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Abstract

This thesis presents two topics at the interface between computational physics and
Quantum Field Theory (QFT). This first part of the thesis is a comprehensive study of a
numerical evolution scheme for the correlation function of a scalar quantum field. In partic-
ular, it explores how one can numerically simulate a bi-scalar function that simultaneously
satisfies a time dependent partial differential equation Partial Differential Equations (PDE)
in two independent spacetime coordinates. We demonstrate an algorithm that is capable
of performing time integration in two time coordinates and yielding convergent numerical
results for not only the correlation function, but also for quantities of interest relating to
the quantum field. Moreover, we demonstrate a number of methods that can be leveraged
to optimize the speed along with the required memory of the algorithm.

The second part of this thesis is concerned with the effects of dynamically localizing the
vacuum state of scalar quantum field in (1 + 1)-dimensional Minkowski spacetime. Given
recent develops in formulations to a measurement theory for quantum fields, localized field
theories have emerged as a potential candidate in developing a relativistically consistent
measurement theory. However, concerns have been raised regarding the use of these lo-
calized fields in realistic, experimental setups due to the fact that one must dynamically
localize the field. The result of this localization would be a loss of purity in the exper-
imentally accessible modes of the field, and thus would not be useful as a measurement
device. Utilizing the methods presented in the first part of this thesis, we study the effect of
localizing quantum field degrees of freedom by dynamically growing cavity walls through a
time-dependent potential. We use our results to show that it is possible to do this without
introducing non-negligible mixedness in localized modes of the field. We discuss how this
addresses the concerns, raised in previous literature, that the high degree of entanglement
of regular states in QFT may hinder relativistic quantum information protocols that make
use of localized relativistic probes.
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Notations and Conventions
Spacetime is given by a pair (M, gµν), where M is differentiable manifold consisting of one
spatial and one temporal coordinate and gµν is a Lorentzian metric on M. The manifold,
M, will always be assumed to be globally hyperbolic in order to ensure the existence
of a Cauchy slice. The importance of this assumption will be discussed in more detail
in Chapter 3. We will be working in a Cartesian coordinate system xµ = (t, x1, . . . , xn)
where n is the number of spatial dimensions. Given that we are working in a Minkowski
spacetime, the metric and its signature are given by ηµν = diag(−1,+1, . . . ,+1). We will
refer to abstract points in spacetime using sans-serif font, x, x′. We use natural units so
that ℏ = c = 1. In order to clearly distinguish quantum operators from classical quantities,
we will always use hats to denote the quantum operators. For example, ϕ̂(x) represents
the operator associated to the quantized classical field ϕ(x).
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Chapter 1

Introduction

Quantum field theory (QFT) forms the basis of modern physics, providing a unifying
mathematical framework to describe fundamental particles and their interactions. As the
foundation of the Standard Model of particle physics, QFT has provided groundbreaking
insights into the workings of nature at the most fundamental level. Despite its success
in explaining experimental observations, the mathematical complexity of QFT, especially
with regards to the PDEs that describe the evolution of these fields, poses significant chal-
lenges for analytical and numerical analysis. Numerically simulating the PDEs associated
to quantum fields requires a method to avoid working with infinite degrees of freedom,
making the process both computationally demanding and conceptually challenging. These
intricacies motivate the development of novel numerical techniques and approximations.
This thesis addresses some of these challenges, with a particular focus on exploring numer-
ical methods for localized quantum field configurations.

Despite the ubiquity of PDEs in the mathematical description of QFTs, solving PDEs
analytically is often impractical or simply intractable, particularly in cases with external
driving forces or nonlinear interactions. As a result, numerical methods for PDEs have be-
come indispensable tools, enabling simulations and predictions of physical phenomena with
a high degree of accuracy. These methods generally face challenges of ensuring numerical
stability, convergence, and managing computational costs associated with high-dimensional
problems that require careful algorithm design. Thus, we aim to overcome these challenges
to allow for a more efficient study of the intricate and nuanced properties of quantum fields.

With this in mind, the study of scalar QFTs yields intuition about the nature of fun-
damental physics. Central to many of these studies are the correlation functions, which
encode essential information about the quantum dynamics and statistical properties of
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the field [19]. However, the numerical evolution of these functions, particularly due to the
presence of multiple time variables, presents unique challenges due to the complexity of the
governing PDEs. In this paper, we introduce a robust numerical scheme for solving such
PDEs, focusing on Finite Difference (FD) methods designed to optimize computational
efficiency and memory usage. By balancing precision and computational resources, our
approach provides a versatile framework for advancing the study of scalar quantum fields
and their applications to increasingly complex systems.

In spite of its successes, QFT continues to face significant challenges that limit its po-
tential as a comprehensive framework for describing all physical phenomena. In particular,
for the study of this thesis, localization poses a subtle, yet, unavoidable problem. In partic-
ular, it is known that there is no meaningful notion of a “position” operator in relativistic
QFTs, nor is it possible to perform finite-rank projective measurements on local subregions
of spacetime without incurring problems with causality [59, 62, 29, 58]. This is problematic
from the viewpoint of QFT and quantum information theory, as local measurements and
operations form the basis of quantum information protocols that are covariant and causal
in a relativistic sense.

In order to remedy these subtleties, particle detectors have arisen as a versatile tool
when dealing with local measurements and operations in QFT. A particle detector is a tool
regularly used in the Relativistic Quantum Information (RQI) community and consists of
a physically reasonable, localized quantum system that can be used as a probe of a QFT
in some local region of spacetime. These types of particle detectors have been used with
great success for studying several scenarios in the interface of quantum theory and relativity
ranging from the Unruh effect and Hawking radiation [72, 9, 17], to a framework for the
measurement theory in QFT [52], to quantum information protocols in relativistic settings
that use quantum fields as mediators [13, 36, 64, 33, 6, 73, 60, 63].

In general, the quantum systems used as particle detectors are internally nonrelativis-
tic, due to the close parallel between particle detectors in RQI and physical scenarios in
which the systems acting as the probes are accurately described by nonrelativistic quantum
mechanics. A paradigmatic example of this is found in the light-matter interaction, where
the internal dynamics of the atom (which acts in this context as a probe for the electro-
magnetic field) is well-approximated by nonrelativistic physics in most of the regimes of
interest in atomic physics and quantum optics [39]. These nonrelativistic approximations
are well-justified in many scenarios; however, it has been noted that internally nonrela-
tivistic systems as probes can result in violations of relativistic causality and covariance
when the spatial distribution of the probes is not pointlike [42, 14]. This has led to re-
newed interest in particle detector models that are described by quantum fields as a way of
reconciling probe models with the causal and covariant framework of QFT [21, 22, 46, 49].

2



The feasibility of fully relativistic local field modes as probes for quantum information
protocols has recently been put into question in the context of entanglement harvesting,
which is a protocol to extract entanglement from quantum field degrees of freedom in two
spacelike separated regions [54, 51, 53, 55, 23, 44, 30]. It has been pointed out that, at a
fundamental level, the restriction of the state of a QFT to a subset of degrees of freedom
on a finite subregion will inevitably result in a mixed state. This is a rather general
consequence of the Reeh-Schlieder theorem, as recently studied in [49, 71, 48].

In this thesis, we will investigate to what degree the resulting localized field can be
used to produce truly local modes of the field in a highly pure state when the localization
profile of the field is implemented through dynamical external potentials. In particular, we
will investigate to what degree the resulting localized field can be used to produce truly
local modes of the field in a highly pure state. This is of importance when using localized
quantum fields as probes for RQI protocols, as it has been shown that mixedness of a probe
inhibits how much vacuum entanglement can be extracted by detectors that are weakly
coupled to a quantum field [61, 28]. By localizing a free field through a time-dependent
confining potential, we will show it is possible to control to what extent the pure state of
the vacuum becomes mixed with respect to the normal modes of the effective cavity that is
implemented by the external potential and that in the adiabatic limit (which in practice is
most of the regimes where detectors are implemented) the mixedness becomes negligible.

The organization of this thesis is as follows: in Chapter 2 we will provide a textbook
review of the necessary techniques and formalism of QFT both in free space and in a
cavity, along with a review of the associated correlation function. In Chapter 3 we will
give an overview of the FD method for solving the wave equation in (1+1) dimensions and
the definition and importance of stability and convergence of PDEs. From there, we give
the numerical method designed to solve for the correlation function of a scalar quantum
field, the results of our convergence testing, and examples. We also provide a way of
numerically obtaining the energy density of scalar quantum fields through the numerically
approximated correlation function. In Chapter 4, we extend the methods presented in
Chapter 3 to the case of a free scalar quantum field that is localized through the use of
an external confining potential. With this, we study the effects of such a localization on
the energy density as well as the purity of the normal modes of the dynamically created
cavity. Finally, in Chapter 5 we summarize the important results of this thesis and the
implications these results have in QFT with particular applications to the field of RQI. We
conclude the thesis by providing a brief overview of the applications that can be studied
with the techniques that have been built throughout the work on this thesis.
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Chapter 2

Scalar Quantum Field Theory

In this chapter, we review the formalism of scalar QFT in an (n+1)-dimensional Minkowski
spacetime. In doing so, we present the canonical quantization procedure used to obtain a
quantum field from a classical field theory. We additionally discuss how one relates a free
quantum field to a quantum field in a cavity. From this, we will then derive expressions for
the correlation function of a scalar quantum field in both cases, which will be an important
focus in the following chapters.

2.1 Canonical Quantization of the Classical Scalar Field

In this section, we will present the standard formalism of the canonical quantization scheme
necessary to obtain a scalar quantum field from a classical field theory in (n+1)-dimensional
Minkowski spacetime (see, e.g. [5, 77]). In doing so, we introduce the creation and anni-
hilation operators, from which we can construct the Hilbert space of our quantum field.

The canonical quantization scheme begins by first considering a scalar field ϕ(x) in
(n + 1)-dimensions, where we use the not. The classical scalar field is then described by
the action

S = −1

2

∫
dx
(
∂µϕ(x)∂

µϕ(x)−m2ϕ2(x)
)
, (2.1)

where m is the mass of the field, ϕ(x). One may then derive the corresponding equation
of motion for this classical field through the Euler-Lagrange equations and obtain the
following

(□−m2)ϕ(x) = 0, (2.2)

4



where □ = ∂µ∂
µ is the d’Alembert operator, or wave operator. A general solution to

Eq. (2.2) can be written as

ϕ(x) =
∑
j

(
ajuj(x) + a∗ju

∗
j(x)

)
, (2.3)

for a set {uj(x)} of complex basis solutions. In particular, what we have is a Klein-Gordon
field of mass m allowing one to choose this set of basis functions to be plane waves. These
plane waves can be labeled by their wave vector k, and written as

uk(x) ∝ eikµx
µ

, (2.4)

where kµ = (ωk,k), and ωk is given by the dispersion relation

ωk =
√

|k|2 +m2. (2.5)

In a free field theory, the wave vector k that is used to label the mode functions is
continuous. As a result, the sum over discrete mode functions indexed by j in Eq. (2.3) is
instead replaced with an integral over k so that our general solution is now

ϕ(x) =

∫
dnk (akuk(x) + a∗ku

∗
k(x)) . (2.6)

One may define the current density of the Klein-Gordon field as

Jµ = i (ϕ∗(x)∂µϕ(x)− ∂µϕ∗(x)ϕ(x)) , (2.7)

which is a vector field satisfying
∂µJ

µ = 0. (2.8)

This conserved quantity is useful in defining an inner product for the solution space of
Eq. (2.2), known as the Klein-Gordon inner product. The Klein-Gordon inner product is
defined to be

(f1, f2)K.G. = i

∫
Σt

dnx (f ∗
1∂tf2 − f2∂tf

∗
1 ) , (2.9)

where Σt is a codimension-1 surface given by a constant t coordinate in a given inertial
reference frame. This surface, known as a Cauchy slice, is a particular choice of spatial
foliation (equal time t) of the spacetime that ensures a well-posed initial value problem [1].

Using the Klein-Gordon inner product, we impose the following conditions on our set
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of basis functions {uk(x)}

(uk, uk′)K.G. = −(u∗k, u
∗
k′)K.G. = δ(k − k′), (2.10)

(uk, u
∗
k′)K.G. = (u∗k, uk′)K.G. = 0, (2.11)

where δ(k) is the Dirac-Delta function. Under these conditions, we arrive at the following
expression for the plane wave basis functions

uk(x) =
1√

(2π)n2ωk

eikµx
µ

. (2.12)

We now want to upgrade the classical field theory of Eq. (2.1) to a quantum field
theory. To do so, we assume the field ϕ(x) becomes an operator-valued distribution, ϕ̂(x),
that satisfies the equal time commutation relations given by[

ϕ̂(t,x), ϕ̂(t,x′)
]
= 0, (2.13)

[π̂(t,x), π̂(t,x′)] = 0, (2.14)[
ϕ̂(t,x), π̂(t,x′)

]
= iδ(x− x′), (2.15)

where π̂(x) = ∂tϕ̂(x) is the canonical conjugate of the field. Additionally, we promote the
coefficients, ak and a∗k, of the general solution in Eq. (2.6) to the operators âk and â†k.
Thus, our quantum field can be written as a mode decomposition, similar to that of the
classical scalar field, as

ϕ̂(x) =
1

(2π)3/2

∫
d3k√
2ωk

(âke
ik·x + â†ke

−ik·x). (2.16)

By imposing the equal time commutation relations of Eqs. (2.13), (2.14), and (2.15), one
can show (see. Appendix A) that the operators âk and â†k satisfy the following commutation
relations, known as the canonical commutation relations (CCR)

[âk, âk′ ] = 0, (2.17)[
â†k, â

†
k′

]
= 0 (2.18)[

âk, â
†
k′

]
= δ(k − k′)1, . (2.19)

6



Following this quantization, we interpret the operators âk and â†k seen in the Fourier
decomposition of Eq. (2.16) as creation and annihilation operators with a spatial depen-
dence given by the mode functions uk(x). The final step of the canonical quantization
procedure is to construct the Hilbert space of the quantum field. In order to so, we begin
with a normalized vacuum state |0⟩ which is chosen in such a way that it is annihilated by
all annihilation operators,

âk |0⟩ = 0 ∀k. (2.20)

The Hilbert space of the QFT is defined to be the span of all states obtained through
repeated applications of the creation operators on |0⟩. A state is known as a one-particle
state of momentum k if it is obtained by a single application of the creation operator â†k,
and is denoted

â†k |0⟩ = |1k⟩ . (2.21)

Similarly, many-particle states may be defined by applications of creation operators with
different momenta. This basis of particle states is known as the Fock basis.

The states in the Fock basis form an orthonormal basis for the Hilbert space of the
quantum field. In the Fock basis, states of different particle number are orthonormal in
the sense that ⟨mk|nk⟩ = δnm, where δnm is the Kroenecker Delta. Additionally, in the
simplest case, we can demonstrate the orthonormality of states with different momenta by
considering the inner product between two one-particle states, as follows

⟨1k|1k′⟩ = ⟨0| âkâ†k′ |0⟩ = ⟨0|
(
δ(k − k′) + â†k′ âk

)
|0⟩ = δ(k − k′), (2.22)

where in the second equality we have used the CCR in Eq. (2.19), and in the third equality
we used the fact that the vacuum is normalized and annihilated by all creation operators.
These two properties can be used to derive the orthogonality condition between any two
Fock states. In what follows, we will use the results of the canonical quantization procedure
to construct a cavity QFT.

2.2 Quantum Field Theory in a Cavity

Given the canonical quantization procedure for a free field theory, we now demonstrate
how one can derive similar results for a scalar quantum field confined to a cavity. This will
be particularly important for the numerical methods that will be used in future sections.
In order to achieve this, we first assume that our field is confined to a box of width L, that
satisfies Dirichlet boundary conditions. Specifically, we assume the field is exactly zero at
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the boundary. As was shown in Sec. 2.1, the basis solutions to the scalar wave equation is
given by

uk = αeik·x, (2.23)

where α is some normalization constant.

In order to ensure that our QFT satisfies the boundary conditions of the cavity,
ϕ(t, 0) = ϕ(t, L) = 0, we can simply impose the boundary conditions on the basis functions
themselves. That is

uk(t, 0) = α (A cos(0) +B sin(0)) e−ikt = 0 =⇒ A = 0, (2.24)

uk(t, L) = αB sin(kL)e−ikt = 0 =⇒ kn =
nπ

L
. (2.25)

This leads to our basis solutions being given by

ukn(t, x) = αn sin(knx)e
−iknt. (2.26)

Now, we must also ensure that each of the basis functions are normalized under the
Klein-Gordon inner product in Eq. (2.9). Specifically, we find that

(ukn , ukn)K.G. = 1 =⇒ αn =
1√
nπ

. (2.27)

This yields a general solution for our cavity field given by

ϕ(t, x) =
∑
n

1√
nπ

(
akn sin(knx)e

−iknt + a∗kn sin(knx)e
iknt
)
. (2.28)

We then follow the procedure outlined in Sec. 2.1 to quantize the field and we arrive at
the following expression for our quantum field in a cavity

ϕ̂(x, t) =
∑
n

1√
nπ

(
âkn sin(knx)e

−iknt + â†kn sin(knx)e
iknt
)
. (2.29)

Similarly to the free field case, the equal time commutation relations in Eqs. (2.13),(2.14),
and (2.15) result in the canonical commutation relations for our quantum field in a cavity.
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In particular these are given by

[âkn , âkm ] = 0, (2.30)[
â†kn , â

†
km

]
= 0, (2.31)[

âkn , â
†
km

]
= δnm1. (2.32)

We notice that, overall, the solutions in the cavity and free space are quite similar.
The main difference is in the labels used for the momenta. In free space, the wave vector
k labeling different mode functions is continuous, which results in the solution for our
quantum field being an integral over k and the CCRs contain Dirac deltas. In the cavity
case, we have a sum over discrete momenta and our solution is a sum over n and the CCRs
contain Kronecker deltas.

2.3 The Correlation Function

In this review section, we will focus our attention on the two-point correlator, or corre-
lation function, of the field. We will review its definition, its relevance for the purpose
of this thesis, and its explicit form in a few relevant cases. Additionally, we lay out the
time evolution equations for the two-point function which will be critical to the numerical
approach employed in the next chapter.

2.3.1 Generalities of the Two-Point Function

Given a quantum scalar field ϕ̂(x) in a state ρ̂ = |ψ⟩ ⟨ψ|, the two-point function is given by

W (x, x′) = ⟨ϕ̂(x)ϕ̂(x′)⟩ρ̂ = Tr
(
ρ̂ϕ̂(x)ϕ̂(x′)

)
, (2.33)

where x and x′ are two arbitrary spacetime points.

The two-point function plays a crucial role in many aspects of QFT. If the state ρ̂ is
Gaussian with vanishing first moments - as is the case of the vacuum as well as any squeezed
thermal state of a theory with linear equations of motion - then all information about the
quantum state ρ̂ is encoded in W (x, x′). This allows for a much more efficient description
of the physics of Gaussian states through properties of the two-point function [65, 67, 66].
Moreover, even if ρ̂ is not Gaussian, the two-point function contains all the information
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needed to specify the stress-energy tensor of a field theory with a quadratic action such as
the theory in Eq. (2.1) [5, 74]. Finally, the two-point function fully determines the leading-
order response of the system to the action of an external agent that is linearly coupled to
the quantum field. This has applications in the linear response theory of the quantum field
under the influence of external sources, and also characterizes the leading-order effect of
the field on the state of localized probes that couple to it - for instance, in the context of
particle detectors in RQI [17, 40, 13, 41, 36, 64, 70].

Given the definition of the correlation function in Eq. (2.33), and the fact that our field
ϕ̂ satisfies the wave equation, it is possible to show that the correlation function satisfies

(∂2t − ∂2x)W (x, x′) = 0,

(∂2t′ − ∂2x′)W (x, x′) = 0.
(2.34)

Given its importance, it is useful to have explicit forms for the two-point function in a
variety of situations. If we take the field state to be given by ρ̂ = |0⟩ ⟨0|, where we recall
that |0⟩ is defined as the state annihilated by all annihilation operators âk, then we have

W0(x, x
′) =

∫
dnkuk(x)u

∗
k(x

′). (2.35)

For a scalar field in free space with m2 = const., we can use the mode functions in terms
of plane waves as given in Eq. (2.12) to find

W0(x, x
′) =

∫
dnk

(2π)n2ωk

eikµ(x−x
′)µ , (2.36)

where a full derivation of this expression is given in Appendix A.

Another ubiquitous example is that of a one-particle Fock state, which is a natural way
to construct wavepackets of the field that are initially localized in space. These states are
generally of the form

|ψ⟩ =
∫

dnkf(k)â†k |0⟩ , (2.37)

where ∫
dk|f(k)|2 = 1, (2.38)

and f(k) is the spacetime localization profile of the field. For this state, the two-point
function becomes

Wψ(x, x
′) = h(x, x′) +W0(x, x

′), (2.39)
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where
h(x, x′) = F (x)F ∗(x′) + F ∗(x)F (x′) (2.40)

is the state-dependent component of the two-point function, and

F (x) =

∫
dkf(k)uk(x). (2.41)

More generally, it is possible to show that for any Hadamard state |ψ⟩ in the Hilbert space
of the QFT, which will be the case for all states investigated throughout this thesis, the
two-point function will be given by an expression similar to Eq. (2.39), where h(x, x′) will
have a different form depending on the choice of |ψ⟩ e.g. [47, 25, 35, 20].

2.3.2 Example in a Cavity

Given that the underlying goals of this thesis are to present a numerical evolution scheme
for the two-point function, and use this method to study the effects of a confining potential
on the dynamics of an otherwise free quantum field, it is instructive to review some basic
features of the two-point function in a cavity. This is because a cavity is nothing more
than an idealized version of a confining potential that perfectly traps the quantum field
in a finite spatial region. Moreover, as will be seen in Chapter 3, our numerical methods
will inevitably rely on calculations in a finite computational domain. This requires us to
specify how we treat the system degrees of freedom at the boundaries of the domain, which
ultimately acts as an effective cavity in its own right.

In this Section and for the rest of this paper, we will restrict ourselves to the case
of a scalar quantum field in (1 + 1)-dimensional Minkowski spacetime. The field is then
defined to be restricted within the region of given by 0 ≤ x ≤ L, where L is the total
length of the cavity as was done in Sec. 2.2. Moreover, we can replace the free space mode
solutions by those of cavity mode solutions and replacing all integrals over k with sums
over n in Eq. (2.35) to obtain the following solutions for the vacuum correlation function
in the cavity

W0(x, x
′) =

1

π

∑
n

1

n
sin(knx) sin(knx

′)e−ikn(t−t′). (2.42)

By following a similar approach to the previous section, and making the appropriate
substitutions to account for the discreteness of the modes in the cavity, we may construct
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a Fock wavepacket as

|ψ⟩ =
∞∑
n=1

f(n)â†kn |0⟩ , (2.43)

where f(n) must be chosen such that

∞∑
n=1

|f(n)|2 = 1. (2.44)

Here we can see that Eqs. (2.43) and (2.44) are the cavity analogues to Eqs. (2.37) and
(2.38), respectively. Given this one-particle state, the resulting cavity two-point function
is then

Wψ(x, x
′) = F ∗(x)F (x′) + F (x)F ∗(x′) +W0(x, x

′), (2.45)

where

F (x) =
∞∑
n=1

f(n)√
nπ

sin(knx)e
−iknt. (2.46)

In both the continuum and cavity case, we see that the state dependent component of
the two-point function can be described through an integral transformation of the momen-
tum profile for the state of interest. Additionally, the boundary conditions can introduce
inhomogeneities in the spatial distribution of the modes. It is precisely the dynamics of
Eq. (2.45) that we will study with our numerical methods.
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Chapter 3

Numerical Methods

In this chapter, we present a brief review of FD methods for simulating time-dependent
PDEs, along with a review of stability and convergence for numerical methods. We then
demonstrate the numerical method used to evolve correlation functions and how one can
obtain the energy density from these simulations. Additionally, throughout this chapter, we
will be working in (1 + 1)-dimensional Minkowski spacetime. We note that all simulations
and plots were generated using the Julia programming language [4], along with the packages
in [7, 10].

3.1 Numerical Partial Differential Equations

In this section, we will present a textbook review of how one can simulate time-dependent
PDEs on a computer [38, 45, 69]. In particular, we will focus on the scalar wave equation
as this will create the foundations necessary to simulate the evolution of the correlation
function in Section 3.2. We also investigate the stability and convergence of hyperbolic
PDEs, as this is essential in verifying the effectiveness and accuracy of a given numerical
method.

3.1.1 Finite Difference Method For the Classical Scalar Field

Let us first look at the case of a massless classical scalar wave equation in (1+1)-dimensional
Minkowski spacetime. The massless scalar field satisfies the following equation of motion

(∂2t − ∂2x)ϕ(t, x) = 0, (3.1)

13



where we have explicitly written the d’Alembert operator, □ = ∂µ∂
µ. We assume that our

field is confined within a spatial domain Ωx = [0, L], where L > 0, and that we will evolve
the system for a finite time T , so that our temporal domain is Ωt = [0, T ].

The guiding principle of the FD method is to then approximate the solution of Eq. (3.1)
at a set of discrete points in the simulation domain, Ω = [0, L] × [0, T ]. In order to do
this, we first discretize the spatial domain into a set of evenly spaced points, known as grid
points, {xi}Nx

i=0 whose separation is ∆x = xi − xi−1. Similarly, we discretize our temporal
domain by a set of grid points {tn}Nt

n=0, where the number of grid points in time does not
necessarily equal the number of grid points in space, and the grid spacing is again given
by ∆t = tn − tn−1. In Fig. 3.1, we show a visualization of the discretization for the spatial
and temporal domains. Finally, we adopt the notation that ϕni ≈ ϕ(tn, xi), that is, ϕ

n
i is

an approximate solution to the equation of motion at every grid point.

Figure 3.1: This plot demonstrates how one can visualize the discretization of the spatial
and temporal domains. Each marker represents the point in the domain where the function
ϕ(t, x) will be approximated.

Given the grid structure for the domain of our PDE, we now turn our attention to
how one can simulate the dynamics of the wave equation on this grid. First, one must
construct discrete derivatives that act on our function at each grid point. For example, we
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can choose a 2nd order FD stencil for the second derivative in space given by

[D2
xf ]

n
i =

1

∆x2
(
fni+1 − 2fni + fni−1

)
, (3.2)

where we use the notation [Dk
µf ]

n
i to represent the discrete kth derivative in the coordinate

direction µ = t, x of a function f(t, x) at the grid point (xi, tn). This stencil can be derived
by performing a Taylor expansion on ϕni+1 and ϕni−1 around the point ϕni [38, 37]. If one
wanted a higher order stencil, more terms of the form ϕni±j would be needed to find the grid
points necessary to construct the stencil [3]. Thus, to approximate the spatial derivative
for our field ϕ, we have

[D2
xϕ]

n
i ≈ ∂2xϕ(xi, tn). (3.3)

With the discrete derivative operators of the form Eq. (3.2), and an analogous expression
for the temporal derivative, we can write down a fully discretized version of Eq. (3.1) as
follows

1

∆t2
(
ϕn+1
i − 2ϕni + ϕn−1

i

)
− 1

∆x2
(
ϕni+1 − 2ϕni + ϕni−1

)
= 0. (3.4)

Importantly, this gives us a method in which we can “step” our simulation forward in time.
By rearranging Eq. (3.4) for ϕn+1

i , we can approximate the solution to our function at a
new temporal grid point by using the grid data from the previous two time steps. That is,

ϕn+1
i = 2ϕni − ϕn−1

i + C2
(
ϕni+1 − 2ϕni + ϕni−1

)
, (3.5)

where C = ∆t
∆x

is the Courant-Friedrichs-Lewy (CFL) factor, which plays an important role
when discussing the stability of a numerical method in Sec. 3.1.2. We can then recursively
solve for an approximate solution to our equation of motion by recursively evaluating
Eq. (3.5) at every grid point in both time and space.

In addition to the equation of motion, our PDE also has the requirement of two initial
conditions and, due to the finite domain, two boundary conditions that must be imposed.
In this case, we assume that the initial conditions for our field will be given by

ϕ(0, x) = f(x), (3.6)

∂tϕ(0, x) = g(x), (3.7)

where f, g ∈ C∞(Ω), f(x) represents the initial field configuration and g(x) represents the
initial momentum of the field. Moreover, we will assume that the boundary conditions are

15



given by Dirichlet boundary conditions so that

ϕ(t, 0) = ϕ(t, L) = 0, (3.8)

which is a common choice in field theories, representing fields that have no allowed fluctu-
ations at the boundary and can be achieved by simply setting ϕn0 = ϕnNx

= 0. Additionally,
we also have to represent the initial conditions on our grid and do so by choosing the
following discrete 2nd order first derivative operator given by

[Dtf ]
n
i =

1

2∆t

(
fn+1
i − fn−1

i

)
, (3.9)

which yields the following discrete analog of our initial conditions

ϕ0
i = fi (3.10)

1

2∆t

(
ϕ1
i − ϕ−1

i

)
= gi. (3.11)

In Eq. (3.11) we notice the term ϕ−1
i , which leads one to believe they must have grid data

from “before” the initial conditions were provided (n = 0).

We can address the problem in Eq. (3.11) by noticing that at the first time step in
Eq. (3.5) we have

ϕ1
i = 2ϕ0

i − ϕ−1
i + C2

(
ϕ0
i+1 − 2ϕ0

i + ϕ0
i−1

)
, (3.12)

which also contains a ϕ−1
i term. If we rearrange Eq. (3.11) to solve for the ϕ−1

i term, we
can substitute this into Eq. (3.12) and write our first time step in terms of the given initial
condition. Explicitly, the first time step is then given by

ϕ1
i = ϕ0

i +∆tgi +
1

2
C2
(
ϕ0
i+1 − 2ϕ0

i + ϕ0
i−1

)
. (3.13)

With Eqs. (3.5) and (3.13), we can generate an approximate solution to the wave equation
with initial conditions given by Eqs. (3.6) and (3.7). With this method, we can now proceed
to review the concepts of stability and convergence in numerical methods.

3.1.2 Stability and Convergence

Given a numerical method, it is important to test the reliability of the approximation. In
particular, we first want a way to validate the stability of the method. This is directly
related to ensuring that any errors will not propagate and grow unboundedly over long
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simulation times, or equivalently over many time steps. To study the stability of our
method, we first define the error of a numerical method, which is given by

eni = ϕ̃ni − ϕni , (3.14)

where ϕ̃ni = ϕ(tn, xi) is the exact solution to the PDE and ϕni is the numerical approximation
obtained by the method. A numerical method is said to be stable if the error, eni , is bounded
as n→ ∞ [2].

One common method to determine the stability conditions for a particular numerical
scheme is through Von Neumann stability analysis. This analysis begins by decomposing
the error into a Fourier series at each time step. Specifically, we have

enj = êne
ikxj , (3.15)

where k is the wavenumber of a particular Fourier mode, and xj = j∆x, since we are
working with a uniform grid. In particular, a necessary condition for a method to be
stable is that ∣∣∣∣ ên+1

ên

∣∣∣∣ ≤ 1 ∀k. (3.16)

Intuitively, this means that we must choose our time step to be proportional to the highest
frequency mode to ensure that information is not gained from points outside the domain
of dependence. Given that the spatial derivative depends only on three neighboring grid
points from the previous time step, we must demand that the time step is “small enough” to
ensure that no information from any other grid points can reach the new point of interest.
In particular, “small enough” is determined by the particular numerical method that is
chosen. In our case, a von Neumann stability analysis of the wave equation with 2nd order
discrete derivatives in both time and space results in a stability condition given by

∆t ≤ ∆x (3.17)

or, more simply, the CFL factor must be less than or equal to one. For the general Klein-
Gordon equation, if a mass term is present, then the CFL factor will necessarily change to
account for the mass of the field, and as we will see in the case of dynamic localization,
will depend on external driving forces.

In addition to stability, one wants to ensure the accuracy of a numerical method as the
grid is refined to produce higher resolution results. This is done by testing the convergence
of a numerical method. A numerical method is said to be convergent if the error tends to
zero as the grid spacing tends to zero. That is, enj → 0 as (∆x,∆t) → (0, 0). Essentially,
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convergence guarantees that the numerical approximation can be made arbitrarily accurate
given a computer with infinite precision. Additionally, this means that smaller grid spacings
provide more accurate results, and we say that any numerical error converges away.

If one wants to determine the order of convergence for a particular numerical method,
one approach is to solve the PDE using three different grid spacings. In the simplest case,
we assume that the grid spacings in each simulation differ by a factor of 1

2
. In this case, we

define ∆xf = 1
2
∆xm = 1

2
∆xc, where the subscripts denote fine, medium, and coarse grid

spacings, respectively. Since the functions we will be evolving are all smooth, the error of
the solution will also depend smoothly on the grid spacing. In this case, we assume

ϕ̃− ϕ∆x = C∆xp +O(∆xp+1), (3.18)

where p is the order of the numerical method, and ϕ∆x represents the numerical approxi-
mation on a grid of spacing ∆x. The error in a numerical solution, for smooth functions,
scales with ∆xp, thus by refining the grid (reducing ∆x), the error decreases, and this ratio
is well-approximated by

ϕ∆xc − ϕ∆xm

ϕ∆xm − ϕ∆xf

= 2p +O(∆xc), (3.19)

which can easily be shown from Eq. (3.18). By investigating this ratio, one can determine
the order of convergence for a particular numerical method. We will use this approach in
each of the coordinate directions to determine the temporal and spatial convergence order
of the method for our method [68, 32] to evolve the correlation function.

3.2 Numerical Method for the Correlation Function

In this section, we present the method used to numerically simulate the evolution of the
correlation function associated to a scalar quantum field in a given state. We present a
brief description of regularizing the correlation function to remove the coincidence limit
divergences; in doing so, we obtain a smooth bi-scalar function that will be used as the
initial conditions in the numerical method presented. Additionally, we also demonstrate
how to obtain the energy density of the field through the evolution of the correlation
function. We show that the numerical methods for both the correlation function and the
energy density are 2nd order convergent in space and time.
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3.2.1 Regularization of the Correlation Function

In analyzing the correlation functions presented in Sec. 2.3.1 it is clear to see that the
vacuum correlation function (in fact, the correlation function for any state) is singular
at the coincidence limit x → x′, known as the ultraviolet divergence [5]. In general this
divergence only shows up in the vacuum correlation function. The most common method
is point-splitting where the energy density of a selected reference state, typically a lowest
energy state, is subtracted from the energy density of the state of interest [5, 24]. This
results in the expected value of the energy density being finite and produces a function
that can be simulated numerically. In Minkowski spacetimes, point-splitting essentially
amounts to subtracting off the vacuum correlation function from the correlation function
for the state of interest. However, doing so for the vacuum state would yield an initial
condition of identically zero at all grid points, resulting in a trivial solution at all times for
our simulations.

As a result, if we want to numerically evolve the correlation function, a regularization
must be introduced so that the correlation function is smooth and finite across the entirety
of our computational domain. We consider a regularization of the vacuum correlator by
replacing point-like arguments by evaluations over a thinly smeared region. This is an
approach similar to that which is done in [79, 76] and is done by considering a spacetime
smearing function of the form

Fx(y) = fx(y)ft(τ), (3.20)

where

fx(y) =
1√
2πσ2

x

e−(x−y)2/2σ2
x , (3.21)

ft(τ) =
1√
2πσ2

t

e−(t−τ)2/2σ2
t . (3.22)

Here σx is the smearing in the spatial coordinate and σt is the smearing in the temporal
coordinate.

Notice that Fx(y) corresponds to a smoothed out version of the Dirac-Delta distribution
centered at the spacetime point, x, and in the limit σx → 0, and σt → 0, we recover the
original vacuum correlation function. We then define the regularized correlation function
as

W0(x, x
′) =

∫
dydy′W0(y, y

′)Fx(y)Fx′(y
′), (3.23)
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where, upon substitution of Eqs. (2.42), (3.21) and (3.22), is given by

W0(x, x
′) =

1

π

∞∑
n=1

1

n
e−k

2
nσ

2
xe−k

2
nσ

2
t sin(knx) sin(knx

′)e−ikn(t−t′). (3.24)

A full derivation of this equation is given in Appendix B. With this, we have a C∞(Ω)
function in both spacetime arguments that can be used as an initial condition for the
evolution scheme proposed in the next section.

3.2.2 Correlation Functions as Initial Boundary Value Problems

With a regularized vacuum correlation function, we provide a brief description of the neces-
sary initial and boundary conditions that guarantee the well-posedness of the equations of
motion for the correlation function. Well-posedness is a fundamental concept in the study
of PDEs, ensuring that a solution to the equation not only exists and is unique but also
behaves in a physically meaningful way. Additionally, well-posed problems are more likely
to yield numerically stable solutions when standard computational methods are applied.
We also make note of the fact that since the correlation function satisfies Eq. (2.34), the
regularized correlation function W(x, x′) will also satisy Eq. (2.34).

We assume that our field is confined within a region (x, x′) ∈ [0, L] × [0, L] over a
temporal domain (t, t′) ∈ [0, T ] × [0, T ] so that our computational domain is given by
Ω = [0, L]2 × [0, T ]2. In principle, there is no need for the domains of x and x′ to be the
same; however, for the remainder of the thesis, we assume they are the same. Similarly, to
the case of the classical scalar field, we also have to impose initial conditions and boundary
conditions on the correlation function in order to fully simulate the dynamics. However,
unlike the classical scalar field, we are not free to choose the initial conditions, as they are
naturally imposed by initial field configuration. Moreover, we have two additional initial
and boundary conditions due to the fact that the correlation function satisfies two separate
PDEs.

In the case of the correlation function, we impose the following four boundary conditions
that depend directly on the initial field configuration. That is, given a field state, |ψ⟩, we
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have the following initial conditions

W (x, x′)
∣∣
t=t′=0

= W ϕϕ(x, x′),

∂tW (x, x′)
∣∣
t=t′=0

= W πϕ(x, x′),

∂t′W (x, x′)
∣∣
t=t′=0

= W ϕπ(x, x′),

∂t∂t′W (x, x′)
∣∣
t=t′=0

= W ππ(x, x′).

(3.25)

From Eq. (3.25), we can clearly see that the form of the initial conditions explicitly on the
choice of field state, as the conjugate momentum for the field is given by π̂(x) = ∂tϕ̂(x)
and is found in the last three initial conditions.

Finally, we investigate the boundary conditions for the correlation function. As is the
case for the initial conditions, the boundary conditions are also imposed by the field state
directly. In our case, as was done in Sec. 3.1.1, we will that the field satisfies Dirichlet
boundary conditions. Thus, our boundary conditions on the correlation function are

W ((t, 0); (t′, x′)) = W ((t, L); (t′, x′)) = 0,

W ((t, x); (t′, 0)) = W ((t, x); (t′, L)) = 0.
(3.26)

With Eqs. (2.34),(3.25), and (3.26), we have a hyperbolic PDE in each of the spacetime
coordinates. Given a hyperbolic PDE it is possible to show, under general conditions, the
existence and uniqueness of advanced and retarded Green’s functions. Given initial data
for the correlation function, the correlation function can then be extended to the entire
spacetime through the use of the causal propagator [34]. This extension demonstrates the
well-posedness of the initial value problem for the correlation function.

3.2.3 Finite Difference Method for the Correlation Function

In Sec. 3.1.1 we demonstrated how to obtain a 2nd order FD method for the (1 + 1)-
dimensional scalar field in Minkowski spacetime. In this section, we will present the al-
gorithm used to numerically evolve the correlation function of a scalar quantum field in
Minkowski spacetime by utilizing many of the techniques presented in the previous sec-
tion. In what follows, when we discuss the correlation function, we will be referring to the
regularized correlation function in Eq. (3.24), as this is the quantity we will be simulating.

Following the procedure of Sec. 3.1.1, we first discretize our domain into a uniformly
spaced grid given by the grid points {xi}Nx

i=0 and {tn}Nt
n=0. These grid points and associated

grid spacings are adopted for both arguments of the correlation function so that (x, t) and
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(x′, t′) both have the same number of grid points in the spatial and temporal components,
respectively. Additionally, we define Wnm

ij ≈ W(xi, tn;x
′
j, t

′
m), where we have generalized

the grid point notation to account for the second spacetime coordinate of the correlation
function.

Figure 3.2: This plot demonstrates the grid structure that is used for the correlation
function. The black plot represents the discretization in t and t′. We zoom in on one (t, t′)
grid point (blue) to show that each (t, t′) grid point contains a discretization of the (x, x′)
coordinates.

In Fig. 3.2, we demonstrate how we can represent the discretization of the computa-
tional domain of the correlation function. This is very similar to the discretization of the
wave equation, with the main difference being the addition of a second time axis in the
discretization. Moreover, it is possible to see that each grid point in the (t, t′)-plane con-
tains a discretization of the (x, x′)-plane. This plot also gives an intuition for how we can
begin to construct the FD method for the correlation function.

In order to generalize the FD method of Sec. 3.1.1, we first note that the equations
of motion for the correlation function in Eq. (2.34) act independently from one another.
By utilizing this property, we first fix a particular point (x′, t′) = (x̃′, t̃′) and evolve the
correlation function using the FD method in the (x, t) coordinates. This results in the
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following evolution equation

W(n+1)m
ij = 2Wnm

ij −W(n−1)m
ij + C2

(
Wnm

(i+1)j − 2Wnm
ij +Wnm

(i−1)j

)
. (3.27)

In analyzing Eq. (3.27), we see that we now have an approximation for the correlation
function along the constant t′m-slice.

Similarly to the classical scalar field, we will run into problems with the first time steps
in the t and t′ direction due to the fact that we will have terms containing n (resp. m)
being equal to negative one. We again fix this first time step by introducing the given
initial conditions into the first time step so that we have

W 10
ij = W 00

ij +∆tW πϕ
ij +

1

2
C2
(
W 00

(i+1)j − 2W 00
ij +W 00

(i−1)j

)
(3.28)

W 01
ij = W 00

ij +∆tW ϕπ
ij +

1

2
C2
(
W 00
i(j+1) − 2W 00

ij +W 00
i(j−1)

)
. (3.29)

In doing so, we have now accounted for three out of the four prescribed initial conditions
for the correlation function. To implement the fourth initial condition, we discretize both
∂t and ∂t′ to obtain

[DtDt′W ]00ij =
1

∆t
[Dt](W01

ij −W00
ij ) =

1

∆t2
(W11 −W01 −W10 +W00) = W ππ

ij . (3.30)

By rearranging for W11
ij , we get the fourth equation for our simulation that implements the

initial conditions. This equation is given by

W11
ij = W01

ij +W10
ij −W00

ij +∆t2W ππ
ij . (3.31)

We can then, iterate Eq. (3.27) over all values of m and j to obtain a numerical approxi-
mation to the correlation function at all values (x, x′) ∈ [0, L]2 × [0, T ]2.

It is important to note that, despite the fact that we have chosen to write the evolution
method by fixing (x′, t′) = (x̃′, t̃′), it is in fact possible to obtain the same numerical results
by instead fixing (x, t) = (x̃, t̃) and evolving through the (x′, t′) coordinates using

Wn(m+1) = 2Wnm
ij −Wn(m−1)

ij + C2
(
Wnm

i(j+1) − 2Wnm
ij +Wnm

i(j−1)

)
(3.32)

and iterating over all indices n and i.

Now that we have demonstrated how to numerically obtain the grid data for the cor-
relation function, we move on to convergence testing and an example of how the method
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can be used to generate visualizations of the correlation function.

3.2.4 Convergence Testing and Examples

We will now present the convergence test results of the numerical evolution scheme for the
correlation function. Additionally, we will also give examples of the evolution of different
correlation functions associated to different field configurations. It is important to note
that the correlation function satisfies W (x′, x) = W (x, x′)∗. Thus, if both the real and
imaginary components of the correlation function converge with order p, the symmetry
allows us to conclude that we obtain the same convergence order in x′ and t′.

In order to determine the convergence order of our numerical method, we will utilize
the techniques discussed in Sec. 3.1.2. In particular, we numerically evolve the correlation
function on three different grids, where the resolution of each grid is doubled. That is we
will have a coarse, medium, and fine grid defined by the grid spacings ∆xf =

1
2
∆xm = 1

2
∆xf

and ∆tf =
1
2
∆tm = 1

2
∆tc. Then, by plotting the difference between the coarse and medium

grids and the difference between the medium and fine grids, the convergence order will be
determined by log2 of the multiple that makes the two plots agree.

In Fig. 3.3, we plot the real component of the difference between the coarse and medium
grids along with the difference between the medium and fine grids for the numerical solution
of the correlation function. We see that at each spatial grid point the two differences agree
with near perfect accuracy when h = 2, thus we see that the real component has a spatial
convergence order of 2.

In Fig. 3.4, we plot the imaginary component of the difference between the coarse
and medium grids along with the difference between the medium and fine grids for the
numerical solution of the correlation function. We see that at each spatial grid point the
two differences agree with near perfect accuracy when h = 2. Thus, given Figs. 3.3 and
3.4, we can conclude that our numerical method is 2nd order in space for both x and x′.

We now move on to determining the temporal convergence order of our numerical
method. In order to perform the temporal convergence test, we will again compute the
differences between the three grid resolutions at each time step. At each time step, we
will then compute the 2−norm of the difference and plot the log2 ratio between the norms
at each time step. This will determine the temporal convergence order at each time step.
Specifically,

p(t) = log2

(
∥W c −Wm∥2
∥Wm −W f∥2

)
(3.33)
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Figure 3.3: This plot is the real component difference between the coarse and medium
grids and the difference between the medium and fine grids. We choose to perform the
spatial convergence with x′ = 3.0, t′ = 2.5, and t = 1.25 fixed. We choose the CFL factor
to be 1

2
, with a grid spacing of ∆x = 0.025, the number of grid point is Nx = 200, and the

resolution is halved between each grid, h = 2.

In Fig. 3.5, we see that the temporal convergence order is p = 2 for all time steps.
Again, by utilizing the complex symmetry of the correlation function, we can therefore
conclude that the numerical method presented for the evolution of the correlation function
is 2nd order in both t and t′. Thus, with Figs. 3.3, 3.4, and 3.5 we have shown that our
numerical method is 2nd order in both time and space.

With the results of our convergence test, we now move on to provide visualization
examples of the correlation function for different field configurations. We start by first
giving a visualization of the regularized vacuum correlation function given by Eq. (3.24).
In Fig. 3.6 we can see how the correlation function evolves along a fixed t′-slice. Moreover,
we can see similarities between the way a classical scalar field in a Dirichlet cavity would
evolve. In particular, we see that, as time evolves, the maximum of the correlation function
spreads away from the initial peak. Additionally, as the peaks hit the walls of our Dirichlet
cavity, the values are reflected and return to their x, x′ coordinates with a negative value.
This is exactly what happens in the case of a 1-dimensional wave with fixed boundaries.

Recalling that the correlation function is complex-valued, we may also plot the imag-
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Figure 3.4: This plot is the imaginary component difference between the coarse and medium
grids and the difference between the medium and fine grids. We choose to perform the
spatial convergence with x′ = 3.0, t′ = 2.5, and t = 1.25 fixed. We choose the CFL factor
to be 1

2
, with a grid spacing of ∆x = 0.025, the number of grid point is Nx = 200, and the

resolution is halved between each grid, h = 2.

inary component of the regularized vacuum correlation function. It is important to note
that from Eq. (3.24), we can see that the imaginary component is entirely dictated by
the first time derivatives in t and t′. Moreover, the imaginary component dictates the
state-independent component of the correlation function. That is, for any given state, the
imaginary component will evolve exactly as is shown for the vacuum correlation function.

In Fig. 3.7 we show a plot of the imaginary component at t′ = 0 for various values of
t. Similar to the case of the real component, we are able to visualize the evolution of the
state independent component of the correlation function along a particular t′ slice. In this
case, it is also slightly easier to visualize the similarities between classical wave dynamics
and the dynamics of the correlation function. In particular, we can see that the edges of
the imaginary component move with exactly light speed as the boundaries follow the lines
defined by x = ±x′ − ct and x = ±x′ + ct as is expected for the characteristic curves of
the wave equation. Moreover, we can see the reflection caused by the Dirichlet boundary
conditions along with the correlation function returning to the original profile after a single
light crossing time of the computational domain.
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Figure 3.5: This plot is the temporal convergence order over time. The temporal spacing
was chosen to be ∆t = 0.0125 with Nt = 200. We fixed the points x′ = 3.0, and t′ = 1.25.
As was done for the spatial convergence testing, the grid spacing is halved for each higher
resolution grid.

3.3 Numerically Obtaining the Energy Density

In this Section, we will utilize the method of Sec. 3.2.3 to obtain the energy density of
a particular field state. In general, one can obtain the (expectation value of the) field
stress-energy tensor from the two-point correlator by evaluating

⟨T̂µν⟩ = lim
x→x′

[
(∂µ∂

′
ν −

1

2
ηµν∂α∂

′α)

]
(W(x, x′)−W0(x, x

′)) , (3.34)

where ∂′ν ≡ (∂/∂x′ν) we are again assuming that we will be using the regularized correlation
functions [11, 12]. Eq. (3.34) is known as the renormalized stress-energy tensor, and by
subtracting off the vacuum correlation function, we can remove the divergence seen in
Eq. (2.35).

Of particular importance in this section and the remainder of this work, is the energy
density, or the ⟨T̂00⟩ component of the stress energy tensor. By evaluating this component,
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Figure 3.6: A plot of the real component of the regularized vacuum correlation function at
t′ = 0 for various values of t.

we find that

⟨T̂00⟩ =
1

2
lim
x→x′

[∂x∂x′ + ∂t∂t′ ]WR(x, x
′), (3.35)

where WR(x, x
′) = W(x, x′)−W0(x, x

′) is the regularized, renormalized correlation function.
We again discretize the derivatives, and obtain the following

⟨T̂00⟩ =
1

2

(
[DtDt′WR]

nm
ij + [DxDx′WR]

nm
ij

) ∣∣∣∣
n=m,i=j

. (3.36)

Notice that we can compute the limit exactly by evaluating the numerical approximation
at n = m and i = j since we have discretized the domain into equal grid spacings for each
of the temporal and spatial directions. For each of the discretized derivatives in Eq. (3.36)
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Figure 3.7: A plot of the imaginary component of the regularized vacuum correlation
function at t′ = 0 for various values of t.

we have explicit expressions given by

[DtDt′W ]nnii =
1

4∆t2

(
W(n+1)(n+1)

ii −W(n−1)(n+1)
ii −W(n+1)(n−1)

ii +W(n−1)(n−1)
ii

)
, (3.37)

[DxDx′W ]nnii =
1

4∆x2
(
Wnn

(i+1)(i+1) −Wnn
(i−1)(i+1) −Wnn

(i+1)(i−1) +Wnn
(i−1)(i−1)

)
. (3.38)

As was the case in evolving the correlation function, there are special cases that must be
taken into account when numerically evaluating the energy density. We first demonstrate
the special cases in the time derivatives. In the case where n = 1, we notice that we will
have terms of the form W0−1

ii , W−10
ii , and W−1−1

ii . However, unlike the evolution of the
correlation function, we do not have additional parameters such as initial conditions that
can be used to remove these terms. Instead, we use a 1st order discrete derivative of the
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form

[Dtf ]
n
i =

1

∆t

(
fn+1
i − fni

)
, (3.39)

which yields the following result when n = 0

[DtDt′W ]00ii =
1

∆t2
(
W11

ii −W10
ii −W01

ii +W00
ii

)
. (3.40)

Similarly, for the spatial derivatives, we will have indices that have values of negative one,
and we will use a 1st order spatial derivative of the form

[Dxf ]
n
0 =

1

∆x
(fn1 − fn0 ) , (3.41)

[Dxf ]
n
end =

1

∆x

(
fnend − fnend−1

)
. (3.42)

This yields two separate equations that account for cases where i ∈ {0, Nx}. These
expressions are given by

[DxDx′W ]nn00 =
1

∆x2
(Wnn

11 −Wnn
10 −Wnn

01 +Wnn
00 ) , (3.43)

[DxDx′W ]nnend,end =
1

∆x2
(
Wnn

end,end −Wnn
end(end−1) −Wnn

(end−1)end +Wnn
(end−1)(end−1)

)
. (3.44)

By utilizing Eqs. (3.37) and (3.38), along with the special cases of Eqs. (3.40), (3.43),
and (3.44), we can evaluate the energy density at each time step to provide simulations of
how the energy density evolves over time. This is useful, not only for understanding the
dynamics of our quantum field, but can also be used to study the energy of our system as
a function of time. Since we have grid data at each spatial and temporal time step, we
can use a numerical integration method to integrate the energy density over the spatial
domain to obtain the total energy at a given time. In particular, we employ a trapezoidal
rule to numerically integrate the spatial domain. As this is also a 2nd order method, it
will maintain the accuracy of all other methods that have been used thus far. This will be
used when we want to verify that our numerical method is not dissipating energy (in the
case of quantum field confined to a cavity with no external potential) and in later sections
when studying the effectiveness of a confining potential well.
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3.3.1 Convergence Testing and Examples

As was done for the correlation function in Sec. 3.2.4, we must ensure that our numerical
method is convergent and to what order. We will follow the same approach taken previously
where we utilize three grids of different grid spacings where each higher resolution has
double the number of grid points. That is, ∆xf =

1
2
∆xm = 1

4
∆xc and ∆tf =

1
2
∆tm = 1

4
∆tc.

Unlike the case for the correlation function, the energy density is a purely real quantity
and thus we will only need to check the spatial and temporal convergence order in the
real components. We will again determine the spatial convergence order by plotting the
difference between the coarse and medium grids and the difference between the medium
and fine grids to find the factor that makes the plots agree.

In order to study the convergence, we will analyze the evolution of a one-particle state
given by

|ψ⟩ = 1

λ

N∑
n=1

e−α
2k2n/2eiknx0 |n⟩ , (3.45)

where x0 is where the wavepacket is centered, kn = nπ
L
, and α is a parameter that controls

the width of the wavepacket. In Fig. 3.8 we plot an example of the initial wavepacket for
different values of α to demonstrate how one can control the desired shape of the energy
distribution.

We will also only use the state dependent component of the correlation functions,
since this implies that we have already renormalized the energy density by subtracting off
the vacuum correlation function as demonstrated in Eq. (3.35). In Fig. 3.9 we plot the
difference between the coarse and medium resolution grids along with the medium and fine
grids to determine the spatial convergence order of the numerical method used to solve for
the energy density.

In general, one would expect that the numerical method prescribed in Sec. 3.3 should
be 2nd order as we are using a second order FD scheme for the derivatives in both time
and space. We see in Fig. 3.9 that the the grid points agree when the power of h is chosen
to be 2, thus our method is 2nd order in space.

Given that our method is 2nd order in space, we can move on to utilizing Eq. (3.33)
to determine the temporal convergence order of our numerical method. We can see in
Fig. 3.10 that our method is 2nd order convergent in time throughout the duration of the
simulation. We notice that at t = 5 the convergence order deviates slightly. This is due to
the fact that, at the boundaries we are utilizing Eqs. (3.43) and (3.44) which are both 1st

order to compensate for the lack of a grid point to the left (resp. right) of the x = 0 (resp.
x = L) boundary. Given the results of Figs. 3.9 and 3.10 we can conclude that our method
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Figure 3.8: This plot shows the initial wavepacket for various values of α. In order to
create the wavepacket, we used N = 100 modes and selected x0 = 5. Additionally, we
scaled each of the curves so that it was possible to see how the width changes with α.

for numerically evaluating the energy density of our field is 2nd order in both space and
time.

Given that our method is 2nd order in both time and space, we can move on to providing
an example of the energy density as a function of time. By utilizing, Eq. (3.45) we can
use Eq. (2.45) to find the appropriate initial conditions for the correlation function in
order to solve for the energy density. In Fig. 3.11, we plot the energy density at various
times to get a visualization of the energy density. We can see that at t = 0.0 we have
a wavepacket that has a Gaussian shape as is expected from the field configuration of
Eq. (3.45). As the evolution progress, we see that the energy density splits into left and
right moving wavepackets that are each half the value of the original wavepacket, but
maintain the shape of the original wavepacket. This is exactly what one would expect
when analyzing Eq. (3.35), which is precisely the (1+1)-dimensional wave equation in the
limit x → x′. Moreover, we can see that by imposing Dirichlet boundary conditions on the
correlation function, we obtain solutions for the energy density that act as though the walls
are perfectly reflecting. That is, the energy density has Neumann boundary conditions.

Given that we have no external forces in our equation of motion and the energy density
satisfies Neumann boundary conditions, one expects that the energy over time is constant.
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Figure 3.9: This plot is for the difference between the coarse and medium grids and the
difference between the medium and fine grids for the energy density. We chose to evaluate
this spatial convergence at t = 2.5, a CFL factor of 1

2
, a grid spacing of ∆x = 0.02 and

Nx = 500 grid points. For each resolution the grid spacing is halved so that h = 2.

In Fig. 3.12 we perform a final check of our numerical method by plotting the total energy
at each time step by integrating the energy density over the computational domain. For
our numerical integration method, we will use a trapezoidal rule which is known to be 2nd

order convergent [45]. The trapezoid rule for numerical integration for a 1-dimensional
function f(x) is defined as∫ b

a

dxf(x) =
∆x

2
(f0 + fN) + ∆x

N−1∑
i=1

fi, (3.46)

where ∆x is the grid spacing, and N is the number of grid points that are used in the
simulation. We can see in Fig. 3.12 that the total energy of our field remains constant
over time. This is exactly what is expected and demonstrates that, on the time scales
we are working on, that our numerical method is not dissipating energy. In fact, it can
be shown that the particular method we are using should not dissipate energy even in
long time simulations [75, 16]. Thus, we have demonstrated an effective and convergent
numerical method for evaluating the energy density of a given field configuration through
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Figure 3.10: This plot is the temporal convergence order over time for the energy density.
We chose a CFL factor of 1

2
, a grid spacing of ∆t = 0.01 and Nx = 1000 grid points. For

each resolution the grid spacing is halved.

the evolution of the correlation function. We now move on to how we optimized this
particular numerical method in order to run longer time simulations.

3.4 Optimization of the Time Evolution

The final aspect of our numerical method that must be discussed is optimization. Op-
timization is an important part of designing algorithms that can be used for analyzing
many different scenarios. In our case, there are two primary ways in which we optimize
our algorithm, speed and memory.

In terms of optimizing speed, we took the approach of using parallelization for the
discrete spatial derivatives. We utilize the @batch macro from Polyseter.jl package to
implement the parallelization across each of the threads. To accomplish this, each function
is passed two separate arrays that we label as read and write. The read array has the
stored data from the previous two time steps, while the write array is empty and will only
store the output of the current evaluation. By doing so, each thread in the parallelization
has access to the array denoted read, and then performs the spatial derivatives of Eq. (3.27)
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Figure 3.11: This is a plot of the energy density at different times throughout the evolution.
We have created our wavepacket using x0 = 5, α = 1

5
, and N = 100. We use Nx = 1000

grid points and a CFL factor of 1
2
for the evolution.
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Figure 3.12: This is a plot of the total energy of our field as a function of time. For our
wavepacket we choose α = 1/5, N = 100 modes, and x0 = 5.0.

in parallel. That is, we simultaneously calculate the derivatives at the ith index, and the
number of parallel calculations depends on the number of threads that are available on
a given device. Following the evaluation of the discrete derivatives, the values are then
stored into the write array.

By only parallelizing the spatial derivatives, this avoids what are known as race con-
ditions, in which one thread is performing an evaluation without the necessary data. An
example of how this can occur can be seen if we consider a scenario in which thread 2 is
asked to compute the n = 4 time step, and thread 1 is asked to compute the n = 3 time
step. If thread 2 begins its process before thread 1 has finished, then thread 2 will be evalu-
ating Eq. (3.27) without the data from the n = 3 time step resulting in incorrect solutions.
Additionally, by defining a read and write array, we will never be writing necessary data
to the same array that is being used for current calculations. This prevents any possible
overwriting of necessary values, or incorrect evaluations. Once all spatial derivatives are
calculated at a particular time step, we update the read array with the values that have
been stored in the write array, and continue on to the next time step.

The second way that we optimized our algorithm is by decreasing the necessary memory
required to perform certain evaluations. In general, a finite difference method requires
O(Nd) memory to store all data points. In this case, N is the number of grid points in a
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particular coordinate direction, and d is the dimensionality of the problem, in this case, d =
4. This creates a competition between how well one wants to spatially resolve a simulation,
and how long (how many time steps) the simulation can be performed on a particular
machine. In the case that one only needs the correlation function at particular instances in
time, for example in the case of the energy density which only requires equal time values
of the correlation function, we can drastically decrease the memory requirements.

In particular, we can decrease the memory requirements through two important meth-
ods. The first is recognizing that the wave equation only depends on data from two previous
time steps to evaluate the next time step. The second, is that, for everything we study
in this thesis, we will only need data about the correlation function along the equal time
slices. Instead of allocating an array for every time-step and spatial grid point, we can
instead allocate a four-dimensional array that is Nx×Nx×3×3. This allows us to evolve
only a necessary ”slab” of data, from which we can then overwrite the slab data by simply
overwriting the previous data with the new data and proceeding forward in this manner.
In doing so, we can compute the energy density at a given time step, evolve the slab for-
ward in t and then forward in t′ and again evaluate the energy density. By proceeding
forward in this fashion, if we have the memory to allocate the array holding this slab, we
can, in theory, evolve simulations for as long as we want. We call this evolution a diagonal
evolution as we are only evolving along the t = t′ diagonal to achieve the numerical results
necessary for our particular simulations. In addition to improving the memory necessary
for our evolution, this method also yields a notable speed improvement for our simulations
as we no longer need to evolve over the entire domain, but instead only need a particular
subset of time-steps. Scripts and examples of this code can be found on GitHub at [56]

In Fig. 3.13, we show how we evolve the slab along the equal time slice t = t′. Specif-
ically, we show, given grid data from the slab read array, how one can use Eq. (3.32)
to first evolve the slab forward in t′ by one time step. The data is stored in slab write

and slab read is then overwritten with the data of slab write yielding the dashed blue
square. The dashed blue square is now our new slab, which is evolved forward in t one
time step using Eq. (3.27). We follow the same procedure of writing to slab write and
overwriting the data of slab read to yield the purple square, which is now a slab of data
centered on the t = t′ slice. With Fig. 3.13, it is clear why this method is significantly
more efficient in terms of both speed and memory when comparing to an evolution across
all points in the domain.

Additionally, this method can be modified for evolution of the correlation function in
cases where data at only a specific t, t′ coordinate is necessary. For example, if we only
need the data for the correlation function at the point (t, t′) = (T1, T2), we could simply
evolve the slab “up” to T2 and then evolve the slab “right” to T1. In general, with few
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Figure 3.13: This demonstrates how to visualize the diagonal evolution of the slab. The
solid blue square represents the current data stored to the slab read array. The slab is
evolved “up”, represented by the dashed blue square, and then evolved “right”, the purple
square.

modifications, this method could also be adapted to have the slab “scan” across all points
in the computational domain and perform necessary calculations with the slab data in
scenarios where data in the whole domain is necessary, (e.g. entanglement harvesting
calculations where the correlation function is integrated over the whole spacetime). In
what follows, we will utilize the diagonal evolution to evolve the correlation function in the
presence of a time-dependent confining potential well.
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Chapter 4

Dynamic Localization

In this chapter, we will utilize the methods of Sec. 3.2.3 to dynamically localize a massless
scalar quantum field. We study the effects of a time-dependent confining potential well
on both the energy density and purity of the localized degrees of freedom of the quantum
field.

4.1 Localized Quantum Fields

The formalism for understanding localized quantum fields is similar to that of the quantum
scalar field presented in Sec 2. We adapt Eq. 2.1 with the addition of some external time-
dependent potential well as follows

S = −1

2

∫
ddx

(
ηµν∂µϕ ∂νϕ+ V (x)ϕ2

)
, (4.1)

which yields the equation of motion

[∂µ∂
µ − V (x)]ϕ(x) = 0. (4.2)

As was done in Sec. 2, we can write the general solution to Eq.(4.2) as

ϕ(x) =
∑
j

(
ajuj(x) + a∗ju

∗
j(x)

)
, (4.3)
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where {uj(x)} is again a complex basis of solutions to Eq. (4.2), that, in the event that the
confining potential is time-dependent, will not be the same as those in Eq (2.12).

Given Eq. (4.3), we can follow the canonical quantization procedure described in Sec. 2
to quantize the classical field, upgrading it to a quantum field. Interestingly, if we set
V (x) = m2 for a constant m ≥ 0, then this procedure is nothing more than the theory of a
Klein-Gordon field of mass m in flat spacetime. In this case, we can choose the complete
set of basis functions to be the planes waves discussed previously. It is also important to
note that, for our numerical simulations, the CFL factor presented in Sec. 3.1.2 must be
adapted to account for the inclusion of the external potential term. In this case, the CFL
factor must be chosen such that the following condition (see Appendix C) is met

∆t2 ≤ ∆x2

1 + 1
2
Ṽ
, (4.4)

where Ṽ is the maximum value attained by the potential.

It is also possible to consider cases where V (x) has a nontrivial spacetime dependence.
As a result, this will impact the shape of the set of mode functions {uj(x)} used as the basis
of solutions for Eq. (4.3), as well as determining if the labels are discrete or continuous. If
the potential is static - i.e., if V (x) = V (x) is independent of the inertial time coordinate in
a given inertial frame - one can find a basis of solutions which separates as e−iωjtfj(x). In
general, however, the lack of translational invariance means that the spatial profile, fj(x),
will not be given by pure plane waves.

A case of particular interest is that of an external potential V (x) that grows to infin-
ity as the distance between x and some finite region of space increases, such that all of
the spatial profiles fj(x) will be strongly localized in a region around the minima of the

potential. In this scenario, we say that ϕ̂(x) is a localized quantum field : every admissible
field configuration will effectively be confined in a localized region of space determined by
the region of strong support of the basis functions fj(x). Localized quantum field theories
of this type are particularly relevant to the construction of fully relativistic versions of
particle detector models [21, 18, 49, 71]. However, there is discussion about the reality of
using external potentials that tend to infinity, as well as how effective these fields are when
used as particle detectors. One of the main problems raised in using these localized fields
as particle detectors is that, when physically localizing these fields, the external potential
must be time-dependent. As a result, it is believed that the injection of energy from creat-
ing the external potential into the field will result in a field configuration that is too mixed
to effectively detect particles.
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The goal in the rest of this chapter will be to study the price one pays when dynami-
cally constructing localized quantum field theories from a free field theory, both from the
energetic and entropic point of view. We do this by starting with a free Klein-Gordon
field and then applying a time-dependent external potential V (x) which grows for a finite
period of time, until it stabilizes in a shape that mimics a confining cavity, modeling the
construction of a realistically confined field.

As was mentioned in Sec. 2.2 and seen in Sec. 3.2, our methods rely on calculations
in a finite computational domain. In this case, the cavity two-point function becomes the
starting point for the field theory in free space, within the limits of our computational
domain. In other words, what we call free space will be a large enough cavity, within
which we will grow a smaller potential in a smaller region representing the realistic cavity.

4.2 Energy Density Behaviour in Dynamical Cavity

Creation

The confining potential that will be used in our study is chosen in such a way that the
spatial profile is a smooth approximation to a square cavity. As for the time dependence of
the potential, we choose it to grow linearly in time, up to some predetermined time Tmax.
The specific potential is thus given by

V (x, t) = Vmax
t

Tmax

(
e−(x−xL)2/ℓ2 [1 + erf(−β(x− xL))]

+ e−(x−xR)2/ℓ2 [1 + erf(β(x− xR))]

)
. (4.5)

In this equation, erf(x) is the error function, Vmax is a prefactor chosen to control the height
of the potential after it stops growing, β determines how sharp the interior walls of the
cavity are, and ℓ determines the width of the potential walls. xL and xR are the location
of the maxima of the left and right walls, respectively.

In Fig. 4.1, we show the potential after the cutoff time, t > Tmax with various values of
β. From this figure, it is clear how, for large values of β, this confining potential mimics
that of a rectangular well. The efficacy of this potential will be explored in more detail in
the next section.
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Figure 4.1: This plot shows the choice of confining potential for different choices of β when
t ≥ Tmax, with Vmax = 250, xl = 3, and xr = 7.

4.2.1 Confining Power of the Effective Cavity

Before doing a full dynamic simulation for the growth of the potential, it is instructive
to test the extent to which the potential at late times (once the walls of the cavity are
fully raised) is capable of confining field excitations. This is done by considering a static
potential given by Eq. (4.5) at t = Tmax is at confining a localized wavepacket. We first
define a state whose energy is localized within the interior region of the cavity. The
particular localization that we chose is

|ψ⟩ = 1

λ

N∑
n=1

e−α
2k2n/2eiknx0 |n⟩ , (4.6)

where λ is a normalization constant for the state, α is a parameter that controls the width
of the wavepacket, x0 is the spatial location for the peak of the wavepacket, and N is the
number of modes we choose to create our wavepacket. The initial energy distribution of
the field given this equation can be visualized in Fig. 3.8.

When comparing Fig. 4.2 to Fig. 4.1, we see that the field state is localized at the
center of the confining potential with the peak located at l = 2.5 away from the edges.
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Figure 4.2: Initial Energy distribution of the localized wavepacket, where N = 100 modes
were used with α = 1/11, and x0 = 5.0.

Then, we can plot the energy of the interior and exterior regions of the cavity as a function
of time to determine how effective our cavity is at preventing transmission through the
walls.

In Fig. 4.3 we see that the cavity is not perfectly confining as is the case for an infinite
wall, which is expected since this potential is finite. In Fig. 4.3, the left wall of the cavity
is chosen to xleft = 2.4 and the right wall of the cavity is chosen to be xright = 7.6. In
comparing with Fig. 4.1, we determined these values to be reasonably aligned with the
outer boundaries of the potential.

At approximately t = 2.75, we see that some energy is able to penetrate the walls of
the cavity. However, for the choice of parameters β = 30 and ℓ = 1 very little energy
actually leaves the cavity as exemplified by the overall small increase in energy in the
exterior region. This is even better illustrated by looking at the quality factor Q of the
potential wall seen as a confining cavity. This is defined as

Q =
(initial energy stored inside at t = 0)

(energy lost in a cycle)
, (4.7)

where, for a massless field in our setup, “one cycle” of the system corresponds to one light-
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Figure 4.3: Energy as a function of time in the interior of the cavity and on the exterior
of the cavity for ℓ = 1.0, and β = 30.0. The cavity is chosen so that xleft = 2.4 and
xright = 7.6. The solid line represents the energy in the interior of the cavity, while the
dashed line is the energy in the exterior region of the cavity.

crossing time of the effective cavity whose walls are described by the external potential.
In the case of our analysis, one-light crossing time is with respect to the cavity defined by
xleft = 2.4 and xright = 7.6 as discussed previously. For a one-particle state of the form

|ψ⟩ =
∑
n

cn |n⟩ , (4.8)

we can express the quality factor as

Q =

∑
n |cn|2ωn∑

n |T (ωn)cn|2ωn
, (4.9)

where T (ωn) is the transmissivity of the potential for a mode with frequency ωn that
emanates from inside of the cavity.

For a general potential, the transmissivity can only be computed numerically - and in
fact, this will be investigated. However, to build an intuition for what is expected with
our potential, it is useful to approximate the potential walls by top-hat functions with a
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given height V0 and width a. These should, roughly, correspond to the parameters Vmax

and ℓ, respectively. For top-hat potential barriers, the transmissivity coefficients can be
computed exactly, and are given by

|T (ω)|2 =


4κ2ω2

4κ2ω2 + V 2
0 sinh2(κa)

, ω2 − V0 < 0,

4K2ω2

4K2ω2 + V 2
0 sin2(Ka)

, ω2 − V0 ≥ 0

(4.10)

where in the first case in Eq. (4.10) we define κ ≡
√
V0 − ω2, and in the second case we

define K =
√
ω2 − V0. Thus, for an initial wavepacket of the form in Eq. (4.6), we can

estimate the quality factor of the effective cavity by

Q =

∑N
n=1 n e

−α2ω2
n∑N

n=1 n|T (ωn)|
2e−α2ω2

n

, (4.11)

where ωn = nπ/L.

We now give the quality factor of the confining potential in Eq. (4.5) as we vary partic-
ular parameters. In Fig. 4.4, we see that as we increase β, corresponding to the steepness
of the interior wall of the cavity, the quality factor increases. Noting that larger β yield
higher quality factors for our potential, we now analyze the quality factor for varying values
of ℓ and fix the steepness to be the maximum value from Fig. 4.4.

In Fig. 4.5 we plot the quality factor as a function of the width parameter ℓ. We notice
that as the width of the potential increases, so does the quality factor. This is expected if
we compare our results to that of the analytic solution for the top-hat potentials. In the
analytic case, we see that as the width increases the transmissivity decreases.

The results of Figs. 4.4 and 4.5 show that choosing a confining potential with β = 30.0
and ℓ = 1.0 suffices in order to model an effective confining cavity for the short times at
which we are investigating, and we will use these values for the remaining analysis.

4.2.2 Dynamical Creation of an Effective Cavity

We now switch to the analysis of the dynamical creation of the cavity from empty space
without excitations. That is, we consider a scalar field theory with the time-dependent
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Figure 4.4: Quality factor of the confining potential as a function of β for a fixed Vmax = 250,
ℓ = 1.0, xL = 3.0, and xR = 7.0. We choose the boundaries of the cavity so that xleft = 2.4
and xright = 7.6.

potential given by Eq. (4.5). We will analyze how the growth of the potential affects the
energy density of the field when the field is initially in the vacuum state.

Since energy is injected into the field as the potential is created dynamically, the field
will be more or less excited depending on how fast the walls are created. In Fig. 4.6 we
plot the energy density at different times during the creation of a potential that is grown
until Tmax = 10.

In Fig. 4.7 we again plot the energy in each particular region over time, where we see
that after the potential stops growing, there is no change in energy on the interior region.
Thus, as was mentioned, when the walls of the cavity are created slower, we can be assured
of the effectiveness of the potential in strongly localizing the field.

Notice that a faster growing potential injects more energy into the field during its
growth. As a result, higher frequency modes of the cavity become excited. One can see
even in the analytical example in Eq. (4.10) that higher energy modes are more difficult
to confine and thus the slower the growth of the cavity the better in confining the energy
it will be. This is particularly important since, if the dynamic cavity strongly localizes the
field inside the walls, then raising the walls slower will create a more effective potential.

46



Figure 4.5: Quality factor of the confining potential as a function of ℓ (the width of the
wall) for a fixed Vmax = 250, β = 30.0, xL = 3.0, and xR = 7.0. We choose the boundaries
of the cavity so that xleft = 2.4 and xright = 7.6.

Having established that the time-dependent potential acts as an effective cavity that
confines the quantum field inside it, we can now turn our attention to the analysis of how
the dynamical creation of the cavity affects the purity of the state localized and trapped
inside.

4.3 Effects of the Dynamical Potential in the Mixed-

ness of Localized Modes of the Field

Now that we have a way of dynamically localizing our free field by creating a cavity around
it, the next question we investigate is that of the purity of the state of the degrees of freedom
of the field trapped inside the cavity throughout the evolution. Since, before creating the
potential, the vacuum state of the (free) field is a pure state, creating the cavity walls will
both excite the field and introduce mixedness in the excitations that are trapped in the
cavity.
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Figure 4.6: Energy density of the field during the time in which the cavity is being created.
The blue curve is the energy density of the field whose value is given by the y-axis on
the left of the plots, while the orange curve is the potential whose values are given by the
y-axis on the right of the plots.
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Figure 4.7: Energy of the field inside and outside of the cavity, as well as the total energy
of the field as a function of time during a dynamic creation of the cavity. The potential
grows up until Tmax = 10 with Vmax = 250.

Intuitively, the adiabatic theorem tells us that it should be possible to arbitrarily de-
crease the deviation from purity by raising the potential slower. This follows from the
adiabatic theorem, in which, an adiabatically changing Hamiltonian will leave an initial
ground state in the ground state of the time dependent Hamiltonian for all time. Beyond
this intuition, we can actually study quantitatively the loss of purity experienced by the
field modes localized inside the created cavity (when the walls are raised in the presence
of the vacuum state of the field) as a function of time by first characterizing what are the
degrees of freedom of the modes of the field that are localized inside the cavity. We can
do so by introducing the following localized quadrature operators:

Q̂(t) =

∫
dxf(x)ϕ̂(x), (4.12)

P̂ (t) =

∫
dx g(x)Π̂(x), (4.13)

where Π̂(x) = ∂tϕ̂(x) and f(x) and g(x) are the spatial profiles of the position and momen-
tum normal modes of the cavity created by the confining potential. The functions f(x)
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and g(x) satisfy ∫
dxf(x)g(x) = 1, (4.14)

as a result of choosing Q̂ and P̂ such that
[
Q̂, P̂

]
= i1.

Selecting a suitable profile for the quadratures requires some care. For example, it can
be done by taking into account what are the actual degrees of freedom that are measurable
by an experimenter, or if we know the shape of the cavity, one can reasonably choose
the normal modes associated with the eigenvectors of the d’Alembert operator inside the
region of confinement. Once the particular field mode and momentum mode profiles f(x)
and g(x) are chosen, one can define the single-mode covariance matrix as

σ =

(
2⟨Q̂2⟩ 2Re{⟨Q̂P̂ ⟩}

2Re{⟨Q̂P̂ ⟩} 2⟨P̂ 2⟩

)
, (4.15)

where

⟨Q̂2⟩ =
∫

dxdx′f(x)f(x′)W (x, x′), (4.16)

⟨Q̂P̂ ⟩ =
∫

dxdx′f(x)g(x′)∂t′W (x, x′), (4.17)

⟨P̂ 2⟩ =
∫

dxdx′g(x)g(x′)∂t∂t′W (x, x′). (4.18)

Given the covariance matrix in Eq. (4.15), we define the symplectic eigenvalue of the
single-mode as the positive eigenvalue of iσΩ−1, where

Ω =

(
0 1
−1 0

)
. (4.19)

This leads to the following expression for the symplectic eigenvalue

ν(t) = 2

√
⟨Q̂2(t)⟩⟨P̂ 2(t)⟩ − Re{Q̂(t)P̂ (t)}. (4.20)

Using the methods of Chapter 3 to evolve the two-point correlator and the expectation
of the energy density, we turn our attention to computing the symplectic eigenvalue of
the selected modes of the field. The integration in Eqs. (4.16), (4.17), (4.18) is performed
using a trapezoidal rule with the same grid spacing used to evolve the two-point correlator.
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In order to extend the trapezoidal method used in Eq. (3.46) to a 2D integral over x, x′,
we can use the following recursive method for multiple integration∫ bx

ax

∫ by

ay

dxdyf(x, y) =

∫ bx

ax

dxG(x), (4.21)

where

G(x) =

∫ by

ay

dyf(x, y). (4.22)

The result of evaluating (4.22) using the prescription (4.21) is to weight the “corner” grid
points (i.e. i = j = 0, i = 0, j = Nx, i = Nx, j = 0, and i = j = Nx) by a factor of 1

4
, the

“edge” points (i.e i ∈ {1, Nx}, j ∈ [2, Nx− 1] and i ∈ [2, Nx− 1], j ∈ {1, Nx}) by a factor of
1
2
and all interior points (i.e i, j ∈ [2, Nx − 1]) by a factor of 1. All of the necessary terms

are derived and provided in Appendix C. This method is well known to be second-order
convergent.

Recall that our objective is to evaluate the level of mixedness introduced in the modes
of the field that remain trapped in the cavity due to its dynamical creation. To perform
this analysis, we need to pick a set of modes that represent physically accessible modes
inside the cavity, then analyze the state of these modes after the cavity is created after
tracing out everything else.

For our particular study, we notice from Fig. 4.7 that, once the potential has stopped
growing, the energy within the cavity remains constant. Therefore, to a good approxima-
tion, we can say that the resulting cavity behaves as a (fully reflecting) Dirichlet cavity.
As a result, we approximate the normal modes of the cavity by the field amplitude and
momentum spatial profiles as

f(x) = g(x) =

√
2

l
sin
(nπx

l

)
, (4.23)

where l is the length of the artificial cavity and n corresponds to the mode number1. In
Fig. 4.8 we show the variation in time of the symplectic eigenvalue of these effective normal
modes as the cavity is created and how they behave after its creation.

In Fig. 4.8, there are quite a few interesting features. The first is that initially our
symplectic eigenvalue does not equal one. This is because any localized mode of a quantum

1Technically the momentum profile would be multiplied by an extra power of l, however choosing the
same profile for amplitude and momentum can be achieved by a single-mode squeezing which does not
affect the symplectic eigenvalue calculation for this mode.
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Figure 4.8: Symplectic eigenvalue for the first five modes of the field as a function of time
(in units of the (inverse) fundamental frequency of the cavity). We raise the potential until
Tmax = 10 and with Vmax = 250. The first mode gets more mixed because the switching is
less adiabatic when the energy of the mode of study is lower.

field theory is guaranteed to be mixed, due to the inherent entanglement in the vacuum
state. This means that a small amount of mixedness will always appear as a consequence
of the partition into modes, even before the cavity walls are raised.

Additionally, we see that purity fluctuates throughout the evolution. In particular, we
notice that the peaks are occurring at precisely one light crossing time of the artificial cavity.
This is because of a combination of factors such as the fact that the modes of the cavity
are not the exact normal modes for the created cavity, the fact that the potential is not
infinitely confining, and the fact that the dynamical process of creating the cavity creates
mixedness between the modes themselves and the outside degrees of freedom. However,
as we will see later, these fluctuations do decrease as the creation of the cavity is more
adiabatic. Additionally, we see that the higher modes of the artificial cavity are less mixed
than the lower modes. This is due to the fact that the adiabaticity of the potential growth
increases with the energy of the modes themselves. Basically, the adiabatic approximation
becomes valid when nπTmax/l ≫ 1.

In order to fully understand the effects of the speed at which the potential grows on
the mixedness of the confined degrees of freedom of the field, we ran multiple simulations
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with varying values of Tmax to analyze the results on the symplectic eigenvalue of the
modes associated to the spatial profile of (4.23). As a general trend, we know that, for
any given value of Tmax, the intuition one may get from the adiabatic approximation gets
progressively better as we move to higher frequencies; consequently, modes with lower
frequency will appear to be more mixed than the modes with higher frequency.

In Fig. 4.9, we show how the mixedness of the mode n = 9 varies as a function of
Tmax. We choose n = 9 as a computational compromise: this choice allows us to see the
asymptotic behavior of the purity easily within the confines of the computational resources
that were available. The behavior of any other mode is expected to be similar, only the
timescale at which each mode will asymptote to near purity would vary proportionally to
1/n.

Figure 4.9: Average symplectic eigenvalue as a function of the stop time for the confining
potential. Here we scale the x-axis by the frequency of the n = 9 mode, akin to what was
done for the previous plot of the symplectic eigenvalues

The symplectic eigenvalue will oscillate as a function of time, even after the potential
stops growing. For better visualization, In Fig. 4.9 we plot the time average of the
symplectic eigenvalue as a function of Tmax, where the average was taken over three times
the light-crossing time of the effective cavity. In this plot, we can see that as the creation
of the cavity is more adiabatic, we see a monotonic decrease in the symplectic eigenvalue
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that tends towards purity (⟨ν⟩ = 1). This corroborates the intuition from the adiabatic
theorem that if you create the cavity slowly enough, the purity of the confined modes is
not compromised.

Of course, to support this claim, it is not enough to study the average in time of the
symplectic eigenvalue; it is also important that its fluctuations do not go out of control. In
order to evaluate these fluctuations, we can study the standard deviation of the symplectic
eigenvalue ∆ν = (⟨ν2⟩ − ⟨ν⟩2)1/2 as a function of T .

We show the behavior of the standard deviation in Fig. 4.10, where we see that it is small
enough and also monotonically decreases as the cavity creation becomes more adiabatic.
In Fig. 4.10, we also note that the standard deviation of the symplectic eigenvalue also

Figure 4.10: Standard deviation of the symplectic eigenvalue as a function of the stop time
for the confining potential. Here we scale the x-axis by the frequency of the n = 9 mode.

contains purity. That is, the mode n = 9 that we study here obtains purity within one
standard deviation of the fluctuations.

One instance where these results can be particularly useful is in a protocol known as
entanglement harvesting. This consists of a process in which two independent localized
quantum systems starting in a product state can become entangled after interacting with
a quantum field. The final state of the probes after interacting with the field in this setup
will generically contain contributions that can be divided into local terms (which affect
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the reduced state on each detector regardless of the existence of the other), and nonlocal
terms (which are responsible for the correlations between the two detectors). In rough
intuitive terms, in order for the detectors to become entangled, the nonlocal correlations
acquired by them should be strong enough to overcome the local terms experienced by each
of them separately; in short, the nonlocal term must exceed the “local noise” on either
detector. In this context, any initial mixedness in the state of the probes is detrimental to
entanglement harvesting, as it effectively acts as another source of local noise that decreases
the total amount of entanglement that can be potentially harvested. Therefore, in order
for entanglement harvesting to be successful, it is important for the probes to be prepared
in an initial state that is as pure as possible. This observation has been used to argue that
particle detectors built out of modes of a relativistic quantum field have a fundamental
limit to their ability to harvest entanglement at weak coupling [61], since the high level of
entanglement present in the QFT describing the probe system itself inevitably leads to some
level of mixedness in the initial state of the detector. Our analysis indicates, however, that
the mixedness of local modes of the probe field can be made systematically smaller, if one
controls the dynamics external potential that provides the localization profile of the field.
This reinforces the idea of using modes of localized quantum fields as particle detectors in
a way that may not be fundamentally impeded to harvest entanglement [28, 48].
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented a stable and convergent FD method for evolving the correla-
tion function of scalar quantum fields given an initial field configuration. We were able
to demonstrate some example use cases for such an evolution method and how it may be
optimized for different scenarios. Additionally, we showed how one can obtain the renor-
malized energy density of the field through only the evolution of the correlation function,
again with a stable and convergent method. In doing so, we also demonstrated how this
method can be optimized for efficient, long-time simulations by only considering a subset
of the grid data around equal time slices t = t′.

The overall structure of the method developed leaves plenty of room for more general
problems in (1 + 1)-dimensional QFT to be implemented. Moreover, the construction of
this numerical method allows for simple adaptations to any linear equation of motion of a
scalar quantum field. For example, with the addition of an m2 term one can study massive
scalar quantum fields, or for fields interacting with nonrelativistic sources such as particle
detectors. While this method was constructed for scalar quantum fields, the overall ideas
and implementations of the method can easily be extended to other quantum fields such
as the fermionic field.

Specifically, we were able to adapt the numerical methods to the case where our scalar
quantum field is subject to an external potential. In particular, we studied what happens
when we confine degrees of freedom of a quantum field by dynamically growing cavity walls.
Specifically, we focused on the study of whether the confinement introduces inescapable
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mixedness in the localized degrees of freedom of the field in a way that could interfere with
their use in RQI protocols, as was suggested i.e. in [61].

We showed that when we look at a confined mode with energy E of a dynamically
created cavity, if the cavity is created adiabatically enough (in a timescale T ≳ E−1), the
confined mode does not experience significant mixedness due to the raising of the cavity
walls. Moreover, the localized modes do not get significantly excited by the potential
growth. This provides a proof of principle that we can obtain localized modes of the field
that can be made arbitrarily pure.

One particularly important scenario where this result is relevant is the analysis of the
entanglement harvesting protocol, where the mixedness of localized modes of quantum
fields has been argued to be an unavoidable hindrance to one’s ability to harvest entan-
glement with fully relativistic probes [61]. It is technically true that the Reeh-Schlieder
theorem dictates that the reduced state of any local mode of a field theory in a finite re-
gion of space cannot be exactly pure unless there are regions of space where the confining
potential diverges; however, our work shows that if the cavity walls are created ‘slowly
enough’ the mixedness of localized modes of the field can be made arbitrarily negligible.
To get an idea of what ‘slow enough’ means, we can consider, e.g., the scale of adiabaticity
for an optical cavity (trapping visible light) T ∼ 10−15 s.

5.2 Future Work

In future work, it would be interesting to study the structure of the entanglement between
field modes under the effect of time-dependent potentials in more detail. We expect that
the mixedness observed in the modes displayed in Fig. 4.8 is mostly due to entanglement
with field degrees of freedom outside of the region where the mode is supported. However,
there may also be a non-trivial amount of internal entanglement among the modes within
the same region of space where the cavity is being created. If this is true, then it would
be possible to make an even better-informed choice of local modes via a local symplectic
transformations that finds a new set of localized modes that are as uncorrelated as possible
within the interior of the cavity for the specific potential that we are growing (along the
lines of, e.g., [15]).

Since the primary works of this thesis were performed in (1 + 1) dimensions, the nat-
ural next step is to utilize what we have established to create a method of evolving the
correlation function of a (3 + 1)-dimensional scalar quantum field. The primary challenge
is that we are unable to decrease the memory usage of storing the spatial components in
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the method presented in Chapter 3. Thus, in the case of the (3 + 1)-dimensional field,
this would required storing all data across a 6-dimensional array. As was mentioned in
Chapter 3, this requires O(N6) which is simply not feasible for high resolution simulations
with our current computational resources. As of the completion of this thesis, progress has
been made in utilizing the methods of [78, 26] to decrease the memory usage to a factor
of O(N log(N5)). Currently, these methods are being adapted in order to perform the
necessary time integration to generate the full time dynamics of the correlation function
in (3 + 1)-dimensions.

With a (3 + 1)-dimensional simulation, there are also a number of protocols in RQI
that can be studied in a more realistic, less idealized scenario. An obvious example of this
would be to study the dynamic localization of a (3 + 1)-dimensional scalar quantum field.
Additionally, one could study a scenario where the protocol of entanglement harvesting
uses a dynamically localized quantum field as a particle detector, building on the works
of [49, 50].

Outside of the case of a (3 + 1)-dimensional numerical method, the current (1 + 1)-
dimensional code can be used to replicate idealized studies in QFT (see e.g. [8]) with
parameters that are more akin to what an experimental research group has access to in a
laboratory. This could lead to developing an understanding of what may be necessary in
order for experiments to confirm theoretical works in QFT.

Additionally, given the limited literature in the area of numerical QFT, there is a, po-
tentially, interesting analogue between that of a bandlimited QFT and the use of discrete
derivatives (such as those used in Chapter 3). A bandlimited theory is inherently not
covariant, but is still a method of discretization that preserves Lorentz symmetry. Under-
standing the way in which these two ideas are the same (or perhaps how the differ), could
lead to developing numerical methods for QFT that are in-line with our current framework
for QFT.

The most, in my personal opinion, interesting project that can build upon these works,
is obtaining the full renormalized, stress-energy tensor ⟨T̂µν⟩ of the field. The main point of
interest in numerically obtaining the stress-energy tensor is that this is precisely the source
term of the Einstein Field Equations. That is, if one can give the stress-energy tensor,
then it is possible, using techniques from numerical relativity, to solve the Einstein Field
Equations for a full simulation of the backreaction on a scalar quantum field. This could
provide huge insights into the interplay between QFT and general relativity allowing us to
have a better understanding of the gravitation of quantum fields in the weak field limit.
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Appendix A

Appendices for Chapter 2

A.1 Equal Time Commutation Relations Imply Canon-

ical Commutation Relations

Before demonstrating the equivalence between the equal time commutation relations and
the canonical commutation relations, we first mention that we will be demonstrating this
relationship using the cavity QFT formalism. This is mainly because the cavity results are
used in all chapters of the thesis. That being said, the calculation is almost identical in
the case of a free QFT. We will also make use of the following two important results,

(ϕ̂(x), ukn(x))K.G. = âkn , (A.1)

(ϕ̂(x), u∗kn(x))K.G. = â†kn , (A.2)

which can easily be shown using the orthogonality of the basis functions {ukn(x)} under
the Klein-Gordon inner product.

The first two commutation relations, namely Eqs. (2.30) and (2.31) are quite clear from
the definitions of the equal time commutation relations. However, the third is slightly more
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nuanced and can be seen through the following calculation[
âkn , â

†
kn

]
= ⟨ϕ̂(x, t), ukn(x, t)⟩⟨ϕ̂(x, t), u∗km(x, t)⟩ − ⟨ϕ̂(x, t), u∗km(x, t)⟩⟨ϕ̂(x, t), ukn(x, t)⟩

= −
∫ L

0

dxdx′
[
ϕ̂(x, t)(∂tukn(x, t))− Π̂(x, t)ukn(x, t)

] [
ϕ̂(x′, t)(∂tu

∗
km(x

′, t))− Π̂(x′, t)u∗km(x
′, t)
]

−
(
−
∫ L

0

dxdx′
[
ϕ̂(x′, t)(∂tu

∗
km(x

′, t))− Π̂(x′, t)u∗km(x
′, t)
] [
ϕ̂(x, t)(∂tukn(x, t))− Π̂(x, t)ukn(x, t)

])
=

∫ L

0

dxdx′
[
ϕ̂(x, t), Π̂(x′, t)

]
(∂tukn(x, t))u

∗
km(x

′, t) +
[
Π̂(x, t), ϕ̂(x′, t)

]
(∂tu

∗
km(x

′, t))ukn(x, t)

= i

∫ L

0

δ(x− x′)
(
(∂tukn(x, t))u

∗
km(x

′, t)− (∂tu
∗
km(x

′, t))ukn(x, t)
)

=

(
kn

π
√
nm

+
km

π
√
nm

)
e−i(kn−km)t

∫ L

0

dx sin
nπx

L
sin
(mπx

L

)
. (A.3)

In the above equation, if n ̸= m, then
[
âkn , â

†
km

]
= 0, and if n = m, then

[
âkn , â

†
km

]
= 1,

thus we conclude that
[
âkn , â

†
km

]
= δnm. Thus we conclude that Eq. (2.32) is also naturally

imposed by the equal time commutation relations.

A.2 Derivation of the Vacuum Correlation Function

Starting from the definition of the correlation function in Eq. (2.33), we have

W0(x, x
′) = ⟨0| ϕ̂(x)ϕ̂(x′) |0⟩

= ⟨0|
(∫

dnk
(
âkuk(x) + â†ku

∗
k(x)

)∫
dnk′

(
âk′uk′(x′) + â†k′u

∗
k′(x′)

))
|0⟩ . (A.4)

From here, given the orthogonality relations, any terms in Eq. (A.4) that contain un-
equal numbers of creation and annihilation operators will be zero. So we obtain

W0(x, x
′) =

∫
dnkdnk′ ⟨0|

(
âkâ

†
k′uk(x)u

∗
k′(x′) + â†kâk′u∗k(x)uk′(x′)

)
|0⟩ . (A.5)
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Since âk |0⟩ = 0, we have

W0(x, x
′) =

∫
dnkdnk′ ⟨0| âkâ†k′ |0⟩uk(x)u∗k′(x′)

=

∫
dnkdnk′ ⟨0|

(
δ(n)(k − k′)− â†k′ âk

)
|0⟩uk(x)u∗k′(x′)

=

∫
dnk uk(x)u

∗
k(x

′), (A.6)

where we used the fact that ⟨0|0⟩ = 1, and again used the fact that âk |0⟩ = 0. Substituting
in Eq. (2.12), we obtain

W0(x, x
′) =

∫
dnk

(2π)n2ωk

eikµ(x−x
′)µ . (A.7)
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Appendix B

Appendices for Chapter 3

B.1 Derivation of the CFL Condition for the Wave

Equation

We can derive the CFL condition for the wave equation by first inserting the Fourier
decomposition of our error Eq. (3.15) into our FD method in Eq. 3.5. In doing so, we
obtain

ên+1e
ijθ = 2êne

ijθ − ên−1e
ijθ + C2

(
êne

i(j+1)θ − 2êne
ijθ + êne

i(j−1θ
)

ên+1 + ên−1 = ên
(
2 + 2C2 cos(θ)− 2C2

)
. (B.1)

In order to ensure the stability of the method, we now assume ên = λn. It can be shown
that Eq. (3.16) implies that, for our method to be stable, we require |λ| ≤ 1. Under this
assumption we have,

λ2 −Mλ+ 1 = 0, (B.2)

where
M = 2 + 2R2 cos(θ)− 2R2. (B.3)

The roots of Eq. (B.2) are then

λ1,2 =
M

2
± 1

2

√
M2 − 4. (B.4)

If we assume that M2 − 4 > 0, then we must have M < −2 since M ≤ 2, which yields
λ2 < −1 =⇒ |λ2| > 1 which would result in our method being unstable. So we must have
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that M2 − 4 ≤ 0 and the roots become

λ1,2 =
M

2
± i

2

√
4−M2

=⇒ |λ1,2| =
√
M2

4
+

4−M2

4
≤ 1

⇐⇒ M2 − 4 ≤ 0

=⇒ −2 ≤M ≤ 2. (B.5)

In other words, we have the condition

−2 ≤ 2 + 2R2 cos(θ)− 2R2 ≤ 2. (B.6)

Now we can start by analyzing the case where M ≤ 2 and what restrictions this may
impose.

2 + 2R2 cos(θ)− 2R2 ≤ 2

R2 cos(θ)−R2 ≤ 0

1

∆x2
(cos(θ)− 1) ≤ 0, (B.7)

which will always be satisfied. We must also satisfy the other side of the equality, which
will indeed impose additional restrictions on the size of the time step we may use for the
simulation.

−2 ≤ 2 + 2R2 cos(θ)− 2R2

−4 ≤ 2R2(cos(θ)− 1) ≤ −4R2

4 ≥ 4R2.∆t ≤ ∆x (B.8)

Thus, we have arrived at the stability condition given in Eq. (3.17).
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B.2 Derivation of the Regularized Correlation Func-

tion

Starting from Eq. (3.23), we substitute Eqs. (2.42), (3.21), and (3.22) and we obtain

W0(x, x
′) =

1

π

∞∑
n=1

1

n

(
1√
2πσ2

x

∫
dy sin(kny)e

−(x−y)2/2σ2
x

)

×

(
1√
2πσ2

x

∫
dy′ sin(kny

′)e−(x′−y′)2/2σ2
x

)(
1√
2πσ2

t

∫
dτe−iknτe−(t−τ)2

)

×

(
1√
2πσ2

t

∫
dτ ′e−iknτ ′e−(t′−τ ′)2

)
(B.9)

All of the integrals can be evaluated analytically and are found in [27]. We first solve the
integral in y and will note that the integral in y′ has the same result.

1√
2πσ2

x

∫
dy sin(kny)e

−(x−y)2/2σ2
x =

1√
2πσ2

x

∫
du sin(kn(u+ x))e−u

2/2σ2
x

= e−
1
2
k2nσ

2
x sin(knx). (B.10)

Similarly, the result for the second integral is given by

1√
2πσ2

x

∫
dy′ sin(kny

′)e−(x′−y′)2/2σ2
x = e−

1
2
k2nσ

2
x sin(knx

′). (B.11)

For the third integral, we have

1√
2πσ2

t

∫
dτe−iknτe−(t−τ)2/2σ2

t =
e−iknt√
2πσ2

t

∫
due−iknue−u

2/2σ2
t

=
e−iknt√
2πσ2

t

(∫
du cos(knu)e

−u2/2σ2
t − i

∫
du sin(knu)e

−u2/2σ2
t

)
= e−iknt

(
e−

1
2
k2nσ

2
t cos(kn ∗ 0)− ie−

1
2
k2nσ

2
t sin(kn ∗ 0)

)
= e−iknte−

1
2
k2nσ

2
t (B.12)
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Finally, for the fourth integral, we notice that this integral is simply the complex conjugate
of the above the integral. Thus, we obtain

1√
2πσ2

t

∫
dτ ′e−iknτ ′e−(t′−τ ′)2/2σ2

t = eiknt
′
e−

1
2
k2nσ

2
t (B.13)

Substituting the results of the above integrals yields the result of Eq. (3.24).
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Appendix C

Appendices for Chapter 4

C.1 Derivation of the CFL Condition for the Wave

Equation With External Potential

The derivation for the CFL Factor for the wave equation with an external potential is
similar to that of the wave equation without a potential. As we will see, the derivation
relies heavily on the same techniques used in B.

Upon substituting Eq. (3.15) into the discretized version of Eq. (4.2), we obtain

ên+1e
ijθ = 2êne

ijθ − ên−1e
ijθ +R2

(
êne

i(j+1)θ − 2êne
ijθ + êne

i(j−1)θ
)
− 2∆t2V n

i êne
ijθ,

which yields
ên+1 + ên−1 = ên(2 + 2R2 cos(θ)− 2R2 − 2∆t2V n

i ) (C.1)

As before, we will assume ên = λn and require that |λ| ≤ 1. Under this assumption, we
again get a quadratic equation of the form

λ2 −Mλ+ 1 = 0, (C.2)

where
M = 2 + 2R2 cos(θ)− 2R2 − 2∆t2V n

i . (C.3)

To further simplify the equation, we define Ṽ = max{n,i}∈DV
n
i , and noting that Ṽ ≥ 0
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we arrive at the following result for the roots of λ

λ1,2 =
M

2
± 1

2

√
M2 − 4. (C.4)

If we assume that M2 − 4 > 0, then we must have M < −2 since M ≤ 2 + 2∆t2Ṽ , which
yields λ2 < −1 =⇒ |λ2| > 1 which would result in our method being unstable. So we
must have that M2 − 4 ≤ 0 and the roots become

λ1,2 =
M

2
± i

2

√
4−M2

=⇒ |λ1,2| =
√
M2

4
+

4−M2

4
≤ 1

⇐⇒ M2 − 4 ≤ 0 =⇒ −2 ≤M ≤ 2. (C.5)

In other words, we have the condition

−2 ≤ 2 + 2R2 cos(θ)− 2R2 − 2∆t2V n
i ≤ 2. (C.6)

As was done in B, we will analyze the cases where M ≤ 2 and M ≥ −2. When M ≤ 2, we
have

2 + 2R2 cos(θ)− 2R2 − 2∆t2V n
i ≤ 2 ≤ 2 + 2∆t2Ṽ

R2 cos(θ)−R2 −∆t2V n
i ≤ ∆t2Ṽ

1

∆x2
(cos(θ)− 1)− V n

i ≤ Ṽ , (C.7)

which will always be satisfied since Ṽ > 0 and cos(θ) − 1 ≤ 0. Now, when M ≥ −2 we
have

−2 ≤ 2 + 2R2 cos(θ)− 2R2 − 2∆t2V n
i

−4 ≤ 2R2(cos(θ)− 1)− 2∆t2V n
i ≤ −4R2 − 2∆t2V n

i

4 ≥ 4R2 + 2∆t2V n
i . (C.8)

Since the above relation must hold for all V n
i it must also hold true for Ṽ . Hence, we can
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simplify the given expression by simply replacing V n
i → Ṽ . Hence,

4 ≥ 4R2 + 2∆t2Ṽ

4 ≥ ∆t2
(

4

∆x2
+ 2Ṽ

)
=⇒ ∆t2 ≤ 2∆x2

2 + Ṽ
. (C.9)

We can clearly see the similarities between the CFL factor for the free wave equation and
the wave equation in the presence of an external potential. In the case of an external
potential, the size of the time step is inversely proportional to the height of the potential.
As a result, running simulations with large potentials will require more memory in order
to store the necessary data.

C.2 Derivation of the Trapezoidal Rule for Multiple

Integrations

In order to derive the 2D trapezoidal rule discussed in 4.3, we first consider a smooth
function f(x, y) defined over a discrete domain with grid points {xi}Nx

i=1 and {yj}Ny

j=1 whose
grid spacings are ∆x and ∆y, respectively. Then, we have∫ by

ay

∫ bx

ax

dxdy f(x, y) =

∫ by

ay

dy

(
∆x

2
(f(x0, y)︸ ︷︷ ︸

I1

+ f(xNx , y)︸ ︷︷ ︸
I2

) + ∆x
Nx−1∑
i=1

f(xi, y)︸ ︷︷ ︸
I3

)
(C.10)

We now apply the trapezoidal rule over y to the result of our integration in x. We first
compute I1 as

∆x

2

∫
dyf(x0, y) =

∆x∆y

4
(f(x0, y0) + f(x0, yN−y)) +

∆x∆y

2

Ny−1∑
j=1

f(x0, yj). (C.11)
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For I2 we have

∆x

2

∫
dyf(xNx , y) =

∆x∆y

4
(f(xNx , y0) + f(xNx , yN−y)) +

∆x∆y

2

Ny−1∑
j=1

f(xNx , yj). (C.12)

Finally, for I3 we obtain

∆x
Nx−1∑
i=1

∫
dyf(xi, y) =

∆x∆y

2

Nx−1∑
i=1

f(xi, y0) +
∆x∆y

2

Nx−1∑
i=1

f(xi, yNy)

+ ∆x∆y
Nx−1∑
i=1

Ny−1∑
j=1

f(xi, yj). (C.13)

From Eqs. (C.11),(C.12), and (C.13) we can clearly see three distinct “regions” in which
we are calculating the integral. The first region is the corner points of our domain. Namely,
f(x0, y0). f(x0, yNy), f(xNx , y0), and f(xNx , yNy) all of which obtain a weighting of 1

4
as

seen by the prefactors. Next, are the “edges” of the domain given by the points f(x0, yj),
f(xNx , yj), f(xi, y0), and f(xi, yNy), where i ∈ [1, Nx− 1] and j ∈ [1, Ny − 1], which obtain
weights of 1

2
. Finally, we have the “interior” points given by f(xi, yj) for i ∈ [1, Nx−1] and

j ∈ [1, Ny−1] which have weights of 1. In order to numerically integrate 2D functions, such
as the ones in Sec. 4.3, one must ensure that each of these regions is handled appropriately.
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