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LIST OF FIGURES

Graph G with n = 12 vertices labelled {vy, ..., vi12}. The staircase shown consists
of the walk given by the dotted vertices (vy, vs, vs, vg, V7, Us, Vg, Ug, V10, V3, U11). The
value of the function at each vertex is shown in blue near that vertex. The local
minimum is at the end of the staircase, at vertex vy1. . . . . . . . . .. ... ..

Consider the walk W = (a,b,¢,d,e, f,g,h,c,i) in blue, where f(a),..., f(i) <0.
Observe that ws = e and wg = ¢ so f(e) > f(c). Since the vertex x is not in the
walk, f(z) = dist(wy,x) = dist(a,z) =4. . . ..o o

Example of a staircase with the accompanying value function. The sequence of
milestones is (v, vg, V11, V16), which are shown in red. The vertices of the staircase
are shown in red and green vertices, connected by red dotted edges. For each node
v, the value of the function at v is shown in blue. . . . . . . . . ... ... ...

Let H be the \/n x \/n graph with clusters Ny,..., N 5, where n = 9. The black
edges represent intra-cluster paths while the blue edges represent inter-cluster
paths. Then, there exists a path arrangement for this graph with parameter

N T

A set of inter-cluster paths between N; and N; from [17]. . . . . . ... ... ..

Graph on nine nodes, with connected cluster partitions Ny = {vg, v1,v2}, Ny =
{U3, V4, U5}, and N3 = {UG, U7, ’Ug}. ..........................

Consider a graph G with a lazy, irreducible, and reversible Markov chain P
with stationary distribution m and mixing time 7. The proof fixes a walk x =
[0, ..., x1], where L = [\/n| - T. The walk x is illustrated as a solid line, where
every T-th node is highlighted. Sample a random walk y = [yo, ..., y1] accord-
ing to P, conditioned on y and x having a shared prefix of length j7T', where
j~U(0,|v/n]). We say that zj7 = yr is the “divergence point”. In the figure,
the shared prefix of x and y is [z, ..., 27|, so j = 1. A critical step of the proof
is to show that no vertex v is too likely to lie on y after its divergence from
x. To show this, we divide the walk y in two regions. Vertices in the region
Ry = [yjr, ..., yjr+1] are collectively close to being distributed according to .
This is because the divergence point from x is chosen randomly. In the region
Ry = [yjr+1, ---, yr], the walk y has mixed, so the vertices in R, are close to being
distributed according to . In either case, no vertex v is too likely to lie on y
after diverging from x. . . . . . ...
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The milestone z;41)r, shown in purple, may not match any of the orange mile-
stones: zy through zjr because it would make z bad, and x(j41)r because it would
make J(X,2) > . ..o oo

The milestone z;y3)r, shown in purple, may not match any of the orange mile-
stones because it would make z bad. . . . . ... ... 0oL

The query complexity of fully adaptive unordered search for n = 2'° elements,
with success probability p ranging from 0 to 1. The X axis is for the success prob-
ability p, while the Y axis is for the expected number of queries. The randomized
complexity is plotted in red (both upper and lower bounds and they coincide)
and similarly the distributional complexity in blue. . . . . . . . ... ... ...

Mlustration for case (a) in step 1. Given ¥ = (¥y,...,¥,), define v : [0,1] — R>
by v(z) = n- ¥, for all £ € [n] and = € [(¢ — 1)/n,l/n]. The left figure shows the
point ¢ with [} ctp v(z)dxr = p. The right figure shows the queried sub-array ygy =
[1,...,2i, 4, ...,2y,)], of length ~ np and probability mass ~p. . . . . . . ... ...

Given distribution ¥ = (¥y,...,¥,), define probability density v : [0,1] — R>¢ by
v(x) =n- Y, for all £ € [n] and xz € [(¢ — 1)/n,¢/n]. The left figure shows an interval
[c,c + p] of length p and probability mass [ v(x)dr = p. The right figure shows
the queried sub-array y = [zj,...,x;], which has length 7' =j—1i+1 < np+ 2 and
probability mass >)_. ¥y > p. When T > 2 the sub-array y = [Zit1,...,7j—1] has
length T'— 2 < np and probability mass ZZ 1+1 Uy<p. ..
Given distribution ¥ = (Uy,...,¥,), define v : [0,1] — R>¢ by v(z) = n - ¥, for
all £ € [n] and z € [(£ — 1) /n,¢/n]. The left figure shows point ¢ with probability
mass [ v(x)dz + f +1-p0(x)dz = p. The right figure shows the queried sub-array

consisting of two parts: y = [xl,.. JTi, Xy, ..., X)), Of length T'=n+i-j+1 <
np + 2 and probability mass Zz 1Yo+ 200 \Ifg > p. When T > 2, the sub-array
Yy =|[z1,...,%i-1,%j41,...,2y] has length T" — 2 < np and probability mass 2421 W, +
Ze—j+1 \Ifg Do o e e e e e e

Array with n = 15 elements. The m = 3 locations issued in round 1 are illustrated
in gray. The resulting blocks demarcated by these queries are marked, such that
the i-th block has length b,,;, for i€ {0,1,2,3}. . . .. ... ... ... ... ..
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Given k > 2 and numbers by, ..., b; € [0,1), we construct a graph with edges (j,j+ 1)
for each j € [k — 1]. For each j € [k], if bj > bj11, the edge from j to j + 1 is oriented
downwards and is colored with black. If b; < bjy1, the edge from j to j + 1 is oriented
upwards and is colored with yellow. The endpoints of all the yellow edges are added
to the set L, together with special vertices 1 and k. All the vertices in L are colored
red and the vertices in [k] \ L are colored blue. For the graph in the picture we have
k=14 and L = {1,4,5,6,7,8,13,14}. Each element ¢; of L is marked in red near the
corresponding node. . . . . . . L L L L L e e e e e

A potential value distribution for four agents from Example 1. When running
Algorithm 1 on the shown value density functions with £ = 2, after the first round
we will have a; = Qg = 05, b1 = bg = 17 as = a4 = 0, and b3 = b3 = 0.5. This
leads to the Cut values shown. In the second round, Algorithm 1 will recurse on
the subcake [0, Cut(as3)) = [0, 0.5] with agents 3 and 4 and on the subcake [0.5, 1]
with agents 1and 2. . . . . . . . ..o

A potential value distribution for four agents. Each agent receives a spike in value
in each of Xy, X1, Xs, X3, Xy (Xo is not shown). Each spike has total value 1/5,
so to get the required 1/4 value an agent’s slice must include parts of multiple
X;. Note that Agent 1 receives the first slot in X;, Agent 2 receives the second
slot in X5, etc. Further note that slot 1 is allocated to Agent 1 in X, and slot 4
is allocated to Agent 4 in X3. This implies that the slices must be allocated to
agents 1,2,3,4inorder. . . .. . ...
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ABSTRACT

Search problems lie at the core of computer science. This thesis addresses two types of
search problems. The first type is local search on graphs. In this problem there is a graph
G = (V,FE) and a function f : V' — R. The goal is to find a local minimum of f; ie. a
vertex v such that f(v) < f(u) for all (u,v) € E. This problem is relevant as a heuristic in
a variety of fields where it is not computationally feasible to compute global minima. For

example, many machine learning techniques compute a local minimum of loss.

The second type of search problem we consider is extremely fundamental: search for an
element in an array. We consider this both when the array is sorted and unsorted, but in
the context of computation in rounds. In each of a limited number of rounds some queries
are issued, but the answers are not revealed until after the last query of the round has been
issued. This model is relevant to parallel computing, where the work done by one machine
is not available to other machines operating concurrently, effectively allowing one query per
machine at any given time. Following this thread, we also study sorting in rounds and the

connection this has to cake cutting in rounds, a form of fair division.

In studying these problems we focus primarily on proving lower bounds on their query
complexities. While upper bounds can be shown simply by designing an algorithm that

achieves that bound, it is often difficult to show a matching lower bound.

For local search, we use relational adversary methods to overcome this difficulty. Relational
adversaries were first developed by Ambainis [1] for use in bounding the query complexities
of quantum algorithms. We use the strong weighted version of the quantum relational
adversary, developed by Zhang [2], for our quantum results. Aaronson [3] developed a
classical variant of the relational adversary and applied it to local search on the hypercube
and grid. We improve on his classical relational adversary and use our variant for all our

classical results on local search.

Most classical lower bound techniques for randomized algorithms use Yao’s minimax prin-

ciple [4], either explicitly or implicitly through methods like the relational adversary. For

11



search problems on arrays, we show sharper bounds than Yao’s minimax principle can show.
We accomplish this via more direct proofs by induction and through showing polynomial

inequalities.
The specific papers covered in this thesis are the following:

1. “The Sharp Power Law of Local Search on Expanders” [5], Simina Branzei, Davin
Choo, and Nicholas Recker. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA ), https://arxiv.org/abs/2305.08269, 2024.

2. “Spectral Lower Bounds for Local Search” [6], Simina Branzei and Nicholas Recker.

arXiv preprint arXiv:2403.06248 (2024).

3. “Searching Sorting and Cake Cutting in Rounds” [7], Simina Branzei, Dimitris Paparas,

and Nicholas Recker. arXiv preprint arXiv:2012.00738 (2020).

In addition, this thesis covers unpublished results on the quantum query complexity of local

search on expanders.
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1. THE SHARP POWER LAW OF LOCAL SEARCH ON
EXPANDERS

This chapter is based on my paper of the same name, which can be found at https://arxiv.
org/abs/2305.08269.

1.1 Introduction

Local search is a powerful heuristic for solving hard optimization problems, which works by
starting with an initial solution to a problem and then iteratively improving it. Its simplicity
and ability to handle large and complex search spaces make it a useful tool in a wide range

of fields, including computer science, engineering, optimization, economics, and finance.

The complexity of local search has been extensively studied in both the white box model (see,
e.g., [8]) and the black box model (see, e.g., [9]). The latter type of complexity, also known
as query complexity, is well understood when the neighbourhood structure of the underlying
graph is the Boolean hypercube or the d-dimensional grid, but much less is known for general

graphs.

Many optimization techniques rely on gradient-based methods. The speed at which gradient
methods find a stationary point of a function can be estimated by analyzing the complexity of
local search on the corresponding discretized space. Constructions for analyzing the hardness
of computing stationary points are often similar to those for local search, modulo handling
the smoothness of the function (see, e.g., [10]). Meanwhile, the difficulty of local search
itself is strongly related to the neighbourhood structure of the underlying graph. At one
extreme, local search on a line graph on n nodes is easy and can be solved via binary search
in O(logn) queries. At the other extreme, local search on a clique on n nodes takes (n)

queries, thus requiring brute force.

In this paper, we consider the following high level question: How does the geometry of the

graph influence the complexity of local search? In general, the neighbourhood graph search

13
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structure in optimization settings may correspond to more general graphs beyond the well-
studied Boolean hypercubes and d-dimensional grids. For example, when the data in low
rank matrix estimation is subjected to adversarial corruptions, it is helpful to consider the
function on a Riemannian manifold rather than Euclidean space. That is, the discretization
of an optimization search space may not necessarily always correspond to some d-dimensional
grid. Multiple works consider optimization in non-Euclidean spaces, such as that of [11],
which adapts stochastic gradient descent to work on Riemannian manifolds. See [12] and

[13] for more discussion.

Our paper tackles the challenge of understanding local search on general graphs and obtains
several new results by considering a broader framework of graph features such as vertex
congestion and separation number. A corollary is a lower bound of the right order for

expanders with constant degree.

Our methodology is strongly inspired by, and can be seen as a variant of, the relational
adversary method of [3]. However, where Aaronson’s method focuses on the contribution
of a query towards distinguishing two inputs from all others, our method considers the
aggregate impact of a query across many inputs at once. This allows our method to be
asymptotically at least as strong as the version in [3] for all randomized algorithms, as well
as strictly stronger on some problems and easier to apply in our setting. This strength also
comes at a cost: we get results for randomized algorithms, whilst Aaronson’s method works

in quantum settings.

Roadmap to the paper.

The model is defined in Scction 1.2. Our contributions are given in Scction 1.3. Related
work is discussed in Section 1.4. Our variant of the relational adversary method is stated

together with an example and discussion in Section 1.5 (with full material in Section 1.9).

14



Lower bounds via vertex congestion, as well as the corollary for expanders, are given in
Section 1.6 (with full material in Section 1.11). Lower bounds via the separation number

are in Section 1.7 (with full material in Section 1.12).

Finally, Section 1.8 reviews some known results from prior work that we use. Section 1.10

provides the proof for a lemma used throughout the paper.

1.2 Model

Let G = (V, E) be a connected undirected graph and f : V' — R a function defined on the

vertices. A vertex v € V' is a local minimum if f(v) < f(u) for all {u,v} € E. We will write

Given as input a graph G and oracle access to function f, the local search problem is to
find a local minimum of f on G using as few queries as possible. Each query is of the form:

“Given a vertex v, what is f(v)?".

Query complexity.

The deterministic query complexity of a task is the total number of queries necessary and
sufficient for a correct deterministic algorithm to find a solution. The randomized query
complexity is the expected number of queries required to find a solution with probability at

least 9/10 for each input, where the expectation is taken over the coin tosses of the protocol.

Congestion.

Let P = {P"“"},4ev be an all-pairs set of paths in G, where P*" is a path from u to v. For

convenience, we assume P"“" = (u) for all u € V; our results will hold even if P** = ().

For a path Q = (vy,...,v,) in G, let ¢? be the number of times a vertex v € V appears in Q
and c¥ the number of times an edge e € E appears in Q. The vertex congestion of the set

of paths P is max,ey Y gep ¢, while the edge congestion of P is maxeer 2_Qep c@.

15



The vertex congestion of G is the smallest integer g for which the graph has an all-pairs set
of paths P with vertex congestion g. Clearly, g > n since each vertex belongs to at least
n paths in P and ¢ < n? since each vertex appears at most once on each path and there
are n? paths in P. The edge congestion g, is similarly defined, but with respect to the edge

congestion of a set of paths P.

Separation number.

For each subset of vertices A C V, let 6(A) C V' \ A be the set of vertices outside A and

adjacent to vertices in A. The separation number s of G (see, e.g., [14]) is !:

§ = max min |0(A)] .
HCV ACH:
[H[/4 < |A| < 3|H|/4

d-regular expanders.

For each set of vertices S C V, the edges with one endpoint in S and another in V' \ S are
called cut edges and denoted E(S,V \ S) = {(u,v) € E | u € S,v ¢ S}. The graph is a
p-expander if |[E(S,V \ S)| > -S|, for all S CV with 0 < [S| < n/2 (see, e.g. [15]). The

graph is d-regular if each vertex has degree d.

Distance.

For each u,v € V, let dist(u,v) be the length of the shortest path from u to v.

14For example, the separation number of a barbell graph (i.e., two cliques of size n/2 connected by a
single edge) is n/8, since the maximization will choose H to be one clique of size n/2 = 4n/8 and the
minimization will choose A to be an arbitrary subset of H of size 3n/8; then §(A) is the rest of the clique of
size 4n/8 —3n/8 = n/8.

16



1.3 Owur contributions

Guided by the high level question of understanding how graph geometry influences hardness

of local search, we obtain the following results.

1.3.1 Ouwur variant of the relational adversary method

Our first contribution is to design a new variant of the relational adversary method of [3].
While [3] relates the query complexity to the progress made on pairs of inputs, we relate
the query complexity to progress made on subsets of inputs via a different expression. The

precise statement of our variant is as follows:

Theorem 1.3.1. Consider finite sets A and B, a set X C B4 of functions 2, and a map
H: X — {0,1} which assigns a label to each function in X. Additionally, we get oracle
access to an unknown function F* € X. The problem is to compute H(F*) using as few

queries to F* as possible.?

Let r : X x X — Rsq be a non-zero symmetric function of our choice with r(Fy, Fy) = 0

whenever H(Fy) = H(Fy). For each Z C X, define

Z Z F17F2 ) and q maX Z Z FlaFQ ]]-{F1(a)7$F2(a)}' (11)

F1eZ FoeX F1€ZF2€Z

If there exists a subset Z C X with q(Z) > 0, then the randomized query complexity of the

problem is at least
M(Z)

i —_— 1.2
zgﬂl(rzlz»o 100 - ¢(Z) (1.2)

In Section 1.5, we also show an example on which our variant is strictly stronger, giving a
tight lower bound for the query complexity of a simple “matrix game”. Then we prove our

variant is asymptotically at least as strong in general, for randomized algorithms.

21Each function F' € X has the form F: A — B.
31In other words, we have free access to H and the only queries counted are the ones to F*, which will be
of the form: “What is F*(a)?”, for some a € A. The oracle will return F*(a) in one computational step.

17



1.3.2 Lower bounds for local search via congestion

Next we give the first known lower bound for local search as a function of (vertex) congestion,

which is enabled by our Theorem 1.3.1.

Theorem 1.3.2. Let G = (V, E) be a connected undirected graph with n vertices. Then the
randomized query complexity of local search on G is §2 (%), where g is the vertex congestion

of the graph.

Since g € [n,n?], Theorem 1.3.2 cannot be used to show a lower bound stronger than Q(y/n)
queries, matching a general upper bound of O(y/n) for graphs with bounded degree ([9]).
Theorem 1.3.2 gives meaningful results precisely when one can construct an all-pairs set of

1.5)

paths with vertex congestion g = o(n'?); e.g. our bound is vacuous on trees since g € O(n?)

on trees.

Theorem 1.3.2 also implies a lower bound of 2 (;%) on any graph G, where g, is the edge

congestion and A the maximum degree of G.

High level approach.

To obtain the result in Theorem 1.3.2, we apply Yao’s lemma and design a hard input
distribution where the input is a random function f : V' — R induced by a “staircase”. A
staircase is a walk of vertices vy, vs, ..., v of some length k£ where vy is the entrance and vy,
is the end. The value of the function f outside the staircase is equal to the distance (in the
graph) to the entrance of the staircase, while the value at vertices on the staircase decreases
as one walks away from the entrance. The local minimum is unique and can be found at the
end of the staircase. This type of construction is classical (see, e.g., [3, 9, 10]). We designate

the space of such functions as X.

A staircase is characterized by a sequence of vertices (milestones). Then we connect each

pair w, z of consecutive milestones with the path P"* from the all-pairs set of paths P =

18



{P""}y e With “low” congestion (that is, with congestion as low as possible given the

graph).

Then, we design a function r — also called the relation — that “relates” any two such
functions. Any such non-zero relation induces a distribution over functions where each

function F is sampled with likelihood equal to Y- p,cx r(F1, F3).

Our choice of r increases according to the number of milestones the underlying staircases
have in common (specifically, by the longest initial prefix of milestones shared by the two
staircases). With our choice of r, the distribution over staircases is as though the milestones

were chosen uniformly at random without replacement.

Any two functions F; and F, with long initial prefix in their corresponding staircases are
very similar and so will be hard to distinguish by an algorithm. Roughly speaking, without
querying sufficiently many vertices and chancing upon a vertex which F} and F, disagrees
on, the algorithm will not be able to distinguish them. In order to capture this difficulty
of distinguishing such F; and F3, the relation r(Fj, F5) will be set to a high value. Our
congestion lower bound then follows by invoking our variant of the relational adversary

(Theorem 1.3.1) with this choice of r.

Our approach was inspired by previous works such as [3], who gave lower bounds for the d-
dimensional grid and the Boolean hypercube, and of [16], who gave lower bounds for Cayley
and vertex transitive graphs by using a system of carefully chosen shortest paths rather than
arbitrary shortest paths; this inspired our choice of the set of paths P. We explain in more

detail the comparison with [3] and [16] in Section 1.4.1 of Related work.

1.3.3 Lower bounds for local search via separation number

We also give an improved lower bound for local search with respect to the graph separation
number s. Our construction is heavily inspired by the one in [17] , who gave a lower bound
of (\f/% / log n), for both the quantum and classical randomized algorithms. Adapting this

construction within the framework of Theorem 1.3.1 is non-trivial however.
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Theorem 1.3.3. Let G = (V, E) be a connected undirected graph with n vertices, mazximum

degree A, and separation number s. Then the randomized query complexity of local search
on G is () (\4/%)

The best known upper bound with respect to graph separation number is O((s + A) - logn)
due to [17], which was obtained via a refinement of the divide-and-conquer procedure of

[18]. It is an interesting open question whether the current upper and lower bounds can be

improved.

1.3.4 Corollaries for expanders, Cayley graphs, and the hypercube

Since d-regular [-expanders with constant d and [ admit an all-pairs set of paths with
congestion O(n - logn) (e.g., see [19]), we get the next lower bound for constant degree

expanders.

Corollary 1. Let G = (V, E) be an undirected d-regular (3-expander with n vertices, where d

and B are constant. Then the randomized query complexity of local search on G is () (l(;/gﬁn).

The lower bound of Corollary 1 is tight within a logarithmic factor. A simple algorithm

known as steepest descent with warm start ([9]) can be used to see this:

First query t vertices z1, ..., x; selected uniformly at random and pick the vertex
2* that minimizes the function among these?. Then run steepest descent from z*
and stop when no further improvement can be made, returning the final vertex
reached. When ¢ = v/nA, where A is the maximum degree of the graph, the
algorithm issues O(v/nA) queries in expectation.

Thus steepest descent with a warm start has expected query complexity O(y/n) on constant
degree expanders. Our lower bound implies this algorithm is essentially optimal on such

graphs.

“1That is, the vertex z* is defined as: x* = z;j, where j = argmin!_, f(z;).
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We also get a lower bound as a function of the expansion and maximum degree of the graph

G.

Corollary 2. Let G = (V, E) be an undirected [-expander with n vertices and mazimum

degree A. Then the randomized query complexity of local search on G is €} (Aﬁlggn).

The congestion framework also allows us to recover a lower bound for undirected Cayley
graphs, which were studied before in [16]. An wundirected Cayley graph is formed from a
group G and a generating set S. The vertices are the elements of G and there is an edge

between vertices u,v if u =w-v or v = w - u for some w € S.

Corollary 3. Let G = (V, E) be an undirected Cayley graph with n vertices and diameter

NG

diam(G). Then the randomized query complexity of local search on G is S (W(G))

We also get the next corollary for the query complexity of local search on the Boolean

hypercube.

Corollary 4. The randomized query complexity of local search on the Boolean hypercube

{0,137 s Q (£2).

The lower bound in Corollary 4 is sandwiched between the lower bound of 2 (2:;%2) by [20]
and the lower bound of € (2°) by [3].

n2

1.4 Related work

The query complexity of local search was first studied experimentally by [21]. The first
breakthrough in the theoretical analysis of local search was obtained by [9]. Aldous stated
the algorithm based on steepest descent with a warm start and showed the first nontrivial

lower bound of Q(2%/27°()) on the query complexity for the Boolean hypercube {0,1}".

The lower bound construction from [9] uses Yao’s lemma and describes a hard distribution,

such that if a deterministic algorithm receives a random function according to this distribu-
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tion, the expected number of queries issued until finding a local minimum will be large. The

random function is obtained as follows:

Consider an initial vertex vy uniformly at random. Set the function value at v
to f(vg) = 0. From this vertex, start an unbiased random walk v, vq,... For
each vertex v in the graph, set f(v) equal to the first hitting time of the walk at
v; that is, let f(v) = min{t | v; = v}.

The function f defined this way has a unique local minimum at vy. By a very delicate analysis

of this distribution, [9] showed a lower bound of €(2"/27°()) on the hypercube {0, 1}".

This almost matches the query complexity of steepest descent with a warm start, which was
also analyzed in [9] and shown to take O(y/n-2"/2) queries in expectation on the hypercube.
The steepest descent with a warm start algorithm applies to generic graphs too, resulting in

O(vn - A) queries overall for any graph with maximum degree A.

Aldous’ lower bound for the hypercube was later improved via more refined types of random
walks and/or more careful analysis. [3] improved the bound to €(2"/2/n?) via his relational
adversary method, which is a combinatorial framework that avoids analyzing the posterior
distribution and also yielded a quantum bound of €(2%/4/n). [20] improved the randomized
lower bound to a tight bound of ©(2"/2-/n) via a “clock”-based random walk construction,

which avoids self-intersections.

Meanwhile, [18] developed a deterministic divide-and-conquer approach to solving local
search that is theoretically optimal over all graphs in the deterministic context, albeit hard
to apply in practice. On the hypercube, their method yields a lower bound of (2" /4/n) and
an upper bound of O(2"log(n)/y/n): a mere log(n) factor gap.

Another commonly studied graph for local search is the d-dimensional grid [n]?. [3] used his
relational adversary method there to show a randomized lower bound of Q(n%?~!/logn) for
every constant d > 3. [20] proved a randomized lower bound of 2(n%2) for every constant
d > 4; this is tight as shown by Aldous’ generic upper bound. Zhang also showed improved
bounds of Q(n?/?) and Q(n*?/\/logn) for d = 2 and d = 3 respectively, as well as some
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quantum results. The work of [22] closed further gaps in the quantum setting as well as the
randomized d = 2 case. The problem of local search on the grid was also studied under the

context of multiple limited rounds of adaptive interactions by [23].

More general results are few and far between. On many graphs, the simple bound from [9]
of Q(A) queries is the best known lower bound: hiding the local minimum in one of the A

leaves of a star subgraph requires checking about half the leaves in expectation to find it.

[17] gave a quantum lower bound of Q (\'7% / log(n)), where s is the separation number of
the graph. This implies the same lower bound in a randomized context, using the spectral
method. Meanwhile, the best known upper bound is O((s + A) - logn) due to [17], which

was obtained via a refinement of the divide-and-conquer procedure of [18].

[16] studied Cayley and vertex transitive graphs and gave lower bounds for local search as a
function of the number of vertices and the diameter of the graph. We explain the comparison
with their work more precisely in Section 1.4.1. [24] obtained upper bounds as a function of

the genus of the graph.

[25] studied the communication complexity of local search. This captures distributed settings,

where data is stored in the cloud, on different computers.

There is a rich literature analyzing the congestion of graphs. E.g., the notion of edge conges-
tion is important in routing problems, where systems of paths with low edge congestion can
enable traffic with minimum delays (see, e.g., [19, 26, 27]). This problem is sometimes called
multicommodity flow or edge disjoint paths with congestion. Others study routing with the
goal of maximizing the number of demand pairs routed using node disjoint paths; this is the

same as requiring vertex congestion equal to 1 (see, e.g., [28, 29]).

Local search is strongly related to the problem of local optimization where one is interested
in finding an approximate local minimum of a function on R?. A common way to solve
local optimization problems is to employ gradient-based methods, which find approximate
stationary points. To show lower bounds for finding stationary points, one can similarly

define a function that selects a walk in the underlying space and hide a stationary point at
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the end of the walk. Handling the requirement that the function is smooth and ensuring

there is a unique stationary point are additional challenges.

For examples of works on algorithms and complexity of computing approximate stationary
points, see, e.g., [10, 30-34]). Constructions where the function is induced by a hidden
walk have first been designed for showing lower bounds on the query complexity of finding

Brouwer fixed points in classical work by [35].

Works like [11] study stochastic gradient descent, which is one method of finding approximate
local minima. Moreover, they do this on Riemann manifolds, which are a very broad class
of spaces. This motivates the need to study local search not only on hypercubes and grids,

but also on other, broader classes of graphs. For a more extensive survey, see, e.g., [12].

The computational complexity of local search is captured by the class PLS, defined by [§]
to model the difficulty of finding locally optimal solutions to optimization problems. A
related class is PPAD, introduced by [36] to study the computational complexity of finding
a Brouwer fixed-point. Both PLS and PPAD are subsets of of the class TFNP.

The class PPAD contains many natural problems that are computationally equivalent to
the problem of finding a Brouwer fixed point ([37]), such as finding an approximate Nash
equilibrium in a multiplayer or two-player game ([38, 39]), an Arrow-Debreu equilibrium in

a market ([40, 41]), and a local min-max point ([42]).

The query complexity of computing an e-approximate Brouwer fixed point was studied in
a series of papers starting with [35], later improved by [43] and [44]. Recently, [45] showed
that the class CLS, introduced by [46] to capture continuous local search, is equal to PPAD
N PLS. The query complexity of continuous local search has also been studied (see, e.g.,

[47]).
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1.4.1 Comparison with prior works and corrections

Our approach for the lower bound as a function of congestion was directly inspired by the
relational adversary method of [3] and an ingenious application to vertex-transitive graphs
by [16]. In both of these papers, a hard distribution is obtained by getting a random input
function induced by a “staircase” (walk): the value of the function outside the staircase is
equal to the distance to the entrance of the staircase, while the value of the function on the

staircase is decreasing as one moves away from the entrance.

[16] choose a staircase by first selecting several random points (milestones) and then con-
necting them with a path from a system of paths. While one typically chooses arbitrary
shortest paths between two endpoints when constructing lower bounds, the system of paths
in their work consists of carefully chosen shortest paths as follows: (i) For paths that start
from a fixed vertex vy, fix arbitrary shortest paths; (ii) For paths starting from other vertices
v; with i > 0, use one of the same paths as from vy, but transformed by an automorphism

mapping vg to v; (which is defined when the graph is vertex transitive).

The high-level approach and the careful selection of paths in [16] inspired our choice for the

set of paths P with low congestion when the graph is not necessarily vertex transitive.

Given the family of functions and staircases described, what remains is to define a rela-
tion between functions and compute the lower bound obtained by invoking the relational

adversary method.

Corrections.

There appears to be a potential issue in the proof of Proposition 2 in [16], where the prob-

ability of an event is higher than would be required for the argument to go through ®. We

51 In [16], for any vertex v that appears in a walk x = (x¢,%1,%2,...,2r), the function is defined as
fx(v) = L —max{i : v = z;}, i.e. L minus the last index v last appears on x. Then, a vertex v should
be a disagreement between two walks x and y if v lies on both walks but fx(v) # fy(v). Afterwards, in
Proposition 2, if vertex v is a disagreement between two walks x and y, then v must lie on at least one of the
walks, and moreover, v was stated to be contained in a “segment” of the tail that is not the one immediately
after the divergence place of x and y (quote: “We can’t have botht <j+ s and t' <j+ s... eithert >j+s
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bypassed this using our Theorem 1.3.1, which enabled us to recover the randomized lower

bound for Cayley graphs from [16]; see Corollary 3.

This also occurs in the proof 5 of Lemma 6.2 of [3], where it could be corrected by setting

the function fx(v), for a vertex v, as fx(v) = min{t : x; = v and z,11 # v}.

1.5 A variant of the relational adversary method

In this section we state our variant of the relational adversary method (Theorem 1.3.1).
After stating the variant, we also design and analyze a “matrix game”, to illustrate a simple
problem for which our variant yields a better (in fact tight) lower bound for the randomized
query complexity. The complete details and proofs are included in Section 1.9, together with

the original theorem from [3] for comparison.

Theorem 1.3.1. Consider finite sets A and B, a set X C B4 of functions 7, and a map
H: X — {0,1} which assigns a label to each function in X. Additionally, we get oracle
access to an unknown function F* € X. The problem is to compute H(F*) using as few

queries to F* as possible.®

Let r : X x X — Rsq be a non-zero symmetric function of our choice with r(Fy, Fy) = 0

whenever H(Fy) = H(Fy). For each Z C X, define

=> Y r(F,F); and ¢(Z = max S r(FLF) - Ypyem@y - (1.1)

F1eZ FoeX F1€ZF2€Z

ort’ >j+s”, where t = max{i: v = x;} is the last index of v on x, t/ = max{i: v = y;} is the last index of v
ony, j is the point of splitting, and s is the “segment length”). However, one can check the following setup
which violates this assertion also makes v a disagreement: max{i: v = z;} <j < max{i:v =1y} <j+s,
where v appears in the shared prefix and then only on x within the first segment after they diverge.

64In [3], Lemma 6.2: in the first case, where t > j —n and t* > j — n, the probability P[z; = y;+] is not zero,
but rather can be nearly 1/2 (e.g. at t = t* = j), since the coordinate loop allows staying in place. With
probability 1/2, exactly one of zj_; and y;j_ is equal to xj, which usually makes fx(z;j) # fy(z;). We have
reached out to the author and he has acknowledged the error, as well as suggesting another possible fix.
"4Each function F' € X has the form F: A — B.

84In other words, we have free access to H and the only queries counted are the ones to F*, which will be
of the form: “What is F*(a)?”, for some a € A. The oracle will return F*(a) in one computational step.
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If there exists a subset Z C X with q(Z) > 0, then the randomized query complexity of the

problem is at least
. M(Z)
in

100-2(2)° 1.2
2cXal2)50 100 - g(Z) (1.2)

Theorem 1.3.1 uses Yao’s lemma (see Section 1.8), thus the algorithm can be assumed to be

deterministic and receive as input a random function sampled from some distribution P.

The theorem considers the probability distribution P where each function ' € X is given as

input with probability P(F') = Aﬁ‘gg), where & is the space of possible functions.

The term M (Z) represents the likelihood that the function F* given as input comes from
the set Z C X, while ¢(Z) is proportional to a lower bound on the number of queries needed

in the worst case to narrow down the function F* within Z, conditioned on F™* being in Z.

Clearly some choices of r are more useful than others, and so the challenge when giving lower

bounds is to design the function r and estimate the expression in equation (1.2).

1.5.1 Matrix game

In this section, we describe a toy problem upon for which our new variant (Theorem 1.3.1)

can show a stronger lower bound than the original relational adversary theorem.

Setup

Let n € N be a perfect square and X be a subset of square /n X \/n matrices with entries

2

from {0,1,2}. There are two types of matrices within X: “row” matrices and “column”
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matrices. Row matrices have one row of 1s with all other entries 0 while column matrices

have one column of 2s with all other entries 0. For example:

0000 0020
11 11 00 20
is a row matrix, and is a column matrix.
0000 00 20
0 0 0 0] 0 0 2 0]

So, |X| = 24/n since there are y/n distinct row matrices and /n distinct column matrices.

The game.

Given n and oracle access to a matrix F' € X, the goal is to correctly declare whether F' is

a row or column matrix.

Lemma 1. The randomized query complezity of the matriz game is O(\/n).

Proof sketch. We give a high level explanation of the proof, while the complete details can
be found in Section 1.9. For the upper bound, we can check that y/n queries suffice. Query
the entries of the main diagonal and then proceed as follows: if any “1” is detected, declare

“row”; if any “2” is found, declare “column”.

For the lower bound, one intuitively expects that Q(y/n) queries are necessary even allowing
randomization. In fact, this is what we can show using Theorem 1.3.1. Choose the function r
so that r(Fy, Fy) represents the indicator function for whether the two matrices are “opposite
types”, for any two matrices Fj, F, € X. This means that the probability to sample any
subset Z C X will be proportional to its size | Z|.

Meanwhile, for any subset Z C X of matrices, any single query on a matrix coordinate will
distinguish at most two matrices from all the others within Z. Thus, we can show that the
ratio M(Z)/q(Z) € Q(y/n) for any subset Z C X of matrices, which implies a Q(y/n) lower

bound of the matrix game via Theorem 1.3.1. O]
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On the other hand, one can only show a lower bound of Q(1) for the matrix game using the

version of the relational adversary method from [3]; see details in Section 1.9.

1.5.2 Advantage of our variant for randomized algorithms

In addition to being strictly stronger on some problems (like this matrix game), our variant

is at least as strong in general, for randomized algorithms.

Proposition 1.5.1. Consider any problem and let T be the expected number of queries

required in the worst case by the best randomized algorithm to succeed with probability 9/10.

If the relational adversary method from [3] provides a lower bound of T > A for some A > 0,
then Theorem 1.5.1 can prove a lower bound of T > A/40.

1.6 Lower bound for local search via congestion

In this section, we explain at a high level the proof of Theorem 1.3.2, which gives a lower
bound as a function of congestion, as well as the corollary for expanders. See Section 1.11

for the detalils.

1.6.1 Proof sketch for the congestion lower bound

The proof of Theorem 1.3.2 is sketched in the next sequence of steps. We define the following

with the intention of invoking Theorem 1.3.1.

Fixing a set of paths P.

Since the graph G = ([n], E') has vertex congestion g, we can fix an all-pairs set of paths
P = {P"“"}y e, such that P € P is a simple path from v to v and P*" = (u), for each

u,v € [n]. Moreover, each vertex is used at most g times across paths in P.
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Staircases.

We fix a parameter L € [n] to be set later. We consider sequences of vertices of the form
x = (z1,...,7141) € {1} x [n]F, i.e. with z; = 1. The staircase induced by x is a walk
Sx = Sx,10...05% 1, where each Sx; is a path in G starting at vertex x; and ending at ;4.

Each vertex z; is called a milestone and each path Sx; a quasi-segment.

The staircase Sy is induced by x and P if we additionally have Syx; = P**+! for all i € [L].
In other words, to build such a staircase we first decide on the sequence of “milestones”
x; then to get from each milestone x; to the next milestone z;,;, we travel using the path
Pr*i+1 from the set of paths P. Note that P*#+! may not be the shortest path between x;

and x;;, since P does not necessarily only consist of shortest paths.

The value function fy.

For each staircase Sx induced by x and P, we define a corresponding function fy : [n] — R

as follows. For each vertex v in G
(a) If v ¢ Sy, then set fx(v) = dist(v,1).

(b) If v € Sy, then set fx(v) = —i-n —j, where i is the maximum index with v € P*®i+1,

and v is the j-th vertex in P¥"i+t,

The following example gives a visual illustration of an induced staircase Sy and its associated
function fx. Such a function f, has a unique local minimum at the end of the staircase Sy.

Our lower bound construction uses such functions.
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(a) Graph with n = 12 vertices (b) Staircase with induced value function.

Figure 1.1. Graph G with n = 12 vertices labelled {vy,...,via}.
The staircase shown consists of the walk given by the dotted vertices
(v1, v3, vs, Vg, U7, Vs, Vg, Vg, V10, U3, V11). Lhe value of the function at each vertex
is shown in blue near that vertex. The local minimum is at the end of the
staircase, at vertex vqi.

Example 1 (Staircase with the associated value function.). Consider the graph G in Fig-

ure 1.1, with n = 12 vertices labelled {vy, ..., v12}.

Let the set of paths P = {P"" }, vem) be

o P = (v, v3,05,v6); PP = (v6,v7,v8); P = (vs, v9, V6);

Pre1t = (g, v19, U3, V11)-
o For all other pairs of vertices (u,w), we set P*“" as the shortest path from u to w.

Let L = 4. Consider a sequence x = (x1,%,T3,%4,25) = (v1, e, Vs, Vg, V11), where each
milestone is highlighted by a red dotted circle. Observe we allow repeated vertices. The

staircase induced by x and P, given by the green dotted walk, is

Sx = (Ula v3, Us, Vs, VR WS, Vg, Vg, V10, U3, Un) .



The value function fy, computed using the definition (a-b), of each vertex is given in blue.

For technical reasons, in the lower bound proof we will actually work with a decision problem.
There is a simple way to turn a search problem into a decision problem (see [3, 16]): associate
with each function fx a function gy, that hides a bit at the local minimum vertex (while

hiding —1 at every other vertex). Formally, g« is defined next.

Let A = [n] and B = {-n? —n,...,0,...,n} x {—1,0,1} be finite sets. For each vertex
x € {1} x [n]¥ and bit b € {0,1}, let gxp : A — B be such that, for all v € [n]:

(fx(v), b) ifv=uxr

) (1.3)
(fx(“)a _1) ifv#rr1

Ixp(V) =

The set of functions we consider is X = {gxyb | x € {1} x [n]F and b € {0, 1}} :

The decision problem is: given a graph G and oracle access to a function gx;, € &, return
the value H(gxp) = b. This means: find the hidden bit, which only exists at the vertex
corresponding to the local minimum of fyx. Measuring the query complexity of this decision
problem will give the answer for local search, as the next two problems have query complexity

within additive 1:

e search problem: given oracle access to a function fy, find a vertex v that is a local

minimum;

e decision problem: given oracle access to the function gy p, find H(gxp)-

Good/bad sequences of vertices; Good/bad functions.

We divide the set X of functions into “good” and “bad” functions. Our analysis later will

focus on “good” sequences and functions.
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A sequence of vertices x = (x1,...,2p41) is good if x; # z; for all i,j € [L + 1] with i < j;

otherwise, x is bad. That is, x only involves distinct milestones.

For each bit b € {0, 1}, the function gx;, € X is good if x is good, and bad otherwise.

The relation function r.

To be able to invoke Theorem 1.3.1, we need to also define the relation function r» whose role
is to “relate” pairs of input functions F} and F5 in order to roughly capture the difficulty of

differentiating F from F5.

Intuitively, an algorithm I' will query vertices of the graph to eliminate options to figure
out which is the underlying input function, from which it can query the local minimum to
retrieve the hidden bit . However, if two functions F} = gx;, and Fy = gy, are very
“similar” (i.e. their underlying staircases Sx and Sy are almost identical), then it may take
I' many queries to learn whether the input is F} or F5, even if it knows the input can only
be one of these two functions. Consequently, I' will have great difficulty finding the local

minimum on certain inputs.

Formally, for all sequences of vertices x let x;_,; be the sequence (xi, it1,...,7;). Then
define r : X x X — Ry as a symmetric function such that for each x,y € {1} x [n]X and

bl, b2 S {O, 1}

0  if at least one of the following holds: b; = b, or x is bad or y is bad.
T(gx,bl ) gy,bz) = )
n'  otherwise, where j is the maximum index for which x;,; = y1;.

The choice of r is deliberate, as we see next.
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Invoking Theorem 1.3.1.

We are now ready to invoke Theorem 1.3.1 using the definitions of fx, gxp, X, H, and r from
above. We will show there exists a subset Z C X with ¢(Z) > 0, and so we get that the

randomized query complexity of local search is:

M((Z
Q| min (2) , where ¢(Z maxz Z (F1, ) - Lip (0)£Fs(0)} - (1.4)
2 s

Estimating the lower bound in (1.4) precisely is quite challenging. Instead, for any arbitrary
Z C X with ¢(Z) > 0, we show a lower bound M(Z) and an upper bound for ¢(Z) using
our choice of the function r. The two bounds we show only depend on Z via its size | Z]|.
For any fixed Z, this dependency will be cancelled out through the division, and thus our

result follows.

Lower bounding M (Z).

By our choice of 7, only good functions affect the value of M(Z). Furthermore, we know
that a function is good only if it was constructed using a good sequence of milestones X.
For any good function F; € X, a counting argument tells us that there are roughly n*+1-J
good functions Fy € X with r(Fy, Fy) = nJ, i.e. F}; and F, have the same milestones from

the first to the j' one. This approximation holds for j € O(y/n); we will eventually have
j < L € O(y/n), so this is fine. Therefore, for any good function F; € X', we have

L
> r(Fy, F) ~ Z ' = Lottt

FoeX:r(Fy,Fo)=nl j=1

Therefore M(Z) € Q(|Z] - L - n&*1).
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Upper bounding ¢(Z2).

Let v € [n] be a vertex and I} = gxp € Z a good function with hidden bit b € {0,1}. By our
choice of r, it suffices to relate Fi to functions F, € Z that are also good but have hidden

bit 1 — b, i.e. of the form F, = gy 14, for some good sequence y.

To upper bound the inner summation of ¢(Z), we partition the functions F, based on the

length of the shared prefix of y and x. We get

L+1
Y (BB - L e} = D > r(F1, Fy) - L{m ) £Fs(0)) (1.5)
FreZ j=1 FhreZ:

j:max{iixiaj =Y1-j }

When j = L + 1, there is exactly one function F, € Z with such a shared prefix. Thus we

L+1

get a contribution of n*™" by our definition of 7.

Thus from now on, we focus on 1 < j < L. Let Tail(j, Sy) denote the suffix of the staircase

Sy after y;. We can then upper bound the j-th term from (1.5) as follows:

Z T(Fb FQ) ) H{Fl(v)#fﬁ(v)} <2 Z T(Flﬁ FQ) . (1'6)
FreZ: FreZ:
j=max{ixiLj=y15;} j=max{ixi-j=y1-;}
veTail(j,Sy)

Recall the staircase has the form Sy = P¥¥2 0. .0 P%¥tlo. o PYL¥L+l where each PYi¥itt
is a path from P. When v is in Tail(j, Sy), it means that v € P¥¥+ for some j <i < L.

We will upper bound the number of sequences y depending on the location of v.

Case i =j. Let q,(u) denote the number of paths in the set P that start at vertex
u and contain v. There are g,(z;) choices of vertices for y;,; and n’™J choices for

sequences (Yji2, - .,Yr+1), yielding a total count of q,(z;) - n=7.

Case j <i < L. There are at most L choices for i such that j <i < L. For fixed i, there

are at most g choices for a pair (v;, y;+1) such that v € P¥¥+1 since each vertex appears
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in at most g paths within P. For fixed i and (y;, %i11), there are n*==! tuples of the

form (yj+1,. .., ¥i-1, Yit2, - - ., Yr+1). That is, the total count is at most L - g - nl—i-1,

The two cases are not mutually exclusive, so we will combine the counts in (1.5) and (1.6)

by summing them. Then we obtain the following upper bound for the inner summation of

q(2):

L
> (P B) - Imgmey < 0P 420300 (qu(ag) -n* T+ Legont T

FeZ j=1

Since sequence x is good, it has no repeated vertices. Thus the elements of x represent a
subset of [n]. This yields the inequality Y7, qu(z;) < Yuepm do(u) < g for any vertex v,
where ¢ is the vertex congestion of P and q,(u) is the number of paths in P that start at u

and contain v. We thus obtain the next bound on the inner summation of ¢(Z):

L -
E T(Fl,FQ) . ]l{Fl(v);éFg(v)} S 7’LL+1 +2-L- nL - q- <1 + g) .
FreZz n

Finally, since n < g, we get ¢(Z) € O(|Z]-g-nl - (1 + L*/n)).

Wrapping up.

Since we showed M(Z) € Q(|Z|-L-n"™) and ¢(Z) € O(|Z]-g-n*-(1+ L*/n)) for arbitrary
Z with ¢(Z) > 0, our randomized query complexity bound Eq. (1.4) yields

 M(2) 2| L-nt* _onL
ZEX q(2) gQ(!Z!-g-nL~(1+L2/n>> gQ(Q-(HLz/”))'

q(2)>0

Setting L & y/n gives a query complexity of local search of Q(n'®/g).
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1.6.2 Corollary for expanders

To obtain the lower bound for expanders from Corollary 1, we use a result from [19]. Their
work shows that constant-degree constant-expansion graphs have an all-pairs set of paths

with vertex congestion g € O(nlnn); see Section 1.8 for details. Theorem 1.3.2 then implies

the randomized query complexity of local search on such graphs is 2 ( v/n )

logn

1.7 Lower bound for local search via separation number

We briefly discuss how to obtain the lower bound of 2 (\‘%%) of Theorem 1.3.3, where s is the

separation number and A the maximum degree of the graph. For details, see Section 1.12.

We apply Theorem 1.3.1 with a similar strategy as the one discussed in Section 1.6 of lower

bounding M (Z) and upper bounding ¢(Z) for arbitrary subset Z C X with ¢(Z) > 0.

However, we use a slightly different r function and now construct staircases with respect
to another graph-theoretic notion known as “path arrangement parameter” and “cluster
walks” (instead of using a pre-defined set of pairs P with congestion g). Our construction
is heavily inspired by that in [17]. While the construction is highly similar, using it within

Theorem 1.3.1 is non-trivial.

1.8 Theorems from prior work
In this section we include several theorems from prior work.

The first is a result from [19] about systems of paths with low congestion for expanders.

Theorem 1.8.1 ([19], Theorem 1). Let G = (V, E) be a d-reqular (-expander where d €
N and f € Ry are constant. Let o : N — R, be a function. Consider a collection of
K = «a(n)n/In(n) pairs of vertices denoted {(a1,b1), ..., (ax,bx)} such that no vertex in V'

participates in more than s pairs.
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Then there is a set of K paths { P, ..., Pk} such that P, connects a; to b; and the congestion

on each edge is at most

N[

g ) (5 + [ln(l/minl?olcr,lln/lnlﬂn})—D Jora<s. (1.7)

O(s+a+Inlnn) for a >

N |

Next is a result from [48] on multi-commodity flow, which gives a corollary for finding systems

of paths with low congestion for expanders. We state the corollary as described in [27].

Theorem 1.8.2 ([27], Corollary C.2). Let G = ([n], E) be a [-expander with maximum
vertex degree A and let M be any partial matching over the vertices of G. Then there is
an efficient randomized algorthm that finds, for every pair (u,v) € M, a set P, of [Inn]
paths of length O(A -1n(n)/B) each, such that the set P = U, v)em Puw has edge congestion
O(In*(n)/B). The algorithm succeeds with high probability.

Next we present a lemma reducing local search to a decision problem. This reduction is not

new; see for example [16].

Lemma 2. Suppose the randomized query complexity of local search on G 1is x, recalling
that in local search we have a graph G and a function f:V — R, and the problem is to find
a local minimum. Then the query complexity of the following decision problem is at most

X+ 1:

o Input: graph G and oracle access to a function hy, : [n] — R x {=1,0,1} for some
b € {0, 1} with the property that hy(v) = (f(v), —1) when v is not a local minimum of
f, and hy(v) = (f(v),b) when v is a local minimum of f.

o Qutput: the bit b.

To clarify, the algorithm is given oracle access to hy, but it is not given b itself.

Proof. Let I" be a randomized algorithm that can solve local search on G such that
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« I has success probability at least p on every input (G, hy).
o ['issues at most x queries in expectation.

We will use the local search algorithm I' to construct an algorithm I'y that solves the decision
problem. To simulate a query on f(v) for I', algorithm I'y will query the function h, at
v, obtain (f(v),c), with ¢ € {—1,0,1}, and will pass f(v) to I Whenever I' locates a
local minimum v, we know that hy(vmp,) contains the hidden bit output required by I'y.
Obtaining that hidden bit then requires only one additional query, at v,;,. Since I' locates
a local minimum wvy,;, with x queries in expectation and succeeds with probability at least
p, we see that I'y uses xy + 1 queries in expectation and succeeds with probability at least

b. [

1.9 The relational adversary method and our variant

In this section we show our variant of the original relational adversary method from [3].
First, we introduce some preliminaries. Consider any two functions f,g: A — B, for some

sets A, B. An element a € A is said to distinguish the function f from g if f(a) # g(a).
Next, we include the original statement from [3], written with our notation.

Theorem 1.9.1 ([3], Theorem 5). Consider finite sets A or B. Let H : B4 — {0,1} be a
map that labels each function F : A — B with 0 or 1. Let A C H7Y(0) and B C H'(1). The

problem is: given A, B,H, A, B, and oracle access to a function F* ° from A or B, return

the label H(F™).

Let r: A x B — R be a non-zero real-valued function of our choice. For Fy € A, F, € B,

and a € A, define

: i, F ol (P, F
0(F),a) = ZFgGB.Fﬂa)#Fs(a)'f’( 1, F3) and 0(Fy, a) = ZFgeA,F2( VA F3( )7‘( 3, Fy)

S reT(F1, F3) S rear(F3, Fy)
(1.8)

91In other words, we have free access to H and the only queries counted are the ones to F*, which will be
of the form: “What is F*(a)?”, for some a € A. The oracle will return F*(a) in one computational step.
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whenever the denominators in (1.8) are all nonzero. Then the randomized query complexity

O of the problem is 1/(5 - Vyin), where

min{Q(Fl,a),Q(Fg,a)}.

Upnin = max
FieAFreBacA : v(F1,F2)>0,F1(a)#F>2(a)

The proof centers on a difficult input distribution under which the denominator of 0(F},a)
(respectively 0(Fy,a)) is the likelihood that Fj (respectively F3) is sampled, conditioned on
the input being sampled from A (respectively B). The numerator of 0(F),a) (respectively
0(F,,a)) is the progress that is made via querying a towards distinguishing F; (respectively

F5) from the other functions.

Our variant uses the same framework of relating pairs of inputs through some “relation” 7,

but the lower bound expression is based on another average type of argument.

1.9.1 Our variant of the relational adversary method

Now we restate our variant of the relational adversary method.

Theorem 1.3.1. Consider finite sets A and B, a set X C B of functions '*, and a map
H: X — {0,1} which assigns a label to each function in X. Additionally, we get oracle
access to an unknown function F* € X. The problem is to compute H(F*) using as few

queries to F* as possible.'?

Let r : X x X — Rsq be a non-zero symmetric function of our choice with r(Fy, Fy) = 0

whenever H(Fy) = H(F,). For each Z2 C X, define

Z Z F17F2 ) and q maX Z Z FlaFQ ]]-{F1(a)7$F2(a)}' (11)

F1eZ FoeX F1EZ FreZ

10+Recall we defined the randomized query complexity as the expected number of queries required to achieve
success probability at least 9/10.

H4Each function F € X has the form F : A — B.

124Tn other words, we have free access to H and the only queries counted are the ones to F*, which will be
of the form: “What is F*(a)?”, for some a € A. The oracle will return F*(a) in one computational step.
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If there exists a subset Z C X with q(Z) > 0, then the randomized query complexity of the

problem is at least
. M(Z)
in

100-2(2)° 1.2
2cXal2)50 100 - g(Z) (1.2)

Let us briefly interpret Theorem 1.3.1. We use Yao’s lemma, and so it will suffice to design
a “hard” distribution of input functions and analyze the performance of a deterministic

algorithm when given inputs from this distribution.

The theorem considers the probability distribution P where each function F' € X is given as

input with probability P(F) = J‘;\Iﬁg), where X is the space of possible functions.

The quantity M (Z) is the likelihood that the function F* sampled from this distribution lies
in Z. The quantity ¢(Z) is the largest amount of progress possible in a single query once

the algorithm already knows that the given function F™* lies in Z.
Now we are ready to prove Theorem 1.3.1.

Proof of Theorem 1.5.1. Given a relation r with the properties required by the theorem,
define

M{R}) = r(F,F) VR € X and M(X)= > M{F]}). (1.9)

FreX Fiex

We consider the distribution P over functions in X that selects each function F' € X with
probability P(F) = M({F})/M(X). The theorem claims a lower bound when there exists
a subset Z C X with ¢(Z) > 0, so we may assume such a subset Z exists. By Lemma 3,

this implies M (Z) > 0, and so
M(X)>0. (1.10)

Thus P(F) = M({F})/M(X) is well defined.
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We say an algorithm succeeds on an input function F' if it outputs the correct label H(F').
Let R be the randomized query complexity (on the worst case input F' € X) for success
probability 19/20. Let I'y be the best deterministic algorithm * that succeeds with proba-
bility at least 9/10 when the input is a random function drawn from distribution P. Let D
be the expected number of queries issued by I'y on input distribution P. Yao’s lemma ([49],
Theorem 3) yields 2R > D. Thus to lower bound 7', it will suffice to lower bound D. Let
T =10D.

Let I'* be the truncation of I'y after T" queries. We will analyze the expected number of
queries made by I'* when facing distribution P. Let X be the random variable representing

the number of queries issued by I';. Then E [X]| = D. By Markov’s inequality,

E D 1
Pr[XET]ﬁL:—:—. (1.11)
T 7 10
We have
Pr[X > T|+ Pr[I'y succeeds and X < T
> Pr[I'yg succeeds and X > T + Pr [’y succeeds and X < T
= Pr [y succeeds] . (1.12)
Then
Pr [I'* succeeds| = Pr [’y succeeds and X < T
> Pr[['y succeeds] — Pr[X > T (By (1.12))
>9/10 —1/10 =4/5 (By choice of T’y and (1.11))

134 That is, with smallest expected number of queries possible.
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Algorithm I is said to distinguish Fy € X from F, € X within the first ¢ queries if I'™*
queries an element a € A with the property that Fi(a) # Fy(a) within the first ¢ queries.
Forallt e N, I} € X, and F, € X, define

1 if algorithm I'* distinguishes F; from F, within the first ¢ queries
IR, Fy) =

0 otherwise.

For each function F; € X and index t € {0,...,T}, we define a “local progress measure”
S®(F}) that counts the number of elements F, € X distinguished from F} by the t-th query,
weighted by the relation r(Fy, F). Formally, for each F} € X and 0 <t < T, let

SOF)= Y (P, F).

FreX:
IM (P Fr)=1

Summing over all the functions in X', we obtain a “global progress measure” S®:

SO = 3" SO(F).

Fex

The difference in progress between consecutive queries can then be defined as:

ASWH = g _ gt=1) (1.13)

To lower bound the progress, we show in three steps that (a) the initial value of the progress
measure, S(¥, is zero; (b) the final value of the progress measure, S, is “large”; and (c)
the difference in the progress measure between consecutive rounds, AS®, is “small” for each

round ¢.

43



Step (a)

No queries have been issued at time zero, so nothing has been distinguished. Therefore

SO =, (1.14)

Step (b)

Define W = {F, € X | I'*(F}) = H(F1)}. This is the set of functions on which I'* succeeds,

i.e. finds the correct label.

We claim algorithm T'™* distinguishes each pair of functions Fiy, Fy € W for which H(F}) #
H(F,). That is, ['* must have queried an index a € A such that Fj(a) # Fs(a) within the
first T queries. To see this, suppose towards a contradiction there exists a pair Fy, Fr € W
with H(F}) # H(F,) such that T* only queries indices a € A with Fj(a) = Fy(a). Then,
[ cannot differentiate whether the input function is F; or F5, and so must have the same
output I'*(Fy) = I'*(F}) since I'* is deterministic. Thus I'* makes a mistake on one of F} or
F3 because H(Fy) # H(F3). This contradicts the choice of Fy, F» € W as inputs on which
[ is successful. Thus, the algorithm I'* distinguishes each pair of inputs F}, Fy, € VW within
the first T' queries.

Formally, we have

ID(F, F) =1,  forall Fy,F, € W where H(F,) # H(F). (1.15)

Moreover, since I'* succeeds when the input is a function from ¥V and fails otherwise, the
success probability on input distribution P is at least 4/5, and the distribution P samples
each function F; € X with probability P(Fy) = M({F1})/M(X), we have

M{F3})

M{{F})
Y = 2 P(F)>4/5 and ) M(X)

<1/5. (1.16)
Fiew M(X) Frew Frex\Ww
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Thus,

st = ) r(F1, Fy) (By definition of S)
Fi,F2EX:

I (Fy,Fy)=1

Z (£, Fy) (Since W C X and r is non-negative)

Fr,FoeWw:

I (Fy,Fy)=1

= > r(A,F) (By Eq. (1.15) and r(Fy, Fy) = 0 if H(F)) = H(F2))
Fr,Foew

= Z r(Fy, Fy) — Z r(F1, F) . (1.17)

FleW, FoeX FLEW, FeX\W

v

By definition of M, we have 3" p cyy pex 7(F1, F2) = X g e M ({F1}), which substituted in
(1.17) yields

ST > N M{FR}) - 3 r(Fy, Fy). (1.18)

Frew F1€W,F26X\W

Since W C X and r is non-negative, we have

> (£, Fy) < > r(F, Fy). (1.19)

Fiew,FoeX\W FieX, FoeX\W

Furthermore, using the symmetry of r and the definition of M ({F3y}), we can rewrite the

right hand side of (1.19) as

Z r(Fy, Fy) = Z r(Fy, F1) (By symmetry of r)
F1€X,F2€X\W F1€X,F2€X\W
=Y MUED. (1.20)
Fex\w

Combining (1.19) and (1.20) yields

) r(FL )< Y, M({F}). (1.21)

F1€W,F2€X\W FQGX\W
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Combining (1.18) and (1.21), we obtain

ST > FZWM({FI}) - Z\ M({F2})
> ;lM(X) - ;M()() = gM(X). (By Eq. (1.16))
Therefore,
ST >3.M(X)/5. (1.22)
Step (c)

By Lemma 4, for each ¢ € [T, the maximum progress made by the t-th query, AS® can be

bounded as follows:

)
AS M(X) gvlr:na)(i 10 M(Z) (1.23)

Combining steps (a,b,c).

We obtain:
3 (T) .
S M) <S (By Eq. (1.22))
T
=950 4 Z AS® (By definition of S(T))
=1
T
=0+> AS® (Since S = 0 by Eq. (1.14))
=1
q(2)

(By Bq. (1.23))

q(2)

Czcx M(ZI)H>O and ¢(2)>0 M (Z)

(Since there exists Z C X with ¢(Z) > 0.)

=T M(X)
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(Since ¢(Z) > 0 implies M (Z) > 0.)

Rearranging and denoting ( =  min M, we get

zcx: q(2)>0 12

1 3
—c) = 5C . (1.24)
ZCX:q(2)>0 M(2)

T>

Ul\oo

In summary, the randomized query complexity R when the success probability is 19/20 can

be bounded as follows:

SIS

> (1.25)

S
—
=]
(@]

Let A be an arbitrary randomized algorithm that succeeds with probability at least 9/10. If
A issues fewer than (/100 queries in expectation, then A could be repeated three times and
the majority answer returned; this would achieve a greater than 19/20 probability of success
and fewer than 3¢/100 queries in expectation, which would contradict Eq. (1.25). Thus A
issues at least (/100 queries in expectation on its worst case input. Thus the randomized

query complexity is lower bounded as required by the theorem statement. O
Lemma 3. Let Z C X be a subset with ¢(Z) > 0. Then M(Z) > 0.

Proof. By definition of M(Z), we have

=2 > (i h)

FIEZ FoeX

> max Z Z (F1, F2)Lip ) #me)y  (Since Lig ) oy < 1and r(Fy, Fy) > 0.)
vell Fez pez

=q(2). (By definition of ¢(Z).)

Since Z was chosen such that ¢(Z) > 0 and M(Z) > ¢(Z), we conclude that M(Z) > 0 as
required. O]
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Lemma 4. In the setting of step (c) of Theorem 1.5.1, for each t € [T], we have

Z)
) < . q(
AST s M(X) zgxrznj\é/l[}({z)w M(Z)

Proof. Let ¥ = A~! x B'~! be the set of possible sequences of the first ¢+ — 1 queries and
their answers; each ¥ € W a “history”. Let 1q,19,...,%, be the histories in ¥, where
kf _ ’A|t71 . ’B|t71‘

For all i € [k], let &; C X be the set of inputs on which I'* would have history ; for the
first ¢ — 1 queries; this is well-defined because I'* is deterministic. In other words, we can
partition X into equivalence classes X7, Xy, ..., A so that two inputs have the same history
over the first t — 1 queries if and only if they are in the same equivalence class. This induces

three useful facts:

Fact 1.

For each Fi, Fy € X for some i, we know that F} and F, must receive the same t-th query

since I'* is deterministic. Let ai(t) € A be the location of this query. For i # j, we may have

ai(t) #* czj(t); i.e. each history may have a different query in the same round.

For each I} € X and F;, € &) with i # j, functions F and F; have already been distinguished
since they have different histories. This implies that all future progress must come from pairs

from the same equivalence class. For all a € A and Fi, F; € X, let us define
ra(F1, ) = (5, F2) - g @) £5 (a) -
Then
AS®H — g) _ g(t=1)

= > (S(t)(Fl) - S(t_l)(Fl)) (By definition of S® and S(t-1).)

F1€X
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= > > r(Fy, Fy) (By definition of S®(F}) and StV (7))
Fiex FoeX
IO (Fy,Fp)=1
I¢=D(F,F)=0

=3 > r(Fy, Fy) + > (I, Fy)

i=1 FreXx; FreX; FQQXi
IM (R, Fr)=1 IM(Fy, Fp)=1
10D (Fy, Fp)=0 1= (Fy,Fp)=0

(By definition of X}, each function Fy with ]“*l)(Fl, Fy) =01is in AX}.)

k
Z > D (B F) {Fl(af“)#Fz(ai(“}

i=1 FleX; FreX;

.. . . t
(Since F; and F;, are distinguished at time ¢, when query ai( )

i > D ruo(F,F). (1.26)

i=1 F1eX; FoeX;

is issued.)

Fact 2.

Since X, Xy, ..., Xy is a partition of X', we have

M(X) =Y M(X). (1.27)

Fact 3.

For all i € [k], we have

Z Z F17F2 > Z ZT@ F1>F2)

FIEXI FQEX FIEX1 FQEXl
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Therefore, since r is non-negative,

(M) =0) — (Z ) rai@)(Fl,Fg):O) | (1.28)

Fi1eX; Faek;

Combining facts 1, 2, and 3.
We get

AS®  ick) Lrex mex, Tow (F1, F2)
o e 2 o (From Eq. (1.26) and Eq. (1.27))

M(X) i M (A5)
> ic[k]: (ZFleXi ZFQEXi Tagt)(Flan))
M(X5)>0 :
= By Eq. (1.28
> e M) ( )
M(X;)>0
< ZaenEnen ol ) | € [k] with M(X) > 0
1 aXx y g Jer v /1t 1 i >
< frel[a]g{ V(%) (Maximizing over i € [k] with ) > 0)
M(AX5)>0
o(F1, F: R
< max Xnez XnezlalF1 F) (Maximizing over Z C X and a € A)
ZCX, acA: M(Z)
M(2)>0
Z ,
=  max M (By definition of ¢(Z))

CzcaM(z)>0 M(Z)

t) < ) a(Z) ;
Therefore AS™Y < M(X) ZQXI:HJ\E/}}({Z)>O Arzy: as required by the lemma. O

1.9.2 Matrix game

In this section, we describe a toy problem which highlights the advantage of Thecorem 1.3.1

over Theorem 1.9.1.

Setup

Let n € N be a square number and X be a subset of square y/n X y/n matrices with entries

from {0,1,2}. There are two types of matrices within X: “row” matrices and “column”

20



matrices. Row matrices have one row of 1s with all other entries 0 while column matrices

have one column of 2s with all other entries 0. For example:

0000 00 20
1 1 11 00 20
is a row matrix; is a column matrix.
00 00 00 20
0 0 0 0] 00 2 0

So, |X| = 24/n since there are y/n distinct row matrices and /n distinct column matrices.

The game

Given n and oracle access to a matrix F' € X, the goal is to correctly declare whether F' is

a row or column matrix.

One can check that /n queries suffices by querying the main diagonal: if any “1” is de-
tected, declare “row”; if any “2” is found, declare “column”. Even with randomization, one
intuitively expects that €(y/n) queries are necessary. In fact, this is what we can show using

Thecorem 1.3.1.

Lemma 1. The randomized query complezity of the matriz game is ©(y/n).

Proof. The upper bound of O(y/n) follows by querying the main diagonal: if any “1” is

detected, declare “row”; if any “2” is found, declare “column”.

To show the lower bound of Q(y/n), we instantiate Theorem 1.3.1 with the following defini-

tions:
« Finite set A is the set of n coordinates within /n x y/n matrix.

« Finite set B is the space of all possible \/n x \/n matrices with cell values from {0, 1, 2}.
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¢ Set X C B” of \/n row matrices and y/n column matrices, for a total of 2,/n matrices.
So, for any given F' € X and a € A, we have that F(a) € {0, 1,2} is the value of the

matrix at the coordinate indicated by a.

o Mapping H : X — {0, 1} refers to deciding whether the matrix from X is a row or

column matrix: output 0 if “row” and output 1 if “column”.

o For any two Fi,F, € X, we define r(Fi, Fs) = l{urm)2n(m)y to be the indicator
whether F; and F5 are of the same type.

There exists Z C X with ¢(Z) > 0; in particular, Z = {F,,w, Fro } for any row function F,

and column function F,, has ¢(Z) = 2. Therefore we may invoke Theorem 1.3.1.

Under this instantiation, we have Y- p,cyp 7(F1, F) = /n for any F' € X. Thus

=> Y r(F,F)=|Z|-v/n forany ZCX. (1.29)

F1eZ FhoeX

Meanwhile, let Z,,, = {F1 € Z : H(F)) = 0} and Z.,; = {F» € Z : H(Fy) = 1}. For
every I, Fy € X with H(F) # H(F»), we have Fi(a) # Fy(a) if and only if a lies on Fy’s
row/column or Fy’s row/column. Furthermore, because for each row/column there is only

one corresponding input in X', we have

{FezZ|Fl)=1}<1 and [{FeZ|Fv)=2}<1. (1.30)

For any arbitrary Z2 C X and a € A, we have

S > (P F) - Lk (a)£Es(a) (1.31)
FhLeZ FheZ
= Y. 2 (B Lpweray T 2. Do r(FLE)  Lnwzrey  (1.32)
FleZ: FreZ FheZ: FreZ
Fi(a)#0 F(a)=0
< (1Zrouwl +12eal) + D2 D0 1(F1, o) - Iip (a)2mae) (By Eq. (1.30))
Fl(E)ZOFQEZ
Fi(a)=
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= Zrou| +1Zeal + Do D r(F1, B - Lim ()£m () (1.33)
Fi1eZ: FreZ:
Fi(a)=0 Fz2(a)#0

< |Zrow| + |Zcol| + Z 1 (134)
FLez:
Fi(a)=0

<2.1Z|. (1.35)

In the equations above, Eq. (1.33) holds since Fi(a) = F5(a) = 0 implies 1z, (a)£m ()} = 0.

Next we explain why Eq. (1.34) holds. Take arbitrary Fy, Fy € Z with Fi(a) = 0 and
Fy(a) #0. Then r(Fy, Fy) = 1 when H(Fy) # H(Fy) and r(Fy, Fy) = 0 when H(Fy) = H(F).
By Eq. (1.30), there are at most two functions Fy € Z with Fy(a) # 0: one with H(F) =0
and one with H(F,) = 1. So no matter what H(Fy) is, there is at most one Fy € Z with
Fy(a) # 0 such that r(Fy, F5) = 1. Thus Eq. (1.34) holds.

Therefore by Eq. (1.35),

< I{Eleaj( Z Z Fl,FQ ﬂ{Fl(a);éFg(a)} S 2- ’Z’ for any Z g X (136)
FieZ FheZ

By Eq. (1.29) and Eq. (1.36), the statement of Theorem 1.3.1 implies the query complexity

is at least

M@)o (EVE g
A ) <o (5537 coom

]

On the other hand, one can only show that the randomized query complexity of the matrix
game is (1) by using the original relational adversary theorem of [3], illustrating the ad-
vantage of our new variant on this matrix game. Intuitively, the reason why Theorem 1.9.1
cannot handle this problem is because every pair of row matrix F.,, and column matrix F,,

has some location x that distinguishes both F,, and F, from many matrices.
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Lemma 5. Using Theorem 1.9.1 gives a lower bound of (1) on the randomized query

complexity of the matrix game.

Proof. We instantiate Theorem 1.9.1 with the next parameters:
o The finite set A is the set of n coordinates within y/n X \/n matrix.
« The finite set B is {0, 1, 2}.

« The set X C B4 consists of y/n row matrices and y/n column matrices, for a total of
2y/n matrices. So, for any given F' € X and a € A, we have that F(a) € {0,1,2} is

the value of the matrix at the coordinate indicated by a.

o Mapping H : X — {0, 1} refers to deciding whether the matrix from X is a row or

column matrix: output 0 if “row” and output 1 if “column”.

Consider an arbitrary choice of r : Ax B — R5(. Consider an arbitrary row matrix F,, € A
and an arbitrary column matrix Fi, € B such that r(F.ou, Fror) > 0. Let aj,; be the unique
intersecting coordinate in the matrix within F.,,’s non-zero row and F,,’s non-zero column.
That is, Frow(aine) = 1 and Foy(ai,) = 2. Meanwhile, F'(ay,;) = 0 for any other matrix
F e Aor F € B. Therefore,

ZF3€B : Frow(amt)sﬁFg(aint) T(FT’OU” F3) o ZFgGB T<FT0’LU7 F3)

— =1.
ZFgeB T(me, Fs) EFgeB T(FromFa)

9<Frow7 aint) =

Similarly, we have 0(Fiy, ain;) = 1 and we see that

min{0(Fyouw, Gine)s O(Feot, Gint) } = 1.

Since v, is a maximum over choices of Fj,,, Fr,, and v, this suffices to show

>1.

Umin

o4



Thus 1/v,i, < 1 and since the choice of r was arbitrary, one cannot hope to show a stronger

lower bound than ©(1) via Theorem 1.9.1 for this problem. O

1.9.3 Our variant is stronger than the original relational adversary method

In fact, we now show that our new variant Theorem 1.3.1 is always at least asymptotically

as good as Theorem 1.9.1.

Proposition 1.5.1. Consider any problem and let T be the expected number of queries

required in the worst case by the best randomized algorithm to succeed with probability 9/10.

If the relational adversary method from [3] provides a lower bound of T > A for some A > 0,
then Theorem 1.5.1 can prove a lower bound of T > A/40.

Proof. Recall that for every a € A and Fi, F, € X, we define r,(Fy, Fy) = r(F, F) -
1¢F, (a)£Fs(a)}- Theorem 1.9.1 provides a lower bound of A = 1/(5 - vnin) for the expected
number of queries issued by a randomized algorithm that succeeds with probability at least

9/10, where

min — a. in{f F, ,‘9 F, .
v F1€A7F2€B7a€A:1Iﬂr(lF1},<F2)>O,F1(a)7éF2(a) mln{ ( ! a) ( 2 a)}

Then for all F} € A, F;, € B,a € A where r,(Fy, F3) > 0, we have

1 1
> . 1.37
min{0(Fi,a),0(Fy,a)} ~ Umin (1.37)
By rearranging and invoking the definition of 6 (Eq. (1.8)) we get
ZF;),EB ra(FlaFS) ZFgeA Ta(Fg,Fg) Umin
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By extending r to X x X, with r(F}, Fy) = 0 if both F, F5 € A or both Fy, F; € B, we can
write Eq. (1.38) as

M{ER)) M({F5}) 1
e (ZFgeX ro(F1, F3) Ypex TQ(FQ’F3)> = : (1.39)

Umin

Keeping the same choice of r, take an arbitrary choice of Z C X and a € A such that
q(Z) > 0. Such a choice exists by the following argument: Theorem 1.9.1 provided a bound,
so there must exist } € A and F, € B and a € A with r(Fy, F3) > 0 and Fi(a) # Fy(a);
the set Z = {F, Fy} has ¢(Z) > 0. Let C C Z be the subset of functions F; € Z defined as

follows:

c— {F1 €z M{FR}) > U:m -FZXTQ(Fl,Fg)} |

By Eq. (1.39), we know that for every pair of functions Fj, Fy € Z with r,(Fy, F3) > 0, at

least one of F} and F5 is in C. Therefore

l\DM—t

Z Zrd F17F2 Z

F1eC FreZ

Z Z ro(F1, Fy) = ‘1(2). (1.40)

Meanwhile, M (Z) > M(C). Therefore

M(z) 1 M(C)
9 By Eq. (1.40
q(Z) T2 ZF1€C ZFgeZ ra(F17F2) ( y Bq ( ))
L SneeM{F}) -
= 1 . since Z C X
o2 ZFlEC ZFzEX Ta(Fla FZ) ( e - )

By an averaging argument, there exists a function F} € C such that

M(Z) 1 M{R})
q9(Z) - 2 YpexraF1, Fa) (1.41)
But then since F; € C we get
M{RY) 1 .

EFQGX ra(Fla F2) o Umin ‘
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Combining Eq. (1.41) and Eq. (1.42),

M(Z) 1 M{F}) 1
Z § . ZFQGX Tzz<F17 F2) Z 2. Umin . (143>

Since Eq. (1.43) holds for an arbitrary choice of Z and a, it follows that Theorem 1.3.1
shows that a randomized algorithm that succeeds with probability at least 9/10 issues at
least 1/(200 - vy,5,) queries in expectation. Since A = 1/(5 - vynip), the lower bound given by
Theorem 1.3.1 is at least A/40, which completes the proof. O]

1.10 Valid functions have a unique local minimum

In this section, we define an abstract class of functions called “valid functions”. Such functions
have a unique local minimum and will be used in both the congestion and separation lower

bounds.

Definition 1.10.1 (Valid function). Let W = (wy,...,ws) be a walk in the graph G. A

function [ is valid with respect to the walk W if it satisfies the next conditions:
1. For all u,v € W, if max{i € [s] | v = w;} < max{i € [s] | u = w;}, then f(v) > f(u).

In other words, as one walks along the walk W starting from wy until wg, if the last

time the vertex v appears is before the last time that vertexr u appears, then f(v) > f(u).
2. For allv e V\W, we have f(v) = dist(wy,v) > 0.
3. f(w) <0 foralli€ [s].
An illustration of a valid function is shown in Figure 1.2.
Next we prove every valid function has a unique local minimum.

Lemma 6. Suppose W = (w1, ..., ws) is a walk in G and f :V — R is a valid function for

the walk W. Then f has a unique local minimum at wg, the last vertex on the walk.
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Figure 1.2. Consider the walk W = (a,b,¢,d,e, f, g, h,c,i) in blue, where
fla),..., f(i) <0. Observe that w; = e and wg = ¢ so f(e) > f(c). Since the
vertex x is not in the walk, f(z) = dist(w, x) = dist(a,z) = 4.

Proof. Let v € V be an arbitrary vertex. We consider two cases:

Case 1: v ¢ W.

By condition 2 in the definition of a valid function, we have

f(v) = dist(wy,v) > 0.

Let u be the neighbor of v on a shortest path from v to w;, breaking ties lexicographically

if multiple such neighbors exist. We have two subcases:
(a) If w e W, then f(u) <0< f(v).
(b) If u ¢ W, then f(v) = f(u) +1> f(u).

In both subcases, vertex v has a neighbour with a smaller value, so v is not a local minimum

of f.

o8



Case 2: v e W.

Let i = max{j € [s] | v = w;} be the last index where vertex v appears on the walk 1. We

have two subcases:

(a) If i < s, let u = w41 be the next vertex along the walk. By maximality of the index i,
the walk W does not visit vertex v anymore in (wii1,...,w,). Since v = wj, condition 1

of a valid function implies

f(v) = f(wi) > flwia) = f(u),

since max{j € [s] | u = w;} > 141 >1=max{j € [s] | v = w;}. Thus vertex w; is not a

local minimum.

(b) If i = s, then v = w,. By the analysis in the previous cases (1.a, 1.b, and 2.a), each
vertex u € [n]\ {ws} has a neighbor with a strictly smaller value than u, and so u cannot
be a local minimum. Since the graph G must have at least one local minimum, at the

global minimum, it follows that wy is the unique local and global minimum of f.

1.11 Lower bound for local search via congestion: proofs

In this section we prove the lower bound of 2 (n'®/g), where g is the vertex congestion. We
start with the basic definitions. Then we state and prove the lower bound. Afterwards, we

show the helper lemmas used in the proof of the theorem.
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1.11.1 Basic definitions for congestion

Recall we have a graph G = ([n], E) with vertex congestion g. This means there exists an
all-pairs set of paths P = {P""}, veln] with vertex congestion g !*, but no such set of paths

exists for g — 1. We fix the set P, requiring P*“" = (u) Yu € [n].

For each u,v € [n], let q,(u) be the number of paths in P that start at vertex u and contain
v

qo(u) = {P“"Y € P:w € [n],v € P“}|. (1.44)

Let L € [n], with L > 2, be a parameter that we set later.

Given a sequence of k vertices x = (z1,..., ), we write X145 = (z1,...,2;) to refer to a

prefix of the sequence, for an index j € [k].

Given a walk @ = (vy,...,v,) in G, let Q; refer to the i-th vertex in the walk (i.e. @Q; = v;).

For each vertex u € [n], let u(@,u) be the number of times that vertex u appears in Q.

Definition 1.11.1 (Staircase). Given a sequence X = (x1,...,xx) of vertices in G, a stair-
case induced by x is a walk Sx = Sx10...0 Sxk_1, where each Sx; is a path in G starting
at vertex x; and ending at xiy1. Each verter x; is called a milestone and each path Sx; a

quasi-segment.

The staircase Sk is said to be induced by x and P = {P""}
Sxi = P5®+1 for allie [k —1].

| if additionally we have

u,vE[n

Definition 1.11.2 (Tail of a staircase). Let Sx = Sx10...0Sxk_1 be a staircase induced by
some sequence X = (z1,...,x1) € [n]*. For eachj € [k —1], let T = Sxjo...0Sxx_1. Then
Tail(j, Sx) is obtained from T by removing the first occurrence of x; in T (and only the first
occurrence). We also define Tail(k, Sx) to be the empty sequence.

Next we define the set of functions, X', that will be used when invoking Theorem 1.3.1.

144 That is, each vertex is used at most ¢ times across all the paths.
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Definition 1.11.3 (The functions fx and gxs; the set X'). Suppose P = {P""},, vepn) is an
all-pairs set of paths in G. For each sequence of vertices x € {1} x [n]F, define a function

fx:[n] = {-n*—=n,...,0,...,n} such that for each v € [n]:
o Ifuv ¢ Sk, then set fy(v) = dist(v, 1), where Sy is the staircase induced by x and P.

o Ifv e Sy, then set fx(v) = —i-n —j, where i is the mazimum index with v € P™"i+1

and v s the j-th vertex in P*-*itt,
Also, for eachx € {1} x[n]¥ and b € {0,1}, let gxp : [n] = {—n?*—n,...,0,...,n}x{-1,0,1}

be such that, for all v € [n]:

(felw),b)  ifv=2pn
(fx(v), _1) ifv#rr

gxp(v) = (1.45)

Let X = {gx,b | x € {1} x [n]* and b € {0, 1}}

We will show later that for each sequence x, the function fy has a unique local minimum at

the end of the staircase Sx.

An example of a staircase Sy for some sequence of vertices x is shown in the next figure,

together with the accompanying value function fy.

(46) Let G be the grid graph on n = 16 nodes from Figure 1.3. Consider the sequence of
vertices

X = ('Tlax27x37x4) = ('Ul,'U6,’U11,'U16),

We fix an all-pairs set of paths P = {P"“"}, ,c[n, such that

V1,6 . DvUs,w11 . PDV11,016 —
o PULY — (U17U27U37U77U6)7 prevt = (U670107U11); prinis = (Ull)v77v87U127U16>7
where

PU177J6’ p'UGHJll’PUlly'UlG c 7)
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Figure 1.3. Example of a staircase with the accompanying value function.
The sequence of milestones is (vy, vg, v11,v16), Which are shown in red. The
vertices of the staircase are shown in red and green vertices, connected by red
dotted edges. For each node v, the value of the function at v is shown in blue.

o For each other pair of vertices (u,w), we set P"" as the shortest path between

u and w, breaking ties lexicographically (vertices with lower index come first).

Then the staircase induced by x and P is

P V1,06 V6,V11 V11,V16 __
Sx =P oP oP = (v1, Vg, U3, V7, Vg, V10, V11, U7, Us, V12, V1) -

For example, f(v4) = dist(vy,v4) = 3 since vy & Sx, and fx(v7) = —3n —2 = =50
since v; is the second node in P#%4 = Pv11:¥16 (even though vy is also included in the

path pP¥1o2),

Definition 1.11.4 (The map H). Suppose P = {P"“"}, vem s an all-pairs set of paths in
G and X is the set of functions gxp from Definition 1.11.3. Define H : X — {0,1} as

H(gxp) =b  Vx € {1} x [n]* andb € {0,1}.
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To define a suitable r function, we only concern ourselves with pairs of staircases that do
not have repeated milestones within themselves and with different hidden bits. For such a
pair of staircases, we assign a relative difficulty of distinguishing them that scales with the
length of their common prefix: the longer their common prefix, the more function values

they agree on, and so we assign a higher r value.

Definition 1.11.5 (Good/bad sequences of vertices; Good/bad functions). A sequence of
k vertices x = (xq,...,xy) is good if x; # x;j for alli,j with 1 <i <j < k; otherwise, x is
bad. Moreover, for each b € {0,1} a function F = gxp € X is good if x is good, and bad

otherwise.

Definition 1.11.6 (The function r). Let r: X x X — Rx¢ be a symmetric function defined
as follows. For each x,y € {1} x [n]* and by, by € {0,1}, we have

0 if at least one of the following holds: by = by or x is bad ory is bad.
T(QX,IH ) QY7b2) = _
n'  otherwise, where j is the mazximum index for which xi_; = y1;.

(47) Suppose L = 3. Consider the graph G = ([n], E') and consider the sequences of
vertices x = (1,2,3,4), y = (1,3,5,3), and z = (1,2,5,4). Since y has repeated
elements while x and z do not, we see that x is good, y is bad, and z is good. Then,

for each b € {0,1}, we have

o (-, 9yp) = 7(gysp,-) = 0 since y is bad.

. _ 2 . . . _
® r(gx,lﬂ gz,l—b) - T(gz,l—ba gx,b) = T~ smce X 18 gOOdv Z 1S gOOdv X152 = 2152, and

T3 7é z3.

The function r will be used directly to invoke Thecorem 1.3.1, but we also define here some

related helper functions to use r in conjunction with certain indicator variables.

Definition 1.11.7 (The function r,). For each v € [n], define r, : X x X — Rxq as follows:

To(F1, Fy) = r(F1, Fy) - Lip )2 (0) VF, F, e X.
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Definition 1.11.8 (The function 7). For each v € [n], define 7, : X x X — Rxq as follows:

To(Gxbr> Gyba) = To(Gxbr> Gyiba) * Liu(S0)<pu(Sy0)} vx,y € {1} x [n]* Wby, by € {0,1}.

Observation 1.11.1. For each x,y € {1} x [n]* and b € {0,1}, we have

?’U (gx,ba gy,b) =Ty (gx,ln gy,b) - T(gx,by gy,b> =0. (148)

Proof. By definition of r, we have r(gxs,, gys,) = 0 when by = by. Then for all b € {0,1}:

To(Gxbs Gy.b) = To(Gxbs Gyb) * L{u(Sssw)<pu(Sy.0))

= 7(Gxb Gy.b) * Lgus(0)=gy0(0)} * L{u(Sses0)<pa(Sy )} = 0 (1.49)

1.11.2 Proof of the congestion lower bound

In this section we include the proof of Theorem 1.3.2. The proofs of lemmas used in the

theorem are included afterwards, in Section 1.11.3.

Theorem 1.3.2. Let G = (V, E) be a connected undirected graph with n vertices. Then the
randomized query complexity of local search on G is §2 (%), where g is the vertex congestion

of the graph.

Proof. Consider the following setting of parameters:

(a) L=|vn]—1.

(b) Fix an all-pairs set of paths P = {P""} ., for G, such that P has vertex congestion

g.

(c) The finite set A is the set of vertices [n].
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(d) The finite set B is {—n?* —n,...,0,...,n} x {—1,0,1}.

(e) The functions fx, gxs, and the set X' given by Definition 1.11.3. (Recall gx(v) = (fx, ¢)
for allv € [n], where ¢ = =1 if v # xpy1, and c = b if v = x4, i.e. ¢ = b if and only

if v is a local minimum of fyx. Also, X = {gxp | x € {1} x [n]* and b € {0,1}}.)

(f) Map H : X — {0,1} as in Definition 1.11.4. (Recall H(gxp) = b for all x € {1} x [n]*
and b € {0,1}.)

(g) The function r as in Definition 1.11.6.

By Lemma 7, each function f, is valid for all x € {1} x [n]F, so Lemma 6 implies that
each function fyx has a unique local minimum (at x741). Therefore by Lemma 2 invoked
with f = fx and hy = gx,, it suffices to show a lower bound for the corresponding decision

problem: return the hidden bit b € {0, 1} given oracle access to the function gx.

For each Z C X, let

~ Y Y (AR (1.50)

FieZ FhbeX

By Lemma 8, there exists a subset Z C X with ¢(Z) > 0. Thus the conditions required
by Theorem 1.3.1 are met. By invoking Theorem 1.3.1 with the parameters in (a-g), we get
that the randomized query complexity of the decision problem, and thus also of local search

on G, is

. M(Z
Q< min (>>, where ¢(Z) = max Z Z (F1, F2) - Lip ()£ (v)} -

zcxiq(2)>0 q(2) velnl pez mez

To get an explicit lower bound in terms of congestion, we will upper bound ¢(Z) and lower

bound M (Z) for subsets Z C X with ¢(Z) > 0.

Fix an arbitrary subset Z C X with ¢(Z) > 0. Since r(Fy, F3) = 0 when Fj or F; is bad, it

suffices to consider subsets Z C X where each function F' € Z is good.
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Upper bounding ¢(Z2).
Let v € [n] be arbitrary.

Fix an arbitrary function F; € Z. Since F} is good, there exist x € {1} x [n]F and b; € {0, 1}

such that 7 = gxp, and x is good. Since Z C X and 7, > 0, we have

Y F(Fi, ) < ) T(FLF). (1.51)
ez FreX
Using the definition of X = {gy4, | y € {1} x [n]F, by € {0,1}}, the fact that Fy = gy,
and partitioning the space of functions F; € X by the length of the prefix that the staircase
corresponding to F, shares with the staircase corresponding to F}, we can upper bound the

right hand side of Eq. (1.51):

L+1
Z ﬁ,(Fl, F2) = Z Ty (gx,bngy,bz) < Z Z ?v(gx,bpgy,bQ) :
FreX ye{1}x[n]¥, b2€{0,1} =1 ye{1}x[n]¥, bae{0,1}
j=max{i: x15i=y15i
(1.52)
Combining Eq. (1.51) and Eq. (1.52), we get
L+1
Z ,;ZU(F17 F2) S Z Z 7,:v(gx,bpgy,bz) . (153)
ez =1 ye{1}x[n]¥, baef{0,1}

j=max{i: x1i=y15i
For each j € [L + 1], let

T, = {y € {1} x [n]* | max{i: x5 = y1.:} = j and v € Tail(j, Sy)} :
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Then for each j € [L], we can bound the part of the sum in Eq. (1.53) corresponding to index

j via the next chain of inequalities:

Z T (gx,ln ) gy,b2) S Z T(.gx,bl ) gy,l—bl) (B\ Lemma 11 )
ye{1}x[n]¥, b2€{0,1}: ye{1}x[n]k:
j=max{i: x14i=y1-i} j=max{i: X1 5i=y15i

v€Tail(j,Sy)
<nl- |73 (Since 7(gxpy, Gy1-5,) < 1 when j = max{i: x;,; = y1.i})

<nl. (Clv(xj) 4+ Leg- nL*J'*) , (By Lemma 12.)

where we recall that q,(u) is the number of paths in P that start at vertex u and contain v.

Using the identity n - (qv(xj) nt 4+ L.g- nL_j_l) =nl. (qv(xj) + Ly), we obtain

> Tu(Gx1s Gyb) < 107 (qv(xj) + L'> : (1.54)

n
ye{1} x[n]E, b2€{0,1}:
j=max{i: x15i=y1-i}

When j = L + 1, since 7y(gxpys Gyp,) > 0 implies by = 1 — by (see Observation 1.11.1), we

have

Z Fv(gx,bpgy,bg) S nLJrl . (155)

ye{1}x[n]E, bae{0,1}:
L+1=max{i:X15i=y1-5i}

Summing Eq. (1.54) for all j € [L] and adding it to Eq. (1.55) for j = L + 1, we can now
upper bound the right hand side of Eq. (1.53) as follows:

L+1

Z o(F1, Fp) < Z Z To(9x,b15 Gy b2) (By Eq. (1.53))
ez =1 ye{1}x[n]*,b2c{0,1}:
max{l X15i=Y1-if=]
L -
<nl. Z (Clu(l’j) + g) 4ttt (By Eq. (1.54) and Eq. (1.55))
— n

L ( 2[:] CIU(U)) (z_: gn) 4 pltt

(Since x is good, i.e. x has no repeated vertices)
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g+nL gL L? 4 bt
n

(Since > ,epn) 9o(u) equals the number of paths in P that contain v, which is the congestion at v.)
<3.g-n". (Since L < y/n— 1 and g > n)

Thus, for each good function F} € Z, we have

> F(Fi, Fp) <3-g-nt. (1.56)

FreZ

Summing Eq. (1.56) over all F} € Z (each of which is good, since Z was chosen to have good

functions only), and invoking Lemma 9 yields

Z ro(F1, Fy) < 2- Z To(F1, F3) (By Lemma 9)
F1,F2€Z Fl,FQGZ

<2-1Z|-3-g-n" (By Eq. (1.56))

=|Z| 6g-n". (1.57)

Since we had considered an arbitrary vertex v € [n], taking the maximum over all v € [n] in
Eq. (1.57) yields
¢(Z2)=max > > r,(F,F) <|Z| 6g-n". (1.58)

veln] f Tz Bz

Lower bounding M (Z).

Since each function F; € Z is good by choice of Z, Lemma 14 yields

S H(FLF) > - (L4 1) nbH

VF, € Z. (1.59)
FoeX 2
Using Eq. (1.59) and recalling the definition of M(Z) from Eq. (1.50), we get

=Y 3 r(A.R) 2@-(L+1)-n”1. (1.60)

FICZ FoeX 2e
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Combining the bounds.

Combining the bounds from Eq. (1.58) and Eq. (1.60), we can now estimate the bound from
Theorem 1.3.1:

M(2) _ g - (L4 et

min W2 > 12690k (By Eq. (1.58) and Eq. (1.60))
a(2)>0
Pl
> e g’ (Since L+ 1 = |/n] > +/n/2)

Therefore, the randomized query complexity of local search is

Q| min M(z) QQ(TLM)

ZCX: Z
255 q(Z) g

This completes the proof of the theorem. n

1.11.3 Helper lemmas

In this section we prove the helper lemmas that are used in the proof of Theorem 1.3.2. All

the lemmas assume the setup of the parameters from Theorem 1.3.2.

Lemma 7. For each x € {1} x [n]X, the function fy is valid for the staircase Sy induced by

x and P, where P = {P""}, vem) is the all-pairs set of paths in G.

Proof. Let Sy = (w1, ..., ws) be the vertices of the staircase Sy induced by x and P. We show
that all the three conditions required by the definition of a valid function (Definition 2.4.6)
hold.

To show the first condition of validity, consider two vertices vy, vy € Sx. Define

iy = max{k € [L] | v € P™"+1}.
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Define i, similarly for v,. Let j; and jo be the indices of v; and vy in P¥1%i1+1 and P%iz:%ia+1
respectively. Note that ji,j2 € [n]. By definition of the function fy (Definition 1.11.3), we

have

fx(v1) = —n-ip —j1 and fy(v2) = —n-ip — 2. (1.61)

Without loss of generality, the last time vertex v; appears on the path Sy, starting from w,

towards wy, is earlier than the last time vertex vy appears, that is:

max{k € [s] | v1 = w.} < max{k € [s] | vo = wy}.

Then i; <1iy. We consider two cases:

o If il = ig, then

Jx(v1) = fx(v2) =Jj2 —ju (By Eq. (1~61))

>0 (Since by assumption v; last appears on Sy before vy.)

o Ifi) < io, then

fx(v1) = fu(v2) >+ (2 — 1) (By Eq. (1.61))

>0 (Since j1,j2 € [n].)

Therefore the first condition of validity is satisfied.

Also by Definition 1.11.3, of the function f,, we have that:
o fx(v) =dist(1,v) for all v ¢ Sy, so the second condition of validity is satisfied.
o fx(v) <0 for all v € S, so the third condition of validity is satisfied.

Therefore fy is valid for the staircase Sy induced by x and P. n
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Lemma 8. The next two properties hold:
o Let [y, Fy € X. Then r(Fy, Fy) =0 when H(Fy) = H(Fy).

e There exists a subset Z C X such that

max Z Z Fl,FQ ]l{Fl(v);éFg(v)} > 0.
€l pez ez

Proof. We first show that r(Fy, F) = 0 when H(F;) = H(F,). To see this, suppose H(F}) =
H(F,) for some functions Fi, Fy € X. Then by definition of the set of functions X', there
exist sequences of vertices x,y € {1} x [n]* and bits by,by € {0,1} such that F; = gy,
and Fy = gyyp,. By definition of H, we have H(gxp,) = b1 and H(gyp,) = be. Since
H(F1) = H(F,), we have by = by. Then 7(gxp,, gyp,) = 0 by definition of 7, or equivalently,
r(Fy, Fy) = 0.

Next we show there is a subset Z C X with ¢(Z) > 0. To see this, consider two disjoint sets
of vertices Uy, Uy C [n] such that Uy = {us,...,up .}, Us = {u3,...,ui ,}, each vertex u]

appears exactly once in U;, and uj = 1 for all i,j. Such sets Uy, U, exist since
Ui+ |Us| + {1} =2L +1=2(|vn] —1)+1<2y/n<n forn>4.

Form the sequences of vertices W' = (1,u,...,u;,,) and W? = (1,43,...,u7 ). Then
both W' and W? are good. Consider now the functions gy1 and g2 ;. By definition of
7, we have r(gw1,0, gw21) = n, since the maximum index j for which Wi ,; = Wi . is j = 1.

Then

a({gwr0,9w2.1) = 7(gwr0, 9w21) - Lign s, oy it 0y = >0

Thus there exists a subset Z C X with ¢(Z) > 0 as required. O]

Lemma 9. For each v € [n] and subset Z C X, we have

Y LR <2 Y (R E).

F,FreZ P, FheZ
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Proof. By Definition 1.11.7, we have r,(Fy, F3) = r(F1, F2) - 1{p w)£m )} for all v € [n] and
Fi, F, € X. Then r, is symmetric since both the function r and the indicator Lyp, ()£r, )
are symmetric. Also recalling that for a walk @), the number of times that a vertex u appears

in @ is denoted u(Q,u), we have:

Z ro(F1, Fy) = Z o (F1, F) + Z ro(F1, Fy)

P, FreZ L, FreZ: P, FreZ:
F1=gx,b,;F2=0y b, F1=gx,b1 i1F2=0y b,
,U'(vav)giu(sya”) ,LL(Sy,'U)<,LL(Sx,'U)

= Z ro(F1, F2) + Z ro(Fy, 1) — Z ro(Fy, FY)

F1,FheZ: F1,FoeZ: F1,FoeZ:
Fi=gx b, :F2=0y b, Fir=gx,b, ;F2=9y b, Fi=gx b, ;F2=0y b,
1(Sx,0)Sp(Sy,v) w(Sy,w)<p(Sx,v) #(Sx,v)=p(Sy,v)
=2 Z 7”1)<F1,F2)— Z T'U(FQ,Fl). (162)
F1,FreZ: Fi,FheZ:
Fi1=gx b, :F2=9y b, Fi1=gx b, :F2=9y b,
N(SX’U)SN(S}’)U) H(SY’U):“(SX’U)

Recall from Definition 1.11.8, of the function 7, that

FolGxprs Gyiv) = To(Gxpns Gy ba) * Lin(Sew)<u(syy VXY € {1} x [n)",Vby, by € {0,1}.

Then 7,(F1, F5) = 0 when p(Sx,v) > p(Sy, v), which substituted in Eq. (1.62) gives

Z TU(Fl,FQ) :2 Z TU(Fl,FQ)— Z TU(FQ,Fl) (163)
Fl,FQEZ Fl,FQEZ Fl,FQEZ:
Fi1=gx b, :F2=0y b,
1(Sy v)=p(Sx,v)

<2 Z To(F1, F) . (Since r,(Fy, F1) > OVF, Fy, € X, v € [n])
Fi, ez
This completes the proof of the lemma. O]
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Lemma 10. Let x,y € {1} x [n]*, by, by € {0,1}, v € [n]. Let j € [L + 1] be the mazimum
index for which x1; = yi5i. If To(9xpi Gyps) > 0, then at least one of the next two

properties holds:
(1) v € Tail(j, Sy).
(ii) x =y.
Proof. We start with a few observations.

Recall from Definition 1.11.8 that 7, (gx5,5 9y5:) = To(9xb1> Gybe) * Liu(Sxv)<u(sy0)}- BY the

lemma statement, we have 7, (gxp,, Gy.p,) > 0, and so both of the next inequalities hold:

To(Gx,b1> Gy by) > 0 (1.64)

11(Sx, v) < pu(Sy,v) . (1.65)

By definition of r,, we have 7, (gxp1s Gy.bs) = 7(Gxb1> Iyb2) * Ligwn, (v) %0y, (v)) - Then Eq. (1.64)

implies

9x,b; (U) 7é Gy .bo (U) . (166)

To prove that v € T'ail(j, Sy) or x =y we consider two cases:

Case 1: v € Tail(j, Sx).

Let us decompose the staircase Sy into the initial segment Sy, ,; and the remainder T'ail(j, Sx).
Similarly, we decompose the staircase Sy into initial segment Sy, . and the remainder

Tail(j, Sy). We get:

M(SX,U) < M(Sya U) (B‘V Eq. (165))

= 1Sy v) + u(Tail(5, 5. 0) < (S, ) + p(Tail(), Sy). v)
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< p(Tail(j, Sx),v) < p(Tail(j, Sy),v) (Since X1 = y15.)
(1.67)

Since v € Tail(j, Sx), we have u(Tail(j, Sx),v) > 1, and so
1 S M(Tall(.]a S}’)a U) :

Thus v € Tail(j, Sy), so property (i) from the lemma statement holds. This completes Case
1.

Case 2: v ¢ Tail(j, Sx)-
If x =y, then property (ii) from the lemma statement holds.

Now suppose x # y. Then Tail(j, Sy) # 0. We claim v € Sx U Sy. Suppose towards a
contradiction that v € Sx U Sy.

Then for each b € {0,1}, u € [n], and sequence z = (1,29, 23..., 2111) € {1} x [n]X, we have

by Eq. (1.45) (which defines the function g,;) that

Gup(u) = (fz(u), b) if u = 2141
(fz(u), —1) otherwise .

Since v ¢ Sy, we have v # xp41, and 80 gxp, (v) = (fx(v), —1). Moreover, since z; = y; and
v & SxUSy, we have fx(v) = dist(v,z1) = dist(v,y1) = fy(v). Combining these observations
yields gxp, (v) = (fx(v), —1) = (fy(v),—1) = gyp,(v), which contradicts Eq. (1.66). Thus

the assumption must have been false and v € Sx U Sy.
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To summarize, we have X;,; = y15j, X # Yy, v € Sx U Sy, and v ¢ Tail(j, Sx). Suppose
towards a contradiction that v & Tail(j, Sy). Then

Gxb, (V) = (fx(v), —1) (Since v # xp41, as v & Tail(j, Sx)-)
= (fy(v),=1) (Since v € Sx U Sy and x;; = y1j and (v € Tail(j, Sx), v € Tail(j, Sy)).)
= Gy.by (V), (Since v # yr11, as v & Tail(j, Sy).)

which contradicts Eq. (1.66).

Thus the assumption must have been false and v € Tail(j, Sy), so property (i) from the

lemma statement holds.

We conclude that at least one of properties (i) and (ii) holds. This completes Case 2, as well

as the proof of the lemma. O

Lemma 11. For each x € {1} x [n]*, by € {0,1}, v € [n], and j € [L], we have

Z 7711 (gx,bl ; gy,bz) S Z r(gx,bl ) gy,l—bl) .

yE{l}X[n]L,bQE{O,l}: yE{l}x[n]L:
max{i:X1i=y1-i}=j max{i:X15i=y1-i}=]j
veTail(j,Sy)

Proof. Let x € {1} x [n]¥, by € {0,1}, v € [n], and j € [L].

Recall the function r from Definition 1.11.6, the function r, from Definition 1.11.7, and the

function 7, from Definition 1.11.8. In particular, we have
° T’U(Fl, FQ) = T(Fl,Fg) . ]l{Fl(v)¢F2(v)} for all Fi,Fy e X.

L4 Fv (gx,bpgy,bz) =Ty (gx,bugy,bg) : H{H(Sx,v)g,u(Sy,v)} for each X,y € {1} X [n]L
and by, by € {0,1}.
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Then we get the next chain of identities:

Z To(Gx.b1> Gy be) = Z To(9x,b1>9yb,) (Since 7, is non-negative.)
ye{1}x[n]¥, b2€{0,1}: ye{1}x[n]¥, b2€{0,1}:
max{1:X15{=y1—i}=] max{i:x15i=y1-i}=]

Ty (gx,bl 9y ,bo )>0

= Z 7711 (gx,bl ) gy,l—b1) (Sill(',(‘, ?L (.(/xibl y Jy,by ) — ())

y€{1}x[n]*:
max{i:x1-i=y1-i}=]
T’U(gx,bl 7gy,17b1)>0
= Z To(9x,b1> Gy, 1—b1) (By definition of 7,.)
y€{1}x[n]*:
max{i:X14i=y1-i}=j
_1(Sx,0)<p(Sy v)
7”v(gx,bl »Jy,1—bq )>0
= Z 7(Gx,b1+ Gy, 1—by) * L gy, (0)20y.1 -0, (0)} (By definition of r,.)
ye{1l}x[n]":
max{i:x1 5i=y1i}=j
NM(Sfo)SM(Sny)
Tv(gx,bl agy,l—b1)>0

= Z T(gx,bugy,l—ln) . (168)

ye{1}x[n]":
max{i:x14i=y1i}=j
1(Sx,0) Sp(Sy v)
Ix,bq (U)igy,l—bl (v)
T’U(gx,bl 7gy,17b1)>0

Consider an arbitrary y € {1} x [n]¥ meeting the properties from the last sum of Eq. (1.68):
N max{i FXysi = Y1ai} =]
o 1(Sx,v) < p(Sy,v)
* Ixbi (V) # gya-b (V)
© Tu(9xb1, Gy,1-b) >0

By Lemma 10, the inequality 7,(gxp,, gy,1-5,) > 0 implies that at least one of v € Tail(j, Sy)

or Xx =y holds. However, x cannot be equal to such y as j < L + 1 is the maximum index
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for which x;,; = y155. Thus v € Tail(j, Sy). We can continue to bound the sum from
Eq. (1.68) as follows:

Z T(gx7b1 ; gy,l—bl) < Z T(gx7b1 ) gy11_b1) . (169)
ye{1}x[n]": ye{l}x[n]":
max{i:x1i=y1-i}=j max{i:X15i=y1-i}=]
1(Sx,0) Sp(Sy v) v€Tail(j,Sy)
gx,bl (U)igy,l—bl (v)
T’U(gx,bl 7gy,17b1)>0

Combining Eq. (1.68) and Eq. (1.69), we get the inequality required by the lemma statement:

> To(Gxbrs Iy b) < > 7(Gx,b1s Iy,1-b1 ) -
ye{1}x[n]¥, bac{0,1}: ye{1}x[n]":
max{i:X15i=y15i}=]j max{i:x1 5i=y1i}=j

veTail(j,Sy)

Lemma 12. Let x € {1} x [n]f, v € [n], and j € [L]. Then
Hy € {1} x [n]* | max{i: x1i = y1i} =] and v € Tail(j,Sy)H < qulzy) I+ L.gontTt

I

recalling that q,(u) is the number of paths in the set P that start at vertexr u and contain v.

Proof. There are two ways v could be in Tail(j, Sy): either v € P%¥+ or v € P¥¥+ for

some j < i < L. We will now upper bound the number of y for each of these possibilities

separately.
(i) We count the number of sequences of vertices y = (yi,...,yr1) with
X15j = Y1 and v € PYY (1.70)

There are q,(2;) choices of vertices for y;.1 and n”~ choices for sequences (Yo, . .., Yr41).
] J+ J+2 ) +

Thus there are q,(z;) - n~J choices of y for which Eq. (1.70) holds.
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(ii) For each i with j < i < L, we count the number of sequences of vertices y =

(yh Ce 7yL+1) with
X15j = Yi1oj and v € PY¥Yi+t (]_7]_)

There are n*7~! tuples of the form (yji1,.-.,%i-1, Yi+2, - --,Yr+1), as these vertices can
be chosen arbitrarily. Since there are at most g paths in P that contain v, the number

L—j—1

of choices for the pair (y;, y;+1) is at most g as well. Thus there are g - n choices

of y for which Eq. (1.71) holds.

There are at most L — j < L possible locations for i when j < i < L. So, there
are at most L - g - n“37! choices for y such that Eq. (1.71) holds with some index
ie{j+1,...,L}.

Combining the analysis from (i)-(ii), we get that:
Hy e {1} x[n)l |max{i:x; i =yisi}=jandv e Tail(j,Sy)H < qulzy) -+ Log-ntT7h
This completes the proof of the lemma. n

Lemma 13. Let j € [L] and x € {1} x [n]* be an arbitrary good sequence of vertices. Then

L+1

=mn—-j—1) [[ (n—i+1).

i=j+2

‘y € {1} x [n]* | y is good and j = max{i: X1 = y1i}
Proof. Let y = (y1,...,yr+1) € [n]E™ be such that z; =y, = 1, j = max{i : x;; = y1.i},
and y is good. Recall that for y to be good, each element in (yi,...,yr+1) has to be distinct.

We will count by choosing each vertex of y in order from y; to y;.1. There is only one choice

for each of yy,...,y; since we need x1,; = y15;.

Consider the number of possible vertices for y;,::
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e j vertices already appeared in {yi,...,¥;} so they cannot be reused, otherwise y becomes

bad.
e j=max{i:X;; = Y1} means Tj.; 7 Yj+1, SO Tj41 cannot be reused either.
Thus, there are n — j — 1 choices of vertices for yj .

For all i > j+ 1, there are n — i+ 1 choices of vertices for y; since i — 1 options have already

been used. Thus the final count is (n —j — 1) [Z1,(n — i + 1), as required. O
Lemma 14. If Fy € X is good, then Y pcx7(F1, Fo) > o - (L4 1)-n*t.

Proof. Since F is good, there exists a good sequence x € {1} x [n]F and a bit b; € {0,1}

such that F} = gxp,. Then we have the following chain of identities:

Z T(FDF?) = Z 7“(9x,b17F2>

FreX FreX

= Z (G015 Gy bs) (By definition of the set X)
ye{1}x[n]E, bae{0,1}

= Z 7(Gx,b1s Gy, 1-b1) (Since 7(gx,b,» Gy.pr ) = 0)
ye{1}x[n]"
L+1

= Z Z T(gx,blagy,lfbl) . (172)
=1 ye{1}x[n]*

j=max{ix1i=y1-i}

Since 7(gxpy s gy,1-6,) = 0 if ¥ is bad, we have

L+1 L+1
Z Z r(gx,bl ) gy,l—bl) = Z r(gx,ln ) gy,l—ln) . (173)
=1 ye{1}x[n]": =1 ye{1}x[n]":

j=max{i:x14i=y1-i j=max{ix15i=y1-i

y is good

Combining Eq. (1.72) and Eq. (1.73), the last sum in Eq. (1.73) can be written as:

L+1
Z T(gx,bla FQ) - Z T(gx,bl Y gy,l—b1) N (]‘74)
Foex =L ye(tyxnlt
j=max{i:x15i=y1-i
y is good
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Substituting the definition of r in Eq. (1.74), we get

L+1 )
Y. 7Gx o) = > n. (1.75)
Fex =1 ye{1ixn)t:
j=max{ix14i=y1-i
y is good

From here, we only need to count the number of such y. There is exactly one good sequence

y € {1} x [n]¥ such that x; ;1 = y1741, namely y = x. Therefore,

L+1
> (g, Fo) = > n (By Eq. (1.75))
Rex =t ye{1}x[n)":
max{i:X14i=y1-i}=j
y is good

L
L+1 j
R D M
=1 ye{iix[n]k:
max{i:x14i=y1-i}=j

y is good
(Can pull out n’*+1 since there is only one possibility of X141 = Y141 when x =vy)
L L41
="+l f(n—j-1)- J[[ (n—i+1) (By Lemma 13)
=1 =542
L
>nftt 43 (n— L—1)H! (Since j € [L])
j=1
L 1 L+1
n
1 L+1
> (L+1)-nt. (1 - L—|—1> (Since L+ 1 < y/n)
1
> % (L+1)-nttt, (Since n > 4,s0 L+ 1> 2)
e
Since I} = gy4,, this is the required inequality, which completes the proof. O
;01

1.11.4 Corollaries for expanders

Given the lower bound based on congestion, we can now state an implication for expanders.
For this we rely on the next corollary of a result from [19], which shows that d-regular

expanders have systems of paths with low vertex congestion when the degree d is constant.
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Lemma 15. Let G = ([n|,E) be a d-regular [-expander, where d and [ are constant.
Consider the collection of all n* ordered pairs of vertices {(ay,b1), ..., (an2,bp2)}, including
each vertex with itself. Then there exists a set P of n?® paths {P, ..., P}, such that each

path P, connects a; to b; and the congestion on each vertex of G is O (nlnn).

Proof. We invoke Theorem 1.8.1 with parameters K = n?, a(n) = nlnn, and s = 2n to get
a set of K paths P ={Py,..., Px}. Since a(n) > 1/2, we get that the edge congestion g of

P is at most:

g€ O0(s+a+Inlnn)=0(nlnn).

To convert from edge congestion to vertex congestion, consider the vertex v with the highest
vertex congestion with respect to P. The vertex congestion at v is no more than the sum of
the edge congestions on each of the edges incident to v. Because G is d-regular, this means

the vertex congestion at v is at most d - g. Since d is constant, the vertex congestion is

O(nlnn). O

Using this corollary, we get the following result for local search on expanders.

Corollary 1. Let G = (V, E) be an undirected d-regular (-expander with n vertices, where d

and B are constant. Then the randomized query complexity of local search on G is €} <1£1)'

Proof. By Lemma 15, the graph GG has an all-pairs set of paths P with vertex congestion

g € O (nlnn). By Theorem 1.3.2, the randomized query complexity of local search on G is

Q(yv/n/lnn). O

By alternatively using a prior result from [48], we get a result in terms of the expansion and

maximum degree for any graph.

Lemma 16. Let G be an undirected [-expander with maximum degree A. Then G has vertex

congestion g € O(nln*(n) - %)
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Proof. Decompose the clique on n vertices into n partial matchings My, M, ..., M,. Invoke
Theorem 1.8.2 on each partial matching M; to get a set P, of [Inn| paths from u to v for

every pair of vertices {u,v} € M;. Let P be an arbitrary path from P, ,, for every i € [n?].

By Theorem 1.8.2, the edge congestion for each partial matching is at most O(In*(n)/f3).
Therefore the edge congestion of the union of the results of invoking Theorem 1.8.2 is at most

O(n -1n*(n)/B). Since P contains only one path from each P, ,, it also has edge congestion

at most O(n - In?(n)/pB).

To convert from edge congestion to vertex congestion, consider the vertex v with the highest
vertex congestion with respect to P. The vertex congestion at v is no more than the sum of

the edge congestions on each of the edges incident to v. Because the maximum degree is A,

this means the vertex congestion at v is at most O(n In*(n) - %), so the vertex congestion of
2 A
O(nln®(n) - 3). O

Using this congestion result, we get a corollary for expansion and maximum degree.

Corollary 2. Let G = (V, E) be an undirected [3-expander with n vertices and mazimum

degree A. Then the randomized query complexity of local search on G is §2 (Aﬂlggn).

Proof. By Lemma 16, G has an all-pairs set of paths P with vertex congestion g € O (n -In*(n) - A/ ﬁ).

By Theorem 1.3.2, the randomized query complexity of local search on G is €2 ( Aﬁlggn). O]

1.11.5 Corollary for Cayley graphs

We also get a corollary for undirected Cayley graphs thanks to a construction by [16], which
has vertex congestion of at most (d + 1) - n. This improves the result of [16] for randomized

algorithms by a Inn factor.

Lemma 17. Let G = (V, E) be an undirected Cayley graph with n vertices and diameter

diam(G). Then there exists an all-pairs set of paths P = {P“"} such that each path

u,veV’

P" connects u to v and the congestion on each vertex of G is at most (diam(G) + 1) - n.
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Proof. Let 1 € V be the group identity of G. For each v € V, fix P% to be an arbitrary
shortest path from 1 to v. Then for each pair u,v € V with v # 1, let P“¥ = u- P%* where

1 1

w=u"" -v. By construction, P“" starts at u-1 =wu and ends at u-u=" - v = v.

For each w € V, let P, = {P*" :u~! - v =w}. For all w,x € V, exactly |PY%| paths in P,
contain x: one has x in the first position, one has x in the second position, etc. Therefore P,
has the same vertex congestion at every vertex. Then since P is the disjoint union U, cy Puw,

we get that P has the same vertex congestion at every vertex.

Every path in P is a shortest path, and so has length at most diam(G)+1 vertices. Therefore
in total there are (diam(G)+1)-n? vertices in P, so the vertex congestion of P is (diam(G) +

1) - n since every vertex has the same congestion. O

Using this lemma we get the following result for local search on undirected Cayley graphs.

Corollary 3. Let G = (V, E) be an undirected Cayley graph with n vertices and diameter

diam(G). Then the randomized query complexity of local search on G is € (diaﬁa))'

Proof. By Lemma 17, the graph G has an all-pairs set of paths P that has vertex congestion
g < (diam(G) + 1) - n. By Theorem 1.3.2, the randomized query complexity of local search

on GG is Q (diaﬁG))' O

1.11.6 Corollary for the hypercube
Finally, we get a corollary for the {0, 1}" hypercube.

Corollary 4. The randomized query complexity of local search on the Boolean hypercube

{0,1}" is Q (%)

Proof. We first quantify the vertex congestion g of the Boolean hypercube, and then invoke

Theorem 1.3.2 to obtain a lower bound for local search.
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The number of vertices in the {0,1}" hypercube is N = 2". The vertices of the graph can
be viewed as bit strings of length n, with bit strings of Hamming distance 1 connected by an
edge. Fix an order on the bits. Then for every pair of vertices u, v, the path P™" is obtained

by iterating over the bits, toggling each bit that differs between u and v.

By symmetry of the construction, the system of paths P has equal congestion at every
vertex. Furthermore, the average length of a path in P is 1+ n/2. Thus the congestion of P
is N - (1+n/2). Since every path is a shortest path and the congestion is evenly distributed,
this is optimal and the congestion of the graph is g = N - (1 +n/2).

By Theorem 1.3.2, the randomized query complexity of local search on the hypercube is
Q(22). O

n

1.12 Lower bound for local search via separation number: proofs

In this section we include the proofs needed to show the lower bound of ((s JA)Y 4).

We start with the basic definitions. Then we state and prove the lower bound. Afterwards,

we show the helper lemmas used in the proof of the theorem.

1.12.1 Basic definitions for separation

Notation.

Recall we have a graph G = ([n], F) with separation number s and maximum degree A.
This means that every subset H C [n]| can be split in two parts, S and H \ S, each of size
at least |H|/4, such that at most s vertices in H \ S are adjacent to S.

Let ¢ € N be a parameter that we set later.

Given a sequence of k indices x = (z1,...,x)), we write X1; = (21,...,;) to refer to a

prefix of the sequence, for an index j € [k].
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Given a walk @ = (vy,...,v,) in G, let Q; refer to the i-th vertex in the walk (i.e. @Q; = v;).

For each vertex u € [n], let u(@,u) be the number of times that vertex u appears in Q.
Next we introduce the notion of inter-cluster paths from [17].

Definition 1.12.1 (Path Arrangement and Inter/Intra-Cluster Paths). A path arrangement
with parameter m for graph G = ([n], E) is a set of connected, disjoint subsets Ny, ..., N,, C
V' with the following property: for alli,j € [m|, there exist m paths Py(i,j), ..., Pn(i,]) such
that

o For each k € [m], the first vertex of Py(i,j) is in N;, the last vertex of Py(i,j) is in Nj,

and every other vertex of Py(i,j) is outside N; and Nj.

o For every pairi,j € [m], vertices in V' \ (N; U N;) are visited at most once collectively

by the paths Pi(i,j), ..., Pn(i,j).

Observation 1.12.1. Definition 1.12.1 differs slightly from the original construction of [17]
in that Definition 1.12.1 uses inter-cluster paths of the form Py(i,i); i.e. from a cluster to
itself. However, Py(i,1) may always be chosen as a degenerate single-vertex path in Nj, so

this deviation does not affect the value of m for any graph.
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(76) Let H be the grid of Figure 1.4. There exists a path arrangement for H with
parameter y/n since one can use the columns as the N; and the shortest path in each

row as the inter-cluster paths.

rT T T 7

Ny

I I I
I | |
| I I
I I I
I | |
I I I
1 T T
I I I
I | |
| I I
I | |
I I I
I | |
| I I
I I I
1 1 1
| I I
{ { {

_______________

Figure 1.4. Let H be the y/n x \/n graph with clusters Ny,..., N s, where
n = 9. The black edges represent intra-cluster paths while the blue edges
represent inter-cluster paths. Then, there exists a path arrangement for this
graph with parameter /n = 3.

Next we present without proof a lemma from [17], which relates the path arrangement

parameter to the separation number and maximum degree of the graph.

Lemma 18 ([17], Theorem 6). If an undirected graph G has mazimum degree A and

separation number s, then there exist a path arrangement on G with parameter at least

max{|y/s/2A],1}.

Path arrangement number m of the graph G.

Let m be the maximum number such that there exists a path arrangement on our graph G
with parameter m. Let Ny,..., N, be the corresponding clusters. An example of a set of

inter-cluster paths between INV; and N; from [17] is shown in Figure 1.5.

For all i € [m] and u,v € N, let Ei(u,v) be an arbitrary shortest path from u to v within
N;.
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N j II':,
/

N4 \

Figure 1.5. A set of inter-cluster paths between N; and Nj from [17].

Define first(P.(j,k)) and last(P(j, k)) as the first and last vertices in P;(j, k), respectively.
We have first(Pi(j,k)) € N; and last(P(j, k)) € Ni, by definition of B(j, k).

We will map a sequence of indices to walks starting from a fixed starting vertex v« € Ni.

Definition 1.12.2 (Staircase; separation version). For x = (x; = 1,29,...,29.41) € {1} X

[m)*, and i € [2¢], we define

Ey (vstart, first(Py,(1,x3)) ifi=1

Sxi =1 P, (i1, Tit1) ifiis even (1.77)

E.(last(Qu_, (im2, x1)), first(Py,, (i, Ti42))) ifi>1 is odd

Then for all sequences of indices x = (1,29, ..., Tor1) € {1} x[m]?*, the full walk Sy induced

by x is the concatenation Sx = Sx1 0 Sx 20 ...0 Sx k-

That is, we use the inter-cluster paths dictated by the even indices of x to travel between
clusters dictated by the odd indices of x, stitching the inter-cluster paths together using
shortest paths within the clusters. So Sx starts at vse.« € N, travels via Sx; and Sk to

a vertex in IV,,, and so on. Observe Sy is a well-defined walk since Sx; connects the last
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vertex of Sx;_; and first vertex of Sy for any odd i > 1. An illustrated example is given

next.

(78) Consider the graph in Figure 1.6. Suppose m = 3. For each i € {1,2,3}, let the i*"

Eévlzl P~T2=3(173> ECU3=3 PLE4=1(37 2)

Sasasa (O EN@-)

Within cluster N, —1 Within cluster Ny,—3

Figure 1.6. Graph on nine nodes, with connected cluster partitions N; =

{U0,017U2}7
Ny = {U37@4,U5}7 and N3 = {U67U77U8}-

path for each pair of clusters consist of vertices {v;_1, Vi_141m, Vi—1+2m }-

For example, P(2,3) = (v4,v1, v7) is the second path from Ny to N3 and
Py(1,3) = (v1, vy, v7) is the second path from N; to Nj.

Fix vgart = vo and let x = (x1, 2o, T3, 14, 75) = (1,1, 3,3,2). We have

P3(1,3) = (vg,v5,v8) and P;(3,2) = (vs, vo, v3). Thus

Sx = Sx,l o Sx,2 S SX,B o Sx,4

= By —1(vo,v2) 0 Ppy—3(1,3) 0 Eyy—3(vs, v6) © Pry=1(3,2)
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= (Uo, V1, U2) o (1)272)57?18) o (Us, U7, UG) o (U67U07 U3)

= (Uo,UhUz,U5,U87U77U6,Uo,U3)-

Definition 1.12.3 (Tail of a staircase; separation version). Let Sy = Sx1 0 ...0 Sxor be
a staircase induced by some sequence x = (1,2a,...,7911) € {1} x [m]*. For each odd
j€[2K], let T = Sxjo0...08x9,. Then Tail(j,S%) is obtained from T by removing the first
occurrence of the first vertex in T (and only the first occurrence). Let Tail(2k+ 1, Sx) be the

emptly sequence.
Observe Tail(j, Sx) is only defined for odd j since staircase Sy, _,; is only defined for odd j.
Next, we define the set of functions X that will be used when invoking Theorem 1.3.1.

Definition 1.12.4 (The functions fx and gyx;; the set X'; separation version). Given an
input graph G, let m be its path arrangement parameter and Ny, ..., N, be the clusters
with respect to Definition 1.12.1. For each sequence of indices x € {1} x [m]*, define

fx i [n] = {—n?* —n?®+1,...,n} such that for each v € [n]:

o Ifv ¢ Sy, then fyx(v) = dist(v, Vsart), where Sy is the staircase induced by x and the

cluster construction.

o Ifv e Sy, then fx(v) = —i, where i is the mazimum index such that v is the i-th vertex

in Sx.

Also, for each x € {1} x [m]** and b € {0,1}, let gxp : [n] = {—n?,...,0,...,n} x{-1,0,1}

be such that, for all v € [n]:

(fx(v),b) if v is the last vertex in Sx
gxp(V) =
(fx(v),—1) if v is not the last vertex in Sx .

Let X = {gxp | x € {1} x [m]** and b € {0,1}}.
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Definition 1.12.5 (The map H; separation version). Given an input graph G, let m be its
path arrangement parameter and Ny, ..., N,, be the clusters with respect to Definition 1.12.1.

Let X be the set of functions gxp from Definition 1.12.4. Define H : X — {0,1} as

H(gxp) =b  Vx € {1} x [m]* andb € {0,1}.

Definition 1.12.6 (Good/bad sequences of indices; Good/bad functions; separation ver-
sion). A sequence of k indices x = (1, ..., xy) is good if x; # x; for alli,j with1 <i<j<k;
otherwise, x is bad. For each b € {0,1}, a function F' = gy € X is good if X is good, and

bad otherwise.
Definition 1.12.7 (The function r; separation version). Let r : X x X — Rsq be defined

by, for all X, Y € {1} x [m]* and by, by € {0,1}, letting

0  if at least one of the following holds: by = by, x is bad, y is bad
T<gx7b1vgy7b2) = .
m)  otherwise, where j is the mazimum odd index for which Xi_,; = yi;

Note the specification that j be odd in the definition of r. Intuitively, this is because it takes
two indices to specify an additional portion of Sx: one for the destination cluster and one

for the inter-cluster path by which to reach it.

The function r will be used directly to invoke Theorem 1.3.1, but we also define here some

related helper functions to use r in conjunction with certain indicator variables.

Definition 1.12.8 (The function r,; separation version). For each v € [n], define r, :

X X X — R as follows:

7o (F1, Fo) = r(F1, Fo) - 1ip ()2 F(0)) VF, Fr € X
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Definition 1.12.9 (The function 7,; separation version). For each v € [n], define 7, :

X x X = Rs¢ as follows:

Fo(Gxbis Gy ba) = To(Gxbis Gyie) * Liu(sem<u(syny VX, y € {1} x [n]* Wby, by € {0,1}.

1.12.2 Proof of the separation number lower bound

Next we give the proof of Theorem 1.3.3. The proofs of lemmas used in the theorem are

included afterwards in Section 1.12.3.

Theorem 1.3.3. Let G = (V, E) be a connected undirected graph with n vertices, mazimum

degree A, and separation number s. Then the randomized query complexity of local search
on G is ) ({*/%)

Proof. Because we are proving an asymptotic bound in s/A, we may assume s/A > 162.
Applying Lemma 18 with the assumption that s/A > 162 gives m > 9, so ¢ > 1. Addition-
ally, we know A > 1 and s < n by definitions of A and s. Therefore n > s/A, so we may

also assume n > 9.
Consider the following setting of parameters:

(a) Let m be its path arrangement parameter and Ny, ..., N, be the clusters with respect

to Definition 1.12.1.
(b) Let ¢ = |\/m/2 — 1/2] and each staircase has 2¢ quasisegments.
(c) The finite set A is the set of vertices [n].
(d) The finite set B is {—n? ..., n} x {-1,0,1}.

(e) The set of functions fx, gxp» and the set X as defined in Definition 1.12.4. Recall
gxp = (fx,c) for all v € [n], where ¢ = —1 if v is not the last vertex of the induced

staircase Sy, and ¢ = b if v is (i.e. ¢ = b if and only if v is a local minimum of fy). Also

recall X = {gxp | x € {1} x [m]* and b € {0,1}}.
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(f) Map H : X — {0,1} as in Definition 1.12.5. Recall H(gxp) = b for all x € {1} x [m]*
and b € {0,1}.

(g) The function r as defined in Definition 1.12.7.

By Lemma 19, each function fy is valid for all x € {1} X [m]?*, so Lemma 6 implies that each
function fx has a unique local minimum (at the last vertex of Sy). Therefore by Lemma 2
invoked with f = fx and h, = gx;, it suffices to show a lower bound for the corresponding

decision problem: return the hidden bit b € {0, 1} given oracle access to the function gx .

For each Z C X, let

=3 3 (R, R). (1.79)

F1eZ FroeX

Since by assumption n > 9, we may invoke Lemma 20 to get a subset Z C X with ¢(Z) > 0.
Thus the conditions required by Theorem 1.3.1 are met. By invoking Theorem 1.3.1 with the
parameters in (a-g), we get that the randomized query complexity of the decision problem,

and thus also of local search on G, is

M(Z)
Q min ——= |, where = max r(F1, Fy) - Lip o ) -
(ng:q(zbo q(2) > a(2 v€[n] Flze:Z FQXE:Z L 2) " H{Fi(v)#F2(v)}

To get an explicit lower bound in terms of congestion, we will upper bound ¢(Z) and lower

bound M(Z) for subsets Z2 C X with ¢(Z) > 0.

Fix an arbitrary subset Z C X with ¢(Z) > 0. Since r(Fy, F3) = 0 when F or F; is bad, it
suffices to consider subsets Z C X where each function F' € Z is good.

Upper bounding ¢(Z2).

Let v € [n] be arbitrary.

Fix an arbitrary good function F} = gx;, € Z for some good x € {1} x [m]* and b; € {0,1}.
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Since Z C X and 7, > 0, we have

Z Fv(F17F2> S Z ﬁ;(FbFZ)- (18())
ez FreX
Using the definition of X = {gys, | y € {1} X [m]*, by € {0,1}}, the fact that Fy = gxu,,
and partitioning the space of functions F;, € X by the length of the prefix that the staircase
corresponding to F, shares with the staircase corresponding to £}, we can upper bound the

right hand of Eq. (1.80):

Z 7A/:U(-Fjly FQ) - Z ?:U (gx,bl ) gy,b2>
FreXx ye{1}x[m]?¢, ba€{0,1}
2c+1

S Z Z 77’!) (gx,bl ) gy,bg) . (]‘81)
j=1 ye{1}x[m]?°, boe{0,1}
j=max{i:iis odd,x15i=y1-i}

Combining Eq. (1.80) and Eq. (1.81), we get

Z TU F1> F2 < Z Z fF’U (gx,bl ) gy,bg) . (182)
ez =1 ye{1}x[m]?¢, b2€{0,1}
j=max{i:iis odd,x15i=y1-i}

For each j € [2¢ + 1], let
T, = Hy € {1} x [m]* | max{i:iis odd,x; i =y} =jand v € Tail(j,Sy)H :

Then for each odd j € [2¢ + 1] such that v ¢ N,,, we can bound the part of the sum in

FEq. (1.82) corresponding to index j via the next chain of inequalities:

Z Ty (gx,ln ) QY7b2)

ye{1} x[m]?¢, bac{0,1}:
j=max{i:iis odd,x1i=y15i
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< > 7(Gx,b1> Gy,1-b1) (By Lemma 22 )

y€{1} x[m]?:
j=max{i: x15i=y15i
veTail(j,Sy)

<ml. |TJ| (Since 7(gx.py s Gy1-b,) < m) when j = max{i:iis odd,x; i = yi.i})
<m- ((20 +1)- m2C*J’) (By Lemma 23)
= (2c+1)-m* (1.83)

Meanwhile, since x is good, there is at most one odd j such that v € N,,. For that index j,

since 7y (gx.by » Gy,b,) > 0 implies by = 1 — by (see observation 1.11.1), we have

> Fol Gt Gysn) <m0 [{y € {1} x [m]* | 3155 = y1}]
ye{1}x[m]3¢, boc{0,1}:
j=max{i:iis odd,x15i=y1-i}

— mJ . m26+1*j — m2C+1 . (184)

Summing Eq. (1.83) to Eq. (1.84), we can now upper bound the right hand side of Eq. (1.82)

as follows:
Jr
> T(FL Fy) < Z > To(Gxbr» Gy bs) (By Eq. (1.82))
FreZz =1 ye{l}x[’m]QC7 bQE{O,l}
j=max{i:iis odd,x15i=y1-i}
<(c+1)-(2c+1)-m?* +m>tt (By Eq. (1.83) and Eq. (1.84))
<3.m*th (Since ¢ < /m — 1)

Thus, for each good function F} € Z, we have

> T (Fr, Fy) <3-mPth. (1.85)

FoeZ
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Summing Eq. (1.85) over all F} € Z (each of which is good, since Z was chosen to have good

functions only), and invoking Lemma 9 yields

Z TU(Fl,FQ) S 2. Z ﬁ)(Fl,FQ) (P)\ Lemma 9)
F1,FoeZ F1,FoeZ

<2-3-m**! (By Eq. (1.85))

= 2] 6m>t! (1.86)

Since we had considered an arbitrary vertex v € [n], taking the maximum over all v € [n] in
Eq. (1.86) yields
¢(Z) =max > > r(F,F) <|Z] 6m* . (1.87)

velnl p ez prez

Lower bounding M (Z).

Each function F; € Z is good by choice of Z. Additionally, since ¢ > 1, Lemma 25 yields

1
Soor(FLF) > — - (c+1)-m*™ VR € Z. (1.88)

FreX 2

Using Eq. (1.88) and recalling the definition of M (Z) from Eq. (1.79), we get

=2 > (i h)

F1eZ FoeX

Zz
> |26| (c+1) - m*>th, (1.89)

Combining the bounds.

Combining the bounds from Eq. (1.87) and Eq. (1.89), we can now estimate the bound from
Theorem 1.3.1:

M(Z |Z| ¢ + 1)m2etl
2rznclz{/l q((Z)> > 2 ]Z(| 6m)20+1 (By Eq. (1.87) and Eq. (1.89))
q(2)>0
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> 1 (Since ¢+ 1 > y/m/2)
e
1 g\ 1/4
> %G (A) (By Lemma 18)

This completes the proof of the theorem. n

1.12.3 Helper lemmas

Here we prove the helper lemmas that are used in the proof of Theorem 1.3.3. All the lemmas

assume the setup of the parameters from Theorem 1.3.3.

Lemma 19. For each x € {1} x [m]*, the function fy is valid for the staircase Sy induced

by x and the cluster paths.

Proof. Let Sx = (wy, ..., ws) be the vertices of the staircase Sy induced by x and P. We show
that all the three conditions required by the definition of a valid function (Definition 1.10.1)
hold.

To show the first condition of validity, consider two vertices vi,vo € Sx. Let i; be the
maximum index such that vy is the i;-th vertex in Sy. Let iy be defined similarly for v,. By
Definition 1.11.3, we have fx(v1) = —i; < 0 and fx(v;) = —iy < 0. Furthermore, if i} < i,

then fx(v1) > fx(v2). Therefore the first condition of validity is satisfied.
Also by Definition 1.11.3, of the function f,, we have that:
o By definition, Sy starts at vger € Ny

o fx(v) = dist(v,vgar) > 0 for all v ¢ Sy, so the second condition of validity is satisfied.
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e fx(v) <0 for all v € S, so the third condition of validity is satisfied.

Therefore fy is valid for the staircase Sy induced by x and P. O

Lemma 20. Ifn > 9, then the next two properties hold:
o Let Fi,Fy € X. Then r(Fy, Fy) =0 when H(Fy) = H(F,).

e There exists a subset Z C X such that

= max Z Z Fl,F2 ]1{F1(v)7éF2(v)} >0.
vell pez ez

Proof. We first show that r(Fy, Fy) = 0 when H(F,) = H(F»). To see this, suppose H(F}) =
H(F,) for some functions Fi, Fy € X. Then by definition of the set of functions X', there
exist sequences of vertices x,y € {1} x [m]*® and bits by, by € {0,1} such that F} = g,
and Fy = gyyp,. By definition of H, we have H(gxp,) = b1 and H(gyp,) = be. Since
H(Fy) = H(F), we have by = by. Then 7(gxp,, gy.p,) = 0 by definition of r, or equivalently,
r(Fy, Fy) = 0.

Next we show there is a subset Z C X with ¢(Z) > 0. To see this, consider two disjoint sets
of vertices Uy, Uy C [m] such that Uy = {ug, ..., uy., }, Us = {u3, ..., u5. .}, each vertex ]

appears exactly once in U;, and uj # 1 for all i,j. Such sets Uy, U, exist since m < n and
Ui+ |Us| + {1} =dc+1=4(vVm] - 1) +1<4y/n—-3<n for n > 9.

Form the sequences of vertices x = (1,u3,...,u3,,,) and y = (1,u3,...,u3.,,). Then both
x and y are good. Consider now the functions gxo and gy;. By definition of r, we have
7(gx,0, gy, 1) = n, since the maximum index j for which x;_,; = y;; is j = 1. Let v be the

last vertex of Syx. Then

Q({gx,Oagy,l}) > 7"(gx,Oagy,l) : ]l{gx,o(uécﬂ)?égy,l(“%C.H)} =n>0.

Thus there exists a subset Z C X with ¢(Z) > 0 as required. [
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Lemma 21. Let x,y € {1} x [m]*, b1,by € {0,1}, v € [n]. Letj € [2c+ 1] be the mazimum
odd index for which x;_; = y1-5. Then if Ty(gxpys Gyp,) > 0, then at least one of the next

two properties holds:
(1) v € Tail(j, Sy).
(ii) x =y.
Proof. We start with a few observations.

Recall from Definition 1.12.9 that 7, (gx5,5 9y5:) = To(9xb1> Gybe) * Liu(Sxv)<u(sy)}- BY the

lemma statement, we have 7,(gxp,, gy.p,) > 0, and so the next two inequalities hold:

To(Gx,b1> Gy by) > 0 (1.90)

11(Sx, v) < pu(Sy,v) . (1.91)

Also recall by definition of r, that 7,(gxp,9yp2) = 7(9xb1> Gyb) * Liges, (0)#0y s, ()} - Lhen
Eq. (1.90) implies that

Ix (V) # Gy by (V) - (1.92)

To prove that v € T'ail(j, Sy) or x =y we consider two cases:

Case 1: v € Tail(j, Sx).

Decomposing the staircase Sy into the initial segment S, . and the remainder Tail(j, Sx),
and similarly the staircase Sy into initial segment Sy, ; and the remainder T'ail(j, Sy), we

get:

(5%, v) < p(Sy,v) (By Eq. (1.91))

= 1Sy v) + u(Tail(5, 5. 0) < (S, ) + p(Tail(), Sy). v)
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< p(Tail(j, Sx),v) < p(Tail(j, Sy),v) (Since X1 = y15.)

But since v € Tail(j, Sx), we have u(Tail(j, Sx),v) > 1, so

1 < p(Tail(j, Sy),v)

Thus v € Tail(j, Sy), so property (i) from the lemma statement holds. This completes Case
1.

Case 2: v ¢ Tail(j, Sx)-
If x =y, then property (ii) from the lemma statement holds.
Now suppose x # y. Then Tail(j, Sy) # 0. We claim v € Sx U Sy.

Suppose towards a contradiction that v ¢ SxUS,. For each b € {0,1}, u € [n], and sequence
z=(1,22,23...,2041) € {1} x [m]*, we have by Eq. (1.45) (which defines the function g,)
that

(fz(u),b) u is the last vertex of S,
9an(u) = (1.93)
(fz(u),—1) otherwise

Since v & Tail(j, Sx), v is not the last vertex of Sy, and so gxp, (v) = (fx(v),—1). Moreover,
since 1 = y1 = 1 and v € Sx U Sy, we have fx(v) = dist(v,z1) = dist(v,y1) = fy(v).
Combining these observations yields gxp, (v) = (fx(v), —1) = (fy(v), —1) = gy.p,(v), which
contradicts Eq. (1.92). Thus the assumption must have been false and v € Sx U Sy.

To summarize, we have X;,; = y1j, X #y, v € Sx U Sy, and v ¢ Tail(j, Sx). Suppose
towards a contradiction that v & Tail(j, Sy). Then

Gxpr (V) = (fx(v),—1) (Since v # x 41, as v € Tail(j, Sx).)
= (fy(v), —1) (Since v ¢ T'ail(j, Sx) and v & Tail(j, Sy).)
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= Gy b, (V), (Since v # yr11, as v & Tail(j, Sy).)

which contradicts Eq. (1.92). Thus the assumption must have been false and v € Tail(j, Sy ),

so property (i) from the lemma statement holds.

We conclude that at least one of properties (i) and (ii) holds. This completes Case 2, as well

as the proof of the lemma. O

Lemma 22. For each x € {1} x [m]*, by € {0,1}, odd j € [2¢c + 1], and v € [n] such that
v & Ny, we have

Z Ty (gx:bl ) gy,b2> < Z T(gxybl ) gy,l*fn) .
ye{1}x[m]?¢, b2€{0,1}: ye{1}x[m]?:
max{i:i is odd,x1—i=y1-i }=j max{i:i is odd,x1i=y1i}=]j

veTail(j,Sy)

Proof. Let x € {1} x [m]*, by € {0,1}, odd j € [2c + 1], and v € [n] such that v ¢ N,,.

Using the definitions of r, r,, and 7,, we have the following chain of identities:

Z Ty (gX,blvgy,bQ) = Z Ty (gx,ln ) gy,b2)
ye{1}x[m]?¢, b2€{0,1}: ye{1}x[m]?¢, b2€{0,1}:
max{ii is odd,x1-i=y1-i}=] max{i:i is odd,x15i=y1-i}=j

o (gx,bl 29y ,bo )>0

(Since 7, is non-negative.)

= Z Ty (gx,bugy,l—ln) (Since 7 (gx,b; » Gyby) = 0.)
ye{1}x[m]?:
max{i:i is odd,x15i=y1-i }=j
Ty (gx,bl »Jy,1—bq )>0

= Z To(9x.b1> Gy, 1—b1 ) (By definition of 7,.)
ye{1}x[m]*:
max{i:i is odd,x15i=y1-i }=j
M(vav)SM(SY7v)
;v(gx,bl 1Jy,1—b7)>0

- Z r(gxfbl’ gy»lfbl) ’ ]l{gx,bl (U)#gy,lfbl (U)}
y€{1}x[m]?:
max{i:i is odd,x15i=y1-i}=j
() <n(Sy )
Ty (gx,b1 9y, 1—bq )>0

(By definition of r,.)
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= > 7(Gxoy» Gy 1—by ) (1.94)
ye{1}x[m]?e:
max{i:i is odd,x15i=y1-i }=j
IU‘(SX »U)Sﬂ(sy »/U)
9x.by (v)#gy,1-b; (V)
Tv(9x,b1,9y,1—by )>0

Consider an arbitrary y € {1} x [m]** meeting the properties from the last sum of Eq. (1.94):
e max{i:iisodd,x; i =yi15i} =]
o 1(Sx,v) < plSy,v)
* Ixbi (V) # Gya-b (V)
© To(9xb1 Gy, 1-b) >0

By Lemma 21, the inequality 7,(gxp,, gy,1-5,) > 0 implies that at least one of v € Tail(j, Sy)
or x =y holds.

However, x cannot be equal to such y. To see this, suppose for sake of contradiction that

x =y. Then since gxp, (v) # gy.1-5, (v) we would have that v must be the last vertex of Sy.

Therefore v € N,

yoer1- Also, we would have j = 2¢ + 1 since x = y. But then v € Nj, which

is a contradiction with the assumption v ¢ N;. Therefore x # y, and so v € Tail(j, Sy).

We can continue to bound the sum from Eq. (1.94) as follows:

> 7 (Gxbrs Gy1-b1) < > (Gxbrs Gya-b) - (1.95)
ye{1}x[m]*: ye{1}x[m]*:
max{i:i is odd,x15i=y1-i}=] max{i:i is odd,x15i=y15i}=j
1(Sx,0) Sp(Sy ,v) veTail(j,Sy)

9x,bq (v)7égy,17b1 (U)
Ty (gx,bl »9y,1—bq )>0

Combining Eq. (1.94) and Eq. (1.95), we get the inequality required by the lemma statement:

> To(Gxbr s Gy bs) < > (Gxb1» Gy 1-by ) -

ye{1}x[m]3¢, boc{0,1}: ye{l1}x[m]?:
max{ii is odd,x1-i=y1-i}=] max{i:i is odd,x15i=y15i }=]j
veTail(j,Sy)
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Lemma 23. Let x € {1} x [m]|*, odd j € [2c + 1], and v € [n] such that v ¢ N,,. Then

Hy € {1} x [m]* | max{i: i is odd,x1_; = y1i} =] and v € Tail(j,Sy)H < (2c+1)-m*.

Proof. We will now do case analysis on different conditions on i and j.

(i)

For odd i € [2¢] with i > j, consider the number of y € {1} x [m]* such that
X1 = Y1j and v € Sy,i . (196)

Since i is odd, Sy; is a path within a cluster, and thus can only contain v if N, is
the one cluster containing v. If i = j, then we know by assumption that N, does not
contain v. Otherwise, there is only one choice for y; while there are m choices for each
of the rest of yi11, Yi+a, - - -, Y2er1. Thus, there are at most m?*~J choices of y for which

Eq. (1.96) holds.

For even i € [2¢] with i > j, consider the number of y € {1} x [m]? such that

X1 = Y15,V € Sy, and v € Sy, for all odd £ > j and v is not the last vertex of Sy .

(1.97)
Since i is even, Sy ; is an inter-cluster path. Recall the m inter-cluster paths between
any two clusters are disjoint except for their start and endpoints. Meanwhile v cannot
be their start or endpoints since otherwise v € Sy ; for an odd k > j or v would be the
last vertex of Sy. Therefore, Sy ; can only contain v for at most one value of y; while
there are m choices for each of the rest of yji1, Yj12, .., Y2ct1. Thus, there are at most

m?“ choices of y for which Eq. (1.97) holds.

(iii) Finally, consider the number of y € {1} x [m]* such that

X15j = Y1 and v is the last vertex of Sy . (1.98)
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This cannot occur unless v € N, Therefore, there are at most m?¢J such y.

Y2c+1"

For v to be in Tail(j, Sy), we must have y satisfying one of Eq. (1.96), Eq. (1.97), or

Eq. (1.98) for some value of i. Summing over choices of i gives us that

Hy € {1} x [m]* | j =max{i : iisodd, x;,; =y1,i} and v € Tail(j,Sy)H

< (2c+1)-m*,

This completes the proof of the lemma. ]

Lemma 24. Let j € [2¢] and x € {1} x [m]*® be an arbitrary good sequence of indices. Then

2c+1

= (m—j—1)- [] (m—i+1).

i=j+2

‘y € {1} x [m]* | y is good and j = max{i : i is odd, X1 ;i = y1i}

Proof. Lety = (y1,. .., y2er1) € [m]*** besuch that z; =y = 1, j = max{i:iis odd,x; ,; =
Yi.i}, and y is good.. Recall that for y to be good, each index in (y1,...,¥y2.+1) has to be

distinct.

We will count by choosing each index of y in order from y; to ys.1. There is only one choice

for each of yi,...,y; since we need x1_,; = y15;.
Consider the number of possible indices for yj:

e j indices already appeared in {yi,...,y;} so they cannot be reused, otherwise y becomes

bad.
e j=max{i:iis odd,x;; = y1;} means xj11 7 Yj11, SO Tj41 cannot be used either.
Thus, there are m —j — 1 choices of indices for ;1.

For all i > j+ 1, there are m — i+ 1 choices of indices for y; since i — 1 options have already

been used. Thus the final count is (m —j — 1) - [IH, (m — i+ 1), as required. O
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Lemma 25. If Fy € X is good and ¢ > 1, then Y p,ex7(F1, Fo) > 5 - (c+ 1) - m?tt,

Proof. Since Fy € X, there exists a sequence x € {1} x [m]** and a bit b; € {0,1} such that

Fi = gxp,. Then we have the following chain of identities:

dor(FL )= ) r(gxp Fa)

FreX FoeX

= Z 7(Gx.b15 Gy bs) (By definition of the set X)
ye{1}x[m]3¢, b2€{0,1}

= Z 7(Gxbrs Gy 1-b;) (Since 7(gx.p, s Gy.py) = 0)
y€{1}x[m]*
2c+1

= Z Z r(gX,b17gy,1—b1) . (199)
i=1 y€{1}x[m]*

j=max{i:iis odd,x15i=y1-5i
Since 7(gxpy 5 gy, 1-b,) = 0 if y is bad, we have

2c+1 2c+1

Z Z T<gx7b1 ) gy71*b1) = Z Z r(gx,blagy,lfbl) .
J=1 ye{1} x[m]?e: j=1 ye{1}x[m]3c:
j=max{i:iis odd,x15i=y15i} j=max{i:iis odd,x15i=y1-i}

y is good

(1.100)

Combining Eq. (1.99) and Eq. (1.100), the last sum in Eq. (1.100) can be written as:

2¢c+1
Yo r(gebn F2) = Y 3 T (Gxbys Gy 1ty - (1.101)
Fex =1 ye{1}x[m]?e:
j=max{i:iis odd,x15i=y15i}

y is good

Substituting the definition of r in Eq. (1.101), we get

2c+1
> r(gwp, F2) =Y 3 m . (1.102)
FoeX =1 yE{l}X[m]ZC:
j=max{i:iis odd,x15i=y1-i}

y is good
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From here, we only need to count the number of such y. There is exactly one good sequence

y € {1} x [m]* such that x; 9,11 = y1_s2c11, namely y = x. Therefore,

+
> r(gxs Fo) = Z > m’ (By Eq. (1.102))
Fex j=1 ye{l}x[m]?:
max{i tiis 0dd7xlﬁ)i:ylﬁ>i}:j
y is good

2c
— et 4 Z Z m
j=1 ye{1}x[m]3e:

max{i:iis odd,X15i=y15i}=]j
y is good

2c 2c+1
m2etl +Zmi - Lyj is odd} - (m—j—1)- H (m—1i+1) (By Lemma 24)
i=1 i=j+2

2 1 2c+1

> (c+ 1) - m*+!. (1_ c+ )
m
1

2c+1
) (Since 2¢ + 1 < y/m.)

1 ; .
> — 5 ~(c+1)-m**t  (Since 2c + 1 > 3, which is more than sufficient. )
e

> 1). 2c+1'<1_
>(c+1)-m o1

Since F} = gxp,, this is the required inequality, which completes the proof. O
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2. SPECTRAL LOWER BOUNDS FOR LOCAL SEARCH

This chapter is based on my paper of the same name, which can be found at https://arxiv.
org/abs/2403.06248.

2.1 Introduction

Local search stands as a robust heuristic within optimization and computer science, analyzed
through both white box and black box frameworks. In the black box model, we are given
a graph G = (V, E) alongside oracle access to a function f : V' — R. The objective is to
identify a vertex v that represents a local minimum, meaning f(v) < f(u) for every edge

(u,v), while minimizing the number of vertices queried.

Obtaining lower bounds for the complexity of local search has a rich history of analysis
via random walks. The first pioneering work on the subject was [9], which did careful
tailored analysis of the hitting time of random walks on the Boolean hypercube to obtain
lower bounds for local search. Another breakthrough was obtained by [3], which designed a
combinatorial method of obtaining lower bounds for local search inspired by the relational
adversary method from quantum computing. This approach enabled obtaining sharper lower
bounds for the Boolean hypercube and d-dimensional grid, and was successfully used in many

later works.

In this paper we consider the high level question: How does the geometry of the graph affect
the complexity of local search? While the query complexity is comprehensively understood
for neighbourhood structures such as the d-dimensional grid and the Boolean hypercube,

knowledge remains limited for more general neighbourhood structures.

Nevertheless, the spatial structure in optimization settings typically extends to more complex
graphs. For instance, in scenarios such as low rank matrix estimation with data compromised
by adversarial attacks, the function is defined on a Riemannian manifold rather than a
traditional Euclidean space [11]; thus the discretization of an optimization search space may

not necessarily always correspond to some d-dimensional grid. For a more extensive survey on
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stochastic gradient descent on Riemannian manifolds, see, e.g., [12]. This motivates studying

local search not only on hypercubes and grids, but also on broader classes of graphs.

Inspired by the observation that many lower bounds for local search are based on various
types of random walks, we consider general random walks for the graph at hand and obtain
lower bounds as a function of their mixing time. Our analysis uses a variant of the classical
relational adversary method from [5] and our main result is generic in two ways: the graph is
arbitrary and the random walk evolves according to a Markov chain, which we only require to
be lazy, irreducible, and reversible. This allows us to formally connect the query complexity
of local search and the mixing time of the fastest mixing Markov chain for the given graph,
which is a classical problem analyzed starting with [50], with recent results in [51]. As a
corollary, we also get a lower bound in terms of the spectral gap of the transition matrix of

the chain.

2.2 Model

Let G = (V, E) be a connected undirected graph and f : V' — R a function defined on the

vertices. A vertex v € V' is a local minimum if f(v) < f(u) for all {u,v} € E. We will write

Given as input a graph G and oracle access to function f, the local search problem is to
find a local minimum of f on G using as few queries as possible. Each query is of the form:

“Given a vertex v, what is f(v)?".

Query complexity.

The deterministic query complexity of a task is the total number of queries necessary and
sufficient for a correct deterministic algorithm to find a solution. The randomized query
complexity is the expected number of queries required to find a solution with probability at

least 9/10 for each input, where the expectation is taken over the coin tosses of the protocol.
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Degree and distance.

Let d,,.: and d,,;, be the maximum and minimum degree of any vertex in G respectively.
Let d(v) be the degree of v for all v € V. For each u,v € V, let dist(u,v) be the length of

the shortest path from u to v.

Markov chain.

We consider a discrete-time Markov chain on G with transition matrix P, meaning that the
state space is V' and P,, = Py = 0 whenever (u,v) € E(G)Uyev{{u,u}}. Suppose the

chain has stationary distribution . The chain is:
o lazy: it Py, >1/2forallueV.

e irreducible: if all states can be reached from any starting point. Formally, for any two
states x,y € V there exists an integer ¢ (possibly depending on x and y) such that
(P")zy > 0, where P* is the t-th power of the matrix P.

o reversible: if W(u)Py, = T(v)P,,, for all u,v € V. 1

For each € > 0, the mizing time t,i,(€) of the Markov chain? with transition matrix P is:

tmiz(€) = min {t eN ' YueV: ; Z’(Pt)u,v - TC(U)‘ < e} : (2.1)

veV

2.3 Our results

We get the following result in terms of the mixing time of the Markov chain used.

14For a formal definition of reversibility, see [52] equation 3.26.
21For a formal definition of mixing time, see e.g. [52] equation 4.30. The definition in [52] equation 4.30 is
based on the TV distance, but is equivalent to the one here by Proposition 4.2 in [52].
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Theorem 2.3.1. Let G = (V, E) be a connected undirected graph on n vertices. Consider a
discrete-time, lazy, irreducible, and reversible Markov chain on G with transition matriz P

and stationary distribution . Then the randomized query complexity of local search on G is

NG ) m(v)
’ (

Q where o = max —= .
toie (5;) - exp(30) wee? m(u)

The best lower bound given by Theorem 2.3.1 is attained by considering the Markov chain

with the fastest possible mixing time for G; see [50] for a classical reference on this problem.

Indeed, for many classes of graphs there can significant gaps between the mixing time of the
fastest mixing Markov chain and that of more obvious choices of Markov chains (such as
the max-degree walk or the Metropolis-Hastings chain), including the barbell graph, edge-
transitive graphs, and distance transitive graphs [53]. For example, when the stationary
distribution is set to uniform on the barbell graph?®, the max-degree random walk has mixing
time ©(n?) while the fastest mixing walk mixes in only ©(n?) steps (see corollaries 5.2 and

5.3 in [54]).

Remark 1. Since 0 > 1, we always have t,i.(0/(2n)) < tmie(1/(2n)). Thus Theorem 2.3.1

implies the randomized query complexity is

Vn
Q .
(tmix (%) eXp(?)O') )

For lazy chains, the second eigenvalue is always non-negative, so Theorem 2.3.1 implies a

lower bound based on the spectral gap. This leads to the following corollary:

34The barbell graph consists of two cliques of n/2 vertices each, connected by a single edge.
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Corollary 5. Let G = (V, E) be a connected undirected graph on n vertices. Consider a
discrete-time, lazy, irreducible, and reversible Markov chain on G with transition matriz P

and stationary distribution ®. The randomized query complexity of local search on G is

Q( (1—X)v/n >7

log(n) exp(30)

where Ay is the second eigenvalue of P and o = max, ey T(v)/m(u).

If we constrain the ratio d,,q./dmin and focus on the simple lazy random walk, we can remove

the dependency on o in Corollary 5.

Corollary 6. Let G = (V, E) be a connected undirected graph on n vertices. If dmaz/dmin <
C for some constant C' > 0, then the randomized query complexity of local search on G is

QO ((1 - >\2)\/ﬁ> ’

logn

where Ay is the second eigenvalue of the transition matriz of the simple lazy random walk on

G.

The lower bound in Corollary 6 improves by a logn factor the lower bound attainable from

[5] for such graphs. For comparison, we state the lower bound from [5] next.

Proposition 2.3.1. [5] Let G = (V, E) be a connected undirected graph on n vertices. If
maz/dmin. < C for some constant C' > 0, then the randomized query complexity of local

search on G is

log*(n)
where Ay is the second eigenvalue of the transition matriz of the simple lazy random walk on

G.

The extra factor of log(n) in Proposition 2.3.1 stems from the result used to connect ex-

pansion to edge congestion (see [27], corollary C.2), which rounds a fractional flow with
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congestion nlog(n) to an integer flow with congestion nlog®(n). By avoiding expansion

altogether, Corollary 6 also avoids this excess factor of log(n).

High Level Approach

The high level approach is as follows. We consider a set of value functions f : V — R
induced by walks from a fixed starting vertex. We define f such that the value at any vertex
off the walk is the distance to the starting vertex of the walk, and the value at vertices on
the walk is decreasing along the walk. This ensures that there is only one local minimum,
namely the end of the walk. This type of construction is classical [3, 9]. We denote the space

of such functions X'.

We then choose a similarity measure r : X x X — R3¢ (also called the “relation”) between
any two functions. Semantically, the relation measures the difficulty of distinguishing two
possible input functions from each other; thus it will be useful that functions induced by
walks with a long shared prefix are defined as more related. Given r, we invoke the relational
adversary variant (Lemma 26 from [5]), which implicitly defines a distribution over inputs
based on r, and outputs a lower bound on the randomized query complexity. We choose r

carefully such that the distribution over walks is that of an arbitrary Markov chain.

The innovation of our methodology over [5] lies in the construction; where their construction
is based on low-congestion paths, ours takes the more natural and general approach of using

arbitrary Markov chains, including the usual lazy random walks.

A key step in analyzing the formula given by the relational adversary is the following. When
fixing a staircase x and sampling a second staircase y conditioned to share an initial prefix
of random length with x, the proof has to show that no vertex v is too likely to lie on the
“tail” of y (i.e. the portion after the initial segment shared with x). The difference between

our setting and previous random walk based methods lies in this analysis.

We analyze separately the portions of the tail before and after it mixes. After y mixes, it

is close to being distributed according to the stationary distribution ®. Before y mixes, the
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Figure 2.1. Consider a graph G with a lazy, irreducible, and reversible
Markov chain P with stationary distribution @ and mixing time 7. The proof
fixes a walk x = [zo,..., 2], where L = |\/n| - T. The walk x is illustrated
as a solid line, where every T-th node is highlighted. Sample a random walk
Yy = [¥o, - - ., yr] according to P, conditioned on y and x having a shared prefix
of length jT', where j ~ U(0, |v/n]). We say that xjr = yr is the “divergence
point”. In the figure, the shared prefix of x and y is [xg,...,2z7], s0o j = 1.
A critical step of the proof is to show that no vertex v is too likely to lie
on y after its divergence from x. To show this, we divide the walk y in two
regions. Vertices in the region Ry = [y, ..., Yjr+1] are collectively close to
being distributed according to w. This is because the divergence point from x
is chosen randomly. In the region Ry = [yjr41, ..., yr], the walk y has mixed,
so the vertices in Ry are close to being distributed according to w. In either
case, no vertex v is too likely to lie on y after diverging from x.

randomness of the point on x at which y diverges suffices to keep y close enough to being

distributed according to . A visual depiction is shown in Figure 2.1.

This analysis is very generic, parameterized only by the stationary distribution of the walk
used. This allows Theorem 2.3.1 to give results for walks from arbitrary Markov chains with
no additional analysis other than estimating the mixing time. The natural mixing properties

of the lazy random walk on expanders then allow us to derive strong lower bounds for such

graphs.

112



2.4 Lower bound for local search via mixing times
2.4.1 Preliminaries
We fix a discrete-time Markov chain with transition matrix P that has the properties required

by Theorem 2.3.1: lazy, irreducible, and reversible. Let m denote the unique stationary

distribution of the chain. For each S C V| let w(S) = > ,cg®(v). Moreover, let

o = max (v)/m(u) . (2.2)

For every k € N and every walk x = (29, x1,...,2x) in G, let P[x] be the probability that

the random walk started at xy with transition matrix P has trajectory x, that is:

k-1

Plx] = [ Puioiss - (2.3)

i=0

Bottleneck Ratio.

The bottleneck ratio ®, of the Markov chain with transition matrix P is *:

b, = min

. 1
SCVn(S)<3 ueswev\s

Visiting probability.
For each pair of vertices u,v € V' and integer ¢ € N:

o let Pyisit(u, v, ) be the probability that a random walk that has transition matrix P,

length ¢, and starts at u visits v.

o let Eyisite(u, v, £) be the expected number of times that a random walk that has transition

matrix P, length ¢, and starts at u visits v.

41See, e.g., [52] equation 7.5.
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o let Pena(u,v,£) be the probability that a random walk that has transition matrix P,

length ¢, and starts at u ends at v.

Edge Expansion.

Let E(S,V\S) = {(u,v) € E|ue€ S,v €V \S} be the set of edges with one endpoint in
S and the other in V' \ S. The edge expansion of G is

_ : |[E(S,V\ )]
b= sgvrﬁléflgnm S| '

One of the main ingredients in our proof is a variant of (classical) the relational adversary

method from quantum computing given in [5].

Lemma 26 ([5], Theorem 3). Consider finite sets A and B, a set X C B* of functions,
and a map H : X — {0, 1} which assigns a label to each function in X. Additionally, we get
oracle access to an unknown function F* € X. The problem is to compute H(F*) using as

few queries to F* as possible.’

Letr : X x X — R be a non-zero symmetric function of our choice with r(Fy, Fy) = 0

whenever H(Fy) = H(Fy). For each Z C X, define

Z Z F17F2 and = max Z Z Fl,Fg ]]-{Fl(a)yéFg(a)}- (24)

FleZ FoeX €A £z mez

If there exists a subset Z C X with q(Z) > 0, then the randomized query complezity of the
problem is at least

min ~ 0.01-M(2)/q(2). (2.5)

ZCX:q(2)>0

To get lower bounds for local search, we will analyze the performance of deterministic al-

gorithms when the input distribution is obtained by considering random functions, each of

51In other words, we have free access to A and the only queries counted are the ones to F*, which will be
of the form: “What is F*(a)?”, for some a € A. The oracle will return F*(a) in one computational step.
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which is defined using a classical “staircase” construction. Each staircase is a random walk

with transition matrix P on GG. We first give the setup and then prove the main theorem.

2.4.2 Setup

Definition 2.4.1 (Set of walks W and parameter T'). Let L = |\/n|-T, where T = tpi.(55).
Let W be the set of walks {w | w = (wo, ..., wr)} in G with wy equal to the vertex 1 and
with Py, >0 forall0<i< L.

Wi+1

Definition 2.4.2 (Milestones). Given a walk x = (xo,21,...,21) € W, every T-th vertex
of the walk (including the first vertez) is called a “milestone”. E.g., the first three milestones

of x are xg, xp, and xTor.

Definition 2.4.3 (Good/bad walk). A walk x € W is “good” if it does not repeat any

milestones and “bad” otherwise. Let good(x) = True if x is good and False otherwise.

Definition 2.4.4 (Heads and Tails.). For every walk x = (zg,x1,...,21) € W, let

Head(x,j) = (xg, z1, ..., Ty1) Vie{0,...,|v/n]}.
Tail(x,]) = (L1741, Tyrio, - - - L) Vje{0,...,|vnl}. (2.6)

Tail(x7j17j2) = (le-TJrl? Tjy T2y -+ 7'rj2-T) vj17j2 € {07 ceey L\/ﬁj} with .jl S .j2 :

For all x,y € W, define J(x,y) as the mazimum indez j with Head(x,j) = Head(y,]j).
Definition 2.4.5 (The functions fx and gyxp; the set X). For each walk x = (x,...,xL) €

W, define a function fyx : [n] = {—L,—L+1,...,n} such that for all v € [n]:

dist(v, 1) ifvgx
fx(v) = (2.7)
—max{iE{O,...,L}\xi:v} ifvex.
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For allb € {0,1}, define gxp : [n] = {—L,—L+1,...,n} x{—1,0,1} so that for allv € [n]:

<(v),—1 ifv# g
dunlt) = (fx(v),=1) ifv# 28)

(fx(v),0)  ifv=uxp.

Let X = {gx,b |xeW and b e {0,1}}.

Definition 2.4.6 (Valid function). Let x = (zo, ..., x;) be a walk in G. A function f:V —

R s valid with respect to the walk x if it satisfies the next conditions:

1. For all u,v € x, if max{i € {0,...,¢} | v =i} < max{i € {0,...,0} | u = x;}, then
f(v) > f(u). In other words, as one walks along the walk x starting from xq until x,,

if the last time the vertex v appears is before the last time that vertex u appears, then

fw) > f(u).
2. For allv € V\ x, we have f(v) = dist(xq,v) > 0.
3. f(z;) <0 forallie€{0,...,0}.

We define a similarity measure r between functions from X, commonly referred to as the

relation.

Definition 2.4.7 (The function r). Let r : X x X — Rxq be a symmetric function such that
for each x,y € W and by, by € {0, 1},

0 If by = by or x =y orx is bad ory is bad.

T(gx,bl ) gy,bg) =
Px]Ply]

PlHadyy Otherwise, where j = J(x,y).

Observation 2.4.1. The function r from Definition 2.4.7 is symmetric, since by definition

of j we have Head(x,j) = Head(y,j).
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Having defined the relation r, applying Lemma 26 will give a lower bound by considering

a distribution p over X, where each function F' € X is given as input with probability

p(F) = Aﬁ‘({ﬁ), where M is as defined in Eq. (2.4) for the relation r.

What remains to be done is to explain how to invoke Lemma 26 and estimate the lower

bound it gives when the input distribution is p.

2.4.3 Proof of the main theorem

Theorem 2.3.1. Let G = (V, E) be a connected undirected graph on n vertices. Consider a
discrete-time, lazy, irreducible, and reversible Markov chain on G with transition matriz P

and stationary distribution ®. Then the randomized query complezity of local search on G is

vn )’ m(v)

Q( where ¢ = max —= .
Uiz (%) ’ eXp(BU)

(
u,veV TC(U)
Proof. First, we may assume that n > 1602. This is because in the alternative case where

n < 1602, the theorem statement does not give anything useful as /n < exp(3c) and
tmiz(0/(2n)) > 1.

The value functions we will use are of the form fy as seen in Definition 2.4.5. These functions
are parametrized by walks x of length L from the set W defined in Definition 2.4.1. For
sake of invoking Lemma 26 however, we must turn the local search problem into a decision
problem. To do this, we use the technique shown in [3, 16]: associate with each function fy
the function gx; defined in Definition 2.4.5. This hides a bit at the local minimum vertex
(while hiding the value —1 at every other vertex). The decision problem is: given the graph
G and oracle access to a function gxp, return the hidden bit b; i.e. we set the function H for

use in Lemma 26 as H(gxp) = b.

By Lemma 27, the function fyx as defined in Definition 2.4.5 is valid. Therefore by Lemma 35,
fx has a unique local minimum, namely x . This means that gx; as defined in Dcfinition 2.4.5

does indeed hide the bit b only at the local minimum of fy. Therefore measuring the query
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complexity of this decision problem will give the answer for local search, as the following two

problems have query complexity within additive 1:

o search problem: given oracle access to a function f,, find a vertex v that is a local

minimum;
 decision problem: given oracle access to a function g, , find b.

We then invoke Lemma 26 with X as defined in Definition 2.4.5 and with H(gxs) = b.
This tells us that the randomized query complexity of the decision problem is at least

min ~ 0.01-M(Z)/q(Z), with M(Z) and ¢(Z) as defined in Lemma 26.
ZCX:q(2)>0

By Lemma 32, there exists a subset Z C X with ¢(Z) > 0. From this point on, we fix an
arbitrary subset Z C X of functions with ¢(Z) > 0 and will then lower bound M (Z) and

upper bound ¢(Z).

Lower bounding M(Z).

Because ¢(Z) > 0, we know Z is not empty. Consider an arbitrary function gx;, € Z with

x good. By definition of M, we have

M({gX,bl}) = Z T(QX,blagy,b)? (29)

gy,bQEX

recalling:
e Ply] = H{:Ol Pyiyiy, for every walk y = (yo,v1,...,yx) in G;

e Definition 2.4.4 of Head(y,j) and J(x,y) and Definition 2.4.7 of the relation r:

0 If by = by or x =y or x is bad or y is bad.
r(gx,bl ) gy,bz) =
Px]P[y]

m OtherWise7 where J = J(X, y) .
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Then we can rewrite M (gxp,) as

Mltoes) = 3 S (2.10)

The condition x # y in Eq. (2.10) is equivalent to J(x,y) # [v/n], so it must be the case
that J(x,y) € {0,...,|v/n] — 1}. We decompose the summation in Eq. (2.10) by the value

of J(x,y), excluding cases where 7(gxp,, gyp,) = 0, to get the following:

MJ 1
M{gxn}) =P >, > de(])] (2.11)

=0 gy, b2€X

J(x,y)=j
bo=1-b1
good(y)

There is a one-to-one correspondence between walks y € W and functions gy, with by =

1 — by. Therefore we may equivalently sum over y € W in Eq. (2.11):

LfJ 1 Ply] )19
({gx b)) = Z (y%/:;; W (2.12)
goog(y_)J

Since y is the concatenation of Head(y,j) with Tail(y,j), we have:
Plyl = P[Head(y,j)] - P[Tail(y, )] - Pyyr, yyore - (2.13)

Substituting Eq. (2.13) in Eq. (2.12) gives

LfJ 1
({gxbl} Z Z PTCLIZ y> } Pyj~T7yj-T+1' (2'14)
j=0 yEW:
J(x,y)=i
good(y)
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If it weren’t for the restrictions that J(x,y) = j (instead of J(x,y) > j) and good(y), then
the inner sum would be over all possible walks from z;r, and would thus be 1. Because of

those restrictions, we instead invoke Lemma 30 to continue from Eq. (2.14) as follows:

M({gx}) = Plx] - 27 [v/n] . (2.15)

If x is bad, then M({gxp, }) = 0, and so the function gx;, does not contribute to M (Z).

Therefore

M(2) 2277 |a] Y Pl (2.16)

gx,bl €z
good(x)
Upper bounding ¢(Z2).
Define
Z Z gx b1s Gy ,ba ]l{gx by (V)FGy by (V)] - (2‘17)
9x b €Z 9y, bo €Z
By definition of ¢(Z), we have
¢(Z) =max > > (e Gye) Lges, 00y, ) = WX G(Z,0). (2.18)

Ix,bq €Z gy, bo €z

We will bound ¢(Z) by bounding ¢(Z,v) for an arbitrary v. Fix an arbitrary vertex v. We

first partition the inner sum according to J(x,y):

= > > gk 9y, b2) L{gs, () 70y by ()} (By definition of ¢(Z,v).)
9x,bq €Z 9y ,by €Z
[vn]-1

Z Z Z 7(9x.b15 9y, b2>]]'{gx,b1 (v)#gy,b, (V)} - (2.19)

9x ,b1 €z J =0 9y, b2EZ
J(x,y)=]
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By Lemma 31, we may continue from Eq. (2.19) and expand to get

V-1
(7(2,1}) <2 Z Z Z T(QX,bugy,lm) (2'20)

gx,bl €Z .]:0 gy,bQGZ:

vETail(y,j)
J(x,y)=]
SN Y e
=2 Plx e (Using the definition of r.)
Gx,by €Z =0 gy, EZ: P[Head(Y7 J)] N
good(x) v€Tail(y,j)
J(X,y):j
bo=1—b1
good(y)
1
Ply]
<2 ) Plx Z P e (Since Z C X.)
Ix,by ez : 9y by (S P[Head(y7 J)]
good(x) v€Tail(y,j)
J(X,y):j
bo=1—b1
good(y)

(2.21)

Again, there is a one-to-one correspondence between walks y € W and functions gy, € X
with by = 1 — by, so we may equivalently sum over y € W in Eq. (2.21). Additionally,
we expand the scope from J(x,y) = j to J(x,y) > j, which is equivalent to Head(x,j) =
Head(y,j). Finally, we drop the requirement that good()). Continuing from Eq. (2.21),

Z L\fJ 1 Ply]
J(zv<2 Y Pl I (2.92)
9x,by €2 Z y%/:\/ P[Head(Y> J)]
good(x) veTail(y,j)
J(x,y)=]
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From here we partition based on where in T'ail(y,j) the vertex v lies: the first short part

of the tail, i.e. Tail(y,j,j+ 1), or the rest of the tail, i.e. Tail(y,j+ 1). Continuing from

Eq. (2.22),
[vn]—-1 fp[
_ y) Ply]
@(Z,v) <2 Plx] Tzl TSP T
good(x) veTail(y,j,j+1) veTail(y,j+1)
J(x,y)2] J(x,y)2j
(2.23)
Since y is the concatenation of Head(y,j) with Tail(y,j), we have
Ply] = P[Head(y,j)] - P[Tail(y,j)] - Py,.r, ysrsn - (2.24)
Using Eq. (2.24) in Eq. (2.23), we obtain
[Vl—1
Q(zv)<2 Y P Y ( Y. PlTail(y. )] Py, g
9x,b; cZ j=0 yew:
good(x) veTail(y,j,j+1)
+ Z P(Tail(y,j)] - Pyj»T: yj-T+1>
yEW:
vETail(y,j+1)
J(x,y)2]

To bound the first part, we will use Lemma 29. Since x is good, we have

Vi1 Vil
Z Z P[Tall(va)] : Pyj-T»yj-T-H = Z Pvisit(mj%UaT)
j=0 yEW: =0
veTail(y,j,j+1)
J(%,y)>]
(By definition of Pg;.)
<To. (By Lemma 29 since x is good.)
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To bound the second part, we first partition according to the possible values of y1)r. We

have
[vn]-1 [vn]-1
Z Z PTail(y,j)] ',Pyj.T,nyﬂ = Z Z Penda(zjr, u, T)Pyisit(u, v, L — (j+ 1)T)
j=0 yeEW: =0 weVv
veTail(y,j+1)

J(x,y)>]

(2.27)
The visiting probability P (u, v, £) is increasing in ¢, so continuing from Eq. (2.27) we get

[vn]-1
Z Z P(Tail(y,j)] - 7DanT, YiT41

yeEW:
vET ail(y,j+1)
J(x,y)=j

[vn]—-1
Z Z Pend<ij7u7T)Pvisit(uava L) (228)

=0 wueV
lvn]-1 <

<22

)+ [Penalasr, . T) = ()] ) Puise(u, 0, ), (2.29)
= ueV
where in Eq. (2.29) we used the inequality a < b+ |a — b| for a,b > 0.

A random walk with starting vertex drawn from m has probability m(v) of being at v at each

step. Formally, for all £ € N we have

> (w)Pena(u, v, £) = n(v). (2.30)

ueV

Additionally, by union bound we have

L
Puisit(u, v, L) < Z end(U, v, 0) . (2.31)
We have
[vn]-1
> 3 (1) + Pena(ryr, 1, T) = %)) Pl v, 1) (2.82)
=0 wueV
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3 w(w)Pena(u, v, 0) + > [Pena(yr, u, T) — T(w)] - Puisie(u, v, L))

(=1 ueV ueV

(By Eq. (2.31).)

lvn]-1
= Z <LTC + Z |Pend Zr, U, T) (u)’ ' Pvisit(u7 v, L)) : (B\ Eq (230))

ueV

(2.33)

Since T' = tix(0/(2n)), we have

Z|Pend(xJ~T,u,T) —7(u)] - Puisie(u, v, L) < mavalSlt(u v, L) Z|Pend zip,u, T) — w(u)|

ueV ueV

= mawaSlt(u v, L) Z‘ (P, — —Tt(u)‘
ueV

o
< rlrtlea‘zc Pisit(w, v, L) - (2.34)

Combining Eq. (2.33) and Eq. (2.34) yields

Lvn]- lvn]-
) 'S @) + [Ponalasr 1 T) — 7)) Py, ) < 3 ( )+ % max P, v, )
=0 wueV j=0 v
(2.35)
< |VnJ(L+ 1)g (Since Pigi(u, v, L) <1 and nt(v) < 2.)
n :
<2T¢. (Since L =T|y/n] and 1 < L.)
(2.36)
Combining Eq. (2.29) and Eq. (2.36), we obtain
lvn]-1
Z Y. PlTail(y,j)] - Py, o <270 (2.37)
yeWw:
veTail(y,j+1)
J(x,y)2j
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Combining Eq. (2.25), Eq. (2.26), and Eq. (2.37),

i(Z2,0)<2 Y PE]3To=6Tc > Plx]. (2.38)
9x,bq €z 9x,by €z
good(x) good(x)

Since ¢(Z) = min,ey ¢(Z,v) and Eq. (2.38) holds for an arbitrary choice of v, we get

¢(Z2) <6To > 7Plx]. (2.39)
gx,blez
good(x)

Bounding M (Z)/q(Z).
Combining Eq. (2.16) and Eq. (2.39), we obtain

2747 V/n] Egu, ez PIX]

—4o
M(Z) > good(x) _ 2 ) L\/ﬁj . (240>
9(Z) 670 Y g, 4, cz P[X] 60 T
good(x)

We have 2747 /(60) € Q(1/exp(30)). Thus applying Lemma 26 to the expression in Eq. (2.40),

we obtain the required lower bound for local search on G, namely

NZD
Q .
(tmix (%) : exp(30))

This completes the proof. O

2.5 Helper lemmas

Lemma 27. For each walk x = (o, ...,x1) € W, the function fy given by Definition 2.4.5

is valid for the walk x.

Proof. We show the conditions required by the definition of a valid function (Definition 1.10.1)
hold.
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Condition 1. Consider two arbitrary vertices vy, v € x. Define
ilzmax{ke{o,...,L}|v1:xk} and iQImaX{k’E{O,...,L}’UQILEk}.

Without loss of generality, we have i; < i5. Condition 1 requires that if i} < i,
then fy(vi) > fx(v2). Since vy, vs € x, Definition 2.4.5 of the function fy states that

fx(v1) = —i1 and fx(vy) = —iy. Thus if i} < ig, then fyx(v1) > fx(v2), as required.

Condition 2. The second condition requires that fx(v) = dist(zo,v) > 0 for all v € V' \ x.
Since x € W, we have zy = 1. Using Definition 2.4.5 we have fx(v) = dist(v,1) =
dist(v,z9) > 0 for all v & x.

Condition 3. The third condition requires that fy(z;) < 0 for all i € {0,...,L}. This

condition is clearly met since fx(v) € {0,—1,...,—L} for all v € x.

Therefore fy is valid for the walk x. O]

Lemma 28. Let (wp,wy,...) be a Markov chain generated by transition matriz P with

arbitrary starting distribution. Then for all v € V' we have
Pl" [wtmiz(o/@n)) = U] S 20/n.
Proof. By definition of t,,;,(c/(2n)) we have

Z‘Pr (Wi (o) (2n)) = V] — n(v)’ <o/n. (2.41)

veV

Since each term of the sum in Eq. (2.41) is non-negative, we have

YoeV ‘Pr (W0 (o /(20)) = V] — n(v)‘ <ag/n. (2.42)
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Removing the absolute value from Eq. (2.42) and rearranging, we get

YoeV Pr [wtmiz(g/(gn)) = ’U] < O'/TL + TC(U)

<20/n. (Since ¢ > m(v) - n.)

This concludes the proof of the lemma. O

Lemma 29. Let S CV be a subset of vertices. Let v € V be a vertex and £ € N. Then

Z Pvisit<u7 v, f) § lo .

u€es

Proof. Let T, be the random variable representing the number of times a random walk of

length ¢ starting at v visits a vertex in S. Decomposing by vertices in .S, we have

Z Pvisit (U, v, 6) S Z Evisit(u7 v, g) (243)

ues ues
= Z Eisit (v, u, @ﬂ:(v) ) (By Lemma 34)
uesS TC(U)
(2.44)
Using the definition of o = max, ,ev T(v)/m(u), we have
> Buisit (v, u E)M <0 Eusie(v,u,0)
ues mu) © i
=0 -EI[T}] (By definition of 7}.)
< /{o. (Since T, < ¢.)
(2.45)
Combining Eq. (2.44) and Eq. (2.45), we get Y ,cg Puisit(u, v, ) < Lo, as required. O
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Lemma 30. Let n > 1602. Fiz a good walk x = (g, ..., x1) with xo = 1 and Py, 4,, > 0

for all 0 <i< L. Then for each 0 <j < |/n],

Z P[Tail(Y7j)] ’ Pyj-Tny*TJrl 2 27 (2'46)

yEW:
J(x,y)=i
good(y)

Proof. Let Py be the distribution over the set of walks VW generated by sampling a walk
according to P starting at the vertex 1 with L = |/n| - T edges. Let z be a random walk
drawn from P),. Recall that every T-th vertex of a walk is called a milestone, and a walk is

good if it does not repeat milestones. We have

Z P[Tail<Y7j)] ’ Pyj~T7 YiT+1 Z 7)yj.T, YjiT+1 Pyj-T+17yj-T+2 et PyL—hyL (2'47)

yEW: yeEW:
J(x,y)=j J(x,y)=j
good(y) good(y)

=Pr {good(z) NJ(x,z) =j| Head(x,]j) = Head(z,j)| .

(2.48)

Figure 2.2. The milestone Figure 2.3. The milestone
2(j+1)7, shown in purple, may 2(j+3)7, shown in purple, may
not match any of the orange not match any of the orange
milestones: xy through zjr be- milestones because it would
cause it would make z bad, and make z bad.

r(+1)r because it would make

J(x,z) >].
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Equivalently, we can sample z ~ P, one segment at a time with the constraint that the
initial j7+ 1 vertices of z must match those of x. That is, set Head(z,j) = Head(x,j). Then
for

i=j,...,|v/n], sample the segment Tail(z,i—1,1) conditioned on having set Head(z,i—1).

For every 0 < k < [\/n], the set of vertices given by the first k£ + 1 milestones of z is

Sk = {Zo, 2Ty e ,ZkT} . (249)

Given that Head(x,j) = Head(z,j), the condition J(x,z) = j is equivalent to
Z(4+1)T F T(4+1)T - (2.50)
Similarly, given that Head(x,j) = Head(z,]j), the condition that z is good is equivalent to

For eachi€ {j+1,...,|+/n], define

Z(j us, ifi=j+1
Qi = torort (2.52)
Si—l 1f‘]+1<1§L\/ﬁJ

Combining (2.50) and (2.51), we get

Pr {good(z) NJ(x,z) =j| Head(x,j) = Head(z,j)]

=Pr <ZkT ¢S Ve {j+1,..., [Vn] }> A <Z(j+1)T # T+ ) | Head(x, j) = Head(z, j)
(2.53)
Lvn]
=Pr| A zir ¢ Qi| Head(x,]j) = Head(z,j) (By definition of @Q); in (2.52))
i=j+1
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N
= [[ Pr|ar ¢ Qi | (Head(x,j) = Head(z,j)) ( /\ 2kt ¢ Qk)} (2.54)
i=j+1 k=j+1

For all i < [y/n], let W, be the space of walks of length T'i that can occur with positive

probability under transition matrix P, formally defined as:

Wi:{W|W:(wo,...,wT_i)Wherewo_landP >OforallO§k<T-i}.

W, Wi +1
(2.55)
Then, using Eq. (2.53) gives
Pr {good(z) NJ(x,z) =] | Head(x,j) = Head(z,j)]
Lvn]
> 11 mm Prizir ¢ Qi | Head(z,i—1) = 5] (2.56)
i=j+1 Wi
Since T' = t,ni.(0/(2n)), Lemma 28 tells us that for all v € V and 1 <i < |y/n]
p | Head(z,i — 1) = g] < (2.57)
§g}\l}n r|zir = v | Head(z,1 < :

By the union bound applied to Eq. (2.57), for each set R C V and 1 <i < |/n], we have

gg)}\l}ri Prizir ¢ R| Head(z,i— 1) = 5} >1-— QULR| : (2.58)
We consider two cases based on j:
Case 1: j < [/n] — 1.
Since j < [v/n] — 1, we have
{zgenr} US| < V). (2.59)
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Furthermore, for all j < k < [/n] we have
1Sk <k+1<|vn]. (2.60)
Combining Eq. (2.59) and Eq. (2.60) gives
Qi < V]  Vi+1<i<|[vn]. (2.61)
We obtain:

Pr {good(z) NJ(x,z) =j| Head(x,]) = Head(z,j)]
Lvn]

> 11 nl}\i/n Prizir ¢ Qi | Head(z,i—1) = f] (By Eq. (2.56))

i=j+1 eWVi

lvn]=j
- (1- )

n

(By Eq. (2.58) with R = @; and since |@;] < v/n by Eq. (2.61).)
N
20

> 11— — : 2.62
(-3 e

By Lemma 33, we have that ( — %)ﬁ is an increasing function of \/n since n > 1602.

Therefore it is minimized at y/n = 40. Substituting in Eq. (2.62), we get

2 4o
Prigood(z) A\ J(x,z) =j | Head(x,]j) = Head(z,j)} > (1 — 40) =27, (2.63)
o

Case 2: j=[/n] — 1.

We again invoke Eq. (2.58). In this case,

Q| < [Spma| +1 < Va+1. (2.64)
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Using Eq. (2.56), we obtain:

Prigood(z) N\ J(x,z) =j | Head(x,]) = Head(z,j)]

> _min Pr {ZWT ¢ Q| | Head(z, | /) — 1) = g] . (2.65)
EWvny—1

Using Eq. (2.58) with R = Q| and since ‘th/ﬁj) < /n+1 by Eq. (2.64), we can lower
bound the right hand side of Eq. (2.65) as follows:

_min Pr[zWT ¢ Qm | Head(z, |V/n) —1) = g} > 2ol o6
Wlvai— n
Combining Eq. (2.65) and Eq. (2.66), we get

Pr {good(z) ANJ(x,z) =] | Head(x,j) = Head(z,j)] >1- WEM. (2.67)

We can further lower bound the right hand side of Eq. (2.67) as follows:

1 1
2ol +1) o Velvetd) (Since i > 40)
n 2n
1 : .
> 1 (Since n > 1602 > 16.)
> 274 (Since o > 1.)
(2.68)
Combining Eq. (2.67) and Eq. (2.69), we get

Pr {good(z) NJ(x,z) =] | Head(x,j) = Head(z,j)] > 274, (2.69)

In both cases, we obtained (by Eq. (2.63) and Eq. (2.69))
Pr {good(z) NJ(x,z) =] | Head(x,j) = Head(z,j)] > 274, (2.70)
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Combining Eq. (2.47) with Eq. (2.70) yields

: . —4o
Z P[Tall<Y7J>] 'Pyj-Tyyj<T+1 > 2 :
yEW:
J(x,y)=]
good(y)

This concludes the proof of the lemma. O

The next lemma is inspired by Lemma 9 from [5]. However, it is slightly different, so we

include the proof here.

Lemma 31. Letv €V and Z C X. Then we have

D (Gxbrs Gye) Lgen, )20y (o)} < 2 > 7(Gx,b1s Iy be) -
9x,b1+9y,bg €z 9x,b1:9y,bo €Z:
veTail(y,J(x,y))

Proof. If gxp, (V) # gy, (v), then either:
e v € Tail(x, J(x,y)) UTail(y, J(x,y))

e Or X =Y, in which case T(gx7b1,gy,b2) = 0.

Therefore
Yo T (Gxbis Gyba) Lgen, 0) gy, (0)) < > 7 (i Gy bs)
gx,blvgy,bg €Z gx,bl 7gy,b2 €Z:
veTail(x,J(x,y))UTail(y,J(x,y))
< Z T(gXJM ) gy,b2) + Z T(gx,bl ) gy,bz)
gx,bl 9gy,b2 €Z: gx,bl 7gy,b2 €Z:
veTail(x,J (x,y)) veTail(y,J (x,y))
=2 > 7(Gxp1> Gy.be) (By symmetry of 7))
gx,bl 79y,b2 €Z:
veTail(y,J(x,y))
This completes the proof of the lemma. n

Lemma 32. In the setting of Theorem 2.3.1, if n > 1602 then there exists a subset Z C X
with q¢(Z) > 0.
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Proof. By definition of o and because max,cy m(v) > 1/n, we have

minm(v) > 4/n'?. (2.71)

Fix an arbitrary vertex u. Let .S be the set of vertices unreachable from u via a random walk

that evolves according to P and has at most 7" = t,,i,(5-) steps. Denote s = |S|. Then

(P =0 Yo €S. (2.72)
By definition of t,,;,, we have
T > LS PT) - w()
2n 2 veV 7
1
> 5 Y [a(o) (By Eq. (2.72))
veS
> ;5%1‘1;1 T(v) (Since s = |S].)
2s -
15 (By Eq. (2.71).)
(2.73)
Meanwhile, since n > 1602, we have
o 1
< = 2.74
2n — 8y/n (2.74)

Combining Eq. (2.73) and Eq. (2.74), we get s < n/16. Thus the number of vertices reachable
from w in T steps is n — s > 15n/16. For n > 5, we have 15n/16 > [\/n] + 2, which means

that at least |\/n] + 2 vertices are reachable via P from any vertex u within 7" steps.

We can then construct two walks, x and y, in the following manner. Fori=1,..., | /n], take
xi7 to be an arbitrary vertex reachable from z_1)r other than xo, ..., xi_1yr; this is possible

since at least [/n|+2 vertices are reachable. Connect the milestones using an arbitrary path
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such that every edge (u,w) in the path has P,, > 0. Construct y in the same manner but

requiring that Head(y, |\/n| — 1) = Head(x, |/n] — 1) and y;, & {xo,xT,xQT, . 7.TL\/HJT}.

Define Z = {gx0, gy1}. We will show that ¢(Z) > 0. First observe that x # y, both x and
y are good since they do not repeat milestones, and the bit hidden by g« is different from
the bit hidden by gy 1. The length of the prefix shared by x and y is J(x,y) = |v/n] — L.
Then

Px]Ply]
7(9x,0, Jy,1) = > 0. 2.75
(90 99) = DlFead(y. [y/n] - 1) 27
We have
4(2) =max >, > r(F,F) - Linwenw)
Fl1eZ FroeZ

= 2maxr(9x0: 9y1) * Lgeo)oy ()}
(Since Z = {gx0,9y1} and r(F, F) =0VF € Z.)
> 0. (Using Eq. (2.75) and gx0(z1) # gy.1(yL)-)
This completes the proof. O

Lemma 33. For all x > 2y > 1 we have

0 y\*
—(1—-—=] >0. 2.
ox ( J:) =0 (2.76)
Proof. Define z = xz/y. Then
T 2\ Y
(;1 (1 — i) = g;ai ((1 — i) ) (By chain rule.)
1\ ? y—1 1\ ?
= Z; ((1 — z) > 882 <1 — 2’> (By chain rule.)
>0. (Since z > 1)
This concludes the proof of the lemma. n
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Lemma 34 (Folklore). Consider a reversible Markov chain on G with transition matric P.

For all u,v € V and { € N, we have

Evisit(u) v, é)ﬂ:(u) = Evisit(va u, g)TC(’U) :

Proof. We have

-

Eyisit(u, v, )m(u) = R(U)ij (By definition of E,g;.)

i=1

l
= ZR(U)P:),U (By [52] equation 1.30.)
i=1
= Eyisit(v, u, £)(v) . (By definition of E,g;.)
This concludes the proof of the lemma. n

We also use the following lemma from [5].

Lemma 35 ([5], Lemma 6). Suppose x = (x¢,x1,...,2¢) is a walk on G and f:V — R is
a valid function for the walk x. Then [ has a unique local minimum at x,, the last vertex

on the walk.

All of the lemmas in this section are heavily based on lemmas from prior work. However

they are slightly different, so we include their proofs here for completion.

2.6 Corollaries of the main theorem

We can connect Theorem 2.3.1 to the spectral gap of the transition matrix of the Markov
chain used via the following inequality (see, e.g., [52], Theorem 12.4): If P is lazy, irreducible,

and time-reversible, then

tmia(€) < (1 _1A2> log (mmxivn(x)) : (2.77)
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We obtain the following corrollary, which lower bounds the randomized complexity of local

search as a function of the spectral gap of P.

Corollary 5. Let G = (V, E) be a connected undirected graph on n vertices. Consider a
discrete-time, lazy, irreducible, and reversible Markov chain on G with transition matrix P

and stationary distribution ®. The randomized query complexity of local search on G is

Q( (1 = X)/n >

log(n) exp(30)

where Ay is the second eigenvalue of P and o = max, ey T(v)/T(uw).

Proof. We proceed by substituting Eq. (2.77) into Theorem 2.3.1. This directly yields that

the randomized query complexity of local search on G is

Q ( (1= A2)V/n ) . (2.78)

log (Zn/(o mingcy Tr,(x))) exp(30)

By definition of o we have

i = > . .
o min n(z) rilea@(n(x) >1/n (2.79)

Combining Eq. (2.78) with Eq. (2.79) yields that the randomized query complexity of local

search on G is

log(n) exp(30)

Q< (1= A)v/n ) . (2.80)

This completes the proof of the corollary. O

The prior work in [5] implies a result similar to but weaker than Corollary 5. To get a result
in terms of spectral gap via [5], we need to connect the edge expansion /3 to the spectral gap

1 — A\ of a particular Markov chain. We will do this via the bottleneck ratio ®,.
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Lemma 36 ([52], Theorem 13.3). If the Markov chain is lazy, then

2

o
o S1-d <20, (2.81)

We can use this to get a bound on local search in terms of spectral gap via the following

lemma from [5].

Lemma 37 ([5], corollary 2). The randomized query complexity of local search is in

2 (o) .

As a special case, consider the simple lazy random walk on a graph with d,,4./dpin < C for

constant C'. Applying Lemma 37 to this walk yields the following result:

Proposition 2.3.1. [5] Let G = (V, E) be a connected undirected graph on n vertices. If
maz/dmin. < C for some constant C' > 0, then the randomized query complexity of local

search on G 1is
o[ (L=A)v/n
2V
log™(n)

where \g is the second eigenvalue of the transition matriz of the simple lazy random walk on

G.

Proof. For the simple lazy random walk we have w(u) = d(u)/(2|E|) for all u € V. Let P

be the transition matrix of the simple lazy random walk. Then

c ,PU'U o o
o, = min Zunen(ss) (P (By definition of ®,.)
SCV | n(S)<1/2 w(.S)
ey (d 2|E))(1/d
= min Znens.so(dw)/CIE])(1/dw))) (By definition of P.)
SCV | 7($)<1/2 Yues(d(u)/(2|E))
|E(S, 5

~ scv [m9)<1/2 Suesd(u) (2.83)
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To get a term of 5, we need to change the scope of S from

{SCV|n(S) <1/2}

to

{ScVIISI<n/2}.
Let S* be a minimizing choice of S from {S C V | |S| < n/2} for |E(S, S|/ Y ues d(u).
Then either S* or S*¢ (or both) will be in {S C V | n(S) < 1/2}. We analyze these two
cases separately.
Case 1: n(S*) < 1/2.

Continuing from Eq. (2.83), this gives us

| E(S™, 57 . o
b, < —= Since m(S*) < 1/2.
Scs d(u) e = )
= min M (By definition of S*.)

oscvilsi<n/z Yyegd(u)

(2.84)

Case 2: w(5*) <1/2.

Continuing from Eq. (2.83), this gives us

|E(S™, 5] .
¢, < —7— (Since m(S5*¢) < 1/2.)
ZUGS*C d(u)
E(S*, 5% i i
< M -C (Since |S*| < n/2 < |S5*¢| and by definition of C'.)
ZUES* d(u)
E(S, S¢ , ,
=  min 1E(S, 591, C. (By definition of S*.)

SCV |[Sl<n/2 ¥ ueg d(u)

(2.85)
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In both cases, we have

[E(S, 59

o, < i -
= scv81<ns2 Sues d(u) ¢
125,59,
~ scv|si<n/2 |S] - dmin
_B-C
a dmin
. 2
< B-C .
- dmaa}

Substituting Eq. (2.86) into Lemma 36, we get

1-X<

max

283 - C?

(By Eq. (2.84) and Eq. (2.85))
(By definition of d,;,.)

(By definition of 3.)

(Since dpaz/dmin < C'.)

(2.86)

(2.87)

Substituting Eq. (2.87) into Lemma 37, we get a lower bound of Q(m> on the random-

log?(n)

ized query complexity of local search on G. This completes the proof of the corollary. O]

Compare to the following corollary, which is just Corollary 5 applied to the simple lazy

random walk when d,;,44/dpmin is bounded by a constant C.

Corollary 6. Let G = (V, E) be a connected undirected graph on n vertices. If dyaz/dmin <

C for some constant C' > 0, then the randomized query complexity of local search on G is

Q ((1 - Az)ﬁ) ’

logn

where Ay is the second eigenvalue of the transition matriz of the simple lazy random walk on

G.
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Proof. Since dy40/dpmin, < C, we have that exp(30) < exp(3C), which is a constant. There-

fore Corollary 5 directly gives that the randomized query complexity of local search is

Q ( (1= 2)yn ) =0 (Wﬁ) . (2.88)

log(n) exp(30) log(n)

]

Corollary 6 is stronger than Proposition 2.3.1 by a factor of log(n). This represents an

improvement of this paper in bounding the difficulty of local search in terms of spectral gap.
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3. QUANTUM LOWER BOUNDS FOR LOCAL SEARCH

3.1 Introduction

A powerful method for giving lower bounds in the quantum setting is the relational adversary
method [1]. Several variants of the method exist, such as the strong weighted adversary [2].

[55] showed that multiple quantum relational adversary methods are in fact equivalent.

We will show a lower bound on local search in the quantum setting using the strong weighted

adversary method applied to a construction from [56].

3.2 Model

Let G = (V, E) be a connected undirected graph and f : V' — R a function defined on the

vertices. A vertex v € V' is a local minimum if f(v) < f(u) for all {u,v} € E. We will write

Given as input a graph G and oracle access to function f, the local search problem is to
find a local minimum of f on GG using as few queries as possible. Each query is of the form:

“Given a vertex v, what is f(v)?”

Query complexity.

Consider a problem where the input F' has n queryable locations, F'(1), F(2), ..., F(n),
each of which has k possible values. In the quantum query model, the quantum bits are
partitioned into four regions: the input F', the logn index bits i, the log k£ return bits a, and
the rest of the workspace bits z. Collectively, i, a, z constitute the algorithm’s workspace; it
may freely manipulate these bits via arbitrary unitary transformations at no cost, so long as

the transformations do not depend on the input F. To access F', the algorithm is provided

142



the oracle transformation O, which is defined such that, for all values of Fi,a,z (such that

i< N):
O(Fia,2)) = |Fi,a F(), )

Of course, not all quantum states are in the form |F1i,a, z); you may have a superposition
over such states. A superposition is just a linear combination though, so this is sufficient
to define the behavior of O on the space spanned by such kets. lLe., given a state [¢)) =

Y FiazFiaz|F, i, a,z) for some scalars ap;q ., we have

O(lY) = > apia:0(Fia.z2)= > apia.

Fi,a,z Fi,a,z

Fi,a® F(i), z).

Between queries, the algorithm is free to manipulate its own bits (i.e. i,a,z but not F)
freely. More formally, it may apply an arbitrary unitary transformation U subject to the
constraint U(|F) ® [¢)) = |F) ® [¢') for all ¢ and the algorithm’s choice of ¢/. Let U; be

the transformation after the jth query.

Then, the algorithm as a whole applies, in order, Uy, O,U;,0...,U;_1,0,U;, and finally
measures the final state. The measured final state of a particular bit of the algorithm’s
workspace is interpreted as the returned answer. The query complexity of such an algorithm
is j. The quantum query complexity of a problem is the minimum query complexity among

all quantum algorithms that give a correct answer with probability at least 2/3.

Congestion.

Let P = {P"“"},4ev be an all-pairs set of paths in G, where P*" is a path from u to v. For

convenience, we assume P"“" = (u) for all u € V; our results will hold even if P** = ().

For a path Q = (vy,...,v,) in G, let ¢? be the number of times a vertex v € V appears in Q
and c¥ the number of times an edge e € E appears in Q. The vertex congestion of the set

of paths P is max,ey Y gep ¢¥, while the edge congestion of P is maxeer Y gep 9.
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The vertex congestion of G is the smallest integer g for which the graph has an all-pairs set
of paths P with vertex congestion g. Clearly, g > n since each vertex belongs to at least
n paths in P and ¢ < n? since each vertex appears at most once on each path and there
are n? paths in P. The edge congestion g, is similarly defined, but with respect to the edge

congestion of a set of paths P.

d-regular expanders.

For each set of vertices S C V, the edges with one endpoint in S and another in V' \ S are
called cut edges and denoted E(S,V \ S) = {(u,v) € E | u € S,v € S}. The graph is a
p-expander if |[E(S,V \ S)| > 8- |5], for all S CV with 0 < |S| < n/2 (see, e.g. [15]). The

graph is d-regular if each vertex has degree d.

Distance.

For each u,v € V| let dist(u,v) be the length of the shortest path from u to v.

3.3 Our results

Our main result is the following theorem, which provides a lower bound on the quantum

query complexity of local search in terms of congestion.

Theorem 3.3.1. The quantum query complexity of local search on an undirected graph

G = (V, E) with n vertices and vertex congestion g is §) (”i;;).

This bound is the square root of the similar bound of Q (n'®/g) on the classical randomized
query complexity of local search found by [56] and uses a similar construction. This is a
natural relationship for quantum and classical bounds to have with each other, which suggests

that if either bound is later improved, the other can be improved by the same means.

On constant degree expanders, we get the following corollary:
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Corollary 7. The quantum query complexity of local search on an undirected d-regqular graph

G = (V, E) with n vertices and expansion 3, where d and 3 are constants, is ( ”10‘2; )).
og(n

Proof. By Lemma 44, such graphs have congestion g € O(nlog(n)). Therefore by Theo-

rem 3.3.1, the quantum query complexity on such graphs is 2 ( T;O'QE )). O
og(n

We compare this bound to the quantum extension of Aldous’ upper bound detailed in [3]:

Lemma 38 ([3], theorem 3.2). The quantum query complexity of local search on an undi-

rected graph G = (V, E) with n vertices and mazimum degree ¢ is O (n1/361/6).

In the case of constant degree, this bound simplifies to O(n'/?). This still leaves a polyno-
mial gap between the upper and lower bounds for quantum local search on constant degree
expanders, in contrast to the classical case where the remaining gap is only logarithmic.

Closing this gap remains a subject for future work.

3.4 Preliminaries

The strong weighted adversary method

The strong weighted adversary method that we use [2] is given by the next lemma.

Lemma 39 (The strong weighted adversary method [2]). Let A, B be finite sets and X C BA
a set of functions mapping A to B. Let H : X — {0, 1} be a map that assigns to each function
in X the label O or 1. We are given oracle access to a function Fy € X and the problem is

to compute the label H(Fy) using as few queries as possible.

Let r : X x X — Rsq be a non-zero symmetric function of our choice with r(Fy, Fy) = 0

when H(Fy) = H(Fy). Additionally, define

o 7 XXXXA— Rsg such that ' (Fy, Fy,a)-r'(Fy, Fy,a) > r2(Fy, F) forall Fy, Fy € X
and all a € A with Fi(a) # Fy(a).

o M:X — R such that M(Fy) = Y p,ex 7(F1, F2) for all Fy € X and all a € A.
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o v: X x A= R such that v(Fi,a) = Y pex v (F1, Fy,a) for all Fy € X and all a € A.

Then the quantum query complexity of the problem is at least:

popmin \l ](\é(ﬂij\?}(fﬂ) ) (3.1)
JoeX, acA:

1r(F2‘1,F2)>0 1% 1,Q)V 2,04

F1(a)#F>(a)

Family of input functions

Next we explain the construction from [56] that we use.

Since the graph G has vertex congestion g, there is an all-pairs set of paths P = {P“"}

u,vE[n]

with vertex congestion g !.

For each u,v € [n], let q,(u) be the number of paths in P that start at vertex u and contain
v

qQo(u) = {P“" € P:w € [n],v € P“"}|. (3.2)

Let L € [n], with L > 2, be a parameter that we set later.

Given a sequence of k vertices x = (z1,...,2y), we write x;_; = (21,...,;) to refer to a

prefix of the sequence, for an index j € [k].

Given a walk @ = (vy,...,v;) in G, let Q; refer to the i-th vertex in the walk (i.e. Q; = v;).

For each vertex u € [n], let u(Q@,u) be the number of times that vertex u appears in Q.

Definition 3.4.1 (Staircase). Given a sequence X = (x1,...,xx) of vertices in G, a staircase
induced by x is a walk Sx = Sx10...0 Sxi—1, where each Sx; is a path in G starting at
verter x; and ending at Tiy1. Each vertex x; is called a milestone and each path Sx; a

quasi-segment.

4That is, each vertex is used at most g times across all the paths.
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The staircase Sy is said to be induced by x and P = { P*"}
for allie [k —1].

if additionally Sx; = P™ "t

u,vE(n]

Definition 3.4.2 (Tail of a staircase). Let Sx = Sx10...0Sx,-1 be a staircase induced by
some sequence X = (x1,...,xx) € [n]*. For eachj € [k—1], let T = Sxj0...0Sx,_1. Then
Tail(j, Sx) is obtained from T by removing the first occurrence of x; in T (and only the first
occurrence). We also define Tail(k, Sx) to be the empty sequence.

Next we define a set of functions X'.

Definition 3.4.3 (The functions fx and gyp; the set X). Suppose P = {P""},vem) @5 an
all-pairs set of paths in G. For each sequence of vertices x € {1} x [n]L, define a function

fx:[n] = {=n*—=n,...,0,...,n} such that for each v € [n]:
o Ifu ¢ Sk, then set fx(v) = dist(v, 1), where Sx is the staircase induced by x and P.

o Ifuv e Sy, then set fx(v) = —i-n —j, where i is the mazimum index with v € P¥"+1,

and v is the j-th vertex in P™it1,
Also, for eachx € {1}x[n]* andb € {0,1}, let gxp : [n] = {—n?*—n,...,0,...,n}x{-1,0,1}

be such that, for all v € [n]:

(few),b)  ifo=ar
(fx(v), —1) ifv#xpa

Ix,b (v) =

Let X = {gx,b | x € {1} x [n]" and b € {0, 1}}.

By Lemma 41 and Lemma 42, each such function f,., has a unique local minimum at x,.

3.5 Quantum lower bound for local search via congestion

Theorem 3.3.1. The quantum query complexity of local search on an undirected graph

G = (V, E) with n vertices and vertex congestion g is (”j};)
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Proof. Let L = y/n. For each function in X, its underlying staircase has L+ 1 milestones and
L quasi-segments. For all sequences of milestones x,y let Jxy be the number of milestones

in the shared prefix of x and y.

We borrow the relation function defined in [56] as a component r* for our relation function r.
Let r* : X x X — Rs( be a symmetric function defined as follows. For each x,y € {1} x [n]*

and by, by € {0,1}, we have

. 0  if at least one of the following holds: b; = by or x is bad or y is bad.
r (gx,bl ) gy,bg) = .
n)  otherwise, where j is the maximum index for which x;_,; = y1;.

We then define our relation function r as follows:

0 ifx=y
T(gX,bl 9 gy,bz) -
r* (gx,bl ) gy,bg) otherwise

For all gxp,, Gy, € X and v € V' we define 17'(gxp,, Gy.05 v) as follows:

0 if Jx,by ('U) = Jybs ('U) or H(gx,h) - H(gy,bz)

/ T(Gxbrs Gy o) - g/n'?  otherwise, if v € Tail(Jxy, Sx) \ Tail(Jxy, Sy)
r (gx,bl 3 gy,bza U) =
7(Gx b1 > Jy.ba) - n'®/g otherwise, if v € Tail(Jx,y, Sy) \ Tail(Jxy, Sx)

7“(gx,bl ) gy,bQ) otherwise

The functions r and ' constitute a weight scheme for use with the strong weighted adversary

method.

Take an arbitrary choice of gxp,,gyp, € X and v € V such that 7(gxp,, gyp,) > 0 and
Gxby (V) # gy (V). Since 7(gxp,; Gyp,) > 0, we have that both gxp, and gy, are good.
Therefore by Lemma 40 we have M (gxp,) > 5 Ln*™ and M(gys,) > 5 Ln™™.

Next we bound v(gxp,,v):
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Case 1: v € Tail(Jxy, Sx)

L+1
V(G s v Z Z "(Gx.br> Gy bas V) (By definition of v(gxp,,v).)
J=1 gy py €X:
Jx y:J
nt + Z Z gx b1 9y,bay U )
J=1 gy by €X:
Jx,y=i

(Since exactly one gy, has Jxy = L+ 1 and by # bs.)

L L
A5 Z Z n + Z Z 0 -g/n1'5

=1 gy p,€X: =1 gy pedt
Jx,y=] Ix,y=]
veTail(j, Sy) v¢Tail(j, Sy)
L L
L+1 L—j L—j—1 j L+1—j ] 1.
<" 3 (aue)nt I+ Log o n T Rl 3o nt gt
j=1 j=1

S nL—H +gnL 4 L2gnL—1 + LnL+lg/n1.5

< 4gn*

Case 2: v ¢ Tail(Jxy, Sx)

L+1
V(Gx by s ¥ Z Z "(gx brs Jy,bas V) (By definition of v(gxp,,v).)
J=1 gy p, €X:
Jx y:j
L+1 + Z Z gX b1 gy,b27 )
J=1 gy py €X:
Ix,y=]

(Since exactly one gy, has Jxy = L+ 1 and by # bs.)

L
_nL+1+Z Z nJ'n1.5/g
=1 gyp,€X:
Jx,y=]
veTail(j, Sy)

< LH—FZ(%% LJ+LgnLJ1)J 15/9
=1
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< Bt 4 ogn oS g+ Lrgntt . ntd g

< 3nL+1.5

Because gxp, (V) # gy.p,(v) and 7(gx b, gy.p,) > 0, we have v € Tail(Jxy, Sx) U Tail(Jxy).
Then

M (1) b1 gy b2 a2t
v(x,v) 4gn’ - max{4gn’, 3nt+15}
3 15
> \/64 mm{n ,n—}
9
n0'75

If g > n'?, then the claimed bound is less than or equal to (1), which is trivially true.

Otherwise, g < n'®, in which case this bound simplifies to:

0.75

$ M(gx,b1)M(9y7b2) > i I
v(x,v)v(y,v) — 8 /g

Since this holds for arbitrary choices of gx ,, gy b,, v such that r(gxp,, gy.p,) > 0and gxp, (V) # gy.p, (v),
this via Lemma 39 implies that the quantum query complexity of local search is Q(n"™/,/g).
[

Lemma 40. If gxp, € & is good, then 35, cx 7(9xb1: Gy,ba) = o - L-nttt

Proof. The bulk of the work has already been done by Lemma 43 from [56]. However, that
lemma used r* whereas our function r has value 0 when the milestones are equal. Here we

bridge that gap

Z T(gx,bugy,bz) Z Z T*<gx,b1agy7b2) - Z r*(gx,bugy,lh) (B\ definition of ])

Gy by €X Gy,by €X y,by €EX
y=x
1
> (LA -n" — ST  (genrs Gy ) (By Lemma 43)
© Gy by €X
y=x
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(By definition of r*, since exactly one y = x.)

Vv
|
h
N
~
=

3.5.1 Theorems from prior work

Definition 3.5.1 (Valid function [56]). Let x = (zo,...,z¢) be a walk in G. A function

f:V — R is valid with respect to the walk x if it satisfies the next conditions:

1. For all u,v € x, if max{i € {0,...,¢} | v = x;} < max{i € {0,...,¢} | u= mz}, then
f(v) > f(u). In other words, as one walks along the walk x starting from xy until x,,

if the last time the vertexr v appears is before the last time that verter u appears, then

fw) > f(u).
2. For allv € V \ x, we have f(v) = dist(xg,v) > 0.
3. f(z;) <0 forallie{0,..., ¢}

Lemma 41 ([56], lemma 6). If a function f is valid for a walk W = wy, ..., ws, then f has

a unique local minimum at ws.
Lemma 42 ([56], lemma 7). Every function fy is valid for the walk induced by x.
Lemma 43 ([56], lemma 14). If F} € X is good, then Y p,cx 7% (F1, F2) > 5= - (L41)-n*.

Lemma 44 ([56], corollary D.1). If G has expansion ( and is d-reqular where d and (3 are

constant, then G has vertex congestion at most O(nlog(n)).
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4. FROM SEARCH IN ROUNDS TO A DUALITY GAP IN
YAO’S LEMMA

This chapter is based on my paper “Searching, Sorting, and Cake Cutting in Rounds”, which
can be found at https://arxiv.org/abs/2012.00738.

4.1 Introduction

We explore the randomized and distributional query complexity of search problems in the
expected cost setting. This leads us to the discovery of a substantial gap between the
randomized and distributional query complexity of a natural function induced by a search

problem.

To make these concepts more precise, consider a function f : X, — Y, where X,, C {0,1}"
and Y, C {0,1}™ with m,n € N. Given as input a bit vector x = (z1,...,2,) € A,, an
algorithm can query a location j in x and receive the bit x; in one step. The goal is to

compute f(x) with as few queries as possible.

The randomized and distributional complexity [4] of computing the function f are defined
as follows. The randomized complezity with error §, denoted Rs(f), is the expected number
of queries issued on the worst-case input of an optimal randomized algorithm that computes
f with an error probability of at most ¢ € [0, 1] on each input. See Section 4.1.1 for precise

definitions.

When the input z is drawn from a distribution ¥, a deterministic algorithm A (not neces-
sarily correct on all inputs) has expected number of queries cost(A, ¥) and error probability
e(A, V). Let Ay s be an algorithm with error probability § and minimum expected cost for
distribution W. The distributional complexity with error §, denoted Ds(f), represents the
expected number of queries made on the worst case distribution ¥ by the best algorithm for

it: Ds(f) = supy {cost(A, U)}.
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For error probability § = 0, von Neumann’s minimax theorem [57] gives Ro(f) = Do(f)-
Clearly, we also have Ry (f) = D1(f) = 0. Forall § € [0,1/2], [4] showed Rs(f) > 1/2-Das(f).
58] showed an inequality in the other direction: Rs;(f) < 2Ds/s(f) for all 6 € [0,1]. [58]
also showed that Rs(f) < Ds(f) and observed that there can be a difference of additive 1
between Rs(f) and Ds(f) for § € [1/4,1/2] when the function is f : {0,1} — {0,1} with
f(z) ==

While the expected query complexity was the focus of Yao’s seminal paper [4], it has been
understudied since then. Most literature has focused on the worst-case cost setting, where
the randomized complexity is defined as the worst case cost incurred by the best algorithm
with error probability § and for this setting there is no gap between the two complexities [59].
In recent years, there has been renewed interest in the expected cost setting [60], as it has

important applications in complexity such as the randomized composition of functions.

Our work contributes to this area by showing that a natural search problem has a large
gap between the randomized and distributional complexity in the expected cost setting.
Specifically, we consider a natural function u,, induced by the problem of finding an element

z in an unordered array of size n. We show that for each 6 € (0, 1),

>,

. 6(un> o . _
nlgg() Rolun) 1+6 and nlg& Ds(un) — Rs(uy) = 0.

To the best of our knowledge, this is the first example demonstrating a substantial gap.
In fact, [60] asked whether there exist constants ¢,d > 0 such that Ds(f) < c¢- Rs(f) + d
for each partial function f and 0 > 0. Our results show that the two complexities can be
substantially different, in particular implying that if such constants ¢ and d exist, it must be

the case that ¢ > 2.

Connections to Cake Cutting and Rounds of Interaction:

The catalyst for our findings is a cake cutting problem that we believe is of independent

interest. Suppose we are given a cake represented as the interval [0, 1] and n players, each
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with an additive valuation over the cake induced by a private value density function. The
task is to compute a fair allocation using at most k£ rounds of interaction with the players.
Each round of interaction i consists of a batch i of queries issued simultaneously. Queries in
batch i can depend on the responses to queries from rounds j < i but not to queries from
rounds ¢ > i. When k£ = 1, all the communication between the algorithm computing the
allocation and the players takes place in one simultaneous exchange, while k = oo represents

the fully adaptive setting, where the algorithm issues one query at a time (see [61]).

We design an efficient protocol for proportional cake cutting in rounds, finding that this fair
division problem is equivalent to sorting with rank queries in rounds, where a rank query
has the form “Is rank(z;) < j?”. A lower bound for sorting with rank queries in rounds was
given in [62], while the first connection to proportional cake cutting was implicitly made in

[63)].

Inspired by the rank query model, we then consider two fundamental search problems that
are implicit in sorting: ordered and unordered search. In unordered search, we get an array
x = (x1,...,%,) and an element z promised to be in x. The size n is known, but 2z and the
elements of x are not and cannot be accessed directly. Instead, we have access to an oracle
O, that receives queries of the form: O, (i) =“How is z compared to the element at location
i?”, answering “=" or “#£”. The goal is to find the location of z with success probability at

least p € (0, 1] using at most k rounds of interaction with the oracle.

In ordered search, the setting is the same with the difference that (1) the array x =
(x1,...,xy,) is promised to be sorted and (2) the answer given by the oracle is one of “<”,

(13 7 [13 2
=" or “>".

4.1.1 Our results

Here we summarize our results after establishing the notation necessary for stating them.
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Notation.

For m,n € N, we consider functions of the form f : X, — Y, where &, C {0,1}" and

Ym C {0,1}™. For promise problems, as in our setting, the set X, is a strict subset of

{0,1}™.

For each = € {0,1}" and randomized algorithm R for computing f, the error probability of

R on input x € X, is

errg(R,x) = Pr[R(z) # f(2)] Vo e X,

where R(x) is the output of the algorithm and can be the empty string. For the functions

we consider, the empty string is never the right answer.

For each 0 € [0, 1], we consider the randomized complexity Rs(f) with error at most ¢ and

the distributional complexity Ds(f) with error at most §, formally defined as

Rs(f) = Rean&g) max cost(R, x) and Ds(f) = 51/.1Lp Dell)r(lﬁm) cost(D, 1), (4.1)

o R(f,0) is the set of randomized algorithms R such that err;(R,z) < ¢ for all z € X,,.
4 is a distribution over strings in A,; that is, > cx, p(x) = 1.
o D(f,0,p) is the set of deterministic algorithms D with E,.,[err;(D,z)] < 0.

o cost(R,x) is the expected number of queries issued by a randomized algorithm R on

input z.

o cost(D, ) represents the expected number of queries issued by a deterministic algo-

rithm D when given as input a string x drawn from the distribution .
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Unordered Search

The unordered search problem is formally defined as follows.

Definition 4.1.1 (Unordered search). The input is a bit vector x = (z1,...,x,) € {0,1}"
with the promise that exactly one bit is 1. The vector can be accessed via oracle queries of

the form: “Is the i-th bit equal to 1?7, The answer to a query is “Yes’ or “No”.

The task is to find the location of the hidden bit in at most k € N rounds of interaction with

the oracle. An index must be queried before getting returned as the solution .

Let unordered, j denote the unordered search problem on an input vector of length n in k

rounds. We have the following bounds for the randomized complexity of this problem.

Theorem 4.1.1 (Unordered search, randomized algorithms on worst case input). For all

k,n € N* and p € [0,1], we have: np(%) < Ry_p(unordered,, ;) < np(%) +p+p/n.

We also analyze the distributional complexity. We say the input is drawn from distribution
U = (Vy,...,7,) if the hidden bit is at location i with probability ¥;, where ¥; > 0 for all

j € [n] and 3oL, ¥y = 1. The distributional complexity is bounded as follows.

Theorem 4.1.2 (Unordered search, deterministic algorithms on worst case input distribu-

tion). For all k,n € N* and p € [0, 1]:

kE—1 kE—1
np(l T ~p) < D;_p(unordered,, ;) < np(l ST ‘p) +1+p+2/n. (4.2)

The uniform distribution is the worst case for unordered search.

Combining Theorem 4.1.1 and 4.1.2, we obtain that for each p € (0, 1), there exists ng =
no(p) € N such that for all k,n € N with n > ng, the multiplicative gap between the

11 This requirement is benign as it only makes a difference of 41 in the bounds.
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Figure 4.1. The query complexity of fully adaptive unordered search for
n = 2'0 elements, with success probability p ranging from 0 to 1. The X axis
is for the success probability p, while the Y axis is for the expected number of
queries. The randomized complexity is plotted in red (both upper and lower
bounds and they coincide) and similarly the distributional complexity in blue.

distributional and randomized complexity of unordered search in k rounds with success

probability p is

D;_p(unordered, ) L+ (k—1)(1—p)
R1_p(unordered,, x) N kE+1

+0(1). (4.3)

The gap in (4.3) grows from 1 to &~ (2 — p) as the number of rounds grows from k£ = 1 to
k =n.

Fully adaptive unordered search.

By taking £ = n, the bounds in Theorem 4.1.1 and 4.1.2 characterize the query complexity

of the fully adaptive unordered search problem, denoted unordered,,.

Corollary 8 (Fully adaptive unordered search). Let n € N* and p € [0,1]. The randomized
and distributional complexity of fully adaptive unordered search with success probability p

are:

o np ("TJ:}) < Ri_p(unordered,,) < np (’%1) +p+p/n.
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. np(l — "2—;01 -p) < D;_,(unordered,,) < np(l — "2—711 ~p) +1+p+2/n.

The randomized complexity is roughly np/2 and the distributional complexity roughly np(l—
).

Corollary 9 (Multiplicative and additive gap for fully adaptive unordered search). For each

success probability p € (0, 1], we have

D;_p(unordered,,)

lim

M R (unordered, ) =2—p and lim D;_,(unordered,,) — Ri_,(unordered,,) = oo .

(4.4)

Ordered Search

The ordered search problem is formally defined next. The difference from unordered search
is that the array is sorted and the oracle gives feedback about the direction in which to

continue the search in case of a “No” answer.

Definition 4.1.2 (Ordered search). The input is a bit vector x = (z1,...,z,) € {0, 1}" with
the promise that exactly one bit is set to 1. The vector can be accessed via oracle queries of
the form: “Is the i-th bit equal to 1?27, The answer to a query is: “Yes’, “No, go left”, or
“No, go right”.

The task is to find the location of the hidden bit using at most k € N rounds of interaction

with the oracle. An index must be queried before getting returned as the solution.

Let ordered,, , denote the ordered search problem on an input vector of length n in k£ rounds.
For ordered search the number of rounds need not be larger than [log,n], since binary
search is an optimal fully adaptive algorithm for success probability 1. We have the following

bounds.
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Theorem 4.1.3 (Ordered search, randomized and distributional complexity). For all k,n €

N* and p € [0, 1], we have:
kpn® — 2pk < Ri_p(ordered,, ) < D;_,(ordered,, ;) < k[pn%] +2.

Moreover, np < R;_,(ordered, ;) < D;_,(ordered, ;) < [np]. The uniform distribution is

the worst case for ordered search.

Theorem 4.1.3 shows that for ordered search in constant rounds, there is essentially no gap

between the randomized and distributional complexity.

Cake Cutting in Rounds and Sorting with Rank Queries

We consider the cake cutting problem of finding a proportional allocation with contiguous
pieces in k rounds. The cake is the interval [0, 1] and the goal is to divide it among n players
with private additive valuations. A proportional allocation, where each player gets a piece
worth 1/n of the total cake according to the player’s own valuation, always exists and can

be computed in the standard (RW) query model for cake cutting.

We establish a connection between proportional cake cutting with contiguous pieces and
sorting in rounds in the rank query model. In the latter, we have oracle access to a list x
of n elements that we cannot inspect directly. The oracle accepts rank queries of the form

” o w_ M« ”2

“How is rank(x;) compared to j?”, where the answer is “<” “=", “or >"2,
Theorem 4.1.4. (Informal). For all k,n € N*, the following problems are equivalent:

o computing a proportional cake allocation with contiguous pieces for n agents in the

standard (RW) query model

o sorting a vector with n elements using rank queries.

21Equivalently, the queries are “Is rank(z;) < j?”, where the answer is Yes or No.
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The randomized query complezity of both problems (for constant success probability) is @(k~

1
nHE).

We prove Theorem 4.1.4 in Section 4.6. We design an optimal protocol for proportional
cake cutting in k rounds. En route, we re-examine the implicit reduction from sorting with
rank queries to proportional cake cutting as presented in Woeginger (2007), and make it

completely precise.

[62] gave a lower bound of Q(kn'T%) for sorting a vector of n elements with rank queries in
k < logn rounds. We also show a slightly improved deterministic lower bound for sorting

with rank queries that has a simpler proof.

Finally, to highlight the connection to Ordered Search, we point out that an operation
implicit in sorting with rank queries is Locate: given a vector x = (z1,...,x,) and an
element zj, find its rank via rank queries. Locate with rank queries is equivalent to the

ordered search problem.

4.1.2 Related work

Parallel complexity.

Parallel complexity is a fundamental concept with a long history in areas such as sorting
and optimization; see, e.g. [64] on the parallel complexity of optimization and more recent
results on submodular optimization [65]. An overview on parallel sorting algorithms is given
in the book [66] and many works on sorting and selection in rounds [61, 67-71], aiming
to understand the tradeoffs between the number of rounds of interaction and the query

complexity.

[61] initiated the study of parallelism using the number of comparisons as a complexity
measure and showed that p processor parallelism can offer speedups of at least O(@)
for problems such as sorting and finding the maximum of a list of n > p elements. The

connection to the problem of sorting in rounds is straight-forwards since one parallel step of
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the p processors (e.g. p comparisons performed in parallel) can be viewed as one round of
computations.

32k—1_4
[72] showed that O(n k-1 log n) comparisons suffice to sort an array in k rounds. [73]

showed a bound of O(n*?logn) for two rounds. [67] made a connection between expander
graphs and sorting and proved that O(nH%(log n)z_%) comparisons are enough. This was
improved to O(n?’/ 2%) in [74], which also showed that Q(n'*'/*(log n)/*) comparisons
are needed.

[68] generalized the latter upper bound to O(n”l/ k%

) for £ rounds. The best
upper bound known to us is due to [70], which obtained a k-rounds algorithm that performs
O(n1+1/ ’“+0(1)> comparisons. For randomized algorithms, [75] obtained an algorithm that
runs in k rounds and issues O(n”l/ ’“) queries, thus demonstrating that randomization helps

in the comparison model. Local search in rounds was considered in [76].

Randomized complexity.

The expected cost setting that we consider is the one studied in [4]. However, most of the
literature since then has focused on the worst case setting, where the cost of an algorithm
is the worst case cost among all possible inputs and coin-flips (for randomized algorithms).
In more detail, consider a function f : X, — V,,, with m;n € N and X, C {0,1}" and
Vm € {0, 1}

The worst-case randomized complexity for error d, denoted 7/2\5( f), is defined as the maximum
number of queries issued by a randomized algorithm R, where the maximum is taken over
all inputs x € X, and coin-tosses, and R has the property errp(R,z) < § for all z €
X,,. The worst-case distributional complexity for error ¢, denoted 755( f), is the maximum
number of queries issued by an optimal deterministic algorithm A that computes f with
error probability 0 when the input is drawn from a worst case input distribution ¥, where

the optimality of A is with respect to W. It is known that: Rs(f) = Ds(f) [59].
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In recent work, [60] also focus on the expected cost setting and analyze the gap between the
expected query complexity of randomized algorithms on worst case input and the expected
query complexity of randomized algorithms on a worst case input distribution, in the regime

where the error probability is § ~ 1/2.

Group testing.

In fault detection, the goal is to identify all the defective items from a finite set items via a
minimum number of tests. More formally, there is a universe of U of n items, d of which are
defective. Each test is executed on a subset S C U and says whether S is contaminated (i.e.
has at least one defective item) or pure (i.e. none of the items in S are defective). Questions
include how many tests are needed to identify all the defective items and how many stages
are needed, where the tests performed in round £+ 1 can depend on the outcome of the tests
in round k. An example of group testing is to identify which people from a set are infected
with a virus, given access to any combination of individual blood samples; combining their
samples allows detection using a smaller number of tests compared to checking each sample

individually.

logn
logd

The group testing problem was posed in [77] and a lower bound of (d2 ) for the number
of tests required in the one round setting was given in [78]. One round group testing algo-
rithms with an upper bound of O(d?logn) on the number of tests were designed in [79-82].
Two round testing algorithms were studied in [83, 84]. The setting where the number of

rounds is allowed is given by some parameter r and the number of defective items is not

known in advance was studied in [85-88]; see [89] for a survey.

Fair division.

The cake cutting model was introduced in [90] to study the allocation of a heterogeneous
resource among agents with complex preferences. Cake cutting was studied in mathematics,

political science, economics [91-93], and computer science [94-96]. There is a hierarchy of
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fairness notions such as proportionality, envy-freeness (where no player prefers the piece of
another player), equitability, and necklace splitting [97], with special cases such as consensus

halving and perfect partitions. See [98, 99] for surveys.

Cake cutting protocols are often studied in the Robertson-Webb [63] query model, where a
mediator asks the players queries until it has enough information to output a fair division.
[100] devise an algorithm for computing a proportional allocation with connected pieces that

asks O(nlogn) queries, with matching lower bounds due to [63] and [101].

For the query complexity of exact envy-free cake cutting (possibly with disconnefted pieces),
a lower bound of Q(n?) was given by [102] and an upper bound of O(n"”nn ) by [103].
[104] found a simpler algorithm for 4 agents. An upper bound on the query complexity
of equitability was given by [105] and a lower bound by [106]. [107] analyzed the query

complexity of envy-freeness, perfect, and equitable partitions with minimum number of cuts.

The issue of rounds in cake cutting was studied in [108], where the goal is to bound the
communication complexity of protocols depending on the fairness notion. The query com-
plexity of proportional cake cutting with different entitlements was studied by [109]. The
query complexity of consensus halving was studied in [110] for monotone valuations, with
an appropriate generalization of the Robertson-Webb query model. The query complexity

of cake cutting in one round, i.e. in the simultaneous setting, was studied in [111].

Many other works analyzed the complexity of fair division in models such as cake cutting,
multiple divisible goods, and indivisible goods. The complexity of cake cutting was studied,
e.g., in [112-121]. Indivisible goods were studied, e.g., in [122] for their query complexity
and in [123, 124] for algorithms. Cake cutting with separation was studied in [125], fair
division of a graph or graphical cake cutting in [126, 127], multi-layered cakes in [128], fair
cutting in practice in [129], and cake cutting where some parts are good and others bad in
[130] and when the whole cake is a “bad” in [131]. Branch-choice protocols were developed
and analyzed in [132] as a simpler yet expressive alternative for GCC protocols from [133]. A
body of work analyzed truthful cake cutting both in the standard (Robertson-Webb) query
model [134, 135] and in the direct revelation model [136-139].
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4.2 Ordered search

In this section we focus on ordered search and prove Theorem 4.1.3. The omitted proofs of

this section can be found in Section 4.4.

4.2.1 Deterministic ordered search algorithm on worst case input

We first design a deterministic algorithm D¢ for ordered search that always succeeds and

asks at most k[n+] queries on each input.

Proposition 4.2.1. For each n € N* and k € [[logn]], there is a deterministic k-round
algorithm for ordered search that succeeds on every input and asks at most k[n%] queries in

the worst case.

The algorithm D° that achieves this upper bound issues nk queries in the first round, which
are as equally spaced as possible, partitioning the array in n"% blocks. If the element is found
at one of the locations queried in the first round, then D° returns it and halts. Otherwise,

D? recurses on the block that contains the solution in the remaining £ — 1 rounds.

4.2.2 Randomized ordered search algorithm on worst case input

Using D°, for each p € (0,1], we design a randomized algorithm R° that succeeds with

probability at least p and asks at most pk fnﬁ queries in expectation.
Proposition 4.2.2. Let p € (0,1] and k,n € N*. Then Ry_,(unordered, ;) < pk[n*].
The randomized algorithm R° has an all-or-nothing structure:

 with probability 1 — p, do nothing (i.e. output the empty string);

o with probability p, run the deterministic algorithm D¢ from Proposition 4.2.1.

164



4.2.3 Deterministic ordered search algorithm on worst case input distribution

Next we upper bound the distributional complexity of ordered search.

Proposition 4.2.3. Let p € (0,1] and k,n € N*. Then D;_,(ordered, ;) < k[pn¥] + 2.

Moreover, D;_,(ordered,, ;) < [np].

Proof sketch. We include the proof sketch, while the formal details can be found in Sec-
tion 4.4.

Using D° and R°, we show how for each p € (0, 1], if the input is drawn from an arbitrary
distribution ¥ = (¥y,..., V¥, ), one can design a deterministic algorithm D, that asks at most
k fpnﬂ + 2 queries in expectation and succeeds with probability at least p. The distribution-
dependent deterministic algorithm Dy, will simulate the execution of R using the following

steps.

Step 1. Given V¥, define probability density v : [0,1] — R by v(xz) = n¥; Vi € [n] Vz €
4]
Let C denote the circle obtained by bending the interval [0,1] so that the point 0
coincides with 1. A fixed point theorem (Lemma 67) ensures there is a point ¢ € [0, 1]

such that the interval [c, ¢ + p] on the circle C has probability mass p (and length p).
That is:
(a) [P u(x)dr = p, where 0 < ¢ < 1—p;or

(b) [y v(z)dx + fcﬂrl_pv(:v) dr =p, where 1 —p <c< 1.

Step 2. The points ¢ and ¢ + p can be mapped to indices i € [n] and j € [n], respectively,

so that one of the following conditions holds:
® yy = [Ti,..., ;] has length ~ np and probability mass S U, & p; or

® yy = [%1,...,%:,%j,. .., T, haslength ~ np and probability mass Zigzl \I/g+Z?:j v, ~
.
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Figure 4.2. TIllustration for case (a) in step 1. Given ¥ = (¥,

c
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..., ¥,), define
v :[0,1] = R>g by v(z) =n -V, forall £ € [n] and x € [(¢ — 1)/n,¢/n]. The left
figure shows the point ¢ with |, P v(x)dz = p. The right figure shows the queried
sub-array yy = [z1,

Zp|, of length ~ np and probability mass ~ p.

Step 3. In the first round, algorithm Dy queries locations i and j, as well as ~ pn% other

equally spaced locations in the sub-array yy. These queries create approximately pn%
blocks of size roughly (z%) ~n'% ecach. Then:

e If the first round queries reveal the hidden element is not in yg, then Dy gives up

right away (i.e. outputs the empty string).

e Else, if the element is found at a location queried in round 1, then Dy returns it
and halts.

e Else, in the remaining £ — 1 rounds, run D° on the block identified to contain the
element.

Expected number of queries of Dy,.

The block identified at the end of the first round has length ~ n'e. Moreover, Dy, continues

to the second round with probability ~ p. Thus the success probability is roughly p and the
total expected number of queries is approximately

(pn%+2> +p-(/’f—1)(n%)ﬁ = pknt +2.

In summary, the deterministic algorithm DY, is able to generate an event of probability ~ p

via the first round queries while also pre-partitioning a relevant sub-array. If the event does
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not take place, then Dg gives up. Otherwise, it runs an optimal deterministic (k — 1)-round
algorithm on the block identified via the first round queries. This strategy enables Dy, to
simulate the all-or-nothing structure of the optimal randomized algorithm and catch up with

it fast enough so that the query complexity remains essentially the same. O

4.2.4 Lower bounds for ordered search

We prove the next lower bound for randomized algorithms that succeed with probability p.

Proposition 4.2.4. Let k,n € N* and p € (0,1]. Then Ry_,(ordered,, ;) > pkn® — 2pk for
k> 2 and Ri_,(ordered,, ;) > np.

This lower bound has the same leading term as the upper bound achieved by Dy, thus show-
ing that the randomized and distributional complexity have the same order. The uniform

distribution is the worst case.

We prove Proposition 4.2.4 by induction on the number k of rounds. The induction step
requires showing polynomial inequalities, where the polynomials involved have high degrees
that are themselves functions of k. For k > 4, the roots of such polynomials cannot be
found by a formula. To overcome this, we use delicate approximations of the polynomials by
simpler ones that are more amenable to study yet close-enough to the original polynomials

to yield the required inequalities.

Finally, we obtain the proof of Theorem 4.1.3 by combining the upper bound from Proposi-
tion 4.2.3 and the lower bound from Proposition 4.2.4.

4.3 Unordered search

In this section we analyze the unordered search problem and prove Theorems 4.1.1 and
4.1.2, which quantify the randomized and distributional complexity of unordered search

algorithms, respectively. Theorem 4.1.1 will follow from Propositions 4.3.1 and 4.3.3 stated
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next. Theorem 4.1.2 will follow from Propositions 4.3.2 and 4.3.4. The omitted proofs of

this section are in Section 4.5.

4.3.1 Deterministic and randomized algorithms for unordered search on a worst
case input

The maximum number of rounds for unordered search is n. Since with each location queried
the only information an algorithm receives is whether the element is at that location or not,
a k-round deterministic unordered search algorithm that succeeds on every input cannot do
better than querying roughly n/k queries in each round until finding the element. This gives
a total of n queries in the worst case. However, randomized algorithms can do better by

querying locations uniformly at random.

Proposition 4.3.1. Letp € (0,1] and k,n € N*. Then Rq_,(unordered,, ) < np-E+p+2.
The optimal randomized algorithm given by Proposition 4.3.1 has an all-or-nothing structure:
(i) with probability 1 — p, do nothing;

(ii) with probability p, select a uniform random permutation ® over [n|. For all j € [k],
define S; = {®y, ..., Ty, }, where m; = [nj/k]. In each round j, query the locations of
Sj that have not been queried in the previous j — 1 rounds. Once the element is found,

return it and halt.

4.3.2 Deterministic algorithms for unordered search on random input

We have the following upper bound on the distributional complexity of unordered search.
Proposition 4.3.2. Let p € (0,1] and k,n € N*. Then

k—1 2
D,_,(unordered,, ) < np(l — 5 ~p) +14+p+ -
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Since the unordered search problem has less structure than ordered search, a deterministic
algorithm receiving an element drawn from some distribution ¥ will no longer be able to
extract enough randomness from the answers to the first round queries to simulate the
optimal randomized algorithm. Instead, the optimal deterministic algorithm will establish
in advance a fixed set of np locations and query those in the same manner as step (ii) of the

optimal randomized algorithm.

However, since the search space becomes smaller as an algorithm checks more locations, the
fact that the deterministic algorithm is forced to stop after at most np queries regardless of
whether it found the element or not (to avoid exceeding the optimal expected query bound),
is a source of inefficiency. This is the main reason for which a deterministic algorithm
receiving a random input cannot do as well as the optimal randomized algorithm that decided

in advance to either do nothing or search all the way until finding the solution.

4.3.3 Lower bounds for unordered search

Finally, we lower bound the randomized and distributional complexity of unordered search.

Proposition 4.3.3. Let p € (0,1] and k,n € N*. Then R,_,(unordered, ;) > np - ’%kl

Proposition 4.3.4. Letp € (0,1] and k,n € N*. Then D;_,(unordered,, ;) > np (1 — %p)

Roadmap to the proof sections

Section 4.4 contains the analysis of ordered search. Section 4.5 contains the analysis for
unordered search. Section 4.6 contains the analysis for cake cutting and sorting in rounds.

Section 4.7 contains folklore lemmas that we use.

4.4 Ordered search Proofs

In this section we include the omitted proofs for ordered search, which constitute the proof

of Theorem 4.1.3.
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4.4.1 Ordered search upper bounds

In this section we describe an optimal deterministic algorithm for a worst case input, an
optimal randomized algorithm for a worst case input, and an optimal deterministic algorithm

for an arbitrary input distribution.

Deterministic algorithms for a worst case input.
The optimal deterministic algorithm for a worst case input is given in the next proposition.
Proposition 4.2.1 (restated). For each n € N* and k € [[logn]], there is a deterministic

k-round algorithm for ordered search that succeeds on every input and asks at most kfnﬂ

queries in the worst case.
Proof. We design a k-round algorithm recursively, using induction on k.

Base case: k= 1. Let A; be the following algorithm:

o Query all the elements of the array simultaneously. Return the correct location based

on the results of the queries.

Then A; runs in one round, succeeds on every input, and the number of queries is at most

n.

Induction hypothesis. For k > 2, assume there is a (k — 1)-round algorithm A;_; that always

succeeds and asks at most (k —1) - (nk%ﬂ queries on each array of length n.

Induction step. Using the induction hypothesis, we will design a k-round algorithm A,
with the required properties. For each s € [n], write n = s - us + v,, for u, = [ and

vs =n (mod s). Let Ag(s) be the following algorithm:
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(i) In round 1, query locations ij,...,is € [n] with the property that 1 <i; < ... <ig =
n. Let iy = 0. Then these queries create s contiguous blocks By, ..., B, such that

Bj = [ij—l + 1,ij] fOI'j € [S]

For each j € [s], set the size of each block B; to [ 2] if j < s—v, and to [2]if j > s —v,.

This uniquely determines indices iy, ..., is.

If the element searched for is found at one of these s locations, then return that location
and halt. Otherwise, identify the index ¢ € [s] for which the block B, contains the

answer.

(ii) Given index ¢ from step (i) such that block B, = [i,_1 + 1, is] contains the answer, we
observe that position i, is the only one from block B, that has been queried so far. If
i, —1>i1+1,let B, = lir_1 + 1,1, — 1] and run algorithm A;_; on block By. Else,
halt.

We first show algorithm Ag(s) is correct for every choice of s, and then obtain A; by

optimizing s.

Algorithm A(s) is correct if the choice of indices iy, . ..,is is valid. This is the case if the

sizes of the blocks By, ..., B, sum up to n. We have >, |Bj| = [n/s] - (s —vs) + [n/s] - vs .

(a) If vy =0 then |n/s| = [n/s| = ug, so the sum of block sizes is .i|Bj| = us - (s —vs) +

j=1
Ug Vg =M.

(b) If vy >0 then [n/s] = us+ 1,50 Y5 |Bj| = ug- (s —vs) + (us + 1) -vs = us- s+ v, =n.

Combining (a) and (b), we get that the block sizes are valid. Thus A(s) does not skip any

indices, so it always finds the element.

Next we argue that there is a choice of s such that by setting Ay = Ax(s), we obtain a

k-round algorithm that issues at most k[n*] queries.
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For a fixed s € [n], the array size at the beginning of round 2 is at most m(s) = max;cq|Bj| —
1, since the rightmost element of each block Bj has been queried in round 1 while the rest
of block Bj has not been queried. Then m(s) = max { 2] =1, 1%] = 1} =[%] -1

S

The total number of queries of algorithm 4j(s) is at most
1 n =
f(s) = s+ (k= 1) [m(s)™T] = s+ (k= 1)- RH —1) W . (4.5)

Taking s = [n+] in (4.5), we get

Setting A = A Mﬂ), we obtain a correct k-round algorithm that issues at most & - (nﬂ

queries on every array with n elements. This completes the induction step and the proof. [

Randomized algorithms for a worst case input.

Building on the optimal deterministic algorithm for worst case input, we design next an

optimal randomized algorithm.

Proposition 4.2.2 (restated). Let p € (0,1] and k,n € N*. Then Ri_,(unordered, ;) <
pkni].

Proof. Consider the following randomized algorithm:

o With probability p, run the deterministic algorithm Ay from Proposition 4.2.1.
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o With probability 1 — p, do nothing.

On each input, by Proposition 4.2.1, this algorithm succeeds with probability p and issues

at most pk (nﬂ queries in expectation, as required. ]

Deterministic algorithms for a random input.

We consider first the case of £ = 1 rounds. With one round, there is no distinction between

ordered and unordered search.

Proposition 4.4.1. Let p € (0,1] and n € N*. Then
D;_p(unordered,, 1) < [np] and D;_p,(ordered, 1) < [np]. (4.6)

Proof. Sort the elements of x in decreasing order by W and let  be the permutation obtained,
that is, Wy, > ... > W, . Let £ be the smallest index for which ¢, U, > p. Let ¢ =
¢ Wy > p. Consider the following algorithm A:

o Query elements xy,,...,xy,, i.e. compare each of them with z. If there is i € [¢] such

that z = x4, then return m;.

By choice of £, the success probability of this algorithm is ¢ > p. The number of queries is /.
Let m = [np]. Then (m—1)/n < p < m/n. By Lemma 65, we have Wy +...+¥, > m/n.
Since ¢ is the smallest index with Wn + ...+ Wy, > p, it follows that ¢ < m = [np]. ]

Using the deterministic algorithm of Proposition 4.2.1 and the randomized algorithm of
Proposition 4.2.2, we can now design a deterministic algorithm that is designed to be optimal

when the input is drawn from a distribution .

Proposition 4.2.3 (restated). Letp € (0,1] and k,n € N*. Then D;_,(ordered,, ) <
k[pn¥] + 2. Moreover, D;_p(ordered,, 1) < [np].
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Proof. The upper bound of D,_,(ordered, ) < [np] for k = 1 rounds holds by Proposi-

tion 4.4.1. Thus from now on we can assume k > 2.

At a high level, given input distribution ¥, the deterministic algorithm for this distribution

will consists of two steps:

o First, observe there exists an interval [i,j] on the array viewed on the circle (i.e. where
index n + 1 is the same as index 1) that has probability mass roughly pn and length

roughly pn as well. Find this interval offline without any queries.

e Second, use the interval identified in the first step to generate an event with probability

p, thus simulating the randomized algorithm from Proposition 4.2.1.

Formally, given input distribution W, define a probability density function v : [0,1] — Rx
by
v(z)=n-¥; Vie[nlandz e [i—-1)/n,i/n].

Then [y v(z)dr =", L -n¥; = X" ¥; = 1. By Lemma 67, there exists a point ¢ € [0, 1]

such that one of the following holds:
(a) [P u(z)dr = p, where 0 < ¢ < 1— p;

[

(b) Jfyv(z)dx + fclﬂ,pv(a:) dr = p, where 1 —p <c < 1.

Case (a).
In this case there exists ¢ € [0,1 — p] such that [P v(z)dz = p.
We first make a few observations and then define the protocol. Let i,j € [n] be such that

1i—1 1 j—1 i
<c< — and ‘]—§c+p<i.
n n n n

Let T'=j—i+1. Then np < T < np+ 2. Since each interval [(¢ — 1)/n,{/n] corresponds to

element x, of the array, we have Zje:i W; > p. By choice of i and j, we have:
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e the sub-array y = [z, ..., ;] has length 7" < np + 2 and probability mass S W > p.

e if 7> 2, the sub-array ¥ = [%it1,...,2j—1] has length 7' — 2 < np and probability mass

j—1
Ze:i+1 U; < p.
c c+p
: : |
0 i1 i j-1 i 1 Xy e X xX; Xn
n n n n

Figure 4.3. Given distribution ¥ = (¥y,...,¥,,), define probability density v :
[0,1] — R>g by v(z) = n- Wy for all £ € [n] and = € [(¢ — 1)/n,¢/n]. The left
figure shows an interval [c, ¢ + p] of length p and probability mass [ v(z) dz = p.
The right figure shows the queried sub-array y = [zj,...,x;], which has length
T=j—i+4+1 < np+ 2 and probability mass Zje:i W, > p. When T > 2, the sub-

LU <p.

array y = (Ziy1,...,2j—1) has length T—2 < np and probability mass ng;iﬂ

Let A be the following k-round protocol:

Step a.(i) If T < 2: query locations i and j in round 1. If the element is found, return it
and halt.

Else: since the element is guaranteed to be in the array x, it must be the case that
T >3 Letr=1Ip- nﬂ. Query in round 1 locations i and j, together with

additional locations tq,...,t, set as equally spaced as possible.

More precisely, require i+ 1 <t; < ... <t, =j— 1, with {y = i. For each ¢ € [r],
let

B, = [x(t5_1+1)7 s 7xtg]
be the ¢-th block created by the queries t1, ..., t,.. Define indices t1, ..., t, so that

each block B, has size at most [?W, which is possible since the sub-array y has

length 7" — 2 and there are r blocks.

If the element is found at one of the indices i, j, t1, ..., %, queried in round 1, then

return it and halt. Otherwise, continue to step a. (7).
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Step a.(ii) If the answers to round 1 queries show the element is not at one of the indices
[i,...,]], then halt. Else, let B, = [(, ,11),--., %] be the block identified to contain
the element, where location ¢, has been queried. Run the (k — 1)-round deterministic
protocol from Proposition 4.2.1 on the sub-array ¥ = [2(, ,4+1),---,%@-—1)], Which

always succeeds and asks at most (k — 1) - (len(y))ﬁ queries.

We now analyze the success probability and expected number of queries of algorithm A

described in steps a. (i-7i).

Success probability. The algorithm is guaranteed to find the element precisely when it is lo-
cated in the sub-array [z;, ..., x;]. Since Zje:i U, > p, the success probability of the algorithm

is at least p.

Expected number of queries. We count separately the expected queries for round 1 and the

remainder. The number of queries issued in round 1 is at most
24r=2+4[p-nr]. (4.7)

The algorithm continues beyond round 1 when the element is in the sub-array y = [zi11, . . ., Tj-1],

which has length T' — 2 < np and probability mass ng: 1 <P

Thus with probability at least 1 — p, the algorithm halts at the end of round 1. With
probability at most p, it continues beyond round 1 by running step a.(i7). The number of

queries in step a. (%) is bounded by

1

(k= 1D([(T=2)/r] = 1)~

by Proposition 4.2.1 since len(y) < (%} — 1. SinceT -2 <mnpandr = [p-n

==
—
-+
=
@

expected number of queries from step a.(7i) can be bounded by

p e (172 v ompaon ([ L22] )7

r
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1
<p-(k-1) ({ np -‘ — 1) (Since T' — 2 < np)

[p-nt]
np = ,
<p-(k—1)- G } - 1) (Since — 2 < —787)
p-nk
np ﬁ 1
Sp'(k—l)-< ) —p (k= 1)t (18)
p-nx

Combining (4.7) and (4.8), the expected number of queries of algorithm A is at most

=

24 [p-nil+p-(k—1)-nt <k[pni]+2. (4.9)

Case (b).

In this case, there exists ¢ € (1 —p, 1) such that [j v(z)dz + fclﬂ,pv(x) dr =p. Let i,j € [n]
be such that (i—1)/n <c¢<i/nand (j—1)/n <c+p—1<j/n. By choice of i and j, we
have np < T < np+ 2. Then

e the sub-array y = [z1,...,2:,2j,...,%,) has length T =n+i—-j+1 < np+ 2 and
probability mass 3)_, ¥, + > Ve = p.

e the sub-array y = [z1,...,%i_1, Tj+1, . . ., L) has length T'— 2 < np and probability mass
Zlg_:ll Wy + Z?:j_u v, > p.

c c+t1-p
0 i-1 i J -1 i 1 Xy X; Xj Xn
n n n n

Figure 4.4. Given distribution ¥ = (¥y,...,¥,), define v : [0,1] — Rx>g by
v(z) =n- VY, for all £ € [n] and = € [(¢ —1)/n,¢/n]. The left figure shows point
¢ with probability mass [;v(z)dz + fclﬂfpv(x) dr = p. The right figure shows
the queried sub-array consisting of two parts: y = [z1,...,i,j,..., 2], of length
T =n+i—j+1<np+2 and probability mass >_; ¥, + 21— Ve > p. When
T > 2, the sub-array y = [z1,...,%i—1,Zj41,--.,%y) has length T'— 2 < np and
probability mass >7y_} Wo+ Y7, ¥y < p.
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Let A be the same k-round protocol as in case (a), but where the array y is treated as if it

were contiguous when making queries:
Step b.(i) If T' < 2: query locations i and j in round 1. If the element is found, return it.

Else, T'> 3. Let r = [p- n%] Query in round 1 locations i and j, together with
additional locations ¢y,...,t. € {1,...,i—1,j+ 1,...,n}, set as equally spaced
as possible so that for each ¢ € [r], the size of each block B, = [z, ,+41),-- -, %]
is at most (%1 At most one of the blocks may skip over the the indices in
{i,...,j}. If the element is found at one of the queried locations then return it

and halt. Else, go to step b. (7).

Step b. (i) If round 1 indicates that the element is not at one of the indices {1, ...,1,j,...,n},
then halt. Otherwise, let By = [x(, ,41),- -, %y, be the block identified to contain the
element, where location ¢, has been queried. Run the (k — 1)-round deterministic pro-
tocol from Proposition 4.2.1 on the sub-array ¥ = [, 41, - -, Z@,—1)], which always

succeeds and asks at most (k — 1) - (len(y))k%1 queries.

Next we bound the success probability and expected number of queries when the algorithm

executes steps b.(i) and b.(ii).

Success probability. The algorithm finds the element when its location isone of [1,...,1,j,...,n].

Since Zigzl U, + Z?:j W, > p, the success probability is at least p.

Ezxpected number of queries. The expected number of queries in round 1 is at most 2 4+ r =

24+ [pnﬂ, while the number of queries after round 2 is at most

=

p-(k=1)([(T=2)/r] =) <p-(k—1) -nt.

Thus the total expected number of queries is at most 2+ [pn# ] +p-(k—1)-nt < 24k[pni],

which completes the proof. O
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4.4.2 Ordered search lower bounds

In this section we prove a lower bound that applies to both randomized algorithms on a
worst case input and deterministic algorithms on a worst case input distribution. The lower
bound considers the expected query complexity of randomized algorithms on the uniform

distribution, which turns out to be the hardest distribution for ordered search.

Proposition 4.2.4 (restated). Let k,n € N* and p € (0,1]. Then R,_,(ordered,, ;) >
pkn¥ — 2pk for k > 2 and Ri_p(ordered,, 1) > np.

Proof. For proving the required lower bound, it will suffice to assume the input is drawn
from the uniform distribution. This means the algorithm is given a bit vector where the
location of the unique bit with value 1 is chosen uniformly at random from {1,...,n}. If a
lower bound holds for a randomized algorithm when the input is uniformly distributed, then

by an average argument the same lower bound also holds for a worst case input.

Let A be an optimal k-round randomized algorithm that succeeds with probability p when
facing the uniform distribution as input. Let gx(n,p) be the expected number of queries of

algorithm Ay as a function of n and p.

In round 1, the algorithm has some probability d,, of asking m queries, for each m €
{0,...,n}. Moreover, for each such m, there are different (but finitely many) choices for the
positions of the m queries of round 1. However, since the algorithm is optimal, it suffices
to restrict attention to the best way of positioning the queries in round 1, breaking ties

arbitrarily if there are multiple equally good options.
For each m € {0,...,n}, we define the following variables:
e 0,, is the probability that the algorithm asks m queries in round one.

e by, is the size of the i-th block demarcated by the indices queried in round 1, excluding

those indices, counting from left to right, for alli € {0,...,m}. Thus > b, = n—m.
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Query 1 Query 2 Query 3

Block 0 Block 1 Block 2 Block 3
of length b =3 oflengthb;; =3 oflengthb;, =3 of length by ; = 3

Figure 4.5. Array with n = 15 elements. The m = 3 locations issued in round
1 are illustrated in gray. The resulting blocks demarcated by these queries are
marked, such that the i-th block has length b,,;, for i € {0, 1,2, 3}.

An illustration with an array and the blocks formed by the queries issued in round 1

can be found in Figure 1.

e Qy,; the success probability of finding the element in the i-th block (as demarcated by

the indices queried in round 1), given that the element is in this block.

The expected number of queries of the randomized algorithm is

" n—m bim.i
qkm,p):mZ:Oam[ ()2 ( _’m)-qk_mbm,i,am,a]
- 1

= Om [ nibml G- 1(bm1,ozml)], (4.10)

m=0

where the variables are related by the following constraints:

ibm,i:n—m, vm € {0,...,n} (4.11)
i=0
f: S =1 (4.12)
m=0
pm:Z—I—n;m-gnbj";n-am7izz+i-§bm,i-am,i, Vm € {0,...,n} (4.13)
p= Zn: Om * Prm (4.14)
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bini > 0, vm € {0,...,n},i€{0,...,m} (4.15)
0<am; <1, vm € {0,...,n},i€{0,...,m} (4.16)

0w >0, Yme{0,...,n}. (4.17)

Let {v,}32; be the sequence given by v; = 0 and v, = 2¢ for ¢ > 2. We will prove by

induction on k that

qr(n,p) > p(/f - %) Vn,k>1and p € [0,1]. (4.18)

Base case.

Proposition 4.4.2 gives ¢;(n,p) > np, so inequality (4.18) holds with v, = 0 for all n > 1
and p € [0, 1].

Induction hypothesis.

Suppose q¢(m, s) > s(ﬁ mi — ’}/g) forall £ € [k —1], m>1,s€[0,1].

Induction step.

We will show that (4.18) holds for & > 2, where n > 1 and p € [0,1]. The bound clearly

holds when p = 0, so we will focus on the scenario p > 0. For each m € {0,...,n}, define

1 m
Tk(na mvp) =m—+ E ' Z bm,i ' Qk—l(bm,h am,i) . (419)
i=0

By definition of gx(n,p),

n

m=0
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The induction hypothesis implies gx—1(bm.i; Wm,i) > Qi - <(k: - 1) (bmi)ﬁ - %—1), which
substituted in (4.19) gives

> Zaml' m1kkl_<,ylC 1) ZO&ml' m,i - (421)

rk(”amvp) 2 m + (

Given a choice of @, by for all m € {0,...,n} and i € {0,...,m}, let iy,... i, €
{0,...,m} be such that 0 < iy < ... < @y, < 1. Then we can decompose p, us-

ing a telescoping sum:

< |3

m 1 &
m = - bmi' m,i By 413
P =+ ; i O, (By (4.13))
O i +—- Z bm,ig + Z(Oém ij Om ij—1 + —- Z bm,ig + (1 - am,im) :
2 =1 nS

(4.22)

We can similarly decompose the right hand side of inequality (4.21), obtaining:

E—1 &
re(n,m,p) > m+ —— > i (b)) 7 Zam1~ mi (By (4.21))
n i=0
k—1 & k 1 &
= Om g ° [m + : Z (bm,iz)I%l - e : Z bm,ig]
o o o
+ Z(am ij O 1) Z m lg ' Z bm,u
j=1 n £=] (LR
+ (1 — am,,) - m (4.23)
Let Wm0 = Q> Winj = Qmyi; — Qi forall j € {1,...,m}, and wp, i1 = 1 — s, . Then
we can rewrite (4.22) and (4.23) as follows:
UL E—1 & ko Vo1
k(n m p) Z Z W,y + | + T : Z (bm,iz)k_l — 0 : meie + (wm7m+1 : m) (424)
j=0 L=j (=]
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m m 1 & m
P JZ:gw,J n+n£§:ji io| + (Wi — (4.25)

For each m € {0,...,n} and j € {0,...,m+ 1}, define

BT 0

pmd = (426)

313

ifj=m+1.

_k_ P
mA L S (b, )T — B by, i € {0, m} 42

m itj=m+1.

r};(n, m,p) =

Substituting the definition of r}(n,m, p) in (4.24) and that of p,,; in (4.25) yields

m+1 . m+1
Tk(na m,p) Z Z Wm,j * T;c(na map) and Pm = Z Wm,j * Pm,j - (428>
j=0 j=0

Combining (4.14), (4.20), and (4.28), we obtain

n

n m+1 )
Qk(n7p) = Z 5m : Tk(n’map> > Z 5m : (Z Wm,j Ti(n,m,p)) .

m=0 m=0 j=0

n n m—+41
P= Pm= ), (Z Wi -pm,j) : (4.29)
m=0

m=0 \ j=0

Let Sy j = X0 bm,i,, for allm € {0,...,n} and j € {0,...,m}. Then for j € {0,...,m}, we

have n - ppj = M 4 Sij, 80 Spj = N - Py — M. Since Sy, ; > 0, we have n - p,,; > m. In

summary,
Z bm,i(g =N-:Pmj—m, VJ S {0, ce ,m} (430)
{=j
N Pmj > M, Vje{0,...,m}. (4.31)

Next we will lower bound r};(n, m, p) and consider two cases, for m > 1 and m = 0.
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Case m > 1.

If j = m + 1, we are in the scenario where the algorithm asks m queries in round 1 and no

queries in the later rounds. Formally, since p, 11 = m/n, we have m = n - py, 41. Using

the identity for ;™' (n,m,p) in (4.27), we obtain

TZH_l (na m>p> =M="N"DPmm+1
> Dmmt - kn¥ — Vi * Dmmt1 - (By Corollary 11.)
Thus from now on we can assume j € {0,...,m}. Observe that by definition of p,,( in

(4.26), we have pp, o = m/n + f) bmi,/n =m/n+ (n—m)/n =1.Forall j € {0,...,m},
=0

using (4.27) and Jensen’s inequality, we obtain

’/‘i,(n, m,p) =m + ’ Z (bm,ie)k_l = me,iz
no no
_k
k-=Dm—j+1) (& bui, ' 1 &
> m -+ — — . i, - 4.32
=m n ezg m—j+1 n ; e (4:32)

Since Y7L i, = 1 Py — m by (4.30), the inequality in (4.32) can be rewritten as

k
. ~ k—1)(n-py: —m)FT
rh(n,m,p) > m <1 + 1) T Y G 1 ) L S R )
n n-(m—j+ 1)1 ’
When j = 0, substituting >.7" b, = 7 — m in (4.33), we obtain
k
_ kE—1)(n —m)*&1
7’2(",77%19)27”(1"'% 1) + ( ) 3 — Vk—1
n n-(m+ 1)
> knk — Vi (By Lemma 45.)
= Pm,o - kn% — Pm,o " Vk - (Sil’l(‘(E Pm,o = 1)
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Thus from now on we can assume j € {1,...,m}. Using j > 1 in (4.33), we further get

(k — 1)( )Fe1
— —1)n-pm;—m)k-
7’; 1) i Prm Akt Py (4.34)

r(n,m,p) > m (1 + —
mn-mrer—

In this range of m and j, we have m/n < p,,; < 1 and 1/2 < m < n - py; by inequality

(4.31). Applying Lemma 56 with ¢ = p,,; in (4.34), we obtain:

>
Tk(numvp) Zm n

k
. B E—1 N -1
J (1+7k 1> L= Dm g mm)eE (By (4.34))

1
n-mk-1

> Dmj kn¥ — Yk Pmij - (By Lemma 56)

Case m = 0.

This corresponds to the scenario where the algorithm asks zero queries in round 1. Since

j€{0,...,m+ 1}, it follows that j =0 or j = 1.

If j = 0, then by definition of p,,; we have poo = 0/n + (1/n) - X0_o boi, = 0+ bos,/n. Since
there is only one block, by;, = n. Thus poo = 1. We get

0 k=1 N 0
ri(n,0,p) =0+ — > (o) =T — " D o,

(=0 =0

=(k—-1)- pET — Ly (Since by, = n)
n
> knk — Vi (By Corollary 10)
1 ..

= Do, - kn* —poo - Vi - (Since poo = 1)

If j = 1, then since m = 0 we are in the case j = m + 1. Since py,m+1 = m/n, we have
po1 = 0/n = 0. Informally, this corresponds to the scenario where the algorithm asks m =0

queries in round 1 and no queries in the later rounds either. Formally,

rp(1,0,p) =0 =po - knt — Po Yk - (4.35)
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Combining cases m > 1 and m = 0.

We obtain
71.(1, 1, D) > P - kn® — Pmj - Yme{0,....,n},Vje{0,...,m+1} (4.36)

Summing inequality (4.36) over all m € {0,...,n} and j € {0,...,m+ 1} and using identity
(4.29) that expresses the total expected number of queries gx(n, p) as a weighted sum of the

r.(n, m, p) terms, we obtain

n m+1 )
= Om- (Z W, 'Ti;(n,m,p))
m=0

=0

vV
M=
<

m+1
(Z Wipj * (pmvj Ckn® — P %)) (By inequality (4.36))

m=0
. 1 Qs m+1 , R
= Z Om * Prm ( ko— ’yk> (Since p,, = 2520 Wi * Pmyj by (4.28))
m=0
1 ‘
=p- (knE - ’yk) (Since p = >0 _ Om - Pm by (4.14))
This completes the induction step and the proof. O

We consider separately the case of k = 1 rounds, giving a lower bound that applies to both

ordered and unordered search.

Proposition 4.4.2. Let p € (0,1] and n € N>y. Then

Ri_p(unordered,, 1) > np and Ri_p(ordered, 1) > np. (4.37)

Proof. We show the lower bound for randomized algorithms when facing the uniform distri-
bution. For one round, there is no distinction between ordered and unordered search. By an

average argument, the lower bound obtained applies to a worst case input.

Let A; be a randomized algorithm that runs in one round and succeeds with probability

p when given an input drawn from the uniform distribution. Let ¢;(n,p) be the expected
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number of queries of A; as a function of the input size n and the success probability p.
Denote by §,, the probability that the algorithm issues m queries in round 1. Since there
is no second round and the input distribution is uniform, the location of these queries does

not martter.

The expected number of queries issued by the algorithm on the uniform input distribution

can be written as

m=0
where
> =1 (4.38)
m=0
p= 6 <m> (4.39)
m=0 n
O0m >0 Vme {0,...,n}. (4.40)
Thus we have ¢;(n,p) = X0 _g 0m - M = np. O

4.4.3 Lemmas for ordered search proofs

In this section we include the lemmas used to prove the ordered search upper and lower

bounds.

Lemma 45. Let k > 2,n > 1, and the sequence {7,}3°, with v1 = 0 and v, = 2¢ for all
{>2. Then

x (1 + 7’“‘1) +(k—1)- )i — ko1 = knF =y Vo € (1/2,n]. (4.41)
n n-(x+ 1)1
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1
Proof. Let t = (%) "' Then t is decreasing in z. Since z € (1/2,n], we have 0 < t <
1
(%) "' Expressing  in terms of ¢ we get
n — tk—l

:L‘:itkfl_Fl.

(4.42)

Substituting (4.42) in (4.41), we get that (4.41) is equivalent to

tho(k—=1D(n+1) -t (kn% +n+4+y-1(n+1) — n%) + <n2 + oy, — k:nk:1> >0
_1
VO<t< (2”_1 o
3
(4.43)
We consider two cases, for k = 2 and k£ > 3.
Case k = 2.
Since 73 = 0 and 75 = 4, inequality (4.43) is equivalent to
I —
£2-(n+1)—t-(2nvn—3n) + 0’ 2/ +4n >0 VO<t< (4.44)

Inequality (4.44) holds by Lemma 46.

Case k£ > 3.

Since 43 = 0 and 7, = 2¢ for £ > 2, inequality (4.43) can be simplified to

om — 1\ &1
. (445
ST e

V0§t<(

Inequality (4.45) holds by Lemma 47 for all k£ > 3. This completes the proof. ]
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Lemma 46. Let n > 1. Then for allt € [O, (2n — 1)/3), we have
£ (n+1) =t (2ny/n —3n) +n? = 2nv/n + 4n > 0. (4.46)
Proof. Let f:R —Rbe f(t)=t*-(n+1) —t- (2n\/n — 3n) +n? — 2ny/n + 4n. Then

f'(t)=2t(n+1)— (2ny/n—3n) and f"(t)=2(n+1). (4.47)

2n+/n—3n

Thus f is convex and the global minimum is at ¢* for which f'(#*) = 0, that is, t* = =5/

Evaluating f(t*) gives

ft) = (2”\/__3”>2 S(n+1) - (M_?m) - (2nv/n = 3n) +n? = 2ny/n + 4n

2n + 2 2n + 2
11n? — 8ny/n + 16n + 4n*\/n
dn+ 4

> 0. (Since 11n? > 8ny/n for n > 1)

Thus f(t) > f(t*) > 0 for all ¢ € R, which implies the inequality required by the lemma. [

Lemma 47. Letn > 1 and k > 3. Then

k+1
k

tk-(k—l)(n+1)—tk_1-(k-n —n+2k—2)+n2~|—2k‘n—k‘n1+% >0, Vte [O,nﬁ) :

(4.48)
Proof. Dividing both sides of (4.48) by n?, we get that (4.48) holds if and only if

t\" N ¢\ . 2%k — 2 2%k  k
1 (k’—1><1+>nk1_ 1 |\ konE =1+ + 1+ o 7;@_120
nk—1 n nkE-1 n n nk&

Vt € [O,nﬁ) .
(4.49)

If + = 0 then (4.49) is equivalent to n + 2k — kn# > 0, which holds by Corollary 11.
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Fort >0, let x = nﬁ/t. Since 0 < t < nﬁ, we have z > 0. Substituting ¢ by = we obtain

that (4.49) is equivalent to

2k k 1 2k —2 1 1
xk~<1+—,€_1>—x'<k~nk—1+ )+(k—1)(1+)~nk120, Ve > 1.

no nE n n

(4.50)

Define the function f : (0,00) — R, where f(x) is given by the left hand side of (4.50). Then

n nr n

f"(x) = k(k —1) <1 + Qf — f,l ) k2. (4.51)

n k

By Corollary 11, we have 1+ 2k/n — k/n" % > 0 for all n > 1 and k > 3. Thus f”(z) > 0
for all z > 0, so f is convex on (0,00). Observe that k - nk —1+ %T_2 >0 foralln >1
and k& > 3. Then there is a global minimum of f at a point T € (0,00) with f/(Z) = 0, or

equivalently,

k—1
Eomk — 14 2k=2
o | Ty . (4.52)
b1+ 2 - )
n k

Evaluating f at T and rearranging terms gives

f@):ﬂ(wzk_ fl>xk—1_(k.n;_1+2k;2>]+(,€_1><1+;>_m;

n n

1 1 2k — 2 1
:x(—1><k-nk—1+ >+(/~c—1)<1—|—>~nki1
k n n

Thus f(z) >0 Vz > 1 whenever the next two properties are met

1. f(z) > 0 when T > 1. This is equivalent to
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, 1\~ L1 2 2n\F
2k —kn¥) (14 — E—— 4 — — — 4.54
(n+ nk>(+n> >(nk k+n k:n> (4:54)
1 2 2 2k k
whenever nv — — + = — — > 142 (4.55)
k- n kn no onEw

Lemma 49 implies that inequality (4.54) holds under condition (4.55).
2. f(1) > 0 when T < 1. To show this, observe that for all n > 1 and k > 3, we have
F(1) <1+ 1) (2—k-nt+(k—1) n7T)
— J— J— n J— . —1
n
>0. (By Lemma 48)

Thus f(1) > 0 for all n > 1 and k& > 3, which completes property 2.

Since both properties 1 and 2 hold, we have that f(z) > 0 for all > 1, so (4.50) holds.

Equivalently, (4.48) holds as required by the lemma. O
Lemma 48. Let n > 1 and k > 3, where k,n € N. Then 2 — k - nk —i—(/<:—1)~nk1f1 > 0.

Proof. Consider the function f : [2,00) — R given by f(z) = zns. We first show an upper
bound on f" and then use it to upper bound f(k) — f(k — 1). We have

F(z) = nt (1 - ln(”)> |

X

Let y = ne. Then In(y) = 21n(n). Since z > 2, we have y € (1,/n]. Then

n® (1 - 1“<”)> —y(1-In(y)) . (4.56)

T

The function g : (1,00) — R given by ¢(y) = y (1 — In(y)) has ¢’'(y) = — In(y) < 0. Therefore
g(y) < g(1) =1 for all y > 1. Using the identity in (4.56), we get that f'(x) < 1 for all

T > 2.

191



Then for all k > 3,

kent = f(k) < f(k—1)+ max fl(z)< flk—1)+1=(k—1)-nF1+1.  (4.57)

T€[2,00)

Inequality (4.57) implies the lemma statement. O

Corollary 10. Let n > 1 and k > 2. Suppose {~,}2, is the sequence given by v, = 0 and
ve =20 for £ > 2. Then (k—l)-nﬁ — ey > knE — .

Proof. If k = 2, the required inequality is n > 2v/n — 4, or (v/n — 1)> +3 > 0. The latter
holds for all n > 1. If k > 3, the required inequality is (k — 1) - Nt 42 > kn#, which holds
by Lemma 48. O

Lemma 49. Letn > 1 and k > 3, where k,n € N. Then

) 1\t L 120 20\
2k —kn®) (14 — >(— —) 4.58
(n+ nk)( +n) " k+n kn (4.58)
1 2 2 2k k
whenever n¥ — — 4+ - — — >1+— T (4.59)
kK n kn no onE

Proof. If n = 1 then the condition in (4.59) is equivalent to 1 — 1/k+2—2/k > 1+ 2k — k,
which holds if and only if 2 —3/k > k (f). Since k > 3, inequality (1) does not hold so

condition (4.59) is not met either.

Thus from now on we can assume n > 2. By Lemma 53, condition (4.59) implies k < n. We

show (4.58) holds when n > 2 and k < n by considering separately a few ranges of k.

Case I: n/2 <k <n and k > 3.
Then k < n < 2k. When n = 2k — 1 inequality (4.58) holds by Lemma 52.

Thus from now on we can assume k < n < 2k — 2. To show inequality (4.58), we will first

bound separately several of the terms in the inequality and then combine the bounds.
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For k > 3, we have k < 2¥=1. Moreover, since n < 2k, we have n¥ < (2/{:)% < 2, and so

2k > kn¥. Thus n + 2k — kn¥ > n, which implies

L 1 k—1 1 k—1
(n + 2k — k‘n5> (1 + n> >n (1 + > : (4.60)

n

Moreover, since n > 2, we have 2k < kn - n%, and so 2k —2 —n < kn-nk. Since n <2k —2,

we also have 2k — 2 —n > 0, and so

2k—2—n
<z = 7

0 <1. (4.61)

1
kn-nw

Let r = (2k —2 —n)/(kn - nt). Inequality (4.61) gives 0 < r < 1. We consider two sub-

cases:

o If n =2k —2 then » =0. We have

k 2k—2-n

2k — 2 — ( T >

<H—1">=u+whﬂ:§:enm : (4.62)
kn-n%

e FElse k <n<2k—2. Then 0 <r < 1. We have

k
2k — 2 — :
(1 + ln) = (147)" (By definition of r)
kn-nk
1qkr
= [(1 + ?”)T}
< efr (Since (1 + 1)7L <eforre(0,1).)

2k—2—n
) 469

Combining inequalities (4.62) and (4.63) from the two sub-cases, we obtain

2% — 92 _n k (2k21n>
(1 + 1) < e\ nnk VneNwithk <n<2k—2. (4.64)
kn-nw
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Using (4.64), we can upper bound the right hand side of inequality (4.58) as follows:

L1 2 20\F . 2k—2—n
O R D (e
kn

( 2k —2—n
=n|ll4+ —

kn-nw

(2k2n>
1
< ne\ nnk /|

By Lemma 54, we have

)
|

1 1 k=1
< (n+2k:—kn%) (1+n> .

In summary,

(4.65)

(4.66)

(By (4.65))
(By (4.66))

(By (4.60))

1 1 2 2 \F* 1 1\+1! .
<nk—k—|——> §(n+2k—knk)(1—l—> Vn € Nwith k <n <2k —2.

n  kn n

This is the required inequality (4.58), which completes case 1.
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Case II: 3 <k <n/2.

Then n > 2k and k > 3. Then t* > 2k. For k = 3, the required inequality (4.58) is

equivalent to

2 3
1 1 1 1 1
(x+6—3x3)<1+x> —(x3—3+—> >0 V&> 63,

which can be easily checked to hold (see, e.g., [140]).

Thus from now on we can assume k > 4 with £ € N. Let f: (0,00) — R be
1 1\F1 1 12 2 \*
fo) = (e 2—rot) (14 0) (o - e Do)

Using Bernoulli’s inequality gives

1\*1 k—1
(1 4 ) >14 00 (4.67)

Since n > 2k, we have 2/n < 1/k. Thus

1 2% -2 1 k-1 1
v T S TR R 2 (4.68)

Using (4.67) and (4.68), we can lower bound f(n) as follows:

, 1\+1 L1 2k—2\*
(n+2k—lmk)(1+) _<nk_k+ k )
n n

1 k-1 1 k
Z<n+2k:—k:nk) 1+ - —<nk—

> (2= kt) (145 ) = (o

f(n)

(By (4.67) and (4.68))

e

T %
N—

)k. (4.69)

k
If ni < 2, then 2k — kn* > 0, which together with (4.69) yields f(n) > n — (n% — i) >0,

as required.
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Thus from now on we will assume nk > 2, that is, n > 2¥. Then 2k — knk < 0. Together

with n > 2k, this implies

(2k — kn+) <1+ k‘;1> > (2k — kni) <1+I<72_]€1> . (4.70)

Inequality (4.70) together with (k —1)/2k < 1/2 yields

k—1 !
2k — knt) (1 1.5 (2k — knt) . 4.71
(20 = ht) (14 52 ) > 15 (20 - k) @)
Combining (4.69) and (4.71) gives
1 1 1N\
f(n)>1.5- (Qk: - lmk) +n— (nk - k?> . (4.72)
Next we expand and truncate (n% — kl—2>k via Lemma 50, yielding
1 1\ n'=r  (k—1)n*"%
- (n - kz) R L i (4.73)
Using (4.73), we can further bound f(n) by
1-1 . 1-2
f(n)>15- (2]{; — /{:n%) + nk Pk 21k)3n : (Combining (4.72) and (4.73))
>0. (By Lemma 51)

Thus f(n) > 0, as required. This completes the analysis for the range n > 2¥ and case I1.

Wrapping up.

We obtain that inequality (4.58) holds under condition (4.59), as required. O
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Lemma 50. Let k,n € N withn > 1 and k > 3. Then

PR n'~t  (k—1)-n'"%
(m . 1{52) Sn— T (4.74)

Proof. Let t = n¥. Then t > 1. The required inequality (4.74) is equivalent to

1 k tk—l (k, _ 1) . tk—2
— ) <th ) .
(t k:2> e (4.75)

For i € [k + 1] let ¢; be the i-th term in the binomial expansion of (t — 1/k%)*. In particular,

k et (k—1)t52

¢ =t C2 = A €3 = )3 ) Chk+1 = (—1)kﬁ- (4.76)
Let us bound the ratio |¢;/¢iq| for i € [k]:
i k? - ti
L Y (4.77)
Cit1 k—1 +1
Since c9; < 0 and c9541 > 0 for all i, inequality (4.77) implies
¢+ cy1 < 0 Vi e [k] with i € 2N. (478)

k
We bound the term (t — #) by considering two cases. If k is even, then

1 k k/2 |
(t - kg) =+ ctes+ ) (e + i) (By definition of ¢.)
i=2
<c +ecytcy. (Since c9; + coi11 < 0 by (4.78))
If k is odd, then
1 k k+1

(t - /{;2> = ; Gi (By definition of ¢;.)

k (k—1)/2
<Y c=c+cetes+ Y, (ca+cap) (Since ¢41 < 0.)

i=1 i=2
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<c¢+eytcs. (Since co; + c9i41 < 0 by (4.78))

Thus for both odd and even k, we have

1\* A G i
(t—kz) Satote=t—-—— 408 (4.79)
Thus in both cases (4.75) holds, as required. O
Lemma 51. Let k,n € N withn > 2 and k > 4. Then
i ntE o (k—1)-nl"F
L5 (2k — knt ) + P e >0. (4.80)

Proof. Let t = n#. Then ¢ > 1 since n > 2. For k = 4, inequality (4.80) with n substituted
by t* is equivalent to 1.5(8 — 4t) + ¢3/4 — 3t?/128 > 0, which holds for all ¢ > 1.

Thus from now on we can assume k > 5. The left hand side of (4.80), where n is substituted

by t*, can be bounded as follows:

tk*l (k, _ 1) . tk72 tk72

L5 (2k = kt) + —— =~ > 1.5(2k — kt) + W(%t —1)  (Since k—1 < k)
k-1

> 1.5 <2k — kt + 232/{;) . (Since t > 1 and k > 4)

(4.81)

Let g : (0,00) = R be g(t) = 2k — kt + t’;;. We will show that ¢g(t) > 0 for all t > 1. We
have

k—1 (k—1)(k—-2) ,_
Iy k—2 "4y — k3 4.82
g'(t) k+ o t and (1) ok t (4.82)
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Thus g is convex on (0,00). The global minimum is t* with ¢'(t*) = 0, so t* = (—) S
Then

gt) > g(t") =2k — k-t +¢* - () =2k — ( 2k )k (k—k>

(o= ()7 () (153)

Since 282 > (;—ﬁ) for k > 5, we get

1 1
2k% \ F2 2k* \*2 (k-2
2 | >5. .
V() ) s
Using (4.84) in (4.83), we obtain
ok \FT (|2
t)y>k|2— | 1,k>5. 4.
g(t) = ( (k_1> (k_1>)>0 Vt>1,k>5 (4.85)
Combining (4.81) and (4.85), we obtain 1.5 (2k — kt) + t" 1 /k — (k — 1) - t*72/(2k?) > 0 for
all t > 1 and £ > 5. This completes the proof. O

Lemma 52. Let k € N with k > 3. Then

1 1 k=1 1 1 F
dk—1—Fk-(2k—1)%) (1 %k —1)F —— | . .
( ( >)( +2k—1) ><< )* k-(2k—1)> (4.86)
Proof. Since k > 3, we have 2k — 1 < 2¥, so (2k — 1)% < 2. Then
Ak —1—Fk-(2k—1)% > 2k —1. (4.87)
Meanwhile,
, 1 g 1 g
%—1)F—— | =(2k—1)-(1— <2%—1. 4.88
<( ) /f-(%—l)) ( ) ( k-(2k:-1)1+i> (4.88)
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Combining (4.87) and (4.88), we obtain

(4% — 1= k- (2k—1)7) (1+2k1_1) _1>(4k—1—k.(2k—1)i)

(Since 1 +1/(2k — 1) > 1)
> ok — 1 (By (4.87))

k
> ((Qk— 1) — /<(2/1<—1)> . (By (4.88))

Sl

Thus the required inequality (4.87) holds, which completes the proof. O]
Lemma 53. Letn > 2 and k > 3, where k,n € N. Suppose

nk——+———>14+——-—F. (4.89)
Then k < n.

Proof. We will show the constraint in (4.89) is incompatible with the range k£ > n. Let

t =n%. Then n = t*. Since k > n, we have t = nk < k*. We have

1 2 2 o2k  kn¥

S S LR P LU TN (4.90)
k n kn n n

BT — (k1) + k2 - 20 2k — 2> 0, Vit € (0,kF], (4.91)

where (4.91) is obtained from (4.90) by multiplying both sides by kn, substituting n = t*,

and rearranging.

In order to upper bound the left hand side of (4.91), we define a function f : [0,00) — R by

f(x):x’f</<;1+%_k—1)+k2m—2k2+2k¢—2.
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For0 <t < k%, we have ktF+! < ktkk%, so the left hand side of (4.91) can be upper bounded

as follows:

R — (k1) + k2 — 2k + 2k — 2 < tF (KR — kb — 1) + k%t — 2K + 2k — 2

— f(t). (4.92)

Observe f'(x) = ka*~ (K'"% —k — 1) + k* and f"(z) = k(k — 1)2*~2 (k"% — k- 1). By
Lemma 66 the function f is convex for all £ > 3. Thus f has a global maximum on the
interval [0, k%] which is attained at one of the endpoints. We check the value of the function

is negative at both endpoints of [0, k#]:
o« f(0)=—-2k*+2k—2=—-kK*—(k—-1)>-1<0.
o f(k¥)=2k2kr —3k%+k —2 < 0 by Lemma 55.

By convexity, it follows that f(t) < 0 for all £ € [0, k%]. Combining this fact with (4.92), we

get
B Rk + 1)+ K — 2%+ 2k —2< f(1) <0 Vi e [0, kF], (4.93)

which implies (4.91) cannot hold when &£ > n. Thus condition (4.89) in the lemma statement

rules out the range & > n. This completes the proof. O]

Lemma 54. Let k,n € N such that k > 3 and k <n <2k — 2. Then

1\ k-1 (2k21n>
(1 4 ) >\ it /. (4.94)
n

Proof. Taking log on both sides of (4.94), the required inequality is equivalent to

| 9 |
1 (1 ) > _ . 4.95
! +n Tt (k—1)-nr (4.95)
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We first show several independent inequalities and then combine them to obtain the inequal-
ity required by the lemma. Recall that In(1 + x) > = for all z > —1 (see, e.g., [141]).

Taking x = 1/n yields

1 1/n 1
In(l+-—) > = : 4.96
n< +n)_1—|—1/n n+1 (4.96)

Since n > k > 3, we get n > 3. By Lemma 66, we obtain n(1+7) > n+ 1. Since k < n, we

get
n(+8) > p(3) > 41 (4.97)
Next we will show that

> - (4.98)

which is equivalent to
(k—1)-n""% >2(k—D(n+1)—n(n+1). (4.99)
By (4.97) we have
(k— D)n(0) > (k= 1)(n+1). (4.100)
Since n > k — 1, we have k — 1 > 2(k — 1) — n, which multiplied by n + 1 on both sides gives
(k—1D(n+1)>2k—-1)(n+1)—n(n+1). (4.101)
Combining (4.100) and (4.101) yields

(k— D)%) > (k= 1)(n+ 1) (By (4.100))

>2(k—1)(n+1) —n(n+1). (By (4.101))
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Thus (4.99) holds, so (4.98) holds as well. Combining (4.96) and (4.98) yields

1 1 .
In (1 4 n) > (By (4.96))
> 2 1 (By (4.98))

i (k—1)-ni

Thus (4.95) holds, which is equivalent to the required inequality (4.94). This completes the
proof. n

Lemma 55. Let k € N such that k > 3. Then 2k% -kt —3k2 4+ k —2<0.

Proof. Let f : (0,00) — R be f(z) = 222 - 27 — 322 + 2 — 2. We check separately for
ke {3,4,5,6):

« f(3)=18-35 —26 < —0.01 <0 and f(4) = 32471 — 46 < —0.7 < 0.
« f(5)=50-55—-72< -3 <0and f(6)="72-65 —104 < —6 < 0.

Thus it remains to show the required inequality when & > 7. The function z+ has a global

maximum at e« (see, e.g., Wolfram Alpha [140]). Then

fx)=22% 27 —32% 40 —2<22% et — 32>+ 1 —2
< =012’ 42 -2

<0 Vr>7. (4.102)
Thus f(k) <0 for all £ > 3,k € N, as required. ]

Lemma 56. Letk > 2,n > 1, c € [1/n,1], and the sequence {~,}32, with v, =0 and v, = 2¢
for £ > 2. Then

— E—1
$(1+7’f1)+<k—1)-w—vk_l-czc-kni—vk~c, Va € (1/2,nd .
n n-xrk-1

(4.103)
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Proof. When = = ne, inequality (4.103) is equivalent to

%—1) e e knE — ol e (4.104)
n

nc(l—i—

1 s : .
n—knk > —y;. (Dividing both sides by ¢ and re-arranging terms.)

Since n — knt > 1 —k for all n > 1, it follows that (4.104) holds if v, > k — 1, which is the
case since 7, = 2k. Thus (4.103) holds when = = nec.

From now on we can assume = € (1/2,nc). Let t = (nc/x — 1)ﬁ. Then0 < t < (2nc—1)ﬁ.

Equivalently, z = 7%=, which substituted in (4.103) gives

k
— k—1
x(1+7k_1)—|-(k;—1)'(ncx2_'Yk—l’CZCk?n’i_'}/k'C P
n n-xk-1

nc

k-1
ncC — ~—x=—1
(nc> (1 + 7lﬁl) +(k—1)- ( R )1 — 1> chnt — e (4.105)
1 +tk—1 n nc k—1
e <1+t’“—1>

Multiplying both sides of (4.105) by (1 + tk_1> /c and simplifying, we see (4.105) is equivalent

to
(k= 1) 5 — "1 (knt =y + 1) + (n — knt +9;) > 0. (4.106)

We will show that (4.106) holds, which will imply inequality (4.103) for all z € (1/2,nc).

We consider two cases, depending on whether £ =2 or k£ > 3.

Case k = 2.

Since 41 = 0 and 75 = 4, inequality (4.106) is equivalent to

£ —t(2Vn—4+40)+ (n—2vn+4) >0 < (4.107)
(t- (vi—2)) +2vn >0, (4.108)
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where (4.108) was obtained from (4.107) by re-arranging terms. Inequality (4.108) clearly
holds, which implies (4.106) and completes the analysis for k& = 2.

Case k£ > 3.

We define a function h : (0,00) — R to capture the left hand side of (4.106). Then we will

show h is non-negative on the entire domain, which will imply (4.106). Let

h(t) = (k—1) - t" = "1 (knd =y + 1) + (0 — knd + ) . (4.109)

The first and second derivatives of h are

W) =571 k(b — 1) — 572 (k= 1) (knk — 7+ )
Bt) =12 k(k = 1)P =7 (k= 1) (k — 2) (kn® — %+ 0m1) - (4.110)

On (0,00) we have:

Ye—1"Tk .

o the function A’ has a unique root at t; = nk + o

o the function A” has a unique root at ty = (%) (n% + w) _ (%) t.

Clearly ty < t;. Since n > 1 and v, — y._1 = 2 when k > 3, we have

2 Ye — Vk-1
>1>—-—=————2>0.
= 2 2 =

==

n

Thus nt + (ve—1 — k) /k > 0, so t; > 0. We obtain 0 < ¢, < t;. Moreover, h'(t) < 0 for
t < t; and B/(t) > 0 for ¢t > ty; similarly h”(t) < 0 for t < t5 and h"(t) > 0 for ¢t > t5. Thus
h is

« concave and decreasing on (0, ts);

« convex and decreasing on (s, t1);
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 convex and increasing on (t1,00).

Thus h has a unique global minimum at ¢;, so the required inequality (4.106) holds if h(t;) >
0. We have

hty) = (k—1) -ty — i (kn% — Yk + ’kal) + (n — kn¥ + ”Yk)

1 1 —-1 — k
=n—knt + 7 — (nk—l—%lk%) . (4.111)
Since v, = 2k and 1 = 2(k — 1) for k£ > 3, we have
1 - 2 2
n%+w:n%—%21—%>0. (4.112)
Using (4.112) in (4.111) gives
1 1 2 k
h(ty) = n — knb + 2k — (nk _ k)
>0. (By Lemma 57.)

Thus h(t;) > 0, and so inequality (4.106) also holds in the case k > 3.

Combining the cases.

In both cases k = 2 and k > 3, inequality (4.106) holds, which implies (4.103) for all
x € (1/2,nc). This completes the proof. O

Lemma 57. Letn > 1 and k > 3, where k,n € N. Then n—kn%+2(k‘—1)— (n% —

Proof. Define f : [1 — %,oo) — R as

flx) = <$+i)k—k<x+z>+2(k’—1)—xk: (x+2>k—kx—xk+2kj—4. (4.113)
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The lemma statement requires showing f (n% — %) > 0. We will show that f(z) > 0 for all
x > 1—2/k, which will imply the required inequality. We divide the range of x in two parts

and analyze each separately.

Case 1 € {1—%,1}.

We consider a few sub-cases depending on the value of k:

e Itk =3, then f(x) = (242)" —3r—a® +2-3 4= L (542% — 452 + 62) . Then
A <0,s0 f(x) >0 for all z € R.

o If k > 4, then using the inequalities 1 —2/k < x < 1 in the definition of f from (4.113)

gives

flx)>1"—k-1—-1"4+2%k—4=k—-4>0. (4.114)

Case z > 1.

Then

o kx4 2k — 4. (4.115)

When k = 3, using inequality (4.115), we obtain f(x) > 2z* —5z2/3+2 >0 Vx € [1,00).
Thus from now on we can assume k > 4. Using x > 1 and k& > 4, we obtain

+M~xk_2—lm+2k—4 (By (4.115))

> 207 — kx + k, (4.116)
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Let f1 : (0,00) = R be fi(z) = 22%2 — kz + k. The derivatives are f](z) = 2(k —2)zF 3 —k
and f'(x) = 2(k — 2)(k — 3)z*™1. Since we are in the case k > 3, we have f](z) > 0 for
x > 0. Thus the function f; is convex and has a unique global minimum at the point z* for

which f](z*) = 0, that is, at

L E
m—<2(k_2)> . (4.117)

Since k > 4, we have 5G-5) <1, and so

=) ) ceerlae) e
(4.118)

Combining (4.116) and (4.118) gives f(z) > fi(xz) > fi(z*) > 0 Vz > 0. In particular, the

required inequality holds for all x > 1, which completes the case.

Combining the cases, we obtain f(z) > 0 for all z > 1 —2/k, and so f (n% — 2/k> > (. This

completes the proof of the lemma. n
Corollary 11. For each n > 1 and k > 3, we have: n + 2k > kn® + 2.

k
Proof. Lemma 57 yields n+2k > kn%+2+(n% — %) . Since k > 3, we also have nk >1>

ElIN

U

k
SO (n% — %) > 0. Thus n + 2k > kn¥ + 2, as required.

4.5 Unordered search Proofs

In this section we include the omitted proofs for unordered search.

4.5.1 Unordered search upper bounds

Here we give the optimal randomized algorithms on a worst case input and deterministic

algorithms for any input distribution for unordered search.
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Deterministic algorithms for a worst case input.

We start with a simple observation, namely that the optimal k-round deterministic algorithm

in the worst case just queries n/k locations in each round.

Observation 4.5.1. For each k € {1,...,n}, there is a deterministic k-round algorithm for

ordered search that always succeeds and asks at most n queries in the worst case:

o In each round j € [k|, issue |n/k| or [n/k] at locations not previously queried. When

the item is found, return it and halt.

Proof. This algorithm queries n locations in the worst case, and so always finds the element

using at most n queries. O

Randomized algorithms for a worst case input.

The optimal randomized algorithm is described next.

Proposition 4.3.1 (restated). Let p € (0,1] and k,n € N>;. Then

k+1
Ri_p(unordered,, ;) < np - 2—:: +p+ .
n

Proof. Consider the following algorithm, which has an all-or-nothing structure.
o With probability 1 — p: do nothing.
¢ With probability p: run the following protocol:

« Choose a uniform random permutation T = (ny,...,®,) of [n]. For each j € [k],
define
m; = [n-j/k] and  Sj={Ty,... Ty }.
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o In each round j € [k]: query all the locations in S; that have not been queried

yet. Whenever the element is found, return its location and halt immediately.

We bound the success probability and the expected number of queries of the algorithm.

Success probability.

If the algorithm finishes execution in exactly j > 1 rounds, then the number of queries issued
is |S;| = [nj/k]. By the end of the k-th round, the number of queries issued would be
[nk/k] = n. Thus if the algorithm enters round 1 then it doesn’t stop until finding where

the element is, so the success probability is exactly p.

Expected number of queries.

Let A; be the event that the algorithm halts exactly at the end of round j. On event A;, the

algorithm issues [nj/k| queries. The probability of event A; is

Pr(4;) =p- & drall (4.119)

Then the expected number of queries issued by the algorithm is ¢ = Zle Pr(4;) - [nj/k].

Using (4.119), we can rewrite this as

SR

Applying Lemma 58 with = n to bound the expression in (4.120) yields

kE+1
—i—ﬁﬂ—I—l):np-_l_-i—p—l—i. (4.121)

p (_nz(k —1)
2%

< &,
Qk_np+n 2k

This completes the proof. O

210



Deterministic algorithms for a random input.

Given an input distribution ¥ = (¥y,..., ¥, ), we next design an optimal deterministic

algorithm for it.

Proposition 4.3.2 (restated). Letp € (0,1] and k,n € N>y. Then

2
D;_,(unordered,, ;) < np<1 o -p> +14+p+—.
n

Proof. Suppose the input distribution is ¥ = (¥y,...,¥,). Let ® be a permutation of [n]
such that Wy, > ... > Wy . For each j € [k], let S; C [n] be the top [np- 1] array positions

in the ordering given by &, that is:

S = {nl,...,nmj}, where m; = [np]‘]{:-‘ )

Consider the following algorithm.

In each round j € [k]: Query the locations in S; that have not been queried in
the previous j — 1 rounds. Once the element is found, return its location and halt

immediately.

Success probability.

To bound the success probability of the algorithm, observe that the subsets .S} are nested,
that is: S; C ... C S . By the end of round k, the algorithm has only queried locations from

S;. and either found the element or exhausted Sj.

For all j € [k|, denote the probability that the sought element is in S; by

=Y Uy.

LeS;
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&
Lemma 65 gives ¢; > |Sj|/n. Then the success probability is p = g, Uy > % = % >

p.

Expected number of queries.

Next we bound the expected number of queries. For each j € [k], let A; be the event that
the algorithm halts exactly at the end of round j. On event A;, the algorithm issues a total

of |Sj| queries. Moreover, the probability of event A; is

o — @1 if1<j<k—1, where ¢g=0.
Pr(A) =1 @ ’ (4.122)

Let Sy = (). For each j € {0,...,k}, define
=i (4.123)

We have n; > 0 since ¢; > |S;|/n.

Then the expected number ¢ of queries issued on input distribution ¥ can be bounded by:

k-1
Ik = ZPr ) 1Sj] = (1 = @r—1) - |Sk| + Z (¢5 — d5-1) - |5yl (By (4.122))

Sh— S; S .
= (1 _ 5] —Uk—1> |Sk| + Z (H + 15— 1Sil _ 77j_1> -|S;] (By definition of n;)
n n

i Kl ) s ”Z(W)-!Sﬂ

— Me—1 - |Sk| + Z (n5 — mi—1) - |55l

=1

(4.124)

We have 0 = |Sp| < |51] < ... < [Sk|, and so Zf:_f (my — m=1) - |S;] < i1 - |Sk—1] - Thus

k—1
-1 1Skl + D (5 = nj-1) - [S5] < =1+ [Sk| + 11 - [Sk—a| < 0. (4.125)
=1
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Using (4.125) in (4.124) gives

_ k=1 716 — |8
s (1-B50) sy 4 5 (BB ). (4.126)

=1

We observe that

Sk S, S,
(1—‘ ’;”) | Sk| — Z’ ST YRT A Z’ J“’ 1S (4.127)

Adding >~ |S5]?/n to both sides of (4.127), we obtain

(1= ) s+ 2 (BB2) sy s 5 (B9 4. e

Substituting (4.128) in (4.126) and using the identity |S;| = [np - j/k] gives

Mpwgwwﬁy

%ﬂw+ZCMﬁ”>@IrM+Z<

= n k
(4.129)
Applying Lemma 58 with x = np gives
k—1 . . : 2
J J+1D [ Jw (np)*(k — 1)
- e e R A 1. 4.130
2 an IJ [”p K Pl = o el (4.130)

Combining (4.129) and (4.130) gives:

1 ([ (np)*(k —1) pk—1)\ | [nw]
< Sl (A S A b = — —
a < [np] + - < ok + [np] + 1 np |1 oF + - + + [np] — np
p(k—1) 2
< 1-— — —np. 4.131
_np< op ) TPt el —np (4.131)
This completes the proof. O
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4.5.2 Unordered search lower bounds

In this section we include the unordered search lower bounds.

Proposition 4.3.3 (restated). Let p € (0,1] and k,n € N>y. Then Ry_,(unordered, ) >
k1

Proof. For proving the required lower bound, it will suffice to assume the input is drawn
from the uniform distribution. By an average argument, such a lower bound will also hold

for a worst case input.

Let Ay be a k-round randomized algorithm that succeeds with probability p when facing the
uniform distribution as input and denote by gx(n, p) the expected number of queries asked

by A on the uniform distribution.

In round 1, the algorithm has some probability 9,, of asking m queries, for each m €
{0,...,n}. Moreover, for each such m, there are different (but finitely many) choices for the
positions of the m queries of round 1. However, since the goal is to minimize the number of
queries, it suffices to restrict attention to the best way of positioning the queries in round 1,
breaking ties arbitrarily between different equally good options. For unordered search, each
queried location is equivalent to any other since a query only reveals whether the element is

there or not.
For each m € {0,...,n}, we define the following variables:
e 0, is the probability that the algorithm asks m queries in the first round.

e «,, is the probability that the algorithm finds the element in one of the rounds in

{2,...,k}, given that it didn’t find it in the first round.
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The probability of finding the element in the first round is m/n, so the probability that

the algorithm may need to continue to one of the rounds in {2,...,k} is (n — m)/n. The

expected number of queries of Ay on the uniform distribution is

n

qr(n,p) = m,Z:Oém (m + (n;

m

> “qe—1(n —m, Oém)) 5

where the variables are related by the following constraints:

m=0
pm:E <n—m).am’ Vm € {0,...,n}
n n
P=_ bm Pm
m=0
0<a,<1, vm € {0,...,n}

Base case.

Proposition 4.4.2 gives ¢;(n,p) > np, as required.

Induction hypothesis.

Suppose q¢(v,s) > vs- Gl forall £ € [k — 1], v € N, and s € [0, 1].

Induction step.

Using the induction hypothesis in (4.132) gives

Qk(nap> = Z 5m <m+ t ;Lm ' Qk—1<n - m,am)>

m=0

> andm(er(n_m)Q-am u ) .

= n 2k —2
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(4.135)

(4.136)

(4.137)

(4.138)



Substituting o, = (n - p, —m)/(n —m) from (4.134) in (4.138) gives

(4.139)

qi(n,p) > éoém <m+ (n_m)(r;'pm -m 2k7€_2> .

Lemma 60 gives

(n—m)(n-p,—m) k k+1
. >n- - . :
m+ - 5 5 =" Pm | 5p (4.140)

Using (4.140) in (4.139) gives

> 5m . m T = . - . 5m . .
qk(n,p) = mz::o (n Pm- 57 ) n < o ) mZ::D »
k+1 7 \
=np- (;};) . (Smc(‘ =" _00m " Pm by <4135>)

[]

Next we give the lower bound on the distributional complexity.

Proposition 4.3.4 (restated). Let p € (0,1] and k,n € N>1. Then Dy_,(unordered, ;) >

np (1 — %p)

Proof. For each ¢ € N, let A; be an optimal /-round randomized algorithm that succeeds
with probability p when facing the uniform distribution as input. Let g¢(n, p) be the expected

number of queries of algorithm A, when given an array of length n.

Since Aj, is deterministic, it asks a fixed number m of queries in round 1. Moreover, since
the input is drawn from the uniform distribution, each location is equally likely to contain
the answer, and so the actual locations do not matter, but rather only their number. Thus
the probability of finding the answer in round 1 is m/n. Let a be the probability that the
algorithm finds the element in one of the later rounds in {2, ..., k}, given that the element

was not found in the first round.
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Given these observations, the expected number of queries of the deterministic algorithm can

be written as

n—m

%mm=m+(

where the variables are related by the following constraints:

We prove by induction on £ that that

2k

kE—1
g(n,p) >np |1 ———-p]| .

Base case.

Proposition 4.4.2 shows that ¢;(n,p) > np.

Induction hypothesis.

Suppose q¢(v, s) > vs (1 — 52’—; . s) forall £ € [k — 1], v € N, and s € [0, 1].

Induction step.

> Q-1 (n —m,a),

(4.141)

(4.142)

(4.143)

We prove (4.143) holds for k£ and all n € N, p € [0, 1]. The induction hypothesis gives

Qo1 (n—m,a) = (n —m)a (1 -

217

k—2
2k — 2

(4.144)



which substituted in (4.141) yields

n—m a(n —m)? k—2
= e >m4 Ty al .
qx(n,p) m—l—( - ) G—1(n —m,a) > m+ . ( 5% 9 a) (4.145)
Since a = (np — m)/(n —m) by (4.142), we obtain
(np —m) (n —m) k—2 (np—m>
> 1_ .
a(n,p) Z m+ n 2k—=2 \n—m
> np (1 — k2—k1 -p> . (By Lemma 59)
This completes the induction step and the proof. O

4.5.3 Lemmas for unordered search
In this section we include the lemmas used to prove the unordered search bounds.

Lemma 58. Let x € R and k € N, where x,k > 0. Then

S (e - f D e ] -2 e

Proof. For every j € [k], let b; = [xj/k] —zj/k. The left hand side of (4.146) can be rewritten

as

k—1 . . . _ . . .
R 'JHM‘W‘ (.J R bk Y )(J >
qu IJ [x ? vy —j:1 T k—ier T bt ) (@ k+bj

—
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The last term of the sum in (4.148) almost entirely cancels:

kili : (j (by — bjs1) — bj> = —by - :c(kk—l) <0. (4.149)

j=1

Combining (4.148) with (4.149), we get

S (e Al D215 (2 e nn)

J

w2k —1) *!
_ _(%> 3 by (b — by - (4.150)
=1

Next we bound the summation term in (4.150). If b; > b1 > bjyo for some j € [k — 2], then
bi(by — bjt1) + bjy1(bja1 — biy2) < bi(by — byy2) . (4.151)

Thus if there is a (weakly) decreasing sequence b; > b1 > ... > by, for some ¢t > 2 and

j € [k — t], then applying inequality (4.151) iteratively gives

jHt—1

> by (bi — bip1) < by (by — bisy) (4.152)
i=j

We will use inequality (4.151) to collapse some of the terms in the sum 377 bj(by — bys1).

Towards this end, let G = ([k], E) be a line graph where the vertices are {1,...,k} and the
edges £ = {(j,j+1) | j € [k —1]}. For each j € [k — 1], if bj > bj41 then edge (j,j + 1) is
colored with black and depicted as oriented down, and otherwise it is colored with yellow

and oriented up.

We also give each vertex j € [k] a color ¢; € {R, B}, such that ¢; = ¢, = R. Furthermore, for
each j € [k — 1], if b; < bj41 then both endpoints of the edge are colored red: ¢; = ¢j41 = R.

All other vertices are colored blue (B). See Figure 4.6 for an illustration.

Let 4, =1 < ... </, =k be the red vertices in G and L = {{y,...,¢,}. For alli € [m—1]:
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Figure 4.6. Given k£ > 2 and numbers by,...,b; € [0,1), we construct a graph
with edges (j,j+ 1) for each j € [k — 1]. For each j € [k|, if b; > bj;1, the edge from
j to j+ 1 is oriented downwards and is colored with black. If bj < bj;1, the edge
from j to j 4 1 is oriented upwards and is colored with yellow. The endpoints of all
the yellow edges are added to the set L, together with special vertices 1 and k. All
the vertices in L are colored red and the vertices in [k] \ L are colored blue. For the
graph in the picture we have k = 14 and L = {1,4,5,6,7,8,13,14}. Each element
¢; of L is marked in red near the corresponding node.

o if the path from /; to /i, has black edges, then b, > ... > by, and so inequality
(4.151) gives
1+1 1

Z b (by — bj41) < by, (bzl bz(iﬂ)) : (4.153)

o else, the path from ¢ to ¢;;; has no black edges. Then f;,; = ¢; + 1, and so the next

inequality trivially holds:

b, (b& - bz(iﬂ)) < by, (bzi - bz(m)) : (4.154)

Combining (4.153) and (4.154), we can bound the sum of all b;’s as follows:

k—1

> b (b — bi) mz by = by ) - (4.155)

=1
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Since by € [0,1) for all j, we have by, (by, — by, ) < (1= by,,,) and by,,, (be,, — be,,) < be

i+1°

Thus adjacent terms in (4.155) sum to at most 1. Then

o If m — 1 is even, then

m — m
> be, (br, — bey ) < <5 (4.156)
o If m —1is odd, then
S b (b — o) < | b (b =) < [P 1= sy
; ei(ei— e(m))_{zJ—i— ei(ei— e(i+1))_{2J+ =5 (4.157)
Combining (4.156) and (4.157), we obtain
m—1 m
> b (bei - bzw) <5 (4.158)
i=1
Combining (4.155) with (4.158) while summing over all j € [k — 1] gives
k1
m
> by (b — b)) < 5 (4.159)
=1

Let D={jek—1]|b < b1} and A = |D|. Since b; = [zj/k] — xj/k, we have b; < b,
if and only if [zj/k] — xj/k < [z(j+ 1)/k] —x(j + 1)/k (T). Since x/k > 0, inequality ()

implies

[zj/k] + 1< [z(G+1)/k] VieD. (4.160)

Consider the elements of D in sorted order: d; < ... < da. We will show by induction that

[x-di/k] >1 forallie [A]. (4.161)
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The base case is i = 1. Indeed [x - d;/k] > 1 since x - d;/k > 0. We assume inequality
(4.161) holds for i and show this implies the inequality for i + 1. We have

d; di+1 :
{x- ;ﬂ > {x l_: -‘ (Since diyq > d; and d;, d;1; € N.)
d; .
> {x . k:-‘ +1 (By (4.160).)
>i+1. (By the inductive hypothesis.)

This completes the induction, so (4.161) holds. Now we can bound the size of D. Since
da € [k — 1], we have [z - k/k] > [z - da/k]. By (4.161), we have [z - da/k] > A. Thus

2] = {xﬂ > {mdﬁ-‘ > A (4.162)

Observe that A is equal to the number of yellow edges in the graph G, since j € D if and
only if the edge (j,j + 1) is yellow. Thus the number of endpoints of yellow edges in G is
at most 2A. Since |L| = m and L consists precisely of all the endpoints of yellow edges
together with vertices 1 and k, we have m = |L| < |[{1,k}| + 2A = 2+ 2A. Since A < [z]
by (4.162), we obtain

m<2+2A <2+ 2[2]. (4.163)
Combining (4.163) with (4.159), we get

Combining (4.164) with (4.150) gives

I;Z:_ll({xﬂ_{szlb {xlﬂ S_xQ(];k_l)leSbj(bj_bjﬂ)ﬁ—xQ(Zl;l)—l—[:ﬂ#—l.

j=1

This completes the proof. O
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Lemma 59. Let k,n € N, z € [0,n], and p € [0,1]. Suppose k > 2. Then

(np —z) (n — x) k—2 np—x k—1
1— - > A .
T+ - ST e 1 o P (4.165)

Proof. Let f: R — R be

B (np —z) (n — x) k—2 np—ux k—1
flz) =2+ . 1 TR R np |1 5 P (4.166)
Then the required inequality (4.165) is equivalent to showing f(x) > 0 for all x € [0,n].

Expanding the terms in the expression for f(x), we get

f(x) 20 <

x(np — x) k—2Y\ (np—x)? o (k—1
+np—1x— — —np + — ] > 4.1
rT+np—2x - <2k 5 - np + np o 0, (4.167)

which after simplification is equivalent to
2?k? — 2 - 2knp + n*p* > 0. (4.168)

The quadratic equation in (4.168) has a unique global minimum at x* = np/k, with f(z*) =

0. Thus (4.168) holds, so (4.167) holds and so f(x) > f(z*) = 0 Vx € [0,n] as required. [

Lemma 60. Let k,n,m € N, where k > 2, n > 1, and m € {0,...,n}. Let v € [m/n,1].

Then
(n—m)(n-vy—m) k E+1

. —n-v|—=1]>0. 4.1
mT n ow—a "\ g )20 (4.169)

Proof. Inequality (4.169) is equivalent to

k k k m? k k+1

L. S L S s s S R T ()
MYy T g —e ™ ap—a T m—z MY g 20 (T
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Multiplying both sides of (4.170) by 2nk(k — 1) and rearranging, we get that (4.169) is

equivalent to
yn(n —mk?) + mn(k* — 2k) + m?k* > 0. (4.171)
If n > mk? then (4.171) clearly holds. Else, assume n < mk?. Since m/n <~ < 1, we have
yn(n —mk?) > n(n — mk?). (4.172)
Using (4.172), we can bound the left hand side of (4.171) as follows:
yn(n —mk?) +mn(k* — 2k) +m?*k* > n(n — mk?) + mn(k* — 2k) + m?*k* = (n —mk)* > 0.

Thus (4.171) holds when n < mk? as well, which implies (4.169) holds in all cases, as

required. ]

4.6 Cake cutting and sorting in rounds proofs

In this section we study cake cutting in rounds and discuss the connection between sorting

with rank queries and proportional cake cutting. We first introduce the cake cutting model.

Cake cutting model.

The resource (cake) is represented as the interval [0,1]. There is a set of players N =
{1,...,n}, such that each player i € N is endowed with a private valuation function V; that

assigns a value to every subinterval of [0,1]. These values are induced by a non-negative

integrable wvalue density function v;, so that for an interval I, Vi(I) = [,.;vi(x) dz. The
valuations are additive, so Vj (Uj";1 Ij) = > Vi(f;) for any disjoint intervals Iy, ..., I, C

[0,1]. The value densities are non-atomic, and sets of measure zero are worth zero to a

player. W.lLo.g., the valuations are normalized to Vi([0,1]) =1, foralli=1...n.
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A piece of cake is a finite union of disjoint intervals. A piece is connected (or contiguous)
if it consists of a single interval. An allocation A = (Ay,..., A,) is a partition of the cake
among the players, such that each player i receives the piece A;, the pieces are disjoint, and

Uien 4i = [0, 1]. An allocation A is said to be proportional if Vi(A;) > 1/n for alli € N.

Query complexity of cake cutting.

All the discrete cake cutting protocols operate in a query model known as the Robertson-
Webb model (see, e.g., the book of [91]), which was explicitly stated by [63]. In this model,

the protocol communicates with the players using the following types of queries:

o Cut(«): Player i cuts the cake at a point y where V;([0,y]) = a, where a € [0, 1] is

chosen arbitrarily by the center . The point y becomes a cut point.
o FEwali(y): Player i returns Vi(]0,y]), where y is a previously made cut point.

An RW protocol asks the players a sequence of cut and evaluate queries, at the end of which
it outputs an allocation demarcated by cut points from its execution (i.e. cuts discovered
through queries). Note that the value of a piece [x,y] can be determined with two Eval

queries, Eval;(z) and Eval;(y).

When a protocol runs in k rounds, then multiple RW queries (to the same or different agents)
can be issued at once in each round. Note the choice of queries submitted in round j cannot

depend on the results of queries from the same or later rounds (i.e. j,j+1,...,k).

4.6.1 Upper bounds

We will devise a protocol that finds a proportional allocation of the cake in k£ rounds of
interaction, which will also give a protocol for sorting with rank queries. For the special case
of one round, a proportional protocol was studied in [111, 142]. Our high level approach is

to iteratively divide the cake into subcakes and assign agents to each subcake.

31Ties are resolved deterministically, using for example the leftmost point with this property.
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Proposition 4.6.1. There is an algorithm that runs in k rounds and computes a proportional

allocation with a total of O(kn'+*Y/*) RW queries.

We first describe the algorithm, and then prove Proposition 4.6.1. The idea behind the

1=1/k agents to each section,

algorithm is to partition the cake into n'/* subcakes and assign n
such that every agent believes that if they ultimately get a proportional share of their
subcake, then they will have a proportional slice overall. Then all that remains is to recurse

on each subcake in parallel in the successive rounds.

One complication is that our only method of asking agents to cut a subcake, the C'ut query,
requires that we know the values of the boundary of the subcake to that agent. However,
the boundaries of the subcakes are known only with respect to one agent (possibly different
agents for each boundary). We circumvent this difficulty by instead asking each agent to
divide a further subset of their subcake whose boundary values for their valuation are known.

In Algorithm 1, this further subset for each agent i is the interval [Cut;(a;), Cut;(b;)).

Algorithm 1.
Input:

Cake interval [x,y] to be divided.

Agent set A among whom the cake is to be allocated.

For each agent i € A, values a; and b; in [0, 1].

Number of remaining rounds k.

Procedure:
1. If |A| = 1, allocate the whole interval to the sole agent. Otherwise, continue.
2. Define z = [|A|'*] and define m; = [|A] - 11— [|A| - 2] for each j € [2].
3. Query Cut; (ai + (b — @) - |711| S, Mg) for all agents i € A and all j € [z —1].
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4. Forj=1,2,...,z—1:

(a) Select Sj to be the m; agents i among A \ ( i Sg) with the smallest values for

Cuti (CLi + (bl — CLi) . |%l| Zjezl mg).

(b) Set ¢; to be the m;th smallest value for Cut; (ai + (b — @) - ﬁ S, mg) among
allie A\ (U] S).
5. Set S, = A\ (Ug;ll S,g), co=0,and ¢, = 1.
6. In parallel in the following rounds, recurse on the the following instance for each j € [z]:
« The cake interval to be divided is [¢j_1, ¢].
o The set of agents is .Sj.
« For each agent i € Sj, set new(a;) = a; + (b — a;) - ﬁ ng;ll my.
« For each agent i € Sj, set new(b;) = a; + (b — a;) - ﬁ S my.

e The number of remaining rounds is k — 1.

To initially run Algorithm 1, use as input the following parameters. The cake interval to be
divided is [0, 1]. The set of agents is [n]. For each agent i € N, set a; = 0 and b; = 1. The

number of (remaining) rounds is k.

Example of running Algorithm 1.

(173) Let n =4 and k = 2. Let the agents’ value densities be as shown in Figure 4.7. After

the first round we will have

o Cut(ay) = 0.65,Cut(b;) = 1, Cut(az) = 0.5, Cut(by) = 1, Cut(as) = 0, Cut(b3) =
0.45,
Cut(ay) = 0, Cut(by) = 0.4.

The dividing line between the two subcakes, i.e. ¢, will be Cut(ag) = 0.5.
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Figure 4.7. A potential value distribution for four agents from Example 1.
When running Algorithm 1 on the shown value density functions with k& = 2,
after the first round we will have a1 = as = 0.5, by = by = 1, a3 = a4 = 0,
and by = by = 0.5. This leads to the Cut values shown. In the second round,
Algorithm 1 will recurse on the subcake [0, Cut(asz)) = [0,0.5] with agents 3
and 4 and on the subcake [0.5, 1] with agents 1 and 2.

(174) Let n = 1000 and k = 3. Algorithm 1 works as follows in each round:

1 2

1. Round 1: everyone is asked to mark their 35, 75, - -

. 1% points. These are used

to separate the agents into 10 subcakes, each containing 100 agents.

1 2

2. Round 2: Everyone is asked to mark their 35, 55, - -

9 . . . .
-5 70 points within their

respective value interval [a;, b;]. For example, for the second subcake each agent

11 12 19

marks their 155,155, - > 705

points. Again these are used to separate each

subcake further into 10 subcakes, each containing 10 agents.
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3. Round 3: Everyone is asked to mark their 1/10,...,9/10 points within their
respective value interval. This time when assigning agents to subcakes, the

algorithm assigns only 1 to each, so we’re done.

Next we prove that the algorithm correctly computes a proportional allocation of the cake

in k rounds.

Proof of Proposition 4.6.1. Consider Algorithm 1. We claim that after j rounds each subcake
contains at most n' /¥ agents. In the base case, after 0 rounds, the sole subcake contains
all n agents. In the inductive case, we assume that after j rounds each subcake contains at
most n' /% agents. Consider an arbitrary subcake containing m agents and an arbitrary .
Then

j j—1 1_if1

e = [ ) = me g S w7 S a0 (4.175)

This concludes the induction. Then after k rounds each subcake contains at most n!=*/% = 1

agents. Thus the algorithm generates an allocation in k& rounds.

Next we claim inductively that at the start of every call to Algorithm 1, for alli € N we have
x < Cuti(a;) and Cut;(b;) < y. In the initial call to Algorithm 1 this is true since 0 < Cut;(0)
and Cut;(1) < 1. In the recursive call in step 6, consider an arbitrary j € [z] and an arbitrary
agentie S;. f j=1,then ¢y =2 <ai=a+a + (b —a) - ﬁzje;ll my = new(a;) by
inductive assumption. If instead j > 1, then because i ¢ S;_1, we know by definition of
that

;

1
Cj—1 < Cllti (ai + (bl — ai) . m
=1

mg> = Cut;(new(q;)) . (4.176)
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Either way, in the recursive call we have z = ¢;_; < Cut;(new(a;)). If j = 2z then ¢; =y >
v =ai+ (b —aq) - ‘7}| S_, my = new(b;) by inductive assumption. And if instead j < z, then
because i € Sj, we know by definition of ¢; that
j

1
¢ > Cuty(a; + (b — ai) - 7
] ( ) ’A‘ =

my) = Cuti(new(b;)) . (4.177)

Therefore < Cut;(a;) and Cut;(b;) < y at the start of every call to Algorithm 1.

To argue that every agent receives value at least 1/n, we proceed by induction on k. In
particular, we claim that at the start of every call to Algorithm 1, every agent i has b; —a; >
|A|/n. In the initial call to Algorithm 1 this is true since 1 — 0 = n/n. In the recursive call
in step 6, consider an arbitrary j € [z] and an arbitrary agent i. Because z < Cut;(a;) and
Cut;(b;) < y at the start of each call to Algorithm 1, we have that agent i values [z, y] as at

least b; — a;. By definition of new(q;) and new(b;) in step 6, we have by inductive assumption
(bs) = mew(a) = (b — as) - T > (4.178)
newl(o;) —newla;) = i — Qi) — = — .
Al — n
This completes the induction. When Algorithm 1 returns, it gives each agent i the interval

[, y]. Since 2 < Cut;(a;) and Cut;(b) < y, this has value at least b; — a; > = to agent i.

To argue the bound on the number of queries, we proceed by induction on k. For k = 1,

the bound is n?, which is satisfied since we issue n — 1 queries for each of n agents. In the

inductive case, in the first round we issue [nl/ k] — 1 < n!/* queries for every agent, for a

total of at most n!T'/*. By the inductive assumption, the remaining number of queries is
[nl/F] [nl/k]

> (k= Dm TV < (k- 1>( > mj)wk = (k= n' /" (4.179)

j=1 =1

1+1/k

Combining, we get at most kn queries in total. O

A key step in connecting cake cutting with sorting will be the following reduction, which

reduces sorting a vector of n elements with rank queries to proportional (contiguous) cake
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cutting with n agents. Rank queries have the form “How is rank(x;) compared to k?”, where

the answer can be “<”, “=" or “>".

Proposition 4.6.2. There exists a polynomial time reduction from sorting n elements with
rank queries to proportional cake cutting with n agents. The reduction holds for any number

of rounds.

The reduction from sorting to cake cutting was essentially done in the work of Woeginger
and Sgall [63], but appears implicitly. We formalize the connection to rank queries and note

the reduction is round-preserving. The proof of Proposition 4.6.2 is in section 4.6.3.

Proposition 4.6.3. There is a deterministic sorting algorithm in the rank query model that

runs in k rounds and asks a total of O(kn'*Y/%) queries.

Proof. By the reduction from sorting to cake cutting in Proposition 4.6.2, the upper bound

follows from Proposition 4.6.1.

The sketch of the resulting deterministic sorting algorithm is as follows. In the first round,
for each x in the array, query comparing rank(x) to [n'=V*] [2n'=V/*] ... [n — n!71/k],
This divides the array into [n'/*] blocks of indices of the form ([(i— 1)n'=/*], [in'~1/*]) for
i=1,2,...,[n'*]. Each element either has its exact rank revealed, or is found to belong to

a particular block. Then recursively call the sorting algorithm in each block. O]

4.6.2 Lower bound

In this section we first show a lower bound for sorting in the rank query model; for determin-
istic algorithms this bound improves upon the bound in [62] by a constant factor and the
proof is simpler (see Section 4.6.4). Deterministic algorithms are relevant specifically for fair
division, since some studies find that it is preferable to avoid randomness in the allocations

if possible when dealing with human agents.
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Proposition 4.6.4. Let c(k,n) be the minimum total number of queries required to sort n

elements in the rank query model by the best deterministic algorithm in k rounds. Then

c(k,n) > En!t/k — fn .

Alon and Azar [62] show a lower bound of (2 (/{;nHl/ k) for randomized sorting with rank

queries, which together with the reduction in Proposition 4.6.2 implies the next corollary.

Corollary 12. Let A be an algorithm that runs in k rounds for solving proportional cake
cutting with contiguous pieces for n agents. If A succeeds with constant probability, then it

issues Q(kn'TV®) queries in expectation.

The proof of Proposition 4.6.4 is given in section 4.6.4.

4.6.3 Sorting to cake cutting reduction

Here we prove the reduction of sorting to proportional cake cutting where the sorting is not
with comparisons, but rather with queries that, given an item p and index i return whether
the rank of p is less than, equal to, or greater than i. The bulk of the work has already been
done by Woeginger and Sgall [63] through the introduction of a set of cake valuations and
an adversary protocol. We present again their valuations and adversary protocol without
proving the relevant lemmas; we would refer the reader to their paper for the proofs. Then

we perform the last few steps to prove the reduction.

Definition 4.6.1. [65] Let the a-point of an agent p be the infimum of all numbers x such
that 1,([0, z]) = a. In other words, Cut,(o) = .

We fix 0 < € < 1/n*. The choice is not important.

Definition 4.6.2. [63] Fori=1,...,n let X; C [0,1] be the set consisting of the n points
i/(n+ 1) + ke with integer 1 < k < n. Further let X = U<, Xi

By definition every agent’s 0-point is at 0. The positions of the i/n-points with 1 <i <n

are fixed by the adversary during the execution of the protocol. In particular, the i/n-points
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of all agents are distinct elements of X;. Note that this implies that all i/n-points are left of

all (i+ 1)/n points.

Definition 4.6.3. [63] Let I,; be a tiny interval of length € centered around the i/n-point

of agent p.

We place all the value of each agent p in her Z,; for i = 0,...,n. More precisely, for
i =0,...,n she has a sharp peak of value i/(n? + n) immediately to the left of her i/n point
and a sharp peak of value (n —i)/(n? + n) immediately to the right of her i/n point. Note
that the measure between the i/n and (i + 1)/n points is indeed 1/n. Further note that the
value p,(Z,;) = 1/(n + 1). Also note that the Z,; are all disjoint except for the Z,, which
are identical. Finally note that every a-point of an agent p lies inside one of that agent’s

IPJS.
Definition 4.6.4. [65] If x € T,,;, then let c,(x) be the corresponding i/n-point of agent p.

Definition 4.6.5. [63] We call a protocol primitive iff in all of its cut operations Cut,()

the value of « is of the form i/n with integer 0 < i < n.

Lemma 61. [63] For every protocol P there ezists a primitive protocol P' such that for every

cake cutting instance of the restricted form described above,
1. P and P’ make the same number of cuts.

2. if P assigns to agent p a piece J of measure pu,(J) > 1/n, then also P' assigns to
agent p a piece J' of measure pu,(J') > 1/n.

It is also true that given P, protocol P’ can be quickly constructed. This follows directly
from Woeginger and Sgall’s constructive proof of the above lemma. This implies that we,
the adversary, may assume w.l.o.g. that the protocol is primitive. We can now define the
adversary’s strategy. Fix a permutation T on [n]. Suppose at some point the protocol asks
Cut,(i/n). With multiple queries in the same round, answer the queries in an arbitrary

order.
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1. If m(p) < i, then the adversary assigns the i/n point of agent p to the smallest point
in the set X; that has not been used before.

2. If m(p) > i, then the adversary assigns the i/n point of agent p to the largest point in
the set X; that has not been used before.

3. If (p) =i, then the adversary assigns the i/n point of agent p to the ith smallest point

in the set Xj;.
This strategy immediately precipitates the following lemma.

Lemma 62. [63] If n(p) < i< m(q) and p # q, then the i/n point of agent p strictly precedes
the i/n point of agent q

At the end, the protocol must assign intervals to agents. Let o, y1, ..., ¥, be the boundaries
of these slices; i.e. yo = 0, y, = 1, and all other y; are cuts performed. Then there is a

permutation ¢ of [n] such that for i = 1,... n the interval [y;_1, ;) goes to agent ¢(i).

X1 X2 X3 X4

Value
[==]
3 L8, =
—
—
—

Apent 1 Agent 2 Apent 3 Agert 4

Figure 4.8. A potential value distribution for four agents. Each agent receives
a spike in value in each of Xo, X1, Xo, X3, X4 (X is not shown). Each spike has
total value 1/5, so to get the required 1/4 value an agent’s slice must include
parts of multiple X;. Note that Agent 1 receives the first slot in X7, Agent
2 receives the second slot in X5, etc. Further note that slot 1 is allocated to
Agent 1 in X5 and slot 4 is allocated to Agent 4 in X3. This implies that the
slices must be allocated to agents 1,2, 3,4 in order.

Lemma 63. [63] If the primitive protocol P’ is fair, then y; € X; for 1 <i<n—1 and the

interval [yi_1, y;] contains the (i — 1)/n-point and the i/n-point of agent ¢(i).
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Lemma 64. [63] For any permutation o # id of [n|, there exists some i with

oi+1)<i<a(i).

1 1

We can now claim that ¢ = n~". To prove this, suppose for sake of contradiction ¢ # ®w~;

then o ¢ # id and by Lemma 64, there exists an i such that

m(e(i+1)) <i<n(o(i)) (4.180)

Then let p = ¢(i+ 1) and ¢ = ¢(i). Further let z, be the i/n point of agent p and z, be the
i/n point of agent ¢. By Lemma 64, we have z, < z,. By Lemma 63, we have z, € [y, Yi+1]
and z, € [yi—1, ). But this implies z, > y; > z,, in contradiction with z, < z,. Therefore
¢ = 11, With this preliminary work out of the way, we are finally ready to state and prove

the reduction.

Proposition 4.6.2 (restated): There ezists a polynomial time reduction from sorting an n
element with rank queries to proportional cake cutting with n agents. The reduction holds

for any number of rounds.

Proof. After an evaluation query Eval,(x), where x = Cut, (i/n) and p # p', there are only
two possible answers: i/(n + 1) and (i+1)/(n + 1). This reveals whether the i/n point of p
is left or right of that of p’. This only reveals new information if ®(p’) = i. In this case, the

information is whether m(p) < i or w(p) > i.

After a cut query Cut,(i/n), there are only three answers. These correspond exactly to

n(p) <1i, ®(p) =1, and w(p) > i. Thus w.l.o.g., all queries are cut queries.

Then given a sorting problem with rank queries, we can construct a proportional cake cutting
instance such that any solution assigns slices according to the inverse permutation of the
unsorted elements of the original sorting problem. The sorting problem can then be solved

without any additional queries. Furthermore, each query in the cake cutting instance can
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be answered using at most one query in the sorting instance. This completes the reduction.
Because of the one-to-one correspondence between queries, it immediately follows that the

reduction holds for any number of rounds. O

4.6.4 Sorting lower bound

Our approach for the lower bound builds on the work in [75]. To show that this sorting
problem is hard, we find a division between two regions of the array such that one must be

solved in future rounds while the other still needs to be solved in the current round.

Proposition 4.6.4 (restated): Let c¢(k,n) be the minimum total number of queries required

to sort n elements in k rounds in the rank query model. Then c(k,n) > 2%”1“/1@ — kn.

Proof. We proceed by induction on k. For k = 1, note that if any two items p;, p, have no
query for indices i,i + 1 then the adversary can assign those positions to those items and
the solver will be unable to determine their true order. Thus for i = 2,4,...n at least n — 1

queries are necessary, for a total of [n/2|(n —1). Then
In/2|(n—1) > (n/2-1/2)(n—1) =n?/2 —n+1/2 >n?/(2e) —n.
For k > 1, assume the claim holds for all pairs (k’,n') where either (k' < k) or (k' = k and

n' <n). If n*/* < 2e, then

1/k
L—lSO <— Enlﬂ/k—k’nSO
2e 2e

so the bound is non-positive, and is thus trivially satisfied. Thus we may assume n'/* > 2e.

If there are no queries in the first round, then we have

k-1 1 k
clk,n) > clk—1,n) > un1er —(k—1)n = —n!ti/*
2e 2e

T P R
(_k)n +k5nl/k o
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From here it suffices to show (1 — %)nl/(kz_k) + o > 1

Recall the AMGM inequality aa 4+ 8b > a®b® with a,b, o, 3 > 0 and o + 3 = 1. Taking
a=1-1/k 8=1/k,a= n /R =1k and b = 2¢/n'/*, we get

1 2
(1) D e = e 2 (1.181)

so we may assume there is at least one query in the first round.

Take any k-round algorithm for sorting a set V' of n elements using rank queries. Let x be
the maximum integer such that there exist x items with no queries in [1, z] but there do not
exist x 4+ 1 items with no queries in [1,z + 1]. Note that since there is at least one query,
it follows that x < n. Let S be one such set of x items. Then at least n — x items have a
query in [1,2 4 1]. At this point the adversary announces that every element of S precedes
every element of V' — §. The adversary also announces the item at position x + 1. We call
this item p,,iq. None of the n — x queries help to sort the items in S since they are either at
x4+ 1 or for an item not in .S, so we also need ¢(k — 1, z) queries to sort S. Additionally, none
of the n — x queries help to sort the items in V' — S — {pia}, so we also need an additional

c(k,n —x — 1) queries to sort V — S — {ppia}. This implies the following inequality.
c(k,n) >clkyn—xz—1)+(n—2x)+clk—1,2) (4.182)

We consider two cases.

Case z > k/In2. By the inductive assumption,

kE—1

k
c(k,n) > 2—(71 —z— D) k(n—z -1+ (n—2)+ Txl“/(k_l) —(k—=1)x
e e
k L1k x4+ 1 1+1/k 1 x1+1/(k71) %
— S (=) (1 ) | ke

(4.183)
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In the AM-GM inequality aa + b > a®b?, taking

2 1H1/(k=1) %0

a=1-1/kp=1/ka=—1mz—, and b= 7,

(4.184)

x4+ 1 1+1/k T (26)1/k
(1 - > nl-1/k2 1/k?

] kn+k  (4.185)

n

Now, since (1+ +)¥ e, we have e'/* > 1+ 1/k. This yields

1 1+1/k 1
(1— T ) +ok? (1+)} —kn+k (4.186)

k
S N1tk
c(k,n) 2 2en n n k

Then recall Bernoulli’s Inequality: (1 —a)! > 1 —at if ¢ > 1 and a < 1. This yields

1 1 1
c(k,n) > ﬁnlﬂ/k - I (1+k> +21/k’% (14—]{)} —kn+k

2e n
4.187)
[k K+1 il (o1 (
Then since by L'Hépital’s rule k(2% — 1) — In2 from above, we have
k kE+1 In2
c(k,n) > {Qenm/’f - k:n] + ;e nt/* (x ; - 1) +k. (4.188)
Then by invoking our case assumption that x > k/In 2, we get
k 1+1/k k 1+1/k
c(k,n) > [n - kn} +k>—n — kn,
2e 2e
as required.
Case r < k/In2. From inequality (4.182), we get
k
clkyn)>clkyn—x—1)+n—2x)+ck—1,2) >clkyn—xz—1)+n— o
n
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By the inductive hypothesis,

k k 1 1+1/k k
ck,n) > —(n—x—1)"* —nk4n— — = Zpltl/k (1—“) —nk+n— —

k
% In2 2 n In2

Using the Bernoulli inequality (1 —a)' > 1 —at with ¢t > 1 and a < 1, we get

1—x+1<1—|—1>}—nk+n—k

2e n k In2
_ k 1+1/k } k 1/k ( 1) k
N [QGn nk Qen (x + 1) 1+ k tn In2
k k+1 k k
> | pltt/k 4-— L/k 1 —— 4.1
= {2(3” n 5 "\t T T e (4.189)

At this point we want to show n > & pt/®(1 + k/In2) + k/In2. It suffices to show

both of the following inequalities

k

_— >
" In2

0 5> 1n2+1> and (ii) (4.190)

~13

Inequality (i) holds if and only if

_ 2k+1) ( k
1-1/k 1
T T e (1112 * )

Since n > (2e)*, we get that n'~'/* > (2¢)*~!. For k > 2, we obtain (2¢)"' >

2(k+1) (% + 1), which concludes (1)

3e

To show (ii), recall that n > (2e)¥. Then for k > 2 we get (2e)* > 4k/In(2), which

implies (ii). This concludes the second case and the proof of the theorem.

4.7 Folklore lemmas

Here we include a few folklore lemmas that we use, together with their proofs for complete-

ness.
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Lemma 65. Lety = (y1,...,Yn) withy, > ... >y, > 0 and 31, y; = 1. Then Z}zl Yy >
i/n Vi€ [n].

Proof. Let i € [n]. Since y is decreasing, we have (Z}ﬂ yj)/i > (Zj”:iH yj)/(n —1) (1)

Assume by contradiction that y; + ...+ < i (1). Adding y;41 + ... + ¥, to both sides of
(1), we get

1
1:y1+---+yn<ﬁ+yi+1+---+yn

< :1+ i ._i : (zi:yj) (By (1))

1

s+t () (By (1))
=1 (4.191)

We obtained 1 < 1, thus the assumption in (1) must have been false and the lemma holds. [
Lemma 66. Let © € Rsy. Then "5 > x4 1.

Proof. Raising both sides to the power 1/(z + 1), the inequality is equivalent to rr >
(z+ 1)71, or (1/2)In (z) > (1/(z + 1))In (x + 1) ().

Define g(z) = (Inz)/z. Its derivative is ¢’'(x) = (1 — Inz)/z% Thus g is increasing on [1,¢)

and decreasing on [e, +00). It follows that (1) holds for > 3 and the lemma follows. [

The next lemma shows that if v is an integrable function defined on [0, 1], then there is an
interval I of length p on the circle where the interval [0,1] is bent such that the point 0
coincides with 1, with the property that [, v(z)dz = p.

Lemma 67. Let v : [0,1] — Rsq be an integrable function with [y v(x)dx = 1. Then there
exists a € [0, 1] such that one of the following holds:

o [Py(x)dr =p, where 0 < a <1 —p;

a
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o Jov(x)dr+ falﬂ_pv(x) dx =p, where 1 —p <a < 1.
Proof. We define a new function g : [0, 1] — R>q, such that

2P u(y) dy if0<zx<1-p.

T

Lo dy+ 57 o(y)dy ifl—p<a<1.

To prove the lemma it suffices to show that there exists ¢ € [0, 1] such that g(c) = p. Indeed,
the function ¢ is continuous and so integrable. Let F' : [0,1] — Rxq be F(z) = [5 v(y) dy.

Using this notation, we get:

[o@ae=[ [ [T etwayas]+ [ ([ewar)+ ([T v dy) o
- /01p<F(x +p) — F(x)) dr + /11_p<(F(1) —F@)+ (Flx+p—1)— F(O))> dx

- 1 1 1
:/ F(:E—I—p)da:—/ pF(x)da:—l— 1dx—/ F(z)dx + Flx+p-1)dz
0 0 1-p 1-p 1-p
(Since F'(1) =1 and F(0) =0.)
1-p 1-p 1 1
/ F(:v+p)dx—/ Fx)de+p— | F@)de+ [ Flz+p—1)de.
0 0

1-p 1-p

(4.192)

We have

/11 F(:erp—l)dx:/pF(?J)dy and /Ol_pF(x+p)dx=/plF(z)dz. (4.193)

—p 0

Using (4.193) in (4.192) yields

/O ' g(x) do = /p 'Fle)dz - /0 () de +p— 11_p Flz)dr + /0 "Fly)dy.  (4.104)

Notice that fpl F(2)dz + [P F(y)dy = [y F(x)dx and — [} * F(z)dz — fll_p F(z)dx =
— [y F(x) du.
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Therefore, the four integrals in (4.194) cancel each other and we get [y g(x)dz =p. (f)

Applying the first mean value theorem for definite integrals in (1), there exists ¢ € [0, 1] with
the property that g(c) = 5 Ji g(z) dx = p, which concludes the proof. O
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