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Abstract The General Relativity Effective Field Theory (GREFT) introduces higher-derivative interactions to parameterise the
gravitational effects of massive degrees of freedom which are too heavy to be probed directly. The coefficients of these interactions
have recently been constrained using causality: both from the analytic structure of 4-point graviton scattering and the time delay
of gravitational waves on a black hole background. In this work, causality is used to constrain the quasi-normal mode spectrum of
GREFT black holes. Demanding that quasi-normal mode perturbations decay faster in the GREFT than in General Relativity—a
new kind of causality condition which stems from the analytic structure of 2-point functions on a black hole background—leads
to further constraints on the GREFT coefficients. The causality constraints and compact expressions for the GREFT quasi-normal
mode frequencies presented here will inform future parameterised gravitational waveforms, and the observational prospects for
gravitational wave observatories are briefly discussed.

1 Introduction

A quantum theory of gravity has remained elusive for two reasons. The first is phenomenological: experimentally we either probe the
small-scale small-curvature regime (e.g. in particle colliders) or the large-scale large-curvature regime (e.g. solar system, cosmology),
but to see quantum and gravitational effects simultaneously would require both small scales and large curvatures. The second reason
is theoretical: unlike the fundamental forces of the Standard Model, General Relativity (GR) is not a renormalisable field theory,
and this typically leads to a loss of predictivity at high energies. Reconciling these difficulties and uncovering a complete quantum
mechanical description of gravity has been a central aim of theoretical physics for the past century.

Fortunately, these two difficulties also suggest a way forward. Since gravitational phenomena are typically observed on large
scales (in the low-energy, or ‘IR’, regime), they are well described by an Effective Field Theory (EFT). An EFT description of
gravity also resolves the theoretical issues surrounding renormalisation, since an EFT is renormalisable at any finite order in its
derivative expansion. The goal of this work is to better understand how the physical principle of causality can be used as a guide
when constructing and applying gravitational EFTs.

The interpretation of General Relativity as an Effective Field Theory goes back several decades [1, 2] and is by now widely
known. In this framework, the Einstein-Hilbert action of GR is extended by all possible higher-derivative interactions consistent
with the symmetries of the problem: namely diffeomorphism invariance (plus any flavour/gauge symmetries of the matter sector).
This produces an EFT extension of GR, also known as the “EFT of gravity” or the “General Relativity Effective Field Theory”
(GREFT). This latter title best highlights the many parallels with the Standard Model Effective Field Theory (SMEFT), which is an
analogous extension of the Standard Model by all possible interactions which are higher-order in derivatives and fields.

Just as the SMEFT was developed for model-agnostic searches for BSM physics at colliders, the GREFT can be viewed as a
parameterised framework in which to search for new physics beyond General Relativity. This is particularly important for gravitational
wave (GW) astronomy. The number of black hole (BH) or neutron star binary mergers detected by gravitational wave observatories
is now at least 90 [3], and is forecast to rise to thousands in the coming observing runs [4]. These gravitational waves were created
by compact objects in very high-curvature environments, and therefore open an exciting new window into the gravitational Universe
[5–11]. The GREFT framework has been used to study the inspiral [12–14], merger [15] and ringdown [16–21] phase of a binary
merger, and compared with existing GW data in [22, 23]. With future observing runs and new GW observatories planned for the
coming years, developing this framework both theoretically and phenomenologically will allow for the most precise tests of GR and
its possible extensions.
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The GREFT action is made up of two components: a gravitational sector and a coupling to matter. In four spacetime dimensions,
all parity-preserving interactions in the gravitational sector with up to eight derivatives can be written as [12],

Sgrav �
∫

d4x
√−g

M2
P

2

[
R +

b1

�4 R
(3) +

c1

�6

(
R(2))2 +

c2

�6

(
R̃(2)
)2
]

(1.1)

where R(n) denotes the following contraction of n Riemann tensors,

R(2) � Rμν
αβ R

αβ
μν , R̃(2) � 1

2
Rμν

αβε
αβ

ρσ R
ρσ

μν , R(3) � Rμν
αβ R

αβ
ρσ R

ρσ
μν , (1.2)

where εμναβ is the antisymmetric Levi-Civita tensor. The constant coefficients {b1, c1, c2} encode the underlying UV physics, i.e.
different high energy theories (string theory,1 loop quantum gravity, etc.) will match onto different choices of these coefficients.
The common energy scale � is used to track the EFT’s regime of validity, since (1.1) can be viewed as an expansion in powers of
∇μ/� (which is therefore expected to break down when length/time scales become order 1/�). The basis of interactions in (1.1)
captures all physics involving only gravity2: for instance graviton scattering amplitudes, as well as the physics of single black holes
(e.g. their effective horizon, quasi-normal modes and BH-GW scattering). The grand ambition of the GREFT is to use gravitational
observations to fix (or at least constrain) the coefficients {b1/�

4, c1/�
6, c2/�

6, ...}, and then use this information to infer properties
of the underlying high-energy quantum theory.

This work aims to answer two related questions:

(i) Given the recent causality constraints that have been placed on the GREFT coefficients, what are the phenomenological
consequences for GREFT black holes and in particular their quasi-normal mode (QNM) spectrum?

(ii) Given a conjectured causality/stability property of black hole quasi-normal modes, what further constraints can be placed on
the GREFT coefficients?

The first is important for future analysis which fits GREFT coefficients to data, since it will inform more accurate GW templates for
the GREFT and hence lead to stronger, more reliable constraints from experiment. The second is also important for phenomenolo-
gy—since limiting the parameter space with theoretical priors before fitting to data can lead to qualitatively different results—but
mainly it complements a growing theoretical effort to characterise the space of consistent EFTs. There have been many recent
advances in this direction: including UV/IR sum rules [26, 27], the swampland conjectures [28, 29], and numerical bootstrap tech-
niques [30]. These different approaches all leverage some physical property of the underlying UV physics, usually causality and
unitarity, to place constraints on the EFT (and hence on IR phenomenology). This work will show that, at least in the context of
the GREFT (1.1), existing causality constraints lead to BH solutions being “more stable” (in the sense that quasi-normal mode
perturbations decay faster) than in GR. This property will be referred to as “QNM causality”. In fact, turning this around and
requiring QNM causality will lead to bounds on the GREFT coefficients which align remarkably well with existing constraints and
in some cases are even stronger. This opens up the possibility of placing qualitatively new constraints on the parameter space of
gravitational EFTs.

Concretely, this work will compare three different notions of causality and how they constrain the GREFT:

– UV causality. This is a property of 4-particle scattering amplitudes in the Minkowski vacuum, which in the low-energy EFT take
the following form:

AEFT(s, t) � AIR(s, t) +
∑
a,b

gabs
atb , (1.4)

where s and t are the usual Mandelstam variables, AIR represents the pole and branch cut contributions from the light fields
present in the EFT, and the coefficients gab characterise the unknown UV physics. “UV causality” is the assumption that the
underlying amplitude in the full UV theory is analytic in the complex s-plane (up to the normal branch cut thresholds required
by unitarity) [31], which in practice means that each gab can be written explicitly as a contour integral of this underlying UV
amplitude. Further assumptions about the UV, such as unitarity, locality and Lorentz invariance, place bounds on this UV integral
and therefore the gab coefficients. The simplest such bound is [26],

g2n,0 > 0 (UV causality) , (1.5)

1 For instance, comparing the 4-point EFT amplitude to the superstring amplitude [24] gives the following GREFT coefficients at this order in derivatives
[25]:

Superstring: b1 � 0 , c1 � c2 � −ψ (2)(1)

8M6 ≈ +
0.3

M6 (1.3)

where ψ (n) is the polygamma function and M2 � 4/α′ is related to the mass of the lowest-lying state beyond the EFT.
2 For observables involving matter fields, the GREFT is only complete once certain non-minimal couplings are included.
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where n ≥ 1 in the absence of gravity and n ≥ 2 in gravitational EFTs.3 The importance of causality in these dispersion relation
arguments was first highlighted in [26], where they presented simple examples in which a violation of (1.5) goes hand-in-hand
with superluminal propagation on certain non-trivial backgrounds.

– IR causality. The constraints from causality on non-trivial backgrounds has recently been explored further [42, 43], and in general
can lead to seemingly independent bounds on the EFT coefficients. However, implementing causality in a gravitational context
is subtle. For waves passing by a compact object, the Shapiro time delay of GR is consistent with causality (i.e. it leads to a
time delay rather than a time advance in the arrival time of the waves), and so it would seem that any perturbatively small EFT
corrections on top of this would also be perfectly causal. One solution, developed in a recent series of papers [44–48], is the
condition of “IR causality”: namely that the small EFT corrections do not introduce a time advance relative to the GR time delay.
This means that if the total time delay is split into two parts,

tGREFT � tGR + δtEFT (1.6)

where tGR is the usual Shapiro time-delay from the Einstein-Hilbert term, then the shift induced by the EFT corrections must not
lead to any time advance—at least, not one that is resolvable given the uncertainty principle. This leads to the condition4:

−ω δtEFT � 1 (IR causality) (1.7)

where ω is the frequency of the wave experiencing the time advance. To calculate δtEFT for waves propagating on a black hole
spacetime, a WKB approximation is often invoked in which the impact parameter is much larger than the size of the black hole
(since if the classical trajectory stays sufficiently far from the horizon, then the fraction of the wave absorbed into the black hole
can be neglected).

– QNM causality. The new causality condition put forward in this work is related to the time dependence of black hole quasi-normal
modes, which may be parameterised in terms of an oscillatory frequency ω and a decay lifetime τ :

δgμν ∼ e− t
τ eiωt , (1.8)

where the dependence on other data (angular momentum, overtone number, parity) is left implicit. For the black hole to be stable,
the decay rate 1/τ must be positive. However, implementing this in the GREFT is subtle because the leading GR contribution
from the Einstein-Hilbert term gives a positive contribution to τ and a small EFT correction would never flip this sign without
become non-perturbatively large. Instead, one should split the decay time into two parts,

τGREFT � τGR + δτEFT , (1.9)

where δτEFT is the contribution from EFT interactions which vanishes as � → ∞. “QNM causality” is then the condition that
δτEFT contributes positively to the decay rate—or at least, any decrease in the decay rate should not be resolvable given the
uncertainty principle. This leads to the condition5,

ω δτEFT � 1 (QNM causality) . (1.10)

Unlike IR causality (large impact parameter scattering), this condition is naturally formulated near the horizon and so probes the
theory in a qualitatively different region.

Here are three rough arguments for the QNM causality condition. The first argument is that causality usually implies that any
singularity in the response function is in the lower half of the complex plane. The quasi-normal mode frequencies in GR certainly lie
in the lower half plane. Since the heavy physics, when decoupled from gravity, should push these points into the lower-half plane,
then in the full gravitational theory they should be pushing the QNM frequencies even deeper into the complex plane. The second
argument is that it is the straightforward analogue of the IR causality logic but applied to the stability of the BH solution. If it were
possible to decouple the effects of the Einstein-Hilbert term (at the level of perturbations, but retaining the BH background), then
the QNM causality condition would simply become the condition that the background is stable (just as the IR causality condition
in the decoupling limit becomes the usual condition that there is no resolvable time advance). The third argument is that, at least
in simple theories like (1.1), it appears that causality constraints from scattering amplitudes (UV causality) and from considering
the time delay of scattered waves (IR causality) both impose constraints on the EFT which limit or completely remove any positive
δτEFT from the QNM spectrum. Rather than a numerical coincidence, this seems further evidence that the condition (1.10) should
be viewed as yet another avatar of causality in gravitational field theories. However, it is worth stressing that none of the above
amounts to a proof of (1.10). It is a conjecture, and the goal here is to explore to what extent this conjecture is different from (or
implied by) the well-established causality conditions from quantum or classical scattering.

3 The difficulty in applying positivity bounds to g20 in a gravitational theory is that the tree-level exchange of a graviton (responsible for the classical
Newtonian potential) leads to the IR divergent pole term s2/t in the amplitude. There has been much recent progress in tackling this issue, for instance by
assuming a particular Regge growth [32–34], scattering at finite impact parameter [35], compatification [36–38] or considering EFT observables which do
not contain a graviton pole [39–41].
4 Constraints from other notions of causality applied to the asymptotic time delay can be found in [49] and [50].
5 Notice that δτEFT < 0 corresponds to a positive contribution to the decay rate 1/(τGR + δτEFT) and therefore δτEFT > 0 is the problematic sign.

123



  725 Page 4 of 30 Eur. Phys. J. Plus         (2024) 139:725 

Below is a short summary of the main results, namely the constraints on the GREFT coefficients from each of these three causality
conditions. It is followed in section 2 by a short description of the GREFT and its simplest (stationary, spherically symmetric) black
hole solutions. Then in section 3.1, the time delay of waves passing a GREFT black hole is computed and used to place IR causality
bounds on the coefficients {b1, c1, c2}. Section 3.2 calculates the quasi-normal mode spectrum of a GREFT black hole and compares
the condition of QNM causality with IR and UV causality. In light of these causality bounds, the observational prospects for the
GREFT is discussed briefly in section 4, before some concluding remarks are given in section 5.

1.1 Summary of main results

Assuming that the GREFT is under perturbative control up to a maximum (ω/r)max ≡ εω�2, the IR causality constraint (1.7) and
QNM causality constraint (1.10) are found to imply the following lower bounds on the quartic GREFT coefficients:

IR causality: c1ε
3
ω � −1.8 × 10−4 , c2ε

3
ω � −4.2 × 10−5

QNM causality: c1ε
3
ω � −1.2 × 10−4 , c2ε

3
ω � −3.0 × 10−5 (1.11)

Remarkably, both QNM causality and IR causality impose nearly identical bounds. Choosing � so that εω ∼ O(1) (i.e. so that it
accurately reflects the true EFT cut-off), both conditions give c1, 2 � −O(10−4

)
. This is consistent with the sharp bounds from UV

causality [51],

UV causality: c1 > 0 , c2 > 0 (1.12)

The small negative contribution in (1.11) is from the uncertainty in resolving wave-like behaviour.
For this value of εω, there is also an upper bound on each Wilson coefficient. This bound depends on the size rs � 2GM of the

black hole. What matters phenomenologically is how large 1/� can be relative to rs , and these contraints imply that,

IR causality:

(
1

GM�

)6

�

⎧⎪⎨
⎪⎩

7×10−2

c1
if c2

c1
→ 0

1
13.581c1−12.896c2

if O(10−5
)

� c2
c1

� O(100
)

no bound if c2
c1

> 1.1

QNM causality:

(
1

GM�

)6

�

⎧⎪⎨
⎪⎩

3×10−3

c1
if c2

c1
→ 0

1
2.862c1−2688c2

if O(10−4) � c2
c1

� O(10−3)
no bound if c2

c1
> 1.1 × 10−3

(1.13)

This upper bound from IR causality when c2 � 0 agrees with that derived in [47] up to an unimportant numerical factor. Both notions
of causality lead to qualitatively similar upper bounds, with QNM causality the stronger at low c2 and IR causality the stronger at
large c2. These bounds can be used to infer which of the binary mergers detected by the LIGO-Virgo network are within the EFTs
regime of validity, and hence identify which regions of parameter space can be excluded by current gravitational wave data (see
Fig. 1). They can also be used to restrict the possible shifts in QNMs that can be induced by physics beyond GR, as illustrated in
Fig. 2. There is also an interesting similarity with recent UV causality bounds [40],

UV causality: 4(c1 − c2) ≤ 12.3 log

(
M

mIR

)
− 13.5 (1.14)

where mIR is an IR cut-off responsible for regulating the graviton pole. Conceptually, this also implies that c2 must be sufficiently
greater than c1 in order to avoid issues with causality.

Furthermore, there is a two-sided bound on the cubic coefficient,

IR causality: −2.8 × 10−5 � b1ε
4
s � +2.8 × 10−5

QNM causality: −2.9 × 10−5 � b1ε
4
s � +2.4 × 10−5 (1.15)

QNM and IR causality again impose similar constraints on the GREFT coefficient, namely |b1|ε4
s � O(10−5

)
. This is consistent

with the causality bounds in [49] from eikonal resummation of the 3-point function, and extends the one-sided bound from IR
causality in [47] to a two-sided bound. It also implies that the b1 interaction can not be the leading phenomenological effect in
gravitational wave templates, at least not if the EFT is to resolve εω ≈ 1. Sacrificing some resolving power, either by lowering εω or
assuming a weaker perturbativity condition ω < ε′

ω�, could render |b1|ε4
s � O(10−2) and potentially relevant for phenomenology.

In either case, a cubic interaction with comparable quartic interactions (which is what arises from generic UV completions) would
describe a range of black hole backgrounds with no causality issues.

Finally, the UV causality bound [25, 40],

UV causality: |b1|2< 2

9
c1 (1.16)
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Fig. 1 Observational constraints on the GREFT parameter space from recent GW events (assuming b1 is subdominant and that c2 has little effect on these
waveforms since it is spin-suppressed). The coloured regions are strongly disfavoured. Red indicates that only the inspiral phase was used [22], and hence
the EFT remains a valid description until a much higher 1/�. Blue indicates that a full inspiral-merger-ringdown template was used [23], and hence produce
a stronger lower bound on 1/�. The causality bounds derived in this work lead to the lower bounds on c2/c1 required for each event to resolvable within
the EFT’s regime of validity

Fig. 2 QNMs in the complex plane. Red points show the fundamental quasi-normal mode frequencies of GR in units of rs , which from left to right correspond
to 
 � 2, 3, 4, 5, 6. The black line is the large 
 WKB approximation (3.41). The green region shows how each mode can be shifted by higher-curvature
interactions, given the simplest positivity constraints c1 > 0 and c2 > 0 from UV causality. Once 
 ≥ 6, it becomes possible to shift the frequency
towards the real axis and decrease the decay rate of black holes. The additional bounds from IR causality prevent this shift from being resolvable within the
EFT’s regime of validity. As a concrete example, the blue points show the frequencies in superstring theory for a black hole with α′3/(GM)6 ≈ 0.1 (i.e.
c1ε6

s � c2ε6
s ≈ 5 × 10−4)

also implies that cubic interactions in the EFT must come with quartic interactions. While qualitatively similar, this bound is different
from (1.15) in two key respects. Firstly, since it follows from scattering in the Minkowski vacuum it has no dependence on rs : it
is therefore a constraint on the theory space, whereas (1.15) could be viewed instead as a constraint on the space of backgrounds
which this EFT can reliably describe. Secondly, it is quadratic in b1 relative to c1, whereas the inclusion of quartic interactions in
(1.15) would produce a linear bound on the combination b1 + c1/(GM�)2. So in some respects, (1.15) is closer to the upper bound
on |b1|2 alone which was obtained in [40] by including an IR cut-off mIR or in [52] by imposing unitarity for a finite nmax of heavy
states.

The main conclusion is that this new “QNM causality” condition—that EFT corrections do not lead to resolvable increase in the
decay time of black hole perturbations—leads to constraints on the GREFT coefficients which closely parallel existing causality
constraints. This imposes causality in a qualitatively distinct regime, near to the horizon of a black hole, and in future it will be
interesting to explore its consequences for other EFT interactions (e.g. including matter fields) and black hole backgrounds (e.g.
spinning black holes).

Finally, Table 1 records the first nine fundamental QNM frequencies of the simplest GREFT black hole (the first three of which
agree with the previous results of [16, 19]). Equations (C.6–C.9) provide analytic approximations for these frequencies which
become exact in the limit of large angular momentum 
. Independently of any causality constraint, this QNM data for any 
 and
overtone number n will be useful for constructing ringdown templates in future gravitational wave analyses.

2 The General Relativity Effective Field Theory

This section briefly reviews the GREFT action (1.1) and properties of its black hole solutions.
Power counting. Any low-energy EFT is defined by three considerations: (i) the light degrees of freedom it should describe,

(ii) any symmetries or other constraints which limit the allowed interactions, and (iii) a power counting scheme which can be used
to estimate the size of each interaction. In the case of gravity, (i) is the spacetime metric gμν (plus any matter fields) and (ii) is
diffeomorphism invariance (plus any matter symmetries). Choosing which power counting scheme to use is less straightforward,
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Table 1 The fundamental quasi-normal mode frequencies ω0
 for a Schwarszchild black hole in General Relativity for different angular momenta 
, together
with the relative shifts (3.42) for parity even/odd modes induced by the three leading GREFT interactions




2 3 4 5 6 7 8 9 ∞
Re
[
ωGR

0


]
+0.7473 +1.199 +1.618 +2.025 +2.424 +2.820 +3.212 +3.604 + 2

3
√

3

(
 + 1)

Im
[
ωGR

0


]
−0.1779 −0.1854 −0.1883 − 0.1897 −0.1905 −0.1910 − 0.1913 − 0.1916 − 1

3
√

3
≈ −0.1925

b1 δR−
0
 +0.6585 +0.5715 +0.5483 +0.5383 +0.5330 +0.5299 +0.5279 +0.5265 + 380

729 ≈ +0.52

δI−
0
 +1.485 +1.446 +1.428 +1.421 +1.417 +1.415 +1.413 +1.413 + 1028

729 ≈ +1.41

δR+
0
 −0.3854 −0.4421 −0.4519 −0.4562 −0.4588 −0.4605 −0.4617 −0.4626 − 340

729 ≈ −0.47

δI+
0
 −1.816 −1.619 −1.568 −1.553 −1.549 −1.548 −1.548 −1.548 − 1132

729 ≈ −1.55

c1 δR−
0
 −0.2124 + 0.01045 + 0.04949 + 0.05618 +0.05587 + 0.05414 +0.05234 +0.05078 + 832

19683 ≈ +0.042

δI−
0
 +0.6476 +0.4344 + 0.1939 +0.03069 −0.07512 −0.1453 −0.1935 −0.2278 − 7232

19683 ≈ −0.37

δR+
0
 −0.4425 −1.069 −1.761 −2.619 −3.657 −4.874 −6.270 −7.845 − 64

729 
(
 + 1)

δI+
0
 +2.745 +6.415 +11.43 +17.50 +24.67 +32.95 +42.38 +52.96 + 1280

2187 
(
 + 1)

c2 δR−
0
 −2.130 −4.229 −6.986 −10.46 −14.65 −19.55 −25.16 −31.47 − 256

729 
(
1)

δI−
0
 +15.84 + 30.47 + 49.54 +73.14 +101.4 +134.198 +171.7 + 213.9 + 5120

2187 
(
 + 1)

however a scheme must be chosen in order to reliably determine which contributions to keep in any given observable (and to ensure
radiative stability against quantum corrections). In fact, [53] recently stressed the importance of power counting in gravitational
EFTs in the context of causality bounds.

This work will adopt the following power counting:

SGREFT[gμν , φ] �
∫

d4x
√−g

{
M2

P�2Lgrav

[
R

�2 ,
∇
�

]
+ �4Lmatt

[
φ

�
,
R

�2 ,
∇
�

]}
(2.1)

where R is the Riemann tensor of gμν , φ denotes all of the dynamical matter fields and � 
 MP is related to the mass of the heavy
fields which have been integrated out. This is clearly radiatively stable, and has the feature that matter loops give a small correction
to the gravitational sector (so in that sense it is weakly coupled).

The gravitational sector contains the Einstein-Hilbert term, plus corrections built from increasing numbers of Riemann tensors
and their derivatives,6

Lgrav � R

2�2 +
∑
n�2

Ln[R]

�2n (2.2)

A complete minimal basis for theLn has been constructed in [55, 56] using Hilbert series methods. The goal is ultimately to construct
a set of interactions which:

(i) respects the symmetries of GR, i.e. diffeomorphism invariance, so are built only from the Riemann tensor and its covariant
contractions with gμν .

(ii) affects local observables,7 i.e. does not contain total derivatives,
(iii) does not contain any redundancies, i.e. a minimal set of operators which cannot be reduced to anything simpler by field

redefinitions.

These conditions lead to (1.1) as the most general parity-preserving theory with up to eight derivatives. Notice that, unlike the
SMEFT, the operators have been grouped according to the number of derivatives they contain rather than their total mass dimension.
For example, R(3) contains 6 derivatives but leads to interactions on a Ricci-flat background which start at mass dimension 9 (of the
form (∂2h)3 for metric perturbations hμν).

Expansion parameter. The size of the EFT corrections to any observable can be estimated by simple power counting arguments.
In GR, the Einstein-Hilbert action

√−gR ∼ h∂2 h provides the kinetic term for metric perturbations h and the coupling to matter

6 The cosmological constant has been set to zero so that the background spacetime is asymptotically flat. Notice that while the natural value ∼ M2
P�2 from

(2.1) is typically much larger than the observed dark energy density in our Universe (the infamous cosmological constant problem), since it is not renormalised
in this low-energy EFT there is no obstacle to simply fixing its value to be zero (or to its observed value, providing the black holes are of a sufficiently small
size and separation that the resulting cosmological expansion can be neglected). See e.g. [54] for a modern account of this non-renormalization.
7 While local observables may not exist in a fully quantum theory of gravity, in the low-energy EFT regime considered here QFT is a good description and
local operators certainly exist.
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sources h ∼ GM/r around any mass M. Since the first-order correction from the cubic interaction must contain a factor of b1/�
4,

the only dimensionless combination which can appear is the ratio b1/(GM�)4. The quartic interactions will similarly produce
corrections proportional to c1/(GM�)6 and c2/(GM�)6. The expansion parameter,

εs ≡ 1

GM�
≡ 8πM2

P

M�
(2.3)

will therefore control the EFT corrections around an object of mass M, and the expectation is that each observable O in the GREFT
will admit an expansion of the form,

OGREFT � OGR
(
1 + ε4

s δ3O + ε6
s δ4O + ...

)
(2.4)

where δ3O and δ4O are the relative contributions from the cubic and quartic interactions to O.
Black hole background. To see this in action, consider the most general spherically symmetric solution for the background

metric, which takes the form,

ḡμνdx
μdxν � − ft (r )dt2 +

1

fr (r )
dr2 + f�(r )r2d�2 , (2.5)

where d�2 � dθ2 + sin2 θdφ2 is the angular element in 3 spatial dimensions. Coordinates can be chosen so that f� � 1. The
remaining functions fr and ft are most easily found by substituting (2.5) into the GREFT action and then solving the equations of
motion,

δSGREFT[ḡμν]

δgμν(x)
� 0 ⇒ δ

δ ft

(
SGREFT[ḡμν]

) � δ

δ ft

(
SGREFT[ḡμν]

) � 0 (2.6)

perturbatively in 1/�. This gives [16, 19],

ft � 1 − rs
r

+ b1ε
4
s

(
+

5r7
s

r7

)
+ c1ε

6
s

(
+

2r9
s

r9 − 11r10
s

8r10

)
+ ... ,

fr � 1 − rs
r

+ b1ε
4
s

(
+

54r6
s

r6 − 49r7
s

r7

)
+ c1ε

6
s

(
+

9r9
s

r9 − 67r10
s

8r10

)
+ ... , (2.7)

where rs � 2GM is the usual Schwarschild radius. In GR, M is the mass of the black hole and rs defines the horizon of this black
hole solution. In the GREFT, the O(εs) corrections to the background metric result in the horizon moving to r � r̃s , where

r̃s � rs

(
1 − 5b1ε

4
s − 5

8
c1ε

6
s + ...

)
, (2.8)

is the radial coordinate at which ft and fr both vanish. The +... indicate higher-order corrections in both the couplings (e.g. O(b2
1))

and in the parameter εs . Note that the c2 interaction has no affect on the background solution at this order.
Perturbations. Small perturbations about this background solution, gμν � ḡμν + hμν , are described by the linearised equation

of motion, ∫
d4x ′ δ2SGREFT[ḡμν]

δgμν(x)δgαβ (x ′)
hαβ (x ′) � 0 . (2.9)

In GR, this equation can be brought into the form(
∂2

∂r2∗
+ ω2 − f (r )V±


 (r )

)
�±


 (ω, r ) � 0 (2.10)

where �+

 and �−


 are the dynamical parity-even and parity-odd perturbations inside hμν (the other components of which are then

fixed by gauge conditions), f (r ) � 1 − rs/r and the tortoise coordinate r∗ � r + rs log
(

r
rs

− 1
)

obeys ∂r∗ � f ∂r .

The master equations (2.10) are known as the Regge-Wheeler [57] and Zerilli [58] equations. They are wave equations which
describe the propagation of small perturbations with energy ω and angular momentum 
. The GR potentials are,

V−

 (r ) � 
(
 + 1)

r2 − 3rs
r3 ,

V +

 (r ) � Z

r3 +
2(r − 3rs)

r3 +
r(18rs − 12r)

Zr3 +
18r2

s (r − rs)

Z2r3 (2.11)

where Z � (
(
 + 1) − 2)r + 3rs . The effective potential f V±

 appearing in the master equation is shown in Fig. 3 and acts as a

potential barrier between between spatial infinity and the region close to the black hole horizon. At large 
, both effective potentials
coincide and reach a maximum value of 4
(
 + 1)/27 at r ≈ 3/2 (the height and location of the barrier).
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Fig. 3 The effective potentials in GR, where gray lines show a maximum value of 4/27 at r � 3rs/2

In the GREFT, (2.9) can be brought into a similar form by carefully identifying the dynamical �±

 (ω, r ) combinations of the hμν

components (which will generally differ from the GR Regge-Wheeler and Zerilli variables by O(εs ) corrections). It is convenient
to introduce a tortoise coordinate adapted to the GREFT metric (2.5), namely an r∗(r ) defined by,

dr∗
dr

� 1√
ft fr

. (2.12)

This “metric” tortoise co-ordinate is useful because the master equation can be written as8,[
∂2

∂r2∗
+

ω2

c2
s (r )

−√ ft (r ) fr (r )
(
V±


 (r ) + δV±

 (ω, r )

)]
�±


 (ω, r ) � 0 (2.13)

where c2
s (r ) is the physical sound speed of the metric fluctuations relative to matter.9 This master equation was recently calculated

in [16] for the quartic interactions and in [19] for the cubic interactions, where the sound speed was found to be:

c2
s (r ) � 1 − f

(
+

9r5
s

r5
b1ε

4
s +

63r8
s

r8 c1ε
6
s

)
+ ... (2.14)

where f � 1 − rs/r . As shown in [19], the location of the horizon and the sound speed there is the same for all perturbations.10

The potentials δV±

 (ω, r ) are somewhat lengthy and are listed in Appendix A.

Note that the extension of the tortoise co-ordinate beyond GR is not unique. There is also the natural choice,

r̃∗ � r + r̃s log

(
r

r̃s
− 1

)
(2.15)

which is the usual GR co-ordinate adapted to the new horizon. This “horizon” tortoise co-ordinate is useful because the master
equation parallels that of GR with the simple replacement rs → r̃s . Explicitly,[

∂2

∂ r̃2∗
+

ω2

c̃2
s

− f̃ (r )
(
Ṽ±


 (r ) + δṼ±

 (ω, r )

)]
�̃±


 (ω, r ) � 0 (2.16)

where f̃ (r ) � 1 − r̃s/r and the constant factor of c̃s � limr→r̃s
√

ft fr/ f is included for later convenience11. A tilde will be used
to denote that the EFT corrections to the horizon have been included in an object: for instance

Ṽ−

 (r ) � j

r2 − 3r̃s
r3 � V−


 (r ) +
3rs
r3

(
5b1ε

4
s +

5

8
c1ε

6
s + ...

)
(2.17)

and similarly Ṽ +

 is defined by (2.11) with rs → r̃s . The master equations (2.16) and (2.13) are equivalent descriptions of the same

physics although some calculations will be easier in one of the two coordinates. The explicit relation between �̃±

 and �±


 is,

�̃±

 � �±




(√
ft fr
f

)1/2

≡ �±



(
1 + ε4

s δ3N + ε6
s δ4N

)1/2
, (2.18)

8 While the higher-derivative interactions would naively produce higher-derivative terms in the equation of motion, these can always be traded for terms
which are higher-order in the EFT expansion [12, 16, 19, 44]. From this point of view, there is no issue with unitarity [59] or constructing black hole solutions
[60] in such EFT extensions of GR.
9 Since the corrections to the potential will generically depend on ω, the split into c2

s (r ) and δV±



(r , ω) is ambiguous: the condition that the potential contains

no ω2 term resolves this ambiguity.
10 Co-ordinates could therefore be chosen so that cs (r̃s ) � 1 and r̃s � 1. While this simplifies expressions within a given theory, it makes comparing
different theories difficult since generally r̃s is a function of other model parameters beyond just the black hole mass (e.g. the EFT coefficients).

11 In short, while ω2
(

1
c̃2
s

− 1

)
could be absorbed into the potential, keeping it separate will ensure that the ω2 term in the potential is regular at the horizon.
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and the relation between their potentials is given in the Appendix A. Since the “metric” and “horizon” tortoise co-ordinates differ
only by O(εs) corrections, both (2.13) and (2.16) correctly reduce to the GR equations when εs → 0.

(2.13) (or (2.16)) describes the classical evolution of small perturbations about a GREFT black hole. The remainder of this

work will focus on analysing this equation in different settings. Notice that, from a QFT perspective, the object δ2SGREFT[ḡμν ]
δgαβ (x ′)δgμν (x)

appearing in (2.9) is the inverse propagator for the metric on this black hole background (2.5). Since the consequences of causality
are relatively well understood for the propagator (e.g. the +iε prescription and resulting analytic structure in the complex ω plane),
one should expect causality to place analogous constraints on the classical problem (2.13). Section 3.1 below recounts the classical
connection between causality and no resolvable time advance, and then section 3.2 will return to this connection with analyticity of
the propagator.

Regime of validity. As can be seen from the expression (2.8) for r̃s , the condition εs 
 1 is needed for the EFT to reliably
capture the black hole horizon. This is simply the requirement that rs � 1

�
so that at any r � rs the derivative expansion in spatial

derivatives (powers of ∂i/�) is under control. But there is also a derivative expansion in time derivatives (power of ∂t/�), which
means that the EFT will break down if ω is too large. The naive condition ω 
 � implies that the EFT is valid in the range,12

εs 
 2

ωrs
(weak condition) . (2.19)

However, it was recently argued in [45, 46] that this EFT enjoys a much larger regime of validity if one focusses on linear perturbations
in the purely gravitational sector. In that case, any ∇μ � (∂t , ∂i ) will either act on the background and produce

(
0, 1

r r̂
)
, or it will act

on the fluctuations and produce the null momentum
(
ω, ωp̂

)
. It is the Lorentz-invariant contraction of these two 4-vectors which

must be less than �2 for validity, which implies the EFT is valid in the range13,

ε2
s 
 2r

rs
× 2

ωrs
(strong condition) . (2.20)

Since 1√
ωrs

� 1
ωrs

, this condition for validity is “stronger” in the sense that all observables which are under perturbative control in
the range (2.20) are automatically under control in the range (2.19), but not vice versa (for instance scattering involving multiple
fluctuations is typically only perturbative in the range (2.19) but not (2.20)).

Redundant potentials. Finally, note that the potentials themselves are not physical observables. For instance, take one of the
redundant cubic operators,

L3 ⊃ b3

16
RR(2) . (2.21)

This affects the master equation in two ways. Firstly, it shifts the background by [19]:

δ ft � b3ε
4
s

2

(
− 6

x6 +
9

x7

)
, δ fr � b3ε

4
s

2

(
+

36

x6 − 33

x7

)
, δr̃s � −3

2
b3ε

4
s rs . (2.22)

It also shifts the potentials by,

δV−

 ⊃ b3ε

4
s

r2
s

[
36r9

s

r9 − 
(
 + 1)
21r8

s

2r8

]
,

δV +

 ⊃ b3ε

4
s

r2
s

[
−21Zr8

s

2r9 +
r8
s (135rs − 42r)

2r9 +
9r9

s (16r − 27rs)

r9Z
+
r10
s (351rs − 297r)

r9Z2 +
162r11

s (r − rs)

r9Z3

]
. (2.23)

However, this redundant interaction can be converted into a universal tidal interaction, which does not affect the potential in the
master equation for metric fluctuations at this order. Consequently, (2.23) must be a trivial addition to the potential which exactly
compensates (2.22) and does not affect any physical observable derived from the master equations. This fact can be used as a
useful consistency check of the results below: the quasi-normal modes and time delays associated with (2.21) indeed vanish to the
precision of the numerical methods used. A more detailed discussion of the redundancies in the black hole potential is given in

[61]—in particular, “null constraints” like
(

36r9
s

r9 − 
(
 + 1) 21
2

r8
s
r8

)
≈ 0 can be used to improve the numerical accuracy with which

quasi-normal modes are determined.

3 Theoretical constraints

When small perturbations propagate on a black hole background, the black hole presents an effective potential barrier (2.13). Waves
can scatter and get reflected from this barrier, which introduces a time delay in their transit relative to Minkowski spacetime with no

12 The factors of 2 in (2.19) and (2.20) are an unfortunate consequence of defining εs � 1/(GM�) rather than 1/(rs�), but are retained to facilitate
comparison with [47] in which the maximum considered energy saturates (2.20).
13 Focussing on processes for which p̂ · r̂ is suppressed can lead to an even wider range of validity. The maximum εs for which the EFT captures GWs from
a quasi-circular orbit is given in (4.1).
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black hole. In GR, this is the familiar Shapiro time delay. Waves can also “tunnel” through this barrier: a phenomenon captured by
the bound state energies of the potential. These are the so-called “quasi-normal modes” (QNM) of the black hole: the characteristic
frequencies which determine the gravitational waveform emitted by a post-merger ringdown. In GR, the QNM are well understood
and have been computed numerically up to 10 decimal places. Since the GREFT interactions modify the effective potential, they
change both the time delay experienced by reflected waves and also the quasi-normal mode frequencies of tunnelling waves. In
this section, causality will be used to place restrictions on the change in both of these observables, and hence constrain the GREFT
coefficients which appear in the effective potential.

3.1 IR causality

The goal of this subsection is to define the time delay experienced by a gravitational wave scattering from the black hole at large
impact parameter, and hence use causality (positivity of this time delay) to place constraints on the GREFT coefficients b1, c1 and
c2.

Time delay. Consider a gravitational wave (GW) incident from spatial infinity with fixed parity P, angular momentum 
 and an
energy ω2 < max

[√
ft fr
(
V P


 + δV P



)
c2
s

]
so that the region near the black hole horizon is classically forbidden by the potential

barrier. In terms of the total effective energy WP

 � ω2

c2
s

−√
ft fr
(
V P


 + δV P



)
, the classical point of closest approach rt is determined

by the condition WP

 (ω, rt ) � 0 (where the kinetic and potential energies exactly balance, since this is the turning point of the

classical trajectory).14 At r < rt , the energy WP

 is negative and demanding that the fluctuation decays exponentially in this region

gives the WKB solution,

�P

 (ω, r ) ∝ 1

(−WP

 )1/4

exp

(
−
∫ rt

r
dr
√

−WP



)
(r < rt ) (3.1)

This can be extended to the classically allowed region using the WKB connection formula. On the other hand, far from the black
hole we conventionally parameterise the fluctuation as a superposition of the original incident wave and a phase-shifted reflected
wave,

�P

 (ω, r ) ∝

(
e+iωr+2iδP
 (ω) − e−iωr+iπ


)
(r � rt ) (3.2)

which is an exact solution to the spherically symmetric Schrodinger problem on Minkowski. The phase shift δP
 (ω) can then be
determined from WP


 by matching onto the WKB solution.
Crucially, this phase shift determines the so-called “Eisenbud-Wigner time delay” experienced by the GW,15

t P
 (ω) � 2
∂δP
 (ω)

∂ω
. (3.3)

If T P

 is the total time taken for the GW to travel from spatial coordinate z � −∞ to z � +∞, then this t P
 represents the difference

between T P

 on the black hole spacetime (2.5) and T P


 on Minkowski spacetime.
IR causality. It would be tempting to interpret causality as the condition t P
 > 0, namely that the black hole has led to a time

delay and not a time advance. This temptation stems from imagining that two observers at spatial infinity, communicating by sending
light-like signals, might use such a time advance to send messages apparently backwards in time. However, as explained in [45],
the implications of causality for t P
 are more subtle in two respects.

The first subtlety is that the usual Shapiro time delay of GR gives a large positive contribution to t P
 and no EFT correction
could compete with this without the perturbation expansion breaking down (i.e. flipping the sign of t P
 would require the first EFT
corrections to be larger than the GR Shapiro, so they are no longer small corrections which can be treated perturbatively). Since the
EFT corrections are there to encode the effects of heavy degrees of freedom, a more refined statement of causality would be that
these heavy degrees of freedom contribute positively to the time delay. Formally, this amounts to splitting the time delay into GR
and EFT parts:

t P
 �
[
t P


]
GR

+ δt P
 where δt P
 � ε4
s δ3t

P

 + ε6

s δ4t
P

 + ... (3.4)

and considering the EFT corrections separately. This is subtle because while one could measure t P
 � T P

 |GREFT BH−T P


 |Minkowski

by sending signals far from / near to the black hole, there is no way to ever measure the correction δt P
 � T P

 |GREFT BH−T P


 |GR BH

since there is no GR BH in a Universe described by the GREFT (in which unperturbed Schwarschild is not a stable solution to the
classical equations of motion). The requirement that the EFT corrections contribute positively to the time advance ultimately stems
from dispersion relations and monotonicity arguments applied to sound speeds: the idea is that

[
t P

]

GR represents a UV value of the

14 Note that rt therefore depends on 
, P and ω, but this dependence is kept implicit to avoid cluttered notation.
15 Note that (3.3) defines the time delay experienced by a wave with fixed angular momentum. Taking ∂ω at fixed b instead produces the time delay at fixed
impact parameter. Both are used in the literature, and usually differ only by an overall numerical factor.
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time delay (in which all of the heavy particles have been integrated back in so there are no curvature corrections), and so the time
delay in the IR must be larger if the heavy physics is causal.

The second subtlety is that the EFT has a finite regime of validity, and therefore a sufficiently small time advance may not imply
a resolvable acausality within the EFT.16 To be resolvable in an EFT context would usually mean a time interval � 1/�, where
� is approximately the EFT cut-off. However, in order for a time advance to be “resolvable” at a level where it would threaten
causality, the time advance must exceed 1/ω (the quantum uncertainty associated with a wavepacket of energy ω). Taken together,
the requirement that the heavy physics contribution does not lead to a resolvable time advance can be written as:

−ω δt P
 � 1 (IR causality) . (3.5)

This concept was recently introduced and explored in [44–48], where it was referred to as “IR causality”. Unlike the positivity
bounds from UV causality, it is not a numerically precise bound since the O(1) constant depends on the details of the scattering
process (which determine the uncertainty that must be overcome in order to have a resolvable time advance).

Computing the time delay. In the WKB approximation described above, [45] recently derived a compact expression for the shift
in the time delay induced by the EFT interactions,17

δnt
P

 (ω) � −2

∫ ∞

rGR
t

dr AP

 ∂r

(
δnAP




∂rAP



)
(3.7)

where the integrand is constructed from,

AP

 (ω, r ) � ω

f
√

ω2 − f V P



δnAP

 (ω, r ) � AP




[
δnW P




2(ω2 − f V P

 )

− 1

2ω

∂

∂ω
δnW

P

 − δnN

]
(3.8)

and f � 1 − rs
r , δnN is given in (2.18) and δWP


 is given by,

WP

 � f V P


 + δWP

 . (3.9)

This can be evaluated numerically to find the time delay for a fixed ω, 
 and parity. Note that the turning point rGR
t in (3.7) is defined

by the GR condition,

ω2 − f (rGR
t )V P


 (rGR
t ) � 0 . (3.10)

A useful parameterisation of the ω is therefore,

ω2 � γ max
r

(
f (r )V P


 (r )
)

, (3.11)

where γ determines the turning point rGR
t and 0 < γ < 1 is the range of ω over which there is a classically forbidden interior region

and the above WKB method can be applied. At large 
, the turning point is
(
rGR
t

)2 ≈ 
(
 + 1)/ω2 ≈ 27
4 γ r2

s +O(γ 2
)
, and so holding

γ fixed amounts to holding rt fixed.18

As an aside, note that when deriving the WKB solution (3.7), the waves absorbed by the black hole have been neglected. This is
a good approximation provided that the classical turning point rt is much greater than the position of the potential barrier (≈ 3rs/2
at large 
). Since γ is related to the turning point by,

γ � 27r2
s (rGR

t − rs)

4
(
rGR
t
)3 + O

(
1


2

)
, (3.12)

the limit γ → 1 corresponds to rt → 3rs/2 and these absorbed waves become important. Following [47], the fiducial value of
γ � 0.9 was used in Figs. 4 and 5. It is worth remarking that this fixes rt ≈ 1.87rs in the large 
 regime which dominates the
causality bound, and so even if (3.5) could be made numerically precise there would remain an O(1) theoretical uncertainty from
the neglected absorbed waves.

16 This is actually already the case in quantum mechanics, for instance scattering a wave of speed v from a hard sphere of radius a leads to a small time
advance, but Wigner argued that causality in this case should correspond to a time delay > −2a/v [62, 63], namely that it is larger than the quantum
uncertainty associated with the sphere position / wave speed.
17 The WKB approximation for the full t
 is,

t P
 (ω) � 2
∫ ∞
rt∗

dr∗
(

∂

∂ω

(√
WP



(r , ω)

)
− 1

)
− 2rt∗ (3.6)

where rt∗ is the tortoise coordinate associated with rt . This can be carefully perturbed around GR to produce (3.7).
18 At least in the large 
 regime: at fixed γ the turning point rGR

t will depend on 
 for small values of 
.
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Fig. 4 IR causality constraints on the cubic GREFT interaction b1R
(3). Left. When b1 > 0 (< 0), the time advance for parity-odd (even) modes with energy

γ � 0.9 and angular momentum 
 becomes resolvable when |b1|ε4
s exceeds the solid (dashed) black line. At these large values of 
 the even and odd results

overlap. The red line shows the regime of perturbative validity implied by the strong condition (3.15) with b1ε2
ω ≈ 1. The 
 � 3881 mode gives the largest

time advance while remaining perturbative, and leads to the IR causality bound |b1|ε4
s � 2.8 × 10−5. The blue line shows the weak condition (3.16) for

comparison (which leads to |b1|ε4
s � 5 × 10−3). Right. Repeating this procedure for different γ gives the maximum values for |b1|ε6

s shown by red points,
which agree well with the analytic result (3.24) shown by a black line

Fig. 5 IR causality constraints on the quartic GREFT interaction c1(R(2))2. Left. When c1 > 0, the time advance for parity-odd modes with energy γ � 0.9
and angular momentum 
 becomes resolvable when c1ε6

s exceeds the black points. Red points show the regime of perturbative validity implied by the
strong condition (3.15) with c1ε3

ω ≈ 1. The 
 � 49 mode gives the largest time advance while remaining perturbative, and leads to the IR causality bound
c1ε6

s � 0.07. The blue points show the weak condition (3.16) for comparison (which leads to c1ε6
s � 0.14). Right. Repeating this procedure for different γ

gives the maximum values for c1ε6
s shown by red points. At large γ it agrees well with the analytic result (3.18), shown by black line. The disagreement

at low γ is due to the 
 dependence of 1/(ωδ4t
−



): for γ � 0.9, the largest time advance occurs for 
 ≈ 3 rather than large 
 and this leads to a stronger
constraint than (3.18) for those values of γ

c1 time advance. For instance, consider the effect of a single GREFT interaction c1(R(2))2 (i.e. set b1 � c2 � 0 and neglect
higher-derivative terms). The time delay δt±
 is proportional to −c1 for odd modes and +c1 for even modes. This interaction will
therefore lead to a time advance if εs is too large,

|c1|ε6
s �
{ −1

ωδ4t
−



if c1 > 0
−1

ωδ4t+

if c1 < 0

⇒ resolvable time advance . (3.13)

IR causality (forbidding such a resolvable time advance) can therefore impose an upper bound on εs . This should be viewed as
the range of spacetime backgrounds which this EFT can describe perturbatively. Just as a violation of perturbative unitarity signals
that higher-order EFT corrections must become important, the violation of perturbative causality is diagnosing the range of εs over
which the higher-order corrections may remain small (assuming causality).

Expanding the integral (3.7) at large 
 produces the result

1

ωδ4t
−

 (ω)

� K−
c1

(γ )

−c1

+ O
(

1


2

)

1

ωδ4t+

 (ω)

� K +
c1

(γ )

+c1
3 + O
(

1


4

)
(3.14)

where K±
c1

(γ ) are positive functions of γ given in Appendix B. Figure 5 shows the −1/(ωδ4t
−

 (ω)) upper bound obtained by

numerically integrating (3.7) for different 
 at a fixed γ � 0.9, and it indeed scales as ∼ 1/
 at large 
. This scaling spells trouble
for the c1 GREFT coefficient: regardless of its sign, scattering waves from a GREFT black hole will always produce a resolvable
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time advance for sufficiently large 
. This would seem to imply that c1 � 0 is the only value allowed by causality, or at least that c1

cannot be the dominant interaction (i.e. other EFT interactions could correct the acausality induced by a small c1). However, such
a conclusion would be premature, since there is a finite range of 
 under which the GREFT is under perturbative control. A finite
c1 would be consistent with causality as long as the time advance is only resolvable for 
 > 
max modes, where 
max is the largest
angular momentum that can be reliably described by this perturbative calculation.

Regime of validity. The question becomes: what is 
max? As discussed above, on this GREFT background the parameter εs
is also bounded by the condition that the derivative expansion is under control (this is closer in spirit to a unitarity bound). In
order to apply the GREFT to the scattering of GWs with turning point rt , it is enough for this EFT to be valid on scales r � rt
which are classically accessible.19 From the strong condition (2.20) on the allowed range of ω, suppose that the EFT is valid up to

(ωrs)max � εω
4rGR

t
rs

ε−2
s , where εω � 1 is a small parameter that controls the size of higher time-derivative corrections. In that case,

the GREFT is only perturbative providing that

ε2
s <

4εωrGR
t

ωr2
s

� εω




(
4 + O(γ 0)) + O

(
1


2

)
(strong perturbativity) , (3.15)

where εω is the small parameter that controls higher derivative corrections. For comparison, if the weak condition (2.19) is used to
instead infer an (ωrs)max � 2εω′/εs , then the GREFT would only be perturbative for

ε2
s <

4ε2
ω′

(ωrs)2 � ε2
ω′

2

27

γ
+ O
(

1


2

)
(weak perturbativity) . (3.16)

In either case, the crucial observation is that for a given EFT and spacetime background (i.e. fixed εs and εω), waves of arbitrarily
high 
 at fixed rt (equivalently fixed γ ) are not under perturbative control. Using (3.13) to derive an upper bound on εs is therefore
too strong, since it does not account for the finite 
max implied by (3.15) or (3.16).

c1 even modes. More precisely, when c1 < 0 we see that the causality cut-off from parity-even modes (3.14) and the strong
condition (3.15) both scale ∼ 1/
3, and therefore this interaction will lead to a problematic time advance within the EFT’s regime

of validity whenever K +(γ ) < |c1|
(
4εωrGR

t /
√

4γ /27
)3

at large 
. Since K +(0.9) ≈ 1.5, this means that a negative c1 is only
consistent with causality if the higher-derivative corrections come in at a lower scale than expected: namely if the maximum ω is
set by |c1|ε3

ω ≈ 1.8 × 10−4 rather than the expected εω ≈ 1. Alternatively, if the unitarity cut-off is set by the parameterically lower
weak condition (3.16), then there is no causality issue at large 
.

Demanding that the causality cut-off does not lower the strong derivative condition from unitarity, i.e. setting εω � 1 in (3.15),
leads to the conclusion that c1 must be positive if it is the dominant interaction. This coincides with the positivity bound from UV
causality of the 4-point graviton amplitude.

c1 odd modes. Taking c1 > 0 and comparing (3.13) with (3.15), there is a problematic time advance within the EFT’s regime of
validity whenever,

(
4rGR

t

ωr2
s

)3

� c1ε
6
s �

K−
c1

(γ )



(3.17)

at large 
 (where now c1ε
3
ω is taken to be O(1)). Since ω2 ≈ 4

27γ 
2, forbidding this acausality requires that20,

c1ε
6
s � 1

18
√

2

(
γ 3

3

)1/4
(
rs K−

c1
(γ )

rGR
t

)3/2

(3.18)

At γ � 0.9, this gives c1ε
6
s � 0.07 as the range of backgrounds which this EFT can describe without problematic acausality21.

Figure 5 shows a numerical determination of the maximum c1ε
6
s allowed by IR causality (taking into account the perturbativity

bound (3.15)), which agrees well with the result (3.18) for γ � 0.8. For γ < 0.8, the largest resolvable time advance actually occurs
at 
 � 3 and gives a stronger bound than (3.18) at those values of γ . The strongest bound overall would come from pushing γ → 1,
where K−

c1
(γ ) → 0 since the time advance diverges. This would require c1ε

6
s → 0 to be consistent with causality (however note that

the absorbed waves become important in this limit and invalidate the WKB expression (3.7) used to derive (3.18)).22 Interestingly,
this is the same conclusion that would follow from UV causality if the IR cut-off is pushed unreliably close to the EFT cut-off.

19 Even if there are large corrections in the rs < r 
 rt region close to the horizon, these affect the classically forbidden region and do not alter the WKB
behaviour (3.1) near rt or the expression (3.7) for the classical time delay.
20 Note that (3.18) follows from the range (3.17) vanishing at 
2 � 648

√
3
(
rGR
t /

√
γ
)3

/K−
c1 (γ ), which must be � 22 in order to trust this large 
 limit.

For γ � 0.9 this is 
2 ≈ 492 and the bound (3.18) is indeed a good fit to the numerical result (see Fig. 5).
21 Note that [47] approximates rGR

t ≈ (
 + 1
2 )/ω ≈ 2.74 at this value of γ � 0.9, which leads to c1ε6

s � 0.04 from (3.18). The difference is unimportant
since the cut-off is not numerically precise, given the uncertainty in (i) choosing εω , (ii) the resolvability condition (3.5) and (iii) neglecting the absorbed
waves in the WKB solution.
22 Furthermore, any finite upper bound on c1ε6

s would similarly imply that c1 has to vanish if black hole of arbitrary small mass are considered [47].
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c2 odd modes. Now consider turning on the c2 interaction. This affects only the odd parity modes, and gives a contribution to the
time advance which is proportional to +c2 and grows with 
2 at large 
. As with the c1 contribution to the even modes, forbidding a
resolvable time advance leads to a causality cut-off of the form,

|c2|ε6
s � −1

ωδ4t
−



� K−
c2

(γ )


3 + O
(

1




)
if c2 < 0 . (3.19)

Given the EFT regime of validity (3.15), when c2 < 0 there would be a problematic time advance whenever K−
c2

(γ ) < |c2|(
4εωrGR

t /
√

4γ /27
)3

. Since K−
c2

(0.9) ≈ 0.36, this means that a negative c2 is only consistent with causality if the maximum ω is set
by |c2|ε3

ω ≈ 4.2 × 10−5. Demanding instead that the EFT remains reliable up to |c2|ε3
ω of order unity, then IR causality implies that

c2 > 0. This is again in line with the UV causality bounds on the 4-point scattering amplitude on Minkowski.
At sufficiently large 
, the c2 contribution dominates δt−
 and would cure any acausality induced by c1. However, at small 
 the

c1, 2 contributions are comparable. The smallest c2 contribution is at 
 � 2, where

ωδ4t
−

�2 � −13.581c1 + 12.896c2 at γ � 0.9 . (3.20)

If c2 > 1.053c1 then the overall the time delay is positive and there is no causality violation for any value of εs . If c2 is less than
this, then from the 
 � 2 scattering of parity-odd fluctuations, IR causality is violated if,23

ε6
s � 1

13.581c1 − 12.896c2
(causality violated) . (3.21)

Note that since the time advance from c1 grows with 
, as c2 is made smaller and smaller it is successively higher 
 modes which
provide the strongest constraint on ε6

s (and in the c2 → 0 limit it is the largest 
 compatible with perturbativity that sets the cut-off
(3.18)).

b1 time advance. Finally, consider the cubic b1 interaction. From a straightforward power counting in εs , this should be the
dominant correction to δt±
 . However, for this interaction the time delay is proportional to +b1 for even modes and −b1 for odd
modes, and unlike the quartic interactions the scaling with 
 is the same for both parities:

1

ωδ3t
±

 (ω)

� K±
b1

(γ )

±b1

+ O
(

1


2

)
. (3.22)

As a result, there is a problematic time advance within the EFT regime of validity if,

(
4rGR

t

ωr2
s

)2

� |b1|ε4
s �

⎧⎨
⎩

K−
b1

(γ )



if b1 > 0

K +
b1

(γ )



if b1 < 0

(3.23)

again assuming that |b1|ε2
ω is order unity. Since K−

b1
(0.9) ≈ K−

b1
(0.9) ≈ 0.11, IR causality imposes the two-sided bound,

|b1|ε4
s � 2.8 × 10−5 . (3.24)

This is consistent with the causality bounds of [49]. It is worth emphasising that (3.24) should be read as |b1|ε4
s � O(10−5

)
since the

original resolvability condition (3.5) is not numerically precise, and may contain factors of 2, π , etc. Regardless of these factors, such
a tight bound would render this cubic interaction unimportant for the inspiral and ringdown phenomenology probed by gravitational
waves observatories (this will be discussed further in section 4 below).

However, note that while the bound (3.18) on c1ε
6
s does not vary much with different εω or between the strong and weak

perturbativity conditions, (3.24) would become |b1|ε4
s � O(10−2

)
if the weaker perturbativity condition (3.16) were used. So the

cubic interactions in GREFT may still play a phenomenologically relevant role at low energies, since this EFT could in principle
preserve IR causality if the cut-off in ω is much lower than the naive expectation (2.20).

As a final sanity check, note that the redundant potentials (2.23) give δ3t
±

 (ω) ≈ 0 up to small numerical errors for the range of

γ considered in the figures (and exactly zero in the large 
 limit where the integral can be performed analytically).

3.2 QNM causality

The final causality condition to be considered in this work is from the quasi-normal mode spectrum.
Quasi-normal modes. Recall that the master equation (2.13) takes the form of the (time-independent) Schrodinger equation,

∂2

∂r2∗
�±


 � −W±

 �±


 (3.25)

23 Interestingly, c1 � c2 in superstring theory and there is such a finite upper bound on ε6
s from the lowest 
 modes.
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The “quasi-normal modes” of the black hole refer to solutions of the following eigenvalue problem: solve (3.25) subject to the
boundary condition,

�±

 ∼ e±iωr∗ at r∗ → ±∞ . (3.26)

Physically, this condition corresponds to waves that are purely ingoing near the horizon (nothing is coming out of the black hole)
and purely outgoing far from the horizon (nothing is coming in from spatial infinity).

Solutions with these boundary conditions are only possible for a discrete set of allowed ω. These are labelled in general by {n, 
,
m}, namely the overtone number, the total angular momentum, and the angular momentum about one axis. Since both Schwarszchild
and the GREFT extension (2.5) are spherically symmetric, the allowed quasi-normal mode frequencies ωn
 for this black hole will
be independent of m. The QNM frequencies are important phenomenologically because they describe how the black hole responds
to a transient perturbation: for instance immediately after a binary merger, the final black hole is formed in a perturbed state which
then relaxes back to (2.5) with �±


 ∼ eiωn
t describing the characteristic gravitational wave emitted during the ringdown. See [64]
for a review.

In GR, the QNM frequencies coincide for odd and even perturbations.24 The GREFT higher-derivative interactions typically
break this coincidence and produce different allowed frequencies for the parity odd/even fluctuations, which can be written in the
form:

ω±
n
 � ωGR

n
 + δω±
n
 where δω±

n
 � ε4
s δ3ω

±
n
 + ε6

s δ4ω
±
n
 + O(ε8

s

)
. (3.27)

QNM causality. In the absence of gravity, causality implies that any singularity of the linear response function must appear in the
lower-half of the complex plane. The argument is well-known, and follows from the fact that the classical response function G(t)
(which describes how a degree of freedom O(t) will respond to a source, namely O(t) � ∫ dt ′G(t − t ′)J (t ′)), must obey

Causal boundary conditions ⇒ G(t) � 0 for t < 0 . (3.28)

Physically, this condition corresponds to the requirement that if a source is turned on at time t0, it can only affect the system at times
t > t0. The response function in the frequency domain25,

G(ω) �
∫ ∞

−∞
dt G(t) eiωt , (3.29)

is therefore analytic in the upper-half of the complex ω plane, since if this integral converges on the real ω axis then it must also
converge for any Im ω > 0 because in that region the integrand is strictly smaller (i.e. |eiωt |< 1 for t > 0). The limited support
of G(t) in the time domain (i.e. that a source can only affect its future) corresponds to analyticity (i.e. no singular points) in the
upper-half of the complex ω-plane.

The response function for fluctuations on this black hole background would be defined by solving(
d2

dr2∗
+ W±


 (ω, r )

)
G(ω, r ) ∝ δ(r ) (3.30)

subject to appropriate boundary conditions. Since the quasi-normal mode frequencies ω±
n
 correspond to zeroes of the differential

operator on the left-hand-side, they can be viewed as poles of G(ω, r ). It is therefore tempting to conclude that causality might
impose some constraint on the location of these poles in the complex plane. For instance, Im ω±

n
 < 0 would be the straightforward
analogue of the non-gravitational analyticity of a causal response function. However, much like the time advance of the previous
subsection, this is subtle for a number of reasons:

(i) The GR contribution to each QNM frequency already obeys Im ωn
 < 0, and no small EFT correction will ever change this
sign (i.e. a sufficiently large EFT correction would invalidate perturbation theory, at least naively). This is the analogue of
EFT corrections to the Shapiro time delay in t±
 . Learning from that example, a more refined statement would be that the EFT
contribution alone, δω±

n
 in (3.27), must shift the QNM frequencies deeper into the lower-half of the complex plane (since in
the absence of gravity this is the direction which would be consistent with causality). Since δω±

n
 is not directly measurable,
this condition is again to be viewed in the same spirit as the monotonicity theorems / dispersion relations: as one integrates
out heavy physics and replaces them with GREFT coefficients, this process should shift the QNMs in a particular direction if
this heavy physics is causal.

(ii) Since the EFT has a finite resolving power, a sufficiently small change in the QNM frequency should not present any pathology.
The most basic requirement for the EFT to “resolve” a frequency change would be that δω 
 1/�. However, again learning
from the earlier time advance discussion, this is likely not sufficient to present a problem for causality (essentially due to the

24 Despite the differences between the potentials (2.11), this isospectrality can be understood by noticing that they follow from the same superpotential [64].
This can be made manifest by treating odd/even perturbations in a unified manner [65].
25 Note that opposite conventions for the sign of ω in the Fourier transform would lead to the opposite conclusion of analyticity for Imω < 0. When
discussing QNM frequencies below, a particular sign convention has been chosen for ωn
 so that Im ωGR

n

< 0.
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quantum uncertainty associated with any measurement of this frequency). A more reliable condition would be to define the
characteristic lifetime of each QNM perturbation as,

τ±
n
 � − 2π

Im ω±
n


, (3.31)

so that the change in the lifetime induced by the EFT interactions,

δτ±
n
 ≡ − 2π

Im ω±
n


+
2π

Im ωGR
n


� 2π

Im ωGR
n


(
ε4
s

Im δ3ω
±
n


Im ωGR
n


+ ε6
s

Im δ4ω
±
n


Im ωGR
n


+ O(ε8
s

))
(3.32)

is deemed resolvable if,

Re
[
ω±
n


]× δτ±
n
 � 1 . (3.33)

In this language, a QNM frequency shifting deeper into the lower-half of the complex plane corresponds to δτ±
n
 < 0, i.e.

shorter lifetimes for the QNMs. QNM causality is then the requirement that perturbations decay faster than in GR, namely that
the GREFT black hole is “more stable” than a Schwarszchild black hole in GR. The condition (3.33) then reflects the point at
which one could determine whether a wave of oscillatory frequency Re ω±

n
 has experienced a change in decay time of δτ±
n
.

(iii) A further subtlety, which seems unique to the QNM problem, is that the boundary conditions (3.26) are not the standard
‘causal’ boundary condition (3.28) used in basic proofs of analyticity. This will be discussed further in section 5. While there
are some rough arguments for this proposal, and at least for the GREFT it coincides with existing constraints from UV and IR
causality, there is no rigorous proof. It would therefore be wise to interpret the following bounds as an interesting conjecture,
which may hopefully be proven (or disproven) in the near future.

Computing QNMs. There are now two separate motivations to carefully compute the QNM frequencies in the GREFT. Firstly, they
inform the ringdown portion of the inspiral-merger-ringdown templates that are required to accurately test GR using gravitational
wave measurements (see section 4). Secondly, they can be used to check when the “QNM causality” condition is violated and hence
place theoretical constraints on the GREFT coefficients.

There are a number of ways to compute the QNMs from a given W±

 . Below, two complementary techniques are used:

(1) The recent parameterised approach of [17, 18], which is particularly well-suited to numerically determine the shift induced
by the EFT in low 
 frequencies. This approach parameterises the potential in the “horizon” master equation (2.16) with the
following large r expansion,

δṼ±

 (ω, r ) � 1

r̃2
s

∞∑
k�0

α±
k
(ω)

(
r̃s
r

)k
. (3.34)

The shift in the QNM frequencies at leading order in δṼ±

 is then,26

r̃sω
±
0


c̃s
� r̃s ω̃GR

0
 +
∞∑
k�0

e±
k
 α±

k
(ω̃GR
0
 ) , (3.35)

where ω̃GR
0
 is the QNM frequency of a black hole of size r̃s in GR, which obeys r̃sω̃GR

n
 � rsωGR
n
 . In terms of the GR

Schwarszchild radius rs � 2GM and corresponding ωGR
0
 , the final result is27,

rs δω±
0
 �

(
c̃srs
r̃s

− 1

)
rs ωGR

0
 +
∞∑
k�0

e±
k
 α±

k
(ωGR
0
 ) , (3.36)

Lists of the “basis” coefficients ek
 have been computed and provided online [17].
(2) The popular WKB approach [66–71], which provides simple analytic approximations that become exact at large 
. This approach

makes use of the potential and its derivatives evaluated at its maximum (i.e. the location of the potential barrier),28

W̃±

,k(ω) ≡ ∂k

∂ r̃ k∗

[
f̃ Ṽ±


 + f̃ δṼ±



]∣∣∣∣
rmax

(3.37)

26 Note that including the c̃2
s rescaling of the frequency improves the convergence of this series approximation, since it effectively removes a term of the

form ω2/ f̃ from δṼ±



, which would otherwise populate every α±
k
 coefficient.

27 Note that since c̃s − 1 and ω̃GR
n


− ωGR
n


both ∼ O(δV ), such factors can be ignored in the sum since α is already O(δV ).
28 Specifically, rmax is defined so that W̃±


, 1 � 0 (and thus depends on both 
 and the parity).
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to construct an approximation to the QNM frequency. The zeroth (second) derivative determines Re ω±
n
 (Im ω±

n
) exactly in
the large 
 limit,

Re

[
ω±

0


c̃s

]
� j
√
W̃±


,0 + O( j0) , Im

[
ω±

0


c̃s

]
� −N

√√√√−W̃±

,2

8W̃±

,0

+ O( j−1) , (3.38)

where j � 
(
 + 1) and N � 2n + 1. The third and fourth (fifth and sixth) derivatives determine the subleading correction to
Re ω±

0
 (Im ω±
0
)—details can be found in Appendix C. To extract the shift in the QNM frequencies due to the EFT interactions,

one can expand these functions of W̃±

, k to linear order in δṼ±


 (remembering to account for the fact that rmax also depends on

δṼ±

 ), which gives an approximation of the form,

ω±
0


c̃s
� ω̃GR

0
 +
∑
k�0

β±
k
 δW̃±


,k(ω̃GR
0
 ) + O

( (
δV±




)2 )
(3.39)

where β±
k
 are constant coefficients fixed by the GR potential. At zeroth order in δṼ±


 , one finds the QNMs of a black hole of
size r̃s in GR, which obey r̃sω̃GR

n
 � rsωGR
n
 . The final WKB solution is then,

rsδω
±
0
 �

(
c̃srs
r̃s

− 1

)
rs ωGR

0
 +
∑
k�0

β±
k
 δW̃±


,k(ωGR
0
 ) . (3.40)

Comparing the two approaches in their region of overlap 
 ≈ 10 is a useful consistency check, and together they provide accurate
results for every ωn
 in the GREFT at this order in derivatives. While it is typically the low 
 and n modes that matter most for
phenomenology29, from the theoretical point of view there could be useful causality constraints coming from QNMs of any n and

. In fact, since the strongest IR causality constraints come from large 
, one might naively expect the same to be true for QNM
causality. This expectation will be borne out by the c1 potential for odd modes: while the shift in the fundamental QNM frequencies
for 
 � 2, 3, 4 were computed numerically in [16] and are all consistent with causality, the computation below shows that once

 ≥ 6 the correction to the imaginary part of ω0
 changes sign and the high 
 modes can lead to a resolvable violation of causality
if c1ε

6
s is too large.

GR QNMs. For later comparison, recall that the WKB approximation for the GR QNM frequencies at large 
 is,

Re
[
ωGR
n


] � 2

3
√

3

√
j − 493 + 15N 2

648
√

3

1√
j

+ O
(

1

j3/2

)

Im
[
ωGR
n


] � − N

3
√

3
+
N (6599 − 235N 2)

46656
√

3

1

j
+ O
(

1

j2

)
. (3.41)

were j � 
(
 + 1) and N � 2n + 1. The frequencies at low 
 have been determined numerically to high precision: the first few
significant figures are listed in Table 1. They agree well with the WKB approximation even at relatively low 
. Note that at high

, the QNM frequency ωGR

n
 satisfies (3.11) with γ � 1. These QNM solutions are therefore probing the regime in which the time
delay calculation breaks down, and also the regime in which causality constraints are expected to be the strongest.

GREFT QNMs. In the GREFT, the QNM frequencies, ω±
n
 are shifted relative to GR by the EFT interactions. This relative shift

takes the form,

Re
[
ω±
n


] � Re
[
ωGR
n


](
1 + ε4

s δ3R±
n
 + ε6

s δ4R±
n
 + ...

)
Im
[
ω±
n


] � Im
[
ωGR
n


](
1 + ε4

s δ3I±
n
 + ε6

s δ4I±
n
 + ...

)
(3.42)

where εs � 1/(GM�) as before. Using the parameterised approach (3.36) with the potentials given in Appendix A produces the
numerical values given in Table 1. For 
 � 2, 3, 4, these agree with the values previously found in [19]30. Using the WKB approach
(3.40) gives the exact shift in the large 
 limit (given in the final column of Table 1), as well as the first correction in 1/j (given in
(C.6–C.9)). Note that the subleading corrections for the c1 odd potential are large for 
 ≤ 9 and are needed for good agreement. For
instance, δ4I−

0, 9 � −0.2278c1 from the parameterised approach, while the WKB result for this 
 and n gives,

δ4I−
0,9 � c1

(
−0.3674 + 0.1399 + O

(
1

(90)2

))
≈ 0.2275c1 (3.43)

and agrees with the numerics up to the stated error from subleading 1/j2 corrections.
Implications of IR causality. One of the main observations in this work is that the sign of the δI±

n
 shifts in the imaginary part of
the QNM frequencies is closely correlated with the sign of the time advances computed in the previous subsection. Consequently,

29 The reason is simple: low 
 modes are typically excited with largest initial amplitude and then have the slowest decay (i.e. |Im ωGR
n


| increases with n and

).
30 Note that [19] uses an expansion parameter μ �

(
1

rs�

)4 � 2−4ε4
s , so their quoted values are a factor of 24 larger.
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imposing the constraints from IR causality (no resolvable time advance) leads to a constraint on the direction in which the QNMs
can be shifted.

For instance, the fastest growing contributions at large j (at this order in εs) to the decay lifetimes of parity-odd and parity-even
black holes are31:

Re
[
ωGR
n


]
δτ+


 � −c1ε
6
s j3/2 5120π

2187
+ O
(√

j
)

,

Re
[
ωGR
n


]
δτ−


 � −4c2ε
6
s j3/2 5120π

2187
+ O
(√

j
)

. (3.44)

The positivity bounds from UV causality, c1 > 0 and c2 > 0, immediately imply that both even and odd perturbations decay with a
shorter lifetime than in GR, i.e. that the QNM frequencies are shifted deeper into the lower-half of the complex plane. This is also
the result of applying the simplest IR causality bounds: in particular, it was also the large j limit of the time delay which dominated
the IR causality constraint.

While it only scales as j0, the shift from the cubic b1 interaction is leading order in εs . Focussing on this δ3I±

 contribution, the

shift in the QNM lifetime is proportional to +b1 for the odd modes and proportional to −b1 for the even modes, with approximately
equal constants of proportionality:

Re
[
ωGR
n


]
δ3τ

±

 ≈ ∓20

√
j b1ε

4
s + O

(
1√
j

)
(3.45)

So regardless of the sign of b1 one of these modes will increase the decay time of perturbations relative to GR and make the black
hole less stable. However, imposing the IR causality constraint |b1|ε6

s � O(10−5
)

from (3.24) means that this change in the decay
lifetime is not resolvable (in the sense of (3.33)) until 
 � 104. Does such a large 
 remain under perturbative control in the EFT?

Regime of validity. The perturbativity bound (2.20) on time derivatives in the EFT, when specialised to the QNM problem in
which r ≈ rs and |ω|≈ Re

[
ωGR
n


]
, gives the upper bound,

ε2
s <

4εω

Re
[
ωGR
n


]
rs

� 6
√

3εω

j1/2 + O
(

1

j3/2

)
(strong perturbativity) (3.46)

In order to assess whether an apparent violation of QNM causality is really problematic for the EFT, one must check that it is
occurring for a value of εs and j that satisfies (3.46). For instance, assuming that both εω and b1 are order unity, in order for the
delay time (3.45) from the b1 interaction to be problematic, εs must lie in the range32:

(
6
√

3

j1/2

)2

� |b1|ε4
s � 1

20
√

j
. (3.47)

Since this can only occur for b1ε
6
s � 2×10−5, one can conclude that the IR causality bound |b1|ε4

s � O(10−5
)

effectively guarantees
QNM causality for this interaction.

Implications of QNM causality. While UV or IR causality constraints imply that (3.44) is compatible with QNM causality, one
could turn the question around and ask what is the range of {c1, c2} for which (3.44) satisfies the QNM causality condition? One
might expect additional information / constraining power to be contained in the QNM causality condition since it is probing the
effective potential in a different regime (namely r ≈ rs).

Comparing (3.44) with the perturbativity condition (3.46) gives the result (1.11)33, namely c1ε
3
ω � −1.2 × 10−4 and c2ε

3
ω �

−3.0 × 10−5. Remarkably, these show close agreement with the time delay values from scattering waves close to the black hole (at
γ � 0.9). While that time delay calculation was subject to potentially large corrections from the absorption of waves by the black
hole, the QNM calculation has no such corrections: it is exact at this order in εs and at large 
. In one sense, the QNM causality
condition can be used to place the IR causality condition on a firmer footing (it is at least corroborating evidence that corrections
to (3.7) remain small at γ � 0.9). In another sense, the IR causality condition, which stems from well-understood semiclassical
physics, can be viewed as evidence for the QNM causality conjecture.

Finally, there is the question of whether the QNM causality condition is respected at finite values of 
. Just as with the time delay,
it turns out that the shift from the c1 interaction violates QNM causality in the parity-odd sector, which must either be compensated
by a sufficiently large c2 interaction or else lead to an upper bound on ε6

s . From the numerically determined fundamental QNM

31 Note that Re
[
ωGR
n


]
δnτ±



� 4π

√
j δnI±



+ O( j−1) at large j, which will be used repeatedly below.

32 The exact result at large 
 is − 19, 683
67, 634, 176π2 � b1ε4

s � 19, 683
82, 011, 136π2 , but since there is an O(1) numerical ambiguity in the resolvability condition (3.33)

these should be interpreted as rough orders of magnitude as in (1.15).
33 Although the precise result obtained is c1ε2

ω � 9
√

3
40, 960π

and c2ε2
ω � 9

√
3

163, 840π
, given the numerical ambiguity in (3.33) it again makes sense to report

rough order of magnitude estimates.
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frequencies, this violation occurs for all 
 ≥ 6. When c2/c1 > 1.1 × 10−3 all of the QNMs respect the causality condition. For O(
10−4

)
� c2/c1 � O(10−3

)
, the tightest upper bound on εs comes from the 
 � 9 mode, which gives

ε6
s � 1

2.862c1 − 2688c2
. (3.48)

As c2/c1 → 0, it is higher and higher 
 modes which give the tightest bound. This eventually converges to a decay time

Re
[
ωGR
n


]
δ4τ

−

 � +

28928πc1

19683
+ O
(

1

j

)
. (3.49)

when c2 � 0, which would lead to a resolvable causality violation within the EFT regime of validity unless c1ε
6
s � 3 × 10−3. This

is somewhat stronger than the IR causality bound, but only by a factor of a few.

4 Observational prospects

This section discusses the possibility of measuring the GREFT coefficients with gravitational wave detectors. It will focus on the
transient signals from binary mergers that are now routinely measured by the LIGO-Virgo-KAGRA network, and in particular the
recent results of [22, 23] which place observational constraints on the GREFT (1.1) with b1 � c2 � 0 and c1 � 1. These are
two-sided constraints which disfavour a particular range of �. The reason for a two-sided bound is the following. For large enough
�, the EFT correction to the waveform is suppressed and there is good agreement with the GR waveform. But as � is lowered,
the EFT corrections become larger and at some point become resolvable by GW observatories and hence excluded by the data. But
once � is sufficiently low, the cut-off where the EFT breaks down becomes comparable to the scales of the GW event and so there
is no longer any constraint because the EFT cannot be applied to this particular data: measurements at a different scale would be
required in order to constrain the theory in this regime. Since the causality bounds derived above place a further restriction on the
range of � and M for which the EFT is valid, they will change one side of this two-sided bound and impact the range of parameter
space which can be reliably probed using any given GW event.

Power counting. The size of the EFT corrections to the GWs emitted by a binary can be estimated by simple power counting
arguments. Recall that the Einstein-Hilbert action

√−gR ∼ h∂2h provides the kinetic term for metric perturbations and the coupling
to matter sources h ∼ GM/r . The relative correction to GR from the cubic and quartic EFT interactions can then be estimated as,

1
�4

√−gR3

√−gR
∼

1
�4 (∂2h)3

h∂2h
∼ 1

(�r )4

GM

r
≡ ε3

1
�6

√−gR4

√−gR
∼

1
�6 (∂2h)4

h∂2h
∼ 1

(�r )6

(
GM

r

)2

≡ ε4 (4.1)

where here Rn denotes any contraction of n Riemann tensors and ∂ ∼ 1/r is a typical length scale of the system (e.g. the orbital
separation in the case of a binary). A more refined version of (2.4) is therefore:

OGREFT � OGR(1 + ε3δO3 + ε4δO4 + ...) (4.2)

Since GM/r ∼ v2 for bound orbits by the virial theorem, these corrections are formally 5PN and 8PN in the post-Newtonian
expansion,

ε3 ∼ ε4
s

(
v2

c2

)5

⇒ 5PN

ε4 ∼ ε6
s

(
v2

c2

)8

⇒ 8PN . (4.3)

However, as can be seen in (4.1), if the orbital separation of the binary r ∼ 1/�, then this acts as a very large numerical coefficient
which can make ε3 and ε4 important already at 1PN and 2PN respectively. While an EFT with εs � 1 will not resolve the black hole
horizon reliably, what matters in the context of GW phenomenology is whether the EFT is under control for the orbital separation of
the binary. This separation decreases with time as the objects lose energy through GW emission, leading to the characteristic ‘chirp’
in the GW frequency f . The EFT can therefore capture the portion of the signal for which,

(GMπ f )2/3 � 1

εs
, (4.4)

where M is the chirp mass.
In summary, if the scale � in the EFT is such that that εs < 1 and the black hole horizons are resolved, then the effect of these

corrections on the binary inspiral will be at least 5PN (or 8PN) suppressed. However, if � is much lower so that εs � 1, then the
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EFT corrections to the inspiral part of the waveform can be as large as 1PN (or 2PN)34 and remain under perturbative control until
the frequency exceeds (4.4). Of course, taking εs � 1 must be done with care, since this will usually lead to the EFT breaking down
at some finite distance from the horizon. The above causality arguments are one way to quantify this breakdown.

Implementing causality bounds. In the previous section, causality led to a number of upper bounds on εs . Denoting the strongest
of these as εcaus

s , then the GREFT may only be reliably applied to portions of the GW signal for which35:

εs � εmax
s �

{
min
(

1
(GMπ f )2/3 , εcaus

s

)
for inspiral,

min
(
1, εcaus

s

)
for ringdown.

(4.5)

Any GW event which is consistent with GR (i.e. consistent with 1
�

� 0) will therefore lead to constraints on the GREFT scale �

of the form,

1

�
∈ [dmin,GMεmax

s

]
, (4.6)

where dmin is the smallest 1/� at which the EFT corrections become excluded by the event’s waveform and the upper bound
corresponds to the event leaving the EFT’s regime of validity (at which point that particular GW event can no longer be used to
constrain the EFT, since it is not probing (1.1) but rather its UV completion). A good estimate for M would be the total mass of the
binary (for inspiral measurements) or the mass of the final remnant (for ringdown measurements).

The results of [22, 23], which considered the GREFT (1.1) with b1 � c2 � 0 and c1 � 1, strongly disfavour36 the regions,

1

�
∈ [65, 27.6εmax

s

]
km (GW170608 [22])

1

�
∈ [125, 31.9εmax

s

]
km (GW151226 [22])

1

�
∈ [51.3, 88.4εmax

s

]
km (GW150914 [23])

1

�
∈ [55.5, 86.7εmax

s

]
km (GW200129 [23]) (4.7)

Notice that [22] chose two of lightest events since their constraining power was coming only from the inspiral part of the waveform,
while [23] chose two of the loudest events since they adopted an inspiral-merger-ringdown approach which was also sensitive to
finite-size effects.

Crucially, the cut-off εcaus
s ≈ 0.38 from QNM causality seems to render all four of these GW events outside of the EFT’s regime

of validity. By contrast, IR causality alone requires only that εcaus
s ≈ 0.64, in which case the two events of [23] are perhaps marginal.

Such conclusions are of course sensitive to the precise O(1) numerical factor in the bounds. But the point is that a low cut-off from
causality on εs can severely limit the constraining power of GW events by pushing them outside of the EFT’s regime of validity

One resolution is to include additional EFT interactions which can relax the causality bounds. For example, under the assumption
that adding a c2 interaction does not lead to any significant changes in the emitted waveform (which is a good approximation if
the spins of the black holes are small), then (4.7) would translate simply into constraints on the {c1, c2} parameter space. Once
c2 � 10−3c1 the QNM causality bound disappears, and once c2 � c1 the IR causality bound also disappears. This is shown in Fig. 1.

Finally, thanks to the results of [13, 14, 72, 73] and [19], the imprint of the cubic GREFT interaction in the inspiral and ringdown
is well understood. The events GW150914 and GW200129 exclude the following ranges at the 90% credible level when b1 is the
dominant interaction [23]:

b1/4
1

�
∈ [38.2, 88.4εmax

s

]
km (GW150914)

b1/4
1

�
∈ [42.5, 86.7εmax

s

]
km (GW200129) (4.8)

However, given the tight constraints on εs from causality, these two events are not likely to be resolved by the EFT unless this
interaction is accompanied by a comparable higher-derivative interaction. It would be interesting to explore this further in future.

34 There is actually a cancellation that takes place for the b1 cubic interaction which means it does not contribute until one higher PN order than naive power
counting would suggest [12].
35 In practice, the frequency f in (4.5) characterises the lowest frequency at which the GW is detected: from the bounds given in [22], these are approximately
f ≈ 58 Hz for GW151226 and f ≈ 48 Hz for GW170608. The red regions in Fig. 1 uses εs < 1

(4GMπ f )2/3 so that the upper bound on 1/� coincides with

that of [22] with fhigh � 0.25 f�.
36 More precisely, [23] excludes this region at the 90% credible level and [22] finds a Bayes factor log B � −5 in this region.
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5 Discussion

Summary. The General Relativity Effective Field Theory (GREFT) parameterises the effects of heavy degrees of freedom beyond
GR in a systematic way that is amenable to perturbation theory and can be compared with GW data. The GREFT coefficients have
recently been constrained using causality in both the UV (via scattering amplitude analyticity) and in the IR (via semiclassical time
delay on a black hole background). This work has put forward quasi-normal modes as a new way to implement causality constraints
on this EFT. In contrast to existing causality bounds from the Eisenbud-Wigner time delay, which are sensitive only to large impact
parameters r � 3/2rs , the new QNM constraints probe a different regime near to the horizon r ≈ rs . In some cases they lead to
even stronger upper bounds on the GREFT parameters, but for the most part they reproduce almost exactly the constraints from IR
causality. This suggests that QNM causality is a reliable condition which may be used to constrain other gravitational EFTs. In light
of these findings, there are a number of future directions to explore (some of which are listed below).

Higher-order interactions. Consider adding to (1.1) a single higher-order interaction37

L2q ⊃ Cq
(
R(2))q (5.1)

for a fixed integer q. The black hole background for this interaction is given in [16]. Remarkably, QNM causality implies that Cq

must be positive, regardless of the value of q. To see this, notice that the highest derivative of the metric fluctuation to appear in the
master equation is38,

δ

δgμν

(√−gL2q
) ⊃ √−gCq

(
R(2))q−2[

16q(q − 1)Rμρνσ Rατβυ∇ρ∇σ ∇τ∇υhαβ

]
(5.2)

This does not contribute to the potential for odd modes, but for the even modes it gives a contribution ε
4q−2
s δ2qV +


 to the potential,
where

δ2qV
+

 ⊃ −Cq

(
12r6

s

r6

)q−2
9 j2

4r2
s

(rs
r

)10
. (5.3)

All other contributions from this interactions are O( j) or smaller in the large j limit. The shift in the QNM is then,

δ2qR+
0
 � −Cq

8q j

729
+ O( j0) ,

δ2qI+
0
 � +Cq

8q (q + 3)(q + 6)

4374
j + O( j0) . (5.4)

In order for the lifetime of the large-j QNMs to decrease, Cq must be positive. This positivity would not have been easy to prove
using UV causality, since such interactions do not contribute to the 4-point scattering amplitudes until a high loop order. It would
be interesting to further explore the master equation and effective potential for perturbations around this background to see what
further constraints QNM causality / IR causality might impose. Studying interactions that contain derivatives of the Riemann tensor
[74], or general contractions of the type (R(n))q , would also be interesting. The main point here is that higher-point EFT interactions
can be constrained by considering non-trivial backgrounds [75–78], and QNM causality is a further example of this.

Other black hole backgrounds.This work has focussed on the simplest (stationary, spherically symmetric) black hole spacetime
in the GREFT, but the GREFT corrections to other black hole backgrounds are known and it would be interesting to investigate
whether QNM causality for those black holes places additional constraints on the EFT. The obvious next step would be to study the
Kerr background that describes a spinning black hole [79], since phenomenologically speaking c2 has a significantly larger effect on
spinning objects. One key limitation of Fig. 1 is that it assumes the black holes have low enough spin that the c2 interaction can be
neglected: a more refined analysis in future would establish causality bounds for spinning black holes and remove this assumption.

Given the recent progress in calculating Schwarschild-de Sitter quasi-normal modes,39 it would also be interesting to investigate
how QNM causality might constrain cosmological field theories and compare this with other recent approaches to implementing
causality bounds in a cosmological setting [76, 77, 80–85].

Finally, it would be interesting to combine QNM causality with a model-agnostic approach like that of [86, 87], which could
place constraints on the ringdown waveform without the need to specify the underlying field content.

Parity-violating interactions. At eighth order in derivatives, (1.1) is not the most general EFT one could consider. There is also a
single parity-violating cubic interaction and a single parity-violating quartic interaction. These have interesting effects on the QNM
spectrum40: in particular they can mix odd and even perturbations and lead to “running” of the QNM frequencies [18, 21]. It would

37 Of course, there are a number of other contractions which would naturally enter at this order and it seems unlikely (barring some very finely tuned UV
physics) that only this single operator would be generated in the EFT. But this example neatly demonstrates the power of considering causality constraints
on non-trivial backgrounds, since it can in principle place constraints on interactions of arbitrarily high order.
38 Note that several seemingly four-derivative terms can be discarded since hμν is transverse and traceless, and the leading order equation of motion can be
used to replace any �hμν with terms that have fewer derivatives.
39 Note that other interactions beyond (1.1) may become non-redundant on backgrounds which are not Ricci-flat.
40 Parity-violation also leads to interesting effects in the GW propagation [88].
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therefore be interesting to study how to apply QNM causality in that case and whether it can constrain the parity-violating GREFT
coefficients.

Includingmatterfields. In GR, the QNM spectrum for perturbations of a spin-smatter field on a black hole background are known.
One future direction would be to investigate how these are shifted by interactions like (1.1), or (perhaps better) whether the effect
of a matter self-interaction41 like λ(∇φ)4 on the scalar QNMs might connect QNM causality with the prototypical positivity bound
from UV causality, λ > 0. There is no shortage of interactions beyond (1.1) which could be considered next, where the constraints
from QNM causality could be compared with both experimental constraints and other theory constraints like UV/IR causality.

In particular, [89, 90] have recently developed a first-order formalism to determine the quasi-normal modes of modified gravity
theories in which the perturbation equations are not of second-order Schrodinger form. Exploring how the QNM frequencies are
shifted by EFT corrections in that framework (and to what extent QNM causality overlaps with other causality constraints) would
be a natural way to extend this discussion to a much wider range of theories.

Connection with other conjectures. This work has focussed on connecting quasi-normal modes with the constraints from UV
and IR causality. It would be interesting to explore what restrictions are placed by other consistency conditions such as the swampland
conjectures (and how these interface with QNM causality). For example the Weak Gravity Conjecture has a close connection with
UV causality [36, 91, 92] and was recently connected to the Love numbers of GREFT black holes in [93]. Furthermore, positivity
of the time delay is just one of an infinite family of causality bounds [94], and it would be interesting to investigate whether they
also have a QNM counterpart.

Proving the conjecture. Finally, it is worth bearing in mind that no rigorous proof has been given for QNM causality. For
one thing, QNMs are found using different boundary conditions to the causal propgators (for which analyticity is immediate). An
important next step would be to establish whether EFT corrections must always obey the QNM causality condition (1.10), for
instance by connecting more carefully with the familiar analyticity arguments. In fact, from a holographic perspective the quasi-
normal modes of a black hole in asymptotically AdS spacetime correspond precisely to poles in the two-point function of the
boundary hydrodynamics theory [64], so that could provide a setting in which to tackle this question.
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Appendix A: Master equations for black hole perturbations

This appendix collects some details about the master equations (2.13) and (2.16). The GREFT potentials used throughout to calculate
the time delay and QNMs are listed in (A.11-A.17)

EFT Perturbation Theory. The algebra involved in computing the master equations can quickly become laborious if not done
carefully. To illustrate the basic idea, consider the toy problem of a scalar field φ described by the action S0 + εS1, where S1 is a
small correction to be treated perturbatively in ε. The first step is to split φ into a background plus small perturbations,

φ � φ̄ + ϕ . (A.1)

Both are affected by the interactions,

φ̄ � φ̄0 + εφ̄1 + O(ε)

ϕ � ϕ0 + εϕ1 + O(ε) . (A.2)

The leading-order background φ̄0 is determined first, by solving:
δS0

δφ
|φ�φ̄0

� 0 . (A.3)

Then one should solve:
δS0

δφ
|φ̄1

+
δS1

δφ
|φ̄0

� 0 (A.4)

41 To constrain interactions that are non-linear in the matter fields would require those fields to acquire a non-trivial background. While exact scalar-tensor
black hole solutions are known in only a handful of cases, it may be enough to consider just the leading corrections on top of a Schwarszchild background.
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for φ̄1, the first correction to the background (e.g. for the GREFT, this produces (2.5)). Then moving on to the small perturbations,
they satisfy,

δ2S0

δφ2
|φ̄0

ϕ0 � 0 (A.5)

in the absence of the ε correction. To find the leading correction ϕ1 to the perturbations induced by the ε correction, one must finally
solve,

δ2S0

δφ2
|φ̄0

ϕ1 +
δ2S0

δφ2
|φ̄1

ϕ0 +
δ2S1

δφ2
|φ̄0

ϕ0 � 0 . (A.6)

It is an equation of this form (with φ replaced by gμν) which leads to the master equations for �±

 . In particular, note that to first

order in ε one may use the leading-order equation of motion to remove higher-derivative terms, which ensures that the final equation
for the perturbations will be at most second-order (despite the variation of the original Lagrangian initially generating higher-order
derivatives).

Converting between potentials. By rescaling the perturbation,

�̃ �
(√

fr ft
f

)1/2

� (A.7)

then the master equation (2.13) is recast as (2.16) to leading order in ε. The potentials are related by:

Ṽ � f̃√
fr ft

V +
1

2 f̃

d2

dr2∗

(√
fr ft

f̃

)
+

ω2

f̃

[
1

c̃2
s

− f̃ 2

c2
s fr ft

]
. (A.8)

Note that since c2
s (r̃s) � 1 at the horizon, the final square bracket vanishes at r � r̃s . In the GREFT (1.1), c̃s is given by,

c̃srs
r̃s

� 1 +
b1

8
ε4
s +

1

2
c1ε

6
s (A.9)

which is useful when evaluating (3.36).
The potentials δV±


 and δṼ±

 are given below for each of the interactions in (1.1) and (2.21). They take the form:

δV±

 (ω, r ) � ε4

s δ3V
±

 (ω, r ) + ε6

s δ4V
±

 (ω, r ) + ...

δṼ±

 (ω, r ) � ε4

s δ3Ṽ
±

 (ω, r ) + ε6

s δ4Ṽ
±

 (ω, r ) + ... (A.10)

Some important features are:

• b1 contributes like 
0 to both odd and even modes but with opposite signs,
• c1 contributes like 
2 to even modes and like 
0 for odd modes, also with opposite signs.Note that the 
0 contribution to the time

advance δt−
 is further surpressed since the LO WKB approximation vanishes, and relatedly the subleading QNM correction is
large (see (3.43)).

• c2 contributes like 
2 to odd modes and has no effect on the even modes or the background.

Cubic interaction b1

The Riemann-cubed interaction in the GREFT modifies the master equation (2.13) by [19],

r2
s δ3V

−



b1
� j

(
45

x7 − 855

16x8

)
− 270

x7 +
5175

8x8 − 2979

8x9

r2
s δ3V +




b1
� + Z

(
405

16x9 − 45

2x8

)
+

90

x7 − 783

4x8 +
1755

16x9

+
− 432

x7 + 963
x8 − 4347

8x9

Z
+

567
x7 − 9369

8x8 + 4851
8x9

Z2 +
− 243

x7 + 1863
4x8 − 891

4x9

Z3 (A.11)

where x � r/rs is a dimensionless radial coordinate and both j � 
(
+1) and Z � ( j−2)x +3 depend on the angular momentum.42

Once converted into the “horizon” tortoise coordinate (2.16), the odd potential becomes:

r2
s δ3Ṽ

−



b1
� + ω2r2

s

(
− 7

8x2 − 3

2x3 − 17

8x4 − 47

4x5
− 1

4x
+

3

8

)

42 Note that λ � 
(
 + 1) − 2 is often used instead of j because it is the eigenvalue of the Laplace-Beltrami operator on the 2-sphere acting on a tensor-type
spherical harmonic.
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+ j

(
5

16x3 +
5

16x4 +
5

16x5
+

5

16x6 +
725

16x7 − 877

16x8

)

− 5

4x3 − 45

32x4 − 25

16x5
− 55

32x6 − 2175

8x7 +
21769

32x8 − 1605

4x9

and the even potential becomes:

r2
s δ3Ṽ +




b1
� + ω2r2

s

(
− 7

8x2 − 3

2x3 − 17

8x4 − 47

4x5
− 1

4x
+

3

8

)

+

(
5

16x4 +
5

16x5
+

5

16x6 +
5

16x7 − 355

16x8 +
383

16x9

)
Z

− 5

8x3 − 55

32x4 − 15

8x5
− 65

32x6 +
1405

16x7 − 5313

32x8 +
1359

16x9

+
− 15

4x2 + 15
2x3 + 15

8x4 + 15
8x5 + 15

8x6 − 3441
8x7 + 7881

8x8 − 4545
8x9

Z

+
45

2x2 − 225
8x3 + 567

x7 − 2403
2x8 + 5049

8x9

Z2 +
− 135

4x2 + 135
4x3 − 243

x7 + 1863
4x8 − 891

4x9

Z3 , (A.12)

from which the α±
k
 coefficients in (3.36) can be easily read off.

Quartic interaction c1

The c1 Riemann4 interaction in the GREFT modifies the master equation (2.13) by [16],

r2
s δ4V

−



c1
� + j

(
73

x11 − 72

x10

)
+

2916

x10 − 13509

2x11 +
15561

4x12

r2
s δ4V +




c1
� − 9Z2

2x12 + Z

(
100

x12 − 81

x11

)
− 792

x10 +
4549

2x11 − 6069

4x12

+
3348
x10 − 7776

x11 + 4410
x12

Z
+

− 3240
x10 + 6669

x11 − 13599
4x12

Z2 +
972
x10 − 1836

x11 + 864
x12

Z3 (A.13)

as well as shifting the sound speed (2.14).
Converting this to the “horizon” tortoise coordinate (2.16) produces for the odd modes:

δ4Ṽ
−



c1
� + ω2

(
− 9

4x2 − 7

2x3 − 19

4x4 − 6

x5
− 29

4x6 − 17

2x7 +
213

4x8 − 1

x
+

1

4

)

+
j

r2
s

(
5

8x3 +
5

8x4 +
5

8x5
+

5

8x6 +
5

8x7 +
5

8x8 +
5

8x9 − 571

8x10 +
545

8x11

)

+
1

r2
s

(
− 5

2x3 − 45

16x4 − 25

8x5
− 55

16x6 − 15

4x7 − 65

16x8 − 35

8x9 +
46581

16x10 − 6512

x11 +
58617

16x12

)

and for the even modes:

r2
s δ4Ṽ +




c1
� + ω2r2

s

(
− 9

4x2 − 7

2x3 − 19

4x4 − 6

x5
− 29

4x6 − 17

2x7 +
213

4x8 − 1

x
+

1

4

)
− 9Z2

2x12

+ Z

(
5

8x4 +
5

8x5
+

5

8x6 +
5

8x7 +
5

8x8 +
5

8x9 +
5

8x10 − 643

8x11 +
761

8x12

)

+

(
− 5

4x3 − 55

16x4 − 15

4x5
− 65

16x6 − 35

8x7 − 75

16x8 − 5

x9 − 12757

16x10 +
20043

8x11 − 27669

16x12

)

+
− 15

2x2 + 15
x3 + 15

4x4 + 15
4x5 + 15

4x6 + 15
4x7 + 15

4x8 + 15
4x9 + 13407

4x10 − 30825
4x11 + 17289

4x12

Z

+
45
x2 − 225

4x3 − 3240
x10 + 6570

x11 − 3312
x12

Z2 +
− 135

2x2 + 135
2x3 + 972

x10 − 1836
x11 + 864

x12

Z3 (A.14)

where Z � ( j − 2)x + 3.
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Quartic interaction c2

The c2 Riemann4 interaction in the GREFT modifies the master equation (2.13) for the odd modes only:

r2
s δ4V

−



c2
� −18 j( j − 2)

x10 . (A.15)

Since c2 does not affect the background metric or sound speed, the c2 contribution to the master equation in “horizon” tortoise
coordinates (2.16) is simply the same:

r2
s δ4Ṽ

−



c2
� −18 j( j − 2)

x10 . (A.16)

Redundant cubic interaction b3

For the redundant cubic operator (2.21), it shifts the background by (2.22) and leaves the sound speed unchanged. Converting the
potentials given in (2.23) into the “horizon” tortoise coordinates gives the following contribution to (2.16):

r2
s δ3Ṽ

−



b3
� + ω2r2

s

(
− 3

x2 − 6

x3 − 9

x4 − 12

x5
+ 3

)
+ j

(
3

2x3 +
3

2x4 +
3

2x5
+

3

2x6 +
3

2x7 − 33

2x8

)

− 6

x3 − 27

4x4 − 15

2x5
− 33

4x6 − 9

x7 +
591

4x8 − 90

x9

r2
s δ3Ṽ +




b3
� + ω2r2

s

(
− 3

x2 − 6

x3 − 9

x4 − 12

x5
+ 3

)
+ Z

(
3

2x4 +
3

2x5
+

3

2x6 +
3

2x7 +
3

2x8 − 33

2x9

)

− 3

x3 − 33

4x4 − 9

x5
− 39

4x6 − 21

2x7 +
441

4x8 − 81

2x9 +
− 18

x2 + 36
x3 + 9

x4 + 9
x5 + 9

x6 + 9
x7 + 243

x8 − 351
x9

Z

+
108
x2 − 135

x3 − 432
x8 + 459

x9

Z2 +
− 162

x2 + 162
x3 + 162

x8 − 162
x9

Z3 (A.17)

Amusingly, the α±
k
 coefficients (3.34) read off from this potential satisfy [19],

∞∑
k

e±
k
α

±
k
(ωGR

0
 ) � 0 , (A.18)

up to small numerical errors, which is consistent with the expectation that this redundant potential does not affect any purely
gravitational observable (like the QNMs). The null constraint (A.18) can be used to infer higher-order ek
 from lower-order ones
[61], or alternatively could be used to infer ωGR

n
 if the e+
k
 or e−

k
 were independently known.

Appendix B: Time delay details

Starting from (3.7), one can compute the time delay in the large 
 limit as follows. First perform a large 
 expansion of both the GR
and EFT potentials,

f V±

 � j

r2

(
1 − rs

r

)
+ O( j0)

δW±

 (ω, r )|ω�√

γ ( f V )max
� j pκ±

0

(rt
r

,
rs
r

)
+ O( j p−1) ,

∂ωδW±

 (ω, r )|ω�√

γ ( f V )max
� j pκ±

1

(rt
r

,
rs
r

)
+ O( j p−1) (B.1)

where γ can be replaced with rt using (3.12) and p is a fixed constant that depends on the interaction considered. Then construct
the integrand,

AP

 ∂r

(
δAP




∂rAP



)
� j p−1IP

(rt
r

,
rs
r

)
+ O( j p−2) . (B.2)

For instance from the odd potential δV−

 from the c1 interaction, the power p � 1 and the time delay tends to a constant at large j.

Writing,

−2ω

∫ ∞

rGR
t

dr I−(rt
r

,
rs
r

)
≡ c1


K−
c1 (γ )

, (B.3)
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immediately produces (3.14). The I− is relatively simple and can be integrated analytically in terms of elliptic functions. The full
expression is somewhat cumbersome, but it is plotted as the black line in Fig. 5, showing good agreement with the numerical result
at large 
.

Finally, note that in the eikonal limit of large rt � rs (γ 
 1), one can further expand (B.1) in powers of rs/rt ,

f V±

 � j

r2 + O
(
j0,

rs
rt

)

δW±

 (ω, r )|ω�√

γ ( f V )max
� j pκ±

0

(rt
r

, 0
)

+ O
(
j p−1,

rs
rt

)
,

∂ωδW±

 (ω, r )|ω�√

γ ( f V )max
� j pκ±

1

(rt
r

, 0
)

+ O
(
j p−1,

rs
rt

)
. (B.4)

and simplify (3.12) in this limit to simply rGR
t ≈ √

j/ω ≡ b, the Newtonian impact parameter. The time delay can then be massaged
into the usual eikonal form [45],

δt P
 ≈ ∂

∂ω

⎡
⎣ 1

ω

∫ ∞

b
dr

δWP

√

1 − b2

r2

⎤
⎦ , (B.5)

up to subleading corrections in 1/j and rs/rt . However, note that for the δV−

 potential from c1, this eikonal limit vanishes since,

δW−

 � 9ω2 r8

s

(
7r2 − 8b2

)
r10 + ... (B.6)

integrates to zero. As a result, the naive expectation that δt−
 ∼ ω/b7 in the eikonal limit overestimates the time delay, which is actually
O(ω/b8

)
and comes from the subleading rs/rt corrections. Regardless of this cancellation, (B.5) is only a good approximation at

large impact parameter (γ 
 1), and does not capture the γ � 0.9 regime studied in the main text (which requires the full IP( rt
r , rs

r

)
at large j, or the numerical integration of (3.7) at small j).

Appendix C: Quasi-normal mod details

This Appendix describes how to find the QNM spectrum of fluctuations � which obey the Schrodinger-like equation43:(
d2

dr2 + ω2
)

� � V� (C.1)

where V � VGR + δV with δV a small perturbation to GR. The general procedure is:

(i) Following [66, 68, 95, 96], the WKB approximation can be used to relate ω2
n
 to V (k)(ωn
, rmax), derivatives of the potential

evaluated at its maximum (i.e. rmax is defined by the condition V (1) � 0). Explicitly, this gives,

ω2
n
 � V (0) − i N

√
−V (2)/2 +

1

32

[
−1

9

V (3)2

V (2)2 (7 + 15N 2) +
V (4)

V (2) (1 + N 2)

]

− i N

576
√

2

[
5

24

V (3)4

(−V (2))9/2 (77 + 47N 2) +
3

4

V (3)2V (4)

(−V (2))7/2 (51 + 25N 2)

+
1

8

V (4)2

(−V (2))5/2
(67 + 17N 2) +

V (3)V (5)

(−V (2))5/2
(19 + 7N 2) +

V (6)

(−V (2))3/2 (5 + N 2)

]
, (C.2)

where N � 2n + 1 with n � 0, 1, 2, . . . the overtone number.
(ii) Expand each derivative in terms of VGR and δV using,

V (k)(rmax, ωn
) � V (k)
GR(rGR

max) + δV (k)(ωGR
n
 , rGR

max) − V (k+1)
GR (rGR

max)

V (2)
GR(rGR

max)
δV (1)(ωGR

n
 , rGR
max) + O((δV )2) , (C.3)

where the right-hand-side is evaluated at the GR value rGR
max and the final term accounts for the difference with the full theory’s

rmax.
(iii) Expand each V (k)

GR and δV (k) in the large 
 limit,

V (k)
GR � j

∑
p�0

ν̄k,2p j−p

43 Note that the r and V used in this Appendix differ from those in the main text.
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δV (k)(ωGR
n
 , rGR

max) � j p
(∑
a�0

δνk,2a(n) j−a + i
√
j
∑
a�0

δνk,2a+1(n) j−a

)
(C.4)

where j � 
(
 + 1) and the power p depends on the interaction.

The result of this procedure is an analytic expression for the QNM frequencies which becomes exact in the large j limit. At zeroth
order in δV it recovers the GR frequencies (3.41). At first order in δV , it gives an expression for the shift in the QNM frequencies
relative to GR: for instance the leading contribution to the imaginary part is:

Im
(
ωn
 − ωGR

n


)
Im
(
ωGR
n


) � j p−1

(
− δν00

2ν̄00
+

δν20

2ν̄20
− ν̄30δν10

2ν̄2
20

− δν01√−2ν̄20
+ O
(

1

j

))
(C.5)

Both real and imaginary part at leading and next-to-leading order are given below for the GREFT potentials.
GREFT QNMs. The shift in the QNM frequency from the GREFT interactions can be written in the form (3.42). This WKB

approach gives the following shift from the cubic b1 interaction in the odd QNMs:

δ3R−
n
 � b1

(
380

729
+

24037 − 6303N 2

39366 j
+ O
(

1

j2

))
,

δ3I−
n
 � b1

(
1028

729
+

35(535 + 358N 2)

177147 j
+ O
(

1

j2

)
,

)
(C.6)

and in the even QNMs:

δ3R+
n
 � b1

(
−340

729
+

6217 + 8277N 2

39366 j
+ O
(

1

j2

))
,

δ3I+
n
 � b1

(
−1132

729
− 5(−25111 + 2264N 2)

177147 j
+ O
(

1

j2

))
. (C.7)

Similarly, the WKB approach gives the following shift from the quartic interactions in the odd modes:

δ4R−
n
 � −256c2

729
j − 32c2(−919 + 615N 2)

59049
+

832c1

19683
+

112c1(1391 + 57N 2)

177147 j
+ O
(
c2

j
,
c1

j2

)

δ4I−
n
 � +

5120c2

2187
j +

8c2(197531 + 21425N 2)

531441
− 7232c1

19683
− 28c1(−722441 + 5437N 2)

1594323 j
+ O
(
c2

j
,
c1

j2

)
. (C.8)

and in the even modes:

δ4R+
n
 � −64c1

729
j − 8c1(−1231 + 615N 2)

59049
+ O
(

1

j

)

δ4I+
n
 � +

1280c1

2187
j +

2c1(99899 + 21425N 2)

531441
+ O
(

1

j

)
, (C.9)

where j � 
(
 + 1) and N � 2n + 1 as before.
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