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I. ABELIAN MODELS

a) Introduction

I will not begin by telling you all the reasons why you have to
believe in quarks as hadron constituentsl. Lets just suppose that I had
and that we all believe hadrons are loosely bound collections of quarks*.
Secondly I want you to suppose that nobody will ever discover a free
isolated quark. We are then faced with the puzzling problem of explaining

how finite forces conspire to confine quarks to the interior of hadrons.

To begin with we must realize that most of our intuitions, even
our idea that a puzzle exists, come from our experience with weakly
coupled quantum electrodynamics and its perturbative solution. We are
often led astray into asking questions which make the phenomenon sound
much more complicated then it really is. For example: What class of
graphs is important to confine quarks? Or: Do the catastrophic infrared
divergences of Yang Mills theory combine to screen quarks? We ought to
understand that these questions do not really refer to the behaviour of
the system but rather to the method of solution - perturbation theory
about free fields. The reason that quark confinement seems so odd to
us is because we start with all the wrong ideas about how (the correct
strong interaction) field theory behaves and then attempt to perturb

our way to an infinitely distant behaviour.

* Most of the work described in these lectures was carried out in
collaboration with J. Kogut while the author was a visitor at

Cornell University.

* Loosely bound in the sense that they behave almost freely at short
distances.
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In these lectures I will show you three examples of theories
with confinement. In each case it is easy to see that quarks are con-
fined although perturbation theory buries the obvious in a jungle of
complicated graphs. The three examples share a key element, namely
local gauge invariance. The importance of local gauge invariance is
that it connects additive conserved charges to long range fields through
Gauss's theorem. The most familiar case is the long range Coulomb
field accompanying every isolated charge in electrodynamics. Similarly
in the non-abelian color-gauge theory of quarks every state with a non-
zero color must have a long range color-electric field in order to be
gauge invariant. This includes all states with non-vanishing triality.

The quark confining mechanism does not directly deal with the
quarks but rather with their long range color-electric fields. If the
color-electric fields are confined so that the electric flux lines are
prevented from radiating to infinity then the finite energy states must

be color-neutral.

2,3,4,

The three examples are Schwinger's one dimensional QED a

semiclassical model based on unusual dielectric properties of the
5’6; and a hamiltonian formulation of Wilson's lattice gauge

theory7’8’9.

vacuum

b) The Schwinger Model

I will now make two approximations on the real problem. First I
will replace the three colors of the 3-triplet model by a single abelian
color called charge. Instead of three kinds of quarks (red, yellow, blue)
I now have only one. The confinement mechanism will operate to elimi-

nate all objects except neutral bosons.

Having agreed to approximate three by one I will apply the
approximation again, this time on the number of space dimensions. The
result of these approximations is the Schwinger model or QED in one

dimension2’3’u.

I am not going to derive the formal solution3 to the model or
give a rigorous demonstration of confinement. This 1s partly because
you can find these things in the literature, but more importantly, I
want to avoid the special features of one dimension which make the
model solvable. In fact I will work in a gauge which is particularly
inconvenient for exact solutions. The gauge is defined by setting the

time component of the vector potential to zero
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Ao=0 (I.1)

The space component of the vector potential will be called A. The gauge
invariant field tensor has only one independent component, the electric
field, which is given by

_d
E_.,;/?A (1.2)

The hamiltonian is given by

H=jo{oa{nffo<('9}+£g/( )7,-1-)1‘/\1} (1.3)

Properly speaking eq. (I.3) defines a class of gauges related
by time independent gauge transformations

N WAYE R

p ey
A"—>A"‘@3,/\

(I.4)

for time independent/\. The hamiltonian in eq. (I.3) is of course gauge
invariant for this class of gauge transformations. Furthermore, and this
is important, all physical states must be invariant under (I.4). The

reason I have chosen this special class of gauges and restricted the
gauge invariance to time independent A is because the restricted gauge

transformations can be represented using unitary operators(J(AL

UyUT = ey
(1.5)

U A U™ = A +-Q>%_/\

Infinitesimal generators G;(Aocan also be introduced for infinitesimal A

L6, v] = ta N v (3

(I.6)

[6,A] = 9, A

When t~dependent gauge transformations are considered operators
1ike U and G no longer exist and I don't know how to express the gauge
invariance of the physical states. Gauge invariance under the restricted
gauge group simply requires every physical state |2 to satisfy
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um Ity =1>

(I.7)
G(nY V> = O o

for all /\.

Fortunately it is very easy to find G (A) . Using the canonical
commutation relations

[ A, f{(}’)] = id-y = [AGy, E(”é,‘)]

(1.8)
[y, sah)- ¢ v3) {G-3)
where S’ =34f+"f , you can easily verify that
DE
G=nelip-5-14 (59
We see that gauge invariance requires
NE _
{g(})—— ‘W‘%l > O (I.10)

This equation expresses the familiar fact that the charge density

is the source of electric field. It is not an equation of motion but a
constraint on the physical states.

In the physical subspace it implies

3
E(3)= E() + [ g(3"H43

(I.11)

(I.12)

= E (+00) — foagc}') a/}'
3

Lets suppose ECOO) or E.(—Oe) is non-zero. Then since H contains
the term JEL(’(} it is evident that the energy will be infinite. To

remain in the space of finite energy E(.":w) must be zero. But then the
two expressions (I.11) and (I.12) will not be equal unless
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J 8(%')0(’5’ ) (1.13)

—o0

What I have proved is that the finite energy, gauge invariant
states have zero total charge. But I would be cheating if I told you
that this proves charged particles don't exist. What I really want to
show is that the finite energy, gauge invariant states do not contain
well separated quarks and antiquarks.

For definiteness I will use eq. (I.11) for the electric field.
We can picture a charge at 3o as being the source of an electric field

which vanishes for %< %,. This is shown in Fig. 1

quark - > S
3

antiquark
o= —

Fig. 1

I want to digress briefly to describe the objects in Fig. 1 by
operators. Since the field 4# is not gauge invariant the state «(z(§,)f0}
is not a good description of a physical quark. To make a state which
satisfies gauge invariance we have to do something to create the line
of electric flux which must accompany the charge. Consider the operator

U(F)=W[é_£i(5)f(é)”(§] (I.14)

where ‘F is a c-number function of position. Using the fact that A and

E are canonical conjugates we find

Lo Eq)I(p = Eqrr £ (1.15)

This means that U acts on a state to shift the electric field by

amount f . This is useful because we need to shift E by amount @9(}-50)
when a quark is created at }0 . Therefore it makes sense to multiply

p (3,) by the factor exp LgI;A(}) ‘(é’ . The resulting gauge invariant
operator can be used to create the physical states shown in Fig. 1. We

define
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o0
Y(’},\ = exp[ég S 4(5') dg'J 41/(})

or y (I.16)
Y = Uiy pap

Exercise: Prove I is gauge invariant. Show that the expectation value

of E in the state E (0> is g ©(3-30).

Now the reason why quarks are confined in this model is not be-
cause it costs an infinite energy to apply 4f(§) to a state but rather
because the factor LI(}J costs an infinite energy. This of course is due
to the uniform electric field which fills space from %m to oo ,

Next lets consider a high energy¢7§'pair which is produced,
perhaps by a lepton annihilation,at the origin. My discussion is going
to be at the impressionistic level so I suggest you look at Ref. 3 for
formal arguments. The initial state is something like

| twitcal > = G (Do) [0 (1.17)

Since the two operators Y and aFrare evaluated at the same point the

initial state is gauge invariant.

As the system evolves the quark pair will separate. If you for-
got gauge invariance you might guess that the state at a later time is

something like
| Later> = ’—‘77("%) x| o> (1.18)

But this is impossible because the state (I.18) is not gauge invariant
and could not have been obtained if the system's evolution is governed

by a gauge invariant hamiltonian.

A more correct guess is
| fater> = € (-3 T3y (0>

k4
- Lg,{} /ldg‘
= v(Pe Y (3 (0> (1.19)
which describes a 7§'pair at the ends of a line of electric flux. (See
Fig. 2)
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q

o4

Fig., 2

Since the electric field is uniform between the quarks, the energy stored
in the field is ~v %L(X( where IX| is the distance separating the pair.
Thus the quarks can separate to a distance proportional to their initial
energy.

Of course the real state |later:> is not really as simple as
(I.19). Since AF is a relativistic field the interaction between the
quark field and the electric field can create pairs in the region between
the original pair. For example (1ater)>will have a piece 1like

?(*’0 N.E(X,,) ;f—C’(z) Yo lo> (1.20)

which looks like Fig. 3.

Fig. 3

However it is obvious that the evolution of the system can never lead

to an isolated gquark which is separated from compensating charges by
more than a distance proportional to the initial energy. The exact
solution of the Schwinger model shows that the real final state consists
of a number of:Tq'pairs, each with its connecting flux line and that
the probability to find a quark at a distance > 4 ralils exponentially.

r'e

I have dwelled at length on this trivial model so that you would
get a clear picture of the connection between gauge invariance, continuity
of electric flux and confinement. Just in case it was not clear I will
say 1t again: Gauge invariance requires every quark to be the end of a
flux line with uniform energy density and every end to be a quark. Since
every flux line has two ends (unless it is infinite and therefore infi-
nitely heavy) quarks must occur in pairs. This idea will be repeated
throughout the rest of these lectures.
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c¢c) Semiclassical Model

At first sight the situation in 3 space dimensions looks very
unfavorable for confinement. Gauge invariance still requires the charges
to be the sources of electric flux

V. E = S (1.21)

but this time the flux lines have two more dimensions to spread out into.
(See Fig. U4)

v

Fig. &

If the field spreads with spherical symmetry then continuity of flux
insures that it falls like

iEl N_,:Tz_ (I.22)

and the total energy is finite except for ultraviolet (4'4>c7) effects
which are removed by renormalization.

I am going to describe a model, cooked up by Kogut and myself5
and independently by 't Hooft6 which forces the electric field to be-
have very differently from Fig. 4. The model is very unrealistic but it
will help prepare you for the more ambitious model of lecture 3.

The model assumes that the vacuum is a dielectric medium with
some unusual properties. I will begin by reminding you of the electro-
statics of dielectries.

The free charges (quarks) are sources of the Maxwell D field
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_—a =

V ' $ = g (I.23)

The electric field E is curl free and 1s related to D by the dielectric
permeability &£(XD

D(xy = € E o (I.24)

In this model E(X) can take one of two values, namely zero and one at
any point. The regions where &= Qwill be called forbidden because the
D field is excluded from such regions. Wherever £=1 the material is

normal.

The energy consists of two terms, the first being electrostatic
energy and the second being the internal energy stored in the dielectric.

The electrostatic energy is
2
— (4% 3-E = [a¥ 2
\A/e.:,—f"(x‘b E dx P (I.25)

From (I.25) it is evident that D is excluded from regions where £ =0O.
The internal energy of the dielectric will be chosen so that the for-
bidden regions have less energy than the normal. Thus the ground state

or vacuum is forbidden. We will write the internal energy as
W, = ¢ [eood (1.26)

remembering that &€ has only 2 values. The total energy is

W = J —;D—ldzx + C Jg(x)nflx (1.27)

The model was invented so that the long range component of the
D field would cost an infinite amount of energy. To see how the model
works let's suppose the dielectric material fills a sphere of radius R
and outside the sphere =0, Suppose a charge 3-is placed at the
origin. The D field then satisfies

V'\:{; =q o(s(x) (1.28)

The first type of solution to try is a spherically symmetric distri-
bution of flux
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= 2
D= Y pres (1.29)

Since any forbidden region with non-vanishing D costs infinite energy,
the entire dielectric must be normal. The resulting energy is

W:ﬂ + %TRZC (I.30)
a
In this formula a represents the size over which the charge 1s smeared.
The first term is the electrostatic energy and the second term is the
internal energy of the dielectric when the whole sphere is normal. The
second term diverges as R? when the volume of the dielectric goes to
infinity.

The energy can be lowered by allowing the electric flux to be
distributed non-symmetrically. For example, suppose all of the flux is
distributed over a solid angle Sl within which the dielectric is normal.
The D field is given by

N

D = Y f_z (I.31)
L0 "

within the solid angle () and is zero outside. This time the total energy
is

k3
’1@ T _(2_ ;l3
W=9% — t = c (I.32)
N a
The electrostatic energy has increased because the field lines are
squeezed but the internal energy is lowered. Since when R—> 00 the
internal energy dominates it always pays to decrease Q. .

The limiting form of field which lowers the energy to its absolute
minimum is to allow all the flux to go through a long thin tube of normal
material until it reaches the surface of the dielectric. (See Fig. 5)

T 777 7 7 T T I 7777777
////1/////4//é!/L[777//////é£L1/////171

/
forbidden

normal

Fig. 5



244

The thickness of the tube is obtained by varying the energy per
unit length with respect to the radius. If the radius is A the D field
(which is parallel to the tube) is

:D-:: « _g (I.32)
,\(vl
and the electrostatic energy per unit length is

We ¢ 16t

- = (I.33)
L s
and the internal energy/[. is T C. Thus
1.
W gete - 1678 (1.38)
2
and the minimum occurs at
Z 4
rr= 13 (1.35)

Yo

Eq. (I.35) represents the thickness of the tube far from the
charge. Near the charge the situation is more complicated. What is clear
is that the minimum energy of an isolated charge grows linearly with R

since, far from the charge, the energy per unit length is constant.

The remaining arguments now parallel the one dimensional case.
The separation of quarks can only take place until the available energy
is used up or until the tube breaks by pair production.

In the next two lectures I will show you how the nonlinearities
of quantized Yang Mills theory can squeeze the electric flux into one
dimensional tubes.

II. YANG MILLS IN ZERO DIMENSIONS

a) Gauge Invariance in Zero Space Dimensions

What is field theory in zero space dimensions? It is field theory
in which there is only one or a finite number of points of space and
therefore a finite number of degrees of freedom. For the free scalar
field theory, the zero dimensional version is a single harmonic oscilla-
tor or a finite number of coupled oscillators. The first step in under-

standing a field theory is to understand its zero dimensional analog.
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The second step involves a lattice of elementary zero dimensional
systems with some form of coupling between the neighboring systems. If
the lattice spacing is not too large a qualitative understanding of
the large scale behaviour of the field theory is usually possible at
this level. Of course the short distance behaviour is absent.

The final and most difficult step is allowing the lattice spacing
to go to zero. Typlcally this involves renormalization of the parameters
so that the low energy (long wave length) behaviour is prevented from
varying as the spacing tends to zero.

In this lecture I am going to show you how to do step one. We
will formulate Yang Mills theory for two spatial points (one point
is too trivial). Then in lecture III we will do step 2 and show how
quarks may be confined in the strongly coupled theory. Unfortunately
the third step will have to wait until someone figures out how to do it.

We begin with a universe consisting of a pair of points 1 and 2
and a continuum of time. The presence of colored quarks on site 1 and 2
is described by fields ﬁbg(i) and “F;(Y). Here ( labels the 2 points
1 and 2 and % 1is the coler index". The field Y’may be represented in
terms of fermion creation and annihilation operators for each site

.f.

Yoo = atcy + b o (TT.1)

where Q+Cl) ( 6_653) creates (annihilates) a quark (antiquark) at site c.

We will begin with a very simple hamiltonian which just assigns
an energy/u to a quark

s «,.nb. o
H=/‘A2c/ ,«f)(t)'lftt). (IT.2)
In addition to global color rotations
Yyl —= \/&f/(t') (I1.3)
H is invariant under separate color rotations at sites 1 and 2
oy —> \/cc)m//(c) (II.4)

In equs. (II.3) and (II.4) the quantities V/,l/(f)and VYZJare any special
unitary 2x2 matrices.

* por illustrative purposes the color group will be SU2 instead of SUB'
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Transformations like (II.4) in which different color rotations
may act at 1 and 2 are called local gauge transformations. They are
symmetries of the hamiltonian in (II.2) since the degrees of freedom
at 1 and 2 are completely uncoupled. But the lack of coupling is not
necessary for local gauge invariance. For example the term

/\{/‘LM) «‘/(1) A]tﬁ(1> A(/(L) (1I.5)

couples sites 1 and 2 and is gauge invariant. The important feature of
hamiltonians like (II.2) and (II.5) is that they do not transport quarks
from one site to another.

To make F{ a little more interesting we can introduce terms which

do transport quarks from 1 to 2. For example

L [xx{ﬁ(/!) /Lk(l,) - '\(/*(L) %('f) (II.6)

annihilates a quark at 2 and creates one at 1., This term is still glo-
bally color invariant but local gauge invariance is lost. This implies

an absolute standard of comparison between color directions at 1 and 2.

I don't know of any mathematical principle which forbids such an
absolute standard but it does seem to me to endow space with some extra
machinery to keep track of the relative phases between 1 and 2. Let me
make this machinery more explicit in the form of a matrix L/ which re-
lates the two color reference frames. If the two frames are parallel
then LJ ='1 and F(is given by (II.6). Now let's imagine that the color
frame at 2 was secretly rotated relative to 1. The relative rotation
would be detected because the dynamics would now involve a nontrivial
matrix [/ in the form

¢ [A{/f(’f) 1 k{/(u - 'Lf-{_(L) UM]W”) (II.7)

In the Yang Mills theory the relative rotation would be unde-
tectable. The gauge invariance is restored by making the connecting matrix

LJ a dynamical variable with time dependence, an equation of motion

and quantum fluctuations. The new degree of freedom U belongs to neither
site but jointly to the two sites, or better yet, to the space between
the sites.

Since U is an SU2 matrix connecting the color frames at sites 1

and 2 it can be written in the form
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[] = QXPEL_' Youlo| (II.8)

where T are the three Pauli matrices. The two indices of L are
associated with the two sites. Under a local gauge transformation Lj

transforms as

L/ - \/(//) U\/—1(2—) (II1.9)

in order to keep the hamiltonian in (II.7) unchanged.

We will soon introduce gauge invariant terms into F{which do not
commute® with L/. When this is done LJ will no longer be a static set
of numbers but will become a full fledged quantum dynamical variable.
We will no longer be able to transform L away by a color rotation
at one site. And finally, although P{ permits processes in which quarks
hop from site to site, the dynamics remains invariant under local gauge

transformation.

b) Kinematics and Dynamics of ng

The real heart of non-abelian gauge mechanics is in the properties
of the operators L. on what space of states do components of L/ act?
What are the variable conjugate to Ll and what are the commutation
relations? The answer to these questions in the simplified zero dimensio-
nal model will determine the principles of quantization of the infinitely
richer lattice model of lecture III°.

The system described by L nas as its configuration space the set
of all possible rotations in 3-dimensional color space (More exactly
elements of the universal covering group SU2). The elements of Lj are
a particular set of coordinates in this space. There are many other
possible ways to coordinitize this space. For example the Euler angles
can be used to parametrize rotations. Or the matrices L may be written
in terms of a vector potential B as in (II.8). A particularly useful
family of coordinates is defined by the representation matrices for
color spin & . These (131* 1) « (13-1‘-4) matrices may be written

* At present Lj is a matrix in the 2x2 color space. The individual com-
ponents of Lj will become operators in the quantum space of states.

We are using the term commute in the latter sense.
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L{é/ = exp 3‘__ [ Ty -+ B (11.10)

where T}, are the Pauli matrices for spin 4 - The L/ of eq. (II.7) is
the special case Ljﬂi‘ Whenever L/ occurs without a subscript gfit will
be understood as Ll4, .

The symmetry group assoclated with local gauge invariance is
SU2 X SU2. The two SU2
sites 1 and 2 and each has its own generators. The 3 generators at
site (¢ are called E:d(i) and have the commutation relations

groups are the local gauge transformations at

[E_‘«u) , E/S(J-)—lz { fd/sa, J‘.J. Ed,(c) (II.11)
From the transformation laws (II.9) it follows that the E's and

L/% satisfy the commutation relations

[E.(('()/ U4] :21(7%/)« Uﬁ’ (no sum onj’)
[ (), Uﬁ]: — U/g g’l’ (I1.12)

Since L]ﬁLcompletely determines an element of the rotation group,
all the Lé,are functions of L/ﬂ& . Therefore the quantum conditions are
completely specified by the relations (II.12) for /= “4/3 . Furthermore
the three sets of variables E (1), E(2) and L] are not independent.

In fact E (1) is given in terms of E(4) and LJ1by

E(z)-_—-—L/4 £ (1) (II.13)
This can be shown by substituting
_ 4 -
(UJO({S—l’FFL/CO(U Ta
Then the second of eq. (II.12) follows from the first and (II.13). Eq.
(II.13) says that the color vectors E (1) and E(2) are related by

the rotation described by [/. This observation will play a central role

in our understanding of electric flux in Y. M. theory.

From (II.13) it follows that

E(z_)l = EM)’" (IT.14)

In general states classified under the group SU2 b'd SU2 are la-
belled by two total angular momenta ?47) and ?—(2) and two magnetic
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quantum numbers wm (M and w (2) such that
— 4l £ ) £ 4D

In the present case eq. (II.14) requires

Yy =q¢D=¢% (II.15)

2 .
so that the states form (29#4) degenerate multiplets.

The conditions (II.11) -~ (II.15) can be realized on a space of
states generated as follows. We begin with a "base" state }jo>which
is invariant under SU, x SU,. We then construct a (l*f/])”dimensional
multiplet by acting with the (2}#4)1 elements of L/? on {05 . Thus we
define a unique (0> such that

EMios=E@) 10> =0 (11.16)

2 . .
The (?_a,-r/]) states forming the (3«,'3,) representation of SU2 X 802 are
given by

U,} 2 (1I.17)

It is easy to prove that the states in (II.17) are eigenvectors of
EU’=E(L.

E_(’f)z U*[O> = Eo((/{) Ex(/’) I-Ja, (0>
= Eo( (/{)LE«M)/ Uﬂzj (O> (see eq. (II.16))

(E)e( U/I/ {O> (see eq. (II.12))

= 42__[ E«M)/(Gz)q L//J,] 0>
=2 (T, (T,), L, 10>
= 4 (41 L‘/ﬂ’ [0> (11.18)

It is also possible to generate the space of states using only the ma-
trices L/ of the 4/)_ color representation. This is done by expressing

L{ as a homogeneous polynomial of order lg« in the components of L./

and Ll"’. This corresponds to the fact that any angular momentum can be
built from spin 7f; systems. As an example we express U,, in terms of U,,/J_
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(L/4)o(ﬁ=%7;*[u Ty U-‘E/él (I1.19)

The matrices [ are the zeroc dimensional analogs of
T
eXp Lq,?,I-A (II.20)

where a is the spatial distance between sites 1 and 2, ¢-is the coupling
constant and A is the vector potential. Similarly the generators E (1)
and E(2) have analogs in the conventional Y. M. theory. The generators
E are the non-abelian analogs of electric field. More precisely £ (1)
(E(L)) is the electric field at site 1 (2) pointing toward 2 (1).

You should notice a certain formal similarity between the abelian
and non abelian theories. In the abelian theory the operator %L"%A’fl]
acts to create an electric field along the direction Z . In the non
abelian theory L[, = exp 1“‘14\3« 7; A creates a non abelian electric
field with magnitude Er= 4(gt1) . However in the abelian theory the
electric flux adds linearly, in the Y. M. theory it adds like angular
momentum. The interpretation of E as electric field will become clearer
when it is shown that V- E =$ in the next lecture.

The total color carried by the system consists of the color carried
by fermions plus the color carried by the gauge field L . The color
carried by U is defined as the quantity which generates global color
rotations of L. & global rotation rotates both frames equally

L] — vV L \/—7 (I1.21)

and under an infinitesimal rotation about the color axis &
fU=lecw, U]=[c U-Lz] /2 (11.22)

where ¢ (x) 1is the total « component of color. From (II.12) it is evi-
dent that the color carried by the gauge field is &, (D) + E, (1).
The total color is then

e T M . (
2 . (3 (b Yol + 54(4) + £ (2) (I1.23)
(=1

The color carried by the gauge field FE (1) + E (D) may be thought of as
the zero dimensional analog of V- £ .

Not all the states of the system are physical. As in 1-dimensional

QED the constraint of local gauge invariance must be applied to the
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physicél states. To derive these conditions we note that the local
color rotation at site ( 1is generated by

X / T. _ . .
G (o =zn{/(t) (,d’\]l/(l) *‘Edé‘) (I1.24)
A a1 . . .
The terms N (2 (L)YZ’W") rotate the quark fields while the £ 's rotate
Ll . As in abelian theory the gauge constraints state that &G (<) anni-
hilate any physical state

{E (o) + ’yj?() —;E—\f(l‘)} f > = O (II1.25)

When eq. (II.25) and (II.13) are combined an interesting physical
picture emerges. We can visualize sites 1 and 2 as sources and sinks of

electric field. This is shown in Fig. 6.
E(1) "D/- -E(Zzl
1

Fig. 6

Eq. (II.25) tells us that the total flux leaving site ¢ is egual to the
charge at that point. However in going from site 1 to 2 the electric
flux undergoes a color rotation as indicated by eq. (II.13). This change
in electric flux can be viewed as a source if we recall that the total
color carried by the gauge field between 1 and 2 is

C, ( fietd) = E 1)+ E, (D (II.26)

The point which I will reemphasize in the Lecture III is that the color
in the gauge field does not originate new lines of flux but rather it

twists them in color space.
The construction of the physical space of states begins by de-
fining a gauge invariant product state |0 by means of the relations

a (oS = b (iylo> =0
(1I.27)

Ecylo> =0

where Af'(éf)annihilates quarks (antiquarks) at site¢ . The next step
is to define enough gauge invariant operators to generate the whole
space when acting on [0 . We will do this by considering products of
\f((), Akfkd) and LLML' Let's first formulate a rule which will allow us
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to easily recognize gauge invariant operators. The rule is that if we
focus attention on the indices associated with one site (or the other)
the operator should form a scalar. This can only happen if all the
indices at a given site are contracted among themselves,I'll give some
examples. First the operator «P;.r('f) Y, (4Y (here ( is a color index)

is gauge invariant because the contracted indices ( ¢) belong to the same
site. However "{r+(4) 4 (1) is not gauge invariant. The list of gauge
invariant operators which are necessary to create the full space of
states is given by

ORZ0
flu ¢y

(II.28)

Ty L ¢ )
iy Uy

The idea of local contraction of indices is rather trivial for the zero
dimensional case but it will be very useful in constructing the gauge

invariant operators in the more complex lattice theory.

Now lets examine the states that can be made by repeated appli-
cation of the operations (II.28).

1) 'Y‘TU) Y 10>, This is a 72)_ pair in the color singlet
state. Both particles are at site
2) f\{fT('f)'Y«M)y-/(b)y)/b)/(»Thls is a color singlet pair at each site.

3) ’l(r('f) LJ'\(«“-) This is a quark at (1) and an antiquark
at (2). The operator Ll creates an electric flux satisfying
(I1.25).

y fmuymYfyutoy v inY (o>,
This state is more complex than the others since it contains
two superimposed electric fluxes.
I will illustrate the technique for adding flux by using a simple iden-
tity whose proof you can supply.

U (UJ»H ,{Jl( "Lq,( U UZ'O(\(CA)Q(%()I(

% fJ‘(+ U)u(r)x(T‘*

(II.29)

When (II.29) is substituted into the state (4) we get a superposition of
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states

t+ 7
Ly myp ¢y

LI CAMEA I ATE) (31.30)

The first term we have already talked about. The second represents a new
object composed of a color-spin 1 pair at each site. The colored pairs
are accompanied by a color-1 flux line created by L& . This example
illustrates how you must combine flux in a non-abelian theory.

In general the states 1-U4 are not energy eigenvectors. If P1 is
gauge invariant it will not lead out of this subspace but it may have
transition elements within the subspace.

I will choose H to be as close as possible to a real covariant

Y. M. hamiltonian. For this purpose we can write

L,

First consider #ﬁﬁ) Ll (2). Applying (II.31) gives
wTen Uyl = 1{/7(4)r%(L) + C%,qbf(/l)%?pa)'ﬁ

adding the h. c. gives

L[@T—M)nﬂz)—yﬁ[m w(A) +
cigd (Y Egr 1Y OF 1) ]

_ @ _ ‘9.
n TP A —4+7_—r/(+... (II.31)

(II.32)

These terms are analogs of the kinetic and interaction terms in a con-

ventional gauge theory.

The next term represents the energy stored in the electric field.

It is given by the gauge invariant operator

E (y? E(y*
— S (I1.33)
2

You should compare these terms with eq. (I.3) to see how they are similar
to ordinary terms in a gauge theory. The only terms which are not present
in the zero dimensional model (and cne dimensional models) are the
magnetic energy. Magnetic fields do not occur for spatial dimensions < 2.
In the lattice theory in 3 dimensions they will be included.
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Exercise: Construct a Yang Mills theory for 4 points arranged
in a square. Each corner has a 'y/and each side a L/ . What is the
significance of the operator

T LI(1) (D L3y LY [a

What is the effect of adding this operator into the hamiltonian?

III. LATTICE YANG MILLS THEORY

a) Degrees of Freedom of a Lattice

The usual continuous coordinates (%, 5,2) of space are replaced

by a triplet of integers (frx’y-b"v‘z) —= (%) . The points (#) are
. . . . A N ~
called sites. At each site there are six lattice vectors n,(,’nb ) PL% '
A .
1/‘\\'_,(: My ,Qt_t shown in Fig. 7

Fig. 7

In general sums over the lattice vectors will include all 6 directions.

The spaces between sites will be called links. The links will
usually be considered to be directed and will be labelled by a site and
a lattice vector. For example ('V’,/Q) and ('r'-o-Q,"Q) describe the two
directed links associated with the space between ¥ and "+ o

A 4 component fermion field A (r) can be represented in terms of

creation and annihilation operators for quarks and antiquarks at site (»)

Y () = Gtt ‘”5; + AZ(M ;L- (III.1)

where ;=(%);;z:(§ 123:<’§)’ ZL’z(ﬁgJ
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in a representation in which

1.0 00

_ o100
XO O 0 -4 0
o 0 0 -1

Each link will carry a degree of freedom LJ(T,QJ to describe how color
information is transported between neighboring sites. The two directed
links associated with the same lattice space do not have independent

degrees of freedom. In fact the two Lﬁs are inverses of one another

-
U(w,A):U (v+m,=-R) (I11.2)

Each link has two generators analogous to EZ(4) and E/Z) in the
last lecture. I will use a labelling scheme for the E's defined as
follows. If we consider the link (N,Qq it has two ends, one at (7))
and one at (N‘+A1) . The two generators for the degree of freedom

L) («, Ry at + and *+& will be called

E(V’)-/{\L and E('v-mﬁ)-(—n’\‘,) (III.3)

The notation indicates that the two generators represent electric flux

in opposing directions as shown in Fig. 8.
A
Elr)-n
(1)

-

Elr)-fix Elr+fiy) - ()

Fig. 8

Thus the generators E-A& are electric fluxes flowing outward from Vv
in the direction A . The commutation relations between the components
of E.4 are the usual SU2 commutation relations. Eq. (II.13) is re-
placed by

Ewl) (&) =— U(v, By Ew oA (III.4)

and (II.14) by
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yn 7
(E(,v)-,ﬂ,) = (E(f"wf‘») -C-A)) (III.5)
Evidently the source of electric flux on link (N)ﬁQ\is

C(’Y.I'C"):E(V')'ﬂ’+E('V.+4?’)'(—A’) (111_6)

b) The Gauge Invariant Subspace

The physical constraint of gauge invariance again requires every
quark to be a source of electric flux. The way to show this is to follow
the same logic we used in one dimensional QED and zero dimension Y. M.
theory - construct the local generator of gauge transformations and
then set it to zero. The gauge transformation at site + acts on 4 (™)
and on the six gauge fields LJCr,il\ . Accordingly the generator is the
sum of seven terms

G.(,,z) — /kf/-r('v) ;#/(r) -f—% E A (III.7)

The physical subspace is then defined by

§A{/+(ﬂ§_€ Yo “'Z: E(ﬂ'a} [ 5=0 (I11.8)

The quantity % E > -2 is the total flux diverging from the
point + . Eq. (III.8) then gives the usual connection between the diver-

gence of E and the charge density 1}'§-Ny.

Unlike the abelian gauge field the Y. M. field is also a source.
This can be seen from eq's. (III.4) and (III.6) which say that the field
varies along a link by an amount equal to the color carried by that link.
It is evident that the flux passing through a closed surface is the

sum of the colors carried by the sites (quarks) and links (gauge field)
enclosed.

We can now construct the physical space of states beginning with

a vector |0> satisfying
(e (05> = b (w0 =0

(4///\:’ ad )
E(r\-ﬁ/—}. '05 = O
(II1.9)
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Let's ignore the quarks and concentrate on the gauge invariant operators
which can be built from the 's. The principle for forming gauge inva-
riants is again the local contraction of indices. To form the general

class of gauge invariant operators we first specify a closed oriented
path of links fﬂ. The path may cover any link one or more times

(see Fig. 9)

S E5= B 0 £
(a) (b)

Fig. 9

Now beginning with an arbitrary link on the path, multiply (2x2 matrix
multiplication) the L/'s in the order indicated by . For example for
the path shown in Fig. 9b the required product is

UM) U(M U(3> UU/') (I11.10)

There are still two open indices which are contracted by taking the
trace. The resulting object is called LJ(Tv. Since the indices in LJ(rD
are all locally contracted J(T") is gauge invariant. It can be shown
that the entire gauge invariant space is generated by repeated appli-
cation of the /() operators applied to (0>,

The physical properties of LI(T") (0> are very simple and inte-
resting. First consider any link not on the path . Since no L/ has
acted to create electric field these links have no electric flux through
them. The links which appear in r’(suppose no link appears more than
once) have an electric flux satisfying

L 1 71 3

E™=<2 (£#+1) = (IT1.11)
Accordingly the closed curve [" can be described as a closed line of
electric flux. The fact that electric flux lines must form closed lines
in the absence of quarks is of course the familiar idea of continuity

of electric flux originally envisioned by Faraday. However there are
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two differences between lines of flux in ordinary electrodynamics and

Y. M. theory on a lattice.

The first difference is due to the fact that the Y. M. field is
its own source. However it is a particularly simple kind of source which
according to (III.4) causes the electric field to undergo a color rota-
tion between the two ends of a link. The important observation is that
the color on a link is not a source or origin of a new flux line but

rather it color-twists the flux lines.

The second difference is due to the fact that the color group
. . N . .
1s compact. This means that the generators E «A are quantized in the

sense that -
AT _
(E-""”> 'E(Z*’f) , W=0,4,L, ... (IIL.12)

The flux through a link can not be arbitrarily small. To see what this
means we can compare the situation with conventional electrodynamics
formulated on a spatial lattice. In this case the flux can be arbitrarily
subdivided. The flux emanating from a charge can spread out so that the
flux through a distant link goes as 4/~rl. This contrasts sharply with

the flux in a non abelian theory which comes in quantized units.

When quark fields are included the electric flux lines can begin
and end on sites occupied by quarks. This is because the open indices
of an expression like [J1) LI(vyLy(3y ... [ (6) (see Fig. 10) can

be contracted with quark field indices.

For example we can form

ﬁbf}vg\ (7 LJ(4) e Lj(é) ?&(13\ (I1I.13)
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where O is an arbitrary Dirac matrix. In general the full set of gauge
invariant functions ofyyyjénd L owill depend on the group describing
color. If the group is SU2 then we have operators like (III.13) as well

as operators
(«p‘ov§yFO LIty ... e 7P(Vl) (III.14)

where 4fc is the charge conjugate to 7/. These operators describe quark
pairs as opposed to quark antiquark pairs. If the color group is SU3

the diquark operators like (III.14) are replaced by 77 7 operators.
These are formed by considering a connected collection of links with the

topology of a Y' as in Fig. 11.

The operator for Fig. 11 is

iy L o 4 ey Loy 0 9L sy LU 03) e,

The entire space of states can be represented in terms of arbitra-
ry products of closed flux-loops and open flux-lines with quark ends.
However a more useful representation exists for cases in which a given
link is covered more than once. In this case it is useful to combine the
flux according to the rules of angular momentum addition. I will illu-

strate this for the example in Fig. 12.

Fig. 12
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The doubly covered link can be treated according to the method used in
eq. (II.29). The resulting state is a linear superposition of two states
in which that particular link carries electric flux of O and 1. This is
shown in Fig. 13.

2 12 2.

W y —o

E=1% E=1 %k + ¥ Y2

O

] 2 A7 T

Fig. 13

This method may be generalized in order to introduce a representation
of states in which flux may branch as in Fig. 14 as long as & is

E, !
E,

E3 Fig. 14
. ° . . . ) -r————!i———A. ) D)
° . . L7} . .
L L
. . V2 ) { J LZi 4vh
V2 L/} /)
V2 1
. @o— 7 '2 4 r -
1 /]
3 ° . ° o 1 [ 3 - V2 e
° . . . b . T m
1
) ° ) ) 7Y 3 ° D)

Fig. 15
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included in the addition of 52 and Eﬁ (added as angular momenta).

A typical state is shown in Fig. 15.

Evidently we can characterize the space of states in terms of
arbitrary branching strings or electric flux lines subject only to the
constraint of flux continuity. All string ends must be quarks and all
quarks must be string ends. This defines the kinematics of lattice
Y. M. theory.

¢) The Hamiltonian

The dynamics is defined by a gauge invariant hamiltonian whose
matrix elements do not lead out of the gauge invariant subspace. In
choosing H two principles, in addition to gauge invariance will guide
us. The first is that in the 1limit of zero lattice spacing (4-70),
conventional Y. M. theory should be recovered. The second condition
is that H shall be as local as possible. We will restrict our choice
so that no links or sites are coupled if they are more than a single

lattice space apart.

I will not do the algebra involved in taking the continuum limit
but I Kill tell you how to do it yourself. You first define new variables
j{’(x) , A(X), € (x> by the equations

2L

,\(}(){) = A /t/(x)
1

A
E (v -4 :% €00 - M

U(«r,ﬁ'l) =ey)o[cg,a.,4ﬁ’«\,§] = 1+ Lg,tkg/"ﬁ/«\,-f

(III.15)
where a 1is the lattice spacing. Finite differences are replaced by

a,_4[)0(¢') - ‘)D('Y'—/C\\.)] = A 9]C

and sums by integrals

7 ngo(«r) = ja’fzx 7[’(\0

The hamiltonian will contain the following terms :

derivatives
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[ — 2
VLD FEw A
20 Lo Ecvyom (1I1.16)
f‘",{“\r

In the 1limit a—> 0this becomes the usual electrostatic energy

1 3 z
Ifa(x Z(X)

-4 1 K- Ax A A -
o (v == [ o, WY 4 (rti ) + P 1TT.17)
2) é@{’l{/ : , )4(/ /««4// b }III 17

when the continuum limit is taken this becomes the free quark hamiltonian

plus the interaction energy (in the gauge AC,=>0)

1\~ n Vi . T vy
[ qx s T A Sy P XK
3) A term which has been absent in our simplified zero and one dimen-
sional models is the magnetic energy. These terms are associated with

elementary boxes or squares on the lattice. For each oriented unit

square we include

_,L’(;,_ }_}U(_]L/ (II1.18)
*Y
In the limit a-> 0 this term becomes the usual magnetic energy

7 (4% Hoo

where

%Lo((’q =VrA, * % Flpy /4/’ Ay

Each term in H has a particular significance for the string-
like flux lines. We shall study these terms in the order of their
importance when the coupling 9 is large. }L'__ 2
The most important term for @,>> 1 is the electric energy s a 2; Ei .
This term gives an energy

w
2 ("—f— /1’:1«/} (IT1.19)
Ja | 2 2 :
. L_ (A«
to every link carrying flux E - 3 17*4) . The vacuum of the strong-

ly coupled 1limit is the state which minimizes this term. Therefore it is
evident that the vacuum is the state [9> in which no flux lines are

excited.

If we consider states in which the electric flux lines cover no

link more than once then the electric energy gives each state an energy
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proportional to the total length of flux lines. This is the source of
quark confinement in the strongly coupled Y. M. theory. For example

if we consider a quark pair located at sites -, and 7 then the minimum
energy configuration of the gauge field will involve an electric flux
line of minimal number of links. Therefore the energy will be stored on
a straight line between the quarks and will grow linearly with their
separation. Evidently the strongly coupled Y. M. theory is behaving
exactly like the dielectric model of lecture I. If the lattice spacing
is @ then the minimum energy for a ?ﬁ‘pair separated by distance D

g(%)(%+4>% - ;j:\b (I11.20)

Quarks will be confined 1f the electric energy dominates.

is

The electric energy is also instrumental in giving the pure gauge
field excitations mass. For example consider the state

Tr Y (o> (II1.21)

in which a single box of electric flux is excited. The electric energy
of this state is

_ 4, 8- 3 _ 39
H(E‘”‘)—42a 4 2a

Since each electric flux configuration is an eigenvector of the
electric energy, no propagation of signals through the lattice will
take place until the other terms are included.

The next term in importance is
-4 A A A ~ _
T ey T (e Rl i) +

This term allows the fermions to propagate through the lattice. It

describes a process in which a quark and antiquark are created or
annihilated at two neighboring points. The factor [/ creates or cancels
the flux between them. The sequence of events in Fig. 16 shows how

fermions may move through the lattice.

Processes induced by this term allow an electric flux line to
break as quarks separate. Of course this only occurs when a pair is
produced as in our earlier examples. Finally this term causes the

physical vacuum to have a fluctuating number of 7ﬁ’pairs.
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Fig. 16

The last term is the magnetic energy

It zi:
a
?’ Boxes
This term causes fluctuations in the position and structure of the string-

like flux lines. For example consider a static ?ﬁ'pair with a straight

electric flux line as in Fig. 17

Fig. 17

Suppose we consider a box with a side in common with the flux line. If
we apply J~ UBUU we create the superposition shown in Fig. 18 .

e o ¢ o o9 o o e o o
' ~—Er
® o ¢ ¢ o o o [ ] ® & o o o o

Fig. 18

In addition this term allows the vacuum to contain a fluctuating sea of

closed flux lines.
If the fluctuations due to the magnetic energy become too large
the quark confining mechanism can become undone. To get a rough idea of

how this can happen we suppose the vacuum contains a dense sea of closed

flux lines as in Fig. 19.
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9" [ ] [ ]
L ]
L
® [ -
Fig. 19

Now suppose a quark is placed in the lattice as in PFig. 20. The flux due
to the quark (which must go to & ) is represented by the dark line.

P

' T

Fig. 20

As usual the doubly occupied 1links can be resolved into a coherent
superposition with flux zero and flux one. Let us consider the particu-
lar contribution in which all these links carry E = 0. It is shown in
Fig. 21.
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Fig., 21

Fig. 19 has 40 excited links but PFig. 21 has only 33. You see we have
actually lowered the electric energy by adding a quark. However this
obviously can not happen if the flux density of the vacuum is very low,
i.e. if 3>>1. The term

>3
must have sufficient strength to fill the vacuum with a high density of
flux loops.
The term T DU} also causes motion through the lattice. The
sequence in Fig. 22 shows how the gauge field excitations are caused

to move through the lattice:

1) ] ° hd 2)

Fig. 23
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d) Removing the Lattice and Infrared Slavery

The most difficult unanswered question posed by lattice Yang
Mills theory concerns the removal of the lattice from the theorylo. A
proper discussion of this point is well beyond the range of these
lectures and also this lecturer. Nevertheless I will try to give you a
vague idea of how I think things should go. First of all we must realize
that taking &« to zero is far more delicate in quantum field theory than
in classical theory. This is because the large scale behaviour of the
theory is sensitive to a unless the bare parameters of the theory are

continuously readjusted as @a-»0 . This is the process of renormalization.

For example suppose that with lattice spacing a.we use a coupling
%>>4 . The energy stored in a 77— pair separated by distance D is
3 %2' b
g a*

Now suppose we wish to represent the same physics (for larged) by a new

model in which the lattice spacing is @/2 . In order to keep the energy
unchanged we must use a new coupling constant which satisfies
(()1511
'S 7Y
Thus as the lattice spacing decreases the squared coupling constant must

also decrease in order to keep the large scale physics unchanged.

The right theory probably requires
%? 8% _j_—
Loy a
as &-> 0, This was discovered by 't Hooft, Politzer and by Gross and
Wilczek. This means that an accurate representation of continuum Yang
Mills theory on a very fine lattice would require a very small coupling.
However renormalization effects cause the effective coupling to increase
with @ until we (hopefully) reach a point where @ is comparable to the
hadron radius and %> 41 . We can then apply the strong coupling methods

outlined in this lecture.

If this view is correct then there is no "phase transition”
between large ¢4 and small § so that no discontinuous effects occur as
a. and @; become small. Under these conditions quark confinement can be

decided by examination of the large %rlimit.

In this regard I should mention the relation between the mechanism
described here and the idea of infrared slaveryll. The quark confining
mechanism I've described begins with the idea that the "running" coupling
constant is D 4 for large a and then provides a picture of how quarks
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are trapped by the electric field. It does not tell us why the coupling
is large. On the other hand the infrared slavery ideas tell us why the
coupling increases with @ but fail to explain how a strong coupling
confines quarks. The quark confining mechanism of lattice Y. M. theory
and infrared slavery are not different mechanisms but are complementary
aspects of the same thing.
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