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Abstract
U(1) lattice gauge theories (LGTs) offer a way to simulate quantum electrodynamics, one of the
three forces unified by the Standard Model of particles physics. Here we provide complete,
quantum-gate-by-quantum-gate algorithms to simulate U(1) LGTs on a fault-tolerant quantum
computer. We further perform rigorous error analysis in order to derive concrete estimates of the
quantum computational resources required for an accurate simulation of U(1) LGTs using a
second-order product formula. We show that U(1) LGTs in any spatial dimension can be simulated

using Õ(T
3
2N

3
2Λϵ−

1
2 ) non-Clifford T gates, where T is the simulation time, N is the number of

lattice sites, Λ is the truncation parameter for the bosonic gauge fields, and ϵ is the simulation
error. This work paves the way towards fault-tolerant quantum simulations of physical models
closely related to the Standard Model of particle physics.

1. Introduction

Simulating quantum systems is one of the most promising applications of a quantum computer [1], which
may lead to exciting discoveries in both applied and fundamental sciences. Many efficient quantum
algorithms designed to simulate quantum chemistry and materials science on fault-tolerant quantum
computers have been proposed in recent years (see [2–4] and references therein). The same cannot be said
true for quantum simulation for high-energy physics. While the development of quantum simulation for
quantum field theories has made significant progress in digital quantum simulation [5–12], analog quantum
simulation [13–20], and variational quantum simulation [21–24] (see [25, 26] for reviews and more
references therein), quantum algorithms for the fault-tolerant era are still quite scarce [6, 9–11]. Here we
investigate how particle physics can be efficiently simulated on a universal fault-tolerant quantum computer.
Specifically, we look at the problem of simulating quantum electrodynamics (QED), one of the three
fundamental forces in the Standard Model of particle physics, via lattice gauge theories (LGTs).

LGTs are quantum gauge-field theories formulated on a discrete space-time lattice [27]. They provide a
way to simulate particle physics non-perturbatively4, and have arguably become the most successful
computational method in particle physics. This is evidenced by the fact that various quantities of physical
relevance have been computed via Markov Chain Monte Carlo (MCMC) simulations of lattice quantum
chromodynamics (QCD), i.e. the theory of strong interactions between quarks and gluons. These quantities
include static properties of baryons, hadrons, and nuclei [28], and benchmark theoretical results to the
recent g− 2 experiment [29, 30]. Despite the success of MCMC simulations, it is not in general an efficient
(classical) method to simulate quantum systems, as it suffers from the exponentially hard ‘sign problem’ [31].

4 Non-perturbativemethods such as LGTs are essential, since perturbativemethods cannot capture the correct physics in non-perturbative
regimes.
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Quantum computers, on the other hand, provide an efficient alternative approach. In [9], an efficient
quantum algorithm for simulating U(1) LGTs, also known as lattice QED, in one spatial dimension was first
proposed5. The algorithm, which is based on the second-order Suzuki-Trotter product formula (PF), requires
Õ(L

3
2T

3
2Λϵ−

1
2 ) non-Clifford T gates, where L is the number lattice sites, T is the simulation time, Λ is the

truncation parameter of the infinite bosonic gauge fields, and ϵ is the simulation error. It was further reported
in [9] that the second-order PF was chosen over other methods such as linear combination of unitaries
(LCUs) [32, 33] and quantum signal processing (QSP) [34] because they scale quadratically better in Λ.

While one dimensional lattice QED is an important toy model for higher-dimensional and non-Abelian
LGTs like lattice QCD, one dimensional LGTs do not accurately describe reality. Crucially, they do not
include the magnetic field. In this work, we report efficient quantum algorithms to simulate lattice QED
including the magnetic field in any spatial dimension d with periodic boundary conditions. We choose to
base the algorithms on the second-order PF for the same reason as discussed above and in [35]. We introduce
two methods to implement the Trotter steps due to the excitation, off-diagonal terms, including but not
limited to the magnetic field terms. The first method breaks down the banded structure of each off-diagonal
term into a constant, with respect to Λ, number of terms to be implemented consecutively. This method has
been generalized to simulate lattice QCD [36], and various bosonic and large-spin models [37]. The second
method first diagonalizes each off-diagonal term using quantum Fourier transform (QFT), and then
implements the diagonalized term using QSP techniques, thereby hybridizing Trotterization with QSP.
Specifically, QSP techniques are employed as a subroutine to efficiently implement the Trotter steps due to
the off-diagonal terms. We estimate that the costs per Trotter step of both methods are similar.

Furthermore, we perform various optimizations of the algorithms. Whenever possible, we carefully
schedule the execution of the Trotter steps over the lattice geometry to maximize parallelism. This includes
considering different spatial dimensions, and selecting different lattice sites and links to include in one time
step. A careful consideration here comes with two benefits, in addition to the obvious circuit depth or
execution time reduction. One is the applicability of efficient quantum circuit constructions. More
specifically, we employ the weight-sum trick, reported in [38, 39] to synthesize a layer of same-angle Rz gates
in parallel. This leads to an exponential reduction in Rz-gate count at the cost of a modest increase in T-gate
and ancilla-qubit counts. Therefore, we take a full advantage of this trick by arranging as many same-angle
Rz gates as possible into layers across the entire lattice. The other is the ability to enable streamlined Trotter
error analysis [35, 40]. For instance, terms applied in parallel commute with one another, and thus, the
commutators to be evaluated for the Trotter error can be more tightly bounded by considering Trotter term
collisions at the level of the lattice geometry.

Via rigorous analyses of the algorithmic (second-order PF) error [35, 40] and circuit-synthesis error [41],
we compute concrete upper-bounds on the quantum computational resources (T gate and qubit counts)
sufficient to simulate the time evolution of lattice QED. Such resource estimates are practical metrics often
used, for instance in quantum chemistry [2–4], to quantify and compare the run-time of finite-sized
simulations. We obtain a resulting asymptotic complexity of Õ(T

3
2N

3
2Λϵ−

1
2 ) for a d-dimensional lattice with

N= Ld, where L is the number of sites in one of the d orthogonal dimension, sites. This matches the
complexity of the algorithm in [9] and thus, retains the quadratic speed-up in Λ over LCU and QSP, even
though, unlike that algorithm, ours can simulate lattice QED, including the magnetic field, in any spatial
dimension.

We now outline the remainder of this paper. In section 2, we describe the lattice QED Hamiltonian, and
its mapping to qubits. In section 3, we lay out in detail the quantum circuit implementations of each Trotter
step due to the lattice QED Hamiltonian. In section 4, we provide the Trotter errors in section 4.1, Rz-gate
synthesis analysis in section 4.2, and complexity analysis in section 4.3. In appendices A and B, we give the
full derivation of the Trotter errors, and a detailed comparison of our algorithm to prior art, respectively.

2. The lattice QEDHamiltonian

We consider the Kogut-Susskind Hamiltonian formulation of LGTs [42]. In this formulation, the
Hamiltonian is defined on a d-dimensional hypercubic spatial lattice, while time is kept continuous. A site on
the lattice is defined by a vector n⃗=

∑d
i=1 nîi, where î is a unit vector pointing in the ith orthogonal

direction. A site is labeled even or odd, if (−1)n⃗ = (−1)
∑d

i=1 ni evaluates to 0 or 1, respectively. A link that
connects neighboring sites is denoted by a tuple (⃗n, l) of the starting site n⃗ and its direction l. On the lattice,

5 This was the only known quantum algorithm for simulating LGTs prior to the completion of our work.
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the fermions and anti-fermions reside on the sites, while the gauge bosons that mediate the interactions
between them occupy the links. As such, the lattice QED Hamiltonian is defined by [42]

Ĥ= Ĥgauge + Ĥmatter, (1)

where Ĥgauge describes the dynamics of the electric and magnetic gauge fields, and Ĥmatter accounts for the
dynamics that involve the fermionic matter. The pure gauge Hamiltonian Ĥgauge consists of the electric ĤE

and magnetic ĤB Hamiltonians, and is given by [42]

Ĥgauge = ĤE + ĤB, where

ĤE =
g2

2ad−2

∑
n⃗,l

Ê2(⃗n, l),

ĤB =− 1

2a4−dg2

∑
□

P̂□ + P̂†□, (2)

where g denotes the bare coupling strength,□ represents the elementary square cells, called plaquettes, of a
lattice., and P̂□ is the so-called plaquette operator defined by

P̂□ = Û(⃗n, i)Û(⃗n+ î, j)Û†(⃗n+ ĵ, i)Û†(⃗n, j). (3)

The gauge-field operators Ê and Û act on an infinite-dimensional Hilbert space that is equivalent to that of a
planar rotor. Here we adopt the angular-momentum-like electric basis |E〉, in which Ê is diagonal and
integer-valued, i.e. [43]

Ê=
∑
E∈Z

E|E〉〈E|, (4)

and Û is a ladder operator defined by

Û=
∑
E∈Z

|E+ 1〉〈E|. (5)

They satisfy the on-link commutators

[Ê, Û] = Û, [Ê, Û†] =−Û†. (6)

Furthermore, the squared electric-field operator is readily given by

Ê2 =
∑
E∈Z

E2|E〉〈E|. (7)

Note that we dropped the link location indices for notational convenience.
In order to represent the infinite-dimensional gauge-field operator on each link on a finite-size quantum

computer, its Hilbert space must be truncated at a cutoff, Λ6. The electric field operator then becomes

Ê=
Λ−1∑
E=−Λ

E|E〉〈E|. (8)

A non-negative integer 0⩽ j< 2η is represented on the binary η-qubit register as

|j〉=

∣∣∣∣∣
η−1∑
n=0

jn2
n

〉
=

η−1⊗
n=0

|jn〉. (9)

Using this binary computational basis, the eigenbasis |E〉 is encoded via E= j−Λ. Then, the number of
qubits on the link register for each link is given by η = log(2Λ), where Λ is assumed to be a non-negative
power of two, and we have and will continue to assume all logarithms are base two, unless otherwise specified.

6 In this paper, we consideredΛ as a parameter in the Hamiltonian. Upon completion of the first version of this paper, it has been shown
in [11] that Λ = polylog(ϵ−1), where ϵ includes errors introduced by the truncation of the gauge fields.
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As in [9], we periodically wrapped the electric fields at Λ such that

Û|Λ− 1〉= |−Λ〉, Û†|−Λ〉= |Λ− 1〉. (10)

This spoils the on-link commutator at the cutoff to give

[Ê, Û] = Û− 2Λ| −Λ〉〈Λ− 1|, (11)

[Ê, Û†] =−Û† + 2Λ|Λ− 1〉〈−Λ|. (12)

However, as is also explicitly discussed in [9], for a truncation with a large cutoff value, the states |−Λ〉 and
|Λ− 1〉 are energetically unfavorable, and hence, will hardly be populated at all. Therefore, the spoiled
commutator will likely not be a problem.

The matter Hamiltonian consists of two terms, mass ĤM and kinetic ĤK Hamiltonians, defined by [42]

Ĥmatter = ĤM + ĤK, where

ĤM =m
∑
n⃗

(−1)n⃗ψ̂†(⃗n)ψ̂(⃗n),

ĤK =
1

2a

∑
n⃗

∑
l

(ψ̂(⃗n)†Û(⃗n, l)ψ̂(⃗n+ l̂)+ ψ̂(⃗n)Û†(⃗n, l)ψ̂†(⃗n+ l̂)), (13)

wherem is the fermionic mass, a is the lattice spacing, ψ̂(⃗n), ψ̂†(⃗n) are the fermionic annihilation and
creation operators, respectively, at site n⃗. Physically, we can interpret creating (destroying) a particle at an
even (odd) site as creating a fermion (anti-fermion). ĤM computes the mass of all fermionic matter by
multiplying the number of fermions and anti-fermions in the lattice bym. As such, ĤM governs the dynamics
of free fermions and anti-fermions in the absence of gauge fields. ĤK describes the dynamics of fermion-
anti-fermion pair creation and annihilation, and the corresponding changes in the mediating gauge fields.
We map the fermionic operators to qubit operators using Jordan–Wigner (JW) transformation [44].

3. Quantum circuit implementations

In this section, we describe in detail how to implement each Trotter step on a quantum computer. First we
provide the Hamiltonian in the qubit space, i.e.

Ĥ=
∑
n⃗

[
D̂(M)
n⃗ + D̂(E)

n⃗ + T̂(K)
n⃗ + L̂(B)n⃗

]
, (14)

where

D̂(M)
n⃗ =−m

2
(−1)n⃗Ẑ(⃗n), (15)

D̂(E)
n⃗ =

g2

2ad−2

d∑
l=1

Ê2(⃗n, l), (16)

are diagonal operators, where (−1)n⃗ is either+1 or−1 depending on whether n⃗ is a fermion or anti-fermion
site, respectively, reflective of the use of staggered-fermions [42], and

T̂(K)
n⃗ =

d∑
l=1

1

8a
[(Û(⃗n, l)+ Û†(⃗n, l))(X̂(⃗n)X̂(⃗n+ l̂)+ Ŷ(⃗n)Ŷ(⃗n+ l̂))ζ̂⃗n,l

+ i(Û(⃗n, l)− Û†(⃗n, l))(X̂(⃗n)Ŷ(⃗n+ l̂)− Ŷ(⃗n)X̂(⃗n+ l̂))ζ̂⃗n,l] (17)

is an off-diagonal operator. We use X̂, Ŷ, and Ẑ as the Pauli x, y, and z matrices, respectively. We abuse the
notation l̂ to denote a unit vector in direction l. The operators ζ̂⃗n,l are tensor products of Ẑ, which arise from
JW. We consider a d-dimensional Ld-site lattice, where there are L sites in each direction, with periodic
boundary conditions. The length of each ζ̂⃗n,l is O(L

d−1). For brevity, we suppress the ζ̂⃗n,l operators in the
remaining part of the section. The second off-diagonal operator due to the magnetic contribution is given by

L̂(B)n⃗ =
−1

2a4−dg2

d∑
j̸=i;j,i=1

[
Û(⃗n, i)Û(⃗n+ î, j)Û†(⃗n+ ĵ, i)Û†(⃗n, j)+ h.c.

]
, (18)

4
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where h.c. denotes Hermitian conjugate. We use Suzuki-Trotter formula [35] as our simulation method. The

Trotter terms to be implemented are of the form eiD̂
(M)

n⃗ t,eiD̂
(E)
n⃗ t,eiT̂

(K)
n⃗ t,eiL̂

(B)
n⃗ t, where t is a sufficiently small

number to ensure the Trotter error incurred is within a pre-specified tolerance. In the remainder of this
section, we discuss synthesizing circuitss for each of the four Trotter terms.

3.1. Mass term eiD̂
(M)

n⃗ t

The implementation of this term is straightforward. A single-qubit Rz(θ) = exp(−iθẐ/2) gate, where
θ =−m(−1)n⃗t, applied to the qubit that corresponds to site n⃗ in the site register suffices. Note that the angles
of rotation are the same for all even and odd sites, respectively, up to a sign. The sign difference can be
rectified by conjugating the z-rotations with NOT gates. Then, a circuit with one layer of Rz gates with the
same angle of rotation results. This circuit can be implemented efficiently using the weight-sum trick in [38,
39]. Briefly, consider applying the same angle Rz gates on p qubits simultaneously. This imparts a phase to an
input state with the phase angle being proportional to the Hamming weight of the input. This can thus
alternatively be implemented by first computing Weight(p) into an ancilla register, while incurring
p−Weight(p) ancilla qubits and at most 4(p−Weight(p)) T gates, where Weight denotes the number of
ones in the binary expansion of the integer number p. Finally, we apply blog(p)+ 1c Rz rotations to the
ancilla register to impart the correct phase, and then uncompute the weight on the ancilla register. For a
d-dimensional lattice with Ld lattice sites, p= Ld.

3.2. Electric term eiD̂
(E)
n⃗ t

Here, we present a method to implement the electric term. The method modifies that presented in [9], and
provides an improvement in gate counts. We import the steps detailed in [9] for the convenience of the

readers. D̂(E)
n⃗ is a sum of d commuting terms, and hence, its evolution can be implemented exactly as a

product of d sub-evolutions,

eitD̂
(E)
n⃗ =

d∏
l=1

ei
g 2 t

2ad−2 Ê
2 (⃗n,l). (19)

We next discuss the implementation of only one sub-evolution without loss of generality. We herein drop the
link location index for notational convenience. The electric field operator and a qubit-encoded gauge field
state obeys the eigenvalue relation

Ê|j〉= ( j− 2η−1)|j〉. (20)

As such, the evolution of the electric part eit
g 2

2ad−2 Ê
2

is given by

|j〉 7→ eit
g 2

2ad−2 ( j−2η−1)2 |j〉. (21)

To implement the term for each link, we first compute ( j− 2η−1)2 into an ancilla register, and then, impart
the phase by applying an Rz gate on every qubit in the ancilla register. We perform the arithmetic operations
by first computing j− 2η−1, using an out-of-place adder, which incurs 4(η− 2) T gates and η reusable ancilla
qubits [38], and then squaring the (η+ 1)−bit ancilla state, which costs 4η(12η− 3blog(η+ 1)c− 2) T gates
with the multiplier proposed in [9]. We induce approximate phases (described below) and then finally
uncompute the ancilla register. Therefore, the entire arithmetic operations cost 8(η− 2)+ 8η(12η− 3
blog(η+ 1)c− 2) T gates. Here, we choose to perform the arithmetic operations in series to reduce the
ancilla-qubit count. Since there are dLd links on an Ld-site d-dimensional lattice, the arithmetic operations
on all links cost at most 8dLd[(η− 2)+ η(12η− 3blog(η+ 1)c− 2)] T gates, 3(η+ 1)dLd ancilla qubits to
store

∣∣j− 2η+1
〉
and

∣∣( j− 2η+1)2
〉
, and 3(η+ 1)−blog(η+ 1)c− 1 reusable workspace ancilla qubits [9]. If

we choose to optimize the T-depth, we can parallelize the squaring operations, at the cost of increasing the
workspace ancilla-qubit count.

We now discuss the phase induction. The correct phase can be induced by applying Rz(2kθ), where

θ = g 2t
2ad−2 , on the kth qubit of the 2(η+ 1)−bit ancilla state,

∣∣( j− 2η+1)2
〉
. Hence, there are 2(η+ 1) sets of

dLd same-angle Rz rotations to implement, where each set can be effected using the weight-sum trick. Once
again, we first compute Weight(dLd) into the ancilla register, incurring 4(dLd −Weight(dLd)) T gates and
dLd −Weight(dLd) ancilla qubits, and then, applying blog(dLd)+ 1c Rz gates to the ancilla register to induce
the right phase.

5



Quantum Sci. Technol. 8 (2023) 015008 A Kan and Y Nam

There is an alternative method for simulations with a fixed Trotter step t, d, and g2, where a can be chosen

such that g 2t
2ad−2 =

π
2M withM> η. The electric evolution is then given by

|j〉 7→ ei
π
2M

( j−2η−1)2 |j〉. (22)

Once again, we first compute ( j− 2η−1)2 into the ancilla register. Then, we impart the phase by a phase
gradient operation, which consists of anM-bit addition on a specially prepared phase gradient state [45]

|ψM〉=
1√
2M

2M−1∑
b=0

e−2πib/2M |b〉, (23)

incurring 4M+O(1) T gates due to theM−bit adder [38]. Here, we perform the arithmetic operations and

phase gradient operation on one link at a time. SinceM= log( 2πa
d−2

g 2t ), the number of T gates required by the

adders operations on all the links is 4dLd log( 2πa
d−2

g 2t )+O(dLd). In order to synthesize the phase gradient
state, which can be reused for all phase gradient operations,M− 1 Zα phase-shift rotation gates, defined by

Zα =

(
1 0
0 eiπα

)
, (24)

are needed [39]. Each Zα can be synthesized by using repeat-until-success (RUS) circuits [41].

3.3. Kinetic term eiT̂
(K)
n⃗ t

Here we present two different methods to implement the kinetic term. The first method is a small
modification of the method in [9], so we import the steps detailed in [9] for the convenience of the readers.
The second method is based on the diagonalization of Û operators. Herein, we drop the exact site and link
position dependence and instead use r and r+ 1 to denote two sites without loss of generality.

3.3.1. Diagonal decomposition
In order to decompose the off-diagonal term into elementary gates, we write

Û+ Û† = Â+ ˆ̃A, (25)

where Â= Î⊗ Î . . .⊗ X̂ and ˆ̃A= Û†ÂÛ, and similarly,

i(Û− Û†) = B̂+ ˆ̃B, (26)

where B̂= Î⊗ Î . . .⊗ Ŷ and ˆ̃B= Û†B̂Û.
Furthermore, we define

P̂r = X̂rX̂r+1 + ŶrŶr+1,

ˆ̃Pr = X̂rŶr+1 − ŶrX̂r+1. (27)

To simulate the off-diagonal term, we approximate

e
−i t

8a

[(
Â+ˆ̃A

)
⊗P̂r+

(
B̂+ˆ̃B

)
⊗ˆ̃Pr

]
≈ e−it(T̂(2)

r +T̂(3)
r )/2e−it(T̂(1)

r +T̂(4)
r )/2, (28)

where

T̂(1)
r = (Â⊗ P̂r)/4a, (29)

T̂(2)
r = (ˆ̃A⊗ P̂r)/4a

= Û†T(1)
r Û, (30)

T̂(3)
r = (ˆ̃B⊗ ˆ̃Pr)/4a

= Û†T̂(4)
r Û, (31)

T̂(4)
r = (B̂⊗ ˆ̃Pr)/4a. (32)

6
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Figure 1. Circuit for an individual kinetic term. Top: the zeroth qubit of the bosonic gauge field between fermionic sites r and
r+ 1. Middle/Bottom: fermionic sites r and r+ 1. Conjugation of this circuit by controlled-Z gates with the target on the
bottom qubit addresses the JW string, and with the control on a qubit in the JW string.

Figure 2. Commutation and cancellation rules used to parallelize the U(1) kinetic term implementation. Note two closed
circles connected by a line indicates a controlled-Z gate. A collision of two controlled-Z gates on the same two-qubit lines
cancel each other (not shown). Two gates acting on two disjoint set of qubits commute (not shown).

In contrast to [9], wherein the Trotterization was performed for individual T̂ terms in the order of T̂(1)
r , T̂(2)

r ,

T̂(3)
r , and T̂(4)

r , here, we Trotterize them into two terms (see (28)). We do this since there is an efficient circuit
known to implement e−it(T̂(1)

r +T̂(4)
r )/2 and e−it(T̂(2)

r +T̂(3)
r )/2 [46]. Briefly, the circuit is a doubly-controlled Rx

gate whose angle is four times the angle of rotation in the Trotter term written in the Pauli basis, conjugated
by a simple CNOT network—in this particular case the network is a CNOT gate with control on fermion site
r+ 1 and target on fermion site r, followed by another CNOT gate with the same control but the target
being the zeroth bit of the Bosonic link in between. See figure 1. The doubly-controlled Rx gate can be
implemented using two uncontrolled Rz gates and two relative-phase Toffoli gates, which cost 4 T gates
each [47]. Note that the angles of Rz-rotations here, one negative and one positive, per r, are the same, for all
choices of r. Conjugated by a pair of NOT gates, the negative angle rotations become positive. As such, the
emergent two subcircuits, each being a layer of individual Rz gates associated with each r, have the same angle
of rotation. As in the mass term, we can use the weight-sum trick to implement the kinetic term.

However, unlike the mass term, we cannot implement the kinetic terms of all the sites in parallel due to
two reasons. First, the kinetic terms for nearest-neighbors do not commute. As such, we have to evolve the
odd and even sites separately. Second, the evolution operator includes the multi-site Pauli-z operators ζ̂ ,
shown in (17), due to the JW transformation. Unless two nearest-neighbor sites are connected on the JW
path, the multi-site Pauli-z operators need to be taken into account. Note on a d-dimensional Ld-site lattice,
there are dLd individual kinetic terms to implement. In the following, we construct a circuit that implements
these individual terms in parallel whenever possible.

We start with the JW transformation. Specifically, we follow a zigzag pattern. On a one-dimensional
lattice, this path is simply a line. On a two-dimensional L2-site lattice, one can draw L lines of length L in the
x-direction, for instance, and connect the neighboring lines to form a zigzagging path. This zigzagging JW
path can be generalized to d-dimensional lattices.

We next consider the terms in the bulk and on the edges of the lattice separately. The edges are
(d− 1)-dimensional hyperplanes, on which the terms are connected with periodic boundary conditions, but
not with open boundary conditions. There are dLd−1 terms on the edges. The terms in the bulk are
connected in both periodic and open boundary conditions. There are d(Ld − Ld−1) terms in the bulk.

We implement the evolution of the bulk- and edge-terms one orthogonal direction at a time. For each
direction, we use a template circuit in figure 1, modified to accommodate for ζ̂ . This is straightforwardly
done by a conjugation of the circuit by controlled-Z gates [46], with the controls on the qubits that ζ̂ act on
and the shared target on the qubit that the Rx operation is applied to (see figure 1).

We now parallelize the circuit that implements the kinetic term for each direction as follows. Denote the
subcircuit that is to the left of the doubly controlled Rx, including the aforementioned controlled-Z gates, as
a circuit prefix P. Denote the subcircuit that appears to the right of the doubly controlled Rx, including the
aforementioned controlled-Z gates, as a circuit suffix S. We can gather all of the Ps, in the order of their
appearance, to the left end of the circuit. Similarly, we can collect all of the Ss to the right end of the circuit.
Note that this process requires applications of gate commutation and cancellation rules. We report these in
figure 2.

7
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The resulting, parallelized circuit has a layer of doubly controlled Rx gates in the middle. We discussed
earlier how to implement a doubly-controlled Rx gate using two Rz gates in parallel. With all angles of
rotation being the same, we can employ the weight-sum trick to reduce the gate complexity.

We now gather everything. Recall we have four different levels to consider: (a) T̂(1/4) vs T̂(2/3), (b) even vs
odd sites, (c) bulk vs edge terms, and (d) each orthogonal directions i= 1, . . . ,d in the d-dimensional lattice.
Levels (a) and (b) imply that we apply four stages of circuits per given levels (c) and (d). Consider a single
stage. For the bulk terms, for each direction i, the number of controlled-Z gates required in the parallelized
circuit is O(Li−1), assuming our zigzag pattern is formed in the ascending order of i. The number of
doubly-controlled Rx gates implemented in parallel is NB = (Ld − Ld−1)/2. Our implementation requires
8NB T gates to detach the double controls from Rx gates, NB ancilla qubits to parallelize the Rz

implementations, and additional 2NB −Weight(2NB) ancilla qubits and 4(2NB −Weight(2NB)) T gates to
compute the weight into the ancilla register, after which blog(2NB)+ 1c Rz gates are applied to the ancilla
register. For the edge terms, for each direction i, the number of controlled-Z gates required in the parallelized
circuit is O(Li). The number of doubly-controlled Rx gates implemented in parallel is NE = Ld−1/2. The
resource required is the same as above, where all occurrences of NB is replaced by NE.

To be complete, for level (i), note e−it(T̂(2)
r +T̂(3)

r )/2 has an extra incrementer and decrementer. This incurs
an additional cost of 8(η− 2) T gates and η reusable ancilla qubits [9], when using the compute-uncompute
trick for logical ANDs in [38] and the Toffoli construction in [48].

3.3.2. Diagonalization of Û
Here we consider an alternative method to implement the kinetic term. We first consider an η-qubit QFT F
defined according to

F =
1√
2η

2η−1∑
j,k=0

e
2πijk
2η |k〉〈 j| . (33)

Conjugating Û† with the QFT, we obtain

F(Û†)F† =
1

2η

2η−1∑
l,j,k,j ′,k ′=0

e
2πi( jk−j ′k ′)

2η |k〉〈 j|l− 1〉〈l|j ′〉〈k ′|

=
1

2η

2η−1∑
l,j,k,j ′,k ′=0

e
2πi( jk−j ′k ′)

2η |k〉〈k ′|δj,l−1δl,j ′

=
1

2η

2η−1∑
l,k,k ′=0

e
2πi(l−1)k

2η e
−2πilk ′

2η |k〉〈k ′|

=
1

2η

2η−1∑
l,k,k ′=0

e
2πi(k−k ′)l

2η e
−2πik
2η |k〉〈k ′|

=
2η−1∑
k,k ′=0

δk,k ′e
−2πik
2η |k〉〈k ′|

=
2η−1∑
k=0

e
−2πik
2η |k〉〈k|. (34)

Taking the Hermitian conjugate,

F(Û)F† =
2η−1∑
k=0

e
2πik
2η |k〉〈k|. (35)

By linearity, we obtain

F(Û+ Û†)F† =
2η−1∑
k=0

(e
2πik
2η + e

−2πik
2η )|k〉〈k|

=
2η−1∑
k=0

2cos

(
2πk

2η

)
|k〉〈k| ≡ D̂c, (36)

8
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F i(Û− Û†)F† =
2η−1∑
k=0

i(e
2πik
2η − e

−2πik
2η )|k〉〈k|

=
2η−1∑
k=0

−2sin

(
2πk

2η

)
|k〉〈k| ≡ D̂s, (37)

where D̂c and D̂s are diagonal. The fermionic operators P̂r,
ˆ̃Pr can also be diagonalized. Define the basis as,

|βab〉=
1√
2
(|0b〉+(−1)a

∣∣1b̄〉), (38)

where b̄ is the binary negation of b. Let ÛBell be

1∑
a,b=0

|βab〉〈ab|. (39)

Then,

P̂r = ÛBell

1∑
a,b=0

2b(−1)a|ab〉〈ab|Û†
Bell

≡ ÛBellD̂
fÛ†

Bell (40)

and

ˆ̃Pr = (Ŝ† ⊗ Î)P̂r(Ŝ⊗ Î)

≡ (Ŝ† ⊗ Î)ÛBellD̂
fÛ†

Bell(Ŝ⊗ Î). (41)

Note D̂ f is diagonal. As such, the kinetic term can be written as a sum of two diagonalizable operators

1

8a

[
(Û+ Û†)⊗ P̂r + i(Û− Û†)⊗ ˆ̃Pr

]
=

1

8a

[
F† ⊗ ÛBell(D̂c ⊗ D̂ f)F ⊗ Û†

Bell +F† ⊗ (Ŝ f†r ÛBell)(D̂s ⊗ D̂ f)F ⊗ (Û†
BellŜ

f
r)
]
. (42)

To first order, the Trotterization of the kinetic term is then

ei
t
8a [(Û+Û†)⊗P̂r+i(Û−Û†)⊗ˆ̃Pr] ≈ ei

t
8a (Û+Û†)⊗P̂rei

t
8a i(Û−Û†)⊗ˆ̃Pr

=
[
F† ⊗ ÛBelle

i t
8a (D̂c⊗D̂ f)F ⊗ Û†

Bell

]
[F† ⊗ (Ŝ f†r ÛBell)e

i t
8a (D̂s⊗D̂ f)F ⊗ (Û†

BellŜ
f
r)]

= F† ⊗ ÛBelle
i t
8a (D̂c⊗D̂ f) Î⊗ (Û†

BellŜ
f†
r ÛBell)e

i t
8a (D̂s⊗D̂ f)F ⊗ (Û†

BellŜ
f
r), (43)

where the first equality is due to eitÛD̂Û
†
= ÛeitD̂Û†, with Û and D̂ being a unitary and a diagonal operator,

respectively. Since the circuit implementation of the QFT and its inverse is known [49], the implementation

of the kinetic term hinges upon the syntheses of ei
t
8a (D̂c⊗D̂ f) and ei

t
8a (D̂s⊗D̂ f). Expanding D̂c ⊗ D̂ f, we obtain the

relation

ei
t
8a (D̂c⊗D̂ f) = Î⊗ |00〉〈00|+ ei

t
4a D̂c ⊗ |01〉〈01|+ Î⊗ |10〉〈10|+ e−i t

4a D̂c ⊗ |11〉〈11|, (44)

which can be implemented via applications of Ûc ≡ ei
t
4a D̂c controlled upon the fermionic state. Similarly,

ei
t
4a (D̂s⊗D̂ f) can be implemented by controlled applications of Ûs ≡ ei

t
4a D̂s .

We next show that both Ûc and Ûs can be implemented efficiently via QSP [34]. First, we rewrite them in
the form of

∑
λ e

−iτ sin(θλ)|uλ〉〈uλ|:

Ûs =
∑
k

e−i t
2a sin(

2πk
2η )|k〉〈k|, (45)

Ûc =
∑
k

e−i t
2a sin(

2πk
2η +π

2 )|k〉〈k|, (46)

9
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where τ = t
2a . QSP implements an operator in such form withN queries of an oracle Ûϕ, which is defined as

Ûϕ = (e−iϕẐ/2 ⊗ Î)Û0(e
iϕẐ/2 ⊗ Î), (47)

Û0 = |+〉〈+| ⊗ Î+ |−〉〈−|⊗ Ŵ, (48)

Ŵ=
∑
λ

eiθλ |uλ〉〈uλ|. (49)

In this case, for both Ûc and Ûs, the Ŵ oracle is given by

Ŵ=
2η−1∑
k=0

ei
2πk
2η |k〉〈k|, (50)

which can be implemented with an η−qubit phase gradient at the cost of 4η+O(1) T gates. The Ŵ oracle
needs to be controlled by three qubits, one due to the QSP oracle in (48) and two from the fermionic register.
See (44). This can be accomplished by applying a relative phase Toffoli on an ancilla, controlled by the three
qubits, then applying a Ŵ controlled by the ancilla, and then uncomputing the Toffoli gate. The controlled-
Ŵ operation can be effected by a controlled phase gradient, which can be synthesized with 8η+O(1) T
gates [50], and each triply-controlled relative-phase Toffoli costs 8 T gates [47], which adds a constant
overhead to the triply-controlled-Ŵ.

Now we consider the simulation of an individual kinetic term, which is a diagonal norm-one
Hamiltonian. In this case, the QSP query complexity depends on only the simulation length τ , and error ϵ.
Since the simulation length is fixed to be τ = t

2a =
π

g 22M , which is much smaller than one, as required by the
phase gradient operation for the electric term, we expect that a small number of query is enough to

implement ˆ̃Ug with g ∈ {c, s}, where ˆ̃Ug is an approximation of Ûg. In particular, since our error is bounded
by 4τ q

2qq! , where t⩽ q− 1 and the number of queries is 2(q− 1) [34], with small τ , q= 2 is likely sufficient.
We emphasize in passing that, when the cutoff is severe, the effects of the unwanted periodic wrapping

terms in our implementation of Ûr and Û†
r , which connect |−Λ〉= |00 . . .0〉, |Λ− 1〉= |11 . . .1〉, are no

longer negligible. For instance, an application of the kinetic term, which can be expressed as

e
it
2a (Ûrσ̂

−
r σ̂+

r+1+h.c.), on a link in the state |Λ− 1〉= |11 . . .1〉 will introduce a superposition between |−Λ〉 and
|Λ− 2〉 because Ûr|Λ− 1〉= |−Λ〉 and Û†

r |Λ− 1〉= |Λ− 2〉. However, in the original U(1) LGT, |−Λ〉 will
not arise because |Λ− 1〉 is in the null space of Ûr. This effect can be reversed by the evolution

e
−it
2a (⊗η−1

i=0 σ̂−
i σ̂−

r σ̂+
r+1+h.c.). This can be implemented using 2(η+ 1) CNOTs, two Hadamard gates, and two Rz

gates.

3.4. Magnetic term eîL
(B)
n⃗ t

Here, we extend the two methods used to implement the kinetic term to implement the magnetic term. Once
again, we drop the location indices for brevity.

3.4.1. Diagonal decomposition
First, we decompose the ladder operators into the following off-diagonal operators:

Û= R̂+ Û†R̂Û, (51)

Û† = R̂† + Û†R̂†Û, (52)

where R̂= Î⊗ Î⊗ . . .⊗ σ̂+ and Û†R̂Û are raising operators for |E〉 when E is odd and even, respectively, and
similarly, R̂† = Î⊗ Î . . .⊗ σ̂− and Û†R̂†Û are lowering operators for |E〉 when E is even and odd, respectively.

Defining

R̂□ = R̂R̂R̂†R̂† + R̂†R̂†R̂R̂, (53)

each plaquette operator in L̂(B) can then be expressed as

10
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Û(1)Û(2)Û(3)†Û(4)† + Û(1)†Û(2)†Û(3)Û(4)

= (R̂+ Û(1)†R̂Û(1))(R̂+ Û(2)†R̂Û(2))(R̂† + Û(3)†R̂†Û(3))(R̂† + Û(4)†R̂†Û(4))+ h.c.

=
1∑

i,j,k,l=0

Û(1)†iÛ(2)†jÛ(3)†kÛ(4)†lR̂□Û
(1)iÛ(2)jÛ(3)kÛ(4)l, (54)

where the superscripts in the parentheses are used to denote the links around a plaquette, and the sum is over
the powers to which the gauge field ladder operators are raised. In order to maximize the cancellation of Û
and Û† in the plaquette operator’s first-order Trotter evolution, we order the sum using the Gray code. The
Gray code is a binary encoding where two successive values differ in only one bit. In particular, we first label
each term by a vector of the ladder operators’ powers (i, j,k, l), and then, arrange the labels in the Gray code
ordering of the integers 0–15. The first-order Trotterization of the evolution is thus given by

e
−i t

2a4−dg 2
(Û(1)Û(2)Û(3)†Û(4)†+h.c.)

≈
GC(15)∏

(i,j,k,l)=GC(0)

Û(1)†iÛ(2)†jÛ(3)†kÛ(4)†le
−i t

2a4−dg 2
R̂□Û(1)iÛ(2)jÛ(3)kÛ(4)l, (55)

where GC(n) is the Gray code encoding of an integer n. There are 16 sub-evolutions, and between each
consecutive sub-evolutions, there will be one Û or Û† that needs to be implemented in this ordering.
Including the one Û† operator at the end, there will be 16 Û and Û† operators in the evolution. Û and Û† can
be implemented as an η−qubit binary incrementer and decrementer, respectively, each of which costs

4(η− 2) T gates and η reusable ancilla qubits [9]. Furthermore, each e
−i t

2a4−dg 2
R̂□ operator costs two

relative-phase triply-controlled Toffoli gates, which take 16 T gates in total to construct, and two Rz

gates [46].
Briefly, any operator U that is of the form e−i(θ⊗kσ̂k+h.c.)/2, where σ̂k ∈ {σ̂+, σ̂−} and k= 1,2, . . . ,kmax

can be diagonalized by C as CDC−1, where C is composed of a CNOT network with k− 1 CNOTs and a
Hadamard gate and D is a diagonal operator. Without loss of generality, consider a case where there are
p σ̂+’s and kmax − p σ̂−’s. Further pick an arbitrary qubit index, say, kmax and σ̂kmax = σ̂+. We apply NOTs to
kmax − p σ̂−, all controlled on the same qubit kmax. We now pick one of the kmax − p qubits with σ̂−, say k′.
We apply NOTs to the σ̂+ qubits except for the kmax’th qubit, of which there are p− 1, all controlled on k′.
Applying a Hadamard gate on the kmax’th qubit diagonalizes U, i.e. D would now be an kmax − 1-controlled
Rz gate with target on kmax. A standard method to detach the controls results in two uncontrolled Rz gates.

Note the Rz gates have the same rotation angles, up to a sign, for each and every plaquette. This means,
once again, just as in mass and kinetic terms, we can use the weight-sum trick to reduce the number of Rz

gates to be implemented. Since the magnetic terms for nearest-neighbors act on overlapping links, their
evolutions are difficult to implement in parallel. Similar to the case of the kinetic term, we implement the
magnetic evolutions for the even and odd sites along each two-dimensional plane, separately, in parallel.

Without loss of generality, we assume the number of odd and even sites are Ld

2 each. Hence, for each

two-dimensional plane, there are Ld

2 plaquette evolutions to apply in parallel for even and odd sites,
respectively. Consider just the even sites on one plane, the relative-phase triply-controlled Toffoli gates

contribute Ld

2 · 16 · 16 T gates. Further, for each of the 16 sub-evolutions, there is a layer of Ld equal-angle Rz

gates to implement in parallel. Once again, we employ the weight-sum trick to effect the equal-angle Rz gates.
The first step of computing Weight(Ld) costs 4(Ld −Weight(Ld)) T gates and Ld −Weight(Ld) ancilla qubits.
Then, we apply blog(Ld)+ 1c Rz rotations for 16 times. Lastly, the incrementers and decrementers cost
Ld

2 · 16 · 4(η− 2) T gates and η ancilla qubits [9].

3.4.2. Diagonalization of Û
We can diagonalize the plaquette operator L̂(B) by taking tensor products of equations (34) and (35), i.e.

F⊗4(Û(1)Û(2)Û(3)†Û(4)†)F†⊗4

= F(Û(1))F† ⊗F(Û(2))F† ⊗F(Û(3)†)F† ⊗F(Û(4)†)F†

=
2η−1∑

k1,k2,k3,k4=0

e
−2πik1

2η |k1〉〈k1| ⊗ e
−2πik2

2η |k2〉〈k2| ⊗ e
2πik3
2η |k3〉〈k3| ⊗ e

2πik4
2η |k4〉〈k4|

=
2η−1∑

k1,k2,k3,k4=0

e
−2πi(k1+k2−k3−k4)

2η |k1,k2,k3,k4〉〈k1,k2,k3,k4|. (56)
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Again, by linearity,

F⊗4(Û(1)Û(2)Û(3)†Û(4)† + Û(1)†Û(2)†Û(3)Û(4))F†⊗4

=
2η−1∑

k1,k2,k3,k4=0

2cos

(
2π(k1 + k2 − k3 − k4)

2η

)
|k1,k2,k3,k4〉〈k1,k2,k3,k4| ≡ D□. (57)

Now we show that the evolution operator implied by the magnetic term, all of which are of the form,

e
−i t

2a4−dg 2
(Û(1)Û(2)Û(3)†Û(4)†+h.c.)

,

where h.c. denotes the Hermitian conjugate, can also be diagonalized by a tensor product of four QFTs.
Taylor expanding the evolution operator, we get

e
−i t

2a4−dg 2
(Û(1)Û(2)Û(3)†Û(4)†+h.c.)

= 1+

(
−i

t
2a4−dg2

)
F†⊗4D̂□F⊗4 +

1
2

(
−i

t
2a4−dg2

)2

F†⊗4D̂□F⊗4F†⊗4D̂□F⊗4+. . .

= 1+(−i
t

2a4−dg2
)F†⊗4D̂□F⊗4 +

1
2

(
−i

t
2a4−dg2

)2

F†⊗4D̂2
□F⊗4 +

1
3!

(
−i

t
2a4−dg2

)3

F†⊗4D̂3
□F⊗4 + . . .

= F†⊗4e
−i t

2a4−dg 2
D̂□F⊗4 ≡F†⊗4Û□F⊗4. (58)

Since the circuit implementation of the QFT and its inverse is known [49], all that remains is to find a circuit
that implements Û□.

To implement Û□, we consider its action on the input state |k1,k2,k3,k4〉, i.e.

Û□|k1,k2,k3,k4〉= e
−i t

2a4−dg 2
D̂□ |k1,k2,k3,k4〉= e

−i t
a4−dg 2

cos
(

2π(k1+k2−k3−k4)
2η

)
|k1,k2,k3,k4〉. (59)

Similar to the kinetic term implementation, we use QSP to implement the evolution of the plaquette term. As
explained in the kinetic term section, it boils down to synthesizing a controlled Ŵ operator, which is given by

Ŵ=
∑

k1,k2,k3,k4

ei
2π(k1+k2−k3−k4)

2η |k1,k2,k3,k4〉〈k1,k2,k3,k4|. (60)

The controlled Ŵ operator can be effected by first computing k1 + k2 − k3 − k4 into an ancilla register, then
performing a controlled phase gradient operation on the ancilla, and finally uncomputing the ancilla. We can
compute k1 + k2 − k3 − k4 using two out-of-place η−bit adders and one out-of-place (η+ 1)-bit adder
proposed in [51]. The two η−bit adders compute |k1〉|k2〉|k3〉|k4〉 7→ |k1〉|k2〉|k3〉|k4〉|k1 + k2〉|k3 + k4〉, using
2 · (5η− 3blog(η)c)− 4) Toffoli gates and at most η−blog(η)c− 1 ancillas. The (η+ 1)-bit adder computes
|k1〉|k2〉|k3〉|k4〉|k1 + k2〉|k3 + k4〉 7→ |k1〉|k2〉 |k3〉|k4〉 |k1 + k2〉|k3 + k4〉|k1 + k2 − k3 − k4〉, where |k1 + k2〉 and
|k3 + k4〉 are (η+ 1)−qubit registers, and |k1 + k2 − k3 − k4〉 is an (η+ 2)−qubit registers. This operation
requires 5(η+ 1)− 3blog(η+ 1)c− 4 Toffoli gates and (η+ 1)−blog(η+ 1)c− 1 ancillas. As such, the
computation and uncomputation of k1 + k2 − k3 − k4 each costs 4 · (15η− 3blog(η+ 1)c− 6blog(η)c− 7) T
gates, using the Toffoli construction in [48], where each Toffoli gate costs four T gates and an ancilla qubit.
As such, η−blog(η+ 1)c workspace ancilla qubits are used, and 3η+ 4 qubits are needed to store the
outputs |k1 + k2 − k3 − k4〉|k3 + k4〉.

We consider the simulation of an individual magnetic term, which is a diagonal norm-one Hamiltonian.
As in the case of kinetic term, the QSP query complexity is determined by the simulation length τ = t

a4−dg 2 ,

shown in (59). In order to keep the trotter error small, t, and hence t
a4−dg 2 , must be much smaller than one.

Once again, we expect that two queries are enough to implement ˆ̃U□, which is an approximation of Û□.
Therefore, the evolution of a magnetic term requires three serial Rz gates, which is an improvement over the
diagonal-decomposition method, which needs 16 serial pairs of parallel Rz gates. As for the entire magnetic
Hamiltonian evolution, we adopt the same parallelization strategy as in the diagonal-decomposition method,
and achieve factors of 32/3 and 16/3 improvement in the total number and layers of Rz gates, respectively.

As in the kinetic term, when the cutoff is severe, the effects of the unwanted periodic wrapping terms of
the operators Û(†), which connect |−Λ〉= |00 . . .0〉, |Λ− 1〉= |11 . . .1〉, are no longer negligible. Suppose we
want to undo the periodic wrapping effect on the ith link of the plaquette. Then, we implement the evolution

e
it

2a4−dg 2
(⊗η−1

q=0 σ̂
−
q Û( j)Û(k)†Û(l)†+h.c.)

, where the Pauli ladder operators act on the ith link. This evolution can be
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implemented using both the diagonal-decomposition method and the diagonalization method. Using the
diagonal-decomposition method, the evolution can be implemented by

e
it

2a4−dg 2
(⊗η−1

q=0 σ̂
−
q Û( j)Û(k)† Û(l)†+h.c.)

≈
GC(7)∏

(α,β,γ)=GC(0)

Û( j)†αÛ(k)†βÛ(l)†γe
it

2a4−dg 2
(⊗η−1

q=0 σ̂
−
q R̂R̂†R̂†+h.c.)

Û( j)αÛ(k)βÛ(l)γ , (61)

where R̂ is defined in (51), and e
it

2a4−dg 2
(⊗η−1

q=0 σ̂
−
q R̂R̂†R̂†+h.c.)

can be effected using 2(η+ 2) CNOTs, two
Hamadard gates, and two Rz gates. Using the diagonalization method, we first diagonalize the evolution by
applying CNOTs and Hadamards on the ith link to diagonalize the Pauli ladder operators. Next, we apply
QFT on links j,k, l to diagonalize the remaining part of the evolution, and obtain

∑
mi,mj,mk,ml

e
it

2a4−dg 2

[
(−1)b0

∏η−1
q=1 bq·2cos

(
2π(mj−mk−ml)

2η

)]
|mi,mj,mk,ml〉〈mi,mj,mk,ml|

= |11 . . .1〉〈11 . . .1| ⊗
∑

mj,mk,ml

e
−it

a4−dg 2
cos

(
2π(mj−mk−ml)

2η

)
|mj,mk,ml〉〈mj,mk,ml|

+ |01 . . .1〉〈01 . . .1| ⊗
∑

mj,mk,ml

e
it

a4−dg 2
cos

(
2π(mj−mk−ml)

2η

)
|mj,mk,ml〉〈mj,mk,ml|, (62)

where bq is the bit-value of the qth qubit of the ith link register |mi〉. Once again, the evolution can be
implemented using two controlled QSP, as in the diagonalization method for the kinetic term. Now suppose
we are to undo the periodic wrapping effect on two links, e.g. jth and kth links. Then, we implement the

evolution e
it

2a4−dg 2
(Û(i)⊗η−1

q=0 σ̂
−
q ⊗η−1

r=0 σ̂+
r Û(l)†+h.c.)

, using either the diagonal-decomposition or diagonalization
method. This technique can be straightforwardly generalized to undo the periodic wrapping effect on all
combinations of links on each plaquette.

4. Resource requirement estimates

In this section, we analyze the algorithmic and synthesis errors for our simulations. First in section 4.1, we
provide the algorithmic error for the Suzuki-Trotter PF, and leave the full derivation of it in appendix A.
Then in section 4.2, we compute the Rz synthesis error. Finally in section 4.3, we combine the two errors to
report the gate complexity and ancilla requirements.

4.1. Trotter error
The first step for any PF algorithm is to divide up a total simulation time T into r segments. Then, the
evolution generated by a Hamiltonian Ĥ can be expressed as e−iĤT = (e−iĤT/r)r ≡ (e−iĤt)r. Further, the

Hamiltonian Ĥ is decomposed into a sum of simpler Hamiltonians, Ĥ=
∑l

j=1 Ĥj, where each e−iĤjt can be
simulated with an efficient quantum circuit. The first-order PF is given by

Û1(t) =
l∏

j=1

e−iĤjt. (63)

The error is bounded by [40]

∥∥∥e−iĤT − Ûr
1(t)
∥∥∥⩽ 1

2

∑
j

∥∥∥∥∥∥
∑

i>j

Ĥi,Ĥj

∥∥∥∥∥∥ T
2

r
. (64)

Therefore, for a given spectral-norm error ϵ, the value of r grows as O(T2/ϵ). This scaling can be improved
by using a higher-order PF. For instance, consider the second-order PF, defined as

Û2(t) =
l∏

j=1

e−iĤjt/2
1∏
j=l

e−iĤjt/2. (65)
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In this case, the error bound is [40]

∥∥∥e−iĤt − Û2(t)
∥∥∥⩽ 1

12

∑
i

∥∥∥∥∥∥
[Ĥi,

∑
j>i

Ĥj],Ĥi

∥∥∥∥∥∥ t3 + 1

24

∑
i

∥∥∥∥∥∥
Ĥi,

∑
j>i

Ĥj

 ,∑
k>i

Ĥk

∥∥∥∥∥∥ t3, (66)

which leads to a Trotter-step r scaling of O(T3/2/ϵ1/2). Further improvements can be achieved with
high-order PF, which can be constructed recursively [35]. However, it is reported in [9] the higher-order PFs
are rarely preferred for quantum simulations due to the fact that the second-order formula can actually cost
fewer computational resources and outperform asymptotically more efficient methods such as LCU and QSP
[52]. Furthermore, it is reported in [9], compared to the error bounds for the first- and second-order PF,
those for higher-order PF are unlikely to be tight and are more difficult to compute [40].

Therefore, we as well choose to use the second-order PF as our simulation algorithm, just as in [9], and
evaluate the commutator bound for the error given in (66). The result is

∥∥∥e−iĤT − Ûr
2(t)
∥∥∥⩽ r

(
T

r

)3

ρ≡ ϵTrotter, (67)

where

ρ=
1

12

[
4dLdm2

a
+ dLd

g4

4a2d−3
(4Λ2 − 1)+

2Ldd(d− 1)g2(2Λ− 1)2

ad
+

4d(d− 1)Ld

a6−dg2

+
(8d2 − 3d)Ld +(16d2 − 8d)Ld−1

2a3

]
+

1

24

[
mg2

2ad−1
(2Λ− 1)dLd +

mLd(16d2 − 8d)

a2

+
(4d2 − 2d)Ldg2(2Λ+ 1)

ad
+

mLd8d(d− 1)

g2a5−d
+

2d(d− 1)Ld

a3
(2Λ+ 1)+

Ldd(d− 1)(16Λ− 8)

a3

+
Ldd(d− 1)(8d− 11)(4Λ− 2)

g2a6−d
+

Ld

a3

(
32

3
d3 − 4d2 +

11

6
d

)
+

Ld−1

a3

(
160

3
d3 − 20d2 − 16

3
d

)
+

Ld−2

a3
(2d2 − 2d)+

2Ld−3

3a3
(d3 − 3d2 + 2d)+

Ld

g2a6−d
(48d3 − 102d2 + 54d)

+
Ld−1

g2a6−d
(96d3 − 232d2 + 136d)+

Ld

g2a6−d
(16d3 − 10d2 − 6d)+

Ld−1

g2a6−d
(32d3 − 56d2 + 24d)

+
Ld(224d3 − 544d2 + 320d)

a9−2dg4

]
+ Ld

d(d− 1)

2

8

a12−3dg6
. (68)

The full derivation of the above results is shown in appendix A. Readers interested in how the results
compare with the size of the synthesis error and how, together, they affect our simulation gate complexity
should proceed to sections 4.2 and 4.3.

4.2. Synthesis error

Here, we compute the synthesis error for Rz gates required for each of the four terms, i.e. eiD̂
(M)

n⃗ t, eiD̂
(E)
n⃗ t, eiT̂

(K)
n⃗ t,

eiL̂
(B)
n⃗ t, which were described in detail in section 3. To start, we consider the mass term. In this term, we have

blog(Ld)+ 1c Rz gates to implement. Therefore, we incur for each mass term blog(Ld)+ 1c · ϵ(Rz) amount of
error, where ϵ(Rz) denotes the error per Rz gate.

Next, we consider the electric term, which has 2(η+ 1)blog(dLd)+ 1c Rz gates. Therefore, each electric
term incurs 2(η+ 1)blog(dLd)+ 1c · ϵ(Rz) amount of error. If we instead use the phase gradient operation,
once the gadget state |ψM〉 in (23) is prepared, each quantum adder call to implement the operation does not
incur any synthesis error. We come back to the error incurred in preparing the gadget state itself in the next
section.

For the kinetic term, there are 4d(blog(Ld − Ld−1)+ 1c+ blog(Ld−1)+ 1c) Rz gates to apply in total.
Therefore, the total error per kinetic term is 4d(blog(Ld − Ld−1)+ 1c+ blog(Ld−1)+ 1c) · ϵ(Rz).

For the magnetic term, there are 16d(d− 1)blog(Ld)+ 1c Rz gates to apply. Hence, the amount of error
per magnetic term is 16d(d− 1) · blog(Ld)+ 1c · ϵ(Rz).

Lastly, we compute the total synthesis error ϵsynthesis. Note that each term appears twice per Trotter step in
the second-order PF in (65). However, the implementation of the diagonal terms can be optimized. In
particular, the diagonal mass and electric terms applied at the beginning (end) of each Trotter step can be
applied together with the terms at the end (beginning) of the previous (next) Trotter step, unless the terms
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are at the very beginning or end of the simulation. As such, there are r+ 1 diagonal mass and electric terms,
and 2r off-diagonal kinetic and magnetic terms to implement in total. Thus, ϵsynthesis is given by

ϵsynthesis =
{
(r+ 1) ·

[
blog(Ld)+ 1c+ 2(η+ 1)blog(dLd)+ 1c

]
+ 2r · [(16d2 − 16d) · blog(Ld)+ 1c

+ 4d(blog(Ld − Ld−1)+ 1c+ blog(Ld−1)+ 1c)]
}
· ϵ(Rz), (69)

where r, to reiterate for the convenience of the readers, is the total number of Trotter steps.

4.3. Complexity analysis
Having computed both the Trotter and synthesis errors in the two previous sections, we are now ready to
perform the complexity analysis for the U(1) LGT.

The total error is given by

ϵtotal = ϵsynthesis + ϵTrotter. (70)

Here, we evenly distribute the total error between the synthesis and Trotter errors. Focusing on the Trotter
error, we obtain the number of Trotter steps by

ϵTrotter =
ϵtotal
2

=⇒ r=

⌈
T3/221/2ρ1/2

ϵ
1/2
total

⌉
. (71)

As such, we can compute the error each Rz gate can incur by

ϵsynthesis =
ϵtotal
2

=⇒ ϵ(Rz) =
ϵtotal
2

{(⌈
T3/221/2ρ1/2

ϵ
1/2
total

⌉
+ 1

)
· [blog(Ld)+ 1c+ 2(η+ 1)blog(dLd)+ 1c]

+ 2

⌈
T3/221/2ρ1/2

ϵ
1/2
total

⌉
·
[
(16d2 − 16d) · blog(Ld)+ 1c

+4d(blog(Ld − Ld−1)+ 1c+ blog(Ld−1)+ 1c)
]}−1

. (72)

With this, we obtain the number of T gates required to synthesize each Rz gate using RUS circuit [41],

Cost(Rz) = 1.15 log

(
1

ϵ(Rz)

)
. (73)

Combining the T gates required for implementation of Rz gates and the T gates used elsewhere in the circuit,
we obtain the total number of T gates for the entire circuit as{(⌈

T3/221/2ρ1/2

ϵ
1/2
total

⌉
+ 1

)
· [blog(Ld)+ 1c+ 2(η+ 1)blog(dLd)+ 1c] + 2

⌈
T3/221/2ρ1/2

ϵ
1/2
total

⌉

·
[
(16d2 − 16d) · blog(Ld)+ 1c+ 4d(blog(Ld − Ld−1)+ 1c+ blog(Ld−1)+ 1c)

]}

·Cost(Rz)+

(⌈
T3/221/2ρ1/2

ϵ
1/2
total

⌉
+ 1

)
[4(Ld −Weight(Ld))

+ 8dLd(η− 2)+ 8dLdη(12η− 3blog(η+ 1)c− 2)+ 8(η+ 1)(dLd −Weight(dLd))]

+ 2

⌈
T3/221/2ρ1/2

ϵ
1/2
total

⌉
· [16d(2Ld −Weight(Ld − Ld−1)−Weight(Ld−1)+ Ld(η− 2))

+ 16d(d− 1)(Ld[8+ 2η]− 4Weight(Ld))]. (74)

The size of the ancilla register is given by the ancilla qubits required by the electric Hamiltonian, since it
requires the most out of all circuit elements. Taking this into account, we obtain the total number of qubits
required for the simulation by summing up those in the ancilla, fermionic, and gauge-field registers, which is
given by

Ld + ηdLd + 3(η+ 1)dLd + dLd −Weight(dLd) = [4d(η+ 1)+ 1]Ld −Weight(dLd). (75)
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Table 1. The upper-bounds of the T-gate and logical qubit counts for simulating the time-evolution of U(1) lattice gauge theories. We fix
the lattice spatial dimension d= 3, lattice spacing a= 0.1 and simulation error budget ϵ= 10−8, and keep the number of sites per
dimension L, simulation time T and gauge-field truncation parameter Λ free. Further, we consider the mass and coupling parameters
m,g ∈ {0.1,1,10}, while only the highest estimates are reported in this table. A detailed analysis of the resource requirements can be
found in section 4.

L T Λ # T gates # qubits

10 1 5 5.37× 1017 6.1× 104

10 1 10 7.35× 1017 7.3× 104

10 10 5 1.70× 1019 6.1× 104

10 10 10 2.33× 1019 7.3× 104

20 10 10 5.16× 1020 5.8× 105

20 10 20 6.86× 1020 6.8× 105

20 20 10 1.46× 1021 5.8× 105

20 20 20 1.94× 1021 6.8× 105

50 10 10 3.18× 1022 9.1× 106

50 10 50 5.46× 1022 1.21× 107

50 50 10 3.55× 1023 9.1× 106

50 50 50 6.10× 1023 1.21× 107

100 10 10 7.19× 1023 7.3× 107

100 10 100 1.55× 1024 1.1× 108

100 100 10 2.27× 1025 7.3× 107

100 100 100 4.91× 1025 1.1× 108

We plug in various parameter settings to (74) and (75) so as to obtain the upper bounds for the T-gate and
qubit counts in numbers, which are displayed in table 1.

Note that in the case where the electric term is implemented using phase gradient operation, the T-gate
count changes to(⌈

T3/221/2ρ1/2

ϵ
1/2
total

⌉
+ 1

)
·
[
4dLd log

(
2πad−2

g2t

)
+O

(
dLd
)
− 2(η+ 1)blog

(
dLd
)
+ 1c ·Cost(Rz)

−8(η+ 1)
(
dLd −Weight

(
dLd
))]

+Cost(|ψM〉) , (76)

where the Cost(Rz) needs to be modified, since ϵ(Rz) has changed to

ϵ(Rz) =
ϵtotal
2

{(⌈
T3/221/2ρ1/2

ϵ
1/2
total

⌉
+ 1

)
·
⌊
log
(
Ld
)
+ 1
⌋
+ 2

⌈
T3/221/2ρ1/2

ϵ
1/2
total

⌉
·
[
(16d2 − 16d) ·

⌊
log(Ld)+ 1

⌋
+4d

(⌊
log
(
Ld − Ld−1

)
+ 1
⌋
+
⌊
log
(
Ld−1

)
+ 1
⌋)]}−1

. (77)

Further, Cost(|ψM〉), which denotes the one-time synthesis costs of the phase gradient gadget state. Here, we
choose to use the synthesis method delineated in [50]. Briefly, we apply Hadamard gates to the register
|00 . . .0〉, and then apply gates Z,Z−1/2, . . . ,Z−1/2M−1

. Each Zα gates are synthesized using RUS circuits [41].
Let δ be the error of preparing the gadget state |ψM〉. Then, each gate can incur at mostM/δ error, and thus,
costs 1.15 log(M/δ), using RUS circuits [41]. Thus, the gadget state preparation costs 1.15M log(M/δ).

Finally, in this case, the ancilla-qubit count is given by that of the magnetic term and the phase gradient
state. As such, the total qubit count is given by

Ld + dLdη+
(
Ld −Weight

(
Ld
))

+ η+ log

(
2πad−2

g2t

)
= Ld(2+ dη)+ η−Weight

(
Ld
)
+ log

(
2πad−2

g2t

)
.

(78)

5. Conclusion

In this paper, we have shown how to efficiently simulate QED in d spatial dimensions via the complete U(1)
Kogut-Susskind Hamiltonian on a universal fault-tolerant quantum computer. Should such a simulation be
one day realized, it could enable the calculation of physical properties of gauge-field theories that are hard to
extract classically, including but are not limited to transport coefficients [53], scattering amplitudes, and
cross-sections [54]. Furthermore, since QED is one of the fundamental forces that underpins the Standard
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Model of particle physics, our work paves the way towards scalable quantum simulations of Standard Model
physics, and thus, constitutes an important milestone in the nascent field of quantum computational particle
physics.

One avenue of future work is to investigate the implementation and resource requirements of simulation
algorithms, other than the Suzuki-Trotter formula that we have used, applied to lattice QED. This will
provide insights into the practical performances of these algorithms. Analysis of initial state preparation and
measurement protocols for physical observables in lattice gauge theories also form interesting subjects for
future research. Furthermore, one could consider extensions of the Kogut-Susskind Hamiltonian, for
instance, by adding a topological θ-term [55], which is directly related to and could help demystify the
matter-anti-matter asymmetry.
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Appendix A. Trotter error derivation

In this appendix, we derive the Trotter errors for a second-order PF simulation of lattice QED in d
dimensions. We begin the derivation by ordering the terms in the Hamiltonian Ĥ according to an ordered list
{Ĥx}xmax

x=1 of xmax-many individual Hamiltonian terms Hx, i.e.

{Ĥx}d
2+7d+2
x=1 =

∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗

D̂(E)
n⃗ ,

∑
{⃗ne,1}

T̂(1)
n⃗e,1

+ T̂(4)
n⃗e,1

2
,
∑
{⃗ne,1}

T̂(2)
n⃗e,1

+ T̂(3)
n⃗e,1

2
,
∑
{⃗no,1}

T̂(1)
n⃗o,1

+ T̂(4)
n⃗o,1

2
,

×
∑
{⃗no,1}

T̂(2)
n⃗o,1

+ T̂(3)
n⃗o,1

2
, . . . ,

∑
{⃗ne,2d}

T̂(1)
n⃗e,2d

+ T̂(4)
n⃗e,2d

2
,
∑

{⃗ne,2d}

T̂(2)
n⃗e,2d

+ T̂(3)
n⃗e,2d

2
,
∑

{⃗no,2d}

T̂(1)
n⃗o,2d

+ T̂(4)
n⃗o,2d

2
,

×
∑

{⃗no,2d}

T̂(2)
n⃗o,2d

+ T̂(3)
n⃗o,2d

2
,
∑
{⃗ne,1}

L̂(B)n⃗e,1
,
∑
{⃗no,1}

L̂(B)n⃗o,1
, . . . ,

∑
{⃗n

e,
d(d−1)

2

}

L̂(B)n⃗
e,

d(d−1)
2

,
∑

{⃗n
o,

d(d−1)
2

}

L̂(B)n⃗
o,

d(d−1)
2

 ,
(A1)

where the grouping of terms as they appear in the list is motivated by the commutation so that each element
in the list does not commute with at least one of the elements in the ordered set. For convenience, we group
all the mass terms and electric terms (the first two in the list) into one term each, since the grouping incurs
no Trotter error as the individual mass/electric terms commute with one another. For the off-diagonal
kinetic and magnetic terms, we will analyze only the diagonal-decomposition method because it is simpler to
analyze than and costs about the same as the diagonalization method. The set of subindices on each kinetic
term {n⃗i,p} denotes the set of even or odd sites, i.e. i ∈ {e,o}, and the different directions, i.e. p= 1,2, . . . ,2d.
Note p= 1, . . . ,d are the directions for the edge terms, and p= d+ 1, . . . ,2d are the directions for the bulk

terms. In relation to (29)–(32), each kinetic term T̂(a)
n⃗i,p

, where a ∈ {1,2,3,4}, acts on a link in direction p,

which originate from either an odd or even site, depending on i, in either the bulk or edge, depending on the

value of p. Furthermore, the sum of all kinetic terms is equivalent to
∑

n⃗ T̂
(K)
n⃗ , defined in (17). The set of

subindices on each magnetic term {n⃗k,□}, with k ∈ {e,o}, stands for the set of even or odd sites, respectively,
on a two-dimensional plane denoted by□. In relation to (18), each□ corresponds to a specific pair of

directions (i, j). For a d-dimensional lattice, there are d(d−1)
2 two-dimensional planes and plaquette operators

in the magnetic term at each site. Moreover, note that the sum of all magnetic terms yields
∑

n⃗ L̂
(B)
n⃗ , as

defined in (18).
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We now proceed to evaluate the Trotter error incurred by the second-order PF. First, we focus on the first
sum in (66), i.e.

∑
i

∥∥∥∥∥∥
Ĥi,

∑
j>i

Ĥj

 ,Ĥi

∥∥∥∥∥∥⩽
7∑

k=1

||C1,k||, (A2)

where

C1,1 =

[[∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

D̂(E)
n⃗ ′

]
,
∑
n⃗

D̂(M)
n⃗

]
,

C1,2 =

[[∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗

D̂(M)
n⃗

]
,

C1,3 =

[[∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

L̂(B)n⃗ ′

]
,
∑
n⃗

D̂(M)
n⃗

]
,

C1,4 =

[[∑
n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗

D̂(E)
n⃗

]
,

C1,5 =

[[∑
n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

L̂(B)n⃗ ′

]
,
∑
n⃗

D̂(E)
n⃗

]
,

C1,6 =
o∑

i=e

2d∑
p=1

(2,3)∑
(a,b)=(1,4)

∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑
n⃗ ′

L̂(B)n⃗ ′

 ,∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

 ,

C1,7 =
o∑

i=e

2d∑
p=1

(2,3)∑
(a,b)=(1,4)


∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑

j,p ′,(c,d),
{⃗nj,p ′}

T̂(c)
n⃗j,p ′

+ T̂(d)
n⃗j,p ′

2

 ,∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

 . (A3)

In C1,7, (T̂
(c)
n⃗j,p ′

+ T̂(d)
n⃗j,p ′

)/2 is listed in (A1) after and hence, implemented after (T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

)/2.

It remains to evaluate in the following each term C1,n. Note the following expressions will be useful in the
foregoing evaluations of the terms:

‖[[A,B],C]‖⩽ 4‖A‖ · ‖B‖ · ‖C‖ , (A4)

∥∥∥D̂(M)
n⃗ + D̂(M)

n⃗+̂l

∥∥∥⩽m, (A5)

which follows from (15), ∥∥∥T̂(b)
n⃗i,p

∥∥∥⩽ 1

2a
, (A6)

which is due to (29)–(32), ∥∥∥∥∥
4∑

b=1

T̂(b)
n⃗,l

2

∥∥∥∥∥= ∥∥K̂(⃗n, l)∥∥⩽ 1

a
, (A7)

where we define

K̂(⃗n, l) =
1

8a

[
(Û(⃗n, l)+ Û†(⃗n, l))(X̂(⃗n)X̂(⃗n+ l̂)+ Ŷ(⃗n)Ŷ(⃗n+ l̂))ζ̂⃗n,l

+ i(Û(⃗n, l)− Û†(⃗n, l))(X̂(⃗n)Ŷ(⃗n+ l̂)− Ŷ(⃗n)X̂(⃗n+ l̂))ζ̂⃗n,l
]
, (A8)

and use ∥∥Û∥∥= ∥∥Û†∥∥⩽ 1, (A9)

∥∥Û+ Û†∥∥⩽ 2. (A10)
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Lastly,

∥∥∥L̂(B)n⃗k,□

∥∥∥= ∥∥∥∥ 1

2g2a4−d
(ÛÛÛ†Û† + h.c.)

∥∥∥∥= 1

g2a4−d
, (A11)

where n⃗k may be an arbitrary position vector. Whenever these useful expressions are used, we use them
without explicit references for brevity.

C1,1 is straightforward to evaluate, since the mass and electric terms commute, i.e.

[[∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

D̂(E)
n⃗ ′

]
,
∑
n⃗ ′

D̂(M)
n⃗ ′

]
= 0. (A12)

C1,2 is bounded by

∥∥∥∥∥
[[∑

n⃗

D̂(M)
n⃗ ,

∑
n⃗

T̂(K)
n⃗

]
,
∑
n⃗

D̂(M)
n⃗

]∥∥∥∥∥
=

∥∥∥∥∥
[∑

n⃗

d∑
l=1

[D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)], D̂(M)

n⃗ + D̂(M)

n⃗+̂l

]∥∥∥∥∥
⩽
∑
n⃗

d∑
l=1

∥∥∥[[D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)

]
, D̂(M)

n⃗ + D̂(M)

n⃗+̂l

]∥∥∥
⩽ 4dLdm2

a
. (A13)

The first equality in (A13) is due to the fact that each kinetic term at site n⃗ couples two sites, n⃗ and n⃗+ l̂ with
l denoting the direction considered. The inequality that immediately follows from it is due to the triangle
inequality. This is because, although the kinetic operators have ζ̂ JW strings, mass terms are diagonal, and
thus they commute with the JW strings. The second inequality is due to (A4). In the last inequality, the
bound for the mass and kinetic terms are due to (15) and (29)–(32), respectively.

C1,3 is straightforward to evaluate since mass and magnetic terms commute and hence,

[[∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗

L̂(B)n⃗

]
,
∑
n⃗

D̂(M)
n⃗

]
= 0. (A14)

Before we evaluate the commutator between the electric and kinetic terms (C1,4), we provide a couple
useful properties about the kinetic operators K̂(⃗n, l). Acting on the fermionic space, a kinetic operator takes a
computational basis state to another basis state. Acting on the gauge field on a link, it takes |E〉 7→ |E± 1〉,
where E ∈ [−Λ,Λ− 1], up to a multiplicative constant. Therefore, if we consider an electric and a kinetic
operator acting on the same link, we obtain

∥∥∥∥[ g2

2ad−2
Ê2(⃗n, l), K̂(⃗n, l)

]∥∥∥∥
=

g2

2ad−2

∥∥Ê2(⃗n, l)K̂(⃗n, l)− K̂(⃗n, l)Ê2(⃗n, l)
∥∥

7→ g2

2ad−2

∥∥(E± 1)2K̂(⃗n, l)− K̂(⃗n, l)l2
∥∥ ,

=
g2

2ad−2

∥∥K̂(⃗n, l)(±2E+ 1)
∥∥

⩽ g2

2ad−2
(2Λ+ 1)

∥∥K̂(⃗n, l)∥∥
⩽ g2

2ad−2
(2Λ+ 1)

1

a
=

g2

2ad−1
(2Λ+ 1), (A15)
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where we used Ê2(⃗n, l) to denote an electric term for the link (⃗n, l) up to a multiplicative constant, and∥∥∥∥[[ g2

2ad−2
Ê2, K̂(⃗n, l)

]
,

g2

2ad−2
Ê2
]∥∥∥∥

7→
∥∥∥∥ g2

2ad−2
(E2 − Ê2)

[
g2

2ad−2
Ê2, K̂(⃗n, l)

]∥∥∥∥
7→
∥∥∥∥ g2

2ad−2
(E2 − (E± 1)2)

[
g2

2ad−2
Ê2, K̂(⃗n, l)

]∥∥∥∥
7→
∥∥∥∥ g2

2ad−2
(∓2E− 1)

[
g2

2ad−2
Ê2, K̂(⃗n, l)

]∥∥∥∥
⩽ g2

2ad−2
(2Λ− 1)

∥∥∥∥[ g2

2ad−2
Ê2, K̂(⃗n, l)

]∥∥∥∥
⩽ g2

2ad−2
(2Λ− 1)

g2

2ad−1
(2Λ+ 1)

=
g4

4a2d−3
(4Λ2 − 1). (A16)

Using these equations, we evaluate the bound of C1,4 and obtain∥∥∥∥∥
[[∑

n⃗

D̂(E)
n⃗ ,
∑
n⃗

T̂(K)
n⃗ ′

]
,
∑
n⃗

D̂(E)
n⃗

]∥∥∥∥∥
=

∥∥∥∥∥
[[∑

n⃗

D̂(E)
n⃗ ,
∑
n⃗

d∑
l=1

K̂(⃗n, l)

]
,
∑
n⃗

D̂(E)
n⃗

]∥∥∥∥∥
⩽
∑
n⃗

d∑
l=1

∥∥∥∥[[ g2

2ad−2
Ê2(⃗n, l), K̂(⃗n, l)

]
,

g2

2ad−2
Ê2(⃗n, l)

]∥∥∥∥
⩽ dLd

g4

4a2d−3
(4Λ2 − 1). (A17)

Next, we evaluate the commutators between the electric and plaquette operators (C1,5), which are trivial
unless the operators act on a common link. For the sake of brevity, we let the plaquette operator act on links
1,2,3,4, and let the electric field operator act on link 1. The commutators are then∥∥∥∥[ g2

2ad−2
Ê21,

−1

2g2a4−d
Û1Û2Û

†
3Û

†
4

]∥∥∥∥
=

∥∥∥∥[ g2

2ad−2
Ê21,

−1

2g2a4−d
Û1

]∥∥∥∥ ·∥∥∥Û2Û
†
3Û

†
4

∥∥∥
⩽
∥∥∥∥[ g2

2ad−2
Ê21,

−1

2g2a4−d
Û1

]∥∥∥∥
=

∥∥∥∥−1

4a2
(
Ê2Û− ÛÊ2

)∥∥∥∥
=

∥∥∥∥∥−1

4a2

(∑
E

E2|E〉〈E|Û− Û
∑
E

E2|E〉〈E|

)∥∥∥∥∥
=

∥∥∥∥∥−1

4a2

(∑
E

E2|E〉〈E− 1| −
∑
E

E2|E+ 1〉〈E|

)∥∥∥∥∥
=

∥∥∥∥∥−1

4a2

∑
E

[
(E+ 1)2 − E2

]
|E+ 1〉〈E|

∥∥∥∥∥
=

∥∥∥∥∥−1

4a2

∑
E

(2E+ 1) |E+ 1〉〈E|

∥∥∥∥∥
⩽
∥∥∥∥−1

4a2
(−2Λ+ 1)

∥∥∥∥= 2Λ− 1

4a2
(A18)

20



Quantum Sci. Technol. 8 (2023) 015008 A Kan and Y Nam

and ∥∥∥∥[ g2

2ad−2
Ê21,

−1

2g2a4−d
Û†
1Û

†
2Û3Û4

]∥∥∥∥
⩽
∥∥∥∥[ g2

2ad−2
Ê21,

−1

2g2a4−d
Û†
1

]∥∥∥∥
=

∥∥∥∥−1

4a2
(
Ê2Û† − Û†Ê2

)∥∥∥∥
=

∥∥∥∥∥−1

4a2

(∑
E

E2|E〉〈E+ 1| −
∑
E

(E+ 1)2 |E〉〈E+ 1|

)∥∥∥∥∥
=

∥∥∥∥∥ 1

4a2

∑
E

(2E+ 1) |E〉〈E+ 1|

∥∥∥∥∥
⩽
∥∥∥∥ 1

4a2
(2(Λ− 1)+ 1)

∥∥∥∥= 2Λ− 1

4a2
. (A19)

Combining the two commutators, we obtain

∥∥∥∥∥
[

g2

2ad−2

4∑
i=1

Ê2i ,
−1

2g2a4−d

(
Û1Û2Û

†
3Û

†
4 + h.c.

)]∥∥∥∥∥
⩽ 4

∥∥∥∥[ g2

2ad−2
Ê21,

−1

2g2a4−d

(
Û1Û2Û

†
3Û

†
4 + h.c.

)]∥∥∥∥
= 4

∥∥∥∥∥ 1

4a2

[∑
E

(2E+ 1) |E〉〈E+ 1| − (2E+ 1) |E+ 1〉〈E|

]∥∥∥∥∥
⩽ 4Λ− 2

a2
. (A20)

We are now equipped to evaluate the bound of C1,5. The bound is∥∥∥∥∥
[[∑

n⃗

D̂(E)
n⃗ ,
∑
n⃗

L̂(B)n⃗

]
,
∑
n⃗

D̂(E)
n⃗

]∥∥∥∥∥
⩽ Ldd(d− 1)

2

∥∥∥∥∥
[[

g2

2ad−2

4∑
i=1

Ê2i ,
−1

2g2a4−d

(
Û1Û2Û

†
3Û

†
4 + h.c.

)]
,

g2

2ad−2

4∑
i=1

Ê2i

]∥∥∥∥∥
=

Ldd(d− 1)

2

∥∥∥∥∥ g2

2ad−2

4∑
i=1

(
E2i − Ê2i

)[ g2

2ad−2

4∑
i=1

Ê2i ,
−1

2g2a4−d

(
Û1Û2Û

†
3Û

†
4 + h.c.

)]∥∥∥∥∥
7→ Ldd(d− 1)

2

∥∥∥∥∥ g2

2ad−2

4∑
i=1

(
E2i − (Ei ± 1)2

)[ g2

2ad−2

4∑
i=1

Ê2i ,
−1

2g2a4−d

(
Û1Û2Û

†
3Û

†
4 + h.c.

)]∥∥∥∥∥
=

Ldd(d− 1)

2

∥∥∥∥∥ g2

2ad−2

4∑
i=1

(∓2Ei − 1)

[
g2

2ad−2

4∑
i=1

Ê2i ,
−1

2g2a4−d

(
Û1Û2Û

†
3Û

†
4 + h.c.

)]∥∥∥∥∥
⩽ Ldd(d− 1)

2

g2

2ad−2
4(2Λ− 1)

∥∥∥∥∥
[

g2

2ad−2

4∑
i=1

Ê2i ,
−1

2g2a4−d

(
Û1Û2Û

†
3Û

†
4 + h.c.

)]∥∥∥∥∥
⩽ Ldd(d− 1)

2

g2

2ad−2
4(2Λ− 1)

4Λ− 2

a2

=
2Ldd(d− 1)g2 (2Λ− 1)2

ad
, (A21)

where in the second line, we have used the fact that there are Ld d(d−1)
2 plaquette terms in the sum

∑
n⃗ L̂

(B)
n⃗ .

Considering C1,6, we first fix the evenness and oddness of the sites. We consider the bulk and edge terms
separately, although the required analysis is similar. We use p to denote the direction of the links acted on by
the kinetic term. The commutator is trivially zero if the magnetic part and kinetic part act on different links.
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Thus we consider the case where each plaquette operator in the magnetic part acts on links that the kinetic
operators also act on. For direction p, we then have

∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑
n⃗j,□

L̂(B)n⃗j,□

 ,∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
{⃗ni,p}

 T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑
n⃗j,□

L̂(B)n⃗j,□

 ,∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
Nk

 T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
, L̂(B)n⃗i,□

 , T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥
⩽ 4Nk

∥∥∥∥∥∥
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥
2∥∥∥∥ −1

2a4−dg2
(
ÛÛÛ†Û† + h.c.

)∥∥∥∥
⩽ 4Nk

1

4a2
1

a4−dg2
=

Nk

a6−dg2
, (A22)

where Nk ∈ {NB,NE} is the number of odd or even sites in the bulk or on the edges in each direction. Recall
that NB = (Ld − Ld−1)/2, and NE = Ld−1/2. In the third line of (A22), we have used the fact that for each
kinetic term, there is a plaquette operator, of the type n⃗i,□, acting on the same link. Expanding this to include
all sites, all directions, and all plaquette and kinetic operators, we obtain

C1,6 ⩽
o∑

i,j=e

2d∑
p=1

d(d−1)/2∑
□=1

(2,3)∑
(a,b)=(1,4)

∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑
n⃗j,□

L̂(B)n⃗j,□

 ,∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥
⩽ 8d(d− 1)(NE +NB)

1

a6−dg2
=

4d(d− 1)Ld

a6−dg2
, (A23)

where in the last inequality, the factor d comes from the fact that there are d directions each for the bulk and
edges of the lattice. Further, for each direction p, there are d− 1 two-dimensional planes□ that contain links
in that direction, hence the factor d− 1.

Now, we compute C1,7, which consists of the commutators between kinetic terms. There are three types
of commutators; those between (a) two bulk terms, (b) two edge terms, and (c) a bulk and an edge term. We

analyze case (i) first. We reiterate that there are 4 d bulk terms of the form T (a,b)
n⃗i,p

=
∑

{⃗ni,p}
T̂(a)
n⃗i,p

+T̂(b)
n⃗i,p

2 in total

(we remind the readers that there are even/odd sites, then T̂(1) + T̂(4) and T̂(2) + T̂(3)), where {n⃗i,p} runs
over all sites for a given parity i, with fixed direction p. Notice that, in a non-vanishing commutator, two bulk
terms must either act on the same set of links and sites, or they overlap on one of the fermionic sites. This is
so since, in all other scenarios, either the two kinetic terms simply act on disjoint Hilbert spaces (they act on
two disjoint sets of qubit registers) or a kinetic term’s JW string ζ̂ always commutes with the other kinetic
term in our zig-zag JW path. To illustrate, consider a number system with basis d, where a number here
encodes a fermionic site. A kinetic term is defined over picking a pair of two numbers that are different by
one digit, with the difference of that digit being one. Consider two pairs of these numbers. The two pairs
have two different ranges of numbers, over which the JW string acts. The former scenario of disjointedness
arises when the two ranges do not overlap. The latter scenario arises when one range is inside the other range.

Since operators P̂r and
ˆ̃Pr in (27) that act on fermion registers that collide with the JW string commute with

the string, the latter scenario does not contribute to the commutator bound.

Since we always implement
∑

{⃗ni,p}
T̂(1)
n⃗i,p

+T̂(4)
n⃗i,p

2 before
∑

{⃗ni,p}
T̂(2)
n⃗i,p

+T̂(3)
n⃗i,p

2 , as shown in (A1), for each n⃗i,p, we

know that Ĥi =
∑

{⃗ni,p}
T̂(1)
n⃗i,p

+T̂(4)
n⃗i,p

2 and Ĥj =
∑

{⃗ni,p}
T̂(2)
n⃗i,p

+T̂(3)
n⃗i,p

2 . Hence, the commutator for the case where two
bulk terms act on the same set of links and sites is
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∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
∑
{⃗ni,p}

T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 ,∑
{⃗ni,p}

T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2

∥∥∥∥∥∥
⩽

∥∥∥∥∥∥
∑
{⃗ni,p}

 T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 , T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2

∥∥∥∥∥∥⩽ 4NB

∥∥∥∥∥∥
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥
3

⩽ 4NB

(
1

2a

)3

=
NB

2a3
. (A24)

The first inequality is due to the fact that the kinetic terms acting on different sites and links commute. We
used (A4) for the second inequality. In the case where the two bulk terms overlap on one of the fermionic
sites, the commutator is given by∥∥∥∥∥∥

 ∑
{⃗nj,p ′}

T̂(a)
n⃗j,p ′

+ T̂(b)
n⃗j,p ′

2
,
∑
{⃗ni,p}

4∑
c=1

T̂(c)
n⃗i,p

2

 , ∑
{⃗nj,p ′}

T̂(a)
n⃗j,p ′

+ T̂(b)
n⃗j,p ′

2

∥∥∥∥∥∥
⩽
∑
{⃗ni,p}

4

∥∥∥∥∥∥2
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥
2∥∥K̂(⃗ni,p)∥∥

⩽ 4NB

a3
, (A25)

where we once again used (A4) and the fact that each term at site n⃗i,p has two neighboring kinetic terms
acting on the sites n⃗i,p or n⃗i,p + p̂. We now compute the number of occurrences of the commutators
considered in (A24) and (A25). Since there are d directions, and two parities, there are 2d terms of the

form (A24). For (A25), since each term T (a,b)
n⃗i,p

commutes with itself, but not with the terms that are

implemented afterwards, there are

2[(2d− 1)+ (2d− 2)+ . . .+ 1+ 0] = (2d− 1)2d= 4d2 − 2d, (A26)

where a factor of 2 is due to the fact that there are two (a, b)-combinations, non-vanishing commutators in
total. We have also used the fact that there are 2d combinations of parity and direction, i.e. i and p, in the
bulk. As such, the sum of the commutators between all the bulk terms is bounded by

(4d2 − 2d)
4NB

a3
+ 2d

NB

2a3
= (16d2 − 6d)

NB

a3
. (A27)

Using similar arguments, we obtain the bound for the sum of the commutators between all the edge terms,
(16d2 − 6d)NE

a3 .

Lastly, we evaluate the commutators between a term K̂(⃗nj,p ′) from the bulk and a term T (a,b)
n⃗i,p

from the

edge. Each T (a,b)
n⃗i,p

on an edge link has two K̂(⃗nj,p ′) terms from the bulk acting on the same sites, and hence,

the commutator between a bulk and edge term is bounded by 4NE
a3 , where we have replaced NB with the

smaller NE in (A25). Since there are 2d K̂(⃗nj,p ′) terms from the bulk, and 4 d T (a,b)
n⃗i,p

terms from the edge,

there are in total 8d2 commutators between bulk and edge terms. The bulk and edge terms that act on links
along the same direction and sites with the same parity commute, and there are 4 d pairs of such terms.
Hence, the sum of such commutators is upper-bounded by (8d2 − 4d) 4NE

a3 . In total, C1,7 is bounded from
above by

(16d2 − 6d)
NE +NB

a3
+(32d2 − 16d)

NE

a3
=

(8d2 − 3d)Ld +(16d2 − 8d)Ld−1

a3
. (A28)

Next, we analyze the second sum in (66), which is given by

∑
i

∥∥∥∥∥∥
Ĥi,

∑
j>i

Ĥj

 ,∑
k>i

Ĥk

∥∥∥∥∥∥⩽
11∑
n=1

‖C2,n‖ , (A29)
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where

C2,1 =

[[∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗ ′ ′

D̂(E)
n⃗ ′ ′

]

C2,2 =

[[∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

T̂(K)
n⃗ ′ ,
∑
n⃗ ′ ′

T̂(K)
n⃗ ′ ′

]

C2,3 =

[[∑
n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

T̂(K)
n⃗ ′ ,
∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

]

C2,4 =

[[∑
n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗ ′ ′

T̂(K)
n⃗ ′ ′

]

C2,5 =

[[∑
n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗ ′

L̂(B)n⃗ ′ ′

]

C2,6 =

[[∑
n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

L̂(B)n⃗ ′

]
,
∑
n⃗ ′ ′

T̂(K)
n⃗ ′ ′

]

C2,7 =

[[∑
n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

L̂(B)n⃗ ′

]
,
∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

]

C2,8 =
o∑

i=e

2d∑
p=1

(2,3)∑
(a,b)=(1,4)


∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑

j,p ′,(c,d),
{⃗nj,p ′}

T̂(c)
n⃗j,p ′

+ T̂(d)
n⃗j,p ′

2

 , ∑
k,p ′ ′,(e,f),
{⃗nk,p ′ ′}

T̂(e)
n⃗k,p ′ ′

+ T̂( f)
n⃗k,p ′ ′

2



C2,9 =
o∑

i=e

2d∑
p=1

(2,3)∑
(a,b)=(1,4)


∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑

j,p ′,(c,d),
{⃗nj,p ′}

T̂(c)
n⃗j,p ′

+ T̂(d)
n⃗j,p ′

2

 ,∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′



C2,10 =
o∑

i=e

2d∑
p=1

(2,3)∑
(a,b)=(1,4)


∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑
n⃗ ′

L̂(B)n⃗ ′

 , ∑
j,p ′,(c,d),
{⃗nj,p ′}

T̂(c)
n⃗j,p ′

+ T̂(d)
n⃗j,p ′

2



C2,11 =
o∑

i=e

2d∑
p=1

(2,3)∑
(a,b)=(1,4)

∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑
n⃗ ′

L̂(B)n⃗ ′

 ,∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

], (A30)

where we have implicitly assumed in C2,8, C2,9 and C2,10 that (T̂
(c)
n⃗j,p ′

+ T̂(d)
n⃗j,p ′

)/2 and (T̂(e)
n⃗k,p ′ ′

+ T̂( f )
n⃗k,p ′ ′

)/2 are

listed in (A1) after and hence, implemented after (T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

)/2. We have removed any trivially vanishing

terms, which involve commutators between mass and electric terms, mass and magnetic terms, and two
magnetic terms, since in each respective case the operators commute with each other. In the following, we
evaluate the bounds for each C2,n.
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For C2,1, we obtain the bound∥∥∥∥∥
[[∑

n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗ ′ ′

D̂(E)
n⃗ ′ ′

]∥∥∥∥∥
⩽
∥∥∥∥∥
[∑

n⃗

d∑
l=1

[
D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)

]
,

g2

2ad−2
Ê2(⃗n, l)

]∥∥∥∥∥
7→

∥∥∥∥∥ g2

2ad−2
(E2 − Ê2)

∑
n⃗

d∑
l=1

[
D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)

]∥∥∥∥∥
7→

∥∥∥∥∥ g2

2ad−2
(E2 − (E± 1)2)

∑
n⃗

d∑
l=1

[
D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)

]∥∥∥∥∥
=

∥∥∥∥∥ g2

2ad−2
(∓2E− 1)

∑
n⃗

d∑
l=1

[
D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)

]∥∥∥∥∥
⩽ g2

2ad−2
(2Λ− 1)

∥∥∥∥∥∑
n⃗

d∑
l=1

[
D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)

]∥∥∥∥∥
⩽ g2

2ad−2
(2Λ− 1)dLd

∥∥∥D̂(M)
n⃗ + D̂(M)

n⃗+̂l

∥∥∥ ·∥∥K̂(⃗n, l)∥∥
=

mg2

2ad−1
(2Λ− 1)dLd, (A31)

where in the first inequality, we have used the fact that each kinetic term K̂(⃗n, l) acts on the sites n⃗ and n⃗+ l̂,
and the link (⃗n, l). The term does not commute with the mass and electric terms acting on the same space,
but commutes with the rest.

For C2,2, we obtain the bound∥∥∥∥∥
[[∑

n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗ ′ ′

T̂(K)
n⃗ ′ ′

]∥∥∥∥∥
⩽
∥∥∥∥∥∑

n⃗

d∑
l=1

[[
D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)

]
,
∑
n⃗ ′ ′

T̂(K)
n⃗ ′ ′

]∥∥∥∥∥
⩽ 4dLd

∥∥∥D̂(M)
n⃗ + D̂(M)

n⃗+̂l

∥∥∥ ·∥∥K̂(⃗n, l)∥∥ · ∥∥(4d− 2)K̂(⃗n, l)
∥∥

=
mLd(16d2 − 8d)

a2
, (A32)

where the factor of (4d− 2) in the third norm term of the second inequality is due to the fact that there are
(4d− 2) kinetic terms of the type K̂(⃗n, l) acting on the same fermionic sites as K̂(⃗n, l).

Using a similar method, we evaluate the bound of the C2,4 term (we consider the C2,3 term right
afterwards). The only difference from the C2,2 term is that the mass term is replaced by the electric term. As
such, we obtain the upper bound of C2,4,∥∥∥∥∥

[[∑
n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗ ′ ′

T̂(K)
n⃗ ′ ′

]∥∥∥∥∥
⩽
∥∥∥∥∥∑

n⃗

d∑
l=1

[[
g2

2ad−2
Ê2(⃗n, l), K̂(⃗n, l)

]
,
∑
n⃗ ′ ′

T̂(K)
n⃗ ′ ′

]∥∥∥∥∥
⩽ 2dLd

∥∥∥∥[ g2

2ad−2
Ê2(⃗n, l), K̂(⃗n, l)

]∥∥∥∥ ·
∥∥∥∥∥∑

n⃗ ′ ′

T̂(K)
n⃗ ′ ′

∥∥∥∥∥
⩽ 2dLd

∥∥∥∥ g2

2ad−1
(2Λ+ 1)

∥∥∥∥ · ∥∥(4d− 2)K̂(⃗n, l)
∥∥

⩽ 2dLd
g2

2ad−1
(2Λ+ 1)

4d− 2

a
=

(4d2 − 2d)Ldg2(2Λ+ 1)

ad
, (A33)

where in the first inequality, we have used the fact that the electric terms acting on different links as the
kinetic terms commute, and in the third inequality, we used the bound in (A15).
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Moving onto the C2,3 term in (A29), we evaluate its bound as follows:∥∥∥∥∥
[[∑

n⃗

D̂(M)
n⃗ ,

∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

]∥∥∥∥∥
⩽
∥∥∥∥∥
[∑

n⃗

d∑
l=1

[
D̂(M)
n⃗ + D̂(M)

n⃗+̂l
, K̂(⃗n, l)

]
,
∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

]∥∥∥∥∥
⩽
∑
n⃗

d∑
l=1

4
∥∥∥D̂(M)

n⃗ + D̂(M)

n⃗+̂l

∥∥∥ ·∥∥K̂(⃗n, l)∥∥ · ∥∥∥2(d− 1)L̂(B)n⃗i,□

∥∥∥
⩽ mLd8d(d− 1)

g2a5−d
, (A34)

where in the second inequality, we have used the fact that there is one kinetic and 2(d− 1)magnetic
operators acting on the same link.

We bound the C2,5 term using a similar method, but with the mass term replaced by the electric term. We
evaluate its bound as follows:∥∥∥∥∥

[[∑
n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

T̂(K)
n⃗ ′

]
,
∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

]∥∥∥∥∥
⩽
∥∥∥∥∥∑

n⃗

d∑
l=1

[[
g2

2ad−2
Ê2(⃗n, l̂), K̂(⃗n, l)

]
,
∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

]∥∥∥∥∥
⩽ 2dLd

∥∥∥∥[ g2

2ad−2
Ê2(⃗n, l̂), K̂(⃗n, l)

]∥∥∥∥ · ∥∥∥2(d− 1)L̂(B)n⃗i,□

∥∥∥
⩽ 2dLd

g2

2ad−1
(2Λ+ 1)

2(d− 1)

g2a4−d
=

2d(d− 1)Ld

a3
(2Λ+ 1), (A35)

where we have used (A15).
Each commutator in the C2,6 term contains an electric, magnetic, and kinetic term. Evaluating the

bound, we have∥∥∥∥∥
[[∑

n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

L̂(B)n⃗ ′

]
,
∑
n⃗ ′ ′

T̂(K)
n⃗ ′ ′

]∥∥∥∥∥
=

∥∥∥∥∥∑
n⃗

∑
i,j ̸=i

[
g2

2ad−2
(Ê2(⃗n, i)+ Ê2(⃗n+ î, j)+ Ê2(⃗n+ ĵ, i)+ Ê2(⃗n, j)),

−1

2a4−dg2
(Û(⃗n, i)Û(⃗n+ î, j)Û†(⃗n+ ĵ, i)Û†(⃗n, j)+ h.c.)

]
,

K̂(⃗n, i)+ K̂(⃗n+ î, j)+ K̂(⃗n+ ĵ, i)+ K̂(⃗n, j)

]∥∥∥∥∥
⩽ Ld

d(d− 1)

2
2

∥∥∥∥∥
[

g2

2ad−2
(Ê2(⃗n, i)+ Ê2(⃗n+ î, j)+ Ê2(⃗n+ ĵ, i)+ Ê2(⃗n, j)),

−1

2a4−dg2
(Û(⃗n, i)Û(⃗n+ î, j)Û†(⃗n+ ĵ, i)Û†(⃗n, j)+ h.c.)

]∥∥∥∥∥·∥∥∥∥∥K̂(⃗n, i)+ K̂(⃗n+ î, j)+ K̂(⃗n+ ĵ, i)+ K̂(⃗n, j)

∥∥∥∥∥
⩽ Ld

d(d− 1)

2
2

∥∥∥∥∥4Λ− 2

a2

∥∥∥∥∥ ·
∥∥∥∥∥4a
∥∥∥∥∥

=
Ldd(d− 1)(16Λ− 8)

a3
, (A36)

where we used the fact that terms not acting on the same links always commute, and in the second inequality,
we used the bound in (A20).
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We now evaluate the bound of the C2,7 term, which contains two magnetic terms, using a similar
method,

∥∥∥∥∥
[[∑

n⃗

D̂(E)
n⃗ ,
∑
n⃗ ′

L̂(B)n⃗ ′

]
,
∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

]∥∥∥∥∥
=

∥∥∥∥∥∑
n⃗

∑
i,j ̸=i

[
g2

2ad−2
(Ê2(⃗n, i)+ Ê2(⃗n+ î, j)+ Ê2(⃗n+ ĵ, i)+ Ê2(⃗n, j)),

−1

2a4−dg2
(Û(⃗n, i)Û(⃗n+ î, j)Û†(⃗n+ ĵ, i)Û†(⃗n, j)+ h.c.)

]
,
∑
n⃗ ′ ′

L̂(B)n⃗ ′ ′

]∥∥∥∥∥
⩽ 2

d(d− 1)

2
Ld

∥∥∥∥∥4Λ− 2

a2

∥∥∥∥∥ ·
∥∥∥∥∥8d− 11

a4−dg2

∥∥∥∥∥
⩽ Ldd(d− 1)(8d− 11)(4Λ− 2)

g2a6−d
, (A37)

where in the first inequality, we used the bound in (A20) for the first norm term, and the fact that there are
8d− 11 magnetic operators acting on the same plaquette as the magnetic operator in the inner commutator
for the second norm term. The factor 8d− 8 is due to the fact that each of the four links on a plaquette is
acted on by 2(d− 1)magnetic terms, but 3 out of the 8d− 8 have been overcounted.

C2,8 is a sum of commutators between three kinetic terms, which we label as Ĥi,Ĥj, and Ĥk. We remind
the readers that the edge terms are evolved before the bulk terms, as indicated by (A1). As such, we divide up
the tuples (Ĥi,Ĥj,Ĥk) into five types: (a) all three terms are bulk terms, (b) all three terms are edge terms, (c)
Ĥi and Ĥj are edge terms, and Ĥk is a bulk term, (d) Ĥi and Ĥk are edge terms, and Ĥj is a bulk term, and (e)
Ĥi is an edge term, and Ĥj and Ĥk are bulk terms.

We consider the type-(i) terms, and further divide it into six separate cases. In the first case, we consider a
scenario where Ĥi and Ĥj act on the same links and Ĥk = Ĥj. There are a total of 2d of such instances with

even/odd parities and d directions. Since we always implement
∑

{⃗ni,p}
T̂(1)
n⃗i,p

+T̂(4)
n⃗i,p

2 before
∑

{⃗ni,p}
T̂(2)
n⃗i,p

+T̂(3)
n⃗i,p

2 , as

shown in (A1), for each n⃗i,p, we know that Ĥi =
∑

{⃗ni,p}
T̂(1)
n⃗i,p

+T̂(4)
n⃗i,p

2 and Ĥj =
∑

{⃗ni,p}
T̂(2)
n⃗i,p

+T̂(3)
n⃗i,p

2 . Hence, the
bound for each of the instance is given by

∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
∑
{⃗ni,p}

T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 ,∑
{⃗ni,p}

T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
{⃗ni,p}

 T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 , T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

∥∥∥∥∥∥
⩽ 4NB

∥∥∥∥∥∥
T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2

∥∥∥∥∥∥
3

=
NB

2a3
, (A38)

where the first equality is due to the fact that kinetic operators acting on different links and sites commute,
and we have used (A4) for the inequality. The second case we consider is when Ĥi and Ĥj act on the same
links and Ĥk 6= Ĥj. There are in total 2d2 − d of such instances. This is so because a link can have 2d
combinations of parity and direction, and if Ĥi and Ĥj act on the link labeled by the nth combination,
then Ĥk can act on links with 2d− n different combinations, since k> i and Ĥk 6= Ĥj. Thus, we obtain
(2d− 1)+ (2d− 2)+ . . .+ 1= 2d2 − d for the total number of instances. We consider one of such instance,

where we fix Ĥk =
∑

{⃗nk,p ′}
∑4

a=1

T̂(a)
n⃗k,p ′

2 , and obtain its bound
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∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
∑
{⃗ni,p}

T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 , ∑
{⃗nk,p ′}

4∑
a=1

T̂(a)
n⃗k,p ′

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
{⃗ni,p}

 T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 , ∑
{⃗nk,p ′}

4∑
a=1

T̂(a)
n⃗k,p ′

2

∥∥∥∥∥∥
⩽ 4NB

∥∥∥∥∥∥
T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2

∥∥∥∥∥∥
2∥∥∥∥∥∥2

4∑
a=1

T̂(a)
n⃗k,p ′

2

∥∥∥∥∥∥= 2NB

a3
, (A39)

where in the first inequality, the extra factor two in the second norm expression is due to the fact that there
are two choices of sites in {n⃗k,p ′} for Ĥk that result in non-vanishing commutator with Ĥi and Ĥj due to their
collisions on the two fermionic sites that sit at the two ends of a link that Ĥi and Ĥj act on. Similarly, in the
third case, Ĥi and Ĥk act on the same links, while Ĥj 6= Ĥk act on links of a different parity in the same
direction. Since (1,4) is implemented after (2,3), and even terms are implemented before odd terms, Ĥi, Ĥj

and Ĥk are of the forms
∑

{⃗ne,p}
T̂(1)
n⃗e,p

+T̂(4)
n⃗e,p

2 ,
∑

{⃗no,p}
∑4

a=1

T̂(a)
n⃗o,p

2 and
∑

{⃗ne,p}
T̂(2)
n⃗e,p

+T̂(3)
n⃗e,p

2 , respectively. There are d
such instances. We consider one of such instance, and obtain its bound

∥∥∥∥∥∥
∑

{⃗ne,p}

T̂(1)
n⃗e,p

+ T̂(4)
n⃗e,p

2
,
∑
{⃗no,p}

4∑
a=1

T̂(a)
n⃗o,p

2

 ,∑
{⃗ne,p}

T̂(2)
n⃗e,p

+ T̂(3)
n⃗e,p

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
{⃗ne,p}

 T̂(1)
n⃗e,p

+ T̂(4)
n⃗e,p

2
,
∑
{⃗no,p}

4∑
a=1

T̂(a)
n⃗o,p

2

 , T̂(2)
n⃗e,p

+ T̂(3)
n⃗e,p

2

∥∥∥∥∥∥
⩽ 4NB

∥∥∥∥∥∥
T̂(1)
n⃗e,p

+ T̂(4)
n⃗e,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥2

4∑
a=1

T̂(a)
n⃗o,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥3

T̂(2)
n⃗e,p

+ T̂(3)
n⃗e,p

2

∥∥∥∥∥∥= 6NB

a3
, (A40)

where in the first inequality, the factor two in the second norm term is due to the fact that there are two
choices of sites in {n⃗o,p} for Ĥj that result in collisions on two sites with Ĥi. Further, there are three Ĥk terms
that collide with the inner commutator, which acts on three links and four sites, i.e. Ĥk and Ĥi act on the
same link, and Ĥk collides with Ĥj on two sites. We consider the fourth case where now Ĥj acts on links in a
different direction. There are 2d2 − 2d such instances. This is so because a link can have d different
directions, and if Ĥi and Ĥk act on the link with the nth direction, then Ĥj can act on links in d− n
directions. Thus, we obtain 4[(d− 1)+ (d− 2) . . .+ 1] = 2d2 − 2d for the total number of instances, where
the factor of 4 is because there are two parities for Ĥi and Ĥk, and Ĥj. We consider one of such instance,

where we fix Ĥj =
∑

{⃗nk,p ′}
∑4

a=1

T̂(a)
n⃗k,p ′

2 , and obtain its bound

∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
∑

{⃗nk,p ′}

4∑
a=1

T̂(a)
n⃗k,p ′

2

 ,∑
{⃗ni,p}

T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
{⃗ni,p}

 T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
∑

{⃗nk,p ′}

4∑
a=1

T̂(a)
n⃗k,p ′

2

 , T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

∥∥∥∥∥∥
⩽ 4NB

∥∥∥∥∥∥
T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥2

4∑
a=1

T̂(a)
n⃗k,p ′

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥
T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

∥∥∥∥∥∥= 2NB

a3
, (A41)

where the factor two in the second norm expression of the third line is due to the fact that there are two
choices of sites in {n⃗k,p ′} for Ĥj that collide on two sites with Ĥi and Ĥk. The fifth case we consider is when

Ĥi and Ĥj act on different links, and Ĥj = Ĥk =
∑

{⃗nj,p ′}
∑4

a=1

T̂(a)
n⃗j,p ′

2 act on the same links. In total, there are

4d2 − 2d of such instances, which is two times that of the second case because Ĥi can be labeled by both (1,4)
and (2,3). Each instance is bounded by
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∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑

{⃗nj,p ′}

4∑
a=1

T̂(a)
n⃗j,p ′

2

 , ∑
{⃗nj,p ′}

4∑
a=1

T̂(a)
n⃗j,p ′

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 ∑
{⃗nj,p ′}

∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,

4∑
a=1

T̂(a)
n⃗j,p ′

2

 , 4∑
a=1

T̂(a)
n⃗j,p ′

2

∥∥∥∥∥∥
⩽ 4NB

∥∥∥∥∥∥2
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

4∑
a=1

T̂(a)
n⃗j,p ′

2

∥∥∥∥∥∥
2

=
4NB

a3
, (A42)

where, once again, in the first inequality, we have used the fact that there are two kinetic operators in Ĥi

acting on the same sites as each term in Ĥj and Ĥk. In the last case, Ĥi, Ĥj and Ĥk all act on different links.
There are 8

3 (2d
3 − 3d2 + d) such instances. This is so because if Ĥi acts on links with the nth parity-direction

label, then Ĥj and Ĥk can act on links with 2d− n and 2d− n− 1 different labels, respectively. As such, we
obtain 2[(2d− 1)(2d− 2)+ (2d− 2)(2d− 3)+ . . .+ 2 · 1] = 8

3 (2d
3 − 3d2 + d) for the total number of

instances, where the factor of two is because Ĥi can be labeled by (1,4) and (2,3). Each instance is bounded
by

∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑

{⃗nj,p ′}

4∑
c=1

T̂(c)
n⃗j,p ′

2

 , ∑
{⃗nk,p ′ ′}

4∑
e=1

T̂(e)
n⃗k,p ′ ′

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
{⃗ni,p}

 T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑

{⃗nj,p ′}

4∑
c=1

T̂(c)
n⃗j,p ′

2

 , ∑
{⃗nk,p ′ ′}

4∑
e=1

T̂(e)
n⃗k,p ′ ′

2

∥∥∥∥∥∥
⩽ 4NB

∥∥∥∥∥∥
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥2

T̂(c)
n⃗j,p ′

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥4

T̂(e)
n⃗k,p ′ ′

2

∥∥∥∥∥∥= 4NB

a3
, (A43)

where the factor of two in the second norm term of the first inequality is due to the fact that there are two
kinetic operators from Ĥj acting on the same sites as each kinetic operator in Ĥi. Note the inner commutator
acts on four sites, connecting three links in total. Then, there are four operators in Ĥk, acting on the four
sites. This explains the factor of four in the third norm term of the first inequality. All together, the type-(i)
bound is given by

NB

a3

(
64

3
d3 − 8d2 +

11

3
d

)
. (A44)

For type-(ii) terms, we divide them into five distinct cases. Case-(i) terms are those where Ĥi and Ĥj act
on the same links and Ĥj = Ĥk. The bound for each of the 2d instances in case (i) is NE

2a3 , which we have

obtained by replacing the NB with NE in (A38). Case (ii) contains terms, where Ĥi and Ĥj act on the same
links, and Ĥk acts on links in different directions. In order to obtain a nontrivial commutator, Ĥk must
collide with Ĥi and Ĥj. Since there is only one link in each direction per site in the edge, Ĥk cannot share a
direction with Ĥi and Ĥj. Thus, Ĥk shares the same parity with Ĥi and Ĥj, because otherwise, Ĥk will act on
the bulk connected to the sites acted on by Ĥi and Ĥj. As such, Ĥk acts on links in different directions but of
the same parity as those acted on by Ĥi and Ĥj. There are d2 − d of such instances. This is so because if Ĥi

and Ĥj act on links labeled by the nth direction, then Ĥk can act on links in d− n different directions. Thus,
we obtain 2[(d− 1)+ (d− 2)+ . . .+ 1] = d2 − d for the total number of instances, where the factor of 2 is
because there are two parity degrees of freedom. Moreover, since each edge is a (d− 1)−dimensional surface,

Ĥi, Ĥj, and Ĥk will collide on a (d− 2)-dimensional surface, containing Ld−2

2 sites for each parity. As such, we
consider one of such commutator in this case, and obtain its bound
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∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
∑
{⃗ni,p}

T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 , ∑
{⃗ni,p ′}

4∑
a=1

T̂(a)
n⃗i,p ′

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
{⃗ni,p}

 T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 , ∑
{⃗ni,p ′}

4∑
a=1

T̂(a)
n⃗i,p ′

2

∥∥∥∥∥∥
⩽ 4

Ld−2

2

∥∥∥∥∥∥
T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2

∥∥∥∥∥∥
2∥∥∥∥∥∥

4∑
a=1

T̂(a)
n⃗i,p ′

2

∥∥∥∥∥∥= Ld−2

2a3
. (A45)

Similarly, in the third case, Ĥi and Ĥk act on the same links, while Ĥj acts on links in a different direction
of the same parity. There are d2 − d of such instances, as in the second case, and each instance is bounded by
Ld−2

2a3 , following similar arguments in (A45). The fourth case we consider is when Ĥi and Ĥj act on links in a

different direction of the same parity, and Ĥk = Ĥj =
∑

{⃗nj,p ′}
∑4

a=1

T̂(a)
n⃗j,p ′

2 . There are twice as many instances

as the second case, i.e. 2d2 − 2d, because Ĥi can be of the kinds (1,4) or (2,3). Once again, each instance is

bounded by Ld−2

2a3 , following similar arguments in (A45). We now consider the fifth case, where Ĥi, Ĥj, and Ĥk

all act on links of different directions, but the same parity. There are 2
3 (d

3 − 3d2 + 2d) such instances. This is

so because if Ĥi acts on links in the nth direction, then Ĥj and Ĥk can act on links in d− n and d− n− 1
different directions. Thus, we obtain 2[(d− 1)(d− 2)+ (d− 2)(d− 3)+ . . .+ 2] = 2

3 (d
3 − 3d2 + 2d) for the

total number of instances, where the factor of two is due to the two parity degrees of freedom. Furthermore,
since each edge is a (d− 1)−dimensional surface, Ĥi, Ĥj, and Ĥk will collide on a (d− 3)-dimensional

surface, containing Ld−3

2 sites for each parity. As such, we consider one of such commutator in this case, and
obtain its bound ∥∥∥∥∥∥

∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑

{⃗ni,p ′}

4∑
c=1

T̂(c)
n⃗i,p ′

2

 , ∑
{⃗ni,p ′ ′}

4∑
d=1

T̂(d)
n⃗i,p ′ ′

2

∥∥∥∥∥∥
⩽ 4

Ld−3

2

∥∥∥∥∥∥
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

4∑
c=1

T̂(c)
n⃗i,p ′

2

∥∥∥∥∥∥
2

=
Ld−3

a3
. (A46)

All together, the type-(ii) bound is given by

NE

2a3
2d+

2Ld−2

a3
(d2 − d)+

2Ld−3

3a3
(d3 − 3d2 + 2d). (A47)

Now, we consider type-(iii) terms. We divide the terms into two cases. In the first case, the edge terms, Ĥi

and Ĥj, act on the same links. There are 4d2 of [[Ĥi,Ĥj],Ĥk] commutators, in this case, since there are 2d
choices for Ĥi and Ĥj pairs and another factor of 2d for Ĥk, but 2d of them are trivially zero. This is so since

for a given parity and direction for Ĥi and Ĥj, there is one Ĥk term, of the type
∑4

a=1
T̂(a)

2 , with the same

parity and direction as Ĥi and Ĥj, that commute with Ĥi and Ĥj. Therefore, there are 4d2 − 2d non-
vanishing commutators in this case, and each is bounded by 2NE

a3 , where we have replaced NB with the smaller

NE in (A39). In the second case, Ĥi and Ĥj act on different links. There are 4d2 − 2d such pairs of Ĥi and Ĥj.
Since, there are 2d choices of Ĥk, there are 8d3 − 4d2 terms in this case, and each of which is bounded by 4NE

a3 ,
using (A43). Therefore, we obtain the bound for the sum of all type-(iii) terms to be

NE

a3
(32d3 − 8d2 − 4d). (A48)

Note for type-(iv) terms, the same bound can be obtained along similar lines of reasoning, with the only
difference being Ĥj is in the bulk, and Ĥk is in the edge.

Lastly, type-(v) terms can be separated into two cases. The first case is when the bulk terms

Ĥj = Ĥk =
∑

{⃗nj,p ′}
∑4

a=1

T̂(a)
n⃗j,p ′

2 are acting on the same links. For each choice of Ĥi, there are (2d− 1) choices

of Ĥj that yields a non-zero commutator, with the subtraction by one arising from the same parity and
direction. Since there are 4 d choices of Ĥi, there are then 4d(2d− 1) = 8d2 − 4d instances in this first case.
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The bound of each instance is obtained as,∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑

{⃗nj,p ′}

4∑
c=1

T̂(c)
n⃗j,p ′

2

 , ∑
{⃗nj,p ′}

4∑
c=1

T̂(c)
n⃗j,p ′

2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

{⃗nj,p ′}

∑
{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,

4∑
c=1

T̂(c)
n⃗j,p ′

2

 , 4∑
c=1

T̂(c)
n⃗j,p ′

2

∥∥∥∥∥∥
⩽ 4NE

∥∥∥∥∥∥
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥2

4∑
c=1

T̂(c)
n⃗j,p ′

2

∥∥∥∥∥∥
2

=
8NE

a3
. (A49)

In the second case, Ĥj and Ĥk act on different links. Now, for each non-trivial pair of Ĥi and Ĥj, there are
2d− 2 choices of Ĥk. Thus, there are 4d(2d− 1)(2d− 2) such terms, each of which is bounded by 4NE

a3 ,
using (A43). Therefore, type-(v) terms are bounded by

NE

a3
(64d3 − 32d2). (A50)

As such, C2,8 is bounded by

Ld

a3

(
32

3
d3 − 4d2 +

11

6
d

)
+

Ld−1

a3

(
160

3
d3 − 20d2 − 16

3
d

)
+

Ld−2

a3
(
2d2 − 2d

)
+

2Ld−3

3a3
(
d3 − 3d2 + 2d

)
.

(A51)

Now we consider the C2,9 term, where Ĥi and Ĥj are kinetic terms, and Ĥk is a magnetic term. The terms
can be separated into three types. Type (i): the terms where Ĥi and Ĥj are both of an edge kind. Type (ii): the
terms where Ĥi and Ĥj are both of a bulk kind. The terms where Ĥi is in the edge and Ĥj is in the bulk belong
to type (iii). We further divide type (i) into three cases. The first case is when Ĥi and Ĥj act on the same link.
There are 2d such pairs of Ĥi and Ĥj, and for each pair, there are 2(d− 1)magnetic terms that act on links in
the same direction. As such, there are 4d2 − 4d commutators in this case, each of which is bounded by∥∥∥∥∥∥

∑
{⃗ni,p}

T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
∑
{⃗ni,p}

T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 ,∑
n⃗

L̂(B)n⃗

∥∥∥∥∥∥
⩽

∥∥∥∥∥∥
∑
{⃗ni,p}

 T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2
,
T̂(2)
n⃗i,p

+ T̂(3)
n⃗i,p

2

 , L̂(B)n⃗i,□

∥∥∥∥∥∥
⩽ 4NE

∥∥∥∥∥∥
T̂(1)
n⃗i,p

+ T̂(4)
n⃗i,p

2

∥∥∥∥∥∥
2

·
∥∥∥∥ −1

2g2a4−d
(ÛÛÛ†Û† + h.c.)

∥∥∥∥= NE

g2a6−d
, (A52)

where in step two, we have used the fact that only kinetic and magnetic operators that act on the same links
yield non-zero commutators. The bound for all the terms in this case is then

4NE

g2a6−d
(d2 − d). (A53)

The second case is when Ĥi and Ĥj act on different links, but in the same direction. Ĥi and Ĥj have to be even
and odd, respectively, due to the ordering. Since the links in the edge for any given direction are not
connected, Ĥi and Ĥj must commute. Therefore, the bound for this case is zero.

In the third case, Ĥi and Ĥj act on links in different directions. There are 4d2 − 4d pairs in this case. This
is so because if Ĥi acts on links in the nth direction, then Ĥj can act on links in d− n different directions.
Thus, we obtain 8[(d− 1)+ (d− 2)+ . . .+ 1] = 4d2 − 4d, where the factor of 8 is due to the fact that Ĥi can
be of the kinds (1,4) or (2,3), and each of Ĥi and Ĥj can be of two parities. For each pair of Ĥi and Ĥj, there
are 2 magnetic terms that do not commute with both, since the two directions from the pair form a plane,
and for each plane the magnetic terms can be of different parities. Each inner commutator acts on three
links, due to the fact that there are two Ĥj terms acting on the same sites as an Ĥi term. For each of such
triple-link configuration, there are 2(d− 2)magnetic terms acting on each single link, where the factor of
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two comes from the two parities, and the factor of (d− 2) is due to the fact that each magnetic term do not
act on both links at the same time. Therefore, for each pair of Ĥi and Ĥj, the commutator is bounded by∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑
{⃗nj,p}

4∑
c=1

T̂(c)
n⃗j,p ′

2

 ,∑
n⃗

L̂(B)n⃗

∥∥∥∥∥∥
⩽ 4NE

∥∥∥∥∥∥
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥2

4∑
c=1

T̂(c)
n⃗j,p ′

2

∥∥∥∥∥∥ ·
∥∥∥∥−(2+ 3 · 2(d− 2))

2g2a4−d
(ÛÛÛ†Û† + h.c.)

∥∥∥∥= (24d− 40)NE

g2a6−d
. (A54)

Therefore, the third case is bounded by

NE

g2a6−d
(24d− 40)(4d2 − 4d). (A55)

Finally, the bound for type-(i) terms is then

NE

g2a6−d
(96d3 − 252d2 + 156d). (A56)

Similarly, we separate type-(ii) terms into three cases, and obtain the bounds for case (i) and (iii) as

4NB

g2a6−d
(d2 − d) (A57)

and

NB

g2a6−d
(24d− 40)(4d2 − 4d), (A58)

respectively. In the second case, Ĥi and Ĥj act on different links, but in the same direction. There are 2d such
pairs of Ĥi and Ĥj because Ĥi and Ĥj have to be even and odd, respectively, due to the ordering, and Ĥi can

be either (1,4) or (2,3), while Ĥj is of the form
∑4

a=1
T̂(a)

2 . For each pairs of Ĥi and Ĥj, the commutator is
bounded by∥∥∥∥∥∥

∑
{⃗ne,p}

T̂(a)
n⃗e,p

+ T̂(b)
n⃗e,p

2
,
∑
{⃗no,p}

4∑
c=1

T̂(c)
n⃗o,p

2

 ,∑
n⃗

L̂(B)n⃗

∥∥∥∥∥∥
⩽ 4NB

∥∥∥∥∥∥
T̂(a)
n⃗e,p

+ T̂(b)
n⃗e,p

2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥2

4∑
c=1

T̂(c)
n⃗o,p

2

∥∥∥∥∥∥ ·
∥∥∥∥−3 · 2(d− 1)

2g2a4−d
(ÛÛÛ†Û† + h.c.)

∥∥∥∥= 24(d− 1)NB

g2a6−d
, (A59)

where the factor two in the second norm term of the first inequality is because of the fact that there are two
elements n⃗o,p that result in non-vanishing inner commutator due to collision of sites for a given n⃗e,p. Further,
for each inner commutator, which acts on three links, there are 3 · 2(d− 1)magnetic terms that overlap on
these links. As such, the second case is bounded by

48NB

g2a6−d
(d2 − d). (A60)

Thus, the bound of type-(ii) terms is

NB

g2a6−d
(96d3 − 204d2 + 108d). (A61)

Now we consider type (iii), where Ĥi and Ĥj are from the edge and bulk, respectively. Once again, we
divide the terms up into three cases. In the first case, Ĥi and Ĥj act on links in the same direction and sites of
the same parity. There are 4 d such pairs, and they commute with each other. The second case is where Ĥi and
Ĥj act on links in the same direction, but sites of different parities. There are 4 d such pairs, and there are
3(2d− 2)magnetic terms that do not commute with each pair. Therefore, for each pair of Ĥi and Ĥj, the

bound for the commutator is (24d−24)NE

g 2a6−d , using similar arguments as (A59). The third case contains

commutators, in which Ĥi and Ĥj act on links in different directions. There are 8d2 − 8d such pairs. This is so
because there are 4 d Ĥi and for each Ĥi, Ĥj can be of (d− 1) directions and 2 parities. Further, there are
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6d− 10 magnetic terms that do not commute with each pair, following similar arguments in (A54). Once

again, for each pair of Ĥi and Ĥj, the bound for the commutator is (24d−40)NE

g 2a6−d , using similar arguments
as (A54). As such the bound for type-(iii) terms is given by

NE

g2a6−d
(192d3 − 416d2 + 224d). (A62)

Summing up the bounds for type-(i), -(ii), and -(iii) terms, we obtain the bound for C2,9 as

Ld

g2a6−d
(48d3 − 102d2 + 54d)+

Ld−1

g2a6−d
(96d3 − 232d2 + 136d). (A63)

Now for C2,10, we can use a similar approach. The only difference is that in each case, we only need to
consider the magnetic terms, Ĥj, that do not commute with the first kinetic term, Ĥi. This is because if
[Ĥi,Ĥj] = 0, [[Ĥi,Ĥj],Ĥk] = 0. If we divide up the terms into cases based on the kinetic terms Ĥi and Ĥk as we
did for C2,9, and use the fact that there are 2(d− 1)magnetic terms Ĥj that do not commute with each Ĥi, we
can compute the bound for each case. For case (i) of type (i) and (ii), we obtain the bound

NE +NB

g2a6−d
(2d)2(d− 1). (A64)

For case (ii) of type (i), there are 2d pairs of Ĥi and Ĥk because there d directions and Ĥi can be of type (1,4)
or (2,3). For each pair, the commutator is bounded by∥∥∥∥∥∥

∑
{⃗ne,p}

T̂(a)
n⃗e,p

+ T̂(b)
n⃗e,p

2
,
∑
n⃗k,□

L̂(B)n⃗k,□

 ,∑
{⃗no,p}

4∑
c=1

T̂(c)
n⃗o,p

2

∥∥∥∥∥∥
⩽ 4NE

∥∥∥∥∥∥
T̂(a)
n⃗e,p

+ T̂(b)
n⃗e,p

2

∥∥∥∥∥∥ ·
∥∥∥∥−2(d− 1)

2g2a4−d
(ÛÛÛ†Û† + h.c.)

∥∥∥∥ ·
∥∥∥∥∥∥2

4∑
c=1

T̂(c)
n⃗o,p

2

∥∥∥∥∥∥= 8(d− 1)NE

g2a6−d
, (A65)

where in the second line, the factor of 2 in the third norm term is because of the fact that for a given n⃗e,p,
there are two odd kinetic terms, of the type n⃗o,p, that collide on two links with the magnetic term. For case
(ii) of type (ii), once again, there are 2d pairs of Ĥi and Ĥk. For each pair, the commutator is bounded by∥∥∥∥∥∥

∑
{⃗ne,p}

T̂(a)
n⃗e,p

+ T̂(b)
n⃗e,p

2
,
∑
n⃗k,□

L̂(B)n⃗k,□

 ,∑
{⃗no,p}

4∑
c=1

T̂(c)
n⃗o,p

2

∥∥∥∥∥∥
⩽ 4NE

∥∥∥∥∥∥
T̂(a)
n⃗e,p

+ T̂(b)
n⃗e,p

2

∥∥∥∥∥∥ ·
∥∥∥∥−2(d− 1)

2g2a4−d
(ÛÛÛ†Û† + h.c.)

∥∥∥∥ ·
∥∥∥∥∥∥4

4∑
c=1

T̂(c)
n⃗o,p

2

∥∥∥∥∥∥= 16(d− 1)NB

g2a6−d
, (A66)

where in the second line, the factor of 4 in the third norm term is because of the fact that each even kinetic
term of the type n⃗e,p collides with two odd kinetic terms of the type n⃗o,p, and each magnetic term collides
with two odd kinetic terms. Thus, for case (ii) of type (i) and (ii), we obtain the bound

4NE + 8NB

g2a6−d
2d · 2(d− 1). (A67)

For case (iii) of type (i) and (ii), we obtain the bound

4NE + 4NB

g2a6−d
2(d− 1)(4d2 − 4d), (A68)

by replacing the number of non-commuting magnetic terms. Next, there are 4 d pairs of Ĥi and Ĥk in case

(ii) of type (iii), and the commutator bound for each pair has the same bound as (A65), 8(d−1)NE

g 2a6−d . For case

(iii) of type (iii), there are (8d2 − 8d) pairs of Ĥi and Ĥk in case (ii) of type (iii), and the commutator bound

for each pair has the same bound as (A65), 8(d−1)NE

g 2a6−d . Thus, for type (iii), we obtain the bound

4NE

g2a6−d
(8d2 − 4d)2(d− 1), (A69)
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by replacing the number of non-commuting magnetic terms. By summing up the bounds for all cases, we
obtain the bound for C2,10,

NE +NB

g2a6−d
[(2d)(2d− 2)+ 8d · 2(d− 1)+ 8(d− 1)(4d2 − 4d)]

+
NE

g2a6−d
(8d2 − 4d)(8d− 8)+

NB

g2a6−d
8d(2d− 2)

=
Ld

g2a6−d
(16d3 − 10d2 − 6d)+

Ld−1

g2a6−d
(32d3 − 56d2 + 24d). (A70)

Lastly, we consider C2,11, where Ĥi is a kinetic term, and Ĥj and Ĥk are magnetic terms. We evaluate its
bound as follows:

o∑
i=e

2d∑
p=1

(2,3)∑
(a,b)=(1,4)

∥∥∥∥∥∥
∑

{⃗ni,p}

T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2
,
∑
n⃗

L̂(B)n⃗

 ,∑
n⃗ ′

L̂(B)n⃗ ′

]
∥∥∥∥∥∥

⩽ 8d(NE +NB) · 4

∥∥∥∥∥∥
T̂(a)
n⃗i,p

+ T̂(b)
n⃗i,p

2

∥∥∥∥∥∥ ·
∥∥∥∥−2(d− 1)

2a4−dg2
(ÛÛÛ†Û† + h.c.)

∥∥∥∥ · ∥∥∥∥−(14d− 20)

2a4−dg2
(ÛÛÛ†Û† + h.c.)

∥∥∥∥
=

Ld(224d3 − 544d2 + 320d)

a9−2dg4
, (A71)

where in the second line, the factor of 2(d− 1) in the second norm term is the number of magnetic terms that
act on the same link as the kinetic term, since there are (d− 1) planes that share a direction with the kinetic
term, and on each plane, there is a pair of magnetic terms of two different parities. For each pair of such
magnetic terms, there are 8 colliding magnetic terms on the same plane, and 7 · 2(d− 2) colliding magnetic
terms on different planes, where 7 is the number of links acted on by the pair and 2(d− 2) is the number of
colliding magnetic terms on each of the 7 links. This explains the factor of 8+ 7 · 2(d− 2) = 14d− 20.

As a final step, we include the second-order Trotter error for the magnetic term, of which the ordering is
given by (55). We use (A4) to bound both the commutators [[Ĥi,

∑
j>i Ĥj],Ĥi] and [[Ĥi,

∑
j>i Ĥj],

∑
k>i Ĥk].

We remind the readers that each Ĥi is of the form

−1

2a4−dg2
Û(1)†αÛ(2)†βÛ(3)†γÛ(4)†δR̂□Û

(1)αÛ(2)βÛ(3)γÛ(4)δ, (A72)

where (α,β,γ,δ) ∈ SGC ≡ {GC(0),GC(1), . . . ,GC(15)}. Excluding the prefactor −1
2a4−dg 2 , the norm of the

operator is two. Furthermore, Ĥi operators with different values of α,β,γ,δ are submatrices, which act on
disjoint sets of states and have no overlapping elements, of

−1

2a4−dg2
(ÛÛÛ†Û† + h.c.), (A73)

of which the norm is two, excluding the prefactor −1
2a4−dg 2 . Therefore, we obtain the inequality∥∥∥∥∥∥

∑
(α,β,γ,δ)∈b;b⊆SGC

−1

2a4−dg2
Û(1)†αÛ(2)†βÛ(3)†γÛ(4)†δR̂□Û

(1)αÛ(2)βÛ(3)γÛ(4)δ

∥∥∥∥∥∥⩽ 1

a4−dg2
. (A74)

Using this relation, we evaluate the bound for the latter type of commutatorĤi,
∑
j>i

Ĥj

 ,∑
k>i

Ĥk

⩽ 4

∥∥∥∥ 1

a4−dg2

∥∥∥∥3 = 4

a12−3dg6
. (A75)

As such, in accordance to (66) and a straightforward counting argument, the error of the magnetic term is
given by

1

12

∑
i

∥∥∥∥∥∥
Ĥi,

∑
j>i

Ĥj

 ,Ĥi

∥∥∥∥∥∥+ 1

24

∑
i

∥∥∥∥∥∥
Ĥi,

∑
j>i

Ĥj

 ,∑
k>i

Ĥk

∥∥∥∥∥∥⩽ Ld
d(d− 1)

2

8

a12−3dg6
, (A76)

where Ld is the number of sites, d(d−1)
2 is the number of plaquettes per site, and 1

a12−3dg 6 is the Trotter error
per plaquette.
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Appendix B. Comparison to prior art

In this appendix, we demonstrate the algorithmic improvements achieved in this work over previous works,
[5] and [9]. In particular, we use the asymptotic scaling, with respect to L, Λ, and ϵ, assuming d, a, g, andm
are fixed, of T gates required for a single Trotter step as the comparison metric.

We first provide a brief overview of the simulation method in [5]. Similar to our method, the authors
applied a truncation Λ to the electric eigenbasis |E〉 on each link such that E ∈ {−Λ,−Λ+ 1, . . . ,Λ}, and the
gauge-field operators Ê, Û, and Û† become finite-dimensional. Then, they mapped |E〉 to qubits using an
unary encoding. In particular, an integer−Λ⩽ j⩽ Λ is represented on an unary (2Λ+ 1)−qubit register as
the state where the jth qubit is |0〉 and the remaining qubits are all |1〉. As such, the gauge-field operators are
represented as follows:

Ê=
Λ∑

l=−Λ

l
(Ẑl + Îl)

2
, (B1)

Û=
Λ−1∑
l=−Λ

σ̂+
l σ̂

−
l+1, (B2)

where the subscript l denotes the qubit index for each link register |E〉.
We proceed to the fault-tolerant cost analysis of the circuit implementation, which was not provided

in [5], of this method. Using the above relations, the evolution of each link due to the electric Hamiltonian

eit
g 2

2ad−2 Ê
2

can be implemented, up to a global phase, as

Λ∏
l=−Λ

eit
g 2

2ad−2
l2

2 Ẑl , (B3)

which requires O(Λ) Rz gates. Therefore, for a d-dimensional cubic lattice with Ld sites, the evolution due to
the electric Hamiltonian costs O(dLdΛ) Rz gates in total. Hereafter, we suppose an error budget ϵ is allocated
for synthesizing all the required Rz gates, and we use RUS circuits [41] to synthesize them. Then, O(dLdΛ log
(dLdΛ/ϵ)) T gates are needed. In comparison, our algorithm (see section 3.2 for details) requires O(log(dLd)
log(Λ)) Rz gates and O(dLd(log(Λ))2) T gates. This amounts to O(log(dLd) log(Λ) log(log(dLd) log(Λ)/ϵ)+
dLd(log(Λ))2) total T gates. As a result, our algorithm reduces the Λ-dependence from linear to quadratic
logarithmic.

Next, we discuss the evolution of each plaquette due to the magnetic Hamiltonian e
−i t

2a4−dg 2
(ÛÛÛ†Û†+h.c.)

,
which can be Trotterized to first order as,

Λ−1∏
j,k,l,m=−Λ

e
−i t

2a4−dg 2
(σ̂+

j σ̂−
j+1σ̂

+
k σ̂−

k+1σ̂
−
l σ̂+

l+1σ̂
−
m σ̂+

m+1+h.c.)
. (B4)

This can be implemented as O(Λ4) unitary operations of the form e−iθ(⊗kσ̂k+h.c.), each of which, as shown in
section 3.4, requires O(1) Rz gate. The magnetic term for a d-dimensional lattice, where there are O(d2Ld)
plaquettes, costs O(d2LdΛ4 log(d2LdΛ4/ϵ)) T gates in total. In comparison, our algorithm (see section 3.4 for
details) requires O(d2 log(Ld)) Rz gates and O(d2 log(Λ)Ld) T gates, which amount to
O(d2[log(Ld) log(d2 log(Ld)/ϵ)+ log(Λ)Ld]) total T gates. As such, our algorithm scales exponentially better
in Λ.

In addition to the improvements in T gate count, our algorithm also scales more favorably in terms of
qubit count. In particular, their method requires O(dLdΛ) qubits, whereas our algorithm requires
O(dLd log(Λ)) qubits.

Next, we apply our algorithm to a one-dimensional lattice, and compare it to that in [9]. Both algorithms
encode the gauge-field operators to qubits using binary encoding, and use JW transformation to map
fermions to qubits. The main difference is the parallelization techniques, i.e. , the weight-sum trick, used in
our algorithm, which reduces the number of Rz gates incurred. Given the similarity between our algorithms,
we simply report the T gate counts for a Trotter step due to each term of the Hamiltonian. Their algorithm
requires O(L log(L/ϵ)), O(L[log(Λ) log(L log(Λ)/ϵ)+ (log(Λ))2]), and O(L[log(L/ϵ)+ log(Λ)]) T gates for
the mass, electric, and kinetic terms, respectively. Our algorithm requires O(L+ log(L) log(log(L)/ϵ)),
O(log(L) log(Λ) log(log(L) log(Λ)/ϵ)+ L(log(Λ))2), and O(log(L) log(log(L)/ϵ)+ L log(Λ)) T gates for the
mass, electric, and kinetic terms, respectively.
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