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ABSTRACT

We have investigated the up-down asymmetry in inelastic electron
ecattering from polarized protons. It is shown that the contributions
from (possible) T violation and a3 effects caﬁ be separated experimentally.
We have demonstrated that the contribution of bremsstrahlung emission
to the asymmetry is negligible. An expression for the two-photon exchange
contribution is obtained, assuming a f)roton intermediate state and N*(1238)
final state. The expression has been evaldated numerically and found to
be one order of magnitude smaller. than the observed asymmetry. A
general formalism for lcalcu].a_ting the up-down asymmetry is presented
and its physical significance discussed. The relation between T violation
and the measurement of the asymmetry given by Christ and Lee is sharpened

and the experimental results of Berkeley~-SLAC collaboration discussed.
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I. INTRODUCTION

Inelastic electron scattering from a polarized proton was suggested by Christ
and Lee! to test time reversal invariance in electromagnetic interactions involving
hadrons. The experiment was carried out at CEA by Chen et al., 2 and more
~ recently at SLAC by Berkeley-SLAC collaboration3 and the results of the
latter show some up—down ésymmetry'as shown in Fig. 1. éhrist and Lee1 showed
that in the ozz cross section the up-down asymmetry should be zero if parity con-
servation and time reversal invariance hold. It is ébvidué that if the up~down
asymmetry is due to a violation of time reversal invariance, the asymmetry
should have the same sign whether the incident particle is an electron or a posi-
tron, be;:ause in the lowest order Born approximation the cross section is prof
portional to the square ’of the cha.fge of the electron. On the other hand, the oz3
cross section has two parts4: one which changes sign and one which does not,
when e is replaced by e+. In Chapter II we show that only the part which changes
sign contributes to the up-down asymmetry if T and P invariances hold. Therefore
ifT in§ariénce ‘holds the experimental pbints for e+p and e"vp in Fig. 1 should
be symmetric (up to oz3 in cross section) with respect to the line representing
no up-down asymmetfy. This simple consideration shows that up to oz3 in cross
section the effects of T violation a:hd oz3 cross sections can be separated out
experlmentally and are given respectlvely by

°é" S I

A(T violation) = £ (L.1)
t+ o l+ a 11‘ 0' 1
and
o + cr .
A(oz3) - 1 e 1+ e t ‘ (1.2)
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Hence in order to test the T invariance it is not necessary to calculate the up-down
asymmetry due to a3 cross sections.

" Nevertheless we have investigated the part of the oz3 cross sections which
gives the up-down asymmetry for its own interest. 5 from the discussion in
Chapter II, the most general class of oz3 diagrams cohtributing to the up-down
ﬁsymmetli'y are as shown in Fig. 2a ahd 2b. Figure 1 shows that no statistically
significant evidence of T violation was found. The positron and electron data
were taken at different incident eneriges, hence no mear;ing‘ful separation of two
effects is possible from the data. However, if we ignore the possibility of T
violation, the electron data do show some evideﬁce of oz3 effect between one pion
threshold ar}d two pion threshold. Itihappens that the nature of the final states in
this kinematical region is better known than other regions from other experiments.
Therefore we shall concentrate our discussion in this region. In this kinemétical
region, f' in Fig. 2a is either p or N + 7 and f in Fig. 2bis N + 7.

The purpose of this paper is the following : i

1. To develop a general formalism for calculating the up-down symmetry;

2. By assuming some simple intermediate and final states for Fig. 2a and 2b,
and actuaily calculating their contributions to the asymmetry to learn not
only many of the salient features of the problem, but also to obtain a rough
order of magnitude of the asymmetry;

3. To investigate what physics one can learn from this kind of experiment in
general.

In‘ Chapter I, we first generalize the theorem gi\}en by Christ and Lee to
include the higher order electromagnetic effects and show that only the imaginary
parts of two classes of diagrams shown in Fig. 2a and 2b contribute to the up-down

asymmetry if T and P invariances hold. From Fig. 2a and 2b, it is obvious that
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phases of the final states always get canceled out hence one can always use the
convention that the Feynman diagrams at the left of each figure is real and the
imaginary part can occur only,whenall the particles in the intermediate states of
the right-hand side of each figufe are on the mass shell.

We also show that A(T violation) is proportional to the interference between
the nbrmal current j? and the abnormal current j?‘ where PT j;‘(PT)"1 = j? and
PT j?(PT)"1 = —j?. This is very similar to the effect of parity nonconservation
in weak interactions where the obse‘rv.able effects show only in the interference
terms between the vector and axial vector currents.

In Chapter III we treat the class of diagrams represented by Fig. 2a. We find
that these diagranis contribute a negligible amount to the up~down asymmetry com-
pared with the experiment. In Chapter IV we treat Fig. 2b éssuming that the final
state is an N*(1238) and the intermediate state is a ;;roton. For these particular
final and intermediate states the contribution to the up~down ésyﬁametry is found
to be roughly 1/10 of the’ maximum observed asymmetry. In Chépte'r V, we
sharpen Christ-Lee Theorem and show that the measurement of A(T violatioﬁ)
gives a lower bound fof the ratio of the magnitude of the abnormal current to that
of the normal current. It is pointed out that unless there are some conspiring
cancellations among the products of the matrix elements of j; and j: and those of
jz and j: at all energies and angles, the smallness pf the asymmetry found by
Rock et al., 3 indicates the smallness of ja compared with jn. Hence it is unlikely
that the apparent CP violation in the decay K2—~ 27 is due to the T violation in the
electromagnetic interaction of hadrons. We aiso give a general formula for
calculating A(ozs) for arbitrary final and intermediate states in ﬁerms of a product

of three currents. Possible refinements of our calculation of A(a3) are discussed.

The relations between the two photon exchange which appears in the calculation of

-4 -




A(a3) and other observable two photon interaction phenomena are discussed.
Appendix A giires an alternative derivation of some of the results of Chapter II
using T and P invariances and unitarity of s-matrix. Appendix B gives an
example of how to use Cutkosky's ruie to obtain the imaginary pért of a two
photon exchange diagram'. Appendix C shows‘why the infrared divergent parts
of Fig. 2a and Zb‘ do not contribute to the up;down asymmetry. In Appendix D
we;show that due to the current conservation no singularity is induced by
ignoring the mass of the electron'in calculating the up~down asymmetry and

hence no terms such as ﬁn(s/mz) or In(~t/ mz) exist in the up-down asymmetry.
II. PRELIMINARY CONSIDERATIONS

In this chapter we summarize all those obsefvations which can be made
without lengthy calculations. The incident and outgoing electrons are labeled
Py and Py respectively and the target proton is denoted by Py 8 is the polarization

vector of the target proton.

A. Since we are dealing with an experiment which detects only one final
electron, we have only four independen(: vectors Py» Py Pg and s to construct an
invariant representing the asymmetry. This invariant must be linear in s. Since
8 is a pseudovector, Lorentz invariance and parity conservation demand that the

asymmetry must be proportional to -

€upysP1aPapPey®s = MUR1* B &liap (I.1)
Thus as long as only one final electron is detected, only the component of the

polarization vector perpendicular to the scattering plane can enter into the expres-

sion for the asymmetry, This is true no matter what the final states of other




unobserved particles are and true to all orders in strong and electré!_)magnetic
interactions. Let us denote the initial proton state by | P, t> if the spin of p, is
parallel to P. 1 x_ﬁa and |p,}> if it is antiparallel to 5.1 X "53. Let us define a
coordinate system in the laboratory frame as shown in Fig. 3. In the laboratory
system s can be written as

‘ B = (sor SX’ Sys sz‘).= (0, 0,8, 0) (L. 2)
where7

S = Number of protons with spin up - Number of protons with spin down
Number of protons with spin up + Number of protons with spin down  (IL 3)

Later we shall use the rest frame of the final undetected particle or particleé

(rest frame of N*, hereafter _referred to as R frame) to perform the spin sum and
the center-of-mass system (gl + Ro = 0 hereafter referred to as C frame) to
perform the integration in the two photon exchange diagram. Since both the C

frame and the R frame are obtained from the vllaboratory system (hereafter denoted
as L frame) by Lorentz transformations in the scattering plane (the x-z plane),

the components of s given by Eq. (II.2) are unchanged by the Lorentz transformations

i.e., s has only the y component in L, C and R frames.

B. We show that if T invariance holds, those terms in the a3 éross sections
which do not change sign when e~ is feplaced by e+, will not contribute to the
asymmetry. These terms can be classified into three categories:

1. Interference between the lowest order Born term (ez) and the next

order terms (e4) which still contains only one photon exchange: such

as vertex corrections, self-energy diagrams, and the vacuum polariza-

tion diagram,




2. Square of bremsstrahlung diagrams all of which contain one'B real photon
emission only from electron lines. |
3. Square of bremsstrahlung diagrams all of which contain one real photon
emission only from hadron lines. |
The e4 terms in the category 1 hav.e the same structure as the e2 term but with
d.ifferent form factors, hence from Christ-Lee theorem they should not contribute
to the asymmetry if T invariance holds. Christ-Lee theorem also applies to
category 3. Hence we need to consider only the categofy 2. However, we observe
that all tﬁree categories have properties that: ‘1) only one virtual photbn is exchanged
between the electron current and the hadron current, and 2} no interference between
photons emitted by electrons and those emitted by hadrons. We prove in the fol-
lowing that no asymmetry can be produced under these two assumptions. Our
proof can be regarded as a generalization of Christ-Lee theorem. With these two

assumptions, the asymmetry can be written as

A=o(}) - ag) «fd4A i Tald -—174— B (L. 4)

AT WY
where A is the four momentum of the photon exchanged between the electron system
and the hadron system (note that A is not necessarily equal to g = Py - Py because
we are allowing the possibility of bremsstrahlung emission by electrons). B;w is
the second rank tensor representing the product of two hadron sides of the matrix
elements: |

. . el 4.
By =§: [<p2t|3#|f><flJVIp21> - <Ppjli, £ ><111 Ip, | >]8 (A+ Py~ Py
" (I.5)




|
where the final state f is allowed to have any number of photons emitted by hadrons

in addition to the hadrons. L*” is a similar tensor representing the product of
two lepton sides of the matrix elements, except the sign between thé two terms
in Eq. (I.5) should be changed to plus because the incident electron is not polarized.
Current conservation réquires A Buv 4—-A”pr= 0, therefore we need to consider
" only the space components Bij of BI-W with i,j=1,2,3, the fourth component
being determined by the other three. ‘Hermiticity of the electromagnetic current
ji requires -
*

By = By (1. 6)

On the other hand, taking the complex conjugate of Eq. (IL 5) directly and using

the antiunitarity of X = PT operator we obtain

*‘_ ; =1 S P
Bij—zf:[<X(p2’)|X]iX |Xf><Xf|XJjX | X(pg})>

T | -1 4
- <X(py P XiX |Xf><Xf|X]jX |X(p21)>]8(A+p2-pf) (IL.7)

In the laboratory system p, is at rest and our states I'pzi > and |p,|> are
eigenfunctions of the angular momentum operator Jy with eigenvalues 1/2 and ~1/2
respectively. Using Wigner's convention, we have |

Xlpy}> = -lpyf> (IL. 8)

and

i

Xlpyt> = +lpy|> | (1. 9)

If PT invariance holds, the current operator ji satisfies

S
XX~ = (IL. 10)




Obviously we have

d ol -rr

SMre N fe
2 XL ><Xio
f

Substituting Eqs. (II.8) through (II. 11) into Eq. (II.7) we obtain

B =3B, ({ (1L 12)

Comparing Eq. (IL 6) with Eq. (II.12) we conclude

B, = - B, (1. 13)

770 ,

Using a similaf argument we obtain Lij = Lji, hence 1M BM? = 0, Since all three
categories of terms can be written in the form of Eqgs. (II.4) and (IL 5) we have
proved our assertion. In other 'words, thev terms in the oz3 créss section which
contribute to the up-down asymmetry are: 1) interference between the lowest
Born approximation and the two photon exchange diagram, 2) interference between
bremsstrahlung originating with the electron and that briginating with the hadron.
In both of these cases the cross section is proportional to the cube of thé charge
of the electron. Hence when e  is replaced by e+, this asymmetry changes sign.

C. We show that if the up~down asymmetry is produced by an interference
between two diagrams T, and T2 then only the imaginary part of T'{T2
contributes to the asymmefry. By definition the asymmetry produced by the

interference between T1 and T2 is proportional to

A= 3 Trys s (T;Tz + Ty Tl) , (IL 14)
spin of bl
all particles

+ .
where E T,T, can in general be expressed as a sum of terms each of which is
spin
expressible as a product of y matrices times an invariant function. Let us write




therefore

+
Try.s T.T, = Z;Tr'y s I'F, (IL. 15)
spin % 12 g 5"" t

where I‘i is a product of y matrices and Fi an invariant function. The second
term in Eq. (IL. 14) is then
' + i
Y Try.s8T,T, =2 Try.8 I'.F, (II. 16)

spin o= 271§ o& 14
~ Because of parity conservation, Y5 in l‘1 should alWays occur in pairs and hence
they can be eliminated by commuting through other -y matrices. We can write
therefore I = '%]'%2 cee ,%-211 +1 Wheren >1 and gl =247~ 21;% Because of
Eq. (II.2) s has only the y component, hence

+ T gt
Trysg I = TrYgs Yo(—,%zml“',-;z%l)”o

Using the identities y% = 1, ‘Y’;= ‘)’0, ’)'-i'-= -Yi, 70')';70 = YM’ we obtain

al a’at = a a,a
YO ;2n+1-0052 1 ‘yo—;zn'i-l.‘.aZul'
Hence
B
From Eqgs. (IL.14) through (I 17), we obtain
A=) Try;s I2iImF, . (1L 18)
1 & 1 . 1
This proves our assertion. It should be noted that Tr Vs % Fi is pure imaginary

and hence A is real as it should be. When Feynman diagrams are used for the

calculation, T invariance usually imposes a reality conditions for the coupling
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constants and Fi in Eq. (II.18) can have an imaginary part only wheni the inter-
mediate states are kinematically possible to be real (due to unitarity). Using this
fact we can immediately conclude that diagrams shown in Fig. 4a, b, ¢ do not con-
tribute to the up~down asymmetry, hence the diagrams shown in Fig. 2 contain
all the diagrams needed to be considered for the up-down asymmetry. We notice
that in both Fig. 2a and 2b, the phases of the final states always get cancelled

out, hence the diagram in the left-hand side of Figs. 2a and 2b can be chosen to

be real. If we choose this phase convention, the imaginairy part of the matrix

element in Fig. 2a can be obtained by replacing the Breit-Wigner formula for the

resonant intermediate state f with its imaginary part:
1 - My

Im - = -
(A+py)° -M%HI‘MR [(A+p2)2 - R]2 + o

where MR is the mass of the resonance and I" is the width qf the resonance with

a proper threshold behavior. The imaginary part of the two photon exchange
diagram Fig. 2b can be obtained from Cutkosky rule (see App;endix B). Indeed if
we let T1 represent the matrix element ‘of the Born term and T2 rei:res_ent the two
photon exchange diagram, then Eq. (11. 18) is équivalent to the statement that

+
A=Try,sTiT, . - (IL. 19)

where Tzcut is obtained from T2 by replacing the denominator of each of the propa-

gators in the intermediate states by the following rule

. 2 2
G R
{ i i 4

When a set of Feynman diagrams are given, usually there is no ambiguity
whatsoever as to how the asymmetry should be computed. The procedure sketched

above is exactly what happens in the actual calculation. However the reasoning
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given is not very rigourous. In Appendix A we give a more satisfacitory derivation
of the results of this section using T and P invariances and unitarity.

D. Both the real and imaginary pa.ri;8 of the two photon exchange diagram
shown in Fig. 2b have infrared divergence when the hadron intermediate state
is either a proton or equal to the final state f. However, .it is well known that
the infrared divergent part of the matrix element is proportional to a product of
the lowest order Born diagram and a scalar function containing infrared divergence
factor.4 Since tﬁe lowest order diagram does not produée the up-down asymmetry,
we conclude that the infrared part of the two photon exché.nge diagram does not
contribute to the up-down asymmetry. A simple demonstration of this fact is
given in Appendix C. |

E. It is well known that the real part of the two photon exchange diagram
shown in Fig. 2b is not by itself gauge invariaﬁt, one has to add the criss-cross
two photon exchange diagram Fig. 4c 1n order to have gauge invariance. However,
the imaginary part of the two photon exchange diagram Fig. 2b is gauge invariant,
This can be seen easily if we remember that the imaginary part of this matrix
element is obtained by putting both the electron and the hadron intermediate state
on the mass shell. Since both the top énd the bottom part of the diagram is gauge
invariant if the intermediate state is on the mass shell, the product of them must
also be gauge invariant.

F. Since we are dealing with a very high energy electron, the mas‘s of the
electron can be ignored. In Appendi); D, we show that because of gauge invariance,
no singularity is induced by ignoring the mass kof the electron when integrating
with respect to the intermediate states in the two photon exchange diagram.

G. For completeness let us reexpress Christ-Lee t;heorem1 when the electro-

magnetic current operator ju has a component which does not transform according
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to Eq. (II.10). Let us decompose the current j“ into two parts (normal and
abnormal) ju = jz + jz‘, where jll: and jz‘_ behave differently under X = PT:

No-1 _.n a.~1 _ _.a
Xj; X" = j; and X]?X = -j; .
Equation (II. 7) becomes then

* N a3 DAy

1s .a ; .a 4
- <ppflj - 3fle ><al3] - :j|p21>]8 (@+py - Py (IL 20)

. On the otherhand Eq. (IL 6) gives

* _ P n . .a n. .a
Bj; = B ; [<p2t 7+ 518 >l + g >

.n . noo.a, 4 | :
- <, |13 I [E><1]3; + 5 lp2[>] 8" (d4+pgy - Dy (L. 21)

Now in Section ]I B, we have ‘shown that when ]1 = j?, there is no asymmetry, It

is also obvious frém the derivétion there that if ji = j?, there is also no asymmetry.
Hence only the interference terms between j? and j? produce asymmetry, Since

Lij is symmetric, only the symmetric part of Bij contributes to the croSs section,
Equation (II. 6) says that the symmetric part.of Bij is its real part, Summing

Eq. (II. 20) and Eq. (II.21), dividing thé result By 2, and taking the real part, we
obtain

Sym - _
(Byy) ™" = (By; + By)/2
= .n a ' a n
_Re}_;j [<102t|1i|f><fhj | po}> +<p2t|Ji|f><f|Jj Ip,t>

. , . o1s 4
- <p2uJ§‘|f><m§‘|p23> - <p21|3§‘|f><f|]}‘;p21>] x 8 (q+ py - py)

i3 (L. 22)
Applying the symmetry under a rotation operator R = e Z on the first two terms

in Eq. (O.22) and remémbering that Ip2 f > is quantized along the y axis,
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Rlpy}> = 1,10, >, RIpy|> = m_|py}>, we obtain immediately

Sym _ oSym _ oSym _ oSym _
By =By =B =BT =0

Hence only B ™ and BY™ are nonzero.
Xz yZ

9
: L"w= lTrln +m\v"ln +m\«/v = 2/n“nv+nv nu-g-g-o”v\
2 \51 17 77 \t’lt‘s Y1 rg 2 ® I
Hence Lyz=0, and :
2 2
2 (E; - E5)
L% = 1 ™3 I, X p.|
& 21783 ~

where all quantities are in the laboratory system and Q2 = (g.l - 33)2.

Since LY% = 0, the asymmetry is proportional to
_ XZ x0 _ 2,2
N=L (sz + Bzx) + 1L (on + Box) = sz(sz + Bzx)q /q0

2 2 2 -
4(E - K )q ~iq+ x
1 73 e 4 .n, ...a JE: JIUON
-3 Ip; IRef—-———dx T <mylyssfinoniem o] i, >
qng R1%83 an® spinetp, 2175 51k V1 X)L (X [Py
/ (IL. 24)

" Using the same normalization for j“ and |p2>the unpolarized cross section

do(}) + do(}) is proportional to D = L*V Ayv where

. 4 '
A =ﬁ"1q' *4X ¥ <pli%0ite + A0 @lp,>
kv ‘ (21r)4 spin of p2 2 " v Bv 2

= M—Z(pZM -q,(py* q)/qz)(p 9y~ 0, ( Py q)/qz)'(—qZQ‘z)(AX; qzq'OzAzz)

e - g q o |
(g 4,94 )Axx . (1. 25)
The asymmetry A(T violation) defined in Eq. (I.1) is then equal to

A(T violation) = N/D (1I. 26)
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Contracting the tensor in Eq. (II.25), we obtain

2y 2 . 2 -2
D= 2(E;Ey + p, py cos 6,y +m )edQ 2)(‘xx - d"ag A, )
2
+4(E1E3 PP 4 C08H )A

advantages. 1) It is more covariant looking hence easier to apply when one is

using Feynman diagrams, 2) It shows explicitly that the asymmetry is due to the

=~}

jx. 3) It can be more easily cbmpare‘d to the formal expressions of Chapter V

which relate to the asymmetry ‘in the absence of T violation (see Chapter V).
IIl. BREMSSTRAHLUNG DIAGRAMS

In this chapter we show that the class of diagrams represented by Fig. 2a
contributes negligibly to the up~down asymmetry. To show this we first argue
that among all the diagrams which can be represented by Fig. 2a, only the
mechanism represented by Fig. 5 can possibly have a hrée contribution to the
up-down asymmetry in the kinematical region we are interested in. We then
show that Fig. 5 contributes negligibly to the up-down asymmetry compared with
the expemment by an explicit calculation.

We are interested only in the kinematical region where f' in Fig. 2a is a
proton or N + 7, but the only hadron intermediate state f which can have any
significant imaginary part in this kinematical region i;s N*(1238). When the final
state f' is N + 7, the photon enﬁtted is necessarily soft. The matrix element for
emission of a soft photon is proportional to the matrix element for no photon

emission and hence does not produce any up-down asymmetry, Therefore the
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final lstate f must be a proton. This showé that only the mechansim shown in
Fig. 5 can possibly have any significant contribution to the up-down asymmeftry
in the kinematical region of interest;

In the following we proceed to calcuiate‘ the up-down asymmefry due to the
mechanism shown in Fig. 5. We notice that this cross section can be calculated
exactly in terms of the known experimental form factor for the ypN* vertex.
However, we have made an order of magnitude estimate of this cross section by
making several reasonable approximations. We present this rough estimate of ~
the cross secfion because the result happens to be too Srhall to account for the

observed asymmetry. We shall assume a pure M1 transition for ypN* vertex

which can be written a.s9

e Ty (b ) Cyla) V5T 5(d) 1o )

_ a4 Pz, 9P
= 0 Tj(p ) Cy(e) vs[ggp”-qpyu+ Mffgﬁ“ - prm ] a(p,) (HL1)

where llfp(p f) is the Rarita-Schwinger spin 3/2 wave function, q is the momentum
of the photon, q + p 9= Pgp and u( p2) is the spinor representing the ini£ia1 proton,

C3 is the form factor for the transition and can be written asg, ;
1/2 :
C3Mp 2,05 &2+ 19V (1 +9 ) (II1. 2)

The covariant spin sum £or the spin 3/2 wave function is given by
spin

Z /8 (pf)qu( pf) = p

-2 1y ——@70‘7 ] (TL 3)

_ 2
= (pe+ Mg [aﬁ 3pfapf{st. M (pf 713 Peg¥e) -
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In the rest frame of the 3-3 'resonance, P = (Mf, 0), GO@ = Ga 0= 0 and the space

components of Gaﬁ assume a very simple form

0.0,
-%-1- - 8., 0
- 1)
Gij = _ (2Mf) (1I1. 4)
0 0 '

Also in the rest frame of the 3-3 resonance (R frame) the energy of the photon
emitted is independent of the angle as long as the missing mass (p1 - Py + p2)2 =
(k+ p)2 is fixed. For these two reasons we shall use thé rest frame of the 3-3 -

resonance in our calculation.

The ypp vertex in Fig. 5a .can be written as*
eu(p)[a(t), -B(OE+Py), | WPy) = SUEIT, () ulpy) (ILL. 5)
where ,
at) = G_() = -—2-'15-—5 = 2.79 G 1),
(1‘ N
¢
MO = @ - G0 (- L)
and

2
t= (p - pz) .
The matrix element for Fig. 5a is
Tpglle =Y, * 7, =—F— € | 0(py) TU(R) £ (1) w(p,) (I 6)
(p3gn+—my. P, ~X-mgz ¢ Ji; 2
w3 5 a1 &
Since k is small compared with Py and Py, we approximate Eq. (II.6) by

- 1 2 Paie Py€
B, ey 0 6 o) 5 5

(IIL. 7)
where
2 2
q = (pl - P3)
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With this approximatio

n the asymmetry can be written as (for e~ + p)

doff) - do(}) = -e° (_-71:_).5. Zi[lm e ;§3+m33 ] -

/(f;: (;::{k (f;? J4(P1 + Py - k-p- p3) % Tr (gl+m)y"(gs+m)'yv
ph‘:;ton o 75%@2"' 0 I;‘('p;+ M) ex(kgax 3 k?‘y)\ +,k ) pfgoz)\ME ' 1
rol . . :

(Z’; " gi;) ;}ZE Ca(0) Cy(a) (IIL. 8)

The trace involving the elec
™ = lorp. +n
i

The trace involving thé bary
standard covariant technique
go to the rest frame of N* w
matrices in terms éf o matr

use the representation

-1

tron line is

2
Hp? (m —pl-ps)gy” (II.9)

= v_u
= p1p3+p

. y
)7 (B +m)y Py +

on line is too coinpliéated to be evaluated using the
>, We found that the easiest way to evaluate it is to
ith coordinate axes defined by Fig. 3, write all ¥y

ices and actually multiply out the matrices. We

(IIL. 10)

1
‘YO= 0

and the radiation gauge for t

-d

he photon,
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We can reduce the most complicated looking part of the matrix in the baryon

trace into a simple form

| c 0
v
e m 1)y, ™ g = (I 11)
| o o
where
C‘0.= CZ = 0 |
2MQ . S |
T Y R | !
ZMfQ | |
Cy [2(5 Xy - { (g K - kx(gﬁ)}]

and Q is the space component of q.
C, and C, are zero because we bave assumed that the transition y + p—=N*

is caused purely by a transverse photon, C's can élso-be written in a vector form
My o
= — gx[(z-xg)x%xvlg)] (1. 12)

We see that g is proportional to (,s x‘lp, which is a consequence of our agssumption
that the deéay N*—-fp ;l-'y is a pure magnetic dipole transition.

After all the y matrices are multibiied together and traces taken, we sum the
photon polarizations and carry out the integration with respect to the solid angle
of the photon. Everything is straightforwa’rd but tedious. It is interesting to note
however, that the mass of the electron can be set equal to zero without giving any

trouble in our integrations, and all the integrations can be carried out analytically.

In fact ignoring the mass of the electron all the integrations with respect to the
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solid angle of the photon can be reduced into the following four typesll

T 4 2 2 2 3 2 2
_/‘Zd‘l’/ sin@dg (€98 6, sin @ sin’ Y, sin @ sin Ycosy, sinfcos” 6 cos Y)
-0 0 E; - pysinfcosy :

= 28 3,1,1/3, 1/3) | | (ITI. 13)
IR

where E1 = (p“i + mz)l/ 2 Py is the energy of the incident electron.

After all the reductions and integrations, Eq. (III. 8) can be written as ,

3.
20 p M :
do do 34 33 1 ' 2
a1 -5 )=+ ; 7 Ca(0)Co(q ) X
dnae, L, dE, 3T, | (M?_ 2)2 +F2M§3 200G )X,

Mg

(I 14)
where
o2 o2
I I 2 1RP3R
Xp = [kn(pm Pgg) 50 0133] AT NEpp #0122
R

3 2

sin20 -
13R"2 ¢

2 ,
(P1p*P3R) 2 2| o
———————————— - { - g—
+ Q2 P1rP3R —%—q (1-cos 013R) + b(q") S (E2R+M)(ER+M)
R : OR :

1 , ho? o2

R 2 2\ 1RPSR . 2 2
t p-p. "(°°S 613R(p13+p3R)’2lep3R P sin - 6;4p-4
iR P3R , Qg |

: 2 2
(le+p3R) P1rPsRrY : 2
- Qz 5 (1 - cos 613R) (QR+kR(p1R-p3R)(1+COS 013R))
R %R |

I. 15)

Where the subscripts £ and R denote the laboratory frame and the rest frame of
the N* respectively. in order to compare with the experiment, we approximate

the cross section from an unpolarized proton target by the e+ p— e+ N* cross

-20 -




section using the parametrization given by Duffner and Tsai, 9 namely

40® P31 rM,q

9o M+ 2Tl = -1
a0, 48, an,aE; 1= =By () (M?-M’g?,)z R 2

X Cg(qz)v(EZRHVl) (Qf +(BEpp+ E32)2) (101 16)

From Eq. (III 14) and (III. 16) we obtain

do(}) do(}) %o]t} do(})
% =(d%dE3 - dNydE, )1/ (d 39E3 +, dfdydEg )z o
.« Mf 03(0) » Xb | |

S oL ;P c, @) (Eyp+ M) (Qf+ (8, + Eaz)zj (IIL. 17)
where Cs(qz) and X p 2re given by Eqs. (III.2) and (III, 15) reSpec;tively. In terms
of Eu, E3 9 and 013 2 all the quantities appearing in Eqs. (HI 15) and (II. 17) can
be computed (mass of the electron ignored) as follows:
M= 0,938 GeV, a=1/137 |
E=-4 Euﬁslsinz 213, = o +2mE,,-Ey) + M

£
QZ‘E2 +E2;2E E « =E,. =F
g = BT By 10°30°08 Qgp0  Pyg= B1p Pgp= gy

kp = (Mi - Mz) /2My,  pyg= (MEIJZ +q'/ 2)/ My
Pyp = (Mz + 2B, M - M?)/m . Q= MQ/M,
sin 635 = MP) Py, 8in 6,5 /(MP, pPop)
doR= (M% - M+ qz)/sz’ Eor = (M%“ M - qz)/sz
and

E,= (M? +M2)/2Mf.

R
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In order to make an order of magnitude estimate of A,, we notice that various
quantities appearing in Eqs. (III.15) and (IIl. 17) can be classified according to

their magnitudes:

Eu, E3£, le, Pgp ~ 15 GeV
M, My, E,p, Ep ~ 1GeV

2 2 2 2
-q 3 Ql’ QR o~ 0.5 Gev

kR ~ 0.3 GeV.

dogr = Pigp ~P3gp ~ 0. 06 GeV

Hence we can write a.pproxima.telj},

K a@dcyo [ wdhed
5 1- —3— JF-asin 9131{’
3(d) a(q )2M

A =~ -asinf
b . 13R 4MqOR o
and thus we have proved that the asymmetry due to the bremsstrahlung emission

is completely negligible.
IV. TWO PHOTON EXCHANGE CONTRIBUTION

In this chapter we consider a class 6f diagrams represented by Fig. 2b.
We are interested only in the hadron ﬁhal states consisting of one pion plus one
nucleon, The intermediate states can be a proton, various N*'s and continuum
states. The only intermediate state one knows how to handle reliably is a proton,

so we treat this case. In the kinematical region of interesi, the final state N+ 7

is dominated by the formation of N*(1238) and the nonresonant s wave part, The

N* excitation is mainly via magnetic dipole transition; the other two multipoles,

E2 and Q2, contribute less i;ha.nl2 1_0% to the cross section. In this paper we ignore
the nonresonant s wave part as well és E2 and Q2 multipoles of the Nf“ excitation.
The contribution to the asymmetry from the two photon exchange diagram with a

proton as the intermediate state can be obtained from Eq. (II.19) with the help of
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Cutkosky rule, The asymmetry can be written as (fore +p)

: d3p d3p 4
6 1 1 3 9P g% 4
do({) -~ do({) = -e (-1) [ : (P, +Po~Da-Py)
t (2")2 iMp, 1, | 2, 2Ef (277)4 1Py~ P3Py

Tr Y58 M T, ge) v &% 357, 4 (a) @+ MO G0

S ’:lﬁ"kig Cy(a®) Cgta?) | R (Iv.1)

f

The notations are given in Fig, 6. In order to simplify the calculation we shall
ignore the spin of the electfon. 13. This approximation is equivalent to modifying

the trace of the lepton currenf in Eq. (IV.1) in the following way:

toll-t

+m)7 (23+m)7 (g .1s+m)7

A
(2p; -9)” @pg+a")2p, - W) = LV A
ignore electron ,
-+ 8pin :
Because of the current conservation, q”, qMand ¥ can be dropped from LVA” ,

therefore we have LVA” = 8p; p)\ (Iv.3)

3P1°
The trace of the baryon current in Eq. (IV.1) is almost identical to that of

Eq. (II.8), hence we use the rest frame of the N* with the coordinate axes defined

by Fig. 3 to calculate the trace,

Bury = T2 Y5800 + M7, 0(0) Y5 Gy, Y57 o(ANR M) 1, (K)

= = Tr 58 @, + M) LR+ M T (a) ¥ Gy p V5T, (@) (v-4)
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The tensor Bp.)w is nonzero only when p is either x or y due to Egs. (IIl. 11) and

(I11. 12). The tensor va‘u is zero when vy is y. Hence we need to consider only.

p = x for LV)\“ wa . Similarly Bu)w is nonzero only when X is X,y, or z, but
Lv)\M is zero when A=y, hence we need to consider only A = x and z for LV*B

pAp
We may thus write

20 - © s op
L wa =-8p; gTT y5§(g2 +M)p] ru(k)(g+ M))\g: Zp3 A0 75G " %T xﬁ(q) (Iv.5)

From Eq. (II.12), we obtain

> (@) 76 v 1@ [C 0] | Iv.6)
PayTy (' YT, pld) = .
A2, P3N he 75G " Y5Txp 0 o (
where
ZMQp N e |
C=- 3 [2(23 xg )yR + 1qu(£3 . g)R] (IvV.7)

The subscript R refers to the rest frame of the N* and the coordinates are defined

by Fig. 3. Substituting Egs. (IV.6) and (IV.7) into Eq. (IV.5) we obtain

LVM‘B ) 16ia QR

YAy -3 .plxRX (Iv.8)

where

- ~Q.)- ) - 2 _p?
X (E2R+M)[2gp1xR(sz Qp) - ke rP3 I, RP1xR ™ KerP12R) Ky R (P12ROR le)]
-Q|E +§1‘£l(z po+k-pollele. & _-Qy-k k _+k2
RF1RY T3 (4Py " Pyl P ) 1120y pK, R~ QR) - KerPs r(MxR prBZR]

a(k’)

| ' :
¥ 2Qr KorP1xR {plxR (k, g~ QR) - KxgP3sR | (IV. 9)
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In terms of X, the asymmetry for e +p scattering, Eq. (IV.1) can be written as

2 .
do_(}H) do . 3 Qpp Pap\ Cald?)
fa ) 243 Qg 1xR( 32) 3 8((p2+q)2—M?) 21

dE3dQ3 dE3dQ3 3r MWpl(3 Py _q (V. 10)
where _ pz
- [ an, -1 xcya?ard) (Iv.11)
) ‘_
c.m. ko d

The d4p' integration in Eq. (IV.1) was reduced into the form Eq. (IV.1) with the
help of two & + functions in Eq. (IV.1) in the cénter-of—mass system (p1+p_2 = 0).
The cross section in Eq. (IV.10) is the laboratory cross section.

X as given in Eq. (IV.9) is expressed in terms of the rest frame of N* with
the coordinate axes defined by Fig. 3 whereas d.(),p, integration is carried out in
the center-of-mass system. The subscript £, R and C refer to the laboratory
system; the rest frame of N* and the center—of-mass gystem respect_ively. When
B' is parallel to Bl’ kC is zero and when g’ is parallel to 33, the absolute value of

q'2 becomes minimum. When (pl+pz)2 = W2 > Mtz., we have
2 N2 2, 4
@ - (M?-—MZ) m®/W AT

which is zero if the mass of the electron is set equal to zero. These two singular

points in the integrand of Eq, (IV.11) are not true singularities, the integrand is

finite at these two points if we choose the variables of integrations properly. To

see this let us consider the case when 2' is almost parallel to Py k% is then pro~
portional to 92 where 0 is the angle between g' and by X is proportional to kc,
hence it is proportional to 9 and the solid angle dﬂp, is sin0dfdf) which is linear

in 8. Hence the integrand in Eq. (IV.11) is finite when R‘ is parallel to P if the

direction of p' is chosen as the z axis. This shows also that the asymmetry does

not have the infrared divergence as mentioned in the introduction and Appendix C.
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Next we consider the case when p' is almost parallel to 23 If we ignore the

[
mass of the electron, q'2 is proportional to 9'2, where 6! is the angle between
p' and Dg. Because of the relation p' - p=4q', the quantity C in Eq. (IV.7) is
| 3 L ) M om w
proportional to sin #' and hence X is proportional to sin ', The solid angle is
proportional to sin ' if the direcf.ion of Pg is chogen as the z axis. Hence the

integrand in Eq. (IV.11) is finite when p' is parallel to p; even if the mass of

the electron is ignored provided that the direction of Py is chosen as the z axis.
This shows also that the mass of the electron can be ‘i‘gnored in our problem,
and there is no fn m2 term in the asymmetry. In the numerical integration
-for Eq. (IV.11), we divide the region of integration into two parts. In region

I, we choose the direction of p, as the z axis, then carry out the integration
(Iv. 11)', setting the integrand to zero whenever the angle between p' and Ps is
smaller than %0130 . In region II, we choose the direction of ps as the z axis,
then we integrate ' from 0 to :21-013 c* The sum of these two integrations gives

. . d | .
I, We approximate again d(g;%s + d?).(;(d%}:; by Eq. (HI.16) and obtains

A =( do(t) _ _do(l) ) /( dot}) , _doi}) )
t~ \df,dE, dn3§E3 i A dE,; * A dE,

-
M7 QpPiy!

. 7
WEic 2 (@ +(, 4 gy )(EzR“L___M) Cye)

3)R

(IV. 13)

where I is given by Eq. (IV.11),

In order to calculate A‘;, we have to perform two Lorentz transformations
(R—C—1) and two rotations (‘1')‘3 as the z axis when B' is almost parallel to
33, otherwise 21 as the z axis. In Eq. (IV.9) the ‘z axis is-along 9‘)’ in addition
to the two fold integrations with respect to the solid angle of p'. We have done

all these by a computer. 'Since it takes some effort to figure out the best way
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to handle all these by a computer we present in the following how all these can
actually be done. The following presentation also serves as a compact summary
of all the notations and kinematics. We first define constants: M= 0,938,

3, o = 1/137, and the laboratory quantities:

m=0.51x10
E\p= incident electron energy in GeV,
E3 0= outgoing electron energy in GeV,
01 = electron scattering angle in radians.

We then compute all quantities appearing in Eq. (IV.12) in terms of E d

10 E3!2 an
01 in the following sequence.

2212
Py = (B, - m ) %) Pgy= (Bg-m")E, " =2m” - 2 (EjpEgy = PyPgpc08 ),
2 2 '

2 » 2 2
v=Eqy - Bgp Q) PY;+ By - 2By Pgc0s 6, My = M +2My+ o,

2 2)1/2 2_‘ 2

M; = SQRT M;, W* = m® + M? + 2E, M, W= SQRT W7, Ey, = (m” + ME )/W,

E3c = (Wz + m2 - M?)/ZW’ plc = (Eic B m2)1/2’ p3c'= (Egc - mz)l/?’

2 2 . _ 2
cos 013c = (q -2m" + 2E1cE3c)/2 Py.P3e» SN 6130 = SQRT (1 - coS 0130) ,

E p = (ME,, +(d/2))/M, Eyp=(W* - m® - M)/2M,, E,; = (My+ 30/,

Q= MR/ My, aop = (@ +vM/My B,p = (Byggn - (6/2)/Qp,

2 _2\1/2 _2 2 \1/2 L 2
Pir= (Eig =1 )%, pyyp = (Pig - Pigm) % Pg,r = (E3pdgg * (47/2))/Qp,
(w2 _ . 211/2 (2 _.2 \1/2 . _ . ,
Psr= (Egg = ™)™ Pyeq=(P3g~ Pg,p) > 5in 0j5p = (b; sin 6,5 )/ P1g

Integration in region I:
Variables of integration: 6 and ¢. (See Fig. 7a) Quantities containing variables
of integration:

X=cosf cos 0130 + sin Osin Olsccos ¢

2_ .2 _ 2
kc = 2p1c (1 - cos 6), kc = SQRT kc
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(k* Byo = PyPyc(cos figo - X), kop = (K- Pg)o /My,
kz
k,r=|%or%r* 7 ~ & B3)e|/ @ Kyr= Py Sindsing,

2

1 q.

- w06
xR = QP pPap o0 O [[ orZsr* - B3 1R%R ™ 2

13R
K &)
kORElR P ] (E3RqOR+ 2 )
013 i, 2. . 2
L= 0 if x >cos s otherwise I / d cos Of do -ﬂz X a(k )c3(q' )

s ot 2_ 2 2 2 -2
where X is given by Eq. (IV.9), ¢" =q° - 2(1;- 23)0, ak’) = 2'79(1+kc/'71)

b(k?) = 1.79¢2M) " (1+k§/4=1vr2)'1 1+ ki/. 71)"2

1 -3.15(-q'%)1/2

c3(q'2) =M "2.05e 2)1/2 )1/2

(1 + 9(-q"
Integration in region II:

Variables of integration: ' and ¢'. (See Fig. 7b)
' 2

' ran p1 '
L = f d cos 0'/ d¢' —25 Xa(k )03(('-1' )
. kcq

613c -0
2

2_,2 . or ks . .
kc—2plc(1 cos 613ccos() + sin Olscsmf) cos ¢')

_ 2
kc = SQRT kc
(k° Bale = P1oPgc(Co8s Oy3, - cos 07)

= o 1 tal 1
kyR P, sin f'sin ¢

All other expressions are identical to the integration in region I.
Compute I = I+ 12 and then compute At using Eq. (IV.13). The result is

At ~ .75 % 10-2 for ¢ +p at E12 = 18 GeV and q2 =~0,6 GeV2 for the missing mass
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ranging from one pion threshold to the two pion threshold. The reason why At is
go insensitive to the missing mass is that the threshold behaviors of o(4) - o*(})
and o(}) + o(}) cancel out upon taking the ratio in Eq. (IV.3), Our value for A
has a right sign compared with the experiment but has a wrong shape and is one
order of magnitude too small, Admittedly we have made three drastic assumptions:
1) We kept only the proton intermediate state, 2)" We ignored the s-wave back~
ground in the final state and 3) Our 3-3 resonance excitation contains only M1 and
we ignored Q2 and E2 multipoles.
In order to see the effects of ignoring other intermediate states we let the
form factors appearing in the integration I in Eq. (IV.3) equal to constants and
we found that there is no significant change in the value of At thus obtained. This
suggests (but does not prove) that including more intermediate states will not in
' general make the asymmetry larger. In the radiative corrections to the e-unpolarized
proton scattering the correction is roughly (2a/7) f.n(—qz/ mz) I(E/AE). Inthe
asymmetry there is no infrared divergence and also the mass of the electron can
be ignored, hence terms such as fn E/AE and ﬁn(-qz/ mz) can not occur. Further-
more besides o we have a small sin 013 to make the asymmetry small. Hence it

is very difficult to make the asymmetry one order of magnitude larger than o at

small scattering angles.
V. DISCUSSIONS

Berstein, Feinberg and Lee14 noticed that the ratio of ampl.it;udes15 of
1{2——21r to Kl—’ 27 is roughly a/7 and proposed the possibility that the cause of
the CP noninvariance in the K2 decay might be due to the electromagnetic inter-
action of hadrons. If we want to account for the apparent CP }Violation in the decay
K2—> 27 by the possible CP violation in the electromagnetic interaction of hadrons,

the abnormal current j: and the normal current j;l of Eq. (II.24) must have the
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same order'of strength. The experiment of Rock _g_!; al., shows that the asymmetry
is less than 6%. This 6% asymmetry can be either due to a statistical fluctuation,
a3 effect or a genuine T‘violation. It is natural to ask whether one can obtain a
lower limit for the ratio of the matrix element of j? to that of jfl by assuming that
this 6% asymmetry is all due to T violation. It should be noted that one can not
obtain an upper limit of l< s> /< j >| from the asymmetry because even if

<J >/ <J >l is large one can still get no asymmetry 1f the phases of the matrix
elements conspire in a certain way. Ignoring the mass of the electron and using

the properties of j?’ and j? under the operator X=PT, we can simplify Eq. (II.26)

into ' 2
- ed(F) 5 =
Q q
A(T violation) = S (V. 1)
reol § (S -G,
| Q 9
where
. . N ol ] <4,
B=-4Re 2;[<p2fl12|f > <f|iBlpyy> + < Pt i E > < f,]i"pzp] 8%(a+p,- py) (V.2)

s 2 er o] o <o 1],
n 2 a\2

.-—.2[(Jx, + (a2) ] |

Ay = 2%:[' <sz,j§,f>,2 +| <pzf'j:lf >’2] o* (Q+Py - Py)

vE 2 [(J:) + (Ji)z]
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where

T, = |<p2ﬂj§lf>lzs4(q+pz’pf))l/z

('f
3 = (;szﬂ ST RCRCRE IR ) 2

Ty = .|<p21’jilf>lz o+ py- pf))l/z

(z:
f
3, = (fgl%rliilblz8‘*<q+pz-pf>)” :

Using the inequalities ’1} B< |~A'| |]§| and L;A' +Bl < lél + I‘]}‘l , we obtain

. n.a . .na
IB| < 4<JXJZ + JZJX)

n.n
Bl/A. < —XE__ (Ja/Jn+Ja/Jn) (v.3)
_ XX ~ (Jn)2+(Ja)2 z"x X 'z
X X
Hence
2 2 a,n, .a,.n '
IBI/Axx h (1 + Rqo/(-q )) (JZ/Jx + JX/JZ) (V.4)
where16
_ (2,2
R= a?l/q-T = ( < /qO)Azz/Axx
From Egs. (V.1) and (V.4) we obtain 2
2+ cot? %(‘2 )(1+R)
a,.N ., 8,0 s Q
(JZ/JX + JX/JZ) > A(T violation) 5 (V.5)
“Loop 89 2, 2)
(E; +Eg) cotz(QZ)(l+Rq0/ q

In the kinematic region of the bump in Fig. 1 we obtain
a;n . a,.n >. . . 1+R
JZ/JX+ Jx/Jz > IA(T vmlatlon)l T3
Therefore the measurement of A(T violation) of Eq. (I.1) gives the lower bound

of JZ/JE + Jf;/J;1 and if R= %/ op is of order one, the magnitude of A(T violation)
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is roughly equal to this lower bound. Since we can not give an upper;bound for JZ‘
and Ji from a given A(T violation), even if A(T violation) is equal to zeré we
can not say that the T violating current j:- is equal to zero. However it will take
some miraculous cancellations arr;ong various terms in Eq. (V.2) to give zero
asymmetry when j? is comparable to 3? This would be especially true if
A(T violation) is zero at all energies and angles. Hence the smallness of the '
aéymmetry found by Rock et _f& , indicates that T is a good symmetry in the
electromagnetic interaction of hadrons, and the apparent‘ CPviolation of Kz———— 27
decay is very unlikely due to the electromagnetic interactions.

The maximum allowed asyinmetry for any given value of R can be obtained

from the inequality (V.3) and

¥II5) < 2A_A 2 (V.6)

IB| < 4(JnJa'
XX 2z

X Z

The last inequality is equivalent to Eq. (27) of Christ and Lee. From (V.5) and

(V.1) we obtain

1/2
3(E, +E,) (E,E,R) / cos-g-

|A(T violation)] < —5 53 (V.7)
Q +2E1E3(1+R)cos 3
For small angles and small energy loss, the inequality (V.7) reduces to
|A(T viclation)| < 282 (V.8)
= 14+R '

The righthand side is maximum when R = 1 and the maximum allowed ]A(T violation)l ‘
is equal to- 1 whenR=1, .

Let us next discuss the asymmetry due to the oz3 cross sections. We have shown
that the asymmetries due to both the bremsstrahlung and the two photon exchange
have neither the infrared divérgence nor the divergence due to mz-—- 0. For this
reason it is very difficult to obtain an asymmetry which is one order of magnitude

larger than o. The arguments given in Chapter III to show that Ab‘is small are
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convincing. For At’ we do not know how to calculate the cross section if the
intermediate state is not a proton. We can improve the treatment of final states
in our calculation of At’ We can include the small Q2 and E2 -amplitudes for the
N* excitation by using a more recent data. 12 The contribution from the nonresonant
s-wave part can be estimated by first using the Nambu~Schranner formula14 to
evaluate the blobs in Figs. 8a and 8b, and then calculate the contributions from
these diagrams to the asymmetry. It should be noted however that adding more
intermediate states or final states to the calculation does not necessarily increase
the magnitude of the asymmetry. In fact it has been sho&n by Guerin and Piketty®
for the case of the elastic scattering that various intermediate states give roughly
the cantributibns of the same order of magnitude and furthermore they have more
or less random signs. Hence in order to estimate the‘ order of magnitude of the
asymmetry, any reasonable choice of intermediate states or final states will give
a correct estimate.

The general expression for the asymmetry due to the two photon exchange can
be obtained from generalizing Eq. (IV.1) to include all intermediate and final states

(see Fig. 2b for notations):

doth) _ o) __; & P / i S
d,dE, - d,dE, en®  SMP, 2men gl

1
5 Tr(p, + m)y” 5 * m)yA @' + m)y*

iq-x -~ik-y 4 4 )
T [ Ee Y e dyen by si, 03,05, 0p,>  (7.9)
spin of p, ot b

where q = P, - Pg, k= P; - p'andq' =p' -~ Py The minus sign is fore +p

scattering. Using the same normalization, two times the cross section from an

- 33 -




unpolarized proton target can be written as

4 p
Ao) | do(h) _ e 3 1 1op +myyA
ydE; * A0 dES T 03 By, L2 B3
Jeiarvet Y<p2|JA(0)J 5)[py > (V.10)
spin ofp2

From Eq. (V.9) we can obtain the expression for the contribution from any final
and intermediate states by simply inserting them between the current jv(x), j )\(0)
and j ﬂ(y). For example the up-down asymmetry in the elastic ep scattering can
be obtained from Eq. (V.9) by inserting the final proton state

|p><p] d P(2E) (277) between ] (x) and JA(O) in Eq (V.9). We obtain

spin of p
2

(do-m _ do-u)) - e® _15( 1 )j‘ &p! 1
Ay A fopastic  @m® 8 \MEgp/J amren® ¢PPqP

-;- Tr(g;1 + m)‘yv (gs + m)'y)‘(g' + m)y“

ikey 4 '
&Y dy <oy [yg 81, (Op><pli, (01, ()]py> (V.11)
PARS ¥ A 2
spin of p2 :
and p ' '

In general even if we know the unpolarized cross section, Eq. (V.10), from
experiment for all qz and g, we still do not know how to calculate Eq. (V.9) or for
that matter even Eq. (V.11). The. reason is that in Eq. (V.11) both the spin and
momentum Qf [p> can be different from those of |p2> and hence knowing
< Po)y l j)\(O)j “(y)|p2)\2 > is in general not sufﬁcieht to compute <p}\|j )\(O) j“(y)lpz)\2>
unless some dynamical assumptions are made.

The only thing common among Eq. (V.9), (V.10) and (V.11) is that they all
involve products of currents at different space time. Hence if one has some model

for products of operators at different space time, it can be tested against the
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experimental results using Eq. (V.9), (V.10), and (V.11). As far as we know no
one has ever proposed such a model. |

For completeness of discussion let us consider the contribution of twb virtual
photen emission and absorption from a hadron current to other observable physical
phenomena,

A. The Radiative Correction to the Electron Scattering From an Unpolarized

Proton Target

In this case only the real part of tWo photon exchange diagrems Fig. 4c plus
Fig. 2b contributes. Two diagrams' must be considered tegether because of the
gﬁuge invariance. Both diagrams have infrared divergence when the intermediate
state is either equai to the initial -or the final state. The real part of the two
photon exchange is related to the imaginary part by dispersion relations. However
the imaginary part required here is not the part which appears in the up—dewn
asymmetry, but the one obtainable from Eq. (V.9) without YS;.S-' These two
"imaginary parts" of the two photon exchange diagrams are completeiy independent
of each other. t his can be seen easily if we go to the laboratory frame where
|p2 > becomes a two component spinor and 75% reduces to a 2 X 2 matrix 3T,
and jv(x) 3x(0)j “(y) can aiso be reduced into a 2 X 2 matrix which can be represented
in general by A + B ‘g We have, then

2 <Py |rssi ®)i(0)i ()|p >—’TrL§-0'(A+B-0')]=2s-B
spin of p, 2_|5“V AT lz - - PR

where as

2 <Py i ®i(0i ®p, > =Tr(A+B-o)=24
spin of p,, 2 lV AT ,2 - w !

hence two expressions are entirely independent of each other.
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B. Hyperfine Shift of the Hydrogen Atom

Iddivngs15 showed that-i:he two photon exchange contribution to the hyperfine
shift in the ground state of a hydrogen atom is related to the cross.section of
polarized electron on polarized proton scattering if there are no subtraction
terms in the dispersion relations. From Eq. (Ifl.4) of Id&ings’ paper we see

that the quantity needed is

-ig.yv 4 . . . .
X [l Y <Py 5 £5,(0)5 oy > | (V.12)
- spin ofp2 - :

which looks like the expression_ in Eq. (V.10)exceptfor tﬁe operator Vg 8- Using
the same argument as in the previous sectién, we see that two expressions are
independent of each other. Let us consider the relation between Eq. (V.11) and
(V.12). In Eq. (V.11), the factor <p, lysgju(O)lp> is known for all combinations

of spins of Py and p. The expectation value in Eq. (V.12) can be written as

Sp'inZOf p2< Py |75 83,(0)] “(y)|p2> = <p2tlj)\(0)j w )Pt >- épz;’jA(O) j“(y),pzp

whereas the last factor of Eq. (V.11) contains
<pﬂj)\(0)j“(y)|p20> y < pﬂj)‘(O)jM(y)lpzf? etc., where in general p, ;4 p. -Hence
if one knows how to calculate Eq. (V.12) one can certainly calculate Eq. (V. 11) but

not the other way around.
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APPENDIX A

In this appendix we give an alternative proof that the a3 contribution to the
up-down asymmetry is given completely by the imaginary bart of the diagrams
shown in Fig. 2a and 2b. In Section 2¢ we have shown this by using the properties
of Feynman diagrams. In this appendix we show this directly using T and P
invariances and the unitarity of s matrix.
Let us write the s matrix in the form
<flsli>= 8¢ + i2m* 8*(p, ~p,)<tlali> (A.1)
where o
A=[eA, +e2A, + A, + (A.2)
1 A2 3 ..l . ' L)
Unitarity of s gives

<flAT|i> =<tlAli> - i(27r)4 )y <f|Aln><nla li> 84(pi -p,) (A.3)
. n ) .
The asymmetry is proportional to

2 2

A= A};{ “<p3)\3 pf)\flAlplxl Pot>| —'<p3)\3pf)\f|Alpl)\lp2;>‘ ; (A.4)

771 |
A3

We consider this in the laboratory system, Fig. 3. )‘1)\3 and A, are helicity states.

and ]4) and H> are eigenfunctions of angular momentum Jy for the initial proton.

Decomposing [4> and |> also into helicity states

|f>=‘71§(l-;-> +1]-2>) and H>=,%("]-21->- i - 25)

- we can write Eq. (A.4) as

1 * | 1
A= -21mA§A <PyAqPAAlR A Py = > <pghgPAJAID N By -5 (A.5)
1°3%
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The time reversal invariance implies

<gali>" = <reja’| Ti> (A.6)

Let us use the coordinate system defined by Fig. 3 and let R be a rotation by 7

about the y axis. Then we héve
' =1 i A.o 7
RT|p27\2 > =1[pgr, > ' (A7)
where 7 is a phase independent of A,. /

Using Egs. (A.6) and (A.7), Eq. (A. 5) can be written as

Ca L + 1 s At _1.x |
A=-2Im ;)\ <PghgPpAe|A ,|p1>\1p2' 5 ><PghaPEAe|A [P A Dy - 5> (A.8)
37f
Substituting the unitarity relation (A.3) into (A.8) adding the resultant A to the A
obtained in Eq. (A.5) and dividing the expression by 2, we obtain
4 4 . H1 1 * 1 4 . .+ 1 *
A=-Tm AZ}\ {—1(277) [< |8% AA l§><{A| -5> =<Alp>< |8t AAT| - 5> ]
3f
+(21r)8<|64AA+l—§-><| 84'AA+,|—%>*} | | (A.9)
Where we have used short hand notations
1 : 1 1 1
<I=<prgPh| [37= PPy 5> |52 [P Py - > and
84

Ax* =38, - p_)Aln><n|a”,
n .

Applying the antiunitary operator RT defined in (A.7), we see that ﬁhe last term in
Edq. (A.9) is real and therefore it can be ignored. The first two terms in Eq. (A.9)
can be further simplified by using the invariance under Y = e'iﬂJY p.

Since Y|pA> = n'(—l)s-}‘[p-—)o , where 7' is a phase independent of p and A,

have Y|z > ¥|-2>"=-|-25| 1%, Thus Eq. (A.9) can be writt
we have Y|5 > -3 —-l-2> 5> us Eq. ( . ) can be written as
*
A=2Re 3 @ni<|s? aat |5 ><|a[-3> (A.10)
Arsh
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’

For the a3 contribution to A, A in <|A| - %>* can be either e2A2 or e3A . Inthe

3
former case < [184 Aat |-;-‘-> représents the absorptive part of the two photon
exchange diagrams. On the later case <|A| - -%>* represent the bremsstrahlung
emission from the electron lines and < ]54 an* |-;-> represent the absorptive
part of the bremsstrahlung emission from the hadrons. In both of these cases
<|a] - -21- >*in Eq. (A.10) does nbt have any’ absorptive part, hence AT = A for
this matrix element. Changing from the helicity representation back into the
angular momentum representation we have

A= Re P)\ i(21r)4{<|54AA+|f> <Jalt>”

3°f ‘

- <184AA+H><)AH >*, +<|64AA+|4><|AH >

- <]54AA+M><]A|4>*} | (A.11)
Applying the invariance under PT, Egs. (II.8) and (IL.9), to the first and the third
terms inside the curly bracket and using PTA(_PT)"1 = A+, we see tﬁat the first
term is complex conjugate of the second and the third term is (-1) times the
complex conjugate of the fourth. Hence the third and fourth terms and the Re
symbol can be droppea from Eq. (A.11). |

A= T Ay s> < |iemsta aTA >
[<I8g758/A 2iiglhy
ARG |

¥ liomdsd o+ |
+<|A375g|,\2> <|i@m)” 8 A1A2|A2>‘ (A.12)

'fhe first term corresponds to the class of diagrams represented by Fig. 2b and
the second term corresponds to those diagrams represented by Fig. 2a. 'Hence
we have reproduced all the results contained in Section 2¢ without using the
properties of ¥ matrices. From Egs. (A.2) and (A.3) we see that<li(277)4‘64 AZAZI)\2>
in Eq. (A.12) is 2i times the imaginary part of the two photon exchange diagram |

<lA 4:I Ay > and hence can be obtained from Cutkosky rule Eq. (B.5).
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APPENDIX B

CUTKOSKY RULE

In Chaper IV we have used the Cutkosky rule19 to obtain the imaginary part
of the two photon exchange diagram. It is easy to see the rule as applied in our
calculation is equivalent to the unitarity relation. | Using the notation of Appendix A,
the unitarity of s gives |
<la, - AT A, > = <liem* st ATA A > (B.1)
Suppose we are interestedin the contribution from an intermediate state con-
sisting of one electron denoted by p' and one proton denoted by p. Inserting the
states of these two particles and summing their spins, Eq. (B.'l) becomes
3

3
I &p &p 1
1<|A2f(2'") ey TRy~ PY) TEr R an

T

5 (B+M)(g'+m)A2|)\2>

= i<|A;f‘i:L'4 [i(g+M)27r15+(p2-Mz)][i@' +m)21r18+(p'2— MZ)]AZIA2>
&m (B.2)
Now except for the factor i in front of < | , the expression (B.2) is exactiy what
one obtains by applying the Cutkosky rule to the usual Feynman rule for the two
photon exchange diagram. "The origin of i in front of <| is that the usual Feynman
rule refers to the s matrix elemeﬁt which differ from the matrix element of A by
a factor of i (see Eq. (A.1)). Since we are interested only in tﬁe interference
ferms between two matrix elements, only the relative phase between them enters
into the problem and the factor of i above always get canceled out as long as we
use the same phase convention for the two matrix elements,
In order to illustrate some of the interesting features of the two photon

exchange mechanism and the use of Cutkosky i'ule, let us consider an integration
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whose real and imaginary parts are known20

2 2 ‘
b=/ id4k S !ln-q mi_wi
K2 -2 - 1) (k2 +2p, - k) k- @) - 22| 0 - X 27 2\ m?
( Py Py - ki (k- q) ( ) sq - |

(B.3)
This integration occurs in the two photon exchange diagi'am in the e-e scattering

shown in Fig. 9. The answer is correct in the limit s>>m2 > )\2 and —q2 > m2,

where s = (p, +p )2, qz =(p;~P )2, p2 = p2 = m2 and )\2 is the fictitious mass
1 %2 1 *3 1 %3
of the photon for handling the infrared divergence.

Applying the Cutkosky rule we can easily calculate the followihg integration

[ienys,ff-2p 1) 5+(Ak2*ff°i?z;f‘f);ﬁ4 21’ | -

h —_ — 1. — - I3 AN
ey = 3 K= 9 i {D.T)
cut ~ J { (k_q)z ) } (k2 _ )\2) sq \2
Comparing Eq. (B.3) with Eq. (B.4), we obtain
2i Imb=b_ (B.5)

Equation (B.3) is not easy to calculate whereas Eq. (B.4) is relétively easy.
Hence the Cutkosky rule is just a quick way to obtain an imaginary part of a mat:ix
element. Equations (B.3), (B.4) and (B.5) give correct sign and nurherical factors
in applying the rule. | |

This example also shows that in general the two photon exchange diagram has
infrared divergence in both the real and imaginary pafts. The reason that we do

not have infrared divergence in the up-down asymmetry is that the infrared divergent

‘part is always proportional to the lowest Born diagram, which does not produce any

up-down asymmetry. We also notice that the imaginary part is finite as mz—-—-—O,
whereas the real part diverges logarithmically as mz-——O. (Compare with

Appendix D.)
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APPENDIX C

In this appendix, we show explicitly that the infrared divergent part of the
matrix element is proportional to the lowest order diagram and hence does not
contribute to the up-down asymmetry. The matrix element for the two photon

exchange diagram shown in Fig. 6b can be written as (ignoring numerical factors)

4 k+m ’ tE+M
- 1 2
T, =f —’ u(Pa)'Y"B;'z"—‘— Y upy) WY ¥ Ty (- k)g—w_——

@2m) k" ~2p - k k *+2pg * k

1 1
(@-k*- ¥ 2= ¥

I, ) u(p,)

Since the infrared divergence occurs at k—-0, the infrared divergent part
of M,, can be obtained by letting all the k's in the numerator and in the denominator

(g~ k)2 - )\2 equal to zero. We also note that

@y + m) v u(p;) = 20 u,),

7,

r,(k)
L M

and
(gz + M) '}'“ _11(P2) = 2p2p. u(Pz)-

Hence the infrared divergent part of M2 is equal to
T = W (pg)y u ) (0 7, Ty (@) up,) =5
2 infrared U \P3/Y NPy 75 "\ 2! 2

1
X 4(p, * p,) /
S ent (-2 k)P r2p, - K- N

which is proportional to the lowest order graph T

1 shown in Fig. 6a.
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Even though there is no infrared divergence in the up-down asymmetry, in
practical calculations one has to be careful in choosing the coordinate system in

order to avoid the integrand to blow up near kz-—-o (see Chapter IV and Appendix D).
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APPENDIX D

In this appendix we show‘ that no singularity will be induced by ignoring the
mass of the electron in the two photon exchange contribution to the up~-down
asymmetry At' We have shown this explicitly in Chapter IV that when the hadron
intermediate state is a proton and the final hadfon state is N*, via M1 transition.
Using gauge invariance we show that this is true also for an arbitrar y final and

2 .
vanishes

intermediate hadron state. When the mass of the bel.ec‘tron is ignored q!
when p' is parallel to p,. (See Fig. 7b.) When p' iAs almost parallel to p,,, q'2 is
4 wd e ' -]
proportional to 0'2 where 0' is the angle between .;’)3 and B'. The solid angle is
prop.ortionai to €', hence all we need to prove is that # VA Bw}\ is proportional
to 0! when 33 and 2' are almost parallel to each other and the mass of the electron
is ignored. Let us choose the directién of ' =p' -~ Py as the z axis, and both p'
L . )
and pg are on the xz plane in the center-of-mass system. When the mass of

electron is ignored we have

2 2 2 2
1% = t . = -
0= @ -py) =a) -

z-—E'E36'2 (D.1)
Let us consider first the case when the masses of the final and the intermediate
hadron states are not equal to each other, so that qb # 0. Then from Eq. (D.1)

we may write

q& = (qb, q)'(, q}"’ q'z) = qb(l, 0,0,1 + (E1E3012/2 qbz)) | (D.2).
Equation (D. 2) together with current conservation q')‘ B = 0, yields
UVA
B = B 1+E'E 0'2/2 12 (D.3)
uv0 Uvz 3 9 :

In the same coordinate system, the four vector Pg (mass ignored) can be written

as

p3)\= E3(1, sin 03,0, cos 03)

- 44 -




where

=0 /0!
93 0" E'/Q
Hence ‘
)\ = - _ 3 A 1t 1 72
Pg Bp.v Eg (B;wo Buvz cos 83 sin 6, Byvx)“’ E,E'6 /Q B[,wx+ o'y

- (D.4)
When the spin of the electron is ignored, the lepton tfa’ce LVA” is equal to ,,
8p'; pg‘pf as shown in Eqs. (IV.2) and (IV.3). Hence LV)W‘B“VX « 0" as desired.
Now suppose we restore the spin of the electroﬁ, but ignOré its mass, we have

from Eq. (IV.2)
'_ 1 1M 1
2 = 3T (R e g )= (g g YY)

" ) e ) Rl g

- g’\”(&'y“&&) +r(p 7 p”) | | (D-5)

Using the previous arguments, the terms proportional to pg and p'>‘ = pg‘ + q')‘
in Eq. (D.5) yield terms proportional to ' in LVMBV Ap' We notice that in the
rest of the terms in Eq. (D. 5), gs and g' are next to each other inside the trace.
When 33 and 2' are parallel to each other, these terms are equal to zero séparately
if the mass of the electron is ignored. Hence we have proven that the neglect of
the mass of the electron does not cause any singularity in the imaginary part of
the two photon exchange diagram for arbitraf.y final and intermediate states of
hadrons provided that they have different invariant masses.

We next consider the case in which the virtual photon is coupled to the hadrons
with idehtical invariant masses such as Ypp or YN*N* couplings. The vertex

labeled i with momentum transfer k in Fig. 6b is such an example. In this case
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the energy transfer is zero in the center-of-mass system and hence Egs. (D.2)
and (D.3) are meaningless. We notice that in this case the vanishing of q'2 in the
forward scattering is independent of the mass of the electron as can be seen from
Eq. (IV.12) where Mz and M? are now e'qual to each other. We also notice that |
in this case the kinematics is such that in order to have a vanishing q'z, all four
components of ' must vanish, which is precisely the infrared limit. Since we
know there is no infrared divergence for the up-down asyminetry independent of
the value of the mass of the electron we conclude that the mass of the electron can
be ignored in this case as well. In contrast to the previbus case the nonexistence
of the infrared divergence depends critically upon the fact that there are odd

numbers of Y5 in B hence it is true only for the asymmetry, but not true in

HYA
general for the imaginary part of the two photon exchange diagram. (See Appendix
B and C.)

This observation ﬁot only enables us to ignore the electron mass in this kind
of calculation but also tells us that there will be no terms such as « n(s/ mz) and
o ﬂ_n(-qz/ m2) in the asymmetry At' It should‘ be emphasized however that in the
actual numerical integration with respect to the solid angle of p', even fhough we
have proven that the singularities dué to the two photon propagaotfs are canceled
by the zeros in the numerator, one has to choose cdordinate systems properly,
otherwise the integrand is too singular to perform the numerical integration even
if the electrron mass is not ignored. In Chapter IV, we have chosen the z axis to
be along D3 when '13' is almost parallel to Ps and the z a;cis to be along Dy when B\'

is almost parallel to 31. We have found no trouble occurred even if the mass of

the electron is ignored.
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FIG. 1--Experimental results of S. Rock et a_1.‘3
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FIG. 2--Two classes of Feynman diagrams which contribute to the up-down asymmetry.
f, f' and n are arbitrary states. Py represents the polarized target proton. Py
and pg are incident and outgoing electrons respectively.




FIG. 3--Coordinate System used in the calculation.




