analogously.

£1I"T SZ Z ﬁT k)

]k’l 1
1 k 1 ) (i (k
= ZZER)["@S@U;@H 1 Lo+ 1 3 £ ool (F.268)
k :@7 ktj k;él
1 T k) ) ~()
+5 Z LI oW a0
JF#kkALFF

The first and last term vanish, since the corresponding operators commute with the
terms of the Lindblad (super-)operator. The second and third expression are identical

apart from a relabeling of the indices j <> [. Hence,

Lr,[S2] = Z LiMoW 6]
k#]

1 )

_ = § @) p1R) (k)

- Uy T [O-y ]
__ T,

_ Iy () (k)
- _Zzayj g

ki

Explicitly expanding Sj according to

1 - 1 1 ,
SZ =1 Z Jéj)aggk) =1 Z Jék)aék) +Z Z U@(/])Jz(/k)’ (E.270)
Gk e

1 :
1205 =8 -1, (E.271)
7k
yielding
£h[5? = 1,82 + 211 E.272
FT[y]__Ty_’_Z : ( )
As a result, the differential equation for the second moment is given by
0, (52(6,)) = Tr(LL[52)p(@)) + Tr(£], [52)0(0))
(E.273)

= —(T+Ty)(Si(o,1)) + %(F +Ty).
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Therefore, we obtain
N
(S5(0,1)) = 1 [L = e ] 4 7 HIT(57((9)) (E.274)

Consequently, incoherent pumping has the same effect on projective spin measure-
ments as spontaneous decay and individual dephasing. Ultimately, the phase estima-
tion uncertainty reads

% [B(FH‘T)T _ 1] + (ASy)Z

(Agp(T))* = R , (E.275)

where the expectation value (S,) and variance (AS,)? depend on the specific initial

state. In particular, for CSS we obtain

(T4+T4)T
(Agess(T))? = = - (E.276)
1
Tess = E.2
CSS T n FT ( 77)
r+r
(Awess)? = LT (E.278)

TN

As argued in the main text, this result represents the standard quantum limit (SQL).

E.10.4 Parity measurement

We can proceed analogously for the parity measurement I = (—1)Vo®V. With

O_0p = Ogg, Oge04 = 0, 0450, = 0_ and 0,04, = 0, we obtain

28
ETFT[ = i} Z 20" 0®N (k Ugg)afw — Uf)NUg;)

_ (_1>N5 Z _O_f:@kfl o™ & a;‘?N’k _ afkq ® af) ® U;?ka (E.279)

N N
Sl geN 21T

eN 1.
2 2

— (1)

Consequently, incoherent pumping also has the same effect as spontaneous decay
and individual dephasing with regard to parity measurements, resulting in the phase

estimation uncertainty

(E.280)
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For a GHZ state, we finally determine

(T+T4)NT
(A¢parity—cuz(T))? = ‘ e (E.281)
1 1
Toarity— = —= E.282
parity—GHZ NF_i_FT ( 8 )
I'+rI
AWparity_cHz)” = m- E.283
partty Nt

This minimal frequency estimation uncertainty is equivalent to the SQL, however it
is achieved at a N-times shorter interrogation time.

E.10.5 Heralded-(u)GHZ protocol

For the protocols with GHZ(-like) states, we consider the initial state

pin = ol [T + oG [N + QPN + 0P, (B.284)
where we assume that ,o(N) p(g). The time evolved state is given by
Pg) 40T —(0+T4)
pinl@:T) = g ([0 Tae T L T 1= 0] )™
r+1r . .
+ o e = T[N (1PN 4 e N ) (L] (E.285)

(N)

+ Fp—:err ([Fef(FJrFT)NT + FT} T +T [1 ~T) } ) <*L|)
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Application of the measurement transformation Z/{CT;HZ results in the final state
(V)

1
i, T) = 55 m{ ([T + Do T 14 4 Ty [1 = e @07 gy ()

(=i VE ([0 Ty THOT) () (L] 4 Ty [1— e TIOT] g p)) =Y
i ([0 Dy T ]+ Ty [L= e T )

+ ([0 4 Tye TEOT] ) (] 4 Ty [L— e THDT] ()" }

N)
n szg o~ INT

[ LHHEY + (NP (N 4NN + 1Y )
MY 4+ (i 4N E N e ]

() N
rE {([Fe (DT L D] Y]+ T [1— e DT 1))

|®N

2 T+

()N ([PemTHIT 4 T 1) (1 |+F[1—e‘<”””] )™
4N ([P TTOT rT] A9+ T [1 = e 7] )=

+ ([P ™D L D (U + T [1— e T (1)) } (E.286)

From the final state, we can directly read off the conditional probabilities. In partic-
ular, only the conditional probabilities for the maximal Dicke states are required.

(N)

Peg 1 —(r4r)T\N N —(r+T)T\N
P(z=4%¢) = [r T~ T+01) N (1 — e~ (@T+Ty) }
(Q? 2 ‘(b) 2 (F + FT)N ( +1ye ) + 0 ( € )
A v
+ Tge_ 7 NI [eNO(Fi)VHE 4 e N (i) V] (E.287)
P(N) 1 (T+T4)T N N T+ T\
e S R (BN
+ 2 (T+T)N [( € +I4) " + I (1—e )

Since N + F is odd, this can be expressed as

P (a: - iﬂ\@ _ Pég) 1 [(F 4T ef(r+r¢)T)N Ly (1 _ e*(F+FT)T)N}
- 2 T+IN ' !

(V)

Pee 1 [ —(0+I)T N N —(r+r)T\ N }

r T r ™~ (1- T

Ty L R AL )
r+r

(V)
T 9N +E+1 Png e T N Gin(Ng). (E.288)
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Thus, the signal is determined by

N
(X1 = X [P (o = 21¢) - P (o = ~X10)]
— _4,L-N+E+IE£ —@NT Sln(Ngb) <E289)
2 2

I+

= —iNTEHN e 2 T sin(Ng)

and the slope is given by

T'+T
0y (X (6, T)) = —iNTEHLN2 oM e=—3NT co(N ), (E.290)

cg

which is maximized for the optimal working point ¢y = 0. Ultimately, the phase

estimation uncertainty is obtained

e
4 05 (X (9, T)) |2 $=do
(D4+T4)NT 1
_° (N) [ [ 4 Tae— TN PN (1 _ ~(0+T)T N}
+ [(Fe_(F+FT)T +T) Y TV (1 - e-<F+F¢>T)N] } (E.291)

Heralded-GHZ protocol— For the GHZ state, the matrix elements of the initial

state are given by pég) = péé“ = péﬂ!) = % and thus, the phase estimation uncertainty
reads
(F-i-FT)NT 1
e N
Aheratded—criz(T))? = (D4 e 07 E.292
(Adneratdea—cuz(T)) INT (TN (I + Tye ) ( )

(eI TN (O ) (1 )]

For I't = 0, we reproduce the result without incoherent pumping, as given by
Eq. (E.164). Furthermore, for I' = 0, we obtain the analogous result with I'; re-
placing ', which is further explained in the main text (cf. Sec. 3.10.1).

Heralded-uGHZ protocol— According to Eq. (E.175), the matrix elements for

the uGHZ state are given by pg) = sin® (%), pffe“ = cos? (g) and pg!) = pgfgv) =
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—NtE+ gin (%) cos (eé\f ) Hence, the phase estimation uncertainty is determined by
e(T+T4)NT 1
AN?sin® (V) cos? (£F) (T +Ty)N
{ sin® (&%) [(F + FTe_(F-i‘FT)T)N +TN (1 - 6—(F+FT)T>N}
+cos? (4) [T 0T 1) 7 (1 = - 07)] )
PHONT (E.293)
AN? (T +Ty)N

(Ap(T))* =

el

X {m |:(F + FTG*(FJrI‘T)T)N + Fgrv (1 . 67(1‘+FT)T)Ni|
2
+ ﬁ [(Pe*(F+FT)T + PT)N X PN (1 . e*(FJrFT)T)N] }

As before, the optimal rotation angle 6, can be evaluated analytically to read

2 Pe(+0T 4 7)Y 4 TN (1 — e=+TpT) ™
Oopt = — arctan | ( T)N ( )N (E.294)
N (F + FTG—(F—H})T) + Ff (1 _ e—(F—&-FT)T)
Using the trigonometric identities
tan?(z)
.2
= E.295
sin’ () 1+ tan?(x) ( )
1
R E.296
cos”(z) 1+ tan?(x) ( )
and rewriting Oqp = % arctan ({‘/g), with
a = (T 4 Tpe DT Y L PN (1 = -+ Y (E.297)
B = (De T L 1) 4PV (1 — e Ty (E.298)
we can express the phase estimation uncertainty as
(T+T4)NT 1
€ N B
(AG(T))? = 1+ tan? (222)] o+ —2—
AN? (D4 TN 2 tan? (60;)51\/)
(T+T4)NT 1 [
_e T LA N (E.299)
4N?2 (F + FT)N e} B

2
(67

o(T+TH)NT

ANT (T +TpN”
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Ultimately, we obtain

eT+TONT (T 4 FTG—(F+FT)T)N +TN (1- 6—(F+F¢>T)N
4N? (T + Ty)N

(Ap(T))* =

2
(Ce~T+TDT 4 7)Y 4 TN (1 — e=@+T)T) Y

1 —(r+r)T\ NV N —(r+r)T\N
(F—i—l}e T ) +FT (1—6 g )

Again, for I'y = 0, we reproduce the result without incoherent pumping, as determined
by Eq. (E.212). Although not directly apparent, for I' = 0, we also obtain the
analogous result with I'; replacing I', as argued in the main text (cf. Sec. 3.10.1).

E.11 Spontaneous decay events as erasure errors

In the following, we derive the results presented in Sec. 3.10.2. Specifically, we apply
the framework of quantum trajectories (cf. Sec. 3.7.4) to CSS in the presence of
spontaneous decay in App. E.11.1. Furthermore, we convert quantum jumps into
erasure errors and determine the frequency estimation uncertainty in App. E.11.2,
following the fundamental approach introduced in Ref. [190].

E.11.1 Spontaneous decay events in CSS

Since the individual particles in a CSS are independent and identical, it is sufficient

to study the dynamics of a single particle. Starting from the initial state

pds = 3 I+ 1141 + 1)+ 1], (£:300)

the mixture after free evolution time 7' consists of two terms, reflecting either the
absence of any spontaneous decay events or the occurrence of exactly one. With the

continuous non-unitary evolution G and discrete jumps J, as defined in App. E.9, we

obtain
50 (6.T) = G(T.0)p
=5 [0+ e (2 10T+ e ) + e ] (300
A6 T) =5 [+ (8:302)
AD(6,T) = T [0+ e F (& W)+ e () + e [1)(11] (B.303)
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and

T
~§1)(¢,T):/ dt1G(T,t1)TG(t1,0 )p(cls)s
0

_ %r /O S e () (E.304)

— 5 (=)
W6 T) = 5 [1- ] (E.305)
(e, 1) =1L (E.306)

Consequently, the N-particle CSS after the free evolution time can be expressed as

the mixture given by

poss (@ ZN: ¢,T) (E.307)
( ) (1) o] [pgl)(qb’T)]k (E.308)

—_ LN( ) —FT}N k [1 _e—FT]k (E.309)

o) = P ([0 m]) ™o o) ™). (E:310)

where P denotes the permutation operator generating the (],:,[ ) permutations.

E.11.2 Conversion of spontaneous decay events into erasure
errors

As argued in the main text, we aim to explore the advantages of converting sponta-
neous decay events into erasure errors. In this approach, the particles that decayed —
characterized by the state pgl) — are effectively taken out of the clock space without

perturbing the remaining particles. The corresponding state is given by

P (e

(k

As the k particles in the state |[—1)(—1| no longer contribute in the Ramsey sequence,

pr(¢,T) =

" e \—1><—1|®k) | (E.311)

they can be traced out and we effectively obtain
pi(¢,T) = [pél)(cb,T) (E.312)

Note, however, that py(¢,T) now represents a N — k-particle state.
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T )
Using Eq. (E.99) with @ = £, ¢ = 17 and b = £-Zre %, the QFI of the
state pél) is determined by
4€—FT
Falot”(4,T)] = = (E.313)
Consequently, due to the additivity of the QFI, we obtain
D 4€—FT
Folow(d, T)] = (N = k) Folpy (¢, T)] = (N — k)m- (E.314)

In the following, we prove that the QFI is saturated by a projective spin mea-

™

surement with linear estimator. Applying the second 7/2-pulse, given by R, (5) =
=+ (1 —io,), to the state pé”((b, T), the final state reads

V2
(1) 1 : .
PN T) = S D = L ]+ 1)
e’% e’ —1 1
re (e 40t = 1)+ W)+ 11 (U] + S
e ([ = WU+ 8 I+ [ (D)
eI AV = [ + 1 11+ W |-
Hence, we directly infer the signal
<Sz(¢a T>> = %tr (Ung)(@ T)) = %ﬁe? Sin(¢), <E316)

while the second moment trivially reads (S?(¢,T)) = 1, since o2 = 1. Consequently,

we obtain the phase estimation uncertainty at optimal working point ¢y = 0 given by

(1 + e‘FT)2
—

(A1) = = G . 1))

(E.317)

1
4
=00

(&

which saturates the QFIL.
Finally, we evaluate the QFI of the state pcgs(¢,T’) within the framework in

which spontaneous decay events have been converted into erasure errors. Utilizing
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the convexity of the QFI, we obtain

Falpess(6, 1)) <> pi(e, T) Folor(d, T)]

k=0
4”71 N /N Nk _rrk
- (1+6_FT)22_N N (k) [1 + T] [1 T]
k=0
= N -7 N-k el
=)k L e | (E.318)
k=0
4e T 1 _
= _FTQN[1——(1 e FT)]
(1 —eTT) 2
4e~IT 1
R — N h ] T
(1 _ e_FT)Q 2 ( t+e )
_ 2Ne 'T
S 14T
where we used the binomial theorem and Zgzok(]z)a]v*kbk = ON(a + b)¥7! in

Eq. (E.318). Accordingly, the frequency estimation uncertainty is given by

1+ e 1T T 41
Aw(T))? > - ) E.319
(B(T))" 2 SN e = aNTT ( )

This expression has the same structure as the frequency estimation uncertainty of the

heralded-GHZ protocol in the limit where the N-jump contribution is disregarded (cf.
Eq. (E.165)). Hence, the minimal frequency estimation uncertainty can be derived
explicitly and expressed using the Lambert-W function. Differentiation with respect
to T’

N o 1 TTe™ — (T +1)
0= 0r(Aw(T))* = 57— = (E.320)

yields the transcendent equation
(DT — 1) Tmin = 1, (E.321)

which is equivalent to

1
(TTgin — 1) Fmin=t = — (E.322)
€
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With the formal solution I'T,;, — 1 = W (1/e), we derive

S 1 eMTmin 47
— 2NT Tmin

(Awmin ) 2

1 (DT — D™ 4 (T i —

1)

ONT (T — 1) T
1 T
T ONT I T — 1
B T
T 2NTW(1/e)
~ (Awsqr)?
2eW (1/e)’

(E.323)

where we used Eq. (E.321) in the second step. Consequently, converting spontaneous

decay events into erasure errors using the CSS results in a constant enhancement

compared to the SQL, which, interestingly, is equivalent to the gain achieved by the

heralded-GHZ protocol (cf. App. E.7).



276 Appendix E. Calculations for protocols in local frequency metrology




Derivations of bounds and
estimators in Bayesian phase
estimation

In this appendix, we present a collection of proofs and derivations from the literature,
such as Refs. [68,140,151,161,162,169,200,209,211-221], for the lower bounds on the
BMSE, as defined in Eq. (4.1). Furthermore, we derive explicit expressions for the
linear and optimal Bayesian estimators, as presented in Sec. 4.4.

F.1 Bayesian Cramér-Rao Bound (BCRB)

Assuming standard regularity conditions (cf. Eq. (D.3))

dP(zl¢) _ d
= — P = F.1
> S L5 Pl o ")
and vanishing of the prior at the boundaries
Jim P(6) =0, (F.2)

the BCRB reads

(A¢)* > (Adpcrp)® = I(lzf)llfl(Aqﬁ)2 = 7:—11—1'

Here, the measurement contribution is represented by the Fisher information averaged

(F.3)

over the prior distribution

T = Flhsrlpw], {TLY = / Ao P(¢)F[Agrlpm], {11, }]
B L (dP(]o))?
‘/dW(d));P(w) ( a6 >

277
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and

£ oty (52

denotes the information contained in the prior knowledge, given by the Fisher infor-
mation of the prior distribution.
Proof: The proof is based on Refs. [211,212]. By defining the function

f<¢7 [L’) = ,P(gb)P(ZE‘gZS) [¢ - gbest(x)} ) <F6)

the BMSE can be expressed as a squared norm

- [10 Y Foa) (F.7)
Furthermore, we define

1 dP(¢) P(x|9)

W)= T oPEs) |

such that
[0 X0 = [0 Y g (POT5 + Pen )
B 1 dP(z]¢)\”
-/ d¢P(¢);P<x|¢>( )
L (PO N py, dP(¢) §~ dP(z]¢)
+/‘MP(@( a0 ) 2.7 9)+2 [ a0 <00 2

(F.9)

=F + 1.

In the last step, we introduced the average Fisher information F and prior knowledge
7 defined in Eq. (F.4) and Eq. (F.5), respectively. Furthermore, the last term in
Eq. (F.9) vanishes as a consequence of the regularity condition Eq. (F.1). Using
partial integration, Eq. (F.2) and normalization of the probability distributions, we

evaluate

[ 6 Y 16 m0t6.9) = [ 46 316 - o) TELD)

—+00

= [Z [¢ - gbest(xﬂ P(¢)P(£|¢)

T

- [0P@) 3 Palo

—00

= 1. (F.10)
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Finally, application of the Cauchy-Schwarz inequality yields

< JEN x>g<¢,x>> < ( [ Zﬁ(as,x)) ( [ Zgwx)) (F.11)

which — with the definitions from above — is equivalent to 1 < (A¢)? [F +Z] and
ultimately results in the van Trees inequality Eq. (F.3). O

F.2 Bayesian Quantum Cramér-Rao Bound
(BQCRB)

By restricting the measurements — without loss of optimality — to the class of projection-
valued measures (PVM) I1, = |z) (x|, with orthonormal eigenstates |z) of the observ-
able X with eigenvalue z, satisfying (z|2’) = 0,,, the BQCRB can be expressed
as

(Agpqors)” = (6¢)* — Tr(pL?). (F.12)

Here, the double minimization over the measurement {II,} and estimator ¢eg is
combined in a single quantity L = ) Il ¢et(x). The optimal L is determined by
the implicit equation

1 _
p'=5(PL+Lp), (F.13)

where p = [ dp P(¢)Ayr|pm] denotes the average state and 7' = [ do P(¢) Ay r[pin] -
Proof: The proof follows Ref. [151]. We start by rewriting the BMSE as

(207 = [ 40P 3 Tr (Ao lpullLe) 6 — b))

= (5¢)2 + Tr (/ dCb P(¢)A¢7T[p1n] Z Hocqbgst(x)) (F 14)

—2Tr (/ de P(¢)oNg [ pin] Z Ha:¢est(93)>
= (60)* + Tr(pLs) — 2 Tr(7'Ly),

where (d¢))? represents the variance of the prior distribution, p = [ d¢ P(¢)Asr[pin]
denotes the average state and 7' = [ d¢ P(¢) Ay 1[pin]¢. Furthermore, we have com-
bined the measurement {II,} and estimator ¢ by defining the operators L; =

Zz Hx¢65t(x) and L2 = Zx qubgst(x)‘
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In a first step, following Refs. [151,161,213], we demonstrate that — without loss
of optimality — the measurement can be restricted to the class of projection-valued
measures (PVM), i.e. projective von Neumann measurements II, = |z)(x|, with
orthonormal eigenstates |z), (x|2') = 0,4, of the observable X with eigenvalue z.
We denote the projective strategy by LyyM, where LM = Ly = 37 @est(2) ) (2]
effectively corresponds to the eigendecomposition. Based on Eq. (F.14), we have to
show that Tr(ﬁLEVM) < Tr(pLsy) to prove that we do not lose any optimality by
restricting to the projective strategy. Using that L, is hermitian and II, > 0, we can

consider the inequality

Z(¢est(x) - L1>Hac<¢est(l‘) - Ll) Z O

T

> ol Zcbest )Ly — Ly Zqﬁest cA LY LI >0 (F.15)

T

Ly—L>0
Ly > L, (F.16)

where we have identified L; and L, in Eq. (F.15) and used the completeness re-
lation ) II, = 1. However, equality in Eq. (F.16) is achieved specifically for
the projective strategy, since LEY™M = Y~ @2 (z)|z)(z| = (LTYM)2. Therefore,
Tr(pLEY™) < Tr(pL,) and it is always optimal to choose the measurement to be
projective.

In a second step, we derive the BQCRB Eq. (F.12). Choosing the projective
strategy discussed above and accordingly labeling L = L, and thus L, = L?, the
BMSE reads

(A¢)* = (6¢)> + Tr(pL*) — 2Tr(p'L). (F.17)

Hence, the task of finding the optimal measurement and estimation reduces to the
optimization of the operator L, containing both. Variation of L according to L —

L + €)L with infinitesimal parameter ¢ and hermitian J L yields
(A¢)* = (6¢)* + Tr(p[L* + eLOL + e0LL + €5L%]) — 2 Tx(p'[L + edL]).  (F.18)
Differentiation with respect to € and evaluation at € = 0 results in
0= Tr([pL + Lp — 2p'|0L). (F.19)
Since Eq. (F.19) must hold for any §L, it implies

1
~(Lp+pL), (F.20)

-
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reproducing Eq. (F.13). Substituting this expression for " in Eq. (F.17), we find
(A¢)* = (30)* + Tr(pL?) — 2 Ta(p'L)

= (6¢)* + Tr(pL?) — Tr(pL?) — Tx(LpL) (F.21)
= (§0) — Tx(pL?),
which corresponds to the BQCRB Eq. (F.12). O

F.2.1 Unitary phase evolution and Gaussian prior distribu-
tion

Assuming a unitary phase evolution according to Eq. (4.4) and a Gaussian prior
distribution as defined in Eq. (4.5), the BQCRB can be related to the QFI Fg[p] of
the average state p by

(A¢BQCRB)2 = (5¢>2 [1 - (5¢)2FQ[ﬁ]] . (F-QQ)

Proof: The proof is based on Ref. [214]. The unitary phase evolution according to
Eq. (4.4) corresponds to the von Neumann equation

Mg, r[pim] = —i[S:, Ay [pu]]- (F.23)

Hence, we can rewrite 7 as
7= [ doP@orurlol
— (60" [ 46 @) Asrlon)
= —(09P P@ Aol T + 601 [ d6P@)0usalon] (20
= —ita0)? |5t [ a0P(@) sl

= —i(6¢)* [S., 7], (F.25)
where we exploited the property 9P (¢) = —(d¢) 2P (¢) of a Gaussian prior distri-

bution. Furthermore, we used partial integration in the second step and Eq. (F.2) as
well as Eq. (F.23) in Eq. (F.24). With Eq. (F.13) and Eq. (F.25), we obtain

(Lp + L) = —i(56)? [S.. 7). (F.26)

N —

Substituting L := (0¢)?Lioeal, the BQCRB Eq. (F.12) and the implicit equation
Eq. (F.26) become

(Ap)* = (69)* [1 — (6¢) Tr(PLca)] (F.27)

1 ) _
5 (Llocalp + ﬁLlocal> = 1 [Sza p] . (F28>
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Comparison to the QFI approach in local phase estimation (cf. App. D.4) shows
that Ligca defines the symmetric logarithmic derivative (SLD) and thus, Tr(pLZ ;) =

local

Folp] corresponds to the quantum Fisher information of the average state p, resulting
in Eq. (F.22). O

F.3 Optimal Quantum Interferometer (OQI)

The optimal quantum interferometer (OQI) represents the ultimate lower bound of
the BMSE. However, no general expressions for arbitrary ensemble sizes exist. In
this appendix, we derive the explicit expressions for the specific scenarios discussed
in the main text (cf. Sec. 4.3.3). In particular, we determine the coherence time
limit (CTL) in App. F.3.1. Furthermore, we present an intuitive derivation of the
m-corrected Heisenberg limit (7HL) in App. F.3.2, representing the ultimate lower
bound in the asymptotic limit. Finally, we introduce the concept of the phase operator
based interferometer (POI) in App. F.3.3, which saturates the 7HL in the asymptotic

regime.

F.3.1 Coherence time limit (CTL)

In the following, we derive Eq. (4.21). Considering a 27-periodic quantum channel
with respect to the phase ¢ as described by Eq. (4.4), the OQI allows for unambiguous
phase estimation within the range [—m,+7|. Exceeding this invertible regime, an
estimation error is accumulated which increases with the distance from the primary
Ramsey fringe. In particular, an estimation error of ¢, = (27k)? is accumulated if
the phase slips in the region [—(2k + 1)7, —(2k — 1)7| or [+(2k — 1)7, +(2k + 1)x] for
k € N. The estimation error associated with these events can be modeled by

o0

(Agat)’ =Y erP, (F.29)
k=1
which effectively represents the average of the estimation error €, weighted with its
corresponding probability

—(2k—1) (2k+1)m

R= [ Caep@s [ dople) (F.30)
—(2k+1)7 (2k—1)m

Consequently, Eq. (F.29) constitutes an asymptotic limit for broad prior distribu-

tions. In the context of atomic clocks, this regime corresponds to long interrogation

times, where the coherence time of the local oscillator will become relevant and ulti-

mately limits the clock stability. Therefore, we will denote Eq. (4.21) as the coherence
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time limit (CTL) of the OQIL. Assuming a Gaussian prior distribution as defined in
Eq. (4.5), the probabilities P, can be evaluated explicitly to read

(2k+1)m (2k+1)m (2k—1)w
— d = d — d
=2 /( $P(9) =2 /O 6P(0) — 2 /0 6P()

2k—1)m

- ((2%?) —e <(2k¢§53ﬂ) |

where we substituted ¢ = %&ﬁ and introduced the error function erf(z) = [ dte™"".

(F.31)

In the relevant regime of prior widths considered in Chapter 4, where typically only
the adjacent fringes around ¢ = 0 contribute, the prior distribution P(¢) is effec-
tively limited to the region [—3m, +37|. As a result, the CTL simplifies significantly
compared to the general form in Eq. (F.29), which accounts for contributions from all

Ramsey fringes. Restricting to the error associated with the adjacent fringes around
¢ = 0, the CTL reduces to

o) —T

= 4r? [1 — erf (f%&;s)} .

F.3.2 Asymptotic limit

(APSH)? = 472 {/_4 doP(¢) + /:0 d¢73(¢)} = 4r* [1 B /7r dng(qu)} (F.32)

With increasing ensemble size, the numerical algorithm presented in the main text
becomes computationally challenging. However, in the asymptotic limit (N > 1), an
explicit analytical expression for the OQI can be derived. Assuming unitary phase
evolution as described by Eq. (4.4) and restricting to the invertible range [—m, 47}, it
has been shown for arbitrary prior distributions [209,214-216] that the ultimate lower
bound is given by the m-corrected Heisenberg limit (7HL), as defined in Eq. (4.22).
An intuitive derivation for Gaussian prior distributions is given in Ref. [214] and is
reproduced here. Based on Eq. (F.22), the optimization of the BQCRB over all input
probe states py, is equivalent to optimizing the QFI over all averaged states p. This
averaging can be formally associated with a collective dephasing process, where the
dephasing rate is identified with the variance of the prior distribution [151,214]. By
combining this perspective with the asymptotic result for collective dephasing derived

in Ref. [68], the asymptotic OQI can be expressed as

(Agoqr)® = (6¢) [1 - ﬁ] 2 (59)? [1 - (1 - #{;)2)} = ]7\;—22,

N2(3¢)?
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: a1 . : : . .
where we used the expansion —— =~ 1 — x. This result is valid for Gaussian prior

1
distributions with widths d¢ <2 N, which encompasses all relevant widths in the
asymptotic regime N > 1. It is therefore reasonable to expect that this result
generalizes to arbitrary prior distributions, as the fundamental characteristics of the
estimation problem in this regime remain largely unaffected by the specific shape of

the prior [209,214].

F.3.3 Phase operator based interferometer (POI)

Finally, we aim to identify the protocol that saturates the asymptotic limit of the
OQI. As discussed above, simultaneously determining the optimal measurement, in-
put probe state and estimation strategy is a highly non-trivial problem. However,
assuming a flat prior distribution and a periodic cost function in the interval [—7, 4],
the concept of covariant measurements [162,215] provides an explicit solution for the
optimal measurement operator — the so-called phase operator [140,200,215-221]. The

phase operator @ is defined as

N/2
D> dals)(s
s=—N/2
21s

¢S:N—|—1

(F.34)

] N/2
- 3
N+1,.2 —N/2

where ¢, are the eigenvalues with corresponding eigenstates |s), constructed from

—ips M ‘M

the eigenstates | M) of S, with eigenvalue M and total spin N/2. An interferometer
based on @ is referred to as phase operator based interferometer (POI). Furthermore,
under these assumptions, the optimal input states in the asymptotic regime (N > 1),
known as sine states [140,200,215-221] and saturating the 7HL, can also be explicitly

Ya) = F NZ/Z Sn< ]\]{[111/2))|M). (F.35)

M=—N/2

determined by

However, since the assumptions of a periodic cost function and flat prior distribution
are contrary to the framework introduced in Sec. 4.2, namely a global BMSE with
phases —oo < ¢ < +o00 and Gaussian prior distributions, these measurements and
states are not necessarily optimal in the approach pursued in Chapter 4. Therefore,
the optimal initial states and measurements must be explicitly evaluated. Never-
theless, it is instructive to investigate the performance of the POI and compare it
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to the standard protocols as well as variational classes discussed in the main text.
Notably, this scenario is contrary to the BQCRB, since the measurement is fixed
by ®, while we aim to optimize over all initial states. For a fixed prior width, the
optimal state [1)g) can be identified by adapting the iterative algorithm presented in
Sec. 4.3.3 and building on methods from Ref. [140]: Starting with an arbitrary initial
state Wi(r?)% such as ]wi(r?)) = |s = 0), the optimal Bayesian estimator (cf. Sec. 4.4)

g(s) is computed. Based on gbg(s), the subsequent input probe state |¢$)> in the
iterative algorithm is evaluated by selecting the eigenstate corresponding to the most
negative eigenvalue of the operator [ d¢ 77(QS)A;)7T[L2 — 2¢L] defined in Eq. (4.20).
This ensures that the state |1/}$)> is optimal for a given measurement and estimator.
This process is repeated until convergence to the optimal state [1)g) — tailored to the
framework considered in Chapter 4 — is achieved. Numerical evaluation of this itera-
tive algorithm shows that the POI saturates the OQI in the limit of large ensembles
within the framework of Chapter 4, as discussed in the main text and depicted in
Fig. 4.2(b).

F.4 Estimators

F.4.1 Linear estimator

With the linear estimator defined in Eq. (4.24) by ¢lin®®(z) = a - z, the BMSE is

est

expressed as

(AG) = (56)° — 2a / A6 P(0)6 Y aP(x|6) + a? / 46 P(6) 3 #2P(a]0)
z : (F.36)

— (50) — 2a / 46 P(8) (X(6)) + a? / 46 P(6) (X3(0))

Here, the moments of the observable X are defined by (X"(¢)) = >, 2" P(x|¢).
The optimal scaling factor a is determined by minimizing the BMSE. Differentiating
Eq. (F.36) and solving for a yields

_ JdoP($)¢ (X(9))

= TaeP(6) (X2(4) (F31)
Hence, from Eq. (F.36), the corresponding BMSE is given by Eq. (4.27), i.e.
(D)t — (g0 — L AOPOS X @)]" (F.38)

[ doP(e) (X3(¢))

Due to the linearity of the estimator, the scaling factor and BMSE only depend on the
first and second moments of the observable X, rather than the full statistical model
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P(z|¢). This dependence significantly simplifies practical computations, while re-
taining reliable performance in several situations. Nevertheless, the linear estimation

strategy is not optimal in general.

F.4.2 Optimal Bayesian estimator

This derivation follows Ref. [200]. To start with, we expand Eq. (4.3) according to

(80 =3 Pia) [ [ 40P 20ula) [ doP@l)o + diuo) [ ao P(¢|:c>] -
(F.39)

As before, the first term results in the prior variance (§¢)?, while the last integral
simplifies to unity due to the normalization of the posterior distribution. To minimize
the BMSE, the optimal Bayesian estimator has to minimize the term in the brackets
for each measurement outcome z, since P(x) > 0 and ¢es(z) is independent for
different z. Differentiating and solving for the estimator yields the optimal Bayesian
estimator given in Eq. (4.28), namely ¢2% (z) = [d¢ P(¢|z)é. Thus, the optimal
Bayesian estimator corresponds to the mean posterior phase. With this result, the
BMSE becomes

(A)? = (80)° = D P() (¢ (x))". (F.40)

Equivalently, the BMSE can be expressed in terms of the statistical model P(z|¢) and
prior distribution P(¢) according to Bayes theorem Eq. (4.2), resulting in Eq. (4.29).
Unlike the linear estimator, the optimal Bayesian estimator as well as the correspond-
ing BMSE depend explicitly on the statistical model, rather than just the first and
second moments of the observable. While this dependence ensures optimality, it also
increases computational complexity.



Calculations for protocols in
Bayesian frequency
metrology

In the following, we derive the sensitivities of the CSS, SSS and GHZ protocols
introduced in Sec. 4.6.1.

G.1 Coherent Spin States (CSS)

For a measurement of the collective spin operator S, and unitary phase evolution
through a rotation around the z-axis, according to Eq. (4.4), the first and second

moments of the observable are given by

(X(9)) = (Sy(0)) = (Sy) cos(¢) + (Sz) sin(¢) (G.1)
<X2(q§)> = <52 ®) > <S2>cos (@) + (SySy + S5, sin(¢p) cos(¢) + <S§>sin2(q§),
(G.2)

where the expectation values (-) are evaluated with respect to the initial state [¢);,)
and thus are independent of the phase ¢. Assuming a Gaussian prior distribution, as
defined in Eq. (4.5), the integrals in Eq. (4.27) become

/ doP(0)o (X(¢)) = / dp P () [(S,) cos(9) + (S sin(e)] = (S,) (5¢)%e ="/
(G.3)
/ A6 P(6) (X2(0)) = / A6 P(8)] (52) cos2(6) + (5,5, + 5,5,) sin(¢) cos(o)
+ <52> sin2 }
[<SQ> cosh ((6¢)*) + (S2) sinh ((6¢)%)] , (G.4)

287
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where terms with odd integrands vanish directly. Thus, the optimal linear scaling
factor, corresponding BMSE and effective measurement uncertainty are given by

(S) (9¢)%e?
<S2>Cosh (09)2) + (S2? )81nh((5gb)2)
2 2|4 _ 2 (Sa)”
(BOF = 0O |1 =0 gy conioom) + (59 sinh<<5¢>2>] (G5)
(5] 2 (S2) . 2 2
App)® = ——5 cosh((d —=5 sinh((0 — (6o)”.
() = 5 cosh{(30)) + 2% snh((30) ~ (50

For the conventional Ramsey protocol, a coherent spin state (CSS) polarized in

a-direction is prepared by a 7/2-pulse applied to the collective ground state

0SS) = R, (—=2) 11)° = |4)° = |y + |¢>>] (G.6)

v

which represents N uncorrelated atoms, each in an equal superposition of the ground
and excited states. CSS and their properties are discussed in detail in Refs. [115-117],
while a comprehensive overview is provided in Sec. 2.3.7. With expectation values

=N sy=sy-0 (-2, @)
(Sy) = % =(S2),  (S.8,) =0=(S.8.), (G.8)
we derive
9680 /2

155 = Cosh((60)2) + N sinh((39)?) (©9)
(Boess)? = (00" |1 = (00t (GO
(AGSES)? — —COSh(J(V5¢)2) 1 sinh((66)?) — (6)°. (G.11)

Rewriting the first term, we recover the result from Ref. [92]
(AGSSSY2 — e(j:;)z n (1 - %) sinh((69)%) — (3¢)*. (G.12)

G.2 Spin-Squeezed States (SSS)

The application of an one-axis-twisting (OAT) interaction 7. (u) = exp (—i452) with
small twisting strength p to the CSS, defined in Eq. (G.6), generates a spin-squeezed
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state (SSS). To align the minimal spin variance along the y-axis, an additional rotation
R.(0) around the z-axis by an angle 6 is applied. Thus, the initial state reads

[SSS) = Ra(0)T-(1) |CSS) . (G.13)

These states are introduced and discussed in detail in Ref. [125], while a compre-
hensive overview is provided in Sec. 2.3.9. In comparison to CSS, the SSS differs
primarily in its polarization and spin variances, while other properties remain un-
changed. Hence, the optimal linear scaling factor, BMSE and effective measurement

uncertainty are given by Eq. (G.5) with expectation values

(Sz) :g cos™ ! (&) (G.14)
(S2) :% {N - %(N - 1)A] (G.15)
(S2) :g{lJr%(N—l) [A—\/m}}, (G.16)

where A =1 — cos™?(p) and B = 4sin (£) cos™ 2 (£).

G.3 GHZ States

The GHZ state [121] is defined by
1
GHZ) = — [|1)®N + [1)*N], G.17
|GHZ) 7 [14) 1] (G.17)
which represents an equal superposition of the collective ground and excited states

and thus, is maximally entangled. After the free evolution, the state reads

[s) = R- (=3) R=(¢) |GHZ) = % |5 eT N e BerEneN] | (Guas)

where the additional rotation R, (—%) is applied to shift the optimal working point

to ¢g = 0, since the prior is centered around ¢ = 0. Equivalently, the prior distribution
could be shifted by 7/2N. The expectation value of the parity I = (=1)No®V is
given by

(I(¢)) = (=1)" sin(N¢). (G.19)

Since 02 = 1, the second moment directly yields (IT*(¢)) = 1. Hence, the integrals in
Eq. (4.27) become

/d¢P(¢)¢<X(¢)> = (—1)N/d¢73(¢)¢sin(N¢) = (~1)VN(§p)2e V2092
(G.20)

/d¢73(¢) (X*(9)) = 1. (G.21)
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Consequently, the corresponding optimal linear scaling factor, BMSE and effective

measurement uncertainty are given by

acrz = (=1)NVN(5¢)2e N 0007°/2 (G.22)

(Adanz)® = (69)* |1 — N2(3)2e~ N 100 (G.23)
eN2(59)2

(Aph7)? = N (69)°. (G.24)

Due to the binary nature of the parity measurement, the linear estimator is already
optimal and thus saturates the BCRB and coincides with the optimal Bayesian esti-
mator.

However, the parity measurement can also be mimicked by a projective spin mea-
surement and application of the corresponding optimal Bayesian estimator: For N
even, a Ramsey pulse is applied after the free evolution time, implemented by a
rotation of 7/2 around the z-axis, resulting in the final state

1 1 [,
2

[05) = Ra (5) W) = EF e

I (1) )P 4 O 1) - 1)),
(G.25)

For N odd, calculations are analogous with final rotation around the y-axis. Finally,
a projective measurement of S, is performed. Note that the final Ramsey pulse can
equivalently be absorbed in the observable, leading to an effective measurement of
Sy, as for the CSS and SSS protocol. The conditional probabilities are evaluated to

read
P(af;:—l—%—N,kb) = 2%(;7\[) [1+(—1)%+N‘ sin (N¢) (G.26)

where N_ denotes the number of atoms in the ground state. Interestingly, the con-
ditional probabilities for N_ and N — N_ are equal (since NN is even), resulting in a
vanishing signal (X (¢)) = 0. Nevertheless, with

1 (N
Pz=+5-N_) = /dqﬁP (x]|p) P(o) = o <N_>’ (G.27)
the optimal Bayesian estimator is given by
1 N 2
b (0= +¥ = N.) = s [ 40 P (a10) Pl0)o = (1) FN(gg e M09

(G.28)

and an efficient estimation is possible. Consequently, the optimal estimation strategy
distinguishes between even and odd numbers of atoms in the ground state and thus
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effectively mimics a parity measurement. Note that we performed the calculations
for N even, ensuring that N/2 is integer and consequently (—1)% € R. Analogous
results are obtained for N odd.

As a final step, we determine the BQCRB for the GHZ state. Using Eq. (G.18),
we find

Agrlpin] = % (DAY + MDY + e + DY, (G.29)

which leads to the average state

p= 3 [DGIPY + 082 (L)Y =) + ] . (@.0)

Interestingly, Eq. (G.30) is no longer pure due to the averaging. As it effectively
corresponds to a (real) 2x2-matrix, the QFT of p can be evaluated analogously to that
of the GHZ state in the local approach (cf. App. E.4). Using Eq. (4.16), the BQCRB
directly follows from

Folp) = N2e N0 (G.31)

and results in the same value as in Eq. (G.23).
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