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Abstract The General Relativity Effective Field Theory (GREFT) introduces higher-derivative interactions to parameterise the
gravitational effects of massive degrees of freedom which are too heavy to be probed directly. The coefficients of these interactions
have recently been constrained using causality: both from the analytic structure of 4-point graviton scattering and the time delay
of gravitational waves on a black hole background. In this work, causality is used to constrain the quasi-normal mode spectrum of
GREFT black holes. Demanding that quasi-normal mode perturbations decay faster in the GREFT than in General Relativity—a
new kind of causality condition which stems from the analytic structure of 2-point functions on a black hole background—Ieads
to further constraints on the GREFT coefficients. The causality constraints and compact expressions for the GREFT quasi-normal
mode frequencies presented here will inform future parameterised gravitational waveforms, and the observational prospects for
gravitational wave observatories are briefly discussed.

1 Introduction

A quantum theory of gravity has remained elusive for two reasons. The first is phenomenological: experimentally we either probe the
small-scale small-curvature regime (e.g. in particle colliders) or the large-scale large-curvature regime (e.g. solar system, cosmology),
but to see quantum and gravitational effects simultaneously would require both small scales and large curvatures. The second reason
is theoretical: unlike the fundamental forces of the Standard Model, General Relativity (GR) is not a renormalisable field theory,
and this typically leads to a loss of predictivity at high energies. Reconciling these difficulties and uncovering a complete quantum
mechanical description of gravity has been a central aim of theoretical physics for the past century.

Fortunately, these two difficulties also suggest a way forward. Since gravitational phenomena are typically observed on large
scales (in the low-energy, or ‘IR’, regime), they are well described by an Effective Field Theory (EFT). An EFT description of
gravity also resolves the theoretical issues surrounding renormalisation, since an EFT is renormalisable at any finite order in its
derivative expansion. The goal of this work is to better understand how the physical principle of causality can be used as a guide
when constructing and applying gravitational EFTs.

The interpretation of General Relativity as an Effective Field Theory goes back several decades [1, 2] and is by now widely
known. In this framework, the Einstein-Hilbert action of GR is extended by all possible higher-derivative interactions consistent
with the symmetries of the problem: namely diffeomorphism invariance (plus any flavour/gauge symmetries of the matter sector).
This produces an EFT extension of GR, also known as the “EFT of gravity” or the “General Relativity Effective Field Theory”
(GREFT). This latter title best highlights the many parallels with the Standard Model Effective Field Theory (SMEFT), which is an
analogous extension of the Standard Model by all possible interactions which are higher-order in derivatives and fields.

Just as the SMEFT was developed for model-agnostic searches for BSM physics at colliders, the GREFT can be viewed as a
parameterised framework in which to search for new physics beyond General Relativity. This is particularly important for gravitational
wave (GW) astronomy. The number of black hole (BH) or neutron star binary mergers detected by gravitational wave observatories
is now at least 90 [3], and is forecast to rise to thousands in the coming observing runs [4]. These gravitational waves were created
by compact objects in very high-curvature environments, and therefore open an exciting new window into the gravitational Universe
[5-11]. The GREFT framework has been used to study the inspiral [12—14], merger [15] and ringdown [16-21] phase of a binary
merger, and compared with existing GW data in [22, 23]. With future observing runs and new GW observatories planned for the
coming years, developing this framework both theoretically and phenomenologically will allow for the most precise tests of GR and
its possible extensions.
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The GREFT action is made up of two components: a gravitational sector and a coupling to matter. In four spacetime dimensions,
all parity-preserving interactions in the gravitational sector with up to eight derivatives can be written as [12],

M3 b c 2 Co [/ ~\2
— | A =2 ZP 2L a3, CLp@)2 L 2 (52
Sgrav—/dxa/ > [R+A4R + 5 (R®) +A6(R )] (1.1)
where R™ denotes the following contraction of n Riemann tensors,

~ 1
R® = R" 4R, . RO = SR e R R =R" 4R R (1.2)

A
where €,,,4p is the antisymmetric Levi-Civita tensor. The constant coefficients {51, c1, c2} encode the underlying UV physics, i.e.
different high energy theories (string theory,! loop quantum gravity, etc.) will match onto different choices of these coefficients.
The common energy scale A is used to track the EFT’s regime of validity, since (1.1) can be viewed as an expansion in powers of
V,../A (which is therefore expected to break down when length/time scales become order 1/A). The basis of interactions in (1.1)
captures all physics involving only gravity”: for instance graviton scattering amplitudes, as well as the physics of single black holes
(e.g. their effective horizon, quasi-normal modes and BH-GW scattering). The grand ambition of the GREFT is to use gravitational
observations to fix (or at least constrain) the coefficients {b; / A%, ¢ / A°, ¢ / A, ...}, and then use this information to infer properties
of the underlying high-energy quantum theory.
This work aims to answer two related questions:

(i) Given the recent causality constraints that have been placed on the GREFT coefficients, what are the phenomenological
consequences for GREFT black holes and in particular their quasi-normal mode (QNM) spectrum?

(i) Given a conjectured causality/stability property of black hole quasi-normal modes, what further constraints can be placed on
the GREFT coefficients?

The first is important for future analysis which fits GREFT coefficients to data, since it will inform more accurate GW templates for
the GREFT and hence lead to stronger, more reliable constraints from experiment. The second is also important for phenomenolo-
gy—since limiting the parameter space with theoretical priors before fitting to data can lead to qualitatively different results—but
mainly it complements a growing theoretical effort to characterise the space of consistent EFTs. There have been many recent
advances in this direction: including UV/IR sum rules [26, 27], the swampland conjectures [28, 29], and numerical bootstrap tech-
niques [30]. These different approaches all leverage some physical property of the underlying UV physics, usually causality and
unitarity, to place constraints on the EFT (and hence on IR phenomenology). This work will show that, at least in the context of
the GREFT (1.1), existing causality constraints lead to BH solutions being “more stable” (in the sense that quasi-normal mode
perturbations decay faster) than in GR. This property will be referred to as “QNM causality”. In fact, turning this around and
requiring QNM causality will lead to bounds on the GREFT coefficients which align remarkably well with existing constraints and
in some cases are even stronger. This opens up the possibility of placing qualitatively new constraints on the parameter space of
gravitational EFTs.
Concretely, this work will compare three different notions of causality and how they constrain the GREFT:

— UV causality. This is a property of 4-particle scattering amplitudes in the Minkowski vacuum, which in the low-energy EFT take
the following form:

Agrr(s,1) = AR(s, D) + ) gaps“t” (1.4)
ab

where s and ¢ are the usual Mandelstam variables, Ar represents the pole and branch cut contributions from the light fields
present in the EFT, and the coefficients g,; characterise the unknown UV physics. “UV causality” is the assumption that the
underlying amplitude in the full UV theory is analytic in the complex s-plane (up to the normal branch cut thresholds required
by unitarity) [31], which in practice means that each g, can be written explicitly as a contour integral of this underlying UV
amplitude. Further assumptions about the UV, such as unitarity, locality and Lorentz invariance, place bounds on this UV integral
and therefore the g, coefficients. The simplest such bound is [26],

gmo >0  (UV causality) , (1.5)

! For instance, comparing the 4-point EFT amplitude to the superstring amplitude [24] gives the following GREFT coefficients at this order in derivatives
[25]:

Superstring: b1=0, c=c= A —— (1.3)

where ¥ is the polygamma function and M 2= 4/a’ is related to the mass of the lowest-lying state beyond the EFT.
2 For observables involving matter fields, the GREFT is only complete once certain non-minimal couplings are included.
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where n > 1 in the absence of gravity and n > 2 in gravitational EFTs.? The importance of causality in these dispersion relation
arguments was first highlighted in [26], where they presented simple examples in which a violation of (1.5) goes hand-in-hand
with superluminal propagation on certain non-trivial backgrounds.

— IR causality. The constraints from causality on non-trivial backgrounds has recently been explored further [42, 43], and in general
can lead to seemingly independent bounds on the EFT coefficients. However, implementing causality in a gravitational context
is subtle. For waves passing by a compact object, the Shapiro time delay of GR is consistent with causality (i.e. it leads to a
time delay rather than a time advance in the arrival time of the waves), and so it would seem that any perturbatively small EFT
corrections on top of this would also be perfectly causal. One solution, developed in a recent series of papers [44-48], is the
condition of “IR causality”: namely that the small EFT corrections do not introduce a time advance relative to the GR time delay.
This means that if the total time delay is split into two parts,

IGREFT = IGR *+ SIEFT (1.6)

where 7GR is the usual Shapiro time-delay from the Einstein-Hilbert term, then the shift induced by the EFT corrections must not
lead to any time advance—at least, not one that is resolvable given the uncertainty principle. This leads to the condition*:

—wdtgrr S 1 (IR causality) (1.7)

where o is the frequency of the wave experiencing the time advance. To calculate §tgpr for waves propagating on a black hole
spacetime, a WKB approximation is often invoked in which the impact parameter is much larger than the size of the black hole
(since if the classical trajectory stays sufficiently far from the horizon, then the fraction of the wave absorbed into the black hole
can be neglected).

— OQNM causality. The new causality condition put forward in this work is related to the time dependence of black hole quasi-normal
modes, which may be parameterised in terms of an oscillatory frequency w and a decay lifetime t:

Sgu ~ e e, (1.8)

where the dependence on other data (angular momentum, overtone number, parity) is left implicit. For the black hole to be stable,
the decay rate 1/t must be positive. However, implementing this in the GREFT is subtle because the leading GR contribution
from the Einstein-Hilbert term gives a positive contribution to 7 and a small EFT correction would never flip this sign without
become non-perturbatively large. Instead, one should split the decay time into two parts,

TGREFT = TGR + OTEFT » (1.9

where §tgpr is the contribution from EFT interactions which vanishes as A — oo. “QNM causality” is then the condition that
dtgrr contributes positively to the decay rate—or at least, any decrease in the decay rate should not be resolvable given the
uncertainty principle. This leads to the condition®,

wdtgrr S 1 (QNM causality) . (1.10)

Unlike IR causality (large impact parameter scattering), this condition is naturally formulated near the horizon and so probes the
theory in a qualitatively different region.

Here are three rough arguments for the QNM causality condition. The first argument is that causality usually implies that any
singularity in the response function is in the lower half of the complex plane. The quasi-normal mode frequencies in GR certainly lie
in the lower half plane. Since the heavy physics, when decoupled from gravity, should push these points into the lower-half plane,
then in the full gravitational theory they should be pushing the QNM frequencies even deeper into the complex plane. The second
argument is that it is the straightforward analogue of the IR causality logic but applied to the stability of the BH solution. If it were
possible to decouple the effects of the Einstein-Hilbert term (at the level of perturbations, but retaining the BH background), then
the QNM causality condition would simply become the condition that the background is stable (just as the IR causality condition
in the decoupling limit becomes the usual condition that there is no resolvable time advance). The third argument is that, at least
in simple theories like (1.1), it appears that causality constraints from scattering amplitudes (UV causality) and from considering
the time delay of scattered waves (IR causality) both impose constraints on the EFT which limit or completely remove any positive
dtepr from the QNM spectrum. Rather than a numerical coincidence, this seems further evidence that the condition (1.10) should
be viewed as yet another avatar of causality in gravitational field theories. However, it is worth stressing that none of the above
amounts to a proof of (1.10). It is a conjecture, and the goal here is to explore to what extent this conjecture is different from (or
implied by) the well-established causality conditions from quantum or classical scattering.

3 The difficulty in applying positivity bounds to gpq in a gravitational theory is that the tree-level exchange of a graviton (responsible for the classical
Newtonian potential) leads to the IR divergent pole term s2 /t in the amplitude. There has been much recent progress in tackling this issue, for instance by
assuming a particular Regge growth [32-34], scattering at finite impact parameter [35], compatification [36-38] or considering EFT observables which do
not contain a graviton pole [39-41].

4 Constraints from other notions of causality applied to the asymptotic time delay can be found in [49] and [50].

5 Notice that § tgrT < 0 corresponds to a positive contribution to the decay rate 1/(tgRr + dtgpr) and therefore dtgpr > 0 is the problematic sign.
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Below is a short summary of the main results, namely the constraints on the GREFT coefficients from each of these three causality
conditions. It is followed in section 2 by a short description of the GREFT and its simplest (stationary, spherically symmetric) black
hole solutions. Then in section 3.1, the time delay of waves passing a GREFT black hole is computed and used to place IR causality
bounds on the coefficients {b1, c1, c2}. Section 3.2 calculates the quasi-normal mode spectrum of a GREFT black hole and compares
the condition of QNM causality with IR and UV causality. In light of these causality bounds, the observational prospects for the
GREFT is discussed briefly in section 4, before some concluding remarks are given in section 5.

1.1 Summary of main results

Assuming that the GREFT is under perturbative control up to a maximum (@/r) p.x = ewAZ, the IR causality constraint (1.7) and
QNM causality constraint (1.10) are found to imply the following lower bounds on the quartic GREFT coefficients:

IR causality: crel > —1.8 x 1074, cred > —42 % 107°
QNM causality: cred > —1.2x 1074, c2ed > —3.0x 107° (1.11)
Remarkably, both QNM causality and IR causality impose nearly identical bounds. Choosing A so that g, ~ O(1) (i.e. so that it

accurately reflects the true EFT cut-off), both conditions give ¢1,2 2 —(9(10_4). This is consistent with the sharp bounds from UV
causality [51],

UV causality: c1 >0, c >0 (1.12)

The small negative contribution in (1.11) is from the uncertainty in resolving wave-like behaviour.
For this value of ¢, there is also an upper bound on each Wilson coefficient. This bound depends on the size ry = 2G M of the
black hole. What matters phenomenologically is how large 1/A can be relative to rg, and these contraints imply that,

N if2 -0
- 1 : -5 0
IR causality: <m> < 3387128960, if o(107) % < 0(10°)
no bound if % > 1.1
Lo [ it 2 -0
QNM causality: <m) < m if 01074 < % < O(1073) (1.13)
nobound if 2 > 1.1 x 1073

This upper bound from IR causality when ¢, = 0 agrees with that derived in [47] up to an unimportant numerical factor. Both notions
of causality lead to qualitatively similar upper bounds, with QNM causality the stronger at low ¢ and IR causality the stronger at
large c;. These bounds can be used to infer which of the binary mergers detected by the LIGO-Virgo network are within the EFTs
regime of validity, and hence identify which regions of parameter space can be excluded by current gravitational wave data (see
Fig. 1). They can also be used to restrict the possible shifts in QNMs that can be induced by physics beyond GR, as illustrated in
Fig. 2. There is also an interesting similarity with recent UV causality bounds [40],

M
UV causality:  4(c1 —c2) < 12.3log(—) — 135 (1.14)
MIR
where mJR is an IR cut-off responsible for regulating the graviton pole. Conceptually, this also implies that c; must be sufficiently
greater than c; in order to avoid issues with causality.
Furthermore, there is a two-sided bound on the cubic coefficient,

IR causality: —28x 107 <hre? <+28x107°
QNM causality: —29x 107 <hret <+24x107° (1.15)

QNM and IR causality again impose similar constraints on the GREFT coefficient, namely |b; |8? < (9(10_5). This is consistent
with the causality bounds in [49] from eikonal resummation of the 3-point function, and extends the one-sided bound from IR
causality in [47] to a two-sided bound. It also implies that the b; interaction can not be the leading phenomenological effect in
gravitational wave templates, at least not if the EFT is to resolve ¢, & 1. Sacrificing some resolving power, either by lowering ¢, or
assuming a weaker perturbativity condition @ < &, A, could render |b; |‘9;1 < O(1072) and potentially relevant for phenomenology.
In either case, a cubic interaction with comparable quartic interactions (which is what arises from generic UV completions) would
describe a range of black hole backgrounds with no causality issues.

Finally, the UV causality bound [25, 40],

2
UV causality:  |by|*< 3¢ (1.16)
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Fig. 1 Observational constraints on the GREFT parameter space from recent GW events (assuming b is subdominant and that c¢; has little effect on these
waveforms since it is spin-suppressed). The coloured regions are strongly disfavoured. Red indicates that only the inspiral phase was used [22], and hence
the EFT remains a valid description until a much higher 1/A. Blue indicates that a full inspiral-merger-ringdown template was used [23], and hence produce
a stronger lower bound on 1/A. The causality bounds derived in this work lead to the lower bounds on ¢; /¢ required for each event to resolvable within
the EFT’s regime of validity
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Fig. 2 QNMs in the complex plane. Red points show the fundamental quasi-normal mode frequencies of GR in units of rg, which from left to right correspond
tof =2, 3, 4,5, 6. The black line is the large ¢ WKB approximation (3.41). The green region shows how each mode can be shifted by higher-curvature
interactions, given the simplest positivity constraints ¢c; > 0 and ¢ > 0 from UV causality. Once £ > 6, it becomes possible to shift the frequency
towards the real axis and decrease the decay rate of black holes. The additional bounds from IR causality prevent this shift from being resolvable within the
EFT’s regime of validity. As a concrete example, the blue points show the frequencies in superstring theory for a black hole with o 3 /(GM ¥ ~ 0.1 (ie.
c168 = cpe® ~ 5% 107

also implies that cubic interactions in the EFT must come with quartic interactions. While qualitatively similar, this bound is different
from (1.15) in two key respects. Firstly, since it follows from scattering in the Minkowski vacuum it has no dependence on ry: it
is therefore a constraint on the theory space, whereas (1.15) could be viewed instead as a constraint on the space of backgrounds
which this EFT can reliably describe. Secondly, it is quadratic in b; relative to c1, whereas the inclusion of quartic interactions in
(1.15) would produce a linear bound on the combination b + ¢1 /(GM A)z. So in some respects, (1.15) is closer to the upper bound
on |b;|? alone which was obtained in [40] by including an IR cut-off mg or in [52] by imposing unitarity for a finite 7. of heavy
states.

The main conclusion is that this new “QNM causality” condition—that EFT corrections do not lead to resolvable increase in the
decay time of black hole perturbations—Ieads to constraints on the GREFT coefficients which closely parallel existing causality
constraints. This imposes causality in a qualitatively distinct regime, near to the horizon of a black hole, and in future it will be
interesting to explore its consequences for other EFT interactions (e.g. including matter fields) and black hole backgrounds (e.g.
spinning black holes).

Finally, Table 1 records the first nine fundamental QNM frequencies of the simplest GREFT black hole (the first three of which
agree with the previous results of [16, 19]). Equations (C.6—C.9) provide analytic approximations for these frequencies which
become exact in the limit of large angular momentum ¢. Independently of any causality constraint, this QNM data for any £ and
overtone number n will be useful for constructing ringdown templates in future gravitational wave analyses.

2 The General Relativity Effective Field Theory

This section briefly reviews the GREFT action (1.1) and properties of its black hole solutions.

Power counting. Any low-energy EFT is defined by three considerations: (i) the light degrees of freedom it should describe,
(ii) any symmetries or other constraints which limit the allowed interactions, and (iii) a power counting scheme which can be used
to estimate the size of each interaction. In the case of gravity, (i) is the spacetime metric g, (plus any matter fields) and (ii) is
diffeomorphism invariance (plus any matter symmetries). Choosing which power counting scheme to use is less straightforward,
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Table 1 The fundamental quasi-normal mode frequencies wq, for a Schwarszchild black hole in General Relativity for different angular momenta ¢, together
with the relative shifts (3.42) for parity even/odd modes induced by the three leading GREFT interactions

¢
2 3 4 5 6 7 8 9 o0
Re [w(?}‘] +0.7473 +1.199 +1.618 +2.025 +2.424 +2.820 +3.212 +3.604 +% e+
Im[wggR] —0.1779  —0.1854 —0.1883 —0.1897 —0.1905 —0.1910 —0.1913  —0.1916 fﬁ ~ —0.1925
by Ry, +0.6585  +0.5715 +0.5483 +0.5383 +0.5330 +0.5299 +0.5279 +0.5265 +350 ~ +0.52
8Zy, +1.485 +1.446 +1.428 +1.421 +1.417 +1.415 +1.413 +1.413 +% ~ +1.41
SRy, —03854  —0.4421 —0.4519 —0.4562 —0.4588 —0.4605 —0.4617 —0.4626 —% ~ —0.47
8Zg, —1.816 —1.619 —1.568 —1.553 —1.549 —1.548 —1.548 —1.548 -L% ~-155
e SRy, 02124 +001045  +0.04949  +0.05618  +0.05587  +0.05414  +0.05234  +0.05078  +7oeg3 A +0.042
8Zy, +0.6476 +0.4344 +0.1939 +0.03069 —0.07512  —0.1453 —0.1935 —0.2278 —% ~ —0.37
SRy,  —0.4425  —1.069 —1.761 —2.619 —3.657 —4.874 —6.270 —7.845 - %5(6 +1)
8Zg, +2.745 +6.415 +11.43 +17.50 +24.67 +32.95 +42.38 +52.96 +3R00(e +1)
2 Ry —2.130 —4.229 —6.986 —10.46 —14.65 —19.55 —25.16 —31.47 7%6(61)
8Zy, +15.84 +30.47 +49.54 +73.14 +101.4 +134.198 +171.7 +213.9 +%€<€ +1)

however a scheme must be chosen in order to reliably determine which contributions to keep in any given observable (and to ensure
radiative stability against quantum corrections). In fact, [53] recently stressed the importance of power counting in gravitational
EFTs in the context of causality bounds.

This work will adopt the following power counting:

SGREFTguv. ] = f d*x /=g {M%Azagmv[%, %] + A“ﬁmm[% %, %] } 2.1
where R is the Riemann tensor of g,,,, ¢ denotes all of the dynamical matter fields and A < M p is related to the mass of the heavy
fields which have been integrated out. This is clearly radiatively stable, and has the feature that matter loops give a small correction
to the gravitational sector (so in that sense it is weakly coupled).

The gravitational sector contains the Einstein-Hilbert term, plus corrections built from increasing numbers of Riemann tensors
and their derivatives,®

R Ly[R]
Egrav = A2 + HZZ A2n 2.2)

A complete minimal basis for the £,, has been constructed in [55, 56] using Hilbert series methods. The goal is ultimately to construct
a set of interactions which:

(1) respects the symmetries of GR, i.e. diffeomorphism invariance, so are built only from the Riemann tensor and its covariant
contractions with g, .
(i) affects local observables,’ i.e. does not contain total derivatives,
(iii) does not contain any redundancies, i.e. a minimal set of operators which cannot be reduced to anything simpler by field
redefinitions.

These conditions lead to (1.1) as the most general parity-preserving theory with up to eight derivatives. Notice that, unlike the
SMEFT, the operators have been grouped according to the number of derivatives they contain rather than their total mass dimension.
For example, R contains 6 derivatives but leads to interactions on a Ricci-flat background which start at mass dimension 9 (of the
form (3%h)? for metric perturbations ,,,,).

Expansion parameter. The size of the EFT corrections to any observable can be estimated by simple power counting arguments.
In GR, the Einstein-Hilbert action \/—gR ~ hd? h provides the kinetic term for metric perturbations 4 and the coupling to matter

6 The cosmological constant has been set to zero so that the background spacetime is asymptotically flat. Notice that while the natural value ~ M [23 A2 from
(2.1) is typically much larger than the observed dark energy density in our Universe (the infamous cosmological constant problem), since it is not renormalised
in this low-energy EFT there is no obstacle to simply fixing its value to be zero (or to its observed value, providing the black holes are of a sufficiently small
size and separation that the resulting cosmological expansion can be neglected). See e.g. [54] for a modern account of this non-renormalization.

7 While local observables may not exist in a fully quantum theory of gravity, in the low-energy EFT regime considered here QFT is a good description and
local operators certainly exist.
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sources & ~ G M /r around any mass M. Since the first-order correction from the cubic interaction must contain a factor of b1 /A%,

the only dimensionless combination which can appear is the ratio by /(GM A)*. The quartic interactions will similarly produce

corrections proportional to ¢ /(GM A)® and ¢;/(GM A)®. The expansion parameter,
1 8n M 12,,

GMA MA

will therefore control the EFT corrections around an object of mass M, and the expectation is that each observable O in the GREFT
will admit an expansion of the form,

(2.3)

Es

OGrReFT = Ocr(1 + /830 + 58,0 + ...) (2.4)

where §30 and 840 are the relative contributions from the cubic and quartic interactions to O.
Black hole background. To see this in action, consider the most general spherically symmetric solution for the background
metric, which takes the form,

Zuvdxtdx" = — fi(r)dt* + %dﬁ + fo(rridQ?, (2.5)

where dQ2*> = d6? + sin? 0d¢? is the angular element in 3 spatial dimensions. Coordinates can be chosen so that fo = 1. The
remaining functions f, and f; are most easily found by substituting (2.5) into the GREFT action and then solving the equations of
motion,

8 SGREFT[& 0] S ) 5 i
o — — (S vl) = — S W) = 0 26
8guv(x) = (Sft( GREFT[8&1 ]) 5ft( GREFT[&x ]) (2.6)

perturbatively in 1/A. This gives [16, 19],

7 9 10
r S5r 2r 11r
fi=1-2= +bls? + ; +clsf +—9“ — 71“0 + .,
r r r 8r

54r8 497 9r)  67rl0
f,:l—ri+bla?(+ s _ r5>+clsf(+ s 200 )+ 2.7
r

ro r’ rd 8rlo

where ry = 2G M is the usual Schwarschild radius. In GR, M is the mass of the black hole and ry defines the horizon of this black
hole solution. In the GREFT, the O(g;) corrections to the background metric result in the horizon moving to » = 7y, where

5
Py :rs(l — 5byed — §c1€S+...>, (2.8)

is the radial coordinate at which f; and f, both vanish. The +... indicate higher-order corrections in both the couplings (e.g. (’)(b%))
and in the parameter ¢;. Note that the ¢, interaction has no affect on the background solution at this order.

Perturbations. Small perturbations about this background solution, g,,, = g, + hyy, are described by the linearised equation
of motion,

828 g
/ d*x' —GREFT[g“”/] hap(x') = 0. (2.9)
Sg/w(x)agaﬂ(x )
In GR, this equation can be brought into the form
82
(a—z +w’ — f(r)vf(r)>\1/gt(w,r) =0 (2.10)
r*

where W} and W, are the dynamical parity-even and parity-odd perturbations inside /,, (the other components of which are then
fixed by gauge conditions), f(r) = 1 — r;/r and the tortoise coordinate r, = r + r; log(i — 1) obeys 0y, = foy.

The master equations (2.10) are known as the Regge-Wheeler [57] and Zerilli [58] equations. They are wave equations which
describe the propagation of small perturbations with energy @ and angular momentum £. The GR potentials are,

B 2e+1) 3
VZ (r) = r2 - }’73 )
Z 20r—=3ry) r(18rs—12r) 18r2(r —ry)
+ _ s
Vi) = Pl 3 + 773 S— (2.1D

where Z = (£(£ + 1) — 2)r + 3r,. The effective potential f Vf appearing in the master equation is shown in Fig. 3 and acts as a
potential barrier between between spatial infinity and the region close to the black hole horizon. At large ¢, both effective potentials
coincide and reach a maximum value of 4¢(¢ + 1)/27 at r &~ 3/2 (the height and location of the barrier).
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/=2, odd
— == /=12, odd
/=2, even

----- /=12, even

rirs

Fig. 3 The effective potentials in GR, where gray lines show a maximum value of 4/27 at r = 3r/2

In the GREFT, (2.9) can be brought into a similar form by carefully identifying the dynamical \IJZ'E (w, r) combinations of the £,
components (which will generally differ from the GR Regge-Wheeler and Zerilli variables by O(g;) corrections). It is convenient
to introduce a tortoise coordinate adapted to the GREFT metric (2.5), namely an r,(r) defined by,

dry 1

- = . 2.12
ar ~ VIl @12)
8

This “metric” tortoise co-ordinate is useful because the master equation can be written as®,

82 2
[ - i fO(VEE) +8VE (o, r))]wzt(w,m =0 2.13)

— + [
arz  c(r)

where ¢2(r) is the physical sound speed of the metric fluctuations relative to matter.” This master equation was recently calculated
in [16] for the quartic interactions and in [19] for the cubic interactions, where the sound speed was found to be:

9>
Ary=1-f +r—;b]e;‘+ 3

3 8
s cw?) +o (2.14)

where f = 1 — ry/r. As shown in [19], the location of the horizon and the sound speed there is the same for all perturbations.'?

The potentials § Vf (w, r) are somewhat lengthy and are listed in Appendix A.
Note that the extension of the tortoise co-ordinate beyond GR is not unique. There is also the natural choice,

Fo=r+ fslog(; - 1) 2.15)

Iy

which is the usual GR co-ordinate adapted to the new horizon. This “horizon” tortoise co-ordinate is useful because the master
equation parallels that of GR with the simple replacement r; — 7. Explicitly,

R o+ o+ s
[ﬁ + % - f(r)<vZ (r)+6V; (a),r))i|\llz (@,7) =0 (2.16)
* s

where f (r) =1 —7s/r and the constant factor of ¢; = lim,_,7 / f; f;/f is included for later convenience!!. A tilde will be used
to denote that the EFT corrections to the horizon have been included in an object: for instance

- j 3r _ 3r 5

V=5 =2 v 2 (shet s Seret ) @17)
and similarly VZ' is defined by (2.11) with ry — 7. The master equations (2.16) and (2.13) are equivalent descriptions of the same

physics although some calculations will be easier in one of the two coordinates. The explicit relation between \i/(i and \IJKi is,

12
@;:\y;':(W;;f’) = WE(1+ 0N +e0840) 2, 2.18)

8 While the higher-derivative interactions would naively produce higher-derivative terms in the equation of motion, these can always be traded for terms
which are higher-order in the EFT expansion [12, 16, 19, 44]. From this point of view, there is no issue with unitarity [59] or constructing black hole solutions
[60] in such EFT extensions of GR.

9 Since the corrections to the potential will generically depend on w, the split into 652 (r)and § V(Zi (r, ) is ambiguous: the condition that the potential contains
no w? term resolves this ambiguity.

10° Co-ordinates could therefore be chosen so that cg(7s) = 1 and 7y = 1. While this simplifies expressions within a given theory, it makes comparing
different theories difficult since generally 7, is a function of other model parameters beyond just the black hole mass (e.g. the EFT coefficients).

1 1n short, while w? (J—z — 1 ) could be absorbed into the potential, keeping it separate will ensure that the w? term in the potential is regular at the horizon.
Cs
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and the relation between their potentials is given in the Appendix A. Since the “metric” and “horizon” tortoise co-ordinates differ
only by O(gy) corrections, both (2.13) and (2.16) correctly reduce to the GR equations when &5 — 0.
(2.13) (or (2.16)) describes the classical evolution of small perturbations about a GREFT black hole. The remainder of this

2 _
work will focus on analysing this equation in different settings. Notice that, from a QFT perspective, the object %
7 v

appearing in (2.9) is the inverse propagator for the metric on this black hole background (2.5). Since the consequences of causality
are relatively well understood for the propagator (e.g. the +i¢ prescription and resulting analytic structure in the complex w plane),
one should expect causality to place analogous constraints on the classical problem (2.13). Section 3.1 below recounts the classical
connection between causality and no resolvable time advance, and then section 3.2 will return to this connection with analyticity of
the propagator.

Regime of validity. As can be seen from the expression (2.8) for 7y, the condition & < 1 is needed for the EFT to reliably
capture the black hole horizon. This is simply the requirement that rg > % so that at any r 2 ry the derivative expansion in spatial
derivatives (powers of d; /A) is under control. But there is also a derivative expansion in time derivatives (power of d,/A), which
means that the EFT will break down if e is too large. The naive condition @ < A implies that the EFT is valid in the range,'?

2
gy K — (weak condition) . (2.19)
wrg
However, it was recently argued in [45, 46] that this EFT enjoys a much larger regime of validity if one focusses on linear perturbations
in the purely gravitational sector. In that case, any V,, = (9;, 9;) will either act on the background and produce (O, %f‘), or it will act
on the fluctuations and produce the null momentum (a) a)f)) It is the Lorentz-invariant contraction of these two 4-vectors which

must be less than A2 for validity, which implies the EFT is valid in the range'?,

2 2r 2 .
gy K - X — (strong condition) . (2.20)

s wrg

Since \/%r‘ > wirs, this condition for validity is “stronger” in the sense that all observables which are under perturbative control in
the range (2.20) are automatically under control in the range (2.19), but not vice versa (for instance scattering involving multiple
fluctuations is typically only perturbative in the range (2.19) but not (2.20)).

Redundant potentials. Finally, note that the potentials themselves are not physical observables. For instance, take one of the

redundant cubic operators,

b
3D SRR, 2.21)
16
This affects the master equation in two ways. Firstly, it shifts the background by [19]:
by 6 9 byet [ 36 33 3 3.,
(Sf[ = 72 _x76 + x77 N 8fr = ) +x76 — x77 y 5}’5 = —§b385 Is . (2.22)

It also shifts the potentials by,

SV 5 bied [ 36r? e(“l)zlrﬁ
¢ ;’S2 rd 2r8 |’

Vi o

(2.23)

b3e;‘[ 21zr8 . r8(135r; — 42r) . 9r)(16r — 27ry) . rl0(351r; — 297r) . 162r!(r — rs)]

rs2 2r9 2r9 r°Z r972 r9z3

However, this redundant interaction can be converted into a universal tidal interaction, which does not affect the potential in the
master equation for metric fluctuations at this order. Consequently, (2.23) must be a trivial addition to the potential which exactly
compensates (2.22) and does not affect any physical observable derived from the master equations. This fact can be used as a
useful consistency check of the results below: the quasi-normal modes and time delays associated with (2.21) indeed vanish to the

precision of the numerical methods used. A more detailed discussion of the redundancies in the black hole potential is given in

9 8
[61]—in particular, “null constraints” like <3f;S — L+ l)% :—Sg) ~ 0 can be used to improve the numerical accuracy with which

quasi-normal modes are determined.

3 Theoretical constraints

When small perturbations propagate on a black hole background, the black hole presents an effective potential barrier (2.13). Waves
can scatter and get reflected from this barrier, which introduces a time delay in their transit relative to Minkowski spacetime with no

12 The factors of 2 in (2.19) and (2.20) are an unfortunate consequence of defining &g = 1/(GM A) rather than 1/(rs A), but are retained to facilitate
comparison with [47] in which the maximum considered energy saturates (2.20).

13 Focussing on processes for which p - f is suppressed can lead to an even wider range of validity. The maximum g4 for which the EFT captures GWs from
a quasi-circular orbit is given in (4.1).
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black hole. In GR, this is the familiar Shapiro time delay. Waves can also “tunnel” through this barrier: a phenomenon captured by
the bound state energies of the potential. These are the so-called “quasi-normal modes” (QNM) of the black hole: the characteristic
frequencies which determine the gravitational waveform emitted by a post-merger ringdown. In GR, the QNM are well understood
and have been computed numerically up to 10 decimal places. Since the GREFT interactions modify the effective potential, they
change both the time delay experienced by reflected waves and also the quasi-normal mode frequencies of tunnelling waves. In
this section, causality will be used to place restrictions on the change in both of these observables, and hence constrain the GREFT
coefficients which appear in the effective potential.

3.1 IR causality

The goal of this subsection is to define the time delay experienced by a gravitational wave scattering from the black hole at large
impact parameter, and hence use causality (positivity of this time delay) to place constraints on the GREFT coefficients b1, ¢ and
).

Time delay. Consider a gravitational wave (GW) incident from spatial infinity with fixed parity P, angular momentum £ and an
energy @ < max[/f; f+(V,” +8V/})c?] so that the region near the black hole horizon is classically forbidden by the potential

. . 2 . . . .
barrier. In terms of the total effective energy WZP = ‘;’—2 -V fifr (VZP +4 VZP ), the classical point of closest approach r; is determined
by the condition WZP (w, ) = 0 (where the kinetic and potential energies exactly balance, since this is the turning point of the
classical trajectory).'* At r < ry, the energy WZP is negative and demanding that the fluctuation decays exponentially in this region

gives the WKB solution,

WP (,r) o ﬁexp(— / dr,/—wg’) r <) G.1)
m— ,

This can be extended to the classically allowed region using the WKB connection formula. On the other hand, far from the black
hole we conventionally parameterise the fluctuation as a superposition of the original incident wave and a phase-shifted reflected
wave,

\Ilf(w,r) - (e+iwr+2iaf(w) _ e*iwr+i7r[) r>>r) (3.2)
which is an exact solution to the spherically symmetric Schrodinger problem on Minkowski. The phase shift § ; (w) can then be

determined from WZP by matching onto the WKB solution.
Crucially, this phase shift determines the so-called “Eisenbud-Wigner time delay” experienced by the GW, !’

38f (@
tf () = PRGN (3.3)
ow
If TZP is the total time taken for the GW to travel from spatial coordinate z = —oo to z = +00, then this tf represents the difference

between T[P on the black hole spacetime (2.5) and TeP on Minkowski spacetime.

IR causality. It would be tempting to interpret causality as the condition teP > 0, namely that the black hole has led to a time
delay and not a time advance. This temptation stems from imagining that two observers at spatial infinity, communicating by sending
light-like signals, might use such a time advance to send messages apparently backwards in time. However, as explained in [45],
the implications of causality for tZP are more subtle in two respects.

The first subtlety is that the usual Shapiro time delay of GR gives a large positive contribution to tf and no EFT correction
could compete with this without the perturbation expansion breaking down (i.e. flipping the sign of t{ would require the first EFT
corrections to be larger than the GR Shapiro, so they are no longer small corrections which can be treated perturbatively). Since the
EFT corrections are there to encode the effects of heavy degrees of freedom, a more refined statement of causality would be that
these heavy degrees of freedom contribute positively to the time delay. Formally, this amounts to splitting the time delay into GR
and EFT parts:

P P P P _ 4 P, 65 P
(£ =1 ]GRHW where 810 = edsytl + 0641l + .. (3.4)

and considering the EFT corrections separately. This is subtle because while one could measure teP = TZP |GREFT BH—TKP | Minkowski
by sending signals far from / near to the black hole, there is no way to ever measure the correction (Stf = f |GREFT BH—TKP |GR BH
since there is no GR BH in a Universe described by the GREFT (in which unperturbed Schwarschild is not a stable solution to the
classical equations of motion). The requirement that the EFT corrections contribute positively to the time advance ultimately stems

from dispersion relations and monotonicity arguments applied to sound speeds: the idea is that [téD ] G Tepresents a UV value of the

14 Note that ry therefore depends on £, P and w, but this dependence is kept implicit to avoid cluttered notation.

15 Note that (3.3) defines the time delay experienced by a wave with fixed angular momentum. Taking d,, at fixed b instead produces the time delay at fixed
impact parameter. Both are used in the literature, and usually differ only by an overall numerical factor.
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time delay (in which all of the heavy particles have been integrated back in so there are no curvature corrections), and so the time
delay in the IR must be larger if the heavy physics is causal.

The second subtlety is that the EFT has a finite regime of validity, and therefore a sufficiently small time advance may not imply
a resolvable acausality within the EFT.'® To be resolvable in an EFT context would usually mean a time interval 3> 1/A, where
A is approximately the EFT cut-off. However, in order for a time advance to be “resolvable” at a level where it would threaten
causality, the time advance must exceed 1/w (the quantum uncertainty associated with a wavepacket of energy w). Taken together,
the requirement that the heavy physics contribution does not lead to a resolvable time advance can be written as:

~wdtf 21 (IR causality) . (3.5)

This concept was recently introduced and explored in [44-48], where it was referred to as “IR causality”. Unlike the positivity
bounds from UV causality, it is not a numerically precise bound since the O(1) constant depends on the details of the scattering
process (which determine the uncertainty that must be overcome in order to have a resolvable time advance).

Computing the time delay. In the WKB approximation described above, [45] recently derived a compact expression for the shift

in the time delay induced by the EFT interactions,'”
00 F) AP
PN _ P ns
Sty (w) = Z/r,GR dr A, 8r<8,Af> 3.7
where the integrand is constructed from,
P w
Ap(o,r) = —————
fy o = ngP
$u AL (0,r) = A} oW Lo s wh s (3.8)
w,r) = —_— — — — - .
e Yo - fvP) 2080 "t "

and f =1— ’75, 8, N is given in (2.18) and (SWKP is given by,
Wl =fvi+ew/ . (3.9)

This can be evaluated numerically to find the time delay for a fixed w, ¢ and parity. Note that the turning point 7°R in (3.7) is defined
by the GR condition,

o — feV e =0, (3.10)
A useful parameterisation of the w is therefore,

o =y max(F(OV ) | (3.11)

where y determines the turning point r,GR and 0 < y < 1is the range of @ over which there is a classically forbidden interior region

and the above WKB method can be applied. At large £, the turning point is (rtGR)2 ~ UL+ 1)/0? ~ EZyr2 +O(y?), and so holding
y fixed amounts to holding r; fixed.'®

As an aside, note that when deriving the WKB solution (3.7), the waves absorbed by the black hole have been neglected. This is
a good approximation provided that the classical turning point r, is much greater than the position of the potential barrier (* 3r; /2
at large £). Since y is related to the turning point by,

27r2(rER —ry) 1
y = 505 ) (3.12)
4(r%)

the limit ¥y — 1 corresponds to r, — 3r;/2 and these absorbed waves become important. Following [47], the fiducial value of
y = 0.9 was used in Figs. 4 and 5. It is worth remarking that this fixes r, =~ 1.87r; in the large £ regime which dominates the
causality bound, and so even if (3.5) could be made numerically precise there would remain an O(1) theoretical uncertainty from
the neglected absorbed waves.

16 This is actually already the case in quantum mechanics, for instance scattering a wave of speed v from a hard sphere of radius a leads to a small time
advance, but Wigner argued that causality in this case should correspond to a time delay > —2a/v [62, 63], namely that it is larger than the quantum
uncertainty associated with the sphere position / wave speed.

17 The WKB approximation for the full 7, is,
o il
tf () = 2/ dr*(— (,/W[(r, w)) - 1) — 2rpy (3.6)
Ttx dw

where r;5 is the tortoise coordinate associated with r;. This can be carefully perturbed around GR to produce (3.7).

18 At least in the large ¢ regime: at fixed y the turning point rtGR will depend on £ for small values of £.
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Fig. 4 IR causality constraints on the cubic GREFT interaction b RO, Left. When b; > 0 (< 0), the time advance for parity-odd (even) modes with energy
y = 0.9 and angular momentum ¢ becomes resolvable when |b1 |£§ exceeds the solid (dashed) black line. At these large values of £ the even and odd results
overlap. The red line shows the regime of perturbative validity implied by the strong condition (3.15) with b; ag) ~ 1. The £ = 3881 mode gives the largest
time advance while remaining perturbative, and leads to the IR causality bound |by \e? <28 x 1073, The blue line shows the weak condition (3.16) for

comparison (which leads to |b; ‘8? <5x 1073). Right. Repeating this procedure for different y gives the maximum values for |bg |s? shown by red points,

which agree well with the analytic result (3.24) shown by a black line
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Fig. 5 IR causality constraints on the quartic GREFT interaction c1 (R @2, Left. When ¢1 > 0, the time advance for parity-odd modes with energy y = 0.9
and angular momentum ¢ becomes resolvable when cls? exceeds the black points. Red points show the regime of perturbative validity implied by the
strong condition (3.15) with ¢ 52) ~ 1. The £ = 49 mode gives the largest time advance while remaining perturbative, and leads to the IR causality bound
c1 8? < 0.07. The blue points show the weak condition (3.16) for comparison (which leads to ¢ 8? < 0.14). Right. Repeating this procedure for different y
gives the maximum values for cla? shown by red points. At large y it agrees well with the analytic result (3.18), shown by black line. The disagreement

at low y is due to the £ dependence of 1/(wéat, ): for y < 0.9, the largest time advance occurs for £ ~ 3 rather than large £ and this leads to a stronger
constraint than (3.18) for those values of y

c] time advance. For instance, consider the effect of a single GREFT interaction cl(R(z) )2 (i.e. set by = ¢» = 0 and neglect
higher-derivative terms). The time delay (Stei is proportional to —c; for odd modes and +c; for even modes. This interaction will
therefore lead to a time advance if &; is too large,

~1

W ifc; >0
lc1 |6f > w_“f‘f . = resolvable time advance . (3.13)
ifc; <0

bat]
IR causality (forbidding such a resolvable time advance) can therefore impose an upper bound on &;. This should be viewed as
the range of spacetime backgrounds which this EFT can describe perturbatively. Just as a violation of perturbative unitarity signals
that higher-order EFT corrections must become important, the violation of perturbative causality is diagnosing the range of & over
which the higher-order corrections may remain small (assuming causality).
Expanding the integral (3.7) at large £ produces the result

1 K.
_ = Cl(y) +O<i>
w4t (w) —cid 2

! Ka®) +0< : ) (3.14)

wdat} (@) +c103 Iz

where K ﬁ(y) are positive functions of y given in Appendix B. Figure 5 shows the —1/(wé4t, ()) upper bound obtained by
numerically integrating (3.7) for different £ at a fixed y = 0.9, and it indeed scales as ~ 1/ at large £. This scaling spells trouble
for the ¢c; GREFT coefficient: regardless of its sign, scattering waves from a GREFT black hole will always produce a resolvable
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time advance for sufficiently large £. This would seem to imply that ¢; = 0 is the only value allowed by causality, or at least that ¢
cannot be the dominant interaction (i.e. other EFT interactions could correct the acausality induced by a small ¢;). However, such
a conclusion would be premature, since there is a finite range of £ under which the GREFT is under perturbative control. A finite
c1 would be consistent with causality as long as the time advance is only resolvable for £ > £,,x modes, where £,x is the largest
angular momentum that can be reliably described by this perturbative calculation.

Regime of validity. The question becomes: what is £nax? As discussed above, on this GREFT background the parameter &
is also bounded by the condition that the derivative expansion is under control (this is closer in spirit to a unitarity bound). In
order to apply the GREFT to the scattering of GWs with turning point r;, it is enough for this EFT to be valid on scales r 2> r;
which are classically accessible.!® From the strong condition (2.20) on the allowed range of w, suppose that the EFT is valid up to
(Wrg)max = swﬁl?ﬁes’z, where ¢, < 1 is a small parameter that controls the size of higher time-derivative corrections. In that case,
the GREFT is onAly perturbative providing that

R

&2 < M — ‘2’(4+ oY) +o 1 (strong perturbativity) (3.15)
s wrl ¢ v 02 &P v .

where ¢, is the small parameter that controls higher derivative corrections. For comparison, if the weak condition (2.19) is used to
instead infer an (wrg)max = 2€4'/€s, then the GREFT would only be perturbative for

482,, 83}, 27 1 K .. 16
&y < (@r,)? = ? + O(ﬁ) (weak perturbativity) . (3.16)
In either case, the crucial observation is that for a given EFT and spacetime background (i.e. fixed &; and ¢,,), waves of arbitrarily
high ¢ at fixed r; (equivalently fixed y) are not under perturbative control. Using (3.13) to derive an upper bound on &; is therefore
too strong, since it does not account for the finite £;,,x implied by (3.15) or (3.16).

c1 even modes. More precisely, when ¢; < 0 we see that the causality cut-off from parity-even modes (3.14) and the strong
condition (3.15) both scale ~ 1/£3, and therefore this interaction will lead to a problematic time advance within the EFT’s regime
of validity whenever K*(y) < |cl|(4swr,GR/\/W)3 at large ¢. Since K*(0.9) ~ 1.5, this means that a negative c| is only
consistent with causality if the higher-derivative corrections come in at a lower scale than expected: namely if the maximum w is
setby |c1lel ~ 1.8 x 107* rather than the expected &,, & 1. Alternatively, if the unitarity cut-off is set by the parameterically lower
weak condition (3.16), then there is no causality issue at large £.

Demanding that the causality cut-off does not lower the strong derivative condition from unitarity, i.e. setting &, = 1 in (3.15),
leads to the conclusion that ¢; must be positive if it is the dominant interaction. This coincides with the positivity bound from UV
causality of the 4-point graviton amplitude.

c1 odd modes. Taking ¢; > 0 and comparing (3.13) with (3.15), there is a problematic time advance within the EFT’s regime of
validity whenever,

3

4rGR K. ()
> b > 3.17
(o) 2tz e

at large £ (where now c& is taken to be O(1)). Since w? ~ 2%)/62, forbidding this acausality requires that°,

_ 32
1\ (rk;
c18?<7(y—> roka ) (3.18)
T 18v2\ 3 7

Aty = 0.9, this gives C18s6 < 0.07 as the range of backgrounds which this EFT can describe without problematic acausality?!.
Figure 5 shows a numerical determination of the maximum clsg allowed by IR causality (taking into account the perturbativity
bound (3.15)), which agrees well with the result (3.18) for y 2 0.8. For y < 0.8, the largest resolvable time advance actually occurs
at ¢ = 3 and gives a stronger bound than (3.18) at those values of y. The strongest bound overall would come from pushing y — 1,
where K (y) — 0 since the time advance diverges. This would require ¢ g? — 0 to be consistent with causality (however note that
the absorbed waves become important in this limit and invalidate the WKB expression (3.7) used to derive (3.18)).2? Interestingly,
this is the same conclusion that would follow from UV causality if the IR cut-off is pushed unreliably close to the EFT cut-off.

19 Even if there are large corrections in the rg < r < ry region close to the horizon, these affect the classically forbidden region and do not alter the WKB
behaviour (3.1) near r; or the expression (3.7) for the classical time delay.

3
20 Note that (3.18) follows from the range (3.17) vanishing at 2= 648ﬁ(rtGR/ﬁ> /K¢, (y), which must be >> 22 in order to trust this large £ limit.
For y = 0.9 this is 02 ~ 492 and the bound (3.18) is indeed a good fit to the numerical result (see Fig. 5).
21 Note that [47] approximates rtGR ~ L+ %)/w A 2.74 at this value of y = 0.9, which leads to clag < 0.04 from (3.18). The difference is unimportant
since the cut-off is not numerically precise, given the uncertainty in (i) choosing &, (ii) the resolvability condition (3.5) and (iii) neglecting the absorbed
waves in the WKB solution.

22 Furthermore, any finite upper bound on ¢{ s? would similarly imply that ¢ has to vanish if black hole of arbitrary small mass are considered [47].
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¢ odd modes. Now consider turning on the c¢; interaction. This affects only the odd parity modes, and gives a contribution to the
time advance which is proportional to +c; and grows with £2 at large £. As with the c; contribution to the even modes, forbidding a
resolvable time advance leads to a causality cut-off of the form,

-1 K, (¥) ( 1 )
6 > _ 2 - .
cle — = +0 ifcy <0. 3.19
lealey 2 ety B 7 2 (3.19)
Given the EFT regime of validity (3.15), when ¢y < 0O there would be a problematic time advance whenever K, C_z(y) < |ea|
(4swr,GR/«/4y/27)3. Since K (0.9) ~ 0.36, this means that a negative c3 is only consistent with causality if the maximum o is set

by |c2 |52) ~ 4.2 x 107, Demanding instead that the EFT remains reliable up to |c; |82, of order unity, then IR causality implies that
¢z > 0. This is again in line with the UV causality bounds on the 4-point scattering amplitude on Minkowski.

At sufficiently large £, the ¢, contribution dominates 67, and would cure any acausality induced by c;. However, at small £ the
c1,2 contributions are comparable. The smallest ¢ contribution is at £ = 2, where

w84t;_y = —13.581c1 +12.896¢; aty =0.9. (3.20)

If ¢ > 1.053¢; then the overall the time delay is positive and there is no causality violation for any value of ¢;. If ¢; is less than
this, then from the £ = 2 scattering of parity-odd fluctuations, IR causality is violated if,??

1
PR lity violated) . 3.21
& < 13.581c; — 12.896¢, (causality violated) 321)

Note that since the time advance from c¢; grows with £, as ¢, is made smaller and smaller it is successively higher £ modes which
provide the strongest constraint on 8? (and in the c; — O limit it is the largest £ compatible with perturbativity that sets the cut-off
(3.18)).

b; time advance. Finally, consider the cubic b; interaction. From a straightforward power counting in &, this should be the
dominant correction to (Stgt. However, for this interaction the time delay is proportional to +b; for even modes and —b; for odd
modes, and unlike the quartic interactions the scaling with £ is the same for both parities:

1 Ky (y) 1
= +o<7>. (3.22)
wdst, () +b1¢ 14
As aresult, there is a problematic time advance within the EFT regime of validity if,
4,CR 2 Ky, ) .
( r’z) 2 il 2 4 ot T =0 (323)
@rs A if by <0

again assuming that |b; |8620 is order unity. Since K b 0.9~ K b (0.9) ~ 0.11, IR causality imposes the two-sided bound,
b1l <2.8 %1075, (3.24)

This is consistent with the causality bounds of [49]. It is worth emphasising that (3.24) should be read as |b; |5§l < (9(10_5 ) since the
original resolvability condition (3.5) is not numerically precise, and may contain factors of 2, i, etc. Regardless of these factors, such
a tight bound would render this cubic interaction unimportant for the inspiral and ringdown phenomenology probed by gravitational
waves observatories (this will be discussed further in section 4 below).

However, note that while the bound (3.18) on 01836 does not vary much with different ¢, or between the strong and weak
perturbativity conditions, (3.24) would become |b; |8? < 0(10‘2) if the weaker perturbativity condition (3.16) were used. So the
cubic interactions in GREFT may still play a phenomenologically relevant role at low energies, since this EFT could in principle
preserve IR causality if the cut-off in w is much lower than the naive expectation (2.20).

As a final sanity check, note that the redundant potentials (2.23) give &3 tZ—L(a)) ~ 0 up to small numerical errors for the range of
y considered in the figures (and exactly zero in the large £ limit where the integral can be performed analytically).

3.2 QNM causality

The final causality condition to be considered in this work is from the quasi-normal mode spectrum.
Quasi-normal modes. Recall that the master equation (2.13) takes the form of the (time-independent) Schrodinger equation,
82

+ +q,t
ﬁ\p‘f =—W; ¥, (3.25)
*

23 Interestingly, c; = ¢ in superstring theory and there is such a finite upper bound on s? from the lowest £ modes.
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The “quasi-normal modes” of the black hole refer to solutions of the following eigenvalue problem: solve (3.25) subject to the
boundary condition,

‘-IJEIE ~ T gt p, > to0 . (3.26)

Physically, this condition corresponds to waves that are purely ingoing near the horizon (nothing is coming out of the black hole)
and purely outgoing far from the horizon (nothing is coming in from spatial infinity).

Solutions with these boundary conditions are only possible for a discrete set of allowed w. These are labelled in general by {n, ¢,
m}, namely the overtone number, the total angular momentum, and the angular momentum about one axis. Since both Schwarszchild
and the GREFT extension (2.5) are spherically symmetric, the allowed quasi-normal mode frequencies w; for this black hole will
be independent of m. The QNM frequencies are important phenomenologically because they describe how the black hole responds
to a transient perturbation: for instance immediately after a binary merger, the final black hole is formed in a perturbed state which
then relaxes back to (2.5) with \I»'zt ~ ef®nt! describing the characteristic gravitational wave emitted during the ringdown. See [64]
for a review.

In GR, the QNM frequencies coincide for odd and even perturbations.”* The GREFT higher-derivative interactions typically
break this coincidence and produce different allowed frequencies for the parity odd/even fluctuations, which can be written in the
form:

Wi = 0if +8w), where Sl = ei830), + 284w, + O(d) . (3.27)
QNM causality. In the absence of gravity, causality implies that any singularity of the linear response function must appear in the
lower-half of the complex plane. The argument is well-known, and follows from the fact that the classical response function G(r)
(which describes how a degree of freedom O(t) will respond to a source, namely O(t) = f dt’'G(t — t')J (1)), must obey

Causal boundary conditions = Gt)=0 forr<0. (3.28)

Physically, this condition corresponds to the requirement that if a source is turned on at time fy, it can only affect the system at times

t > to. The response function in the frequency domain??,

o
G(w) = / dt G(t)e'" (3.29)
—00
is therefore analytic in the upper-half of the complex w plane, since if this integral converges on the real w axis then it must also
converge for any Imw > 0 because in that region the integrand is strictly smaller (i.e. [¢/“'|< 1 for ¢ > 0). The limited support
of G(¢) in the time domain (i.e. that a source can only affect its future) corresponds to analyticity (i.e. no singular points) in the
upper-half of the complex w-plane.
The response function for fluctuations on this black hole background would be defined by solving

d2
<— + Wf(a), r))G(a),r) o 8(r) (3.30)
dr2

*
subject to appropriate boundary conditions. Since the quasi-normal mode frequencies a);l—LZ correspond to zeroes of the differential
operator on the left-hand-side, they can be viewed as poles of G(w, r). It is therefore tempting to conclude that causality might
impose some constraint on the location of these poles in the complex plane. For instance, Im a)niZ < 0 would be the straightforward
analogue of the non-gravitational analyticity of a causal response function. However, much like the time advance of the previous
subsection, this is subtle for a number of reasons:

(i) The GR contribution to each QNM frequency already obeys Im w,; < 0, and no small EFT correction will ever change this
sign (i.e. a sufficiently large EFT correction would invalidate perturbation theory, at least naively). This is the analogue of
EFT corrections to the Shapiro time delay in tei. Learning from that example, a more refined statement would be that the EFT
contribution alone, Swniz in (3.27), must shift the QNM frequencies deeper into the lower-half of the complex plane (since in
the absence of gravity this is the direction which would be consistent with causality). Since Swfltz is not directly measurable,
this condition is again to be viewed in the same spirit as the monotonicity theorems / dispersion relations: as one integrates
out heavy physics and replaces them with GREFT coefficients, this process should shift the QNMs in a particular direction if
this heavy physics is causal.

(ii) Since the EFT has a finite resolving power, a sufficiently small change in the QNM frequency should not present any pathology.
The most basic requirement for the EFT to “resolve” a frequency change would be that §w <« 1/A. However, again learning
from the earlier time advance discussion, this is likely not sufficient to present a problem for causality (essentially due to the

24 Despite the differences between the potentials (2.11), this isospectrality can be understood by noticing that they follow from the same superpotential [64].
This can be made manifest by treating odd/even perturbations in a unified manner [65].

25 Note that opposite conventions for the sign of w in the Fourier transform would lead to the opposite conclusion of analyticity for Imw < 0. When
discussing QNM frequencies below, a particular sign convention has been chosen for w,,¢ so that Im “’SZR < 0.
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quantum uncertainty associated with any measurement of this frequency). A more reliable condition would be to define the
characteristic lifetime of each QNM perturbation as,

+ 21
E — _Imwi( , (3.31)
n
so that the change in the lifetime induced by the EFT interactions,
27 27 27 Im 8300 Im 84007
st =— + = 4 nt | g6 nt L ol 3.32
¢ Im a)nie Im wSZR Im a)’?eR ( * Im a)S’ZR * Im wSZR ( S) ( )
is deemed resolvable if,
Re[wlzltf] X 57"11[ ~ 1. (333)

In this language, a QNM frequency shifting deeper into the lower-half of the complex plane corresponds to & Tnie < 0, ie.
shorter lifetimes for the QNMs. QNM causality is then the requirement that perturbations decay faster than in GR, namely that
the GREFT black hole is “more stable” than a Schwarszchild black hole in GR. The condition (3.33) then reflects the point at
which one could determine whether a wave of oscillatory frequency Re wfe has experienced a change in decay time of (Sr;;.

(iii) A further subtlety, which seems unique to the QNM problem, is that the boundary conditions (3.26) are not the standard
‘causal’ boundary condition (3.28) used in basic proofs of analyticity. This will be discussed further in section 5. While there
are some rough arguments for this proposal, and at least for the GREFT it coincides with existing constraints from UV and IR
causality, there is no rigorous proof. It would therefore be wise to interpret the following bounds as an interesting conjecture,
which may hopefully be proven (or disproven) in the near future.

Computing QNMs. There are now two separate motivations to carefully compute the QNM frequencies in the GREFT. Firstly, they
inform the ringdown portion of the inspiral-merger-ringdown templates that are required to accurately test GR using gravitational
wave measurements (see section 4). Secondly, they can be used to check when the “QNM causality” condition is violated and hence
place theoretical constraints on the GREFT coefficients.

There are a number of ways to compute the QNMs from a given W[‘L. Below, two complementary techniques are used:

(1) The recent parameterised approach of [17, 18], which is particularly well-suited to numerically determine the shift induced
by the EFT in low £ frequencies. This approach parameterises the potential in the “horizon” master equation (2.16) with the
following large r expansion,

k
SVE(w,r) = = Zau(a})< ) : (3.34)

skO

The shift in the QNM frequencies at leading order in § Vzi is then,?®

F Y“)ozz ~ ~GR GR
+ 3.35
z =75 Wy, Ze ak[(w ), ( )
where a) R is the QNM frequency of a black hole of size 7y in GR, Wthh obeys @S ( = ryw . In terms of the GR
Schwarszchlld radius 7, = 2G M and corresponding woe , the final result is>’
Cs >
Ty (Swa:e = <¥ — 1> Ty w(?zR + Ze cxkg(a) ) (3.36)
s k=0

Lists of the “basis” coefficients ex, have been computed and provided online [17].

(2) The popular WKB approach [66—71], which provides simple analytic approximations that become exact at large £. This approach

makes use of the potential and its derivatives evaluated at its maximum (i.e. the location of the potential barrier),”

F(0) = [fvi + favi] (3.37)

Tmax

26 Note that including the 5\2 rescaling of the frequency improves the convergence of this series approximation, since it effectively removes a term of the
form w? / f from 8V, % i , which would otherwise populate every ozkig coefficient.

27 Note that since és — 1 and wGR — wGR both ~ O(8V), such factors can be ignored in the sum since « is already O(V).

28 Specifically, rmax is defined so that Wﬁ, 1 = 0 (and thus depends on both £ and the parity).
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to construct an approximation to the QNM frequency. The zeroth (second) derivative determines Re wniZ (Im wjfz) exactly in
the large ¢ limit,

+
Re[aﬁ’@} Wi+, (3.38)

Cs

where j = €(£ + 1) and N = 2n + 1. The third and fourth (fifth and sixth) derivatives determine the subleading correction to
Re a)(j):Z (Im w(i )—details can be found in Appendix C. To extract the shift in the QNM frequencies due to the EFT interactions,

one can expand these functions of Wgtk to linear order in (SV;E (remembering to account for the fact that rp,x also depends on

) Vli), which gives an approximation of the form,
+

DL~ R+ Z Bt sWE @SR +o( (6vF)) (3.39)

where ,B,fz are constant coefficients fixed by the GR potential. At zeroth order in § V=, one finds the QNMs of a black hole of
size 75 in GR, which obey 7,@SR = r;wSR. The final WKB solution is then,

Cst
rydawpy =( e 1>rs Gy +Zﬂu Wi (i) . (3.40)

Comparing the two approaches in their region of overlap £ ~ 10 is a useful consistency check, and together they provide accurate
results for every w,, in the GREFT at this order in derivatives. While it is typically the low £ and n modes that matter most for
phenomenology?’, from the theoretical point of view there could be useful causality constraints coming from QNM:s of any # and
£. In fact, since the strongest IR causality constraints come from large ¢, one might naively expect the same to be true for QNM
causality. This expectation will be borne out by the c; potential for odd modes: while the shift in the fundamental QNM frequencies
for £ = 2, 3, 4 were computed numerically in [16] and are all consistent with causality, the computation below shows that once
£ > 6 the correction to the imaginary part of woe changes sign and the high £ modes can lead to a resolvable violation of causality
if cls? is too large.
GR QNMs. For later comparison, recall that the WKB approximation for the GR QNM frequencies at large ¢ is,

GR 2 ; 493 + 15N 1 1
Re[w,;] = - 732
3BV T T easvs i
—235N%) 1 1
Im[wr(z}ZR] — _L + wi + <72> (341
33 4665643 J J

were j = £(£ + 1) and N = 2n + 1. The frequencies at low £ have been determined numerically to high precision: the first few
significant figures are listed in Table 1. They agree well with the WKB approximation even at relatively low £. Note that at high
£, the QNM frequency a)S’KR satisfies (3.11) with y = 1. These QNM solutions are therefore probing the regime in which the time
delay calculation breaks down, and also the regime in which causality constraints are expected to be the strongest.

GREFT QNMs. In the GREFT, the QNM frequencies, wf; are shifted relative to GR by the EFT interactions. This relative shift
takes the form,

Re[w],] = Re[w), ](1+e45;72n@+565472ne+ )
Im[w?,] = Im[wSR](1 + &f8375, + 88417, +...) (3.42)

where e, = 1/(GM A) as before. Using the parameterised approach (3.36) with the potentials given in Appendix A produces the
numerical values given in Table 1. For £ = 2, 3, 4, these agree with the values previously found in [19]*°. Using the WKB approach
(3.40) gives the exact shift in the large £ limit (given in the final column of Table 1), as well as the first correction in 1/j (given in
(C.6—C.9)). Note that the subleading corrections for the c; odd potential are large for £ < 9 and are needed for good agreement. For
instance, 847, o = —0.2278¢; from the parameterised approach, while the WKB result for this £ and n gives,

1
84y =c1 (—0.3674 +0.1399 + O(W)) ~ 0.2275¢; (3.43)

and agrees with the numerics up to the stated error from subleading 1/;2 corrections.
Implications of IR causality. One of the main observations in this work is that the sign of the (SI;*;Z shifts in the imaginary part of
the QNM frequencies is closely correlated with the sign of the time advances computed in the previous subsection. Consequently,

29 The reason is simple: low ¢ modes are typically excited with largest initial amplitude and then have the slowest decay (i.e. |[Im w \ increases with n and
£).
1

4
30 Note that [19] uses an expansion parameter ;1 = (ﬂ) =274}, 50 their quoted values are a factor of 2 larger.
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imposing the constraints from IR causality (no resolvable time advance) leads to a constraint on the direction in which the QNMs
can be shifted.
For instance, the fastest growing contributions at large j (at this order in &) to the decay lifetimes of parity-odd and parity-even

black holes are3!:

5120
Re[wSKR]BTZ’ = —cq° j3/2 2 + (’)(\/;) ,

T
Re[wOR]67, = —4crel j3/2 % +o(Vj). (3.44)

The positivity bounds from UV causality, ¢; > 0 and ¢ > 0, immediately imply that both even and odd perturbations decay with a
shorter lifetime than in GR, i.e. that the QNM frequencies are shifted deeper into the lower-half of the complex plane. This is also
the result of applying the simplest IR causality bounds: in particular, it was also the large j limit of the time delay which dominated
the IR causality constraint.

While it only scales as j 0. the shift from the cubic b; interaction is leading order in &;. Focussing on this 8312': contribution, the
shift in the QNM lifetime is proportional to +b; for the odd modes and proportional to —b; for the even modes, with approximately
equal constants of proportionality:

1
Re[wSR]837;" ~ F20,/j bief + O(Tj> (3.45)

So regardless of the sign of b; one of these modes will increase the decay time of perturbations relative to GR and make the black
hole less stable. However, imposing the IR causality constraint |y |e® < 0(10’5) from (3.24) means that this change in the decay
lifetime is not resolvable (in the sense of (3.33)) until £ = 10*. Does such a large £ remain under perturbative control in the EFT?

Regime of validity. The perturbativity bound (2.20) on time derivatives in the EFT, when specialised to the QNM problem in
which r & r; and |w|~ Re[w}?lk], gives the upper bound,

&2 - 4e, _ 6+/3¢,
S N
Rl 7

1
+0O (ﬁ> (strong perturbativity) (3.46)
73/

In order to assess whether an apparent violation of QNM causality is really problematic for the EFT, one must check that it is
occurring for a value of &5 and j that satisfies (3.46). For instance, assuming that both &, and b; are order unity, in order for the
delay time (3.45) from the b interaction to be problematic, &, must lie in the rangeSz:

2
% S (3.47)
Y 207

Since this can only occur for b1 % 2> 2 x 1073, one can conclude that the IR causality bound |b1 |e?
QNM causality for this interaction.

Implications of QNM causality. While UV or IR causality constraints imply that (3.44) is compatible with QNM causality, one
could turn the question around and ask what is the range of {c{, ¢3} for which (3.44) satisfies the QNM causality condition? One
might expect additional information / constraining power to be contained in the QNM causality condition since it is probing the
effective potential in a different regime (namely r = ry).

Comparing (3.44) with the perturbativity condition (3.46) gives the result (1.11)*, namely ¢} > —1.2 x 107* and cp¢) >
—3.0 x 1073, Remarkably, these show close agreement with the time delay values from scattering waves close to the black hole (at
y = 0.9). While that time delay calculation was subject to potentially large corrections from the absorption of waves by the black
hole, the QNM calculation has no such corrections: it is exact at this order in & and at large £. In one sense, the QNM causality
condition can be used to place the IR causality condition on a firmer footing (it is at least corroborating evidence that corrections
to (3.7) remain small at y = 0.9). In another sense, the IR causality condition, which stems from well-understood semiclassical
physics, can be viewed as evidence for the QNM causality conjecture.

Finally, there is the question of whether the QNM causality condition is respected at finite values of £. Just as with the time delay,
it turns out that the shift from the ¢ interaction violates QNM causality in the parity-odd sector, which must either be compensated
by a sufficiently large c; interaction or else lead to an upper bound on £°. From the numerically determined fundamental QNM

< O(107) effectively guarantees

)33

31 Note that Re[wS[R]Bn tzc = 4nﬁ8n2(i + (’)(j_l) at large j, which will be used repeatedly below.
19,683 < et < 19,683
67,634, 17672 ~ 1% ~ 8 011, 13672

these should be interpreted as rough orders of magnitude as in (1.15).

33 Although the precise result obtained is ¢ eg) > 409;)/65071 and cpe2 > %, given the numerical ambiguity in (3.33) it again makes sense to report

w ~
rough order of magnitude estimates.

32 The exact result at large £ is — but since there is an O(1) numerical ambiguity in the resolvability condition (3.33)
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frequencies, this violation occurs for all £ > 6. When ¢3/c; > 1.1 x 1073 all of the QNM s respect the causality condition. For O
(10_4) Safa S 0(10_3), the tightest upper bound on &, comes from the £ = 9 mode, which gives

1
< (3.48)
2.862c; — 2688c;
As cp/c1 — 0, it is higher and higher £ modes which give the tightest bound. This eventually converges to a decay time
289287 ¢ 1
Re[oSRbar, =+————+0(~ ). 3.49
el Jos 19683 (,) (5:49)

when ¢y = 0, which would lead to a resolvable causality violation within the EFT regime of validity unless ¢ 18? <3 x 1073, This
is somewhat stronger than the IR causality bound, but only by a factor of a few.

4 Observational prospects

This section discusses the possibility of measuring the GREFT coefficients with gravitational wave detectors. It will focus on the
transient signals from binary mergers that are now routinely measured by the LIGO-Virgo-KAGRA network, and in particular the
recent results of [22, 23] which place observational constraints on the GREFT (1.1) with b1 = ¢; = 0 and ¢; = 1. These are
two-sided constraints which disfavour a particular range of A. The reason for a two-sided bound is the following. For large enough
A, the EFT correction to the waveform is suppressed and there is good agreement with the GR waveform. But as A is lowered,
the EFT corrections become larger and at some point become resolvable by GW observatories and hence excluded by the data. But
once A is sufficiently low, the cut-off where the EFT breaks down becomes comparable to the scales of the GW event and so there
is no longer any constraint because the EFT cannot be applied to this particular data: measurements at a different scale would be
required in order to constrain the theory in this regime. Since the causality bounds derived above place a further restriction on the
range of A and M for which the EFT is valid, they will change one side of this two-sided bound and impact the range of parameter
space which can be reliably probed using any given GW event.

Power counting. The size of the EFT corrections to the GWs emitted by a binary can be estimated by simple power counting
arguments. Recall that the Einstein-Hilbert action ,/—g R ~ hd”h provides the kinetic term for metric perturbations and the coupling
to matter sources i ~ G M /r. The relative correction to GR from the cubic and quartic EFT interactions can then be estimated as,

aV—gRY O™ 1 oM

J—3R noth (At 0
pVERY @t 1 Gmy? @
J—gR hdZh (Ar)O\ r '

where here R" denotes any contraction of n Riemann tensors and 0 ~ 1/r is a typical length scale of the system (e.g. the orbital
separation in the case of a binary). A more refined version of (2.4) is therefore:

OGREFT = OGRr(1 + 3603 +€4604 +...) “4.2)

Since GM/r ~ v?* for bound orbits by the virial theorem, these corrections are formally SPN and 8PN in the post-Newtonian

expansion,
4 v? :
e~ e = = 5PN
c

2\ 8
o4~ sg(%> 8PN (43)
C

However, as can be seen in (4.1), if the orbital separation of the binary » ~ 1/A, then this acts as a very large numerical coefficient
which can make €3 and &4 important already at 1PN and 2PN respectively. While an EFT with &5 > 1 will not resolve the black hole
horizon reliably, what matters in the context of GW phenomenology is whether the EFT is under control for the orbital separation of
the binary. This separation decreases with time as the objects lose energy through GW emission, leading to the characteristic ‘chirp’
in the GW frequency f. The EFT can therefore capture the portion of the signal for which,

1
(GMaf)*3 < —, (4.4)
;
where M is the chirp mass.

In summary, if the scale A in the EFT is such that that &g < 1 and the black hole horizons are resolved, then the effect of these
corrections on the binary inspiral will be at least SPN (or 8PN) suppressed. However, if A is much lower so that &g > 1, then the
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EFT corrections to the inspiral part of the waveform can be as large as 1PN (or 2PN)** and remain under perturbative control until
the frequency exceeds (4.4). Of course, taking &; >> 1 must be done with care, since this will usually lead to the EFT breaking down
at some finite distance from the horizon. The above causality arguments are one way to quantify this breakdown.

Implementing causality bounds. In the previous section, causality led to a number of upper bounds on &;. Denoting the strongest
of these as £52%, then the GREFT may only be reliably applied to portions of the GW signal for which?>:

. 1 caus : :
6 < g;“ax _ mln<m, &5 ) for inspiral, 45)
min(l, afaus) for ringdown.
Any GW event which is consistent with GR (i.e. consistent with % = 0) will therefore lead to constraints on the GREFT scale A
of the form,
1 max
X € [dmin, GMe™ ], (4.6)
where dpi, is the smallest 1/A at which the EFT corrections become excluded by the event’s waveform and the upper bound
corresponds to the event leaving the EFT’s regime of validity (at which point that particular GW event can no longer be used to
constrain the EFT, since it is not probing (1.1) but rather its UV completion). A good estimate for M would be the total mass of the
binary (for inspiral measurements) or the mass of the final remnant (for ringdown measurements).

The results of [22, 23], which considered the GREFT (1.1) with b = ¢ = 0 and ¢ = 1, strongly disfavour>® the regions,

% € [65, 27.6¢]"] km (GW170608 [22])
% € [125, 3196 ] km (GW151226 [22])
% € [51.3, 88.4¢]] km (GW150914 [23])
% € [55.5, 86.7¢"] km (GW200129 [23]) 4.7

Notice that [22] chose two of lightest events since their constraining power was coming only from the inspiral part of the waveform,
while [23] chose two of the loudest events since they adopted an inspiral-merger-ringdown approach which was also sensitive to
finite-size effects.

Crucially, the cut-off € = 0.38 from QNM causality seems to render all four of these GW events outside of the EFT’s regime
of validity. By contrast, IR causality alone requires only that £{**% ~ 0.64, in which case the two events of [23] are perhaps marginal.
Such conclusions are of course sensitive to the precise O(1) numerical factor in the bounds. But the point is that a low cut-off from
causality on & can severely limit the constraining power of GW events by pushing them outside of the EFT’s regime of validity

One resolution is to include additional EFT interactions which can relax the causality bounds. For example, under the assumption
that adding a c¢; interaction does not lead to any significant changes in the emitted waveform (which is a good approximation if
the spins of the black holes are small), then (4.7) would translate simply into constraints on the {c;, ¢z} parameter space. Once
2 2 1073¢| the QNM causality bound disappears, and once ¢, > ¢ the IR causality bound also disappears. This is shown in Fig. 1.

Finally, thanks to the results of [13, 14, 72, 73] and [19], the imprint of the cubic GREFT interaction in the inspiral and ringdown
is well understood. The events GW150914 and GW200129 exclude the following ranges at the 90% credible level when b is the
dominant interaction [23]:

1/4
b
17 € [38.2, 88.4e1™] km (GW150914)
1/4
b
IT € [42.5, 86.7¢]"™ ] km (GW200129) (4.8)

However, given the tight constraints on &; from causality, these two events are not likely to be resolved by the EFT unless this
interaction is accompanied by a comparable higher-derivative interaction. It would be interesting to explore this further in future.

34 There is actually a cancellation that takes place for the b1 cubic interaction which means it does not contribute until one higher PN order than naive power
counting would suggest [12].

35 In practice, the frequency f in (4.5) characterises the lowest frequency at which the GW is detected: from the bounds given in [22], these are approximately
f ~ 58 Hz for GW151226 and f =~ 48 Hz for GW170608. The red regions in Fig. 1 uses &5 < W so that the upper bound on 1/A coincides with

that of [22] with fhigh = 0.25 fA.
36 More precisely, [23] excludes this region at the 90% credible level and [22] finds a Bayes factor log B < —5 in this region.
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5 Discussion

Summary. The General Relativity Effective Field Theory (GREFT) parameterises the effects of heavy degrees of freedom beyond
GR in a systematic way that is amenable to perturbation theory and can be compared with GW data. The GREFT coefficients have
recently been constrained using causality in both the UV (via scattering amplitude analyticity) and in the IR (via semiclassical time
delay on a black hole background). This work has put forward quasi-normal modes as a new way to implement causality constraints
on this EFT. In contrast to existing causality bounds from the Eisenbud-Wigner time delay, which are sensitive only to large impact
parameters r >> 3/2r,, the new QNM constraints probe a different regime near to the horizon r = r,. In some cases they lead to
even stronger upper bounds on the GREFT parameters, but for the most part they reproduce almost exactly the constraints from IR
causality. This suggests that QNM causality is a reliable condition which may be used to constrain other gravitational EFTs. In light
of these findings, there are a number of future directions to explore (some of which are listed below).
Higher-order interactions. Consider adding to (1.1) a single higher-order interaction®’

Lag D Cy(RP)’ 5.1

for a fixed integer ¢g. The black hole background for this interaction is given in [16]. Remarkably, QNM causality implies that C,
must be positive, regardless of the value of g. To see this, notice that the highest derivative of the metric fluctuation to appear in the

master equation is38,

5 _
e (V=8L24) D v=8C4(R®) *[16g(g — HR™" R¥™FVV )V, V, V] (5.2)
wy

This does not contribute to the potential for odd modes, but for the even modes it gives a contribution S?q

where

_282q V; to the potential,

12,6\ 77292 ry\ 10
azq\/[*)—cq( r;) 5(2) (5.3)
s

All other contributions from this interactions are O(j) or smaller in the large j limit. The shift in the QNM is then,

84 _
82y Ry = —cq—ng +0(%,
89(q +3)(g+6) . .
bag g, = +Cy— T 24 T2 4374‘1 i+03(Y. (5.4)

In order for the lifetime of the large-j QNM:s to decrease, C, must be positive. This positivity would not have been easy to prove
using UV causality, since such interactions do not contribute to the 4-point scattering amplitudes until a high loop order. It would
be interesting to further explore the master equation and effective potential for perturbations around this background to see what
further constraints QNM causality / IR causality might impose. Studying interactions that contain derivatives of the Riemann tensor
[74], or general contractions of the type (R")?, would also be interesting. The main point here is that higher-point EFT interactions
can be constrained by considering non-trivial backgrounds [75-78], and QNM causality is a further example of this.

Other black hole backgrounds. This work has focussed on the simplest (stationary, spherically symmetric) black hole spacetime
in the GREFT, but the GREFT corrections to other black hole backgrounds are known and it would be interesting to investigate
whether QNM causality for those black holes places additional constraints on the EFT. The obvious next step would be to study the
Kerr background that describes a spinning black hole [79], since phenomenologically speaking ¢, has a significantly larger effect on
spinning objects. One key limitation of Fig. 1 is that it assumes the black holes have low enough spin that the ¢, interaction can be
neglected: a more refined analysis in future would establish causality bounds for spinning black holes and remove this assumption.

Given the recent progress in calculating Schwarschild-de Sitter quasi-normal modes,> it would also be interesting to investigate
how QNM causality might constrain cosmological field theories and compare this with other recent approaches to implementing
causality bounds in a cosmological setting [76, 77, 80-85].

Finally, it would be interesting to combine QNM causality with a model-agnostic approach like that of [86, 87], which could
place constraints on the ringdown waveform without the need to specify the underlying field content.

Parity-violating interactions. At eighth order in derivatives, (1.1) is not the most general EFT one could consider. There is also a
single parity-violating cubic interaction and a single parity-violating quartic interaction. These have interesting effects on the QNM

spectrum40: in particular they can mix odd and even perturbations and lead to “running” of the QNM frequencies [18, 21]. It would

37 Of course, there are a number of other contractions which would naturally enter at this order and it seems unlikely (barring some very finely tuned UV
physics) that only this single operator would be generated in the EFT. But this example neatly demonstrates the power of considering causality constraints
on non-trivial backgrounds, since it can in principle place constraints on interactions of arbitrarily high order.

38 Note that several seemingly four-derivative terms can be discarded since /1, is transverse and traceless, and the leading order equation of motion can be
used to replace any [/, with terms that have fewer derivatives.

39 Note that other interactions beyond (1.1) may become non-redundant on backgrounds which are not Ricci-flat.

40 Parity-violation also leads to interesting effects in the GW propagation [88].
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therefore be interesting to study how to apply QNM causality in that case and whether it can constrain the parity-violating GREFT
coefficients.

Including matter fields. In GR, the QNM spectrum for perturbations of a spin-s matter field on a black hole background are known.
One future direction would be to investigate how these are shifted by interactions like (1.1), or (perhaps better) whether the effect
of a matter self-interaction*! like A(V¢)* on the scalar QNMs might connect QNM causality with the prototypical positivity bound
from UV causality, A > 0. There is no shortage of interactions beyond (1.1) which could be considered next, where the constraints
from QNM causality could be compared with both experimental constraints and other theory constraints like UV/IR causality.

In particular, [89, 90] have recently developed a first-order formalism to determine the quasi-normal modes of modified gravity
theories in which the perturbation equations are not of second-order Schrodinger form. Exploring how the QNM frequencies are
shifted by EFT corrections in that framework (and to what extent QNM causality overlaps with other causality constraints) would
be a natural way to extend this discussion to a much wider range of theories.

Connection with other conjectures. This work has focussed on connecting quasi-normal modes with the constraints from UV
and IR causality. It would be interesting to explore what restrictions are placed by other consistency conditions such as the swampland
conjectures (and how these interface with QNM causality). For example the Weak Gravity Conjecture has a close connection with
UV causality [36, 91, 92] and was recently connected to the Love numbers of GREFT black holes in [93]. Furthermore, positivity
of the time delay is just one of an infinite family of causality bounds [94], and it would be interesting to investigate whether they
also have a QNM counterpart.

Proving the conjecture. Finally, it is worth bearing in mind that no rigorous proof has been given for QNM causality. For
one thing, QNMs are found using different boundary conditions to the causal propgators (for which analyticity is immediate). An
important next step would be to establish whether EFT corrections must always obey the QNM causality condition (1.10), for
instance by connecting more carefully with the familiar analyticity arguments. In fact, from a holographic perspective the quasi-
normal modes of a black hole in asymptotically AdS spacetime correspond precisely to poles in the two-point function of the
boundary hydrodynamics theory [64], so that could provide a setting in which to tackle this question.
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Appendix A: Master equations for black hole perturbations

This appendix collects some details about the master equations (2.13) and (2.16). The GREFT potentials used throughout to calculate
the time delay and QNMs are listed in (A.11-A.17)

EFT Perturbation Theory. The algebra involved in computing the master equations can quickly become laborious if not done
carefully. To illustrate the basic idea, consider the toy problem of a scalar field ¢ described by the action Sp + €S, where S7 is a
small correction to be treated perturbatively in . The first step is to split ¢ into a background plus small perturbations,

p=¢+¢. (A.D)
Both are affected by the interactions,
¢ = o +eh1+Oe)
©=@o+ep1+0(e) . (A.2)

The leading-order background ¢y is determined first, by solving:
85,

0
glgﬁ:&o =0. (A3)
Then one should solve:
880 88
S5l 5l = (A4
3¢ 3¢

41 To constrain interactions that are non-linear in the matter fields would require those fields to acquire a non-trivial background. While exact scalar-tensor
black hole solutions are known in only a handful of cases, it may be enough to consider just the leading corrections on top of a Schwarszchild background.
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for ¢1, the first correction to the background (e.g. for the GREFT, this produces (2.5)). Then moving on to the small perturbations,
they satisfy,
828y
82
in the absence of the ¢ correction. To find the leading correction ¢ to the perturbations induced by the & correction, one must finally
solve,

lgo v0 =10 (A.5)

828y 828y 828
52 |¢0 $1+ 5¢p2 |¢1 Po+ 5¢2

It is an equation of this form (with ¢ replaced by g,,,) which leads to the master equations for ‘-IJZE. In particular, note that to first
order in £ one may use the leading-order equation of motion to remove higher-derivative terms, which ensures that the final equation
for the perturbations will be at most second-order (despite the variation of the original Lagrangian initially generating higher-order
derivatives).

Converting between potentials. By rescaling the perturbation,

172
o (ﬁﬁﬁ) o

o 90 =0 (A6)

(A7)
f
then the master equation (2.13) is recast as (2.16) to leading order in €. The potentials are related by:
~ F 1 4% (JF T 2 72
T V+—~—2< fff’>+‘°—~ Tz—zfi . (A8)
\/frft 2f dr* f f| <5 Csfrff
Note that since cf,(fs) = 1 at the horizon, the final square bracket vanishes at r = 7. In the GREFT (1.1), ¢; is given by,
Cyly b] 4 1 6
;S* = 1+ e+ e (A.9)
which is useful when evaluating (3.36).
The potentials § Vgi and § Vf are given below for each of the interactions in (1.1) and (2.21). They take the form:
SVEw,r) = eds3VE(w,r) + 884 VE(w, 1) + ...
SVE(w,r) = el83VE(w,r) + 884 VE(w, 1) + ... (A.10)

Some important features are:

e by contributes like £ to both odd and even modes but with opposite signs,

e ¢ contributes like £7 to even modes and like £° for odd modes, also with opposite signs.Note that the £° contribution to the time
advance 81, is further surpressed since the LO WKB approximation vanishes, and relatedly the subleading QNM correction is
large (see (3.43)).

e ¢, contributes like £ to odd modes and has no effect on the even modes or the background.

Cubic interaction b

The Riemann-cubed interaction in the GREFT modifies the master equation (2.13) by [19],
rX263 vV, B ,(45 855 ) 270 5175 2979

S — —_— + S —
by x7 16x8 x7 8x8 8x?
rS283 173 405 45 90 783 1755
e ) e
b1 16x9  2x8 x7  4x8  16x°
432 963 _ 4347 567 _ 9369 | 4851 243 | 1863 _ 891
+ x’ x8 8x° + x7 8x8 8x? + x7 4x8 4x9 (A.11)
V4 Z? Z3

where x = r/r, is adimensionless radial coordinate and both j = £(£+1) and Z = (j —2)x +3 depend on the angular momentum.*2

Once converted into the “horizon” tortoise coordinate (2.16), the odd potential becomes:
r2 83V, 5 2( 7 3017 411 +3>

=+ wr

by s

42 Note that A = £(€+ 1) — 2 is often used instead of j because it is the eigenvalue of the Laplace-Beltrami operator on the 2-sphere acting on a tensor-type
spherical harmonic.

@ Springer



725 Page 24 of 30 Eur. Phys. J. Plus (2024) 139:725

+.(5 R +725_877>
16x3  16x%  16x5  16x°  16x7 16x8

5 45 25 55 2175 21769 1605
T 40 3% 1600 32x6  8x7 | 32x8 | 4x

and the even potential becomes:

29 Y7+
»V 7 3 17 47 1 3
LU SR R BB
by
5 . 5 . 5 . 5 355 . 383
16x*  16x>  16x6  16x7 16x8 = 16x°
i 55 £ 65 N 1405 5313 . 1359
8x3  32x%  8x5  32x0  16x7  32x3  16x°
15 , 15 , 15 , 15 , 15 _ 3441 , 7881 _ 4545

+ 4x2 2x3 8x4 85 8x0 8x’ 8x8 8x°
VA
45 225 | 567 _ 2403 + 5049 135 , 135 _ 243 | 1863 _ 891
2 YA 9,8 9 Ax2 3 7 8 9
+ 2x 8x3 X 2x 8x + T 4x 4x X 4x 4x , ( A.12)
72 73

from which the O[]:::z coefficients in (3.36) can be easily read off.
Quartic interaction ¢

The ¢; Riemann® interaction in the GREFT modifies the master equation (2.13) by [16],

resaVy ( 7372 ) 2916 13509 15561
. YT 10 x10 2x1l 4x12
risa vy 972 100 81 792 4549 6069
T w2 <x7_7>_)70+2;7_4;7
3)(31%8 7776 4410 3x2]zt0 + 6x61619 143xS]929 271% 1;51316 + i%
+ 7 + 73 + 73 (A.13)

as well as shifting the sound speed (2.14).
Converting this to the “horizon” tortoise coordinate (2.16) produces for the odd modes:

4x2 2x3 4x* x5 4x6  2x7  4x8 x4
j 5 . 5 N 5 . 5 N 5 . 5 . 5 571 . 545
8x3  8x* 8x5 8x0 8x7 8x% 8x% 8xI10  gyll

54\7[_+w2< 9 7 19 6 29 17 213 1 1)

)
rS

N 1 5 45 25 55 15 65 35 . 46581 6512 N 58617
r2\ 2x3 16x*  8x>  16x0  4x7  16x%  8x?  16x10  x1l  16x12

and for the even modes:

4x2 0 2x3  4xt X5 4x6 2x7 * 4x8  x * 4
Z(S 5+i+i+i+i+ 5 _643+761>

8x4  8x5  8x0  8x7  8x% 8x% 8x10 gxll  gxl2
( 5 55 15 65 35 75 5 12757 20043 27669 )

28V o 9 7 19 6 29 17 213 1 1 972
- 4) 22

€1

+ —
4x3  16x*  4xS  16x%  8x7  16x8  x%  16x10 gyl 16x12
15 15 15 15 15 15 15 15 13407 _ 30825 17289

Tt taat st T tas Tt 40 4 ¥ g2
VA
45 _ 225 _ 3240 | 6570 _ 3312 _ 135 135 . 972 _ 1836 , 864
2 3 10 11 12 2 943 IO x ! 12
+ X 4x X X X + 2x 2x X (Al4)
72 Z3

where Z = (j —2)x + 3.
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Quartic interaction c;

The ¢, Riemann® interaction in the GREFT modifies the master equation (2.13) for the odd modes only:

2 — co.
84V, 18 -2

rsoaVy j(jlo ). (A15)
(o) X

Since ¢ does not affect the background metric or sound speed, the cp contribution to the master equation in “horizon” tortoise
coordinates (2.16) is simply the same:
2¢ Yr— .o
rydaVy 18 —2)

= - (A.16)

2

Redundant cubic interaction b3

For the redundant cubic operator (2.21), it shifts the background by (2.22) and leaves the sound speed unchanged. Converting the
potentials given in (2.23) into the “horizon” tortoise coordinates gives the following contribution to (2.16):

r283V, s 3 6 9 12 N (3 3 3 3 3 3
—_— = wor.\—-—---—— — —_— —_— —_— —_— —_— = —
b3 § x2 X3 X+ xS / 2x3 0 2x4 2x5 0 2x6  2x7 248

6 27 15 33 9 591 90

JR— + — e —
X3 4x* 2x5 4x6 X7 4x8  x®
2¢ V+
r285V; L, 3 6 9 12 3 03 3 3 3 33
B 73 ool (i 43 )+ 7 == — -
@7y 2x4 0 2x5  2x6  2x7  2x8 29
18,36, 9 .9 , 9 .9 , 243 351

3 33 9 39 21+441 81 2tTotagts Tttt — 0
x3 4xt x5 4xS 2T 4x® 2x° Z
X X X X X X X X
+ 77 + 73 (A.17)
Amusingly, the oc,i coefficients (3.34) read off from this potential satisfy [19],
o0
Y et i) =0, (A.18)
k

up to small numerical errors, which is consistent with the expectation that this redundant potential does not affect any purely
gravitational observable (like the QNMs). The null constraint (A.18) can be used to infer higher-order ex, from lower-order ones
[61], or alternatively could be used to infer wfl}gR if the ef, or ¢, were independently known.

Appendix B: Time delay details

Starting from (3.7), one can compute the time delay in the large £ limit as follows. First perform a large ¢ expansion of both the GR
and EFT potentials,

+ p (Tt Ts .p—1
SW/Z (a)’ r)|w=v)/(fv)lnax = JPKO (7, 73) * O(]p ) ’
. r rA . -
awSWZt(w’ r)|a):\/ Y ([ V)max = JpKl:t(?” 7?) * O(]p 1) (Bl)

where y can be replaced with r; using (3.12) and p is a fixed constant that depends on the interaction considered. Then construct
the integrand,

sAP T
P ¢\ _ o pmigp(Tt TS -2
Al a,(arAg,)_] 7 (r,r)+o(J ). (B.2)

For instance from the odd potential §V,” from the ¢ interaction, the power p = 1 and the time delay tends to a constant at large ;.
Writing,

o0
¢
—Za)/ drI_(r—t,r—S) ac (B.3)
I’,GR rr KC]()/)
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immediately produces (3.14). The Z~ is relatively simple and can be integrated analytically in terms of elliptic functions. The full
expression is somewhat cumbersome, but it is plotted as the black line in Fig. 5, showing good agreement with the numerical result
at large ¢.

Finally, note that in the eikonal limit of large r; > r; (¥ < 1), one can further expand (B.1) in powers of rs/r;,

fVei:L+(’)( rs>
r2

It
+ .p—1 Ts
SWE@, Do yrvre = J7KE 0)+o L
t
. r . — rA
B0 WiE (@, Mo o7 = Jl’lcf(?’,o) +O(]p 17) . (B.4)
t

and simplify (3.12) in this limit to simply rGR ~ \/j/w = b, the Newtonian impact parameter. The time delay can then be massaged
into the usual eikonal form [45],

a1 [ swt
stf ~ —| — / dr ——
w| o Jp [1 _ 82
2
up to subleading corrections in 1/j and rs/r;. However, note that for the §V,” potential from cy, this eikonal limit vanishes since,

_ r8(7r% — 8b?)
sW; =902 27 my +

(B.5)

(B.6)

integrates to zero. As aresult, the naive expectation that §z, ~ w/ b’ in the eikonal limit overestimates the time delay, which is actually
(w / bs) and comes from the subleading r,/r; corrections. Regardless of this cancellation, (B.5) is only a good approximation at

large impact parameter (y < 1), and does not capture the y = 0.9 regime studied in the main text (which requires the full Z%

(%, ) at large j, or the numerical integration of (3.7) at small j).

r’r

Appendix C: Quasi-normal mod details
This Appendix describes how to find the QNM spectrum of fluctuations ¥ which obey the Schrodinger-like equation*?
d2
<ﬁ+w)\y:v‘l/ (C.1)

where V = Vgr + 8V with §V a small perturbation to GR. The general procedure is:

(i) Following [66, 68, 95, 96], the WKB approximation can be used to relate a)zZ to V(k)(a)ng, rmax ), derivatives of the potential
evaluated at its maximum (i.e. rmax 1S defined by the condition v =), Explicitly, this gives,

1 1 y®2 y@
2 _ yO _ (2) 2 2
wl, =V iN—-V©®/2 + 32[ 9‘/(2)2(7+15N )+ (2)(1+N )}

iN [5 vO4 5. 3 VO2Zy®
— — 77 +4IN*) + = — (51 +25N?
57672 [24 vy M acvayn )
R OO , v© ,
g v O+ TN + s (194 TN + s (5 V) . (€2)
where N =2n+ 1 withn =0, 1, 2, ... the overtone number.
(i) Expand each derivative in terms of Vgr and 8V using,
(k) ViR SR )
VO (rmas one) = VERSR ) + 8V O (@G, roR ) — W‘“) VO (g ) +O((6V)?) (C€3)
max

where the right-hand-side is evaluated at the GR value rSR and the final term accounts for the difference with the full theory’s

Fmax-

(iii) Expand each V, (k

) r and 8V® in the large ¢ limit,

k
((}R)—]kalp] P

43 Note that the r and V used in this Appendix differ from those in the main text.
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SVO (@GR, raR) = jP (Z 8k 2a()j T +i/j D 8V 2avi () j—”) (C4)
a=0 a=0

where j = £(£ + 1) and the power p depends on the interaction.

The result of this procedure is an analytic expression for the QNM frequencies which becomes exact in the large j limit. At zeroth
order in §V it recovers the GR frequencies (3.41). At first order in 8V, it gives an expression for the shift in the QNM frequencies
relative to GR: for instance the leading contribution to the imaginary part is:

m(we —SF) _Svoo  Bvao  Dspdvio - dvon +(’)(1) (C.5)
m(@l®) 7 2o 200 203, =20 \J '
Both real and imaginary part at leading and next-to-leading order are given below for the GREFT potentials.
GREFT QNMs. The shift in the QNM frequency from the GREFT interactions can be written in the form (3.42). This WKB
approach gives the following shift from the cubic b; interaction in the odd QNMs:

_ 380 24037 — 6303N? 1
SR, =bi| oo+ :

729 39366 72
_ 1028  35(535 +358N?) 1
5L ,=0b + +0| =1, C.6
3ne 1( 729 177147 ;2 €6
and in the even QNMs:
N 340 6217 +8277N? 1
BRy=bi|— s+ —— =)
729 39366 j?
1132 5(=25111 +2264N?) 1
8, =bi| — — - =) ((eW))]
729 177147 J
Similarly, the WKB approach gives the following shift from the quartic interactions in the odd modes:
_ 256¢y . 32c2(—919+615N?)  832c;  112¢1(1391 + 57N?) ¢ cl
MR, =— Jj— + + - +0| =+, —
" 729 59049 19683 177147 il j?
_ 5120cy . 8cp(197531+21425N%)  7232¢;  28¢1(—722441 + 5437N?) 2 cl
54I = + J+ - - N ()] o ) (CS)
n 2187 531441 19683 1594323 j JjoJ
and in the even modes:
64ci . 8ci(—1231+615N?) 1
S4RY, = — — ol -
4Rt = " 509 59049 AW
1280c; . 2¢1(99899 +21425N?) 1
84T, = ol-), Cc9
e =T o087 531441 i €9

where j = (£ + 1) and N = 2n + 1 as before.
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