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I. ABELIAN MODELS 

a) Introduction 

I will not begin by telling you all the reasons why you have to 

believe in quarks as hadron constituents i. Lets just suppose that I had 

and that we all believe hadrons are loosely bound collections of quarks *. 

Secondly I want you to suppose that nobody will ever discover a free 

isolated quark. We are then faced with the puzzling problem of explaining 

how finite forces conspire to confine quarks to the interior of hadrons. 

To begin with we must realize that most of our intuitions, even 

our idea that a puzzle exists, come from our experience with weakly 

coupled quantum electrodynamics and its perturbative solution. We are 

often led astray into asking questions which make the phenomenon sound 

much more complicated then it really is. For example: What class of 

graphs is important to confine quarks? Or: Do the catastrophic infrared 

divergences of Yang Mills theory combine to screen quarks? We ought to 

understand that these questions do not really refer to the behaviour of 

the system but rather to the method of solution - perturbation theory 

about free fields. The reason that quark confinement seems so odd to 

us is because we start with all the wrong ideas about how (the correct 

strong interaction) field theory behaves and then attempt to perturb 

our way to an infinitely distant behaviour. 

T Most of the work described in these lectures was carried out in 

collaboration with J. Kogut while the author was a visitor at 

Cornell University. 

Loosely bound in the sense that they behave almost freely at short 

distances. 
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In these lectures I will show you three examples of theories 

with confinement. In each case it is easy to see that quarks are con- 

fined although perturbation theory buries the obvious in a jungle of 

complicated graphs. The three examples share a key element, namely 

local gauge invariance. The importance of local gauge invariance is 

that it connects additive conserved charges to long range fields through 

Gauss's theorem. The most familiar case is the long range Coulomb 

field accompanying every isolated charge in electrodynamics. Similarly 

in the non-abelian color-gauge theory of quarks every state with a non- 

zero color must have a long range color-electric field in order to be 

gauge invariant. This include6 all states with non-vanishing triality. 

The quark confining mechanism does not directly deal with the 

quarks but rather with their long range color-electric fields. If the 

color-electric fields are confined so that the electric flux lines are 

prevented from radiating to infinity then the finite energy states must 

be color-neutral. 

The three examples are Schwinger's one dimensional QED 2'3'4", a 

semiclassical model based on unusual dielectric properties of the 

vacuumS'6; and a hamiltonian formulation of Wilson's lattice gauge 

theory 7,8,9 

b) The Schwin~er Model 

I will now make two approximations on the real problem. First I 

will replace the three colors of the 3-triplet model by a single abelian 

color called charge. Instead of three kinds of quarks (red, yellow, blue) 

I now have only one. The confinement mechanism will operate to elimi- 

nate all objects except neutral bosons. 

Having agreed to approximate three by one I will apply the 

approximation again, this time on the number of space dimensions. The 

result of these approximations is the Schwinger model or QED in one 

dimension 2,3,4 

I am not going to derive the formal solution 3 to the model or 

give a rigorous demonstration of confinement. This is partly because 

you can find these things in the literature, but more importantly, I 

want to avoid the special features of one dimension which make the 

model solvable. In fact I will work in a gauge which is particularly 

inconvenient for exact solutions. The gauge is defined by setting the 

time component of the vector potential to zero 
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A~ - :  0 (1.1) 

The space component of the vector potential will be called A. The gauge 

invariant field tensor has only one independent component, the electric 

field, which is given by 

(1.2) 

[_  ,A-I : 9+.A (1.6) 

When t-dependent gauge transformations are considered operators 

like U and ~ no longer exist and I don't know how to express the gauge 

invariance of the physical states. Gauge invariance under the restricted 

gauge group simply requires every physical state l>to satisfy 

The hamiltonian is given by 

Properly speaking eq. (1.3) defines a class of gauges related 

by time independent gauge transformations 

~ A ( ~  

(I.4) 

f o r  t i m e  i n d e p e n d e n t ~ .  The h a m i l t o n i a n  i n  e q .  ( 1 . 3 )  i s  o f  c o u r s e  gauge  

invariant for this class of gauge transformations. Furthermore, and this 

is important, all physical states must be invariant under (1.4). The 

reason I have chosen this special class of gauges and restricted the 

gauge invariance to time independent ~ is because the restricted gauge 

transformations can be represented using unitary operators ~(~. 

d? u- =e T 
(1.5) 

UAU-+=A+gkA 
I n f i n i t e s i m a l  generators  G ( ~ c a n  a l so  be introduced for  i n f i n i t e s i m a l  A 
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(1.7) 

for all A . 

Fortunately it is very easy to find @(A) . Using the canonical 

commutation relations 

where # = I?@-~ , you can easily verify that 

E y,] 
(z.8) 

(I.9) 
@E 

We see that gauge invariance requires 

(z.lo) 

This equation expresses the familiar fact that the charge density 

is the source of electric field. It is not an equation of motion but a 

constraint on the physical states. In the physical subspace it implies 

(I.12) 

Lets suppose E<~) or E~) is non-zero. Then since ~ contains 

the term JEa~ it is evident that the energy will be infinite. To 

remain in the space of finite energy ~<~) must be zero. But then the 

two expressions (I.11) and (I.12) will not be equal unless 
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l 
~ 0 ' °  

What I have proved is that the finite energy, gauge invariant 

states have zero total charge. But I would be cheating if I told you 

that this proves charged particles don't exist. What I really want to 

show is that the finite energy~ gauge invariant states do not contain 

well separated quarks and antiquarks. 

For definiteness I will use eq. (1.11) for the electric field. 

We can picture a charge at ~oas being the source of an electric field 

which vanishes for ~ ~o. This is shown in Fig. 1 

quQrk 
3o 

entiquQrk 

Fig. i 

I want to digress briefly to describe the objects in Fig. 1 by 

operators. Since the field ~ is not gauge invariant the state ~(~o) I O~ 

is not a good description of a physical quark. To make a state which 

satisfies gauge invariance we have to do something to create the line 

of electric flux which must accompany the charge. Consider the operator 

(1.14) 

P 
where ~ is a c-number function of position. Using the fact that A and 

E are canonical conjugates we find 

This means that ~ acts on a state to shift the electric field by 

amount ~ . This is useful because we need to shift E by amount ~ 6~(~-~o) 

when a quark is created at ~o • Therefore it makes sense to multiply 

~o) by the factor exp ~f" ~o~(~) ~ . The resulting gauge invariant 

operator can be used to create the physical states shown in Fig. 1. We 

define 
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a 
or (I.16) 

Exercise: Prove ~ is gauge invariant. Show that the expectation value 

of E in the state ~ [oh is ~ O(~-}o). 

Now the reason why quarks are confined in this model is not be- 

cause it costs an infinite energy to apply ~(~) to a state but rather 

because the factor ~ (~) costs an infinite energy. This of course is due 

to the uniform electric field which fills space from ~ to~ . 

Next lets consider a high energy ~{ pair which is produced, 

perhaps by a lepton annihilation,at the origin. My discussion is going 

to be at the impressionistic level so I suggest you look at Ref. 3 for 

formal arguments. The initial state is something like 

I ) - {co)Too) Io> ( lr) 

Since the two operators ~ and ~ are evaluated at the same point the 

initial state is gauge invariant. 

As the system evolves the quark pair will separate. If you for- 

got gauge invariance you might guess that the state at a later time is 

something like 

l~h~b = ~(-})?<~1 Io> (l.a8) 

But this is impossible because the state (1.18) is not gauge invariant 

and could not have been obtained if the system's evolution is governed 

by a gauge invariant hamiltonian. 

A more correct guess is 

: ~(-$)e "t/w (~) { O> (I.19) 

which describes a ~ pair at the ends of a line of electric flux. (See 

Fig. 2) 
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- r • 

q 

Fig. 2 

Since the electric field is uniform between the quarks, the energy stored 

in the field is ~ f ~  where #~t is the distance separating the pair. 

Thus the quarks can separate to a distance proportional to their initial 

energy. 

Of course the real state [later~ is not really as simple as 

(1.19). Since ~ is a relativistic field the interaction between the 

quark field and the electric field can create pairs in the region between 

the original pair. For example (later~will have a piece like 

which looks like Fig. 3. 

| v - | r - 

- X x I X 2 x 

Fig. 3 

However it is obvious that the evolution of the system can never lead 

to an isolated quark which is separated from compensating charges by 

more than a distance proportional to the initial energy. The exact 

solution of the Schwinger model shows that the real final state consists 

of a number of ~ pairs, each with its connecting flux line and that 

the probability to find a quark at a distance ~ ~ falls exponentially. 

I have dwelled at length on this trivial model so that you would 

get a clear picture of the connection between gauge invariance, continuity 

of electric flux and confinement. Just in case it was not clear I will 

say it again: Gauge invariance requires every quark to be the end of a 

flux line with uniform energy density and every end to be a quark. Since 

every flux line has two ends (unless it is infinite and therefore infi- 

nitely heavy) quarks must occur in pairs. This idea will be repeated 

throughout the rest of these lectures. 
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c) Semiclassical Model 

At first sight the situation in 3 space dimensions looks very 

unfavorable for confinement. Gauge invariance still requires the charges 

to be the sources of electric flux 

V. 
but this time the flux lines have two more dimensions to spread out into. 

(See Fig. 4) 

Fig. 4 

If the field spreads with spherical symmetry then continuity of flux 

insures that it falls like 

a n d  t h e  t o t a l  e n e r g y  i s  f i n i t e  e x c e p t  f o r  u l t r a v i o l e t  

w h i c h  a r e  r e m o v e d  b y  r e n o r m a l i z a t i o n .  

I am g o i n g  t o  d e s c r i b e  a m o d e l ~  c o o k e d  up  b y  K o g u t  a n d  m y s e l f  5 

and independently by 't Hooft 6 which forces the electric field to be- 

have very differently from Fig. 4. The model is very unrealistic but it 

will help prepare you for the more ambitious model of lecture 3. 

The model assumes that the vacuum is a dielectric medium with 

some unusual properties. I will begin by reminding you of the electro- 

statics of dielectrics. 

The free charges (quarks) are sources of the Maxwell D field 

(I.22) 

(~-~ O) effects 
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The electric field E is curl free and is related to D by the dielectric 

permeability g(~) 

In this model ~(x) can take one of two values, namely zero and one at 

any point. The regions where 6zOwill be called forbidden because the 

D field is excluded from such regions. Wherever g=~ the material is 

normal. 

The energy consists of two terms, the first being electrostatic 

energy and the second being the internal energy stored in the dielectric. 

The electrostatic energy is 

From (1.25) it is evident that D is excluded from regions where E =O. 

The internal energy of the dielectric will be chosen so that the for- 

bidden regions have less energy than the normal. Thus the ground state 

or vacuum is forbidden. We will write the internal energy as 

~/~ = C ~ ~(~ d~ (1.26) 

remembering that g has only 2 values. The total energy is 

The model was invented so that the long range component of the 

D field would cost an infinite amount of energy. To see how the model 

works let's suppose the dielectric material fills a sphere of radius 

and outside the sphere E=O. Suppose a charge ~is placed at the 

origin. The ~ field then satisfies 

. = ( ~  ( 1 . 2 8 )  

The f i r s t  t ype  o f  s o l u t i o n  t o  t r y  i s  a s p h e r i c a l l y  s y m m e t r i c  d i s t r i -  

b u t i o n  o f  f l u x  



S i n c e  any f o r b i d d e n  r e g i o n  

t h e  e n t i r e  d i e l e c t r i c  must 

w i t h  non-vanishing 3 c o s t s  i n f i n i t e  ene rgy ,  

be  normal.  The r e s u l t i n g  energy i s  

I n  t h i s  formula  a  r e p r e s e n t s  t h e  s i z e  over  which t h e  cha rge  i s  smeared. 

The f i r s t  t e r m  i s  t h e  e l e c t r o s t a t i c  energy and t h e  second t e r m  i s  t h e  

i n t e r n a l  ene rgy  o f  t h e  d i e l e c t r i c  when t h e  whole s p h e r e  i s  normal.  The 

second t e r m  d i v e r g e s  a s  R 3  when t h e  volume o f  t h e  d i e l e c t r i c  goes  t o  

i n f i n i t y .  

The energy  can be  lowered by a l l o w i n g  t h e  e l e c t r i c  f l u x  t o  be  

d i s t r i b u t e d  non-symmetr ical ly .  For  example,  suppose a l l  of t h e  f l u x  i s  

d i s t r i b u t e d  over  a  s o l i d  a n g l e  fi w i t h i n  which t h e  d i e l e c t r i c  i s  normal .  

The 3 f i e l d  i s  g iven  by 

w i t h i n  t h e  s o l i d  a n g l e  a and i s  z e r o  o u t s i d e .  T h i s  t ime  t h e  t o t a l  ene rgy  

i s  

The e l e c t r o s t a t i c  energy h a s  i n c r e a s e d  because  t h e  f i e l d  l i n e s  a r e  

squeezed b u t  t h e  i n t e r n a l  energy i s  lowered.  S i n c e  when R-> 00 t h e  

i n t e r n a l  energy dominates  i t  always pays t o  d e c r e a s e  fi . 
The l i m i t i n g  form of f i e l d  which lowers  t h e  energy t o  i t s  a b s o l u t e  

minimum i s  t o  a l low a l l  t h e  f l u x  t o  go th rough  a  l o n g  t h i n  t u b e  o f  normal 

m a t e r i a l  u n t i l  i t  r e a c h e s  t h e  s u r f a c e  of t h e  d i e l e c t r i c .  (See  F i g .  5 )  

normal / /' 
for bidden 

F i g .  5  
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The thickness of the tube is obtained by varying the energy per 

unit length with respect to the radius. If the radius is ~the ~ field 

(which is parallel to the tube) is 

= ( T . 3 2 )  
,.,¢.:z 

and the electrostatic energy per unit length is 

' t  

L- a-2- 
and the internal energy/L is IT~C. Thus 

= "/(~ ~ ~ 
/._. ,-r - : z  

(I.33) 

(I.34) 

and the minimum occurs at 

Eq. (I.35) represents the thickness of the tube far from the 

charge. Near the charge the situation is more complicated. What is clear 

is that the minimum energy of an isolated charge grows linearly with 

since, far from the charge, the energy per unit length is constant. 

The remaining arguments now parallel the one dimensional case. 

The separation of quarks can only take place until the available energy 

is used up or until the tube breaks by pair production. 

In the next two lectures I will show you how the nonlinearities 

of quantized Yang Mills theory can squeeze the electric flux into one 

dimensional tubes. 

II. YANG MILLS IN ZERO DIMENSIONS 

a) Gau~e Invariance in Zero Space Dimensions 

What is field theory in zero space dimensions? It is field theory 

in which there is only one or a finite number of points of space and 

therefore a finite number of degrees of freedom. For the free scalar 

field theory, the zero dimensional version is a single harmonic oscilla- 

tor or a finite number of coupled oscillators. The first step in under- 

standing a field theory is to understand its zero dimensional analog. 
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The second step involves a lattice of elementary zero dimensional 

systems with some form of coupling between the neighboring systems. If 

the lattice spacing is not too large a qualitative understanding of 

the large scale behaviour of the field theory is usually possible at 

this level. Of course the short distance behaviour is absent. 

The final and most difficult step is allowing the lattice spacing 

to go to zero. Typically this involves renormalization of the parameters 

so that the low energy (long wave length) behaviour is prevented from 

varying as the spacing tends to zero. 

In this lecture I am going to show you how to do step one. We 

will formulate Yang Mills theory for two spatial points (one point 

is too trivial). Then in lecture III we will do step 2 and show how 

quarks may be confined in the strongly coupled theory. Unfortunately 

the third step will have to wait until someone figures out how to do it. 

We begin with a universe consisting of a pair of points 2 and 2 

and a continuum of time. The presence of colored quarks on site 1 and 2 

is described by fields -- ~C~) and ?~L). Here £ labels the 2 points 

i and 2 and ~ is the color index*. The field ~ may be represented in 

terms of fermion creation and annihilation operators for each site 

where ~+(t) (6-d~ creates (annihilates) a quark (antiquar~ at site &. 

We will begin with a very simple hamiltonian which just assigns 

an energy/~ to a quark 

In addition to global color rotations 

is invariant under separate color rotations at sites 1 and 2 

(£) ~ V< [1 ~ (£) (11.4) 

In equs. (II.3) and (11.4) the quantities V, ~(4)and V{~)are any special 

unitary 2x2 matrices. 

For illustrative purposes the color group will be SU 2 instead of SU 3 . 
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Transformations like (11.4) in which different color rotations 

may act at 1 and 2 are called local gauge transformations. They are 

symmetries of the hamiltonian in (11.2) since the degrees of freedom 

at 1 and 2 are completely uncoupled. But the lack of coupling is not 

necessary for local gauge invariance. For example the term 

couples sites 1 and 2 and is gauge invariant. The important feature of 

hamiltonians like (11.2) and (11.5) is that they do not transport quarks 

from one site to another. 

To make ~ a little more interesting we can introduce terms which 

do transport quarks from 1 to 2. For example 

annihilates a quark at 2 and creates one at 1. This term is still glo- 

bally color invariant but local gauge invariance is lost. This implies 

an absolute standard of comparison between color directions at 1 and 2. 

I don't know of any mathematical principle which forbids such an 

absolute standard but it does seem to me to endow space with some extra 

machinery to keep track of the relative phases between 1 and 2. Let me 

make this machinery more explicit in the form of a matrix ~ which re- 

lates the two color reference frames. If the two frames are parallel 

then ~ q and ~ is given by (11.6). Now let's imagine that the color 

frame at 2 was secretly rotated relative to i. The relative rotation 

would be detected because the dynamics would now involve a nontrivial 

matrix din the form 

 CI) 

In the Yang Mills theory the relative rotation would be unde- 

tectable. The gauge invariance is restored by making the connecting matrix 

a dynamical variable with time dependence, an equation of motion 

and quantum fluctuations. The new degree of freedom ~ belongs to neither 

site but jointly to the two sites, or better yet, to the space between 

the sites. 

Since ~ is an SU 2 matrix connecting the color frames at sites 1 

and 2 it can be written in the form 
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= @X~ "~ ~--" ~ (II.8) 

where ~ are the three Pauli matrices. The two indices of ~] are 

associated with the two sites. Under a local gauge transformation L] 

transforms as 

in order to keep the hamiltonian in ~I.7) unchanged. 

We will soon introduce gauge invariant terms into ~which do not 

commute ~ with L]. When this is done L] will no longer be a static set 

of numbers but will become a full fledged quantum dynamical variable. 

We will no longer be able to transform L~ away by a color rotation 

at one site. And finally, although H permits processes in which quarks 

hop from site to site~ the dynamics remains invariant under local gauge 

transformation. 

b) Kinematics and Dynamics of ~ 9 

The real heart of non-abelian gauge mechanics is in the properties 

of the operators ~ . On what space of states do components of ~ act? 

What are the variable conjugate to ~ and what are the commutation 

relations? The answer to these questions in the simplified zero dimensio- 

nal model will determine the principles of quantization of the infinitely 
O 

richer lattice model of lecture III ~ 

The system described by ~ has as its configuration space the set 

of all possible rotations in 3-dimensional color space (More exactly 

elements of the universal covering group SU2). The elements of ~ are 

a particular set of coordinates in this space. There are many other 

possible ways to coordinitize this space. For example the Euler angles 

can be used to parametrize rotations. Or the matrices ~ may be written 

in terms of a vector potential~ as in (11.8). A particularly useful 

family of coordinates is defined by the representation matrices for 

color spin ~ . These (l~f4) ~ C ~ )  matrices may be written 

At present ~ is a matrix in the 2x2 color space. The individual com- 

ponents of ~ will become operators in the quantum space of states. 

We are using the term commute in the latter sense. 
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~ £A.~ ~- ~ ~ . 3~ (II.i0) 

where ~ are the Pauli matrices for spin ~ . The~/of eq. (II.7) is 

the special case I]4/~ . Whenever ~occurs without a subscript ~ it will 

be understood as ~WL" 

The symmetry group associated with local gauge invarianee is 

SU 2 x SU 2. The two SU 2 groups are the local gauge transformations at 

sites i and 2 and each has its own generators. The 3 generators at 

site ( ~ ) are called ~-~(4) and have the commutation relations 

From the transformation laws (II.9) it follows that the E's and 

~Is satisfy the commutation relations 

(no sum on ~) 

( z .12 )  

Since ~4/ completely determines an element of the rotation group, 

all the ~are functions of ~4/~ • Therefore the quantum conditions are 

completely specified by the relations (II.12) for ~= ~/~ . Furthermore 

the three sets of variables ~(~) , ~(Z) and ~ are not independent. 

In fact ~ {l) is given in terms of ~(4) and ~-~I by 

(z.13) 

This can be shown by substituting 

_ 4 U -~ 

Then the second of eq. (II.12) follows from the first and (II.13). Eq. 

(II.13) says that the color vectors EgO and g(1) are related by 

the rotation described by ~. This observation will play a central role 

in our understanding of electric flux in Y. M. theory. 

From (II.13) it follows that 

E__ Ca) z = E (I) (zz. 4) 

In general states classified under the group SU 2 x SU 2 are la- 

belled by two total angular momenta ~{#) and ~[2-) and two magnetic 
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quantum numbers ~.(4) and q¢~ (/) such that 

In the present case eq. (II.14) requires 

~(4)  : ~(Z)~___. ~ (II.15) 

SO that the states form (~4) ~ degenerate multiplets. 

The conditions (II.il) - (II.15) can be realized on a space of 

states generated as follows. We begin with a "base" state ~O>which 

is invariant under SU 2 x SU 2. We then construct a (l@¢4)mdimensional 

multiplet by acting with the (~f4) z elements of ~J~ on I O> . Thus we 

define a unique 10> such that 

E (4 ]1ob  -= E ( z )  t = o (ii.16) 

The ()_~t4) 2" states forming the (@/~) representation of SU 2 x SU 2 are 

given by 

D@ (0> (II. 17) 

It is easy to prove that the states in (II.17) are eigenvectors of 

a ~,4)~=. E (~4 ~ . 

E(gf g [o> = E (4) E , (4 )  Lie l o b  

= [ ~  ( 4 ) L E ~ ( 4 ) ,  ~J@] [ o ~  (see eq. (II.16)) 

-~- £4(4) (__~)~ ~ (O# (see eq. (11.12)) 
2_ 

(11.18) 

It is also possible to generate the space of states using only the ma- 

trices ~ of the W/~ color representation. This is done by expressing 

~@as a homogeneous polynomial of order ~@ in the components of ~_~ 

and ~-~. This corresponds to the fact that any angular momentum can be 

built from spin 4/2_ systems. As an example we express ~ in terms of~4/~ 
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The matrices ~ are the zero dimensional analogs of 

(II.19) 

v .  A ( z z . 2 o )  

where a is the spatial distance between sites i and 2, ~-is the coupling 

constant and A is the vector potential. Similarly the generators ~{4) 

and ~(ll have analogs in the conventional Y. M. theory. The generators 

are the non-abelian analogs of electric field. More precisely ~-{~) 

(E(~)) is the electric field at site I (2) pointing toward 2 (1). 

You should notice a certain formal similarity between the abelian 

and non abelian theories. In the abelian theory the operator e @ ~ . ~  

acts to create an electric field along the direction ~ . In the non 

/ . j~ 4 .  7;, abelian theory =ex~ ~ ~ ~ creates a non abelian electric 

field with magnitude ~z~ ~(~t4) . However in the abelian theory the 

electric flux adds linearly, in the Y. M. theory it adds like angular 

momentum. The interpretation of ~ as electric field will become clearer 

when it is shown that V.~ =~ in the next lecture. 

The total color carried by the system consists of the color carried 

by fermions plus the color carried by the gauge field ~J . The color 

carried by ~ is defined as the quantity which generates global color 

rotations of ~ . A global rotation rotates both frames equally 

U VI - - IV -1 ( I I .21)  

and under an infinitesimal rotation about the color axis 

where c (•) is the total ~4 component of color. From (11.12) it is evi- 

dent that the color carried by the gauge field is ~(4) 4-~-~(1). 
The total color is then 

[) 

i=4 

The color carried by the gauge field ~_(~) if-F(/_)may be thought of as 

the zero dimensional analog of ~',E . 

Not all the states of the system are physical. As in i-dimensional 

QED the constraint of local gauge invariance must be applied to the 
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physical states. To derive these conditions we note that the local 

color rotation at site ~ is generated by 

@ i) z 

The terms W Z ~ (}L? rotate the quark fields while the 6's rotate 

. As in abelian theory the gauge constraints state that ~ (() anni- 

hilate any physical state 

~t') @- '0 "~"~  (C.; I > = O (I1.25) 

When eq. (II.25) and (II.[3) are combined an interesting physical 

picture emerges. We can visualize sites i and 2 as sources and sinks of 

electric field. This is shown in Fig. 6. 

E -E(2[ 

Fig. 6 

Eq. (11.25) tells us that the total flux leaving site [ is equal to the 

charge at that point. However in going from site i to 2 the electric 

flux undergoes a color rotation as indicated by eq. (II.13). This change 

in electric flux can be viewed as a source if we recall that the total 

color carried by the gauge field between i and 2 is 

(II.26) 

The point which I will reemphasize in the Lecture III is that the color 

in the gauge field does not originate new lines of flux but rather it 

twists them in color space. 

The construction of the physical space of states begins by de- 

fining a gauge invariant product state %0>by means of the relations 

~-(0 Io~ = ~-C~) Io'7 --0 
(II.27) 

where ~-- (~-)annihilates quarks (antiquarks) at site~ . The next step 

is to define enough gauge invariant operators to generate the whole 

space when acting on lob • We will do this by considering products of 

La~@(() and ~4/~" Let~ first formulate a rule which will allow y, co US 
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to easily recognize gauge invariant operators. The rule is that if we 

focus attention on the indices associated with one site (or the other) 

the operator should form a scalar. This can only happen if all the 

indices at a given site are contracted among themselves, l'll give some 

examples. First the operator ~?(43 ~ (4) (here ~ is a color index) 

is gauge invariant because the contracted indices ( &)belong to the same 

site. However ~ )  ~(L~ is not gauge invariant. The list of gauge 

invariant operators which are necessary to create the full space of 

states is given by 

~f(~) L] h~ ¢c) (II.28) 

u-%< 0 

The idea of local contraction of indices is rather trivial for the zero 

dimensional case but it will be very useful in constructing the gauge 

invariant operators in the more complex lattice theory. 

Now lets examine the states that can be made by repeated appli- 

cation of the operations (11.28). 

i) ~)~(~)IO~, This is a 9~ pair in the color singlet 

state. Both particles are at site [ 

--~T(~)~{4)~@(L)~)/O>.This is a color singlet pair at each site. 2) 

3) ~¢(4) ~(~). This is a quark at (i) and an antiquark 

at (2). The operator ~ creates an electric flux satisfying 

(II.25). 

This state is more complex than the others since it contains 

two superimposed electric fluxes. 

I will illustrate the technique for adding flux by using a simple iden- 

tity whose proof you can supply. 

4 ~-- -4 

When (11.29) is substituted into the state (4) we get a superposition of 
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states 

i 

The first term we have already talked about. The second represents a new 

object composed of a color-spin 1 pair at each site. The colored pairs 

are accompanied by a color-i flux line created by ~ . This example 

illustrates how you must combine flux in a non-abelian theory. 

In general the states S-4 are not energy eigenvectors. If H is 

gauge invariant it will not lead out of this subspace but it may have 

transition elements within the subspace. 

I will choose ~ to be as close as possible to a real covariant 

Y. M. hamiltonian. For this purpose we can write 

L-/ela= eXl  z r . A  - -  w .  A + . . .  ¢i .3a) 

First consider ~'~(A) II~(~L). Applying (II.31) gives 

adding the h. c. gives 

These terms are analogs of the kinetic and interaction terms in a con- 

ventional gauge theory. 

The next term represents the energy stored in the electric field. 

It is given by the gauge invariant operator 

F_ (~) z ~ 0_3~ 
- -  (II.33) 

You should compare these terms with eq. (1.3) to see how they are similar 

to ordinary terms in a gauge theory. The only terms which are not present 

in the zero dimensional model (and one dimensional models) are the 

magnetic energy. Magnetic fields do not occur for spatial dimensions ~ 2. 

In the lattice theory in 3 dimensions they will be included. 
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ExerciSe: Construct a Yang Mills theory for 4 points arranged 

in a square. Each corner has a ~and each side a LI. What is the 

significance of the operator 

What is the effect of adding this operator into the hamiltonian? 

ili. LATTICE YANG MILLS THEORY 

a) De~rees of Freedom of a Lattice 

The usual continuous coordinates (~j ~j~) of space are replaced 

by a triplet of integers (~j~j~) ~ ~) . The points (@) are 
^ ^ 

called sites. At each site there are six lattice vectors ~ j%~ j $ 
A A A 
~-~' ~'~ i ~ shown in Fig. 7 • 

A 

n.x ~- 

^ n[ ^ 
mz 

f 

i 

^ 

n z -y 

~ig. 7 

^ 

=-nx 

In general sums over the lattice vectors will include all 6 directions. 

The spaces between sites will be called links. The links will 

usually be considered to be directed and will be labelled by a site and 

a lattice vector. For example (~l~-~)and I-2) describe the two 

directed links associated with the space between ~and ~ ~ . 

A 4 component fermion field ~(~) can be represented in terms of 

creation and annihilation operators for quarks and antiquarks at site C~) 

¢°) {i; ci) o o 
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in a representation in which ( ooo) ~ d O 0  
o 0 - 4 0  

0 0  0 - ~  
Each link will carry a degree of freedom ~J(~) to describe how color 

information is transported between neighboring sites. The two directed 

links associated with the same lattice space do not have independent 

degrees of freedom. In fact the two ~'s are inverses of one another 

= (~+~,--~) (IIl 2) 

Each link has two generators analogous to E(£) and ~{~) in the 

last lecture. I will use a labelling scheme for the ~'s defined as 

follows. If we consider the link (~i~) it has two ends, one at (~) 

and one at ( ~ )  . The two generators for the degree of freedom 

(~,~) at ~ and ~ will be called 

E (~'A ~ £(~t~) .(_~3 (III.3) 

The notation indicates that the two generators represent electric flux 

in opposing directions as shown in Fig. 8. 

Y 

E (r).fix E (r+Rx). (-fix) 

Fig. 8 

Thus the generators ~.~ are electric fluxes flowing outward from 

in the direction ~ . The commutation relations between the components 

of  F_ .~ are the usual SU 2 commutation relations. Eq. (11.13) is re- 

placed by 

(III.4) 

and (11.14) by 
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Evidently the source of electric flux on link (~'/~is 

A 
c = . , , , . ,  -,- 

(III.5) 

(III.6) 

b) The Gause Invariant Subspace 

The physical constraint of gauge invariance again requires every 

quark to be a source of electric flux. The way to show this is to follow 

the same logic we used in one dimensional QED and zero dimension Y. M. 

theory - construct the local generator of gauge transformations and 

then set it to zero. The gauge transformation at site ~ acts on ~(~9 

and on the six gauge fields ~](~j~ . Accordingly the generator is the 

sum of seven terms 

The physical subspace is then defined by 

The quantity ~ E(~)-~- is the total flux diverging from the 

point ~ . Eq. (III.8) then gives the usual connection between the diver- 

gence of ~ and the charge density < 

Unlike the abelian gauge field the Y. M. field is also a source. 

This can be seen from eq's. (III.4) and (III.6) which say that the field 

varies along a link by an amount equal to the color carried by that link. 

It is evident that the flux passing through a closed surface is the 

sum of the colors carried by the sites (quarks) and links (gauge field) 

enclosed. 

We can now construct the physical space of states beginning with 

a vector I0> satisfying 

lob =o 
(III.9) 



257 

Let's ignore the quarks and concentrate on the gauge invariant operators 

which can be built from the ~'s. The principle for forming gauge inva- 

riants is again the local contraction of indices. To form the general 

class of gauge invariant operators we first specify a closed oriented 

path of links ~. The path may cover any link one or more times 

(see Fig. 9) 

4 ~ 2 

• • • • • • • • • • • 

Q • • • • • • • • • • 

• • • • • • • • • • • • • • 

(a) (hi 

Fig. 9 

Now beginning with an arbitrary link on the path, multiply (2x2 matrix 

multiplication) the [J's in the order indicated by /~. For example for 

the path shown in Fig. 9b the required product is 

(III.10) 

There are still two open indices which are contracted by taking the 

trace. The resulting object is called ~J(r~. Since the indices in ~{F~ 

are all locally contracted ~(~] is gauge invariant. It can be shown 

that the entire gauge invariant space is generated by repeated appli- 

cation of the ~(~) operators applied to IO~. 

The physical properties of U(P) Io~ are very simple and inte- 

resting. First consider any link not on the path [~. Since no ~_] has 

acted to create electric field these links have no electric flux through 

them. The links which appear in ~ (suppose no link appears more than 

once) have an electric flux satisfying 

_ -- 4 3 

E 1) = -  

A c c o r d i n g l y  t h e  c l o s e d  c u r v e  / ~ c a n  be d e s c r i b e d  as a c l o s e d  l i n e  o f  

electric flux. The fact that electric flux lines must form closed lines 

in the absence of quarks is of course the familiar idea of continuity 

of electric flux originally envisioned by Faraday. However there are 
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two differences between lines of flux in ordinary electrodynamics and 

Y. M. theory on a lattice. 

The first difference is due to the fact that the Y. M. field is 

its own source. However it is a particularly simple kind of source which 

according to (111.4) causes the electric field to undergo a color rota- 

tion between the two ends of a link. The important observation is that 

the color on a link is not a source or origin of a new flux line but 

rather it color-twists the flux lines. 

The second difference is due to the fact that the color group 

is compact. This means that the generators ~'~ are quantized in the 

sense that 

(E a) = ~ t4] / d,~= O, ~; A/ .-. (III.i2) 

The flux through a link can not be arbitrarily small. To see what this 

means we can compare the situation with conventional electrodynamics 

formulated on a spatial lattice. In this case the flux can be arbitrarily 

subdivided. The flux emanating from a charge can spread out so that the 

flux through a distant link goes as a {~. This contrasts sharply with 

the flux in a non abelian theory which comes in quantized units. 

When quark fields are included the electric flux lines can begin 

and end on sites occupied by quarks. This is because the open indices 

of an expression like [J{4) L/{L)~(33 ..- ~] (6) (see Fig. 10) can 

be contracted with quark field indices. 

/ 

4 5 
• • • • @ • • 

• • • • @ • • 

Fig. i0 

For example we can form 

(III.13) 
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where ~ is an arbitrary Dirac matrix. In general the full set of gauge 

invariant functions of~j~fand ~ will depend on the group describing 

color. If the group is SU 2 then we have operators like 611.13) as well 

as operators 

where 7 ¢ is the charge conjugate to ~ . These operators describe quark 

pairs as opposed to quark antiquark pairs. If the color group is SU 3 

the diquark operators like (III.14) are replaced by ~ ~ operators. 

These are formed by considering a connected collection of links with the 

topology of a Y as in Fig. ii. 

rl 

I 2 
• r 2 • 

• • 

Fig. 11 

The operator for Fig. 11 is 

The entire space of states can be represented in terms of arbitra- 

ry products of closed flux-loops and open flux-lines with quark ends. 

However a more useful representation exists for cases in which a given 

link is covered more than once. In this case it is useful to combine the 

flux according to the rules of angular momentum addition. I will illu- 

strate this for the example in Fig. 12. 

Fig. ~2 



260 

The doubly covered link can be treated according to the method used in 

eq. (11.29). The resulting state is a linear superposition of two states 

in which that particular link carries electric flux of 0 and 1. This is 

shown in Fig. 13. 

V2 I/2 I/2 I/2 

V2 - V2 V2 

Fig. 13 

This method may be generalized in order to introduce a representation 

of states in which flux may branch as in Fig. 14 as long as E~ is 

E1 -"-- [3 Fig. 14 

I I v  

v 1 

I 

) 1 

T • 

1 

A 
• V 

• i 

: ° i  I '  ! 

Fig. 15 
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included in the addition of ~ and ~3 (added as angular momenta). 

A typical state is shown in Fig. 15. 

Evidently we can characterize the space of states in terms of 

arbitrary branching strings or electric flux lines subject only to the 

constraint of flux continuity. All string ends must be quarks and all 

quarks must be string ends. This defines the kinematics of lattice 

Y. M. theory. 

c) The Hamiltonian 

The dynamics is defined by a gauge invariant hamiltonian whose 

matrix elements do not lead out of the gauge invariant subspace. In 

choosing ~ two principles, in addition to gauge invariance will guide 

us. The first is that in the limit of zero lattice spacing C~--~o), 

conventional Y. M. theory should be recovered. The second condition 

is that ~ shall be as local as possible. We will restrict our choice 

so that no links or sites are coupled if they are more than a single 

lattice space apart. 

I will not do the algebra involved in taking the continuum limit 

but I will tell you how to do it yourself. You first define new variables 

~(x) / ~(~)) ~(:~) by the equations 

WE A I + . .  

(III.15) 

where ~ is the lattice spacing. Finite differences are replaced by 

derivatives 

. ( ~ )  - -  = 

and sums by integrals 

The hamiltonian will contain the following terms : 



262 

l~. L [ 9 - J  (III.16) 

In the limit o~--m othis becomes the usual electrostatic energy 

~- ( x )  

when the continuum limit is taken this becomes the free quark hamiltonian 

plus the interaction energy (in the gauge Ao~(9) 

3) A term which has been absent in our simplified zero and one dimen- 

sional models is the magnetic energy. These terms are associated with 

elementary boxes or squares on the lattice. For each oriented unit 

square we include 

E ~ ~ ~ ~ (III 18) 
9.- 

In the limit ~--) 0 %his term becomes the usual magnetic energy 

3- 

where 

Each term in ~ has a particular significance for the string- 

like flux lines. We shall study these terms in the order of their 

importance when the coupling ~ is large, t ~-- ~ 

The most important term for ~ is the electric energy ~-l- a__ 

This term gives an energy 

) to every link carrying flux ~ ~4 . The vacuum of the strong- 

ly coupled limit is the state which minimizes this term. Therefore,it is 

evident that the vacuum is the state ~O~ in which no flux lines are 

excited. 

If we consider states in which the electric flux lines cover no 

link more than once then the electric energy gives each state an energy 
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proportional to the total length of flux lines. This is the source of 

quark confinement in the strongly coupled Y. M. theory. For example 

if we consider a quark pair located at sites ~ and ~then the minimum 

energy configuration of the gauge field will involve an electric flux 

line of minimal number of links. Therefore the energy will be stored on 

a straight line between the quarks and will grow linearly with their 

separation. Evidently the strongly coupled Y. M. theory is behaving 

exactly like the dielectric model of lecture I. If the lattice spacing 

is CLthen the minimum energy for a ~ pair separated by distance 

is 

2~- ~'+ -- "~ (III.20) 

Q u a r k s  w i l l  b e  c o n f i n e d  i f  t h e  e l e c t r i c  e n e r g y  d o m i n a t e s .  

The  e l e c t r i c  e n e r g y  i s  a l s o  i n s t r u m e n t a l  i n  g i v i n g  t h e  p u r e  g a u g e  

f i e l d  e x c i t a t i o n s  m a s s .  F o r  e x a m p l e  c o n s i d e r  t h e  s t a t e  

L (o> (III.21) 

in which a single box of electric flux is excited. The electric energy 

of this state is 

Since each electric flux configuration is an eigenvector of the 

electric energy~ no propagation of signals through the lattice will 

take place until the other terms are included. 

The next term in importance is 

This term allows the fermions to propagate through the lattice. It 

describes a process in which a quark and antiquark are created or 

annihilated at two neighboring points. The factor ~ creates or cancels 

the flux between them. The sequence of events in Fig. i6 shows how 

fermions may move through the lattice. 

Processes induced by this term allow an electric flux line to 

break as quarks separate. Of course this only occurs when a pair is 

produced as in our earlier examples. Finally this term causes the 

physical vacuum to have a fluctuating number of ~ pairs. 
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0 " - . . 0  • • • 0 " " 0  0 " - ' 0  • 0 . - . 4 - - . 4 - - - - ~  e 

1 2 3 
0 - " 0  • • • ~ . . - 0  • • • 

0 - - - o - - - 6 - - 4  • ~ • 

4 5 
Fig. 16 

The last term is the magnetic energy 

This term causes fluctuations in the position and structure of the string- 

like flux lines. For example consider a static ~ pair with a straight 

electric flux line as in Fig. 17 

A - -  

Fig. 17 

Suppose we consider a box with a side in common with the flux line. If 

we apply ~ U  we create the superposition shown in Fig. 18 . 

Fig. 18 

In addition this term allows the vacuum to contain a fluctuating sea of 

closed flux lines. 

If the fluctuations due to the magnetic energy become too large 

the quark confining mechanism can become undone. To get a rough idea of 

how this can happen we suppose the vacuum contains a dense sea of closed 

flux lines as in Fig. 19. 
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Fig. 19 

v 

Now suppose a quark is placed in the lattice as in Fig. 20. The flux due 

to the quark (which must go to ~) is represented by the dark line. 

i i  

i 
i il - 
! o i1" 
. i i i i  I i 

Fig .  2O 

As usual the doubly occupied links can be resolved into a coherent 

superposition with flux zero and flux one. Let us consider the particu- 

lar contribution in which all these links carry ~=O. It is shown in 

Fig. 21. 
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Fig. 21 

• @ 

Fig. 19 has 40 excited links but Fig. 2~ has only 33. You see we have 

actually lowered the electric energy by adding a quark. However this 

obviously can not happen if the flux density of the vacuum is very low, 

i.e. if ~>I. The term 

m u s t  h a v e  s u f f i c i e n t  s t r e n g t h  t o  f i l l  t h e  v a c u u m  w i t h  a h i g h  d e n s i t y  o f  

flux loops. 

The term~OU~ also causes motion through the lattice. The 

sequence in Fig. 22 shows how the gauge field excitations are caused 

to move through the lattice: 

i i " " II_ _ . . 

ii 31 • i i i]4 
Fig. 23 
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d) Removin~ the Lattice and Infrared Slavery 

The most difficult unanswered question posed by lattice Yang 
I0 

Mills theory concerns the removal of the lattice from the theory A 

proper discussion of this point is well beyond the range of these 

lectures and also this lecturer. Nevertheless I will try to give you a 

vague idea of how I think things should go. First of all we must realize 

that taking ~ to zero is far more delicate in quantum field theory than 

in classical theory. This is because the large scale behaviour of the 

theory is sensitive to ~unless the bare parameters of the theory are 

continuously readjusted as ~-70 • This is the process of renormalization. 

For example suppose that with lattice spacing ~we use a coupling 

>~ . The energy stored in a ~ pair separated by distance ~ is 

Now s u p p o s e  we w i s h  t o  r e p r e s e n t  t h e  s ame  p h y s i c s  ( f o r  l a r g e ~ )  b y  a new 

model in which the lattice spacing is ~/~. In order to keep the energy 

unchanged we must use a new coupling constant which satisfies 

Thus as the lattice spacing decreases the squared Coupling constant must 

also decrease in order to keep the large scale physics unchanged. 

The right theory probably requires 

t 4 

as ~O. This was discovered by 't Hooft, Politzer and by Gross and 

Wilczek. This means that an accurate representation of continuum Yang 

Mills theory on a very fine lattice would require a very small coupling. 

However renormalization effects cause the effective coupling to increase 

with ~ until we (hopefully) reach a point where ~is comparable to the 

hadron radius and %>~ . We can then apply the strong coupling methods 

outlined in this lecture. 

If this view is correct then there is no "phase transition" 

between large ~ and small ~ so that no discontinuous effects occur as 

and ~ become small. Under these conditions quark confinement can be 

decided by examination of the large ~ limit. 

In this regard I should mention the relation between the mechanism 

described here and the idea of infrared slavery 11. The quark confining 

mechanism l've described begins with the idea that the "running" coupling 

constant is~>~ for large ~and then provides a picture of how quarks 
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are trapped by the electric field. It does not tell us why the coupling 

is large. On the other hand the infrared slavery ideas tell us why the 

coupling increases with ~but fail to explain how a strong coupling 

confines quarks. The quark confining mechanism of lattice Y. M. theory 

and infrared slavery are not different mechanisms but are complementary 

aspects of the same thing. 

ACKNOWLEDGMENTS 

The ideas presented in these lectures are the combined efforts 

of John Kogut and myself. The lattice theory was inspired by Ken Wilson. 

I am very grateful to him for explaining many things about lattices and 

gauge theories to me. 

REFERENCES 

I. H.J. Lipkin, Physics Reports, Vol. 8c, Number 3, Aug. 1973 

2. J. Schwinger, Theoretical Physics (International Atomic Energy 

Agency, Vienna, 1963) p. 89 

3. Lowenstein and Swieca, Annals of Physics 68, 172 (1971) 

4. A. Casher, J.Kogut and L.Susskind,Phys. Rev. Lett.3_~l, 792 (1973) 

5. J. Kogut and L. Susskind, Vacuum Polarization and the Absence 

of Free Quarks in 4 Dimensions, Phys. Rev. D (to appear) 

6. G. 't Hooft, private communication 

7. K.G. Wilson, C.L.N.S. 262 (Feb. 1974) to appear Phys. Rev. D 

8. Lattice Gauge Theories have also been studied by Polyakov. 

Private communication from J. Bjorken 

9. J. Kogut and L. Susskind, Hamiltonian Formulation of Wilson's 

Lattice Gauge Theories (to appear Phys. Rev. D) 

10. The process of letting ~--~ 0 in a quantum field theory is called 

renormalization group. The most complete approach to the renor- 

malization group as a computational tool is due to K. G. Wilson. 

See for example K. G. Wilson and J. Kogut, The Renormalization 

Group and the ~Expansion, perhaps to appear in Physics Reports C 

ii. It is known that in Y. M. theory the running coupling constant 

can increase as the cutoff distance becomes large. G.'t Hooft, 

Marseille Conference on Gauge Theories, June 1972,H.D. Politzer, 

Phys. Rev. Lett. 30, 1346 (1973), D. J. Gross and F. Wilczek, 

Phys. Rev. Lett. 30, 1343 (1973). Speculations that this effect 

can account for quark confinement in some way have been made by 

't Hooft, Weinberg, Georgi and Glashow and probably many more. 


