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Abstract
Software framework serves as a skeleton for the offline data processing software for many high energy physics (HEP) experi-
ments. The event data management, including the event data model (EDM), transient event store and data input/output, imple-
ments the core functionalities of the framework, and has a great impact on the performance of the entire offline software. 
Future HEP experiments are generating increasingly large amounts of data, bringing challenges to offline data processing. 
To address this issue, a common event data management system that supports efficient parallelized data processing applica-
tions has been developed based on Software for Non-collider Physics ExpeRiments (SNiPER) common software framework 
as well as PODIO, a common EDM toolkit for future HEP experiments. In this paper, the implementation of a parallelized 
event data management (PEDM) system is introduced, including the integration with MT-SNiPER and PODIO, as well as 
the implementation of GlobalStore to support multi-threaded event processing. Finally, the application and performance 
evaluation of the data management system in OSCAR (offline software of Super Tau Charm Facility) is presented.
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Introduction

Offline data processing software, such as Athena [1] for 
ATLAS [2] and BOSS [3] for BESIII [4], is usually a criti-
cal component of modern high energy physics (HEP) experi-
ments, responsible for building the offline data processing 
chain including detector simulation, calibration, reconstruc-
tion, and data analysis. The underlying framework, such as 
Gaudi [5], builds the foundation of the offline software, 
providing basic functionalities like event loop control, 

algorithm scheduling, event data management, detector 
description management, and some key common services.

The challenges in non-collider experiments such as 
nuclear reactor neutrino and cosmic ray experiments involve 
handling events with rare physics signals and correlation 
analysis between events within certain time windows, which 
are pretty different from collider experiments [6]. Learn-
ing the concepts of algorithm and service from Gaudi, and 
considering the needs of non-collider experiments, Chinese 
developers implemented the SNiPER framework [7]. Now 
SNiPER has been adopted by several experiments, including 
Jiangmen Underground Neutrino Observatory (JUNO) [8], 
Large High Altitude Air Shower Observatory (LHAASO) 
[9], Neutrinoless double beta decay experiment (nEXO) 
[10]. SNiPER is very lightweight and easy-to-use. It sup-
ports flexible event processing sequences and custom data 
management. As a general-purpose offline software frame-
work, SNiPER is also suitable for collider experiments [11], 
offering customizability, extensibility, and inherent advan-
tages in parallel computing. Therefore, we chose SNiPER 
as the underlying framework for the parallelized event data 
management (PEDM) system.

The size of experimental data used for physics 
research is sharply increasing (see Table 1), which is 
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a big challenge for offline data processing software. In 
order to take advantage of new computing resources, such 
as coprocessors, graphics processing units (GPUs), and 
field programmable gate array (FPGA), high-performance 
computing techniques must be considered and adopted to 
speedup data processing when designing and developing 
an offline software system for new generation experiments.

Recent developments in microprocessor technology 
have underlined the trends (Fig. 1) that have been iden-
tified since the mid-2000s: while the density of transis-
tors on CPUs has continued to rise more or less exponen-
tially (Moore’s law [12]), clock speeds have plateaued. 
The growth of single-threaded performance is gradually 
slowing down more than 15 years ago. To compensate for 
this, manufacturers put more cores on the chip. It is natu-
ral to apply parallel computing to take advantage of their 
high performance fully. In recent years, a multi-thread-
ing model has been adopted by the HEP community to 
develop several data processing frameworks and libraries. 
For instance, CMS has already completed its transition to 
a concurrent framework [13]. GaudiHive [14], an exten-
sion of Gaudi, has been a successful example in the HEP 
field, enabling concurrency through multi-threading. In 
2017, a multi-threaded version of SNiPER was developed, 

MT-SNiPER [15], which further enhanced processing 
performance.

Event data model (EDM) is the core of offline data pro-
cessing software framework. It defines the structure of 
event data in memory and data files and implements the 
relationship between data objects at different processing 
stages. The PODIO toolkit [17] provides an easy way to 
generate a performant implementation of an EDM from a 
high-level description in YAML format. One of the key ideas 
of PODIO is to use plain-old-data (POD) type as much as 
feasible, encompassing structures composed of basic types, 
such as integers, floats and arrays of these basic types. 
Thanks to their simplicity, efficiency, and ease of manage-
ment, POD types enable parallelization. PODIO was chosen 
as the toolkit for the definition of EDM in the PEDM sys-
tem. Since POD types have simple internal structures and 
memory layouts, they are highly suitable for sharing and 
transferring data between threads.

This paper aims to describe the PEDM system devel-
oped based on SNiPER and PODIO. “Key Components 
and Design” section outlines the key components and the 
design of serial and parallelized event data management 
system. “Implementation of the Parallelized Event Data 
Management System” section provides a detailed descrip-
tion of the implementation of the PEDM system. “Applica-
tion and Performance” section shows the performance of 
applying PEDM system to the offline software of Super Tau 
Charm Facility (OSCAR) [18]. Finally, “Conclusions” sec-
tion summarizes the status and gives an outlook for future 
development.

Key Components and Design

In offline data processing software, the EDM is responsi-
ble for defining the structure of event data in memory and 
data files, and implementing the relationship between data 
objects in different processing stages. The event data man-
agement system manages event data in memory, provides 
interfaces for user applications, and handles data input/out-
put (I/O). Therefore, the EDM and the event data manage-
ment system greatly influence the function and performance 
of the experiment software.

SNiPER Framework and PODIO

In the SNiPER framework, a parallelized solution based on 
Intel Threading Building Blocks (TBB) [19], MT-SNiPER, 
is proposed. The Task is one of the most essential com-
ponents in SNiPER. It is responsible for controlling the 
event loop, functioning as the “Application Manager” 
in Gaudi [20]. As shown in Fig. 2, each Task contains a 
set of Algorithms, Services, and Sub-Tasks. Furthermore, 

Table 1   The amount of raw data generated by particle physics experi-
ments each year

Experiment Operation time Raw data (PB)

BESIII 2008–2030 0.2
LHAASO 2018–2030 9
JUNO 2021–2030 2
STCF – 300

Fig. 1   Microprocessor trend data since 1970 [16]. The figure shows 
that the amount of transistors increases year over year, but the growth 
rate of single-thread performance is gradually slowing down and 
approaching a plateau. Moreover, the rising number of CPU cores 
indicates the potential benefits of utilizing multi-core processing to 
enhance performance
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SNiPER considers the need to use new parallel computing 
techniques in data processing. It supports multiple Tasks, 
which can be naturally mapped to threads in parallelized 
computing. Figure 3 shows the execution sequence of mul-
tiple Tasks, with each Task managing its Algorithms which 
are executed sequentially within a single Task.

Multiple SNiPER Task Scheduler (Muster) [22] was 
implemented in MT-SNiPER to support multi-thread-
ing. Muster builds the mapping of SNiPER Task to Intel 
TBB task and breaks the traditional event loop. Multiple 
instances of Tasks are not executed directly by Muster; 
instead, Muster creates corresponding TBB-based workers 
to execute the Tasks. As shown in Fig. 4, Muster spawns a 
set of workers and starts them in different threads. Then, 
different events are dispatched to different workers. In each 
worker, it is a copy of the SNiPER Task that performs like 
a serial job. With this approach, the existing Algorithms 
and Services in serial mode can be almost seamlessly 
migrated to parallel mode.

The event data management system of SNiPER is 
shown in Fig. 5, including Input System, Output System 
and Data Store. Data Store is responsible for handling 
event data in memory and managing its lifecycle. Each 
Task instance has its own Data Store.

As the Data Store is used to manage general event data, 
we have chosen the EventStore of PODIO to fulfill the 
functions of Data Store.

The event data management system of PODIO mainly 
consists of three parts: the EventStore, the ROOTReader, 
and the ROOTWriter. The ROOTReader and ROOTWriter 
manage data input and output. The EventStore stores and 
manages the event data in memory and also provides the 
interfaces for ROOTReader and ROOTWriter. By integrat-
ing the event data management systems of SNiPER with 
PODIO, an event data management system for serial data 
processing has been implemented in offline software.

Multi-threaded programming can effectively utilize 
multi-core CPU resources and allow different threads of 
the same task to run simultaneously. As mentioned earlier, 
Muster supports parallelized process control, but PODIO 
only holds data objects for one single event. It was neces-
sary to redesign a EventStore to cache multiple event data 
simultaneously. Therefore, we designed the PEDM system 
by integrating Muster with PODIO to support parallelized 
data processing.

Design of Serial Event Data Management System

In the implementation of serial data processing, PodioDa-
taSvc, PodioInputSvc, PodioOutputSvc and DataHandle 

Fig. 2   Components tree in a SNiPER job. Each task comprises a set 
of Algorithms, Services, and Sub-Tasks

Fig. 3   Conditional execution of algorithm subsets. Incident mecha-
nism [21] is implemented to enhance communication between tasks. 
A task can be triggered by an incident on demand

Fig. 4   SNiPER Muster builds the mapping of a SNiPER Task to an 
Intel TBB task

Fig. 5   Diagram of the event data management system and its inter-
faces to applications
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are developed to integrate the PODIO with SNiPER. The 
PodioDataSvc serves as the wrapper of EventStore, and there 
is only one EventStore in a job. The EventStore in PODIO 
handles transient data, whose lifetime is managed by Podio-
DataSvc. Therefore, only one event can be processed at a 
time, and it needs to be promptly created and deleted to 
ensure the proper functioning of the program. The sequence 
diagram for serial event data management is shown in Fig. 6. 
In one task, a pair of incidents are named “BeginEvtHdl” and 
“EndEvtHdl” to implement the input and output of event 
data. They are automatically triggered at the beginning and 
end of an event. Through the PodioDataSvc, PodioInputSvc 
is invoked by “BeginEvtHdl” to convert persistent data from 
the input files to transient event data in the EventStore, while 
PodioOutputSvc is invoked by “EndEvtHdl” to store the 
event data from the EventStore into the output files.

Design of the Parallelized Event Data Management 
System

PODIO favors composition over inheritance and uses POD 
types to generate thread-safe and efficient C++ code for the 
EDM. On the other hand, the EventStore was never intended 
to support such use cases and has exceeded its original pur-
pose as an example implementation for a transient event 
store [23]. Therefore, we redesigned the EventStore to sup-
port caching multiple events.

Due to the flexibility of data management and the con-
figuration of dynamic processes, it is critical to ensure mem-
ory safety. Implementing security measures such as identity 
recognition, locking, and unlocking was essential to guar-
antee effective data processing and the consistency of data 
reading and writing. While boosting the rate of offline data 
processing, this method ensures the reliability of results. A 
new memory management system, named GlobalStore (as 
illustrated in Fig. 7), has been designed and developed to 
support parallelized data processing fully. In GlobalStore, 

the structure named “event element” is defined to manage 
most of the information that is handled by the EventStore. 
GlobalStore also stores the index and status to identify the 
event. The index is used to label the event, and the status is 
needed to ensure that the event is processed only once.

Data races arise when multiple threads simultaneously 
attempt to read/write data from/to the same file using ROOT 
I/O. To avoid this situation, decoupling the I/O functions 
from the EventStore and allocating input and output to two 
dedicated threads is necessary. This method significantly 
improves CPU utilization and reduces the task processing 
time, as described in “Application and Performance” section.

To efficiently deliver data to workers (see Fig. 8), the 
PodioLocalDataSvc has been developed to access event 
data objects using DataHandles. An abstract interface 
class, IPodioDataSvc, has been defined to facilitate the 
sharing and reusing of a set of data management services 
between serial and parallelized event data management 
systems. Both PodioDataSvc and PodioLocalDataSvc 
are inherited from IPodioDataSvc, and these services 
are implemented to ensure thread safety. The workers 
independently process events in parallel. Two new I/O 
services, namely the worker input service (WInputSvc) 

Fig. 6   The sequence diagram 
for serial event data manage-
ment. Tasks control the opera-
tion of SNiPER. The lifecycle 
of a Task covers the entire 
SNiPER job

Fig. 7   The design of event data management for parallel computing. 
Each Task can be configured with its own local buffer and corre-
sponding input and output services
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and the worker output service (WOutputSvc), have been 
developed to deliver event data between GlobalStore and 
workers. They are triggered by two new incidents, “WBe-
ginEvtHdl” and “WEndEvtHdl”. With this design, the 
intra-event and inter-event parallelism can be supported 
as described below:

•	 The first technique employs thread synchronization 
mechanisms, including condition variables and mutex, 
to facilitate complex data exchange during data process-
ing. After a worker thread acquires an event, it is locked 
by the mutex and released upon data processing com-
pletion, thus preventing a data race. Condition variables 
are used to coordinate synchronization between threads 
and ensure that data are not processed redundantly. Each 
worker is limited to the scope of a SNiPER Task. It is the 
same as a serial SNiPER job in most cases.

•	 The second technique, lazy loading, dynamically loads 
data to conserve memory and computational resources. 
Only the data that are accessed are loaded. As a well-
known technique, lazy loading has already been applied 
in some HEP frameworks [24].

Some options are offered to users for switching between 
serial and parallel modes based on their preferred job 

configuration. Users have the freedom to define the num-
ber of worker threads.

Implementation of the Parallelized Event 
Data Management System

For caching more than one event, the GlobalStore imple-
ments multiple data slots to store the “event elements” as 
well as the status and ID corresponding to each event. The 
information corresponding to a specific event can be eas-
ily obtained through its event ID, and each event comprises 
three states: “Ready”, “Occupied”, or “Done”. The states 
are utilized to guarantee that each event is processed exactly 
once. Several condition variables are used in the GlobalStore 
to ensure the safety of data exchange between threads.

The parallelized event data processing procedure is 
shown in Fig. 9. Event data input and output are handled by 
two dedicated threads to achieve multi-threaded data pro-
cessing, thereby improving CPU utilization. The GlobalIn-
putAlg (input thread) reads event objects sequentially and 
sends them to GlobalStore. The GlobalOutputAlg (output 
thread) writes event objects into root files as persistent data 
when all events are completed.

After an event is filled into the GlobalStore by the input 
thread, it is marked as “Ready”. The primary role of the 
Muster scheduler is to create and manage worker threads. As 
soon as the conditions are met, the worker thread immedi-
ately acquires and locks the event, marking it as “Occupied”.

Customized I/O services have been implemented in 
the PEDM system to facilitate data exchange between the 
GlobalStore and the workers. The input service gets event 
data directly from data slots, eliminating the necessity to 
read from a file. Each worker is assigned to a thread-local 
SNiPER Task, which is equivalent to a serial SNiPER job 
as described in “Design of Serial Event Data Manage-
ment System” section. In the local thread, we have devel-
oped the PodioLocalDataSvc to handle the transient event 

Fig. 8   The data processing procedure of the worker. A worker is 
functioning as to a serial SNiPER application

Fig. 9   The implementation of 
the PEDM system
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data efficiently. It utilizes a pair of incidents named WBe-
ginEvtHdl and WEndEvtHdl to trigger the input and out-
put services. Additionally, the PodioLocalDataSvc offers 
the capability to retrieve existing event data objects from 
memory or register a new event data object in memory. This 
design enables efficient data management and manipulation 
within the worker.

The algorithms responsible for processing event data are 
defined within the workers. Once an event has been pro-
cessed, the output service assigns it a “Done” status with-
out immediately writing it out. After all events have been 
processed, the output thread sequentially writes the marked 
events into the root file as persistent data. It is important 
to note that, to ensure optimal utilization of data slots, the 
GlobalStore promptly clears these processed events to 
accommodate incoming events and prepare for the next 
event loop.

This implementation ensures that the processing of each 
event is entirely independent of other events. Events pro-
cessed in worker threads can be written out without waiting 
for previously processed events in other threads, thereby 
reducing thread waiting time and improving CPU utilization.

Application and Performance

The Super Tau Charm Facility (STCF) [25] is a new-genera-
tion facility of electron–positron collider operating at center-
of-mass energies of 2 to 7 GeV. STCF will play a leading 
role in the tau, charm, and hadron physics of HEP intensity 
frontier in the world.

The STCF will produce several hundreds of petabytes 
(PB) of scientific data annually. To address this challenge, 
OSCAR is designed based on SNiPER [26] and partially 
based on Key4hep. OSCAR is developed to facilitate the 

offline data processing tasks for the STCF experiment, 
including the production of Monte Carlo simulation data, 
calibration, and reconstruction of collected data, as well 
as helping physicists to conduct physics analysis [27]. 
The event data management system is a fundamental 
component for event data transfers and communications 
between OSCAR based applications in offline data pro-
cessing. Applying the PEDM system to OSCAR can fur-
ther enhance the performance of OSCAR.

In our performance study, 20,000 events of single e− 
with the energy of 5 GeV were generated at the collision 
point in STCF. We executed full detector simulation and 
Electromagnetic calorimeter (EMC) reconstruction algo-
rithms of different events in different threads and com-
pared the reconstructed EMC information obtained in 
single-threaded mode with that obtained in multi-threaded 
mode to validate the functionality of the system. The 
energy of reconstructed EMC clusters is the most crucial 
feature of EMC. From Fig. 10, we can see that the energy 
distributions and the energy deposition distribution within 
the 3 × 3 and 5 × 5 crystals are largely consistent in both 
modes, demonstrating the effective functionality of the 
PEDM system.

To measure the speedup, each job was repeated three 
times to calculate the average time and then the average 
time was divided by the serial time. The speedup ratio is 
plotted against the number of threads in Fig. 11. It can be 
observed that when the number of threads is less than 5, 
the speedup ratio exhibits a good linear behavior. How-
ever, beyond that point, factors such as thread scheduling 
cause the speedup ratio to gradually deviate from the ideal 
line. This is because the workload per task is not sub-
stantial enough. Our performance study indicates that the 
PEDM system can reduce data processing time and meet 
the requirements to handle large amounts of data.

Fig. 10   The physics distribution of reconstruction results after simulating in two modes. The distributions are largely consistent between multi-
threading (blue) and single-threading (red)
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Conclusions

SNiPER is a simple and lightweight software framework 
that has been used in several HEP experiments. To meet 
the requirements of parallel computing, a common event 
data management system is redesigned by consistently 
integrating MT-SNiPER and PODIO. Furthermore, the 
PEDM system has been designed and developed to sup-
port parallelized event data management and processing 
well. Its application and performance study in OSCAR 
has shown that the PEDM system speeds up the event data 
processing with the advantage of concurrent event pro-
cessing. At the same time, due to its good generality and 
flexibility in the design and implementation, other HEP 
experiments can also easily adopt it to implement their 
parallel data processing.
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