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length T − 2 ≤ np and probability mass
∑j−1

`=i+1 Ψ` ≤ p. . . . . . . . . . . . . . . .  175 

4.4 Given distribution Ψ = (Ψ1, . . . , Ψn), define v : [0, 1] → R≥0 by v(x) = n · Ψ` for
all ` ∈ [n] and x ∈ [(` − 1)/n, `/n]. The left figure shows point c with probability
mass

∫ c
0 v(x) dx +

∫ 1
c+1−p v(x) dx = p. The right figure shows the queried sub-array

consisting of two parts: y = [x1, . . . , xi, xj, . . . , xn], of length T = n + i − j + 1 ≤
np + 2 and probability mass

∑i
`=1 Ψ` +

∑n
`=j Ψ` ≥ p. When T ≥ 2, the sub-array
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ABSTRACT

Search problems lie at the core of computer science. This thesis addresses two types of

search problems. The first type is local search on graphs. In this problem there is a graph

G = (V,E) and a function f : V → R. The goal is to find a local minimum of f ; i.e. a

vertex v such that f(v) ≤ f(u) for all (u, v) ∈ E. This problem is relevant as a heuristic in

a variety of fields where it is not computationally feasible to compute global minima. For

example, many machine learning techniques compute a local minimum of loss.

The second type of search problem we consider is extremely fundamental: search for an

element in an array. We consider this both when the array is sorted and unsorted, but in

the context of computation in rounds. In each of a limited number of rounds some queries

are issued, but the answers are not revealed until after the last query of the round has been

issued. This model is relevant to parallel computing, where the work done by one machine

is not available to other machines operating concurrently, effectively allowing one query per

machine at any given time. Following this thread, we also study sorting in rounds and the

connection this has to cake cutting in rounds, a form of fair division.

In studying these problems we focus primarily on proving lower bounds on their query

complexities. While upper bounds can be shown simply by designing an algorithm that

achieves that bound, it is often difficult to show a matching lower bound.

For local search, we use relational adversary methods to overcome this difficulty. Relational

adversaries were first developed by Ambainis [ 1 ] for use in bounding the query complexities

of quantum algorithms. We use the strong weighted version of the quantum relational

adversary, developed by Zhang [  2 ], for our quantum results. Aaronson [  3 ] developed a

classical variant of the relational adversary and applied it to local search on the hypercube

and grid. We improve on his classical relational adversary and use our variant for all our

classical results on local search.

Most classical lower bound techniques for randomized algorithms use Yao’s minimax prin-

ciple [  4 ], either explicitly or implicitly through methods like the relational adversary. For

11



search problems on arrays, we show sharper bounds than Yao’s minimax principle can show.

We accomplish this via more direct proofs by induction and through showing polynomial

inequalities.

The specific papers covered in this thesis are the following:

1. “The Sharp Power Law of Local Search on Expanders” [ 5 ], Simina Brânzei, Davin

Choo, and Nicholas Recker. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms (SODA),  https://arxiv.org/abs/2305.08269 , 2024.

2. “Spectral Lower Bounds for Local Search” [ 6 ], Simina Brânzei and Nicholas Recker.

arXiv preprint arXiv:2403.06248 (2024).

3. “Searching Sorting and Cake Cutting in Rounds” [ 7 ], Simina Brânzei, Dimitris Paparas,

and Nicholas Recker. arXiv preprint arXiv:2012.00738 (2020).

In addition, this thesis covers unpublished results on the quantum query complexity of local

search on expanders.
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1. THE SHARP POWER LAW OF LOCAL SEARCH ON

EXPANDERS

This chapter is based on my paper of the same name, which can be found at  https://arxiv.
org/abs/2305.08269 .

1.1 Introduction

Local search is a powerful heuristic for solving hard optimization problems, which works by

starting with an initial solution to a problem and then iteratively improving it. Its simplicity

and ability to handle large and complex search spaces make it a useful tool in a wide range

of fields, including computer science, engineering, optimization, economics, and finance.

The complexity of local search has been extensively studied in both the white box model (see,

e.g., [  8 ]) and the black box model (see, e.g., [  9 ]). The latter type of complexity, also known

as query complexity, is well understood when the neighbourhood structure of the underlying

graph is the Boolean hypercube or the d-dimensional grid, but much less is known for general

graphs.

Many optimization techniques rely on gradient-based methods. The speed at which gradient

methods find a stationary point of a function can be estimated by analyzing the complexity of

local search on the corresponding discretized space. Constructions for analyzing the hardness

of computing stationary points are often similar to those for local search, modulo handling

the smoothness of the function (see, e.g., [  10 ]). Meanwhile, the difficulty of local search

itself is strongly related to the neighbourhood structure of the underlying graph. At one

extreme, local search on a line graph on n nodes is easy and can be solved via binary search

in O(log n) queries. At the other extreme, local search on a clique on n nodes takes Ω(n)

queries, thus requiring brute force.

In this paper, we consider the following high level question: How does the geometry of the

graph influence the complexity of local search? In general, the neighbourhood graph search

13

https://arxiv.org/abs/2305.08269
https://arxiv.org/abs/2305.08269


structure in optimization settings may correspond to more general graphs beyond the well-

studied Boolean hypercubes and d-dimensional grids. For example, when the data in low

rank matrix estimation is subjected to adversarial corruptions, it is helpful to consider the

function on a Riemannian manifold rather than Euclidean space. That is, the discretization

of an optimization search space may not necessarily always correspond to some d-dimensional

grid. Multiple works consider optimization in non-Euclidean spaces, such as that of [  11 ],

which adapts stochastic gradient descent to work on Riemannian manifolds. See [  12 ] and

[ 13 ] for more discussion.

Our paper tackles the challenge of understanding local search on general graphs and obtains

several new results by considering a broader framework of graph features such as vertex

congestion and separation number. A corollary is a lower bound of the right order for

expanders with constant degree.

Our methodology is strongly inspired by, and can be seen as a variant of, the relational

adversary method of [  3 ]. However, where Aaronson’s method focuses on the contribution

of a query towards distinguishing two inputs from all others, our method considers the

aggregate impact of a query across many inputs at once. This allows our method to be

asymptotically at least as strong as the version in [  3 ] for all randomized algorithms, as well

as strictly stronger on some problems and easier to apply in our setting. This strength also

comes at a cost: we get results for randomized algorithms, whilst Aaronson’s method works

in quantum settings.

Roadmap to the paper.

The model is defined in  Section 1.2  . Our contributions are given in  Section 1.3 . Related

work is discussed in  Section 1.4 . Our variant of the relational adversary method is stated

together with an example and discussion in  Section 1.5 (with full material in  Section 1.9 ).
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Lower bounds via vertex congestion, as well as the corollary for expanders, are given in

 Section 1.6 (with full material in  Section 1.11 ). Lower bounds via the separation number

are in  Section 1.7 (with full material in  Section 1.12 ).

Finally,  Section 1.8  reviews some known results from prior work that we use.  Section 1.10  

provides the proof for a lemma used throughout the paper.

1.2 Model

Let G = (V,E) be a connected undirected graph and f : V → R a function defined on the

vertices. A vertex v ∈ V is a local minimum if f(v) ≤ f(u) for all {u, v} ∈ E. We will write

V = [n] = {1, . . . , n}.

Given as input a graph G and oracle access to function f , the local search problem is to

find a local minimum of f on G using as few queries as possible. Each query is of the form:

“Given a vertex v, what is f(v)?”.

Query complexity.

The deterministic query complexity of a task is the total number of queries necessary and

sufficient for a correct deterministic algorithm to find a solution. The randomized query

complexity is the expected number of queries required to find a solution with probability at

least 9/10 for each input, where the expectation is taken over the coin tosses of the protocol.

Congestion.

Let P = {P u,v}u,v∈V be an all-pairs set of paths in G, where P u,v is a path from u to v. For

convenience, we assume P u,u = (u) for all u ∈ V ; our results will hold even if P u,u = ∅.

For a path Q = (v1, . . . , vs) in G, let cQ
v be the number of times a vertex v ∈ V appears in Q

and cQ
e the number of times an edge e ∈ E appears in Q. The vertex congestion of the set

of paths P is maxv∈V
∑

Q∈P c
Q
v , while the edge congestion of P is maxe∈E

∑
Q∈P c

Q
e .
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The vertex congestion of G is the smallest integer g for which the graph has an all-pairs set

of paths P with vertex congestion g. Clearly, g ≥ n since each vertex belongs to at least

n paths in P and g ≤ n2 since each vertex appears at most once on each path and there

are n2 paths in P . The edge congestion ge is similarly defined, but with respect to the edge

congestion of a set of paths P .

Separation number.

For each subset of vertices A ⊆ V , let δ(A) ⊆ V \ A be the set of vertices outside A and

adjacent to vertices in A. The separation number s of G (see, e.g., [  14 ]) is  

1
 :

s = max
H⊆V

min
A⊆H:

|H|/4 ≤ |A| ≤ 3|H|/4

|δ(A)| .

d-regular expanders.

For each set of vertices S ⊆ V , the edges with one endpoint in S and another in V \ S are

called cut edges and denoted E(S, V \ S) = {(u, v) ∈ E | u ∈ S, v 6∈ S}. The graph is a

β-expander if |E(S, V \ S)| ≥ β · |S|, for all S ⊆ V with 0 < |S| ≤ n/2 (see, e.g. [  15 ]). The

graph is d-regular if each vertex has degree d.

Distance.

For each u, v ∈ V , let dist(u, v) be the length of the shortest path from u to v.
1

 ↑ For example, the separation number of a barbell graph (i.e., two cliques of size n/2 connected by a
single edge) is n/8, since the maximization will choose H to be one clique of size n/2 = 4n/8 and the
minimization will choose A to be an arbitrary subset of H of size 3n/8; then δ(A) is the rest of the clique of
size 4n/8 − 3n/8 = n/8.
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1.3 Our contributions

Guided by the high level question of understanding how graph geometry influences hardness

of local search, we obtain the following results.

1.3.1 Our variant of the relational adversary method

Our first contribution is to design a new variant of the relational adversary method of [  3 ].

While [  3 ] relates the query complexity to the progress made on pairs of inputs, we relate

the query complexity to progress made on subsets of inputs via a different expression. The

precise statement of our variant is as follows:

Theorem 1.3.1. Consider finite sets A and B, a set X ⊆ BA of functions  

2
 , and a map

H : X → {0, 1} which assigns a label to each function in X . Additionally, we get oracle

access to an unknown function F ∗ ∈ X . The problem is to compute H(F ∗) using as few

queries to F ∗ as possible. 

3
 

Let r : X × X → R≥0 be a non-zero symmetric function of our choice with r(F1, F2) = 0

whenever H(F1) = H(F2). For each Z ⊆ X , define

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2) ; and q(Z) = max
a∈A

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(a)6=F2(a)} . (1.1)

If there exists a subset Z ⊆ X with q(Z) > 0, then the randomized query complexity of the

problem is at least

min
Z⊆X :q(Z)>0

M(Z)
100 · q(Z) . (1.2)

In  Section 1.5 , we also show an example on which our variant is strictly stronger, giving a

tight lower bound for the query complexity of a simple “matrix game”. Then we prove our

variant is asymptotically at least as strong in general, for randomized algorithms.
2

 ↑ Each function F ∈ X has the form F : A → B.
3

 ↑ In other words, we have free access to H and the only queries counted are the ones to F ∗, which will be
of the form: “What is F ∗(a)?”, for some a ∈ A. The oracle will return F ∗(a) in one computational step.
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1.3.2 Lower bounds for local search via congestion

Next we give the first known lower bound for local search as a function of (vertex) congestion,

which is enabled by our  Theorem 1.3.1 .

Theorem 1.3.2. Let G = (V,E) be a connected undirected graph with n vertices. Then the

randomized query complexity of local search on G is Ω
(

n1.5

g

)
, where g is the vertex congestion

of the graph.

Since g ∈ [n, n2],  Theorem 1.3.2 cannot be used to show a lower bound stronger than Ω(
√
n)

queries, matching a general upper bound of O(
√
n) for graphs with bounded degree ([  9 ]).

 Theorem 1.3.2  gives meaningful results precisely when one can construct an all-pairs set of

paths with vertex congestion g = o(n1.5); e.g. our bound is vacuous on trees since g ∈ Θ(n2)

on trees.

 Theorem 1.3.2 also implies a lower bound of Ω
(

n1.5

ge·∆

)
on any graph G, where ge is the edge

congestion and ∆ the maximum degree of G.

High level approach.

To obtain the result in  Theorem 1.3.2 , we apply Yao’s lemma and design a hard input

distribution where the input is a random function f : V → R induced by a “staircase”. A

staircase is a walk of vertices v1, v2, . . . , vk of some length k where v1 is the entrance and vk

is the end. The value of the function f outside the staircase is equal to the distance (in the

graph) to the entrance of the staircase, while the value at vertices on the staircase decreases

as one walks away from the entrance. The local minimum is unique and can be found at the

end of the staircase. This type of construction is classical (see, e.g., [  3 ,  9 ,  10 ]). We designate

the space of such functions as X .

A staircase is characterized by a sequence of vertices (milestones). Then we connect each

pair w, z of consecutive milestones with the path Pw,z from the all-pairs set of paths P =
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{P u,v}u,v∈[n] with “low” congestion (that is, with congestion as low as possible given the

graph).

Then, we design a function r — also called the relation — that “relates” any two such

functions. Any such non-zero relation induces a distribution over functions where each

function F1 is sampled with likelihood equal to ∑F2∈X r(F1, F2).

Our choice of r increases according to the number of milestones the underlying staircases

have in common (specifically, by the longest initial prefix of milestones shared by the two

staircases). With our choice of r, the distribution over staircases is as though the milestones

were chosen uniformly at random without replacement.

Any two functions F1 and F2 with long initial prefix in their corresponding staircases are

very similar and so will be hard to distinguish by an algorithm. Roughly speaking, without

querying sufficiently many vertices and chancing upon a vertex which F1 and F2 disagrees

on, the algorithm will not be able to distinguish them. In order to capture this difficulty

of distinguishing such F1 and F2, the relation r(F1, F2) will be set to a high value. Our

congestion lower bound then follows by invoking our variant of the relational adversary

( Theorem 1.3.1 ) with this choice of r.

Our approach was inspired by previous works such as [ 3 ], who gave lower bounds for the d-

dimensional grid and the Boolean hypercube, and of [  16 ], who gave lower bounds for Cayley

and vertex transitive graphs by using a system of carefully chosen shortest paths rather than

arbitrary shortest paths; this inspired our choice of the set of paths P . We explain in more

detail the comparison with [ 3 ] and [  16 ] in Section  1.4.1 of Related work.

1.3.3 Lower bounds for local search via separation number

We also give an improved lower bound for local search with respect to the graph separation

number s. Our construction is heavily inspired by the one in [  17 ] , who gave a lower bound

of Ω
(

8
√

s
∆/ log n

)
, for both the quantum and classical randomized algorithms. Adapting this

construction within the framework of  Theorem 1.3.1 is non-trivial however.
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Theorem 1.3.3. Let G = (V,E) be a connected undirected graph with n vertices, maximum

degree ∆, and separation number s. Then the randomized query complexity of local search

on G is Ω
(

4
√

s
∆

)
.

The best known upper bound with respect to graph separation number is O((s+ ∆) · log n)

due to [  17 ], which was obtained via a refinement of the divide-and-conquer procedure of

[ 18 ]. It is an interesting open question whether the current upper and lower bounds can be

improved.

1.3.4 Corollaries for expanders, Cayley graphs, and the hypercube

Since d-regular β-expanders with constant d and β admit an all-pairs set of paths with

congestion O(n · log n) (e.g., see [ 19 ]), we get the next lower bound for constant degree

expanders.

Corollary 1. Let G = (V,E) be an undirected d-regular β-expander with n vertices, where d

and β are constant. Then the randomized query complexity of local search on G is Ω
( √

n
log n

)
.

The lower bound of  Corollary 1  is tight within a logarithmic factor. A simple algorithm

known as steepest descent with warm start ([  9 ]) can be used to see this:

First query t vertices x1, . . . , xt selected uniformly at random and pick the vertex

x∗ that minimizes the function among these  

4
 . Then run steepest descent from x∗

and stop when no further improvement can be made, returning the final vertex

reached. When t =
√
n∆, where ∆ is the maximum degree of the graph, the

algorithm issues O(
√
n∆) queries in expectation.

Thus steepest descent with a warm start has expected query complexity O(
√
n) on constant

degree expanders. Our lower bound implies this algorithm is essentially optimal on such

graphs.
4

 ↑ That is, the vertex x∗ is defined as: x∗ = xj, where j = argmint
i=1f(xi).
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We also get a lower bound as a function of the expansion and maximum degree of the graph

G.

Corollary 2. Let G = (V,E) be an undirected β-expander with n vertices and maximum

degree ∆. Then the randomized query complexity of local search on G is Ω
(

β
√

n
∆ log2 n

)
.

The congestion framework also allows us to recover a lower bound for undirected Cayley

graphs, which were studied before in [ 16 ]. An undirected Cayley graph is formed from a

group G and a generating set S. The vertices are the elements of G and there is an edge

between vertices u, v if u = w · v or v = w · u for some w ∈ S.

Corollary 3. Let G = (V,E) be an undirected Cayley graph with n vertices and diameter

diam(G). Then the randomized query complexity of local search on G is Ω
( √

n
diam(G)

)
.

We also get the next corollary for the query complexity of local search on the Boolean

hypercube.

Corollary 4. The randomized query complexity of local search on the Boolean hypercube

{0, 1}n is Ω
(

2n/2

n

)
.

The lower bound in  Corollary 4  is sandwiched between the lower bound of Ω
(

2n/2
√

n

)
by [  20 ]

and the lower bound of Ω
(

2n/2

n2

)
by [ 3 ].

1.4 Related work

The query complexity of local search was first studied experimentally by [  21 ]. The first

breakthrough in the theoretical analysis of local search was obtained by [  9 ]. Aldous stated

the algorithm based on steepest descent with a warm start and showed the first nontrivial

lower bound of Ω(2n/2−o(n)) on the query complexity for the Boolean hypercube {0, 1}n.

The lower bound construction from [  9 ] uses Yao’s lemma and describes a hard distribution,

such that if a deterministic algorithm receives a random function according to this distribu-
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tion, the expected number of queries issued until finding a local minimum will be large. The

random function is obtained as follows:

Consider an initial vertex v0 uniformly at random. Set the function value at v0

to f(v0) = 0. From this vertex, start an unbiased random walk v0, v1, . . . For

each vertex v in the graph, set f(v) equal to the first hitting time of the walk at

v; that is, let f(v) = min{t | vt = v}.

The function f defined this way has a unique local minimum at v0. By a very delicate analysis

of this distribution, [ 9 ] showed a lower bound of Ω(2n/2−o(n)) on the hypercube {0, 1}n.

This almost matches the query complexity of steepest descent with a warm start, which was

also analyzed in [  9 ] and shown to take O(
√
n · 2n/2) queries in expectation on the hypercube.

The steepest descent with a warm start algorithm applies to generic graphs too, resulting in

O(
√
n · ∆) queries overall for any graph with maximum degree ∆.

Aldous’ lower bound for the hypercube was later improved via more refined types of random

walks and/or more careful analysis. [ 3 ] improved the bound to Ω(2n/2/n2) via his relational

adversary method, which is a combinatorial framework that avoids analyzing the posterior

distribution and also yielded a quantum bound of Ω(2n/4/n). [  20 ] improved the randomized

lower bound to a tight bound of Θ(2n/2 ·
√
n) via a “clock”-based random walk construction,

which avoids self-intersections.

Meanwhile, [ 18 ] developed a deterministic divide-and-conquer approach to solving local

search that is theoretically optimal over all graphs in the deterministic context, albeit hard

to apply in practice. On the hypercube, their method yields a lower bound of Ω(2n/
√
n) and

an upper bound of O(2n log(n)/
√
n): a mere log(n) factor gap.

Another commonly studied graph for local search is the d-dimensional grid [n]d. [  3 ] used his

relational adversary method there to show a randomized lower bound of Ω(nd/2−1/ log n) for

every constant d ≥ 3. [  20 ] proved a randomized lower bound of Ω(nd/2) for every constant

d ≥ 4; this is tight as shown by Aldous’ generic upper bound. Zhang also showed improved

bounds of Ω(n2/3) and Ω(n3/2/
√

log n) for d = 2 and d = 3 respectively, as well as some
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quantum results. The work of [ 22 ] closed further gaps in the quantum setting as well as the

randomized d = 2 case. The problem of local search on the grid was also studied under the

context of multiple limited rounds of adaptive interactions by [  23 ].

More general results are few and far between. On many graphs, the simple bound from [  9 ]

of Ω(∆) queries is the best known lower bound: hiding the local minimum in one of the ∆

leaves of a star subgraph requires checking about half the leaves in expectation to find it.

[ 17 ] gave a quantum lower bound of Ω
(

8
√

s
∆/ log(n)

)
, where s is the separation number of

the graph. This implies the same lower bound in a randomized context, using the spectral

method. Meanwhile, the best known upper bound is O((s + ∆) · log n) due to [  17 ], which

was obtained via a refinement of the divide-and-conquer procedure of [  18 ].

[ 16 ] studied Cayley and vertex transitive graphs and gave lower bounds for local search as a

function of the number of vertices and the diameter of the graph. We explain the comparison

with their work more precisely in Section  1.4.1 . [  24 ] obtained upper bounds as a function of

the genus of the graph.

[ 25 ] studied the communication complexity of local search. This captures distributed settings,

where data is stored in the cloud, on different computers.

There is a rich literature analyzing the congestion of graphs. E.g., the notion of edge conges-

tion is important in routing problems, where systems of paths with low edge congestion can

enable traffic with minimum delays (see, e.g., [  19 ,  26 ,  27 ]). This problem is sometimes called

multicommodity flow or edge disjoint paths with congestion. Others study routing with the

goal of maximizing the number of demand pairs routed using node disjoint paths; this is the

same as requiring vertex congestion equal to 1 (see, e.g., [  28 ,  29 ]).

Local search is strongly related to the problem of local optimization where one is interested

in finding an approximate local minimum of a function on Rd. A common way to solve

local optimization problems is to employ gradient-based methods, which find approximate

stationary points. To show lower bounds for finding stationary points, one can similarly

define a function that selects a walk in the underlying space and hide a stationary point at
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the end of the walk. Handling the requirement that the function is smooth and ensuring

there is a unique stationary point are additional challenges.

For examples of works on algorithms and complexity of computing approximate stationary

points, see, e.g., [  10 ,  30 – 34 ]). Constructions where the function is induced by a hidden

walk have first been designed for showing lower bounds on the query complexity of finding

Brouwer fixed points in classical work by [  35 ].

Works like [  11 ] study stochastic gradient descent, which is one method of finding approximate

local minima. Moreover, they do this on Riemann manifolds, which are a very broad class

of spaces. This motivates the need to study local search not only on hypercubes and grids,

but also on other, broader classes of graphs. For a more extensive survey, see, e.g., [ 12 ].

The computational complexity of local search is captured by the class PLS, defined by [  8 ]

to model the difficulty of finding locally optimal solutions to optimization problems. A

related class is PPAD, introduced by [  36 ] to study the computational complexity of finding

a Brouwer fixed-point. Both PLS and PPAD are subsets of of the class TFNP.

The class PPAD contains many natural problems that are computationally equivalent to

the problem of finding a Brouwer fixed point ([  37 ]), such as finding an approximate Nash

equilibrium in a multiplayer or two-player game ([  38 ,  39 ]), an Arrow-Debreu equilibrium in

a market ([  40 ,  41 ]), and a local min-max point ([ 42 ]).

The query complexity of computing an ε-approximate Brouwer fixed point was studied in

a series of papers starting with [ 35 ], later improved by [  43 ] and [  44 ]. Recently, [  45 ] showed

that the class CLS, introduced by [  46 ] to capture continuous local search, is equal to PPAD

∩ PLS. The query complexity of continuous local search has also been studied (see, e.g.,

[ 47 ]).
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1.4.1 Comparison with prior works and corrections

Our approach for the lower bound as a function of congestion was directly inspired by the

relational adversary method of [ 3 ] and an ingenious application to vertex-transitive graphs

by [  16 ]. In both of these papers, a hard distribution is obtained by getting a random input

function induced by a “staircase” (walk): the value of the function outside the staircase is

equal to the distance to the entrance of the staircase, while the value of the function on the

staircase is decreasing as one moves away from the entrance.

[ 16 ] choose a staircase by first selecting several random points (milestones) and then con-

necting them with a path from a system of paths. While one typically chooses arbitrary

shortest paths between two endpoints when constructing lower bounds, the system of paths

in their work consists of carefully chosen shortest paths as follows: (i) For paths that start

from a fixed vertex v0, fix arbitrary shortest paths; (ii) For paths starting from other vertices

vi with i > 0, use one of the same paths as from v0, but transformed by an automorphism

mapping v0 to vi (which is defined when the graph is vertex transitive).

The high-level approach and the careful selection of paths in [  16 ] inspired our choice for the

set of paths P with low congestion when the graph is not necessarily vertex transitive.

Given the family of functions and staircases described, what remains is to define a rela-

tion between functions and compute the lower bound obtained by invoking the relational

adversary method.

Corrections.

There appears to be a potential issue in the proof of Proposition 2 in [ 16 ], where the prob-

ability of an event is higher than would be required for the argument to go through  

5
 . We

5
 ↑ In [  16 ], for any vertex v that appears in a walk x = (x0, x1, x2, . . . , xL), the function is defined as

fx(v) = L − max{i : v = xi}, i.e. L minus the last index v last appears on x. Then, a vertex v should
be a disagreement between two walks x and y if v lies on both walks but fx(v) 6= fy(v). Afterwards, in
Proposition 2, if vertex v is a disagreement between two walks x and y, then v must lie on at least one of the
walks, and moreover, v was stated to be contained in a “segment” of the tail that is not the one immediately
after the divergence place of x and y (quote: “We can’t have both t < j + s and t′ < j + s... either t ≥ j + s
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bypassed this using our  Theorem 1.3.1 , which enabled us to recover the randomized lower

bound for Cayley graphs from [  16 ]; see  Corollary 3 .

This also occurs in the proof  

6
 of Lemma 6.2 of [  3 ], where it could be corrected by setting

the function fX(v), for a vertex v, as fX(v) = min{t : xt = v and xt+1 6= v} .

1.5 A variant of the relational adversary method

In this section we state our variant of the relational adversary method (  Theorem 1.3.1 ).

After stating the variant, we also design and analyze a “matrix game”, to illustrate a simple

problem for which our variant yields a better (in fact tight) lower bound for the randomized

query complexity. The complete details and proofs are included in  Section 1.9  , together with

the original theorem from [ 3 ] for comparison.

Theorem 1.3.1. Consider finite sets A and B, a set X ⊆ BA of functions  

7
 , and a map

H : X → {0, 1} which assigns a label to each function in X . Additionally, we get oracle

access to an unknown function F ∗ ∈ X . The problem is to compute H(F ∗) using as few

queries to F ∗ as possible. 

8
 

Let r : X × X → R≥0 be a non-zero symmetric function of our choice with r(F1, F2) = 0

whenever H(F1) = H(F2). For each Z ⊆ X , define

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2) ; and q(Z) = max
a∈A

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(a)6=F2(a)} . (1.1)

or t′ ≥ j + s”, where t = max{i : v = xi} is the last index of v on x, t′ = max{i : v = yi} is the last index of v
on y, j is the point of splitting, and s is the “segment length”). However, one can check the following setup
which violates this assertion also makes v a disagreement: max{i : v = xi} < j < max{i : v = yi} < j + s,
where v appears in the shared prefix and then only on x within the first segment after they diverge.
6

 ↑ In [  3 ], Lemma 6.2: in the first case, where t > j − n and t∗ > j − n, the probability P [xt = yt∗ ] is not zero,
but rather can be nearly 1/2 (e.g. at t = t∗ = j), since the coordinate loop allows staying in place. With
probability 1/2, exactly one of xj−1 and yj−1 is equal to xj, which usually makes fX(xj) 6= fY (xj). We have
reached out to the author and he has acknowledged the error, as well as suggesting another possible fix.
7↑Each function F ∈ X has the form F : A → B.
8↑In other words, we have free access to H and the only queries counted are the ones to F ∗, which will be
of the form: “What is F ∗(a)?”, for some a ∈ A. The oracle will return F ∗(a) in one computational step.
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If there exists a subset Z ⊆ X with q(Z) > 0, then the randomized query complexity of the

problem is at least

min
Z⊆X :q(Z)>0

M(Z)
100 · q(Z) . (1.2)

 Theorem 1.3.1 uses Yao’s lemma (see  Section 1.8 ), thus the algorithm can be assumed to be

deterministic and receive as input a random function sampled from some distribution P .

The theorem considers the probability distribution P where each function F ∈ X is given as

input with probability P (F ) = M({F })
M(X ) , where X is the space of possible functions.

The term M(Z) represents the likelihood that the function F ∗ given as input comes from

the set Z ⊆ X , while q(Z) is proportional to a lower bound on the number of queries needed

in the worst case to narrow down the function F ∗ within Z, conditioned on F ∗ being in Z.

Clearly some choices of r are more useful than others, and so the challenge when giving lower

bounds is to design the function r and estimate the expression in equation (  1.2 ).

1.5.1 Matrix game

In this section, we describe a toy problem upon for which our new variant ( Theorem 1.3.1 )

can show a stronger lower bound than the original relational adversary theorem.

Setup

Let n ∈ N be a perfect square and X be a subset of square
√
n ×

√
n matrices with entries

from {0, 1, 2}. There are two types of matrices within X : “row” matrices and “column”
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matrices. Row matrices have one row of 1s with all other entries 0 while column matrices

have one column of 2s with all other entries 0. For example:



0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0


is a row matrix, and



0 0 2 0

0 0 2 0

0 0 2 0

0 0 2 0


is a column matrix.

So, |X | = 2
√
n since there are

√
n distinct row matrices and

√
n distinct column matrices.

The game.

Given n and oracle access to a matrix F ∈ X , the goal is to correctly declare whether F is

a row or column matrix.

Lemma 1. The randomized query complexity of the matrix game is Θ(
√
n).

Proof sketch. We give a high level explanation of the proof, while the complete details can

be found in  Section 1.9  . For the upper bound, we can check that
√
n queries suffice. Query

the entries of the main diagonal and then proceed as follows: if any “1” is detected, declare

“row”; if any “2” is found, declare “column”.

For the lower bound, one intuitively expects that Ω(
√
n) queries are necessary even allowing

randomization. In fact, this is what we can show using  Theorem 1.3.1  . Choose the function r

so that r(F1, F2) represents the indicator function for whether the two matrices are “opposite

types”, for any two matrices F1, F2 ∈ X . This means that the probability to sample any

subset Z ⊆ X will be proportional to its size |Z|.

Meanwhile, for any subset Z ⊆ X of matrices, any single query on a matrix coordinate will

distinguish at most two matrices from all the others within Z. Thus, we can show that the

ratio M(Z)/q(Z) ∈ Ω(
√
n) for any subset Z ⊆ X of matrices, which implies a Ω(

√
n) lower

bound of the matrix game via  Theorem 1.3.1 .
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On the other hand, one can only show a lower bound of Ω(1) for the matrix game using the

version of the relational adversary method from [ 3 ]; see details in  Section 1.9 .

1.5.2 Advantage of our variant for randomized algorithms

In addition to being strictly stronger on some problems (like this matrix game), our variant

is at least as strong in general, for randomized algorithms.

Proposition 1.5.1. Consider any problem and let T be the expected number of queries

required in the worst case by the best randomized algorithm to succeed with probability 9/10.

If the relational adversary method from [ 3 ] provides a lower bound of T ≥ Λ for some Λ > 0,

then  Theorem 1.3.1 can prove a lower bound of T ≥ Λ/40.

1.6 Lower bound for local search via congestion

In this section, we explain at a high level the proof of  Theorem 1.3.2  , which gives a lower

bound as a function of congestion, as well as the corollary for expanders. See  Section 1.11  

for the details.

1.6.1 Proof sketch for the congestion lower bound

The proof of  Theorem 1.3.2 is sketched in the next sequence of steps. We define the following

with the intention of invoking  Theorem 1.3.1 .

Fixing a set of paths P.

Since the graph G = ([n], E) has vertex congestion g, we can fix an all-pairs set of paths

P = {P u,v}u,v∈[n], such that P u,v ∈ P is a simple path from u to v and P u,u = (u), for each

u, v ∈ [n]. Moreover, each vertex is used at most g times across paths in P .
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Staircases.

We fix a parameter L ∈ [n] to be set later. We consider sequences of vertices of the form

x = (x1, . . . , xL+1) ∈ {1} × [n]L, i.e. with x1 = 1. The staircase induced by x is a walk

Sx = Sx,1 ◦ . . . ◦Sx,L, where each Sx,i is a path in G starting at vertex xi and ending at xi+1.

Each vertex xi is called a milestone and each path Sx,i a quasi-segment.

The staircase Sx is induced by x and P if we additionally have Sx,i = P xi,xi+1 for all i ∈ [L].

In other words, to build such a staircase we first decide on the sequence of “milestones”

x; then to get from each milestone xi to the next milestone xi+1, we travel using the path

P xi,xi+1 from the set of paths P . Note that P xi,xi+1 may not be the shortest path between xi

and xi+1 since P does not necessarily only consist of shortest paths.

The value function fx.

For each staircase Sx induced by x and P , we define a corresponding function fx : [n] → R

as follows. For each vertex v in G:

(a) If v /∈ Sx, then set fx(v) = dist(v, 1).

(b) If v ∈ Sx, then set fx(v) = −i · n − j, where i is the maximum index with v ∈ P xi,xi+1 ,

and v is the j-th vertex in P xi,xi+1 .

The following example gives a visual illustration of an induced staircase Sx and its associated

function fx. Such a function fx has a unique local minimum at the end of the staircase Sx.

Our lower bound construction uses such functions.
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(a) Graph with n = 12 vertices (b) Staircase with induced value function.

Figure 1.1. Graph G with n = 12 vertices labelled {v1, . . . , v12}.
The staircase shown consists of the walk given by the dotted vertices
(v1, v3, v5, v6, v7, v8, v9, v6, v10, v3, v11). The value of the function at each vertex
is shown in blue near that vertex. The local minimum is at the end of the
staircase, at vertex v11.

Example 1 (Staircase with the associated value function.). Consider the graph G in  Fig-

ure 1.1 , with n = 12 vertices labelled {v1, . . . , v12}.

Let the set of paths P = {P u,v}u,v∈[n] be

• P v1,v6 = (v1, v3, v5, v6); P v6,v8 = (v6, v7, v8); P v8,v6 = (v8, v9, v6);

P v6,v11 = (v6, v10, v3, v11).

• For all other pairs of vertices (u,w), we set P u,w as the shortest path from u to w.

Let L = 4. Consider a sequence x = (x1, x2, x3, x4, x5) = (v1, v6, v8, v6, v11), where each

milestone is highlighted by a red dotted circle. Observe we allow repeated vertices. The

staircase induced by x and P, given by the green dotted walk, is

Sx = (v1, v3, v5, v6, v7, v8, v9, v6, v10, v3, v11) .31



The value function fx, computed using the definition (a-b), of each vertex is given in blue.

For technical reasons, in the lower bound proof we will actually work with a decision problem.

There is a simple way to turn a search problem into a decision problem (see [ 3 ,  16 ]): associate

with each function fx a function gx,b that hides a bit at the local minimum vertex (while

hiding −1 at every other vertex). Formally, gx,b is defined next.

Let A = [n] and B = {−n2 − n, . . . , 0, . . . , n} × {−1, 0, 1} be finite sets. For each vertex

x ∈ {1} × [n]L and bit b ∈ {0, 1}, let gx,b : A → B be such that, for all v ∈ [n]:

gx,b(v) =


(
fx(v), b

)
if v = xL+1(

fx(v),−1
)

if v 6= xL+1

. (1.3)

The set of functions we consider is X =
{
gx,b | x ∈ {1} × [n]L and b ∈ {0, 1}

}
.

The decision problem is: given a graph G and oracle access to a function gx,b ∈ X , return

the value H(gx,b) = b. This means: find the hidden bit, which only exists at the vertex

corresponding to the local minimum of fx. Measuring the query complexity of this decision

problem will give the answer for local search, as the next two problems have query complexity

within additive 1:

• search problem: given oracle access to a function fx, find a vertex v that is a local

minimum;

• decision problem: given oracle access to the function gx,b, find H(gx,b).

Good/bad sequences of vertices; Good/bad functions.

We divide the set X of functions into “good” and “bad” functions. Our analysis later will

focus on “good” sequences and functions.
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A sequence of vertices x = (x1, . . . , xL+1) is good if xi 6= xj for all i, j ∈ [L + 1] with i < j;

otherwise, x is bad. That is, x only involves distinct milestones.

For each bit b ∈ {0, 1}, the function gx,b ∈ X is good if x is good, and bad otherwise.

The relation function r.

To be able to invoke  Theorem 1.3.1  , we need to also define the relation function r whose role

is to “relate” pairs of input functions F1 and F2 in order to roughly capture the difficulty of

differentiating F1 from F2.

Intuitively, an algorithm Γ will query vertices of the graph to eliminate options to figure

out which is the underlying input function, from which it can query the local minimum to

retrieve the hidden bit b. However, if two functions F1 = gx,b1 and F2 = gy,b2 are very

“similar” (i.e. their underlying staircases Sx and Sy are almost identical), then it may take

Γ many queries to learn whether the input is F1 or F2, even if it knows the input can only

be one of these two functions. Consequently, Γ will have great difficulty finding the local

minimum on certain inputs.

Formally, for all sequences of vertices x let xi→j be the sequence (xi, xi+1, . . . , xj). Then

define r : X × X → R≥0 as a symmetric function such that for each x,y ∈ {1} × [n]L and

b1, b2 ∈ {0, 1}:

r(gx,b1 , gy,b2) =


0 if at least one of the following holds: b1 = b2 or x is bad or y is bad.

nj otherwise, where j is the maximum index for which x1→j = y1→j .

The choice of r is deliberate, as we see next.
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Invoking  Theorem 1.3.1 .

We are now ready to invoke  Theorem 1.3.1  using the definitions of fx, gx,b, X ,H, and r from

above. We will show there exists a subset Z ⊆ X with q(Z) > 0, and so we get that the

randomized query complexity of local search is:

Ω

 min
Z⊆X :

q(Z)>0

M(Z)
q(Z)

 , where q(Z) = max
v∈[n]

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(v) 6=F2(v)} . (1.4)

Estimating the lower bound in (  1.4 ) precisely is quite challenging. Instead, for any arbitrary

Z ⊆ X with q(Z) > 0, we show a lower bound M(Z) and an upper bound for q(Z) using

our choice of the function r. The two bounds we show only depend on Z via its size |Z|.

For any fixed Z, this dependency will be cancelled out through the division, and thus our

result follows.

Lower bounding M(Z).

By our choice of r, only good functions affect the value of M(Z). Furthermore, we know

that a function is good only if it was constructed using a good sequence of milestones X .

For any good function F1 ∈ X , a counting argument tells us that there are roughly nL+1−j

good functions F2 ∈ X with r(F1, F2) = nj, i.e. F1 and F2 have the same milestones from

the first to the jth one. This approximation holds for j ∈ O(
√
n); we will eventually have

j ≤ L ∈ O(
√
n), so this is fine. Therefore, for any good function F1 ∈ X , we have

∑
F2∈X : r(F1,F2)=nj

r(F1, F2) ≈
L∑

j=1
nj · nL+1−j = L · nL+1 .

Therefore M(Z) ∈ Ω(|Z| · L · nL+1).
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Upper bounding q(Z).

Let v ∈ [n] be a vertex and F1 = gx,b ∈ Z a good function with hidden bit b ∈ {0, 1}. By our

choice of r, it suffices to relate F1 to functions F2 ∈ Z that are also good but have hidden

bit 1 − b, i.e. of the form F2 = gy,1−b, for some good sequence y.

To upper bound the inner summation of q(Z), we partition the functions F2 based on the

length of the shared prefix of y and x. We get

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)} =
L+1∑
j=1

∑
F2∈Z:

j=max{i:xi→j=y1→j}

r(F1, F2) · 1{F1(v)6=F2(v)} . (1.5)

When j = L + 1, there is exactly one function F2 ∈ Z with such a shared prefix. Thus we

get a contribution of nL+1 by our definition of r.

Thus from now on, we focus on 1 ≤ j ≤ L. Let Tail(j, Sy) denote the suffix of the staircase

Sy after yj. We can then upper bound the j-th term from (  1.5 ) as follows:

∑
F2∈Z:

j=max{i:xi→j=y1→j}

r(F1, F2) · 1{F1(v)6=F2(v)} ≤ 2 ·
∑

F2∈Z:
j=max{i:xi→j=y1→j}

v∈T ail(j,Sy)

r(F1, F2) . (1.6)

Recall the staircase has the form Sy = P y1,y2 ◦ . . .◦P yj,yj+1 ◦ . . .◦P yL,yL+1 , where each P yi,yi+1

is a path from P . When v is in Tail(j, Sy), it means that v ∈ P yi,yi+1 for some j ≤ i ≤ L.

We will upper bound the number of sequences y depending on the location of v.

Case i = j. Let qv(u) denote the number of paths in the set P that start at vertex

u and contain v. There are qv(xj) choices of vertices for yj+1 and nL−j choices for

sequences (yj+2, . . . , yL+1), yielding a total count of qv(xj) · nL−j.

Case j < i ≤ L. There are at most L choices for i such that j < i ≤ L. For fixed i, there

are at most g choices for a pair (yi, yi+1) such that v ∈ P yi,yi+1 since each vertex appears
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in at most g paths within P . For fixed i and (yi, yi+1), there are nL−j−1 tuples of the

form (yj+1, . . . , yi−1, yi+2, . . . , yL+1). That is, the total count is at most L · g · nL−j−1.

The two cases are not mutually exclusive, so we will combine the counts in (  1.5 ) and (  1.6 )

by summing them. Then we obtain the following upper bound for the inner summation of

q(Z):

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)} ≤ nL+1 + 2 ·
L∑

j=1
nj ·

(
qv(xj) · nL−j + L · g · nL−j−1

)
.

Since sequence x is good, it has no repeated vertices. Thus the elements of x represent a

subset of [n]. This yields the inequality ∑L
j=1 qv(xj) ≤ ∑

u∈[n] qv(u) ≤ g for any vertex v,

where g is the vertex congestion of P and qv(u) is the number of paths in P that start at u

and contain v. We thus obtain the next bound on the inner summation of q(Z):

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)} ≤ nL+1 + 2 · L · nL · g ·
(

1 + L · g
n

)
.

Finally, since n ≤ g, we get q(Z) ∈ O(|Z| · g · nL · (1 + L2/n)).

Wrapping up.

Since we showed M(Z) ∈ Ω(|Z| ·L ·nL+1) and q(Z) ∈ O(|Z| ·g ·nL · (1+L2/n)) for arbitrary

Z with q(Z) > 0, our randomized query complexity bound  Eq. (1.4) yields

Ω

 min
Z⊆X :

q(Z)>0

M(Z)
q(Z)

 ⊆ Ω
(

|Z| · L · nL+1

|Z| · g · nL · (1 + L2/n)

)
⊆ Ω

(
n · L

g · (1 + L2/n)

)
.

Setting L ≈
√
n gives a query complexity of local search of Ω(n1.5/g).
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1.6.2 Corollary for expanders

To obtain the lower bound for expanders from  Corollary 1 , we use a result from [ 19 ]. Their

work shows that constant-degree constant-expansion graphs have an all-pairs set of paths

with vertex congestion g ∈ O(n lnn); see  Section 1.8 for details.  Theorem 1.3.2 then implies

the randomized query complexity of local search on such graphs is Ω
( √

n
log n

)
.

1.7 Lower bound for local search via separation number

We briefly discuss how to obtain the lower bound of Ω
(

4
√

s
∆

)
of  Theorem 1.3.3  , where s is the

separation number and ∆ the maximum degree of the graph. For details, see  Section 1.12 .

We apply  Theorem 1.3.1  with a similar strategy as the one discussed in  Section 1.6  of lower

bounding M(Z) and upper bounding q(Z) for arbitrary subset Z ⊆ X with q(Z) > 0.

However, we use a slightly different r function and now construct staircases with respect

to another graph-theoretic notion known as “path arrangement parameter” and “cluster

walks” (instead of using a pre-defined set of pairs P with congestion g). Our construction

is heavily inspired by that in [ 17 ]. While the construction is highly similar, using it within

 Theorem 1.3.1 is non-trivial.

1.8 Theorems from prior work

In this section we include several theorems from prior work.

The first is a result from [ 19 ] about systems of paths with low congestion for expanders.

Theorem 1.8.1 ([ 19 ], Theorem 1). Let G = (V,E) be a d-regular β-expander where d ∈

N and β ∈ R+ are constant. Let α : N → R+ be a function. Consider a collection of

K = α(n)n/ ln(n) pairs of vertices denoted {(a1, b1), . . . , (aK , bK)} such that no vertex in V

participates in more than s pairs.
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Then there is a set of K paths {P1, . . . , PK} such that Pi connects ai to bi and the congestion

on each edge is at most

g =


O
(
s+

⌈
ln ln n

ln(1/ min{α, 1/ ln ln n})

⌉)
for α < 1

2 .

O(s+ α + ln lnn) for α ≥ 1
2 .

(1.7)

Next is a result from [  48 ] on multi-commodity flow, which gives a corollary for finding systems

of paths with low congestion for expanders. We state the corollary as described in [  27 ].

Theorem 1.8.2 ([ 27 ], Corollary C.2). Let G = ([n], E) be a β-expander with maximum

vertex degree ∆ and let M be any partial matching over the vertices of G. Then there is

an efficient randomized algorthm that finds, for every pair (u, v) ∈ M , a set Pu,v of dlnne

paths of length O(∆ · ln(n)/β) each, such that the set P = ⋃
(u,v)∈M Pu,v has edge congestion

O(ln2(n)/β). The algorithm succeeds with high probability.

Next we present a lemma reducing local search to a decision problem. This reduction is not

new; see for example [ 16 ].

Lemma 2. Suppose the randomized query complexity of local search on G is χ, recalling

that in local search we have a graph G and a function f : V → R, and the problem is to find

a local minimum. Then the query complexity of the following decision problem is at most

χ+ 1:

• Input: graph G and oracle access to a function hb : [n] → R × {−1, 0, 1} for some

b ∈ {0, 1} with the property that hb(v) = (f(v),−1) when v is not a local minimum of

f , and hb(v) = (f(v), b) when v is a local minimum of f .

• Output: the bit b.

To clarify, the algorithm is given oracle access to hb, but it is not given b itself.

Proof. Let Γ be a randomized algorithm that can solve local search on G such that
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• Γ has success probability at least p on every input 〈G, hb〉.

• Γ issues at most χ queries in expectation.

We will use the local search algorithm Γ to construct an algorithm Γd that solves the decision

problem. To simulate a query on f(v) for Γ, algorithm Γd will query the function hb at

v, obtain (f(v), c), with c ∈ {−1, 0, 1}, and will pass f(v) to Γ. Whenever Γ locates a

local minimum vmin, we know that hb(vmin) contains the hidden bit output required by Γd.

Obtaining that hidden bit then requires only one additional query, at vmin. Since Γ locates

a local minimum vmin with χ queries in expectation and succeeds with probability at least

p, we see that Γd uses χ + 1 queries in expectation and succeeds with probability at least

p.

1.9 The relational adversary method and our variant

In this section we show our variant of the original relational adversary method from [ 3 ].

First, we introduce some preliminaries. Consider any two functions f, g : A → B, for some

sets A,B. An element a ∈ A is said to distinguish the function f from g if f(a) 6= g(a).

Next, we include the original statement from [  3 ], written with our notation.

Theorem 1.9.1 ([ 3 ], Theorem 5). Consider finite sets A or B. Let H : BA → {0, 1} be a

map that labels each function F : A → B with 0 or 1. Let A ⊆ H−1(0) and B ⊆ H−1(1). The

problem is: given A,B,H,A,B, and oracle access to a function F ∗
 

9
 from A or B, return

the label H(F ∗).

Let r : A × B → R≥0 be a non-zero real-valued function of our choice. For F1 ∈ A, F2 ∈ B,

and a ∈ A, define

θ(F1, a) =
∑

F3∈B : F1(a) 6=F3(a) r(F1, F3)∑
F3∈B r(F1, F3)

and θ(F2, a) =
∑

F3∈A : F2(a)6=F3(a) r(F3, F2)∑
F3∈A r(F3, F2)

(1.8)
9

 ↑ In other words, we have free access to H and the only queries counted are the ones to F ∗, which will be
of the form: “What is F ∗(a)?”, for some a ∈ A. The oracle will return F ∗(a) in one computational step.
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whenever the denominators in ( 1.8 ) are all nonzero. Then the randomized query complexity

 

10
 of the problem is 1/(5 · vmin), where

vmin = max
F1∈A,F2∈B,a∈A : r(F1,F2)>0,F1(a)6=F2(a)

min
{
θ(F1, a), θ(F2, a)

}
.

The proof centers on a difficult input distribution under which the denominator of θ(F1, a)

(respectively θ(F2, a)) is the likelihood that F1 (respectively F2) is sampled, conditioned on

the input being sampled from A (respectively B). The numerator of θ(F1, a) (respectively

θ(F2, a)) is the progress that is made via querying a towards distinguishing F1 (respectively

F2) from the other functions.

Our variant uses the same framework of relating pairs of inputs through some “relation” r,

but the lower bound expression is based on another average type of argument.

1.9.1 Our variant of the relational adversary method

Now we restate our variant of the relational adversary method.

Theorem 1.3.1. Consider finite sets A and B, a set X ⊆ BA of functions  

11
 , and a map

H : X → {0, 1} which assigns a label to each function in X . Additionally, we get oracle

access to an unknown function F ∗ ∈ X . The problem is to compute H(F ∗) using as few

queries to F ∗ as possible. 

12
 

Let r : X × X → R≥0 be a non-zero symmetric function of our choice with r(F1, F2) = 0

whenever H(F1) = H(F2). For each Z ⊆ X , define

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2) ; and q(Z) = max
a∈A

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(a)6=F2(a)} . (1.1)

10
 ↑ Recall we defined the randomized query complexity as the expected number of queries required to achieve

success probability at least 9/10.
11↑Each function F ∈ X has the form F : A → B.
12↑In other words, we have free access to H and the only queries counted are the ones to F ∗, which will be
of the form: “What is F ∗(a)?”, for some a ∈ A. The oracle will return F ∗(a) in one computational step.
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If there exists a subset Z ⊆ X with q(Z) > 0, then the randomized query complexity of the

problem is at least

min
Z⊆X :q(Z)>0

M(Z)
100 · q(Z) . (1.2)

Let us briefly interpret  Theorem 1.3.1  . We use Yao’s lemma, and so it will suffice to design

a “hard” distribution of input functions and analyze the performance of a deterministic

algorithm when given inputs from this distribution.

The theorem considers the probability distribution P where each function F ∈ X is given as

input with probability P (F ) = M({F })
M(X ) , where X is the space of possible functions.

The quantity M(Z) is the likelihood that the function F ∗ sampled from this distribution lies

in Z. The quantity q(Z) is the largest amount of progress possible in a single query once

the algorithm already knows that the given function F ∗ lies in Z.

Now we are ready to prove  Theorem 1.3.1 .

Proof of Theorem  1.3.1 . Given a relation r with the properties required by the theorem,

define

M({F1}) =
∑

F2∈X
r(F1, F2) ∀F1 ∈ X and M(X ) =

∑
F1∈X

M({F1}) . (1.9)

We consider the distribution P over functions in X that selects each function F ∈ X with

probability P (F ) = M({F})/M(X ) . The theorem claims a lower bound when there exists

a subset Z ⊆ X with q(Z) > 0, so we may assume such a subset Z exists. By  Lemma 3 ,

this implies M(Z) > 0, and so

M(X ) > 0 . (1.10)

Thus P (F ) = M({F})/M(X ) is well defined.
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We say an algorithm succeeds on an input function F if it outputs the correct label H(F ).

Let R be the randomized query complexity (on the worst case input F ∈ X ) for success

probability 19/20. Let Γd be the best deterministic algorithm  

13
 that succeeds with proba-

bility at least 9/10 when the input is a random function drawn from distribution P . Let D

be the expected number of queries issued by Γd on input distribution P . Yao’s lemma ([  49 ],

Theorem 3) yields 2R ≥ D. Thus to lower bound T , it will suffice to lower bound D. Let

T = 10D.

Let Γ∗ be the truncation of Γd after T queries. We will analyze the expected number of

queries made by Γ∗ when facing distribution P . Let X be the random variable representing

the number of queries issued by Γd. Then E [X] = D. By Markov’s inequality,

Pr [X ≥ T ] ≤ E [X]
T

= D

T
= 1

10 . (1.11)

We have

Pr [X > T ]+ Pr [Γd succeeds and X ≤ T ]

≥ Pr [Γd succeeds and X > T ] + Pr [Γd succeeds and X ≤ T ]

= Pr [Γd succeeds] . (1.12)

Then

Pr [Γ∗ succeeds] = Pr [Γd succeeds and X ≤ T ]

≥ Pr [Γd succeeds] − Pr [X > T ] (By (  1.12 ))

≥ 9/10 − 1/10 = 4/5 (By choice of Γd and (  1.11 ))

13
 ↑ That is, with smallest expected number of queries possible.
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Algorithm Γ∗ is said to distinguish F1 ∈ X from F2 ∈ X within the first t queries if Γ∗

queries an element a ∈ A with the property that F1(a) 6= F2(a) within the first t queries.

For all t ∈ N, F1 ∈ X , and F2 ∈ X , define

I(t)(F1, F2) =


1 if algorithm Γ∗ distinguishes F1 from F2 within the first t queries

0 otherwise .

For each function F1 ∈ X and index t ∈ {0, . . . , T}, we define a “local progress measure”

S(t)(F1) that counts the number of elements F2 ∈ X distinguished from F1 by the t-th query,

weighted by the relation r(F1, F2). Formally, for each F1 ∈ X and 0 ≤ t ≤ T , let

S(t)(F1) =
∑

F2∈X :
I(t)(F1,F2)=1

r(F1, F2) .

Summing over all the functions in X , we obtain a “global progress measure” S(t):

S(t) =
∑

F1∈X
S(t)(F1) .

The difference in progress between consecutive queries can then be defined as:

∆S(t) = S(t) − S(t−1) . (1.13)

To lower bound the progress, we show in three steps that (a) the initial value of the progress

measure, S(0), is zero; (b) the final value of the progress measure, S(T ), is “large”; and (c)

the difference in the progress measure between consecutive rounds, ∆S(t), is “small” for each

round t.
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Step (a)

No queries have been issued at time zero, so nothing has been distinguished. Therefore

S(0) = 0 . (1.14)

Step (b)

Define W = {F1 ∈ X | Γ∗(F1) = H(F1)}. This is the set of functions on which Γ∗ succeeds,

i.e. finds the correct label.

We claim algorithm Γ∗ distinguishes each pair of functions F1, F2 ∈ W for which H(F1) 6=

H(F2). That is, Γ∗ must have queried an index a ∈ A such that F1(a) 6= F2(a) within the

first T queries. To see this, suppose towards a contradiction there exists a pair F1, F2 ∈ W

with H(F1) 6= H(F2) such that Γ∗ only queries indices a ∈ A with F1(a) = F2(a). Then,

Γ∗ cannot differentiate whether the input function is F1 or F2, and so must have the same

output Γ∗(F1) = Γ∗(F2) since Γ∗ is deterministic. Thus Γ∗ makes a mistake on one of F1 or

F2 because H(F1) 6= H(F2). This contradicts the choice of F1, F2 ∈ W as inputs on which

Γ∗ is successful. Thus, the algorithm Γ∗ distinguishes each pair of inputs F1, F2 ∈ W within

the first T queries.

Formally, we have

I(T )(F1, F2) = 1, for all F1, F2 ∈ W where H(F1) 6= H(F2). (1.15)

Moreover, since Γ∗ succeeds when the input is a function from W and fails otherwise, the

success probability on input distribution P is at least 4/5, and the distribution P samples

each function F1 ∈ X with probability P (F1) = M({F1})/M(X ), we have

∑
F1∈W

M({F1})
M(X ) =

∑
F1∈W

P (F1) ≥ 4/5 and
∑

F2∈X \W

M({F2})
M(X ) ≤ 1/5 . (1.16)
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Thus,

S(T ) =
∑

F1,F2∈X :
I(T )(F1,F2)=1

r(F1, F2) (By definition of S(T ))

≥
∑

F1,F2∈W:
I(T )(F1,F2)=1

r(F1, F2) (Since W ⊆ X and r is non-negative)

=
∑

F1,F2∈W
r(F1, F2) (By  Eq. (1.15) and r(F1, F2) = 0 if H(F1) = H(F2))

=
∑

F1∈W,F2∈X
r(F1, F2) −

∑
F1∈W,F2∈X \W

r(F1, F2) . (1.17)

By definition of M , we have ∑F1∈W,F2∈X r(F1, F2) = ∑
F1∈W M({F1}), which substituted in

( 1.17 ) yields

S(T ) ≥
∑

F1∈W
M({F1}) −

∑
F1∈W,F2∈X \W

r(F1, F2) . (1.18)

Since W ⊆ X and r is non-negative, we have

∑
F1∈W,F2∈X \W

r(F1, F2) ≤
∑

F1∈X ,F2∈X \W
r(F1, F2) . (1.19)

Furthermore, using the symmetry of r and the definition of M({F2}), we can rewrite the

right hand side of (  1.19 ) as

∑
F1∈X ,F2∈X \W

r(F1, F2) =
∑

F1∈X ,F2∈X \W
r(F2, F1) (By symmetry of r)

=
∑

F2∈X \W
M({F2}) . (1.20)

Combining ( 1.19 ) and (  1.20 ) yields

∑
F1∈W,F2∈X \W

r(F1, F2) ≤
∑

F2∈X \W
M({F2}) . (1.21)
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Combining ( 1.18 ) and (  1.21 ), we obtain

S(T ) ≥
∑

F1∈W
M({F1}) −

∑
F2∈X \W

M({F2})

≥ 4
5M(X ) − 1

5M(X ) = 3
5M(X ) . (By  Eq. (1.16) )

Therefore,

S(T ) ≥ 3 ·M(X )/5 . (1.22)

Step (c)

By Lemma  4 , for each t ∈ [T ], the maximum progress made by the t-th query, ∆S(t), can be

bounded as follows:

∆S(t) ≤ M(X ) · max
Z⊆X : M(Z)>0

q(Z)
M(Z) . (1.23)

Combining steps (a,b,c).

We obtain:

3
5 ·M(X ) ≤ S(T ) (By  Eq. (1.22) )

= S(0) +
T∑

t=1
∆S(t) (By definition of S(T ))

= 0 +
T∑

t=1
∆S(t) (Since S(0) = 0 by  Eq. (1.14) )

≤ T ·M(X ) · max
Z⊆X : M(Z)>0

q(Z)
M(Z) (By  Eq. (1.23) )

= T ·M(X ) · max
Z⊆X : M(Z)>0 and q(Z)>0

q(Z)
M(Z)

(Since there exists Z ⊆ X with q(Z) > 0.)
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= T ·M(X ) · max
Z⊆X : q(Z)>0

q(Z)
M(Z) . (Since q(Z) > 0 implies M(Z) > 0.)

Rearranging and denoting ζ = min
Z⊆X : q(Z)>0

M(Z)
q(Z) , we get

T ≥ 3
5 · 1

max
Z⊆X : q(Z)>0

q(Z)
M(Z)

= 3ζ
5 . (1.24)

In summary, the randomized query complexity R when the success probability is 19/20 can

be bounded as follows:

R ≥ D

2 = T

20 ≥ 3ζ
100 . (1.25)

Let A be an arbitrary randomized algorithm that succeeds with probability at least 9/10. If

A issues fewer than ζ/100 queries in expectation, then A could be repeated three times and

the majority answer returned; this would achieve a greater than 19/20 probability of success

and fewer than 3ζ/100 queries in expectation, which would contradict  Eq. (1.25) . Thus A

issues at least ζ/100 queries in expectation on its worst case input. Thus the randomized

query complexity is lower bounded as required by the theorem statement.

Lemma 3. Let Z ⊆ X be a subset with q(Z) > 0. Then M(Z) > 0.

Proof. By definition of M(Z), we have

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2)

≥ max
v∈[n]

∑
F1∈Z

∑
F2∈Z

r(F1, F2)1{F1(v)6=F2(v)} (Since 1{F1(v)6=F2(v)} ≤ 1 and r(F1, F2) ≥ 0.)

= q(Z) . (By definition of q(Z).)

Since Z was chosen such that q(Z) > 0 and M(Z) ≥ q(Z), we conclude that M(Z) > 0 as

required.
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Lemma 4. In the setting of step (c) of Theorem  1.3.1 , for each t ∈ [T ], we have

∆S(t) ≤ M(X ) · max
Z⊆X : M(Z)>0

q(Z)
M(Z) .

Proof. Let Ψ = At−1 × Bt−1 be the set of possible sequences of the first t − 1 queries and

their answers; each ψ ∈ Ψ a “history”. Let ψ1, ψ2, . . . , ψk be the histories in Ψ, where

k = |A|t−1 · |B|t−1.

For all i ∈ [k], let Xi ⊆ X be the set of inputs on which Γ∗ would have history ψi for the

first t − 1 queries; this is well-defined because Γ∗ is deterministic. In other words, we can

partition X into equivalence classes X1,X2, . . . ,Xk so that two inputs have the same history

over the first t− 1 queries if and only if they are in the same equivalence class. This induces

three useful facts:

Fact 1.

For each F1, F2 ∈ Xi for some i, we know that F1 and F2 must receive the same t-th query

since Γ∗ is deterministic. Let a(t)
i ∈ A be the location of this query. For i 6= j, we may have

a
(t)
i 6= a

(t)
j ; i.e. each history may have a different query in the same round.

For each F1 ∈ Xi and F2 ∈ Xj with i 6= j, functions F1 and F2 have already been distinguished

since they have different histories. This implies that all future progress must come from pairs

from the same equivalence class. For all a ∈ A and F1, F2 ∈ X , let us define

ra(F1, F2) = r(F1, F2) · 1{F1(a) 6=F2(a)} .

Then

∆S(t) = S(t) − S(t−1)

=
∑

F1∈X

(
S(t)(F1) − S(t−1)(F1)

)
(By definition of S(t) and S(t−1).)
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=
∑

F1∈X

∑
F2∈X

I(t)(F1,F2)=1
I(t−1)(F1,F2)=0

r(F1, F2) (By definition of S(t)(F1) and S(t−1)(F1))

=
k∑

i=1

∑
F1∈Xi


∑

F2∈Xi
I(t)(F1,F2)=1

I(t−1)(F1,F2)=0

r(F1, F2) +
∑

F2 6∈Xi
I(t)(F1,F2)=1

I(t−1)(F1,F2)=0

r(F1, F2)


=

k∑
i=1

∑
F1∈Xi

∑
F2∈Xi

I(t)(F1,F2)=1

r(F1, F2)

(By definition of Xi, each function F2 with I(t−1)(F1, F2) = 0 is in Xi.)

=
k∑

i=1

∑
F1∈Xi

∑
F2∈Xi

r(F1, F2) · 1{F1(a(t)
i )6=F2(a(t)

i }

(Since F1 and F2 are distinguished at time t, when query a(t)
i is issued.)

=
k∑

i=1

∑
F1∈Xi

∑
F2∈Xi

r
a

(t)
i

(F1, F2) . (1.26)

Fact 2.

Since X1,X2, . . . ,Xk is a partition of X , we have

M(X ) =
k∑

i=1
M(Xi) . (1.27)

Fact 3.

For all i ∈ [k], we have

M(Xi) =
∑

F1∈Xi

∑
F2∈X

r(F1, F2) ≥
∑

F1∈Xi

∑
F2∈Xi

r
a

(t)
i

(F1, F2) .
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Therefore, since r is non-negative,

(
M(Xi) = 0

)
=⇒

 ∑
F1∈Xi

∑
F2∈Xi

r
a

(t)
i

(F1, F2) = 0
 . (1.28)

Combining facts 1, 2, and 3.

We get

∆S(t)

M(X ) =
∑

i∈[k]
∑

F1∈Xi

∑
F2∈Xi ra

(t)
i

(F1, F2)∑
i∈[k] M(Xi)

(From  Eq. (1.26)  and  Eq. (1.27) )

=

∑
i∈[k]:

M(Xi)>0

(∑
F1∈Xi

∑
F2∈Xi ra

(t)
i

(F1, F2)
)

∑
i∈[k]:

M(Xi)>0
M(Xi)

(By  Eq. (1.28) )

≤ max
i∈[k]:

M(Xi)>0

∑
F1∈Xi

∑
F2∈Xi ra

(t)
i

(F1, F2)
M(Xi)

(Maximizing over i ∈ [k] with M(Xi) > 0)

≤ max
Z⊆X , a∈A:

M(Z)>0

∑
F1∈Z

∑
F2∈Z ra(F1, F2)
M(Z) (Maximizing over Z ⊆ X and a ∈ A)

= max
Z⊆X : M(Z)>0

q(Z)
M(Z) . (By definition of q(Z))

Therefore ∆S(t) ≤ M(X ) · max
Z⊆X : M(Z)>0

q(Z)
M(Z) , as required by the lemma.

1.9.2 Matrix game

In this section, we describe a toy problem which highlights the advantage of  Theorem 1.3.1  

over  Theorem 1.9.1 .

Setup

Let n ∈ N be a square number and X be a subset of square
√
n×

√
n matrices with entries

from {0, 1, 2}. There are two types of matrices within X : “row” matrices and “column”
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matrices. Row matrices have one row of 1s with all other entries 0 while column matrices

have one column of 2s with all other entries 0. For example:



0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0


is a row matrix;



0 0 2 0

0 0 2 0

0 0 2 0

0 0 2 0


is a column matrix.

So, |X | = 2
√
n since there are

√
n distinct row matrices and

√
n distinct column matrices.

The game

Given n and oracle access to a matrix F ∈ X , the goal is to correctly declare whether F is

a row or column matrix.

One can check that
√
n queries suffices by querying the main diagonal: if any “1” is de-

tected, declare “row”; if any “2” is found, declare “column”. Even with randomization, one

intuitively expects that Ω(
√
n) queries are necessary. In fact, this is what we can show using

 Theorem 1.3.1 .

Lemma 1. The randomized query complexity of the matrix game is Θ(
√
n).

Proof. The upper bound of O(
√
n) follows by querying the main diagonal: if any “1” is

detected, declare “row”; if any “2” is found, declare “column”.

To show the lower bound of Ω(
√
n), we instantiate  Theorem 1.3.1  with the following defini-

tions:

• Finite set A is the set of n coordinates within
√
n×

√
n matrix.

• Finite set B is the space of all possible
√
n×

√
n matrices with cell values from {0, 1, 2}.
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• Set X ⊆ BA of
√
n row matrices and

√
n column matrices, for a total of 2

√
n matrices.

So, for any given F ∈ X and a ∈ A, we have that F (a) ∈ {0, 1, 2} is the value of the

matrix at the coordinate indicated by a.

• Mapping H : X → {0, 1} refers to deciding whether the matrix from X is a row or

column matrix: output 0 if “row” and output 1 if “column”.

• For any two F1, F2 ∈ X , we define r(F1, F2) = 1{H(F1) 6=H(F2)} to be the indicator

whether F1 and F2 are of the same type.

There exists Z ⊆ X with q(Z) > 0; in particular, Z = {Frow, Fcol} for any row function Frow

and column function Fcol has q(Z) = 2. Therefore we may invoke  Theorem 1.3.1 .

Under this instantiation, we have ∑F2∈X r(F1, F2) =
√
n for any F ∈ X . Thus

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2) = |Z| ·
√
n for any Z ⊆ X . (1.29)

Meanwhile, let Zrow = {F1 ∈ Z : H(F1) = 0} and Zcol = {F2 ∈ Z : H(F2) = 1}. For

every F1, F2 ∈ X with H(F1) 6= H(F2), we have F1(a) 6= F2(a) if and only if a lies on F1’s

row/column or F2’s row/column. Furthermore, because for each row/column there is only

one corresponding input in X , we have

|{F ∈ Z | F (v) = 1}| ≤ 1 and |{F ∈ Z | F (v) = 2}| ≤ 1 . (1.30)

For any arbitrary Z ⊆ X and a ∈ A, we have

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(a)6=F2(a)} (1.31)

=
∑

F1∈Z:
F1(a)6=0

∑
F2∈Z

r(F1, F2) · 1{F1(a)6=F2(a)} +
∑

F1∈Z:
F (a)=0

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)} (1.32)

≤ (|Zrow| + |Zcol|) +
∑

F1∈Z:
F1(a)=0

∑
F2∈Z

r(F1, F2) · 1{F1(a)6=F2(a)} (By  Eq. (1.30) )
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= |Zrow| + |Zcol| +
∑

F1∈Z:
F1(a)=0

∑
F2∈Z:

F2(a)6=0

r(F1, F2) · 1{F1(a)6=F2(a)} (1.33)

≤ |Zrow| + |Zcol| +
∑

F1∈Z:
F1(a)=0

1 (1.34)

≤ 2 · |Z| . (1.35)

In the equations above,  Eq. (1.33) holds since F1(a) = F2(a) = 0 implies 1{F1(a) 6=F2(a)} = 0.

Next we explain why  Eq. (1.34)  holds. Take arbitrary F1, F2 ∈ Z with F1(a) = 0 and

F2(a) 6= 0. Then r(F1, F2) = 1 when H(F1) 6= H(F2) and r(F1, F2) = 0 when H(F1) = H(F2).

By  Eq. (1.30) , there are at most two functions F2 ∈ Z with F2(a) 6= 0: one with H(F2) = 0

and one with H(F2) = 1. So no matter what H(F1) is, there is at most one F2 ∈ Z with

F2(a) 6= 0 such that r(F1, F2) = 1. Thus  Eq. (1.34) holds.

Therefore by  Eq. (1.35)  ,

q(Z) ≤ max
a∈A

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(a)6=F2(a)} ≤ 2 · |Z| for any Z ⊆ X . (1.36)

By  Eq. (1.29) and  Eq. (1.36) , the statement of  Theorem 1.3.1  implies the query complexity

is at least

Ω

 min
Z⊆X :

q(Z)>0

M(Z)
q(Z)

 ⊆ Ω
(

|Z| ·
√
n

2 · |Z|

)
⊆ Ω(

√
n) .

On the other hand, one can only show that the randomized query complexity of the matrix

game is Ω(1) by using the original relational adversary theorem of [  3 ], illustrating the ad-

vantage of our new variant on this matrix game. Intuitively, the reason why  Theorem 1.9.1 

cannot handle this problem is because every pair of row matrix Frow and column matrix Fcol

has some location x that distinguishes both Frow and Fcol from many matrices.
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Lemma 5. Using  Theorem 1.9.1 gives a lower bound of Ω(1) on the randomized query

complexity of the matrix game.

Proof. We instantiate  Theorem 1.9.1 with the next parameters:

• The finite set A is the set of n coordinates within
√
n×

√
n matrix.

• The finite set B is {0, 1, 2}.

• The set X ⊆ BA consists of
√
n row matrices and

√
n column matrices, for a total of

2
√
n matrices. So, for any given F ∈ X and a ∈ A, we have that F (a) ∈ {0, 1, 2} is

the value of the matrix at the coordinate indicated by a.

• Mapping H : X → {0, 1} refers to deciding whether the matrix from X is a row or

column matrix: output 0 if “row” and output 1 if “column”.

Consider an arbitrary choice of r : A×B → R≥0. Consider an arbitrary row matrix Frow ∈ A

and an arbitrary column matrix Fcol ∈ B such that r(Frow, Fcol) > 0. Let aint be the unique

intersecting coordinate in the matrix within Frow’s non-zero row and Fcol’s non-zero column.

That is, Frow(aint) = 1 and Fcol(aint) = 2. Meanwhile, F (aint) = 0 for any other matrix

F ∈ A or F ∈ B. Therefore,

θ(Frow, aint) =
∑

F3∈B : Frow(aint)6=F3(aint) r(Frow, F3)∑
F3∈B r(Frow, F3)

=
∑

F3∈B r(Frow, F3)∑
F3∈B r(Frow, F3)

= 1 .

Similarly, we have θ(Fcol, aint) = 1 and we see that

min{θ(Frow, aint), θ(Fcol, aint)} = 1 .

Since vmin is a maximum over choices of Frow, Fcol, and v, this suffices to show

vmin ≥ 1 .
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Thus 1/vmin ≤ 1 and since the choice of r was arbitrary, one cannot hope to show a stronger

lower bound than Ω(1) via  Theorem 1.9.1 for this problem.

1.9.3 Our variant is stronger than the original relational adversary method

In fact, we now show that our new variant  Theorem 1.3.1  is always at least asymptotically

as good as  Theorem 1.9.1 .

Proposition 1.5.1. Consider any problem and let T be the expected number of queries

required in the worst case by the best randomized algorithm to succeed with probability 9/10.

If the relational adversary method from [ 3 ] provides a lower bound of T ≥ Λ for some Λ > 0,

then  Theorem 1.3.1 can prove a lower bound of T ≥ Λ/40.

Proof. Recall that for every a ∈ A and F1, F2 ∈ X , we define ra(F1, F2) = r(F1, F2) ·

1{F1(a) 6=F2(a)}.  Theorem 1.9.1 provides a lower bound of Λ = 1/(5 · vmin) for the expected

number of queries issued by a randomized algorithm that succeeds with probability at least

9/10, where

vmin = max
F1∈A,F2∈B,a∈A : r(F1,F2)>0,F1(a) 6=F2(a)

min{θ(F1, a), θ(F2, a)} .

Then for all F1 ∈ A, F2 ∈ B, a ∈ A where ra(F1, F2) > 0, we have

1
min{θ(F1, a), θ(F2, a)} ≥ 1

vmin
. (1.37)

By rearranging and invoking the definition of θ ( Eq. (1.8)  ) we get

max
( ∑

F3∈B r(F1, F3)∑
F3∈B ra(F1, F3)

,

∑
F3∈A r(F3, F2)∑

F3∈A ra(F3, F2)

)
≥ 1
vmin

. (1.38)
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By extending r to X × X , with r(F1, F2) = 0 if both F1, F2 ∈ A or both F1, F2 ∈ B, we can

write  Eq. (1.38) as:

max
(

M({F1})∑
F3∈X ra(F1, F3)

,
M({F2})∑

F3∈X ra(F2, F3)

)
≥ 1
vmin

. (1.39)

Keeping the same choice of r, take an arbitrary choice of Z ⊆ X and a ∈ A such that

q(Z) > 0. Such a choice exists by the following argument:  Theorem 1.9.1  provided a bound,

so there must exist F1 ∈ A and F2 ∈ B and a ∈ A with r(F1, F2) > 0 and F1(a) 6= F2(a);

the set Z = {F1, F2} has q(Z) > 0. Let C ⊆ Z be the subset of functions F1 ∈ Z defined as

follows:

C =
F1 ∈ Z : M({F1}) ≥ 1

vmin
·
∑

F3∈X
ra(F1, F3)

 .

By  Eq. (1.39) , we know that for every pair of functions F1, F2 ∈ Z with ra(F1, F2) > 0, at

least one of F1 and F2 is in C. Therefore

∑
F1∈C

∑
F2∈Z

ra(F1, F2) ≥ 1
2
∑

F1∈Z

∑
F2∈Z

ra(F1, F2) = q(Z)
2 . (1.40)

Meanwhile, M(Z) ≥ M(C). Therefore

M(Z)
q(Z) ≥ 1

2 · M(C)∑
F1∈C

∑
F2∈Z ra(F1, F2)

(By  Eq. (1.40) )

≥ 1
2 ·

∑
F1∈C M({F1})∑

F1∈C
∑

F2∈X ra(F1, F2)
. (since Z ⊆ X )

By an averaging argument, there exists a function F1 ∈ C such that

M(Z)
q(Z) ≥ 1

2 · M({F1})∑
F2∈X ra(F1, F2)

. (1.41)

But then since F1 ∈ C we get

M({F1})∑
F2∈X ra(F1, F2)

≥ 1
vmin

. (1.42)
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Combining  Eq. (1.41) and  Eq. (1.42)  ,

M(Z)
q(Z) ≥ 1

2 · M({F1})∑
F2∈X ra(F1, F2)

≥ 1
2 · vmin

. (1.43)

Since  Eq. (1.43) holds for an arbitrary choice of Z and a, it follows that  Theorem 1.3.1  

shows that a randomized algorithm that succeeds with probability at least 9/10 issues at

least 1/(200 · vmin) queries in expectation. Since Λ = 1/(5 · vmin), the lower bound given by

 Theorem 1.3.1 is at least Λ/40, which completes the proof.

1.10 Valid functions have a unique local minimum

In this section, we define an abstract class of functions called “valid functions”. Such functions

have a unique local minimum and will be used in both the congestion and separation lower

bounds.

Definition 1.10.1 (Valid function). Let W = (w1, . . . , ws) be a walk in the graph G. A

function f is valid with respect to the walk W if it satisfies the next conditions:

1. For all u, v ∈ W , if max{i ∈ [s] | v = wi} < max{i ∈ [s] | u = wi}, then f(v) > f(u).

In other words, as one walks along the walk W starting from w1 until ws, if the last

time the vertex v appears is before the last time that vertex u appears, then f(v) > f(u).

2. For all v ∈ V \W , we have f(v) = dist(w1, v) > 0.

3. f(wi) ≤ 0 for all i ∈ [s].

An illustration of a valid function is shown in Figure  1.2 .

Next we prove every valid function has a unique local minimum.

Lemma 6. Suppose W = (w1, . . . , ws) is a walk in G and f : V → R is a valid function for

the walk W . Then f has a unique local minimum at ws, the last vertex on the walk.
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cba d e

i

h g f

x

Figure 1.2. Consider the walk W = (a, b, c, d, e, f, g, h, c, i) in blue, where
f(a), . . . , f(i) ≤ 0. Observe that w5 = e and w9 = c so f(e) > f(c). Since the
vertex x is not in the walk, f(x) = dist(w1, x) = dist(a, x) = 4.

Proof. Let v ∈ V be an arbitrary vertex. We consider two cases:

Case 1: v /∈ W .

By condition 2 in the definition of a valid function, we have

f(v) = dist(w1, v) > 0 .

Let u be the neighbor of v on a shortest path from v to w1, breaking ties lexicographically

if multiple such neighbors exist. We have two subcases:

(a) If u ∈ W , then f(u) ≤ 0 < f(v).

(b) If u /∈ W , then f(v) = f(u) + 1 > f(u).

In both subcases, vertex v has a neighbour with a smaller value, so v is not a local minimum

of f .
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Case 2: v ∈ W .

Let i = max{j ∈ [s] | v = wj} be the last index where vertex v appears on the walk W . We

have two subcases:

(a) If i < s, let u = wi+1 be the next vertex along the walk. By maximality of the index i,

the walk W does not visit vertex v anymore in (wi+1, . . . , ws). Since v = wi, condition 1

of a valid function implies

f(v) = f(wi) > f(wi+1) = f(u),

since max{j ∈ [s] | u = wj} ≥ i + 1 > i = max{j ∈ [s] | v = wj}. Thus vertex wi is not a

local minimum.

(b) If i = s, then v = ws. By the analysis in the previous cases (1.a, 1.b, and 2.a), each

vertex u ∈ [n]\{ws} has a neighbor with a strictly smaller value than u, and so u cannot

be a local minimum. Since the graph G must have at least one local minimum, at the

global minimum, it follows that ws is the unique local and global minimum of f .

1.11 Lower bound for local search via congestion: proofs

In this section we prove the lower bound of Ω (n1.5/g), where g is the vertex congestion. We

start with the basic definitions. Then we state and prove the lower bound. Afterwards, we

show the helper lemmas used in the proof of the theorem.
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1.11.1 Basic definitions for congestion

Recall we have a graph G = ([n], E) with vertex congestion g. This means there exists an

all-pairs set of paths P = {P u,v}u,v∈[n] with vertex congestion g  

14
 , but no such set of paths

exists for g − 1. We fix the set P , requiring P u,u = (u) ∀u ∈ [n].

For each u, v ∈ [n], let qv(u) be the number of paths in P that start at vertex u and contain

v:

qv(u) = |{P u,w ∈ P : w ∈ [n], v ∈ P u,w}| . (1.44)

Let L ∈ [n], with L ≥ 2, be a parameter that we set later.

Given a sequence of k vertices x = (x1, . . . , xk), we write x1→j = (x1, . . . , xj) to refer to a

prefix of the sequence, for an index j ∈ [k].

Given a walk Q = (v1, . . . , vk) in G, let Qi refer to the i-th vertex in the walk (i.e. Qi = vi).

For each vertex u ∈ [n], let µ(Q, u) be the number of times that vertex u appears in Q.

Definition 1.11.1 (Staircase). Given a sequence x = (x1, . . . , xk) of vertices in G, a stair-

case induced by x is a walk Sx = Sx,1 ◦ . . . ◦ Sx,k−1, where each Sx,i is a path in G starting

at vertex xi and ending at xi+1. Each vertex xi is called a milestone and each path Sx,i a

quasi-segment.

The staircase Sx is said to be induced by x and P = {P u,v}u,v∈[n] if additionally we have

Sx,i = P xi,xi+1 for all i ∈ [k − 1].

Definition 1.11.2 (Tail of a staircase). Let Sx = Sx,1 ◦ . . . ◦Sx,k−1 be a staircase induced by

some sequence x = (x1, . . . , xk) ∈ [n]k. For each j ∈ [k − 1], let T = Sx,j ◦ . . . ◦ Sx,k−1. Then

Tail(j, Sx) is obtained from T by removing the first occurrence of xj in T (and only the first

occurrence). We also define Tail(k, Sx) to be the empty sequence.

Next we define the set of functions, X , that will be used when invoking Theorem  1.3.1 .
14

 ↑ That is, each vertex is used at most g times across all the paths.
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Definition 1.11.3 (The functions fx and gx,b; the set X ). Suppose P = {P u,v}u,v∈[n] is an

all-pairs set of paths in G. For each sequence of vertices x ∈ {1} × [n]L, define a function

fx : [n] → {−n2 − n, . . . , 0, . . . , n} such that for each v ∈ [n]:

• If v /∈ Sx, then set fx(v) = dist(v, 1), where Sx is the staircase induced by x and P.

• If v ∈ Sx, then set fx(v) = −i · n− j, where i is the maximum index with v ∈ P xi,xi+1,

and v is the j-th vertex in P xi,xi+1.

Also, for each x ∈ {1}×[n]L and b ∈ {0, 1}, let gx,b : [n] → {−n2−n, . . . , 0, . . . , n}×{−1, 0, 1}

be such that, for all v ∈ [n]:

gx,b(v) =


(
fx(v), b

)
if v = xL+1(

fx(v),−1
)

if v 6= xL+1

. (1.45)

Let X =
{
gx,b | x ∈ {1} × [n]L and b ∈ {0, 1}

}
.

We will show later that for each sequence x, the function fx has a unique local minimum at

the end of the staircase Sx.

An example of a staircase Sx for some sequence of vertices x is shown in the next figure,

together with the accompanying value function fx.

(46) Let G be the grid graph on n = 16 nodes from  Figure 1.3 . Consider the sequence of

vertices

x = (x1, x2, x3, x4) = (v1, v6, v11, v16),

We fix an all-pairs set of paths P = {P u,v}u,v∈[n], such that

• P v1,v6 = (v1, v2, v3, v7, v6); P v6,v11 = (v6, v10, v11); P v11,v16 = (v11, v7, v8, v12, v16),

where

P v1,v6 , P v6,v11 , P v11,v16 ∈ P .

61



Figure 1.3. Example of a staircase with the accompanying value function.
The sequence of milestones is (v1, v6, v11, v16), which are shown in red. The
vertices of the staircase are shown in red and green vertices, connected by red
dotted edges. For each node v, the value of the function at v is shown in blue.

• For each other pair of vertices (u,w), we set P u,w as the shortest path between

u and w, breaking ties lexicographically (vertices with lower index come first).

Then the staircase induced by x and P is

Sx = P v1,v6 ◦ P v6,v11 ◦ P v11,v16 = (v1, v2, v3, v7, v6, v10, v11, v7, v8, v12, v16) .

For example, f(v4) = dist(v1, v4) = 3 since v4 6∈ Sx, and fx(v7) = −3n− 2 = −50

since v7 is the second node in P x3,x4 = P v11,v16 (even though v7 is also included in the

path P x1,x2).

Definition 1.11.4 (The map H). Suppose P = {P u,v}u,v∈[n] is an all-pairs set of paths in

G and X is the set of functions gx,b from Definition  1.11.3 . Define H : X → {0, 1} as

H(gx,b) = b ∀x ∈ {1} × [n]L and b ∈ {0, 1} .
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To define a suitable r function, we only concern ourselves with pairs of staircases that do

not have repeated milestones within themselves and with different hidden bits. For such a

pair of staircases, we assign a relative difficulty of distinguishing them that scales with the

length of their common prefix: the longer their common prefix, the more function values

they agree on, and so we assign a higher r value.

Definition 1.11.5 (Good/bad sequences of vertices; Good/bad functions). A sequence of

k vertices x = (x1, . . . , xk) is good if xi 6= xj for all i, j with 1 ≤ i < j ≤ k; otherwise, x is

bad. Moreover, for each b ∈ {0, 1} a function F = gx,b ∈ X is good if x is good, and bad

otherwise.

Definition 1.11.6 (The function r). Let r : X × X → R≥0 be a symmetric function defined

as follows. For each x,y ∈ {1} × [n]L and b1, b2 ∈ {0, 1}, we have

r(gx,b1 , gy,b2) =


0 if at least one of the following holds: b1 = b2 or x is bad or y is bad.

nj otherwise, where j is the maximum index for which x1→j = y1→j .

(47) Suppose L = 3. Consider the graph G = ([n], E) and consider the sequences of

vertices x = (1, 2, 3, 4), y = (1, 3, 5, 3), and z = (1, 2, 5, 4). Since y has repeated

elements while x and z do not, we see that x is good, y is bad, and z is good. Then,

for each b ∈ {0, 1}, we have

• r(·, gy,b) = r(gy,b, ·) = 0 since y is bad.

• r(gx,b, gz,1−b) = r(gz,1−b, gx,b) = n2 since x is good, z is good, x1→2 = z1→2, and

x3 6= z3.

The function r will be used directly to invoke  Theorem 1.3.1  , but we also define here some

related helper functions to use r in conjunction with certain indicator variables.

Definition 1.11.7 (The function rv). For each v ∈ [n], define rv : X ×X → R≥0 as follows:

rv(F1, F2) = r(F1, F2) · 1{F1(v)6=F2(v)} ∀F1, F2 ∈ X .
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Definition 1.11.8 (The function r̃v). For each v ∈ [n], define r̃v : X ×X → R≥0 as follows:

r̃v(gx,b1 , gy,b2) = rv(gx,b1 , gy,b2) · 1{µ(Sx,v)≤µ(Sy,v)} ∀x,y ∈ {1} × [n]L ∀b1, b2 ∈ {0, 1} .

Observation 1.11.1. For each x,y ∈ {1} × [n]L and b ∈ {0, 1}, we have

r̃v(gx,b, gy,b) = rv(gx,b, gy,b) = r(gx,b, gy,b) = 0 . (1.48)

Proof. By definition of r, we have r(gx,b1 , gy,b2) = 0 when b1 = b2. Then for all b ∈ {0, 1}:

r̃v(gx,b, gy,b) = rv(gx,b, gy,b) · 1{µ(Sx,v)≤µ(Sy,v)}

= r(gx,b, gy,b) · 1{gx,b(v)=gy,b(v)} · 1{µ(Sx,v)≤µ(Sy,v)} = 0 . (1.49)

1.11.2 Proof of the congestion lower bound

In this section we include the proof of  Theorem 1.3.2 . The proofs of lemmas used in the

theorem are included afterwards, in Section  1.11.3 .

Theorem 1.3.2. Let G = (V,E) be a connected undirected graph with n vertices. Then the

randomized query complexity of local search on G is Ω
(

n1.5

g

)
, where g is the vertex congestion

of the graph.

Proof. Consider the following setting of parameters:

(a) L = b
√
nc − 1.

(b) Fix an all-pairs set of paths P = {P u,v}u,v∈[n] for G, such that P has vertex congestion

g.

(c) The finite set A is the set of vertices [n].
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(d) The finite set B is {−n2 − n, . . . , 0, . . . , n} × {−1, 0, 1}.

(e) The functions fx, gx,b, and the set X given by  Definition 1.11.3  . (Recall gx,b(v) = (fx, c)

for all v ∈ [n], where c = −1 if v 6= xL+1, and c = b if v = xL+1, i.e. c = b if and only

if v is a local minimum of fx. Also, X = {gx,b | x ∈ {1} × [n]L and b ∈ {0, 1}} .)

(f) Map H : X → {0, 1} as in  Definition 1.11.4  . (Recall H(gx,b) = b for all x ∈ {1} × [n]L

and b ∈ {0, 1}.)

(g) The function r as in  Definition 1.11.6 .

By  Lemma 7  , each function fx is valid for all x ∈ {1} × [n]L, so  Lemma 6  implies that

each function fx has a unique local minimum (at xL+1). Therefore by  Lemma 2  invoked

with f = fx and hb = gx,b, it suffices to show a lower bound for the corresponding decision

problem: return the hidden bit b ∈ {0, 1} given oracle access to the function gx,b.

For each Z ⊆ X , let

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2) . (1.50)

By  Lemma 8 , there exists a subset Z ⊆ X with q(Z) > 0. Thus the conditions required

by  Theorem 1.3.1  are met. By invoking  Theorem 1.3.1  with the parameters in (a-g), we get

that the randomized query complexity of the decision problem, and thus also of local search

on G, is

Ω
(

min
Z⊆X :q(Z)>0

M(Z)
q(Z)

)
, where q(Z) = max

v∈[n]

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)} .

To get an explicit lower bound in terms of congestion, we will upper bound q(Z) and lower

bound M(Z) for subsets Z ⊆ X with q(Z) > 0.

Fix an arbitrary subset Z ⊆ X with q(Z) > 0. Since r(F1, F2) = 0 when F1 or F2 is bad, it

suffices to consider subsets Z ⊆ X where each function F ∈ Z is good.
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Upper bounding q(Z).

Let v ∈ [n] be arbitrary.

Fix an arbitrary function F1 ∈ Z. Since F1 is good, there exist x ∈ {1}× [n]L and b1 ∈ {0, 1}

such that F1 = gx,b1 and x is good. Since Z ⊆ X and r̃v ≥ 0, we have

∑
F2∈Z

r̃v(F1, F2) ≤
∑

F2∈X
r̃v(F1, F2) . (1.51)

Using the definition of X = {gy,b2 | y ∈ {1} × [n]L, b2 ∈ {0, 1}}, the fact that F1 = gx,b1 ,

and partitioning the space of functions F2 ∈ X by the length of the prefix that the staircase

corresponding to F2 shares with the staircase corresponding to F1, we can upper bound the

right hand side of  Eq. (1.51) :

∑
F2∈X

r̃v(F1, F2) =
∑

y∈{1}×[n]L, b2∈{0,1}
r̃v(gx,b1 , gy,b2) ≤

L+1∑
j=1

∑
y∈{1}×[n]L, b2∈{0,1}
j=max{i : x1→i=y1→i}

r̃v(gx,b1 , gy,b2) .

(1.52)

Combining  Eq. (1.51) and  Eq. (1.52)  , we get

∑
F2∈Z

r̃v(F1, F2) ≤
L+1∑
j=1

∑
y∈{1}×[n]L, b2∈{0,1}
j=max{i : x1→i=y1→i}

r̃v(gx,b1 , gy,b2) . (1.53)

For each j ∈ [L+ 1], let

Tj =
{
y ∈ {1} × [n]L | max{i : x1→i = y1→i} = j and v ∈ Tail(j, Sy)

}
.
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Then for each j ∈ [L], we can bound the part of the sum in  Eq. (1.53)  corresponding to index

j via the next chain of inequalities:

∑
y∈{1}×[n]L, b2∈{0,1}:
j=max{i : x1→i=y1→i}

r̃v(gx,b1 , gy,b2) ≤
∑

y∈{1}×[n]L:
j=max{i : x1→i=y1→i}

v∈T ail(j,Sy)

r(gx,b1 , gy,1−b1) (By  Lemma 11  )

≤ nj · |Tj| (Since r(gx,b1 , gy,1−b1) ≤ nj when j = max{i : x1→i = y1→i})

≤ nj ·
(
qv(xj) · nL−j + L · g · nL−j−1

)
, (By  Lemma 12  .)

where we recall that qv(u) is the number of paths in P that start at vertex u and contain v.

Using the identity nj ·
(
qv(xj) · nL−j + L · g · nL−j−1

)
= nL ·

(
qv(xj) + L·g

n

)
, we obtain

∑
y∈{1}×[n]L, b2∈{0,1}:
j=max{i : x1→i=y1→i}

r̃v(gx,b1 , gy,b2) ≤ nL ·
(
qv(xj) + L · g

n

)
. (1.54)

When j = L + 1, since r̃v(gx,b1 , gy,b2) > 0 implies b2 = 1 − b1 (see Observation  1.11.1 ), we

have ∑
y∈{1}×[n]L, b2∈{0,1}:

L+1=max{i:x1→i=y1→i}

r̃v(gx,b1 , gy,b2) ≤ nL+1 . (1.55)

Summing  Eq. (1.54) for all j ∈ [L] and adding it to  Eq. (1.55) for j = L + 1, we can now

upper bound the right hand side of  Eq. (1.53) as follows:

∑
F2∈Z

r̃v(F1, F2) ≤
L+1∑
j=1

∑
y∈{1}×[n]L,b2∈{0,1}:
max{i:x1→i=y1→i}=j

r̃v(gx,b1 , gy,b2) (By  Eq. (1.53) )

≤ nL ·
L∑

j=1

(
qv(xj) + L · g

n

)
+ nL+1 (By  Eq. (1.54)  and  Eq. (1.55) )

≤ nL

∑
u∈[n]

qv(u)
+ nL

 L∑
j=1

gL

n

+ nL+1

(Since x is good, i.e. x has no repeated vertices)

67



≤ nL · g + nL · g · L2

n
+ nL+1

(Since ∑u∈[n] qv(u) equals the number of paths in P that contain v, which is the congestion at v.)

≤ 3 · g · nL . (Since L ≤
√
n− 1 and g ≥ n)

Thus, for each good function F1 ∈ Z, we have

∑
F2∈Z

r̃v(F1, F2) ≤ 3 · g · nL . (1.56)

Summing  Eq. (1.56)  over all F1 ∈ Z (each of which is good, since Z was chosen to have good

functions only), and invoking Lemma  9 yields

∑
F1,F2∈Z

rv(F1, F2) ≤ 2 ·
∑

F1,F2∈Z
r̃v(F1, F2) (By  Lemma 9  )

≤ 2 · |Z| · 3 · g · nL (By  Eq. (1.56) )

= |Z| · 6g · nL . (1.57)

Since we had considered an arbitrary vertex v ∈ [n], taking the maximum over all v ∈ [n] in

 Eq. (1.57) yields

q(Z) = max
v∈[n]

∑
F1∈Z

∑
F2∈Z

rv(F1, F2) ≤ |Z| · 6g · nL . (1.58)

Lower bounding M(Z).

Since each function F1 ∈ Z is good by choice of Z,  Lemma 14  yields

∑
F2∈X

r(F1, F2) ≥ 1
2e · (L+ 1) · nL+1 ∀F1 ∈ Z . (1.59)

Using  Eq. (1.59) and recalling the definition of M(Z) from  Eq. (1.50) , we get

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2) ≥ |Z|
2e · (L+ 1) · nL+1 . (1.60)
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Combining the bounds.

Combining the bounds from  Eq. (1.58) and  Eq. (1.60) , we can now estimate the bound from

 Theorem 1.3.1 :

min
Z⊆X :

q(Z)>0

M(Z)
q(Z) ≥

|Z|
2e · (L+ 1)nL+1

|Z| · 6g · nL
(By  Eq. (1.58)  and  Eq. (1.60) )

≥ n1.5

24e · g
. (Since L+ 1 = b

√
nc ≥

√
n/2)

Therefore, the randomized query complexity of local search is

Ω

 min
Z⊆X :

q(Z)>0

M(Z)
q(Z)

 ⊆ Ω
(
n1.5

g

)
.

This completes the proof of the theorem.

1.11.3 Helper lemmas

In this section we prove the helper lemmas that are used in the proof of  Theorem 1.3.2 . All

the lemmas assume the setup of the parameters from  Theorem 1.3.2 .

Lemma 7. For each x ∈ {1} × [n]L, the function fx is valid for the staircase Sx induced by

x and P, where P = {P u,v}u,v∈[n] is the all-pairs set of paths in G.

Proof. Let Sx = (w1, . . . , ws) be the vertices of the staircase Sx induced by x and P . We show

that all the three conditions required by the definition of a valid function ( Definition 2.4.6 )

hold.

To show the first condition of validity, consider two vertices v1, v2 ∈ Sx. Define

i1 = max{k ∈ [L] | v1 ∈ P xk,xk+1} .

69



Define i2 similarly for v2. Let j1 and j2 be the indices of v1 and v2 in P xi1 ,xi1+1 and P xi2 ,xi2+1

respectively. Note that j1, j2 ∈ [n]. By definition of the function fx ( Definition 1.11.3  ), we

have

fx(v1) = −n · i1 − j1 and fx(v2) = −n · i2 − j2 . (1.61)

Without loss of generality, the last time vertex v1 appears on the path Sx, starting from w1

towards ws, is earlier than the last time vertex v2 appears, that is:

max{k ∈ [s] | v1 = wk} < max{k ∈ [s] | v2 = wk} .

Then i1 ≤ i2. We consider two cases:

• If i1 = i2, then

fx(v1) − fx(v2) = j2 − j1 (By  Eq. (1.61) )

> 0 (Since by assumption v1 last appears on Sx before v2.)

• If i1 < i2, then

fx(v1) − fx(v2) ≥ n+ (j2 − j1) (By  Eq. (1.61) )

> 0 (Since j1, j2 ∈ [n].)

Therefore the first condition of validity is satisfied.

Also by  Definition 1.11.3 , of the function fx, we have that:

• fx(v) = dist(1, v) for all v /∈ Sx, so the second condition of validity is satisfied.

• fx(v) ≤ 0 for all v ∈ Sx, so the third condition of validity is satisfied.

Therefore fx is valid for the staircase Sx induced by x and P .
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Lemma 8. The next two properties hold:

• Let F1, F2 ∈ X . Then r(F1, F2) = 0 when H(F1) = H(F2).

• There exists a subset Z ⊆ X such that

q(Z) = max
v∈[n]

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)} > 0 .

Proof. We first show that r(F1, F2) = 0 when H(F1) = H(F2). To see this, suppose H(F1) =

H(F2) for some functions F1, F2 ∈ X . Then by definition of the set of functions X , there

exist sequences of vertices x,y ∈ {1} × [n]L and bits b1, b2 ∈ {0, 1} such that F1 = gx,b1

and F2 = gy,b2 . By definition of H, we have H(gx,b1) = b1 and H(gy,b2) = b2. Since

H(F1) = H(F2), we have b1 = b2. Then r(gx,b1 , gy,b2) = 0 by definition of r, or equivalently,

r(F1, F2) = 0.

Next we show there is a subset Z ⊆ X with q(Z) > 0. To see this, consider two disjoint sets

of vertices U1, U2 ⊂ [n] such that U1 = {u1
2, . . . , u

1
L+1}, U2 = {u2

2, . . . , u
2
L+1}, each vertex ui

j

appears exactly once in Ui, and ui
j 6= 1 for all i, j. Such sets U1, U2 exist since

|U1| + |U2| + |{1}| = 2L+ 1 = 2(b
√
nc − 1) + 1 ≤ 2

√
n ≤ n for n ≥ 4 .

Form the sequences of vertices W 1 = (1, u1
2, . . . , u

1
L+1) and W 2 = (1, u2

2, . . . , u
2
L+1). Then

both W 1 and W 2 are good. Consider now the functions gW 1,0 and gW 2,1. By definition of

r, we have r(gW 1,0, gW 2,1) = n, since the maximum index j for which W 1
1→j = W 2

1→j is j = 1.

Then

q({gW 1,0, gW 2,1}) ≥ r(gW 1,0, gW 2,1) · 1{gW 1,0(u1
L+1)6=gW 2,1(u1

L+1)} = n > 0 .

Thus there exists a subset Z ⊆ X with q(Z) > 0 as required.

Lemma 9. For each v ∈ [n] and subset Z ⊆ X , we have

∑
F1,F2∈Z

rv(F1, F2) ≤ 2
∑

F1,F2∈Z
r̃v(F1, F2) .
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Proof. By Definition  1.11.7 , we have rv(F1, F2) = r(F1, F2) · 1{F1(v)6=F2(v)} for all v ∈ [n] and

F1, F2 ∈ X . Then rv is symmetric since both the function r and the indicator 1{F1(v)6=F2(v)}

are symmetric. Also recalling that for a walk Q, the number of times that a vertex u appears

in Q is denoted µ(Q, u), we have:

∑
F1,F2∈Z

rv(F1, F2) =
∑

F1,F2∈Z:
F1=gx,b1 ;F2=gy,b2
µ(Sx,v)≤µ(Sy,v)

rv(F1, F2) +
∑

F1,F2∈Z:
F1=gx,b1 ;F2=gy,b2
µ(Sy,v)<µ(Sx,v)

rv(F1, F2)

=
∑

F1,F2∈Z:
F1=gx,b1 ;F2=gy,b2
µ(Sx,v)≤µ(Sy,v)

rv(F1, F2) +


∑

F1,F2∈Z:
F1=gx,b1 ;F2=gy,b2
µ(Sy,v)≤µ(Sx,v)

rv(F2, F1) −
∑

F1,F2∈Z:
F1=gx,b1 ;F2=gy,b2
µ(Sx,v)=µ(Sy,v)

rv(F2, F1)


= 2

∑
F1,F2∈Z:

F1=gx,b1 ;F2=gy,b2
µ(Sx,v)≤µ(Sy,v)

rv(F1, F2) −
∑

F1,F2∈Z:
F1=gx,b1 ;F2=gy,b2
µ(Sy,v)=µ(Sx,v)

rv(F2, F1) . (1.62)

Recall from  Definition 1.11.8 , of the function r̃v, that

r̃v(gx,b1 , gy,b1) = rv(gx,b1 , gy,b2) · 1{µ(Sx,v)≤µ(Sy,v)} ∀x,y ∈ {1} × [n]L,∀b1, b2 ∈ {0, 1}.

Then r̃v(F1, F2) = 0 when µ(Sx, v) > µ(Sy, v), which substituted in  Eq. (1.62) gives

∑
F1,F2∈Z

rv(F1, F2) = 2
∑

F1,F2∈Z
r̃v(F1, F2) −

∑
F1,F2∈Z:

F1=gx,b1 ;F2=gy,b2
µ(Sy,v)=µ(Sx,v)

rv(F2, F1) (1.63)

≤ 2
∑

F1,F2∈Z
r̃v(F1, F2) . (Since rv(F2, F1) ≥ 0 ∀F1, F2 ∈ X , v ∈ [n])

This completes the proof of the lemma.
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Lemma 10. Let x,y ∈ {1} × [n]L, b1, b2 ∈ {0, 1}, v ∈ [n]. Let j ∈ [L + 1] be the maximum

index for which x1→j = y1→j. If r̃v(gx,b1 , gy,b2) > 0, then at least one of the next two

properties holds:

(i) v ∈ Tail(j, Sy).

(ii) x = y.

Proof. We start with a few observations.

Recall from  Definition 1.11.8  that r̃v(gx,b1 , gy,b1) = rv(gx,b1 , gy,b2) · 1{µ(Sx,v)≤µ(Sy,v)}. By the

lemma statement, we have r̃v(gx,b1 , gy,b2) > 0, and so both of the next inequalities hold:

rv(gx,b1 , gy,b2) > 0 (1.64)

µ(Sx, v) ≤ µ(Sy, v) . (1.65)

By definition of rv, we have rv(gx,b1 , gy,b2) = r(gx,b1 , gy,b2) ·1{gx,b1 (v)6=gy,b2 (v)} . Then  Eq. (1.64) 

implies

gx,b1(v) 6= gy,b2(v) . (1.66)

To prove that v ∈ Tail(j, Sy) or x = y we consider two cases:

Case 1: v ∈ Tail(j, Sx).

Let us decompose the staircase Sx into the initial segment Sx1→j and the remainder Tail(j, Sx).

Similarly, we decompose the staircase Sy into initial segment Sy1→j and the remainder

Tail(j, Sy). We get:

µ(Sx, v) ≤ µ(Sy, v) (By  Eq. (1.65) .)

⇐⇒ µ(Sx1→j , v) + µ(Tail(j, Sx), v) ≤ µ(Sy1→j , v) + µ(Tail(j, Sy), v)
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⇐⇒ µ(Tail(j, Sx), v) ≤ µ(Tail(j, Sy), v) (Since x1→j = y1→j.)

(1.67)

Since v ∈ Tail(j, Sx), we have µ(Tail(j, Sx), v) ≥ 1, and so

1 ≤ µ(Tail(j, Sy), v) .

Thus v ∈ Tail(j, Sy), so property (i) from the lemma statement holds. This completes Case

1.

Case 2: v /∈ Tail(j, Sx).

If x = y, then property (ii) from the lemma statement holds.

Now suppose x 6= y. Then Tail(j, Sy) 6= ∅. We claim v ∈ Sx ∪ Sy. Suppose towards a

contradiction that v 6∈ Sx ∪ Sy.

Then for each b ∈ {0, 1}, u ∈ [n], and sequence z = (1, z2, z3 . . . , zL+1) ∈ {1} × [n]L, we have

by  Eq. (1.45) (which defines the function gz,b) that

gz,b(u) =


(
fz(u), b

)
if u = zL+1(

fz(u),−1
)

otherwise .

Since v 6∈ Sx, we have v 6= xL+1, and so gx,b1(v) = (fx(v),−1). Moreover, since x1 = y1 and

v 6∈ Sx ∪Sy, we have fx(v) = dist(v, x1) = dist(v, y1) = fy(v) . Combining these observations

yields gx,b1(v) = (fx(v),−1) = (fy(v),−1) = gy,b2(v), which contradicts  Eq. (1.66)  . Thus

the assumption must have been false and v ∈ Sx ∪ Sy.
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To summarize, we have x1→j = y1→j, x 6= y, v ∈ Sx ∪ Sy, and v 6∈ Tail(j, Sx). Suppose

towards a contradiction that v 6∈ Tail(j, Sy). Then

gx,b1(v) = (fx(v),−1) (Since v 6= xL+1, as v 6∈ Tail(j, Sx).)

= (fy(v),−1) (Since v ∈ Sx ∪ Sy and x1→j = y1→j and (v 6∈ Tail(j, Sx), v 6∈ Tail(j, Sy)).)

= gy,b2(v), (Since v 6= yL+1, as v 6∈ Tail(j, Sy).)

which contradicts  Eq. (1.66)  .

Thus the assumption must have been false and v ∈ Tail(j, Sy), so property (i) from the

lemma statement holds.

We conclude that at least one of properties (i) and (ii) holds. This completes Case 2, as well

as the proof of the lemma.

Lemma 11. For each x ∈ {1} × [n]L, b1 ∈ {0, 1}, v ∈ [n], and j ∈ [L], we have

∑
y∈{1}×[n]L, b2∈{0,1}:
max{i:x1→i=y1→i}=j

r̃v(gx,b1 , gy,b2) ≤
∑

y∈{1}×[n]L:
max{i:x1→i=y1→i}=j

v∈T ail(j,Sy)

r(gx,b1 , gy,1−b1) .

Proof. Let x ∈ {1} × [n]L, b1 ∈ {0, 1}, v ∈ [n], and j ∈ [L].

Recall the function r from  Definition 1.11.6  , the function rv from  Definition 1.11.7  , and the

function r̃v from  Definition 1.11.8 . In particular, we have

• rv(F1, F2) = r(F1, F2) · 1{F1(v)6=F2(v)} for all F1, F2 ∈ X .

• r̃v(gx,b1 , gy,b2) = rv(gx,b1 , gy,b2) · 1{µ(Sx,v)≤µ(Sy,v)} for each x,y ∈ {1} × [n]L

and b1, b2 ∈ {0, 1}.
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Then we get the next chain of identities:

∑
y∈{1}×[n]L, b2∈{0,1}:
max{i:x1→i=y1→i}=j

r̃v(gx,b1 , gy,b2) =
∑

y∈{1}×[n]L, b2∈{0,1}:
max{i:x1→i=y1→i}=j

r̃v(gx,b1 ,gy,b2 )>0

r̃v(gx,b1 , gy,b2) (Since r̃v is non-negative.)

=
∑

y∈{1}×[n]L:
max{i:x1→i=y1→i}=j
r̃v(gx,b1 ,gy,1−b1 )>0

r̃v(gx,b1 , gy,1−b1) (Since r̃v(gx,b1 , gy,b1) = 0.)

=
∑

y∈{1}×[n]L:
max{i:x1→i=y1→i}=j

µ(Sx,v)≤µ(Sy,v)
r̃v(gx,b1 ,gy,1−b1 )>0

rv(gx,b1 , gy,1−b1) (By definition of r̃v.)

=
∑

y∈{1}×[n]L:
max{i:x1→i=y1→i}=j

µ(Sx,v)≤µ(Sy,v)
r̃v(gx,b1 ,gy,1−b1 )>0

r(gx,b1 , gy,1−b1) · 1{gx,b1 (v) 6=gy,1−b1 (v)} (By definition of rv.)

=
∑

y∈{1}×[n]L:
max{i:x1→i=y1→i}=j

µ(Sx,v)≤µ(Sy,v)
gx,b1 (v)6=gy,1−b1 (v)
r̃v(gx,b1 ,gy,1−b1 )>0

r(gx,b1 , gy,1−b1) . (1.68)

Consider an arbitrary y ∈ {1} × [n]L meeting the properties from the last sum of  Eq. (1.68)  :

• max{i : x1→i = y1→i} = j

• µ(Sx, v) ≤ µ(Sy, v)

• gx,b1(v) 6= gy,1−b1(v)

• r̃v(gx,b1 , gy,1−b1) > 0

By  Lemma 10  , the inequality r̃v(gx,b1 , gy,1−b1) > 0 implies that at least one of v ∈ Tail(j, Sy)

or x = y holds. However, x cannot be equal to such y as j < L + 1 is the maximum index
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for which x1→j = y1→j. Thus v ∈ Tail(j, Sy). We can continue to bound the sum from

 Eq. (1.68) as follows:

∑
y∈{1}×[n]L:

max{i:x1→i=y1→i}=j
µ(Sx,v)≤µ(Sy,v)

gx,b1 (v)6=gy,1−b1 (v)
r̃v(gx,b1 ,gy,1−b1 )>0

r(gx,b1 , gy,1−b1) ≤
∑

y∈{1}×[n]L:
max{i:x1→i=y1→i}=j

v∈T ail(j,Sy)

r(gx,b1 , gy,1−b1) . (1.69)

Combining  Eq. (1.68)  and  Eq. (1.69)  , we get the inequality required by the lemma statement:

∑
y∈{1}×[n]L, b2∈{0,1}:
max{i:x1→i=y1→i}=j

r̃v(gx,b1 , gy,b2) ≤
∑

y∈{1}×[n]L:
max{i:x1→i=y1→i}=j

v∈T ail(j,Sy)

r(gx,b1 , gy,1−b1) .

Lemma 12. Let x ∈ {1} × [n]L, v ∈ [n], and j ∈ [L]. Then

∣∣∣{y ∈ {1} × [n]L | max{i : x1→i = y1→i} = j and v ∈ Tail(j, Sy)
}∣∣∣ ≤ qv(xj) · nL−j + L · g · nL−j−1 ,

recalling that qv(u) is the number of paths in the set P that start at vertex u and contain v.

Proof. There are two ways v could be in Tail(j, Sy): either v ∈ P yj,yj+1 or v ∈ P yi,yi+1 for

some j < i ≤ L. We will now upper bound the number of y for each of these possibilities

separately.

(i) We count the number of sequences of vertices y = (y1, . . . , yL+1) with

x1→j = y1→j and v ∈ P yj,yj+1 . (1.70)

There are qv(xj) choices of vertices for yj+1 and nL−j choices for sequences (yj+2, . . . , yL+1).

Thus there are qv(xj) · nL−j choices of y for which  Eq. (1.70) holds.
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(ii) For each i with j < i ≤ L, we count the number of sequences of vertices y =

(y1, . . . , yL+1) with

x1→j = y1→j and v ∈ P yi,yi+1 . (1.71)

There are nL−j−1 tuples of the form (yj+1, . . . , yi−1, yi+2, . . . , yL+1), as these vertices can

be chosen arbitrarily. Since there are at most g paths in P that contain v, the number

of choices for the pair (yi, yi+1) is at most g as well. Thus there are g · nL−j−1 choices

of y for which  Eq. (1.71) holds.

There are at most L − j ≤ L possible locations for i when j < i ≤ L. So, there

are at most L · g · nL−j−1 choices for y such that  Eq. (1.71)  holds with some index

i ∈ {j + 1, . . . , L}.

Combining the analysis from (i)-(ii), we get that:

∣∣∣{y ∈ {1} × [n]L | max{i : x1→i = y1→i} = j and v ∈ Tail(j, Sy)
}∣∣∣ ≤ qv(xj) · nL−j + L · g · nL−j−1 .

This completes the proof of the lemma.

Lemma 13. Let j ∈ [L] and x ∈ {1} × [n]L be an arbitrary good sequence of vertices. Then

∣∣∣y ∈ {1} × [n]L | y is good and j = max{i : x1→i = y1→i}
∣∣∣ = (n− j − 1)

L+1∏
i=j+2

(n− i + 1) .

Proof. Let y = (y1, . . . , yL+1) ∈ [n]L+1 be such that x1 = y1 = 1, j = max{i : x1→i = y1→i},

and y is good. Recall that for y to be good, each element in (y1, . . . , yL+1) has to be distinct.

We will count by choosing each vertex of y in order from y1 to yL+1. There is only one choice

for each of y1, . . . , yj since we need x1→j = y1→j.

Consider the number of possible vertices for yj+1:
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• j vertices already appeared in {y1, . . . , yj} so they cannot be reused, otherwise y becomes

bad.

• j = max{i : x1→i = y1→i} means xj+1 6= yj+1, so xj+1 cannot be reused either.

Thus, there are n− j − 1 choices of vertices for yj+1.

For all i > j + 1, there are n− i + 1 choices of vertices for yi since i − 1 options have already

been used. Thus the final count is (n− j − 1)∏L+1
i=j+2(n− i + 1), as required.

Lemma 14. If F1 ∈ X is good, then ∑
F2∈X r(F1, F2) ≥ 1

2e · (L+ 1) · nL+1 .

Proof. Since F1 is good, there exists a good sequence x ∈ {1} × [n]L and a bit b1 ∈ {0, 1}

such that F1 = gx,b1 . Then we have the following chain of identities:

∑
F2∈X

r(F1, F2) =
∑

F2∈X
r(gx,b1 , F2)

=
∑

y∈{1}×[n]L, b2∈{0,1}
r(gx,b1 , gy,b2) (By definition of the set X )

=
∑

y∈{1}×[n]L
r(gx,b1 , gy,1−b1) (Since r(gx,b1 , gy,b1) = 0)

=
L+1∑
j=1

∑
y∈{1}×[n]L

j=max{i:x1→i=y1→i}

r(gx,b1 , gy,1−b1) . (1.72)

Since r(gx,b1 , gy,1−b1) = 0 if y is bad, we have

L+1∑
j=1

∑
y∈{1}×[n]L:

j=max{i:x1→i=y1→i}

r(gx,b1 , gy,1−b1) =
L+1∑
j=1

∑
y∈{1}×[n]L:

j=max{i:x1→i=y1→i}
y is good

r(gx,b1 , gy,1−b1) . (1.73)

Combining  Eq. (1.72) and  Eq. (1.73)  , the last sum in  Eq. (1.73) can be written as:

∑
F2∈X

r(gx,b1 , F2) =
L+1∑
j=1

∑
y∈{1}×[n]L:

j=max{i:x1→i=y1→i}
y is good

r(gx,b1 , gy,1−b1) . (1.74)

79



Substituting the definition of r in  Eq. (1.74)  , we get

∑
F2∈X

r(gx,b1 , F2) =
L+1∑
j=1

∑
y∈{1}×[n]L:

j=max{i:x1→i=y1→i}
y is good

nj . (1.75)

From here, we only need to count the number of such y. There is exactly one good sequence

y ∈ {1} × [n]L such that x1→L+1 = y1→L+1, namely y = x. Therefore,

∑
F2∈X

r(gx,b1 , F2) =
L+1∑
j=1

∑
y∈{1}×[n]L:

max{i:x1→i=y1→i}=j
y is good

nj (By  Eq. (1.75) )

= nL+1 +
L∑

j=1

∑
y∈{1}×[n]L:

max{i:x1→i=y1→i}=j
y is good

nj

(Can pull out nL+1 since there is only one possibility of x1→L+1 = y1→L+1 when x = y)

= nL+1 +
L∑

j=1
nj

(n− j − 1) ·
L+1∏

i=j+2
(n− i + 1)

 (By  Lemma 13 )

≥ nL+1 +
L∑

j=1
(n− L− 1)L+1 (Since j ∈ [L])

≥ (L+ 1) · nL+1 ·
(

1 − L+ 1
n

)L+1

≥ (L+ 1) · nL+1 ·
(

1 − 1
L+ 1

)L+1
(Since L+ 1 ≤

√
n)

≥ 1
2e · (L+ 1) · nL+1 . (Since n ≥ 4, so L+ 1 ≥ 2)

Since F1 = gx,b1 , this is the required inequality, which completes the proof.

1.11.4 Corollaries for expanders

Given the lower bound based on congestion, we can now state an implication for expanders.

For this we rely on the next corollary of a result from [ 19 ], which shows that d-regular

expanders have systems of paths with low vertex congestion when the degree d is constant.
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Lemma 15. Let G = ([n], E) be a d-regular β-expander, where d and β are constant.

Consider the collection of all n2 ordered pairs of vertices {(a1, b1), . . . , (an2 , bn2)}, including

each vertex with itself. Then there exists a set P of n2 paths {P1, . . . , Pn2}, such that each

path Pi connects ai to bi and the congestion on each vertex of G is O (n lnn).

Proof. We invoke  Theorem 1.8.1 with parameters K = n2, α(n) = n lnn, and s = 2n to get

a set of K paths P = {P1, . . . , PK}. Since α(n) ≥ 1/2, we get that the edge congestion g of

P is at most:

g ∈ O(s+ α + ln lnn) = O(n lnn) .

To convert from edge congestion to vertex congestion, consider the vertex v with the highest

vertex congestion with respect to P . The vertex congestion at v is no more than the sum of

the edge congestions on each of the edges incident to v. Because G is d-regular, this means

the vertex congestion at v is at most d · g. Since d is constant, the vertex congestion is

O(n lnn).

Using this corollary, we get the following result for local search on expanders.

Corollary 1. Let G = (V,E) be an undirected d-regular β-expander with n vertices, where d

and β are constant. Then the randomized query complexity of local search on G is Ω
( √

n
log n

)
.

Proof. By  Lemma 15 , the graph G has an all-pairs set of paths P with vertex congestion

g ∈ O (n lnn). By  Theorem 1.3.2  , the randomized query complexity of local search on G is

Ω(
√
n/ lnn).

By alternatively using a prior result from [  48 ], we get a result in terms of the expansion and

maximum degree for any graph.

Lemma 16. Let G be an undirected β-expander with maximum degree ∆. Then G has vertex

congestion g ∈ O(n ln2(n) · ∆
β

).

81



Proof. Decompose the clique on n vertices into n partial matchings M1,M2, . . . ,Mn. Invoke

 Theorem 1.8.2  on each partial matching Mi to get a set Pu,v of dlnne paths from u to v for

every pair of vertices {u, v} ∈ Mi. Let Pi be an arbitrary path from Pai,bi for every i ∈ [n2].

By  Theorem 1.8.2 , the edge congestion for each partial matching is at most O(ln2(n)/β).

Therefore the edge congestion of the union of the results of invoking  Theorem 1.8.2  is at most

O(n · ln2(n)/β). Since P contains only one path from each Pu,v, it also has edge congestion

at most O(n · ln2(n)/β).

To convert from edge congestion to vertex congestion, consider the vertex v with the highest

vertex congestion with respect to P . The vertex congestion at v is no more than the sum of

the edge congestions on each of the edges incident to v. Because the maximum degree is ∆,

this means the vertex congestion at v is at most O(n ln2(n) · ∆
β

), so the vertex congestion of

O(n ln2(n) · ∆
β

).

Using this congestion result, we get a corollary for expansion and maximum degree.

Corollary 2. Let G = (V,E) be an undirected β-expander with n vertices and maximum

degree ∆. Then the randomized query complexity of local search on G is Ω
(

β
√

n
∆ log2 n

)
.

Proof. By  Lemma 16  , G has an all-pairs set of paths P with vertex congestion g ∈ O
(
n · ln2(n) · ∆/β

)
.

By  Theorem 1.3.2  , the randomized query complexity of local search on G is Ω
(

β
√

n
∆ log2 n

)
.

1.11.5 Corollary for Cayley graphs

We also get a corollary for undirected Cayley graphs thanks to a construction by [  16 ], which

has vertex congestion of at most (d+ 1) · n. This improves the result of [ 16 ] for randomized

algorithms by a lnn factor.

Lemma 17. Let G = (V,E) be an undirected Cayley graph with n vertices and diameter

diam(G). Then there exists an all-pairs set of paths P = {P u,v}u,v∈V , such that each path

P u,v connects u to v and the congestion on each vertex of G is at most (diam(G) + 1) · n.
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Proof. Let 1 ∈ V be the group identity of G. For each v ∈ V , fix P 1,v to be an arbitrary

shortest path from 1 to v. Then for each pair u, v ∈ V with u 6= 1, let P u,v = u ·P 1,w, where

w = u−1 · v. By construction, P u,v starts at u · 1 = u and ends at u · u−1 · v = v.

For each w ∈ V , let Pw = {P u,v : u−1 · v = w}. For all w, x ∈ V , exactly |P 1,w| paths in Pw

contain x: one has x in the first position, one has x in the second position, etc. Therefore Pw

has the same vertex congestion at every vertex. Then since P is the disjoint union ⋃w∈V Pw,

we get that P has the same vertex congestion at every vertex.

Every path in P is a shortest path, and so has length at most diam(G)+1 vertices. Therefore

in total there are (diam(G)+1) ·n2 vertices in P , so the vertex congestion of P is (diam(G)+

1) · n since every vertex has the same congestion.

Using this lemma we get the following result for local search on undirected Cayley graphs.

Corollary 3. Let G = (V,E) be an undirected Cayley graph with n vertices and diameter

diam(G). Then the randomized query complexity of local search on G is Ω
( √

n
diam(G)

)
.

Proof. By  Lemma 17 , the graph G has an all-pairs set of paths P that has vertex congestion

g ≤ (diam(G) + 1) · n. By  Theorem 1.3.2  , the randomized query complexity of local search

on G is Ω
( √

n
diam(G)

)
.

1.11.6 Corollary for the hypercube

Finally, we get a corollary for the {0, 1}n hypercube.

Corollary 4. The randomized query complexity of local search on the Boolean hypercube

{0, 1}n is Ω
(

2n/2

n

)
.

Proof. We first quantify the vertex congestion g of the Boolean hypercube, and then invoke

 Theorem 1.3.2 to obtain a lower bound for local search.
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The number of vertices in the {0, 1}n hypercube is N = 2n. The vertices of the graph can

be viewed as bit strings of length n, with bit strings of Hamming distance 1 connected by an

edge. Fix an order on the bits. Then for every pair of vertices u, v, the path P u,v is obtained

by iterating over the bits, toggling each bit that differs between u and v.

By symmetry of the construction, the system of paths P has equal congestion at every

vertex. Furthermore, the average length of a path in P is 1 +n/2. Thus the congestion of P

is N · (1 +n/2). Since every path is a shortest path and the congestion is evenly distributed,

this is optimal and the congestion of the graph is g = N · (1 + n/2).

By  Theorem 1.3.2  , the randomized query complexity of local search on the hypercube is

Ω
(

2n/2

n

)
.

1.12 Lower bound for local search via separation number: proofs

In this section we include the proofs needed to show the lower bound of Ω
(
(s/∆)1/4

)
.

We start with the basic definitions. Then we state and prove the lower bound. Afterwards,

we show the helper lemmas used in the proof of the theorem.

1.12.1 Basic definitions for separation

Notation.

Recall we have a graph G = ([n], E) with separation number s and maximum degree ∆.

This means that every subset H ⊆ [n] can be split in two parts, S and H \ S, each of size

at least |H|/4, such that at most s vertices in H \ S are adjacent to S.

Let c ∈ N be a parameter that we set later.

Given a sequence of k indices x = (x1, . . . , xk), we write x1→j = (x1, . . . , xj) to refer to a

prefix of the sequence, for an index j ∈ [k].

84



Given a walk Q = (v1, . . . , vk) in G, let Qi refer to the i-th vertex in the walk (i.e. Qi = vi).

For each vertex u ∈ [n], let µ(Q, u) be the number of times that vertex u appears in Q.

Next we introduce the notion of inter-cluster paths from [  17 ].

Definition 1.12.1 (Path Arrangement and Inter/Intra-Cluster Paths). A path arrangement

with parameter m for graph G = ([n], E) is a set of connected, disjoint subsets N1, . . . , Nm ⊆

V with the following property: for all i, j ∈ [m], there exist m paths P1(i, j), . . . , Pm(i, j) such

that

• For each k ∈ [m], the first vertex of Pk(i, j) is in Ni, the last vertex of Pk(i, j) is in Nj,

and every other vertex of Pk(i, j) is outside Ni and Nj.

• For every pair i, j ∈ [m], vertices in V \ (Ni ∪Nj) are visited at most once collectively

by the paths P1(i, j), . . . , Pm(i, j).

Observation 1.12.1.  Definition 1.12.1  differs slightly from the original construction of [  17 ]

in that  Definition 1.12.1  uses inter-cluster paths of the form Pk(i, i); i.e. from a cluster to

itself. However, Pk(i, i) may always be chosen as a degenerate single-vertex path in Ni, so

this deviation does not affect the value of m for any graph.
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(76) Let H be the grid of  Figure 1.4 . There exists a path arrangement for H with

parameter
√
n since one can use the columns as the Ni and the shortest path in each

row as the inter-cluster paths.

N1 N2 N3

Figure 1.4. Let H be the
√
n ×

√
n graph with clusters N1, . . . , N√

n, where
n = 9. The black edges represent intra-cluster paths while the blue edges
represent inter-cluster paths. Then, there exists a path arrangement for this
graph with parameter

√
n = 3.

Next we present without proof a lemma from [ 17 ], which relates the path arrangement

parameter to the separation number and maximum degree of the graph.

Lemma 18 ([ 17 ], Theorem 6). If an undirected graph G has maximum degree ∆ and

separation number s, then there exist a path arrangement on G with parameter at least

max{b
√
s/2∆c, 1}.

Path arrangement number m of the graph G.

Let m be the maximum number such that there exists a path arrangement on our graph G

with parameter m. Let N1, . . . , Nm be the corresponding clusters. An example of a set of

inter-cluster paths between Ni and Nj from [  17 ] is shown in  Figure 1.5 .

For all i ∈ [m] and u, v ∈ Ni, let Ei(u, v) be an arbitrary shortest path from u to v within

Ni.
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Figure 1.5. A set of inter-cluster paths between Ni and Nj from [  17 ].

Define f irst(Pi(j, k)) and last(Pi(j, k)) as the first and last vertices in Pi(j, k), respectively.

We have f irst(Pi(j, k)) ∈ Nj and last(Pi(j, k)) ∈ Nk, by definition of Pi(j, k).

We will map a sequence of indices to walks starting from a fixed starting vertex vstart ∈ N1.

Definition 1.12.2 (Staircase; separation version). For x = (x1 = 1, x2, . . . , x2c+1) ∈ {1} ×

[m]2c, and i ∈ [2c], we define

Sx,i =



E1(vstart, f irst(Px2(1, x3)) if i = 1

Pxi(xi−1, xi+1) if i is even

Exi(last(Qxi−1(xi−2, xi)), f irst(Pxi+1(xi, xi+2))) if i > 1 is odd

(1.77)

Then for all sequences of indices x = (1, x2, . . . , x2k+1) ∈ {1}×[m]2k, the full walk Sx induced

by x is the concatenation Sx = Sx,1 ◦ Sx,2 ◦ . . . ◦ Sx,2k.

That is, we use the inter-cluster paths dictated by the even indices of x to travel between

clusters dictated by the odd indices of x, stitching the inter-cluster paths together using

shortest paths within the clusters. So Sx starts at vstart ∈ N1, travels via Sx,1 and Sx,2 to

a vertex in Nx3 , and so on. Observe Sx is a well-defined walk since Sx,i connects the last
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vertex of Sx,i−1 and first vertex of Sx,i+1 for any odd i > 1. An illustrated example is given

next.

(78) Consider the graph in Figure  1.6 . Suppose m = 3. For each i ∈ {1, 2, 3}, let the ith

v0 v1 v2

v3

v4

v5 v6

v7

v8

N1

N2 N3

S(1,1,3,3,2): v0 v1 v2 v5 v8 v7 v6 v0 v3

Ex1=1 Px2=3(1, 3) Ex3=3 Px4=1(3, 2)

Within cluster Nx1=1 Within cluster Nx3=3

Figure 1.6. Graph on nine nodes, with connected cluster partitions N1 =
{v0, v1, v2},
N2 = {v3, v4, v5}, and N3 = {v6, v7, v8}.

path for each pair of clusters consist of vertices {vi−1, vi−1+m, vi−1+2m}.

For example, P2(2, 3) = (v4, v1, v7) is the second path from N2 to N3 and

P2(1, 3) = (v1, v4, v7) is the second path from N1 to N3.

Fix vstart = v0 and let x = (x1, x2, x3, x4, x5) = (1, 1, 3, 3, 2). We have

P3(1, 3) = (v2, v5, v8) and P1(3, 2) = (v6, v0, v3). Thus

Sx = Sx,1 ◦ Sx,2 ◦ Sx,3 ◦ Sx,4

= Ex1=1(v0, v2) ◦ Px2=3(1, 3) ◦ Ex3=3(v8, v6) ◦ Px4=1(3, 2)
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= (v0, v1, v2) ◦ (v2, v5, v8) ◦ (v8, v7, v6) ◦ (v6, v0, v3)

= (v0, v1, v2, v5, v8, v7, v6, v0, v3) .

Definition 1.12.3 (Tail of a staircase; separation version). Let Sx = Sx,1 ◦ . . . ◦ Sx,2k be

a staircase induced by some sequence x = (1, x2, . . . , x2k+1) ∈ {1} × [m]2k. For each odd

j ∈ [2k], let T = Sx,j ◦ . . . ◦ Sx,2k. Then Tail(j, Sx) is obtained from T by removing the first

occurrence of the first vertex in T (and only the first occurrence). Let Tail(2k+ 1, Sx) be the

empty sequence.

Observe Tail(j, Sx) is only defined for odd j since staircase Sx1→j is only defined for odd j.

Next, we define the set of functions X that will be used when invoking  Theorem 1.3.1 .

Definition 1.12.4 (The functions fx and gx,b; the set X ; separation version). Given an

input graph G, let m be its path arrangement parameter and N1, . . . , Nm be the clusters

with respect to  Definition 1.12.1  . For each sequence of indices x ∈ {1} × [m]2c, define

fx : [n] → {−n2,−n2 + 1, . . . , n} such that for each v ∈ [n]:

• If v /∈ Sx, then fx(v) = dist(v, vstart), where Sx is the staircase induced by x and the

cluster construction.

• If v ∈ Sx, then fx(v) = −i, where i is the maximum index such that v is the i-th vertex

in Sx.

Also, for each x ∈ {1}× [m]2c and b ∈ {0, 1}, let gx,b : [n] → {−n2, . . . , 0, . . . , n}×{−1, 0, 1}

be such that, for all v ∈ [n]:

gx,b(v) =


(fx(v), b) if v is the last vertex in Sx

(fx(v),−1) if v is not the last vertex in Sx .

Let X = {gx,b | x ∈ {1} × [m]2c and b ∈ {0, 1}}.
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Definition 1.12.5 (The map H; separation version). Given an input graph G, let m be its

path arrangement parameter and N1, . . . , Nm be the clusters with respect to  Definition 1.12.1 .

Let X be the set of functions gx,b from  Definition 1.12.4 . Define H : X → {0, 1} as

H(gx,b) = b ∀x ∈ {1} × [m]2c and b ∈ {0, 1} .

Definition 1.12.6 (Good/bad sequences of indices; Good/bad functions; separation ver-

sion). A sequence of k indices x = (x1, . . . , xk) is good if xi 6= xj for all i, j with 1 ≤ i < j ≤ k;

otherwise, x is bad. For each b ∈ {0, 1}, a function F = gx,b ∈ X is good if x is good, and

bad otherwise.

Definition 1.12.7 (The function r; separation version). Let r : X × X → R≥0 be defined

by, for all X,Y ∈ {1} × [m]2c and b1, b2 ∈ {0, 1}, letting

r(gx,b1 , gy,b2) =


0 if at least one of the following holds: b1 = b2, x is bad, y is bad

mj otherwise, where j is the maximum odd index for which x1→j = y1→j

Note the specification that j be odd in the definition of r. Intuitively, this is because it takes

two indices to specify an additional portion of Sx: one for the destination cluster and one

for the inter-cluster path by which to reach it.

The function r will be used directly to invoke  Theorem 1.3.1  , but we also define here some

related helper functions to use r in conjunction with certain indicator variables.

Definition 1.12.8 (The function rv; separation version). For each v ∈ [n], define rv :

X × X → R≥0 as follows:

rv(F1, F2) = r(F1, F2) · 1{F1(v)6=F2(v)} ∀F1, F2 ∈ X .
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Definition 1.12.9 (The function r̃v; separation version). For each v ∈ [n], define r̃v :

X × X → R≥0 as follows:

r̃v(gx,b1 , gy,b2) = rv(gx,b1 , gy,b2) · 1{µ(Sx,v)≤µ(Sy,v)} ∀x,y ∈ {1} × [n]L ∀b1, b2 ∈ {0, 1} .

1.12.2 Proof of the separation number lower bound

Next we give the proof of  Theorem 1.3.3 . The proofs of lemmas used in the theorem are

included afterwards in  Section 1.12.3 .

Theorem 1.3.3. Let G = (V,E) be a connected undirected graph with n vertices, maximum

degree ∆, and separation number s. Then the randomized query complexity of local search

on G is Ω
(

4
√

s
∆

)
.

Proof. Because we are proving an asymptotic bound in s/∆, we may assume s/∆ ≥ 162.

Applying  Lemma 18  with the assumption that s/∆ ≥ 162 gives m ≥ 9, so c ≥ 1. Addition-

ally, we know ∆ ≥ 1 and s ≤ n by definitions of ∆ and s. Therefore n ≥ s/∆, so we may

also assume n ≥ 9.

Consider the following setting of parameters:

(a) Let m be its path arrangement parameter and N1, . . . , Nm be the clusters with respect

to  Definition 1.12.1 .

(b) Let c = b
√
m/2 − 1/2c and each staircase has 2c quasisegments.

(c) The finite set A is the set of vertices [n].

(d) The finite set B is {−n2, . . . , n} × {−1, 0, 1}.

(e) The set of functions fx, gx,b and the set X as defined in  Definition 1.12.4  . Recall

gx,b = (fx, c) for all v ∈ [n], where c = −1 if v is not the last vertex of the induced

staircase Sx, and c = b if v is (i.e. c = b if and only if v is a local minimum of fx). Also

recall X = {gx,b | x ∈ {1} × [m]2c and b ∈ {0, 1}}.
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(f) Map H : X → {0, 1} as in  Definition 1.12.5 . Recall H(gx,b) = b for all x ∈ {1} × [m]2c

and b ∈ {0, 1}.

(g) The function r as defined in  Definition 1.12.7 .

By  Lemma 19 , each function fx is valid for all x ∈ {1}× [m]2c, so  Lemma 6 implies that each

function fx has a unique local minimum (at the last vertex of Sx). Therefore by  Lemma 2  

invoked with f = fx and hb = gx,b, it suffices to show a lower bound for the corresponding

decision problem: return the hidden bit b ∈ {0, 1} given oracle access to the function gx,b.

For each Z ⊆ X , let

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2) . (1.79)

Since by assumption n ≥ 9, we may invoke  Lemma 20 to get a subset Z ⊆ X with q(Z) > 0.

Thus the conditions required by  Theorem 1.3.1  are met. By invoking  Theorem 1.3.1  with the

parameters in (a-g), we get that the randomized query complexity of the decision problem,

and thus also of local search on G, is

Ω
(

min
Z⊆X :q(Z)>0

M(Z)
q(Z)

)
, where q(Z) = max

v∈[n]

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)} .

To get an explicit lower bound in terms of congestion, we will upper bound q(Z) and lower

bound M(Z) for subsets Z ⊆ X with q(Z) > 0.

Fix an arbitrary subset Z ⊆ X with q(Z) > 0. Since r(F1, F2) = 0 when F1 or F2 is bad, it

suffices to consider subsets Z ⊆ X where each function F ∈ Z is good.

Upper bounding q(Z).

Let v ∈ [n] be arbitrary.

Fix an arbitrary good function F1 = gx,b1 ∈ Z for some good x ∈ {1}× [m]2c and b1 ∈ {0, 1}.
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Since Z ⊆ X and r̃v ≥ 0, we have

∑
F2∈Z

r̃v(F1, F2) ≤
∑

F2∈X
r̃v(F1, F2) . (1.80)

Using the definition of X = {gy,b2 | y ∈ {1} × [m]2c, b2 ∈ {0, 1}}, the fact that F1 = gx,b1 ,

and partitioning the space of functions F2 ∈ X by the length of the prefix that the staircase

corresponding to F2 shares with the staircase corresponding to F1, we can upper bound the

right hand of  Eq. (1.80)  :

∑
F2∈X

r̃v(F1, F2) =
∑

y∈{1}×[m]2c, b2∈{0,1}
r̃v(gx,b1 , gy,b2)

≤
2c+1∑
j=1

∑
y∈{1}×[m]2c, b2∈{0,1}

j=max{i : i is odd,x1→i=y1→i}

r̃v(gx,b1 , gy,b2) . (1.81)

Combining  Eq. (1.80) and  Eq. (1.81)  , we get

∑
F2∈Z

r̃v(F1, F2) ≤
2c+1∑
j=1

∑
y∈{1}×[m]2c, b2∈{0,1}

j=max{i : i is odd,x1→i=y1→i}

r̃v(gx,b1 , gy,b2) . (1.82)

For each j ∈ [2c+ 1], let

Tj =
∣∣∣{y ∈ {1} × [m]2c | max{i : i is odd,x1→i = y1→i} = j and v ∈ Tail(j, Sy)

}∣∣∣ .
Then for each odd j ∈ [2c + 1] such that v 6∈ Nxj , we can bound the part of the sum in

 Eq. (1.82) corresponding to index j via the next chain of inequalities:

∑
y∈{1}×[m]2c, b2∈{0,1}:

j=max{i : i is odd,x1→i=y1→i}

r̃v(gx,b1 , gy,b2)
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≤
∑

y∈{1}×[m]2c:
j=max{i : x1→i=y1→i}

v∈T ail(j,Sy)

r(gx,b1 , gy,1−b1) (By  Lemma 22  )

≤ mj · |Tj| (Since r(gx,b1 , gy,1−b1) ≤ mj when j = max{i : i is odd,x1→i = y1→i})

≤ mj ·
(
(2c+ 1) ·m2c−j

)
(By  Lemma 23 )

= (2c+ 1) ·m2c (1.83)

Meanwhile, since x is good, there is at most one odd j such that v ∈ Nxj . For that index j,

since r̃v(gx,b1 , gy,b2) > 0 implies b2 = 1 − b1 (see observation  1.11.1 ), we have

∑
y∈{1}×[m]2c, b2∈{0,1}:

j=max{i : i is odd,x1→i=y1→i}

r̃v(gx,b1 , gy,b2) ≤ mj ·
∣∣∣{y ∈ {1} × [m]2c | x1→j = y1→j}

∣∣∣
= mj ·m2c+1−j = m2c+1 . (1.84)

Summing  Eq. (1.83)  to  Eq. (1.84)  , we can now upper bound the right hand side of  Eq. (1.82)  

as follows:

∑
F2∈Z

r̃v(F1, F2) ≤
2c+1∑
j=1

∑
y∈{1}×[m]2c, b2∈{0,1}

j=max{i : i is odd,x1→i=y1→i}

r̃v(gx,b1 , gy,b2) (By  Eq. (1.82) )

≤ (c+ 1) · (2c+ 1) ·m2c +m2c+1 (By  Eq. (1.83)  and  Eq. (1.84) )

≤ 3 ·m2c+1 . (Since c ≤
√
m− 1)

Thus, for each good function F1 ∈ Z, we have

∑
F2∈Z

r̃v(F1, F2) ≤ 3 ·m2c+1 . (1.85)
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Summing  Eq. (1.85)  over all F1 ∈ Z (each of which is good, since Z was chosen to have good

functions only), and invoking  Lemma 9 yields

∑
F1,F2∈Z

rv(F1, F2) ≤ 2 ·
∑

F1,F2∈Z
r̃v(F1, F2) (By  Lemma 9  )

≤ 2 · 3 ·m2c+1 (By  Eq. (1.85) )

= |Z| · 6m2c+1 . (1.86)

Since we had considered an arbitrary vertex v ∈ [n], taking the maximum over all v ∈ [n] in

 Eq. (1.86) yields

q(Z) = max
v∈[n]

∑
F1∈Z

∑
F2∈Z

rv(F1, F2) ≤ |Z| · 6m2c+1 . (1.87)

Lower bounding M(Z).

Each function F1 ∈ Z is good by choice of Z. Additionally, since c ≥ 1,  Lemma 25 yields

∑
F2∈X

r(F1, F2) ≥ 1
2e · (c+ 1) ·m2c+1 ∀F1 ∈ Z . (1.88)

Using  Eq. (1.88) and recalling the definition of M(Z) from  Eq. (1.79) , we get

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2)

≥ |Z|
2e · (c+ 1) ·m2c+1 . (1.89)

Combining the bounds.

Combining the bounds from  Eq. (1.87) and  Eq. (1.89) , we can now estimate the bound from

 Theorem 1.3.1 :

min
Z⊆X :

q(Z)>0

M(Z)
q(Z) ≥

|Z|
2e · (c+ 1)m2c+1

|Z| · 6m2c+1 (By  Eq. (1.87)  and  Eq. (1.89) )
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≥
√
m

24e (Since c+ 1 ≥
√
m/2)

≥ 1
96 ·

(
s

∆

)1/4
(By  Lemma 18 )

Therefore, the randomized query complexity of local search is

Ω

 min
Z⊆X :

q(Z)>0

M(Z)
q(Z)

 ⊆ Ω
((

s

∆

)1/4
)
.

This completes the proof of the theorem.

1.12.3 Helper lemmas

Here we prove the helper lemmas that are used in the proof of  Theorem 1.3.3  . All the lemmas

assume the setup of the parameters from  Theorem 1.3.3 .

Lemma 19. For each x ∈ {1} × [m]2c, the function fx is valid for the staircase Sx induced

by x and the cluster paths.

Proof. Let Sx = (w1, . . . , ws) be the vertices of the staircase Sx induced by x and P . We show

that all the three conditions required by the definition of a valid function (  Definition 1.10.1 )

hold.

To show the first condition of validity, consider two vertices v1, v2 ∈ Sx. Let i1 be the

maximum index such that v1 is the i1-th vertex in Sx. Let i2 be defined similarly for v2. By

 Definition 1.11.3  , we have fx(v1) = −i1 < 0 and fx(v1) = −i2 < 0. Furthermore, if i1 < i2,

then fx(v1) > fx(v2). Therefore the first condition of validity is satisfied.

Also by  Definition 1.11.3 , of the function fx, we have that:

• By definition, Sx starts at vstart ∈ N1

• fx(v) = dist(v, vstart) > 0 for all v /∈ Sx, so the second condition of validity is satisfied.
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• fx(v) ≤ 0 for all v ∈ Sx, so the third condition of validity is satisfied.

Therefore fx is valid for the staircase Sx induced by x and P .

Lemma 20. If n ≥ 9, then the next two properties hold:

• Let F1, F2 ∈ X . Then r(F1, F2) = 0 when H(F1) = H(F2).

• There exists a subset Z ⊆ X such that

q(Z) = max
v∈[n]

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)} > 0 .

Proof. We first show that r(F1, F2) = 0 when H(F1) = H(F2). To see this, suppose H(F1) =

H(F2) for some functions F1, F2 ∈ X . Then by definition of the set of functions X , there

exist sequences of vertices x,y ∈ {1} × [m]2c and bits b1, b2 ∈ {0, 1} such that F1 = gx,b1

and F2 = gy,b2 . By definition of H, we have H(gx,b1) = b1 and H(gy,b2) = b2. Since

H(F1) = H(F2), we have b1 = b2. Then r(gx,b1 , gy,b2) = 0 by definition of r, or equivalently,

r(F1, F2) = 0.

Next we show there is a subset Z ⊆ X with q(Z) > 0. To see this, consider two disjoint sets

of vertices U1, U2 ⊂ [m] such that U1 = {u1
2, . . . , u

1
2c+1}, U2 = {u2

2, . . . , u
2
2c+1}, each vertex ui

j

appears exactly once in Ui, and ui
j 6= 1 for all i, j. Such sets U1, U2 exist since m ≤ n and

|U1| + |U2| + |{1}| = 4c+ 1 = 4(b
√
mc − 1) + 1 ≤ 4

√
n− 3 ≤ n for n ≥ 9.

Form the sequences of vertices x = (1, u1
2, . . . , u

1
2c+1) and y = (1, u2

2, . . . , u
2
2c+1). Then both

x and y are good. Consider now the functions gx,0 and gy,1. By definition of r, we have

r(gx,0, gy,1) = n, since the maximum index j for which x1→j = y1→j is j = 1. Let v be the

last vertex of Sx. Then

q({gx,0, gy,1}) ≥ r(gx,0, gy,1) · 1{gx,0(u1
2c+1) 6=gy,1(u1

2c+1)} = n > 0 .

Thus there exists a subset Z ⊆ X with q(Z) > 0 as required.
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Lemma 21. Let x,y ∈ {1} × [m]2c, b1, b2 ∈ {0, 1}, v ∈ [n]. Let j ∈ [2c+ 1] be the maximum

odd index for which x1→j = y1→j. Then if r̃v(gx,b1 , gy,b2) > 0, then at least one of the next

two properties holds:

(i) v ∈ Tail(j, Sy).

(ii) x = y.

Proof. We start with a few observations.

Recall from  Definition 1.12.9  that r̃v(gx,b1 , gy,b1) = rv(gx,b1 , gy,b2) · 1{µ(Sx,v)≤µ(Sy,v)}. By the

lemma statement, we have r̃v(gx,b1 , gy,b2) > 0, and so the next two inequalities hold:

rv(gx,b1 , gy,b2) > 0 (1.90)

µ(Sx, v) ≤ µ(Sy, v) . (1.91)

Also recall by definition of rv that rv(gx,b1 , gy,b2) = r(gx,b1 , gy,b2) · 1{gx,b1 (v) 6=gy,b2 (v)} . Then

 Eq. (1.90) implies that

gx,b1(v) 6= gy,b2(v) . (1.92)

To prove that v ∈ Tail(j, Sy) or x = y we consider two cases:

Case 1: v ∈ Tail(j, Sx).

Decomposing the staircase Sx into the initial segment Sx1→j and the remainder Tail(j, Sx),

and similarly the staircase Sy into initial segment Sy1→j and the remainder Tail(j, Sy), we

get:

µ(Sx, v) ≤ µ(Sy, v) (By  Eq. (1.91) )

⇐⇒ µ(Sx1→j , v) + µ(Tail(j, Sx), v) ≤ µ(Sy1→j , v) + µ(Tail(j, Sy), v)
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⇐⇒ µ(Tail(j, Sx), v) ≤ µ(Tail(j, Sy), v) (Since x1→j = y1→j.)

But since v ∈ Tail(j, Sx), we have µ(Tail(j, Sx), v) ≥ 1, so

1 ≤ µ(Tail(j, Sy), v)

Thus v ∈ Tail(j, Sy), so property (i) from the lemma statement holds. This completes Case

1.

Case 2: v /∈ Tail(j, Sx).

If x = y, then property (ii) from the lemma statement holds.

Now suppose x 6= y. Then Tail(j, Sy) 6= ∅. We claim v ∈ Sx ∪ Sy.

Suppose towards a contradiction that v 6∈ Sx ∪Sy. For each b ∈ {0, 1}, u ∈ [n], and sequence

z = (1, z2, z3 . . . , z2c+1) ∈ {1} × [m]2c, we have by  Eq. (1.45)  (which defines the function gz,b)

that

gz,b(u) =


(fz(u), b) u is the last vertex of Sz

(fz(u),−1) otherwise
(1.93)

Since v 6∈ Tail(j, Sx), v is not the last vertex of Sx, and so gx,b1(v) = (fx(v),−1). Moreover,

since x1 = y1 = 1 and v 6∈ Sx ∪ Sy, we have fx(v) = dist(v, x1) = dist(v, y1) = fy(v) .

Combining these observations yields gx,b1(v) = (fx(v),−1) = (fy(v),−1) = gy,b2(v), which

contradicts  Eq. (1.92) . Thus the assumption must have been false and v ∈ Sx ∪ Sy.

To summarize, we have x1→j = y1→j, x 6= y, v ∈ Sx ∪ Sy, and v 6∈ Tail(j, Sx). Suppose

towards a contradiction that v 6∈ Tail(j, Sy). Then

gx,b1(v) = (fx(v),−1) (Since v 6= xL+1, as v 6∈ Tail(j, Sx).)

= (fy(v),−1) (Since v 6∈ Tail(j, Sx) and v 6∈ Tail(j, Sy).)
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= gy,b2(v), (Since v 6= yL+1, as v 6∈ Tail(j, Sy).)

which contradicts  Eq. (1.92) . Thus the assumption must have been false and v ∈ Tail(j, Sy),

so property (i) from the lemma statement holds.

We conclude that at least one of properties (i) and (ii) holds. This completes Case 2, as well

as the proof of the lemma.

Lemma 22. For each x ∈ {1} × [m]2c, b1 ∈ {0, 1}, odd j ∈ [2c + 1], and v ∈ [n] such that

v /∈ Nxj, we have

∑
y∈{1}×[m]2c, b2∈{0,1}:

max{i:i is odd,x1→i=y1→i}=j

r̃v(gx,b1 , gy,b2) ≤
∑

y∈{1}×[m]2c:
max{i:i is odd,x1→i=y1→i}=j

v∈T ail(j,Sy)

r(gx,b1 , gy,1−b1) .

Proof. Let x ∈ {1} × [m]2c, b1 ∈ {0, 1}, odd j ∈ [2c + 1], and v ∈ [n] such that v /∈ Nxj .
Using the definitions of r, rv, and r̃v, we have the following chain of identities:

∑
y∈{1}×[m]2c, b2∈{0,1}:

max{i:i is odd,x1→i=y1→i}=j

r̃v(gx,b1 , gy,b2) =
∑

y∈{1}×[m]2c, b2∈{0,1}:
max{i:i is odd,x1→i=y1→i}=j

r̃v(gx,b1 ,gy,b2 )>0

r̃v(gx,b1 , gy,b2)

(Since r̃v is non-negative.)

=
∑

y∈{1}×[m]2c:
max{i:i is odd,x1→i=y1→i}=j

r̃v(gx,b1 ,gy,1−b1 )>0

r̃v(gx,b1 , gy,1−b1) (Since r̃v(gx,b1 , gy,b1) = 0.)

=
∑

y∈{1}×[m]2c:
max{i:i is odd,x1→i=y1→i}=j

µ(Sx,v)≤µ(Sy,v)
r̃v(gx,b1 ,gy,1−b1 )>0

rv(gx,b1 , gy,1−b1) (By definition of r̃v.)

=
∑

y∈{1}×[m]2c:
max{i:i is odd,x1→i=y1→i}=j

µ(Sx,v)≤µ(Sy,v)
r̃v(gx,b1 ,gy,1−b1 )>0

r(gx,b1 , gy,1−b1) · 1{gx,b1 (v)6=gy,1−b1 (v)}

(By definition of rv.)
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=
∑

y∈{1}×[m]2c:
max{i:i is odd,x1→i=y1→i}=j

µ(Sx,v)≤µ(Sy,v)
gx,b1 (v)6=gy,1−b1 (v)
r̃v(gx,b1 ,gy,1−b1 )>0

r(gx,b1 , gy,1−b1) (1.94)

Consider an arbitrary y ∈ {1}× [m]2c meeting the properties from the last sum of  Eq. (1.94) :

• max{i : i is odd,x1→i = y1→i} = j

• µ(Sx, v) ≤ µ(Sy, v)

• gx,b1(v) 6= gy,1−b1(v)

• r̃v(gx,b1 , gy,1−b1) > 0

By  Lemma 21  , the inequality r̃v(gx,b1 , gy,1−b1) > 0 implies that at least one of v ∈ Tail(j, Sy)

or x = y holds.

However, x cannot be equal to such y. To see this, suppose for sake of contradiction that

x = y. Then since gx,b1(v) 6= gy,1−b1(v) we would have that v must be the last vertex of Sy.

Therefore v ∈ Ny2c+1 . Also, we would have j = 2c + 1 since x = y. But then v ∈ Nj, which

is a contradiction with the assumption v /∈ Nj. Therefore x 6= y, and so v ∈ Tail(j, Sy).

We can continue to bound the sum from  Eq. (1.94)  as follows:

∑
y∈{1}×[m]2c:

max{i:i is odd,x1→i=y1→i}=j
µ(Sx,v)≤µ(Sy,v)

gx,b1 (v) 6=gy,1−b1 (v)
r̃v(gx,b1 ,gy,1−b1 )>0

r(gx,b1 , gy,1−b1) ≤
∑

y∈{1}×[m]2c:
max{i:i is odd,x1→i=y1→i}=j

v∈T ail(j,Sy)

r(gx,b1 , gy,1−b1) . (1.95)

Combining  Eq. (1.94)  and  Eq. (1.95)  , we get the inequality required by the lemma statement:

∑
y∈{1}×[m]2c, b2∈{0,1}:

max{i:i is odd,x1→i=y1→i}=j

r̃v(gx,b1 , gy,b2) ≤
∑

y∈{1}×[m]2c:
max{i:i is odd,x1→i=y1→i}=j

v∈T ail(j,Sy)

r(gx,b1 , gy,1−b1) .
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Lemma 23. Let x ∈ {1} × [m]2c, odd j ∈ [2c+ 1], and v ∈ [n] such that v /∈ Nxi. Then

∣∣∣{y ∈ {1} × [m]2c | max{i : i is odd, x1→i = y1→i} = j and v ∈ Tail(j, Sy)
}∣∣∣ ≤ (2c + 1) · m2c−j .

Proof. We will now do case analysis on different conditions on i and j.

(i) For odd i ∈ [2c] with i ≥ j, consider the number of y ∈ {1} × [m]2c such that

x1→j = y1→j and v ∈ Sy,i . (1.96)

Since i is odd, Sy,i is a path within a cluster, and thus can only contain v if Nyi is

the one cluster containing v. If i = j, then we know by assumption that Nyi does not

contain v. Otherwise, there is only one choice for yi while there are m choices for each

of the rest of yj+1, yj+2, . . . , y2c+1. Thus, there are at most m2c−j choices of y for which

 Eq. (1.96) holds.

(ii) For even i ∈ [2c] with i ≥ j, consider the number of y ∈ {1} × [m]2c such that

x1→j = y1→j, v ∈ Sy,i, and v /∈ Sy,k for all odd k ≥ j and v is not the last vertex of Sy .

(1.97)

Since i is even, Sy,i is an inter-cluster path. Recall the m inter-cluster paths between

any two clusters are disjoint except for their start and endpoints. Meanwhile v cannot

be their start or endpoints since otherwise v ∈ Sy,k for an odd k ≥ j or v would be the

last vertex of Sy. Therefore, Sy,i can only contain v for at most one value of yi while

there are m choices for each of the rest of yj+1, yj+2, . . . , y2c+1. Thus, there are at most

m2c−j choices of y for which  Eq. (1.97)  holds.

(iii) Finally, consider the number of y ∈ {1} × [m]2c such that

x1→j = y1→j and v is the last vertex of Sy . (1.98)
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This cannot occur unless v ∈ Ny2c+1 . Therefore, there are at most m2c−j such y.

For v to be in Tail(j, Sy), we must have y satisfying one of  Eq. (1.96)  ,  Eq. (1.97)  , or

 Eq. (1.98) for some value of i. Summing over choices of i gives us that

∣∣∣{y ∈ {1} × [m]2c | j = max{i : i is odd, x1→i = y1→i} and v ∈ Tail(j, Sy)
}∣∣∣

≤ (2c+ 1) ·m2c−j .

This completes the proof of the lemma.

Lemma 24. Let j ∈ [2c] and x ∈ {1} × [m]2c be an arbitrary good sequence of indices. Then

∣∣∣y ∈ {1} × [m]2c | y is good and j = max{i : i is odd,x1→i = y1→i}
∣∣∣ = (m−j−1)·

2c+1∏
i=j+2

(m−i+1) .

Proof. Let y = (y1, . . . , y2c+1) ∈ [m]2c+1 be such that x1 = y1 = 1, j = max{i : i is odd,x1→i =

y1→i}, and y is good.. Recall that for y to be good, each index in (y1, . . . , y2c+1) has to be

distinct.

We will count by choosing each index of y in order from y1 to y2c+1. There is only one choice

for each of y1, . . . , yj since we need x1→j = y1→j.

Consider the number of possible indices for yj+1:

• j indices already appeared in {y1, . . . , yj} so they cannot be reused, otherwise y becomes

bad.

• j = max{i : i is odd,x1→i = y1→i} means xj+1 6= yj+1, so xj+1 cannot be used either.

Thus, there are m− j − 1 choices of indices for yj+1.

For all i > j + 1, there are m− i + 1 choices of indices for yi since i − 1 options have already

been used. Thus the final count is (m− j − 1) ·∏2c+1
i=j+2(m− i + 1), as required.
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Lemma 25. If F1 ∈ X is good and c ≥ 1, then ∑
F2∈X r(F1, F2) ≥ 1

2e · (c+ 1) ·m2c+1 .

Proof. Since F1 ∈ X , there exists a sequence x ∈ {1} × [m]2c and a bit b1 ∈ {0, 1} such that

F1 = gx,b1 . Then we have the following chain of identities:

∑
F2∈X

r(F1, F2) =
∑

F2∈X
r(gx,b1 , F2)

=
∑

y∈{1}×[m]2c, b2∈{0,1}
r(gx,b1 , gy,b2) (By definition of the set X )

=
∑

y∈{1}×[m]2c

r(gx,b1 , gy,1−b1) (Since r(gx,b1 , gy,b1) = 0)

=
2c+1∑
j=1

∑
y∈{1}×[m]2c

j=max{i : i is odd,x1→i=y1→i}

r(gx,b1 , gy,1−b1) . (1.99)

Since r(gx,b1 , gy,1−b1) = 0 if y is bad, we have

2c+1∑
j=1

∑
y∈{1}×[m]2c:

j=max{i : i is odd,x1→i=y1→i}

r(gx,b1 , gy,1−b1) =
2c+1∑
j=1

∑
y∈{1}×[m]2c:

j=max{i : i is odd,x1→i=y1→i}
y is good

r(gx,b1 , gy,1−b1) .

(1.100)

Combining  Eq. (1.99) and  Eq. (1.100) , the last sum in  Eq. (1.100) can be written as:

∑
F2∈X

r(gx,b1 , F2) =
2c+1∑
j=1

∑
y∈{1}×[m]2c:

j=max{i : i is odd,x1→i=y1→i}
y is good

r(gx,b1 , gy,1−b1) . (1.101)

Substituting the definition of r in  Eq. (1.101)  , we get

∑
F2∈X

r(gx,b1 , F2) =
2c+1∑
j=1

∑
y∈{1}×[m]2c:

j=max{i : i is odd,x1→i=y1→i}
y is good

mj . (1.102)
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From here, we only need to count the number of such y. There is exactly one good sequence

y ∈ {1} × [m]2c such that x1→2c+1 = y1→2c+1, namely y = x. Therefore,

∑
F2∈X

r(gx,b1 , F2) =
2c+1∑
j=1

∑
y∈{1}×[m]2c:

max{i : i is odd,x1→i=y1→i}=j
y is good

mj (By  Eq. (1.102) )

= m2c+1 +
2c∑

j=1

∑
y∈{1}×[m]2c:

max{i : i is odd,x1→i=y1→i}=j
y is good

mj

= m2c+1 +
2c∑

j=1
mj · 1{j is odd} · (m− j − 1) ·

2c+1∏
i=j+2

(m− i + 1) (By  Lemma 24 )

≥ (c+ 1) ·m2c+1 ·
(

1 − 2c+ 1
m

)2c+1

≥ (c+ 1) ·m2c+1 ·
(

1 − 1
2c+ 1

)2c+1
(Since 2c+ 1 ≤

√
m.)

≥ 1
2e · (c+ 1) ·m2c+1 (Since 2c+ 1 ≥ 3, which is more than sufficient. )

Since F1 = gx,b1 , this is the required inequality, which completes the proof.
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2. SPECTRAL LOWER BOUNDS FOR LOCAL SEARCH

This chapter is based on my paper of the same name, which can be found at  https://arxiv.
org/abs/2403.06248 .

2.1 Introduction

Local search stands as a robust heuristic within optimization and computer science, analyzed

through both white box and black box frameworks. In the black box model, we are given

a graph G = (V,E) alongside oracle access to a function f : V → R. The objective is to

identify a vertex v that represents a local minimum, meaning f(v) ≤ f(u) for every edge

(u, v), while minimizing the number of vertices queried.

Obtaining lower bounds for the complexity of local search has a rich history of analysis

via random walks. The first pioneering work on the subject was [ 9 ], which did careful

tailored analysis of the hitting time of random walks on the Boolean hypercube to obtain

lower bounds for local search. Another breakthrough was obtained by [ 3 ], which designed a

combinatorial method of obtaining lower bounds for local search inspired by the relational

adversary method from quantum computing. This approach enabled obtaining sharper lower

bounds for the Boolean hypercube and d-dimensional grid, and was successfully used in many

later works.

In this paper we consider the high level question: How does the geometry of the graph affect

the complexity of local search? While the query complexity is comprehensively understood

for neighbourhood structures such as the d-dimensional grid and the Boolean hypercube,

knowledge remains limited for more general neighbourhood structures.

Nevertheless, the spatial structure in optimization settings typically extends to more complex

graphs. For instance, in scenarios such as low rank matrix estimation with data compromised

by adversarial attacks, the function is defined on a Riemannian manifold rather than a

traditional Euclidean space [ 11 ]; thus the discretization of an optimization search space may

not necessarily always correspond to some d-dimensional grid. For a more extensive survey on
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stochastic gradient descent on Riemannian manifolds, see, e.g., [  12 ]. This motivates studying

local search not only on hypercubes and grids, but also on broader classes of graphs.

Inspired by the observation that many lower bounds for local search are based on various

types of random walks, we consider general random walks for the graph at hand and obtain

lower bounds as a function of their mixing time. Our analysis uses a variant of the classical

relational adversary method from [ 5 ] and our main result is generic in two ways: the graph is

arbitrary and the random walk evolves according to a Markov chain, which we only require to

be lazy, irreducible, and reversible. This allows us to formally connect the query complexity

of local search and the mixing time of the fastest mixing Markov chain for the given graph,

which is a classical problem analyzed starting with [  50 ], with recent results in [ 51 ]. As a

corollary, we also get a lower bound in terms of the spectral gap of the transition matrix of

the chain.

2.2 Model

Let G = (V,E) be a connected undirected graph and f : V → R a function defined on the

vertices. A vertex v ∈ V is a local minimum if f(v) ≤ f(u) for all {u, v} ∈ E. We will write

V = [n] = {1, . . . , n}.

Given as input a graph G and oracle access to function f , the local search problem is to

find a local minimum of f on G using as few queries as possible. Each query is of the form:

“Given a vertex v, what is f(v)?”.

Query complexity.

The deterministic query complexity of a task is the total number of queries necessary and

sufficient for a correct deterministic algorithm to find a solution. The randomized query

complexity is the expected number of queries required to find a solution with probability at

least 9/10 for each input, where the expectation is taken over the coin tosses of the protocol.
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Degree and distance.

Let dmax and dmin be the maximum and minimum degree of any vertex in G respectively.

Let d(v) be the degree of v for all v ∈ V . For each u, v ∈ V , let dist(u, v) be the length of

the shortest path from u to v.

Markov chain.

We consider a discrete-time Markov chain on G with transition matrix P , meaning that the

state space is V and Pu,v = Pv,u = 0 whenever (u, v) 6∈ E(G)⋃u∈V {{u, u}}. Suppose the

chain has stationary distribution π. The chain is:

• lazy: if Pu,u ≥ 1/2 for all u ∈ V .

• irreducible: if all states can be reached from any starting point. Formally, for any two

states x, y ∈ V there exists an integer t (possibly depending on x and y) such that

(P t)x,y > 0, where P t is the t-th power of the matrix P .

• reversible: if π(u)Pu,v = π(v)Pv,u for all u, v ∈ V .  

1
 

For each ε > 0, the mixing time tmix(ε) of the Markov chain 

2
 with transition matrix P is:

tmix(ε) = min
{
t ∈ N

∣∣∣∣ ∀u ∈ V : 1
2
∑
v∈V

∣∣∣(P t)u,v − π(v)
∣∣∣ ≤ ε

}
. (2.1)

2.3 Our results

We get the following result in terms of the mixing time of the Markov chain used.
1

 ↑ For a formal definition of reversibility, see [  52 ] equation 3.26.
2

 ↑ For a formal definition of mixing time, see e.g. [ 52 ] equation 4.30. The definition in [  52 ] equation 4.30 is
based on the TV distance, but is equivalent to the one here by Proposition 4.2 in [ 52 ].
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Theorem 2.3.1. Let G = (V,E) be a connected undirected graph on n vertices. Consider a

discrete-time, lazy, irreducible, and reversible Markov chain on G with transition matrix P

and stationary distribution π. Then the randomized query complexity of local search on G is

Ω
 √

n

tmix
(

σ
2n

)
· exp(3σ)

 , where σ = max
u,v∈V

π(v)
π(u) .

The best lower bound given by  Theorem 2.3.1 is attained by considering the Markov chain

with the fastest possible mixing time for G; see [  50 ] for a classical reference on this problem.

Indeed, for many classes of graphs there can significant gaps between the mixing time of the

fastest mixing Markov chain and that of more obvious choices of Markov chains (such as

the max-degree walk or the Metropolis-Hastings chain), including the barbell graph, edge-

transitive graphs, and distance transitive graphs [  53 ]. For example, when the stationary

distribution is set to uniform on the barbell graph  

3
 , the max-degree random walk has mixing

time Θ(n3) while the fastest mixing walk mixes in only Θ(n2) steps (see corollaries 5.2 and

5.3 in [  54 ]).

Remark 1. Since σ ≥ 1, we always have tmix(σ/(2n)) ≤ tmix(1/(2n)). Thus  Theorem 2.3.1  

implies the randomized query complexity is

Ω
 √

n

tmix
(

1
2n

)
exp(3σ)

 .

For lazy chains, the second eigenvalue is always non-negative, so Theorem  2.3.1 implies a

lower bound based on the spectral gap. This leads to the following corollary:
3

 ↑ The barbell graph consists of two cliques of n/2 vertices each, connected by a single edge.
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Corollary 5. Let G = (V,E) be a connected undirected graph on n vertices. Consider a

discrete-time, lazy, irreducible, and reversible Markov chain on G with transition matrix P

and stationary distribution π. The randomized query complexity of local search on G is

Ω
(

(1 − λ2)
√
n

log(n) exp(3σ)

)
,

where λ2 is the second eigenvalue of P and σ = maxu,v∈V π(v)/π(u).

If we constrain the ratio dmax/dmin and focus on the simple lazy random walk, we can remove

the dependency on σ in  Corollary 5 .

Corollary 6. Let G = (V,E) be a connected undirected graph on n vertices. If dmax/dmin ≤

C for some constant C > 0, then the randomized query complexity of local search on G is

Ω
(

(1 − λ2)
√
n

log n

)
,

where λ2 is the second eigenvalue of the transition matrix of the simple lazy random walk on

G.

The lower bound in  Corollary 6  improves by a log n factor the lower bound attainable from

[ 5 ] for such graphs. For comparison, we state the lower bound from [  5 ] next.

Proposition 2.3.1. [ 5 ] Let G = (V,E) be a connected undirected graph on n vertices. If

dmax/dmin ≤ C for some constant C > 0, then the randomized query complexity of local

search on G is

Ω
(

(1 − λ2)
√
n

log2(n)

)
,

where λ2 is the second eigenvalue of the transition matrix of the simple lazy random walk on

G.

The extra factor of log(n) in  Proposition 2.3.1  stems from the result used to connect ex-

pansion to edge congestion (see [  27 ], corollary C.2), which rounds a fractional flow with
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congestion n log(n) to an integer flow with congestion n log2(n). By avoiding expansion

altogether,  Corollary 6 also avoids this excess factor of log(n).

High Level Approach

The high level approach is as follows. We consider a set of value functions f : V → R

induced by walks from a fixed starting vertex. We define f such that the value at any vertex

off the walk is the distance to the starting vertex of the walk, and the value at vertices on

the walk is decreasing along the walk. This ensures that there is only one local minimum,

namely the end of the walk. This type of construction is classical [ 3 ,  9 ]. We denote the space

of such functions X .

We then choose a similarity measure r : X × X → R≥0 (also called the “relation”) between

any two functions. Semantically, the relation measures the difficulty of distinguishing two

possible input functions from each other; thus it will be useful that functions induced by

walks with a long shared prefix are defined as more related. Given r, we invoke the relational

adversary variant (  Lemma 26  from [  5 ]), which implicitly defines a distribution over inputs

based on r, and outputs a lower bound on the randomized query complexity. We choose r

carefully such that the distribution over walks is that of an arbitrary Markov chain.

The innovation of our methodology over [ 5 ] lies in the construction; where their construction

is based on low-congestion paths, ours takes the more natural and general approach of using

arbitrary Markov chains, including the usual lazy random walks.

A key step in analyzing the formula given by the relational adversary is the following. When

fixing a staircase x and sampling a second staircase y conditioned to share an initial prefix

of random length with x, the proof has to show that no vertex v is too likely to lie on the

“tail” of y (i.e. the portion after the initial segment shared with x). The difference between

our setting and previous random walk based methods lies in this analysis.

We analyze separately the portions of the tail before and after it mixes. After y mixes, it

is close to being distributed according to the stationary distribution π. Before y mixes, the
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Figure 2.1. Consider a graph G with a lazy, irreducible, and reversible
Markov chain P with stationary distribution π and mixing time T . The proof
fixes a walk x = [x0, . . . , xL], where L = b

√
nc · T . The walk x is illustrated

as a solid line, where every T -th node is highlighted. Sample a random walk
y = [y0, . . . , yL] according to P , conditioned on y and x having a shared prefix
of length jT , where j ∼ U(0, b

√
nc). We say that xjT = yjT is the “divergence

point”. In the figure, the shared prefix of x and y is [x0, . . . , xT ], so j = 1.
A critical step of the proof is to show that no vertex v is too likely to lie
on y after its divergence from x. To show this, we divide the walk y in two
regions. Vertices in the region R1 = [yjT , . . . , yjT +1] are collectively close to
being distributed according to π. This is because the divergence point from x
is chosen randomly. In the region R2 = [yjT +1, ..., yL], the walk y has mixed,
so the vertices in R2 are close to being distributed according to π. In either
case, no vertex v is too likely to lie on y after diverging from x.

randomness of the point on x at which y diverges suffices to keep y close enough to being

distributed according to π. A visual depiction is shown in  Figure 2.1 .

This analysis is very generic, parameterized only by the stationary distribution of the walk

used. This allows  Theorem 2.3.1 to give results for walks from arbitrary Markov chains with

no additional analysis other than estimating the mixing time. The natural mixing properties

of the lazy random walk on expanders then allow us to derive strong lower bounds for such

graphs.
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2.4 Lower bound for local search via mixing times

2.4.1 Preliminaries

We fix a discrete-time Markov chain with transition matrix P that has the properties required

by  Theorem 2.3.1  : lazy, irreducible, and reversible. Let π denote the unique stationary

distribution of the chain. For each S ⊆ V , let π(S) = ∑
v∈S π(v). Moreover, let

σ = max
u,v∈V

π(v)/π(u) . (2.2)

For every k ∈ N and every walk x = (x0, x1, . . . , xk) in G, let P [x] be the probability that

the random walk started at x0 with transition matrix P has trajectory x, that is:

P [x] =
k−1∏
i=0

Pxi,xi+1 . (2.3)

Bottleneck Ratio.

The bottleneck ratio Φ? of the Markov chain with transition matrix P is  

4
 :

Φ? = min
S⊆V :π(S)≤ 1

2

∑
u∈S,v∈V \S

π(u)Pu,v

π(S) .

Visiting probability.

For each pair of vertices u, v ∈ V and integer ` ∈ N:

• let Pvisit(u, v, `) be the probability that a random walk that has transition matrix P ,

length `, and starts at u visits v.

• let Evisit(u, v, `) be the expected number of times that a random walk that has transition

matrix P , length `, and starts at u visits v.
4

 ↑ See, e.g., [  52 ] equation 7.5.
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• let Pend(u, v, `) be the probability that a random walk that has transition matrix P ,

length `, and starts at u ends at v.

Edge Expansion.

Let E(S, V \ S) = {(u, v) ∈ E | u ∈ S, v ∈ V \ S} be the set of edges with one endpoint in

S and the other in V \ S. The edge expansion of G is

β = min
S⊆V :|S|≤n/2

|E(S, V \ S)|
|S|

.

One of the main ingredients in our proof is a variant of (classical) the relational adversary

method from quantum computing given in [  5 ].

Lemma 26 ([ 5 ], Theorem 3). Consider finite sets A and B, a set X ⊆ BA of functions,

and a map H : X → {0, 1} which assigns a label to each function in X . Additionally, we get

oracle access to an unknown function F ∗ ∈ X . The problem is to compute H(F ∗) using as

few queries to F ∗ as possible. 

5
 

Let r : X × X → R≥0 be a non-zero symmetric function of our choice with r(F1, F2) = 0

whenever H(F1) = H(F2). For each Z ⊆ X , define

M(Z) =
∑

F1∈Z

∑
F2∈X

r(F1, F2) and q(Z) = max
a∈A

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(a) 6=F2(a)} . (2.4)

If there exists a subset Z ⊆ X with q(Z) > 0, then the randomized query complexity of the

problem is at least

min
Z⊆X :q(Z)>0

0.01 ·M(Z)/q(Z) . (2.5)

To get lower bounds for local search, we will analyze the performance of deterministic al-

gorithms when the input distribution is obtained by considering random functions, each of
5

 ↑ In other words, we have free access to H and the only queries counted are the ones to F ∗, which will be
of the form: “What is F ∗(a)?”, for some a ∈ A. The oracle will return F ∗(a) in one computational step.
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which is defined using a classical “staircase” construction. Each staircase is a random walk

with transition matrix P on G. We first give the setup and then prove the main theorem.

2.4.2 Setup

Definition 2.4.1 (Set of walks W and parameter T ). Let L = b
√
nc·T , where T = tmix( σ

2n
).

Let W be the set of walks {w | w = (w0, . . . , wL)} in G with w0 equal to the vertex 1 and

with Pwi,wi+1 > 0 for all 0 ≤ i < L.

Definition 2.4.2 (Milestones). Given a walk x = (x0, x1, . . . , xL) ∈ W, every T -th vertex

of the walk (including the first vertex) is called a “milestone”. E.g., the first three milestones

of x are x0, xT , and x2T .

Definition 2.4.3 (Good/bad walk). A walk x ∈ W is “good” if it does not repeat any

milestones and “bad” otherwise. Let good(x) = True if x is good and False otherwise.

Definition 2.4.4 (Heads and Tails.). For every walk x = (x0, x1, . . . , xL) ∈ W, let



Head(x, j) = (x0, x1, . . . , xj·T ) ∀j ∈ {0, . . . , b
√
nc} .

Tail(x, j) = (xj·T +1, xj·T +2, . . . , xL) ∀j ∈ {0, . . . , b
√
nc} .

Tail(x, j1, j2) = (xj1·T +1, xj1·T +2, . . . , xj2·T ) ∀j1, j2 ∈ {0, . . . , b
√
nc} with j1 ≤ j2 .

(2.6)

For all x,y ∈ W, define J(x,y) as the maximum index j with Head(x, j) = Head(y, j).

Definition 2.4.5 (The functions fx and gx,b; the set X ). For each walk x = (x0, . . . , xL) ∈

W, define a function fx : [n] → {−L,−L+ 1, . . . , n} such that for all v ∈ [n]:

fx(v) =


dist(v, 1) if v 6∈ x

− max
{

i ∈ {0, . . . , L} | xi = v
}

if v ∈ x .
(2.7)
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For all b ∈ {0, 1}, define gx,b : [n] → {−L,−L+ 1, . . . , n} × {−1, 0, 1} so that for all v ∈ [n]:

gx,b(v) =


(fx(v),−1) if v 6= xL

(fx(v), b) if v = xL .

(2.8)

Let X =
{
gx,b | x ∈ W and b ∈ {0, 1}

}
.

Definition 2.4.6 (Valid function). Let x = (x0, . . . , x`) be a walk in G. A function f : V →

R is valid with respect to the walk x if it satisfies the next conditions:

1. For all u, v ∈ x, if max{i ∈ {0, . . . , `} | v = xi} < max{i ∈ {0, . . . , `} | u = xi}, then

f(v) > f(u). In other words, as one walks along the walk x starting from x0 until x`,

if the last time the vertex v appears is before the last time that vertex u appears, then

f(v) > f(u).

2. For all v ∈ V \ x, we have f(v) = dist(x0, v) > 0.

3. f(xi) ≤ 0 for all i ∈ {0, . . . , `}.

We define a similarity measure r between functions from X , commonly referred to as the

relation.

Definition 2.4.7 (The function r). Let r : X ×X → R≥0 be a symmetric function such that

for each x,y ∈ W and b1, b2 ∈ {0, 1},

r(gx,b1 , gy,b2) =


0 If b1 = b2 or x = y or x is bad or y is bad.

P[x]P[y]
P[Head(y,j)] Otherwise, where j = J(x,y) .

Observation 2.4.1. The function r from  Definition 2.4.7 is symmetric, since by definition

of j we have Head(x, j) = Head(y, j).
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Having defined the relation r, applying  Lemma 26 will give a lower bound by considering

a distribution p over X , where each function F ∈ X is given as input with probability

p(F ) = M({F })
M(X ) , where M is as defined in  Eq. (2.4)  for the relation r.

What remains to be done is to explain how to invoke  Lemma 26 and estimate the lower

bound it gives when the input distribution is p.

2.4.3 Proof of the main theorem

Theorem 2.3.1. Let G = (V,E) be a connected undirected graph on n vertices. Consider a

discrete-time, lazy, irreducible, and reversible Markov chain on G with transition matrix P

and stationary distribution π. Then the randomized query complexity of local search on G is

Ω
 √

n

tmix
(

σ
2n

)
· exp(3σ)

 , where σ = max
u,v∈V

π(v)
π(u) .

Proof. First, we may assume that n ≥ 16σ2. This is because in the alternative case where

n < 16σ2, the theorem statement does not give anything useful as
√
n < exp(3σ) and

tmix(σ/(2n)) ≥ 1.

The value functions we will use are of the form fx as seen in  Definition 2.4.5  . These functions

are parametrized by walks x of length L from the set W defined in  Definition 2.4.1 . For

sake of invoking  Lemma 26  however, we must turn the local search problem into a decision

problem. To do this, we use the technique shown in [  3 ,  16 ]: associate with each function fx

the function gx,b defined in  Definition 2.4.5  . This hides a bit at the local minimum vertex

(while hiding the value −1 at every other vertex). The decision problem is: given the graph

G and oracle access to a function gx,b, return the hidden bit b; i.e. we set the function H for

use in  Lemma 26 as H(gx,b) = b.

By  Lemma 27  , the function fx as defined in  Definition 2.4.5  is valid. Therefore by  Lemma 35  ,

fx has a unique local minimum, namely xL. This means that gx,b as defined in  Definition 2.4.5 

does indeed hide the bit b only at the local minimum of fx. Therefore measuring the query
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complexity of this decision problem will give the answer for local search, as the following two

problems have query complexity within additive 1:

• search problem: given oracle access to a function fx, find a vertex v that is a local

minimum;

• decision problem: given oracle access to a function gx,b, find b.

We then invoke  Lemma 26  with X as defined in  Definition 2.4.5  and with H(gx,b) = b.

This tells us that the randomized query complexity of the decision problem is at least

min
Z⊆X :q(Z)>0

0.01 ·M(Z)/q(Z), with M(Z) and q(Z) as defined in  Lemma 26 .

By  Lemma 32 , there exists a subset Z ⊆ X with q(Z) > 0. From this point on, we fix an

arbitrary subset Z ⊆ X of functions with q(Z) > 0 and will then lower bound M(Z) and

upper bound q(Z).

Lower bounding M(Z).

Because q(Z) > 0, we know Z is not empty. Consider an arbitrary function gx,b1 ∈ Z with

x good. By definition of M , we have

M({gx,b1}) =
∑

gy,b2 ∈X
r(gx,b1 , gy,b2), (2.9)

recalling:

• P [y] = ∏k−1
i=0 Pyi,yi+1 for every walk y = (y0, y1, . . . , yk) in G;

•  Definition 2.4.4 of Head(y, j) and J(x,y) and  Definition 2.4.7  of the relation r:

r(gx,b1 , gy,b2) =


0 If b1 = b2 or x = y or x is bad or y is bad.

P[x]P[y]
P[Head(y,j)] Otherwise, where j = J(x,y) .
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Then we can rewrite M(gx,b1) as

M({gx,b1}) =
∑

gy,b2 ∈X :
b2=1−b1
good(y)

x 6=y

P [x]P [y]
P [Head(y, J(x,y))] . (2.10)

The condition x 6= y in  Eq. (2.10)  is equivalent to J(x,y) 6= b
√
nc, so it must be the case

that J(x,y) ∈ {0, . . . , b
√
nc − 1}. We decompose the summation in  Eq. (2.10)  by the value

of J(x,y), excluding cases where r(gx,b1 , gy,b2) = 0, to get the following:

M({gx,b1}) = P [x]
b
√

nc−1∑
j=0

∑
gy,b2 ∈X :
J(x,y)=j
b2=1−b1
good(y)

P [y]
P [Head(y, j)] . (2.11)

There is a one-to-one correspondence between walks y ∈ W and functions gy,b2 with b2 =

1 − b1. Therefore we may equivalently sum over y ∈ W in  Eq. (2.11) :

M({gx,b1}) = P [x]
b
√

nc−1∑
j=0

∑
y∈W:

J(x,y)=j
good(y)

P [y]
P [Head(y, j)] . (2.12)

Since y is the concatenation of Head(y, j) with Tail(y, j), we have:

P [y] = P [Head(y, j)] · P [Tail(y, j)] · Pyj·T , yj·T +1 . (2.13)

Substituting  Eq. (2.13) in  Eq. (2.12)  gives

M({gx,b1}) = P [x]
b
√

nc−1∑
j=0

∑
y∈W:

J(x,y)=j
good(y)

P [Tail(y, j)] · Pyj·T , yj·T +1 . (2.14)
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If it weren’t for the restrictions that J(x,y) = j (instead of J(x,y) ≥ j) and good(y), then

the inner sum would be over all possible walks from xjT , and would thus be 1. Because of

those restrictions, we instead invoke  Lemma 30 to continue from  Eq. (2.14) as follows:

M({gx,b1}) ≥ P [x] · 2−4σ · b
√
nc . (2.15)

If x is bad, then M({gx,b1}) = 0, and so the function gx,b1 does not contribute to M(Z).

Therefore

M(Z) ≥ 2−4σb
√
nc

∑
gx,b1 ∈Z
good(x)

P [x] . (2.16)

Upper bounding q(Z).

Define

q̃(Z, v) =
∑

gx,b1 ∈Z

∑
gy,b2 ∈Z

r(gx,b1 , gy,b2)1{gx,b1 (v)6=gy,b2 (v)} . (2.17)

By definition of q(Z), we have

q(Z) = max
v∈V

∑
gx,b1 ∈Z

∑
gy,b2 ∈Z

r(gx,b1 , gy,b2)1{gx,b1 (v)6=gy,b2 (v)} = max
v∈V

q̃(Z, v) . (2.18)

We will bound q(Z) by bounding q̃(Z, v) for an arbitrary v. Fix an arbitrary vertex v. We

first partition the inner sum according to J(x,y):

q̃(Z, v) =
∑

gx,b1 ∈Z

∑
gy,b2 ∈Z

r(gx,b1 , gy,b2)1{gx,b1 (v)6=gy,b2 (v)} (By definition of q̃(Z, v).)

=
∑

gx,b1 ∈Z

b
√

nc−1∑
j=0

∑
gy,b2 ∈Z:
J(x,y)=j

r(gx,b1 , gy,b2)1{gx,b1 (v)6=gy,b2 (v)} . (2.19)
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By  Lemma 31  , we may continue from  Eq. (2.19) and expand to get

q̃(Z, v) ≤ 2
∑

gx,b1 ∈Z

b
√

nc−1∑
j=0

∑
gy,b2 ∈Z:

v∈T ail(y,j)
J(x,y)=j

r(gx,b1 , gy,b2) (2.20)

= 2
∑

gx,b1 ∈Z
good(x)

P [x]
b
√

nc−1∑
j=0

∑
gy,b2 ∈Z:

v∈T ail(y,j)
J(x,y)=j
b2=1−b1
good(y)

P [y]
P [Head(y, j)] (Using the definition of r.)

≤ 2
∑

gx,b1 ∈Z
good(x)

P [x]
b
√

nc−1∑
j=0

∑
gy,b2 ∈X :

v∈T ail(y,j)
J(x,y)=j
b2=1−b1
good(y)

P [y]
P [Head(y, j)] . (Since Z ⊆ X .)

(2.21)

Again, there is a one-to-one correspondence between walks y ∈ W and functions gy,b2 ∈ X

with b2 = 1 − b1, so we may equivalently sum over y ∈ W in  Eq. (2.21)  . Additionally,

we expand the scope from J(x,y) = j to J(x,y) ≥ j, which is equivalent to Head(x, j) =

Head(y, j). Finally, we drop the requirement that good(Y). Continuing from  Eq. (2.21) ,

q̃(Z, v) ≤ 2
∑

gx,b1 ∈Z
good(x)

P [x]
b
√

nc−1∑
j=0

∑
y∈W:

v∈T ail(y,j)
J(x,y)≥j

P [y]
P [Head(y, j)] . (2.22)
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From here we partition based on where in Tail(y, j) the vertex v lies: the first short part

of the tail, i.e. Tail(y, j, j + 1), or the rest of the tail, i.e. Tail(y, j + 1). Continuing from

 Eq. (2.22) ,

q̃(Z, v) ≤ 2
∑

gx,b1 ∈Z
good(x)

P [x]
b
√

nc−1∑
j=0


∑

y∈W:
v∈T ail(y,j,j+1)

J(x,y)≥j

P [y]
P [Head(y, j)] +

∑
y∈W:

v∈T ail(y,j+1)
J(x,y)≥j

P [y]
P [Head(y, j)]


(2.23)

Since y is the concatenation of Head(y, j) with Tail(y, j), we have

P [y] = P [Head(y, j)] · P [Tail(y, j)] · Pyj·T , yj·T +1 . (2.24)

Using  Eq. (2.24) in  Eq. (2.23)  , we obtain

q̃(Z, v) ≤ 2
∑

gx,b1 ∈Z
good(x)

P[x]
b
√

nc−1∑
j=0

( ∑
y∈W:

v∈T ail(y,j,j+1)
J(x,y)≥j

P[Tail(y, j)] · Pyj·T , yj·T +1

+
∑

y∈W:
v∈T ail(y,j+1)

J(x,y)≥j

P[Tail(y, j)] · Pyj·T , yj·T +1

) (2.25)

To bound the first part, we will use  Lemma 29 . Since x is good, we have

b
√

nc−1∑
j=0

∑
y∈W:

v∈T ail(y,j,j+1)
J(x,y)≥j

P [Tail(y, j)] · Pyj·T , yj·T +1 =
b
√

nc−1∑
j=0

Pvisit(xjT , v, T )

(By definition of Pvisit.)

≤ Tσ . (By  Lemma 29  since x is good.)

(2.26)
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To bound the second part, we first partition according to the possible values of y(j+1)T . We

have

b
√

nc−1∑
j=0

∑
y∈W:

v∈T ail(y,j+1)
J(x,y)≥j

P [Tail(y, j)] · Pyj·T , yj·T +1 =
b
√

nc−1∑
j=0

∑
u∈V

Pend(xjT , u, T )Pvisit(u, v, L− (j + 1)T )

(2.27)

The visiting probability Pvisit(u, v, `) is increasing in `, so continuing from  Eq. (2.27) we get

b
√

nc−1∑
j=0

∑
y∈W:

v∈T ail(y,j+1)
J(x,y)≥j

P [Tail(y, j)] · Pyj·T , yj·T +1

≤
b
√

nc−1∑
j=0

∑
u∈V

Pend(xjT , u, T )Pvisit(u, v, L) (2.28)

≤
b
√

nc−1∑
j=0

∑
u∈V

(
π(u) + |Pend(xjT , u, T ) − π(u)|

)
Pvisit(u, v, L), (2.29)

where in  Eq. (2.29)  we used the inequality a ≤ b+ |a− b| for a, b ≥ 0.

A random walk with starting vertex drawn from π has probability π(v) of being at v at each

step. Formally, for all ` ∈ N we have

∑
u∈V

π(u)Pend(u, v, `) = π(v) . (2.30)

Additionally, by union bound we have

Pvisit(u, v, L) ≤
L∑

`=1
Pend(u, v, `) . (2.31)

We have

b
√

nc−1∑
j=0

∑
u∈V

(π(u) + |Pend(xjT , u, T ) − π(u)|) Pvisit(u, v, L) (2.32)
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≤
b
√

nc−1∑
j=0

(
L∑

`=1

∑
u∈V

π(u)Pend(u, v, `) +
∑
u∈V

|Pend(xjT , u, T ) − π(u)| · Pvisit(u, v, L)
)

(By  Eq. (2.31) .)

=
b
√

nc−1∑
j=0

(
Lπ(v) +

∑
u∈V

|Pend(xjT , u, T ) − π(u)| · Pvisit(u, v, L)
)
. (By  Eq. (2.30) )

(2.33)

Since T = tmix(σ/(2n)), we have

∑
u∈V

|Pend(xjT , u, T ) − π(u)| · Pvisit(u, v, L) ≤ max
u∈V

Pvisit(u, v, L)
∑
u∈V

|Pend(xjT , u, T ) − π(u)|

= max
u∈V

Pvisit(u, v, L)
∑
u∈V

∣∣∣(PT )xjT ,u − π(u)
∣∣∣

≤ max
u∈V

Pvisit(u, v, L) · σ
n
. (2.34)

Combining  Eq. (2.33) and  Eq. (2.34)  yields

b
√

nc−1∑
j=0

∑
u∈V

(π(u) + |Pend(xjT , u, T ) − π(u)|) Pvisit(u, v, L) ≤
b
√

nc−1∑
j=0

(
Lπ(v) + σ

n
max
u∈V

Pvisit(u, v, L)
)

(2.35)

≤ b
√
nc(L+ 1)σ

n
(Since Pvisit(u, v, L) ≤ 1 and π(v) ≤ σ

n
.)

≤ 2Tσ . (Since L = T b
√
nc and 1 ≤ L.)

(2.36)

Combining  Eq. (2.29) and  Eq. (2.36)  , we obtain

b
√

nc−1∑
j=0

∑
y∈W:

v∈T ail(y,j+1)
J(x,y)≥j

P [Tail(y, j)] · Pyj·T , yj·T +1 ≤ 2Tσ . (2.37)
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Combining  Eq. (2.25) ,  Eq. (2.26) , and  Eq. (2.37) ,

q̃(Z, v) ≤ 2
∑

gx,b1 ∈Z
good(x)

P [x]3Tσ = 6Tσ
∑

gx,b1 ∈Z
good(x)

P [x] . (2.38)

Since q(Z) = minv∈V q̃(Z, v) and  Eq. (2.38)  holds for an arbitrary choice of v, we get

q(Z) ≤ 6Tσ
∑

gx,b1 ∈Z
good(x)

P [x] . (2.39)

Bounding M(Z)/q(Z).

Combining  Eq. (2.16) and  Eq. (2.39)  , we obtain

M(Z)
q(Z) ≥

2−4σb
√
nc∑gx,b1 ∈Z

good(x)
P [x]

6Tσ∑gx,b1 ∈Z
good(x)

P [x] = 2−4σ

6σ · b
√
nc
T

. (2.40)

We have 2−4σ/(6σ) ∈ Ω(1/exp(3σ)). Thus applying  Lemma 26  to the expression in  Eq. (2.40)  ,

we obtain the required lower bound for local search on G, namely

Ω
 √

n

tmix
(

σ
2n

)
· exp(3σ)

 .

This completes the proof.

2.5 Helper lemmas

Lemma 27. For each walk x = (x0, . . . , xL) ∈ W, the function fx given by Definition  2.4.5 

is valid for the walk x.

Proof. We show the conditions required by the definition of a valid function ( Definition 1.10.1  )

hold.
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Condition 1. Consider two arbitrary vertices v1, v2 ∈ x. Define

i1 = max
{
k ∈ {0, . . . , L} | v1 = xk

}
and i2 = max

{
k ∈ {0, . . . , L} | v2 = xk

}
.

Without loss of generality, we have i1 ≤ i2. Condition 1 requires that if i1 < i2,

then fx(v1) > fx(v2). Since v1, v2 ∈ x,  Definition 2.4.5  of the function fx states that

fx(v1) = −i1 and fx(v2) = −i2. Thus if i1 < i2, then fx(v1) > fx(v2), as required.

Condition 2. The second condition requires that fx(v) = dist(x0, v) > 0 for all v ∈ V \ x.

Since x ∈ W , we have x0 = 1. Using  Definition 2.4.5  we have fx(v) = dist(v, 1) =

dist(v, x0) > 0 for all v 6∈ x.

Condition 3. The third condition requires that fx(xi) ≤ 0 for all i ∈ {0, . . . , L}. This

condition is clearly met since fx(v) ∈ {0,−1, . . . ,−L} for all v ∈ x.

Therefore fx is valid for the walk x.

Lemma 28. Let (w0, w1, . . .) be a Markov chain generated by transition matrix P with

arbitrary starting distribution. Then for all v ∈ V we have

Pr [wtmix(σ/(2n)) = v] ≤ 2σ/n .

Proof. By definition of tmix(σ/(2n)) we have

∑
v∈V

∣∣∣Pr [wtmix(σ/(2n)) = v] − π(v)
∣∣∣ ≤ σ/n . (2.41)

Since each term of the sum in  Eq. (2.41) is non-negative, we have

∀v ∈ V
∣∣∣Pr [wtmix(σ/(2n)) = v] − π(v)

∣∣∣ ≤ σ/n . (2.42)
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Removing the absolute value from  Eq. (2.42) and rearranging, we get

∀v ∈ V Pr [wtmix(σ/(2n)) = v] ≤ σ/n+ π(v)

≤ 2σ/n . (Since σ ≥ π(v) · n.)

This concludes the proof of the lemma.

Lemma 29. Let S ⊆ V be a subset of vertices. Let v ∈ V be a vertex and ` ∈ N. Then

∑
u∈S

Pvisit(u, v, `) ≤ `σ .

Proof. Let T` be the random variable representing the number of times a random walk of

length ` starting at v visits a vertex in S. Decomposing by vertices in S, we have

∑
u∈S

Pvisit(u, v, `) ≤
∑
u∈S

Evisit(u, v, `) (2.43)

=
∑
u∈S

Evisit(v, u, `)
π(v)
π(u) . (By  Lemma 34 )

(2.44)

Using the definition of σ = maxu,v∈V π(v)/π(u), we have

∑
u∈S

Evisit(v, u, `)
π(v)
π(u) ≤ σ

∑
u∈S

Evisit(v, u, `)

= σ · E [T`] (By definition of T`.)

≤ `σ . (Since T` ≤ `.)

(2.45)

Combining  Eq. (2.44) and  Eq. (2.45)  , we get ∑u∈S Pvisit(u, v, `) ≤ `σ, as required.
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Lemma 30. Let n ≥ 16σ2. Fix a good walk x = (x0, . . . , xL) with x0 = 1 and Pxi,xi+1 > 0

for all 0 ≤ i < L. Then for each 0 ≤ j < b
√
nc,

∑
y∈W:

J(x,y)=j
good(y)

P [Tail(y, j)] · Pyj·T , yj·T +1 ≥ 2−4σ . (2.46)

Proof. Let PW be the distribution over the set of walks W generated by sampling a walk

according to P starting at the vertex 1 with L = b
√
nc · T edges. Let z be a random walk

drawn from PW . Recall that every T -th vertex of a walk is called a milestone, and a walk is

good if it does not repeat milestones. We have

∑
y∈W:

J(x,y)=j
good(y)

P [Tail(y, j)] · Pyj·T , yj·T +1 =
∑

y∈W:
J(x,y)=j
good(y)

Pyj·T , yj·T +1 · Pyj·T +1,yj·T +2 · . . . · PyL−1,yL
(2.47)

= Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]
.

(2.48)

Figure 2.2. The milestone
z(j+1)T , shown in purple, may
not match any of the orange
milestones: x0 through xjT be-
cause it would make z bad, and
x(j+1)T because it would make
J(x, z) > j.

Figure 2.3. The milestone
z(j+3)T , shown in purple, may
not match any of the orange
milestones because it would
make z bad.

128



Equivalently, we can sample z ∼ PW one segment at a time with the constraint that the

initial jT +1 vertices of z must match those of x. That is, set Head(z, j) = Head(x, j). Then

for

i = j, . . . , b
√
nc, sample the segment Tail(z, i−1, i) conditioned on having set Head(z, i−1).

For every 0 ≤ k ≤ b
√
nc, the set of vertices given by the first k + 1 milestones of z is

Sk = {z0, zT , . . . , zkT } . (2.49)

Given that Head(x, j) = Head(z, j), the condition J(x, z) = j is equivalent to

z(j+1)T 6= x(j+1)T . (2.50)

Similarly, given that Head(x, j) = Head(z, j), the condition that z is good is equivalent to

zkT 6∈ Sk−1 ∀k ∈ {j + 1, j + 2, . . . , b
√
nc} . (2.51)

For each i ∈ {j + 1, . . . , b
√
nc, define

Qi =


{x(j+1)T } ∪ Sj if i = j + 1

Si−1 if j + 1 < i ≤ b
√
nc .

(2.52)

Combining ( 2.50 ) and (  2.51 ), we get

Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]
= Pr

[(
zkT 6∈ Sk−1 ∀k ∈ {j + 1, . . . , b

√
nc}

)
∧
(
z(j+1)T 6= x(j+1)T

)
| Head(x, j) = Head(z, j)

]
(2.53)

= Pr
 b

√
nc∧

i=j+1
ziT /∈ Qi | Head(x, j) = Head(z, j)

 (By definition of Qi in ( 2.52 ))
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=
b
√

nc∏
i=j+1

Pr
ziT /∈ Qi | (Head(x, j) = Head(z, j)) ∧

( i−1∧
k=j+1

zkT /∈ Qk

) (2.54)

For all i ≤ b
√
nc, let Wi be the space of walks of length T i that can occur with positive

probability under transition matrix P , formally defined as:

Wi =
{

w | w = (w0, . . . , wT ·i) where w0 = 1 and Pwk,wk+1 > 0 for all 0 ≤ k < T · i
}
.

(2.55)

Then, using  Eq. (2.53) gives

Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]

≥
b
√

nc∏
i=j+1

min
ξ∈Wi−1

Pr
[
ziT /∈ Qi | Head(z, i − 1) = ξ

]
. (2.56)

Since T = tmix(σ/(2n)),  Lemma 28  tells us that for all v ∈ V and 1 ≤ i ≤ b
√
nc

min
ξ∈Wi−1

Pr
[
ziT = v | Head(z, i − 1) = ξ

]
≤ 2σ

n
. (2.57)

By the union bound applied to  Eq. (2.57) , for each set R ⊆ V and 1 ≤ i ≤ b
√
nc, we have

min
ξ∈Wi−1

Pr
[
ziT /∈ R | Head(z, i − 1) = ξ

]
≥ 1 − 2σ|R|

n
. (2.58)

We consider two cases based on j:

Case 1: j < b
√
nc − 1.

Since j < b
√
nc − 1, we have

∣∣∣{x(j+1)T } ∪ Sj

∣∣∣ ≤ b
√
nc . (2.59)
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Furthermore, for all j < k < b
√
nc we have

|Sk| ≤ k + 1 ≤ b
√
nc . (2.60)

Combining  Eq. (2.59) and  Eq. (2.60)  gives

|Qi| ≤ b
√
nc ∀j + 1 ≤ i ≤ b

√
nc . (2.61)

We obtain:

Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]

≥
b
√

nc∏
i=j+1

min
ξ∈Wi−1

Pr
[
ziT /∈ Qi | Head(z, i − 1) = ξ

]
(By  Eq. (2.56) )

≥
(

1 − 2σb
√
nc

n

)b
√

nc−j

(By  Eq. (2.58)  with R = Qi and since |Qi| ≤
√
n by  Eq. (2.61) .)

≥
(

1 − 2σ√
n

)√
n

. (2.62)

By  Lemma 33 , we have that
(
1 − 2σ√

n

)√
n

is an increasing function of
√
n since n ≥ 16σ2.

Therefore it is minimized at
√
n = 4σ. Substituting in  Eq. (2.62)  , we get

Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]
≥
(

1 − 2σ
4σ

)4σ

= 2−4σ . (2.63)

Case 2: j = b
√
nc − 1.

We again invoke  Eq. (2.58)  . In this case,

∣∣∣Qb
√

nc

∣∣∣ ≤
∣∣∣Sb

√
nc−1

∣∣∣+ 1 ≤
√
n+ 1 . (2.64)
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Using  Eq. (2.56) , we obtain:

Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]
≥ min

ξ∈Wb
√

nc−1
Pr
[
zb

√
ncT /∈ Qb

√
nc | Head(z, b

√
nc − 1) = ξ

]
. (2.65)

Using  Eq. (2.58)  with R = Qb
√

nc and since
∣∣∣Qb

√
nc

∣∣∣ ≤
√
n + 1 by  Eq. (2.64)  , we can lower

bound the right hand side of  Eq. (2.65)  as follows:

min
ξ∈Wb

√
nc−1

Pr
[
zb

√
ncT /∈ Qb

√
nc | Head(z, b

√
nc − 1) = ξ

]
≥ 1 − 2σ(b

√
nc + 1)
n

. (2.66)

Combining  Eq. (2.65) and  Eq. (2.66)  , we get

Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]
≥ 1 − 2σ(b

√
nc + 1)
n

. (2.67)

We can further lower bound the right hand side of  Eq. (2.67) as follows:

1 − 2σ(b
√
nc + 1)
n

≥ 1 −
√
n(

√
n+ 1)

2n (Since
√
n ≥ 4σ.)

≥ 1
4 (Since n ≥ 16σ2 ≥ 16.)

≥ 2−4σ . (Since σ ≥ 1.)

(2.68)

Combining  Eq. (2.67) and  Eq. (2.69)  , we get

Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]
≥ 2−4σ . (2.69)

In both cases, we obtained (by  Eq. (2.63) and  Eq. (2.69) )

Pr
[
good(z) ∧ J(x, z) = j | Head(x, j) = Head(z, j)

]
≥ 2−4σ . (2.70)
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Combining  Eq. (2.47) with  Eq. (2.70) yields

∑
y∈W:

J(x,y)=j
good(y)

P [Tail(y, j)] · Pyj·T , yj·T +1 ≥ 2−4σ .

This concludes the proof of the lemma.

The next lemma is inspired by Lemma 9 from [ 5 ]. However, it is slightly different, so we

include the proof here.

Lemma 31. Let v ∈ V and Z ⊆ X . Then we have

∑
gx,b1 ,gy,b2 ∈Z

r(gx,b1 , gy,b2)1{gx,b1 (v)6=gy,b2 (v)} ≤ 2
∑

gx,b1 ,gy,b2 ∈Z:
v∈T ail(y,J(x,y))

r(gx,b1 , gy,b2) .

Proof. If gx,b1(v) 6= gy,b2(v), then either:

• v ∈ Tail(x, J(x,y)) ∪ Tail(y, J(x,y))

• or x = y, in which case r(gx,b1 , gy,b2) = 0.

Therefore

∑
gx,b1 ,gy,b2 ∈Z

r(gx,b1 , gy,b2)1{gx,b1 (v) 6=gy,b2 (v)} ≤
∑

gx,b1 ,gy,b2 ∈Z:
v∈T ail(x,J(x,y))∪T ail(y,J(x,y))

r(gx,b1 , gy,b2)

≤
∑

gx,b1 ,gy,b2 ∈Z:
v∈T ail(x,J(x,y))

r(gx,b1 , gy,b2) +
∑

gx,b1 ,gy,b2 ∈Z:
v∈T ail(y,J(x,y))

r(gx,b1 , gy,b2)

= 2
∑

gx,b1 ,gy,b2 ∈Z:
v∈T ail(y,J(x,y))

r(gx,b1 , gy,b2) (By symmetry of r.)

This completes the proof of the lemma.

Lemma 32. In the setting of Theorem  2.3.1 , if n ≥ 16σ2 then there exists a subset Z ⊆ X

with q(Z) > 0.
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Proof. By definition of σ and because maxv∈V π(v) ≥ 1/n, we have

min
v

π(v) ≥ 4/n1.5 . (2.71)

Fix an arbitrary vertex u. Let S be the set of vertices unreachable from u via a random walk

that evolves according to P and has at most T = tmix( σ
2n

) steps. Denote s = |S|. Then

(PT )u,v = 0 ∀v ∈ S . (2.72)

By definition of tmix, we have

σ

2n ≥ 1
2
∑
v∈V

∣∣∣(PT )u,v − π(v)
∣∣∣

≥ 1
2
∑
v∈S

|π(v)| (By  Eq. (2.72) )

≥ s

2 min
v∈V

π(v) (Since s = |S|.)

≥ 2s
n1.5 . (By  Eq. (2.71) .)

(2.73)

Meanwhile, since n ≥ 16σ2, we have

σ

2n ≤ 1
8
√
n
. (2.74)

Combining  Eq. (2.73)  and  Eq. (2.74)  , we get s ≤ n/16. Thus the number of vertices reachable

from u in T steps is n− s ≥ 15n/16. For n ≥ 5, we have 15n/16 ≥ b
√
nc + 2, which means

that at least b
√
nc + 2 vertices are reachable via P from any vertex u within T steps.

We can then construct two walks, x and y, in the following manner. For i = 1, . . . , b
√
nc, take

xiT to be an arbitrary vertex reachable from x(i−1)T other than x0, . . . , x(i−1)T ; this is possible

since at least b
√
nc+2 vertices are reachable. Connect the milestones using an arbitrary path
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such that every edge (u,w) in the path has Pu,w > 0. Construct y in the same manner but

requiring that Head(y, b
√
nc − 1) = Head(x, b

√
nc − 1) and yL 6∈

{
x0, xT , x2T , . . . , xb

√
ncT

}
.

Define Z = {gx,0, gy,1}. We will show that q(Z) > 0. First observe that x 6= y, both x and

y are good since they do not repeat milestones, and the bit hidden by gx,0 is different from

the bit hidden by gy,1. The length of the prefix shared by x and y is J(x,y) = b
√
nc − 1.

Then

r(gx,0, gy,1) = P [x]P [y]
P [Head(y, b

√
nc − 1)] > 0 . (2.75)

We have

q(Z) = max
v∈V

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(v)6=F2(v)}

= 2 max
v∈V

r(gx,0, gy,1) · 1{gx,0(v)6=gy,1(v)}

(Since Z = {gx,0, gy,1} and r(F, F ) = 0 ∀F ∈ Z.)

> 0 . (Using  Eq. (2.75) and gx,0(xL) 6= gy,1(yL).)

This completes the proof.

Lemma 33. For all x ≥ 2y ≥ 1 we have

∂

∂x

(
1 − y

x

)x

≥ 0 . (2.76)

Proof. Define z = x/y. Then

∂

∂x

(
1 − y

x

)x

= ∂z

∂x

∂

∂z

((
1 − 1

z

)z)y

(By chain rule.)

= y

y

((
1 − 1

z

)z)y−1 ∂

∂z

(
1 − 1

z

)z

(By chain rule.)

≥ 0 . (Since z > 1)

This concludes the proof of the lemma.
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Lemma 34 (Folklore). Consider a reversible Markov chain on G with transition matrix P.

For all u, v ∈ V and ` ∈ N, we have

Evisit(u, v, `)π(u) = Evisit(v, u, `)π(v) .

Proof. We have

Evisit(u, v, `)π(u) =
∑̀
i=1

π(u)P i
u,v (By definition of Evisit.)

=
∑̀
i=1

π(v)P i
v,u (By [  52 ] equation 1.30.)

= Evisit(v, u, `)π(v) . (By definition of Evisit.)

This concludes the proof of the lemma.

We also use the following lemma from [  5 ].

Lemma 35 ([ 5 ], Lemma 6). Suppose x = (x0, x1, . . . , x`) is a walk on G and f : V → R is

a valid function for the walk x. Then f has a unique local minimum at x`, the last vertex

on the walk.

All of the lemmas in this section are heavily based on lemmas from prior work. However

they are slightly different, so we include their proofs here for completion.

2.6 Corollaries of the main theorem

We can connect  Theorem 2.3.1 to the spectral gap of the transition matrix of the Markov

chain used via the following inequality (see, e.g., [ 52 ], Theorem 12.4): If P is lazy, irreducible,

and time-reversible, then

tmix(ε) ≤
( 1

1 − λ2

)
log

(
1

εminx∈V π(x)

)
. (2.77)
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We obtain the following corrollary, which lower bounds the randomized complexity of local

search as a function of the spectral gap of P .

Corollary 5. Let G = (V,E) be a connected undirected graph on n vertices. Consider a

discrete-time, lazy, irreducible, and reversible Markov chain on G with transition matrix P

and stationary distribution π. The randomized query complexity of local search on G is

Ω
(

(1 − λ2)
√
n

log(n) exp(3σ)

)
,

where λ2 is the second eigenvalue of P and σ = maxu,v∈V π(v)/π(u).

Proof. We proceed by substituting  Eq. (2.77)  into  Theorem 2.3.1  . This directly yields that

the randomized query complexity of local search on G is

Ω
 (1 − λ2)

√
n

log
(
2n/(σminx∈V π(x))

)
exp(3σ)

 . (2.78)

By definition of σ we have

σmin
x∈V

π(x) = max
x∈V

π(x) ≥ 1/n . (2.79)

Combining  Eq. (2.78)  with  Eq. (2.79)  yields that the randomized query complexity of local

search on G is

Ω
(

(1 − λ2)
√
n

log(n) exp(3σ)

)
. (2.80)

This completes the proof of the corollary.

The prior work in [ 5 ] implies a result similar to but weaker than  Corollary 5 . To get a result

in terms of spectral gap via [  5 ], we need to connect the edge expansion β to the spectral gap

1 − λ2 of a particular Markov chain. We will do this via the bottleneck ratio Φ?.

137



Lemma 36 ([ 52 ], Theorem 13.3). If the Markov chain is lazy, then

Φ2
?

2 ≤ 1 − λ2 ≤ 2Φ? . (2.81)

We can use this to get a bound on local search in terms of spectral gap via the following

lemma from [  5 ].

Lemma 37 ([ 5 ], corollary 2). The randomized query complexity of local search is in

Ω
(

β
√
n

dmax log2(n)

)
(2.82)

As a special case, consider the simple lazy random walk on a graph with dmax/dmin ≤ C for

constant C. Applying  Lemma 37  to this walk yields the following result:

Proposition 2.3.1. [ 5 ] Let G = (V,E) be a connected undirected graph on n vertices. If

dmax/dmin ≤ C for some constant C > 0, then the randomized query complexity of local

search on G is

Ω
(

(1 − λ2)
√
n

log2(n)

)
,

where λ2 is the second eigenvalue of the transition matrix of the simple lazy random walk on

G.

Proof. For the simple lazy random walk we have π(u) = d(u)/(2|E|) for all u ∈ V . Let P

be the transition matrix of the simple lazy random walk. Then

Φ? = min
S⊆V | π(S)≤1/2

∑
(u,v)∈E(S,Sc) π(u)Pu,v

π(S) (By definition of Φ?.)

= min
S⊆V | π(S)≤1/2

∑
(u,v)∈E(S,Sc)(d(u)/(2|E|))(1/d(u)))∑

u∈S(d(u)/(2|E|)) (By definition of P .)

= min
S⊆V | π(S)≤1/2

|E(S, Sc)|∑
u∈S d(u) . (2.83)
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To get a term of β, we need to change the scope of S from

{S ⊆ V | π(S) ≤ 1/2}

to

{S ⊆ V | |S| ≤ n/2} .

Let S∗ be a minimizing choice of S from {S ⊆ V | |S| ≤ n/2} for |E(S, Sc)|/∑u∈S d(u).

Then either S∗ or S∗c (or both) will be in {S ⊆ V | π(S) ≤ 1/2}. We analyze these two

cases separately.

Case 1: π(S∗) ≤ 1/2.

Continuing from  Eq. (2.83) , this gives us

Φ? ≤ |E(S∗, S∗c)|∑
u∈S∗ d(u) (Since π(S∗) ≤ 1/2.)

= min
S⊆V | |S|≤n/2

|E(S, Sc)|∑
u∈S d(u) . (By definition of S∗.)

(2.84)

Case 2: π(S∗c) ≤ 1/2.

Continuing from  Eq. (2.83) , this gives us

Φ? ≤ |E(S∗, S∗c)|∑
u∈S∗c d(u) (Since π(S∗c) ≤ 1/2.)

≤ |E(S∗, S∗c)|∑
u∈S∗ d(u) · C (Since |S∗| ≤ n/2 ≤ |S∗c| and by definition of C.)

= min
S⊆V | |S|≤n/2

|E(S, Sc)|∑
u∈S d(u) · C . (By definition of S∗.)

(2.85)
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In both cases, we have

Φ? ≤ min
S⊆V | |S|≤n/2

|E(S, Sc)|∑
u∈S d(u) · C (By  Eq. (2.84)  and  Eq. (2.85) )

≤ min
S⊆V | |S|≤n/2

|E(S, Sc)|
|S| · dmin

· C (By definition of dmin.)

= β · C
dmin

(By definition of β.)

≤ β · C2

dmax

. (Since dmax/dmin ≤ C.)

(2.86)

Substituting  Eq. (2.86) into  Lemma 36  , we get

1 − λ2 ≤ 2β · C2

dmax

. (2.87)

Substituting  Eq. (2.87)  into  Lemma 37  , we get a lower bound of Ω
(

(1−λ2)
√

n

log2(n)

)
on the random-

ized query complexity of local search on G. This completes the proof of the corollary.

Compare to the following corollary, which is just  Corollary 5  applied to the simple lazy

random walk when dmax/dmin is bounded by a constant C.

Corollary 6. Let G = (V,E) be a connected undirected graph on n vertices. If dmax/dmin ≤

C for some constant C > 0, then the randomized query complexity of local search on G is

Ω
(

(1 − λ2)
√
n

log n

)
,

where λ2 is the second eigenvalue of the transition matrix of the simple lazy random walk on

G.
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Proof. Since dmax/dmin ≤ C, we have that exp(3σ) ≤ exp(3C), which is a constant. There-

fore  Corollary 5 directly gives that the randomized query complexity of local search is

Ω
(

(1 − λ2)
√
n

log(n) exp(3σ)

)
= Ω

(
(1 − λ2)

√
n

log(n)

)
. (2.88)

 Corollary 6 is stronger than  Proposition 2.3.1 by a factor of log(n). This represents an

improvement of this paper in bounding the difficulty of local search in terms of spectral gap.
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3. QUANTUM LOWER BOUNDS FOR LOCAL SEARCH

3.1 Introduction

A powerful method for giving lower bounds in the quantum setting is the relational adversary

method [  1 ]. Several variants of the method exist, such as the strong weighted adversary [  2 ].

[ 55 ] showed that multiple quantum relational adversary methods are in fact equivalent.

We will show a lower bound on local search in the quantum setting using the strong weighted

adversary method applied to a construction from [ 56 ].

3.2 Model

Let G = (V,E) be a connected undirected graph and f : V → R a function defined on the

vertices. A vertex v ∈ V is a local minimum if f(v) ≤ f(u) for all {u, v} ∈ E. We will write

V = [n] = {1, . . . , n}.

Given as input a graph G and oracle access to function f , the local search problem is to

find a local minimum of f on G using as few queries as possible. Each query is of the form:

“Given a vertex v, what is f(v)?”.

Query complexity.

Consider a problem where the input F has n queryable locations, F (1), F (2), . . ., F (n),

each of which has k possible values. In the quantum query model, the quantum bits are

partitioned into four regions: the input F , the log n index bits i, the log k return bits a, and

the rest of the workspace bits z. Collectively, i, a, z constitute the algorithm’s workspace; it

may freely manipulate these bits via arbitrary unitary transformations at no cost, so long as

the transformations do not depend on the input F . To access F , the algorithm is provided
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the oracle transformation O, which is defined such that, for all values of F, i, a, z (such that

i ≤ N):

O (|F, i, a, z〉) = |F, i, a⊕ F (i), z〉 .

Of course, not all quantum states are in the form |F, i, a, z〉; you may have a superposition

over such states. A superposition is just a linear combination though, so this is sufficient

to define the behavior of O on the space spanned by such kets. I.e., given a state |ψ〉 =∑
F,i,a,z αF,i,a,z|F, i, a, z〉 for some scalars αF,i,a,z, we have

O (|ψ〉) =
∑

F,i,a,z

αF,i,a,zO (|F, i, a, z〉) =
∑

F,i,a,z

αF,i,a,z|F, i, a⊕ F (i), z〉 .

Between queries, the algorithm is free to manipulate its own bits (i.e. i, a, z but not F )

freely. More formally, it may apply an arbitrary unitary transformation U subject to the

constraint U(|F 〉 ⊗ |ψ〉) = |F 〉 ⊗ |ψ′〉 for all ψ and the algorithm’s choice of ψ′. Let Uj be

the transformation after the jth query.

Then, the algorithm as a whole applies, in order, U0, O, U1, O . . . , Uj−1, O, Uj, and finally

measures the final state. The measured final state of a particular bit of the algorithm’s

workspace is interpreted as the returned answer. The query complexity of such an algorithm

is j. The quantum query complexity of a problem is the minimum query complexity among

all quantum algorithms that give a correct answer with probability at least 2/3.

Congestion.

Let P = {P u,v}u,v∈V be an all-pairs set of paths in G, where P u,v is a path from u to v. For

convenience, we assume P u,u = (u) for all u ∈ V ; our results will hold even if P u,u = ∅.

For a path Q = (v1, . . . , vs) in G, let cQ
v be the number of times a vertex v ∈ V appears in Q

and cQ
e the number of times an edge e ∈ E appears in Q. The vertex congestion of the set

of paths P is maxv∈V
∑

Q∈P c
Q
v , while the edge congestion of P is maxe∈E

∑
Q∈P c

Q
e .
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The vertex congestion of G is the smallest integer g for which the graph has an all-pairs set

of paths P with vertex congestion g. Clearly, g ≥ n since each vertex belongs to at least

n paths in P and g ≤ n2 since each vertex appears at most once on each path and there

are n2 paths in P . The edge congestion ge is similarly defined, but with respect to the edge

congestion of a set of paths P .

d-regular expanders.

For each set of vertices S ⊆ V , the edges with one endpoint in S and another in V \ S are

called cut edges and denoted E(S, V \ S) = {(u, v) ∈ E | u ∈ S, v 6∈ S}. The graph is a

β-expander if |E(S, V \ S)| ≥ β · |S|, for all S ⊆ V with 0 < |S| ≤ n/2 (see, e.g. [  15 ]). The

graph is d-regular if each vertex has degree d.

Distance.

For each u, v ∈ V , let dist(u, v) be the length of the shortest path from u to v.

3.3 Our results

Our main result is the following theorem, which provides a lower bound on the quantum

query complexity of local search in terms of congestion.

Theorem 3.3.1. The quantum query complexity of local search on an undirected graph

G = (V,E) with n vertices and vertex congestion g is Ω
(

n0.75
√

g

)
.

This bound is the square root of the similar bound of Ω (n1.5/g) on the classical randomized

query complexity of local search found by [  56 ] and uses a similar construction. This is a

natural relationship for quantum and classical bounds to have with each other, which suggests

that if either bound is later improved, the other can be improved by the same means.

On constant degree expanders, we get the following corollary:

144



Corollary 7. The quantum query complexity of local search on an undirected d-regular graph

G = (V,E) with n vertices and expansion β, where d and β are constants, is Ω
(

n0.25√
log(n)

)
.

Proof. By  Lemma 44  , such graphs have congestion g ∈ O(n log(n)). Therefore by  Theo-

rem 3.3.1 , the quantum query complexity on such graphs is Ω
(

n0.25√
log(n)

)
.

We compare this bound to the quantum extension of Aldous’ upper bound detailed in [  3 ]:

Lemma 38 ([ 3 ], theorem 3.2). The quantum query complexity of local search on an undi-

rected graph G = (V,E) with n vertices and maximum degree δ is O
(
n1/3δ1/6

)
.

In the case of constant degree, this bound simplifies to O(n1/3). This still leaves a polyno-

mial gap between the upper and lower bounds for quantum local search on constant degree

expanders, in contrast to the classical case where the remaining gap is only logarithmic.

Closing this gap remains a subject for future work.

3.4 Preliminaries

The strong weighted adversary method

The strong weighted adversary method that we use [  2 ] is given by the next lemma.

Lemma 39 (The strong weighted adversary method [  2 ]). Let A,B be finite sets and X ⊆ BA

a set of functions mapping A to B. Let H : X → {0, 1} be a map that assigns to each function

in X the label 0 or 1. We are given oracle access to a function F1 ∈ X and the problem is

to compute the label H(F1) using as few queries as possible.

Let r : X × X → R≥0 be a non-zero symmetric function of our choice with r(F1, F2) = 0

when H(F1) = H(F2). Additionally, define

• r′ : X ×X ×A → R≥0 such that r′(F1, F2, a)·r′(F2, F1, a) ≥ r2(F1, F2) for all F1, F2 ∈ X

and all a ∈ A with F1(a) 6= F2(a).

• M : X → R such that M(F1) = ∑
F2∈X r(F1, F2) for all F1 ∈ X and all a ∈ A.
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• ν : X × A → R such that ν(F1, a) = ∑
F2∈X r

′(F1, F2, a) for all F1 ∈ X and all a ∈ A.

Then the quantum query complexity of the problem is at least:

min
F1,F2∈X , a∈A:

r(F1,F2)>0
F1(a)6=F2(a)

√√√√ M(F1)M(F2)
ν(F1, a)ν(F2, a) . (3.1)

Family of input functions

Next we explain the construction from [  56 ] that we use.

Since the graph G has vertex congestion g, there is an all-pairs set of paths P = {P u,v}u,v∈[n]

with vertex congestion g  

1
 .

For each u, v ∈ [n], let qv(u) be the number of paths in P that start at vertex u and contain

v:

qv(u) = |{P u,w ∈ P : w ∈ [n], v ∈ P u,w}| . (3.2)

Let L ∈ [n], with L ≥ 2, be a parameter that we set later.

Given a sequence of k vertices x = (x1, . . . , xk), we write x1→j = (x1, . . . , xj) to refer to a

prefix of the sequence, for an index j ∈ [k].

Given a walk Q = (v1, . . . , vk) in G, let Qi refer to the i-th vertex in the walk (i.e. Qi = vi).

For each vertex u ∈ [n], let µ(Q, u) be the number of times that vertex u appears in Q.

Definition 3.4.1 (Staircase). Given a sequence x = (x1, . . . , xk) of vertices in G, a staircase

induced by x is a walk Sx = Sx,1 ◦ . . . ◦ Sx,k−1, where each Sx,i is a path in G starting at

vertex xi and ending at xi+1. Each vertex xi is called a milestone and each path Sx,i a

quasi-segment.
1

 ↑ That is, each vertex is used at most g times across all the paths.
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The staircase Sx is said to be induced by x and P = {P u,v}u,v∈[n] if additionally Sx,i = P xi,xi+1

for all i ∈ [k − 1].

Definition 3.4.2 (Tail of a staircase). Let Sx = Sx,1 ◦ . . . ◦ Sx,k−1 be a staircase induced by

some sequence x = (x1, . . . , xk) ∈ [n]k. For each j ∈ [k − 1], let T = Sx,j ◦ . . . ◦ Sx,k−1. Then

Tail(j, Sx) is obtained from T by removing the first occurrence of xj in T (and only the first

occurrence). We also define Tail(k, Sx) to be the empty sequence.

Next we define a set of functions X .

Definition 3.4.3 (The functions fx and gx,b; the set X ). Suppose P = {P u,v}u,v∈[n] is an

all-pairs set of paths in G. For each sequence of vertices x ∈ {1} × [n]L, define a function

fx : [n] → {−n2 − n, . . . , 0, . . . , n} such that for each v ∈ [n]:

• If v /∈ Sx, then set fx(v) = dist(v, 1), where Sx is the staircase induced by x and P.

• If v ∈ Sx, then set fx(v) = −i · n− j, where i is the maximum index with v ∈ P xi,xi+1,

and v is the j-th vertex in P xi,xi+1.

Also, for each x ∈ {1}×[n]L and b ∈ {0, 1}, let gx,b : [n] → {−n2−n, . . . , 0, . . . , n}×{−1, 0, 1}

be such that, for all v ∈ [n]:

gx,b(v) =


(
fx(v), b

)
if v = xL+1(

fx(v),−1
)

if v 6= xL+1

. (3.3)

Let X =
{
gx,b | x ∈ {1} × [n]L and b ∈ {0, 1}

}
.

By  Lemma 41  and  Lemma 42 , each such function fvecx has a unique local minimum at xL.

3.5 Quantum lower bound for local search via congestion

Theorem 3.3.1. The quantum query complexity of local search on an undirected graph

G = (V,E) with n vertices and vertex congestion g is Ω
(

n0.75
√

g

)
.
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Proof. Let L =
√
n. For each function in X , its underlying staircase has L+1 milestones and

L quasi-segments. For all sequences of milestones x,y let Jx,y be the number of milestones

in the shared prefix of x and y.

We borrow the relation function defined in [  56 ] as a component r∗ for our relation function r.

Let r∗ : X ×X → R≥0 be a symmetric function defined as follows. For each x,y ∈ {1} × [n]L

and b1, b2 ∈ {0, 1}, we have

r∗(gx,b1 , gy,b2) =


0 if at least one of the following holds: b1 = b2 or x is bad or y is bad.

nj otherwise, where j is the maximum index for which x1→j = y1→j .

We then define our relation function r as follows:

r(gx,b1 , gy,b2) =


0 if x = y

r∗(gx,b1 , gy,b2) otherwise

For all gx,b1 , gy,b2 ∈ X and v ∈ V we define r′(gx,b1 , gy,b2 , v) as follows:

r′(gx,b1 , gy,b2 , v) =



0 if gx,b1(v) = gy,b2(v) or H(gx,b1) = H(gy,b2)

r(gx,b1 , gy,b2) · g/n1.5 otherwise, if v ∈ Tail(Jx,y, Sx) \ Tail(Jx,y, Sy)

r(gx,b1 , gy,b2) · n1.5/g otherwise, if v ∈ Tail(Jx,y, Sy) \ Tail(Jx,y, Sx)

r(gx,b1 , gy,b2) otherwise

The functions r and r′ constitute a weight scheme for use with the strong weighted adversary

method.

Take an arbitrary choice of gx,b1 , gy,b2 ∈ X and v ∈ V such that r(gx,b1 , gy,b2) > 0 and

gx,b1(v) 6= gy,b2(v). Since r(gx,b1 , gy,b2) > 0, we have that both gx,b1 and gy,b2 are good.

Therefore by  Lemma 40  we have M(gx,b1) ≥ 1
2eLn

L+1 and M(gy,b2) ≥ 1
2eLn

L+1.

Next we bound ν(gx,b1 , v):
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Case 1: v ∈ Tail(Jx,y, Sx)

ν(gx,b1 , v) =
L+1∑
j=1

∑
gy,b2 ∈X :
Jx,y=j

r′(gx,b1 , gy,b2 , v) (By definition of ν(gx,b1 , v).)

= nL+1 +
L∑

j=1

∑
gy,b2 ∈X :
Jx,y=j

r′(gx,b1 , gy,b2 , v)

(Since exactly one gy,b2 has Jx,y = L+ 1 and b1 6= b2.)

= nL+1 +
L∑

j=1

∑
gy,b2 ∈X :
Jx,y=j

v∈T ail(j, Sy)

nj +
L∑

j=1

∑
gy,b2 ∈X :
Jx,y=j

v /∈T ail(j, Sy)

nj · g/n1.5

≤ nL+1 +
L∑

j=1

(
qv(xj)nL−j + L · g · nL−j−1

)
nj +

L∑
j=1

nL+1−jnj · g/n1.5

≤ nL+1 + gnL + L2gnL−1 + LnL+1g/n1.5

≤ 4gnL

Case 2: v /∈ Tail(Jx,y, Sx)

ν(gx,b1 , v) =
L+1∑
j=1

∑
gy,b2 ∈X :
Jx,y=j

r′(gx,b1 , gy,b2 , v) (By definition of ν(gx,b1 , v).)

= nL+1 +
L∑

j=1

∑
gy,b2 ∈X :
Jx,y=j

r′(gx,b1 , gy,b2 , v)

(Since exactly one gy,b2 has Jx,y = L+ 1 and b1 6= b2.)

= nL+1 +
L∑

j=1

∑
gy,b2 ∈X :
Jx,y=j

v∈T ail(j, Sy)

nj · n1.5/g

≤ nL+1 +
L∑

j=1

(
qv(xj)nL−j + L · g · nL−j−1

)
nj · n1.5/g
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≤ nL+1 + gnL · n1.5/g + L2gnL−1 · n1.5/g

≤ 3nL+1.5

Because gx,b1(v) 6= gy,b2(v) and r(gx,b1 , gy,b2) > 0, we have v ∈ Tail(JX,Y , Sx) ∪ Tail(JX,Y ).

Then
√√√√M(gx,b1)M(gy,b2)

ν(x, v)ν(y, v) ≥

√√√√ 1
4e2L2n2L+2

4gnL · max{4gnL, 3nL+1.5}

≥
√

1
64e2 · min{n

3

g2 ,
n1.5

g
}

= 1
8e · min{n

1.5

g
,
n0.75
√
g

}

If g ≥ n1.5, then the claimed bound is less than or equal to Ω(1), which is trivially true.

Otherwise, g < n1.5, in which case this bound simplifies to:

√√√√M(gx,b1)M(gy,b2)
ν(x, v)ν(y, v) ≥ 1

8e · n
0.75

√
g

Since this holds for arbitrary choices of gx,b1 , gy,b2 , v such that r(gx,b1 , gy,b2) > 0 and gx,b1(v) 6= gy,b2(v),

this via  Lemma 39 implies that the quantum query complexity of local search is Ω(n0.75/
√
g).

Lemma 40. If gx,b1 ∈ X is good, then ∑
gy,b2 ∈X r(gx,b1 , gy,b2) ≥ 1

2e · L · nL+1.

Proof. The bulk of the work has already been done by  Lemma 43  from [  56 ]. However, that

lemma used r∗ whereas our function r has value 0 when the milestones are equal. Here we

bridge that gap

∑
gy,b2 ∈X

r(gx,b1 , gy,b2) ≥
∑

gy,b2 ∈X
r∗(gx,b1 , gy,b2) −

∑
gy,b2 ∈X

y=x

r∗(gx,b1 , gy,b2) (By definition of r.)

≥ 1
2e · (L+ 1) · nL+1 −

∑
gy,b2 ∈X

y=x

r∗(gx,b1 , gy,b2) (By  Lemma 43 )
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≥ 1
2e · (L+ 1) · nL+1 − nL+1

(By definition of r∗, since exactly one y = x.)

≥ 1
2e · L · nL+1

3.5.1 Theorems from prior work

Definition 3.5.1 (Valid function [ 56 ]). Let x = (x0, . . . , x`) be a walk in G. A function

f : V → R is valid with respect to the walk x if it satisfies the next conditions:

1. For all u, v ∈ x, if max{i ∈ {0, . . . , `} | v = xi} < max{i ∈ {0, . . . , `} | u = xi}, then

f(v) > f(u). In other words, as one walks along the walk x starting from x0 until x`,

if the last time the vertex v appears is before the last time that vertex u appears, then

f(v) > f(u).

2. For all v ∈ V \ x, we have f(v) = dist(x0, v) > 0.

3. f(xi) ≤ 0 for all i ∈ {0, . . . , `}.

Lemma 41 ([ 56 ], lemma 6). If a function f is valid for a walk W = w1, . . . , ws, then f has

a unique local minimum at ws.

Lemma 42 ([ 56 ], lemma 7). Every function fx is valid for the walk induced by x.

Lemma 43 ([ 56 ], lemma 14). If F1 ∈ X is good, then ∑
F2∈X r

∗(F1, F2) ≥ 1
2e · (L+1) ·nL+1 .

Lemma 44 ([ 56 ], corollary D.1). If G has expansion β and is d-regular where d and β are

constant, then G has vertex congestion at most O(n log(n)).
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4. FROM SEARCH IN ROUNDS TO A DUALITY GAP IN

YAO’S LEMMA

This chapter is based on my paper “Searching, Sorting, and Cake Cutting in Rounds”, which
can be found at  https://arxiv.org/abs/2012.00738 .

4.1 Introduction

We explore the randomized and distributional query complexity of search problems in the

expected cost setting. This leads us to the discovery of a substantial gap between the

randomized and distributional query complexity of a natural function induced by a search

problem.

To make these concepts more precise, consider a function f : Xn → Ym, where Xn ⊆ {0, 1}n

and Ym ⊆ {0, 1}m with m,n ∈ N. Given as input a bit vector x = (x1, . . . , xn) ∈ Xn, an

algorithm can query a location j in x and receive the bit xj in one step. The goal is to

compute f(x) with as few queries as possible.

The randomized and distributional complexity [  4 ] of computing the function f are defined

as follows. The randomized complexity with error δ, denoted Rδ(f), is the expected number

of queries issued on the worst-case input of an optimal randomized algorithm that computes

f with an error probability of at most δ ∈ [0, 1] on each input. See Section  4.1.1 for precise

definitions.

When the input x is drawn from a distribution Ψ, a deterministic algorithm A (not neces-

sarily correct on all inputs) has expected number of queries cost(A,Ψ) and error probability

e(A,Ψ). Let AΨ,δ be an algorithm with error probability δ and minimum expected cost for

distribution Ψ. The distributional complexity with error δ, denoted Dδ(f), represents the

expected number of queries made on the worst case distribution Ψ by the best algorithm for

it: Dδ(f) = supΨ {cost(A,Ψ)}.
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For error probability δ = 0, von Neumann’s minimax theorem [  57 ] gives R0(f) = D0(f).

Clearly, we also have R1(f) = D1(f) = 0. For all δ ∈ [0, 1/2], [ 4 ] showed Rδ(f) ≥ 1/2·D2δ(f).

[ 58 ] showed an inequality in the other direction: Rδ(f) ≤ 2Dδ/2(f) for all δ ∈ [0, 1]. [  58 ]

also showed that Rδ(f) ≤ Dδ(f) and observed that there can be a difference of additive 1

between Rδ(f) and Dδ(f) for δ ∈ [1/4, 1/2] when the function is f : {0, 1} → {0, 1} with

f(x) = x.

While the expected query complexity was the focus of Yao’s seminal paper [ 4 ], it has been

understudied since then. Most literature has focused on the worst-case cost setting, where

the randomized complexity is defined as the worst case cost incurred by the best algorithm

with error probability δ and for this setting there is no gap between the two complexities [  59 ].

In recent years, there has been renewed interest in the expected cost setting [  60 ], as it has

important applications in complexity such as the randomized composition of functions.

Our work contributes to this area by showing that a natural search problem has a large

gap between the randomized and distributional complexity in the expected cost setting.

Specifically, we consider a natural function un induced by the problem of finding an element

z in an unordered array of size n. We show that for each δ ∈ (0, 1),

lim
n→∞

Dδ(un)
Rδ(un) = 1 + δ and lim

n→∞
Dδ(un) − Rδ(un) = ∞ .

To the best of our knowledge, this is the first example demonstrating a substantial gap.

In fact, [  60 ] asked whether there exist constants c, d ≥ 0 such that Dδ(f) ≤ c · Rδ(f) + d

for each partial function f and δ > 0. Our results show that the two complexities can be

substantially different, in particular implying that if such constants c and d exist, it must be

the case that c ≥ 2.

Connections to Cake Cutting and Rounds of Interaction:

The catalyst for our findings is a cake cutting problem that we believe is of independent

interest. Suppose we are given a cake represented as the interval [0, 1] and n players, each
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with an additive valuation over the cake induced by a private value density function. The

task is to compute a fair allocation using at most k rounds of interaction with the players.

Each round of interaction i consists of a batch i of queries issued simultaneously. Queries in

batch i can depend on the responses to queries from rounds j < i but not to queries from

rounds ` ≥ i. When k = 1, all the communication between the algorithm computing the

allocation and the players takes place in one simultaneous exchange, while k = ∞ represents

the fully adaptive setting, where the algorithm issues one query at a time (see [  61 ]).

We design an efficient protocol for proportional cake cutting in rounds, finding that this fair

division problem is equivalent to sorting with rank queries in rounds, where a rank query

has the form “Is rank(xi) ≤ j?”. A lower bound for sorting with rank queries in rounds was

given in [ 62 ], while the first connection to proportional cake cutting was implicitly made in

[ 63 ].

Inspired by the rank query model, we then consider two fundamental search problems that

are implicit in sorting: ordered and unordered search. In unordered search, we get an array

x = (x1, . . . , xn) and an element z promised to be in x. The size n is known, but z and the

elements of x are not and cannot be accessed directly. Instead, we have access to an oracle

Oz that receives queries of the form: Oz(i) =“How is z compared to the element at location

i?”, answering “=” or “ 6=”. The goal is to find the location of z with success probability at

least p ∈ (0, 1] using at most k rounds of interaction with the oracle.

In ordered search, the setting is the same with the difference that (1) the array x =

(x1, . . . , xn) is promised to be sorted and (2) the answer given by the oracle is one of “<”,

“=”, or “>”.

4.1.1 Our results

Here we summarize our results after establishing the notation necessary for stating them.
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Notation.

For m,n ∈ N, we consider functions of the form f : Xn → Ym, where Xn ⊆ {0, 1}n and

Ym ⊆ {0, 1}m. For promise problems, as in our setting, the set Xn is a strict subset of

{0, 1}n.

For each x ∈ {0, 1}n and randomized algorithm R for computing f , the error probability of

R on input x ∈ Xn is

errf (R, x) = Pr [R(x) 6= f(x)] ∀x ∈ Xn,

where R(x) is the output of the algorithm and can be the empty string. For the functions

we consider, the empty string is never the right answer.

For each δ ∈ [0, 1], we consider the randomized complexity Rδ(f) with error at most δ and

the distributional complexity Dδ(f) with error at most δ, formally defined as

Rδ(f) = inf
R∈R(f,δ)

max
x∈Xn

cost(R, x) and Dδ(f) = sup
µ

inf
D∈D(f,δ,µ)

cost(D,µ), (4.1)

where

• R(f, δ) is the set of randomized algorithms R such that errf (R, x) ≤ δ for all x ∈ Xn.

• µ is a distribution over strings in Xn; that is, ∑x∈Xn
µ(x) = 1.

• D(f, δ, µ) is the set of deterministic algorithms D with Ex∼µ[errf (D, x)] ≤ δ.

• cost(R, x) is the expected number of queries issued by a randomized algorithm R on

input x.

• cost(D,µ) represents the expected number of queries issued by a deterministic algo-

rithm D when given as input a string x drawn from the distribution µ.
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Unordered Search

The unordered search problem is formally defined as follows.

Definition 4.1.1 (Unordered search). The input is a bit vector x = (x1, . . . , xn) ∈ {0, 1}n

with the promise that exactly one bit is 1. The vector can be accessed via oracle queries of

the form: “Is the i-th bit equal to 1?”. The answer to a query is “Yes’ or “No”.

The task is to find the location of the hidden bit in at most k ∈ N rounds of interaction with

the oracle. An index must be queried before getting returned as the solution  

1
 .

Let unorderedn,k denote the unordered search problem on an input vector of length n in k

rounds. We have the following bounds for the randomized complexity of this problem.

Theorem 4.1.1 (Unordered search, randomized algorithms on worst case input). For all

k, n ∈ N∗ and p ∈ [0, 1], we have: np
(

k+1
2k

)
≤ R1−p(unorderedn,k) ≤ np

(
k+1
2k

)
+ p+ p/n .

We also analyze the distributional complexity. We say the input is drawn from distribution

Ψ = (Ψ1, . . . ,Ψn) if the hidden bit is at location i with probability Ψi, where Ψj ≥ 0 for all

j ∈ [n] and ∑n
j=1 Ψj = 1. The distributional complexity is bounded as follows.

Theorem 4.1.2 (Unordered search, deterministic algorithms on worst case input distribu-

tion). For all k, n ∈ N∗ and p ∈ [0, 1]:

np
(
1 − k − 1

2k · p
)

≤ D1−p(unorderedn,k) ≤ np
(
1 − k − 1

2k · p
)

+ 1 + p+ 2/n . (4.2)

The uniform distribution is the worst case for unordered search.

Combining Theorem  4.1.1 and  4.1.2 , we obtain that for each p ∈ (0, 1), there exists n0 =

n0(p) ∈ N such that for all k, n ∈ N with n ≥ n0, the multiplicative gap between the
1

 ↑ This requirement is benign as it only makes a difference of ±1 in the bounds.
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Figure 4.1. The query complexity of fully adaptive unordered search for
n = 210 elements, with success probability p ranging from 0 to 1. The X axis
is for the success probability p, while the Y axis is for the expected number of
queries. The randomized complexity is plotted in red (both upper and lower
bounds and they coincide) and similarly the distributional complexity in blue.

distributional and randomized complexity of unordered search in k rounds with success

probability p is

D1−p(unorderedn,k)
R1−p(unorderedn,k) = 1 + (k − 1)(1 − p)

k + 1 ± o(1) . (4.3)

The gap in ( 4.3 ) grows from 1 to ≈ (2 − p) as the number of rounds grows from k = 1 to

k = n.

Fully adaptive unordered search.

By taking k = n, the bounds in Theorem  4.1.1 and  4.1.2 characterize the query complexity

of the fully adaptive unordered search problem, denoted unorderedn.

Corollary 8 (Fully adaptive unordered search). Let n ∈ N∗ and p ∈ [0, 1]. The randomized

and distributional complexity of fully adaptive unordered search with success probability p

are:

• np
(

n+1
2n

)
≤ R1−p(unorderedn) ≤ np

(
n+1
2n

)
+ p+ p/n .
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• np
(
1 − n−1

2n
· p
)

≤ D1−p(unorderedn) ≤ np
(
1 − n−1

2n
· p
)

+ 1 + p+ 2/n .

The randomized complexity is roughly np/2 and the distributional complexity roughly np
(
1−

p
2

)
.

Corollary 9 (Multiplicative and additive gap for fully adaptive unordered search). For each

success probability p ∈ (0, 1], we have

lim
n→∞

D1−p(unorderedn)
R1−p(unorderedn) = 2 − p and lim

n→∞
D1−p(unorderedn) − R1−p(unorderedn) = ∞ .

(4.4)

Ordered Search

The ordered search problem is formally defined next. The difference from unordered search

is that the array is sorted and the oracle gives feedback about the direction in which to

continue the search in case of a “No” answer.

Definition 4.1.2 (Ordered search). The input is a bit vector x = (x1, . . . , xn) ∈ {0, 1}n with

the promise that exactly one bit is set to 1. The vector can be accessed via oracle queries of

the form: “Is the i-th bit equal to 1?”. The answer to a query is: “Yes’, “No, go left”, or

“No, go right”.

The task is to find the location of the hidden bit using at most k ∈ N rounds of interaction

with the oracle. An index must be queried before getting returned as the solution.

Let orderedn,k denote the ordered search problem on an input vector of length n in k rounds.

For ordered search the number of rounds need not be larger than dlog2 ne, since binary

search is an optimal fully adaptive algorithm for success probability 1. We have the following

bounds.
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Theorem 4.1.3 (Ordered search, randomized and distributional complexity). For all k, n ∈

N∗ and p ∈ [0, 1], we have:

kpn
1
k − 2pk ≤ R1−p(orderedn,k) ≤ D1−p(orderedn,k) ≤ kdpn

1
k e + 2 .

Moreover, np ≤ R1−p(orderedn,k) ≤ D1−p(orderedn,k) ≤ dnpe. The uniform distribution is

the worst case for ordered search.

Theorem  4.1.3 shows that for ordered search in constant rounds, there is essentially no gap

between the randomized and distributional complexity.

Cake Cutting in Rounds and Sorting with Rank Queries

We consider the cake cutting problem of finding a proportional allocation with contiguous

pieces in k rounds. The cake is the interval [0, 1] and the goal is to divide it among n players

with private additive valuations. A proportional allocation, where each player gets a piece

worth 1/n of the total cake according to the player’s own valuation, always exists and can

be computed in the standard (RW) query model for cake cutting.

We establish a connection between proportional cake cutting with contiguous pieces and

sorting in rounds in the rank query model. In the latter, we have oracle access to a list x

of n elements that we cannot inspect directly. The oracle accepts rank queries of the form

“How is rank(xi) compared to j?”, where the answer is “<”, “=”, “or >” 

2
 .

Theorem 4.1.4. (Informal). For all k, n ∈ N∗, the following problems are equivalent:

• computing a proportional cake allocation with contiguous pieces for n agents in the

standard (RW) query model

• sorting a vector with n elements using rank queries.
2

 ↑ Equivalently, the queries are “Is rank(xi) ≤ j?”, where the answer is Yes or No.
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The randomized query complexity of both problems (for constant success probability) is Θ
(
k ·

n1+ 1
k

)
.

We prove Theorem  4.1.4 in Section  4.6 . We design an optimal protocol for proportional

cake cutting in k rounds. En route, we re-examine the implicit reduction from sorting with

rank queries to proportional cake cutting as presented in Woeginger (2007), and make it

completely precise.

[ 62 ] gave a lower bound of Ω(kn1+ 1
k ) for sorting a vector of n elements with rank queries in

k ≤ log n rounds. We also show a slightly improved deterministic lower bound for sorting

with rank queries that has a simpler proof.

Finally, to highlight the connection to Ordered Search, we point out that an operation

implicit in sorting with rank queries is Locate: given a vector x = (x1, . . . , xn) and an

element xi, find its rank via rank queries. Locate with rank queries is equivalent to the

ordered search problem.

4.1.2 Related work

Parallel complexity.

Parallel complexity is a fundamental concept with a long history in areas such as sorting

and optimization; see, e.g. [  64 ] on the parallel complexity of optimization and more recent

results on submodular optimization [  65 ]. An overview on parallel sorting algorithms is given

in the book [  66 ] and many works on sorting and selection in rounds [  61 ,  67 – 71 ], aiming

to understand the tradeoffs between the number of rounds of interaction and the query

complexity.

[ 61 ] initiated the study of parallelism using the number of comparisons as a complexity

measure and showed that p processor parallelism can offer speedups of at least O
(

p
log log p

)
for problems such as sorting and finding the maximum of a list of n > p elements. The

connection to the problem of sorting in rounds is straight-forwards since one parallel step of
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the p processors (e.g. p comparisons performed in parallel) can be viewed as one round of

computations.

[ 72 ] showed that O
(
n

3·2k−1−1
2k−1 log n

)
comparisons suffice to sort an array in k rounds. [  73 ]

showed a bound of O(n3/2 log n) for two rounds. [  67 ] made a connection between expander

graphs and sorting and proved that O
(
n1+ 1

k (log n)2− 2
k

)
comparisons are enough. This was

improved to O
(
n3/2 log n√

log log n

)
in [  74 ], which also showed that Ω(n1+1/k(log n)1/k) comparisons

are needed.

[ 68 ] generalized the latter upper bound to O
(
n1+1/k (log n)2−2/k

(log log n)1−1/k

)
for k rounds. The best

upper bound known to us is due to [ 70 ], which obtained a k-rounds algorithm that performs

O
(
n1+1/k+o(1)

)
comparisons. For randomized algorithms, [ 75 ] obtained an algorithm that

runs in k rounds and issues O
(
n1+1/k

)
queries, thus demonstrating that randomization helps

in the comparison model. Local search in rounds was considered in [  76 ].

Randomized complexity.

The expected cost setting that we consider is the one studied in [  4 ]. However, most of the

literature since then has focused on the worst case setting, where the cost of an algorithm

is the worst case cost among all possible inputs and coin-flips (for randomized algorithms).

In more detail, consider a function f : Xn → Ym, with m,n ∈ N and Xn ⊆ {0, 1}n and

Ym ⊆ {0, 1}m.

The worst-case randomized complexity for error δ, denoted R̂δ(f), is defined as the maximum

number of queries issued by a randomized algorithm R, where the maximum is taken over

all inputs x ∈ Xn and coin-tosses, and R has the property errf (R, x) ≤ δ for all x ∈

Xn. The worst-case distributional complexity for error δ, denoted D̂δ(f), is the maximum

number of queries issued by an optimal deterministic algorithm A that computes f with

error probability δ when the input is drawn from a worst case input distribution Ψ, where

the optimality of A is with respect to Ψ. It is known that: R̂δ(f) = D̂δ(f) [ 59 ].
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In recent work, [  60 ] also focus on the expected cost setting and analyze the gap between the

expected query complexity of randomized algorithms on worst case input and the expected

query complexity of randomized algorithms on a worst case input distribution, in the regime

where the error probability is δ ≈ 1/2.

Group testing.

In fault detection, the goal is to identify all the defective items from a finite set items via a

minimum number of tests. More formally, there is a universe of U of n items, d of which are

defective. Each test is executed on a subset S ⊆ U and says whether S is contaminated (i.e.

has at least one defective item) or pure (i.e. none of the items in S are defective). Questions

include how many tests are needed to identify all the defective items and how many stages

are needed, where the tests performed in round k+1 can depend on the outcome of the tests

in round k. An example of group testing is to identify which people from a set are infected

with a virus, given access to any combination of individual blood samples; combining their

samples allows detection using a smaller number of tests compared to checking each sample

individually.

The group testing problem was posed in [  77 ] and a lower bound of Ω
(
d2 log n

log d

)
for the number

of tests required in the one round setting was given in [ 78 ]. One round group testing algo-

rithms with an upper bound of O(d2 log n) on the number of tests were designed in [  79 – 82 ].

Two round testing algorithms were studied in [ 83 ,  84 ]. The setting where the number of

rounds is allowed is given by some parameter r and the number of defective items is not

known in advance was studied in [ 85 – 88 ]; see [  89 ] for a survey.

Fair division.

The cake cutting model was introduced in [  90 ] to study the allocation of a heterogeneous

resource among agents with complex preferences. Cake cutting was studied in mathematics,

political science, economics [ 91 – 93 ], and computer science [ 94 – 96 ]. There is a hierarchy of
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fairness notions such as proportionality, envy-freeness (where no player prefers the piece of

another player), equitability, and necklace splitting [  97 ], with special cases such as consensus

halving and perfect partitions. See [  98 ,  99 ] for surveys.

Cake cutting protocols are often studied in the Robertson-Webb [  63 ] query model, where a

mediator asks the players queries until it has enough information to output a fair division.

[ 100 ] devise an algorithm for computing a proportional allocation with connected pieces that

asks O(n log n) queries, with matching lower bounds due to [  63 ] and [  101 ].

For the query complexity of exact envy-free cake cutting (possibly with disconnected pieces),

a lower bound of Ω(n2) was given by [  102 ] and an upper bound of O
(
nnnnnn )

by [  103 ].

[ 104 ] found a simpler algorithm for 4 agents. An upper bound on the query complexity

of equitability was given by [ 105 ] and a lower bound by [ 106 ]. [  107 ] analyzed the query

complexity of envy-freeness, perfect, and equitable partitions with minimum number of cuts.

The issue of rounds in cake cutting was studied in [  108 ], where the goal is to bound the

communication complexity of protocols depending on the fairness notion. The query com-

plexity of proportional cake cutting with different entitlements was studied by [  109 ]. The

query complexity of consensus halving was studied in [  110 ] for monotone valuations, with

an appropriate generalization of the Robertson-Webb query model. The query complexity

of cake cutting in one round, i.e. in the simultaneous setting, was studied in [  111 ].

Many other works analyzed the complexity of fair division in models such as cake cutting,

multiple divisible goods, and indivisible goods. The complexity of cake cutting was studied,

e.g., in [ 112 – 121 ]. Indivisible goods were studied, e.g., in [ 122 ] for their query complexity

and in [  123 ,  124 ] for algorithms. Cake cutting with separation was studied in [  125 ], fair

division of a graph or graphical cake cutting in [  126 ,  127 ], multi-layered cakes in [  128 ], fair

cutting in practice in [ 129 ], and cake cutting where some parts are good and others bad in

[ 130 ] and when the whole cake is a “bad” in [  131 ]. Branch-choice protocols were developed

and analyzed in [ 132 ] as a simpler yet expressive alternative for GCC protocols from [  133 ]. A

body of work analyzed truthful cake cutting both in the standard (Robertson-Webb) query

model [  134 ,  135 ] and in the direct revelation model [ 136 – 139 ].
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4.2 Ordered search

In this section we focus on ordered search and prove Theorem  4.1.3 . The omitted proofs of

this section can be found in Section  4.4 .

4.2.1 Deterministic ordered search algorithm on worst case input

We first design a deterministic algorithm Do for ordered search that always succeeds and

asks at most kdn 1
k e queries on each input.

Proposition 4.2.1. For each n ∈ N∗ and k ∈ [dlog ne], there is a deterministic k-round

algorithm for ordered search that succeeds on every input and asks at most kdn 1
k e queries in

the worst case.

The algorithm Do that achieves this upper bound issues n 1
k queries in the first round, which

are as equally spaced as possible, partitioning the array in n k−1
k blocks. If the element is found

at one of the locations queried in the first round, then Do returns it and halts. Otherwise,

Do recurses on the block that contains the solution in the remaining k − 1 rounds.

4.2.2 Randomized ordered search algorithm on worst case input

Using Do, for each p ∈ (0, 1], we design a randomized algorithm Ro that succeeds with

probability at least p and asks at most pkdn k
k e queries in expectation.

Proposition 4.2.2. Let p ∈ (0, 1] and k, n ∈ N∗. Then R1−p(unorderedn,k) ≤ pkdn 1
k e.

The randomized algorithm Ro has an all-or-nothing structure:

• with probability 1 − p, do nothing (i.e. output the empty string);

• with probability p, run the deterministic algorithm Do from Proposition  4.2.1 .
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4.2.3 Deterministic ordered search algorithm on worst case input distribution

Next we upper bound the distributional complexity of ordered search.

Proposition 4.2.3. Let p ∈ (0, 1] and k, n ∈ N∗. Then D1−p(orderedn,k) ≤ kdpn 1
k e + 2.

Moreover, D1−p(orderedn,1) ≤ dnpe.

Proof sketch. We include the proof sketch, while the formal details can be found in Sec-

tion  4.4 .

Using Do and Ro, we show how for each p ∈ (0, 1], if the input is drawn from an arbitrary

distribution Ψ = (Ψ1, . . . ,Ψn), one can design a deterministic algorithmDo
Ψ that asks at most

kdpn 1
k e+2 queries in expectation and succeeds with probability at least p. The distribution-

dependent deterministic algorithm Do
Ψ will simulate the execution of Ro using the following

steps.

Step 1. Given Ψ, define probability density v : [0, 1] → R by v(x) = nΨi ∀i ∈ [n] ∀x ∈[
i−1
n
, i

n

]
.

Let C denote the circle obtained by bending the interval [0, 1] so that the point 0

coincides with 1. A fixed point theorem (Lemma  67 ) ensures there is a point c ∈ [0, 1]

such that the interval [c, c + p] on the circle C has probability mass p (and length p).

That is:

(a)
∫ c+p

c v(x) dx = p, where 0 ≤ c ≤ 1 − p; or

(b)
∫ c

0 v(x) dx+
∫ 1

c+1−p v(x) dx = p, where 1 − p < c < 1.

Step 2. The points c and c + p can be mapped to indices i ∈ [n] and j ∈ [n], respectively,

so that one of the following conditions holds:

• yΨ = [xi, . . . , xj] has length ≈ np and probability mass ∑j
`=i Ψ` ≈ p; or

• yΨ = [x1, . . . , xi, xj, . . . , xn] has length ≈ np and probability mass∑i
`=1 Ψ`+

∑n
`=j Ψ` ≈

p.
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Figure 4.2. Illustration for case (a) in step 1. Given Ψ = (Ψ1, . . . , Ψn), define
v : [0, 1] → R≥0 by v(x) = n · Ψ` for all ` ∈ [n] and x ∈ [(` − 1)/n, `/n]. The left
figure shows the point c with

∫ c+p
c v(x) dx = p. The right figure shows the queried

sub-array yΨ = [x1, . . . , xi, xj, . . . , xn], of length ≈ np and probability mass ≈ p.

Step 3. In the first round, algorithm Do
Ψ queries locations i and j, as well as ≈ pn

1
k other

equally spaced locations in the sub-array yΨ. These queries create approximately pn 1
k

blocks of size roughly
(

np
pn1/k

)
≈ n

k−1
k each. Then:

• If the first round queries reveal the hidden element is not in yΨ, then Do
Ψ gives up

right away (i.e. outputs the empty string).

• Else, if the element is found at a location queried in round 1, then Do
Ψ returns it

and halts.

• Else, in the remaining k − 1 rounds, run Do on the block identified to contain the

element.

Expected number of queries of Do
Ψ.

The block identified at the end of the first round has length ≈ n
k−1

k . Moreover, Do
Ψ continues

to the second round with probability ≈ p. Thus the success probability is roughly p and the

total expected number of queries is approximately

(
pn

1
k + 2

)
+ p · (k − 1)

(
n

k−1
k

) 1
k−1 = pkn

1
k + 2 .

In summary, the deterministic algorithm Do
Ψ is able to generate an event of probability ≈ p

via the first round queries while also pre-partitioning a relevant sub-array. If the event does
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not take place, then Do
Ψ gives up. Otherwise, it runs an optimal deterministic (k− 1)-round

algorithm on the block identified via the first round queries. This strategy enables Do
Ψ to

simulate the all-or-nothing structure of the optimal randomized algorithm and catch up with

it fast enough so that the query complexity remains essentially the same.

4.2.4 Lower bounds for ordered search

We prove the next lower bound for randomized algorithms that succeed with probability p.

Proposition 4.2.4. Let k, n ∈ N∗ and p ∈ (0, 1]. Then R1−p(orderedn,k) ≥ pkn
1
k − 2pk for

k ≥ 2 and R1−p(orderedn,1) ≥ np.

This lower bound has the same leading term as the upper bound achieved by DΨ, thus show-

ing that the randomized and distributional complexity have the same order. The uniform

distribution is the worst case.

We prove Proposition  4.2.4 by induction on the number k of rounds. The induction step

requires showing polynomial inequalities, where the polynomials involved have high degrees

that are themselves functions of k. For k ≥ 4, the roots of such polynomials cannot be

found by a formula. To overcome this, we use delicate approximations of the polynomials by

simpler ones that are more amenable to study yet close-enough to the original polynomials

to yield the required inequalities.

Finally, we obtain the proof of Theorem  4.1.3 by combining the upper bound from Proposi-

tion  4.2.3 and the lower bound from Proposition  4.2.4 .

4.3 Unordered search

In this section we analyze the unordered search problem and prove Theorems  4.1.1 and

 4.1.2 , which quantify the randomized and distributional complexity of unordered search

algorithms, respectively. Theorem  4.1.1 will follow from Propositions  4.3.1 and  4.3.3 stated
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next. Theorem  4.1.2 will follow from Propositions  4.3.2 and  4.3.4 . The omitted proofs of

this section are in Section  4.5 .

4.3.1 Deterministic and randomized algorithms for unordered search on a worst
case input

The maximum number of rounds for unordered search is n. Since with each location queried

the only information an algorithm receives is whether the element is at that location or not,

a k-round deterministic unordered search algorithm that succeeds on every input cannot do

better than querying roughly n/k queries in each round until finding the element. This gives

a total of n queries in the worst case. However, randomized algorithms can do better by

querying locations uniformly at random.

Proposition 4.3.1. Let p ∈ (0, 1] and k, n ∈ N∗. Then R1−p(unorderedn,k) ≤ np· k+1
2k

+p+ p
n
.

The optimal randomized algorithm given by Proposition  4.3.1 has an all-or-nothing structure:

(i) with probability 1 − p, do nothing;

(ii) with probability p, select a uniform random permutation π over [n]. For all j ∈ [k],

define Sj = {π1, . . . , πmj}, where mj = dnj/ke. In each round j, query the locations of

Sj that have not been queried in the previous j − 1 rounds. Once the element is found,

return it and halt.

4.3.2 Deterministic algorithms for unordered search on random input

We have the following upper bound on the distributional complexity of unordered search.

Proposition 4.3.2. Let p ∈ (0, 1] and k, n ∈ N∗. Then

D1−p(unorderedn,k) ≤ np
(
1 − k − 1

2k · p
)

+ 1 + p+ 2
n
.
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Since the unordered search problem has less structure than ordered search, a deterministic

algorithm receiving an element drawn from some distribution Ψ will no longer be able to

extract enough randomness from the answers to the first round queries to simulate the

optimal randomized algorithm. Instead, the optimal deterministic algorithm will establish

in advance a fixed set of np locations and query those in the same manner as step (ii) of the

optimal randomized algorithm.

However, since the search space becomes smaller as an algorithm checks more locations, the

fact that the deterministic algorithm is forced to stop after at most np queries regardless of

whether it found the element or not (to avoid exceeding the optimal expected query bound),

is a source of inefficiency. This is the main reason for which a deterministic algorithm

receiving a random input cannot do as well as the optimal randomized algorithm that decided

in advance to either do nothing or search all the way until finding the solution.

4.3.3 Lower bounds for unordered search

Finally, we lower bound the randomized and distributional complexity of unordered search.

Proposition 4.3.3. Let p ∈ (0, 1] and k, n ∈ N∗. Then R1−p(unorderedn,k) ≥ np · k+1
2k

.

Proposition 4.3.4. Let p ∈ (0, 1] and k, n ∈ N∗. Then D1−p(unorderedn,k) ≥ np
(
1 − k−1

2k
p
)
.

Roadmap to the proof sections

Section  4.4 contains the analysis of ordered search. Section  4.5 contains the analysis for

unordered search. Section  4.6 contains the analysis for cake cutting and sorting in rounds.

Section  4.7 contains folklore lemmas that we use.

4.4 Ordered search Proofs

In this section we include the omitted proofs for ordered search, which constitute the proof

of Theorem  4.1.3 .
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4.4.1 Ordered search upper bounds

In this section we describe an optimal deterministic algorithm for a worst case input, an

optimal randomized algorithm for a worst case input, and an optimal deterministic algorithm

for an arbitrary input distribution.

Deterministic algorithms for a worst case input.

The optimal deterministic algorithm for a worst case input is given in the next proposition.

Proposition  4.2.1 (restated). For each n ∈ N∗ and k ∈ [dlog ne], there is a deterministic

k-round algorithm for ordered search that succeeds on every input and asks at most kdn 1
k e

queries in the worst case.

Proof. We design a k-round algorithm recursively, using induction on k.

Base case: k = 1. Let A1 be the following algorithm:

• Query all the elements of the array simultaneously. Return the correct location based

on the results of the queries.

Then A1 runs in one round, succeeds on every input, and the number of queries is at most

n.

Induction hypothesis. For k ≥ 2, assume there is a (k−1)-round algorithm Ak−1 that always

succeeds and asks at most (k − 1) · dn
1

k−1 e queries on each array of length n.

Induction step. Using the induction hypothesis, we will design a k-round algorithm Ak

with the required properties. For each s ∈ [n], write n = s · us + vs, for us = bn
s
c and

vs = n (mod s). Let Ak(s) be the following algorithm:
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(i) In round 1, query locations i1, . . . , is ∈ [n] with the property that 1 < i1 < . . . < is =

n. Let i0 = 0. Then these queries create s contiguous blocks B1, . . . , Bs, such that

Bj = [ij−1 + 1, ij] for j ∈ [s].

For each j ∈ [s], set the size of each block Bj to bn
s
c if j ≤ s−vs and to dn

s
e if j > s−vs.

This uniquely determines indices i1, . . . , is.

If the element searched for is found at one of these s locations, then return that location

and halt. Otherwise, identify the index ` ∈ [s] for which the block B` contains the

answer.

(ii) Given index ` from step (i) such that block B` = [i`−1 + 1, i`] contains the answer, we

observe that position i` is the only one from block B` that has been queried so far. If

i` − 1 ≥ i`−1 + 1, let B̃` = [i`−1 + 1, i` − 1] and run algorithm Ak−1 on block B̃`. Else,

halt.

We first show algorithm Ak(s) is correct for every choice of s, and then obtain Ak by

optimizing s.

Algorithm Ak(s) is correct if the choice of indices i1, . . . , is is valid. This is the case if the

sizes of the blocks B1, . . . , Bs sum up to n. We have ∑s
j=1|Bj| = bn/sc · (s− vs) + dn/se · vs .

(a) If vs = 0 then bn/sc = dn/se = us, so the sum of block sizes is
s∑

j=1
|Bj| = us · (s − vs) +

us · vs = n .

(b) If vs > 0 then dn/se = us + 1, so ∑s
j=1|Bj| = us · (s− vs) + (us + 1) · vs = us · s+ vs = n .

Combining (a) and (b), we get that the block sizes are valid. Thus Ak(s) does not skip any

indices, so it always finds the element.

Next we argue that there is a choice of s such that by setting Ak = Ak(s), we obtain a

k-round algorithm that issues at most kdn 1
k e queries.
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For a fixed s ∈ [n], the array size at the beginning of round 2 is at most m(s) = maxj∈[s]|Bj|−

1, since the rightmost element of each block Bj has been queried in round 1 while the rest

of block Bj has not been queried. Then m(s) = max
{
bn

s
c − 1, dn

s
e − 1

}
= dn

s
e − 1.

The total number of queries of algorithm Ak(s) is at most

f(s) = s+ (k − 1) ·
⌈
m(s)

1
k−1
⌉

= s+ (k − 1) ·
⌈(⌈

n

s

⌉
− 1

) 1
k−1
⌉
. (4.5)

Taking s = dn 1
k e in ( 4.5 ), we get

f
(
dn

1
k e
)

= dn
1
k e + (k − 1) ·


(⌈

n

dn 1
k e

⌉
− 1

) 1
k−1


≤ dn
1
k e + (k − 1) ·

⌈(⌈
n

n
1
k

⌉
− 1

) 1
k−1
⌉

≤ dn
1
k e + (k − 1) ·

⌈(
n

n
1
k

) 1
k−1
⌉

= k · dn
1
k e .

Setting Ak = Ak(dn 1
k e), we obtain a correct k-round algorithm that issues at most k · dn 1

k e

queries on every array with n elements. This completes the induction step and the proof.

Randomized algorithms for a worst case input.

Building on the optimal deterministic algorithm for worst case input, we design next an

optimal randomized algorithm.

Proposition  4.2.2 (restated). Let p ∈ (0, 1] and k, n ∈ N∗. Then R1−p(unorderedn,k) ≤

pkdn 1
k e.

Proof. Consider the following randomized algorithm:

• With probability p, run the deterministic algorithm Ak from Proposition  4.2.1 .
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• With probability 1 − p, do nothing.

On each input, by Proposition  4.2.1 , this algorithm succeeds with probability p and issues

at most pkdn 1
k e queries in expectation, as required.

Deterministic algorithms for a random input.

We consider first the case of k = 1 rounds. With one round, there is no distinction between

ordered and unordered search.

Proposition 4.4.1. Let p ∈ (0, 1] and n ∈ N∗. Then

D1−p(unorderedn,1) ≤ dnpe and D1−p(orderedn,1) ≤ dnpe . (4.6)

Proof. Sort the elements of x in decreasing order by Ψ and let π be the permutation obtained,

that is, Ψπ1 ≥ . . . ≥ Ψπn . Let ` be the smallest index for which ∑`
i=1 Ψπi ≥ p. Let q =∑`

i=1 Ψπi ≥ p. Consider the following algorithm A:

• Query elements xπ1 , . . . , xπ`
, i.e. compare each of them with z. If there is i ∈ [`] such

that z = xπi , then return πi.

By choice of `, the success probability of this algorithm is q ≥ p. The number of queries is `.

Let m = dnpe. Then (m−1)/n < p ≤ m/n. By Lemma  65 , we have Ψπ1 + . . .+Ψπm ≥ m/n .

Since ` is the smallest index with Ψπ1 + . . .+ Ψπ`
≥ p, it follows that ` ≤ m = dnpe.

Using the deterministic algorithm of Proposition  4.2.1 and the randomized algorithm of

Proposition  4.2.2 , we can now design a deterministic algorithm that is designed to be optimal

when the input is drawn from a distribution Ψ.

Proposition  4.2.3 (restated). Let p ∈ (0, 1] and k, n ∈ N∗. Then D1−p(orderedn,k) ≤

kdpn 1
k e + 2. Moreover, D1−p(orderedn,1) ≤ dnpe.
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Proof. The upper bound of D1−p(orderedn,1) ≤ dnpe for k = 1 rounds holds by Proposi-

tion  4.4.1 . Thus from now on we can assume k ≥ 2.

At a high level, given input distribution Ψ, the deterministic algorithm for this distribution

will consists of two steps:

• First, observe there exists an interval [i, j] on the array viewed on the circle (i.e. where

index n + 1 is the same as index 1) that has probability mass roughly pn and length

roughly pn as well. Find this interval offline without any queries.

• Second, use the interval identified in the first step to generate an event with probability

p, thus simulating the randomized algorithm from Proposition  4.2.1 .

Formally, given input distribution Ψ, define a probability density function v : [0, 1] → R≥0

by

v(x) = n · Ψi ∀i ∈ [n] and x ∈ [(i − 1)/n, i/n] .

Then
∫ 1

0 v(x) dx = ∑n
i=1

1
n

· nΨi = ∑n
i=1 Ψi = 1. By Lemma  67 , there exists a point c ∈ [0, 1]

such that one of the following holds:

(a)
∫ c+p

c v(x) dx = p, where 0 ≤ c ≤ 1 − p;

(b)
∫ c

0 v(x) dx+
∫ 1

c+1−p v(x) dx = p, where 1 − p < c < 1.

Case (a).

In this case there exists c ∈ [0, 1 − p] such that
∫ c+p

c v(x) dx = p.

We first make a few observations and then define the protocol. Let i, j ∈ [n] be such that

i − 1
n

≤ c <
i
n

and j − 1
n

≤ c+ p <
j
n
.

Let T = j − i + 1. Then np ≤ T ≤ np+ 2. Since each interval [(`− 1)/n, `/n] corresponds to

element x` of the array, we have ∑j
`=i Ψi ≥ p. By choice of i and j, we have:
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• the sub-array y = [xi, . . . , xj] has length T ≤ np+ 2 and probability mass ∑j
`=i Ψi ≥ p.

• if T ≥ 2, the sub-array ỹ = [xi+1, . . . , xj−1] has length T − 2 ≤ np and probability mass∑j−1
`=i+1 Ψi ≤ p.

Figure 4.3. Given distribution Ψ = (Ψ1, . . . , Ψn), define probability density v :
[0, 1] → R≥0 by v(x) = n · Ψ` for all ` ∈ [n] and x ∈ [(` − 1)/n, `/n]. The left
figure shows an interval [c, c + p] of length p and probability mass

∫ c+p
c v(x) dx = p.

The right figure shows the queried sub-array y = [xi, . . . , xj], which has length
T = j − i + 1 ≤ np + 2 and probability mass

∑j
`=i Ψ` ≥ p. When T ≥ 2, the sub-

array ỹ = [xi+1, . . . , xj−1] has length T −2 ≤ np and probability mass
∑j−1

`=i+1 Ψ` ≤ p.

Let A be the following k-round protocol:

Step a.(i) If T ≤ 2: query locations i and j in round 1. If the element is found, return it

and halt.

Else: since the element is guaranteed to be in the array x, it must be the case that

T ≥ 3. Let r = dp · n 1
k e. Query in round 1 locations i and j, together with

additional locations t1, . . . , tr set as equally spaced as possible.

More precisely, require i + 1 ≤ t1 ≤ . . . ≤ tr = j − 1, with t0 = i. For each ` ∈ [r],

let

B` = [x(t`−1+1), . . . , xt`
]

be the `-th block created by the queries t1, . . . , tr. Define indices t1, . . . , tr so that

each block B` has size at most
⌈

T −2
r

⌉
, which is possible since the sub-array ỹ has

length T − 2 and there are r blocks.

If the element is found at one of the indices i, j, t1, . . . , tr queried in round 1, then

return it and halt. Otherwise, continue to step a.(ii).
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Step a.(ii) If the answers to round 1 queries show the element is not at one of the indices

[i, . . . , j], then halt. Else, let B` = [x(t`−1+1), . . . , xt`
] be the block identified to contain

the element, where location t` has been queried. Run the (k − 1)-round deterministic

protocol from Proposition  4.2.1 on the sub-array y = [x(t`−1+1), . . . , x(t`−1)], which

always succeeds and asks at most (k − 1) · (len(y))
1

k−1 queries.

We now analyze the success probability and expected number of queries of algorithm A

described in steps a.(i-ii).

Success probability. The algorithm is guaranteed to find the element precisely when it is lo-

cated in the sub-array [xi, . . . , xj]. Since ∑j
`=i Ψ` ≥ p, the success probability of the algorithm

is at least p.

Expected number of queries. We count separately the expected queries for round 1 and the

remainder. The number of queries issued in round 1 is at most

2 + r = 2 + dp · n
1
k e . (4.7)

The algorithm continues beyond round 1 when the element is in the sub-array ỹ = [xi+1, . . . , xj−1],

which has length T − 2 ≤ np and probability mass ∑j−1
`=i+1 ≤ p.

Thus with probability at least 1 − p, the algorithm halts at the end of round 1. With

probability at most p, it continues beyond round 1 by running step a.(ii). The number of

queries in step a.(ii) is bounded by

(k − 1)
(
d(T − 2)/re − 1

) 1
k−1

by Proposition  4.2.1 since len(y) ≤ dT −2
r

e − 1. Since T − 2 ≤ np and r = dp · n 1
k e, the

expected number of queries from step a.(ii) can be bounded by

p · (k − 1)
(⌈
T − 2
r

⌉
− 1

) 1
k−1

+ (1 − p) · 0 = p · (k − 1)
(⌈

T − 2
dp · n 1

k e

⌉
− 1

) 1
k−1
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≤ p · (k − 1)
(⌈

np

dp · n 1
k e

⌉
− 1

) 1
k−1

(Since T − 2 ≤ np)

≤ p · (k − 1) ·
(⌈

np

p · n 1
k

⌉
− 1

) 1
k−1

(Since np
dp·n1/ke ≤ np

p·n1/k )

≤ p · (k − 1) ·
(

np

p · n 1
k

) 1
k−1

= p · (k − 1) · n
1
k . (4.8)

Combining ( 4.7 ) and (  4.8 ), the expected number of queries of algorithm A is at most

2 + dp · n
1
k e + p · (k − 1) · n

1
k ≤ kdpn

1
k e + 2 . (4.9)

Case (b).

In this case, there exists c ∈ (1 − p, 1) such that
∫ c

0 v(x) dx+
∫ 1

c+1−p v(x) dx = p. Let i, j ∈ [n]

be such that (i − 1)/n ≤ c ≤ i/n and (j − 1)/n ≤ c + p − 1 ≤ j/n. By choice of i and j, we

have np ≤ T ≤ np+ 2. Then

• the sub-array y = [x1, . . . , xi, xj, . . . , xn] has length T = n + i − j + 1 ≤ np + 2 and

probability mass ∑i
`=1 Ψ` +∑n

`=j Ψ` ≥ p.

• the sub-array ỹ = [x1, . . . , xi−1, xj+1, . . . , xn] has length T − 2 ≤ np and probability mass∑i−1
`=1 Ψ` +∑n

`=j+1 Ψ` ≥ p.

Figure 4.4. Given distribution Ψ = (Ψ1, . . . , Ψn), define v : [0, 1] → R≥0 by
v(x) = n · Ψ` for all ` ∈ [n] and x ∈ [(` − 1)/n, `/n]. The left figure shows point
c with probability mass

∫ c
0 v(x) dx +

∫ 1
c+1−p v(x) dx = p. The right figure shows

the queried sub-array consisting of two parts: y = [x1, . . . , xi, xj, . . . , xn], of length
T = n + i − j + 1 ≤ np + 2 and probability mass

∑i
`=1 Ψ` +

∑n
`=j Ψ` ≥ p. When

T ≥ 2, the sub-array ỹ = [x1, . . . , xi−1, xj+1, . . . , xn] has length T − 2 ≤ np and
probability mass

∑i−1
`=1 Ψ` +

∑n
`=j+1 Ψ` ≤ p.
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Let A be the same k-round protocol as in case (a), but where the array y is treated as if it

were contiguous when making queries:

Step b.(i) If T ≤ 2: query locations i and j in round 1. If the element is found, return it.

Else, T ≥ 3. Let r = dp · n 1
k e. Query in round 1 locations i and j, together with

additional locations t1, . . . , tr ∈ {1, . . . , i − 1, j + 1, . . . , n}, set as equally spaced

as possible so that for each ` ∈ [r], the size of each block B` = [x(t`−1+1), . . . , xt`
]

is at most dT −2
r

e. At most one of the blocks may skip over the the indices in

{i, . . . , j}. If the element is found at one of the queried locations then return it

and halt. Else, go to step b.(ii).

Step b.(ii) If round 1 indicates that the element is not at one of the indices {1, . . . , i, j, . . . , n},

then halt. Otherwise, let B` = [x(t`−1+1), . . . , xt`
] be the block identified to contain the

element, where location t` has been queried. Run the (k− 1)-round deterministic pro-

tocol from Proposition  4.2.1 on the sub-array y = [x(t`−1+1), . . . , x(t`−1)], which always

succeeds and asks at most (k − 1) · (len(y))
1

k−1 queries.

Next we bound the success probability and expected number of queries when the algorithm

executes steps b.(i) and b.(ii).

Success probability. The algorithm finds the element when its location is one of [1, . . . , i, j, . . . , n].

Since ∑i
`=1 Ψ` +∑n

`=j Ψ` ≥ p, the success probability is at least p.

Expected number of queries. The expected number of queries in round 1 is at most 2 + r =

2 + dpn 1
k e, while the number of queries after round 2 is at most

p · (k − 1)
(
d(T − 2)/re − 1

) 1
k−1 ≤ p · (k − 1) · n

1
k .

Thus the total expected number of queries is at most 2+dpn 1
k e+p ·(k−1) ·n 1

k ≤ 2+kdpn 1
k e,

which completes the proof.
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4.4.2 Ordered search lower bounds

In this section we prove a lower bound that applies to both randomized algorithms on a

worst case input and deterministic algorithms on a worst case input distribution. The lower

bound considers the expected query complexity of randomized algorithms on the uniform

distribution, which turns out to be the hardest distribution for ordered search.

Proposition  4.2.4 (restated). Let k, n ∈ N∗ and p ∈ (0, 1]. Then R1−p(orderedn,k) ≥

pkn
1
k − 2pk for k ≥ 2 and R1−p(orderedn,1) ≥ np.

Proof. For proving the required lower bound, it will suffice to assume the input is drawn

from the uniform distribution. This means the algorithm is given a bit vector where the

location of the unique bit with value 1 is chosen uniformly at random from {1, . . . , n}. If a

lower bound holds for a randomized algorithm when the input is uniformly distributed, then

by an average argument the same lower bound also holds for a worst case input.

Let Ak be an optimal k-round randomized algorithm that succeeds with probability p when

facing the uniform distribution as input. Let qk(n, p) be the expected number of queries of

algorithm Ak as a function of n and p.

In round 1, the algorithm has some probability δm of asking m queries, for each m ∈

{0, . . . , n}. Moreover, for each such m, there are different (but finitely many) choices for the

positions of the m queries of round 1. However, since the algorithm is optimal, it suffices

to restrict attention to the best way of positioning the queries in round 1, breaking ties

arbitrarily if there are multiple equally good options.

For each m ∈ {0, . . . , n}, we define the following variables:

• δm is the probability that the algorithm asks m queries in round one.

• bm,i is the size of the i-th block demarcated by the indices queried in round 1, excluding

those indices, counting from left to right, for all i ∈ {0, . . . ,m}. Thus ∑m
i=0 bm,i = n−m.
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Figure 4.5. Array with n = 15 elements. The m = 3 locations issued in round
1 are illustrated in gray. The resulting blocks demarcated by these queries are
marked, such that the i-th block has length bm,i, for i ∈ {0, 1, 2, 3}.

An illustration with an array and the blocks formed by the queries issued in round 1

can be found in Figure 1.

• αm,i the success probability of finding the element in the i-th block (as demarcated by

the indices queried in round 1), given that the element is in this block.

The expected number of queries of the randomized algorithm is

qk(n, p) =
n∑

m=0
δm

[
m+

(
n−m

n

) m∑
i=0

(
bm,i

n−m

)
· qk−1(bm,i, αm,i)

]

=
n∑

m=0
δm

[
m+ 1

n

m∑
i=0

bm,i · qk−1(bm,i, αm,i)
]
, (4.10)

where the variables are related by the following constraints:

m∑
i=0

bm,i = n−m, ∀m ∈ {0, . . . , n} (4.11)

n∑
m=0

δm = 1 (4.12)

pm = m

n
+ n−m

n
·

m∑
i=0

bm,i

n−m
· αm,i = m

n
+ 1
n

·
m∑

i=0
bm,i · αm,i, ∀m ∈ {0, . . . , n} (4.13)

p =
n∑

m=0
δm · pm (4.14)
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bm,i ≥ 0, ∀m ∈ {0, . . . , n}, i ∈ {0, . . . ,m} (4.15)

0 ≤ αm,i ≤ 1, ∀m ∈ {0, . . . , n}, i ∈ {0, . . . ,m} (4.16)

δm ≥ 0, ∀m ∈ {0, . . . , n} . (4.17)

Let {γ`}∞
`=1 be the sequence given by γ1 = 0 and γ` = 2` for ` ≥ 2. We will prove by

induction on k that

qk(n, p) ≥ p
(
k · n

1
k − γk

)
∀n, k ≥ 1 and p ∈ [0, 1] . (4.18)

Base case.

Proposition  4.4.2 gives q1(n, p) ≥ np, so inequality (  4.18 ) holds with γ1 = 0 for all n ≥ 1

and p ∈ [0, 1].

Induction hypothesis.

Suppose q`(m, s) ≥ s
(
` ·m 1

` − γ`

)
for all ` ∈ [k − 1], m ≥ 1, s ∈ [0, 1].

Induction step.

We will show that (  4.18 ) holds for k ≥ 2, where n ≥ 1 and p ∈ [0, 1]. The bound clearly

holds when p = 0, so we will focus on the scenario p > 0. For each m ∈ {0, . . . , n}, define

rk(n,m, p) = m+ 1
n

·
m∑

i=0
bm,i · qk−1(bm,i, αm,i) . (4.19)

By definition of qk(n, p),

qk(n, p) =
n∑

m=0
δm · rk(n,m, p) . (4.20)
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The induction hypothesis implies qk−1(bm,i, αm,i) ≥ αm,i ·
(

(k − 1) (bm,i)
1

k−1 − γk−1

)
, which

substituted in (  4.19 ) gives

rk(n,m, p) ≥ m+
(
k − 1
n

)
·

m∑
i=0

αm,i · (bm,i)
k

k−1 −
(
γk−1

n

)
·

m∑
i=0

αm,i · bm,i . (4.21)

Given a choice of αm,i, bm,i for all m ∈ {0, . . . , n} and i ∈ {0, . . . ,m}, let i0, . . . , im ∈

{0, . . . ,m} be such that 0 ≤ αm,i0 ≤ . . . ≤ αm,im ≤ 1. Then we can decompose pm us-

ing a telescoping sum:

pm = m

n
+ 1
n

·
m∑

i=0
bm,i · αm,i (By (  4.13 ))

= αm,i0 ·
[
m

n
+ 1
n

·
m∑

`=0
bm,i`

]
+


m∑
j=1

(αm,ij − αm,ij−1) ·

m
n

+ 1
n

·
m∑

`=j
bm,i`

+ (1 − αm,im) · m
n
.

(4.22)

We can similarly decompose the right hand side of inequality (  4.21 ), obtaining:

rk(n,m, p) ≥ m+ k − 1
n

·
m∑

i=0
αm,i · (bm,i)

k
k−1 − γk−1

n
·

m∑
i=0

αm,i · bm,i (By (  4.21 ))

= αm,i0 ·
[
m+ k − 1

n
·

m∑
`=0

(bm,i`)
k

k−1 − γk−1

n
·

m∑
`=0

bm,i`

]

+
m∑

j=1
(αm,ij − αm,ij−1) ·

m+ k − 1
n

·
m∑

`=j
(bm,i`)

k
k−1 − γk−1

n
·

m∑
`=j

bm,i`


+ (1 − αm,im) ·m. (4.23)

Let wm,0 = αm,i0 , wm,j = αm,ij −αm,ij−1 for all j ∈ {1, . . . ,m}, and wm,m+1 = 1 −αm,im . Then

we can rewrite (  4.22 ) and (  4.23 ) as follows:

rk(n,m, p) ≥
m∑

j=0
wm,j ·

m+ k − 1
n

·
m∑

`=j
(bm,i`)

k
k−1 − γk−1

n
·

m∑
`=j

bm,i`

+
(
wm,m+1 ·m

)
(4.24)
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pm =
m∑

j=0
wm,j ·

m
n

+ 1
n

·
m∑

`=j
bm,i`

+
(
wm,m+1 · m

n

)
. (4.25)

For each m ∈ {0, . . . , n} and j ∈ {0, . . . ,m+ 1}, define

pm,j =



m
n

+ 1
n

·∑m
`=j bm,i` if j ∈ {0, . . . ,m} .

m
n

if j = m+ 1 .

(4.26)

rj
k(n,m, p) =


m+ k−1

n
·∑m

`=j (bm,i`)
k

k−1 − γk−1
n

·∑m
`=j bm,i` if j ∈ {0, . . . ,m} .

m if j = m+ 1 .
(4.27)

Substituting the definition of rj
k(n,m, p) in ( 4.24 ) and that of pm,j in ( 4.25 ) yields

rk(n,m, p) ≥
m+1∑
j=0

wm,j · rj
k(n,m, p) and pm =

m+1∑
j=0

wm,j · pm,j . (4.28)

Combining ( 4.14 ), (  4.20 ), and (  4.28 ), we obtain

qk(n, p) =
n∑

m=0
δm · rk(n,m, p) ≥

n∑
m=0

δm ·

m+1∑
j=0

wm,j · rj
k(n,m, p)

 .

p =
n∑

m=0
pm =

n∑
m=0

m+1∑
j=0

wm,j · pm,j

 . (4.29)

Let Sm,j = ∑m
`=j bm,i` , for all m ∈ {0, . . . , n} and j ∈ {0, . . . ,m}. Then for j ∈ {0, . . . ,m}, we

have n · pm,j = m + Sm,j, so Sm,j = n · pm,j − m. Since Sm,j ≥ 0, we have n · pm,j ≥ m. In

summary,

m∑
`=j

bm,i` = n · pm,j −m, ∀j ∈ {0, . . . ,m} (4.30)

n · pm,j ≥ m, ∀j ∈ {0, . . . ,m} . (4.31)

Next we will lower bound rj
k(n,m, p) and consider two cases, for m ≥ 1 and m = 0.
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Case m ≥ 1.

If j = m + 1, we are in the scenario where the algorithm asks m queries in round 1 and no

queries in the later rounds. Formally, since pm,m+1 = m/n, we have m = n · pm,m+1. Using

the identity for rm+1
k (n,m, p) in ( 4.27 ), we obtain

rm+1
k (n,m, p) = m = n · pm,m+1

≥ pm,m+1 · kn
1
k − γk · pm,m+1 . (By Corollary  11 .)

Thus from now on we can assume j ∈ {0, . . . ,m}. Observe that by definition of pm,0 in

( 4.26 ), we have pm,0 = m/n +
m∑

`=0
bm,i`/n = m/n + (n−m)/n = 1 . For all j ∈ {0, . . . ,m},

using (  4.27 ) and Jensen’s inequality, we obtain

rj
k(n,m, p) = m+ k − 1

n
·

m∑
`=j

(bm,i`)
k

k−1 − γk−1

n
·

m∑
`=j

bm,i`

≥ m+ (k − 1) (m− j + 1)
n

 m∑
`=j

bm,i`
m− j + 1

 k
k−1

− γk−1

n
·

m∑
`=j

bm,i` . (4.32)

Since ∑m
`=j bm,i` = n · pm,j −m by ( 4.30 ), the inequality in ( 4.32 ) can be rewritten as

rj
k(n,m, p) ≥ m

(
1 + γk−1

n

)
+ (k − 1)(n · pm,j −m)

k
k−1

n · (m− j + 1)
1

k−1
− γk−1 · pm,j . (4.33)

When j = 0, substituting ∑m
`=0 bm,i` = n−m in ( 4.33 ), we obtain

r0
k(n,m, p) ≥ m

(
1 + γk−1

n

)
+ (k − 1)(n−m)

k
k−1

n · (m+ 1)
1

k−1
− γk−1

≥ kn
1
k − γk (By Lemma  45 .)

= pm,0 · kn
1
k − pm,0 · γk . (Since pm,0 = 1)
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Thus from now on we can assume j ∈ {1, . . . ,m}. Using j ≥ 1 in ( 4.33 ), we further get

rj
k(n,m, p) ≥ m

(
1 + γk−1

n

)
+ (k − 1)(n · pm,j −m)

k
k−1

n ·m
1

k−1
− γk−1 · pm,j . (4.34)

In this range of m and j, we have m/n ≤ pm,j ≤ 1 and 1/2 < m ≤ n · pm,j by inequality

( 4.31 ). Applying Lemma  56 with c = pm,j in ( 4.34 ), we obtain:

rj
k(n,m, p) ≥ m

(
1 + γk−1

n

)
+ (k − 1)(n · pm,j −m)

k
k−1

n ·m
1

k−1
− γk−1 · pm,j (By (  4.34 ))

≥ pm,j · kn
1
k − γk · pm,j . (By Lemma  56 )

Case m = 0.

This corresponds to the scenario where the algorithm asks zero queries in round 1. Since

j ∈ {0, . . . ,m+ 1}, it follows that j = 0 or j = 1.

If j = 0, then by definition of pm,j we have p0,0 = 0/n+ (1/n) ·∑0
`=0 b0,i` = 0 + b0,i0/n. Since

there is only one block, b0,i0 = n. Thus p0,0 = 1. We get

r0
k(n, 0, p) = 0 + k − 1

n
·

0∑
`=0

(b0,i`)
k

k−1 − γk−1

n
·

0∑
`=0

b0,i`

= (k − 1) · n
1

k−1 − γk−1

n
· n (Since b0,i0 = n)

≥ kn
1
k − γk (By Corollary  10 )

= p0,0 · kn
1
k − p0,0 · γk . (Since p0,0 = 1)

If j = 1, then since m = 0 we are in the case j = m + 1. Since pm,m+1 = m/n, we have

p0,1 = 0/n = 0. Informally, this corresponds to the scenario where the algorithm asks m = 0

queries in round 1 and no queries in the later rounds either. Formally,

r1
k(n, 0, p) = 0 = p0,1 · kn

1
k − p0,1 · γk . (4.35)
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Combining cases m ≥ 1 and m = 0.

We obtain

rj
k(n,m, p) ≥ pm,j · kn

1
k − pm,j · γk ∀m ∈ {0, . . . , n},∀j ∈ {0, . . . ,m+ 1} (4.36)

Summing inequality (  4.36 ) over all m ∈ {0, . . . , n} and j ∈ {0, . . . ,m+ 1} and using identity

( 4.29 ) that expresses the total expected number of queries qk(n, p) as a weighted sum of the

rj
k(n,m, p) terms, we obtain

qk(n, p) =
n∑

m=0
δm ·

m+1∑
j=0

wm,j · rj
k(n,m, p)


≥

n∑
m=0

δm ·

m+1∑
j=0

wm,j ·
(
pm,j · kn

1
k − pm,j · γk

) (By inequality (  4.36 ))

=
n∑

m=0
δm · pm ·

(
kn

1
k − γk

)
(Since pm = ∑m+1

j=0 wm,j · pm,j by ( 4.28 ))

= p ·
(
kn

1
k − γk

)
. (Since p = ∑n

m=0 δm · pm by ( 4.14 ))

This completes the induction step and the proof.

We consider separately the case of k = 1 rounds, giving a lower bound that applies to both

ordered and unordered search.

Proposition 4.4.2. Let p ∈ (0, 1] and n ∈ N≥1. Then

R1−p(unorderedn,1) ≥ np and R1−p(orderedn,1) ≥ np . (4.37)

Proof. We show the lower bound for randomized algorithms when facing the uniform distri-

bution. For one round, there is no distinction between ordered and unordered search. By an

average argument, the lower bound obtained applies to a worst case input.

Let A1 be a randomized algorithm that runs in one round and succeeds with probability

p when given an input drawn from the uniform distribution. Let q1(n, p) be the expected
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number of queries of A1 as a function of the input size n and the success probability p.

Denote by δm the probability that the algorithm issues m queries in round 1. Since there

is no second round and the input distribution is uniform, the location of these queries does

not matter.

The expected number of queries issued by the algorithm on the uniform input distribution

can be written as

q1(n, p) =
n∑

m=0
δm ·m,

where

n∑
m=0

δm = 1 (4.38)

p =
n∑

m=0
δm ·

(
m

n

)
(4.39)

δm ≥ 0 ∀m ∈ {0, . . . , n} . (4.40)

Thus we have q1(n, p) = ∑n
m=0 δm ·m = np.

4.4.3 Lemmas for ordered search proofs

In this section we include the lemmas used to prove the ordered search upper and lower

bounds.

Lemma 45. Let k ≥ 2, n ≥ 1, and the sequence {γ`}∞
`=1 with γ1 = 0 and γ` = 2` for all

` ≥ 2. Then

x
(

1 + γk−1

n

)
+ (k − 1) · (n− x)

k
k−1

n · (x+ 1)
1

k−1
− γk−1 ≥ kn

1
k − γk ∀x ∈ (1/2, n] . (4.41)
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Proof. Let t =
(

n−x
x+1

) 1
k−1 . Then t is decreasing in x. Since x ∈ (1/2, n], we have 0 ≤ t <(

2n−1
3

) 1
k−1 . Expressing x in terms of t we get

x = n− tk−1

tk−1 + 1 . (4.42)

Substituting (  4.42 ) in (  4.41 ), we get that ( 4.41 ) is equivalent to

tk · (k − 1)(n+ 1) − tk−1 ·
(
kn

k+1
k + n+ γk−1(n+ 1) − nγk

)
+
(
n2 + nγk − kn

k+1
k

)
≥ 0

∀ 0 ≤ t <
(2n− 1

3

) 1
k−1

.

(4.43)

We consider two cases, for k = 2 and k ≥ 3.

Case k = 2.

Since γ1 = 0 and γ2 = 4, inequality (  4.43 ) is equivalent to

t2 · (n+ 1) − t ·
(
2n

√
n− 3n

)
+ n2 − 2n

√
n+ 4n ≥ 0 ∀ 0 ≤ t <

2n− 1
3 . (4.44)

Inequality ( 4.44 ) holds by Lemma  46 .

Case k ≥ 3.

Since γ1 = 0 and γ` = 2` for ` ≥ 2, inequality (  4.43 ) can be simplified to

tk · (k − 1)(n+ 1) − tk−1 ·
(
k · n

k+1
k − n+ 2k − 2

)
+ n2 + 2kn− kn1+ 1

k ≥ 0

∀ 0 ≤ t <
(2n− 1

3

) 1
k−1

. (4.45)

Inequality ( 4.45 ) holds by Lemma  47 for all k ≥ 3. This completes the proof.

188



Lemma 46. Let n ≥ 1. Then for all t ∈
[
0, (2n− 1)/3

)
, we have

t2 · (n+ 1) − t ·
(
2n

√
n− 3n

)
+ n2 − 2n

√
n+ 4n ≥ 0 . (4.46)

Proof. Let f : R → R be f(t) = t2 · (n+ 1) − t · (2n
√
n− 3n) + n2 − 2n

√
n+ 4n . Then

f ′(t) = 2t(n+ 1) − (2n
√
n− 3n) and f ′′(t) = 2(n+ 1) . (4.47)

Thus f is convex and the global minimum is at t∗ for which f ′(t∗) = 0, that is, t∗ = 2n
√

n−3n
2n+2 .

Evaluating f(t∗) gives

f(t∗) =
(

2n
√
n− 3n

2n+ 2

)2

· (n+ 1) −
(

2n
√
n− 3n

2n+ 2

)
·
(
2n

√
n− 3n

)
+ n2 − 2n

√
n+ 4n

= 11n2 − 8n
√
n+ 16n+ 4n2√n
4n+ 4

> 0 . (Since 11n2 > 8n
√
n for n ≥ 1)

Thus f(t) ≥ f(t∗) > 0 for all t ∈ R, which implies the inequality required by the lemma.

Lemma 47. Let n ≥ 1 and k ≥ 3. Then

tk · (k − 1)(n+ 1) − tk−1 ·
(
k · n

k+1
k − n+ 2k − 2

)
+ n2 + 2kn− kn1+ 1

k ≥ 0, ∀t ∈
[
0, n

1
k−1
)
.

(4.48)

Proof. Dividing both sides of ( 4.48 ) by n2, we get that ( 4.48 ) holds if and only if

(
t

n
1

k−1

)k

· (k − 1)
(

1 + 1
n

)
· n

1
k−1 −

(
t

n
1

k−1

)k−1

·
(
k · n

1
k − 1 + 2k − 2

n

)
+ 1 + 2k

n
− k

n
k−1

k

≥ 0

∀t ∈
[
0, n

1
k−1
)
.

(4.49)

If t = 0 then ( 4.49 ) is equivalent to n+ 2k − kn
1
k ≥ 0, which holds by Corollary  11 .
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For t > 0, let x = n
1

k−1/t. Since 0 < t < n
1

k−1 , we have x > 0. Substituting t by x we obtain

that ( 4.49 ) is equivalent to

xk ·
(

1 + 2k
n

− k

n
k−1

k

)
− x ·

(
k · n

1
k − 1 + 2k − 2

n

)
+ (k − 1)

(
1 + 1

n

)
· n

1
k−1 ≥ 0, ∀x > 1 .

(4.50)

Define the function f : (0,∞) → R, where f(x) is given by the left hand side of ( 4.50 ). Then

f ′(x) = k

(
1 + 2k

n
− k

n
k−1

k

)
xk−1 −

(
k · n

1
k − 1 + 2k − 2

n

)

f ′′(x) = k(k − 1)
(

1 + 2k
n

− k

n
k−1

k

)
xk−2 . (4.51)

By Corollary  11 , we have 1 + 2k/n − k/n
k−1

k > 0 for all n ≥ 1 and k ≥ 3. Thus f ′′(x) > 0

for all x > 0, so f is convex on (0,∞). Observe that k · n 1
k − 1 + 2k−2

n
> 0 for all n ≥ 1

and k ≥ 3. Then there is a global minimum of f at a point x ∈ (0,∞) with f ′(x) = 0, or

equivalently,

x =

 k · n 1
k − 1 + 2k−2

n

k
(

1 + 2k
n

− k

n
k−1

k

)


1
k−1

. (4.52)

Evaluating f at x and rearranging terms gives

f(x) = x

[(
1 + 2k

n
− k

n
k−1

k

)
xk−1 −

(
k · n

1
k − 1 + 2k − 2

n

)]
+ (k − 1)

(
1 + 1

n

)
· n

1
k−1

= x
(1
k

− 1
)(

k · n
1
k − 1 + 2k − 2

n

)
+ (k − 1)

(
1 + 1

n

)
· n

1
k−1

= (k − 1)
(

1 + 1
n

)
· n

1
k−1 − (k − 1)

(
n

1
k − 1

k
+ 2
n

− 2
kn

) k
k−1

(
n

n+ 2k − kn
1
k

) 1
k−1

.

(4.53)

Thus f(x) > 0 ∀x > 1 whenever the next two properties are met

1. f(x) > 0 when x > 1. This is equivalent to
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(n+ 2k − kn
1
k )
(

1 + 1
n

)k−1
>
(
n

1
k − 1

k
+ 2
n

− 2
kn

)k

(4.54)

whenever n 1
k − 1

k
+ 2
n

− 2
kn

> 1 + 2k
n

− k

n
k−1

k

. (4.55)

Lemma  49 implies that inequality (  4.54 ) holds under condition ( 4.55 ).

2. f(1) ≥ 0 when x < 1. To show this, observe that for all n ≥ 1 and k ≥ 3, we have

f(1) =
(

1 + 1
n

) (
2 − k · n

1
k + (k − 1) · n

1
k−1
)

≥ 0 . (By Lemma  48 )

Thus f(1) ≥ 0 for all n ≥ 1 and k ≥ 3, which completes property 2.

Since both properties 1 and 2 hold, we have that f(x) > 0 for all x > 1, so ( 4.50 ) holds.

Equivalently, ( 4.48 ) holds as required by the lemma.

Lemma 48. Let n ≥ 1 and k ≥ 3, where k, n ∈ N. Then 2 − k · n 1
k + (k − 1) · n

1
k−1 ≥ 0 .

Proof. Consider the function f : [2,∞) → R given by f(x) = xn
1
x . We first show an upper

bound on f ′ and then use it to upper bound f(k) − f(k − 1). We have

f ′(x) = n
1
x

(
1 − ln(n)

x

)
.

Let y = n
1
x . Then ln(y) = 1

x
ln(n). Since x ≥ 2, we have y ∈ (1,

√
n]. Then

n
1
x

(
1 − ln(n)

x

)
= y (1 − ln(y)) . (4.56)

The function g : (1,∞) → R given by g(y) = y (1 − ln(y)) has g′(y) = − ln(y) < 0. Therefore

g(y) < g(1) = 1 for all y > 1. Using the identity in (  4.56 ), we get that f ′(x) < 1 for all

x ≥ 2.
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Then for all k ≥ 3,

k · n
1
k = f(k) ≤ f(k − 1) + max

x∈[2,∞)
f ′(x) < f(k − 1) + 1 = (k − 1) · n

1
k−1 + 1 . (4.57)

Inequality ( 4.57 ) implies the lemma statement.

Corollary 10. Let n ≥ 1 and k ≥ 2. Suppose {γ`}∞
`=1 is the sequence given by γ1 = 0 and

γ` = 2` for ` ≥ 2. Then (k − 1) · n
1

k−1 − γk−1 ≥ kn
1
k − γk .

Proof. If k = 2, the required inequality is n ≥ 2
√
n − 4, or (

√
n− 1)2 + 3 ≥ 0. The latter

holds for all n ≥ 1. If k ≥ 3, the required inequality is (k− 1) · n
1

k−1 + 2 ≥ kn
1
k , which holds

by Lemma  48 .

Lemma 49. Let n ≥ 1 and k ≥ 3, where k, n ∈ N. Then

(n+ 2k − kn
1
k )
(

1 + 1
n

)k−1
>
(
n

1
k − 1

k
+ 2
n

− 2
kn

)k

(4.58)

whenever n
1
k − 1

k
+ 2
n

− 2
kn

> 1 + 2k
n

− k

n
k−1

k

. (4.59)

Proof. If n = 1 then the condition in ( 4.59 ) is equivalent to 1 − 1/k + 2 − 2/k > 1 + 2k− k,

which holds if and only if 2 − 3/k > k (†). Since k ≥ 3, inequality (†) does not hold so

condition ( 4.59 ) is not met either.

Thus from now on we can assume n ≥ 2. By Lemma  53 , condition (  4.59 ) implies k < n. We

show (  4.58 ) holds when n ≥ 2 and k < n by considering separately a few ranges of k.

Case I: n/2 < k < n and k ≥ 3.

Then k < n < 2k. When n = 2k − 1 inequality ( 4.58 ) holds by Lemma  52 .

Thus from now on we can assume k < n ≤ 2k − 2. To show inequality ( 4.58 ), we will first

bound separately several of the terms in the inequality and then combine the bounds.
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For k ≥ 3, we have k ≤ 2k−1. Moreover, since n < 2k, we have n 1
k < (2k) 1

k ≤ 2, and so

2k > kn
1
k . Thus n+ 2k − kn

1
k > n, which implies

(
n+ 2k − kn

1
k

)(
1 + 1

n

)k−1
> n

(
1 + 1

n

)k−1
. (4.60)

Moreover, since n ≥ 2, we have 2k ≤ kn ·n 1
k , and so 2k− 2 −n < kn ·n 1

k . Since n ≤ 2k− 2,

we also have 2k − 2 − n ≥ 0, and so

0 ≤ 2k − 2 − n

kn · n 1
k

< 1 . (4.61)

Let r = (2k − 2 − n)/(kn · n 1
k ). Inequality (  4.61 ) gives 0 ≤ r < 1. We consider two sub-

cases:

• If n = 2k − 2 then r = 0. We have

(
1 + 2k − 2 − n

kn · n 1
k

)k

= (1 + r)k = 1 = e0 = e

(
2k−2−n

n·n
1
k

)
. (4.62)

• Else k < n < 2k − 2. Then 0 < r < 1. We have

(
1 + 2k − 2 − n

kn · n 1
k

)k

= (1 + r)k (By definition of r)

=
[
(1 + r)

1
r

]kr

≤ ekr (Since (1 + r) 1
r ≤ e for r ∈ (0, 1).)

= e

(
2k−2−n

n·n
1
k

)
. (4.63)

Combining inequalities (  4.62 ) and (  4.63 ) from the two sub-cases, we obtain

(
1 + 2k − 2 − n

kn · n 1
k

)k

≤ e

(
2k−2−n

n·n
1
k

)
∀n ∈ N with k < n ≤ 2k − 2 . (4.64)
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Using (  4.64 ), we can upper bound the right hand side of inequality (  4.58 ) as follows:

(
n

1
k − 1

k
+ 2
n

− 2
kn

)k

=
(
n

1
k + 2k − 2 − n

kn

)k

= n

(
1 + 2k − 2 − n

kn · n 1
k

)k

≤ ne

(
2k−2−n

n·n
1
k

)
. (4.65)

By Lemma  54 , we have

e

(
2k−2−n

n·n
1
k

)
≤
(

1 + 1
n

)k−1
. (4.66)

Combining ( 4.60 ), (  4.65 ), and (  4.66 ), gives:

(
n

1
k − 1

k
+ 2
n

− 2
kn

)k

≤ ne

(
2k−2−n

n·n
1
k

)
(By (  4.65 ))

≤ n
(

1 + 1
n

)k−1
(By (  4.66 ))

<
(
n+ 2k − kn

1
k

)(
1 + 1

n

)k−1
. (By (  4.60 ))

In summary,

(
n

1
k − 1

k
+ 2
n

− 2
kn

)k

≤
(
n+ 2k − kn

1
k

) (
1 + 1

n

)k−1
∀n ∈ N with k < n ≤ 2k − 2 .

This is the required inequality (  4.58 ), which completes case I.
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Case II: 3 ≤ k ≤ n/2.

Then n ≥ 2k and k ≥ 3. Then tk ≥ 2k. For k = 3, the required inequality ( 4.58 ) is

equivalent to

(
x+ 6 − 3x 1

3
)(

1 + 1
x

)2
−
(
x

1
3 − 1

3 + 2
x

− 2
3x

)3
> 0 ∀x ≥ 6 1

3 ,

which can be easily checked to hold (see, e.g., [  140 ]).

Thus from now on we can assume k ≥ 4 with k ∈ N. Let f : (0,∞) → R be

f(x) =
(
x+ 2k − kx

1
k

)(
1 + 1

x

)k−1
−
(
x

1
k − 1

k
+ 2
x

− 2
kx

)k

.

Using Bernoulli’s inequality gives

(
1 + 1

n

)k−1
≥ 1 + k − 1

n
. (4.67)

Since n ≥ 2k, we have 2/n ≤ 1/k. Thus

−1
k

+ 2k − 2
kn

≤ −1
k

+ k − 1
k2 = − 1

k2 . (4.68)

Using (  4.67 ) and (  4.68 ), we can lower bound f(n) as follows:

f(n) =
(
n+ 2k − kn

1
k

) (
1 + 1

n

)k−1
−
(
n

1
k − 1

k
+ 2k − 2

kn

)k

≥
(
n+ 2k − kn

1
k

)(
1 + k − 1

n

)
−
(
n

1
k − 1

k2

)k

(By (  4.67 ) and (  4.68 ))

≥
(
2k − kn

1
k

)(
1 + k − 1

n

)
+ n−

(
n

1
k − 1

k2

)k

. (4.69)

If n 1
k ≤ 2, then 2k− kn

1
k ≥ 0, which together with (  4.69 ) yields f(n) ≥ n−

(
n

1
k − 1

k2

)k
≥ 0,

as required.
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Thus from now on we will assume n 1
k > 2, that is, n > 2k. Then 2k − kn

1
k < 0. Together

with n ≥ 2k, this implies

(
2k − kn

1
k

)(
1 + k − 1

n

)
>
(
2k − kn

1
k

)(
1 + k − 1

2k

)
. (4.70)

Inequality ( 4.70 ) together with (k − 1)/2k < 1/2 yields

(
2k − kn

1
k

)(
1 + k − 1

n

)
> 1.5 ·

(
2k − kn

1
k

)
. (4.71)

Combining ( 4.69 ) and (  4.71 ) gives

f(n) ≥ 1.5 ·
(
2k − kn

1
k

)
+ n−

(
n

1
k − 1

k2

)k

. (4.72)

Next we expand and truncate
(
n

1
k − 1

k2

)k
via Lemma  50 , yielding

−
(
n

1
k − 1

k2

)k

≥ −n+ n1− 1
k

k
− (k − 1)n1− 2

k

2k3 . (4.73)

Using (  4.73 ), we can further bound f(n) by

f(n) ≥ 1.5 ·
(
2k − kn

1
k

)
+ n1− 1

k

k
− (k − 1)n1− 2

k

2k3 (Combining ( 4.72 ) and (  4.73 ))

≥ 0 . (By Lemma  51 )

Thus f(n) > 0, as required. This completes the analysis for the range n > 2k and case II.

Wrapping up.

We obtain that inequality (  4.58 ) holds under condition ( 4.59 ), as required.
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Lemma 50. Let k, n ∈ N with n ≥ 1 and k ≥ 3. Then

(
n

1
k − 1

k2

)k

≤ n− n1− 1
k

k
+ (k − 1) · n1− 2

k

2k3 . (4.74)

Proof. Let t = n
1
k . Then t ≥ 1. The required inequality (  4.74 ) is equivalent to

(
t− 1

k2

)k

≤ tk − tk−1

k
+ (k − 1) · tk−2

2k3 . (4.75)

For i ∈ [k+ 1] let ci be the i-th term in the binomial expansion of (t− 1/k2)k. In particular,

c1 = tk; c2 = −tk−1

k
; c3 = (k − 1)tk−2

2k3 ; ck+1 = (−1)k 1
k2k

. (4.76)

Let us bound the ratio |ci/ci+1| for i ∈ [k]:

∣∣∣∣∣ ci

ci+1

∣∣∣∣∣ = k2 · ti
k − i + 1 ≥ tk > 1 . (4.77)

Since c2i < 0 and c2i+1 > 0 for all i, inequality ( 4.77 ) implies

ci + ci+1 ≤ 0 ∀i ∈ [k] with i ∈ 2N . (4.78)

We bound the term
(
t− 1

k2

)k
by considering two cases. If k is even, then

(
t− 1

k2

)k

= c1 + c2 + c3 +
k/2∑
i=2

(c2i + c2i+1) (By definition of ci.)

≤ c1 + c2 + c3 . (Since c2i + c2i+1 < 0 by ( 4.78 ))

If k is odd, then

(
t− 1

k2

)k

=
k+1∑
i=1

ci (By definition of ci.)

<
k∑

i=1
ci = c1 + c2 + c3 +

(k−1)/2∑
i=2

(c2i + c2i+1) (Since ck+1 < 0.)
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≤ c1 + c2 + c3 . (Since c2i + c2i+1 < 0 by ( 4.78 ))

Thus for both odd and even k, we have

(
t− 1

k2

)k

≤ c1 + c2 + c3 = tk − tk−1

k
+ (k − 1)tk−2

2k3 . (4.79)

Thus in both cases (  4.75 ) holds, as required.

Lemma 51. Let k, n ∈ N with n ≥ 2 and k ≥ 4. Then

1.5
(
2k − kn

1
k

)
+ n1− 1

k

k
− (k − 1) · n1− 2

k

2k3 ≥ 0 . (4.80)

Proof. Let t = n
1
k . Then t > 1 since n ≥ 2. For k = 4, inequality ( 4.80 ) with n substituted

by t4 is equivalent to 1.5(8 − 4t) + t3/4 − 3t2/128 ≥ 0, which holds for all t > 1.

Thus from now on we can assume k ≥ 5. The left hand side of (  4.80 ), where n is substituted

by tk, can be bounded as follows:

1.5 (2k − kt) + tk−1

k
− (k − 1) · tk−2

2k3 ≥ 1.5(2k − kt) + tk−2

2k2

(
2kt− 1

)
(Since k − 1 < k)

≥ 1.5
(

2k − kt+ tk−1

2k

)
. (Since t > 1 and k ≥ 4)

(4.81)

Let g : (0,∞) → R be g(t) = 2k − kt + tk−1

2k
. We will show that g(t) ≥ 0 for all t > 1. We

have

g′(t) = −k + k − 1
2k · tk−2 and g′′(t) = (k − 1)(k − 2)

2k · tk−3 . (4.82)
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Thus g is convex on (0,∞). The global minimum is t∗ with g′(t∗) = 0, so t∗ =
(

2k2

k−1

) 1
k−2 .

Then

g(t) ≥ g(t∗) = 2k − k · t∗ + t∗ · (t∗)k−2

2k = 2k −
(

2k2

k − 1

) 1
k−2

(
k − k

k − 1

)

= k

2 −
(

2k2

k − 1

) 1
k−2

·
(
k − 2
k − 1

) . (4.83)

Since 2k−2 >
(

2k2

k−1

)
for k ≥ 5, we get

2 >
(

2k2

k − 1

) 1
k−2

>

(
2k2

k − 1

) 1
k−2

·
(
k − 2
k − 1

)
∀k ≥ 5 . (4.84)

Using (  4.84 ) in (  4.83 ), we obtain

g(t) ≥ k

2 −
(

2k2

k − 1

) 1
k−2

·
(
k − 2
k − 1

) > 0 ∀t > 1, k ≥ 5 . (4.85)

Combining (  4.81 ) and (  4.85 ), we obtain 1.5 (2k − kt) + tk−1/k − (k − 1) · tk−2/(2k3) ≥ 0 for

all t > 1 and k ≥ 5. This completes the proof.

Lemma 52. Let k ∈ N with k ≥ 3. Then

(
4k − 1 − k · (2k − 1) 1

k

) (
1 + 1

2k − 1

)k−1
>

(
(2k − 1) 1

k − 1
k · (2k − 1)

)k

. (4.86)

Proof. Since k ≥ 3, we have 2k − 1 ≤ 2k, so (2k − 1) 1
k ≤ 2. Then

4k − 1 − k · (2k − 1) 1
k ≥ 2k − 1 . (4.87)

Meanwhile,

(
(2k − 1) 1

k − 1
k · (2k − 1)

)k

= (2k − 1) ·
(

1 − 1
k · (2k − 1)1+ 1

k

)k

< 2k − 1 . (4.88)
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Combining ( 4.87 ) and (  4.88 ), we obtain

(
4k − 1 − k · (2k − 1) 1

k

)(
1 + 1

2k − 1

)k−1
>
(
4k − 1 − k · (2k − 1) 1

k

)
(Since 1 + 1/(2k − 1) > 1)

≥ 2k − 1 (By (  4.87 ))

>

(
(2k − 1) 1

k − 1
k · (2k − 1)

)k

. (By (  4.88 ))

Thus the required inequality (  4.87 ) holds, which completes the proof.

Lemma 53. Let n ≥ 2 and k ≥ 3, where k, n ∈ N. Suppose

n
1
k − 1

k
+ 2
n

− 2
kn

> 1 + 2k
n

− k

n
k−1

k

. (4.89)

Then k < n.

Proof. We will show the constraint in (  4.89 ) is incompatible with the range k ≥ n. Let

t = n
1
k . Then n = tk. Since k ≥ n, we have t = n

1
k ≤ k

1
k . We have

n
1
k − 1

k
+ 2
n

− 2
kn

> 1 + 2k
n

− kn
1
k

n
, ∀k ≥ n ⇐⇒ (4.90)

ktk+1 − tk(k + 1) + k2t− 2k2 + 2k − 2 > 0, ∀t ∈
(
0, k 1

k

]
, (4.91)

where ( 4.91 ) is obtained from (  4.90 ) by multiplying both sides by kn, substituting n = tk,

and rearranging.

In order to upper bound the left hand side of (  4.91 ), we define a function f : [0,∞) → R by

f(x) = xk
(
k1+ 1

k − k − 1
)

+ k2x− 2k2 + 2k − 2 .
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For 0 ≤ t ≤ k
1
k , we have ktk+1 ≤ ktkk

1
k , so the left hand side of ( 4.91 ) can be upper bounded

as follows:

ktk+1 − tk(k + 1) + k2t− 2k2 + 2k − 2 ≤ tk
(
k1+ 1

k − k − 1
)

+ k2t− 2k2 + 2k − 2

= f(t) . (4.92)

Observe f ′(x) = kxk−1
(
k1+ 1

k − k − 1
)

+ k2 and f ′′(x) = k(k − 1)xk−2
(
k1+ 1

k − k − 1
)
. By

Lemma  66 the function f is convex for all k ≥ 3. Thus f has a global maximum on the

interval [0, k 1
k ] which is attained at one of the endpoints. We check the value of the function

is negative at both endpoints of [0, k 1
k ]:

• f(0) = −2k2 + 2k − 2 = −k2 − (k − 1)2 − 1 < 0 .

• f(k 1
k ) = 2k2k

1
k − 3k2 + k − 2 < 0 by Lemma  55 .

By convexity, it follows that f(t) < 0 for all t ∈ [0, k 1
k ]. Combining this fact with (  4.92 ), we

get

ktk+1 − tk(k + 1) + k2t− 2k2 + 2k − 2 ≤ f(t) < 0 ∀t ∈ [0, k 1
k ], (4.93)

which implies (  4.91 ) cannot hold when k ≥ n. Thus condition (  4.89 ) in the lemma statement

rules out the range k ≥ n. This completes the proof.

Lemma 54. Let k, n ∈ N such that k ≥ 3 and k < n ≤ 2k − 2. Then

(
1 + 1

n

)k−1
≥ e

(
2k−2−n

n·n
1
k

)
. (4.94)

Proof. Taking log on both sides of ( 4.94 ), the required inequality is equivalent to

ln
(

1 + 1
n

)
≥ 2
n1+ 1

k

− 1
(k − 1) · n 1

k

. (4.95)
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We first show several independent inequalities and then combine them to obtain the inequal-

ity required by the lemma. Recall that ln(1 + x) ≥ x
1+x

for all x > −1 (see, e.g., [ 141 ]).

Taking x = 1/n yields

ln
(

1 + 1
n

)
≥ 1/n

1 + 1/n = 1
n+ 1 . (4.96)

Since n > k ≥ 3, we get n ≥ 3. By Lemma  66 , we obtain n
(

1+ 1
n

)
≥ n + 1. Since k < n, we

get

n
(

1+ 1
k

)
≥ n

(
1+ 1

n

)
≥ n+ 1 . (4.97)

Next we will show that

1
n+ 1 ≥ 2

n1+ 1
k

− 1
(k − 1) · n 1

k

, (4.98)

which is equivalent to

(k − 1) · n1+ 1
k ≥ 2(k − 1)(n+ 1) − n(n+ 1) . (4.99)

By (  4.97 ) we have

(k − 1)n
(

1+ 1
k

)
≥ (k − 1)(n+ 1) . (4.100)

Since n > k− 1, we have k− 1 > 2(k− 1) −n, which multiplied by n+ 1 on both sides gives

(k − 1)(n+ 1) ≥ 2(k − 1)(n+ 1) − n(n+ 1) . (4.101)

Combining ( 4.100 ) and (  4.101 ) yields

(k − 1)n
(

1+ 1
k

)
≥ (k − 1)(n+ 1) (By (  4.100 ))

≥ 2(k − 1)(n+ 1) − n(n+ 1) . (By (  4.101 ))
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Thus ( 4.99 ) holds, so ( 4.98 ) holds as well. Combining (  4.96 ) and (  4.98 ) yields

ln
(

1 + 1
n

)
≥ 1
n+ 1 (By (  4.96 ))

≥ 2
n1+ 1

k

− 1
(k − 1) · n 1

k

(By (  4.98 ))

Thus (  4.95 ) holds, which is equivalent to the required inequality (  4.94 ). This completes the

proof.

Lemma 55. Let k ∈ N such that k ≥ 3. Then 2k2 · k 1
k − 3k2 + k − 2 < 0 .

Proof. Let f : (0,∞) → R be f(x) = 2x2 · x 1
x − 3x2 + x − 2. We check separately for

k ∈ {3, 4, 5, 6}:

• f(3) = 18 · 3 1
3 − 26 < −0.01 < 0 and f(4) = 32 · 4 1

4 − 46 < −0.7 < 0.

• f(5) = 50 · 5 1
5 − 72 < −3 < 0 and f(6) = 72 · 6 1

6 − 104 < −6 < 0.

Thus it remains to show the required inequality when k ≥ 7. The function x
1
x has a global

maximum at e 1
e (see, e.g., Wolfram Alpha [  140 ]). Then

f(x) = 2x2 · x
1
x − 3x2 + x− 2 ≤ 2x2 · e 1

e − 3x2 + x− 2

< −0.11x2 + x− 2

< 0 ∀x ≥ 7 . (4.102)

Thus f(k) < 0 for all k ≥ 3, k ∈ N, as required.

Lemma 56. Let k ≥ 2, n ≥ 1, c ∈ [1/n, 1], and the sequence {γ`}∞
`=1 with γ1 = 0 and γ` = 2`

for ` ≥ 2. Then

x
(

1 + γk−1

n

)
+ (k − 1) · (nc− x)

k
k−1

n · x
1

k−1
− γk−1 · c ≥ c · kn

1
k − γk · c, ∀x ∈ (1/2, nc] .

(4.103)
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Proof. When x = nc, inequality (  4.103 ) is equivalent to

nc
(

1 + γk−1

n

)
− γk−1 · c ≥ c · kn

1
k − γk · ct ⇐⇒ (4.104)

n− kn
1
k ≥ −γk . (Dividing both sides by c and re-arranging terms.)

Since n− kn
1
k ≥ 1 − k for all n ≥ 1, it follows that (  4.104 ) holds if γk ≥ k − 1, which is the

case since γk = 2k. Thus ( 4.103 ) holds when x = nc.

From now on we can assume x ∈ (1/2, nc). Let t = (nc/x− 1)
1

k−1 . Then 0 < t < (2nc−1)
1

k−1 .

Equivalently, x = nc
1+tk−1 , which substituted in ( 4.103 ) gives

x
(

1 + γk−1

n

)
+ (k − 1) · (nc− x)

k
k−1

n · x
1

k−1
− γk−1 · c ≥ ckn

1
k − γk · c ⇐⇒

(
nc

1 + tk−1

)(
1 + γk−1

n

)
+ (k − 1) ·

(
nc− nc

1+tk−1

) k
k−1

n ·
(

nc
1+tk−1

) 1
k−1

− γk−1 · c ≥ ckn
1
k − γk · c . (4.105)

Multiplying both sides of (  4.105 ) by
(
1 + tk−1

)
/c and simplifying, we see ( 4.105 ) is equivalent

to

(k − 1) · tk − tk−1 ·
(
kn

1
k − γk + γk−1

)
+
(
n− kn

1
k + γk

)
≥ 0 . (4.106)

We will show that (  4.106 ) holds, which will imply inequality ( 4.103 ) for all x ∈ (1/2, nc).

We consider two cases, depending on whether k = 2 or k ≥ 3.

Case k = 2.

Since γ1 = 0 and γ2 = 4, inequality (  4.106 ) is equivalent to

t2 − t
(
2
√
n− 4 + 0

)
+
(
n− 2

√
n+ 4

)
≥ 0 ⇐⇒ (4.107)(

t−
(√

n− 2
))2

+ 2
√
n ≥ 0, (4.108)
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where ( 4.108 ) was obtained from ( 4.107 ) by re-arranging terms. Inequality (  4.108 ) clearly

holds, which implies (  4.106 ) and completes the analysis for k = 2.

Case k ≥ 3.

We define a function h : (0,∞) → R to capture the left hand side of (  4.106 ). Then we will

show h is non-negative on the entire domain, which will imply (  4.106 ). Let

h(t) = (k − 1) · tk − tk−1 ·
(
kn

1
k − γk + γk−1

)
+
(
n− kn

1
k + γk

)
. (4.109)

The first and second derivatives of h are

h′(t) = tk−1 · k(k − 1) − tk−2 · (k − 1)
(
kn

1
k − γk + γk−1

)
h′′(t) = tk−2 · k(k − 1)2 − tk−3 · (k − 1)(k − 2)

(
kn

1
k − γk + γk−1

)
. (4.110)

On (0,∞) we have:

• the function h′ has a unique root at t1 = n
1
k + γk−1−γk

k
;

• the function h′′ has a unique root at t2 =
(

k−2
k−1

) (
n

1
k + γk−1−γk

k

)
=
(

k−2
k−1

)
t1.

Clearly t2 < t1. Since n ≥ 1 and γk − γk−1 = 2 when k ≥ 3, we have

n
1
k ≥ 1 > 2

k
= γk − γk−1

k
≥ 0 .

Thus n 1
k + (γk−1 − γk)/k > 0, so t2 > 0. We obtain 0 < t2 < t1. Moreover, h′(t) < 0 for

t < t1 and h′(t) > 0 for t > t1; similarly h′′(t) < 0 for t < t2 and h′′(t) > 0 for t > t2. Thus

h is

• concave and decreasing on (0, t2);

• convex and decreasing on (t2, t1);
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• convex and increasing on (t1,∞).

Thus h has a unique global minimum at t1, so the required inequality ( 4.106 ) holds if h(t1) ≥

0. We have

h(t1) = (k − 1) · tk1 − tk−1
1 ·

(
kn

1
k − γk + γk−1

)
+
(
n− kn

1
k + γk

)
= n− kn

1
k + γk −

(
n

1
k + γk−1 − γk

k

)k

. (4.111)

Since γk = 2k and γk−1 = 2(k − 1) for k ≥ 3, we have

n
1
k + γk−1 − γk

k
= n

1
k − 2

k
≥ 1 − 2

k
> 0 . (4.112)

Using (  4.112 ) in (  4.111 ) gives

h(t1) = n− kn
1
k + 2k −

(
n

1
k − 2

k

)k

> 0 . (By Lemma  57 .)

Thus h(t1) ≥ 0, and so inequality ( 4.106 ) also holds in the case k ≥ 3.

Combining the cases.

In both cases k = 2 and k ≥ 3, inequality ( 4.106 ) holds, which implies (  4.103 ) for all

x ∈ (1/2, nc). This completes the proof.

Lemma 57. Let n ≥ 1 and k ≥ 3, where k, n ∈ N. Then n−kn 1
k +2(k−1)−

(
n

1
k − 2

k

)k
≥ 0 .

Proof. Define f :
[
1 − 2

k
,∞

)
→ R as

f(x) =
(
x+ 2

k

)k

− k
(
x+ 2

k

)
+ 2(k − 1) − xk =

(
x+ 2

k

)k

− kx− xk + 2k − 4 . (4.113)
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The lemma statement requires showing f
(
n

1
k − 2

k

)
≥ 0. We will show that f(x) ≥ 0 for all

x ≥ 1 − 2/k, which will imply the required inequality. We divide the range of x in two parts

and analyze each separately.

Case x ∈
[
1 − 2

k
, 1
]
.

We consider a few sub-cases depending on the value of k:

• If k = 3, then f(x) =
(
x+ 2

3

)3
− 3x − x3 + 2 · 3 − 4 = 1

27 (54x2 − 45x+ 62) . Then

∆ < 0, so f(x) > 0 for all x ∈ R.

• If k ≥ 4, then using the inequalities 1−2/k ≤ x ≤ 1 in the definition of f from (  4.113 )

gives

f(x) ≥ 1k − k · 1 − 1k + 2k − 4 = k − 4 ≥ 0 . (4.114)

Case x > 1.

Then

f(x) ≥ xk +
(
k

1

)
· xk−1 · 2

k
+
(
k

2

)
· xk−2 ·

(2
k

)2
− kx− xk + 2k − 4

= 2xk−1 + 2(k − 1)
k

· xk−2 − kx+ 2k − 4 . (4.115)

When k = 3, using inequality (  4.115 ), we obtain f(x) ≥ 2x2 − 5x/3 + 2 ≥ 0 ∀x ∈ [1,∞) .

Thus from now on we can assume k ≥ 4. Using x > 1 and k ≥ 4, we obtain

f(x) ≥ 2xk−1 + 2(k − 1)
k

· xk−2 − kx+ 2k − 4 (By (  4.115 ))

> 2xk−2 − kx+ k, (4.116)
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Let f1 : (0,∞) → R be f1(x) = 2xk−2 −kx+k. The derivatives are f ′
1(x) = 2(k− 2)xk−3 −k

and f ′′
1 (x) = 2(k − 2)(k − 3)xk−4. Since we are in the case k > 3, we have f ′′

1 (x) > 0 for

x > 0. Thus the function f1 is convex and has a unique global minimum at the point x∗ for

which f ′
1(x∗) = 0, that is, at

x∗ =
(

k

2(k − 2)

) 1
k−3

. (4.117)

Since k ≥ 4, we have k
2(k−2) ≤ 1, and so

f1(x∗) = 2
(

k

2(k − 2)

) k−2
k−3

− k

(
k

2(k − 2)

) 1
k−3

+ k ≥ 2
(

k

2(k − 2)

) k−2
k−3

− k · 1 + k > 0 .

(4.118)

Combining (  4.116 ) and ( 4.118 ) gives f(x) ≥ f1(x) ≥ f1(x∗) > 0 ∀x > 0 . In particular, the

required inequality holds for all x > 1, which completes the case.

Combining the cases, we obtain f(x) ≥ 0 for all x ≥ 1 − 2/k, and so f
(
n

1
k − 2/k

)
≥ 0. This

completes the proof of the lemma.

Corollary 11. For each n ≥ 1 and k ≥ 3, we have: n+ 2k > kn
1
k + 2 .

Proof. Lemma  57 yields n+2k ≥ kn
1
k +2+

(
n

1
k − 2

k

)k
. Since k ≥ 3, we also have n 1

k ≥ 1 > 2
k
,

so
(
n

1
k − 2

k

)k
> 0. Thus n+ 2k > kn

1
k + 2, as required.

4.5 Unordered search Proofs

In this section we include the omitted proofs for unordered search.

4.5.1 Unordered search upper bounds

Here we give the optimal randomized algorithms on a worst case input and deterministic

algorithms for any input distribution for unordered search.
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Deterministic algorithms for a worst case input.

We start with a simple observation, namely that the optimal k-round deterministic algorithm

in the worst case just queries n/k locations in each round.

Observation 4.5.1. For each k ∈ {1, . . . , n}, there is a deterministic k-round algorithm for

ordered search that always succeeds and asks at most n queries in the worst case:

• In each round j ∈ [k], issue bn/kc or dn/ke at locations not previously queried. When

the item is found, return it and halt.

Proof. This algorithm queries n locations in the worst case, and so always finds the element

using at most n queries.

Randomized algorithms for a worst case input.

The optimal randomized algorithm is described next.

Proposition  4.3.1 (restated). Let p ∈ (0, 1] and k, n ∈ N≥1. Then

R1−p(unorderedn,k) ≤ np · k + 1
2k + p+ p

n
.

Proof. Consider the following algorithm, which has an all-or-nothing structure.

� With probability 1 − p: do nothing.

� With probability p: run the following protocol:

• Choose a uniform random permutation π = (π1, . . . , πn) of [n]. For each j ∈ [k],

define

mj = dn · j/ke and Sj = {π1, . . . , πmj} .
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• In each round j ∈ [k]: query all the locations in Sj that have not been queried

yet. Whenever the element is found, return its location and halt immediately.

We bound the success probability and the expected number of queries of the algorithm.

Success probability.

If the algorithm finishes execution in exactly j ≥ 1 rounds, then the number of queries issued

is |Sj| = dnj/ke. By the end of the k-th round, the number of queries issued would be

dnk/ke = n. Thus if the algorithm enters round 1 then it doesn’t stop until finding where

the element is, so the success probability is exactly p.

Expected number of queries.

Let Aj be the event that the algorithm halts exactly at the end of round j. On event Aj, the

algorithm issues dnj/ke queries. The probability of event Aj is

Pr(Aj) = p ·
dn · j

k
e − dn · j−1

k
e

n
. (4.119)

Then the expected number of queries issued by the algorithm is qk = ∑k
j=1 Pr(Aj) · dnj/ke.

Using (  4.119 ), we can rewrite this as

qk =
k∑

j=1
p ·

dn · j
k
e − dn · j−1

k
e

n
·
⌈
n · j

k

⌉

= np+ p

n
·

k−1∑
j=1

(⌈
n · j

k

⌉
−
⌈
n · j + 1

k

⌉) ⌈
n · j

k

⌉
. (4.120)

Applying Lemma  58 with x = n to bound the expression in (  4.120 ) yields

qk ≤ np+ p

n
·
(

−n2(k − 1)
2k + dne + 1

)
= np · k + 1

2k + p+ p

n
. (4.121)

This completes the proof.
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Deterministic algorithms for a random input.

Given an input distribution Ψ = (Ψ1, . . . ,Ψn), we next design an optimal deterministic

algorithm for it.

Proposition  4.3.2 (restated). Let p ∈ (0, 1] and k, n ∈ N≥1. Then

D1−p(unorderedn,k) ≤ np
(

1 − k − 1
2k · p

)
+ 1 + p+ 2

n
.

Proof. Suppose the input distribution is Ψ = (Ψ1, . . . ,Ψn). Let π be a permutation of [n]

such that Ψπ1 ≥ . . . ≥ Ψπn . For each j ∈ [k], let Sj ⊆ [n] be the top dnp · j
k
e array positions

in the ordering given by π, that is:

Sj =
{

π1, . . . , πmj

}
, where mj =

⌈
np · j

k

⌉
.

Consider the following algorithm.

In each round j ∈ [k]: Query the locations in Sj that have not been queried in

the previous j − 1 rounds. Once the element is found, return its location and halt

immediately.

Success probability.

To bound the success probability of the algorithm, observe that the subsets Sj are nested,

that is: S1 ⊆ . . . ⊆ Sk . By the end of round k, the algorithm has only queried locations from

Sk and either found the element or exhausted Sk.

For all j ∈ [k], denote the probability that the sought element is in Sj by

φj =
∑
`∈Sj

Ψ` .
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Lemma  65 gives φj ≥ |Sj|/n. Then the success probability is p̃ = ∑
`∈Sk

Ψ` ≥ |Sk|
n

= dnp· k
k

e
n

≥

p .

Expected number of queries.

Next we bound the expected number of queries. For each j ∈ [k], let Aj be the event that

the algorithm halts exactly at the end of round j. On event Aj, the algorithm issues a total

of |Sj| queries. Moreover, the probability of event Aj is

Pr(Aj) =


φj − φj−1 if 1 ≤ j ≤ k − 1, where φ0 = 0 .

1 − φk−1 if j = k .

(4.122)

Let S0 = ∅. For each j ∈ {0, . . . , k}, define

ηj = φj − |Sj|
n
. (4.123)

We have ηj ≥ 0 since φj ≥ |Sj|/n.

Then the expected number qk of queries issued on input distribution Ψ can be bounded by:

qk =
k∑

j=1
Pr(Aj) · |Sj| = (1 − φk−1) · |Sk| +

k−1∑
j=1

(φj − φj−1) · |Sj| (By (  4.122 ))

=
(

1 − |Sk−1|
n

− ηk−1

)
· |Sk| +

k−1∑
j=1

(
|Sj|
n

+ ηj − |Sj−1|
n

− ηj−1

)
· |Sj| (By definition of ηj)

=
(1 − |Sk−1|

n

)
· |Sk| +

k−1∑
j=1

(
|Sj| − |Sj−1|

n

)
· |Sj|

− ηk−1 · |Sk| +
k−1∑
j=1

(ηj − ηj−1) · |Sj| .

(4.124)

We have 0 = |S0| ≤ |S1| ≤ . . . ≤ |Sk|, and so ∑k−1
j=1 (ηj − ηj−1) · |Sj| ≤ ηk−1 · |Sk−1| . Thus

−ηk−1 · |Sk| +
k−1∑
j=1

(ηj − ηj−1) · |Sj| ≤ −ηk−1 · |Sk| + ηk−1 · |Sk−1| ≤ 0 . (4.125)
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Using (  4.125 ) in (  4.124 ) gives

qk ≤
(

1 − |Sk−1|
n

)
· |Sk| +

k−1∑
j=1

(
|Sj| − |Sj−1|

n

)
· |Sj| . (4.126)

We observe that

(
1 − |Sk−1|

n

)
· |Sk| −

k−1∑
j=1

|Sj−1|
n

· |Sj| = |Sk| −
k−1∑
j=1

|Sj+1|
n

· |Sj| . (4.127)

Adding ∑k−1
j=1 |Sj|2/n to both sides of ( 4.127 ), we obtain

(
1 − |Sk−1|

n

)
· |Sk| +

k−1∑
j=1

(
|Sj| − |Sj−1|

n

)
· |Sj| = |Sk| +

k−1∑
j=1

(
|Sj| − |Sj+1|

n

)
· |Sj| . (4.128)

Substituting (  4.128 ) in (  4.126 ) and using the identity |Sj| = dnp · j/ke gives

qk ≤ |Sk| +
k−1∑
j=1

(
|Sj| − |Sj+1|

n

)
· |Sj| = dnpe +

k−1∑
j=1

(
dnp · j

k
e − dnp · j+1

k
e

n

)
·
⌈
np · j

k

⌉
.

(4.129)

Applying Lemma  58 with x = np gives

k−1∑
j=1

(⌈
np · j

k

⌉
−
⌈
np · j + 1

k

⌉)
·
⌈
np · j

k

⌉
≤ −(np)2(k − 1)

2k + dnpe + 1 . (4.130)

Combining ( 4.129 ) and (  4.130 ) gives:

qk ≤ dnpe + 1
n

(
−(np)2(k − 1)

2k + dnpe + 1
)

= np

(
1 − p(k − 1)

2k

)
+ dnpe

n
+ 1
n

+ dnpe − np

≤ np

(
1 − p(k − 1)

2k

)
+ p+ 2

n
+ dnpe − np . (4.131)

This completes the proof.
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4.5.2 Unordered search lower bounds

In this section we include the unordered search lower bounds.

Proposition  4.3.3 (restated). Let p ∈ (0, 1] and k, n ∈ N≥1. Then R1−p(unorderedn,k) ≥

np · k+1
2k

.

Proof. For proving the required lower bound, it will suffice to assume the input is drawn

from the uniform distribution. By an average argument, such a lower bound will also hold

for a worst case input.

Let Ak be a k-round randomized algorithm that succeeds with probability p when facing the

uniform distribution as input and denote by qk(n, p) the expected number of queries asked

by Ak on the uniform distribution.

In round 1, the algorithm has some probability δm of asking m queries, for each m ∈

{0, . . . , n}. Moreover, for each such m, there are different (but finitely many) choices for the

positions of the m queries of round 1. However, since the goal is to minimize the number of

queries, it suffices to restrict attention to the best way of positioning the queries in round 1,

breaking ties arbitrarily between different equally good options. For unordered search, each

queried location is equivalent to any other since a query only reveals whether the element is

there or not.

For each m ∈ {0, . . . , n}, we define the following variables:

• δm is the probability that the algorithm asks m queries in the first round.

• αm is the probability that the algorithm finds the element in one of the rounds in

{2, . . . , k}, given that it didn’t find it in the first round.
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The probability of finding the element in the first round is m/n, so the probability that

the algorithm may need to continue to one of the rounds in {2, . . . , k} is (n − m)/n. The

expected number of queries of Ak on the uniform distribution is

qk(n, p) =
n∑

m=0
δm

(
m+

(
n−m

n

)
· qk−1(n−m,αm)

)
, (4.132)

where the variables are related by the following constraints:

n∑
m=0

δm = 1 (4.133)

pm = m

n
+
(
n−m

n

)
· αm, ∀m ∈ {0, . . . , n} (4.134)

p =
n∑

m=0
δm · pm (4.135)

0 ≤ αm ≤ 1, ∀m ∈ {0, . . . , n} (4.136)

δm ≥ 0, ∀m ∈ {0, . . . , n} . (4.137)

Base case.

Proposition  4.4.2 gives q1(n, p) ≥ np, as required.

Induction hypothesis.

Suppose q`(v, s) ≥ vs · `+1
2`

for all ` ∈ [k − 1], v ∈ N, and s ∈ [0, 1].

Induction step.

Using the induction hypothesis in (  4.132 ) gives

qk(n, p) =
n∑

m=0
δm

(
m+ n−m

n
· qk−1(n−m,αm)

)

≥
n∑

m=0
δm

(
m+ (n−m)2

n
· αm · k

2k − 2

)
. (4.138)
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Substituting αm = (n · pm −m)/(n−m) from ( 4.134 ) in (  4.138 ) gives

qk(n, p) ≥
n∑

m=0
δm

(
m+ (n−m)(n · pm −m)

n
· k

2k − 2

)
. (4.139)

Lemma  60 gives

m+ (n−m)(n · pm −m)
n

· k

2k − 2 ≥ n · pm

(
k + 1

2k

)
. (4.140)

Using (  4.140 ) in (  4.139 ) gives

qk(n, p) ≥
n∑

m=0
δm

(
n · pm · k + 1

2k

)
= n ·

(
k + 1

2k

)
·

n∑
m=0

δm · pm

= np ·
(
k + 1

2k

)
. (Since p = ∑n

m=0 δm · pm by ( 4.135 ))

Next we give the lower bound on the distributional complexity.

Proposition  4.3.4 (restated). Let p ∈ (0, 1] and k, n ∈ N≥1. Then D1−p(unorderedn,k) ≥

np
(
1 − k−1

2k
p
)
.

Proof. For each ` ∈ N, let A` be an optimal `-round randomized algorithm that succeeds

with probability p when facing the uniform distribution as input. Let q`(n, p) be the expected

number of queries of algorithm A` when given an array of length n.

Since Ak is deterministic, it asks a fixed number m of queries in round 1. Moreover, since

the input is drawn from the uniform distribution, each location is equally likely to contain

the answer, and so the actual locations do not matter, but rather only their number. Thus

the probability of finding the answer in round 1 is m/n. Let α be the probability that the

algorithm finds the element in one of the later rounds in {2, . . . , k}, given that the element

was not found in the first round.
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Given these observations, the expected number of queries of the deterministic algorithm can

be written as

qk(n, p) = m+
(
n−m

n

)
· qk−1(n−m,α), (4.141)

where the variables are related by the following constraints:


p = m

n
+
(

n−m
n

)
· α

0 ≤ α ≤ 1 .
(4.142)

We prove by induction on k that that

qk(n, p) ≥ np

(
1 − k − 1

2k · p
)
. (4.143)

Base case.

Proposition  4.4.2 shows that q1(n, p) ≥ np.

Induction hypothesis.

Suppose q`(v, s) ≥ vs
(
1 − `−1

2`
· s
)

for all ` ∈ [k − 1], v ∈ N, and s ∈ [0, 1].

Induction step.

We prove (  4.143 ) holds for k and all n ∈ N, p ∈ [0, 1]. The induction hypothesis gives

qk−1(n−m,α) ≥ (n−m)α
(

1 − k − 2
2k − 2 · α

)
, (4.144)

217



which substituted in (  4.141 ) yields

qk(n, p) = m+
(
n−m

n

)
· qk−1(n−m,α) ≥ m+ α(n−m)2

n

(
1 − k − 2

2k − 2 · α
)
. (4.145)

Since α = (np−m)/(n−m) by ( 4.142 ), we obtain

qk(n, p) ≥ m+ (np−m) (n−m)
n

(
1 − k − 2

2k − 2 ·
(
np−m

n−m

))

≥ np

(
1 − k − 1

2k · p
)
. (By Lemma  59 )

This completes the induction step and the proof.

4.5.3 Lemmas for unordered search

In this section we include the lemmas used to prove the unordered search bounds.

Lemma 58. Let x ∈ R and k ∈ N, where x, k > 0. Then

k−1∑
j=1

(⌈
x · j

k

⌉
−
⌈
x · j + 1

k

⌉) ⌈
x · j

k

⌉
≤ −x2(k − 1)

2k + dxe + 1 . (4.146)

Proof. For every j ∈ [k], let bj = dxj/ke−xj/k. The left hand side of (  4.146 ) can be rewritten

as

k−1∑
j=1

(⌈
x · j

k

⌉
−
⌈
x · j + 1

k

⌉) ⌈
x · j

k

⌉
=

k−1∑
j=1

(
x · j

k
+ bj − x · j + 1

k
− bj+1

)(
x · j

k
+ bj

)
(4.147)

=
k−1∑
j=1

(
−x2j
k2 + bj (bj − bj+1) + x

k

(
j(bj − bj+1) − bj

))
.

(4.148)
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The last term of the sum in ( 4.148 ) almost entirely cancels:

k−1∑
j=1

x

k
·
(

j (bj − bj+1) − bj

)
= −bk · x(k − 1)

k
≤ 0 . (4.149)

Combining ( 4.148 ) with (  4.149 ), we get

k−1∑
j=1

(⌈
x · j

k

⌉
−
⌈
x · j + 1

k

⌉) ⌈
x · j

k

⌉
≤

k−1∑
j=1

(
−x2j
k2 + bj (bj − bj+1)

)

= −x2(k − 1)
2k +

k−1∑
j=1

bj (bj − bj+1) . (4.150)

Next we bound the summation term in (  4.150 ). If bj ≥ bj+1 ≥ bj+2 for some j ∈ [k− 2], then

bj(bj − bj+1) + bj+1(bj+1 − bj+2) ≤ bj(bj − bj+2) . (4.151)

Thus if there is a (weakly) decreasing sequence bj ≥ bj+1 ≥ . . . ≥ bj+t for some t ≥ 2 and

j ∈ [k − t], then applying inequality ( 4.151 ) iteratively gives

j+t−1∑
i=j

bi (bi − bi+1) ≤ bj (bj − bj+t) . (4.152)

We will use inequality (  4.151 ) to collapse some of the terms in the sum ∑k−1
j=1 bj(bj − bj+1).

Towards this end, let G = ([k], E) be a line graph where the vertices are {1, . . . , k} and the

edges E = {(j, j + 1) | j ∈ [k − 1]}. For each j ∈ [k − 1], if bj ≥ bj+1 then edge (j, j + 1) is

colored with black and depicted as oriented down, and otherwise it is colored with yellow

and oriented up.

We also give each vertex j ∈ [k] a color cj ∈ {R,B}, such that c1 = ck = R. Furthermore, for

each j ∈ [k − 1], if bj < bj+1 then both endpoints of the edge are colored red: cj = cj+1 = R.

All other vertices are colored blue (B). See Figure  4.6 for an illustration.

Let `1 = 1 < . . . < `m = k be the red vertices in G and L = {`1, . . . , `m}. For all i ∈ [m− 1]:
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Figure 4.6. Given k ≥ 2 and numbers b1, . . . , bk ∈ [0, 1), we construct a graph
with edges (j, j + 1) for each j ∈ [k − 1]. For each j ∈ [k], if bj ≥ bj+1, the edge from
j to j + 1 is oriented downwards and is colored with black. If bj < bj+1, the edge
from j to j + 1 is oriented upwards and is colored with yellow. The endpoints of all
the yellow edges are added to the set L, together with special vertices 1 and k. All
the vertices in L are colored red and the vertices in [k] \ L are colored blue. For the
graph in the picture we have k = 14 and L = {1, 4, 5, 6, 7, 8, 13, 14}. Each element
`j of L is marked in red near the corresponding node.

• if the path from `i to `i+1 has black edges, then b`i ≥ . . . ≥ b`i+1 and so inequality

( 4.151 ) gives

`i+1−1∑
j=`i

bj(bj − bj+1) ≤ b`i

(
b`i − b`(i+1)

)
. (4.153)

• else, the path from `i to `i+1 has no black edges. Then `i+1 = `i + 1, and so the next

inequality trivially holds:

b`i

(
b`i − b`(i+1)

)
≤ b`i

(
b`i − b`(i+1)

)
. (4.154)

Combining ( 4.153 ) and (  4.154 ), we can bound the sum of all bj’s as follows:

k−1∑
j=1

bj (bj − bj+1) ≤
m−1∑
i=1

b`i

(
b`i − b`(i+1)

)
. (4.155)
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Since bj ∈ [0, 1) for all j, we have b`i

(
b`i − b`i+1

)
≤ (1 − b`i+1) and b`i+1

(
b`i+1 − b`i+2

)
≤ b`i+1 .

Thus adjacent terms in (  4.155 ) sum to at most 1. Then

• If m− 1 is even, then

m−1∑
i=1

b`i

(
b`i − b`(i+1)

)
≤ m− 1

2 <
m

2 . (4.156)

• If m− 1 is odd, then

m−1∑
i=1

b`i

(
b`i − b`(i+1)

)
≤
⌊
m− 1

2

⌋
+ b`i

(
b`i − b`(i+1)

)
≤
⌊
m− 1

2

⌋
+ 1 = m

2 . (4.157)

Combining ( 4.156 ) and (  4.157 ), we obtain

m−1∑
i=1

b`i

(
b`i − b`(i+1)

)
≤ m

2 . (4.158)

Combining ( 4.155 ) with (  4.158 ) while summing over all j ∈ [k − 1] gives

k−1∑
j=1

bj (bj − bj+1) ≤ m

2 . (4.159)

Let D = {j ∈ [k − 1] | bj < bj+1} and ∆ = |D|. Since bj = dxj/ke − xj/k, we have bj ≤ bj+1

if and only if dxj/ke − xj/k ≤ dx(j + 1)/ke − x(j + 1)/k (†). Since x/k > 0, inequality (†)

implies

dxj/ke + 1 ≤ dx(j + 1)/ke ∀j ∈ D . (4.160)

Consider the elements of D in sorted order: d1 < . . . < d∆. We will show by induction that

dx · di/ke ≥ i for all i ∈ [∆] . (4.161)
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The base case is i = 1. Indeed dx · d1/ke ≥ 1 since x · d1/k > 0. We assume inequality

( 4.161 ) holds for i and show this implies the inequality for i + 1. We have

⌈
x · di+1

k

⌉
≥
⌈
x · di + 1

k

⌉
(Since di+1 > di and di, di+1 ∈ N.)

≥
⌈
x · di

k

⌉
+ 1 (By (  4.160 ).)

≥ i + 1 . (By the inductive hypothesis.)

This completes the induction, so (  4.161 ) holds. Now we can bound the size of D. Since

d∆ ∈ [k − 1], we have dx · k/ke ≥ dx · d∆/ke. By (  4.161 ), we have dx · d∆/ke ≥ ∆. Thus

dxe =
⌈
x · k

k

⌉
≥
⌈
x · d∆

k

⌉
≥ ∆ . (4.162)

Observe that ∆ is equal to the number of yellow edges in the graph G, since j ∈ D if and

only if the edge (j, j + 1) is yellow. Thus the number of endpoints of yellow edges in G is

at most 2∆. Since |L| = m and L consists precisely of all the endpoints of yellow edges

together with vertices 1 and k, we have m = |L| ≤ |{1, k}| + 2∆ = 2 + 2∆ . Since ∆ ≤ dxe

by ( 4.162 ), we obtain

m ≤ 2 + 2∆ ≤ 2 + 2dxe . (4.163)

Combining ( 4.163 ) with (  4.159 ), we get

k−1∑
j=1

bj (bj − bj+1) ≤ dxe + 1 . (4.164)

Combining ( 4.164 ) with (  4.150 ) gives

k−1∑
j=1

(⌈
x · j

k

⌉
−
⌈
x · j + 1

k

⌉) ⌈
x · j

k

⌉
≤ −x2(k − 1)

2k +
k−1∑
j=1

bj (bj − bj+1) ≤ −x2(k − 1)
2k + dxe + 1 .

This completes the proof.
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Lemma 59. Let k, n ∈ N, x ∈ [0, n], and p ∈ [0, 1]. Suppose k ≥ 2. Then

x+ (np− x) (n− x)
n

(
1 − k − 2

2k − 2 · np− x

n− x

)
≥ np

(
1 − k − 1

2k · p
)
. (4.165)

Proof. Let f : R → R be

f(x) = x+ (np− x) (n− x)
n

(
1 − k − 2

2k − 2 · np− x

n− x

)
− np

(
1 − k − 1

2k · p
)
. (4.166)

Then the required inequality ( 4.165 ) is equivalent to showing f(x) ≥ 0 for all x ∈ [0, n] .

Expanding the terms in the expression for f(x), we get

f(x) ≥ 0 ⇐⇒

x+ np− x− x(np− x)
n

−
(
k − 2
2k − 2

)
(np− x)2

n
− np+ np2

(
k − 1

2k

)
≥ 0, (4.167)

which after simplification is equivalent to

x2k2 − x · 2knp+ n2p2 ≥ 0 . (4.168)

The quadratic equation in (  4.168 ) has a unique global minimum at x∗ = np/k, with f(x∗) =

0. Thus ( 4.168 ) holds, so ( 4.167 ) holds and so f(x) ≥ f(x∗) = 0 ∀x ∈ [0, n] as required.

Lemma 60. Let k, n,m ∈ N, where k ≥ 2, n ≥ 1, and m ∈ {0, . . . , n}. Let γ ∈ [m/n, 1].

Then

m+ (n−m)(n · γ −m)
n

· k

2k − 2 − n · γ
(
k + 1

2k

)
≥ 0 . (4.169)

Proof. Inequality ( 4.169 ) is equivalent to

m+ nγ · k

2k − 2 −m · k

2k − 2 −mγ · k

2k − 2 + m2

n
· k

2k − 2 − n · γ · k + 1
2k ≥ 0 . (4.170)
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Multiplying both sides of ( 4.170 ) by 2nk(k − 1) and rearranging, we get that (  4.169 ) is

equivalent to

γn(n−mk2) +mn(k2 − 2k) +m2k2 ≥ 0 . (4.171)

If n ≥ mk2 then ( 4.171 ) clearly holds. Else, assume n < mk2. Since m/n ≤ γ ≤ 1, we have

γn(n−mk2) ≥ n(n−mk2) . (4.172)

Using (  4.172 ), we can bound the left hand side of (  4.171 ) as follows:

γn(n−mk2) +mn(k2 − 2k) +m2k2 ≥ n(n−mk2) +mn(k2 − 2k) +m2k2 = (n−mk)2 ≥ 0 .

Thus ( 4.171 ) holds when n < mk2 as well, which implies (  4.169 ) holds in all cases, as

required.

4.6 Cake cutting and sorting in rounds proofs

In this section we study cake cutting in rounds and discuss the connection between sorting

with rank queries and proportional cake cutting. We first introduce the cake cutting model.

Cake cutting model.

The resource (cake) is represented as the interval [0, 1]. There is a set of players N =

{1, . . . , n}, such that each player i ∈ N is endowed with a private valuation function Vi that

assigns a value to every subinterval of [0, 1]. These values are induced by a non-negative

integrable value density function vi, so that for an interval I, Vi(I) =
∫

x∈I vi(x) dx. The

valuations are additive, so Vi
(⋃m

j=1 Ij
)

= ∑m
j=1 Vi(Ij) for any disjoint intervals I1, . . . , Im ⊆

[0, 1]. The value densities are non-atomic, and sets of measure zero are worth zero to a

player. W.l.o.g., the valuations are normalized to Vi([0, 1]) = 1, for all i = 1 . . . n.
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A piece of cake is a finite union of disjoint intervals. A piece is connected (or contiguous)

if it consists of a single interval. An allocation A = (A1, . . . , An) is a partition of the cake

among the players, such that each player i receives the piece Ai, the pieces are disjoint, and⋃
i∈N Ai = [0, 1]. An allocation A is said to be proportional if Vi(Ai) ≥ 1/n for all i ∈ N .

Query complexity of cake cutting.

All the discrete cake cutting protocols operate in a query model known as the Robertson-

Webb model (see, e.g., the book of [  91 ]), which was explicitly stated by [  63 ]. In this model,

the protocol communicates with the players using the following types of queries:

• Cuti(α): Player i cuts the cake at a point y where Vi([0, y]) = α, where α ∈ [0, 1] is

chosen arbitrarily by the center  

3
 . The point y becomes a cut point.

• Evali(y): Player i returns Vi([0, y]), where y is a previously made cut point.

An RW protocol asks the players a sequence of cut and evaluate queries, at the end of which

it outputs an allocation demarcated by cut points from its execution (i.e. cuts discovered

through queries). Note that the value of a piece [x, y] can be determined with two Eval

queries, Evali(x) and Evali(y).

When a protocol runs in k rounds, then multiple RW queries (to the same or different agents)

can be issued at once in each round. Note the choice of queries submitted in round j cannot

depend on the results of queries from the same or later rounds (i.e. j, j + 1, . . . , k).

4.6.1 Upper bounds

We will devise a protocol that finds a proportional allocation of the cake in k rounds of

interaction, which will also give a protocol for sorting with rank queries. For the special case

of one round, a proportional protocol was studied in [  111 ,  142 ]. Our high level approach is

to iteratively divide the cake into subcakes and assign agents to each subcake.
3

 ↑ Ties are resolved deterministically, using for example the leftmost point with this property.
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Proposition 4.6.1. There is an algorithm that runs in k rounds and computes a proportional

allocation with a total of O(kn1+1/k) RW queries.

We first describe the algorithm, and then prove Proposition  4.6.1 . The idea behind the

algorithm is to partition the cake into n1/k subcakes and assign n1−1/k agents to each section,

such that every agent believes that if they ultimately get a proportional share of their

subcake, then they will have a proportional slice overall. Then all that remains is to recurse

on each subcake in parallel in the successive rounds.

One complication is that our only method of asking agents to cut a subcake, the Cut query,

requires that we know the values of the boundary of the subcake to that agent. However,

the boundaries of the subcakes are known only with respect to one agent (possibly different

agents for each boundary). We circumvent this difficulty by instead asking each agent to

divide a further subset of their subcake whose boundary values for their valuation are known.

In Algorithm 1, this further subset for each agent i is the interval [Cuti(ai),Cuti(bi)).

Algorithm 1.

Input:

• Cake interval [x, y] to be divided.

• Agent set A among whom the cake is to be allocated.

• For each agent i ∈ A, values ai and bi in [0, 1].

• Number of remaining rounds k.

Procedure:

1. If |A| = 1, allocate the whole interval to the sole agent. Otherwise, continue.

2. Define z = d|A|1/ke and define mj = d|A| · j
z
e − d|A| · j−1

z
e for each j ∈ [z].

3. Query Cuti
(
ai + (bi − ai) · 1

|A|
∑j

`=1 m`

)
for all agents i ∈ A and all j ∈ [z − 1].
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4. For j = 1, 2, . . . , z − 1:

(a) Select Sj to be the mj agents i among A \
(⋃j−1

`=1 S`

)
with the smallest values for

Cuti
(
ai + (bi − ai) · 1

|A|
∑j

`=1 m`

)
.

(b) Set cj to be the mjth smallest value for Cuti
(
ai + (bi − ai) · 1

|A|
∑j

`=1 m`

)
among

all i ∈ A \
(⋃j−1

`=1 S`

)
.

5. Set Sz = A \
(⋃z−1

`=1 S`

)
, c0 = 0, and cz = 1.

6. In parallel in the following rounds, recurse on the the following instance for each j ∈ [z]:

• The cake interval to be divided is [cj−1, cj].

• The set of agents is Sj.

• For each agent i ∈ Sj, set new(ai) = ai + (bi − ai) · 1
|A|
∑j−1

`=1 m`.

• For each agent i ∈ Sj, set new(bi) = ai + (bi − ai) · 1
|A|
∑j

`=1 m`.

• The number of remaining rounds is k − 1.

To initially run Algorithm 1, use as input the following parameters. The cake interval to be

divided is [0, 1]. The set of agents is [n]. For each agent i ∈ N , set ai = 0 and bi = 1. The

number of (remaining) rounds is k.

Example of running Algorithm 1.

(173) Let n = 4 and k = 2. Let the agents’ value densities be as shown in Figure  4.7 . After

the first round we will have

• Cut(a1) = 0.65,Cut(b1) = 1,Cut(a2) = 0.5,Cut(b2) = 1,Cut(a3) = 0,Cut(b3) =

0.45,

Cut(a4) = 0,Cut(b4) = 0.4.

The dividing line between the two subcakes, i.e. c1, will be Cut(a3) = 0.5.
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Figure 4.7. A potential value distribution for four agents from Example 1.
When running Algorithm 1 on the shown value density functions with k = 2,
after the first round we will have a1 = a2 = 0.5, b1 = b2 = 1, a3 = a4 = 0,
and b3 = b3 = 0.5. This leads to the Cut values shown. In the second round,
Algorithm 1 will recurse on the subcake [0,Cut(a3)) = [0, 0.5] with agents 3
and 4 and on the subcake [0.5, 1] with agents 1 and 2.

(174) Let n = 1000 and k = 3. Algorithm 1 works as follows in each round:

1. Round 1: everyone is asked to mark their 1
10 ,

2
10 , . . . ,

9
10 points. These are used

to separate the agents into 10 subcakes, each containing 100 agents.

2. Round 2: Everyone is asked to mark their 1
10 ,

2
10 , . . . ,

9
10 points within their

respective value interval [ai, bi]. For example, for the second subcake each agent

marks their 11
100 ,

12
100 , . . . ,

19
100 points. Again these are used to separate each

subcake further into 10 subcakes, each containing 10 agents.
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3. Round 3: Everyone is asked to mark their 1/10, . . . , 9/10 points within their

respective value interval. This time when assigning agents to subcakes, the

algorithm assigns only 1 to each, so we’re done.

Next we prove that the algorithm correctly computes a proportional allocation of the cake

in k rounds.

Proof of Proposition  4.6.1 . Consider Algorithm 1. We claim that after j rounds each subcake

contains at most n1−j/k agents. In the base case, after 0 rounds, the sole subcake contains

all n agents. In the inductive case, we assume that after j rounds each subcake contains at

most n1−j/k agents. Consider an arbitrary subcake containing m agents and an arbitrary `.

Then

m` = dm · j
dn1/ke

e − dm · j − 1
dn1/ke

e ≤ m1−1/(k−j) ≤ n1− j+1
k (4.175)

This concludes the induction. Then after k rounds each subcake contains at most n1−k/k = 1

agents. Thus the algorithm generates an allocation in k rounds.

Next we claim inductively that at the start of every call to Algorithm 1, for all i ∈ N we have

x ≤ Cuti(ai) and Cuti(bi) ≤ y. In the initial call to Algorithm 1 this is true since 0 ≤ Cuti(0)

and Cuti(1) ≤ 1. In the recursive call in step 6, consider an arbitrary j ∈ [z] and an arbitrary

agent i ∈ Sj. If j = 1, then cj−1 = x ≤ ai = ai + ai + (bi − ai) · 1
|A|
∑j−1

`=1 m` = new(ai) by

inductive assumption. If instead j > 1, then because i /∈ Sj−1, we know by definition of cj

that

cj−1 ≤ Cuti

ai + (bi − ai) · 1
|A|

j∑
`=1

m`

 = Cuti(new(ai)) . (4.176)
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Either way, in the recursive call we have x = cj−1 ≤ Cuti(new(ai)). If j = z then cj = y ≥

bi = ai + (bi −ai) · 1
|A|
∑j

`=1 m` = new(bi) by inductive assumption. And if instead j < z, then

because i ∈ Sj, we know by definition of cj that

cj ≥ Cuti(ai + (bi − ai) · 1
|A|

j∑
`=1

m`) = Cuti(new(bi)) . (4.177)

Therefore x ≤ Cuti(ai) and Cuti(bi) ≤ y at the start of every call to Algorithm 1.

To argue that every agent receives value at least 1/n, we proceed by induction on k. In

particular, we claim that at the start of every call to Algorithm 1, every agent i has bi −ai ≥

|A|/n. In the initial call to Algorithm 1 this is true since 1 − 0 = n/n. In the recursive call

in step 6, consider an arbitrary j ∈ [z] and an arbitrary agent i. Because x ≤ Cuti(ai) and

Cuti(bi) ≤ y at the start of each call to Algorithm 1, we have that agent i values [x, y] as at

least bi −ai. By definition of new(ai) and new(bi) in step 6, we have by inductive assumption

new(bi) − new(ai) = (bi − ai) · mj

|A|
≥ mj

n
(4.178)

This completes the induction. When Algorithm 1 returns, it gives each agent i the interval

[x, y]. Since x ≤ Cuti(ai) and Cuti(bi) ≤ y, this has value at least bi − ai ≥ 1
n

to agent i.

To argue the bound on the number of queries, we proceed by induction on k. For k = 1,

the bound is n2, which is satisfied since we issue n − 1 queries for each of n agents. In the

inductive case, in the first round we issue dn1/ke − 1 ≤ n1/k queries for every agent, for a

total of at most n1+1/k. By the inductive assumption, the remaining number of queries is

dn1/ke∑
j=1

(k − 1)m1+1/(k−1)
j ≤ (k − 1)

(dn1/ke∑
j=1

mj

)1+1/k

= (k − 1)n1+1/k (4.179)

Combining, we get at most kn1+1/k queries in total.

A key step in connecting cake cutting with sorting will be the following reduction, which

reduces sorting a vector of n elements with rank queries to proportional (contiguous) cake
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cutting with n agents. Rank queries have the form “How is rank(xj) compared to k?”, where

the answer can be “<”, “=”, or “>”.

Proposition 4.6.2. There exists a polynomial time reduction from sorting n elements with

rank queries to proportional cake cutting with n agents. The reduction holds for any number

of rounds.

The reduction from sorting to cake cutting was essentially done in the work of Woeginger

and Sgall [ 63 ], but appears implicitly. We formalize the connection to rank queries and note

the reduction is round-preserving. The proof of Proposition  4.6.2 is in section  4.6.3 .

Proposition 4.6.3. There is a deterministic sorting algorithm in the rank query model that

runs in k rounds and asks a total of O(kn1+1/k) queries.

Proof. By the reduction from sorting to cake cutting in Proposition  4.6.2 , the upper bound

follows from Proposition  4.6.1 .

The sketch of the resulting deterministic sorting algorithm is as follows. In the first round,

for each x in the array, query comparing rank(x) to dn1−1/ke, d2n1−1/ke, . . . , dn − n1−1/ke.

This divides the array into dn1/ke blocks of indices of the form (d(i−1)n1−1/ke, din1−1/ke) for

i = 1, 2, . . . , dn1/ke. Each element either has its exact rank revealed, or is found to belong to

a particular block. Then recursively call the sorting algorithm in each block.

4.6.2 Lower bound

In this section we first show a lower bound for sorting in the rank query model; for determin-

istic algorithms this bound improves upon the bound in [  62 ] by a constant factor and the

proof is simpler (see Section  4.6.4 ). Deterministic algorithms are relevant specifically for fair

division, since some studies find that it is preferable to avoid randomness in the allocations

if possible when dealing with human agents.
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Proposition 4.6.4. Let c(k, n) be the minimum total number of queries required to sort n

elements in the rank query model by the best deterministic algorithm in k rounds. Then

c(k, n) ≥ k
2en

1+1/k − kn .

Alon and Azar [  62 ] show a lower bound of Ω
(
kn1+1/k

)
for randomized sorting with rank

queries, which together with the reduction in Proposition  4.6.2 implies the next corollary.

Corollary 12. Let A be an algorithm that runs in k rounds for solving proportional cake

cutting with contiguous pieces for n agents. If A succeeds with constant probability, then it

issues Ω(kn1+1/k) queries in expectation.

The proof of Proposition  4.6.4 is given in section  4.6.4 .

4.6.3 Sorting to cake cutting reduction

Here we prove the reduction of sorting to proportional cake cutting where the sorting is not

with comparisons, but rather with queries that, given an item p and index i return whether

the rank of p is less than, equal to, or greater than i. The bulk of the work has already been

done by Woeginger and Sgall [ 63 ] through the introduction of a set of cake valuations and

an adversary protocol. We present again their valuations and adversary protocol without

proving the relevant lemmas; we would refer the reader to their paper for the proofs. Then

we perform the last few steps to prove the reduction.

Definition 4.6.1. [ 63 ] Let the α-point of an agent p be the infimum of all numbers x such

that µp([0, x]) = α. In other words, Cutp(α) = x.

We fix 0 < ε < 1/n4. The choice is not important.

Definition 4.6.2. [ 63 ] For i = 1, . . . , n let Xi ⊂ [0, 1] be the set consisting of the n points

i/(n+ 1) + kε with integer 1 ≤ k ≤ n. Further let X = ⋃
1≤i≤n Xi

By definition every agent’s 0-point is at 0. The positions of the i/n-points with 1 ≤ i ≤ n

are fixed by the adversary during the execution of the protocol. In particular, the i/n-points

232



of all agents are distinct elements of Xi. Note that this implies that all i/n-points are left of

all (i + 1)/n points.

Definition 4.6.3. [ 63 ] Let Ip,i be a tiny interval of length ε centered around the i/n-point

of agent p.

We place all the value of each agent p in her Ip,i for i = 0, . . . , n. More precisely, for

i = 0, . . . , n she has a sharp peak of value i/(n2 + n) immediately to the left of her i/n point

and a sharp peak of value (n − i)/(n2 + n) immediately to the right of her i/n point. Note

that the measure between the i/n and (i + 1)/n points is indeed 1/n. Further note that the

value µp(Ip,i) = 1/(n + 1). Also note that the Ip,i are all disjoint except for the Ip,0, which

are identical. Finally note that every α-point of an agent p lies inside one of that agent’s

Ip,is.

Definition 4.6.4. [ 63 ] If x ∈ Ip,i, then let cp(x) be the corresponding i/n-point of agent p.

Definition 4.6.5. [ 63 ] We call a protocol primitive iff in all of its cut operations Cutp(α)

the value of α is of the form i/n with integer 0 ≤ i ≤ n.

Lemma 61. [ 63 ] For every protocol P there exists a primitive protocol P ′ such that for every

cake cutting instance of the restricted form described above,

1. P and P ′ make the same number of cuts.

2. if P assigns to agent p a piece J of measure µp(J ) ≥ 1/n, then also P ′ assigns to

agent p a piece J ′ of measure µp(J ′) ≥ 1/n.

It is also true that given P , protocol P ′ can be quickly constructed. This follows directly

from Woeginger and Sgall’s constructive proof of the above lemma. This implies that we,

the adversary, may assume w.l.o.g. that the protocol is primitive. We can now define the

adversary’s strategy. Fix a permutation π on [n]. Suppose at some point the protocol asks

Cutp(i/n). With multiple queries in the same round, answer the queries in an arbitrary

order.
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1. If π(p) < i, then the adversary assigns the i/n point of agent p to the smallest point

in the set Xi that has not been used before.

2. If π(p) > i, then the adversary assigns the i/n point of agent p to the largest point in

the set Xi that has not been used before.

3. If π(p) = i, then the adversary assigns the i/n point of agent p to the ith smallest point

in the set Xi.

This strategy immediately precipitates the following lemma.

Lemma 62. [ 63 ] If π(p) ≤ i ≤ π(q) and p 6= q, then the i/n point of agent p strictly precedes

the i/n point of agent q

At the end, the protocol must assign intervals to agents. Let y0, y1, . . . , yn be the boundaries

of these slices; i.e. y0 = 0, yn = 1, and all other yj are cuts performed. Then there is a

permutation φ of [n] such that for i = 1, . . . , n the interval [yi−1, yi) goes to agent φ(i).

Figure 4.8. A potential value distribution for four agents. Each agent receives
a spike in value in each of X0, X1, X2, X3, X4 (X0 is not shown). Each spike has
total value 1/5, so to get the required 1/4 value an agent’s slice must include
parts of multiple Xi. Note that Agent 1 receives the first slot in X1, Agent
2 receives the second slot in X2, etc. Further note that slot 1 is allocated to
Agent 1 in X2 and slot 4 is allocated to Agent 4 in X3. This implies that the
slices must be allocated to agents 1, 2, 3, 4 in order.

Lemma 63. [ 63 ] If the primitive protocol P ′ is fair, then yi ∈ Xi for 1 ≤ i ≤ n− 1 and the

interval [yi−1, yi] contains the (i − 1)/n-point and the i/n-point of agent φ(i).
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Lemma 64. [ 63 ] For any permutation σ 6= id of [n], there exists some i with

σ(i + 1) ≤ i ≤ σ(i) .

We can now claim that φ = π−1. To prove this, suppose for sake of contradiction φ 6= π−1;

then π ◦ φ 6= id and by Lemma  64 , there exists an i such that

π(φ(i + 1)) ≤ i ≤ π(φ(i)) (4.180)

Then let p = φ(i + 1) and q = φ(i). Further let zp be the i/n point of agent p and zq be the

i/n point of agent q. By Lemma  64 , we have zp < zq. By Lemma  63 , we have zp ∈ [yi, yi+1]

and zq ∈ [yi−1, yi]. But this implies zp ≥ yi ≥ zq, in contradiction with zp < zq. Therefore

φ = π−1. With this preliminary work out of the way, we are finally ready to state and prove

the reduction.

Proposition  4.6.2 (restated): There exists a polynomial time reduction from sorting an n

element with rank queries to proportional cake cutting with n agents. The reduction holds

for any number of rounds.

Proof. After an evaluation query Evalp(x), where x = Cutp′(i/n) and p 6= p′, there are only

two possible answers: i/(n+ 1) and (i + 1)/(n+ 1). This reveals whether the i/n point of p

is left or right of that of p′. This only reveals new information if π(p′) = i. In this case, the

information is whether π(p) < i or π(p) > i.

After a cut query Cutp(i/n), there are only three answers. These correspond exactly to

π(p) < i, π(p) = i, and π(p) > i. Thus w.l.o.g., all queries are cut queries.

Then given a sorting problem with rank queries, we can construct a proportional cake cutting

instance such that any solution assigns slices according to the inverse permutation of the

unsorted elements of the original sorting problem. The sorting problem can then be solved

without any additional queries. Furthermore, each query in the cake cutting instance can
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be answered using at most one query in the sorting instance. This completes the reduction.

Because of the one-to-one correspondence between queries, it immediately follows that the

reduction holds for any number of rounds.

4.6.4 Sorting lower bound

Our approach for the lower bound builds on the work in [ 75 ]. To show that this sorting

problem is hard, we find a division between two regions of the array such that one must be

solved in future rounds while the other still needs to be solved in the current round.

Proposition  4.6.4 (restated): Let c(k, n) be the minimum total number of queries required

to sort n elements in k rounds in the rank query model. Then c(k, n) ≥ k
2en

1+1/k − kn.

Proof. We proceed by induction on k. For k = 1, note that if any two items pj, pk have no

query for indices i, i + 1 then the adversary can assign those positions to those items and

the solver will be unable to determine their true order. Thus for i = 2, 4, . . . n at least n− 1

queries are necessary, for a total of bn/2c(n− 1). Then

bn/2c(n− 1) ≥ (n/2 − 1/2)(n− 1) = n2/2 − n+ 1/2 > n2/(2e) − n .

For k > 1, assume the claim holds for all pairs (k′, n′) where either (k′ < k) or (k′ = k and

n′ < n). If n1/k ≤ 2e, then

n1/k

2e − 1 ≤ 0 ⇐⇒ k

2en
1+1/k − kn ≤ 0

so the bound is non-positive, and is thus trivially satisfied. Thus we may assume n1/k > 2e.

If there are no queries in the first round, then we have

c(k, n) ≥ c(k − 1, n) ≥ (k − 1)
2e n1+ 1

k−1 − (k − 1)n = k

2en
1+1/k

[(
1 − 1

k

)
n

1
k2−k + 2e

kn1/k

]
− kn
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From here it suffices to show (1 − 1
k
)n1/(k2−k) + 2e

kn1/k ≥ 1.

Recall the AMGM inequality αa + βb ≥ aαbβ with a, b, α, β > 0 and α + β = 1. Taking

α = 1 − 1/k, β = 1/k, a = n1/k2−1/k, and b = 2e/n1/k, we get

(
1 − 1

k

)
n1/(k2−k) + 2e

kn1/k
≥ (2e)1/k ≥ 1 (4.181)

so we may assume there is at least one query in the first round.

Take any k-round algorithm for sorting a set V of n elements using rank queries. Let x be

the maximum integer such that there exist x items with no queries in [1, x] but there do not

exist x + 1 items with no queries in [1, x + 1]. Note that since there is at least one query,

it follows that x < n. Let S be one such set of x items. Then at least n − x items have a

query in [1, x+ 1]. At this point the adversary announces that every element of S precedes

every element of V − S. The adversary also announces the item at position x + 1. We call

this item pmid. None of the n− x queries help to sort the items in S since they are either at

x+1 or for an item not in S, so we also need c(k−1, x) queries to sort S. Additionally, none

of the n− x queries help to sort the items in V − S − {pmid}, so we also need an additional

c(k, n− x− 1) queries to sort V − S − {pmid}. This implies the following inequality.

c(k, n) ≥ c(k, n− x− 1) + (n− x) + c(k − 1, x) (4.182)

We consider two cases.

Case x ≥ k/ ln 2. By the inductive assumption,

c(k, n) ≥ k

2e(n− x− 1)1+1/k − k(n− x− 1) + (n− x) + k − 1
2e x1+1/(k−1) − (k − 1)x

= k

2en
1+1/k

[(
1 − x+ 1

n

)1+1/k

+
(

1 − 1
k

)
x1+1/(k−1)

n1+1/k
+ 2e
kn1/k

]
− kn+ k

(4.183)
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In the AM-GM inequality αa+ βb ≥ aαbβ, taking

α = 1 − 1/k, β = 1/k, a = x1+1/(k−1)

n1+1/k
, and b = 2e

n1/k
, (4.184)

we get

c(k, n) ≥ k

2en
1+1/k

[(
1 − x+ 1

n

)1+1/k

+ x

n1−1/k2 · (2e)1/k

n1/k2

]
− kn+ k (4.185)

Now, since (1 + 1
k
)k ↗ e, we have e1/k > 1 + 1/k. This yields

c(k, n) ≥ k

2en
1+1/k

[(
1 − x+ 1

n

)1+1/k

+ 21/k x

n

(
1 + 1

k

)]
− kn+ k (4.186)

Then recall Bernoulli’s Inequality: (1 − a)t ≥ 1 − at if t ≥ 1 and a ≤ 1. This yields

c(k, n) ≥ k

2en
1+1/k

[
1 − x+ 1

n

(
1 + 1

k

)
+ 21/k x

n

(
1 + 1

k

)]
− kn+ k

=
[
k

2en
1+1/k − kn

]
+ k + 1

2e n1/k
((

21/k − 1
)
x− 1

)
+ k

(4.187)

Then since by L’Hôpital’s rule k(21/k − 1) → ln 2 from above, we have

c(k, n) ≥
[
k

2en
1+1/k − kn

]
+ k + 1

2e n1/k

(
x ln 2
k

− 1
)

+ k . (4.188)

Then by invoking our case assumption that x ≥ k/ ln 2, we get

c(k, n) ≥
[
k

2en
1+1/k − kn

]
+ k ≥ k

2en
1+1/k − kn,

as required.

Case x < k/ ln 2. From inequality (  4.182 ), we get

c(k, n) ≥ c(k, n− x− 1) + (n− x) + c(k − 1, x) ≥ c(k, n− x− 1) + n− k

ln 2 .
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By the inductive hypothesis,

c(k, n) ≥ k

2e(n− x− 1)1+1/k − nk + n− k

ln 2 = k

2en
1+1/k

(
1 − x+ 1

n

)1+1/k

− nk + n− k

ln 2

Using the Bernoulli inequality (1 − a)t ≥ 1 − at with t ≥ 1 and a ≤ 1, we get

c(k, n) ≥ k

2en
1+1/k

[
1 − x+ 1

n

(
1 + 1

k

)]
− nk + n− k

ln 2

=
[
k

2en
1+1/k − nk

]
− k

2en
1/k(x+ 1)

(
1 + 1

k

)
+ n− k

ln 2

≥
[
k

2en
1+1/k − nk

]
− k + 1

2e n1/k

(
k

ln 2 + 1
)

+ n− k

ln 2 (4.189)

At this point we want to show n > k+1
2e n

1/k(1 + k/ ln 2) + k/ ln 2. It suffices to show

both of the following inequalities

(i) 3n
4 >

k + 1
2e n1/k

(
k

ln 2 + 1
)

and (ii) n

4 >
k

ln 2 (4.190)

Inequality (i) holds if and only if

n1−1/k >
2(k + 1)

3e

(
k

ln 2 + 1
)

Since n > (2e)k, we get that n1−1/k > (2e)k−1. For k ≥ 2, we obtain (2e)k−1 >

2(k+1)
3e

(
k

ln 2 + 1
)
, which concludes (i).

To show (ii), recall that n > (2e)k. Then for k ≥ 2 we get (2e)k > 4k/ ln(2), which

implies (ii). This concludes the second case and the proof of the theorem.

4.7 Folklore lemmas

Here we include a few folklore lemmas that we use, together with their proofs for complete-

ness.
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Lemma 65. Let y = (y1, . . . , yn) with y1 ≥ . . . ≥ yn ≥ 0 and ∑n
i=1 yi = 1. Then ∑i

j=1 yj ≥

i/n ∀i ∈ [n].

Proof. Let i ∈ [n]. Since y is decreasing, we have
(∑i

j=1 yj
)
/i ≥

(∑n
j=i+1 yj

)
/(n− i) (†).

Assume by contradiction that y1 + . . . + yi <
i
n

(‡). Adding yi+1 + . . . + yn to both sides of

(‡), we get

1 = y1 + . . .+ yn <
i
n

+ yi+1 + . . .+ yn

≤ i
n

+ n− i
i ·

 i∑
j=1

yj

 (By (†))

<
i
n

+ n− i
i ·

( i
n

)
(By (‡))

= 1 . (4.191)

We obtained 1 < 1, thus the assumption in (‡) must have been false and the lemma holds.

Lemma 66. Let x ∈ R≥3. Then x1+ 1
x > x+ 1 .

Proof. Raising both sides to the power 1/(x + 1), the inequality is equivalent to x
1
x >

(x+ 1)
1

x+1 , or (1/x)ln (x) > (1/(x+ 1))ln (x+ 1) (†).

Define g(x) = (ln x)/x. Its derivative is g′(x) = (1 − ln x)/x2. Thus g is increasing on [1, e)

and decreasing on [e,+∞). It follows that (†) holds for x ≥ 3 and the lemma follows.

The next lemma shows that if v is an integrable function defined on [0, 1], then there is an

interval I of length p on the circle where the interval [0, 1] is bent such that the point 0

coincides with 1, with the property that
∫

I v(x) dx = p.

Lemma 67. Let v : [0, 1] → R≥0 be an integrable function with
∫ 1

0 v(x) dx = 1. Then there

exists a ∈ [0, 1] such that one of the following holds:

•
∫ a+p

a v(x) dx = p, where 0 ≤ a ≤ 1 − p;
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•
∫ a

0 v(x) dx+
∫ 1

a+1−p v(x) dx = p, where 1 − p < a < 1.

Proof. We define a new function g : [0, 1] → R≥0, such that

g(x) =



∫ x+p
x v(y) dy if 0 ≤ x ≤ 1 − p .

∫ 1
x v(y) dy +

∫ x+p−1
0 v(y) dy if 1 − p < x ≤ 1 .

To prove the lemma it suffices to show that there exists c ∈ [0, 1] such that g(c) = p. Indeed,

the function g is continuous and so integrable. Let F : [0, 1] → R≥0 be F (x) =
∫ x

0 v(y) dy .

Using this notation, we get:

∫ 1

0
g(x) dx =

[∫ 1−p

0

∫ x+p

x
v(y) dy dx

]
+
[∫ 1

1−p

(∫ 1

x
v(y) dy

)
+
(∫ x+p−1

0
v(y) dy

)
dx
]

=
∫ 1−p

0

(
F (x+ p) − F (x)

)
dx+

∫ 1

1−p

(
(F (1) − F (x)) + (F (x+ p− 1) − F (0))

)
dx

=
∫ 1−p

0
F (x+ p) dx−

∫ 1−p

0
F (x) dx+

∫ 1

1−p
1 dx−

∫ 1

1−p
F (x) dx+

∫ 1

1−p
F (x+ p− 1) dx

(Since F (1) = 1 and F (0) = 0.)

=
∫ 1−p

0
F (x+ p) dx−

∫ 1−p

0
F (x) dx+ p−

∫ 1

1−p
F (x) dx+

∫ 1

1−p
F (x+ p− 1) dx .

(4.192)

We have

∫ 1

1−p
F (x+ p− 1) dx =

∫ p

0
F (y) dy and

∫ 1−p

0
F (x+ p) dx =

∫ 1

p
F (z) dz . (4.193)

Using (  4.193 ) in (  4.192 ) yields

∫ 1

0
g(x) dx =

∫ 1

p
F (z) dz −

∫ 1−p

0
F (x) dx+ p−

∫ 1

1−p
F (x) dx+

∫ p

0
F (y) dy . (4.194)

Notice that
∫ 1

p F (z) dz +
∫ p

0 F (y) dy =
∫ 1

0 F (x) dx and −
∫ 1−p

0 F (x) dx −
∫ 1

1−p F (x) dx =

−
∫ 1

0 F (x) dx.
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Therefore, the four integrals in ( 4.194 ) cancel each other and we get
∫ 1

0 g(x) dx = p . (†)

Applying the first mean value theorem for definite integrals in (†), there exists c ∈ [0, 1] with

the property that g(c) = 1
1−0

∫ 1
0 g(x) dx = p, which concludes the proof.
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