Computing and Software for Big Science (2025) 9:3

https://doi.org/10.1007/s41781-025-00131-w

RESEARCH q

Check for
updates

Parallelized Event Data Management System Based on MT-SNiPER
Framework and PODIO

Qiangian Shi'? . Teng Li' - Xingtao Huang'2

Received: 14 September 2024 / Accepted: 20 January 2025
© The Author(s) 2025

Abstract

Software framework serves as a skeleton for the offline data processing software for many high energy physics (HEP) experi-
ments. The event data management, including the event data model (EDM), transient event store and data input/output, imple-
ments the core functionalities of the framework, and has a great impact on the performance of the entire offline software.
Future HEP experiments are generating increasingly large amounts of data, bringing challenges to offline data processing.
To address this issue, a common event data management system that supports efficient parallelized data processing applica-
tions has been developed based on Software for Non-collider Physics ExpeRiments (SNiPER) common software framework
as well as PODIO, a common EDM toolkit for future HEP experiments. In this paper, the implementation of a parallelized
event data management (PEDM) system is introduced, including the integration with MT-SNiPER and PODIO, as well as
the implementation of GlobalStore to support multi-threaded event processing. Finally, the application and performance

evaluation of the data management system in OSCAR (offline software of Super Tau Charm Facility) is presented.

Keywords Offline data processing - SNiPER - High energy physics - Event data model

Introduction

Offline data processing software, such as Athena [1] for
ATLAS [2] and BOSS [3] for BESIII [4], is usually a criti-
cal component of modern high energy physics (HEP) experi-
ments, responsible for building the offline data processing
chain including detector simulation, calibration, reconstruc-
tion, and data analysis. The underlying framework, such as
Gaudi [5], builds the foundation of the offline software,
providing basic functionalities like event loop control,

P4 Teng Li
tengli@sdu.edu.cn

M Xingtao Huang
huangxt@sdu.edu.cn

Qiangian Shi
shiqq@mail.sdu.edu.cn

Institute of Frontier and Interdisciplinary Science, Shandong
University, 72 Binhai Road, Qingdao 266237, Shandong,
China

Key Laboratory of Particle Physics and Particle
Irradiation (MOE), Shandong University, 72 Binhai Road,
Qingdao 266237, Shandong, China

Published online: 31 January 2025

algorithm scheduling, event data management, detector
description management, and some key common services.

The challenges in non-collider experiments such as
nuclear reactor neutrino and cosmic ray experiments involve
handling events with rare physics signals and correlation
analysis between events within certain time windows, which
are pretty different from collider experiments [6]. Learn-
ing the concepts of algorithm and service from Gaudi, and
considering the needs of non-collider experiments, Chinese
developers implemented the SNiPER framework [7]. Now
SNiPER has been adopted by several experiments, including
Jiangmen Underground Neutrino Observatory (JUNO) [8],
Large High Altitude Air Shower Observatory (LHAASO)
[9], Neutrinoless double beta decay experiment (nEXO)
[10]. SNiPER is very lightweight and easy-to-use. It sup-
ports flexible event processing sequences and custom data
management. As a general-purpose offline software frame-
work, SNiPER is also suitable for collider experiments [11],
offering customizability, extensibility, and inherent advan-
tages in parallel computing. Therefore, we chose SNiPER
as the underlying framework for the parallelized event data
management (PEDM) system.

The size of experimental data used for physics
research is sharply increasing (see Table 1), which is

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-025-00131-w&domain=pdf

3 Page 2 of 8

Computing and Software for Big Science (2025) 9:3

Table 1 The amount of raw data generated by particle physics experi-
ments each year

Experiment Operation time Raw data (PB)
BESIIT 2008-2030 0.2
LHAASO 2018-2030 9
JUNO 2021-2030 2
STCF - 300
50 Years of Microprocessor Trend Data
T T T T s 4“
10’ L Sl Transistors
108 | ;‘MA _|(thousands)
NEYS Yol !
10° | 4 aats P gmrgle»Thread
otk X A:“‘ YT (SpecNT x 10%)

ry | |
\ﬁ “““-‘ ‘.:ﬂ. Frequency (MHz)

108 | A :‘A,-Qia“

R oot . 1 3% Y| Typical Power
102k B AL RET LR v;f‘vf :.z,:{., (Watts)

1 4 - " "',: ¥ NS Y7|Number of
1000 s e B . :f . +*[Logical Cores
10° % H Toe Boese e oo amonewn oo E

1 L L L 1

1970 1980 1990 2000 2010 2020

Year

Fig. 1 Microprocessor trend data since 1970 [16]. The figure shows
that the amount of transistors increases year over year, but the growth
rate of single-thread performance is gradually slowing down and
approaching a plateau. Moreover, the rising number of CPU cores
indicates the potential benefits of utilizing multi-core processing to
enhance performance

a big challenge for offline data processing software. In
order to take advantage of new computing resources, such
as coprocessors, graphics processing units (GPUs), and
field programmable gate array (FPGA), high-performance
computing techniques must be considered and adopted to
speedup data processing when designing and developing
an offline software system for new generation experiments.

Recent developments in microprocessor technology
have underlined the trends (Fig. 1) that have been iden-
tified since the mid-2000s: while the density of transis-
tors on CPUs has continued to rise more or less exponen-
tially (Moore’s law [12]), clock speeds have plateaued.
The growth of single-threaded performance is gradually
slowing down more than 15 years ago. To compensate for
this, manufacturers put more cores on the chip. It is natu-
ral to apply parallel computing to take advantage of their
high performance fully. In recent years, a multi-thread-
ing model has been adopted by the HEP community to
develop several data processing frameworks and libraries.
For instance, CMS has already completed its transition to
a concurrent framework [13]. GaudiHive [14], an exten-
sion of Gaudi, has been a successful example in the HEP
field, enabling concurrency through multi-threading. In
2017, a multi-threaded version of SNiPER was developed,

@ Springer

MT-SNiIiPER [15], which further enhanced processing
performance.

Event data model (EDM) is the core of offline data pro-
cessing software framework. It defines the structure of
event data in memory and data files and implements the
relationship between data objects at different processing
stages. The PODIO toolkit [17] provides an easy way to
generate a performant implementation of an EDM from a
high-level description in YAML format. One of the key ideas
of PODIO is to use plain-old-data (POD) type as much as
feasible, encompassing structures composed of basic types,
such as integers, floats and arrays of these basic types.
Thanks to their simplicity, efficiency, and ease of manage-
ment, POD types enable parallelization. PODIO was chosen
as the toolkit for the definition of EDM in the PEDM sys-
tem. Since POD types have simple internal structures and
memory layouts, they are highly suitable for sharing and
transferring data between threads.

This paper aims to describe the PEDM system devel-
oped based on SNiPER and PODIO. “Key Components
and Design” section outlines the key components and the
design of serial and parallelized event data management
system. “Implementation of the Parallelized Event Data
Management System” section provides a detailed descrip-
tion of the implementation of the PEDM system. “Applica-
tion and Performance” section shows the performance of
applying PEDM system to the offline software of Super Tau
Charm Facility (OSCAR) [18]. Finally, “Conclusions” sec-
tion summarizes the status and gives an outlook for future
development.

Key Components and Design

In offline data processing software, the EDM is responsi-
ble for defining the structure of event data in memory and
data files, and implementing the relationship between data
objects in different processing stages. The event data man-
agement system manages event data in memory, provides
interfaces for user applications, and handles data input/out-
put (I/O). Therefore, the EDM and the event data manage-
ment system greatly influence the function and performance
of the experiment software.

SNiPER Framework and PODIO

In the SNiPER framework, a parallelized solution based on
Intel Threading Building Blocks (TBB) [19], MT-SNiPER,
is proposed. The Task is one of the most essential com-
ponents in SNiPER. It is responsible for controlling the
event loop, functioning as the “Application Manager”
in Gaudi [20]. As shown in Fig. 2, each Task contains a
set of Algorithms, Services, and Sub-Tasks. Furthermore,

Computing and Software for Big Science (2025) 9:3

Page3of8 3

Task

Algorithms ME Sub- Task

Fig.2 Components tree in a SNiPER job. Each task comprises a set
of Algorithms, Services, and Sub-Tasks

SubTask

Executed on Demand|
(Incident);
3 Executed on Demand
Algorithm 4 [7-= "= —"

Algorithm 6

An algorithm sequence in TopTask SubSubTask

Event Loop

Algorithm 1
Algorithm 2

Algorithm 3

-1

Algorithm 5

Fig.3 Conditional execution of algorithm subsets. Incident mecha-
nism [21] is implemented to enhance communication between tasks.
A task can be triggered by an incident on demand

SNiPER considers the need to use new parallel computing
techniques in data processing. It supports multiple Tasks,
which can be naturally mapped to threads in parallelized
computing. Figure 3 shows the execution sequence of mul-
tiple Tasks, with each Task managing its Algorithms which
are executed sequentially within a single Task.

Multiple SNiPER Task Scheduler (Muster) [22] was
implemented in MT-SNiPER to support multi-thread-
ing. Muster builds the mapping of SNiPER Task to Intel
TBB task and breaks the traditional event loop. Multiple
instances of Tasks are not executed directly by Muster;
instead, Muster creates corresponding TBB-based workers
to execute the Tasks. As shown in Fig. 4, Muster spawns a
set of workers and starts them in different threads. Then,
different events are dispatched to different workers. In each
worker, it is a copy of the SNiPER Task that performs like
a serial job. With this approach, the existing Algorithms
and Services in serial mode can be almost seamlessly
migrated to parallel mode.

The event data management system of SNiPER is
shown in Fig. 5, including Input System, Output System
and Data Store. Data Store is responsible for handling
event data in memory and managing its lifecycle. Each
Task instance has its own Data Store.

As the Data Store is used to manage general event data,
we have chosen the EventStore of PODIO to fulfill the
functions of Data Store.

SNiPER Muster Vs Thread #1°\

:
TBB . o

I worker #1 I —I —I

Service | I

J
TBB
worker #2

| (|

Thread #27\

SNiPER Task
Service |I Algorithm II

J

<

f‘

Fig.4 SNiPER Muster builds the mapping of a SNiPER Task to an
Intel TBB task

ﬂlnput System

I i Simulation
I [3

:— Reconstruction [——»| Data Store
|
|

(MEMORY)

ﬂOUtput System
Tosc]

Fig.5 Diagram of the event data management system and its inter-
faces to applications

The event data management system of PODIO mainly
consists of three parts: the EventStore, the ROOTReader,
and the ROOT Writer. The ROOTReader and ROOT Writer
manage data input and output. The EventStore stores and
manages the event data in memory and also provides the
interfaces for ROOTReader and ROOT Writer. By integrat-
ing the event data management systems of SNiPER with
PODIO, an event data management system for serial data
processing has been implemented in offline software.

Multi-threaded programming can effectively utilize
multi-core CPU resources and allow different threads of
the same task to run simultaneously. As mentioned earlier,
Muster supports parallelized process control, but PODIO
only holds data objects for one single event. It was neces-
sary to redesign a EventStore to cache multiple event data
simultaneously. Therefore, we designed the PEDM system
by integrating Muster with PODIO to support parallelized
data processing.

Design of Serial Event Data Management System

In the implementation of serial data processing, PodioDa-
taSve, PodiolnputSvc, PodioOutputSvc and DataHandle

@ Springer

3 Page 4 of 8

Computing and Software for Big Science

(2025) 9:3

are developed to integrate the PODIO with SNiPER. The
PodioDataSvc serves as the wrapper of EventStore, and there
is only one EventStore in a job. The EventStore in PODIO
handles transient data, whose lifetime is managed by Podio-
DataSvc. Therefore, only one event can be processed at a
time, and it needs to be promptly created and deleted to
ensure the proper functioning of the program. The sequence
diagram for serial event data management is shown in Fig. 6.
In one task, a pair of incidents are named “BeginEvtHd[l” and
“EndEvtHdl” to implement the input and output of event
data. They are automatically triggered at the beginning and
end of an event. Through the PodioDataSvc, PodiolnputSvc
is invoked by “BeginEvtHdl” to convert persistent data from
the input files to transient event data in the EventStore, while
PodioOutputSvc is invoked by “EndEvtHdl” to store the
event data from the EventStore into the output files.

Design of the Parallelized Event Data Management
System

PODIO favors composition over inheritance and uses POD
types to generate thread-safe and efficient C++ code for the
EDM. On the other hand, the EventStore was never intended
to support such use cases and has exceeded its original pur-
pose as an example implementation for a transient event
store [23]. Therefore, we redesigned the EventStore to sup-
port caching multiple events.

Due to the flexibility of data management and the con-
figuration of dynamic processes, it is critical to ensure mem-
ory safety. Implementing security measures such as identity
recognition, locking, and unlocking was essential to guar-
antee effective data processing and the consistency of data
reading and writing. While boosting the rate of offline data
processing, this method ensures the reliability of results. A
new memory management system, named GlobalStore (as
illustrated in Fig. 7), has been designed and developed to
support parallelized data processing fully. In GlobalStore,

GlobalStore

- N
[Workers \
I
Event | - €vent element Worker | I
g1 | -index 1/0 Sve| Worker Task !
- status | }
I
- event element I !
E\;eznt - index }Ngrg erl Worker Task I I
- status /0Svel)
N e 2
Event | - €vent element
#n |- index
\ - status /

Fig.7 The design of event data management for parallel computing.
Each Task can be configured with its own local buffer and corre-
sponding input and output services

the structure named “event element” is defined to manage
most of the information that is handled by the EventStore.
GlobalStore also stores the index and status to identify the
event. The index is used to label the event, and the status is
needed to ensure that the event is processed only once.
Data races arise when multiple threads simultaneously
attempt to read/write data from/to the same file using ROOT
I/0. To avoid this situation, decoupling the I/O functions
from the EventStore and allocating input and output to two
dedicated threads is necessary. This method significantly
improves CPU utilization and reduces the task processing
time, as described in “Application and Performance” section.
To efficiently deliver data to workers (see Fig. 8), the
PodioLocalDataSvc has been developed to access event
data objects using DataHandles. An abstract interface
class, IPodioDataSvc, has been defined to facilitate the
sharing and reusing of a set of data management services
between serial and parallelized event data management
systems. Both PodioDataSvc and PodioLocalDataSvc
are inherited from IPodioDataSvc, and these services
are implemented to ensure thread safety. The workers
independently process events in parallel. Two new I/O
services, namely the worker input service (WinputSvc)

Fig.6 The sequence diagram

| Task | | PodioDataSvc| | BeginEvtHdl | | EndEvtHdl | | PodiolnputSve | | PodioOutputSwc |
1 I I T

for serial event data manage-

¢
:a

ment. Tasks control the opera- " ,
tion of SNiPER. The lifecycle initialize
of a Task covers the entire I
SNiPER job I
T |
« |
begin event |
execute cleart
endevent |
|
LI'n events |
1 |
|
finalize I

@ Springer

—
(B —
e
———

ﬂ

Computing and Software for Big Science (2025) 9:3

Page50f8 3

Workers |
WinputSve WBeginEvtHdl | |

5 Algorithm 1
PodioLocalDataSvc

'

WOutputSve

DataHandle

GlobalStore

Algorithm 2

WEndEvtHdl

worker task

Fig.8 The data processing procedure of the worker. A worker is
functioning as to a serial SNiPER application

and the worker output service (WOutputSvc), have been
developed to deliver event data between GlobalStore and
workers. They are triggered by two new incidents, “WBe-
ginEvtHdl” and “WEndEvtHdI”. With this design, the
intra-event and inter-event parallelism can be supported
as described below:

e The first technique employs thread synchronization
mechanisms, including condition variables and mutex,
to facilitate complex data exchange during data process-
ing. After a worker thread acquires an event, it is locked
by the mutex and released upon data processing com-
pletion, thus preventing a data race. Condition variables
are used to coordinate synchronization between threads
and ensure that data are not processed redundantly. Each
worker is limited to the scope of a SNiPER Task. It is the
same as a serial SNiPER job in most cases.

e The second technique, lazy loading, dynamically loads
data to conserve memory and computational resources.
Only the data that are accessed are loaded. As a well-
known technique, lazy loading has already been applied
in some HEP frameworks [24].

Some options are offered to users for switching between
serial and parallel modes based on their preferred job

Fig. 9 The implementation of
the PEDM system

Condition Lock

""""""""""" > rely

————— notify

configuration. Users have the freedom to define the num-
ber of worker threads.

Implementation of the Parallelized Event
Data Management System

For caching more than one event, the GlobalStore imple-
ments multiple data slots to store the “event elements” as
well as the status and ID corresponding to each event. The
information corresponding to a specific event can be eas-
ily obtained through its event ID, and each event comprises
three states: “Ready”, “Occupied”, or “Done”. The states
are utilized to guarantee that each event is processed exactly
once. Several condition variables are used in the GlobalStore
to ensure the safety of data exchange between threads.

The parallelized event data processing procedure is
shown in Fig. 9. Event data input and output are handled by
two dedicated threads to achieve multi-threaded data pro-
cessing, thereby improving CPU utilization. The Globalln-
putAlg (input thread) reads event objects sequentially and
sends them to GlobalStore. The GlobalOutputAlg (output
thread) writes event objects into root files as persistent data
when all events are completed.

After an event is filled into the GlobalStore by the input
thread, it is marked as “Ready”. The primary role of the
Muster scheduler is to create and manage worker threads. As
soon as the conditions are met, the worker thread immedi-
ately acquires and locks the event, marking it as “Occupied”.

Customized I/0O services have been implemented in
the PEDM system to facilitate data exchange between the
GlobalStore and the workers. The input service gets event
data directly from data slots, eliminating the necessity to
read from a file. Each worker is assigned to a thread-local
SNiPER Task, which is equivalent to a serial SNiPER job
as described in “Design of Serial Event Data Manage-
ment System” section. In the local thread, we have devel-
oped the PodioLocalDataSvc to handle the transient event

GlobalStore

data
condition

Sl done
condition candition

@ Springer

3 Page 6 of 8

Computing and Software for Big Science (2025) 9:3

data efficiently. It utilizes a pair of incidents named WBe-
ginEvtHdl and WEndEvtHdI to trigger the input and out-
put services. Additionally, the PodioLocalDataSvc offers
the capability to retrieve existing event data objects from
memory or register a new event data object in memory. This
design enables efficient data management and manipulation
within the worker.

The algorithms responsible for processing event data are
defined within the workers. Once an event has been pro-
cessed, the output service assigns it a “Done” status with-
out immediately writing it out. After all events have been
processed, the output thread sequentially writes the marked
events into the root file as persistent data. It is important
to note that, to ensure optimal utilization of data slots, the
GlobalStore promptly clears these processed events to
accommodate incoming events and prepare for the next
event loop.

This implementation ensures that the processing of each
event is entirely independent of other events. Events pro-
cessed in worker threads can be written out without waiting
for previously processed events in other threads, thereby
reducing thread waiting time and improving CPU utilization.

Application and Performance

The Super Tau Charm Facility (STCF) [25] is a new-genera-
tion facility of electron—positron collider operating at center-
of-mass energies of 2 to 7 GeV. STCF will play a leading
role in the tau, charm, and hadron physics of HEP intensity
frontier in the world.

The STCF will produce several hundreds of petabytes
(PB) of scientific data annually. To address this challenge,
OSCAR is designed based on SNiPER [26] and partially
based on Key4hep. OSCAR is developed to facilitate the

offline data processing tasks for the STCF experiment,
including the production of Monte Carlo simulation data,
calibration, and reconstruction of collected data, as well
as helping physicists to conduct physics analysis [27].
The event data management system is a fundamental
component for event data transfers and communications
between OSCAR based applications in offline data pro-
cessing. Applying the PEDM system to OSCAR can fur-
ther enhance the performance of OSCAR.

In our performance study, 20,000 events of single e~
with the energy of 5 GeV were generated at the collision
point in STCF. We executed full detector simulation and
Electromagnetic calorimeter (EMC) reconstruction algo-
rithms of different events in different threads and com-
pared the reconstructed EMC information obtained in
single-threaded mode with that obtained in multi-threaded
mode to validate the functionality of the system. The
energy of reconstructed EMC clusters is the most crucial
feature of EMC. From Fig. 10, we can see that the energy
distributions and the energy deposition distribution within
the 3x 3 and 5 x5 crystals are largely consistent in both
modes, demonstrating the effective functionality of the
PEDM system.

To measure the speedup, each job was repeated three
times to calculate the average time and then the average
time was divided by the serial time. The speedup ratio is
plotted against the number of threads in Fig. 11. It can be
observed that when the number of threads is less than 5,
the speedup ratio exhibits a good linear behavior. How-
ever, beyond that point, factors such as thread scheduling
cause the speedup ratio to gradually deviate from the ideal
line. This is because the workload per task is not sub-
stantial enough. Our performance study indicates that the
PEDM system can reduce data processing time and meet
the requirements to handle large amounts of data.

— Rec-MT — Rec-MT

6000;

— Rec — Rec

5000

4000;

JFvents

Reo-MT 6000
3000 ec- f
— Rec F 5000
2500 -
E ﬂ 4000
9
200 £
2 e
8 3000
w

ren
——

000, ﬁ
2000 JJJ

1000]]aJ l

Energy(MeV)

(a) The distribution of recon-

structed cluster energy crystals

4
Edep(MeV)

(b) Energy deposition in the 3x3

7 8 9 10

4 5 6
Edep(MeV)

(c) Energy deposition in the 5x5
crystals

Fig. 10 The physics distribution of reconstruction results after simulating in two modes. The distributions are largely consistent between multi-

threading (blue) and single-threading (red)

@ Springer

Computing and Software for Big Science (2025) 9:3

Page70of8 3

speedup versus number of threads

""" y=X 7
/
/
e speedup
.
X
;
/
"
,
12 4%
/
/
/’)
Vg o
/
738 =
/
/
I' °
o 7’
= 7 °
/
8 8 i -
8_ ot °
wn ’
47 o
/
/
I’ L
¥
/
// L]
‘e
/,
4 s
Jo
/
/
/
‘0
v
4
.
v
¢
0 "
0 4 8 12 16
thread

Fig. 11 Speedup ratio versus number of worker threads. The speedup
ratio is close to the ideal value with less than 5 threads

Conclusions

SNiPER is a simple and lightweight software framework
that has been used in several HEP experiments. To meet
the requirements of parallel computing, a common event
data management system is redesigned by consistently
integrating MT-SNiPER and PODIO. Furthermore, the
PEDM system has been designed and developed to sup-
port parallelized event data management and processing
well. Its application and performance study in OSCAR
has shown that the PEDM system speeds up the event data
processing with the advantage of concurrent event pro-
cessing. At the same time, due to its good generality and
flexibility in the design and implementation, other HEP
experiments can also easily adopt it to implement their
parallel data processing.

Acknowledgements This work was performed with the support of
the National Natural Science Foundation of China (Nos.: 12025502,
12341504, 12105158), National Key Research and Development Pro-
gram of China (Grant No.: 2021 YFA0718403).

Author contributions Conceptualization: [Huang Xingtao], [Li
Teng]; methodology: [Huang Xingtao], [Li Teng]; funding acquisi-
tion: [Huang Xingtao], [Li Teng]; writing—original draft preparation:
[Shi Qiangian]; writing—review and editing: [Huang Xingtao], [Li
Teng], [Shi Qiangian]; investigation: [Shi Qianqgian]; software: [Shi
Qiangian], [Li Teng].

Funding This study was funded by the National Natural Science
Foundation of China (grant nos. 12105158, 12025502); National Key
Research and Development Program of China (2021 YFA0718403).

Data availability The data used for performance validation in this
study are generated from the simulation and reconstruction software
of OSCAR (offline software of Super Tau Charm Facility) v2.3.0.
Restrictions apply to the availability of softwares, therefore they are
not publicly available. Data are available from the authors, [Xingtao
Huang, Teng Li], upon reasonable request.

Declarations
Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativeco
mmons.org/licenses/by-nc-nd/4.0/.

References

1. Calafiura P, Marino M, Leggett C, Lavrijsen W, Quarrie DR
(2005) The Athena control framework in production, new devel-
opments and lessons learned. In: 14th international conference
on computing in high-energy and nuclear physics. pp 456-458 .
https://api.semanticscholar.org/CorpusID:73681202

2. Aad G, Abat E, Abdallah J et al (2008) The atlas experiment at
the CERN large hadron collider. J Instrum 3(08):08003. https://
doi.org/10.1088/1748-0221/3/08/S08003

3. Li W-D, Mao Y-J, Wang Y-F (2009) The bes-iii detector and
offline software. Int] Mod Phys A 24S1:9-21. https://doi.org/10.
1142/S0217751X09046424

4. Ablikim M, An ZH et al (2010) Design and construction of the
BESIII detector. Nucl Instrum Methods Phys Res Sect A Accel-
erators Spectrometers Detectors Assoc Equip 614(3):345-399.
https://doi.org/10.1016/j.nima.2009.12.050

5. Barrand G et al (2001) Gaudi—a software architecture and frame-
work for building hep data processing applications. Comput Phys
Commun 140:45-55. https://doi.org/10.1016/S0010-4655(01)
00254-5

6. Yang Y (2023) JUNO collaboration: parallel processing in data
analysis of the Juno experiment. J Phys Conf Ser 2438(1):012057.
https://doi.org/10.1088/1742-6596/2438/1/012057

7. Zou JH, Huang X, Li W, Lin T, Li T, Zhang K, Deng ZY, Cao
GF (2015) Sniper: an offline software framework for non-collider
physics experiments. J Phys Conf Ser 664(7):072053. https://doi.
org/10.1088/1742-6596/664/7/072053

8. Huang X, Li T, Zou J, Lin T, Li W, Deng Z, Cao G (2017)
Offline data processing software for the Juno experiment. PoS
ICHEP2016. https://doi.org/10.22323/1.282.1051

9. CaoZ (2010) A future project at Tibet: the large high altitude air
shower observatory (LHAASO). Chin Phys C 34:249-252. https://
doi.org/10.1088/1674-1137/34/2/018

10. Kharusi SA et al (2018) nEXO pre-conceptual design report

@ Springer

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://api.semanticscholar.org/CorpusID:73681202
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1142/S0217751X09046424
https://doi.org/10.1142/S0217751X09046424
https://doi.org/10.1016/j.nima.2009.12.050
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1088/1742-6596/2438/1/012057
https://doi.org/10.1088/1742-6596/664/7/072053
https://doi.org/10.1088/1742-6596/664/7/072053
https://doi.org/10.22323/1.282.1051
https://doi.org/10.1088/1674-1137/34/2/018
https://doi.org/10.1088/1674-1137/34/2/018

3

Page 8 of 8

Computing and Software for Big Science (2025) 9:3

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Li T, Huang W, Huang X, Ai X, Li H, Liu D (2024) Offline data
processing software for the super tau charm facility. EPJ Web
Conf 295:03025. https://doi.org/10.1051/epjconf/202429503025
Moore GE (1998) Cramming more components onto integrated
circuits. Proc IEEE 86(1):82-85. https://doi.org/10.1109/JPROC.
1998.658762

Jones CD, Sexton-Kennedy E (2014) Stitched together: transition-
ing CMS to a hierarchical threaded framework. J Phys Conf Ser
513(2):022034. https://doi.org/10.1088/1742-6596/513/2/022034
Clemencic M, Hegner B, Mato P, Piparo D (2014) Introducing
concurrency in the Gaudi data processing framework. J Phys Conf
Ser 513:022013. https://doi.org/10.1088/1742-6596/513/2/022013
Zou JH, Lin T, Li WD, Huang XT, Li T, Deng ZY, Cao GF, You
7Y (2018) Parallel computing of sniper based on intel TBB. J
Phys Conf Ser 1085(3):032009. https://doi.org/10.1088/1742-
6596/1085/3/032009

Karl Rupp: microprocessor trend data. https://github.com/karlr
upp/microprocessor-trend-data/tree/master/50yrs

Gaede F, Ganis G, Hegner B, Helsens C, Madlener T, Sailer A,
Stewart GA, Volkl V, Wang J (2021) Edm4hep and podio—the
event data model of the key4hep project and its implementation.
EPJ Web Conf 251:03026. https://doi.org/10.1051/epjconf/20212
5103026

Huang W.H, Li H, Zhou H, Li T, Li QY, Huang XT (2023) Design
and development of the core software for stcf offline data process-
ing. JINST 18(03), 03004 https://doi.org/10.1088/1748-0221/18/
03/P03004arXiv:2211.03137 [physics.ins-det]

Robison AD (2011) In: Padua D (ed) Intel® Threading building
blocks (TBB), pp. 955-964. Springer, Boston, MA . https://doi.
org/10.1007/978-0-387-09766-4_51

Clemencic M, Corti G, Easo S, Jones CR, Miglioranzi S, Pap-
pagallo M, Robbe P (2011) The LHCB simulation application,

@ Springer

21.

22.

23.

24.

25.

26.

217.

gauss: design, evolution and experience. J Phys Conf Ser
331:032023. https://doi.org/10.1088/1742-6596/331/3/032023
Gaudi framework services. https://gaudi-framework.readthedocs.
io/en/latest/old/GDG_Services.html

ZouJ, Lin T, Li W, Huang X, Deng Z, Cao G, You Z (2019) The
event buffer management for mt-sniper. EPJ Web Conf 214:05026.
https://doi.org/10.1051/epjconf/201921405026

Fernandez Declara P, Gaede F, Ganis G, Hegner B, Helsens C,
Madlener T, Sailer A, Stewart G.A, Volkl V (2023) Of frames and
schema evolution—the newest features of podio. In: 21th interna-
tional workshop on advanced computing and analysis techniques
in physics research: Al meets reality. https://arxiv.org/abs/2312.
08199

Eté R, Gaede F, Benda J, Grasland H (2020) Marlinmt—paral-
lelising the marlin framework. EPJ Web Conf

Achasov M et al (2023) STCF conceptual design report (volume
1): physics & detector. Front Phys 19(1):14701. https://doi.org/
10.1007/s11467-023-1333-z

Ai X, Huang X, Li T, Qi B, Qin X (2024) Design and development
of STCF offline software. Mod Phys Lett A. https://doi.org/10.
1142/50217732324400066

Huang WH, Li T, Li QY, Li H, Liu D, Huang XT (2023) Offline
software framework for the super tau charm facility. J Phys Conf
Ser 2438(1):012054. https://doi.org/10.1088/1742-6596/2438/1/
012054

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1051/epjconf/202429503025
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1088/1742-6596/513/2/022034
https://doi.org/10.1088/1742-6596/513/2/022013
https://doi.org/10.1088/1742-6596/1085/3/032009
https://doi.org/10.1088/1742-6596/1085/3/032009
https://github.com/karlrupp/microprocessor-trend-data/tree/master/50yrs
https://github.com/karlrupp/microprocessor-trend-data/tree/master/50yrs
https://doi.org/10.1051/epjconf/202125103026
https://doi.org/10.1051/epjconf/202125103026
https://doi.org/10.1088/1748-0221/18/03/P03004
https://doi.org/10.1088/1748-0221/18/03/P03004
http://arxiv.org/abs/2211.03137
https://doi.org/10.1007/978-0-387-09766-4_51
https://doi.org/10.1007/978-0-387-09766-4_51
https://doi.org/10.1088/1742-6596/331/3/032023
https://gaudi-framework.readthedocs.io/en/latest/old/GDG_Services.html
https://gaudi-framework.readthedocs.io/en/latest/old/GDG_Services.html
https://doi.org/10.1051/epjconf/201921405026
https://arxiv.org/abs/2312.08199
https://arxiv.org/abs/2312.08199
https://doi.org/10.1007/s11467-023-1333-z
https://doi.org/10.1007/s11467-023-1333-z
https://doi.org/10.1142/S0217732324400066
https://doi.org/10.1142/S0217732324400066
https://doi.org/10.1088/1742-6596/2438/1/012054
https://doi.org/10.1088/1742-6596/2438/1/012054

	Parallelized Event Data Management System Based on MT-SNiPER Framework and PODIO
	Abstract
	Introduction
	Key Components and Design
	SNiPER Framework and PODIO
	Design of Serial Event Data Management System
	Design of the Parallelized Event Data Management System

	Implementation of the Parallelized Event Data Management System
	Application and Performance
	Conclusions
	Acknowledgements
	References

