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Abstract. We implement the Doneva-Yazadjiev (DY) anisotropic model of neutron stars into
Energy Momentum Squared Gravity (EMSG) theory. We have shown that the Tolmann-
Oppenheimer-Volkoff (TOV) equation within this model can be expressed in the terms of
effective pressure and energy density. The structure of neutron stars (NS) is then calculated by
using Basic Standard Parameter equation of state with hyperons in the center. We found that
the combined model is able to adjust the mass-radius relation of the NS. We also found that
this model could affect boundary limit of EMSG parameter, α, in the term of stability.

1. Introduction
The Tolman-Oppenheimer-Volkoff (TOV) equations have been used as a standard to calculate
the interior of neutron stars since 1939 [1]. These equations are expressed as the first derivative
order of mass and energy density towards the radial directions. The standard TOV equation is
derived from Einstein field equation solutions in the Schwarzchild geometry, which are widely
used to calculate the interior profile of relativistic stars. Along with gravity, The Relativistic
Mean Field (RMF) model is widely used to calculate Equation of State (EoS) for neutron stars.
This theory is used by defining Lagrangian density from all particles inside the stars.

Meanwhile, the results of the neutron star mass-radius calculation are still much smaller than
the latest data [2]. The presence of non-nucleonic and leptonic matter (e.g. hyperons) in the
nucleus of neutron stars can be one of the responsible causes, as this matter has an important
role in stiffening neutron stars.The standard description of NS assumed that the interior pressure
is isotropic. However, it is also suggested the anisotropic behavior matter is an alternative to
the standard isotropic matter which predicts a larger maximum mass than the standard neutron
star. Neutron stars with anisotropic pressure models studied by Setiawan and Sulaksono have
maximum mass predictions that are consistent with PSR J1614-2230 pulsar observations and
PSR J0348+0432 [2]. Further review of the impact of anisotropic models with hyperons on
mass-radius relations, moments of inertia, and tidal deformability found that the prediction of
neutron star anisotropic radius was sensitive to Bowers-Liang anisotropic models; Horvat, et al;
and Cosenza, et al [3].

On the other hand, from the gravity side, Einstein’s general relativity is extended to explain
the astrophysical phenomenon which still failed to be explained by standard general relativity.
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For example, the reduction in cosmological constant values due to the expansion of the universe
causes significant differences in neutron star parameters between the expansion and quantum
field theory. Akarsu, et al use the theory of gravity modification of the square of momentum
and energy tensors or are called EMSG (Energy Momentum Squared Gravity) by focusing on
modification of Lagrangian material and non-linear analytic functions on scalar EMT (Energy
Momentum Tensor), T 2 : F (R, T ) = R + αT 2. The energy-momentum tensor used by Akarsu
et al is assumed to be in isotropic pressure. In this study, it is interesting if one of the isotropic
models in the EMSG study [4] is substituted with one of the neutron star anisotropic models
with hyperons [2].

2. Methods
We calculate the NS properties by deriving the TOV equation analytically. First, it is used in
the pressure function with the definition of anisotropic Lagrangian as follows [5]:

LAM =
1

3
(p+ 2q) (1)

The Lagrangian anisotropic form above is incorporated into the general form of energy-
momentum tensors in equation (2):

Tµν = gµνLM − 2
∂LM
∂gµν

Tµν = εuµuν + pkµkν + q [gµν + uµuν − kµkν ] . (2)

The result of the first step can specify θµν in equation (3),

θµν = −2LM
(
Tµν −

1

2
gµνT

)
− TTµν + 2T γµTνγ − 4T σε

∂2LM
∂gµν∂gσε

(3)

so that anisotropic EMSG EFE will be obtained with additional σ terms when compared to
isotropic ones:

Gµν + Λgµν = κTµν + κα (gµνTσεT
σε − 2θµν) . (4)

This EFE form must be reduced to equation (4) if σ is set zero. The TOV solution is
analogously solved with a solution for isotropic EMSG, but it takes anisotropic pressure on the
Einstein field equation which is also defined ineffective pressure and energy. After reproducing
from the standard anisotropic TOV in equations (5) and (6):

dm

dr
= 4πεr2 (5)

dp

dr
= −Gεm

r2

(
1 +

p

ε

) (1 + 4πr3p
m

)
(
1− 2Gm

r

) − 2σ

r
(6)

into effective interaction for EMSG, the definition of σ can be explicitly entered into the TOV
equation. Through algebra and sound speed definitions, we obtain the new TOV EMSG equation
under DY anisotropic pressure conditions in the dp

dr and dm
dr functions, this model must also be

reduced to the isotropic EMSG TOV equations :

dm

dr
= 4πr2ε

[
1 + αε

(
1 + 8

P

ε
+ 3

P 2

ε2

)]
, (7)
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dP

dr
= − G

mε

r2

(
1 +

P

ε

)(
1− 2G

m

r

)−1 [
1 +

4πr3p

m
+ α

4πr3ε2

m

(
1 + 3

P 2

ε2

)] [
1 + 2αε

(
1 + 3

P

ε

)]
[
1 + 2αε

(
Cs−2 + 3

P

ε

)]−1
. (8)

Second, numerical calculations are carried out by the 4th order Runge-Kutta method. This
method is used to integrate pressure and mass parameters in the TOV equation starting from
pressure and mass at the center of (r = rc ≈ 0), from here the maximum pressure value p = pc
and minimum mass m = 0, then integration is carried to the surface so that the longer the
pressure runs out p ≈ 0 , which at this point is defined as the radius of the star r = R and
m (r) = M .

3. Results and Discussion
3.1. Einstein Field Equation (EFE) for EMSG within Anisotropic Pressure
Lagrangian and EMT from anisotropic pressure from equations (3) and (1) are used to solve
EFE. Lagrangian from equation (1) substituted into standard EMT in equation (2), then we
get:

Tµν =
1

3
(p+ 2q) gµν − 2

∂LM
∂gµν

. (9)

First order derivation of EMT defines:

∂LM
∂gµν

=
σ

2

(
1

3
gµν − kµkν

)
− (ε+ q)

2
uµuν (10)

The θµν tensor on the equation (3) put into Einstein field on the equation (4). Then, all
components of θµν calculated:

∂2LM
∂gµν∂gσε

=
1

6
(p− q) =

σ

6
, (11)

T = Tµµ = gµνTµν , (12)

TAµν = qgµν + (ε+ q)uµuν + (p− q) kµkν , (13)

TA = gµνTAµν = 3q + σ − ε, (14)

TAµνT
µν
A = ε2 + 3q2 + σ (σ + 2q) , (15)

with uαuα = −1 and kαkα = 1, so:

Tαµ Tνα = q2gµν −
(
ε2 − q2

)
uµuν +

(
σ2 + 2qσ

)
kµkν . (16)

The accumulation of the above equations produces a tensor θµν as:

θµν = −σ
3

[
(q + εσ) gµν +

(
7 (q + ε) +

3

σ

(
4qε+ 3q2 + ε2

))
uµuν

]
−σ

3
(σ + 3 (q − ε)) kµkν . (17)
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3.2. Correction Terms of Pressure and Energy Density caused by Anisotropic EMSG Model
From equation (17), we can determine EMSG tensor by:

θµν = θgµν (ε, q, σ) gµν + θνµν (ε, q, σ)uµuν + θκµν (ε, q, σ) kµkν , (18)

with

θgµν (ε, q, σ) = −σq
3

+
σ2

3
− σε

3
, (19)

θνµν (ε, q, σ) = −7σε

3
− 7σq

3
− 4qε− 3q2 − ε2, (20)

θκµν (ε, q, σ) = −σ
2

3
− σq + σε. (21)

The Einstein field equation used when Λ = 0 from equation (4) becomes a new form :

Gµν = κ [qeff (q, ε, σ) gµν + [εeff (q, ε, σ) + qeff (q, ε, σ)]uµuν + σeff (q, ε, σ) kµkν ] . (22)

If we define p = q + σ and peff = qeff + σeff , then a new form of effective radial pressure :

peff = p+ α

(
ε2 + 3p2 − 4σp

3
− 2σ2

3
− 4σε

3

)
(23)

First effective pressure derivation of r for equation (23) with ε = ε (p (r)), becomes:

dpeff
dr

= C
dp

dr
+D

dσ

dr
(24)

with

C = 1 + α

[
2ε

(
∂ε

∂p

)
+ 6p− 4σ

3
− 4σ

3

(
∂ε

∂p

)]
, (25)

D = −α
(

4p

3
+

4σ

3
+

4ε

3

)
. (26)

A new form for correction of energy density and anisotropic pressure is:

εeff + peff = (ε+ p)

[
1 +

2

3
α (3ε+ 9p− 8σ)

]
, (27)

σeff = σ

[
1 + α

(
2p− 2ε− 4σ

3

)]
, (28)

εeff = ε+ α

[
ε2 − 4σ (ε+ p) + 8εp+ 3p2 +

2σ2

3

]
. (29)

Equations (27-29) put in equation (23) and we can substitute σ as the Doneva-Jazadjiev model
to get TOV solutions.
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3.3. TOV Equation for Anisotropic DY EMSG Model
The first order of anisotropic derivation of r from equation (29) becomes,

σDY ≡ γ
(

2MG

r

)
p (30)

dσDY
dr

= 2γG

[
p

r
4πr2εeff +

m

r

dp

dr
− mp

r2

]
(31)

dσDY
dr

= CDY3

dp

dr
+ CDY4 . (32)

The EMSG TOV equation is in anisotropic pressure with corrections:

dpeff
dr

= −G (εeff + peff )
(
m+ 4πr3peff

)
1− 2Gm

r

− 2σeff
r

, (33)

Then, in the equation (34), the first derivative pressure correction for the DY model is defined
by:

dpeff
dr

=
[
C +DCDY3

] dp
dr

+DCDY4 . (34)

So we get anisotropic EMSG TOV equations for the DY model as:

dPDY

dr
= −

G
(
εDYeff + pDYeff

) (
m+ 4πr3pDYeff

)
r2
(
1− 2Gm

r

)
+

2σDY
eff

r +DCDY4

C +DCDY3

(35)

and
dmDY

dr
= 4πr2εDYeff . (36)

Then, we also found that α boundaries, identified by εeff and peff , was changed from isotropic
model (αIEMSG) to the new anisotropic DY model (αAEMSG) as follows:

αIEMSG = αε

(
1 + 8

p

ε
+ 3

p2

ε2

)
(37)

αAEMSG = αε

[
αIEMSG +

2σ2

3ε2
− 4

(
σ

ε
+
σp

ε2

)]
. (38)

The stability condition must fulfill αAEMSG > −1,for dm
dr > 0 and dp

dr < 0 of the radial directions:

αAEMSG > −
1

εc
[
αIEMSG + 2σ2

3ε2c
− 4

(
σ
εc

+ σp
ε2c

)] (39)

αAEMSG > −
1

2εcc
−2
s + 6p− 4

3σ
(
1 + c−2s

) . (40)

3.4. The Mass-Radius Relations of Neutron Stars
We solve equation (35-36) numerically by using fourth-order Runge-Kutta with BSP [3]
parameter set EoS. The result is shown on figure 1 and 2. The mass value against the
maximum radius of the neutron star is shown in figure 1 for variations in the anisotropic
parameter γ and in figure 2 for variations in the value α as an EMSG parameter. From
the graph figure 1, when the value α = 0, 62 × 10−38cm3/erg is set and the value γ is
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varied, the maximum mass increases. There is an increase in the maximum mass compared
to isotropic conditions around 0, 75Msun with maximum radii in the range of 11.5 − 11.75 km.
Analysis of Riley and Miller on PSRJ0030+051 measures the maximum mass of neutron stars
1, 34−0, 16 ≤ m ≤ 1, 34+0, 15Msun with radii 12, 71−1, 19 ≤ R ≤ 12, 71+1, 14 km. And their
analysis on PSR J0740+6620 shown that NS mass becomes 2, 08−0, 07 ≤ m ≤ 2, 08+0, 07Msun
with radii 12, 39−0, 98 ≤ R ≤ 12, 39+1, 3 km [5], [6], [7]. figure 2 graph shows the greater value
of α with the maximum mass but the results of the α variation are far in line with PSR data
J0740+6620 because the maximum mass produced does not exceed 2, 1Msun. The α variations
are also sensitive to the radius at the maximum mass of the star. At the negative α value, it gets
radius 11.6 km, and mass of NS touches 2, 1Msun. Meanwhile, when α increase to the positive
value, radius of NS widens.

Figure 1. Radius-Mass relation from variations of γ at α = 0, 62 × 10−38 cm3/erg on an
anisotropic DY model + NICER constraints.

4. Conclusions
We have investigated anisotropic pressure of EMSG model on the neutron stars by using
modified EMT to get EFE and TOV modified equations. These correction terms for parameters:
σeff , peff , qeff , and εeff dominated by non-linear pressure. Radius-mass relation can add
neutron stars’ mass also corresponds with NICER 2019 and 2021. Radius-mass relation on
the γ variations at α = 0, 62× 10−38 cm3/erg includes all Rmaks of both NICER 2019 and 2021
constraints, but it is inappropriate to predict the maximum mass. Afterward, mmaks in radius-
mass relation for the α variable when γ = −1, 15 is more compatible with NICER 2019 and 2021.
The maximum NS mass on anisotropic EMSG DY Model is in range of 2, 1 ≤ mmaks ≤ 2, 5Msun.
The mass increase is more influenced by the γ parameter and the reduction in Rmaks is more
influenced by the α parameter.
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Figure 2. Radius-Mass relation from variations of α at γ = −1, 15 on an anisotropic DY model
+ NICER constraints.

Acknowledgments
Hanifa would acknowledge the support of her family, C. Aulia, and all her friends. This research
utilizes facilities from the Department of Physics, FMIPA, Universitas Indonesia.

References
[1] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374-381 (1939) doi:10.1103/PhysRev.55.374
[2] A. M. Setiawan and A. Sulaksono, PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL).

doi:10.21009/0305020503.
[3] A. Rahmansyah, A. Sulaksono, A. B. Wahidin and A. M. Setiawan, Eur. Phys. J. C 80, no.8, 769 (2020)

doi:10.1140/epjc/s10052-020-8361-4
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