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Многоуважаемые коллеги! 

Позвольте мне от имени Оргкомитета нашего Международного совещания 
приветствовать Вас. 

Наше совещание посвящено глубоким проблемам современной квантовой теории 
поля и нам, его инициаторам, отрадно видеть, что число рыцарей от науки, 
посвятивших себя служению этой области современной физики, замогио возросло. 
Об этом свидетельствует интерес к нашему совещанию, сушоствонно возросшее 
число его участников, 

Вместе с т*м, естественно, возникли трудности, относящиеся к организа­
ционной стороне. Главная из, них - это большое количество научных сообщении, 
которые нелогко уложить в наше расписание, Опыт показывает, что самым 
неудачным было бы не предусмотреть время для семинаров к частных обсу/кдо­
ний. Чтобы иметь необходимое ДЛ1. этой пели время, продолжительность 
индивидуальных выступлений пришлось сократить. Мы сделали что после 
обстоятельного рассмотрения представленных материалов и нпрсиосли центр 
тяжести работы на обзорные доклады, 

Я не буду касаться особенностей нашего совещании в отношении научной 
программы, отложив это до вводного доклада. Многие участвуют в током 
совещании уже не в первый раз и знают, что ого дух характеризуется готов­
ностью благожелательно обсуждать различные взгляды и точения в квантовой 
теории поля. 

Позвольте закончить мое краткое выступление выражением благодарности 
руководителям города Алушты и дирекции Дома отдыха 'Дубна" за госте­
приимство и пожелать всем вам - участникам совещания - плодотворной 
работы. 
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СОВРЕМЕННОЕ СОСТОЯНИЕ КВАНТОВОЙ, ТЕОРИИ ПОЛЯ 

Д. БЛОХИНЦЕВ 

Объединенный институт ядерных исследований 

I . Введение 

Наш семинар носит название "Семинар по нелокальной теории 

поля". Однако круг рассматриваемых на нем вопросов значительно шире. 

В сущности дело идёт об обозрении состояния современной теории по­

ля в целом, 

Традиционное название нашей конференции призвано подчеркнуть 

нашу готовность серьёзно обсудить и те направления, которые выхо­

дят за рамки канонических. 

Мой доклад не и м е й целью изложить содержание конференции -
- оно ясно из программы. Этот доклад-скорее очерк состояния совре­
менной теории поля и при том не претендущий на освещение различ­
ных точек зрения. 
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•Я-ду^ '̂̂ нел-"будетлршибкр^скмать, что за истекшие три года 
интерес к теории поля, как кРснове понимания мира элементарных 
частиц,значительно возрос. И уже совсем далёким кажется тот пе­
риод, когда возникали предложения вообще похоронить теорию поля, 
заменив её концепцией аналитических свойств амплитуд, На самом де­
ле оказалось, что сама эта концепция не имеет других основ, кроме 
тех, которые предоставляются нам теорией поля, в частности, прин­
ципом локальной микропричиннооти: 

/ Y W , *WJ=0 для (х-уАо (D 
(здесь ¥(х)ъ ¥Ш - какие либо два квантовых поля, взятые в 
двух пространственно-временных точках X и *f Xх- -у) < О 
означает, что интервал Х~£ - пространственно-подобный). 

Далее, оказалось, что почти все результаты феноменологичес­
кого подхода могут быть воспроизведены или даже уточнены с помощью 
теории поля. 

П. Обзор некоторых результатов теории поля 

Алгебра токов. В последние годы внимание теоретиков привлека­
ла алгебра токов, с помощью которой был получен ряд полезных соот­
ношений. В качестве примера можно напомнить правило сумм для нейт­
ринных реакций при высоких энергиях, основанное на локальных ком­
мутационных соотношениях токов: 

/*»{№{Ъ9'> - У/ЧЧ % г)\* 2,, „ ' 
где VV (ЦЯ) - структурная функция, описывающая неупругое 
лептон-нуклонное взаимодействие: 



У+т&.&'Ф'Ш ; Со* Е^ -Ее - энергия, переданная 
лептону € , Q - квадрат переданного импульса. 

Понятие плотности тока 2(х) есть, конечно, понятие из 
теории, в некотором смысле дополнительное п понятию ^(х). 
В самом деле: 

где £> -матрица рассеяния. 
Киральная симметрия. Значительное место в теоретических рас­

чётах заняли исследования по нелинейному представлению киральной 
группы. • Эти исследования привели к изучению существенно нелиней­
ных лагранжианов типа: 

А (4) 

где -А,* есть вектор мезонного поля, a Q я(^) -метрический 
тензор в этом же изотопическом пространстве. Этот тензор имеет вид: 

/ . , гЮ - f.i "(*г) + я - **''(**'. ( 6 ) 

причём вид фикций Д ш у зависит от избранной параметризации. 

До последнего времени этот лагранжиан рассматривался как 
чисто классический лагранжиан,из которого, в духе принципа соответ­
ствия, можно было получить соотношения между различными процессами 
множественного рождения пионов, Сейчас выяснилось, что амплитуды 
вероятностей, вытекающие из этого лагранжиана,могут быть вычислены 
методом суперпропагатора, развитого ;ервоначально у нас, в Дубне. 
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Пупештопагатор - супер11ропагатор^^^^ е е Т : Щ : • . -

/ г С 1 " ( 6 ) 

г д е / S означает среднее по вакууму от Т -произведения; 
Л (х)~ причинная функция свободных полей. Вычисление супер-

пропагатора основано на замене коэффициентов С„ функцией комплек­
сного переменного С (<%) , имеющей полюса в точках -2 s Л и на 
предстоялонии суммы (6) в форме интеграла Зоммерфельда-Ватсона. 

Расчёты, основанные на этом методе,дали обнадёживающие резуль­
таты для ЯП - взаимодействия. 

Шли сделаны также увлекательные приложения этого метода к 
учёту явлений гравитации в квантовой электродинамике. Учитывая 
множественное рождение гравитонов,удалось получить конечное выра­
жение для полевой массы, именно: 

ГД° d = еУдс » эе - гравитационная постоянная. 

Насколько можно судить, другие методы пока ещё не позволяют 
сколько-нибудь последовательно учесть квантовые гравитационные 
явления и наиболее интересные работы по изучению роли гравитации 
в мире алементарных частиц ограничиваются изучением классических 
моделей. 

Поля Янга-Миллоа - другое направление в теории поля связано 
о развитием замечательно»! идеи о локально-калибровочного инвариант-
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ных полях. 
"Разумеются поля, преобразующиеся по формуле: 

f'(x) - ,*f{it%, •**<*:» Ь*>, (8) 

Векторные поля 4^, называются компенсирующими.Их особая, может 
быть преобладающая роль во взаимодействии получила название векторной 
доминантности. 

В последнее время эта концепция породила серьёзные надежды 
объединить в одной схеме электромагнитные и слабые взаимодействия. 

Расщепление вакуума. При атом оказывается важным спонтанное 
расщепление вакуума, которое в простейшем виде содержится в любой 
теории поля с нелинейным лагранжианом вида: 

Лшф?ач>) -и<9)* ( 9 ) 

где "потенциальная" энергия lf(fyимеет несколько минимумов, при 

у** ъ /**•.*,*..-А . 
Эта привлекательная схема, очень изящная в классическом вариан­

те, становится ^однако,весьма сложной, когда дело доходит до кван­
тования полей. 

При всяком иоходе этих исследований они останутся отличной 
иллюстрацией возможностей, скрытых в теории поля, 

Эйкональное приближение. Впервые развитое в Дубне ещё много 
лет тому назад эйкональное (геометрико-оптическое) приближение оказа­
лось весьма плодотворным при изучении рассеяния сильновзаимодействукь 
щих частиц. 
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В последние годы были предпрняты попытки обосновать этот 

метод, исходя из теории поля. 

Особенно успешным оказалось применение аппарата функциональ­
ного интегрирования. С помощью этого аппарата удалось получить 
асимптотическчо решешш ряда оптических моделей, которые воссоздают 
оптическую картину рассеяния частиц. Именно, при определённых 
физически ясных приближениях оказалось возможным получить эйкональ-
ное приближение для амплитуда рассеяния: 

где ^-прицельный параметр,£ -переданный импульс, Х(*/1> эйконал, 
зависящий от характера взаимодействия частиц. Результат этих вы­
числений приводит к Гауссову потенциалу с логарифлически растукрм 
радиусом действия. 

Масштабная инвариантность является одним из самых интерес­
ных наблюдений последних лет, два факта лежат в её основе откры­
тия этой закономерности. Во-первых, - автомодельное поведение 
глубоко-неуппугого е-/>-рассеяния, амплитуда которого при больших 

S У е Q и S зависит лишь от их отношс-

г ния так, что 

s * (ID 
Далее, оказалось, что полное сечение и сечение инклюзивных процессов 
хорошо согласуются с "продольной" автомодельностыо: 

&t*t ~ ***** 
^/fli 9 ) в области фрагментации 

U* %hf(f>) 
(12) 

в области пионизации 
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На основе теории поля было показано, что автомодельное поведение 
глубоконеупр^г^ локальной тео­
рии? поля^Э^ результат былшолучен на. основании изучения 
аналитических свойств амплитуды комптон-эффекта При больших О 
что соответствует в коммутаторе токов области вблизи светового 
конуса. Масштабную инвариантность наверняка можно ожидать, когда 
все скалярные произведения внешних импульсов больше всех адрошшх 
масс: 

Ъ* ^ ' 7 7 * *'J (13) 

Это условие. •, на языке пространства-времени означало бы малость 
всех расстояний-между парами взаимодействующих частиц. Однако это 
не физическая область» С помощью разработанных у нас методов сум­
мирования диаграмм Фейнмана удалось изучить поведение амплитуд 
на массовой поверхности и вместе с тем получить довольно пол­
ную картину высокоэнергетических процессов. 

Ванным следствием масштабной инвариантности является ограниче­
ние на возможный выбор лагранжианов взаимодействия. В частности, 
для системы барионов и псевдоскалярных мезонов требования масштаб­
ной инвариантности приводят к классическому варианту: 

при условий конечной ренормировки. 

Нелокальная теория поля. За обозреваемый период мы научились 
понимать,насколько трудна задача построения матрицы рассеяния, ос­
нованной на нелокальном поле ¥*(х), т .е . поле,для которого нару-
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шено условие ( I ) . В этой связи представляется значительным успе­
хом недавно данное доказательство возможности построения нелокаль­
ной матрщи S , удовлетворяющей требованию унитарности: 

и макроскопической пшчшшости 

причём оператор Ji(x-y) исчезает для (x-jf)<0 применительно к 
определённому классу пробных функций. Строгое определение класса 
пробных Функций, допустимых в нелокальной теории, оказалось крайне 
важной стороной дела. 

Этот успех открывает ВОЗМОЖНОСТИ для вычисления матрицы рас­
сеяния в случае иеперенормируемых взаимодействий. 

Искривлённое импульсное пространство - к этому же кругу ис­
следований следует отнести развитие аппарата теории поля в кривом 
пространстве относительных импульсов. Закон сложения относитель­
ных импульсов изменён 

%+%-+%©% (17) 
ъ соответствии с предположением о существовании постоянной кривизны 
yyi У пространства ^ (?•) . Было бы очень интересно более 

пристально изучить причинность в этой любопытной теоретической 
схеме. Эта кривизна определяет существование верхнего предела 
юсе элементарных частиц - своеобразного "Максимова", с ^ * г , 
В саше последнее в р е т был достигнут существенный успех в аксио­
матической формулировке этой любопытной теоретической схемы. 

Квантование в римановоц пространстве - как бы дополнительным 
к этому исследованию является квантование поля в Римановом прост-
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ранстве Д£(Э£/постоянной кривизны ( в пространстве Де Ситтера). 
Насколько мне. известно, это первый пример квантования в пространстве 
с метрикой^ о.тличдоЙГ oir особенно любопытный 
в том отношении, что конформная инвариантность лагранжиана (при 

/П-*0 ) оказывается необходимой, для корпускулярной интерпретации 
векторов состояния. 

Квантование существенно-нелинейного поля-; в этой же свя­
зи можно напомнить о • квантовании существенно-нелиней­
ного поля, приближённо разлагаемого на классическое (сильное) по­
ле ^ (х) и кватовое (слабое) поле 

tif = y/Jx) + <р(х) , (18) 

В этом случае задача сводится к взятию интеграла Фейнмана с квад­
ратичной формой с переменными коэффициентами, гТуикциями тнл (х) , 
и, следовательно, является также примером квантования в кривом 
Римановом пространстве. 

Кварки - я не останавливаюсь на теории кварков поскольку её 
не удалось сформулировать Е.виде последовательной теории поля. Ос-
новные результаты теории.кварков пока получаются удачнее из 
специальных моделей, например .из партонпой модели , или при помо­
щи методов теории подобия и анализа размерностей. 

В случае инклюзивных электромагнитных или слабых взаимодей­
ствий достаточно применения обычного анализа размерностей, в то 
время как при изучении сильных инклюзивных процессов, следует обра­
титься к обобщённому анализу размерностей с двумя независимыми 
шкалами длины - в предельном и в поперечном направлении. 
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Ш. Критические аспекты 

Принимая квантовую теорию поля как основу для понимания мик­
ромира,мы должны ясно отдавать себе отчёт в том, что идеологичес­
ки мы возвращаемся к концепциям* возникающим ещё в 30-х годах, 
и на новом уровне встречаем очень старые проблемы. 

Неполнота сГ-матричного описания*. Основатели метода перенор­
мировки ясно представляли себе его как чисто Формальный приём 
обхода слишком малых расстояний # или, как мы теперь более склонны 
говорить, - область больших передач импульса QsaJL. 

н ' а 
Неполнота о -матричного описания не в том, что он применим 

только к некоторому классу взаимодействий, а в том, что он в прин­
ципе не позволяет дать описание течения событий во времени. 

В частности, известное поведение Л; -мезонов требует для 
своего описания задания начального состояния в момент времени 
tt - О ( а не tf = - е е j) л дальнейшего описания для всех 

моментов времени tA > tf ( а Не только для t,= + « ) . Вообще, 
необходима точность временного описания At« $< > где Г- кон­
станта распада нестабильной частиш. 

Однако для оператора l/(tx tj% пре..бразуяцего состояние, дан­
ное в момент tt , в состояние в момент t% , не найдено способов 
устранения расходимостей ,и эта старая проблема ни в коем случае не 
шкет считаться ш решенное, ни отклоненной. Разумеется, что сам 
оператор Vft^tJ может оказаться не вполне строго опреде­
лённым понятием. 

В нелокальной теории точные моменты времени * а , t м о г у ч , 
оказаться лишь приближённо определёнными. 
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Итак, первый и фундаментальный недостаток современного описа­
ния явлений в лшре элементарных частиц - это 'неполнота «S* -мат-
ричного подхода. Второй недостаток, это: 

Обилие долей. В настоящее время мы принуждены каздому роду 
частиц стабильных и нестабильных приписывать своё собственное поле. 
Между тем ясно, что целые последовательности "частиц" являются ни 

чем иным,как возбуждёнными состояниями некоторых исходны;: частиц. 
Во всяком случае , видимо,нет сомнений в такой интерпретации для 
частиц, лежащих на одной траектории Редже: 

j ' = ы. (т л). do) 

j - спин частицы, л? - её масса. С точки зрения теории Редже 
поведение сечения при обмене элементарной частицей и частицей слож­
ной различно. В первом случае не должно наблщаться сужения ди -
фракционного конуса,, и сечение должно падать медленнее.чем .> . 

В этой связи несколько неожиданный результат получен в 
Серпухове при изучении рассеяния 7Г*р - назад. Полученная зави­
симость сечения от энергии S ( 24 и 40 Гэв) противоречит предполо­
жению, что протон лежит на траектории Редже. 

Такого рода исследования несомненно помогут расклассифицировать 
частицы и разобраться в их иерархии. 

Сделанная в своё время Гейзенбергом потштка рассмотреть всё 
многообразие частиц на основе единого поля (ihrfeid ) н® П Р И ~ 
вела к результатам. Однако эта неудача нисколько не снимает вопроса 
о многообразии переменных. коими мы должны пользоваться для опи­
сания структуры и динамики элементарных частиц. 
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Наиболее характерным явлением в мире элементарных частиц 
является каскад. Всякая частица А или их совокупность в , за­
данная при t t

 я О , обращается в каскад tg+*° асимптотически, 
при £ » - * o e i полностью состоящий из стабильных чаотиц. Ста­
бильные частицы описываются пятью полями: ты »"К • 7j » % • fig • 
U силу обратимости мы можем вернуть этот каскад в исходное состоя­
ние А ( или/? ). Отсюда следует, что переменные, с помощью к о - ' 
торых описывается совокупность овободннх, отабильных частиц jPjywKb 
мощные с переменными, с помощью которых следует описывать любое 
состояние частиц. 

Поэтому для описания любых состояний чаотиц должно быть 
достаточно пяти полей, которые, разумеется.не обязаны совпадать с 
полями стабильных частиц. 

Любопытно, что признак, именуемый странностью .не принадлежит 
стабильным частицам. Поэтому он должен рассматриваться как харак­
теристика некоторой внутренней симметрии волнового функционала 

Q-Q{%,%,.. %} , ( а д 

описыващего барионы, мезоны или лептоны в терминах 11рймитивных 
полей ф 4 , ф г , . . . <ps , 

Выбор этих полей остаётся важнейшей проблемой современной 
теории частиц. 

1У« 0 границах локальной теоши 

Каков бы ни был выбор фундаментальных полей, предположение 
о точной локализации пояай 'или токов) приводит к тому, что волно-
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вые :функционалы представляются :8лиштотическилш радами,, неопреде­
лёнными однозначно. 

Это заставляет поставить вопрос о границах локальной теории. 
Точечное событие / : / * А В основе локальной теории лежит пред­

положение о возможности безконечно точной локализации точечных ообыт-
тий в пространстве-времени Л у (х). 

Анализ этой стороны дела показывает, что локальная теория 
неясно допускает существование элементарных частиц как угодно 
большой массы М'(Мч»°«)ъ качество представителей точечных со­
бытий. При этом допускаемая неточность в определении координат 

и локальная теория становится самосогласованной. 
Однако неизвестно,существуют ли в принципе частицы с массой 

м-**** ? 
При неограниченном росте массы растут и гравитационные эффекты,и 

в области, определённой равенствами комптоновской длины волны частиць 
и её гравитационного радиуса: 

/Чс "~С* (22) 
(здесь V я 4 Ь7-16в <Ц? ость постоянная Ньютона) *м ы приходим к мак-
симально тяжёлой частице - гравитационному максимому М- Мд— • *'& % 

Вопрос о роли гравитации в мире элементарных частиц является 
весьма дискуссионным. 

Однако бесспорно то, что, если гравитация и играет там роль, 
то роль может быть ощутимой лишь в области масштабов 
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л = Л- - - Л 2 3-10 ол# 

или, соответственно,для передач импульса 
18 %~м§с- *;*'° я*л • 

Естественно возникает вопрос,не может ли существовать более 

ранняя граница для массы элементарных частиц? 

Вопрос, собственно, сводится к вопросу об асимптотическом 

поведении отношения 

^ s /М , (23) 
где /"-ширина распада. Ясно, что, если / ~ М , то частица не 
существует как определённый пространственно-временной объект. 

Если с ростом энергии слабое взаимодействие будет стремиться 
к своему унитарному пределу,то не лсклпчепо, что отношение У приб­
лизится к 4 . . 

Б этом случае мы имели бы дело со слабым максимонок М9МР • 

При этом граница локальной теории определялась бы длиною Фер­
ми: 

т .е . гораздо раньше,нежели это диктуется гравитацией. 
Математическая <|№радулировка теории, в которой не существует поня­
тия точно определённой координаты точечного события ,предотавляет 
ообою увлекательную проблему, относящуюся: к теории стохаотических 
пространств. 
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В этих пространствах арифметизация событил является приближён­
ной, так как координаты события •У ( * / суть стохастические величины; 

л 

причем <JL>-0 .<$*>tO 

У, Заключение 

Трудности, связанные с применением концепции локального полл , 
имеют, конечно,глубокие основания. Само существование этих труднос­
тей не вызывает сомнений. 

С другой стороны,нельзя упускать из виду, что эксперименталь­
ные фактц нигде не обнаруживают противоречия с основным условием 
локальной теории ( I ) . В частности, не обнаруживается и какого-либо 
масштаба длины "Я", который указывал бы па отклонения от локальнос­
ти. Более того, поведение глубоконеупругих процессов подчёркивает 
автомодельность явлений при больших передачах импульса. 

Ецинственншл явлением, которое монет говорить в пользу ноло-
кальности,остаётсярост сечения слабых взаимодейстзий с ростом энер­
гии Е , как это следует из изучения неупругих (процессов типа 

где $ - нейтрино, "€' - лептон, № -нуклон, X - любые час­
тицы,,удовлетворяющие сохранению барионного числа. Теоретически 
полное сечение для этого процесса содержит длину Af и имеет 

х В частности, если гравитационное поле квантуется, то риманово 
пространство неизбежно становится стохастически;.:. 
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вид: 

*bt-*A!(ir)(E*)' (25) 
где d- численный коэффициент Af*0f%3 Ю ^/w-масоа нуклона, 

S - инвариантная энергия. 

По недавним измерениям, в полном соглаоии о (25), получено: 

& ы " (°>г* °> '^ £*',€Г **ем * 
для ^порядка нескольких Гэв.Нв исключено, что сечение этих процес­
сов может оравнятьоя о сечением процеосов электромагнитных, как это 
было предсказано в Дубне ещё много лет тому назад. 

Однако каковы бы ни были экспериментальные факты, несовер­
шенство математического аппарата локальной теории настолько очевид­
но, что не только работы по усовершенствованию этого аппарата ка­
жутся более чем обоснованными, но и поисковые работы, касающиеся 
самых основ локальной теории заслуживают всесторонней поддержки. 
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НЕЛОКАЛЬНАЯ КВАНТОВАЯ ТЕОРИЯ ПОЛЯ 
Г.В. Ефимов 

Объединённый институт ядерных исследований 
За время, прошедшее со П Международной конференции в Азау 

в 1970 году, нелокальная квантовая теория поля получила своё 
дальнейшее развитие. Настоящий обзор основан на работах, сде­
ланных в ЛТФ ОИЯИ и ИТФ АН УССР, где наиболее интенсивно раз­
рабатывались проблемы нелокальной теории. Усилия были пред­
приняты в двух направлениях: во-первых, дальнейшее исследова­
ние математической структуры и самосогласоваиности теории,, 
во-вторх, изучение экспериментальных следствий в нелокальной 
теории электромагнитных и слабых взаимодействий. 

В данном обзоре мне хотелось бы описать общую схему 
построения нелокальной квантовой теории поля. Задача состоит в 
построении ряда теории возмущений для о-матрицы 

для теории, задаваемой лагранжианом некоторого общего вида 

В рамках обсуждаемого варианта нелокальной теории поля возможно 
построить ряд (I) для следующих лагранжианов взаимодействия: 
I . Однокомпонентное скалярное поле (f(x) 

'•«• :$ Z-W^-'/vfa) "«=**, *, •• 
б) с, с/,6<;; — qUC^lv) t где TT(t) - некоторая функция, 

аналитическая в точке -£•=• 0 . Например 
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П. Электродинамика частиц ее спином 6 = и в s = o. d . /. 
|f- И Т.Д. 

а) Квантовая электродинамика 3 -•*? 

£(*) = е WWfc^wAft). 
б) Электродинамика частиц со спином 5 ~ Q / 

s»f 4 w « ^ ( ^ < - $ Jщ)Ar + 
+ **(wrW?-fy\ty)Xf)AtA+ 

в) В подходе Дэффина-Кеммера лагранжиан взаимодействия 
частицы спина «S с электромагнитным полем выглядит проще 

Здесь V^ (•*> " волновая функция частицы спина S , удовлетворяю­
щая уравнению 

оЛ, - некоторые матрицы, удовлетворяющие соответствующим перестано 
вечным соотношениям ( см. 2 ) . 

Ш. Слабые взаимодействия 
а) четырёхфермионное взаимодействие 

где Q^fcO+fc) , 4 -лептон, V -нейтрино. 
б) взаимодействие с W- бозоном 
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1У. Мезодинамика 

А/ - нуклон а JT - мезон, 
S -матрица, описывающая перечисленные выше взаимодействия, 

должна удовлетворять в каждом порядке теории возмущений всем 
то 

общим аксиомам квантовой теории поля (см. > ) . Эти аксиомы 
можно сгруппировать следующим образом. 

I . Аксиомы пространства физических состояний. 
1. Пространство физических состояний - гильбертоз.о 

пространство <тТ.' , 
2. Единственность вакуума |о> . 
3. Релятивистская ковариантность. 
4. Спектральность и полнота. 

П. Аксиомы S~ матрицы 
1. Унитарность S S - S S> ~ 1 
2. Стабильность вакуума и одночастичных состояний <Я|°>г/"> 
и 5|Y> = |1> . 
3. Интегрируемость. 
4. Причинность. 
5. Градиентная инвариантность и инвариантность относи­

тельно других дополнительных групп симметрии. 
Нелокальную квантовую теорию поля, о которой пойдёт речь 

ниже, было бы правильнее называть квантовой теорией полей, 
взаимодействующих нелокально. Какова же общая схош построения 
теории ? Для определённости рассмотрим однокомпонентное скалнрное 
поле (fix/ . Прежде всего задаётся плотность лагранжиана клас­
сического поля <£(*) '. 
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А*) = £(*)*-д&ы, ( 2 ) 

Предполагается, что лагранжиан взаимодействия не является локаль­
ной функцией от поля yW , как, например, % * г 6 0 -£ ^ (*) 
и т.д. , а зависит от "размазанного" поля 

(3) 
Здесь К(*'"А) = К (в) о С*у)- некоторой формфактор, определяющий 
область, где происходит нелокальное взаимодействие. Например, име­
ем соответствие : 
Локальная теория Нелокальная теория 

Следует особо подчеркнуть, что успех построения нелокальной 
самосоглпеогшной теории почти полностью определяется шбором 
класса функций,которому принадлежат формфакторы К(*-у) , описы-
вающи?; нелокальный характер взаимодействия ( с м / 4 Л . Мы будем 
считать, что функция У(~^) =[К(^)]\ где К(*г) - фурье-об-
pa;i чюрмрактора К('*-;з) , удовлетворяет следующим условиям: 

является целой аналитической функцией порядка роста 

•'), \,'(x)&G для чедестмонних X , 
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4. V(W) = f 
5. l/(w)-a= 0(*#{{ M ? J) при 1Л-*-<>* 
6. j ^ o n ^ У Н <Г »о 

для всех М<А/0 , где М0 определяется рассматриваемым ла1-
ранжианом взаимодействия. Иными словами, формфактор £ К (к2)] 
убывает достаточно быстро в евклидовой области, т.е. при 
К ^ - ^ . 

Формфакторы К (х-и) являются обобщенными функциями, задан­
ными на пространстве основных функций я а , Пространство ^ . (а ъ () 
состоит из всех тех целых функций ^(г,,....,?,,) от ft комплексных 
переменных Щ -У^% (\ч'\ к)» которые удовлетворяют условиям: 

Ш У{(*»~М*2Л 3C>0, А^>0 ОН.-.") 

(2) °Г Т 4 ' 

Пространство j£r , являющееся пространством фурье-образов 
функций ^ е 2 к » состоит из дифференщруемых функций 4-(р„...,рп)» 
удовлетворяющих условию 

с з ) 3 С>о, 8.>о 0' = /,...,и) 

1Т(Р ,fO\< CCyf-ZBjIpjf}, 

ск. 

На ? А (a&l) заданы все нелокальные обобщённые функции 

/С"00 , Для которых $<i?^Z&4) И Л И <Х<2р~1 
В Х - пространстве для формулы (3) справедливо следующее 
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представление в случае £> = g- и ^(У-о}У-)SJOa' 

где интегрирование проводится по четырехмерному евклидову шару 
f^ff+g+g+tf^+faf* £-некоторый параметр размер­
ности длины, характеризующий размер области нелокального взаимо­
действия, Cl($z) - некоторая вещественная функция, определяемая 
видом формфактора КС**) . 

Ми видим i что формфакторы рассматриваемого типа приводят 
к размазке только пространственных координат, а по времени размав-
ва происходит лишь в направлении мнимой оси, что позволяет 
надеяться на выполнение разумного условия причинности. При этом 
формфактор релятивистски инварантен. 

Итак, нами введено нелокальное взаимодействие полей в 
классическую теорию. Возникает вопрос, как проводить квантование 
этой классической нелокальной системы и как строить соответствую­
щую о ~ матрицу. Возможны два пути решения этой проблемы. 

I вариант ( см. ° )..Проводится квантование только невзаимо­
действующей системы и строится гильбертово пространство физических 
состояний , описывающих невзаимодействующие частицы. Далее 
используется принцип соответствия, согласно которому /5-матрица 
при бесконечно малой константе связи равна 

Для построения высших порядков теории возмущений вводится предпи­
сание, согласно которому пропагаторы скалярной частицы изменяются 
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следующим образом: 

v * 3 - * 1 - , ! ' тг-«г-И. JJ*t-*J- (В) 
Однако такое изменение пропагатора ещё не приводит к конечной 
теории. Необходимо ввести некоторую регуляризационную проце­
дуру, в рамках которой возможно построение конечной *S-матрицы, 
По аналогии с локальной теорией можно записать 

Здесь знак /§ , строго говоря, не имеет смысла опедеции 
упорядочения операторов поля по времени, а обозначает математи­
ческое правило, согласно которому строятся высше иорядки теории 
возмущений. При стремлении параметра регуляризации д к нулю мы 
должны получить конечную ,..9-матрицу 

Существует ряд регуляризации, приводящих к конечному резуль­
тату. Основная идея состоит в том, чтобы в матричных элементах, 
построенных с помощью регуляризованных пропагаторов, было возможно 
перейти к евклидовой метрике. Приведём одну из возможных регуля­
ризации. Для нелокального формфактора \/(-кг) — [ K(*Vj 

2 й 
в области к < m справедливо представление Меллина 

где (X < Л£ , а функция V~(s) 
1) регулярна в полуплоскости Re$ > ~А^,и в этой области 

И*"?)) $ С f * , ,_,. , VM>Q S 

2) в точках ^=4,-2t..~(&<H)vaKieT нули, по крайней мере, первого 
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порядка, 
3) Г(й)*1, 

Введём теперь регуляризовандай пропагатор 

'К1* . Л* 

Функция Ъ< (*\) при F>Q : 
z 

5) определена во всей комплексной К - плоскости и регулярна 
везде, кроме разреза вдоль луча С |*%\ + ,*0 s 
6) 3>[(<\)~ 0(\*rl"v) при \*>\-*о*% 

? ) &7^=^(0. 
Регулнризованная о-матрица строится при помощи регуляриза^ 

Г" 
ванных пропагатороп Т \ ( y j . Для снятия регуляризации в матричных 
элементах 6 -матрицу, соответствующих любым связным диаграммам 
Фейнмана, достаточно перейти к евклидовой метрике по всем 

Г 4 

внутренним импульсам интегрирования, поскольку 1\. С*4) регулярна 
в полуплоскости Ttvik' i,>C>. После этого можно перейти к пределу 
F-fC , так как функция Л^с(^Убывает при К ч » - " 0 (подробнее 
см и , ° ) . Итак, существует предел в нелокальной теории 

С-vvw о —" О i 

При рассмотрении взаимодействующих нейтральных спинорных по­
лей мояно также считать, что спинорше пропагаторы приобретают 
нелокальный формфактор, согласно 
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т-р-Ц M -B-ii ' (6) 
При этом ч.9 -матрица будет конечной. Однако при изучении вза­
имодействия заряженных полей с электромагнитным полем требованию 
градиентной инвариантности нельзя удовлетворить, изменяя пропага-
тор заряженных частиц согласно (5) или (6), На случае взаимодей-
ствия с электромагнитным полем мы остановимся ниже. 

П вашант ( см. 6 ) . Рассматривается полный лагранжиан 
классического скалярного поля о нелокальным взаимодействием 

Введём поле Ф&)~ )((n)(f(*) , тох-да 

jftt) •= £ ф&) £(о) ф(*) ^ У(ФЫ) , ( ? ) 

где 

Классическое уравнение движения записывается в виде 

£(а) ФЫ = - * VfafaJ . 
Поскольку {/("г) - целая функция, Ь (кг) имеет только один нуль 

2 2 

при С - (^ , который определяет массу скалярной частицы* 
Ццея состоит в следующем. Вместо оператора 'к(о) в (7) введём 

регуляризованный оператор £ 5 ( о ) , такой, что £ №)•=• * £*--
V (-к) 

имеет нули в некоторой последовательности точек 
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г ^ Г к и ^ - ^ Т Г С * 4 - * ^ . 
г д е • '" ' 

и &-. e V ) - Е(<1) -. 
Каждый нуль K*BW W оператора Е(*г) будет определять некоторое 
нетривиальное решение уравнения движения. Переход к пределу о%0 
в полном решении уравнения движения или для о-матрицы должен 
привести к теории, соответствующей исходному нелокальному лаг­
ранжиану (7). 

Регуляризацию можно ввести следующим образом. Вместо функции 

введём Г с > о 

Л, 1 " J «• У 
- 2 1 с"у М 

J — » 

где J 

KV(F)« * « { | * f j . 0 < J ^ . J . 
Тогда имеем: 
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Efapb)^-gZr'(<?r(») . ( 8 ) 

Поле ф if) при Поможет быть проквантовано с привлечением 
п 

методов индефинитной метрики ( с м , ) . При о > 0 для невзаимо-
J 

действумцай системы можно построить гамильтониан л 0 и вектор­
ное пространство состояний с индефинитной метрикой . Далее 
для взаимодействующей системы можно найти матрицу рассеяния 6 . 
По определениюi будем считать, что предел при &+Q всех этих 
величин является квантовополевым решением исходной системы. 

Необходимо далее показать, что указанная регуляризация 
обеспечивает существование пределов операторов и матричных элемен­
тов всех физических величин и приводит к самосогласованной тео­
рии. Эта задача и решается в дальнейшем. 

Проквантованное решение свободного уравнения 

имеет вид: 

Гамильтониан невзаимодействующей системы записывается в форме 
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He ~ll<r? № ^i fy J\t • C9) 
Рассматриваемая система состоит из квантов со спектром масс 

п г(Л = к*0-<-£-) ( И Л > П р и "̂*° ш с с о к** 1 1 0 8 ° J=A2,... 
стремится к бесконечности. Эти кванты будем называть "духами", 
Пространство состояний " 3 ^ является векторным пространством 
с индефинитной метрикой. При <Г-# О массы всех"духовых?'квантов 
растут. Поэтому, если мы характеризуем физические состояния оп­
ределенным значением энергии, то в пределе о + О ни одно физи­
ческое состояние с произвольным, но конечным значением энергии 
не может вклшать"духовые,,кванты. В этом смысле 

где <*С является гильбертовым пространством, описывающим ска­
лярные частицы с массой г* . 

Полшй гамильтониан, соответствующий лагранжиану (8), имеет 
вид 

И = Но -н <j Н 3 
) 

где Но даётся О ) , а 

2 $ - - j fr \ и(**(<м): 
О -матрица, отвечающая за переходы меящу асимптотически свобод­

ными состояниями из гнжторого пространства ^ Г , записывается 
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г- <-> 

где знак / имеет смысл операции строгого упорядочения по 

времени, поскольку поде *Р (*) удовлетворяет локальным перестановоч­
ным соотношениям. 

дальнейшая задача состоит в переходе к пределу ^-*0 и 
доказательству унитарности и причинности предельной о -матрицы. 

Постулат унитарности S -матрицы в квантовой теории поля 
является одним из основных требований, без выполнения которого 
теория не может рассматриваться самосогласованной и физически 
приемлемой. Доказательство унитарности S -матрицы строится сле­
дующим образом (см. 5 ) . Покаэываетоя, что регулнризационная про­
цедура удовлетворяет условиям: 

1. Определена регуляризованная ^-матрица и существует 
предел 

JLsfy.Sl/J 
для каждого связного графа в теории возмущений. Предел существует, 
поскольку при Г > О можно перейти к евклидовой метрике во всех 
внутренних интегралах, определяющих любой связной граф, а 
формфакторн убывают достаточно быстро в пространственно-подобном 
направлении, 

2 . функции Грина Дс-) * которые определяют операцию произве-
' " • • • • • у . ' " j , Г 

дения в SS ~3&$ , также регуляризуются, т . е . имеем Дь> 

иди, символически,& } и существует предел 



&и A H ~ 4 W или & * # = & . 

3. В соотношении 

предел не зависит от порядка предельных переходов к точке 
% = ^ ж % я 0 , т.е. оператор J f f i , ^ ^ « ^ ' # * J J * 
непрерывен в точке дх — 0Z - ^ = О . 

для F > 0 . 
Следовательно, ^-матрица унитарна, так как 

5j-»o sv*° \->о 

Проведённое доказательство справедливо, если функция вклю­
чения взаимодействия Q (х) отлична от постоянной. Для перехода 
к 'й00-J-e-unif необходимо ввести в лагранжиан взаимодействия 
контрчлены, которые в ряду теории возмущений убирают связные гра-
$н, описывающие переход вакуум-вакуум, а также диаграммы с добавка­
ми ообственной энергии во внешние линии. Поскольку условие унитар­
ности SS ~i будет выполнено, если выполняются соответствующие 
условия для каждого связного графа независимо от остальных, пере­
нормированная р̂ -матрица будет унитарна в каждом порядке теории 
возмущений* 
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Другим важным свойством о - матрицы является условие 
причинности, которое формулируется следующим образом (см. 3 ' 4 ) . 
Вводится фушсцяя%(*) , включающая и выключающая взаимодействие, 
так что имеем oY<p - матрицу. В случае Я(*)=0 получим 
SL°]^f . Теория называется микропричинной, если выполнено 

(Ю) 
при ( г ) ^ " ^ , где <?, -£ирр ci\(*) G-W> Это означает, что 
все точки области б^ , где сосредоточена функция ЯЛ>) . или 
пространственно подобны всем точкам области Gz , где сосредо­
точена функция Цг(*), или лежат в будущем относительно всех 
точек области G& 

Если теория нелокальна, но причинна, тогда £Ь] удовлет­
воряет условию (10) в случае, когда область 6-у лежит в будущем 
относительно всех точек области (?г , т .е . б- ,> (Я, . При 
атом размер области нелокального взаимодействия будет £ , если, 
кроме того, выполнено (10) при <>, ~ 6 g и (* -$) < &"~ для 
1/уеб^ и \/и € (?г . Окончательно, условия причгашости при 
различных вариантах взаимодействия можно записать в таблицу. 

Построенная нами теория удовлетворяет условию причинности 
в форме (Ш) (см. Таблицу). Доказательство основано на том факте, 
что проекция носителя нелокального формфактора на вещественное 
пространство к не имеет протяжённости вдоль оси времени, согласно 
(4). 
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Таблица 

STj^J^SffJSfi,]-
при следующих^ ооотношеншх меаду 

областями (ту и 6> 

/--1 .. - — (г, ;> (г. .-_- ••" 

I. Локальная 
микропричинная теория 

П. Нелокальная причинная 
теория. Размер области 
нелокального взаимодей­
ствия t 

Ъ^Ъ С*- 3) г< € а 

Vfce ,̂ V^b 

Ш, Нелокальная причинная 
теория 

за 



Взаимодействие поля заряженных частиц с электромагнитным 
полем определяется требованием градиентной инвариантности. Обыч­
но требуют, чтобы лагранжиан системы взаимодействующих заряжен­
ных полей Т{ с электромагнитным полем А ^ был инвариан­
тен относительно градиентных преобразований 

где <?• означает заряд поля У1; . Инвариантность полного 
лаграшшш1а^Т,'Т^/4и) относительно градиентной группы (II) 
приводит к сохранению тока OpJL(i)-=-0 . Необходимо подчеркнуть, 
что градиентное преобразование (II) уже подразумевает, что 
взаимодействие электромагнитного поля с заряженными полями 
является локальным. Единственной электромагнитной характерис­
тикой поля "УТ является его заряд. Я> , который фигурирует в 
преобразованиях ( I I ) . Явный вид лагранжиана взаимодействия элек­
тромагнитного поля с заряженными полями выбирается обычно сог­
ласно принципу "минимальности", который гласит, что при дейст­
вии на переменную поля "Vf оператор о. заменяется на 

g r Y *й> -* I ?r +i?j ¥^fi%) • 
Изложенная общепринятая процедура приводит ко всем трудностям, 
возникающим в локальной квантовой теории поля, особенно в электро­
динамике частиц со спином I и выше. 

Наше нелокальное обобщение теории электромагнитных взаимодей­
ствий ( см. ) состоит в следующем. Мы предполагаем, что вместо 
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группы градиентных преобразований (II) имеем 

(12) 

Tnetfffir)- нелокальный формфактор использованного нами шла, 
нормированный условием Kj(°) ~f • 

Группа преобразований (12) отличается от (II) изменением 
фазы преобразования заряженных полей Tfjf" . При градиентных 
преобразованиях с постоянной фазой •$•*<&**£ преобразования 
(12) совпадают с общепринятым. 

Каков физический смысл градиентных преобразований (12)? 
Константа ^ j определяет заряд поля fj" . Нелокальная функ­
ция К$в)Ь(*) характеризует распределение заряда поля fffa; 
в X - пространстве^ параметр А является характерным размером 
той области, где распределён заряд. 

Принцип "минимальности" электромагнитного взаимодействия 
в нелокальном случае будет выглядеть следующим образом 

W®* fr-ъ №щ*>}ш 

. i f . , 
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Наиболее удобно проводить построение нелокальной электро­
динамики в формадазмё Даффина-Кеммера. Лагранжиан, описывающий 
частицы со спином S , которые взаимодействуют с электромаг­
нитным полем,имеет вид: 

На допустимые физические состояния налагается ряд условий, что­
бы исключить из рассмотрения все спины, меньше & ( см. 2 ) . 

Построение конечной унитарной S -матрицы для электродина­
мики частиц спина S мы проведём в рамках варианта I . Итак, 
необходимо указать такую регуляризационную процедуру, которая 
проводит к конечной ^-матрице, 

Пропагатор частиц спина 5 растёт в импульсном простран­
стве как 

Пропагатор фотона 
1 ' * Ш?«$г 

(\<(<xo)AtK№)Ai)(*) - -**-;г 

может убывать достаточно быстро при К-+- о ° • 
Любой связный граф теории возмущений представляется совокуп­

ностью разомкнутых линий и циклов, образованных ппопагаторами 
заряженного поля J > e (/>) •» соединяющихся между собой фотонны­
ми линиями, как, например, 
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Ясно, что при достаточно быстром убывании формфактора в евкли­
довой области все интегрирования, связанные с циклами , включаю­
щими хотя бы один пропагатор фотона, будут сходиться, если 
пропагатор фотона регуляриэовать одним из перечисленных выше 
способов. 

Исследуем циклы, образованные пропагаторами заряженных 
частиц. 'Лнтегралн, соответствующие этим циклам, будем регуляри-
зояать с помощью частично видоизменённой циклической регуляри­
зации Паули- Виллерса. Пропагаторн заряженных частиц регуляри-
зустся Ht) по отдельности, -л замкнутыми циклами. Бели цикл имеет 
У1 вершин, тогда регуляризеванное выражение равно 

где проведены.замены 

YY\ - * ИИ. -в № А» 
о J 

е -» « , Л е • s = °'± 
A : (j =t,2, ~ ) - большие безразмерные параметр регуляри­

зации, да их выберем в виде И - •* /[+ £. ., р д е Д>>/ , 
а ••£}<*( . Коэффициенты С ^ / , С (j--( ,<?1удовлетво1Я1Я 
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системе уравнений 

£3 CJ Ai % = Я**?*-0'''-'* 
Числа К и М зависят от спина S и при S ^ ^Г'" 0 1 рассмат­
риваемого порядка теории возмущений. 

В рамках этой регуляризации сходятся интегралы от любых 
замкнутых циклов, и существует конечный предел при А-* 4 * 0 , 

При этом в теории возникают новые константы <3№ 6 " S < 3 ? A J 
(конотанты с нечетными к в теории не появляются в силу градиент­
ной инвариантности -теорема Фарри), В электродинамике спина О 
и 1/2 появляется единственная постоянная Й 0 , которая опреде­
ляет перенормировку заряда и не может быть измерена на опыте; 
в электродинамике спина I возникают постоянные й 0 и d Z ) 

причём tfg уходит в перенормировку е i c\Q определяет рассея­
ние света на свете* В электродинамике спина 3/8 возникают посто­
янные а0 , а г , Qy , а сшша S-% 2 — < ? 0 у Я 2 А , #ег-* 
При этих константах стоят функции вида 

где /^v^>>=rЛ^Ь^^^/Х^^Х^Дащ этих функций в настоящее время 
неизвестен. Следовательно, в теории спина ^v? -g возникает непо-
линомиальное фотон-фотонное взаимодейотвие, которое приводит 
к наблюдаема на опыте эффектам. 

Таким образом, в рамках нелокальной теории можно построить 

конечную гр^дивнтно-инвариантауа) влектродинамику частиц произ-
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вольного спина .S . Фактически в настоящее время построена 

электродинамика для частиц со Ьпшада 0 , 1/2» I и 3 / 2 , 
В рамках изложенной процедурывозможно построить нелокаль-

ную теорию слабых взаимодействий как в случае четырехфермионно-
го универсального взаимодействия, так и в случае взаимодействия 
с промежуточным векторным бозоном 9 . Этот вариант теории основан 
на физическом постулате, который гласит, что все нейтральные поля 
взаимодействуют с заряженными нелокальным образом. Эффективно 
это приводит к тому, что изменяются пропагаторы нейтральных по­
лей: нейтрино и фотона. 

С физической точки зрения появление формфакторов в пропага-
торах нейтральных частиц означает явное введение функционального 
произвола в теорию. В оправдание этого можно сказать следующее. 
Известно, что неперенордаруемую теорию можно сделать конечной, 
вводя бесконечное число контрчленов с неопределенными констан­
тами, величина которых ничем не ограничена, а нет никаких идей 
для их определения. Это, по сути дела, означает существование 
функционального произвола при построении & -матрицы для н«пе-
ренормируеыых взаимодействий. В нелокальной теории задание форм-
фактора полностью определяет конечную ^-матрицу , и весь функ­
циональный произвол сосредоточен в выборе формфактора, который 
имеет прозрачный фиэичеокий смысл* Показано, что введение в 
теорию формфакторов приводит к изменению электромагнитного и 
"слабого" потенциала на малых расстояниях, что, по-видимому, 
свидетельствует о существовании пространственных распределений 
електричеокого и "слабого" зарядов, 

В квантовой электродинамике с привлечением некоторых допол­
нительных соображений фагаичеокого и математического характера 



удаётся выбрать формфактор однозначно . В общем, этот 
вопрос требует дальнейшего изучения. 

Дальнейший шаг в построении нелокальной квантовой теории 
тт поля состоит в суммировании ряда теории возмущений, В работах 

1 2 было показано, что для неполиномиальных лагранжианов 
взаимодействия вида 

$ 4Ы * j fifefr): * fpyfi Ч) 

где 6"ф)некоторая ограниченная мера, в нелокальной теории, когда 
нелокальный пропагатор в евклидовой метрике ограничен, т .е . 

ряд теории возмущений для S- матрицы сходится в евклидовой 
то 

области. В работе удалось показать, используя методы ста­
тистической механики, что ряд теории возмущений сходится в 
евклидовой области njsiJ?fy~$-=Ci>*if в некотором круге Ы<%о • 

дальнейшая задача состоит в аналитическом продолжении 
евклидовых амплитуд в физическую область и проверке всзх аксиом 
для полной /О - матрицы. 
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ГИПОТЕЗА О ФУНДАМЕНТАЛЬНОЙ ДЛИНЕ В РАМКАХ 
КВАШВОЙ ТЕОРИИ ПОЛЯ*) 

В.Г. Кадьшевокий 

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ 

^ 1 , Фундаментальная длина 10 - это гипотетическая универ­
сальная постоянная, без привлечения которой квантовая теория по­
ля, возможно, не в состоянии дать адекватного описания взаимодей­
ствий элементарных частиц в ультрамалых пространственно-временных 
масштабах, иди, соответственно, в области больших энергий и пере­
дач импульса. Гипотеза о существовании этого нового, после К.и с , 
"масштаба природы" была выдвинута Г.В. Ватагиным в 1934 году * . 
В настоящее время имеется обширная литература по нелокальным 
квантовым теориям поля, в которых из тех или иных физических с о о б ­
ражений и с привлечением различных математических средств модифи­
цируется вид взаимодействия элементарных частиц в области малых 
дебройлевоких длин волн, сравнимых с фундаментальной длиной I» 

с п 

( с м . , в частности, ; критический обзор ряда попыток построе­
ния нелокальных теорий поля дан в монографии 8 ) • 

Для многих исследователей стимулом к нелокальному обобщению 
теории поля были и остаются трудности с ультрафиолетовыми расхо-
димостями, возникающими в ортодоксальной локальной теории при р а з ­
ложении матрицы рассеяния по константе связи. 

Как иэвеотно 9 , в данном случае мы имеем дело с серьезной 
матаиатичеокой проблемой - проблемой умножения друг на друга син­
гулярных обобщенных функций с совпадающими особенностями. Обойти 
х ) Настоящий доклад резюмирует результаты работ 1 , г и, главным 

образом, работы 3 , выполненной совместно с А.Д. Донковым, 
M X Матвеевым и P.M. иир-Касиновым. 
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эту трудность но удаётся ни в одной ие формулировок современной 
локальной теории поля, в том числе и в аксиоматической 1 0 " 1 2 , 
Поэтому складывается впечатление, что указанный дефект теории но­
сит принципиальный характер и что для его устранения необходим ра­
дикальный пересмотр самих исходных постулатов, на которых покоится 
локальная квантовая теория поля. 3 акоиоматике Боголюбова эти по­
стулаты таковы *"" : 

I Релятивистская инвариантность. 
II Трансляционная инвариантность. 
Ш Унитарность. 

17 Полнота системы состояний с положительной анергией. 
У Единственность вакуумного состояния. 

У1 Стабильность вакуумного и одночастичного соотояннй. 
УП Причинность. 

Перечисленные требования являются достаточными для аксиомати­
ческого построения S - матрицы. В дальнейшем мы ограничимся рас­
смотрением теории нейтрального скалярного поля Р , описывающего 
частицы массы т . Если использовать р-представленио, матрицу рас­
сеяния в такой теории можно представить в виде следующего стандарт­
ного разложения: 

где 

причём 

3 *Z V̂̂ V— 4 b^.-,N):^)-VW:,(I) 

W + * П-r) , (з) 
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В силу трансляционной инвариантности и соотношения (46) ко­
эффициентные функции (к.ф.) £ * ( р А , . . . , p „ J в разложэнии ( I ) 
определены на массовой поверхности (м.п.) 

' ' ' (5) 

Однако для формулировки полной динамической теории и, в част­
ности, принципа причинности УП необходимо расширение £-матрицы 
за пределы м . п . х ^ . При"расширении по полю" , т . е . когда кванто­
ванные f - поля приобретают классические добавки и перестают под­
чиняться свободному уравнению ( 4 а ) , предполагается, что соответст­
вующая расширенная матрица рассеяния по-прежнему задается разложе­
нием ( I ) . Считается также, что после расширения за м.п. остаются 
в силе и требования 1-У1. Таким образом, например, при пространст­
венно-временных сдвигах 

X --» х + а, ( б ) 

закон преобразования расширенного поля f ( р ) имеет обычный вид: 

J Ра, -(Ра lftCL , 7 ч 
е Г(Р)е =е ?(р) ( 7 ) 

( Р/ии - оператор энергии-импульса поля). Отсюда вытекает, что рас­

ширенные к.ф. 5„( р , , . - • , р*.) остаются на поверхности 

(/>* + - + р*),, = О , / * « e , i , * l i ? ( 8 ) 

(ср. с (5) ) . 

Величины S K ( />ii...i Рк.) мо!'УТ быть записаны как вакуум­
ные ожидания радиационных операторов 

Л-. ,_ %*S cf (9) 
х ^ Детальное изложение метода расширенной $ - матрицы дано в 

В этой же работе имеется исчерпывающая библиография по данному 
вопросу. 
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Оператор i S (-/>) отождествляется с гайзенберговым оператором 
тока в р-предотавлении: 

В конфигурационной пространстве имеем соответственно: 

}(*>•&* Iе'"j(>>->. m 

Ясно, что при сдвигах (6) 

Д ^ - е ^ е -e^V,; ( 1 2 ) 

(ср. с (7) ) . < " 
Выполнение соотношения (В) для 4-имлульсов pi(i*i,x,,.,.tn,) , 

от которых зависит к.ф. Sn{ />*1. . . | / O i очевидно, означает, что 

& ( ? * , . • • , / > „ ; . & (fit•»+/>~)&?С/>,>»->/>*.), ( 1 3 ) 

Выразии величину X через исходную к.ф. 5^.. С этой целью рас­
смотрим в разложении ( I ) слагаемое 

В силу (13) выражение (14) тождественно следующему: 

j«С,- « ^ •ли/'*'"''/'»/-/7£-(/ / . . . rip*-1/ ) : 

где 

ft-
Произведем теперь в (15) замену переменных 

А- = <? • + t/fc>">f<-) 

Поскольку 

4 - А -А-// . ffi/O-^jjb*-^ (I8> 

(15) 

(16) 

(17) 
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то вместо (15) будем иметь: 

/4'-4^%^'^/Л SJz+k,..,^)'^)...^): (19) 
Сравнивая (19) с (14), находим: 

ИЛИ 

АСл л ) . А » * ^ Д с А /..j (2D 

^(F<>-t~)->f&SH(fA.~,f,fk) . < 2 г > 
Танин образом, функция 5К в (13) определяется соотношением 

S/(f>i>~>f*) = л4 X (Л'-'/О . < 2 3 > 
Заметим, что зависимость правой части токдества (21) от 4-импульсов 

PL * • ••» Ы имеет специфический характер по отношению к преобра­
зованиям сдвига 

{h = pf.+t>f, , f,**,t,t,b (24) 
в р-пространстве. В самом деле,аргумент К -функции - 4-вектор 

U* - преобразуется по тому же закону ( 2 4 ) , что и каждый из им­
пульсов f>t : 

у <*'-*>т 0*-Г-\^ , (25) 
а функция X . ( д „ . м / О при этих преобразованиях остается ин­
вариантной: 

£ Г Л ^ > - > А ^ Ь X(h^h-)- ( 2 б ) 

Принимая во внимание (26) и очевидную релятивистскую инвариантность 
^,, можно утверждать, что данные функции инвариантны относительно 

всей IO-параыетрической группы движений р-прострсиства иинковского: 

р/°°Лр/>„ + i>f (f,,»",i,*,i). ( 2 7 ) 

51 



Следовательно, 

Величины типа - V 1 в дальнейшей будут условно называться отно­
сительными ^-импульсами. 

Особый интерес представляет случай, когда к.ф, £ ( / > м . . . , (>„,) 
является несвязной, т . е . содержит, например, слагаемое вида 

A , (fi,«,/>* ) &-* f/>„„ >••• ^ / к ? ; < 2 9 > 
где ^ и Д..Д, - к.ф. низшего порядка, для которых справедливы 
тождества типа (21 ) . Тогда можно показать, что к.ф. (29) обязатель­
но удовлетворяет аналогичному тождеству: 

$« L-m = ?' (-(/b-t-h-'-^J s^L, . (зо) 
Важнейшая роль в методе расширенной $- матрицы принадлежит 

условию причинности Боголюбова (требование УП). Это условие может 
быть записано' в следующем виде °» • : 

квааилокальвые 
%ГЫ * адвны(31) 

1)Ы)}Ы}~ О .если (x,~X*.f<0 (32) 
("условие локальности11) 

Соотношение (31) в сочетании с (32) представляет собой своеобраз­
ное уравнение движения для оператора тока ( I I ) . 

Кваэилокальные члены в (31) имеют принципиальное значение и 
не могут быть опущены. С одной стороны, они отражают тот произвол, 
который возникает при перемножении обобщенных функций $ № - х £ ) ш 

LJ-(*0> j(xJ] » имеющих совпадающие сингулярности в вершине 
светового конуса 
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Этот момент, как мы уже говорили, рассматривается как основной 
дефектлокальнойтёорйй^С другой отороныу однако, среди квази-
локалБных членов содершйтся и '•аатравочное1' взаимодействие, га -
рантирущее нётрйвиал|н6сть матрицы рассеяния^ • ' . 

По-видимому, квантовая теория поля была бы более последова­
тельной и более совершенной схемой, если бы квазилокальный произ­
вол » ней удалось свести до минимума, например, до нескольких 
"затравочных" взаимодействий вполне определенного вида. При этом, 
конечно, пришлось бы отказаться от условий причинности и локально­
сти в форме ( 3 1 ) - ( 3 2 ) , как чересчур сингулярных, и найти им подхо­
дящую замену. Ясно, что такая программа, в первую очередь, означа­
ет отказ от обычной процедуры расширения $- матрицы за м.п. 

§2. В настоящем докладе мы хотим обсудить один из возможных 
путей обобщения квантовой теории поля, приводящий к естественному 
появлению в её аппарате фундаментальной длины 10 . Метод расши­
ренной 5 - матрицы, обсуждавшийся выше, будет играть в наших по­
строениях основную роль. 

Подчеркнем ещё' раз, что выбор определенного варианта расшире­
ния матрицы рассеяния за м.п. фактически эквивалентен принятию оп­
ределенного способа описания взаимодействия квантованных полей. В 
том случае, когда расширение подчиняется[требованиям I-^flli возника­
ет общепринятая локальная квантовая теория поля. Следовательно, е с ­
ли мы намерены видоизменить законы взаимодействия элементарных час­
тиц в области малых длин волн де Бройля, сравнимых с некоторой фун­
даментальной длиной It, , то это обязательно должно найти свое от­
ражение и в способе расширения 3 - матрицы за м.п. Очевидно, что 
новые расширенные объекты (поля, к.ф, , токи и т .п . ) в области энер­
гий и импульсов > у и пространственно-временных расстояний < 10 
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будут^заметно/отличаться от своих "1шассических"л;аналогов._ 
Разумеется, "классические" условия причинности и локальнос­

ти (.31-)-(32), отвечающие требованию УП, в новой схеме должны быть 
модифицированы, поскольку з них заведомо фигурируют,,малые 4 ,- рас­
стояния \Xi - Х4|<$ I,' М о м и о л и сохранить в новой теории условия 
1-УГ? 

Для отказа от требований лоренцевокой инвариантности (I) 
и трансляционной инвархантности (П) в настоящее время нет ника­
ких аргументов, основанных на экспериментальных данных, включая 
данные из опытов при высоких энергиях. Не вызывает сомнений и 
необходимость условия унитарюсти матрицы рассеяния (Ш). Вполне 
обоснованными и не нуждающимися в какой-либо ревизии представляют­
ся также требования 1У-Л. 

Теперь естественно возникает вопрос: что может послужить 
исходной руководящей идеей для формулировки новой процедуры рас­
ширения, эффективно учитывающей существование фундаментальной дли­
ны Св ? В этой связи обратим внимание на то обстоятельство, что 
к требованиям I-JTTI фактически нужно добавить ещё одно условие, 
необходимость соблюдения которого при "классическом" расширении 

3 -матрицы считается самоочевидной. Речь идёт о псевдоевклидо-
вости импульсного ^пространства, в которое погружён гиперболоид 
массовой поверхности 

h t L - »*• О 
1 ' (33) 

Иначе говоря, в обычной теории молчаливо предполагается, что при 

экстраполяции за поверхность (33) 4-импульо fyif^*,*) t от 

х )Термин "классический" в данном контексте применяется к величинам 
и соотношениям, отвечающим предельному случаю t0= 0. 
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которого зависит расширенный оператор поля У(р) , становится произ­
вольным вектором пространства Минковского^)3^: 

АеЛ£. (34) 
Таким образом, расширенная за м.п. (5) к.ф. Sn,/^-,^) задаётся 
в топологическом произведении П- пространств Минковского с допол­
нительным условием (6): 

( Л * ' + ^ ) Л « - 0 ,/4* 0,1,Л, 2 

he Л (35) 
• • 

х /»*. е ЛЬ , 
В силу (34) конфигурационное пространство также оказывается псев­
доевклидовым ( это отряжено в преобразованиях Фурье (2) и ( I I ) ) . 
Псевдоевклидовыми 4-векторами, очевидно, являются и величины типа 

Однако из общих принципов 1-У1 не следует одиозна; шй вывод 
о том, что импульсное пространство, которому принадлежи- аргумент 
расширенного оператора ¥(р)г должно быть с необходимостью прост­
ранством минковского. В частности, условие релятишстской инвариан­
тности не фиксирует определённой метрики в этом пространстве, а 
лишь требует, чтобы величины (f>o*ft.>fi,i>i) преобразовывались 
при лоренцевских- вращениях как 4-вектор. 

Может показаться, если вспомнить о тождестве (21) и свя­
занных с ним соотношениях (17)- (18), что псевдоевклидовость />-
-пространства является обязательным следствием трансляционной ин­
вариантности Д -матрицы. Однако в действительности для трансля­
ционной инвариантности >з достаточно лишь задания закона преобразо-
ваши (7) для IP-полей и выполнения соотношений типа (13) для к .ф. , 
Х'Ъ теории возмущений 4-импульсы fc , не лежащие на гиперболоиде 

(33), обычно называют виртуальными. 
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а тождество (21) шводится на основе (13) и ПРИНЯТОЙ ft prior i 
ri'v':'', ^ Г -.J •':'Г:г"', • : x ) 'r • r' " '""'"'"""'"' 

псевдоевклидовости пространства импульсов * 
Нетрудно убедиться, что постулат (34) никак не следует и 

из требований Ш-У1. 
Принимая во внимание сказанное, сформулируем теперь гипоте­

зу , которая во всех дальнейших построениях будет играть ключевую 
роль: 

искомое расширение 5 - матрицы за м.п. , дающее последова­
тельное описание взаимодействий элементарных частиц о любыми дли­
нами волн де Бройля, должно опираться не на псевдоевклидово 
пространство импульсов, а на пространство ИМПУЛЬСОВ постоянной 
кривизны***. Реализацией последнего является гиперсфера 

* (36) 
в псевдоевюгадовом 5-пространстве ( / ь . ^ ' Л ^ ' А / ' П о с т о я н н в я 10 , 
определяющая кривизну поверхности (36) , играет роль фундаменталь­
ной длины ( М - соответствующая фундаментальная масса)* 

Кривое 4-пространство, описываемое уравнением (36 ) , назы­
вают также пространством де Ситтера» С геометрической точки зре­
ния оно является ближайшим соседом к плоскому пространству Минков-
ского, отличаясь от него формой"постулата о параллельных"***^. 

* Последнее отражено в явном виде элемента объёма <l\'. d a , J £ 
замене переменных (17) и соотношении (18 ) , Г Г ' 

в математическом отношении рассматриваемый здесь формализм бу-
f £ l 9 a n ° M B H a T b о х — Щфвяиво щюстранства-времени Снайдера 

. Однако исходная идея и физичеокая интерпретация развивае­
мой теории принципиально другие по сравнению о % ~ 9 . 
ххх) В обычной планиметрии это знаменитый У постулат Евклида. 
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Теоремы и соотношения, которые не зависят от "постулата о 
параллельных", составляют содержание так называемой абсолютной 
геометрии. В этом смысле слова требования 1-У1, которые ж на 
основании проведённого выше анализа имеем право перенести в тео­
рию поля о неевклидовым р - пространством, тоже можно называть 
абсолютными1'* Условия причинности и локальности, очевидно, не 
имеют абсолютного характера и должны быть сформулированы заново, 
как соответствующие обобщения равенств (31 -32) в духе геометрии 

р. *- пространства де Ситтера (36) . 
Группой движений р *• пространства (36) является группа я* 

Ситтера 
PL*AL f>„ } L,M=0,t,Z,},4 . (37) 

В "iraccmecKOM'1 пределе L*o(M-*<*>) она вырождается в группу 
Пуанкаре (27) . При этом вращения в (/**) - плоскостях переходят 
в абёлеву группу сдвигов ( 2 4 ) . В дальнейшем мы будем использовать 
систему единиц, в которой 

t - c f c - A f - i . ( Я ) 

Переход к "классическомуи плоскому пределу будет означать, что 
рассматривается область импульсов 

1Н<<£. (39) 
В единицах (38) отвращения в ( ^ ) - плоскостях имеют следующий 

fr' = f>*K T l>t> * (f*±>*>),.. (40) 

^Подобным образом определяется абсолютная механика, инвариантная 
относительно переходи от нерелятивиотского евклидова пространства 
окоростей к релятивистскому пространству скоростей Лобачевского^0. 

вид: 
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Все 5-векторы /»„ = (рг ?р<.) , />„' = (р£ , />„') » J>M =/Ч* , К) * 
фигурирующие в (40), являются единичными, т.е» принадлежат поверх­
ности (36). Из соотношений (40) непосредственно видно, что опе­
рация (£) для малых 4-импульсов действительно эквивалентна обыч­
ному параллельному переносу по правилу (24). 

Легко убедиться, что 5-инвариант />.,̂ о -pf+p*?* s Д (fu 

может. быть записан следующим образом; 

Д. % - (р<->9\ = /I- (/><-щТ , (41) 
Нетрудно проверить также, что для любого единичного 5-век-

тора д тождественно справедливо разложение: 

где 

*'. ̂  Т. Л7г) .K.fcjrJ.^m 
Таким образом, &~вектор Д возникает из 5-вектора р£ в результа­
те поворота в (м) - плоскости. Поскольку эта плоскость евклидова 
(см. (36)), то естественно положить 

^- = Si/ко * 

**Г _ 'faf (44) 
Величины (w,p) являются ортогональными координатами в р-

-пространстве (36). Инвариантный элемент объёма в их терминах 
записывается особенно просто: 

Ыр - Z X (/>* - i)</J, . f a d ? . 
В "классическом" пределе, очевидно, 

Л ~ Ш - (46) 
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В /> - пространстве да Ситтера существуют непосредственные ана­
логи соотношений (17)-(18). Введём в раосмотрение единичный 5-век-
тор 

Легко видеть, что при преобразованиях (40) над каждым из векто­
ров /V ft =•*,*>" э'О 

Pi = Pi(*)l> ( 4 8 ) 

величина (Jfp"'"'№ преобразуется по тому же закону: 

Далее, используя (41),нетрудно показать, что 

/ ^ • • ' • M w ' f t " " ^ ) * f e t * — A J =П.+£_^-(КНр/ (50) 
откуда следует, что в плоском пределе (39) 

/(n+™+fi>)£' -» л - . (si) 
Таким образом, £/ - вектор (47) является прямым обобщением величи­
ны (16) в духе геометрии де Ситтера. 

Положим теперь ( ср. (17)): 

(52) 
Тогда в полной аналогии о (18) будем иметь: 

Щ^.-Щ^Ь (V ' \о)с1Я1гЩкс1Яу(г,,>г»? (53) 
где«ДОл- злемент объёма (45), а д - функция определяется соот­
ношениями: 
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В случае it-Z равенства (52) дают: 

7 Л,*-Ад. У ' (55) 

В пределе малых импульсов отсвда имеем: £ =• - ^ - * # - А ^ . 
Позтому величины (55) в новой схеме могут рассматриваться как ана­
логи относительных ИМПУЛЬСОВ. Четырехмерные квадраты этих векто­
ров являются 5-иквариантами: • 

tf-ti*£('-/>«fij. ( 5 6 ) 
§ 3. Легко видеть, что гиперболоид (33) может быть пог­

ружён в р - пространство де Ситтера (36) лишь при соблюдении 
условия А 

«. « i { 5 7 ) 

(в единицах (38)). Мы будем предполагать, что ограничение (57) 
всегда выполняется для масс тех объектов, которые описываются 
квантованными 'Р-полями* . Тогда (33) эквивалентно соотношению 

(ft-n*)(fr*tn*)=:Ot (58) 
где, по определению, тч ш / } . tn^'^O* Поскольку на поверхности 
(36) каждому фиксированному значении р отвечают два отличаю­
щиеся лишь знаком значения р , , то любая из скобок в (58) может 
обратиться в нуль: 

/>« -Л7« - 0 • (59а) 

Д /Ми =Ot (59<j) 

'Следуя М.А. Маркову *"• , частицы с маосой равной фундаменталь­ной массе М мы будем называть максимонами. 
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Сделаем важное физическое предположение: для свободного 
поля Y'fp/РУ)>зйданнЬго в р - пространЬтве де Ситтера (36), 
выполняется лишь условие (59а). Другими словами, 

(60) 
Множитель 2 здесь введён для того, чтобы в "классическом" преде­
ле т,, //>/« х уравнение (60) точно лереходило в (4а) х ' . 

Из (60) следует (ср. (46)), что 

Ч(г>р>)яМ*г*-*-**) VY/wJ, ( 6 I ) 

где Ч(??Рч) - оператор, не имеющий сингулярностей на поверхнос­
ти (59а). 

Ниже нам придётся рассматривать разложения различных вели­
чин теории по произведениям свободных Y - полей. При этом в 
соответствующих интегралах каждый оператор УЧ/>>^) будет появ­
ляться в сопровождении "своего" элемента объёма (45); 

(знаки многоточия здесь заменяют коэффициентные функции, все дру­
гие f - операторы и элементы объёма). Принимая во внимание 
(61) и (45), выражение (62) можно Преобразовать следугщим образом: 

^Уравнение, основанное на равенстве (596), формально не обладает 
правильным "классическим" пределом. Заметим, однако, что при оп­
тимистическом отношении к развиваемой теории нельзя исключить 
возможность того'i что состояния частиц с р,, < 0 могут иметь для 
новой схемы такое же фундаментальное значение, как, например, сос­
тояния с отрицательной энергий в теории электрона Дирака. 
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* j - o\"[> $(f-tn) f(f,m4)... 

В "классическом" случае вместо (62) мы бы имели о учётом 
(46): 

j . . . jVffp)- " j - ^ ( ^ ) f | f ) . . (64) 
Сравнивая (64) и (63) , заключаем, что на поверхности (33) должно 
выполняться равенство; 

Пм*.Ь Ш , (65) 
Подчеркнём, что между расширенными за поверхность (33) оператора­
ми f (р) и ¥Ур>р4)уже нет никакой связи, поскольку каждому 
расширению отвечает своя индивидуальная геометрия в Р - прост­
ранстве, В частности, "классическое" поле *р(у) определено для 
всех значений f? , а поле ¥Yp,p«,) может быть задано, в силу 
(36) , лишь в области 

?< i • (66) 
Соотношение (65) играет роль своеобразного "принципаГ соот­

ветствия", С его помощью можно установить, каким гаммутацион-
ным соотношениям должны удовлетворять решения уравнения (2 .9)* 
Простые вычисления дают; 

^(^Ф^(Ы^]^(^'Г^)Е(Р:) ЭДМ*Ь> ( 6 7 ) 

Без каких-^шбо принципиальных изменений в новую схему пере­
носятся понятия о нормальном произведении операторов поля и ооот-
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ветствующая теорема; Вика. При этом Д( ~-•прмв)ведв,Р^ и нормальное 
спаривание двух операторов определятся соотношениями ( с р / 9 ' ) : 

(68) 

(69) 
Теперь по аналогии с (I) мы можем написать новую $~ матрицу 

в виде ряда по нормальным произведениям операторов V(f, p<J , 
заданных в импульсном пространстве де Ситтера (36) и удовлетворя­
ющие уравнению (60): 

р =2. №#/>,."' J % . K W ' / Ь t • • • ; JV.p*») • Y(f>i>f,4) - ¥tjp*'f **):(70) 

М.п., на которой определены к.ф £ л fp.,p,̂  j... j р л , р„* ) , 
описывается системой уравнений 

|(р,+ ••• + р п . ^ ^ 0 , /ч= <м,£,5 

Р, ч * т ч ,.,. , %п11 = гпн > (71) 

которая при соблюдении условия (57) полностью эквивалентна (5). 

§ 4. Будем предполагать далее, что разложение (70) остаёт­
ся справедливым и при расширении $-матрицы за м.п. (71), т .е. 
и в том случае, когда операторы ¥({,(>ч) уже не подчиняются урав-
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нению (60) и 4 -импульс />Л становится произвольным вектором 
пространства де Ситтера. Примем, по определению, что область, 
в которой задаются расширенные к.ф. 5„, ( р 4 , pt« j . . . j р * , ^ * ) » 
имеет вид: 

f (h*"+ р*)^ =0 , /< = o(t,JLf3 

B i t x v (72) 

(op. с (35)), 
Таким образом, в полной аналогии с (13) можно положить: 

On. (h *f» i ••• ; />*,/>«*) a о (/>/*•* +Jb)S ((>„(>„ i ••• j f>»> / W 
(73) 

Следовательно, расширенная патрица рассеяния в нашей схеме инва­
риантна относительно преобразования вида 

над IP - операторами. 

Мы вправе рассматривать этот факт как проявление трансляцион­
ной инвариантности новой теории ( требование II)* При этом привле­
чение понятия конфигурационного пространства и преобразования 
сдвига в нём ( формула (6)) не является логически необходимым. 
Важно лишь, что инвариантность относительно преобразований (74) 
гарантирует выполнение закона сохранения 4-импульса ( ср. § 2)» 
Сам оператор 4-импульса / ^ дают быть определён обычным об­
разом ( с р . (7)): 
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если предположить, что новое расширенное поле ¥(p,fo) удовлетворяет 
' усл<ри*) неШр^ностй (3) : 

t 
Pfp'pJ' = ¥(-р>Р«) (76) 

Замечательно, что в новом формализме, как и в "классической" 
теории, величина £> в (73) может быть выражена через первона­
чальную к.ф. й1х, i так что в итоге возникает тождество, пред­
ставляющее собой непосредственное обобщение "классического" тож­
дества (21) на случай р - пространства де Ситтери?' 

у„(р»>ри.*->рь,рм)=о (U " \о)ЬЛ\>-/v> wwWj 7 7 ) 

где 

On, (j>>>¥<•<>- >fr,i>,,',)= JclJ\ Sii(^*»k,fp1c«k)4i..;(|v'k)lf|'j"kj(78) 

Вывод тождества (77) почти дословно повторяет соответствую­
щую процедуру в р - пространстве Минковского. При этом вместо 
равенств (17)-(18) используются их "кривые" аналоги (52)-(53). 

Оказывается даль>е9 что "тильдовалная" к. if), (78) инвариантна 
относительно группы де Ситтера ( 37). Б силу (Ь5)~(56) это позво­
ляет считать её: зависящей лишь от квадратов "кривых'относительных 
импульсов ( ср. О-'В))*-

Принципиально важным является то обстоятельство, что в при­
менении к несвязным к.ф. тождество (77), подобие (й1),,о5ладает 
свойством факторйэуемости (30). 
х ;3амётим, что из (47) и (54) следует равенство 
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Резюмируя содержание данного параграфа, мы молем утверж­
дать следующее; требование тутсщт^оЩ;щ^щ^^(^^Ж и но-? 
шй принцип расширения за м.п. полностью совыестиш.Иначе говоря 
( см. § 2 ) , требование П в самом деле имеет абсолютный характер 
по отношению к тому, какая в р - пространстве выбрана геомет­
рия - Игаковского или де' Ситтера, 

Нетрудно убедиться, что требования 1,Ш«У1, которые в § 2 № то­
же определили вак абсолютные, в терминах расширенной р -матрицы 
(70) формулируются в принципе точно так же, как и в "классичес­
кой" теории. Это позволяет, в частности, выразить к.ф. «S„(/>.>fwi.-,>,|4> 
через вакуумные средние от радиационных операторов: 

> 
•г.'М bT(p„p,0" S r f f n , ^ ) / (79) 

по определению, функциональные производные фп перестановочна, 
причём t y ^ , h J *> 

$У ( рь»рх'/) 
§ 5. Введём в рассмотрение оператор тока ( ср. (10)) 

В силу унитарности расширенной лнлатрицы оператор (80) удовлет­
воряет условию нейтральности, аналогичному (76) г 

f 

Кроме того, из-аа перестановочности вариационных производных по V-
-повям ток ^bft) должен подчиняться "условию разрешимости" 
( с р . ^ 0 » 1 1 » 1 3 / ) : 



•W-p.,fW uT(-F.,f,0 L tf J- (82) 
Наконец, при преобразовании трансляции (75), учитывая инвариант-
ность 3 • йудем иметь: 

iPa - i P ^ 
е jfp,pv)e = e

i r ;/. р ч ч (ею 
что совпадает с (75). 

Оператор тока <j(p>p«)i очевидно,должен играть основную 
роль при формулировке условия причинности, адекватного новому спо­
собу расширения $ - матрицы за м.п. При этом, однако, уже нельзя 
обойтись без- введения в теорию конфигурационного представления. 
Положим 

Jf5)a^)%I<^f>h>i^rjdfir

 ( 8 4 ) 

^(^сЬьШг'ГЛКГ'ГЛМг . (85) 
где ОПр^ч/*- базисные функции, с помощью которых осуществляет­
ся преобразование Фурье в р - пространстве (36). Эти величины 
являются собственными функциями оператора Казимира группы 
де Ситтера (37): 

( $/f - метрический тензор кривого 4-пространства (36); ^ = 
=<kj|ar|| • £ - полный набор наблюдаемых в новом конфигурационном 
представлении). Опуская детали ( с м . / 2 ' 3 ' ) , отметим только, что 
спектр X в (86) соответствует максимально ьырожде»«ой серии 
унитарных представлений группы SO (2,3)'**' и состоит из двух 
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ветвей— дискретной и непрерывной : 
Г LiLfb) , L*-i.:t.ir ( 8 7 a ) 

В плоском пределе иэ (86) мы получаем задачу на собственные зна­
чения для оператора псевдоевклидова интервала (1'^к) • При 
атом L - область переходит во времениподс«ные интервалы, а Л -
•область - в пространственноподобные. Подчеркнём, что "световой 
конус" в спектре (87) однозначно выделить нельзя: ата поверхность 
возникает лишь после предельного перехода к плоскому случаю, 

Базисные функции {$lp, f>*)>, отвечавдие спектру (87) ,мо­
гут быть записаны в релятивистски инвариантном виде: 

-L-3 

г ' (88) 

причём функция (88) в соответствии с дискретным характером 
спектра (87а) является квадратично-интегрируемой в метрике (45) . 

В "классическом" пределе кавдая из этих величин превращает­
ся в плоскую волну: 

Нетрудно убедиться далее, что по переменным £ v * (L //) 
функции (88)-(89) удовлетворяют дифференциально-

-разноотным уравнениям, представляющим собой своеобразное обобще-

Эта величина является оператором Казимира группы Пуанкаре (27). 



ние четырехмерного уравнения Лапласа: 

Отсвда с помощью (60) и (85)находим, что свободное поле 
Y (Л подчиняется следующим уравнениям типа Клейна-Гордона: 

(К-^)У\)~0 ,(КЛ ^^(Uho. C94) 
В "классическом" пределе вместо (94) получаем обычное дифференци­
альное уравнение Клейна-Гордона. 

§ 6 . Применим теперь к каждой из величин ^(Ьр<,)и У(р ? ун) 
сразу две операции - преобразование Фурье (84)-(85) с "плоскщли 
волнами" (88)-(89) и преобразование сдвига (83) с параметром К : 

Операторы J K f t ) и ^ , ( 0 • определяемие соотношениями (95) и 
(96), реально зависят от двух переменных л и £ , поскольку 
{% )('>1\У и С*'" -различные математические объекты30'. Если 

над этими операторами совершить ещё одно преобразование сдвига (83) 
с параметром а, , то полученный результат можно представить как 
сдвиг "индекса" х при фиксированном £ : 

iPfi ( p „ (98) 

€> . м о е =j„^(U, 
Х^В "классичсско!/" пределе, разумеется, 
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i Pa- c«t - i P a - out (QG\ 

Инвариантность £ при преобразованиях сдвига в соотношениях 
(98)-(99) наводит на мысль, что эта переменная может быть исполь­
зована в новом аппарате как аналог "классической" относительной 
координаты х, - xXi или пропорциональной ей величины. 

Рассмотрим в качестве примера два коммутационных соотноше­

ния для свободных У - полей: 
but 0«t , 

[Сю, ?»], < 1 0 0 > 
1"С'<ииГЫ, (loi) 

где, но определению, 

Принимая во внимание (67), легко установить, что оба ком­
мутатора (100) и (101) не зависят от X , т . е . в силу (99) я в ­
ляются трансляционно-шшарггантными. В явном виде 

Itfo),ы|= -w;>»j($w)«Шъ-*««и-#/м;. (юз) 

cut . cut 
".. \ I = J. Л / k _ V 1 

(104) 

Сравнивая (I02)-(I03) с "классическим" коммутационным соотно­
шением 

и учитывая (97), приходим к следушцему выводу: в (102) новая пере­
менная | играет роль относительной координаты . л,-**, , а в 
(103) эта перемешая является обобщением величины &?—* , 

Используя Ю9), нетрудно убедиться, что в "пространственно-
-подобной" Л - области имеет место равенство: 

Л ^ . о К Я Г * . , - ^ ) =0. (105> 
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Таким образом, коммутаторы (IOO)-(IOI) обладают своеобразным 
свойством локальности: 

I- ° t t * gut 
L^*fr) , V7» (*)h°? е С Л И t=$A * * - ПРОИЗВ. Ц06) 

№ (*)•>% l't)]'0, 9оял f = ? A , х - п р о и з в . (107) 
Напомним, что в "классической" теории, как для свобод­

ных операторов, так в для операторов, описывающих взаимодействую­
щие системы, в частности, оператора тока ( I I ) , условие локальнос­
ти выглядит одинаково в сводится к равенству нулю соответствующего 
коммутатора вне оветового конуса ( см. , например,(32)). Заманчи­
во предположить, что и в новой схеме одно из равенств (106)-(Ю7) 
может быть взято за образец при формулировке условия локальности 
для оператора тока (95). Если отдать предпочтение соотношению 
(107), как более симметричному, то вто предположение означает, что 

Ш * ) г ^ Г р > . W ? = $ A . X -проиа* (108) 
Очевидно, условие локальности (108) является трансляционно-инва-
риантным, поскольку в нём при преобразовании (98) меняется лишь 
произвольный параметр X . Ясно также, что в "классическом" преде­
ле равенство (108) совпадает о (32) . 

Наша следующая задача - построение аналога соотношения (31) 
в новой схеме. При атом мы отдаём оебе отчёт в том, что обобщаем 
вовсе не принцип причинности "классической" теории со всеми его 
атрибутами (анализом причинно-оледственных связей, процедурой 
измерений,филосовским толкованием и т.д.).Формулировка нового 
принципа причивнооти - дело будущего, если вообще имеет смысл са ­
ма постановка этого вопроса. 

Сейчас наша цель состоит лишь в том , чтобы найти обобщение 
"уравнения движения" (31) для тока в терминах тех величин, которые 
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характерны для новой процедуры расширения. 
Вначале выясним, что является аналогом временной & |^нкции 

в данном формализме, В связи с этим рассмотрим генерторн 5-враще-
ний (40) в (f^U плоскостях: 

" ( Р" Tfr '" > 'Л"''•''V» '(Ю9) 
Нулевая компонента 4-вектора £ h в (и), pj-координатах равна 

^ ' - . ^ , Отсюда, налагая условие периодичности по to , по-
лучаем, что т> «яждпй ппрвнттйвпкой системе отсчёта собственные 
значения оператора £ ° суть целые числа ц = о, *1,1Ч,... • а соответ­
ствующие собственные функции имеют вид: 

/ . I v i^W 

А С * )•*»>:= е . (по) 
Поскольку £ ° коммутирует с оператором Казимира группы SOft}), 

то И, можно включить в полный набор .наблюдаемых £ вместе с А . 
В результате возникает ещё одна совокупность базисных функций31-': 
^/l,it,... / f>>p„V Привлекательной особенностью их по сравнению с 
(88Ц89) является простая зависимость от параметра <& : 

< V „ . . | Р , Р < ( > =• <n|ui><*,fi,„.| р > = е < : и о < д л , - | р > a n ) . 
Дискретный параметр П мы будем называть "временем", поскольку 

в плоском пределе величина £ "совпадает с оператором времени, -ri i t 
"классической".,теории, , ч < - • 

Замечательным свойством, дискретного времени /г является инва­
риантность, его знака, в представлениях группы S0(Z,b), отвечающих 
дискретной "времениподобнрй" А г^области ( 8 7 а ) 5 а с ^ w v v • ,.-
х ] 

Многоточие в символе \АЛ>»> | ft.fa? соответствует переменным, 
входящий в- полный[набор 2 "помийо "А : и гя> . •;' '̂  
- - \ ' 

'Прадеды иэменёния модуля л> при этом определяются соотношением: 

^ 2 



й г С П ¥ а Г ' в С Л И Я к L < L * * ) - (112) 
Следовательно, по параметру п в L - облаете можно инвариантным 
образом упорядочивать действие операторов. Соответствующая "ступен­
чатая" функция, которую как pas мы искали?ймеет вид 3" 

Умножая далее 9(-#с)=&(-ф& локальный в смысле (108) коммутатор 
L}K(?)'IKI'M' П 0 Л Я а е м аналог инвариантного опережающего коммута­

тора токов, фигурирующего в "классическом" соотношении (31): 

0(-&)[j*(O,jnW]m (114) 
Вводя теперь в полной аналогии с (95)-(96) "билокальную" вариацион­
ную производную 

постулируем следующее "уравнение движения" для нового оператора то­
ка jtfc)'-

Многоточие здесь соответствует произволу, который может содер­
жаться в произведении (П<0,включая и неизвестное "затравочное" 
взаимодействие. Насколько широк этот произвол и насколько он син­
гулярен - принципиально важные вопросы для развеваемой теории (см, 
§ I ) , Мы вернёмся к их обсуждению в §.9. А сейчас заметим, что 
соотношение (116) несомненно удовлетворяет требовангам трансляцион­
ной и релятивистской инвариантности и в "классическом" пределе пе­
реходит в уравнение (31) . 

х'Ра8лагая функцию (88) но базису (ill), легко убедиться, что в 
области (87а) {%\* (щ . Поэтому здесь 'Qtot,)* 9(K)' 
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В силу (108) И (116) 

( ffff))x J* 10= О для £ £ , 0 , X -произв., (117) 
где символ feo нужно понимать следующим образом: 

1) либо | *$L*(L,tf), причём $Ti>° > 
2) либо £ = ^ л » ^ / ^ • 

Очевидно, "классическим" пределом (117) является условие причин­
ности Боголюбова в канонической дифференциальной форме ' 9 " 1 1 ' : 

\Hf^lx =0 для £ £ 0 , X -произв. (118) 

Здесь символ £ £ 0 у к е имеет "классический" смысл: 
I) либо £;»0и f o > 0 , 2) либо |%; О . 
Из (117) можно, в свою очередь, получить соотношения (108) 

и (116), если привлечь "условие разрешимости" (82). 
§ 7. Положим 

Здесь г ff^ - оператор свободного поля, определяемый интегралом 
Фурье (85) с базисными функциями ( I I I ) . Принимая во внимание (68)-
-(69)легко показать, что 

т- ш°'Ч- \**}* \- tow* ./"*'» fort- W 
r» V fUlrfc>: fry VftO: * f f r j У > j , «»> 

где 

t -i 
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Таким образом, ш вправе интерпретировать велячину 

Qffi* Mfr-m^t) (122) 
как пропагатор свободной частицы. Очевидно, (122) является функ­
цией Грина уравнения (60) , 

§ 8, Иа вида пропагатора (122) непосредственно вытекает, что 
/(-импульс любой виртуальной частицы должен удовлетворять ограниче­

нию (66). Это должно приводить к экспериментально проверяемым след­
ствиям. В честности, ряд качественных предсказаний можно сделать 
для процесса однофотонной аннигиляции алектрон-позитронной пары, 
рождеши лептонвых шр в глубонеупругих реакциях и т.п. 

Мы используем здесь модифицированный лропагатор (122) для 
получения эвристической нижней оценки на массу максимона П . 

Как известно, из сравнения четырехфершонной формулировки 
теории слабых взаимодействий с формулировкой этой теории в тер­
минах W- бозона возникает соотношение между фермиевской констан­
той 6 • константой "полуслабого" (юкавского) взаимодействия а 
и статическим пределом пропагатора W- бозона: 

-М^&№?3&-,. «*> 
Поскольку статический предел пропагатора (122) при т.?от* равен?' 

fe^f)"'%тi-(/)-#)' < ш > 

;••':•••'; • • • ! • " . М - / то вместо (123) будем иметь» 

Спиновая структура при этом несущественна» 

те 



Отсюда вытекает, что ^ 

М * Ш* das) 
Дальнейшая конкретизация оценки (126) может быть достигнута» напри­
мер, в рамках моделей, претендушщх на единое описание слабых и 
электромагнитных взаимодействий дептонов. В чаотности, с о м а о н о / 2 3 ' , 

qt Я 
ik. ? J , где J. - постоянная тонкой структуры. Иопольвуя вто 

равенство, находим аз (126); 

Оценки (127) выглядят как вполне разумные в свете сегодняшних 
экспериментальных данных. Принимая во внимание (125) и (127) , легко 
установить следувщий интервал возможных значений для массы W- бозо­
на: 

Z6.5 Gev 4 mw4 3?.3 гэв. 
§ 9 . В этом параграфе мы изложим некоторые результаты, получен­

ные при исследовании проблемы умножения сингулярных обобщённых 
функций в данном подходе. Начнём с одномерного примера из обычной 
теории - произведения ступенчатой функции $(^)жл функцию S*(£"), яв­
ляющегося хорошей иллюстрацией сути дела. 

Поскольку . . e i r ^ - f c j g j j j j , то формально е ( Г ) И Г > 

Более общий подход с привлечением теории обобщенных функций дает: 

9ЮЩ°)= С'Щ*) . где С - произвольная постоянная. 
В новой схеме аналогом произведения 9(^)Щ^является выра­

жение {) (п.) i T ^ o , где $(*) -ступенчатая функций ( И З ) , а 
O»V,M, - символ Кронекера. Следовательно, 
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( *$'z= ^ ~ н о в а я переменная интегрирования). 
Вывод, который можно сделать из рассмотренного примера, сос­

тоит в следующем: функции &(ъ) и &у> » в отличие от своих непре­
рывных аналогов, являются обычными (не обобщёнными!) функциями п. , 

и их произведение отроится совершенно однозначно. 
Оказывается, что подобная ситуация имеет место и в более об­

щем случае. Например, перестановочная функция (102) для частиц ну­
левой маоси, как нетрудно убедиться прямым вычислением, даётся 
выражением: 

Ьft,*) | = 2 ~ f Я ) ~ ^ S i . r i j €(*.)= •(a)-e^i».)Jn|>LOjH 1ej I2 > . . . 

Соответственно, в "классическом" случае мы имели бы к1^ >) 

*ft)l - Г , * ^ * ' « - (I3I) 
Сопоставление формул (130) и (131) показывает, что первая из них 
имеет совершенно определённый математический смысл и может быть 
интерпретирована как обычное произведения пботют футартй*'^ то 
время как вторая формула предотавляет собой типичный для "класси­
ческой" теории поля пример умножения сингулярных обобщённых функций 
с совпадапцими особенностями. 

Следует ясно понимать, что появление в нашем формализме 
дискретных (квантованных^ переменных L и п. непосредственно связа­
но с ограниченностью нового р - пространства во времениподобном 
направлении в сшоле метрики де Ситтера. По той же причине "плоские 
волны" ( 8 8 ) , отввчающие"врвмениподобвой" L - области, являются 
квадратично интегрируемыми. Последнее обстоятельство будет играть 

"Аналогичное утверждение справедливо для функции £>($,о)щв тфр, 
для всех остальных рассмотренных выше перестановочных функций и 
пропагаторов, а также для любых степеней и произведений втих 
величин* 



важную роль в том примере, который мы рассмотрим ниже. 
Пусть _, 

•J,» )»'(»,"*» ) ) i а» 
есть некий "билокальный" токолодобный оператор, построенный из 

полей (96). В силу (107), очевидно, 

l^MiTlA-t)]* О, если $-$л }х-проиав. (133) 
Ясно также U M . (98)). что < о | & ч ( | ) , ^ Н Л о > = < И [ ? ^ ) , З Н ) ] | ^ 

Теперь рассмотрим интеграл 

g(pwj<*ii4N> е(^ко|[7(о,1Н)]1«>><?|р^>ай,, ( 1 3 4 ) 

V R e ЩтШ1АМ(Ц\0$нтет о б ъ ё м а " конфигурационного ^-простран­
ства. В "классическом" пределе величина (134) с точностью до посто­
янного множителя совпадает с реальной частью одночьстичного пропага-
тора во 2-м порядке теории возмущений в модели со взаимодействием 
вида:У (*)'•(**£), При этом соответствующий интеграл расходится, 
поскольку произведение обобщённых функций Q($') *(o\L'X($)>'J(-$jl)$ 
из-за совпадения их сингулярностей в точке ^= О не является ин­
тегрируемым. В данном случае, благодаря условию локальности (133), 
вклад в_выражение (134) вносит лишь L-„область. Принимая во-вни­
маниеквадратичную'••интегрируемость функций <£|р,р<,)в этой области, 
нетрудно показать, что интеграл (134) абсолютно сходится'?' 

Приведённые нами примеры, по-видимому, свидетельствуют о 
том, что расширение $ -матрицы за м.п., опирающееся на р -простран­
ство де Ситтера, действительно является менее сингулярным, чем 
"классическое" расширение, использующее плоское р - пространство 
Минковского, Теперь имеются основания ожидать, что и в уравнении 
движения (116) произвольные дополнительные слагаемые в правой час-
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ти,обозначенные многоточием, могут быть сведены до минимума. Боль­
шой удачей теории было бы однозначное самосогласованное определе­
ние указанных слагаемых, поскольку это в принципе позволило бы 
ответить на вопрос: какие взаимодействия между квантованными поля­
ми реально осуществляются в природе ( ср. конец § I ) ? 

§ 10, Вернёмся к формулам (44) § 2, определяющим связь между 
координатами fp<.,[?) и Щ ^ ) , Каков физический смысл переменной о)? 

Для свободных частиц р^-го^ , и поэтому из (44) следует, 
что pg^^i-rf- Ьа.ш , ш 4 Jf • В чаотности, для фотона 

р о = fy ш , vo 4 f . (135) 
Выясним вначале, какую размерность должна иметь величина ш . В 
нормальных единицах дискретное время может быть представлено как 
ы (г- , где п.- о fidL ,*2i».. Поэтому вместо (ПО) получаем: 
{ n f u ) > - e i r . Таким образом, ш можно приписать размерность 

частоты. Следовательно, формула (135) в нормальных единицах выгля­
дит так; 

• г мс* zt, ( 1 3 6 ) 

В "классическом" пределе отсюда находим ( ср. (46)) 

/V= •""fc.to , (137) 
что совпадает о формулой Планка для оветовых квантов. Заманчиво 
предположить, что соотношение (136) есть обобщение формулы Планка 
на всю область значений энергии р 0 , адекватное тем идеям, 
которые лежат в оонове нашего подхода. Угловую переменную <д> в 
(136) при этом следует интерпретировать.как частоту ове^а*'. 

'̂ Формулы (136) и (137) находятся примерно в таком же отношении 
друг к. другу, как выражения для 3-импульса в терминах окорости в 
релятивистской и нерештивистокой теориях: 
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Заметим, что частота не должна быть аддитивной сохраняющей­
ся величиной. Таковой является лишь энергия. Однако в формуле План­
ка (137) частота "случайно" обладает всеми свойствами энергии; в 
новой формуле (136) эта "случайность" не имеет места. 

Очевидно, связь между 3-импульсом и волновым вектором в дан» 
ном формализме остаётся прежней: р -% к . Отсюда и из (136) по­
лучаем следующий " закон дисперсии" для света: 

ej£l-V4 : I %<{u- ( 1 3 8 ) 

Соотношение (136) можно подвергнуть экспериментальной провер­
ке, если независимо измерить энергию и частоту кванта в области 
ультравысоких частот. Однако предварительно необходимо сформулиро­
вать соответствующую измерительную процедуру, принимая во внимание 
то обстоятельство, что распространение сверхжёстких квантов описы­
вается модифицированным пропагатором, являющимся функцией Грина 
диайеренциально-разностного волнового уравнения ( см. (121) приШц-i). 

§ I I . Этот параграф мы посвящаем чисто эврстическим рассужде­
ниям, цель которых - "перебросить мост" между нашим подходом и 
формализмом калибровочных теорий. 

Рассмотрим в рамках обычной квантовой электродинамики груп­
пу калибровочных преобразований П рода: 

III / * ^ «"С ^(*) . 

Л.60-» /y>U Щ1 ,t*.o.,,i,s. (139) 
Как известно, требование инвариантности теории относительно преобра­
зований (139) приводит к "минимальному''электромагнитному взаимодей­
ствию. 

Оказывается, однако, что для получения взаимодействия в мини­
мальной форме нет необходимости рассматривать произвольные функции 

Их) t а достаточно ограничиться лишь линейными функциями вида 

Д(х)= \{о) + a)^Kh . • (i4o) 
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Подставляя (140) в (139)ли опуская хмножитель/ей ( он отвечает 
калибрвочноЩщвобр^ рода) .будем иметь : 

л / » л / » ' ' • Д М 
А),(*)-* Ар(*) + <йр, ,/ишм*,*. (1416) 

Мы видим, что соотношения (141) можно интерпретировать как преобра­
зования сдвига в />- пространстве Минковского, причём закон преоб­
разования величины eAf.fit)совпадает с законом преобразования 4-век-
тора />^ , 

При переходе к /> - пространству де Ситтера формулы (141) мо­
дифицируются нетривиальным образом. Роль преобразовании сдвига на 
векторVu^ теперь играют 5- вращения в / д 4 ) - плоскостях с пара­
метром p a y (см. (40)) . При атом компоненты спинора ^ / р ^ у х е 
перемешиваются между собой: 

UW--» S (*«Ъ ' у, 0«««А <142> 
Наиболее интересным моментом здесь является то, что при обобщении 
закона преобразования (I4Z6) для электромагнитного поля ми вынуж­
дены "дополнить 4-вектор еАи д о 5-вектора /\м=(еА^,Аф Если не 
вводить новых полей, то естественно предположить ,что 5-вектор Ам» 
подобно 5-вектору />м= (/у,/д, принадлежит пространству де Ситтера 
(36). Тогда в теории возникает нелинейность, связанная с компонзн-
той Ль*=|/|- е М * и ограничение фпа (66) на предельно допустимую 
величину поля; 

?AU И\ (143) 
И, наконец, последнее замечание. Оно относится к "классичес­

кой" теории с плоским / э - пространством. Как известно ( с м . , нап­
р и м е р / 2 4 ' ) , при сдвигах (24) , совершаемых в таком пространство, воя 
можны два закона преобразования спинора %(?)• Один из ни* есть 
tj~* f*(p~b) • ч т о 8 К в й валентно при ^ -•'«; соотношению ( Ш а ) , 

й-
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уже использованному нами в качестве калибровочного-преобразования 
в электродинамике. Второй закон преобраШавля шглядит такг 

где генератор х* пропорционален либо (V+A)~* лябо(У~А) -комби­
нации /*- матриц; №ш^$^(ШХ-'ш Неизвестная постоянная должна 
быть универсальной и иметь размерность длины. Отождествим её 
о константой JW , где G » постоянная Ферми. Тогда преобра-
зования (144) можно расоштрвать на правах калибровочных преобразо­
ваний в ряде вариантов теории слабых взаимодействий. 
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ПРИМЕНЕНИЕ СУПЕРПРОПАГАТОРНРГО МЕТОДА В 
КВАНТОШ ТЕОРИЙ ПОЛЯ 

М.К.Волков 
Объединенный институт ядерных исследований, Дубна 

I . Введение 

В настоящее время существует весьма обширная литература, 
посвященная исследованию квантовых теорий поля с неполиномиаль­
ными лагранжианами. Имеется большое число оригинальных исследова­
ний ( с м , , например, ссылки в работе ) , а также несколько 
обзоров по этой теме ° . Каковы же итоги последней пятилетки 
в, этой области физики? х . 

Основным результатом, по нашему мнение, является разработка 
математического аппарата, позволящегр описывать в неренормируеыых 
теориях поля низкоэнергетическое поведение частиц с учетом 
петлевых диаграмм Фейнмана, Расходящиеся интегралы регуляриэуются 
способом, близким к методу аналитического продолжения по с т е п е ­
ням пропагаторов, перенормировки физических величин становятся 
конечными и выражается в терминах констант связи. 

В следующем параграфе мы покажем, что между методом регуля­
ризации с исполь эованием суперпропагат орной техники и хорошо и з ­
вестным методом регуляризации Паули-Вилларса можно обнаружить 
х Первые корректные работы по интересующей вас теме появились 
е щ е * 1963 г . ( Г.В.Ефимов/7/ ,Е,С.1радкин/Б/; . Однако наиболее 
интенсивно эта область физики стала развиваться начиная с 
1967 -1968 годов. 
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весьма заметную аналогию, Регуляризованный суперпропагатор 
напоминает обычный пропагатор с бесконечным числом вычитаний, 
сделанных по Паули-Вилларсу. Только роль компенсирующих полей 
здесь играют вполне реальные диаграммы с двумя, тремя и т.д. 
внутренними линиями. Индефинитная метрика вносится с помощью вве­
дения параметра У и устраняется на конечном этапе вычислений 
после перехода к пределу ^ = I , Условия унитарности /О - матри­
цы не нарушаются при использовании этого метода. 

Прежде всего мы покажем, как используется суперпропагаторный 
метод для получения конечных результатов в неренориируешх 
теориях на примере хорошо известной модели нейтральной псевдовектор­
ной мезодинамики. Первая попытка описания этой модели с помощью 
метода, близкого по духу к суперпропагаторному подходу, принадлежит 
Окубе (1954 г . ) ( см. также работу Арновита и Дезера ) . 
Однако метод, предложенный Окубо, приводил к нарушению условия 
унитарности р -матрицы. Впервые корректные результаты с 
использованием интересующих нас методов в данной модели были 
получены в наших работах в 1967 г. и в работе Н.Христа в 1969 г. 

1 2 , а также в работах Б.А.Арбузова и АЛ .Филиппова в 1967 г. 
с использованием несколько иного подхода, 

В 1968 году появилась работа Т.Д.Ли, посвященная исследованию 
модели нейтрального слабого взаимодействия с векторным мезоном 
В этой работе был предложен метод "суммирования главных расходимос-
тей". Нетрудно показать, что суперпропагаторный метод решает 
подобные проблемы на значительно более простом языке ' 

В 1971 году А.Салам с сотрудниками использовал суперпропага-
торнур технику для построения конечной электродинамики с учетом 
нелинейного взаимодействия с гравитационным полем . Сдвиг 
массы спинорной частицы в такой теории становится конечный и вы­
ражается через логарифм гравитационной константы связи. 



Однако наиболее интересными, по нашему мнению, являются 
попытки описания взаимодействий квантовых подай, соответствующих 
кирально-снмметричным лагранжианам , Суперпропагаторный подход . 
позволяет получать низкоэнергетические, поправки к так называемому 
приближению •древесных" диаграмм, учитывая вклада от петлевых 
диаграмм. Первые работы в этой области появились в I970-I97I г . г . 
В 1972 г , была опубликовала серия работ Лемана, посвященная опи­
санию низкоонергетических поправок, получаемых для пион-пионного 
рассеяния о использованием суперпролагаторного метода 1 8 , Тек 
самым наметилась весьма перспективная тенденция перехода от 
исследования более-менее абстрактных моделей о неполнломиальиымя 
лагранжианами в описанию реальных физических явлений. 

Заглядывая несколько вперед, нам хотелось бы высказать 
надежду,, ва то, что использование хирально-иявариантных по форме 
лагранжианов взаимодействия^ одной стороны,и оуперпропагаторной 
техникой,с другой стороны,позволит в недалеком будущем построить 
теорию поля с конечными перенормировками физических величии для 
сильных, а,возможно „тажже и для слабых взаимодействий. 

§ 2« йгпврп^дпагат^р 

•••• Суперпропагатор /Ух) для случая взаимодействия беэмассовых 
скалярных частиц-имеет вид 

г д е • • _ . • • • • • • • > • • 

А'М - -*(!**Г№-**>у*х , ' ( 2 # 2 ) 

а коэффициенты С (л) для экспоненциального взаимодействия 
частиц равны 



/ 7 ' п *•*) гамма-функция, 0 - константа связи. В импульсной 
пространстве суперпропагатор fff) можно записать в форме 1 » 1 9 

ffr>* pj\' frO3) < (2,*) 

Для экспоненциального взаимодействия параметр jf следует 
выбрать большим четырех в представлении(2,5.).Для перехода 
к пределу У-2 необходимо использовать иное представление 
для ^ У О 0 ) ( например, тот же интеграл по Z , но с конту» 
ром, идущим над и под реальной положительной осью и обходящим 
точку О слева). Представление (2.Эоказывается весьма полез­
ным при вычислении интегралов по промежуточным импульсам в 
выражениях, соответствующих петлевым диаграммам Фейямана, Введе­
ние параметра У представляет собой промежуточную регуляриза­
цию, имеющую некоторые сходные черты с регуляризацией 
Паули-Вилларса. 

Чтобы сделать более явной эту аналогию, перепишем формулу 
(2.5)в следующей форме 

&'>'&* jzffi < <*.« 
где 

(2,7) 

•ш* 



Формулу (2.0можно считать спектральным представлением для 
суперпропагатора -fyf/3) • Оно справедливо лииь при значениях 
параметра У, больших четырех ( в экспоненциальном случае). 
Посмотрим теперь, хаж ведет себя спектральная функция />#№*) 
в зависимости от значений параметра у . ' 

При jf- I она выражается через бесконечный знакопостоянны! 
ряд, растущий экспоненциально при y w 1 2 - * * » . Это - бесвонечная 
сумма фаэовнх объемов п - скалярных частиц, как то и следует 
из условия унитарности / Г - матрицы. 

Однако при' •. / > 4 JfyflM становится экспоненциально 
убывающем функцией у г / 2 при yw *•?*»,Бесконечныйряд, через 
который выражается теперь j O ^ / / ' ^ , переотает быть 
знакопостоянным. Тем самым в спектральном представлении (2 .6 ) 
как бы появляются состояния о индефинитной метрикой. Подобная же 
ситуация имеет место при введении комаеноирующих полей в регуля­
ризации Паули-Вилларса. Роль этих компенсируищих полей играют 
здесь, диаграммы с двумя и .больиим, чем два, кбличеством внутрен­
них линий. Выполнен» здесь и соотноиения, подобные тем, которым 
удовлетворяют коэффициенты при: компенсирующих лоляХ в регуляри­
зации Паули-Вилларса 

где п - 0 , 1 , 2 , 3 , , , , Отсюда видно, что оуперпропагатор в 
экоповещнааьном случае может обладать весьма мощным регуля-
риэующим свойством* А именно, при интегрировании по внутренним 
импульсам функция /7, fy>) может регуляризова» любую степенную 
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расходимость по импульсу ^ х , 
В выражении (2 ,5) для суперпропагатэра, вообще говоря, ло­

то 
жет содержаться неопределенная константа * . Однако для лока­
лизуемых взаимодействий эту константу можно фиксировать, привле­
кая, например, так называемая "принцип минимальных сингуляр-
иостей", предложенный Леманом я Поямайером 2 0 . 

Покажем теперь,как с помощью суперпропагаторного метода 
можно получать корректные результаты в различных областях 
квантовой т е о р я поля. 

§3. нращлшя дрщо.вавшри ирзотанамика ^"^ и шОов 
взаимодействие нейтрального векторного м е з о н а 1 ' * - 1 5 

Рассмотрим псе.вдовекторное взаимодействие скалярных 
беэмассовых полей у?/*) с массовым спинорным полем (^//) 

Используя преобразование Дайсона для спиворного поля 

можно избавиться от производной в лагранжиане взаимодействия. 
Тогда ( 3 . 1 ) принимает вид 

^ л * 1 ^ •' (3.3 ) 

х Заметим, что, если коэффициенты С//г) отличаются от случая 
( 2 . 3 ) , и Функция?{Х*У) имеет особенности в левой полу» 
плоскости, регуляриэуюцие свойства суперпропагатора К('/з) 
могут быть более ограниченными. 
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Здесь знак нориального произведения относится линь к спиноршш 
полям, Если в (3 ,3) знав нормального произведения распространить 
на все поля, то мы приходим а теории, в которой суперпропагатор-
ные методы дают конечные перенормировки для всех физических 
величин. 

Покажем это на примере вычисления поправки в массе 
спинорной частицы во втором "модифицированном" порядке 
по (ж/) *• 

Спинорная функция Грина С ft, А') в двухвершинном приближе­
нии записывается в виде 

- /9*/* / у ос 

где /S f/)i& 4 ^-спинорные и скалярные пропагаторы соответствен­
но, В импульсном пространстве функции О- можно записать в 
форме 

&>шф, -фг&Ъф *f*»fy>-/i-*>". 0.5) 
Оператор £(р) равен 

Используя представление ( 2 , 5 ) , функцию Иffi) можно переписать 
в следующем виде 

х 
Модифицированным порядком мы будем называть такой порядок по 
константе связи, в котором кроме указанных степеней константы 
связи могут содержаться еще и ее логарифмы. 

90 



-a-too где 

При p 2 *m этот интеграл равен 

№»-•"''<"*%&№*&). »•» 
Подставляя (3 ,9 ) в ( 3 , 7 ) , интегрируя по ^ и переходя ж 
пределу / " - • ' » получаем 

Здесь ffrt)-пси-функцияЭйлера. 
Нетрудно видеть, что поправка х пассе спянорнои частицы 
выражается через конечнув величину. Во "второй** порядке по (wg) 
имеем 

4~ ~- эы*[?&(*»*) -*№)'*Ф**ПРМ] , О.И) 
К сожалвняв, в реальной мезоджнаиикв величина параметра (яе***) 
близка к единиц». Хотя полное авачшие £(#> *1 при агю* * * 
равно *~ 0 , б / « , т .е . дает вполне разумную поправку к 
массе нуклона, однако сама теория возмущений по (эе/пя) 
становится плохой. Поэтому рассмотревши пржмер имеет скорее 

модельный характер. 
Иная ситуация имеет место в теории сяабнх взаимодействий, 

где константа связи Сг сужесгвенно меньше. Там "модифятрован-
ная" теория возмущений, получаемая еупврпропагаторнни методом, 
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строится по значительно более малому параметру разложение. 
Покажем, как в теории слабых взаимодействий можно придти 
к неполиномиальному лагранжиану типа ( 3 . 3 ) ( см. работы » ^ 5 ) . 

Рассмотрим несохраняющее четность слабое взаимодействие 
нейтрального векторного мезона со спииорным полем 

оСл. М = C:pM/Y*>//VW/*) W*f*) • . (з J2) 
21 Используя преобразование Штюкельберга 

W,M - <?<'*) * ««* Ъ т ' ( 3 , 1 3 ) 

где $//) - скалярное поле, a $,//)- векторное поле с пропагатором 

(спин-нулевая часть поля ^//) имеет отрицательную метрику), 
можно выделить из (3.12) неперенормируемую часть взаимодействия» 
Она эапииется в форме 

•<W~> - 4 ' WW" №w # ю • СЗЛ5) 

Вновь используя преобразование Дайсона 

& 7/) * '//•> f- < #f«* <f**> | g } №) •> ( З Л б ) 

снова приходим к взаимодействию типа ( 3 , 3 ) , но уже с малой 
константой связи О- . При описании этой неполиномиальной части 
взаимодействий вполне применима "модифицированная- теория возмуще­
ний, получаемая при использовании суперпропагаторной техники* 

Оставшаяся часть взаимодействия приводит к ренормируемой 
теории, подобной электродинамике. Расходимости, которые возникают 
при работе о этой частью лагранжиана взаимодействия, можно устра­
нить обычным методом, что приводит к перенормировке конечного 
количества наблюдаемых величин. 
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Наконец, в днаграшах смешанного типа, где одновременно 
арисутствувт те я другие верннны, суперпропагаторы могут выступать 
в роля неких регудярязувяих форм-факторов. 

§4 . Я 1 1 Ш | Г Й ^ с т ч е т ™ г в в в , т а п и и 1 б 

В 1970 году Садамок совместно с его сотрудниками был 
выпущен ряд работ, посвящениях построению гравихационво-модифнци-
рованной электродннамикя, приводящей к конечным перенормировкам 
наблюдаемых величин 5 » 6 » 1 6 . Это достигалось учетом нелинейности 
гравитационного взаимодействия я применением супорпропагаторных 
•входов для начисления различных физических величин. 

В гравитационно-модифицированной влекхродинамихе, в отличие 
ох рассмотрениях ввяе взаимодействий, мы встречаемся с целым 
рядом дополотеяьннх трудностей. Это такие проблемы, как, напри­
мер, проблема устранения замкнутих петель, возникающих в теории 
помимо обнчннх диаграмм Фейижана из-за наличия производных в 
лагранжиане взаимодействия; проблема выбора лагранжиана в той 
или иной форме черев посредство эквивалентных преобразований я 
введевие нормального произведения в лагранжиан взаимодействия, 
а также проблема сохранения градиентной инвариантности теории, 
которая становятся весьма нетривиальной при учете нелинейного 
взаимодействия с гравитационным полем, 

Больяянство из указанных вопросов пока еще остаются 
открытыми. Однако нехоторне заметные успехи в их раэреиеннн 
наблюдаются. Из работ, выполненных в последнее время в этой 
области, наиболее интересной нам кажется работа Ишака, Салама 
я Страдди 1 6 . В этой работе авторы используют экспоненциальное 
тензорное представление для эйнятейновского метрического тензо­
ра <7^й^) и питаются построить градиентно-инвариантную 
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электродинамику с конечными перенормировками. 
Не вдаваясь в детали расчетов, мы постараемся в оСим 

чертах продемонстрировать основную вдев работы на примере 
вычисления поправки к массе электрона, 

Гравитационно-модифнцированнв* лагранжиан для квантовой 
электродинамики можно записать в форме 

Здесь I A,"/j()-релятивмвмкая тетрада, связанная с метрическим 
теваором соотношением 

В экспоненциальной параметризации она выражается через 
ey/3f3cjzAs h'iQrfy)} , где jaAe. - 4x4 псевдосюшетричная 

матрица и к *%)-тензорное квантовое поде гравитона. 
7^ - коваржантная производная ^ - / ^ - Ъ,^ " ^-^*» • 

В работе 1 б сначала находится градиентно-инвариантное 
выражение для двухтоичной функции фотова в форме суперпропага-
тора и затем оно используется для шчисденжя влектроиагнитяого 
сдвига массы электрона. Покажем схематически как это делает оя. 

Массовый оператор электрона с учетом экспоненциального 
взаимодействия с гравитационным полем имеет вид 

grtf ^ fX)<f» £ ГОТ) > 
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где fS* ri() - пропагатор электрона, f^Z/x) - пропагатор 
фотона, dL /^-пропагатор гравитона, jf/xj - пропагатор 
скажяяой беэмассовой частвцы. Вновь используя представление 
( 2 , 5 ) , в импульсной пространстве запишем для J%(f>) • следующее 
выражение 

- O+t&o 

* -O-l оо f ' 

Интеграл по d <f при о*=т легко вычисляется , /-** , 

(4.4) 

(4 .5 ) 
после чего 

L - контур, окружающий реальную положительную ось. 
Беря вычет в точке 5? = о , инеем „ 

Эхо и есть освоввой результат, полученный Саламом с сотрудниками. 
Обычное логарифмически расходящееся выражение для &т полу­
чается при стремлении эе к нули. Так как на селом деле 
&i /J£E)*^yaa .величина 4 z r иеньше единицы, 

§5 . Кирально^шваржаятяне лагранжианы 

Как мы уже говорили, весьма перспективным, по вавему мнению, 
является применение суперпропагаторного метода к опвсавшо теорий 
поля с кирально-инвариантными лаграняианами» Здесь, как и в слу­
чае гравжтационво-модифицированной электродинамики, помимо основ­
ной трудности, связанной с устранением ультрафиолетовых расходм-
мостей в квантовой теории поля, существует целый ряд дополнжтеяь-
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них проблем: возникновение замкнутых петель - "головастиков" -
из-за наличия производных в лагранжиане взаимодействия с $ 
проблема выбора лагранжиана в той или иной кирально-симметричной 
форме и т .п . Оставляя в стороне обсуждение всех этих дополнитель­
ных проблем, мы хотим рассмотреть здесь в основном вопрос, 
связанный с получением конечных низко энергетических поправок 
к различным физическим процессам в однопетлевом приближении. 

Прежде всегв мы остановимся на обсуждении результатов, 
полученных в последнее время Леманом для описания F"-£~-рассея­
ния при низких энергиях в киральннх теориях 1 8 . Леман рассмот­
рел кирально-инвариантный лагранжиан в экспоненциальной параметри­
зации. Одним из оснований для выбора лагранжиана в такой 
параметризации служит то обстоятельство, что лишь при такой 
форме нормально упорядоченный лагранжиан взаимодействия приводит 
к локализуемой микропричинной теории ( см, ™ ) , 

Классический кирально-инвариантный лагранжиан может 
быть записан в следующей форме 1 8 » 2 Э х 

- « - м*гТ& ( 5 , 1 ) 

Обратим внимание на явное сходство последнего члена в (5*1) 
с лагранжианом ( 3 . 3 ) , получающимся из псевдовекторного взаимо­
действия нуклонов с F ~ - мезонами. 

х Здесь не учтен еще псевдовекторный ток, Леман учитывает 
вклад от него с помощью перенормировки оильной константы овяэя. 
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Эквивалентная преобразованием спкнорвых полей можно 
заменить псевдоскалярную связь яуклон-меэонннх полей на псевдо-
векторную в лагранжяаяе ( 5 . 1 ) ^ . Леман использовал для своих 
вычислений первая вариант связи. 

Разлагая лагранжиан ( 5 . 1 ) по степеням поля а? и вводя 
нормальное упорядочивание, переходим к формулировке теории 
возмущении квантованных полей. Нас будет интересовать -f£ -
приближение* Это приближение вполне приемлемо для описания 
при малых энергиях членов не выше четвертой степени по импуль­
су пионов в амплитуде рассеяния. В данном приближении в 
амплитуду рассеяния будут давать вклад пять диаграмм ( см .рис .1 ) . 
В случае псевдоскалярно! связи использование внэкоэнергехи-
ческих теорем позволяет определить однозначно вклады в 

; - /7tfO#M НУКЛОНЫ, 

РисЛ 
амплитуду рассеяния от нуклонинх диаграмм С' , а и & 
при любой регуляризации расходящихся интегралов. Иная онтуация 
имеет место при вычислении вклада в амплитуду рассеяния от 
диаграммы 8 . З д е с ь дияь суперпропагаторныйметод позволяет 
получить однозначны! результат х . Поэтому на вычислении выра­
жения, связанного с диаграммой о , мы здесь и остановимся. 
х^ Укажем, что при псевдовекторной связи нухлон-пиоввых полей 
и вклад от диаграммы С следует вычислять, используя 
суперпропагаторный метод. 
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Записывая амплитуду раосеяння в обычной форме 

( 5 . 2 ) 

мы получаем следующие вклады от интересующих вас диаграмм:; 

A,t) - ~ j*Jw*Afa<&#ff+№•")&%, fr*8+ (5,*) 

Общий вклад от нуклонных петель равен 

^ = /4; ^ 'Л.; --/£%'-*"-«*) • <5'5) 

Теперь наша задача заключается в опредеяевив неизвестных 
параметров °SiT и </Я!Г , Покажем, как они вычисляется. 

Из лагранжиана (5 .1 ) находим для 2T-ST взаимодействия 
следующую форму: 

s _ 1&Ш-&№*]г* &***#Ф 7 (5.6) 
Для матричного элемента в двухвериинном приближении о 

двумя свободными концами в каждой вериине получаем отсюда 
выражение 



где 

/ "' 4 sj?/HJpfyr]faJ аГ#№##№«#Уз***Х*н*+**+з)% 

&о 

« л С 5 ' 8 ) 

Здесь 

&fn) = fe***)f*» + 4r)t 

Вновь используя предехавяшив (2,5), получаем в импульсном 
пространстве 

*V fS-*tr*j/ ( ,г/ ( 4 / /у/?**) ***** 7 

, t (5.I0) 

4 
/*{*%+*) Д*н* IF * 

Коиур / окружает реелькув аодовкеямда) ось, обходе 
точку нуль по часовой стрелке. В у г •» оркбжшхеие даех 
вклад лиь вычет в точке ? ~ ^ . Внчкслвл его, пркходш к 
ревультату 

(5,11) 



Здесь <y'/W " ^z J зависит от выбора кйрадьвого 
лагранжиана, С - конставта Эйлера. Щвнение ( 5 . I I ) о ( 5 . 4 ) 
приводит к следующим значении дня параметров oSiw к о/гуг 

z 

яг'х < г " •<* - £*ф/*е " # • ? • (5.12) 

Следует < заметить, что величина о ^ у оказывается зависящей 
от выбора кирадьяого лагранжиана в той иди иной форме. 
Здесь уместно заметить, что в работе Хонеркампа била 
сделана попытка построить кирадьно-январмантинй суперпро-
пагатор 2 ^ . Параметры е ^ у , вичиоленнме в таком подходе, 
уже не будут зависеть ох выбора лагранжиана. 

Используя полученные значения для о/ ,^- ж дополнительно 
учитывая перенормировку пнон-нухлониых верная, Лемаиу удаяооь 
получить следующее выражение для массы j> - меаона 

если y V - -~р , где / у - 92 ыэв и ^ , = 1,25 
( faiir - перенормированннв заряд пнон-нуклонного взаимо­
действия). Главный вклад в поведение Р- волны в его расчетах 
дают диаграмма а и нуклоннне диаграммы. Для описания 
поведения ^ - - волнн важен учет пионной диаграммн ё • 

Заметим, что, на нам взгляд, было бы интереоно учеоть 
маоон Т- мезонов в диаграмме g , жопохьвуя, например, 
метод, предложенный в работе 2 5 , а также рассмотреть вариант 
псевдоввкторнся мввон-ву клояяой овяак, при которой иэвеотна 
точная форма перенормировки вершин, а вклад вуклонннх петель 
вычислить супероропагаторннм методом. Эти расчета мы 
яадаемоа провести в бджжаижвм будущем. 
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В качестве других приложений суперпропагаторного метода 
в теориях к ирального типа мы приведем здесь примеры вычисления 
характерных диаграмм, давщих существенные вклады в поведение 
электромагнитных форм-факторов пионов и нуклонов и в разность 
масс Яг — мезонов. 

Вводя градиентно-инвариантным образом электромагнитное 
взаимодействие в лагранжиан^.I), приходим к форме 

(5.W) 
Используя лагранжианы (5.6) и (5.14) для вычисления матричного 
элемента, соответствующего диаграмме, изображенной на рис.2, 
получаем 

< ;т 7 И'/ г, • > , V f 0W; А:, ,,;) , « - В Д 

где / ^ " / v ' / V , / - / С , /h • /?*{?) • внешнее 
электромагниткое поле, /7^./?) - электромагнитный форм-фактор 
7Г- мезона. 

Вклад в 77.,,,, ft/) от диаграммы j - равен 

/ ' 
»=з 7 

-a Q It О - yntpiv^c,™ fa rep 
. -'/T-Jfrji''-' 

/0f) -fib V/jL/ft)i4?*)SMfifa K)J£fi), (5.16) 
где 
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/X )** 4/Z«<3i (5.18) 

Поскольку нас всегда будет интересовать лишь однопетлевое 
приближение, то диаграммы с *имя и более внутренними линиями 
нам интересны лишь с точки зрения их регуляриэующих свойств. 
Поэтому мы будем считать, что пропагаторы, не входящие в £•(/), 
берутся в точной форме массивных пионннх пропагаторов, а для 
пропагаторов из C-fx) мы используем безмассовую Форму, 
сохраняющую лишь вид главных особенностей массивных пропагато­
ров (см . работу 2 5 ) . В результате получаем следующее выраже­
ние для /?£ {?) j 

-С -г Л2 

где 
, r / . . A l . J ** 1,(22*3) (5.20) 

+ *X- ft> *} 

4*» (c/> 7 ] s'fa'fa№**}* Ян/?'»*'1/ #!(***НЛ&#-«г>£) (5.22) 

Здесь A Au /f, ?) - градиентно-неинвариантный член, который не 
будет давать вклада в однопетлевое приближение, если, следуя 
Оаламу 1 б , ввести множитель Л2-. ) л

 t и к пределу е = о 
переходить в конце вычислений ( обсуждение подобной процедуры 
си. в работе Салама б ) . 

Чтобы ВЫЧИСЛИТЬ ДЦ (f) в однопетлевом приближении 
достаточно в интеграле(5,19) взять вычет только в точке % = с 
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f°i.i&K &.&-£*£ (5.23) 

Первый член в (5,23) дает вклад, в квадратичный радиус '/Г -
мезона. Оставшаяся часть при малых энергиях пропорциональна 

Ч/к<< и описывает энергетическое поведение пионного форм-
фактора при малых ай . Пр у *" s- £ /л' *' здесь 
появляется мнимая часть, поскольку начинается разрез в 
плоскости у л . Бели просуммировать цепочку, состоящую 
из диаграмм типа f , то можно получить А - меэонный 
резонанс со значением массы /•>?„ *- 960 Мэв. 

Скажем еще несколько слов по поводу вычисления разности 
масс Ж - - и >"'"- мезонов. Существенный вклад в разность 
касс этих частиц дает следующая диаграмма ( см. рис.3) 

? мезон 
фотон 

Рис.Э 

"'Заметим, что учет в /Jjfl 
в том же порядке по /" 

^r i i i i tb суперпропагатор 

треугольной нуклонной диаграммы 
, дает значение для м* • 730 Мэв. 
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Матричный элемент, соответствующий этой диаграмме, 
равен 

-л <v<-j) Wv ';• -<j) 2 ft* -j,), <9М 

где 
• >, i Г 7 /" • * г ,7 ^ 'Л?/7 (5.25) 

Выбирая фотонный пропагатор в калибровке Лаядау, иохно пере­
бросить одву производную во втором члене (5.24) на свободный 
меэонный пропагатор и привесхи выражение (5.24) к виду 

ф "Шт^А ^ мы*№м&<>, е-») 
где 

А. 

Ь-П ' - •-'/-••jrt/f <Ч , , .-«- , 
£Л-<*//КГА'<*-; I С5.27) 

а Щ.ш М ' фотонный пропагатор. Представляя G-f*) 
в интегральной форме 
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- / - ^ - / e v 

где параметр / > 2 , можно сделать сходящийся интеграл 
по с/*Х „ переходя к евклидовой метрике и вычисляя 
интеграл по углам, получаем 

ф , ±Г **'* , , Л* (W? (£j£*)(*!k) ,,;?) (5,29) 

Здесь функцию ^Y^J удобно разделить яа две части. Одна 
из них (pt(Z) соответствует части /д^^/х) , содержащей 

^OMI/ > а У^/^J соответствует продольной части $#>>/*), 
Тогда 

(5.30) wfewpf) 
^( /'*) - функция Кельвина. Основной вклад в интеграл 

(5.29) дает вычет в точке # = - I . Этот вычет обязан 
своим происхождением полосу функции fa/2) П Р И ^ " " 1 # 

Если разбить область интегрирования в (5.30) яа две части, 
то полюс у функции <fi/2) будет лишь в той части, где со­
держится точка С ." • 
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Оценивая этот интеграл при малых значениях •г , получаем 

^ Г П = ~ "ТТТ" • (5.32) 

Теперь подставим это выражение в (5,29) и вычислим вычет 

в точке / "-" -I ( Г - I) 

.,. : ., xjr а/г C 5 - s > 
Подобным же образом вычисляется и остальная часть 2^ . 
Вычитая из этого в ражения вклад от #"'- мезона, равный поло-
вине / , получеэм для разности масс W " »- мезонов 
следующее значение, связанное с учетом только диаграммы с£ х 

£'К С: I ИЭВ . (5.34) 

Это составляет приблизительно четвери, истинного значения , 
равного 4,6 Мэв. Учет других диаграмм должен улучшить этот 
результат. 

На этом мы заканчиваем обзор различных приложений супер-
пропагаторного метода в квантовой теории поля. 

§6. Заключение 

Рассмотренные здесь примеры показывают, что суперпропагатор-
ный метод обладает весьма универсальными качествами и применим 
в самых разнообразных областях квантовой теории поля, в мезо-
динамике, электродинамике, в теории слабых взаимодействий и 
для описания кирально-симметричных взаимодействий с успехом 
можно использовать этот метод, что приводит к теориям с конеч-

х3аметим, что разность масс >Т - мезонов вычислялась супер-
пропагаторным методом в работе 2 б . Но, к сожалению, вычисления 
том проведены не совсем корректно. 
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ными перенормировкаии физических величин. Конечно, трудности, 
связанные, надример/ со слабой сходимостью ряда теории возмущений 
при описании сильных взаимодействий, остаются. Однако при 
малых энергиях теорию возмущений вое же можно использовать и 
получать вполне корректные поправки, например, для процессов 
рассеяния частиц ( cu, 8 ) , 

Особенно перспективным, как ухе было отмечено, мы считаем 
приложение суперпропагаторного метода к теориям кирального 
типа . В любую вершину, содержащую 7Г- мезоннне или нуклонные 
линии, можно ввести нелинейное JT- мезонное взаимодействие 
кирального типа, дающее как бы конкретный вид "мезонного обла­
ка", и с его помощью, используя суперпропагаторный метод, 
регуляризовать ультрафиолетовые расходимости в петлевых 
диаграммах. Это яа новом языке осуществляет старую программу 
описания "одетых" частиц. 
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ФУНКЦИОНАЛЬНЫЕ МЕТОДЫ И ЭЙКОНАЛЬНОЕ ПРЕДСТАВЛЕНИЕ 

Б.Н. Барбашов, В .В . Наотеренко 
Объединенный институт ядерных иооледований 

Почти вое б е е исключения методы, которые являются современным 
"рабочим инструментом" физиков при анализе адронных взаимодействий 
(дисперсионные ооотноиення, пояюоа Редже, дуальные модели, оптичес­
кая модель и т . д . ) , п р о х о д я т проверку или «е находят своё обоснова­
нии в рамках иагранжевого подхода в теории поля. Одно из свойств 
систем, рассматриваемых в квантовой теории поля (КТП), - это нали­
чие бесконечного числа степеней овободы и поэтому адекватным мате ­
матическим аппаратом для описания таких систем является метод функ­
ционалов * , который вместо о тем предотавяяет кардинальный выход 
ва рамки теории возмущений в награнжевом формализме 2 " 8 . 

Компактная аапиоь реиений уравнений квантовой теории поля ч е ­
рев функциональные интегралы оказывается полезной для многих при­
ложений 9 " 1 3 . Эффективность этого подхода в таких направлениях, 
как квантование полей Янга-Милоа, построение квантовой теории г р а ­
витации, была продемонстрирована в работах ™ . 

В рамках функционального метода предпринимаются попытки полу­
чить приближенные реиения уравнений квантовой теории поля в тех ияи 
иных упрощающих предположениях. В втой овязи оледует отметить рабо­

те то 
ты " *•' по иооледованию функций Грина и амплитуды рассеяния в ин-
ФракраоноЙ облаоти с помощью приближённых оценок функциональных и н ­
тегралов. Эти работы дали возможность в последнее время распростра­
нить метод функционального интегрирования на исследований высоко-
энергетичеоквх процеооов в теории поля. 
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В работах 7 » 8 была првдлояена приближённая вппрокоимация функ-
ционаяьянх яятвгралов (лрябпнженне прямолинейных путей), приводящая 
к эйкональному опнсаняю раосвяння в обяаотн больянх анергий и фикси­
рованных передач. Обоояованяе эйконапьяого представления ампяитудн 
рассеяния в явантовой теорня поля имеет не тольяо оамоотоятелытй ин­
т е р е с но является ваяннм еще* и по оиедуощей причине. Для опяоаняя 
высоковнергетичеоких адронных взаимодейотвий предлагаются различные 

те 

полуфеноменологичеокие модели, например, оптячоовая модель , "пе­
пельная" модель Чу и Янга 1 9 ,редше-эйкональная модель, предложенная 
Арнольдом 2 0 ,и т . д . Эти модели берут аа основу винодельное представ­
ление амплитуды рассеяния 

где &± - двухмерный вектор, перпендикулярний направлению отолк-
новения (прицельный параметр). С помощьюайвонаяьинх моделей удаётся 

21 воспроизвести основные черты выоокоэнергвтичеояих процеооов . 
Представление амплитуды высокоэнергетячеояого раооеяния в айко-

нальной форма ( I ) является весьма общим в том олуча.е, что оно не ба­
зируется на конкретном механизме взаимодействия и легко пожучаетоя 
переходом от суммирования к интегрированию, при учёте вкладов от боль-

22 
ших моментов в обычном разложении амплитуды по парциальным волнам . 
Воя динамика процеооа в эйкональных моделях долина быть введена пу­
тём задания конкретного вида фавн j £ как функции прицельного пара­
метра Ь • «.анергия •£.,-:.':.--.. 

Боля процеоо раооеяния можно очитать потенциальным и вид потен­
циала извеотен или же подбираетоя феноменологически, то , как было 
показано Мольером 2 3 , вйкональная фаза jC определяется ссотномением 
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fict>=-0*V<№**)- (2) 

В атом случае амплитуда рвооеяния в форме ( I ) о эйкопальной 
фазой (2) является просто приближенным реиением уравнения Шредин-
гера в выоокоэнергетнчеокой обяаоти ь т . 

При раоонотрении адронных вааимодейотвий айкональная фаяа 
л различных моделях овяанваетоя а раадичннми характеристиками ад-
рона. Так, например, в "капельной" модели Чу с Янга 1 9 отаяхиваю-
ниеоя частицы рассматриваются как проотранотвенно протяженные объ­
екты, адронвые плотности которых описывается функциями oCfy&iA) 
it айкональная фааа даётоя выражением 

jCcB) ~Jjoth A j> ?£)/№, fi;ytfS>, (з) 
где Kc&,£z) - функция, описывающая механизм взаимодействия. 
При контактном взаимодействии , а в ояучае 
обмена виртуальными частицами K&i, ъ\) заменяется соответствую­
щим пропагатором этих частиц. Практически при анализе акоперимен-
тальных данных РС^) отождествляются о электромагнитными форм-
факторами расоеиваюиихея адронов. Как будет показано в дальнейшем, 
такие модели могут быть получены в квантовой теории поля путём сум­
мирования определённого клаооа диаграмм. 

I . Зйкоиадьное представление амплитуды рассеяния для 
некоторых видов взаимодействия в теории поля 

Прежде чем переходить к непосредственному иооледованию выооко-
энергетичеоких процеооов функциональным методом, кратко изложим о с ­
новные моменты этого метода. 

В функциональном подходе исходят из представления функций Гри­
на через функциональные интегралы. Амплитуды раосеяиия связаны с 
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соответствующими функциями Гряна, хорошо известными редукционными 
формулами 8 . Например, в случае нуклон-нуклонного рассеяния в ска­
лярной модели ^ f У f имеем: 

где # - конотанта перенормировки поля У . Черна у двухчастичной 
функция Гряна £ . в формуле (4) означав*» что вклад несвязных диа­
грамм, опнонвавяях нввааииодейотвуюиив нуклоны, вычтен. 

Квантовая функция Грина вовя у понучавтоя пу*ем функциональ­
ного уореднения "клвооюеоких" функция Грина 

(fQCyUff) R got*?) в формула (5) представляв! собой, соответ­
ственно, одночастятаую функцию Грина нуклона во внввнем лоне ¥>&> 
и вреднее аначенив <Г -матрицы по вакууму поля f в ядаоанчеоком 
поле f £&&/?) УДО»ввярряе« уравнению: 

В дальнейшей будет но пользоваться аапноь ранения уравнения (6) о по­
моям фориаливиа соботвенного времни и функционального интегрирова­
ния по вукяотши траекториям 1 6 
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Еоля учесть» что <oiSto>=CfJflc/f(*> #o<f i» г д в 

о 

то, подотавляя (7) в ( 5 ) , получаем вамкяутое выражение для двухчас­
тичной функции Грива. 

Однако функциональные интегралы no dfcx) я cl^ty «очно не 
берутоя, и дальнейяее иооледование воэиожно л я п в рамках приближен­
ного вычисления функциональных квадратур. 

Однам на таких приближений является пренебреженве вкладом от 
полярнвации яуклонвого вакуума, описываемой диаграммами о ввмкнуты-
мв яуклотшми линиями (множитель S0W) в формуле (?) ) . Если по* 
ловить SoCP)-i * «о функциональное интегрирование по dfcx) в 
(5) легко выполняется, так как возникают гауссовокив квадратуры. 

Переход к иипульоиии переметим в функции 'Qi^&i\Jtt*jto 

и пооиедуввве неслошные вамены переменных интегрирования л*, %у^ , 
а также функциональных переменных zf <£>(ом. 7 ) повволяют вмдеввть 
полиса у фувкцим 4^9»*Л'Рм) • * « W соответствуют раовен-
вавяииоя чаотвцам до я после взаимодействия. В результате для ампля-
тудм рассеяния, согласно формуле .(*), получаем следу имев выражение: 

где введена сокращенная вапиоь 
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Let) представляет собой класоичеокнй ток нувлона, движущегося 
по траеяторвв, которая вадаетоя начаивтш в ковочным випу«оамн(/г-
и о . соответственно), относительной координатой хх-х^х В и функ­
циональной переменной л/*>^1 , оплывающей отклонение от пря-

х О 

водияейяого пум*' (ом,рис.1); 

ft J о 
— со 

%*: 
<&? 

РиеД, 

Прн разложения (8) в ряд по 0* функциональные янтегравы по ol^) 
вычисляется точно и получаются выражения, соответствующие диаграм-
ман (рио.2) 

х^ В действительности У<У; является кпасоичеоким токов точечного 
нуклона только прн векторном обмене, В атом случае i<x) имеет 

В скалярной модели j>cz) опноывает проотранотвеннуо плотность 
"нуклона", движуиегооя по класоичеокой траекторин. Однако в 
обоих случаях Lcz) будем нааывать «оком. 
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•ft JL J J A l , 
Рис,2. 

Интересно отметить, что вдвоь воавикавт ввмкнутое выражение для 
воой суммы диаграмм данного порядка по Ф в компактной форме одного 
многократного интеграла по фейнмаиовоким параметрам' 2 5' 

•) + 
(Ю) 

ш7*ч 
где 

$ e m - \ o , z<o. 
При получении формулы (10) разлагалась в ряд лмъ последняя 

экспонента в ( 8 ) , которая соответствует обменным мовонам яа^диаграм­
мах рве.2. Неучитывевмиеон множители exPii$-jf'D"fcj G^**1} 
опноывавт вклад радиационных поправок к нуклонным линиям. После на­
полнения в (10) иятегрирования по виртуальнмм импульсам cffo по­
лучим: 
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ЗхвоЬ'ДС4&«<*«^; « &&>*>#) - детермявав» Чиохольма * 6 

квадратичной форт по «V » стоящей в покаватеие экспонента в фор-
вуде (Ю) . Параметры сСк относятся в мевонннм явная*, а параметре 
xt. , у £ аопоотаяхямоя нукяоввым пропагаторам. Праввяа Фейнмана да-
ют ввтеграямое првдотавнвнвв дая каждой отдельно! дваграшн теоряв 
воамудевай. С помощи фувкцаоваяьвого подхода воя оуааа яеотввчвых 
дваграам данного порядка по « аапжоава в ввде однсо многократного 
автограда ( I I ) . Эта запись оказывается полезной пря аоояодоваваа вн-

25 
оокоэнергетячеокого поввдвнвя такой оуввм дааграш ь . 

Варвохоя а предотавловню ампкатуды раооояввя через функциональ­
ные интегралы ( 8 ) . На атом првнора продемонстрируем првбтевяув-
оценку фуввааонаяьнвх ннтаграяов в виоовоавергвтвчвояой обяаотя (прв-
блияеваа прявояявевных иу«е1 няа ввковаяьяЬв врвбахаевве). 

Интегрирование по функциональным подменяем )? ty С<*', -О 
в (8) ооуаеотвяяет су шарование вкладов, которые вносят а ашгоятуду 
раооеяная всевозможные траектории ваанмодеЯствующнх вуваовов 8 . 

Предполагается, что при высокоэнергетяческом расоеяяаи вперед 
^(fa+fcfi* **> ir»(fc-*ijm-9«*Mt дня кахд^о Фиксированного вна-

чения отяооительной координаты xt-xA аа всех возможных *ракто-
рий нуклонов (волнистые авввв на рис.1) основной вклад давя прямоли­
нейные пути (пунктирные линия на рно.Г), аадававмве иеправлеяявш им­
пульсов нуклонов до и после рассеяния^. Это 08начввт, что в; рассмат­
риваемой кинематичеокой обжаотя можно опустить в нуклонных токах (9) 
функциональные переменные Д<$) , опюывавмде отклонение от пряможв-
нейннх траекторий. На языке диаграмм Фейямана такое приближение приво­
дит к линеариэацяи нуклонных пропагаторов по импульсам виртуальных ме­
зонов, то есть к вамене: 
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где f> - импульс одного яв раооанвавяяхоя нуклонов, к,- - импульсы 
виртуальных иезонов. Однако более удовлетворительной в точня зрения 
сходимости фейнмановоких интегралов является вплрокоииацяя пропага-
торов, сохраняющая /г,- : 

-t 

Тавим обрввом, предполагается, что произведения /ок,- эффек­
тивно более ваяны в выооковнергетичеокой обнаоти, чем к* к, с<'Ф/) . 

В функциональном подходе вто соответствует следующему прибдияен-
ноиу вычиоденви ?-?!»айзгальннх внтвгралов^ 1 6/ 

РДв • > ' • е * J 

. : " . . . . ' * .- • : - а ' : " " " ' • . 

Првбияяение получило наввание приближения прямолинейных путей 

В потевциальном расоеяняи вйковальвое приближваие такие оводит-
оя к модификация пропагаторов в данном случае нерэлятивиотоявх. При 
этом соответствувяяе формуяы полностью аналогичны ваменам ( 1 2 ) , ( 1 3 ) . 

Вычиояеаяе функциональннх интегралов в формуле (8) с помощи» 
приближения прямолинейных путей приводит в внооковвергетвчеовов об» 
ластя к вйконаявному предотавленях» суммы сЛобщеннтге лестничных диаг­
рамм 7 ' 8 » 2 7 ' '•';••' 

т ' V •'•"•' V -"": 

а а •/ , =>/-А -^- * j-) * 
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Пр. обмена ояалярнюш чаотвцами вйиояаяьвая фаза jC онаннваетоя рав­

ной 

а в модели о векторными мевоовмш 
А 

jccix^KocBm 
где К* - Фуннции Кельвина нулевого поражав. 

Радвапионвне яоправвв к яунлоняим аяняям на рно.2 врвводот « 
множителя е"а,Н в ( » ) . Фааа ^ (15) ооотнатотвуи иотввдмая» Вяа-
вн между ввеимодейвтвуюиими нунионаии, убивавшему о внергиаи в м а л я р ­
ном едучае VcztS)*~3£g ^ 2 и не зависащеыу от энергии в вектор­
ной модели V « j « - | £ б ' - ' д • 

Кая оледует отовда, более реаввотидаЛ овавяваетев иодеж» о вен­
терями обменом, нотораа приводит в яоявому оечевнв, отреияиемуоя ж 
константе ври ^ » . В случав ояааяряой модели е** овавнваетоя 
убюаваии мая 4- ** в доминирует яви» борвовояяй член. 

В обоих еаучаих фавн получайте* чиото дейотаатвяъвнмм я , олвдо-
ватеяъво, влвявяе неупругого раооаяяяя в раооматриваемем ярибвиаии 
не учвтиваетоа б**"**? . 

Учет ообетвевно виергвтичеоних вотавоя в мевониме лявп ма диаг­
раммах рво.2 может быть ооущеотален аамевой свободной функция раонро-
отравёавя Я' в (3) на волную фунжпи» Грина Vе* . Одиаяо бняо пояа-
ааво г 8 "...»чта тавой учет во првводи» к намелена» внергетвчарвои вавв-
ожмоотя'в айяонаямой фава в соответствующий потенциал оотаетоя по-

** Амплитуда Т в ояотеяв центра иаоо нормирована уововвев: 

iff, JT*.t)l\ &*£ ^1тТс*,Ы*). 
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прежнему действительным а сингулярным в нуле. Последнее утверждение 
следует из того факта» что замена JDe на Лс' не улучшает оходвмоети 
интеграла no d к в анражавав Jj'r^c,/t » приводящем к эйио-
наяьной фазе, (Навеетно, что полная функция Грана Dc с*) убывает 
прв бовьжмх к « по крайней кара, на быстрее Де(,к) ) . Тот яа 
клаоо диаграмм ( р я с 2 ) раоомотрен в другой кинематической области 
S~ltH °° " (выоовоанергетжчеокое раооеяяна ва божьяве углы). 
В атом случае выражения вида; exPf*'-$,

(f*',I)C'J*-} С&*49&) в форму­
ла (8) приводят в появлению в амплитуде форнфакторла раооаивавцихоя 
чаотвц (выеото е~аШ в (15) ) : 

где ф&) = ех/0{--£р71 *&•] - упругий формфавтор раооеивагао-

гооя нуклона в дважды логаркфмичеожои приближении 5 0 (модель ^у'У'У). 
Сечение в атом олучае пропорционально четвертой степени форифажтора, 
Что мокво раооматржвать как подтверждение в рамках К.Т.П. гзпотеан 
By к Янга о рояж упругих формфакторов в выоокоанаргатичвоком рассея-

19 
вив " . 

Возникновение в (14) фавн, ооответотвующей потенциалу Ювавм, бы­
ло обусловлено простым жоаовжыя обменом мевду нуклонннми линиями 
(рис.2) . В теоретико-полевом подхода можно уояожнить характер обмана 
между раооеижамишяоя нуклонами м ввести, например, промежуточное ма-
аоввоа поле и с*) , взаимодействующее о нуклонами ж создающее их 
структуру. Выбирая лагранжиан ааавкодвйотвжя в wmi^mtmffff'ttu^» 
где А - жонотаата ваавжодайотввж ояаяярвмх полей и (о маооой зе ) 
i f (о массой /л ) , ни «ем оашш приходим ж графикам вужяов-вувиовво-
го рассеяния ва рис.3, которые в оужшруотоя в рамках функционально­
го подхода. 
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Г" "--г*"' 
S^ [ 

Ряо.5. _. 

Как было показано в работа г 8 , такая иодвфяяацвя вэаимодейот-
вия также приводи к айконамьному представления амплитуды раооеянян, 
но о воаой фазой, пропорциональной произведении формфакторов раоаев-
ваюиитоя нуклонов (ом.(15) ) : 

гдеведячяяа Г с « - А * Ч ю е # л р * £ ) " * щяяатоя формфактором 
нуклона в яяаяон порядке теоряя возиуяеяяй ло константе h . Такая 
структура айконахьной фавн (16) соответствует "капельной" модеяя вы-
оокоэнергетичеокого взашодейотвяя' 1 9 '. За очет бистрого убпаниа 
F(£) вР» *+ °» вятеграя по d% в ( К ) конечен при яюбнх аиа-

чэяяях 5 , т .е . такая айконалмая фаза ооответотвует нвовнгужяр-
нону потенциалу (ом. также 2 7 ) . Кая язвветяо, предположение о глад­
кости аффективного потенциала, яяя кваавпотеввяаяа является ооновнвя 
яря яоояедоваяяя выоокоэнергетичеокого раооояяяя в рамках квантовой 
механике 1 8 « 5 1 . г 

Убывание айконаяьяой фазы / в форяуяе (16) о роотоя s выво­
дят к тому, что воя амнжятуда отремятоя к константе вря ^ о , ,. 
а ножное сечение падает яак £ , Таким образом, яноохоавергетячео-
кое поведение амплитуды я сечения в раоонотреяной яодаяя оваввваетоя 
такая же, как к при оумявроваввв яоавоаяовяш жеотничнмх дяограям в 
•ворвя -J^-ffV/ . 
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Рассмотрим следующую модель высокоэнергетического рассеиния •"- . 
Каждый из нуклонов (поля # и % ) связан со своим мевонннм полем YJ 
и % , соответственно. Эти ыеэонные поля взаимодействуют друг с другом 
"контактным" образом: tf'^tifsf/. * h -константа связи, имеющая 
размерность квадрата массы. Введение такого лагранжиана можно рассмат­
ривать как моделирование <ff - взаимодействия: 

Полный лагранжиан вааимодейотвип имеет вид: 

Все поля У;- и ^ для простои считаются скалярными. Примеры диаграмм, 
описывавших рассеяние нуклонов в такой модели, даны на рис.4. 

/г А - h 
\ЛЛЛА/ = ^y^T^^^f" 

Рис.4, 

Используя описанную выше технику з г , получаем айкональное представле­
ние для амплитуды рассеяния нуклонов: 

где , 

К о ^функция Кельвина. 
Боли Ihl <£JH1 \ то вйкональная фаза jC соответствует ревно­

сти двух потенциалов Юкавн: 

121 



Таввш оврагом, аффехтввныв потенцией овавнваотов гладквм 
( V c ° ) = 0 ) в убывающим о энергией. 

Вода во lh I > /* , t o фааа уС в форму» (I?) отановнтон 
BOBBXOBOBOlt 

где J 0 • AJ - Функция Бассейн. Дхв оврадававвоовв очвгяом, что 
1уо I в прв вотвохаввв интеграиа во d*k в форвухе (17) учвты-

ааав п р а ш о обхода вохвоов (уи*-*уь 4-с'«5 ) . «ава (18) ооответот-
iyaV вомпхавовову эффективному потенциалу, который будет п а д к а , 
так как jC г (18) конечна врв $-* 0.jlc&s)% (17) в (18) убыва­
ет о анерлев, ожедоватехьво, похвоа сечение в давно! модаав падает 
о ростом # как ^ •,:/•• 

2 . Учат аМвввов пЬмпваадвв имттма 

Приеденные ввва воохадоваввя выоовоаиергетвваоввх процессов 
не учитывала аффектов похврвваввв аавуума, «о e o n & О Д в фор­
вухе (5) вохагахоов равным I . Провебровеево вавуувшшв эвхадажв при­
водит в тому* что вхвввва ноупругвх яроваввов ва упругое раооаянве 
принимается во внвванве. Сиедотвиов аторо явхяатсв часто донспв-
техьвав ввховахмая фааа вфорвухах (15) в (16) . Новво омвдат», что 
обняв божео оховвлвж внртуахънавв коввхево&вж о вавкнутвмв вуввов-
ннвв хввввхв вовххвет ва ввоовоаввргатвчаовоа вовадовва авшштухя, 
предотавхенваи в аххонапнов форвУ 5 5 / , прв м о и ввивая ч а т ввха-
да вавввутых патах» доххва приводит» в отивчвов о* вуха миимов чво-
тв вхвоваввво! фаав. 

ias 



Возможность предотавнть в айкональной форме амплитуду раооеяния 
с полным учетом вкладов от поляризации вакуума исследовалась в ряде 
работ функциональным методом 5 * I B теории возмущений 3 5 . 

Если предположитьt что в процессе высокоэнергетнчвокого рассея­
ния исходные частицы (прямые линии на диаграммах рио.5) переносят 
большой импульо, а импульсы, протекающие по волнистым линиям, малы, 
то в атом случае можно линеаризовать нуклонные пропагаторы (формула 
(12) ) , то есть опустить функциональные переменные ^fy в нуклон-
ных токах ( 9 ) . Как было показано в работе , 

1 

Рио.5 Рис. 6 

это сразу позволяет представить амплитуду рассеяния в следующем виде: 

(19) 

где - й = * f а эйкональвая фаза jC выражается через 971(fi*j^ 
так 

Величина fflcJ) записывается о помощью функционального интеграла 
по мезонному полю Y следующимобразом 

= СфНые*Н'Ъ^ (20) 
Токи / получаются JIB точного выражения ( 9 ) , если положить ^ - ф " ^ 

В р а б о т е ^ 3 6 / был выбрав коикретвый класс диаграмм, учитывающих 
вакуумные вклада, а именно диаграмме, в которых обмен между раооеи-
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вавввмиоя частицами ооуцеотвлаетов "лестницами" ъЬ - канаве (ои.рно.5 
в 7 ) . Хорово вэввотно/ 3 7 / , что суммирование таквх диаграмм прв <s^-° 
приводит к редвевовову поводоввв акпявтуди раоооаввя (%) • По­
этому, оовв просуммировать в S -канаве леотнвчвна обнови, то ковко 
получать вйконаяьвув фаву, растущую прв &-* «•* ы9> ху , а ко убываю­
щую, как ото вваат место в Формуле (15). Два такого суммирования в Фор­
мулах (19) к (20) веобхоишо удержат* в Л W лнвь чаек четвертой 
отепевл по ? 

Берн вместо млада одной петлм / I t оунву лестничнмх диаграмм, полу­
чаем -

•0**&t&** **&$-')* (а, 
где вводов овгаатурвн! множитель 

ГСЯС-9'JJ лья*е-?Ь • 

В формуле (21) авконапнаа фааа предотааляет собой двумерны! фурье-об-
рав от вкаада полюса Водке. Внергае такое оредотавлевва вояучвв ав-

20 воавд . Требуя, чтобн борковокв! член акшитуды раесоянвя, аапиоан-
нов в в1конаввво1 ф о р е , оовпадал о аивявтудов в моделв полюсов Редко, 
ов определил аномальную фаву / . 8тв вдев далее нолучвла раавитие в 
работах з в . 

Иа-аа овгнатуриоро мноввтелв фвва / n e e * девотватеяьвув в ивв-
кую чаотв, првчам Тт/>0 , как к требуется во уоловв» унитарности. 

Воак орраяачнтьоя янве1нвм прибяивеввеи для траекторвв oCC-fi 
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то ^ оказывается пропорциональной следующему выражению : 

Такая фава соответствует комплексному таусоовскому потенциалу, вели-
чина которого растет с энергией как Jfr-г? ? а эффективный радиус 

yens' .—___—, 
вааимодейотвия увеличивается пропорционально Уос %р • 

Если oC=-i+ * . . ) / , то при прицельных параметрах S*> 
> 00 - ЧеС en SG*0 -i) fi экспоненциально убывает, и величина 
B'-i-f 0 . Отсюда следует, что главный вклад при интегрировании по 
А' в эйкональной формуле (21) дает область'•'••$< 80 . Поэтому амплиту­
да ведет себя так! g 

Tcs.i) - frtsfldf 3*cis)=w£ЭЛ(1.АУ> 
. p (22) 

Полное сечение взаимодействия <5Г = j r пропорционально 
at 'S , что как раз удовлетворяет границе Фруассара. Нуклон-нуклон-
ное рассеяние в этом случае можно рассматривать как дифракцию на объ­
екте, размеры которого логарифмически увеличиваются с ростом энер-

ЗУ гии •" 
tot Бели ofo=i • то Tcsj> ~ S и & -* e 6 r t s • При ы„И 

в эйкональной формуле (21) доминирует борновский член и Tcs,t)~$ ", 
а & у.-_&.:-.-+:\0 . 

Таким образом, учет иезон-мёэонного взаимодействия в процессах 
куклонного рассеяния в высакоэнергетичеокой области даже в простой 
скалярной теории приводит к физически правильному энергетическому 
поведению амплитуды рассеяния нуклонов. Существенно, что константа 
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взаимодействия в этом случав должна быть велика 

Согласно формуле (22) угловое распределение рассеяния имеет первый 
провал при t0=-A*-~ji~-£rs . Это значение £ можно принять 
за ширину дифракционного пика. Следовательно, в реджв-эйконадьной 
модели дифракционный пик сужается с ростом £ , а проиаввдение шири­
ны пика t 0 на полное сечение остается постоянным (воли считать, 
что о(0} i ) : 

JL ^ tot { 0 * /. 
Г0*<^ ~ -0 • # = Const. 

Заканчивая обсуждение редже-эйконального представления амплитуды 
рассеяния, отметим слвдущее интересное свойство атой формулы. Оказы­
вается, что w -ый член разложения в ряд пс фазе уС амплитуды (LI) 
дает в высокоэнергетической области такой же вклад, как и разрез в 
комплексной плоскости углового момента в перекрестном канале' " ' . 
Этот разрез начинается в точке 

/,С*)-»*(£)-»+*. (23) 
Проиллюстрируем это на простейшем случае п =2. Для упрощения расче­
тов опустим сигнатурный множитель и функцию вычета будем считать 
константой. 

Как известно | Г , парциальная амплитуда j~.tt) с точностью до 
множителя пропорциональна преобразованию Лапласа-Меплина фс/, t) 
амплитуды Tcs, Ь) по переменной $ - ™ -§• : 

£ Ш ~ Фей i) - JTCS, Ь <2~Л# . (г*) 
^ J, & 

Подставляя в (24) Tz из (21), получим 
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-cjA 
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Действительно, вклад T^cs,b в ФО'>^) имеет логарифмическую точ­
ку ветвления при J=&*0-X-£•<*?'• ч * ° совпадает с формулой (23) 
при И в 2 . 

Воэвращаяоь в вопросу получения редже-эйкональной формулы из 
теории поля, надо отметить, что строго математического обоснования 
здесь нет. Исследование диаграмм о двумя лестничными обменами без 
аппроксимации нуклонных пропагаторов * 2 показывает, что формула 
(21) в этом случае правильно воспроизводит асимптотику, которая полу­
чается при суммировании главных логарифмов. Таким приближением можно 
ограничиться только в том случае, если константа связи Q, мала. 

Как отмечалось выше, интерес представляет как pas обратная ситуа­
ция, когда О- велико. Однако получить эйкональное представление 
для суммы диаграмм на рис.5, которое бы правильно учитывало младшие 
логарифмы при линеаризации нуклонных пропагаторов, не удаетоя . 
Помимо этого открытым остаетоя вопрос, к чему приводит суммирование 

44. 

неэйкональных вкладов , которые не учитывались в нашем подходе, 
Изучение обобщенных лестничных диаграмм в скалярной модели 

(рис,2) показывает ' , что эйкональная формула соответствует сум­
мированию в асимптотической области таких графов теории возмущения, 
в которых "лидирующая" частица, переносящаябольшой импульсj являет­
ся рассеивающимся нуклоном и не изменяется в процеосе виртуальных о б ­
менов с другим нуклоном. Неэйкональные графы возникают, когда изменя­
ется сорт лидирующей*частицы, например, с передачей большого импульса 
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от нуклона виртуальному неэону и наоборот. Примеры таких диаграмм, 
начиная с восьмого порядка по Ф и выше, были указаны в работе 
Если рассеиваются тождественные частицы, то неэйкональные графы по­
являются у не в четвертом порядке - , В этом случае наряду о диаг­
раммами на рис.2 необходимо учитывать "перекрученные" графы (рис,7) 

Рис.? . 
Перенос большого импульса мезонами приводит к тому, что асимптотика 
такого графа ^~ оказывается доминирующим по сравнению о аоимпто-

Щ j ....... 
тикой эйкональных графов ~ — в том же порядке теории возмущений 
(рис,2) , 

Функциональный метод позволяет единым образом просуммировать 
эйкональные графы в различных процессах высокознергетического рас-
оеяния и приводит к эйкональнын формам амплитуды рассеяния, оставляя 
при этом пока открытым вопрос о вкладе неэйкональных графов. Анализ, 
проведенный в работе , показывает, что в /7 -он порядке по конс­
танте связи отяоиение неэйкональной к эйконаяьной амплитуде для сун­
ны обобщенных леотничных диаграмм равно 

Более сложный клаос диаграмм по сравнению с редже-эйкональными 
графами был рассмотрен в работах ^ б . Основной вывод этих работ за-
ключаетоя в следующем утверждении. При учете диаграмм, в которых 
есть всевозможные связи между обменными лестницами (ом. рис.8),могут 
иметь место взаимные сокращения главных асимптотик отдельных диаг-
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Рис. 8 

рамм. В результате атого степень роста полного сечения может быть 
меньше, чем граница Фруаосара и, в частности, в рассмотренной ав­
торами модели: %ы = yZ ffc t \PP + j &Z. и** я путем суммиро­
вания диаграмм, представленных на рис.8, было получено постоянное 
сечение, 
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МЕТОДУ ЧАСТИЧНОГО СУММИРОВАНИЯ ДИАГРАММ В НЕПЕРЕНОРМИРУЕШХ 
ТЕОРИЯХ ПОЛЯ И ИХ ПРИЛОЖЕНИЯ К СЛАБЫМ ВЗАИМОДЕЙСТВИЯМ 
ЛВПТОНОВ И СИЛЬНЫМ ВЗАИМОДЕЙСТВИЯМ АДРОНОВ 

А. Т. Филиппов 
Объединённый институт ядерных исследований 

I . ВВЕДЕНИЕ 

Как известно , неперенормируемые (Н) теории поля отличаются от 
перенормируемых (П) как в теории возмущений, так и при выходе за 
её рамки. В теории возмущений это отличив проявляется в характере 
раоходймостёй диаграмм и в их зависимости от импульсных переменных; 
логарифмические расходимости - для П-теорий, степенные - для Н-тео-
рий, и соответственно, нарастание степеней Ь\£ (П) и нарастание с т е ­
пеней импульсов р при росте порядка диаграмм(для Н) Для извест­
ных точных решений и частичных сумм диаграмм отличие следующее: с у ­
щественная особенность по константе связи g при # = 0 (типа е, 3 ) 
для Пттеорий и точка ветвления (типа f}"(0*%) или д * )-для Н-тео-
рий; полиномиальная ограниченность при I P I - * » 9 для П и существенная 
особенность (типа р * е х р с р р > ) для Н. 

Детально проследить с оотноше ние между точным реше кием и рядом 
теории возмущений можно на примере уравнения Шредингера с сингуляр-
ным потенциалом \j(%) : перенормируемые потенциалы - V~ ^ 0 и ( t / < e ) , 
неперенормируемые п о т е н В Д а ^ У**$%"'ё#рЦ*~*)* 
Пользуясь кввзипотенциальным'методом, эти потенциалы можно получить 
соответственно в П-теориях, Н-теориях и неполиномиальных (НП)-тео-
риях. К аналогичной классификации можно прийти,исходя из уравне­
ний Эдвардса, Бете-СОлпИтера и из линеаризованных уравнений Дайсо-
на. '''"'•" 

Рассмотрим, например,уравнение 
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для псевдоскалярного связанного состояния $ фермионов f и f , 
взаимодействующих со скалярный полем <р (глуоны): 

$м - - f i S f t Y i + £ £ » n f * ! + ... CD 
Определив волновую функцию соотношением (4-мерное преобразование 
Фурье в евклидовом пространстве) 

Г(Р>) = р1 (М» + рО J * * 1* И * ** й < г } » (2) 
с 

находим для U уравнение 

Ap(t) = m ICC*-О flr2*)"1; (5) 

В этом уравнении потенциал есть просто пропагатор (произведение 
пропагаторов) глуона. Первый член есть П-потенциал, второй - Н-по-
тенциал. На этом примере нетрудно также понять, как получить потен­
циал, соответствующий суперпропагатору. Для этого достаточно в ла­
гранжиане ( I ) взять бесконечное число членов 

Структура членов, появляющихся в уравнении ( 3 ) , очевидна из преды­
дущих рассуждений, и мы приходим к потенциалу вида: 

Vb) =j*f%lfA,(*)l*-mf*vCi>;- ,(5) 
где с„ = «in /п.'. Этот потенциал ^очевидно ,имеет омыол, если ряд схо­
дится. Если ряд расходится при некоторых или при всех значениях £ , 
то нужно использовать более сложные методы аналитического продолже­
ния. 

• ? • # » • : • • . . 



Аналогичные уравнения можно получить для амплитуды рассея­
ния. Так, уравнение Бете - Солпитера для рассеяния лептонов в 
чвтырехфермиЬннои теории 

^ = | С ' Г , ^ - ^ О Ч И ^ М ^ ) * (6) 
можно свести к уравнению Шредивгара, которое при равном нули 
4-импульсе сталкивающихся лептонов имеет вид 

где V ~ G-Zft"e , U - коаер парциальной волны в разложении 
амплитуды рассеяния по полиномам Гегенбаузра. Такого же типа 
уравнения можно построить и в теории с промежуточным W -бовоном 

а также в теориях с неполиномиальным взаимодействием, например, 
в теории, в которой ^ - > ^ e*f> Ci ¥ + < Р /A ) , 
где Ф - заряженное скалярное поле. В последнем случае борвовский 
член содержит дополнительный множитель ~ Г 1 - - Г ДрбО] , т . е . по­
тенциал в уравнении ( 7 ) , имеет вид.» ^ т » л ^ * 8 а о выражение 
имеет при некотором значении ъ = ^ полюс, т . е . помимо особенно­
сти в нуде потенциал имеет особенность на конечном расстоянии 
(СКЧютевцивл, или потенциал с поверхностной. сингулярностью). 
Изучению свойств и приложениям таких потенциалов будет посвящена 
значительная часть доклада. Здесь, отметим только, что сначала 
удобно рассмотреть СКР-потенциалы, регулярные при ̂  • 0, напри­
мер, потенциал (5) о коэффициентами ^ в I , т . е . 

Ч/ЫЩ^ (9) 
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Такие потенциалы представляют значительный интерес для составных 
моделей адронов, что будет показано в конце доклада. 

Заметим, что проведенная классификация, строго говоря, имеет 
смысл лишь при использовании ТВ для потенциалов. Может случиться, 
что точное выражение для потенциала П-теорий окажется неперенорми-
руемым или же сверхперенормируемым.и наоборот. Однако пока нас 
интересуют теории с малой константой связи и не очень большие им­
пульсы, эта классификация сохраняет омысл. 

Отмеченная близкая аналогия между линейными приближениями в 
теории поля и уравнением Шредингера с сингулярным потенциалом на­
водит на мысль использовать методы, которые можно развить для син­
гулярного уравнения Шредингера, в соответствующим образом сформи­
рованных задачах теории поля. В неренормируемых теориях поля нам 
нужно в первую очередь решить две основных задачи: I ) научиться 
вычислять члены ряда модифицированной теории возмущений ( с учетом 
точки ветвления по константе <} ) , 2) найти поведение амплитуд рас­
сеяния при больших значениях энергии и малых передачах импульса. 
Со второй задачей тесно связана задача определения связанных и ре­
зонансных состояний. Для решения всех этих задач можно, как мы и 
делаем в настоящем докладе, систематически использовать лестнич­
ные приближения. 

Поскольку характерные особенности неперенормируемых теорий 
проявляются лишь при учете бесконечного множества диаграмм, то на 
первый взгляд кажется необходимым искать точные решения соответст­
вующих интегральных уравнений. Разумеется, решение такой задачи в 
общем случае совершенно нереально. Пользуясь малостью константы 
связи, можно, однако, существенно упростить решение задачи и раз­
вить более простые методы, которые обсуждаются в следующем пара­
графе. 
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§ 2 . Асимптотическая теория возмущений и диф­
ференциальная интерпретацияГ 

Основываясь на изложенной выше аналогии между теорией поля и 
сингулярным уравнением Шредингера, мы ограничимся рассмотрением 
лишь этой простейшей модели. 

Уравнение Шредингера (при К*0) 

с граничным условием u№.£*Q0 эквивалентно интегральному урав­
нению 

ч. " (И) 
Если I ( v ) - i 'T ? t r f j ° ) < o 0

f то ряд теории возмущений, получаемый 
о 

итерациями уравнения ( I I ) , сходится, т . е . функция v. регулярна по 
\ г в некоторой окрестности точки -f = 0, Если 1 = <*3 , то каждый 
член ряда расходится и необходима какая-либо регуляризация. (Мы 
выберем простейшую: tr-*ir f « • 0 ( i - e ; i r ( ' O ) . B первом случае потен­
циал называют регулярным, а во втором - сигнулярным. 

В сверхперенормируемых теориях поля потенциалы регулярны. В 
перенормируемых и неперенормируемых теориях потенциалы, соответст­
вующие конечному числу диаграмм Фейнмана,сингулярны, Сингулярные 
потенциалы удобно разбить на два подкласса. Назовем потенциал пе­
ренормируемым, если все расходимости в каждом порядке ряде теории 
возмущений для и- можно устранить подходящим выбором константы 
ренормировки %t , 
Теорема I ; Потенциал "тг( г ) t монотонно зависящий от г вблизи точ­
ки 1 в 0^ пврвнормирзвм в том и только в том случае, если для всяко­
го 4>0 найдется такое 1 4 >0 , что v(tj < с- i-*-* , т < ftf . 
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Следствие: Потенциалы, соответствующие конечному числу диаграмм 

Фейнмана перенормируеыой теории поля, перенормируены. 

Потенциалы (монотонные вблизи f «О), не удовлетворяющие ус­
ловию теоремы I , неперенормируемых'. Таким образом, в этом случае 
использовать регуляризованную теорию возмущений можно лишь при 
конечном значении £ . Предельный переход £+0 можно выполнить 
лишь для if(i)>C при -i-*0 и лишь для суммы всех членов ряда, 
которую можно представить в форме 

V, (7) = 1е [ W, (t ) Ъ< 11) + U/z(£ )ЬгСЧ > ] ( 1 2 ) 

Если V>Q при 1+0 , то ВД.^ О , Uz(x)^o°t 

Здесь ц,(п) - точное решение исходной задачи (10) . Выбирая 
7 g -const / w,(o t м ы получим в пределе £ ->0 точное решение. 

Наиболее общим приближенным методом решения сингулярного урав­
нения является метод "асимптотической" теории возмущений. 
Теорема 2: Пусть t/?0 = ^ ( ' ) + ^ ( г ) , причем 

•t1 п%) ^ + w , ( Jt ore(t) |>sOo;rVi < ° ° . 

Тогда 'i^ ft) - "хорошее возмущение" по отношению к невоэму-

щенной задаче 

Щ + [ V -^-Ь)1-2 - P^OoJ WsftJ = 0 . (13) 

Здесь термин "хорошее возмущение" означает* что если мы выберем 
в качестве нулевого приближения решение уравнения (13), то ряд 
х> Потенциалы, соответствующие конечному числу членов ряда 

неперенориируемой теории поля,нбпервнормируемы. 
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теории возмущений для волновой функции по потенциалу о~й( г ) бу­
дет сходя!рися= Спо/крайнейяиерездля достаточнолмалых значений Z ). 
Доказательство подробно проведено в упомянутой выше диссертации 
автора* Асимптотическая ТВ позволяет, г принципе, решить все три 
перечисленные выше задачи, но практическое использование её в КТП 
чрезвычайно осложняется трудностями вычисления первого приближе­
ния (соответствующего us) и, в особенности, чрезвычайной громозд­
костью выражений для следующих членов. 

Для конкретных расчетов удобнее пользоваться методом диф­
ференциальной интерполяции (МДИ), позволяющим перестраивать ряд 
обычной регуляризованной теории возмущений в модифицированный ряд 
по степеням <jj и w g , Идея МДИ основана на существовании пред­
ставления (12) для точного решения w £C*) . функции ЩО и W*(e) 
удовлетворяют уравнение 

Отсюда следует, что между членами ряда регуляризованной ТВ 

Ut(%) = «;о)Ы + ttff*) +U?(z)+... (15) 

существует рекуррентное соотношение 

МДИ можно сформулировать следующим образом.Допустим, 
что мы сумели вычислить конечное число членов ряда (15 ) , Подбе­
рем некоторое рекуррентное соотношение ( 1 6 ) , выполняющееся для 
всех этих членов, и опустим в нем верхние;индексы ( я , ) , ( x . + i ) , 
превратив это.соотношение в уравнение (14),. Мы получаем таким об­
разом приближение к точному уравнению ( 1 4 ) . Находя его решения 
ЦП) и «/*«.&) и сравнивая (15) с (12), можно найти (после пере-
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хода к пределу е -+Q *--жф}лщщж);*тщъЩ^1ПЧ№--ъ& 
ло членов ряда модифицированной;ft? <При;это1| осоо^шЩь по -f * 
возникает после предельного перехода). В описанной модели?это* 
метод позволяет получить точные выражения членов ряда модифици­
рованной ТВ, если уравнение (14) решается точно. Для прийлижен-
ного решения этого уравнения обычно удается пользоваться прибли­
женными методами, используя малость параметра £ , В чаотнооти, 
полезна асимптотическая ТВ, кваэиклассичеокое приближение и т . д . 

При использовании этих методов в теории поля остаются неко­
торые неопределенные параметры. Часть их связана о константами 
перенормировки, число которых определяется труппой перенормиро­
вок теории. Новые неопределенные параметры, по-видимому, не сво­
дящиеся к обычным константам перенормировки,возникают в тех слу­
чаях, когда эффективный потенциал оказывается не отталкивающим, 
а притягивающим. Эти параметры можно зафиксировать, сравнивая по­
лученные выражения с экспериментальными данными. Возможность их 
теоретического определения пока не выяснена. 

Отметим, что суммирование лестничных диаграмм позволяет по­
лучить разумные приближения при ь-*«*> и малых "^'0, Например, 
сумма всех диаграмм ^ s> 

в теории (б) имеет асимптотику п р и . s * с о , не противоречащую 
условию унитарности. При s$G~l амплитуда растет, но при s ~ f f * 
ее поведение резко изменяется и оказывается ограниченным при s*4*3 

(качественно характер поведения амплитуды близок к поведению 
сечения раооеяния на потенциале "твердой оердцевины^. 

Таким образом, оставляя без внимания технические трудности 
и необходимость более строгого математического обоснования, мы 
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можем сказать, что имеющиеся методы, в принципе, позволяют про­
изводить вычисление высших приближений в неперенормируеыых тео­
риях поля. Однако при попытках применения этих методов к конкрет­
ным теориям, например, к слабым взаимодействиям пептонов, возни­
кают новые проблемы, которые мы кратко обсудим в следующем па­
раграфе, 

§ 3 , Слабые взаимодействия лептонов 

Наиболее привлекательной чертой теории слабого взаимодейст­
вия в форме (6) или (7) является его универсальность. Применяя 
любой из описанных выше методов, мы,однако, получаем следующий 
огорчительный результат; поправки от высших приближений сущест­
венно разрушают универсальность исходной теории. Проще всего это 
увидеть, рассмотрев диаграммы теории возмущений для процессов 
Ч. / 4 "-* UM в" и Ъ>ге."-*ц,е~, С точностью до второго порядка 

ТВ амплитуды этих процессов можно записать в виде GCi + t% &Л •. .)t 

причем константы с, для обоих процессов различны. Если мы попыта­
емся устранить главные расходимости ренормировкой, то получим 

< 1 7 > 
где С,^С^. Поэтому константы ренормировки £, и ? 4 оказываются 
различными и универсальность исходной ''теории оказывается полностью 
разрушенной. Подчеркнем, что отмеченное только что разрушение уни­
версальности остается и после использования различных методов сум­
мирования бесконечного множества диаграмм Фейнмана и, по-видимому, 
ни один из предложенных до сего времени методов вычисления высших 
приближений в К - теориях не позволяет избавиться от этого внутрен-
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него дефекта теории слабого взаимодействия лептонов. 
Это обстоятельство, а не наличие неперенормируемых расходи-

мостей породило многочисленные попытки построения новой теории сла­
бого взаимодействия лептонов. Во всех подобных теориях приходится 
вводить большое число не наблюдавшихся в природе частиц и весьма 
сложные гипотезы о характере взаимодействий между ними. Хотя это , 
по-видимому, и позволяет построить ренормируемую теории слабого 
взаимодействия лептонов W -бозонами, нам кажется преждевременным 
полностью отказаться от четырехфермионной теории* Как будет пока­
зано ниже, можно построить такую четырехфермионную теорию, которая 
не противоречит существующим опытным данным и в которой универсаль­
ность исходного лагранжиана взаимодействия не разрушается высшими 
приближениями, несмотря на неренормируемый характер возникающих в 
ней расходимостей. 

Прежде чем перейти к изложению этой теории, отметим, что 
обсуждавшаяся основная трудность четырехфермионной теории взаимо­
действия лептонов не кажется столь непреодолимой в случае слабых 
процессов с участием адронав. Известный результат о квадратичной 
расходимости матричных элементов в процессах с участием адроаов 
основан на использовании техники Бьеркена - Джонсона - Лоу ка­
нонических коммутационных соотношений между плотностями адронных 
токов. Предположения, лежащие в основе этого,носят формальный х а ­
рактер и результаты, вообще говоря, невыполняются для членов рп-
да теории возмущений в теории поля. Поэтому вряд ли можно считать 
этот результат твердо установленным. В целом же проблема раоходи-
мостей в слабых процессах с участием адронов столь тесно овяэана с 
вопросом о природе сильных взаимодействий, что какие-либо однознач­
ные выводы сделать пока невозможно. 

Таким образом; наша задача состоит в том, чтобы построить ис­
тинно универсальную теорию слабого взаимодействия лептонов, в кото-
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рой старшие расходимости для всех лептонных процессов можно было 
бы устранить с помощь» одной константы ренормировки. С этой целью 
мы рассмотрим слабое четырехфермионное взаимодействие, обладающее 
более высокой внутренней симметрией, чем обычное. Высшие лептонные 
си1шетр«шО(ЗЬ ОС5)*>>1ЛФ рассмотри*^ авторами. 
Можно-покаэать, что 0(5) ти 5 Щ - симметрия запрещает распад у"+*w 
и о необходимостью должна быть существенно нарушенной. В 0(3) -сим­
метричной теории универсальность в высших порядках нарушается. 

Мы предположим, что лагранжиан слабого взаимодействия лепюнов 
инвариантом относительно вращений и отражений ( н ( 4 ) ) в четырехмер­
ном лептонноы "изопространстве"(лептонном пространстве).Лепт^лы и 
антилептоны описываются четырехкомпонентными спинорами этого прост­
ранства «PKV*e":VA.^r)l--'P*CKre-:-P/,^")l'PMi- **•£•&( I - обычный 
спинор Дирака) • Для того чтобы сформулировать теорию, введен че­
тырехрядные матрицы **i. ( i- - 1,2,3,4),удовлетворяющие перестано­
вочным соотновгениям о<( °*i +-otj<x\ - ^ S i j • 

Наиболее общее четырехфермионное взаимодействие, инвариантное 
относительно R ( 4 ) , удобно получить из лагранжиана с двумя ней­
тральными W - бозонами 

&*^1{Щ(1+Ъ)М!'-. + f^tXr)Of.^^.z.X (18) 

где crfr =olycftol3 Ыч , W,, - с к а л я р , а И4 - псевдоскаляр от­
носительно R#) - преобразований. Кроме обычных лептонных процес­
сов, в этой теории предсказываются следующие; у ' - * e"Ve ^(обычный 
р а с п а д - y / * ^ e ; ^ ' : V / » ) , V - ^ . ^ ^ ; ^ - ! B - " ^ T ' - e , " ^ ' r ^ / " / " '*,«•*•• 
Основное предсказание этой; теории, не зависящее от отношения масс 
W - бозонов, состоит в том f что P(ftV^*Vfti) _.. _£ . Пред-
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сказание для б ^ 6 ' - * У м € ~ ) зависит от W*/»*»(если Wtf, - М#х% 

то ' • £ £ ^ « " - > >^ е " ) в 4" б м ^ е " -*• J 4 e ' 0 , что не противо­
речит существующим экспериментальным данным). 

Нетрудно убедиться, что в этой теории нет трудности. Для 
этого достаточно выполнить преобразование Штюкельберга над по­
лями W/j. и Wfc , Тогда неперенормируемые расходимости будут воз­
никать за счет лептонных массовых 'ленов (неполиномиальное взаи­
модействие) и за счет треух-./Л^мл «омальной особенности. При 
условии, что обрезание происходит . ? "тарном пределе / \ „ ~ б " * , 
высшие приближения дают лишь малые добавки к основным приближени­
ям и не могут нарушить универсальность исходной теории. (Это про­
исходит потому, что таких членов как Н»Лл ,~&Л и т . д . в (17) 
теперь просто не будет, а члены ~G&-£ ,G 2 / t l **5f П Р И Л~-Л<?& 

малы). 

Таким образом, эта теория (с IV -бозонами или без них) сво­
бодна от основных недостатков обычной V-A теории слабого взаи­
модействия, и решить её судьбу может лишь эксперимент. 

§ 4 . Суперпропагаторы как потенциалы 

Перейдем теперь к теориям с неполиномиальным взаимодействи­
ем, в которых роль потенциала играет суперпропагатор. Для этого 
сначала кратко опишем простейший способ построения безиассовых 
суперпропагаторов в импульсном пространстве. 

Рассмотрим функцию 

bfa-t^i^w^ir1, i-gV^'^ , ( 1 9 ) • 
которая с точностью до тривиального множителя и члена ~ S(px) 
совпадает с мнимой частью суперпропагатора (5) на разрезе р*<0-
Нетрудно проверить, что 

4,a+'i)Fi ^ -^fC^/o^c^C-x /D'C-^DlJ- 1

 ( 2 0 ) 
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где ^ s x 2jT • П о л о я и м ROi+0 вС+э/с.,*, и допустим, что-, су­
ществует функция R(z+i) комплексного переменного г ,удовлет­
воряющая условиям Карлсона и совпадающая с Я(1г+ I) при г = и 
(И= I t 2 t . . . ) . Тогда такая функция единственна,и можно однознач­
но определить оператор R ( 6 +1), Из (20) следует, что F/ есть 
единственное решение уравнения 

[«„(*„+±) •*" xM«, ,+ i ) ]F ,0O = 0 ( 2 1 ) 

с граничным условием F « 6 0 ^ с 4 ф

 Э т 0 уравнение имеет также ре­
шение Fz(x) , удовлетворяющее условию X^(x)^>f . Это решение 
аналитично в х - плоскости с разрезом . . - 0 0 * * * О , причем её 
скачок на разрезе равен -2wi FiC*) • Таким образом f̂ ('x) можно 
ваять в качестве суперпропагатора. Однако такому же граничному 
условию удовлетворяет и функция F-= Fi-+C F* , где С - произволь­
ная ковставта. Для широкого класса суперпропагаторов можно выбрать 
константу С так, что выполнено условие 

R* F0O /Гш F60 - * 0 , л -* - ^ (22) 

Это условие однозначно фиксирует С и определяет суперпропагатор 
как единственное решение уравнения (21) с граничными условиями 
(22) и х f> - ^ J - , Представляется очень желательным показать,что 
это условие определяет единственный суперпропагатор в каком-то 
достаточно обширном классе функций. Эта задача пока не решена, од­
нако , если потребовать, чтобы 

. Щ . Щ 1 г * 4 у ,*••••?*-*?< < 2 3 ) 

то в классе локализуемых функций легко доказывается теорема единст­
венности. Если два суперпропагатора F'0 и F - удовлетворяют усло­
вию локализуемости по Джаффе и условию (23), то Ъ « -F ' —F * 
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есть целая функция порядка < 1/2 и Ф ( * £ ^ 5 . ° • И э теореиы фраг-

Можно показать, что оуперпропагатор, удовлетворяющий условию 
(23) полу чается/аналитическим^^ продолжвШаи по константе связи $* 
из решения уравнения (21) , F при g £ b с граничными условиями 

F M - * О . * F ( * ) ~ > 1 . При атом 

ад г) - £f Pf-Л". г) + «-«v". Р !)] . »'^ <*> 
удовлетворяет уравнению (21) и условию ( 2 2 ) . Переход g £ - * - ^ * < 0 
можно рассматривать как регуляризацию теории в евклидовоких перемен­
ных, и ато отчасти оправдывает использование нашего рецепта (не тре­
бующего перехода к евклидов скип импульсам). Заметим также* что ана­
литическое продолжение по а* является удобным приемом для вычисле­
ния фурье-преобразования суперпропагаторов в евклидовоких перемен­
ных. 

Основываясь на этих замечаниях, можно теперь работать с супер-
пропагаторными потенциалами непосредственно в р-проотранотве иди же 
с помощью преобразования Фурье переходить в % -пространство. 8аме-
тим, что мнимой части (19) при сь&1 соответствует потенциал 

V(x) = П f Сг г- Йг)-"-, -Г* gV4r*. (25) 

Этот потенциал представляет особый интерес, так как для него ложно 
полу чйть ряд точных решений уравнений Шредингера' и Бете-Солпитера, 
Интересен он и с точки зрения приложений к составной модели адронов. 

На примере этого потенциала можно посмотреть, как о л еду ет ота-
вить граничную задачу. Из.условия непрерывности плотности потока ве­
роятности и уравнения Шредингера вытекает, чт о в точке хЛ должно , 
быть выполнено условие 

i+oL ' i+O E*O (26) 
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Аналогично можно получить граничные условия для других потенциа­
лов. -Интересно^ достаточно сильной сингулярности 
в точке Л=6 потенциал становится непроницаемым, т . е . плотность 
потока вероятности в точке о обращается в нуль. Так, уже по­
тенциал Vit^OCx-iKx1'^)" непроницаем, т . е . коэффициент прохож­
дения через определяемый им барьер равен нулю. Потенциал (25) при 
малых значениях к>о и '"О слабо проницаем и в образованной им ло­
вушке образуются узкие реэонаноы. С ростом к эта ширина этих 
реэонаноов логарифмически растет. Траектории Редже, соответствую­
щие связанным состояниям и резонансен, неограниченно растут. Пове­
дение этих траекторий при к -> °° не представляет особого интере­
са для приложений, так как при больших к задача становится су­
щественно многоканальной. 

§ 5. Применения СКР - потенциала к моделям 
составных адронов 

Приведём сначала некоторые результаты, относящиеся к решению 
уравнения Шредингера с потенциалом (25) . При к~0, решение урав­
нения Шредингера можно выразить через гипергеометрическую функ­
цию Гаусса 

Граничное условие (26) в точке t * { выполнено лишь в том слу­
чае, если 

у[Щ? - Л « У У - 7 , ' 3 / ^ (28) 
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отсюда получаем точное условие квантования траекторий Редже 
при И~0 ( A-* B+V* А4Я «Ш7 *-* * -к1 АЛЯ С?)) • 

С С - Л - ^ , e j c r ) * i ! = 3 . ( 2 9 ) 

Заметим, что из условия квантования (29) следует простой резуль­
тат для числа связанных состояний пg с физическими значениями I; 
ng = [ Ч 2 / д ] , где квадратные скобки означают целую часть 
заключенного в них числа.(Предполагается, что есть обменное 
вырождение, т.е. каждому целому •*- на траектории соответствует 
связанное состояние; состояние с к «О также считается связан-
ним.) Отсюда следует, что при достаточно больших t состояния, 
лежащие на траектории,вообще не иогут распадаться на составляющие 
частицы, которые,таким образом, удерживаются в области прост­
ранства t ^ « . 

Для потенциала V* i L̂ Ci-iO] можно получить точное решение 
уравнения Шредингера при -1*0 и любых значениях к г . Так 
как ^ 7 atif^.g)" 1 _ i ^ + g ) " 1 , то этот потннциал можно взять 
в качестве первого приближения к потенциалу (25), учитывая 
член ~0г-ь8) как возмущение. Полагая ]f>*=-k4>Qt найдём условие 
для определения связанных состояний в виде 

itu с̂ Оги) fV(2p) +. r(i-v)W,lh Cap) =*ot 

(30) 
где У - f l / 4 p , Пмг и 1Л/„(̂  ~ функции Уиттекера, связан­
ные с вырожденной гипергеометрической функцией. Если i p * - . ! , 
<•!> $* 9 , то можно воспользоваться асимптотическими формула­

ми для М и IV . Так как М »L , a W <1 , то должно 
быть У л- i/ji . Учитывая поправки в атому значению 1> методом 
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(1 , t « - l 

итераций, получаем, что f>~±-(i + £L fe'*J. Условие примени­
мости этой формулы для наинизшего связанного состояния есть 
•4*2*1 . При этом вклад в р* члена -(я+ 6Г1 оказывается 
порядка -f а / 3 , т .е . окончательно получаем 

(31) 

В лалмюНиюм для численных оценок мы часто (Зудом пользоваться 
значением f =4 , при этом р* =± **,67 * ^>7. 

Чтобы воспользоваться этими результатами для более реальной 
задачи, возьмём вместо уравнения Шредднгсра уравнение (7), 
в котором заменим Н на ( | - к 8 ) и прелставим аЫ в виде 
otfs) «aYc)- f t f ' s .Тогда ot(4M') = Ы(о) + 4 м ' * ' - ' - ^ . ? , 
и для скалярного или псевдоскалярного состоягая <*М •» 4(Мг-1*1у-? 
Для "7Г - мезона" <*(с) * С f т .о . j a - 8 M V ' + 3 . Считая, что 
ol' "• i. , находигл для кварковой"модели (м*~ -£ ) , 1 ' ~ 4. , а 

для модели ФермнчЯнга ( M 2 ^ i ) ( - f ' - y f . Так как (к!1" М г , 

~1<L при Мг ~ W, 
т.е. * ~ 5". 5" ^ е •*•$.? ^ таким образом, параметр 4 
вссьш слабо зависит от масс составляющих частиц и соответствует 
массе I7O7I8O Мэв. 

Для самой грубой оценки ш предположили, что траектории 
Редже jnuiciiHU по s , по крайней мере, в интервале порядка 
1 гэВ. На самом деле ото приближение слишком грубо, и линейний 
рост траекторий при S >0 , видимо, связан с наличием многих 
каналов распадов частицы, леяащей на траектории При S i О 
эффектами этих каналов разумно пренебречь и необходим более 
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аккуратный расчёт траектории Редже, определяемых простым 
однокапальшм уравнением Шредингера. Этот расчёт удобно выпол­
нить квазиклассическим методом. 

Для построения квазиклассических решений удобно воспользо­
ваться методом Цваана-Комбла, используя известные разложения 
точши решении вблизи полюса потенциала при t*t. Опуская под­
резное рассмотрение, ш приведём здесь лишь конечный результат 
для квазтиасепчоских волновых фугащий связанных состояний. 
Сиязивая обычным образом решения слева и оправа от классичес­
кой точки поворота •?,.< fc , получим, что 

*(*) - С е*р(- \\Q\ «h ) . 0<х<Хв 
r v х J l ' (32) 

(33) 
где x -= 7 / g , <( * to / t , С -нормировочная кон­
станта 

(34) 
С другой стороны, рассмотрим точные решения и х и Кя.) разложе­
ния которых вблизи точки Х=1 имеют вид: 

« .<»> - , (Х- i ) + £0<-OV.. ( ( 3 S ) 

(3G) 
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Момю показать, что квазшслассическая асимптотика этих решений 

имеет вид («*& i/2r$*): 

iQ[k v. x н ' ' (37) 

% ^ ) - f^, w C i l Q l ^ ) , ' < * , (38) 

- U* C X > "" -MQl * t * ( j | , Q | A * ~ ' f ) > X e < r x < i > (39) 

x 
^Cx) — . J — expC-^!Q| c(x ) i< \ ( 4 0 ) 

При x<i решение (33) можно представить теперь как следующую 
линейную комбинацию квазиклассических выражений для ui и ил 

^ « 4 ^ W4 4aivn & S = J ( Q | Л* 
* f l (41) 

Условие убывания решения при х>± приводит, таким образом, 
к условию квантования 

(42) 
Нормировочный коэффициент С приближённо определяется из условш 

х 0 х„ | 1 *1 (43) 

Все встречающиеся в написанных выше формулах интегралы 
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можно выразить через стандартные эллиптические интегралы. 
Легко показать, что в двух рассмотренных выше случаях, в ко­
торых известны точные решения, квазиклассическш метод также 
даёт точили результат. В случае ^=lf, Я- V£ формула (31) Дала 
значение р'--<Ш» а квазиклассическое условие (42) даёт р ~ 4,75, 
Это позволяет доверять квазнклассическому приближению и при 
других значения '"\ и р 2 . 33 частности, в "кварковой" мо­
дели 'л - мезона" (>М, Ы* 0,К*() получаем р* - 2,96 *- 3 , 
что несколько бельме, чем значение pr*s2,35, которое можно 
получить линейной окстраполяцией между точно вычисленными 
значениями р(л-4) ь0н pO^-Vi^i?. Пользуясь этими расчётами 
HOT])jwio оценить параметр наклона траоктогии Редже вблизи <Я = о. 
,*' =. сЬ/«•!s ,• ^ V/AQ , т .е . ^ ' ^ i при в~4,5(Гэв) _ 1 ~0,9ф. 

Интрресио получить оценку поведения зарядового формшакто-
]« " т -мезона". Полностью пренебрегая релятивистскими эффекта­
ми и считая, что " 7Г -мезон" составлен из одной заряженной 
и одной нейтральной частили, мы можем выразить формфактор 
через волновую функцию ц(*) . 

с* 

Y (44) 
Тогда сроднеквалратнчннй радиус распределения заряда равен 

ел 

*'*'с " (45) 
В том же приближении, в котором вычислялся нормировочный 

коэффициент С функции «(*)( см, (43)), получаем 

JAC x'uVx) •- 5Л х'иЧО - Л $& f | ] • 
(46) 

Вычисляя интегралы (43) и (46) при } - 4 / Ц Л Л находим, что 
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C*v \ix K ^ r ; > - f l ^ ^ . При # - 4 , Г получаем Y

f f ' ^ >> , 
ото почта совпадает с предсказанием модели векторной доминант­
ности для 7г- мезона и несколько меньше значения, которое полу­
чено в последних экспериментах. Принимая во внимание грубость 
принятых нами приближений, полное пренебрежешь всеми ]юлятп-
вистокими эффектами и отсутствие сколько-нибудь убедительных 
данных о наклоне траектории для Л"-мезона, мы моком признать 
этот результат обнадёживающим и свидетельствующим о том, что 
применение С К Р -потенциалов к более реалистичным моделям 
составных адронов позволит получить разумные результаты, ио::-,-
зуясь лишь двумя параметрами: упиворсалышм параметром •& , 
определяющим наклон траекторий Редже и константой связи j , 
определяющей пе])есечение траекторий. 

В заключение проведем некоторые ссылки на статьи, в которих 
можно найти более подробное изложение описанных выше методов 
и подробную библиографию. Метода, кратко рассмотренные в §§ I , 
2, изложены в докладе автора на втором совещании по нелокальной 
теории ноля (Лзау, СССР, 1970 v.) и в работе В. Гогохия и ав­
тора (ЯФ, 15 (1972) 1294). По теории слабого взаимодействия лен-
тонов см. доклад автора на конференции по физике нейтрино (Бала-
топфюред, Венгрия,1972 г . ) . По теории cyiiopnpoiiaraTojoB см. 
работу: /V /Udk ibb ie t / , A F i h p p c f , (.vmm Matt, %\.}\.,2MWt)H 
Идеи, описанные в последнем параграфе, впервые были предложены 
в докладе авторана Меадуиародной конферешдш по "математическим 
проблемам квантовой теории поля и квантовой статистики, Москви, 
1972г(см. препринт 011ЯИ, 132-G93G, Дубна, 1073 г . ) . 
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НЕКОТОРЫЕ ВОПРОСЫ ФИЗИКИ СЛАБЫХ ВЗАИМОДЕЙСТВИЙ 
СМ. Биленышй 

Объединенный институт ядерных исследований 

I* В В Е Д Е Н И Е 

Мы обсудим следующие вопросы физики слабых взаимодействий: 
1) о диагональных членах гамильтониана, 
г) о взаимодействии между нейтрино, 
3) о различных формах сохранения лептонных чисел, 
<0 о проверке СРТ(Т) - инвариантности в распадах нейтраль­

ных К - мезонов. 
Будут рассмотрены такие взаимодействия, которые исследовалиоь на 
опыте в последние годы, а также т е , которые будут изучаться в бли­
жайшее время. 

Гамильтониан универсальной V - ^ теории слабых взаимодей­
ствий имеет вид 

<•'- t 

. - / = 7^ / Av CD 

(2) 

Здесь 

С . / / = /..* (л'•'~с) ''' J U j ^ h ' ' .. - адронный ток ) . 
Другая формулировка универсальной теории олабых вэаимодз йот-

вий - теория с промежуточным бозоном, лагранжиан которой имеет вид 

Напомним, что промежуточный боаон до сих пор не найден, Иа ней­
тринных экспериментов ЦЕРн'а следует* что п х '>i';'e Гад. Если 
масса л -бозона меньше 10-15 Гэв, он может быть обнаружен в Б а -



тавии. На встречных пучках ЦЕРН а прожиточный бозон монет быть 
обнарувен, если tit . <;,40 Гэв; 

На следующие основные вопросы даются ответы уже свыше 15 лет: 
1) действительно ли эксперимент описывается гамильтонианом 

( 1 ) ( < 2 ) ) ? 
2) нет ли дополнительных членов в гамильтониане слабых взаимо­

действий? 
В последние годы было показано, что определенного вида дополни­

тельные члены делают теорию перенормируемой (модели Вайнберга). 
Поиск новых взаимодействий становится чрезвычайно интересным. 

Разобьем гамильтониан ( I ) на две части - диагональную и недиа­
гональную 

"d <rL гъс1 
где 

а М - все остальные члены. 
Наиболее изучены недиагональные процессы. При атом данные опыта 
согласуются о предсказаниями универсальной ЩкА теорий.'Следует, 
однако, нметь в виду, что точность, с; которой проверена эта теория^ 
в большинстве случаев невелика. Мы проиллюстрируем это утверждёние 
на примере y , t - распада»- где имеются наиболее!точные измерения. 
Спектр позитронов от распада полностью поляризованного и- -мезона 
в общем случае четырехфермионного взаимодействия ицеет вид 
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* v i. — = Л (.<- -л w ) ч- fctx)& B£x ,6\ (8) 

где a. = £- ( P " импульс позитрона), 6> - угол между направ­
лением в т о р а поляризации JL* и импульсом е + , параметры^ , £ , 
;•• и f выражаются через константы взаимодействия. В случае И - * 

S 
теории 

Из опыта 

jC = Q,75I8±Q,Q026, у «= -0,12+0,21, / » -0,Э?3*0,014, 
£" = 0,7540$ 0,0085. (10) 

Для констант отсюда следует 

h *. 0,33 ; ^ < 0,33 ; 3S<- 0,28 ; 
Vi - У- -А ( п ) 

0,76 - / ? - - / - 1,20; (/ * 180° ± 15°. 
yr '/II' 

Теперь мы перейдем к обсуждению наименее изученных диагональ­
ных членов. 

2. Диагональные процессы 

Если в гамильтониане слабых взаимодействий имеется член ( 7 ) , 
то в ядерных реакциях возникнут аффекты нарушения четности. Такие 
эффекты наблюдались и они качественно подтверждают наличие нарушаю­
щих чётность ядерных взаимодействий первого порядка по G . В экс­
периментах * для циркулярной поляризации у -квантов от распада 
неполяриаованных ядер получено 

Т в Ш V - ' : ^ # ' (12) 
L u 1 7 5 К • (*±I) I 0 " 5 . 

В опыте 2 наблюдался запрещенный по четкости распад 
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О 1 6 - — J C I 2 * o C (13) 
(2-) # ) ; 

Шврвва втого распада оназелаоь равной /~- (I , (&tO,28)I(r I 0 ev , 
что соответствует прнмеов состояния 2 + о амплитудой /F /»2 ,6 . IO" 7 . 

Информацию о аваимодейотвии (6) ыокяо получить пухов науче-
ввя пропеооа образования ва ядрах парв /-с -и. пучков v 

Этот процвоо ве набяпдалоя. Ив вкоперввевтов по попову У - бозо­
нов ва пучках \>„ следует, что 3 

G-, '*&OG. . ( К ) 
Планируемые в Серпухове я Батавия опыт позволят наблюдать (JA), 

Вваимодойствмг (5) приводят к раооенвнв эловтронного нейтрв-
во вяектроном. Этот процвоо до сих пор не наблюдался. Лучная верх­
няя граница поаучена в опыте * по поиоку процесса 

»&+е - » ^ е * € ( К ) 
на пучве медленных антинейтрино от реактора. В этом вкопернневте 
получено 

<rt < у •? а- , (17) 
ь^е > у-* 

где «У; , - сечение, внчиоаевное о помояью ( 5 ) . 
В наотояцео время процеоо v^-e раооеявия ввтенонвно обоук-

даатоя в овязя о единой теорвей слабых в электромагнитных взаимо­
действий Вайнберга 5 . В этой творим вводится два калибровочных 
векторных поля (триплет в овнглет) я , соответственно, возникают 
две безразмерные константы взаимодействия о в q 
чао» лагранжиана имеет вид 

', Лептоввая 
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Здесь & . оператор электромагнитного поля, I / i ^ ~ опера-
торы полей заряженного и нейтрального промежуточных бозонов. 
Из (18) следует 

где т[ - масса 'V - бозона, е - заряд электрона, a G - констан­
та и - распада. 

Три параметра теории Вайнберга ( д , а и 'П ) выражаются 
через & и е. • Таким образом, остается один свободный параметр. 
Иа (18) получаем 

7Т.ЛА = * • А:* в ^ . <») 
У ' • * -

Отметим, что из последнего соотношения следует известное нера­
венство 

В низшем порядке теории возмущений в матричный влемент про­

цесса 
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дают вклад оледувцве дяаграмкы 
(22) 

РиоД. Рво.2» 

Еоав аффективный гашштовввн вапвоат» в авде 

E'W'+rWfctffr+M^'<22) 

то джя коаотант а в о внаем 

(23) 

гда 
* * . - • * : (24) 

Отмахам, что члены в скобках в выракенвя ( 3 ) представляют собой 
вклады второй дваграммн. В р а б о т е 6 ва опыта Райвоа я др. *' по-
яучево . д, •' 

Ив таорвя Вайнберга следует также, что в первом порядка п о £ 
раареван процеоо 

j / „ У- е -?• *» * е . (25) 
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В матричный элемент этого процесса дает вклад только диаграмма 
рис,2. Для соответствующих констант находим 

Полученная из опытов ДОН'в верхняя граница сечения процесса (25} 

гг *_ 0,4 <Г (27) 

не накладывает ограничений на -ъих О , Планируемые в Серпухове 
и Батавии опыты позволят зарегистрировать процесс ( 2 5 ) , если его 
сечение не меньше того минимального значения, которое предсказыва­
ется теорией Вайнберга. 

3 . i> - \) взаимодействие 

Им знаем, что нейтрино с е , и. и адронами взаимодействует 
слабо. Что известно о взаимодействии нейтрино с нейтрино? Этот воп­
рос был поставлен в работах 7 » 8 . Анализ существующих опытов пока­
зал 8 , что даже сильное и - i) взаимодействие не может быть ис­
ключено имеющимися данными. 

Если имеется достаточно сильное г> - О взаимодействие, то 
возникнут: 

1) новые распады частиц, 
2) новые процессы на пучке нейтрино. 

+ + 
Начнем с рассмотрения распадов. Наряду с распадом /~ -? е. •*• ^& , 
в котором образуются монознергетические позитроны, становится воз­
можным процеоо 

Л % е * * ^ * ^ . (28) 
Предположим для простоты, что гамильтониан v - V взаимодействия 
имеет вид 
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%»u = Н^У^)(УУ^^ * 

- -'- G?F*f*-m V - Л%* Лц£л**= + *Ju 

В полюоном приближении получаем следующее выражение для опевхра 
повятровов ох распада (28) 

d[ 
(30) 

f /тг 
Здесь о с = — - (в - полная ввергая позитрона), Z « — а , 

l-f I £2. 0,92 /77^. - вонсхавха лг - распада» Отсюда для полвой 
вероятноетв распада (28) находим 

Г(л:~>е31>) тч/F\^ 
Г (тс-> е.и) ^ ' 

Ёолж F- • ^гА1(г& , вероятность распада (28) составляет 
&1СГ*/?»Л<г вГ ( Г - полнея вероятность распада ж -мевона). 
Ив аналява ревуяьтатов ввоперямевха 7 по определению / ( ж-шО) 
можно вавяпчн» 

£ ^ Ю 7 <5- . (32) 
Распад (28) сильно подавлен (малость фазового объема). Очевидно, 
что процессы 

+ + •— 

более чувствительны к F . Смктры е и Л* от вхих раопадов да­
мся выраженжвм (30) , в котором следует / % . - > гп^ ,£ -> ^ , 
а также для процесса (34) т& •-» /??^ . Для полвых вероятностей 
получаем 
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Г(Кг*еЗ») _тт 
— - 1,9 • Ю - " , 
r(K.->ev) - j 
Г(к->рЗу)ш ъ^ . I 0 - K m 

Г (к-*,ft») 
Анализируя результаты опыта по иооледоваввю распада /C-*e?+ife , 
можно показать в , что 

F * 2 I 0 6 & . (36) 
Выражевва (30) было получено в предположен!!, что гамильто­

ниан v - V взаимодействия имеет вид (29). Иошго показать 1 Х , 
что для гамильтониана более обиаго ввда 

где 

спектр лептонов дается выражением (30), в котором следует выпол­
нить следующую замену 

F -> F "T0- ( Л с 1 +° ' • (39) 

Обратямоя в раоомотрешш процеооов на пучве нейтрвво высо­
кой энергвв. SCAB имеется достаточно овльное х> - Р взавмодвй-
отвве, становятся воаможнымв процеооы 

^ + 1ъ -+/*'+ ^ ( е ) ^ Г е ) +f> (40) 

в т.д. 
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Наиболее интереоен процвоо (41) (в результате взаимодействия 
v ^ высокой анергаи о протои1ш воанвквют ^ - мевоны). В рабо­

та ° иа анализа опытов по проверке закона сохравеикя лептонного 
числа было найдено б 

F < 2 IO b G- f < « ) 
Vh 

[ОЙСТВ1 i t между Ve В 
> • 

ТО становится воэ-
ножным процесс 

и + п.^ еГ +Ц^-(-ъ) + п~. , (43) 

Иа авалваа данных опыта 1 г можно показать 
/= <I0 6G-. 

Недавно быта опубликованы результаты эксперимента по поиску 
i-»- i) вааимодейотввя. ! Искали процесс (3*0. Было найдено семь 

событий, которые нельзя было мдентвфвпировать как распад (34) , а 
тага» нельзя было надежно отвести к фону. Для верхнего значения 
вероятвоотв распада (34) в атом эксперименте было получено 

Г(к-*р$у) J-<1 И Г 6 - (44) 
Гк 

Для константы и- V взаимодействия отсюда оледуат 

f=< 1,8 1 0 * 5 % .. (45 

Это лучшая вмещался в настоящее время верхняя граница на константу 
и т i/ взаимодействия. Как видим, даже веоьма сильное взаимодейст­

вие между нейтрино не иоключоно имеющимися данными. 
Отметим, что константа взаимодействия мекду нейтрино в теории 

Ввйнберга * £ / в работа ^ ^ - i> ваавмодайотввв вводилось 
в рамках нелокальной теории поля. 8то позволило построить перевор-
мируемув градиевтво-инвариантвую теорвю слабых взаимодейотввй леп-
тонов. 
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4 . Различные ФОРМУЛИРОВКИ закона сохранения 
дептонного чиояа 

При написании гамильтониана (I ) предполагалось, что имеет 
место закон сохранения электронного я мюояного лептовнмх чисел 

7~ j_ . = сопл t LL . -
' 7" Л 6 

concl CW) 

Значения лептонша чиоел разных частиц приведены в таблице. 

е~ »е. ^ * > . вдроан 

V 
1 

. О 
1 
0 

О 
1 

О 

Л о 

Законы сохранения (46) оомаоувтоя о опытом. Наилучшая верхняя гра­
ница на параметр оС , характеризующий воамояяое нарушение L. ,по-
лучена в недавних экспериментах " я поиск? беане1тринного двойно­
го , б - распада & ? * ( б е 7 6 • — > £ е 7 6 • •" • О . Йа зтмх опытов 
следует, что 

о£ < Ю" 2 . (47) 
В нейтринных экспериментах ЦВРН'а было найдено для отношения чиола 

/и* % образованных пучком ^ к числу ic~% одед^вцее верхнее зна­
чение 

ггЗ 

раопадов 

.6 .10?» . (48) 
Отметим такие последние peaульт&гы группы Хоренчеахо 1 Ь по поиову 

Г ff<8t» Ю" 8 Г * (3.2 ID" 9 . (49) 
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С имеющимися в настоящее время данными согласуется также 
мультипликативный закон сохранения лептонных чисел 1 7 

ее и.с ( 5 0 ) 

Очевидно, что » случав процеосов с участием двух лептонов (46) и 
(50) эквивалентны. Мультипликативный аакон разрешает большее число 
процессов с участием четырех лептонов, чем аддитивный. Единствен­
ный наученный слабый процесс такого рода - и - распад, Бели име­
ет место мультипликативный аакон, то наряду с распадом 

возможен также 
/л+-> е^ % + ^ . ( 5 2 ) 

Один иа первых нейтринных экспериментов, планируемых на меаонной 
фабрике в Лос-Аламосе,-поиск i> от распада и- мезонов. Если 
при распаде и*~ образуются 1^ , то будет наблюдаться реакция 

\ + р -* eV п. . ( 5 3 ) 
В случае мультипликативного закона возможен также процесс** 8' 

v„-t-e-b,j.e.~+I£. (54) 
Поиск этого процесса планируется на ускорителе в Батавии. Далее, 
если имеет место ( 5 0 ) , то возможна реакция 

i> +&-ъ и*~-+(Г+ ы^ + £• . (55) 
Иа анализа данных, полученных в ЦЕРН'е, можно получить следующее 
ограничение на соответствующую константу 1 9 
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Охватам, наконец, что мультишшнахивный закон допускает переход 
юонвя в антммюоннй 

(р+бГ ) - * ^ Г е * " ) . (57) 

В недавнем эксперименте по поиску таких переходов в вакууме Аида 

найдено 2 0 

Рассмотри еще одну формулировку закона сохранения лептонно-
го заряда - формулировку Конопинокого-Иахнуда-Зельдовича t - " - x . 
Предположим, что сохраняется однолепхонное ч и о л о / . . Будем очш-
татв, что «Г в /.Гчаотицы о £ • I . Тогда аШчаохвцам е. шм 
следует прлпвоахь L • - I и раопад fu. *?-.*X.: вапрвпен вековом с о ­
хранения лептонного числа. Если масоа нейтрино раина нулю а имеет 
место точная V-A теория, схема Конопинового-Иахмуда полностью 
эквивалентна схеме о двумя аддитивными дептонными числами, причем 
имеех месхо следующее соответствие 

Лептоаный хок в схеме Конопинсвого-Махмуда может быхь аапиоан 

( £ я и - операторы ушчтоженвя е й у О . ) . 
Отличить обе схемы можно дввь в оду чае, еоли существуют взаи­

модействия, равреиенные одной охемой и вапрещенные другой* В по-
оледнве время была выполнены ввоперимевхы 2 3 » 2 4 по поиску процес­
сов '... 

/.с + £ю ж +Co (61) 

К*' • гг>/./ **> ' . (62) 
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разрешенных схемой КонопинскогЫ1ахмуда, Для верхних значений ве­
роятностей подучены следующие значения 

rfcCu+SCo) I 0 - e 

^^«>Нми*. 
5. Проверка СРКТ)- инвариантности в распадах 

нейтральных К - мезонов 

После основополагающих работ By и Янга 2 5 , Белла и Стайв-
бергера 2 б стало яоно, что определение параметров, характеризую­
щих нарушевне СР в ра спадах нейтральных К-мев онов, позволило бы 
проверить СРТ(Т)-инвариантность. Йиеющаяоя в настоящее время ин­
формация позволяет дать первый ответ на эти фундаментальные воп­
росы. Прежде чем переходить к обсуждению экспериментальных данных, 
напомним хорошо наваотвую феноменологию. 

Волновая фунвдвя системы К 0 - К 0 удовлетворяет уравнению Шре-
дингера о неэрмитовским гамильтонианом 

"5 О / г J 

где 

_ ••— 

О- LI)- амплитуда вероятности обнаружения К 0 (К-) (система по­
коя чаохнц). Уравнение (65) следует из общего уравнения Шредингара 
в приближении Вайокопфа - Бигнера. 

Собственные функции гамильтониана 

^ ; = . ^ a f t ) , < б 5 ) 
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где 
X = т. - 4 /~ , (69) 

описывают состояния с определенной массой (/•??» т г ) и шириной 
( Г , Г ) , Иэ (б?) и (68) получаем 

aL= f ' ( ' '**• J C7i) 

где комплексные параметры £ и £ определяются элементами мат-
рицы «М . Нетрудно получить следующие соотношения 

(72) 

(73) 

г _ - * Л , -- * » 
1 - £ а, *.(ли -V 

= - * « * • 
- • * , / 

1 

8деоь 
- а < ^ . -V 

& = Г и^^ 
5 £ ь ) . 

(74) 

(75) 
Имеем также 

где 
А / л - т^-гп^ ш (0,46*0,02) Q . 

Поомотрвм теперь, к каким озодотвиям приводят принципы ин-
вариентнооти, Еоли имеет место СРТ-инвариантнооть, то 

Я = <*? (76) 
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(равенство насс и полны: ширин К 0 и К 0 - мезонов) и 
S=0 (%=^).щ (7?) 

Бели реет место Т - инвариантности, то 
*ii=X±i C78) 

и 

Очевидно также, что в случае СР-инвариантности ( ^ / = * £ , ,<# =№ ) 

Измеряя параметры, характеризующие нарушение (JP-инвариант-
вооти в распадах нейтральных К-меаонов, можно определить как eL , 
так,...£... и тем самым проверять СРТ(Т>-инвариантность. Отметим 
чрезвычайную чувствительность этого метода проверки. Действитель­
но, знаменатель (73) - величина порядка Г , В чиолытель входят 
линейные по слабому взаимодействию члены. Если имеется нарушающее 
ОРТ сверхслабое взаимодействие о константой А, Ю " 9 ^ , то величи­
на S" может быть ~ Ю ~ 3 . 

Иа (67) м (68) беэ труда может быть получено ооотношение 

<-foL-<£)(<£ac) =Сс£га1) (во) 
(соотношение унитарности Беила-Стайнборгера). 
8десь 

Г = с(Л-<Х?). =X*:L«.lHjfxflHlK>b(Erm.l<)t ск. М ^ *{ ' V f ( 8 1 ) 
Левая чаоть этого соотношения определяется £ , £ , л г г ъ % 

и Г (последние величины извеотны из опыта),правая чаоть может 
быть определена из опыта. 
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Обозначим 
fi - < 0 , T / K L > . (82) 

Эде.сь /о > - вектор состояния двух тс - иеаонов, воанвкздщих от 
распада К - иваонов, в состоянии с 1*0 (I - полный изотопичес­
кий спин), Т - матрица распада, Далее, нетрудно видеть, что 

<о/г/к>/ = - -Л_ , (83) 

где параметр 
<&/т/к. > 

со = ±-
/ £ < o / r / / t j > 

характеризует нарушение правила Т» 1/2 в раопадах /Г-*- JTSC , 
Иа опыта 2 7 следует 

^ « (М±1.3) Ю"2е * (84) 
Пренебрегая Л /со/\ в знаменателе (83) запишем 2 8 

г</ъ^;=г^ 0 ^;г. ( 8 5 ) 

где $? {7 - вклад в соотношение унитарности состояний / £ > , /Ото. 
/кКе> и т.д. 

Параметр £ 0 определяется измеряемыми на опыте величинами 

L ( + ~ s>V/r//f? / 4 b C t ) » (86) 

<°° /ои ~7^П— = . (87) 
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где 
,_<л/т/к1> ( M ) г .= ~ . 

<oirlк^> 
Пренебрегая со по сравнению с единицей, получаем 

- j <V-'?«»>. ( е 9 ) 

Первый член в правой части соотношения (85) дает основной вклад 
(л>Ю~ 3Г ) . Вклад состояния ls.>,очевидно,равэя 

и, следовательно, мал. Информация о вкладах / J T T > ( /ыи > ) 
состояний может быть подучена иа опытов по измерению зависимости 
от времени вероятвоств образования J тс ( / z fu ) в пучках исходных 
К°(К°) - мезонов. 

Пренебрегая t£J % l£.f и г - по сравнению с едини-
цей, получаем из (80) и (85) •* 

Сдггъ + Г)(/Ь.£ч. Clrrt 5)=fe0+%)r. (91) 

С помощью этого соотношения могут быть определены &£• и Tmh . 
Обратимся в определению параметра &а . Опуская величины < I 0 " 3 

по сравнению с единицей, получаем 

£0=е-£+*0 . 02) 
где 

<olT/ht>- <о/т1Е> Л « _ — . (93) 
<о1т1к> -h<p.lrlfL> 

Иа условия унитарности 5 - матрицы я СРТ-мнвариантвости следует 
-JLCS у. 

4? <о/Т/к> ~ <QlTlK> , (9*) 

Здесь S - 3 - фаза я-яг-раоовяяия в состоянии с I • 0 при 
о 

полной анергии в о.ц.м. равной массе К-мезона. 
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Запишем ._ 
<й(Т I К > - A0CL , 

- L$o (95) 
< o / r / / c > - лое t 

В случае СРТ-инвариантноств 

Ли = Л 0 , (96) 

Так как относительная фааа векторов /К 0 > и / К0 > произвольна, 
можно считать, что фазы А 0 и AQ одинаковы. В этом случае 

U0\ ~/л01 
«Г (97) 

Вводя обозначение 
^ = <$Г-ос 0 , (98) 

получаем 
t0 *£ - ? , (99) 

Если имеет место СРТ-инварнантноохь, из (96) и (77) имеем 
? = О • (IOO) 

Учитывая (97) , перепишем следующим образом соотношение (91) 

(jiCA/ri. + T s ) (Ял £ •* СТ/тгб- ) = (£а f £ ) Г щ ( I O j ) 

С помощью (99) и (101) могут бы» определены параметры £ и <5" , 
В последних экспериментах для / 2 s a / и Ф06-Ф+- найдены 
следующие значения " •' w c 

/ Z s 2 / - 1,00 + 0,06 
' ? * - ' ' (102) 

фо,- f+- «'.б 0 д. 18°. 
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Используя эти данные, авторы работы для параыетров f и ?•" 
получили следующие значения 

Вл t • Щ? ± Щ25) Ю ~ 5 

/>?г £ - : &у16 % О^Йб) 10~ 3

 ( I 0 3 j 
/fr с? • (0,01 i 0,25) 10~ 3 

ГтЯж ( -0 ,24±0,30) Ю" 3. 

Таким образом, Т-инвариантность в распадах нейтральных К-меэонов 
нарушается. Данные согласуются с предполовениеи о справедливости 
СРТ - инвариантности. 
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РЕНОРМИРУЕМЫЕ И НЕРЕНОРМИРУЗМЫЕ СХЕМЫ СЛАБЫХ 
ВЗАИМОДЕЙСТВИЙ 

Б.А.Арбузов 
Институт физики высоких энергий , Серпухов 

В последнее время обострился интерес к построению ренормируем-
мых моделей слабых взаимодействий* Это обстоятельство связано с < 
чисто внутренними явлениями в развитии теории, а именно, с успе­
хом, достигнутым в развитии калибровочных теорий со спонтанно на­
рушенной симметрией* С другой стороны, неренормируемость стандарт­
ных вариантов теории слабых взаимодействий (четырехфермионного и 
варианта о W -бозоном) вызывала •^неудовлетворение(многих теорети­
ков. Здесь уместно сделать несколько замечаний о разнице между 
ренормируемымии неренормируемыми теориями. В неренормиуемых т е о ­
риях полностью неприменима теория возмущений, в отличие от ренор-
мируемых теорий» в первую очередь, от квантовой электродинамики. 
С другой стороны, с аксиоматической точки зрения, оба класса т е о ­
рий, по-существу, равноправны. Условие локализуемости удовлетво­
ряется как для ренормируемых теорий, так и для широкого класса 
неренормируемых теорий* Если уже рассуждать совсем строго , то 
не доказана непротиворечивость теории в обоих случаях. Кроме т о г о , 
отметим, что в изучении неренормируемых теорий усилиями; несколь­
ких груг,п физиков достигнут определенный прогресс . Поэтому можно 
высказать точку зрения, -что основное- различиеьмеаду реформируемы­
ми и неренормируемыми теориями заключается в степени умения т е о ­
ретиков обращаться с первой либо второй теорией. 



Доклад посвящен теории слабых взаимодействий. Прежде чем пе­
рейти к рассмотрению ренормируемых вариантов этой теории, мы крат­
ко обсудим, к чему приводит обычный, неренормируемый вариант т е о ­
рии слабых взаимодействий, каковы здесь трудности и есть ли пути 
для обхода этих трудностей. 

Основные трудности возникают при попытках применить теорию 
возмущений в этом случав (заведомо здесь неприменимой). Проиллюст­
рируем эту трудность на проблеме возникновения нейтральных токов* 
Как известно, в стандартной схеме слабых взаимодействий нейтраль­
ные токи отсутствуют в исходном лагранжиане, но они возникают уже 
во втором порядке по слабому взаимодействию. В качестве примера 
рассмотрим процесс рассеяния мюонного нейтрино на электроне* Низ­
шая диаграмма, соответствующая этому процессу,приведенана р и с . 1 . 
Вычисление такой диаграммы невозможно, так как она расходится. 
Однако мы можем ввести некоторую нелокальность, например, при 
помощи регуляризации Паули-Виллароа и получить, таким образом, 
обрезание Л на верхнем пределе импульсного интегрирования. В 
результате получим для амплитуды выражение 

-г' • .. ™ ' 'CD 

где /> - оуммариый импульс ^ и е , Итак, мы получим расходя­
щийся коэффициент при стуктура с нейтральными токами о "У - Л - в а ­
риантом. При эхом возникают две точки зрения. Можно предположить, 
чхо по макой - хо неиэвеохной нам причине интегралы действительно 
обрезаются на импульсе Л . Тогда выражение ( I ) дает возможность 
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положить ограничения на параметр Л , имея в виду, что процесс 
не наблюдался. Такие оценки были проведены для ряда процессов. 
Модель с промежуточным бозоном W дает аналогичные результаты. 
Наиболее сильные ограничения на Л получаются из отсутствия 
нейтральных токов в распадах К-мезонов и дают Л ^ Гов, 

Если обрезание действительно существует, требуется построе­
ние истинно нелокальной теории слабых взаимодействий, например, 
в духе схемы, развиваемой Г.В.Ефимовым и сотрудниками * . 

Другая возможность заключается в предположении, что локаль­
ная неренормируемая теория, например, четырехфермионная теория 
вполне имеет смысл, т .е . можно придать смысл предельному переходу 
Л •* сю * Если мы перейдем к пределу в одном порядке, скажем, в 
выражении ( I ) , то получим, естественно, бессмысленный результат. 
Необходим учет всех порядков. Предположим, что мы вычислили глав­
ные расходягдоося члены во всех порядках. Порядок расходимости 
(степень !\ ) в рассматриваемом случае возрастает с ростом поряд­
ка. В результате мы получим вместо (I) 

А у Л е * у , е = <л "« &«•£> и е **К.О*Ъ)Ц,[§•£. +я,£Л 1)\.. 4 о * f r ^ J + 

+ С<фгЛи)<-... +Сн(£Аг)\..} + ... 

Рассмотрим первый член. Его можно представить как разложение не­

которой пункции Ft (&/?) по степеням бг/1г : 

1 to J - * 

(3) 
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Если локальная теория имеет смысл, должен существовать конечный' 
предел Ff С*> при *•* «> . 

im F, ск) = а. < оо , СО 
X - * со 

Таким oci разом, коэффициент при первом члене оказывается равным 
а, <* , где а, не зависит от G , но определяется структурой 
теории. Этот же результат мы могли бы получить, если бы в выраже-

i я бит Л 
иии для второго порядка ( I ) положили бы Л = <$Г~ , т . е . 

A V v ' / s i i «6 ' выбрать обрезание на так называемом "унитарном 
пределе". Согласно приведенным соображениям, амплитуда процесса 
v̂  + e •+ £ + е оказывается величиной первого порядка по От , 
хотя в исходном лагранжиане такого члена не было. Это и есть о.-.но 
нз проявлений проблемы высших порядков. Однако к аргументам, о с ­
нованным на унитарном обрезании Л ** ycj-, следует относиться очень 
осторожно. В самом деле: предел F , 6 0 должен быть конечен, но 
он может быть и коночным числом нуль. Тогда все рассуждения с 
"унитарным обрезанием" теряют силу и разложение амплитуды £ е -
рассеяния начинается с б- . Свойства этого разложения следуют 
из рассмотрения второго члена в ( 2 ) . Ряд в скобках 

Ф(М'Ь -ЬдЛ* %<&?)*+ ScJfrV* (5) 

не является функцией от переменной £**" , однако может быть лег ­
ко сведен к не» простым преобразованием ^ ; 

(б) 
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где мы ввели функции F^Cfi) , Ft (*) , которые также должны 
иметь конечный предел 

£м Ft(x) = i J & и ^ * - > » с . (?) 

Тогда коэффициент при втором члене принимает вид 

-^(-4^ь + с) , (8) 

Основное, на чхо следует обрахихь внимание здесь,есть логарифми­
ческий член, содержащий •&£ <*", присухсхвие его покааываех, чхо 
в амплитуде имеется особенность (точка ветвления) по От при 
Qr - 0 , чхо и объясняет полную неприменимость теории возмущений, 
т . е . разложения по степеням & в эхом случае 2 . 

Проведенные рассуждения, разумеется, не имеют никакой дока­
зательной силы, однако они показывают, к чему следовало бы стре­
миться при построении локальной неренормируемой теории слабых 
взаимодействий* Во-первых, отсутствие нейтральных хоков, жесткие 
пределы на которые накладываю! вероятности процессов 

делаех очень желательным осуществление возможности CL - о , 
ибо в прохивноы случае все приведенные вврояхносхи были бы значи-

Х) С последним процессом связана, как известно, еще одна пробле­
ма, которой мы здесь не касаемся. 
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телько больше. Во-вторых, в этом случае (а>--о) ведущим становится 
член, пропорциональный « * • % « - , который можно использовать 
для различных оценок. Эти оценки получаются значительно ниже пре­
делов ( 9 ) . 

Разумеется, эти рассуждении можно обосновать, если действи­
тельно научиться вычислять амплитуды в любом порядке по ( СЛ ) , 
либо создать метод, позволяющий по коночному числу членов ряда 
делать заключения о низших членах разложения по степеням <* и 

Саа (я *̂  • Для начала же можно попытаться проверить эти рассуж­
дения на простых моделях. Это было сделано в четырехфермионном 
варианте и варианте с W -бозоном для бесконечного набора диаг­
рамм лестничного вида ^ ." Оказалось, что в этом случае приведен­
ные выше аргументы справедливы, причем справедливо равенство а = о , 
и, после учета неренормировки константы связи, & в I (см. соот­
ношение (&)). Это означает, что ведущим членом в амплитудах, по­
добных амплитуде vrt -рассеяния, является член, пропорциональ­
ный Or ty G- . Таким образом, предположения, сделанные выше, 
получают некоторую модельную поддержку. Так или иначе, можно с е ­
бе мыслить вариант неренормируемой теории слабого взаимодействия, 
в котором нет проблемы нейтральных токов. 

Другая проблема, связанная с неренормируемостью теории -
асимптотика сечений при высоких энергиях. Как известно, в четы-
рехфермионной теории диаграмма первого порядка приводит к линей­
ному росту сечения с энергией* 

Предложения для таких методов существуют ( с м . , например» 3 ) 
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при энергиях s 0-v H/fi наступает противоречие с унитарностью, от-
куда еначение 5„ и получило название "унитарного предела"* Од­
нако следует учесть, что при G s > i следует учитывать все по­
рядки по £ и (10) следует вменить выражением 

с - &•£№*)* - С^СаО • (II) 
06 

S 

Поведение функции f О 5 ) и определяет асимптотику сечения, В 
простых моделях * получается, что рост f(Grs) при s •*• °° за­
медляется, возможны осцилляции, либо выход на постоянную. 

Таким образом , в керенормируеных вариантах теории слабых 
взаимодействий возникают определенные трудности. Отметим, однако, 
что ситуация не является безнадежной. Существуют возможности, под­
твержденные модельными расчетами, для преодоления этих трудностей. 

Перейдем теперь к изложению попыток построения ренормируемых 
вариантов теории слабых взаимодействий. Первая такая модель была 
предложена С.Вайнбергом , а затем обсуждались и многочисленные 
её модификации. Все эти модели имеют общие черты, которые наибо­
лее ярко проявляются в первоначальной схеме Вайнберга. Поэтому 
мы будем излагать этот подход на примере этой схемы. 

В основе моделей типа моделей Вайнбергера лежат три положения: 
1 . Спонтанное нарушение инвариантности. 
2 . Явление Хиггса. 
3 . Идея об объединении электромагнитного взаимодействия со 

слабым. 
Предпошлем изложению собственно моделей слабых взаимодействий 
краткое обсуждение этих положений. 

Спонтанное нарушение инвариантности в полную силу проявилось 
в задачах квантовой статистической физики. Применение спонтанного 
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нарушения инвариантности привело к созданию квантовой теории сверх­
текучести, сверхпроводимости, ферромагнетизма. Эти достижения хо­
рошо известней мы не будем на них останавливаться, отметим только, 
что методом, наиболее адакважным этим задачам, является метод ква-

7 аисредиих, развитый Н.Н.Боголюбовым » 
После успехов, достигнутых в статистической физике, появились 

попытки применения метода квазисредних и в квантовой теории поля. 
Однако при этом выяснилось, что если в задаче оиуществляется 
спонтанное нарушение симметрии, то всегда при этом возникают не­
желательные частицы с нулевой массой (и спином ноль). Это обстоя­
тельство является следствием теоремы Н.Н.Боголюбова о Yfy*" « 
известной для задач статистической физике. Согласно этой теореме, 
в случае, если квазисредние не совпадают с обычными средними, т . е . 
если осуществляется спонтанное нарушение симметрии, всегда сущест­
вует возбуждение, спектр которого начинается с нуля. Иными словами, 
функция распространения этого возбуждения при малых CL ведет се­
бя как у^г . Очевидно, что для частиц это означает равенство 
нулю массы. 

Невозможность избежать появления новых беамассовых и безопи-
новых частиц на некоторое время приостановила применение идей 
спонтанно нарушенной симметрии в теории элементарных частиц, так 
как существование таких частиц решительно противоречило экспери­
менту. Однако Хиггоу удалось показать, что эту трудность удаетоя 
обойти в теориях с калибровочными полями 8 . Проиллюстрируем 
это "явление Хиггса" на простом примере. 

Рассмотрим задачу взаимодействия комплексного скалярного 
поля <р * ч? +ivt с безмассовым векторным полем /L<« Лагранжиан 
системы выберем в виде 
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(12) 

Здесь в духе метода «свааисредних к лагранжиану добавлен член >-"Рг » 
нарушающий исходную симметрию относительно градиентных преобразо­
ваний: 

(13) 

В конечных выражениях, разумеется, мы должны устремить *-* о . 
Следует также обратить внимание на то, что в исходном лагранжиане 
выбран нефизический знак перед массовым членом скалярного поля. 
Бели мы запишем классическое уравнение для поля Ф< (или \ ) 

то мы видим, что существует постоянное классическое решение 

* 4 * * . * - £ " • +,. о, *../%• . <»> 

Выбор ненулевого значения Фх связан со способом введения на» 
рушения в ( 1 2 ) , согласно которому вакуумное среднее поля <*» 
может быть отлично от нуля. Имея * виду наличие такого классичес­
кого решения ( 1 5 ) , переопределим поля ^ и ^ 



где <+i> означает среднее по вакууму t>i .«* , и по определе­
нию <Ф> »<£>•=• Q • в Ш э и м ? в п в Р ь лагранжиан череа 
новые поля. Рассмотрим сначала часть лагранжиана, не содержащую 
векторные поля и производные от скалярных 

где с / 3 оодеркит третьи и четвертые степени полей* Условие 
< % > =• О в низшем порядке дает 

Очевидна, это уравнение имеет два решения: 

£ = А * < Р Г Л З ; ( 1 8 а ) 

л. 

Первое из этих решений % -* о при Л -» а и не дает наруше­
ние исходной симметрии, в то время как второе совпадает о класси­
ческим решением ( 1 5 ) . При этом решение (186) обращает коэффициент 
при Ф* в (17) в нуль, т . е . приводит к появлению бее «юсовой 
частицы, о которой шла речь выше. Коэффициент при | *" имеет 
правильный знак и соответствует гн^ ш f£ м, . Для того чтобы 
проследить судьбу безмассовой частицы Ф , рассмотрим лагранжиан, 
учитывая в мм лишь члены, квадратичные по полям. 
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(19) 

Легко видеть, что лагранкиаы допускает градиентное преобразование 
векторного поля. Именно, определим векторное поле &м : 

Тогда £,„ СА) = £,„ (в) , и мы приходим к теории массивно -
го векторного поля В о масоой мв « е у , которое взаимо­
действует с полем £ . Оказалось, что беамаосовое полеу£ , иг­
рает роль дополнительной, третьей степени свободы векторного поля 
5„ , которая необходима в силу возникновения массы у векторного 

поля. Итак, смысл явления Хиггоа состоит в тон, что в результате 
спонтанного нарушения симметрии векторное поде приобретает массу, 
а потерявшие, в силу теоремы Боголюбова, наосу скалярные частицы 
становятся дополнительными компонентами векторных полей. 

Идея объединенного описания слабых и электромагнитных взаимо­
действий не нова. Если обратить внимание, что в модели с 
промежуточным V -бозоном, W -частицы взаимодействуют с заря-
женными токами, а фотон - с нейтральными, то возникает идея объе­
динить 2 ^ - мезона и фотон в триплет Янга-Миллса, так, чтобы 
взаимодействие триплета о токами было , ,изотопичеокип инвариантно 
(пренебрегая разницей масс фотона и и / и проблемой неоохране­
ния четности). Последнеезамечание указывает на то, что если и 
еоть какая-либо симметрия; объединяющая фотон; и W ^ она должна 
быть сильно нарушена. В работа С*яама и Уорда была использо­
вана более сложная схема, содержащая триплет и / и сииглетнуп век-

• A.Salam and J.C.Ward. Phy&.Uitt.'-, 13, 168 (1964). 
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торную частицу & . ^ , и # смешивались с тем, чтобы обес­
печить равенство нулю массы фотона. 

Итак, перейдем к обсуждению модели Вайнберга. Она описывает 
слабые и электромагнитные взаимодействия лептонов. В основе ее ле­
жит использование спонтанного нарушения инвариантности и явления 
Хиггса. Поэтому прежде всего необходимо иметь набор векторных по­
лей. Так же, как и в схеме Салаиа и Уорда, выбирается янг-миллсов-
ский триплет ^ч и синглэт £ * с массами, равными нулю. Рас­
смотрим введение лептонных полей, ограничившись для начала элект­
ронными лептонами ( «•, ^ е ) • По предположению, нейтрино являет­
ся двухконпонентной частицей, поэтому мы имеем воего три (из че ­
тырех) двухкомпонентных состояния: левые нейтрино и электрон, ко­
торые объединяются в дублет 

и правый электрон 

А - i О- К-) е . ( 2 2 ) 

Введем "изотопические"'преобразования, относительно которых L 
имеет "иэотопспин"' %. , и fi - О • Тогда свободный лагранжиан 
лептонов 

инвариантен относительно изотопических преобразований, а также 
сохраняет числа левых и правых лептонов Д£ и ^ . Заряд 
связан о определенными операторами следующим образом; 

а- ъ-ц-iK . (24) 
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(25) 

Эха формула напоминает соотношение Нишидхимы с гиперзарядом 
^ в -WK - ЛС . Поскольку в нашем распоряжении есть триплет 
fy* и сингле* А* , то , еоли мы требуем сохранения заряда и 

иаотопического опана, й^ должен взаимодействовать с изотопи­
ческим спином, В/* - о гипераарядом. Это соображение фиксирует 
коэффициенты в лагранжиане системы: 

где ^У^^ЛА¥-ЭГА/Л + fyCfi^xflrl - поле Янга-Миллса, 4 '- ЗГ , 
и кроме того, введен комплексный скалярный дублет V = Г v'-J , ко­
торый необходим для осуществления программы спонтанного нарушения 
инвариантности. Последний член введен для снятия вырождения. Итак, 
предположим, что вакуумное среднее поля % отлично от нуля 

•< % > « X , (26) 

Тогда введем новые поля: <f+ и V " - без изменения и 

Подставляя (27) в (25) и иопольвуя условие < £ Ф > = - 0 ', получим, 
как и в модели Хиггса 

Л - М < * 

187 



При этом поля V * , У и А оказываются беамассовыми, а по­
ле У приобретает массу Д ^ • Первые три поля по смыслу явле­
ния .Хиггса должны объединиться о массивными векторными полями. 
Для того чтобы проследить, как возникают массы у векторных полей, 
рассмотрим соответствующую часть лагранжиана 

Отсюда следует, что заряженные поля Aj и А2 имеют масоу 
м / - $ £ *" , а поля А5 и & - смешиваются. Следует провести 
диагонализацию матрицы 

3 ' 83' 

39' 9 " 
Очевидно, что уравнение на собственные значения 

имеет два корня: 4, « о j £ t * ^ 1 * / а , т .е . линейная ком­
бинация 

д . 9J^J^ (28) 

имеет массу О и может быть сопоставлена фотону, а комбинация 

имеет массу / ^ Ч £с$х*г*) = M£

xS-j4- , Таким образом, 
мы получили 3 массивных векторных поля и/*, * , которые обеспе­
чивают исключение безмассовых скалярных частиц V*, ¥ а и фотон/V 
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Заметим, что масса электрона возникает из члена, пропорционального 
бге. и равна <**е <*• . Запишем теперь через новые поля лаг­

ранжиан взаимодействия лептонов с векторными полями 

+1 £5Р/!й1*'ё«ге - £Wr* * v*.(+*)vj&- ( 3 0 ) 

Точно такие ве рассуждения можно провести и для мюона и мест­
ного нейтрино, причем, с необходимостью, мюонные лептоны взаимо­
действуют с теми же самыми векторными частицами W, г , h ,что 
и электронные. В результате получается схема слабых и электромаг­
нитных взаимодействий, которая содержит, во-первых, обычное элект­
ромагнитное взаимодействие при условии 

е =* -М£==± ; (31) 

и слабое взаимодействие заряженных токов с I / / - бозоном при ус ­
ловии 

ft = щ ' (32) 

Однако имеется еще взаимодействие с нейтральным •* -мезоном, 
которое приводит к существованию нейтральных токов и, в частности, 
к процессам, которых нет в стандартной теории (в низшем порядке), 
например, к рассеянию К, е -* ^ е . К обсуждению этой проблемы 
мы еще вернемся, а сейчас отметим, что для Mw и ^ ^ в этой 
схеме имеются нижние границы. Действительно, если мы введем па-
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рамехр Э хак, что | '/$ = ^& , то 

2? = ^ 6 > ; &* = с^& ; < 3 3 > 
2/ъ-

из очевидного факта д 1 ^ е г , следует, чхо 

а из значения для Mg получаехся 

М, . -. гм - 3tT Гэв. 

Теперь кратко остановимся на проблеме ренормируемости. Исход- • 
ный лагранжиан является по счету степеней расходимости ренермиру-
емым. Удается показать, чхо и преобразованный лагранжиан со спон­
танно нарушенной симметрией также сохраняет это свойство. В част­
ности, показана реиормируемостъ хеории для случая модели, аналогич­
ной модели Вайнберга, но не содержащей несохранения четносхи ' 9 Л 
В самой модели Вайнберга возникают осложнения, связанные с присут­
ствием аксиальных токов, и связанных с ними аномальных тождеств 
Уорда. Оказывается, что для петлевых диаграмм с тремя внешними 
векторными частицами но удается построить градиентцо-инвариантную 
регуляризацию и потому модель Вайнберга все-таки не является ре-
норыируемой* Однако эти трудности начинают сказываться,начиная с 
четвертогоо порядка, а в низших порядках можно последовательно 
вычислять радиационные поправки. С целью устранения обсуждаемого 
недостатка были предложены другие модели, которые с необходи­
мостью требуют введения новых частиц, прежде всего, новых лептонов* 
Например, вместо дублета С*е «^ можно ввести триплет 

' £* I 
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который, в пренебрежении разницей масс е- и £", вполне подобен 
по трансформационным свойствам исходному триплету* В сумме петле­
вых диаграмм с L.' и £ неприятные расходимости сокращаются, и 
теория является ренормируемой* Итак, за ренормируемосхь хеории 
обсуждаемого вида приходится платить ценой введения новых частиц. 
Другая трудность этих моделей - наличие нейтральных токов» Мы не 
будем адесь приводить сравнение предскаааний о экспериментом, от­
метим только, что модель Вайнберга в первоначальном виде не со­
держит противоречий с экспериментом. Кроме того, при введении но­
вых частиц можно, вообще,частично либо полностью исключить лептон-
ные нейтральные токи в лагранжиане. Однако противоречие с совокуп­
ным экспериментом по отсутствию нейтральных токов в распадах К-ие-
зонов все же остается. Действительно, если мы изгоним нейтраль­
ные токи из лагранжиана, они все равно будут появляться в высших 
порядках* В силу ренормируемвсти теории отношения амплитуды с 
нейтральными токами к обычным амплитудам по порядку величины оп­
ределяются константами gVU , ? /ь* . Обе они больше постоянной 
^- Vat , так что предсказываются вероятности; 

Бели первые значения еще можно согласовать с опытом, то послед­
нее резко ему противоречит* Разумеется, можно придумать еще слу­
чайные сокращения, но стройность теории от этого не выигрывает. 

Боли сравнивать неренормируемые схемы слабых взаимодействий 
с ренормируемыми, то, как нам кажется, есть больше надежды на сог-
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ласование теории с проблемой нейтральных токов в первом случае, 
ненели во втором. 

В заключение хотелозь бы отметить, что идеи, заложенные в 
моделях типа модели Вайнберга являются очень привлекательными* 
Конечно« с точен зрения физики, а не о точки арввия удобства вы­
числений, ренормируемые теории ничем не выделены, однако следует 
надеяться, что такие привлекательные идеи превратятся я хорошую 
теорию, хотя, может быть, и не для слабых взаимодействий. 
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СИЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ ПРИ ВЫСОКИХ ЭНЕРГИЯХ 

Л.Д. Соловьев 

Институт физики высоких энергий, Серпухов 

В атом кратком обзоре я расскажу об экспериментальных резуль­
татах, полученных на крупнейших ускорителях при исследовании четы-
рехчаотичннх адронвых амплитуд под малыми углами: I ) полные сече­
ния, 2) наклон дифракционного конуса, 3) дифференциальное сечение 
при нулевом угле , 4) угловая зависимость дифференциального сече­
ния, 5) ревности полных сечений и сечение перезарядки. 

I . Полные сечения 

Уме первые серпуховские результаты, полученные о помощью г а ­
зовой мишени и обоуждавшиеоя на семинаре в Азау в 1970 г . , наводи­
ли на мысль о росте полных сечений. Последующие прецизионные и з м е р е н и й ^ 
проведенные в Серпухове в 1971 г . 1 , и недавние резуль­
таты, полученные на накопительных кольцах в ЦЕРН'е 2 , пока­
зали, что полные сечения при высоких анергиях действительно растут. 
Рост К +р-оечения начинается о 2 0 Гэв ( р и о . 1 ) , рост рр-сечения -
примерно с 100 Гев ( р и с 2 ) . 

Следует заметить,что измерение абсолютных сечений на накопи­
тельных кольцах требует точного знания плотности пучков в меоте их 
соударения, которая не может быть непосредственно измерена. Исполь­
зование же коовенных методов может внести в результат неконтроли­
руемую оиотематячеохую ошибку» При 290 и 500 Гев удалось определить 
сечения независимым опоообом, нормируя их на кулоновокое оеченде. 
Оба метода дали совпадающие результаты. Однако точки при 1070 и 
1480 Гэв, указывающие на быстрый рост сечения, определены лишь по 
плотности пучков. Поэтому, хотя роот рр-сечения не вызывает сомне­
ния, его оворость установлена несколько менее надежно. 
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Teu не менее, интересно рассмотреть, какую зависимость сече­
ния от энергии дают полученные данные. Обработка рр-сечения в об­
ласти 50<Е<1500 Гэв по формуле 

где 
СГа (38,4+0,3) мбн (серпуховский результат) и 
Е 0« 100 Гэв (примерное положение минимума сечения), дает 

0J* (0,9 + 0,3) мбн S I мбн , (2) 
V . 1,8 1 0 , * £ 2 . ' (3) 

Последнее число соответствует тому, что сечение достигает границы 
3 

jpyac caper. 
Эта граница, как хорошо известно, соответствует насыщению пар­

циальных волн вплоть до максимального момента, совместимого с ана­
литичностью. Естественно допустить, что такой механизм, если он ра­
ботает вообще, является универсальным для всех упругих адронных про­
цессов и дает асимптотику Ct 1гьЕ при Е -» «*» д л я в о е х полных 
сечений. 

Для описания сечений при конечных энергиях важны, разумеется, 
последующие члены асимптотики, порядка -foE к константы. Они мо­
гут меняться для различных реакций. Иными словами,в формуле ( I ) 
параметры Е0 и б"0 зависят от реакции. Параметр Б 0 определяет­
ся той областью, где сечение ведет себя как константа. Но К +р-сече-
ние ведет себя как константа уже при малых энергиях, и для него 
Е 0 = 20 Гэв, т . е . в 5 раз меньше, чем для рр-сечения. Формула ( I ) 
с тем же значением <?х и Е 0 = 20 Гэв удовлетворительно описывает 
рост К+р-сечения при серпуховских энергиях. 

Но это значит, что Н+р-сечение очень выгодно для проверки 
формулы ( I ) . В самом деле, для него достаточны энергии, в 5 раз 
меньшие, чем для рр-сечения. Там, где для рр-оечения нужна энер-
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гия 1500 Гвв (кольца ЦЕРН), для К*р нужен ускоритель на 300 Гэв, 
где для рр нужны кольца (70 t 70) Гэв, для к+р-оечения нужен ус­
коритель обычного тина на 2000 Гвв. Разумеется, только ускоритель 
обычного тина позволил бы проверить уяивероальность роста для 
всех адронвых реакций, включая реакции о античастицами. Ид диспер­
сионных соотношений и унитарности оледует * , что если полное с е ­
чение для частицы возрастает, то должно возрастать сечение и для 
анхичаотнцы. Это значит, что рр-оечение, которое сейчас резко убы­
вает, должно пройти через минимум в облюти 200 Гэв, а затеи на­
чать быстро возрастать* 

Замочу, что модель комплексных моментов резко противоречит 
данным с накопительных колец при 1070 и 1480 Гэв: расхождение с о с ­
тавляет 5-7 стандартных отклонений. Впрочем, эта модель, как уви­
дим ниже, испытывает серьезные трудности уже при серпуховских энер­
гиях. 

2 . Наклон дифракционного коюса 

Если полное оечение растет как квадрат логарифма энергии, то 
по тону же закону должен вовуаотать и параметр наклона дифракци­
онного конуоа упругого рассеяния 

(см.,например, работы' 5')* Однако коэффициент eL а этой формуле 
может быть очень над. 

В оанон даже, воспользуемся строгими асимптотическими нора-
вояотвани' 5) 

л . . . * . #,&££.. 
£-»оо U, (5) 

о 

(cLt)t, 
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где 61о - полное сечение, упругого рассеяния. Перейдем в них к 
равенствам :и;в ;соотмтствии> с ( I ) положим ^ % 0 - < £ » Тогда при 
£ - » оо параметр наклона диффракционного конуса имеет вид 

Г - ( ^ Ь = £L u*E с?) 
т . е . коэффициент £t в (4) равен 

I • § г = 0,05 (Гэв/с)2 , (8) 
* I6JT 

Это число настолько мало, что во всем интервале доступных в настоя­
щее время энергий поведение " £ " определяется линейным логарифми­
ческим членом в СО, т . е . параметром Eg , который можно выбрать 
так, чтобы описать логарифмическое возрастание S , наблюдавшееся 
в Серпухове б , Батавии " и ЦЕРН'е 8 . Таким образом, зависимость 
СО ,(8) не противоречит эксперименту» Для проверки квадратичной ло­
гарифмической зависимости параметра наклона в рр-рассеянии нужны 
большие энергии, чем для проверки её в полном сечении. Не исключе­
но, что К+р-рассеяние окажется более благоприятным и в этом случае. 

3 . Дифференциальное сечение при нулевом угле 

Как было замечено в п . I , одним из методов определения полного 
РР-сечения при 290 и 500 Гэв в ЦЕРН'е было измерение дифференциаль­
ного сечения в кулоновской области. При этом по интерференции ку-
лоновского и сильного взаимодействий была определена и реальная 
часть амплитуды упругого рассеяния. Это позволило сравнить с экспе­
риментом дисперсионное соотношение для рр-рассеяния вплоть до 500 
Гэв ( р и с З ) . Мы видим, что согласие вполне удовлетворительное. Из 
рис.3 также видно, что точки в области 1-2 Гэв, о которых говори­
лось в Азау и которые расходились с дисперсионной кривой, были 
вновь измерены ленинградской группой 9 и теперь хорошо согласуют-
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ся с дисперсионный сооткошениеи. Таким образом, вплоть до энергии 
500 Гэв дисперсионное соотношение?не противоречит эксперименту. 
Это соответствует расстояниям 

£ г >• — - — = 4 . Ю"*17 см , (9) 
W ^ 500 Гэв v ; 

или, в системе центра масс, 

\ц.м. ' 30 Гэв 

k. Угловая зависимость дифференциаль­
ного сечения 

Для будущих моделей сильных взаимодействий существенна не 
только энергетичеокая зависимость амплитуд при нулевом угле, но и 
угловая зависимость дифференциальных сечений. В опытах на накопи-

Q Т Л 

тельных кольцах ЦЕРН • были обнаружены две особенности этой за­
висимости для рр-раосеяния. 

1) Излом кривой d^/dt п р и - i S o,I (Гэв/с ) 2 (рис.4). Обсуж­
давшийся выше наклон дифракционного конуса относится к-^О.ЦГэв) 2 , 
При больших значениях переданного импульса сечение падает менее 
круто. 

2) При - £ > 0,1 (Гэв/с) дифференциальное сечение слабо зави­
сит от энергии. При фиксированной энергии оно быстро падает с рос­
том -t и проходит череэ минимум при - i s 1,5 (Гэв/с) 2 (рис.5). 
Поведение сечения в этой области, изменяющегося почти на 7 поряд­
ков, неплохо описывается простой оптической моделью* 

5. Разности полных сечений и сечение 
перезарядки 

Помимо самих полных сечений большой интерес представляет изу­
чение разностей полных сечений для частиц и античастиц и сечений 
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перезарядов. Как отмечалось в Ааау, ужа эксперименты в Брукхэве-
не и при энергиях 8-20 Гав указывали на медленное убывание раз ­
ности полных сечений рассеяния П± пионов на протонах 4 б" ш<Г(Я~р)т-
-G"(Tf>) ~ В'0'3. Продолженное до бесконечности ахо поведение при­
водило к нарушению диопвроионного соотношения для перекраотно-на-
чехной амплитуды П±р-раооеяния, если в нем не одепахь вычитания. 
Однако аха зависимость была получена на небольшом энергетическом 
интервале и по-оущеотву не исключала подгонов о более быстрым 
убыванием. Поэтому очень важно было продолжить измерение атой вели­
чины при больших анергиях, чхо и было сделано в Серпухова впдохь 
до анергий 60 Гав, Первые оерпуховокие эксперименты указывали на 
возможность постоянства дб" при больших энергиях. Уточнение изме­
рений 1 покавадо (рис.6) , чхо рааноохи сечений pip и К*р - рассея­
ния убывают быстро, как Е " 0 » 5 , разнооть же дб" для Dip-рассеяния 
продолжаех медленно убывать по точно тому же закону, чхо и при мень­
ших анергиях. Подгонка 

в большом интервале 8-60 Гав дала Q • 4,0^0,3 мби, 
А * 0,32 ± 0,02 . ( И ) 

В Серпухове было также иамерево сечение перезарядки fTp+lfn? 
под нулевым углом * 6 , Оказалось, чхо оно продолжав! убывать по 
тому же закону, что и при меньших энергиях, именно, как Е" 1 . Воли 
хеперь воспользоваться изохопичеокой ивварианхноохью, хо вхо оечв-
низ определяв! реальную чаоть перекреотно-нечехной амплихудн В*р-
раооеяния, мнимой чаохью которой является А<Г . мм видим таким об­
разом, что на больном интервале анергий реальная чаохь амплихудн 
убшаах быохро, как Е" 0* 5» в мнимая - медленно, как 1Г9» 3 . Таков 
поведение, продолженное до беоконачносхи, неоовмеохвмо о аналихич-
ностью. При высоких энергиях либо Д (У , либо сечение перезаряджи 
должно иаменихь оВое поведение. 
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Для иллюстрации сказанного вычисляй сечение перезарядки, 
используя изотопическую инвариантность, дисперсионное соотноше­
ние и формулу (10) для дб" , продолженную до бесконечности 1 3 . 
К чему при атом приводит дисперсионное соотношение без вычитания, 
показано на рис.7 верхней пунктирной кривой: имеется резкое рас­
хождение с экспериментом, Не спасает деда даже увеличение степе­
ни А в (10) до 0 ,4 (нижняя пунктирная кривая). 

Использование для экстраполяции дб" формулы, учитывающей 
разрезы в плоскости комплексного углового момента (она отличает­
ся от (10) фактором ( I - e * / U t U&) ) ) ,дает на рис.7 кривые, 
которые лежат, между пунктирными линиями. 

Таким образом, модель комплексных моментов, учитывающая один 
полюс и разрезы, не может описать имеющихся данных о разности nip-
сечений и сечении перезарядки. 

Можно попытаться ввести новые полюса, чтобы ввести в формулу 
(10) новые слагаемые и заставить кривую для А <Г быстро убывать 
выше 60 Г э в * 1 3 ' . При этом дисперсионное соотношение без вычитания 
согласуется с перезарядкой. Однако I ) нет убедительных кандидатов 
для частиц, которые соответствовали бы этим полюсам; 2) вычеты 
при этих полюсах получаются безобразно большими; 3) кривая для 
до" ниже 8 Гэв идет вниз и резко противоречит эксперименту. Та­
ким образом, у наопо-оущвству нет разумной модели для быстрого 
убывания б& выше 60 Гэв, Повторю; чтоэтосвязано о тем, что 
прямая для йб" на рис.б соответствует настолько большому^интер­
валу энергий, что её трудно искривить в не этого интервала . Р а з у ­
меется, для проверки этого утверждения необходимо измерение йСГ 
в Батавии.,. 

Пока же можно сказать, что для спасения дисперсионного 
соотношения без вычитания остается одна возможность - отказать-
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оя ох изотопичеокой ивварвь. 'ТВ, х . е , доплотихь большую радиаци­
онную поправку ъ ЛС . Иа обям оообрахвввй нельая, например, вс­
клочить поправку вида 

0 s Д Г * <*.(<Г(п'р) + <Г(п*р)) , (12) 
где oL * I / I37 . Поскольку сумма сечения ltfp-раооеявия при раоомат-
ривааных энергиях почти в 30 рае бодьве их разности, хо эха поправ­
ка достаточно велика, и её учет приводвт в ооглаоию двоперовонного 
соотношения бее вычитания с перезарядкой. Надо окавахь, что поправ­
ка (12) не возникав* в простых моделях, например, реджевокой или по­
тенциальной. Её првоутотвве предохавило бы оамоотояхедьвый внхерео. 
Для её проверяй необходимо иеыерихь раавооть реальных чаохей авлли-
туд П^р-расоеяния в опытах по инхерференцвв о кулонов оким раооеянл-
ем прв 50 Гэв и выие о той же абсолютной точностью, вохорая была 
достигнута а измерениях нижа 20 Р е в у * ) ; 

Еоли отказаться от больших радиационных поправок, то нужно 
водьаоватьоя диспероионным ооотновенвем о вычвтанвем. 8а очах выбора 
коноханты вычитания ово првводвт к ооглаовв о иыеюявмвоя давнымя о 
полных сечениях и перезарядке. В хо же время оно радикальным обра­
зом меняет поведение реальной части амплитуды перезаряди при 
больших энергиях: реальная часть перестает убывать, проходжт черва 
минимум в стремнтоя к константе на беоковечности. Точно ЗДК же ведах 
оебя и оеченне перезарядки. Однако эхо иэманевие поведения происхо­
дит при очень больших анергиях: до 500 Гэв оно практически неотли­
чимо от экстраполяции поведения, обнаруженного ниже 50 Гэв ( р и с 8 ) . 

Двопероионное ооохношение о вычиханавы оэначает приоухсхвие в 
амплитуде Пр-раооеяния членов, которые не могут быть продолжены в 
комплексную пдоокооть углового момента, Отоутотвие таких членов яв-
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дяется первымпостулатом. модели комплексных моментов. Таким об-
рааом, вопрос о дисперсионном соотношении с вычитанием очень ва­
жен для моделей высокоэнергетического рассеяния. Для его провер­
ки, как у»е говорилось выше, нужно измерение Аб* в Батавии и 
реальных частей амплитуд П*р~рассеяния в Серпухове и Батавии. 
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полученные на серпуховском ускорителе ' ' . 
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Рис.7. Дифференциальное сечение перезарядки Jfp + Jf Иг 
при нулевом угле. Черные точки - серпуховские 

данные /12 / . Верхняя пунктирная кривая соответст­

вует расчету с помощь» изотопической инвариант­
ности и дисперсионного соотношения без вычитания, 
когда экспериментальная разность полных сечений 
для $Г*р - рассеяния (10) продолжена до беско­
нечности. 
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Рис.8. Дифференциальное сечение перезарядки при нуле­
вом угле. Сплошная кривая - расчет с помощью 
изотопической инвариантности и дисперсионного 
соотношения с вычитанием. Пунктирная кривая -
экстраполяция эмпирической зависимости. 
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V 
SCALE AND CONFQRKAL IHVARIANCE IN QUANTUM 

FIELD THEORY 

I.T.Todorov 
Institute for Nuoleax Research and Nuclear Energy 
of the Bulgarian Academy of Sciences, Sofia 

Introduotiqn and Summary 

Invarlanoe under similarity transformations or soale 
lnvarlanoe seems to Ъе necessarily related to the idea of continui­
ty In nature* The dlsoovery'of the atorolo struoture of matter, 
which prorides natural units of mass and length dlstroyed the 
old hopes for an •automodel* picture of the world. It appears» 
however, that when we are far from the characteristic discrete 
values of elementary par tlole masses, i.e. for either very large 
С say maoroBOoplo) orsufficiently small distances, it is useful 
to speak about affP'1'nvimwte soale invarlance. 

"8hort dietanoes» in the momentum space pioture means not 
just large transfered momenta and energies hut uniformly large 
4-oomenta ( lnoluding big 4-«aomenta equared). Therefore we 
would expeot the sealing phenomenon to appear in off-shell Ore en 
functions not in on-shell 8-matr.lx elements» Thul£ It is hot 
surprising that the first experimental evidenoe for soaling 
in elementary particle interaction was provided by the electron-
proton deep lnelasti о soatterlng In whioh we have a highly virtual 
photon. ' : ''' 

It is useful, even though we know that nature could be at 
most approximately soale invariant\ to build up a limit-theory In 
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which the symmetry la exaot. This turns out not to he a routine 
joh. It la easy to oonstruot a soale Invariant Lagraagean; it 
suffices to take any renoxoaliBahle theory with a dlmeneionless 
ooupllng oonstant and to drop the mass terms» That» however» 
does not ensure dilatation symmetry of the theory. Renormallzation 
introduces masses in one way or another ( to make arguments of 
logarithms dimension!ess) and thus destroys soale invarianoe. One 
can attempt to sum up perturbation theory logarithms Into 
power в thus arriving at ( Q - dependent) anomalous dimensions* 
This works in the ease of the Shirring model hut fails in more 
reallatlo theories In four dimensions. Some log-terms still 
remain in that oase even after introducing anomalous dimensions* 
The only po ssihillty to retain soale invarianoe is given by the 
Gell-Mann-bow limit theory, in whloh the coupling oonstant la not 
arbitrary, hut satisfies a transcendental equation («which make в 
the ooefficient to the remaining logarithm vanish). This 
corresponds to the case of a finite charge renormaliaation In the 
renormali&atlon group program. Thus» soale Invarianoe of the 
asymptotic "skeleton" theory, leads to highly non-trivial impli­
cations» It fixes not only the type of the Lagrangtan , hut also 
( In prinoiple) the numerical value of the dimenslonleaa coupling 

I v 
constant. 

Unfortunately! there exists no praotloal approach yet for 
actual evaluation of the critical value of Qt , However, It 
turns out that one oan say a good deal about the (local) scale 
Invariant field theory ( if suoh a theory does In fact exist). 

For a local interaction with a non-derivative coupling scale 
invarianoe implies oonformal Invarlanoe. This vras first established 

212 



formally at the level of Lagrangeans; It wae later demonstrated 
In the Gell-lIannmLow limit theory* In the latter proof It Is 
important that oonformal invarlacoe la related to the vanishing 
of the traoe 0 a of the "improved«(ooneerved? symmetric) 
stress-energy tensor Ouy • 0 n the other hand, oonfoxnal 
lnTarlanoe allows to determine the two- and the three-point 
funotlone up to a few constants» For instanoe, In the case of 
a 05-Invariant DO*on-fermion Tukawa ooupllng the whole freedom 
le contained in three oonatemts» the dimensions of the (pseudo) 
eoalar and of the eplnor fields Л and а, and a multiplloa-
tlve ' "coupling* oonstaat Q in front of the vertex function. It 
turns out that i f the eoale dimensions are oanonloal ( a,~{ 
and cL = 4- in mass unit s) then the two-point funotions 
ooiaolde with the free eero-ease Wlghtman functions, and therefore, 
the whole theory i s a free one* Hence, the field theoretlo 
approaoh to eoale and oonformal invarianoe ( unlike the Fritesoh 
and Oell-Наппlight-cone algebra approaoh) requires neoessararily 
anomalous dimensions(whlohare related to Infinite field strength 
renormallzatlon) • The only exoeptlone are the ourrents 

У , related to conserved charges, for whloh we always have 
a j r i and the> street-energy tensor Say , for which d. - 4), 

Positivlty of the two-point function Implies that anomalous 
dimensions should exoeed theireanonioal values С а > It--* ?~ ) 

The possibility to write down biosedexpressions for the 
physioal vertex funotidn and the (dressed) propagator suggests 
to build up a skeleton graph expansion using these £ oonformal 
invariant) expressions without any reference to bagrangean forma­
lism* It turns out that suoh skeleton diagram expansions do not 
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satisfy unltarity identically in the ooupling constant. The gene­
ralized ( off-shell) unitarity relations are shown to bV Tequi-
valent to the «normalized SouWinger-Dysdn ( "bootstrap") equations 
for the vertex functions and propagators. The number of indepen­
dent equations of this type exactly ooinoides with the number 
of free parameters in the theory ( three, In the above example 
of Yukawa raeson-nucleon interaction). Thus, we again end up 
with a theory with no free parameters. Unfortunately, the 
resulting highly non-linear"bootstrapl equations do not look 
much easier to write down explioitely. С I am not speaking of 
solving them) than the Gell-Mann-bow or Callan-Symaazlk equations 
which we encounter In renormaliaable perturbation theory* 
(E.Fradkin is promising to demonstrate soon that they indeed to 
work • I would be very happy if that would happen, j 

On the other hand, the *axiomatio" oonformal imparlance 
approaoh appears to be more general then the (local) Lagr&ngoan. 
theory. For example, we oan write down an Invariant vertex 
function for a pair of oonjugate ( oharged) spinor fields and 
the Maxwell eleotroraagnetic stress tensor FuV while there 
is no (local) renormalizable interaction which oould be construc­
ted out of these fields. 

It is crucial for the self-oonBlstenoy of the scheme that 
no ultraviolet ( or oatastrophio Infrared) divergences appear In 
the skeleton graphe and in the diagrams entering the bootstrap 
equations» The point is that ( as it was said before) renormallBa-
tion violates eoale ( and oonformal) invarlanoe. For the above 
mentioned TCukawa model of moson-nuoleon interaction it was proven 
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that no divergences appear In the range of dimensions К d <L 3 
С «^ 2)t 3/z'ШгЧ' 

The assumption of oonformal lnvarianoe provides an 
algorithm to write down operator produot expansions ( O P E ) . 
That le important for both widening the aoope of the theory 
and phenomenologloal applloatloas, 

OPE were originally intro­
duced as approximate expressions for produoeta of the type 
A(x,)DKi)ralld for small *i-*z or ( X1 - x x )* Global oonformal 
Invariant OPB were first written down la the form 

и,к * Л А 
о 

where (№/ - %i - xz a!a& t n e Dalambertlan D 2 aota only 
on Xb ( not on the relative coordinate 12). The coefficients 
are related to the modified Bessel functions. A different formula 
i s obtained when one looks at OPB as a decomposition of the dlreot 
product of two (unitary) representations of the oonfoxmal group 
in С the principle series of unitary) irreduoible components. This 
i s aohlered by going f i r s t to the Euclidean Green functions and 
operating with representations of the group 0(5,1). 

The reader, who would not be satisfied with the sketchy ex­
position presented here, Is referred to the bibliography at the 
end of this summary(eee in particular reference 8) . 

I t I s pleasure to thank Prof* D.I.HLokhinteey and the Orga­
nizing Committee of the Alushta Seminar for their kind hospitality. 
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ОБЩИЙ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ В КВАНТОВОЙ ТЕОРИИ ПОЛЯ 

Н.А, Черников 

Объединённый институт ядерных исследований 

I . Общий принцип относительности 
Общий принцип относительности Эйнштейна, говоря на современ­

ном языке, состоит в том, что пространственно-временной мир объяв­
ляется четырехмерным дифференцируемым (достаточное число раз) много­
образием, на котором задаётся система уравнений, описывающих ту или 
иную группу физических процессов. Ореди объектов, определяемых сис­
темой уравнений, согласи') общему принципу относительности, содер­
жится метрический тензор, так что физические процессы, протекая в 
условиях неевклидовой геометрии,сами влияют на метрические свойства 
мира. 

Такая постановка проблемы стала возможной, благодаря трудам 
Лобачевского, открывшего неевклидову геометрию, Гаусса, создавшего 
внутреннюю геометрию поверхностей, и Римана, окончательно оторвав­
шего теорию поверхностей от объемлющего пространствами обобщившего 
результаты Гаусса на многомерный случай. Лобачевский, в ещё большей 
степени Риман, а затем и Клиффорд указывали на то, что геометрия 
должна определяться физикой. Клиффорд подчёркивал, что геометрия 
пространства должна зависеть от времени, поскольку она определяется 
физическими процессами. 

Но вплоть до открытия специальной теории относительности время 
рассматривалось в отрыве от пространства, как мы оказали бы теперь, 
пространственно-временной мир представляли тогда ещё в виде прямого 

•произведения "рбхмерного пространства на евклидову прямую - временную 
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ось. Начиная с Эйнштейна и Пуанкаре, одновременно пришедших к спе­
циальной теории относительности, пространственно-временной мир ста­
ли наделять геометрией, которая сделала малоудобным приём раздельного 
рассмотрения пространства и времени. Как оказалось, в основе такой 
геометрии мира лехит геометрия Лобачевского трёхмерного пространства 
скоростей (см, об этом ) . Загадочная скорость света оказалась рав­
ной константе Лобачевского. Пространство скоростей сохранило геомет­
рию Лобачевского и в общей теории относительности Эйнштейна, бла­
годаря тому, что метрическую форму мира можно преобразовать к виду 

( I ) 
где f"~ линейные формы на четырехмерном пространственно-временном 
многообразии. 

Великая заслуге» Эйнштейна состоит, конечно, не только в том, 
что он ввёл геометрию Ринана в пространственно-временной мир. Он 
конкретно реализовал идею Ринана, указав, что в метрических свой­
ствах мира содержится вся информация о гравитационном поле. Уравне­
ния тяготения Эйнштейна связывают геометрию мира с распределением 
энергии-импульса всех прочих физических объектов, кроме гравитацион­
ного поля. 

Выше мы сформулировали общий принцип относительности* Другие 
формулировки этого принципа, как известно, вызывали многочисленные 
возражения. Встать на укаг иную точку зрения стало возможным благо­
даря развитию теории многообразий, основоположником которой явился 
Пуанкаре. Со времён Пуанкаре теория многообразий получила всесторонее 
развитие, кстати сказать, благодаря и тем требованиям, которые 
предъявляла к математике общая теория относительности Эйнштейна, В 
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предлагаемой здесь формулировке общий принцип относительности 
вряд ли встретит: какие-либо возражения* кроне разве что терминоло­
гических. 

2 . Трудности проблемы квантования полей в обшей теории 

Выделенное положение гравитационного поля среди прочих физичес­
ких объектов, в котором оно оказалось в теории Эйнштейна, сильно 
затрудняет проблему квантования полей. Бели тензор энергии-импульса, 
скажем, скалярного поля становится операторным, то в силу уравнений 
Эйнштейна операторным становится тензор Риччи RMJi, а вместе с ним 
и метрический тензор $ . Казалось бы,это хорошо, поскольку оператор­
ным становится гравитационное поле, для которого предписываются 
тем самым некоторые правила квантования. Но как тогда понимать 
геометрию мира? Насколько нам известно, в математике на этот вопрос 
пока нет ответа, Вцё хуже получается, когда вместо скалярного поля 
мы рассматриваем спинорное. Согласно Картану jemn'opu имеют метричес­
кую природу, а потому не существуют на многообразии, на котором мет­
рика не задана. Если же метрика становится операторной, то кроме 
трудностей в понимании самого этого условия надо ещё как-то понять, 
что такое спинор на многообразии с операторной метрикой. 

С целью выяснить, что значит проквантовать метрический тензор 
нами (в соавторстве с Б.М. Барбашовым)была сделана попытка прок­
вантовать поле, подчинённое уравнению минимальных поверхностей 
в псевдоевклидовом пространстве, поскольку это уравнение во многом 
напоминает уравнения Эйнштейна R * О ,Однако хотя наша попытка и 
дала ряд результатов, в целом она не внесла желательной ясности. 
Более того, вскрылась ещё одна трудность: решение, удовлетворяющее 

. однозначным данным Коши, вообще говоря, оказывается многозначной функ-
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цией. Этот факт надо иметь в виду при изучении не только эйнштейнов­
ских, но и других нелинейных уравнений поля. 

В качестве временной меры можно отказаться от намерения прок-
вантовать гравитационное поле и в уравнения Эйнштейна подставлять 
каким-либо способом усреднённый оператор тензора энергии-импульса. 
На этом пути надо решить проблему квантования полей (всех, кроме 
гравитационного) на фоне произвольно заданного риманова мира. В 
такой постановке задачи пренебрааем эффектом воздействия физических 
процессов на геометрию мира, а значит, не берём в расчёт и уравнений 
Эйнштейна. Последние учитываются лишь после решения проблемы кван­
тования негравитационных полей на фоне риманова мира. Эта ситуация 
близка к той, с которой мы имели дело при релятивистском обобщении 
газокинетической теории Больцмана: сначала была построена теория га-
за на фоне риманова мира , а затем к кинетическому уравнению были 
добавлены уравнения Эйнштейна с тензором энергии-импульса рассматри­
ваемого газа * . Здесь легко просматривается аналогия с известной 
задачей Власова для электромагнитного поля. Как видно, этот путь 
открывает возможность учитывать влияние микроструктуры вещества на 
геометрию мира. 

Плоский мир специальной теории относительности, с которым обычно 
имеют дело в квантовой теории поля, - всего лишь простейший частный 
случай риманрва мира. Поэтому квантовую теорию поля в римановом мире 
надо строить так, чтобы она опиралась на геометрические свойства 
мира, присущие всем римановым мирам, и так, чтобы в частном случае 
плоского мира она совпадала с хорошо известной теорией, Последняя 
сильно опирается на группу иэометрий, т.е. на группу преобразований, 
сохраняющих метрическую форму (которая в плоском случае в декартовых 
координатах равна dss=//VJi^a<i'J'j. В произвольном же римановом мире 
группа иэометрий сводится к тождественному преобразованию. Следова-
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тельно, надо строить теорию, не опираясь на группу изометрий. 
Квантовая теория поля в плоском мире, если учитывать взаимодейст­

вие полей, сама содержит много трудностей. Поэтому в первую очередь 
надо ввести риманову геометрию мира в квантовую теорию поля, не учитывая 
взаимодействия полей. Полевые уравнения в таком случае линейны. При 
введении римановой геометрии линейность полевых уравнений сохраняет­
ся. Тем не менее, вводя ртоаноВу геометрию, мы решаем задачу о влия­
нии гравитационного поля на прочие поля, поскольку вся информация о 
гравитационном поле содержится в метрическом тензоре. 

Нам удалось ввести риманову геометрию мира в квантовую теорию 
скалярного и опинорного полей» Этому вопросу поовящена остальная часть 
нашего обзора. Результаты, относящиеся к окалярному полю, получены 
совместно с Э.А. Тагировым 5 , а также с Н.С. Шавохиной б , Резуль­
таты, относящиеся к спинорному полю, подучены совместно с Н.С, Ша­
вохиной б , Предварительные результаты опубликованы в работах 7 ~ . 

3 . Пйияиип конечной инвариантности 

Движение частицы, если пренебрегать ее волновыми свойствами, 
согласно Эйнштейну, представляется мировой геодезической. Масса 
покоя т определяет уровень гамидьтововрй фувждаи ^f^jT"*^ c • 
В случае нулевой массы покое геодезические изотропны. Опрашивается, 
при каких преобразованиях метрики уравнения изотропных геодези­
ческих 

<**: = fof • ~~ J& - м 

(2) 
не меняются? Такими преобразованиями являются о*ы$ « В " аы* » 
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где В « скалярная функция мировых координат. Говорят, что два мира 
с так связанными метриками находятся в конформном соответствии. 
Поскольку уравнения изотропных геодезических конформно инвариантны, 
то безмассовая частица ведёт себя в мире о метрикой e/s'z= В ds2 

так же, как и в мире с метрикой ds , Иначе говоря, безмассовая 
частица реагирует только на поле световых конусов. Переходя к опи­
санию волновых свойств частицы, конформную инвариантность поведения 
безмассовых частиц мы возведём в принцип: полевые уравнения при т=>о 
должны быть конформно инвариантными. 

В согласии с этим принципом находятся уравнения Максвелла и 
уравнение Дирака, если переход от евклидовой геометрии мира к рима-

1 новой сопровождать одной только заменой частных производных по декар-
товым координатам ковариантными производными. Но если ковариантная 

i ' • ' • • ' • • - -

| производнаяот бивектора электромагнитного поля, как и от любого тен­
зора, была хорошо известна, то этого отнюдь нельзя сказать о ковари-

! антной производной от спинора. Это новое геометрическое понятие вве-
ли Б Д . Фок и Д Д , Иваненко, обобщившие уравнение Дирака на риманову 
геометрию мира. Этот пример говорит о том, что задача о поведении 
частиц и полей на фоне риманова мира не так уж проста и сулит, кому 
посчастливится, большие успехи. 

Часто приходится встречаться с мнением, что при переходе от 
плоского мира к риманову во всех случаях достаточно заменить частные 
производные по декартовым координатам ковариантными производными. 
Пример скалярного поля показывает, что это противоречит принципу 
конформной инвариантности. Действительно, скалярное безиассовое поле 
в плоском мире подчиняется в декартовых координатах уравнению 

п*л ££—л -о. 
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Произведя указанную выше замену, подучив уравнение о ф = 0 , где 
Р Ф - второй дифференциальный параметр Бедьтракн, Уравнение хе 
аф-0 конформно неинвариантно. Напротив, уравнение Пенроуэа 
йф + ^-Яф^Оконформно инвариантно. Согласно принципу конформной 

инвариантности,скалярное поле подчиняется не уравнение оф ^(^) Ф , 
а уравнению 

Таким образом, оператор квадрата четыре-импульса скалярной чаотищ 
равняется —Ъ2{(3 +$~К) t а не - Л £ 7 , при подстановке 

уравнение (3) переходит в уравнение 

Напротив, в уравнении Дирака, как ухе говорилось, чтобы удов­
летворить принципу конформной инвариантности, достаточно заменить 
частные производные по декартовым координатам коварнантнымн пронз» 
водными. При подстановке 

& -8%, , У'т'В'*Г (6) 
уравнение Дирака 
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переходит в уравнение 

a f 1 (8) 

Равным образом и уравнения Максвелла 

VF^ = 0 , v„ F„„ + v. FKf. + v„ FM-0, 

где Г у 8 8 " ^ , при подстановке 

переходят в уравнения 

т .е . удовлетворяютпринципу конформной инвариантности при одной только 
замене частных производных по декартовым координатам ковариантными 
производными* 

Последуя релятивистский газ , мы вплотную подошли к принципу 
конформной инвариантности . Последним препятствием, затруднявшим 
принять этот принцип, явилось скалярное поле, для которого, как 
ошибочно считалось, должно было выполняться уравнение оф - (~j£) ф. 
Соображения, приведшие к принципу конформной инвариантности, 

возникли главным образом в связи с тензором энергии-импульса, 
о чем будет сказано дальше. Чтобы принять принцип конформной 

инвариантности, надо было установить уравнение (3 ) . Это было 
«5 

сделано в работе . 

4. Тензор энепгии-импульса 

Снова вернемся к классической частице. Запишем уравнение 

геодезических (2) в виде 

где Г - собственное время частицы ( поделенное на массу, 
если тф 0 ) , Пусть x=x(i) , р =р(Т)~ ~ -решение этой 
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системы уравнений. Введем мировую о - функцию 

Через нее выражается векторное поле потока частицы 

S"<*) - / Р"М f(x-Z<T))e/r ( I 0 ) 

и тензор энергии-импульса частицы 

Здесь предполагается, что времениподобнне и изотропные геодези­
ческие изоморфны евклидовой прямой. Это довольно сильное требова­
ние, предъявляемое к топологии мира. Мы будем предполагать также, 
что существует пространственно-подобная гиперповерхность 2 ! , 
разрезающая мир на две части - " прошедшее" и "будущее". Сама 
гиперповерхность £Г может служить образом "настоящего". 
Очевидно, если существует одна такая гиперповерхность, то их 
существует и бесконечное множество. Конечно, не один только 
плоский мир удовлетворяет этим требованиям. Например, им удовлет­
воряет и сферический мир де Ситтера. 

Нетрудно видеть, что я <~ _ , 

Так как X (°о) и х(—°°) не являются мировыми точками, 
то 8"(х-5i(<*)} я « T e a - x(-*•)) равняются нулю. 
Следовательно, 

* " S " ' 0 • (12) 
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Имеем, дальше, 

а следовательно, 

Очевидно, что 

и что 

Т - g^T"- -W J Srx-£m)dT. 

Таким образом, 
Т в О , если Щ в О . (15) 

Рассмотрим теперь произвольную простую область 0 , Согласно 
общей теореме Стокса, для любого векторного поля S 
выполняется равенство 

где ( 

ST° S" 5 я «? 

dt f d± , <*$ — векторы элементарных смещений по гранвде области 
0. Из (16) следует, что для векторного поля, удовлетворявшего 
условию (12), интеграл 

Im S Stld6ef

 ( I 7 ) 
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по гиперповерхности " настоящего" не зависит от выбора X * 
в случае векторного поля (10) этот^^интеграл равняе^м^единице. 

Для векторного поля 

, of ' rpMJi 

где К - произвольное векторное поле, а тензор i 
удовлетворяет условиям (13) и (14) , имеем 

§T,dt"~J (krT'"'+FT)dV. 
Здесь 

Таким образом, если обе последние величины равняются нулю, т . е . 
если векторное поле К подчиняется уравнению Киллинга 
^ц Ку + ^v йр* ® i to интеграл равняется нулю. Если след Т 
равняется нулю, то интеграл равен нулю при K^v ~0 
и без того, чтобы Р равнялось нулю. В этих случаях 
интеграл 

ST.d6'-Sk'T,„de 
не зависит от выбора 2 - . 

В случае (IX) интеграл (18) равняется 

Мировая траектория х ~ Я (?) и гиперповерхность £ 
пересекаются при некотором значении Т , В правую часть формулы 

v 
(18) 
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(19) входят точка «2С и импульс р , отвечающие этому 
значении Т . Выражение /СЛ р " является первым интегра­
лом системы уравнений ( 9 ) , если Vp-ICy "*" % ^/w = О . 
Если m = 0 , то fjHp^ является первым интегралом при If = 0 . 
Действительно, 

Приравнивать хе массу покоя нулю мы мохе потому, что функция 
-т7с2^ Зцтрр^Р является первым интегралом системы 

уравнений ( 9 ) . 
Однопарздетрическая группа преобразований мира, получающаяся 

в результате Прошения системы уравнений dM. = к*(х) 
в случае V^ А\, +%:Кр,-0 является изометрической, а в случае 
ftuV~0 - конформной. Поэтому в первом случае векторное 
поле к будем называть изометрическим, а во втором - конформ­
ным. Соответственно, величину к*р в первом случае 
будем называть изометрическим, а во втором - конформным моментом 
импульса частицы. Понятно, что изометрический момент является 
частным случаем конформного. 

Переходя к описанию волновых свойств частицы, надо 
ожидать, что тензор энергии-импульса удовлетворяет условиям 
(13) , (14) и ( 1 5 ) . Так оно и есть на самом деле, если соблюдает­
ся принцип конформной инвариантности. Как хорошо известно, всем 
трем условиям удовлетворяет тензор энергии-импульса электро­
магнитного пола и тензор энергии-импульса спииорного поля, равный 
( в ортогональном репере) -
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След этого тензора равен 

Т - - тс у Н„ V . 
Напротив, при описании волновых свойств скалярной частицы не 
придерживались принципа конформной инвариантности и иоходили из 
интеграла действия 

5 —J X dir , (21) 
где полагали 

При этом получали тензор энергии-импульса 

который хотя и удовлетворяет условиям (13) и (14 ) , но не 
удовлетворяет условию (15)..Если в (21) положить 

и определить тензор энергии-импульса по Гильберту: 

то получится тензор энергии-импульса 

T f , v *T7- f rR ,^v ,4 -V D ^V (22) 
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где 

удовлетворяющий все» треп условиям (13, (14) и (15) , След 
тензора (22) равняется 

T=-(«f)V. 
Мы получили результат, важный и для плоского мира; нашли 
тензор энергии-импульса скалярного поля, который дает новые 
сохраняющиеся величины. Не прибегая к общему принципу относи­
тельности, а также к принципу кинфоршой инвар иаятпости, этот 
тензор можно было бз получить лишь в результате довольно искусст­
венных построений. На наш взгляд, это может кое-что сказать даже тем, 
кто не желает затруднять себя условиями неевклидова мира: 
играют роль не только значения функционалов от £«„ 
"Р11 Qotji-Vvp* й 0 и значения функциональных производных по q 
П Р И 9 ^ = 1*р • 

Итак, мы знаем, что в волновом случае тензору ( I I ) 
соответствует тензор (20) , если спин частицы равен половине, и 
тензор (22) , если спин равен нулю. Вектору (10) вволновом 
случае в спинорном варианте соответствуетч в ортогональном 
репере) вектор 

где U , V - два решения уравнения Дирака ( 7 ) , В 
скалярном варианте вектору (10) соответствует вектор 
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£" ш д*-нIищ -**"*>, (25) 

где U , V - два решения уравнения ( 3 ) , Как и (10 ) , 
оба эти вектора удовлетворяют условии ( 1 2 ) , 

5, Ортогональный репер 

Метрическая природа спиноров принуждает нас пользоваться 
ортогональным репером. При изучении взаимодействии скалярных 
и спинориых частиц приходится применять ортогональный репер и к 
скалярному полю. Приведем здесь краткую сводку формул, характеризую» 
щих ортогональный репер , 

Координатный репер состоит иа линейных форм С/PC . 
Дуальный к нему репер состоит из векторных полей 2—% . Орто-
тональный репер состоит из линейных форм 

f - f\ J*', 
с помощью которых метрическая форма приводится к диагональному 
виду ( I ) , Обратно, 

л* 7*-.£•" ?" г* К* 
где fs fp—Qfi и, следовательно, f x f ^ = 0 ^ • 
дуальный к fv репер состоит из векторных полей 

Имеем также 
е- " К 2 

Эх1 

£- ж (fl Р 

Векторное поле можно задать как в координатном репере Ц-- , 
так и в ортогональном репере е : Д"е« = &"•§?-* » 
откуда fi в Cf /л , аы-ЙР1 , Конекторное поле (линейная 
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форма) аналогично задается как в координатной репере dx , 
так и в ортогрнадоьнон-репере / : J?*/*— apec/ocat. 

Ковариештнне производные вектора и ковектора в ортогональной 
репере равняются _, ^ « л * 4 

2>,Л = е^Л +ь)„Л , ( 2 б ) 

что позволяет написать ковариантяую производную любого тензора. 
Например, 

2И " е * 
/Г + Ч/* А" + Ч^ л"*. 

6 

2), ' / - е* < + Чл Л*" - н 

2), А «А - ^ Д<*/1 — Сх)М A,4ji - ч? Я«р , 

Величины ***мв называются коэффивден тами вращения репера. 
Они играют в ортогональном репере ту же роль , какую играют в 
координатном символа Кристоффеля,и находятся из двух условий. 
Первое из них - отсутствие кручения, второе - сохранение метри­
ческого тензора при параллельном переносе. В силу первого 
условия X Их 

4 / J — Ч * ~ C«fi t 
v 

где С° , называемые коэффициентами неголономности репера, 
определяются операцией Ли 

• . х 

Коэффициенты неголоиомнооти равняются 

L _ щ Т-« ТА \ Эх" • Э * ' < / ' 

В силу второго условия 

Ч , %х f Ч * Чн* 
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Обозначая 

находим 

Ковариантные производные спинора f и сопряшенного спинора 
Ф =в у п 0 равняйся 

2)^-е*Г + Г cow №*?, ( 2 7 ) 

А ? =* е * ? " ^ ?• ^ " ^ • 
Матрицы И удовлетворяет условиям Н^Н^ + Н П — * - 7 • 
матрица Н*=1Н°Н*Н Н аитикоммутирует с Н* . Ее квадрат 
равняется единице. Матрица Н ° антмэриитова, матрицы Н ,Н ,п ,п 
эрмитовы. Ковариантные производные этих матриц равняется нулю. 

Встречается объекты, имеющие и спинорный и тензорный характер. 
Правила (26) и (27) позволяют находить их ковариантные производные. 
Например, спинорный и векторный характер имеет ковариантяад произ­
водная спинора ifv = 2 ) v Ц' . Вторая ков&риаитная производная 
спинора равняется 

Тензор Римана-Кристоффеля в ортогональном базисе равняется 

Альтернированная вторая ковариантная производная от тензорного 
ктинорного объекта выражается алгебраически через сам объект 
и тензор Римана-Кристоффеля. Например, 

(д, а» - а, з и л -Rv,^ <̂» 
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( 3>„ 2j, - 2>, ЗЦ, ) f = / « 4 - f l У, 

где R ^ v ^ p ~ ^v«f 'V»*'/ 1 ' 
Все дальнейшие формулы ын будем записывать в ортогональном 

репере, 
6» Оператор КОНФОРМНОГО момента импядьов 

Проекции КцР классического вмпульоа частиц ва векторное 
воле соответствует оператор 

k—ib(K'&.+F), (я> 
действующей ва скалярное поле, в оператор 

A^afm+ifSLbniffl+ify (29) 

дейотвупавй ва опвворвое поде* Квадратвымв скобками мы обоавачем 
альтервжроваввое проивведенве матриц. 

Еолв й - * . 3 " i *о оператор К им будем называть овераторои 
вовформвого момента вмпульоа. В частном случае, когда ве только 
К * во в F равняется нулю, мы будем называть его оператором 

изометрического момента вмпульоа. 
Коммутатор оператора полевого уравнения (3) с оператором (28) 

рав цветов 

+jr{(!)r»,fc-<')+W}+f:'{a+•£*}, 
а коммутатор оператора волевого ураввевва (7) с оператором (29) 
равняете! 

i [ н х - ^ н\ к]_ - £ н" (3>'KJ + 
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Таким образом, оператор изометрического момента импульса действу­
ет в пространстве решений полевого уравнения. Оператор конформно­
го момента импульса действует в пространстве решений полевого урав­
нения, если /77*0. 

7 . Задача Коши и правила квантования полей 

Кажется правдоподобным, что данные Коши на гиперповерхности 
"настоящего" Z должны однозначно определять во всем мире U ре ­
шение полевых уравнений (3) и ( 7 ) , Но если это положение и окажет­
ся, вообще говоря, неверным, то примем его как в должной мере ог­
раничивающее класс рассматриваемых здесь риыановых миров. Ключом 
к решению задачи Коши является в случае уравнения (3) векторное по­
ле ( 2 5 ) , а в случае уравнения (7) - векторное поле ( 2 4 ) . 

Начнем со скалярного поля. Интеграл ( 1 7 ) , поскольку он не з а ­
висит от выбора £ , задает в пространстве решений уравнения (3) 

антисимметричное скалярное произведение 

( u,v; = J ( игг* ~ vu,)<Je*. (зо) 
т. 

Скалярное поле ф квантуем согласно статистике Бозе. Это означает, 
что значения поля Ср на гиперповерхности Е и значения его нормаль­
ной к £ проиаводной рассматриваем как генераторы алгебры, являю­
щейся бесконечномерным аналогом квантовой механики. Общий элемент 
линейной оболочки генераторов имеет следующий вид 

U в ( Ы , ф ) . (31) 
где поле U продолжает считаться неквантованным. Формула (31) ус ­
танавливает линейное отображение линейной оболочки генераторов на 
пространство решений уравнения ( 3 ) . Как и ( 3 0 ) , (31) не завиоит от 
выбора гиперповерхности 21 .Полагая" для любых двух операторов 
U , V типа (31) 
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мы вводим антисимметричное скалярное произведение в оболочке гене­
раторов. 

Если подставить в (32) выражение (31) для V , то нетрудно за­
метить следующее. Поскольку функции "гЛ и lT(h)* l£ft" , где /7"'-нор­
маль к 21 , могут принимать на Z. произвольные значения, то для 

X e Z [4>(X),U]m - i tl U(X), [фм(*>, U]_ a it UJX) 

Но вместе о ф(х) коммутатор №fic)fl]m подчиняется уравнению ( 3 ) , 
тому ж , что и UCx), Из единственности решения задачи Коши для 
уравнения (3) следует, что 

[<p(x),U]^ibu(x) ( з з ) 

для любой мировой точки X , Запишем это равенство в развернутом 

В И Д 9 UCX) -]{& (*.9> «г ^ - ^ <*>У> «<*>) <** 1 ( J 4 ) 

где 
Л(х, y)=j- [ФСх),ф(*)1~ - Л (у,х), ( 5 5 ) 

Лр(ЯгУ) означает ковариантную производную от Л (ос,!/) по второму 
аргументу. 11ы видим, что перестановочная функция (35) дает решение 
вадачи Коши для уравнения ( 3 ) . Эта функция сама удовлетворяет урав­
нению ( 3 ) . Поэтому согласно (34) имеем 

Пусть теперь для некоторой гиперповерхности Е каким-либо ме­
тодом решена задача Копи: 

u(x)**S {Т(х,!0Ч(ы)- Т^х^ши)}**. 
Сравнивая этот результат о ( 3 4 ) , замечаем, что А(х,у)^Т(*,У)* 
Дг<х,Ч)П***Тг(*'У)Ьм на MX Г . Согласно (35) и (36) , нахо­

дим перестановочную функцию т j pt 

I [*№), *МЦ - j {Т„ (*,*) ШЮ - Т, (У, t) TYx.4{* 
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всюду на Ш01. Эта формула тесно связывает задачу Кони о правилами 
квантования поля. Аналогичная формула имеется и в спинорном вари­
анте. 

Рассмотрим систему, состоящую из уравнения Дирака и сопряжен­
ного с ним уравнения, т . е . систему уравнении 

Пусть и %v •> решение згой системы. Интеграл (17) с векторным 
полем (24) задает в пространстве решений системы уравнений (38) 
симметричное скалярное произведение. Скалярный квадрат равняется 

г 
Спинорное поле f квантуем согласно статистике Ферми. Это означа­
ет, что пара спинорных полей f , V порождает бесконечномерную 
алгебру Клиффорда. Генераторы алгебры у , у на гиперповерхно­
сти Z линейно независимы. Общий элемент линейной оболочки генера­
торов равняется , где 

U= (9>и) , I/*- (гг,г)> (40) 
к где поле и , тт продолжают считаться неквантованными. Эти фор­
мулы устанавливают линейное отображение линейной ободочки генера­
торов на пространство решений системы уравнений (38) . Как и ( 3 9 ) , 
элементы U , V не зависят от выбора гиперповерхности £ , Полагая 

(u+vV~<*tu). («) 
мы вводим симметричное скалярное произведение в оболочке генерато­
ров. 

Если U , тг - решение системы ( 3 8 ) , то и две пары и , О и 
О %У также явдяютоя решениями системы ( 3 8 ) . Позтому из (41) сле­

дует 
(42) иг=о , \/*г*о 
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Подохавляя в (43) выражение (40) для V , ввиду произвольности \г 
на Л , получаем, что на 2й 

IfWtUlrM*)- (44) 
Подохавляя же выражение (40) для U , поду чаем, что на Z 

lV*f(X)] -VY*). (45) 
" I е 

Но вместе о парой у , f система уравнений (38) подчиняется и па­
ра антикоммутаторов [ У ( х ) , U]^ , [ V * f(x)]+ • Из единствен­
ности решения задачи Коши для системы уравнений (38) следует, что 
равенства ( 4 4 ) , (45) справедливы не только на гиперповерхности Z , 
но и во воем мире U, 

Подобным же образом иа (42) выводится, что для любой мировой 
точки х справедливы равенства 

Ввиду произвольности U ,V~ на £ отсюда следует, что для любой 
точки у , лежащей на 2Z , 

где р и <f - номера компонент спиноров р и р . В силу единствен­
ности решения задачи Коши для системы (38) равенства (46) оказыва­
ются справедливыми и для любой мировой точки у . 

Обозначим J -У(я), ^(жД^ матрицу с компонентами [ ч ^ * ) » * / 7 / ^ 
Она удовлетворяет следующему алгебраическому условии 

где t означает армитовское сопряжение матрицы. Иа (40) и (43) сле­
дует, что если через две различные мировые точки л и у можно 
провести гиперповерхность "настоящего" Z , хо Lffx), fdtijfO . 

Из (31) • (32) следует, что для таких точек я W*)> $W\ J ° • 
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.* (48) 

Записав равенства (44) и (45) в развернутом виде 

замечаем, что антикоммутатор дает рашавве задач» 
Коши для системы уравнений ( 3 8 ) . Поскольку я сак антикоммутатор 
[ < К£))7ОД1*. удовлетворяет этой системе, то ооглаоно (48) инеем 

Пусть теперь для некоторой гиперповерхности £ каким-либо ме­
тодом решена задача Коши: 

U(x) ш - J Sfxty) Hv Utyd*\ 
г 

ггсх) - - / &<У) Hv Sfy, *; J* \ 
Сравнивая этот результат о ( 4 8 ) , замечаем, что l*h(x)> WV'J+ **" ^fyfy 
lf(v)> ¥(*$+ я Sfy*) ма прямом произведении M*Z, В ооответот-

вви о (47) функции -S и S связаны друг с другом: 3(x,y)Hb=H0S С^у 
Соглаово (49) веходим _ 

всвду на ШШ. Эта формула аналогична формуле ( 3 7 ) . 

В. ВТОРИЧНО квантованный оператор КОНФОРМ­
НОГО момевда 

Для любого векторного поля 1С в теваора анергии-импульоа ска­
лярного поля (22) можно доказать равенотво 

в г 

в аналогичное равенотво для тензора знергим-имлульоа опинорного поля 
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z r 

A 

где К - оператор (28) и ( 2 9 ) , соответственно. Скобки, окружаю­
щие оператор К , равняются(50) и ( 3 9 ) , соответственно. В част­
ности, для конформного векторного поля получаются равенства 

(51) 

Эти интегралы являются вторично квантованными операторами конформ­
ного момента. 

Для иаомехричеокого векторного поля в скалярном варианте 

В случае плоского мира именно это обстоятельство скрывало необхо­
димость перехода от канонического тенвора анергии-импульса к мет­
рическому, пока не пришлось рассмотреть конформный момент импульса 
и принять во внимание принцип конформной инвариантности поведения 
бевнаооовых чаотиц, 

9 , Проблема вакззма 

В спинорном варианте оболочку генераторов алгебры мы получи­
ли в виде комплексного линейного пространства. Определим действи­
тельные элементы оболочки. Для этого заметим, чт о если пара (' w , v) 
является решввмвм оиотемм ( 5 8 ) , то и п а р а ' { u \ v ) m\vtu) также 
является реиеаяем вхой системы. Такие две пары назовем комплексно 
сопряженными. Решение назовем действительным, если (",&) =(v,u)% 

т . е . u*v , Соответствующий элемент U+U* оболочки будем вавы-
вать действительным, 



в скалярной варианте поле ф иы считаем действительным. 
Поэтому оболочку генераторов алгебры получаем в виде действи­
тельного векторного пространства. Но ничто не мешает нам рас­
сматривать комплексные решения и уравнения (3) . Соответствую­
щие элементы (31) оболочки становятся комплексными• 

В обоих вариантах мы имеем дело с комплексным линейным 
многообразием L и его вещественной частью L , Чтобы 
определить вакуум, в обоих вариантах надо задать на L 
эрмитову структуру. Но правила квантования полей в спинорном 
случае задают квадратичную форму, а в скалярном - внешнюю 
квадратичную форму. Таким образом, в обоих случаях, чтобы 
определить вакуум, нужно задать комплексную структуру, т .е . 
задать на L линейный оператор, квадрат которого равняется 
минус единичаому. Тогда в спинорном случае определится 
внешняя квадратичная форма, а в скалярном - квадратичная форма. 
Вместе с тем определится оператор числа частиц. 

Итак, проблема вакуумного состояния сводится в естественному 
выбору комплексной структуры. В случае статического мира 
комплексная структура задается вторично квантованным оператором 
энергии, т . е . оператором изометрического момента импульса, 
порожденного бесконечно малым сдвигом по времени. Когда масса 
покоя м равняется нулю, этот результат обобщается на случай 
конформно статического мира. Тот же сдвиг по времени дает 
оператор энергии, который становится оператором конформного мо­
мента импульса. При /7? -О так выбранное вакуумное состояние не 
зависит от конформного множителя В 2 . Имеется нвтересный рример, 
а именно сферический мир де Ситтера, где вам удаяооь определить 
вакуум при любых m , несмотря на то, что этот мир иестати-
ческий. В вругнх случаях проблема однозначного выбора вакуума 
остается открытой. 
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10. КонФорино-ннвариавтные взаимодействия полей 

Принцип конформной инвариантности сильно ограничивает 
выбор нелинейных уравнений поля. Например» для одного ска-
лярвого поля лагранжиан взаимодействия должен равняться %-f <p , 
лагранжиан взаимодействия спинор ого поля со скалярным должен 
равняться | ф У ' Ч Д } £ и д - константы. Варьируя 
интеграл действия, получаем систему уравнений 

• ф + f R<p~(f-)'4>+S<p3 + 9!?%t, 

_;*//>, = (Мс -$ + )»•.*. 
конформно инвариантную при т « о, М=0. Здесь М -
масса фврмжона, WI - масса бозона* 
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ОБЩИЕ СООТНОШЕНИЯ КВАНТОВОЙ ТЕОРИИ ГРАВИТАЦИОННОГО ПОЛЯ 
И ПЕРЕНОРМИРУЕМОСТЬ ТЕОРИИ НА ПОРОГЕ 

Г.А.ВидковыскиЙ, Е.С«Фрадкин 

Физический инстиут им.П.Н.Лебедева АН ССОР 

I . Обобщенные соотношения Уоола для функций Гоина 

Функции Грина кванховой теории гравитационного поля опре­
деляются производящим функционалом 1 " / | : 

U9 

где ^ 6 - нормировочный интеграл, U. - постоянная, фиксирую­

щая калибровку р 

Правильное выражение для локальной меры (приводящее к 
унитарной квлибровочночшвариантноиЛыатрице, не содержащей р а с -
ходнмоотеи типа % (о") ) ,получено в работе 5 . при любом 
лоренц-инвариаитног4 споообе регуляризации эха мера имеет вид: 
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Обобщенные тождества Уорда выступаю! как следствия ин-
аарианхносхи действия (4) и доказанной в б ннвариантновхн 
меры (5) относительно калибровочных преобразований: 

* > " 5 £ ^ v C 7 * v i r г г / „ ч (б) 
В ^ Сх̂  = V ф х } 3 °°« 

Выввохн их можно, оделав замену (6) переменных интегрирования 
в ( I ) , Результатом явдяетоя следующее уравнение для произ­
водящего функционала; ^ 

где оператор V £ v транспонирован оператору (6). Подейохву-
ем слева оператором Q ^ | q r f | г • в члене о источником 
протащим нохечник налево. Цепосредотвениым вычислением про­
веряется 6 , ч т с (7) принимает пооле эхого вид 

где ,* ; оэначаех, чхо источник в эхом выражении охоих 
слева. Уравнение (8) эквивалентно следующему ооотнонению для 
функций Грина при выключенном источнике 

^-<о|Т}^фф|о>= » 
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где dp С Я З - произвольный функционал. Подставляя 

ФиФ = *Vv.. Х\о- (10) 

получим беоконечную оиохему обобщенных соотношений Уорда в 
квантовой теории гравитационного поля.*' 

Для дальнейшего анализа понадобятся две первых серии 
эхих ооохношений» соответствующие значениям Wi = О и VYi? l 
в (10) . Первая серия обобщенных тождеств Уорда имеет вид: 

J си) 

(12) 
г 4 V^Stx*-**) 

<o\VjiA\^... Х"Ч^\о> = 
Q ч lei нечетное. 

__ И. четное 
Здесь ^|Г оэвачавт сумму по всем разбиениям ( I , . . . ft.) на 
£ г пар ( K i l i ) . . . ( Ksa. U H ) . 

Вторая серия дается производящим уравнением (в) в виде 
рекуррентного соотношения: 

''Аналогичная система соотношений в квантовой электроди­
намике била впервые получена в работе 7 , В работе б тикис 
ооотнокеняя были найдены в теории поля иига-Миллаа. 
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i <o IT A « A f.\^.. • Г*<хЛ f\-) I ô = 

+ <о\Т5,4'схл-УА,<хл-

Uao интересует реиение уравнений для функции Гивна с 
отдачами от нуля аажууиным средами: 

Определим оператор поля; А г oo^v&*t 

а обычный образом / 9 / определил его пропогатор Q- ( х , ч Л 
я вермюне функции (w+afr 

Введен также пропагатор "фиктивных частиц* / I / : 

и веривиные футциа взаимодействия о фиктивными частицами: 

л. 

Q 
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Соотношения Уорда могут быть легко переформулированы в терми­
нах введенных функций. 

П. Тождества УОРДа для пороговых поотоянных перенор­
мировки 

Условие перенормировки сформулируем как требование про­
порциональности пороговой асимптотики функций Грина в вырож­
денной калибровке ( U. = О ),соответствующим свободным 

О в О О 
функциям Q г- } |Y| j "̂  , которые могут быть получе­
ны как вариации классического действия,взнтые при Q"vz £Г* 

Мы покажем, что этот вид асимптотики не противоречит тождест­
вам Уорда при условии, что постоянные перенормировки связаны 
рядом соотношений. При этом из бесконечного числа констант 

-7 ^ ^ 3 l * 4iV> 7 t V ° £ а ; ±%} £ и t i ) t i > • •• z-i ; ••• 
в теории остаются лишь две независимых (и, вообще говоря, бес­
конечных) величины: 1?о j 2 . 1 = lEi. 

Сформулированному условию njренормировки можно удовлет­
ворить по теории возмущений подходящим выбором регуляризации. 
В частности регуляризация предложенная в работе 1 0 , приводит 
к указанному виду асимптотики. При этом важно отметить, что вы­
числения по теории возмущений в регуляризации работы Ю по­
казывают отсутствие инфракраоных раоходимостей на массовой 
o6fдочке ж наличие у функции Грина нормального полюса. 
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Максимально возможная Лорвнц-крвариантная структура про-
пагатора гравитонов содержит пять скалярных функций, однако с 
учетом низшего тождества Уорда (12) лишь три из них независи­
мы, при этом две не имеет полюса б. Полюсной член точного 
пропагатора гравитонов имеет вид: 

-|iCV^PvbVv(vP^^ ( 1 5 ) . 

ФФ 
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В вырожденной калибровке ( < / - О ) пропагатор (15) по­
перечен по любому из индексов. Свободный пропагатор имеет вид 
(15) о функцией G T ' r C f > V > > » р а в н о й ** С А + | ; > £ я • 
Далее , j ft 

Соответствующий свободный пропагатор равен 

Структура же вершинных функций очень сложна, однако тождества 
Уорда можно проанализировать и не имея явного вида этих функ­
ций. 

Рассмотрим сначала первые два соотношения второй серии 
тождеств Уорда (14) . Эти соотношения для функций Грина в вы­
рожденной калибровке могут быть представлены • виде: 

•^(YV + V V - W ) = L(W+ 

си) 
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^fC^Zl № ? + ****-

= 0 

где (в X - пространстве): 

—<- функции Грина в совпадающих точках. Детальный анализ функ­
ций (19) при К г 0 и i a - 1 . позволяет найти их поро­
говую асимптотику с точностью до двух неизвестных констант 6: 

С С-^^=[с41рП^+ его) 
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К|Р |%*° » P (21) 

Постоянные Cf и С 2 определяются следующими интегралами: 

(22) 

При этом оказывается, что постоянные Cj , С 2 определяются теми же 
самыми интегралами 

Соотношение,аналогичное ( 1 7 ) , в теории поля Инга-Миллса 
тривиально дублирует низшее соотношение Уорда первой се-
рии,аналогичное (12) , Здесь se оно позволяет определить не­
известные постоянные Cj и Cg! 

С* = i A (?{* - О , 
с») 
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и с помощью (23) и (21) поставить в соотношение (18) под-
ностьи известную асимптотику функции Грина в совпадающих 
точках. При ятом убеждаемся, что добавление этой функции экви-
валентно вычеркиванию одного множителя ~£% в оравой части 
(18). 

Громоздкость теории не позволяет выписать явного вида 
вершинных функций, но о помощью тождеств Нбтер 

можно показать , что простые вершины и пропагаторы удовлет­
воряют соотношениям того же вида, что ооотношение Уорда для 
точных функций Грина. Это дает возможность сократить тензор­
ные множители в (18) и получить соотношение между постоянными 
перенормировки при Л =0 : 

(263 

Аналогичное соотношение имеет место и в теории поля Янга-
Миллса 8. 
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» 
Далее, первая серия тождеств Уорда (13) представляется 

в виде; 

И > 1 (27) 

4.isr l^ t tcr (* ," >+-

+ S r w & r l 4 . . & r w l = c t 
где £ означает сушшрованив по Pi,.» Рк при условии 2f р̂  = П,, 
а С - симметризацию по точкам. Как и в предыдущем случае, 
доказывается, что свободные функции удовлетворяют аналогич­
ному соотношению. Уравнения (27) дают оставшиеся тождества 
Уорда для перенормировочных постоянных в вырожденной калиб­
ровке: 

7"* * г к

г

м 

(28) 

Сделаем теперь в эффективном действии (определяющем 
полный набор диаграмм теории в вырожденной калибровке) и в 
производящем функционале замену переменных С С ; С - "фиктив­
ные "поля ): 
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* -5:V< 
^ * " ~Ч ^ ; C R " * 2 ; (29) 

Определяй,кроне ->,перенормираванные параметры теории: 

1К\ = Л" С ? ! Ня 1, (30) 

После этого можно доказать 6 что соотношения Уорда (26) 
и (26) позволяют привеоти иоходаыв лагранжиан тождественно к 
такому виду, в котором пооле включения бесконечных множите­
лей в фигурирующие в теории константы все функции Грина 
имеют конечную пороговую асимптотику. При этом контрчпены, 
перенормируюжие пороговую асимптотику функций Грина, ае на­
рушают калибровочной инвариантности теории. 

Постоянная " 3 может быть иоключена ив выражения 
Л *• 

для CL -матрицы, пооле чего в теории остаются две беско­
нечные величины: *2? % - перенормировка вожвовой функции У 
• " 2 ^ 2 А - перенормировка постоянной тяготения ж сред­
него поля А - одновременно. 

Перенормированный оператор гравитационного поля: 
3 R. r ^*V* + ^ $ • 
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• 

При этом постоянная и переиениая части гравитационного по­
ля перенормируютоя, вообще говоря, разными константами: 

3* = г^ссг^д***]. 
Это приводит к тому, что перенормированиый лагранжиан не 
собирается к виду скаляра кривизны в терминах поля <Х « 
а ообираетоя в терминах другого подя: 

(последнее • не противоречит сделанному выше утверждению о 
калибровочной иввариантнооти 6 ) . 

Поля <&ъ л 9L совпадают между собой лишь в 
олучае, воли 

Н± = t% , (32) 
Как мы покажем в оледуюцем разделе,соотношение (32) спра­
ведливо, но оно ие является тождеотвом Уорда. 

В невырожденной калибровке постоянные перенормировки 
становятся функциями е е .Множители "%*•'• С«0 ; Z i ^ O p 

• ^ . С^") вводятоя теми же соотношениями, что и ранее. 
Перенормировка волновой функции . \J определяется ив со­
ображений сохранения вида тождеств У орда. Можно показать, 
что вто требование приводит ж определению: 
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Тогда соотношения ( 2 6 ) , (28) справедливы также и при d, ^ О 
При этом перенормировке подлежит лишь поперечная часть вод-
новой функции: , 

Сохранение вида тождеств У орда гарантирует тогда для функ-
ций Грина поля ^ * справедливость раооуждений, проведен­
ных выше в случае вырожденной калибровки. Что же касается 
продольных частей функций Грина (зависящих от oL ) , т о 
в следующем разделе мы покажем, что не только перенормиров­
ка заряда ъ , %/ 

но и отдельно постоянные " 2 i и 2 , калибровочно-инва-
риантны: 

Это значит, что в разложении функций Грина по степеням oL 
(на пороге) бесконечным множителем обрастает лишь чдея ну­
левой отепени, продольные же части функций Грина на пороге 
конечны. 
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Ш. Масштабная ияварианхноохь теории и соотношение z ? i -TL 

Помимо калибровочной инвариантности квантовая теория гра­
витационного поля обладает другим овойохвом инвариантности, 
которому в классической теории соответствуют извеотные овой-
охва конформного преобразования айнитейновского лагранжиана, 
в чаохнооти хох факт, чхо поохоявнов поле А д удовлетво­
ряет уравнениям Эйнштейна при произвольном А. Последнее оп­
ределяет специфику нарушения симметрии в квантовой теории. 
Наконец, будет использовано еще одно масштабное свойство, 
которое определяется наличием фундаментальной постоянной 
размерности длины. Формально маоштвбная инвариантность выс­
тупает как овойсхво однородности функций Грина. Подобно тож­
дествам Нётер, аналитическим выражением масштабной инвариант­
ности служит теорема Эйлера об однородных функциях. 

Производящий функционал зависит ох источников и трех 
параметров теории: 

Проводя в интеграле ( I ) замену переменных Г ^ х " ) Г Ы с «1С £ 

« ' » } ,г'=яс,с'--УАС, 
мы докажем первую теорему однородности б : 

11^\ЛУ- (88) 

А А А - - Z C A ^ l ^ ^ ^ l . 
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Применяя теорему Эйлера,получим новую сиотеиу точных соотно­
шений для функций Грина ( & * ( /* ,v ) х ) ) : 

=-c^^U.. . a K V 1 

h . > l . 
Рассмотрен теперь прон&зодящув Q - -функцию как 

функционал среднего поая / 9 , 6 / : 

G'*C<f>U.*.0 . 

Уравнение движения для этой функции имеет ш д : 
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где 
rp«».r*&i _ V i l l i 

j [ ^ 1 - эффективное действие. 
Параметр А явно в это уравнение не входит, он появляется 
лишь в условиях перехода от Q С<^>) к функциям Грина: 

G"c. .. ... . . ( Я ) 

<3>--AS 
' f t '^L . . 8 ^ 1 ! 

и т . д . 
Таким образом, 

Иными словами функции Грина зависят параметрически r* A 
только вследствие граничных условии ( 3 7 ) . 

Ивучая трансформационные овойотва квантованных уравне­
ний Эйнштейна (36) при конформном преобразовании Q - * А Я t 
мы докажем вторую теорему однородности б : 
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G* ( A<J>|A*,A-0 = 

= PK Q* C^g l̂ « ; 0 . (39) 

Приивняя теорему Эйлера, получим вторую систему иаоштабншс 
соотношений для функций Грина: 

4 

(41) 
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Соотношения (34)-(35) и (40)-(41) удобно окоибинировать, 
что дает: 

гъд Ьлр-^о* ? ) - (42) 

w 

- : Г 1 Н * Л ( P I , . . . P H , - Z P L ) 0 ^ ^ , (43) 

Проанализируем оледотв.ия соотношений ( 4 2 Н 4 3 ) для по­
роговых постоянных перенормировки в вырожденной калибровке. 

Можно показать, б , что свободные вершинные функции и 
пропагаюр гравитонов удовлетворяют тождествам: 

- - п С1"*45 J tfc.-'iVZM- m> 
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С помощь» этих соотношений поддай из (42)-<*8) уравнения 
для 1* -множителей, как функций параметров теории: 

•адчл --1 ' v •* (46) 

^ Г i— 7 ~ i \ - _ M l v " d 

К > 1 . ( « ) 

Подставим подученные в предыдущем разделе тождества Уорда: 

Тогда как условие совместности дифференциальных уравнений 
(46) -(47) найдем новое фундаментальное соотношение ( оС~0 ) : 

" Z i = HjL, . с*) 

Решение уравнений (46)-(47): 

*3Zi QjJL* _ Q (49) 
^ А " ЪА ' 

Вернемся к точным тождествам для функций Грина, Нали­
чие в теории параметра ^ £ , имеющего размерность длины 
("К я 1 ) обусловливает следующие свойства фикций Грина (ко­

торые могут быть получены из уравнения ;:>б)): 
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GCpi^O = * * е с л ё . м О ; (so) 

I сн,...fwi*') = ( 5 I ) 

Уравнения (50-(5I) снова имеют вид теорем однородности. 
Получаем; 

(52) 

к <Л 

-а*ъ^ г' и 1 1 <-P«,-IW> = 

2 Г » ч = о . (53> 
L-i 

Исключал с помощь^ ( 5 2 ) , (53) производные по ^ £ из 
уравнений (40) - ( 4 1 ) , окончательно получим в вырожденной 
калибровке бесконечную систему соотношений для функций Гри­
ле о выходом за массовую оболочку: 

У 
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» i ^ p f »»UJVl).--«U-*«fr4+» d 

(55) 

Наравне о тождествами Уорда и независимо от них эти новые 
соотношения являются точными следствиями полной системы д и ­
намических уравнений теории б , В отличие ох тождеотв Уор­
да "масштабные" тождества (54)-(55) не содержат функций Гри­
на фиктивных частиц. 

Введение "масштабно-инвариантной" регуляризации не с о ­
ставляет проблемы б . В чаотвоохи, регуляриэация^редложен-
ная в работе I 0

f одновременно масштабно-инвариантна и ка-
пибровочно-инвариантна и приводит к тому, что " Z i ^ s * ^ " ! . 
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В одучае невырожденной калибровки тождества (40) -(41) 
приводят к следующим уравненияи, опредвияющиы зависииость 

~fr — множителей от о б б : 

^Д Л '" ^ a ( i ~ ^ i 2 а } (56) 

^Ti^r^r^-iy 
(57) 

При начальном условии ( 4 8 ) : 

решение этих уравнений: 

Благодаря этому соотношению в теории гравитации остается лишь 
одна существенно бесконечная постоянная - перенормировка пос­
тоянной тяготения )£ . В результате вое функции Грина пере­
нормированной теории имеют конечную асимптотику на пороге• Од­
нако это еще не означает, что бесконечности устраняются иэ 
внепороговых амплитуд. 
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