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pQCD Energy Loss and Thermal Field Theory in Small Systems

by Isobel KoLBE

In recent years, experiments at the Large Hadron Collider and the Relativistic Heavy Ion
Collider have discovered that many of the signatures that are traditionally ascribed to the
presence of a quark-gluon plasma (QGP) in central heavy-ion collisions also manifest in
certain classes of peripheral heavy-ion collisions as well as in smaller colliding systems.
The glaring exception to this list of observations of QGP signatures in small systems is the
partonic energy loss. However, current theoretical descriptions of partonic energy loss are ill-
adapted to small systems. This thesis first presents a numerical analysis of an analytical small
system extension of a standard energy loss formula, and finds that major inconsistencies in
the description of small system energy loss persist, motivating a need for a first principles
calculation of the properties of a small droplet of QGP. Thereafter, a first step toward such
a calculation is presented by considering a single, massless, scalar field that has been geo-
metrically confined by means of Dirichlet boundary conditions. This toy model reveals, via
thermal field theoretic techniques, that quantum fields are very sensitive to the presence of a
boundary, presenting significant deviations from the Stefan-Boltzmann limit and revealing a

geometrically driven phase transition at the scale of the medium.
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Preface

Apart, perhaps, from Power, it is mankind’s incessant desire to understand itself and its own
context, that has driven the greatest of its endeavors. Though we might cower at the thought
of our own insignificance, we are fundamentally curious. As a little girl I found myself, flat
on my back in the family churchyard, staring up at the stars - frustrated because I had not
been able to read the text accompanying pictures of the planets in my mother’s books. I
vowed to one day know everything there is to know about the great big universe. Although
the language has since changed, the basic questions of my illiterate childhood mind have

remained the same, and today my interest still lies in decrypting the structure of the universe.

The study of nature has long been the exclusive endeavor of those individuals favored by the
inevitable structural inequalities of society. It has been a particularly fantastic honor to count
myself among those fortunate enough to have the opportunity and means to undertake the
task of peeling back the veil of ignorance and glimpsing the mind of God. But modern sci-
ence does not place individuals on ridiculous pedestals, glorifying arrogance and, oftentimes,
blatant theft. Instead, it advances through truly gigantic, multinational endeavors that bring
anything from dozens to thousands of great minds together to wrestle the secrets of Nature
from Her stubborn grip. In this thesis you will find my tiny contribution to what is the largest

scientific endeavor of all time.



Part 1

The phenomenology of small systems



"Darkness crept back into the forests of the world. Rumour grew of a shadow

in the East, whispers of a nameless fear..."

- Galadriel, The Lord of the Rings, J. R. R. Tolkien



Chapter 1

Evidence, and lack thereof

The discovery by Ernest Rutherford of the structure of the atom [1] ushered in an unprece-
dented era of discovery, but, since then, physicists have developed precious few techniques
that differ appreciably from Rutherford, who proclaimed to Freeman Dyson: “We’re like
children who always want to take apart watches to see how they work” [2]. Perhaps that
is simply because, armed with enough money, these methods work exceptionally well, and
have led to remarkable discoveries about the structure of nature. Inspired by the success
of the apparently brutish approach of rather violently breaking up objects, scientists around
the world have built ever larger particle colliders. Today, the largest of these is the Large
Hadron Collider (LHC) at CERN in Switzerland, followed closely by the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in the United States.

RHIC and LHC collide a myriad of particles, ranging from protons to lead nuclei, at such
high energies that the produced material has a temperature 100 000 times that of the center
of the sun [3]. The produced densities are ten times higher than normal nuclear matter; the
very smallest constituents of the every-day objects around us are forced into a state with
properties not unlike the properties of the universe a few micro-seconds after the big bang
[4] — the quark-gluon plasma (QGP).

The story of the discovery of the QGP, although replete with drama, was not a single dramatic
discovery, but rater an amalgamation of observables that are best understood collectively as
resulting from the production of a QGP. The experiments at these super-colliders have yielded
colossal amounts of data that have been analyzed by thousands of experimentalists around the
world, resulting in half a dozen monumental discoveries, a Nobel prize, and countless fatal
blows to tentative theories of nature. But, in the wake of the discovery of the Higgs boson,
as the LHC enters an era of precision measurements of known particles and phenomena, a

shadow stirs in the results from calibration experiments.

The reader will not find an exhaustive review of heavy-ion experiments in this section, but
it is hoped that, by the time the reader reaches the end of it, the results presented here will
provide the reader with some idea of the unease within the field, fueled by the desperate need
for theoretical control over small colliding systems.
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1.1 The experimental checklist

The idea that the quarks that are confined in normal nuclear matter can be forced into a free
state by very high temperatures or densities has been around since the late seventies [5—7].
Today we understand this material to be a quantum-chromodynamical (QCD) analogue to the
electromagnetic plasma phase of ordinary matter, in which partons carrying color charge are
able to move freely within a localized volume while in near thermal equilibrium. However,
eluding understanding, and with a $1, 000, 000 prize on its head, a major hurdle to “observ-
ing” the QGP is the phenomenon of confinement. Although we currently do not understand
precisely why, the fact is that no single, free quark has ever been observed. Quarks appear
in well-documented groupings as hadrons, but the QGP is an entirely new phase of matter in
which the quarks and gluons are able to move beyond the confined structures of the hadrons.
As such, any observation of the QGP through detectors that can only measure photons, lep-

tons, and hadrons, must be, in some sense, indirect.

In 2004, an empirical answer to the question “How will we know if we’ve created a QGP?”
was proffered [8], a conclusion which was drawn from years of theoretical study and data
from experiments at BNL and CERN. The suggestion was that, if experiments could simul-
taneously offer evidence of the bulk, long-range characteristics of the QGP, along with the
short-range perturbative properties of individual elements of the medium, and do so in the
presence of a well-understood control experiment in which neither the bulk nor the short-

range signatures were observed, then one might safely claim the discovery of a QGP.

Of course, in practice, this meant that far more than three observations needed to be made,
since each requirement (the bulk properties, the individual properties, and a control experi-
ment) led to more than one experimental consequence; from a bulk perspective, one might
expect to see a large energy density, an increase in the entropy (as the hadronic degrees of
freedom give way to QCD degrees of freedom), strangeness enhancement, and long-range
particle correlations, perhaps manifesting in radial and elliptic flow or the famous “ridge”
structure. Meanwhile, from a short-range perspective, one would look for evidence of mod-
ification of particle properties due to the presence of the medium, such as the modification
of particle widths or abundances due to color screening, or the energy loss of a particle as it
traverses the medium. The control experiment is meant to bring under control effects due to
the fact that a large nucleus, like that of gold or lead, will have dramatically different prop-
erties to a proton, even in the absence of a QGP, and it is imperative that such “cold nuclear
matter” effects are well understood before studies of the QGP may commence in earnest.
One approach to constraining cold nuclear matter effects is to apply the analyses that lead to
the observation of QGP signatures in nucleus-nucleus (AA) collisions to proton- or deuteron-
nucleus (pA/dA) collisions, so that the properties of a nucleus might be studied without the
risk of creating a QGP.
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1.2 Control experiments

It is perhaps prudent to start with the control experiment and a discussion of its necessity.
Apart from the obvious scientific requirement of a control experiment in any measurement,
the observation of the QGP is marred by a range of known and unknown pitfalls that need to
be brought under control; by trying to study the QGP, we are attempting to study the strong
force in an asymptotically free environment that, we believe, has not existed in the known
universe since a microsecond after the big bang', and we are attempting to do so by colliding
hundreds of nucleons, all interacting through the strong force while still confined. Although
the strong force is known to have a short range, it is also known that the strong force is
modified by the presence of other nucleons (for instance, the energy required to separate the
proton from the neutron in deuterium is 2 MeV while one would need 30 MeV to separate
the nucleus of a *He atom in four [10, Ch.6.1]; even the mass of the proton far exceeds the
combined masses of its three constituent quarks [11, Ch. 4.5]).

Furthermore, at the energies provided by modern-day accelerators, we are no longer “sim-
ply” dealing with a superposition of nucleons all modifying the strong force, but instead must
consider the presence of a cloud of valence quarks and gluons, the latter (due to gluon split-
ting and fusion) possibly precipitating into the color-glass condensate [12, 13], to which we
can add the energy density fluctuations of nucleons [14], all before a single drop of QGP has
been created. In any given AA collision, we have precious little information about the initial
state that evolves into a QGP and we may ask a great many questions, including: What is
the energy-density profile of the nucleus before the collision? What is the probability of an
interaction occurring between two quarks? How many times can one quark interact with the
quarks of another nucleus? How close do two nuclei have to get to interact? In short, how
is the nucleus modified by the presence of hundreds of nucleons at relativistic energies and

how does an AA collision, in the absence of a QGP, differ from, say, a pp collision?

Some of these questions may be answered by colliding a proton or a deuteron into a heavy
nucleus, probing the nucleus much as Rutherford probed the atom. It is in this attempt to
quantify the properties of the nucleus before the production of the QGP, that a range of
pA/dA experiments at RHIC and the LHC were performed [15, 16]. RHIC has added a
wider range of collision systems to the pot of evidence, including 3 HeAu as well as an energy
scan of dAu. Along with the pp runs of the LHC and peripheral AA collisions, these events
became collectively known as the “small colliding systems”, and they are challenging many

accepted ideas in heavy-ion physics.

IThere is some evidence that quark matter may exist at the centers of neutron stars [9], but the recent dis-
coveries of neutron stars with masses of up to, and even above, two solar masses have constrained the known
equations of state (EsOS) to such a degree that the majority of EsOS that include quark matter have been ruled
out. Nevertheless, the possibility exists, although it has not yet been conclusively proven and, in any event, the
necessarily “cold” quark matter that would exist at the center of a neutron star is a different beast from the hot
and thermal primordial soup.
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Ficure 1.1: (Drawn by the author) The reaction plane in a typical heavy ion collision, showing

the almond shaped overlap, pressure gradients, and direction of momentum transfer, as well as
the azimuthal angle, ¢.

1.3 Bulk, collective observables

This section will not provide an exhaustive list of bulk observables, but will provide some
background on two crucial observables that both motivate the present thesis and are consid-

ered necessary observations in any claim of the presence of a QGP.

It was originally thought that the QGP would behave like a gas of free quarks and gluons
[17]. However, RHIC discovered that that their data is best described by the presence of a
perfect fluid [13]. The discovery of the perfect fluidity is an inference made from the fact
that hydrodynamical models describe the manner in which the collective behavior of the fluid
propagates an initial spatial anisotropy into final state momentum anisotropy [18]%. Since
many nucleus-nucleus collisions are off-center, the overlap region is most often almond-
shaped (not spherical). Therefore, the difference in pressure gradients in the short direction
of the almond as compared to the pressure gradients in the long direction provide particles

with more momentum in the short direction than in the long direction [26], see fig. 1.1.

One may quantify this momentum anisotropy by considering the coefficients of the Fourier
expansion of the angular distribution (in azimuthal angle in the event plane, equivalently ¢ or
A¢) of produced particles (which my also depend on the transverse momentum pr and the

rapidity y), leading to what is known as the “flow” coefficients [27], v{, v2, v3, etc:

d®N
dodprdy

2 Although hydrodynamics has been immensely successful in its description of collective behavior (see for
instance [19], but also virtually any experimental collective behavior result that compares to theory), it does not
monopolize the field. There are, for instance, kinetic and transport models that reproduce some of the results as
well (for example [20-25]), even though the underlying physics is fundamentally different. As such, we know
only that observables such as v, appear to be most sensitive to the initial condition and not too sensitive to the
mechanism whereby the initial geometry and fluctuations are propagated into momentum anisotropies.

o [1 4+ 2vi(pr,y)cos(¢) + 2va(pr,y) cos(2¢) +---]. (1.1)
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Figure 1.2: The 2010 CMS result that inspired a closer look at small systems, showing the two
particle correlation function as a function of azimuthal angle (A¢) and pseudorapidity (Azn) and
revealing the small, but noticeable, ridge structure along A¢ = 0 [48].

While there are infinitely many such coefficients, it is easy to interpret the second, v, as an
elliptical flow coefficient, and the third, v3, as a triangular flow coefficient, as their magnitude
can be interpreted as a signal of both the initial distribution of the energy density and the bulk

evolution [27]. In this way, one might quantify the effect of collective flow

There is a wealth of experimental data on the flow coefficients in AA collisions, at a range of
beam energies, nucleus- and hadron species, transverse momenta, rapidities, and centralities
(see for instance [28—40]). The mass dependence of the flow coefficients (see for instance
[33, 38—43]) is understood to imply that the effect is due to “early time” dynamics (by which
is meant that the flow effect is due to the collective partonic behavior of a QGP rather than
some effect at the later, hadronic stages) [44], and coefficients higher than v, and v3 have
been measured along with higher order cumulants [45-47], which investigate correlations

between higher numbers of particles.

The first signs of trouble came in the form of “the ridge.” In 2010, the CMS collaboration
published a result that hinted at the presence of a structure in the two particle correlation
function in very high multiplicity pp collisions [48] that was highly reminiscent of heavy ion
collisions, and is shown in fig. 1.2. The LHC ran pPb experiments in 2011 and a positive
cascade of measurements of the ridge and flow coefficients followed, both from reevaluations
of RHIC data and from the other experiments at the LHC. Figure 1.3 shows the ridges that
were seen by CMS, ALICE and ATLAS in pPb, but all manner of long range correlations
have also been measured [33, 47, 49-56] and the need for a more precise understanding has

brought to the forefront precision ideas such as energy density fluctuations in the proton [57].

Complimenting the ridge results was a slew of measurements of flow coeflicients in small
systems, two of which are shown in fig. 1.4. In fig. 1.4a, we see the pronounced vz in > HeAu
collisions, which forms part of a collection of measurements performed at RHIC meant to
probe the effect of the initial geometry by creating differently shaped initial energy density

distributions through choice of projectile, in this case, a decidedly triangular 3He nucleus.
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Ficure 1.3: Two particle correlation functions in high multiplicity pPb collisions at the LHC,
showing the ridge at A¢ ~ 0. The CMS and ALICE results express the correlation function
C(A¢, An) of ATLAS in terms of the associated yield, but the interpretation is the same.

The striking feature of fig. 1.4b is that all the higher cumulants of v, appear to be identical, a

very strong motivation for collective behavior [51].

A second important observable that may be ascribed to the statistical and large scale nature
of the QGP is strangeness production. In principle, due to the temperature of the QGP be-
ing higher than the mass of the strange quark, strange quarks are produced in much larger
numbers in the QGP than in normal, cold nuclear matter; thus, in the presence of a QGP,
one expects to see an excess of strange hadrons (hadrons containing at least one strange
quark)[60]. This, in fact, was the measurement that prompted the first declaration of the
discovery at CERN of the QGP [61]. It should be noted that the study of strangeness en-
hancement is complex, the production being subject to a range of effects, including, for
instance, “canonical suppression,” whereby the production of strangeness in small systems
is subject to strangeness conservation. Strangeness conservation suppresses the number of
strange quarks produced in small volumes, so that a false enhancement may be observed by
simply increasing the interaction volume and making the effect of strangeness conservation
negligible [62, 63]. Questions surrounding the thermodynamic limit become crucial here, but
it appears as though very high-multiplicity pp might well reach a region in which one finds
ensemble equivalence [64] and is therefore not hindered by canonical suppression.

Strangeness production is most easily seen from particle ratios or yields per participating
nucleon (see, for example, [65-67])°. Strangeness enhancement had already been measured
in AA at NA49 [68] and WA97 [65] in the ‘90’s, but at the time the interpretation was not
that this enhancement was due to the presence of a QGP. (This time-period in strangeness
study has been extensively reviewed; see, for instance, [69] and in the modern perspective

3Some measurements show the strangeness enhancement using an “Enhancement Ratio” of the yield in a
particular phase space window Y, for example [66]

()
(Nywound) ) PbPb

E= , (1.2)

(o)
W) ) pBe

but again, £ + 1 would indicate the presence of an effect not taken into account by a simple nucleonic scaling.
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(a) PHENIX measurement of v, and v3 in 3HeAu as a function of transverse
momentum, comparing to a number of theoretical predictions [54].
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(8) CMS measurement of N-particle v, cumulants. Notice that, in pPb, as in
PbPb, the higher cumulants are identical [51].

FiGure 1.4: Two striking flow harmonic results from small systems.
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Ficure 1.5: Particle yields for various strange and multi-strange hadrons at ALICE, showing the
relatively smooth transition from pp through pPb and into PbPb[73].

[70].) However, the very recent discovery by the ALICE collaboration of strangeness en-
hancement in pp-collisions, meriting a spot in Nature Physics [71], has certainly bolstered
other measurements of strangeness enhancement in small colliding systems [71-76]. The
plot in fig. 1.5 shows a particularly striking result from the ALICE collaboration; presented
are the particle yields of a range of strange hadrons as a ratio of other very abundant particles,
showing that the strangeness enhancement depends on the multiplicity of the event, the data

smoothly flowing from pp through pPb and into PbPb.

The presence of strangeness enhancement and directed flow* constitute a convincing argu-
ment for the observation of the bulk properties of the QGP in high multiplicity events in small

systems — one could argue that one of the three experimental boxes has been ticked.

1.4 Short range observables

Again, this section will not present an exhaustive list of short range observables, but will
aim to present those results that represent (a very subjective and biased list of) important
motivations for the heavy-ion community’s interest in partonic energy loss in small systems:
one of the major predictions for the way in which partons are modified due to the presence of
the medium, which played a crucial role in the discovery of the QGP in central AA-collisions,

is ominously absent in smaller colliding systems.

4For more comprehensive reviews, see for instance [77, 78]
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The first observable in this section is the phenomenon of jet-quenching and particle suppres-
sion. The first prediction came from Bjorken [79], but in the years since, a wide range of
calculations have appeared that predict the manner in which a hard parton produced along
with the medium will lose energy due to color interactions as it traverses the medium. These
may be broadly categorized by the way that the distribution of gluon radiation is computed
and approximated [80] and are commonly known for their original authors; the DGLV (for
Djordjevic, Gyulassy, Lévai and Vitev) approach (focused on in part II of this thesis and elab-
orated on more there) [81-88], as well as BDMPS-Z (for Baier, Dokshitzer, Mueller, Peigné,
Schiff, and, independently, Zakharov) [89-97], ASW (for Armesto, Salgado, and Wiede-
mann) [98-101], AMY (for Arnold, Moore, and Yafte)[102—-104] and Higher-Twist [105—
108]. In the presence of a QGP, one expects to observe both the quenching of back-to-back

jets and the suppression of partons with high transverse momentum.

The second is screening. The idea that the well-known effect in electromagnetic plasmas of
charge (or Debye) screening must have an analogue in a plasma of free color charges led
to the prediction that certain kinds of mesons would dissociate in the QGP [109], thereby
lowering their expected abundances. More precisely, if the plasma reaches a temperature that
is higher than the binding energy of, say, the J/-meson, which consists of a charm and an
anti-charm quark bound together (a cC-pair), not only will the cC-pair melt, but the individual
quarks will be screened from each other in the plasma, preventing the pair from reforming.
In this way, the abundance of J /¢ was predicted to be suppressed in the presence of a QGP,

when compared to an appropriately normalized pp result’.

An extraordinarily useful quantity for measuring the modification of a parton due to the
presence of a medium is the nuclear modification factor, R44 [110, 111]:
d*(Naa)/dydpr

Rap = (1.3)
M7 Neon - d2dorp / dydpr

allowing for the quantitative analysis of the difference between an AA-collision and a pp-
collision, by dividing the yield of a particular rare event of incoherent production (say, the
number of jets, or J /i particles) in an AA-collision, by the yield of the same event in a pp-
collision, and normalizing appropriately using the mean number of binary collisions, (N¢.;)
© It is precisely this normalization that needs to be done carefully, at first simply involving a
Glauber calculation of the number of binary collisions (see, for instance, early measurements

at RHIC [112]), but later involving a slightly more involved nuclear overlap function, (T44)

SThis effect is also applicable to other quarkonia like the Y-meson, which consists of a bb pair, as well as to
higher excited states of quarkonia.
50ne often sees a slightly different quantity that also goes by the name of “nuclear modification factor”, but
is defined )
d°N
_ <Ncoll>peripheral (dprdn )central

Rep = >
(Neolt)central (a”_N)
dprdn ) peripheral

, (1.4)

which compares the yield in a central event to that in a peripheral event of the same colliding system, thereby
avoiding the need for a reference pp data set, which often does not exist at the same energy and therefore needs
to be extrapolated, increasing the systematic error. Nevertheless, the interpretation is the same; Rcp ~ 1 in the
absence of a medium.
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Ficure 1.6: Nuclear modification factors as a function of transverse momentum of charged

hadrons (h*), neutral pions 7°, charged particles, 7-mesons and photons at (A) a range of differ-

ent center-of-mass energies and (B) showing the transparency of the medium to photons, along

with a number of theoretical calculations. See [113, 114] and references therein for origin of
data and theory.

(as in [113].) This evolution of the normalization comes on the back of an ever deeper
understanding of the nature of the cold nucleus and how it differs appreciably from a simple
superposition of nucleons. An R44 ~ 1 would indicate the absence of any modification so
that one may conclude that the particular measurement being scrutinized in AA is simply a

well-normalized superposition of pp events with all cold nuclear matter effects under control.

A note on multiplicity: Multiplicity is an inherently problematic parameter. Most impor-
tantly for the purposes of the present thesis, theoretical models have as an input, not the
multiplicity of the event, but rather, the number of participants, Npay, easily related to the
size of the interaction region or the volume of interacting nucleons. At the multiplicities
involved in central AA-collisions at the LHC (~ 25000 particles [115]), one may neglect
non-geometrical fluctuations of multiplicities, and Glauber models therefore offer a simple
relationship between Ny, and the multiplicity of the event. However, in small colliding sys-
tems, even high multiplicity events can only ever hope to produce a hundred or so particles
[74], causing far more pronounced fluctuations in the geometry, as well as significant fluc-
tuations in the energy density profile within the fluctuating geometries. In this regime then,
the relationship between N, and the multiplicity is far less direct [116]. The problem arises
from an inherent bias when choosing high multiplicity events - one cannot know whether the
100 particles are produced by a dozen soft interactions, or a handful of hard interactions that
have decayed into a hundred soft particles. It is therefore difficult to determine how central
the event was and therefore, how many participants there were and, crucially, whether or not
enough particles were created to form a free, thermalized, QCD medium [117]. Furthermore,
the number of participant nucleons and the number of binary nucleon-nucleon collisions,
Neoll, are not necessarily the same and, in fact, their relationship scales with the energy of the
collision. The ALICE collaboration has shown striking results [118], showing how biases

from event selection and collision geometry can cause an apparent suppression.
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[157] and ALICE [158] as function of pr in different centrality classes of pPb, where Q,pp is
an observable which corrects for a number of biases and is to be interpreted in the same way as

Rypp-

Nevertheless, the ALICE collaboration [116] has put in a tremendous effort to overcome
the afore mentioned biases, including using detectors that are virtually on the beam (the
zero-degree calorimeter) to determine how “bruised” the nucleus is after it has collided with
a proton, thereby inferring the centrality (and therefore the number of participants) of the
event without relying on the raw multiplicity. Their endeavors allow for crisper discussions

of centrality dependent measurements.

In AA-collisions, Rq4 has been extremely useful, providing clear evidence of both jet-
quenching (see, for example, [113, 114, 119-132]) and J/y¢ (and ¥(2S)) screening (for
instance, [133-139]). As examples of this body of experimental results concerning short
range effects of the medium, consider fig. 1.6, showing the remarkable success of theoretical

predictions and abundance of experimental data available for measurements of Ry4 '

After the first observations of non-zero v, of low momentum particles in small colliding
systems, the natural next step was to search for jet-quenching and quarkonia melting in these
same data sets. In small colliding systems at CERN [144—-154], and BNL [155], tantalizing
evidence exists for J/y, Y, and their excited states’ suppression in the A-going direction in
pA. Although it is not possible from the suppression patterns of J /¢ to conclude whether or
not cold nuclear matter (CNM) effects are responsible®, the additional suppression of ¥(2S)

state (a higher excited state of the J /) appears to be inconsistent with CNM descriptions.

However, shockingly, the breadcrumb trail of the QGP in small systems stops here. There is
no conclusive evidence for jet quenching or energy loss in small colliding systems. R4, 44,
and any bias capturing variation on it, of any number of particle species, as a function of

rapidity, transverse momentum, or centrality, at any of the energies available at CERN and

7 Other examples of the tremendous success of energy loss models in describing partonic energy-loss in
central AA collisions include [140-143].

8This is because a number of other phenomenological explanations have been put forward, including nuclear
absorption, the modification of nuclear parton distribution functions, gluon saturation and in-medium energy loss,
reviewed in [156].
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BNL, is either consistent with unity or difficult to interpret [118, 121, 157-165]. Just one
such result may be seen in fig. 1.7. It is this apparent absence of partonic energy loss in small
colliding systems, in the context of the abundance of other QGP signatures, that motivates
the calculations performed in this thesis. It is clear that a major part of our understanding of

the QGP in small systems has been found wanting: where is the energy-loss?
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Chapter 2

Problem identification and thesis
outline

Collectively, the experimental results presented in chapter 1 paint a compelling, albeit baf-
fling, picture. Over the last three decades, the heavy-ion community has developed a largely
self-consistent picture of deconfined matter, based on a range of observables and phenomena
that are best described within the framework of a rapidly expanding fireball, with a critical
temperature of ~ 120 — 160 MeV[166]. There is little to no objection to the idea that matter
has been brought into this state in central AA-collisions, but the observation of many QGP
phenomena in small colliding systems is starkly juxtaposed against the absence of partonic

energy loss. Where is the energy loss?

Part I explored the available experimental evidence and pointed out the major inconsistency
in our current understanding of the QGP by presenting evidence of the presence of a number
of traditional signatures of the QGP and confronting the reader with the absence of partonic
energy loss. Is there no QGP in small colliding systems? Do we know what we’re trying to
measure? If there’s no QGP, why are all the other observables popping up? Is the energy loss

perhaps too small? Do we even know what we expect the energy loss to be in small systems?

All are valid questions, many are difficult to answer. This thesis will attempt to address the

following problem:

Can we systematically and rigorously either rule out or realize the possi-

bility that the energy loss in small systems is simply too small to measure?

Part II presents a first attempt to compute the small system corrections to pQCD energy
loss, revealing that a range of common assumptions about the nature of the medium are
inconsistent at early times and small separation distances. This motivates a need to go beyond
the small system corrections to energy loss and insist upon a first principles investigation into

the small system-size corrections to the properties of the medium.
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Part I1I provides such a first principles investigation, by considering a single, massless, scalar
field that has been confined geometrically by means of Dirichlet boundary conditions. The
phenomenology of such a geometrical confinement is rich, presenting substantial corrections
to standard thermodynamical quantities as well as revealing a novel, geometrically driven,

phase transition.

The main conclusions of the thesis are summarized in chapter 15.



Part 11

A pQCD approach to energy loss

17
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"The Creator had a lot of remarkably good ideas when he put the world

together, but making it understandable hadn’t been one of them."

- Mort, Terry Pratchett
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Comment to Part 11

In February of 2015 I enrolled at the University of Cape Town in a Masters program, and in
December of 2015, was awarded a Masters degree in Theoretical Physics. That thesis [167]
is freely available and the degree was awarded for the calculation contained in its appendices.

Much of what follows is based on the calculation for which I was awarded a Masters degree.

However, the work presented here is a substantial addition and represents a significant effort
to investigate the numerical nature of the result presented in [167] in order to better under-
stand its implications. In the years since the presentation of [167] for the degree of Master
of Science in Theoretical Physics, A/Professor W. A. Horowitz and I have subjected the en-
ergy loss formula to rigorous and extensive interrogation, and present here the methods and

conclusions of that investigation.

In order to facilitate the reading of the current thesis, a brief revision of the methods and
processes leading to the result (eq. (4.7)), from which the analysis in this part is done, is
given in section chapter 4. The interested reader will find more details of the derivation of
eq. (4.7) in [167]. The new work relevant to the current thesis is presented in chapter 5 and
section 6.4.

Furthermore, the contents of part II of the present thesis is presented in the style of an aca-
demic publication since much of it has been submitted to Physical Review C for publication,
with only minor revisions for the purposes of the current thesis. My contributions to this
paper have been substantial. Apart from having derived the small separation distance cor-
rection term (for my Masters thesis), I also produced the Mathematica code that performs
all the numerical calculations presented here and I offered the physical interpretations of the
truncation versions. With the exception of parts of the introduction and the initial derivation
of the asymptotic formula (which I rederived independently), I wrote the version of the paper
that is presented here, and I have WAH’s permission to present the paper here.
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Chapter 3

Introduction

In section 1.4, the claim was made that, although immensely successful in the central AA
arena, partonic energy-loss appears to be wholly absent in small colliding systems. Not
only does there not appear to be a single measurement from a small colliding system of
partonic energy-loss, but the experimental collaborations have insisted [116, 157] that the
inherent biases present in measurements of high-multiplicity events in small systems are
critical. Alarmingly, there is a second major problem in the consideration of energy-loss in
small systems: theoretically, all derivations of energy-loss based on pQCD use simplifying

assumptions [168] that make them inapplicable to small systems.

The first complication makes it difficult to properly normalize the usual observable adopted
in tomographic studies, the nuclear modification factor R4p. R4p is the ratio of a spectrum in
A+B collisions to the same particle spectrum in p+p collisions suitably normalized such that
Rap = 1 for particles unaffected by the presence of a QGP. Because of the aforementioned
bias, properly normalizing R4p in high-multiplicity p+p and p/d+A events is problematic.
One solution may be to divide the spectrum of interest by a known unaffected electroweak
spectrum with the same event selection criteria, forming a y4p, Wag, or Z4p. Another is to

use a different centrality estimator [116].

The work of part II was motivated by the second complication. Although predictions of
jet energy loss in small systems have been put forward [169, 170], they consistently over
predict the observed suppression. Such small system energy loss predictions utilize energy
loss derivations that are derived for large systems and it is therefore difficult to interpret
the resultant discrepancy between theory and data as the absence of a hot thermal medium.
In the usual DGLV (Djordjevic, Gyulassy, Levai, Vitev) opacity expansion [85, 87], the
energy loss derivation assumes a large separation distance Az = 21 =20 ~ Aduyp > 1/u
between the initial production position zg of the hard parent parton and the position z; where
it scatters off a QGP medium quasiparticle, characterized by the Debye screening length 1/u
or 1/up. This large separation allows one to 1) safely assume a factorization between the
hard production process and the interaction of a nearly on-shell parton with a well-defined
scattering center and 2) neglect several terms in the energy loss derivation. The mean free
path of the high-pr particle is Ay, = 1/po ~ 1 —2 fm while the Debye mass in an infinite,
static thermal QGP of temperature T ~ 350 MeV is u = gT ~ 0.5 GeV, as derived from
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Ficure 3.1: The usual DGLV setup (full box) compared to the setup used in this article (left of the

dashed line), showing a static QGP brick of length L, containing arbitrarily distributed scattering

centers (orange balls). Left of the dashed line, no statement is made regarding Az, the distance

between hard production and first scattering, allowing for an application to small systems where
L~1/up.

thermal field theory [171]. In the collision of p+p or p/d+A, one expects a system of radius
< 2 fm. Therefore, for these small colliding systems, most high-pr particles have a separation
distance between production and scattering that is not particularly large compared to the

Debye screening length.

In this article we modify the usual DGLV approach by removing the second implication of
the large separation distance assumption: we derive the N = 1 in opacity' generalization
of DGLYV, including all previously neglected terms assumed small under the scale ordering
Az > 1/p; see Fig. 3.1. Note that the inclusion of smaller separation distances does not
affect the scale of the Debye screening length in relation to the mean free path, which is
to say that the Gyulassy-Wang model, which describes the interaction with the medium,
remains valid. To the extent that factorization, near-on-shellness, and the Gyulassy-Wang
model for scattering centers are good approximations even when Az < 1/u, we have thus
derived the N = 1 in opacity generalization of DGLV for all separation distances Az. Since
the formation time for a high-py particle goes as 7 ~ 1/pr < 1/u, our derivation is fully
justified for Az > 1/u ~ 0.4 fm for pr > few GeV. Note also that the present short separation
distance correction is an additional incorporation of finite size effects, over and above the
effects that are due to producing the parent parton at finite time (as opposed to the infinite
past), as computed by [172, 173].

Phenomenological energy loss models perform an average over the position(s) at which scat-
tering(s) occur in the given distance that a parton travels in medium, L. Therefore, even
though no previous energy loss derivation correctly treated the region Az < 1/, all energy
loss models nonetheless used the derived energy loss formulae in this region. One might
have hoped that the use of these formulae in the region of violation could be justified either

by an argument that the small separation distance corrections are small, or by an explicit a

IIn the reaction operator approach first put forward by GLV [85], it was found that the induced gluon radiation
of a hard parton, possibly undergoing multiple scatterings, in a dense medium, is dominated by the first order in
opacity result. That is, the gluon radiation is dominated by the N = 1 contribution, where N refers to the number
of scatterings that the hard parton or radiated gluon undergoes with the medium.
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posteriori calculation. What we find from the calculation presented in this work is that the
small distance correction can be very large, especially as the momentum of the parent parton

becomes large. Worse still, the physics of the early times is not at all clear.

Particular concerns for energy loss phenomenology include the factorization of the hard par-
ton’s production in the presence of large fields from its propagation through the fireball, the
effect of a boundary on the shape of the Debye screened scattering centers, and the time
required for the medium to thermalize and form scattering centers for the hard parton to in-
teract with. In order to investigate the importance of this lack of knowledge, we explore
various distributions of scattering centers. We find that the original DGLV is insensitive to
the details of the physics at small separation distances Az < 1/u. This insensitivity is due to
a delicate cancellation of interfering terms, a cancellation beyond formation time effects. On
the other hand, the cancellation is not quite so precise for the correction term, which leads to

a significant dependence of the correction term on the details of the small distance physics.

The assumption in the DGLV formalism that the formation time of the radiated gluon is
much larger than the Debye screening length, the large formation time assumption, will play
a crucial role in the derivation of the small separation distance correction term, resulting in
a major reduction in the number of diagrams that contribute to the small separation distance
correction. We will further show that, not only does the formation time set an important
scale for the understanding of the early time physics of the correction term, but also that the
large formation time assumption is invalid for much of the relevant gluon emission phase
space. Previous work has demonstrated the extreme sensitivity of all energy loss calculations
to the collinear approximation [168, 174], and therefore the need to move beyond its use in
all energy loss models. However, we emphasize that the sensitivity we find from the large
formation time approximation is both new and different from the sensitivity to the collinear
approximation. As such, all current jet quenching models that include radiative energy loss
based on pQCD must individually assess their sensitivity to the large formation time and

large system size approximations when making quantitative comparisons with data.
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Chapter 4

Setup and calculation

In this paper we use precisely the setup of the DGLV calculation [87], presenting here only
an outline of the setup and derivation of the correction term, with more details in [167]. For
clarity, we treat the high-pr eikonal parton produced at an initial point (7, zo,Xo) inside a
finite QGP brick of length L, where we have used p to mean transverse 2D vectors, p =
(p.,p) for 3D vectors and p = (p°, B) = [p° + p, p° — p?, p|] for four vectors in Minkowski
and light cone coordinates, respectively. As in the DGLV calculation, we consider the n'
target to be a Gyulassy-Wang Debye screened potential [82] with Fourier and color structure
given by

Ao

2 2

Z s e, (R)®T,, (n). (4.1)
n

V, = 216(q°)
The color exchanges are handled using the applicable SU(N,) generator, T,(n) in the d,
dimensional representation of the target, or 7,,(R) in the dg dimensional representation of the

high-pr parent parton.

In light cone coordinates the momenta of the emitted gluon, the final high-pr parton, and

that exchanged with the medium Debye quasiparticle are, respectively,

2 2

m: +Kk
k=|xPT, -2 k|,

xPt

M2+ K

=|(1=-x)P",———— q—K|,
r=[0-9rt F -y
q=1q9".q9".4], 4.2)

where the initially produced high-p7 particle of mass M has large momentum E* = Pt ~
2F and negligible other momentum components. Notice that we include the Ter-Mikayelian
plasmon effect, a color dielectric modification of the gluon dispersion relation, with an effec-

tive emitted gluon mass mg [87, 171]. See fig. 4.1 for a visualization of the relevant momenta.

A shorthand for energy ratios will prove useful notationally. Following [87] we define w =~
xEY/2 = xPT/2, wo = K*/2w, w; = (k- q;)%/2w, wij) = (k—q; - q,)*/2w, and
Om = (m§ + szz)/Zw.
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FiGURE 4.1: Following the diagrammatic numbering in [87], .#} 1 (left-hand panel) and .Z5 ,

(right-hand panel) are the only two diagrams that have non-zero small separation distance correc-

tions in the large formation time limit. .#7 ,  is the double Born contact diagram, corresponding

to the second term in the Dyson series in which two gluons are exchanged with the single scat-
tering center.

We will also make the following assumptions: 1) the eikonal, or high energy, approximation,
in which E is the largest energy scale of the problem; 2) the soft' (radiation) approximation
x < 1; 3) collinearity, k™ > k~; 4) that the impact parameter varies over a large transverse
area; and, most crucially for the present article, 5) the large formation time assumption w; <

i, Where ,ul.2 =u? + ql.2.

Note that the above approximations, in addition to allowing us to systematically drop terms
that are small, permit us to 1) (eikonal) ignore the spin of the high-pr parton; 2) (soft)
assume the source current for the parent parton varies slowly with momentum J(p — ¢ + k) ~

J(p+k) ~ J(p); 3) (collinearity) complete a separation of energy scales,

(p+Kk)?*

FIa 4.3)

EN >kt >k =w ~w;_j>
and 4) (large area) take the ensemble average over the phase factors, which become

(emilaa)by = B s2(q ),

In the original DGLV calculations [87], the large formation time approximation played only
a minor role. However, when considering small separation distances between the scattering

centers, the large formation time assumption naturally increases in importance.

With the above approximations, we reevaluated the 12 diagrams contributing to the N =
1 in opacity energy loss amplitude [87] without the additional simplification of the large

separation distance Az > 1/p assumption.

In the original evaluation of the 12 diagrams contributing to the N = 1 in opacity energy loss
derivation, the large separation distance approximation Az > 1/u allowed for the neglect of
terms proportional to exp(—uAz). In our reevaluation of these 12 diagrams we retained all
terms proportional to exp(—uAz). However, we found an enormous simplification due to the
large formation time approximation w; < y;: all but two of the 12 diagrams’ 18 new small

separation distance correction pole contributions are suppressed under the large formation

IThe validity of the soft gluon approximation within the DGLV formalism has recently been confirmed ex-
plicitly [175].
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time assumption. We show the two diagrams® .#] 1 o and //12‘ 20 With non-zero contributions
at the amplitude level in the large formation time approximation in fig. 4.1. See [167] for the
computation of all 12 relevant diagrams. One can see from fig. 4.1 that the class of diagrams
that contribute to the short distance correction is that for which the radiated gluon is emitted
subsequent to the parent parton scattering off the medium.

The reason for the contributing class of diagrams being those for which the scattering oc-
curs prior to the emission of the gluon is the competition between relaxing the large distance
approximation Az > 1/u and keeping the large formation time approximation, 7o, =
xE/K? > 1/u. For a diagram to contribute to the small separation distance correction, we
require Az < 1/u. However, if the gluon is emitted at Az < Tfopm, the large formation
time approximation dictates that the gluon is not formed before the parent parton encounters
a scattering center. The scattering center cannot therefore resolve the gluon independently
from the parent parton, and these diagrams’ contributions are suppressed. Similarly, the dia-
gram in which the in-medium stimulated radiation is induced by interacting with the vacuum
radiation, i.e. the diagram containing a triple gluon vertex, is suppressed since the spon-
taneously radiated gluon with which the medium is to interact must have enough time to

decohere entirely from the parent parton before it can interact with the medium.

The full result for these two amplitudes under our approximation scheme is then

i d? .
A0~ —J(p)e?™28Tq car fﬁv(oﬂll)elq"bl
y K-€ el (wotdm)(z1-20) _ le—m(m—zo) , 4.4)
k? +m2 + x2M? 2

2 2
220 % J(P)ei(p+k)xof - f = e igTa, Ta cara1v(0,q,)v(0,q;)
- (2n)* J (27)? o

—u2(z1-20)
i(wo+@m)(z1-20) —p1(z1—20)[ 1 _ lL)}
¢ Te 1 : 4.5
( 2(uy + p2) ()

k-€
X 2 2
k —l—mg—l—sz2

where v(0, q; ) encodes the q, dependence of the GW potential. The double differential single

inclusive gluon emission distribution is given by [87]

4B d°K
(27)32p° (27)32w

PNV BN, =
1 2 2 *
X | == Te(aty Py + =R Ty M5, (4.6)
dr dr

from which the energy loss, given by the energy-weighted integral over the gluon emission
distribution AE = E f dx xdN,/dx, can be calculated from the amplitudes.

Our main analytic result (the derivation of which may be seen in [167]) is then the N = 1

first order in opacity all separation distance generalization of the DGLV induced energy loss

2We follow the numbering convention of [87], where the subscripts refer to factorizations within the Reaction
Operator approach and have no meaning here beyond a useful naming convention.
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of a high-p7 parton in a QGP:

SLE d? 2 d’k
VPR Py (R e N N
" mdg m (ur4qi)?J 7w

% 2(1 B COS{<“)1 + ‘Dm)AZ})( (k—q;) -k (k- Q1)2 )
(k—q))2 + m2 + 2M> K2 + m} + 2M> (K= q;)2 + m2 + x2M>
2
1 k 2C
Z oAz eS| o
ot {(k2 +m§+x2M2) (1 Ca )(1 COS{(wO+wm)AZ}) “n

k-(k-q;)
(K2 + m2 + x2M2)((k - q;)2 + m? + x2M>

)(cos{(wo + @) Az} = cosf(wp — wi )Az})}

The second line in Eq. 4.7 (along with the prefactor in the first line) is the original DGLV
result (herein after “the DGLV” term). The last two lines are the small separation distance
correction (herein after “the correction” or “the small separation distance correction”). In
what follows we will refer to the full DGLV + correction in Eq. 4.7 as the “all separation
distance” result. The correction term has the properties we expect: 1) the correction goes
to zero as the separation distance becomes large, Az — oo (or, equivalently, as the Debye
screening length goes to 0, i.e., u — o0) and 2) the correction term vanishes as the separation
distance vanishes, Az — 0, due to the destructive interference of the Landau-Pomeranchuk-
Migdal (LPM) effect.

An immediate surprise is the breaking of color triviality seen to all orders in opacity in the
large separation distance approximation [85]; in the small separation distance correction, the
color triviality breaking comes from the term proportional to 2Cr/C4. We will investigate

the effect of this term numerically in Sec. 5.1.

The distribution p(Az) of the scattering centers will play a crucial role in our investigation of

the short separation distance physics and is treated in great detail in Ch. 6.
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Chapter 5

Numerical and asymptotic analyses

Fig. 5.1 is produced by computing the Az integral in Eq. 4.7 analytically before computing
all other integrals numerically (we will refer to this process as the “numerical investigation”).
The numerical results use the same values as [87]: u = 0.5 GeV, A,rp = 1 fm, Cr = 4/3,
Ca = 3, a; = 0.3, meparm = 1.3 GeV, mpoiom = 4.75 GeV, and my;gp, = p/2 [171]. The
QCD analogue of the Ter-Mikayelian plasmon effect is taken into account by setting mgj0n =
/N2 [176]. As in [171], kinematic upper limits are used for the momentum integrals such
that 0 < k < 2x(1—-x)Eand 0 < ¢ < \/ﬁ The fraction of momentum carried away
by the radiated gluon x is integrated over from O to 1. The distribution of scattering centers
p(Az), although originally assumed to be exponential in [87]', is assumed (in Fig. 5.1) to
have the form of a unit step function, since an exponential distribution biases toward short
separation distance scattering, lending potentially excessive weight to contributions from

short separation distance terms.

In the top left-hand panel of Fig. 5.1 we plot the fractional energy loss of various parent
partons of energy £ = 10 GeV for path lengths up to 5 fm. One sees that the correction has
a non-negligible effect even for large path lengths. Although initially unanticipated, the fact
that the correction is substantial even for L > 3 fm (perhaps most easily seen for gluons, but
the relative size of the correction is meaningful even for the quarks), is due to the integration
over all separation distances between the production point and the scattering position; even
for large path lengths, some of the interaction distances between the parent parton and the
target occur at separation distances that are small compared to the Debye screening scale.
However, as expected, the relative size of the correction term and the leading DGLV result

diminishes at fixed energy as the path length grows.

In the top right-hand panel of Fig. 5.1 we show the fractional energy loss of parent partons of
varying energy, propagating through an L = 4 fm long static QGP brick. Notice first that the
small separation distance correction term is generally an energy gain due to the sign of the
color triviality breaking term and, second, that the size of the correction relative to the large

separation distance DGLYV result grows with energy.

Choosing an exponential distribution for p(Az) was done in order to account for the rapidly expanding
medium as well as to allow for clever manipulations leading to a deeper understanding of the asymptotic behavior
of the formula, since the exponential form relates well to the cosines in the energy loss formula.
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Ficure 5.1: Fractional energy loss of bottom (red), charm (blue), and light quarks (black), as

well as gluons (green) in a QGP with 4 = 0.5 GeV and A7, = 1 fm for (top left) fixed energy

E = 10 GeV, (top right) fixed path length L = 4 fm, and (bottom) fixed energy £ = 100 GeV.

Here, DGLV curves (dashed) are computed from the original N = 1 in opacity large separation

distance DGLV formula while DGLV + corr. curves (solid) are from our all separation distance
generalization of the N = 1 DGLV result, Eq. 4.7.
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In the bottom panel of Fig. 5.1 we show the fractional energy loss of parent partons of energy
E = 100 GeV. In this E = 100 GeV plot one sees that the short separation distance correction
term dominates over the DGLV term out to distances of L ~ 3 — 5 fm > 1/u. At first glance,
it might appear that the negative relative energy loss, or apparent energy gain, is un-physical
and might point to an incomplete calculation, since the GW model for the medium models a
static medium that does not allow for an energy transfer fo the parent parton. However, there
are several important points to note: The first is that the relative energy loss here measures
the difference between the energy lost due to vacuum radiation and the energy lost due to
medium-induced Bremmstrahlung. This first point means that a negative relative energy loss
would simply imply that the vacuum radiation in suppressed and not necessarily that the
parent parton would gain energy, although conservation of energy would still require that the

negative relative energy loss be less than the energy of the leading parton.

A more technical point is that the two diagrams that contribute to the short separation distance
correction have the opposite sign to the diagrams that are suppressed in the short separation
distance limit. This fact is already true in the original DGLV calculation, but is amplified in
the short separation distance limit due to the energy dependent dominance of the correction
term, as will be seen in Sec. 5.2. That the correction term is negative then simply points to the
fact that these two diagrams suppress the energy loss. In fact, numerically, even the DGLV

large separation distance result exhibits small negative energy loss at very small path lengths.

Note also that, since the energy loss depends on an integration over the k distribution, a choice
of kyq was made that guarantees that the final momentum of the parent parton is collinear
to the initial momentum of the parent parton, and that the momentum of the emitted gluon is
collinear to the momentum of the parent parton. Although we have decided to follow [87] in
this choice, it is interesting to note that, even for a very small choice of k4, the correction
term remains negative (we have checked this numerically, but we will also see the truth
of this statement in the asymptotic analysis presented in Eq. 5.2). We therefore conclude
that the negativity of the correction term is not the result of integrating the integrand in a
region of phase space in which the collinear assumption is invalid. Nevertheless, the energy
dependence of the correction term plays an important role in the dominance of the correction

term over the DGLV result. We investigate this persistent domination further in Sec. 5.2.

We lastly point out that one further observes that the color factor in the correction term plays
a crucial role, since the gluon energy loss is dramatically different from quark energy loss,

especially at high energies (investigated further in Sec. 5.1).

5.1 Color triviality

The color triviality breaking term in the small separation distance correction means the cor-
rection for gluons can be an order of magnitude larger than for quarks. To see this difference,
consider the first line of the correction term in Eq. 4.7 which contains a term that carries the

factor ( — %) For gluons, this factor becomes 1 —2Ca/c, = —1, while for quarks, this
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FiGure 5.2: The ratio R of the color triviality breaking and the color trivial parts of the correction

term in Eq. 4.7, for quarks (CFr) and gluons (Cy), as a function of the length L of the brick for

parent partons with E = 10 GeV (left-hand panel), and as a function of the energy E of a parent
parton moving through a brick of length L = 4 fm (right-hand panel).

color factor becomes 1 — Z(CLAF) =1- (A;CZT_(I) /N, = 1- w = 1/9. This factor of
ten difference means that, although the gluons have an effective mass (as a result of the way
in which the QCD analogue of the Ter-Mikayelian plasmon effect was taken into account)
that is only marginally larger than the plasmon mass of the light quarks, the gluons will not

necessarily obey the same mass ordering as the quarks.

To illustrate this effect, we have plotted in Fig. 5.2 the ratio R of the color trivial and color

nontrivial terms of the correction term; i.e., we have divided the color triviality breaking part

_ 2%
Ca

term. We show this ratio both as a function of the length L of the brick (left-hand panel) and

of the correction term, proportional to ( ) by the color trivial part of the correction
as a function of the parent parton energy E (right-hand panel). Fig. 5.2 clearly shows the order
of magnitude difference between the color trivial and color nontrivial parts of the correction
term for parent partons in the fundamental and adjoint representations, the difference in sign
of the correction for quarks and gluons, and the persistence of the difference in magnitude of

the correction as a function of both L and E.

5.2 Energy dependence and asymptotic analysis

A striking feature of the plot in the bottom panel of Fig. 5.1 is the dominance of the small
separation distance correction term at high energies. We see in Fig. 5.1, by comparing the
top left-hand panel to the bottom panel, a dominance of the correction term at £ = 100
GeV, leading to an energy gain, even out to systems with sizes of L ~ 3 fm for quarks and
L ~ 5 fm for gluons. It should be noted that the numerical results for AE depend on a choice
of k4 in the integration over the transverse momentum of the radiated gluons in Eq. 4.7.
The choice that has been made in the present thesis ensures collinearity of the momentum
of the radiated gluon with the original momentum of the parent parton. In order to better
understand this dominance of the correction term at large energies, one may perform an
asymptotic analysis. Define AEI.(nl; = AE]()IC);LV + AEE(I)BT, where AEl.(nlg is given by Eq. 4.7.
Starting with the correction term AEééZr and following [85], we take all thermal and quark
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masses to zero, and analytically evaluate the integral over the scattering separation distance
Az (using an exponential distribution for analytic simplicity and to connect with the known
analytic results of [85]). Then, we remove the kinematic bound on the momentum kick
from the medium ¢,,,4x — o0, shift the momentum integral, analytically evaluate the angular

integrals in momentum space, and perform the integrals over k and g. The result is

1
Apl) — Cras L 2Ck) | Ef dxlog [ Lhmex ) (5.1)
corr 2t A\ Ca J24uL" Jo U

Taking, for simplicity, k. = 2xE we find

_ CRwsﬁ(_ﬂ) LR g( 2EL ) (5.2)

AEQ), = =%
cor 2r A Ca |2 +uL 2+ ulL
in the limit of large energy E.

The equivalent asymptotic expression for the large separation distance leading massless
DGLYV result was derived in [85]. The result, with k,,;,, — 00, is
_ Cray L*? E

log —. (5.3)
u

(1)
AEpGy = 4,

There are several important features of Egs. 5.2 and 5.3 to note. First, the terms not pro-
portional to the color triviality breaking 2Cr/Cy4 factor in Eq. 5.2 cancel at this level of
approximation since kjqx >> gmax, and the correction is purely an energy gain. Second, the
correction term is log divergent in the upper bound of the perpendicular momentum of the
emitted gluon k;,,,,, whereas the large separation distance DGLV term is finite for infinite
kmax- Third, the correction term is linear in L at small L and independent of L at large L,
while the DGLV term is proportional to the usual L. Fourth, the asymptotic correction term
breaks color triviality as its magnitude is proportional to L/ Ag, where Ag is the mean free
path of the parent parton (whether quark or gluon), instead of proportional to L/A,, where
Ag is the mean free path for gluons.

Most important, cancellation between the contributions to the large separation distance
DGLYV result leads to an energy loss that grows only logarithmically with energy E. The
small separation distance correction piece does not suffer from a similar interference and
grows linearly with E. It is precisely this linear in E behavior compared to the log E of the
large separation distance DGLV term that leads to the correction term dominating over the
leading term at higher energies. The subtle cancellation between terms in the DGLV term,
and the absence of such a cancellation in the correction term is discussed in more detail in
Sec. 6.3.

The fact that the short separation distance “correction” term can dominate over the leading
large separation distance DGLV result even out to path lengths L ~ 4y when not relaxing the
large formation time assumption (effects that should tend to zero under the large formation

time assumption), suggests that the large formation time assumption is invalid in the DGLV
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approach. The dependence of the energy loss on the large formation time assumption is

explored further in Sec. 6.3 as well.

5.3 Mass ordering and the large formation time assumption

In Fig. 5.1, the all separation distance energy loss can be seen to be mass ordered’. The
mass ordering of the large separation distance relative energy loss was found in [87], where
the explanation was that the effect of increasing the mass of the parent parton was to reduce
the relevance of the gluon formation time factor. The formation time physics of the large
separation distance DGLV result is encoded in the cosine terms of Eq. 4.7 and a similar
dependence on gluon formation times is apparent in the small separation distance correction

term.

However, notice that the mass dependence of Eq. 4.7, is also apparent in the massive prop-
agator. The propagator masses lead straightforwardly to a reduction of energy loss. At low
energies the propagator mass ordering dominates the energy loss, leading to higher mass par-
tons losing less energy. On the other hand, since the prefactors containing the propagators
scale like 1/ E? while the formation times scale like 1/ E, formation time physics dominates
the mass dependence of the energy loss at high energies; formation times are shorter for more
massive parent partons, leading to an enhancement toward incoherent energy loss. We may
thus understand the inversion of the mass ordering in the top right- hand panel of Fig. 5.1
(at E = 10 GeV) which results from the massive propagator, to the ordering observed in
the bottom panel of Fig. 5.1 (at E = 100 GeV) where the mass ordering is dominated by

formation time physics.

Nevertheless, despite the weak dependence of the mass ordering of the relative energy loss on
the gluon formation time at low energies, recall the crucial role that the large formation time
approximation w; < y; plays in the derivation of the small separation distance correction.
Traditionally, the large formation time assumption is considered a restatement of the collinear
radiation approximation, but it is already known that the collinear assumption is problematic
[168]: it was shown in [174] that a significant fraction of the gluon radiation from N = 1
large separation distance DGLV is not emitted collinearly, despite the use of the collinear
approximation k™ > k™ in the derivation of the result. One may understand this breakdown
of the collinear approximation in the DGLV formula by considering the required ordering
k™ > k=. From Eq. 4.2, k't ~ 2xE and k= ~ k? /2xE we require

2 2

2XE > — =1> ,
T ONE (2xE)?

5.4)

2Note that this mass ordering does not hold for the gluons, even though they take on an effective plasmon
mass. This is due to the color factor in the correction term; see Sec. 5.1.
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which is certainly not true for k,,,,x ~ 2xE. Similarly, the large formation time approximation

requires that

o 1 k>
S W~ — = —
Hi "ot 2xE

where the left hand side goes like u ~ 0.5 GeV, while the right hand side again gives ~ 1
GeV for kyqx ~ 2xE and typical values of x;,, ~ u/E [174].

(5.5)

It is important to note that the large formation time assumption is a separate approximation
from the collinear approximation; it is only when |k| ~ u that the two approximations are
equivalent. Nevertheless, and despite this a posteriori understanding, the present calculation

was performed making full use of the large formation time assumption.
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Chapter 6

Sensitivity to small Az

There is a lack of theoretical control over the physics of small Az in heavy ion collisions,
including, but not limited to, the factorization of a hard parton in the presence of early time
strong fields and the thermalization of the medium. It is therefore valuable to investigate the
sensitivity of the energy loss to the details of small Az physics. In this section, we investigate
the small Az robustness of the energy and mass dependence of the correction term, seen in

the previous section.

6.1 Distribution of scattering centers

The energy loss formula in Eq. 4.7 contains an integral over the distribution of scattering
centers p(Az), which one is free to choose. The original DGLV calculation assumed an
exponential distribution, motivated by an attempt to mimic a rapidly expanding medium. We
have already alluded to the fact that an exponential distribution biases toward small separation
distances, an effect which is exaggerated in small systems. In order to counter this bias and
to further explore the sensitivity of the energy loss calculations to early time dynamics, it is

useful to consider other distributions of scattering centers.

As a first step, and in order to avoid the complications of biasing toward small separation
distances, we start our investigation by considering, as has been done by [172], a step function
distribution of scattering centers. This function is a properly normalized Heaviside-theta
function which distributes the scattering centers evenly for all 0 < Az < L, and we will refer
to it as the “full step function” (abbreviated to “F” where necessary) for reasons that will

become clear as we start to consider modifications of the simple step function.

Secondly, one might attempt to investigate the sensitivity of the relative energy loss to
small separation distances by imposing a lower cut-off for Az. The medium is modeled
by Gyulassy-Wang potentials that explicitly require small 1/4, setting a convenient scale
for what “small Az” might mean. We, therefore, propose a modification of Eq. 4.7 so that
p(Az) is a properly re-normalized truncated step function in which the scattering centers are
evenly distributed between 1/u < Az < L. The re-normalization needs to be such that the

probability of scattering between 1/4 and L is one. Physically, in this instance, we envision
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Ficure 6.1: The four different options for p(Az), the distribution of scattering centers, discussed
in the present article and described in eqs. (6.1) to (6.4), as a function of Az. In this particular set
of curves we have chosen a system with L = 4 fm.

producing a hard parton (its production having been properly factorized) before the medium
has thermalized. The parton might, therefore, travel a short Az < 1/u distance through an
unthermalized medium that has not yet formed quasiparticle scattering centers, keeping in
mind that, since we consider first order in opacity, we require exactly one scattering to take
place. We will call this distribution the “truncated step function” (abbreviated to “T” where

necessary).

Thirdly, recall that pQCD energy loss formalisms assume that the production of the hard
parton may be factorized from its propagation through the medium. The production mecha-
nisms for hard partons in the presence of strong fields, and the scales on which they occur,
have not yet been fully explored. However, the present calculation is performed within the
framework of DGLV energy loss, which is a static brick problem, and therefore does not take
into account the details surrounding the production of hard partons. In order to investigate
this lack of information surrounding the factorization of the hard production processes, we
propose a distribution of scattering centers which prohibits any energy loss from occurring
close to the production. We impose such a cut-off on the energy loss by applying a unit step
function to the energy loss formula, while employing the full unit step distribution of scat-
tering centers. In practice, this truncation of the energy loss is implemented by truncating
the unit step function distribution of the scattering centers without renormalizing, so that the
probability of scattering is constant for 0 < Az < L, but the energy loss is zero for Az < 1/.
Physically, this distribution is intended to mimic a hard parton that, having not yet formed
properly, will not lose energy for some distance (0 < Az < 1/y) even if it should encounter a
scattering center. We will call this distribution the “truncated un-renormalized step function”

(abbreviated to “TU” where necessary).



Chapter 6. Sensitivity to small Az 36

0.08 -~
[— - Truncated un-renormalized step .-~
0.06: ----- - Truncated step o ":/
I Exponential ) =
AE 0.04 —— Fullstep .~ 7
E j - DGLV
0.02} b
I E =10 GeV
0.00} — -
0 1 2 3 4 >

L [fm]

Ficure 6.2: The relative DGLV energy loss of a bottom quark without small separation distance

correction, as computed using the four different distribution functions for the scattering centers

described in Egs. 6.1 - 6.4. This plot is to be compared directly to Fig.2 in [87]. Note that the

relative energy loss when using the truncated step function (dot-dashed curve) does not smoothly
go to zero as L — 1/, due to the normalization factor in Eq. 6.3.

In summary, the four scattering center distribution functions we consider in this article are

given by

2
pexp(AZ) = z exXp (_ZAZ/L) (6.1)

1
pr(Az) = z@ (L-Az) (6.2)

1
pr(Az) = =1/ O (Az-1/u) O (L-Az) (6.3)
—1/u

pru(Az) = %@ (Az=1/4)© (L—Az), 6.4)

and are shown in Fig. 6.1 for a brick of L = 4 fm.

In Fig. 6.2 we show, having chosen the same parameters as were used in [87], the DGLV
relative energy loss of a bottom quark without small separation distance correction, utilizing
the four scattering center distributions described in Egs. 6.1 - 6.4. Fig. 6.2 is to be compared
directly to Fig. 2 in [87]. In Fig. 6.2 it can be seen, and we will show in Sec. 6.3 again,
that the original DGLV term is not particularly sensitive to the choice of distribution. The
distribution with the biggest difference in energy loss is the truncated (renormalized) step.
This distribution biases the scatterings to larger Az, causing the bias toward larger energy
loss. Note that the relative energy loss when using the truncated step function (dot-dashed
curve in Fig. 6.2) does not smoothly go to zero as L — 1/u due to the normalization (as
L — 1/u, the normalization diverges like (L —1/4)~"). The almost complete lack of sensitivity
to the differnces in the other distributions can be understood from formation time effects and

a subtle cancellation of terms discussed further in Sec. 6.3.
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6.2 Energy and mass dependence at small Az

The sensitivity of Eq. 4.7 to the choice of p(Az) may be further investigated by considering
more closely the sensitivity of the flavor and energy dependence of the correction to the
choice of p(Az). To this end, we present a number of plots in Fig. 6.3, showing the relative
energy loss AE/E for four different parent parton flavors (grouped in rows) at E = 10
GeV (left column) and E = 100 GeV (right column). All of these plots show the curves
produced by using the full step function (solid curves), the truncated step function (dashed
curves), and the truncated un-renormalized step function (dot-dashed curves)', for both the
large separation distance DGLYV result (light curves) and the present all separation distance

result (dark curves).

By considering the dark curves of each plot in Fig. 6.3, showing the all separation distance
result Eq. 4.7, it is clear that the correction term is sensitive to the choice of distribution of
scattering centers. We investigate the reasons for this sensitivity in section 6.3. The dom-
inance of the correction term at high energies (right-hand column) is described in section
5.2. One may understand the crossover of the truncated step function (T) and truncated un-
renormalized step function (TU) curves (most easily seen in the £ = 100 GeV plots, but
also present in the £ = 10 GeV plots) as a result of the fact that the T distribution biases
toward larger separation distances so that, at larger L, the characteristic L> dependence of the
DGLYV energy loss overpowers the LY dependence of the correction term at a smaller L (see
Egs. 5.2 and 5.3). The column on the right in Fig. 6.3 also clearly shows that, at E = 100
GeV, the mass dependence of the relative energy loss of the quarks disappears. This may be
understood by recalling that the momentum of the radiated gluon K is integrated over from 0
to 2x (1 — x E), so that masses in both the momentum prefactors and the formation times in

Eq. 4.7 are overpowered by the k” at large E.

In order to further quantify the sensitivity of the energy loss to early time physics, we plot
in Fig. 6.4 ratios of relative energy loss computed using three different scattering center dis-
tributions (truncated un-renormalized step function in dashed curves, truncated step function
in dot-dashed curves and exponential in dotted curves) to the relative energy loss computed
using the full step function, for the large separation distance DGLV result on the left, and
the present small separation distance correction on the right, all for an £ = 10 GeV bot-
tom quark. This ratio is unity for an energy loss formula that is insensitive to the physics
of Az < 1/u. One immediately notes that, while the DGLV results all tend toward one, the
correction term’s sensitivity to the early time dynamics is persistent even at large L. One can
see that, compared to the unit step, varying the scattering center distribution leads to up to
a factor of two reduction, or factor of three enhancement, of the correction term. The large
deviation of T away from F for the DGLV result at small L is due to the normalization of T,

as well as a very small energy gain and subsequent division by zero for small path lengths.

We may investigate the mass and energy dependence of the differences between scattering

center distributions even further by considering the plots presented in Fig. 6.5, where we plot

I'We have not included the exponential distribution here as it lends little to the present discussion.
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Ficure 6.3: The relative energy loss of four different parent parton flavors (organized in rows),

for parent parton energies of E = 10 GeV (left column) and E = 100 GeV (right column),

for both the original large separation distance DGLV result (light curves) and the present all

separation distance result (dark curves), as computed using the full step function (solid curves),

the truncated step function (dashed curves) and the truncated un-renormalized step function (dot-
dashed curves).
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Ficure 6.4: The ratio of the relative energy loss as computed using various different scattering

center distributions (truncated un-renormalized step function in dashed curves, truncated step

function in dot-dashed curves and exponential in dotted curves) to that computed using the full

step function distribution, for an £ = 10 GeV bottom quark as a function of the size L of the

brick, for the DGLV term (left-hand panel) and the small separation distance correction term

(right-hand panel). This ratio is unity for an energy loss formula that is insensitive to the physics
of small separation distances.
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Ficure 6.5: The ratio of the relative energy loss as computed using the truncated un-renormalized

step function to that computed using the full step function. This ratio is shown in the top row as a

function of the length of the brick for parent partons with £ = 10 GeV and in the bottom row as

a function of the energy of the parent parton moving through a brick of L = 4fm, for DGLV (left

column) and for the correction (right column). This ratio is unity for an energy loss distribution
that is insensitive to the physics of Az < 1/u.



Chapter 6. Sensitivity to small Az 40

the ratio of the relative energy loss as computed using the truncated un-renormalized scat-
tering center distribution to that computed using the full step function, for the DGLV result
(left column) and the correction term (right column). The plots in the left column of Fig. 6.5
show that the insensitivity of the DGLV result to small system dynamics is independent of
both mass and energy, particularly for L > 1fm. On the other hand, differences of a factor of
2 persist to all path lengths for the correction term. The length dependent DGLV ratio in the
top left hand corner of Fig. 6.5 exhibits some fluctuant behavior at small L for some flavors,

due, as in Fig. 6.4, to numerical division by zero.

The correction term’s sensitivity to small Az physics is also seen to be mass dependent in
Fig. 6.5, with the bottom quark most affected by the truncation of the scattering center dis-
tribution. Although the overall mass dependence of the relative energy loss at low energies
is mostly due to the mass dependence of the propagators in Eq. 4.7 (discussed in Sec. 5.3),
the ratio of relative energy losses divides out any mass dependence that is not coupled to the
separation distance. We may therefore understand the mass dependence of the ratio shown in
Fig. 6.5 from a formation time perspective: Consider the formation time of a gluon radiated

off a parent parton with mass M, given by

2xE

= —. 6.5
k2 + x2M2 6)

T
The high mass of the bottom quark will then give the bottom quark the shortest radiated gluon
formation time. The shorter the formation time, the more sensitive will the parton be to early
time physics. One expects such a mass dependence to disappear at high energies, and indeed,
the sensitivity of the relative energy loss to the choice of distribution appears to converge
for the different quark masses at high energies, as seen in the bottom left plot of Fig. 6.5.
Naively one might expect all the quarks to appear massless (and so to see the ratio in Fig. 6.5
converge to the light quark result rather than that of the bottom quark at high energies). For
the DGLV result (bottom left in Fig. 6.5), this intuition holds because the DGLV result is
insensitive to small separation distance physics. On the other hand, because of the correction
term’s sensitivity to small separation distance dynamics, and since higher energies result in
shorter radiation formation times, the curves in the bottom right panel of Fig. 6.5 tend toward
the bottom quark result, since it is the bottom quark that already has the shortest formation

time.

6.3 Origins of small Az sensitivity

In Eq. 4.7 we see that both the DGLV terms and the correction terms contain formation
times; i.e., the terms are proportional to cosines of argument w;Az such that AEpgry and
AE o g0 to zero for Az < 1/w;. Tt is therefore difficult to understand the sensitivity of
the correction term to early time physics, in conjunction with the insensitivity of the DGLV
term, from a formation time perspective. Investigating the DGLV term further numerically,

one finds a subtle cancellation that occurs in the DGLV term that does not occur in the
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Ficure 6.6: The DGLYV term (left-hand panel) and correction term (right-hand panel) contribu-
tions to the d(Az) differential of the relative energy loss of an E = 100 GeV bottom quark
moving through a brick of L = 4 fm, showing the contributions from individual terms in Eq. 4.7.
in the panel on the left, the dashed and dot-dashed curves show the two terms in brackets in the
second line of Eq. 4.7, while the solid curve shows their sum (the full DGLV result). In the
right-hand panel the dashed curves show the sum of the two terms that cancel in the high energy
limit (see Sec. 5.2 for details), the dot-dashed curves show the color carrying term and the solid
line their sum. For the correction term in the right-hand panel, the red curves show the full result
while the orange curves show what the contributions to the correction term would be without the
exp(—pAz) factor (see Sec. 6.3 for details).

correction term. In the DGLV term, the two terms in the brackets in the second line of Eq. 4.7
(DGLV™) ~ k(k - q) and DGLV®) ~ (k - )2, so that DGLV = DGLV\") + DGLV?)) are
very large but almost equal in magnitude and opposite in sign. As such, the two contributions
to the DGLV term cancel almost identically, which may be seen in the left hand panel of
Fig. 6.6, where we plot the contributions from DGLVY) and DGLV(?) separately, along with
their sum, for an £ = 100 GeV bottom quark.

No such cancellation occurs in the correction term, a fact we already alluded to in Sec. 5.2
where we found that two of the three terms in the correction cancel, while the color triviality
breaking term remains and is responsible for the bulk of the contribution. To illustrate the
dominance of the color triviality breaking term in addition to the cancellation of the remain-
ing terms of the correction, we present the red curves in the right-hand panel of Fig. 6.6,
showing the contributions from the two terms that cancel in the high energy limit, the color
triviality breaking term, and their sum, for an £ = 100 GeV bottom quark. One can see
in the red curves of the right-hand panel of Fig. 6.6 that the color triviality breaking term
controls the correction term’s energy loss. Therefore, the DGLV term’s insensitivity to the
small separation distance physics is due to both the destructive LPM effect and this subtle
cancellation effect, while the absence of such a cancellation in the correction term contributes

to the correction term’s sensitivity to small Az.

Additionally, the correction contains a factor of exp (—uAz), which plays the part of sup-
pressing contributions to the correction term from Az > 1/4, enforcing a strong dependence
on the physics of Az < 1/u. In order to understand the role of the exponential factor in the
sensitivity of the correction term to the small separation distance physics, we present the
orange curves in the right-hand panel of Fig. 6.6, which show the same three terms of the

correction term as are shown in the red curves, but without the factor of exp (—uAz). It is
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clear that, upon integrating over Az, the bulk of the contributions to the integral comes from

the region Az < 1/u due to the presence of the exp (—uAz) factor.
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6.4 Conclusions

The original DGLV derivation of the energy loss of a hard, potentially massive parton via
radiation (of potentially massive quanta), while traversing a static brick of weakly coupled
QGP, assumed a large path length for the parent parton. In this paper, we generalized the first
order in opacity of DGLV by including the short path length terms that were neglected in the
original derivation. We have thus analytically derived a small separation distance correction
to the first order in opacity of DGLV. Our result constitutes an important step toward the
understanding of partonic energy loss in small colliding systems.

The main result of our paper is the all separation distance first order in opacity energy loss
formula Eq. 4.7. In our derivation we retained the scale ordering of 1/u << A7), justifying
the use of the Gyulassy-Wang model, as well as the soft and collinear assumptions, and we
have retained the usual assumption of large formation time. We found that the majority of
terms that are exponentially suppressed under the large path length assumption are addition-
ally suppressed under the large formation time assumption at the amplitude level, meaning
that only two diagrams out of twelve contribute to the small separation distance correction.
We performed an extensive numerical analysis of the correction term and found that, surpris-
ingly, the correction term dominates over the original DGLV result at high energies. This
energy dependence may be understood from an asymptotic analysis that revealed an E log E
energy dependence of the correction term, in contrast to the log E dependence of the large
separation distance DGLV. We further found that the correction term depends on the distance
traveled through the medium as L for small L and L° for large L, again deviating from the
L? dependence of the DGLV term. Therefore, the effects of the correction term persist to

arbitrarily large paths. Interestingly, the correction term also breaks color triviality.

Naively one might expect aspects such as the factorization of the production of the hard par-
ton from the scattering, the behavior of a Debye screened scattering center near the edge of
a thermalized medium, etc., to play a role in small system modeling. In order to explore the
effect of the physics of small systems and early times on our correction term, we proposed a
number of distributions of scattering centers, attempting to take into account the factorization
of the production of the hard parton from its propagation through a medium, as well as the
formation of that medium. We showed that the short separation distance correction is sensi-
tive to early time physics explored by these distributions, while the original large separation
distance DGLV result is not. We found that the DGLV term’s insensitivity to the physics of
small Az is due to both the known formation time physics and a subtle cancellation of terms.
This cancellation does not persist in the correction term, which accounts for the sensitivity of

the correction term to small Az physics.

Our derivation revealed that the formation time of a gluon radiated off a hard parent parton
is of crucial importance. Already at the amplitude level of the all separation distance deriva-
tion, we found that the naive application of the large formation time assumption leads to a
dramatic reduction of terms present in the correction. We also demonstrated that the large
formation time assumption is violated for much of the phase space of the emitted radiation.
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Since all energy loss formalisms, DGLV, BDMPS-Z-ASW, AMY, and HT (see [177] and ref-
erences therein) exploit the large formation time approximation, we are faced with a need to
assess the applicability of the large formation time assumption in any description of energy
loss. While the influence of the assumption of collinearity was relatively easy to quantify
across formalisms by simply varying the maximum allowable perpendicular momentum of
the emitted gluon, estimating the importance of the large formation time approximation will
likely be a challenge. Similarly, deriving expressions that do not rely on either the collinear

or large formation time approximations is formidable.

The physics of formation times is also relevant to the mass ordering of the energy loss at high
parent parton energies. However, we found that the mass ordering is additionally subject to
competing effects from the massive propagator, so that the mass dependence of the relative
energy loss at low energies is dominated by the propagator. Our results show that, if one is to
consider a system in which the separation distances are on the order of the Debye screening
length, one will have to understand the in-medium production mechanisms as well as the
nature of a Debye screened scattering center near the edge of a thermalized medium, in
addition to the validity of the large formation time assumption in small systems. Due to
these large uncertainties, the quantitative effect of the correction on observables is unclear.
Further, the lack of theoretical control over these assumptions calls into doubt the quantitative
extraction of medium parameters through the use of jet quenching [142]. We leave addressing

these issues for future work.
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Chapter 7

Interlude

“No good sittin’ worryin’ abou’ it,” he said. “What’s comin’ will come, an’

we’ll meet it when it does.”

- Rubeus Hagrid, Harry Potter and the Goblet of Fire,
J. K. Rowling

If the reader is predisposed to such things, let them now settle down with a glass of fine South

African wine and reflect upon the current state of affairs.

If a droplet of QGP that is similar in nature to that formed in central AA-collisions is indeed
formed in small colliding systems, then it is a logical imperative that the absence of the energy
loss be understood. It may well be that the energy loss is simply too small to be measured,
or that no energy loss can occur because the system is too small to develop those properties

that are traditionally understood to encourage energy loss.

However, we have seen that a simple — yet valid — small system adjustment of a common
energy loss model, one that has traditionally been both phenomenologically successful and is
consistent within the framework of similar models, highlights the need for stricter theoretical
control of all the model assumptions that produce a phenomenological result. Let us review
briefly the major ideas that have brought us thus far:

1. A perturbative QCD calculation must be appropriately factorized. This is because,
unlike in QED, the asymptotic states of a QCD amplitude are not directly related
to the objects involved in experiments: hadrons are collided, and hadrons (and pho-
tons and leptons, but not quarks or gluons) are measured [177]. We therefore do
not have QCD ;,(¥] and |¢),,; states that are prepared in the infinite past and future,
but rather, a QCD ;,(y/| state that is the product of some non-perturbative production
process, and a QCD |y),,, state that is the input for a non-perturbative hadroniza-
tion process. While such a factorization of non-perturbative production // perturbative
scattering // non-perturbative hadronization is understood and well-studied in the case
of scattering that occurs in vacuum, it is a fundamental assumption in medium, and

remains wholly unproven. We must therefore ensure that any process, that may be
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perturbatively expanded in powers of a;, which is used to model energy loss in the
medium, is “sandwiched” between a process of production and a process of hadroniza-
tion, both of which might occur in the presence of a medium. The process of pro-
duction occurs on very small time scales (a pr = 10 GeV parton will be produced
on a length scale Ax ~ 1/p; = hc/10Gev ~ 0.02fm, while the medium scales are
1/T ~ he/200Mev ~ 1fm). The assumption that the hadronization of the hard parton
occurs in vacuum may be justified if the parton is hard enough [168, Sec. D.4]. We
are therefore left only with the assumption that the production of the hard parton, as
well as its modification by the presence of the medium, does not interfere with the

perturbative scattering process’.

2. Even in AA collisions the energy loss has always been known to have a strong depen-
dence on the distance traveled through the medium, and so we can hardly be surprised
that there is system size dependence?, but it has been shown [178, 182] that simply tak-
ing L small (note that, in principle, is invalid in these schemes since both [178, 182] use
BDMPS-Z-like energy loss, which requires L > 1/4), overestimates the suppression

seen experimentally.

3. In an attempt to ensure that we are fully justified in applying the energy loss formulae
to small systems, one may compute the small separation distance correction to DGLV
energy loss. We have seen that the effect of the correction is not only dominant at high
energies, but is also very sensitive to the nature of the medium at early times — how and
when is energy lost at the smallest distance scales? Do we understand the properties

of the medium at early times>?

By varying the distribution of scattering centers in the DGLV formalism, one sees that the
energy loss in an all separation distance energy loss formalism is highly sensitive to the dy-
namics of early times and short separation distances. One might hope to be able to constrain
the scattering center distribution function through a better understanding of the properties of
the medium, either subjected to a boundary or at early times. Of particular interest to the
DGLYV formalism and the GW model is the behavior of the Debye screening length in the

presence of a boundary.

Unfortunately, the reader will not find in this thesis a computation of the finite size corrections
to the Debye mass. However, we have developed a consistent framework in which to consider
the finite size corrections to the basic thermodynamic properties of a toy model (a single,

massless, scalar field theory, confined by spatial Dirichlet boundary conditions) and we have

10f course, all of the models mentioned here consider the production to occur at 7 = 0 and then include the off-
shell vacuum radiation and its interference pattern (except AMY, but even there extensions have been performed
to include interference with the vacuum [178]), so some manner of finite medium is taken into account, but even
calculations in “finite media” are always careful to ensure that radiation factors from production.

2In fact, this has been explored experimentally at RHIC through various channels. One way is to vary the col-
lision system and consider, for instance, CuCu collisions [179, 180]. Another, perhaps more successful method, is
to consider the nuclear modification factor as a function of the angle at which partons are emitted [181], although
one then encounters problems with hydrodynamical flow [177, Sec. 6.4.5].

3Some work has been done on the evolution of the medium from a highly non-equilibrated initial state to a
hydrodynamic state (see for instance [183—188]).
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discovered a number of fascinating consequences of introducing a spatial boundary. This

calculation constitutes a first step toward computing the Debye mass.

The remainder of this thesis explores the thermodynamics of small systems, presenting a

rigorous derivation of the thermal field theoretic partition function of our toy model.
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A thermal approach to the small

medium
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“Our future was so completely unknown, and I think that the unknown and

the awful always bring a man nearer to his Maker.”

- King Solomon’s Mines, H. Rider Haggard
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Chapter 8

Comment to Part I11

Part I1I of this thesis is an almost verbatim reproduction of the paper submitted to the journal
Nuclear Physics B for publication (the only exceptions being the omission of a few introduc-
tory paragraphs, and the inclusion of section 11.6 and its relevant appendix). At the time of
submission of this thesis, the article has not yet been accepted by the editor for publication.
This paper was written in collaboration with Dr. W. A. Horowitz and Dr. S. Mogliacci and I
have their permission to reproduce that work here.

My contributions to this paper include the following; It was my initial idea to compute small
system corrections within the dynamical formalism that led to the thermal field theoretic com-
putation performed here. While I did not initialize the geometric confinement, I reproduced
the initial derivation of the partition function and exact form of the plates case (originally
derived by SM and WAH), before independently computing the exact forms of the tube and
box cases, all in what is called here the "canonical" or "usual" approach'. I computed all
analytic expressions for the thermodynamic quantities as well as independently produced
Mathematica code to perform all numerical calculations presented here. I also independently
derived the matrix elements of the Hessian matrix presented in section 11.6 as well as the
additional periodic boundary condition results. The novel phase transition was first noticed
by WAH, but, using the expressions from the canonical approach, I independently performed
all analytic and numerical calculations leading to the boson results in chapter 13. I did not
perform the fermion calculations. Although all the plots in this paper were produced by SM
(except for fig. 11.3), I have independently derived and produced all of the results (except
Fermion results). The derivations in appendices A.2.2 and A.2.3 are my own, although they,

as with my other contributions here, were inspired by many discussions with SM and WAH.

1T did not perform the "alternative derivation" of the partition function, put forward by SM, but include it here
since it has been valuable for the cross-checking of my results.
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Chapter 9

Introduction

9.1 Motivation and goals

The present work is motivated by the pressing need for a better understanding of small
droplets of QGP, including a quantification of the small system size corrections to the usual
approximation of using dynamics derived in systems of infinite size. In terms of QGP phe-
nomenology, our goals are modest. As a first step, we concentrate on the finite size correc-
tions to thermodynamic quantities such as the equation of state (EoS) computed in thermal
field theory in the usual Stefan-Boltzmann limit of an ideal gas of infinite size in all direc-
tions. As a further simplification, we consider only noninteracting fields. Of the various types
of boundary conditions one might use, we focus on Dirichlet boundary conditions (BC) for
simplicity and, as we will argue below, because these are the most natural BC when consid-

ering a finite-sized QGP.

Despite the simplicity of our model, we will find a suggestive phenomenology. In our deriva-
tion of thermodynamic quantities, we use two independent methods that yield analytic formu-
lae with different numerical convergence properties: one which converges exponentially fast
when the dimensionless scale of the temperature times the system size is small, T X L < 1,
and one that converges exponentially fast for 7 X L > 1. A careful application of these two
formulae allows us to numerically investigate to arbitrary accuracy the various thermody-
namic quantities such as the pressure, energy, entropy, and heat capacity for our model. Of
particular importance to the heavy ion community, the introduction of Dirichlet instead of
periodic BC leads to significant small system corrections to the usual infinite size results of

the equation of state even out to fairly large system sizes L ~ 10/T.

However, our work is of potential interest beyond heavy ion physics. In some sense there is
a long history of investigating finite size effects in (thermal) field theory. Most famously at
T = 0 a noninteracting field between two parallel plates induces an attractive force between
the plates, which may be interpreted as a negative pressure, the well-known Casimir effect
[189-193]. The original Casimir effect of a free scalar field between two slabs has been
extended to systems with nontrivial geometries and to Fermi fields [194]. For T > 0, one
encounters a number of interesting fundamental questions, many of which have only begun

to be explored recently [195-199]. First, if all spatial dimensions are of finite size, the system
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may not be in the thermodynamic limit [200]. When not in the thermodynamic limit one is
no longer guaranteed that the different statistical ensembles, i.e. microcanonical, canonical,
etc., agree [196, 201-203]. It is then very important to consider the physical setup for an
experimental measurement and use the appropriate ensemble; in particular, isolated systems
may behave very differently from systems in contact with a heat bath. Second, phase tran-
sitions are notoriously difficult to rigorously identify. This difficulty is only compounded in
finite-sized systems [203—-206] with some authors claiming that phase transitions in systems
of finite size are impossible. Third, in finite-sized systems, one loses extensivity in thermo-
dynamics [207], where, by extensivity, we mean that the entropy is positively homogeneous
of degree 1, i.e. S (AE, AXy, AXa, ...) = AS(E, X1, X», ...). This lack of extensivity then
leads to questions about the use of the Tsallis distribution [208, 209] and the minimal set
of assumptions required for a consistent thermodynamics [210]. Fourth, once a system is of
finite size, then thermal fluctuations can be important, which has begun to be explored in the

heavy ion hydrodynamic community [211].

We also find a connection between our work and the study of phase transitions. Phenomeno-
logically, one finds substances for which a phase transition can be driven by a change of
pressure at constant temperature, for example the liquid-gas phase transition for water above
0°C. We are aware of only one example of a phase transition driven by the size of the sys-
tem [206], in which case the transition is due to the self interactions of the system. What we
will show is that for an isolated ideal gas constrained within parallel plates, the system resists
compression until the separation of the plates is on the order of the thermal wavelength; at
this critical length L. ~ 1/T the susceptibility diverges and the system collapses. This di-
vergence of the susceptibility indicates a second order phase transition driven by the size of
the system, which is conjugate to the pressure on the system. Unlike other works that draw
a connection between Bose-Einstein condensation between parallel plates [212] and a first
order phase transition in a finite volume box [213], the phase transition found here is second

order and also exists for Fermionic fields.

9.2 Geometric confinement for HIC

There have been a number of studies of finite size effects using periodic boundary condi-
tions [214-222]. Consider, however, that a boundary-less manifold, e.g. a three-dimensional
sphere, is entirely decoupled from the rest of the universe: there is no possibility for any
signal or information to come through the QGP and reach the detectors. Therefore, spatial
boundary conditions—other than periodic ones—should be considered for a more realistic

approach to the finite size corrections of the EoS'.

Consider now a QGP system inside of which the quarks and gluons are color deconfined and

propagate relatively freely while outside of this QGP system the quarks and gluons are color

'Note that the EoS of QCD relevant to the early universe QGP potentially lacks such a requirement of a
boundary.
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confined into hadrons. Inside the system the quark and gluon fields, then, are weakly cou-
pled while these same quark and gluon fields are strongly coupled outside the system. There
is further some very small region of space over which the fields transform from weakly to
strongly coupled. For our purposes here, we are most interested in the dynamics inside the
QGP system. And if we approximate the small transition region from weak to strong cou-
pling as a decoupling, we must impose a boundary condition that prevents an inside weakly
coupled field from propagating outside of the geometric region defining the QGP system.
We refer readers to [223-225] for related investigations that demonstrate the need for such
more realistic boundaries. We also refer to [226-230] for somewhat related investigations, as
well as to [64] regarding the importance of accounting for finite size effects in the different
context of proton-proton collisions. While such a decoupling might seem irrelevant from a
perturbative point of view, since this change of degrees of freedom across the two regions
must involve nonperturbative physics, our system appears to be analogous to the Quantum
Electrodynamics (QED) Casimir effect [189, 193], which can be reproduced by imposing
Dirichlet Boundary Conditions (DBCs). Such boundary conditions indeed follow the re-
quirement for the fields to vanish at the boundary, and any two-point correlation function
connecting the inside part to the boundary would identically vanish, thereby decoupling both
sides of the boundary. Thus, DBCs for the QGP can avoid the propagation of QGP particles
across the boundary, keeping the relatively free quarks and gluons geometrically confined
inside the volume of the QGP system, while at the same time allowing for other fields, e.g.

electromagnetic, to freely propagate out from the confined system.

We then introduce the notion of geometric confinement for such a system, by implementing
appropriate spatial compactifications (depending on the geometry to be characterized). In
each of the compactified directions we impose DBCs”. It should be noted that such a bound-
ary is not a material boundary, but rather a thin layer subdividing different regions of space
with different degrees of freedom. And since we are only interested in the bulk physics away
from the boundary (avoiding then possible technical complications [231, 232]), we will not
consider the microscopic nature of the boundary. As a result, the physical space is separated
into two distinct regions: An inside part of nearly free quarks and gluons characterizing the
quark-gluon plasma, and an outside part (of nearly free hadrons composed of strongly cou-
pled quarks and gluons). For the sake of our investigations in this manuscript we ignore the
details of color confinement and the microscopic nature of the boundary. Moreover, it should
be noted that while DBCs may be implemented in more physically realistic geometries, for
the sake of simplicity we choose to work here with simple rectangular geometries, that is pla-
nar pairwise parallel spatial boundaries forming a cuboid cavity. In three spatial dimensions,
we consider two infinite parallel plates, the infinite rectangular tube, and the finite volume

box.

We stress that our concept of geometric confinement is in no way related to actual color

confinement, for it barely reproduces only one consequence of it (the fact that quark and

ZNote that by a compactification we do not mean, e.g., the addition of the point at infinity to turn R into S .
Rather, we mean that we are considering directions that are compact, i.e. of finite extent (technically, closed and
bounded).
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gluon fields should not propagate outside of the QGP); we do not address the fundamental
mechanism of color confinement. In addition, our concept is different from the MIT bag
model [233] since our model is not meant to be relevant for strongly coupled fields, but for

weakly coupled ones.

9.3 A model for initial investigations

Recalling that the EoS for a noninteracting gas of gluons is the same, up to a group theory
prefactor, as the EoS given by a massless scalar field, for simplicity we choose to consider
a single neutral noninteracting massless scalar field at finite temperature under geometric
confinement. Further, we will work in the canonical ensemble: we will compute the partition
function using thermal field theoretic methods. Even though the quark-gluon plasma created
in heavy ion collisions is an isolated system, we choose to work in the canonical ensemble
for two reasons. First, we may more readily connect our results to lattice QCD calculations

[234-247]; and second, for simplicity.

In the following, we will keep the mass of the field nonzero for convenience during the
calculations. At a later stage, we will, however, take the massless limit which is the present
case of interest. We will work in D spacetime dimensions with an arbitrary number ¢ of the
spatial dimensions compactified with DBCs. The number c¢ here, for “compactified”, is not
to be confused with ¢ for the speed of light, which will be equal to one as we will employ
natural units throughout. We will leave the noncompactified dimensions, if any, in the usual
infinite Euclidean form. Each such compactified spatial direction will then have a distinct
compactification length L;, i = 1,...c < D —1. The L;’s do not necessarily have to be equal,
which allows us to investigate systems of asymmetric sizes. Our starting point is therefore
the free, Wick rotated Euclidean action

/T L L.
Ef dedZ[...fdchdD_l_CX(L
0 0 0 R

where beside the usual trace induced periodic boundary condition along the Wick-rotated 7

8o (. taih %)

¢ (1.{zi},x) ]) 9.1)

direction, and the new geometric confinement inducing DBCs along the z; spatial directions,
the x coordinates will be momentarily compactified around circles of radius R, i.e. with pe-
riodic boundary conditions. At the end of the calculation we will take R — oco. The free

Lagrangian £ [¢ (7, {z;} ,x)] then reads

{0 (t Az, X) 1 <& (06 (1, {zi) X))
LM:E( or ) +§;( 0z )
1 2 m?
+§(VX¢ (t, {zi},x)) +7¢2 (1,{zi},x), (9.2)

where we are working in i = c¢jjgn, = kp = 1 natural units.
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Chapter 10

Partition function and free energy for
parallel plates, a tube, and a box

10.1 Deriving the partition function

In this subsection, we derive the partition function Z (7, {L;}) for a single, neutral, non-
interacting, massless scalar field that is geometrically confined within ¢ < D — 1 spatial

dimensions.

Formally, the partition function in a theory with Hamiltonian operator 4 and no globally
conserved charges is obtained from the trace of the density matrix

Z(T, V) =Tr[p(T, V)] = Tr [exp {—ﬁfvdl’—lxﬂ}], (10.1)

where 8 = 1/T is the inverse temperature, V the spatial volume of the system, and the trace
represents a summation over all possible physical states. We will employ the Matsubara
imaginary time formalism [248] in order to compute the partition function using path integral
techniques [249]. For more details on this formalism as well as on thermal field theory, we
refer readers to [250-255].

The usual procedure for expressing the partition function as a path integral leads to a path
integral with a periodic boundary condition on the temporal line which, up to an irrelevant

constant, reads

¢(B) B
Z(T, V)ocf [Dg] exp{—f dedD_IXL}
#O) o 8(8)=0(0)

We now extend the above to a manifold with ¢ compactified spatial dimensions. The pro-

(10.2)

cedure will require DBCs for the compactified spatial dimensions, in addition to the peri-
odic boundary condition required by the trace operation. The derivation of the analogue of
eq. (10.2) with compactified spatial dimensions closely follows that of the spatially noncom-

pactified case, which we call the Stefan-Boltzmann limit, the details of which can be seen in
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the aforementioned textbooks. For pedagogical reasons we will first compactify only one di-
mension (¢ = 1), which gives the canonical ensemble description for a noninteracting scalar
field at temperature T constrained between two infinite parallel plates separated by a distance

L;. Extending the result to ¢ compactified dimensions will be straightforward.

Following the usual procedure, we start by decomposing our field into the relevant Fourier
modes. The dimensions that will ultimately be left noncompactified are, as usual, momentar-
ily compactified onto circles of identical sizes R (which means we impose periodic boundary
conditions), while the dimension we wish to permanently compactify is done so along a finite
interval with length L;. We choose a convenient normalization constant (see appendix A.2.1

for more details) and express the Fourier decomposition of our field as

¢(7,21,% Z Z Z RD —— 5 €Xp {iwnT—iwk -x} sin {wg,m} Gne, (wr), (10.3)
L

neZ 1N kezb-2

where the components of x are the spatial components in the non permanently compactified
dimensions, z; is the spatial component in the compactified dimension, and &n’gl (wy) are
the dimensionless Fourier modes. The Matsubara, the compactified spatial dimension, and
the non permanently compactified spatial dimensions related frequencies are given by w, =
2nnT, we, = wty /Ly and wy = 27mi /R, respectively, and we also refer to [256] for more
details on the derivation of the modes given DBCs. The latter frequencies are to be replaced
by a D — 2 dimensional continuous momentum k (with corresponding momentum integrals),

in the asymptotically large R limits.

Setting ¢ = 1 and employing eq. (9.2) for the Lagrangian, the partition function eq. (10.2)

becomes, after an integration by parts,

Zx | [D¢(r, z1, x exp{ f fdzl fdzx %([)(T, 21, X)(0,0" +m*) (7, z1, x)},
Peond. R 104
where, among others, the periodic boundary condition from the trace is imposed through
setting Peond. such that ¢(B, zi, x) = ¢(0, z, x), and where 9,0* = 52 +  + V2.

Substituting eq. (10.3) into eq. (10.4), and simplifying the argument of the exponential by

performing the integrations (see appendix A.2.1 for more details) [253-255], we obtain

Z o | [D¢(r, z1, x)] exp {—'B—ZZ Z Z |¢n51 wk a) —l—w?l +wi+m2) )

$eond. neZ {1eN nkEZD 2
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As in the Stefan-Boltzmann case, we are faced with an issue of double counting when per-
forming explicitly the path integral. This problem can be accounted for, in the noninteracting

case, by separating the Fourier modes into real and imaginary parts

Gne, (Wk) = ane, (Wk) + ibpe, (i)
= | (0] = &, (1) + B2, (1), (10.6)

and since the field is required to be real, we obtain the following restrictions

A-nt, (—wr) = ang, (wk) and bont, (—wr) = —bny, (w)
ibo,{l (0) =0, (10.7)

from which one may choose a set of physically relevant independent ¢-variables over which
to integrate. Following the standard procedure [253-255], one may then perform the infinite
set of Gaussian integrals (dropping any 7- and L;-independent factors [257]) to obtain the
partition function of a free scalar field in D — 1 spatial dimensions with ¢ = 1 geometrically
confined dimension. However, since thermodynamic quantities are straightforwardly related

to the logarithm of the partition function, we will find the more useful quantity to be

n ZU(T, Ly) ln{l_[l_[ [T 6 (wh+ e} +f +m?)] L (10.8)

neZ €N n,ezZP-2

Formally, eq. (10.8) is our final result for the logarithm of the partition function of a single
neutral noninteracting scalar field in between two parallel plates. Extending eq. (10.8) to
arbitrary ¢ < D — 1 compactified spatial dimensions is relatively straightforward, and the

corresponding logarithm of the partition function with ¢ geometrically confined dimensions

ol s S5 ot o )|

(10.9)

is therefore given by

1

¢ mezb-1-c

where we still have to send R to infinity.

In Appendix appendix A.l.1 and appendix A.1.2 we present two independent methods of
evaluating eq. (10.9). We have confirmed numerically that both methods yield the same
results. The two methods are mutually complementary as they naturally yield results with
different numerical convergence properties. More precisely, the usual method yields a result
that is always better suited for small values of the dimensionless parameters (T X L;). The
alternative method yields a result better suited for high values of these dimensionless pa-
rameters and thus to recover the usual Stefan-Boltzmann limits. Moreover, the usual result

explicitly isolates the T-independent contributions, and one can pass from one compactified
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dimension case to the next in an iterative manner; therefore the usual method explicitly yields

the known zero temperature Casimir pressure.

10.2 Evaluating the free energy

We now present our final results for the free energy in the massless limit using both eq. (A.19)
and results from eq. (A.21). Recall that the free energy density is given by f = F/V, F being

the total free energy, and therefore reads
T
AT ALY) = - In Z(T, {L3}), (10.10)
Vv

where V = HD UL

10.2.1 Case I: Two infinite parallel plates

In the usual approach, and after considering D —2 = 2 — 2¢, simplifying the summations
with Bessel functions, expanding about ¢ = 0, and performing summations using analytic
continuation of the Epstein-zeta functions, eq. (A.19) leads to the further refined expression
of the free energy density, fle= (T Ly), of a system geometrically confined in between two

infinite parallel plates separated by a distance L;

0

T2 T3 t
F0 = 1440L4 N ;[mz (e TL,)] L [L13 (e m)] (10.11)

where the Li, are the usual polylogarithm functions.

We can also follow the alternative approach, as presented in appendix A.1.2, to compute
the same free energy density. Employing similar techniques and making use of eq. (A.20)
in order to analytically continue the Epstein-zeta functions without formally manipulating a
divergence, we end up with a similar expression which we further resum using the contour

integral representation of the polylogarithm function. We find

) = T4 {(3)T° T* < [esch? (2T Lid)
90 4L, 8L§ £2
(=1
3T th (27T L) — 1
g( )3 3 [CO ( n3 1) ] (10.12)
16nL  167L f

1 (=1

where in the last summation, we kept the —1 explicit—even though there exists a simple
closed form for coth(x) — 1—since the less simple form improves the convergence properties

of the expression.

As previously mentioned, we see that eq. (10.11) converges exponentially fast for low values
of the dimensionless variable 7L, while eq. (10.12) converges exponentially fast for high

values of this dimensionless variable. The latter even has enhanced convergence properties
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(due to the additional resummation which we performed), for nearly all 7L; down to TL; ~
1076,

A similar resummation could have been performed on eq. (10.11), but we will refrain in

doing so since the alternative result covers nearly all 7L; values.

10.2.2 Case II: Infinite rectangular tube

Using the usual approach together with the same type of procedure as in the parallel plates
case, we may then set ¢ = 2 in eq. (A.19), perform a few more refinements, and obtain the
free energy density, f (e=2) (T, Ly, Ly), of a system geometrically confined within an infinite

rectangular tube of section L X L,

2Ly

Ly (1 - efT‘;) + 2rl,t

450, £(3) - - L
@) = ! x csch? (—2 €)
/ 14407rL2L4 ~ 64n L2 ; ; e L

SIS o EON 0 WA e LN A e
LiLy, 4 | EN\L ) T\) T VL) L) )|

where K, are the usual modified Bessel function of the second kind.

(10.13)

We may also use our alternative approach, in order to compute the very same free energy

density, doing so we obtain

2T B)P(Li+L) Tl aT(Li+ L) (B)T(L+13)
90 4nlLiLy 24L1 Ly 96L7L3 32nL3L3

(o)

0 2
_ ¢ Li —4rTL ¢ } _ T_ [f Li —4nT Lyt ]
i || ; (e )
Z[ 47{TL2€ ]

T
_ Li —4nT Ly é’ ]
16713 2. [ (e 16713

1 =1 2 =1
T?
—_— Ki\\4nTLint|+ - K1 AnT Lynt (10.14)
L, 4
n,t=1
oo [ 2+ (2TLy)2n2 _
T 2 2nL
- ’ K; il 4 2+ (2TL2)2n2
8L L2 4 Ly 2
52 6=1 (n6r)ez2\i0) |
o | [+ (2TL))2n2
T 1 1 2L
-— ; Kl( ’Lr 26 f%+(2TL1)2n2) :
8LyL7 621 (nahezevon | 2 1

10.2.3 Case III: Finite volume box

Using, again, the same type of procedure as for the two previously cases, we may set c = 3

in eq. (A.19), perform a few more refinements, and then obtain within the usual approach,
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the free energy density, f (e=3) (T, Ly, Ly, L3), of a system geometrically confined in a finite

volume box
iy,
) - Ll(l—e o )+27TL2€ .
B ___7 x csch? (u f)
/ 144014 64n L2 ; e L
L, + L 3 1 > [ L
B 27T (L, + L3) £( )+ . [ 1K1(27T€15 _2)]
96LIoLs  32LsLy ALy A4 |6 L

o

1
2nL1 Lo L3 b=

V2 J [ & f%]K
- =t 3
L1L2L3M] =1 L L3)

Introducing a new notation, in order to shorten our next representation, namely the set o of

permutations of L, aswell as Q = {L,, Ly, L3}, we may also use our alternative approach

[V () e (%)2+(%)2]

¢ |6 6
T — + = +L

(10.15)

2 2
L L

to compute the same free energy density,

3
7 = T n I log (8T L1L2L3) ¢ (3)T3(LiLy + LiL3 + LoLs)
- 90 24L1 L2L3 47TL1 L2L3
AT (Li+ L+ L) {(3) T(LL+ L3L3 + L3L3)

24L11,L3 4871313
nT(L3Ly + L1135 + L3L3 + Ly L3 + L3Ls + L, 12)

272712
144121212

T%¢ T
10 —47'(TL,'€) o Ll (e—4ﬂTL,'€) _ L1 (e 471'TL [)
g( 62 2anld

1

4L1L2L3 2,2,

LieQ) teN

T2 ai(1) +oi(2)¢
—_ ——— K (4nTo;(3)nt
+Z 4L, 1,15 n 1 (4nToi(3)nl)
€T (n,0)eN2
_ L log(l _ e_zfrié;) 6’2+(27thTi(2))2n2) (10.16)
16L1LoLs (n,€)eZ2\{0}
T Z \/52 + (2nTo(3))?
5 X
27272 2
24L1L2L3 HeN (ntr)ez2\0) f
2
( 710', 5 \/52 +(2To:(3 )2n2)]
2 2
n . r log [ | 4Toih) \/n2+7(2m1(2))2 + TG ]} .
Blilols | S

Since the expressions in eq. (10.15) and eq. (10.16) describe fully compactified boxes, it is

! Containing six elements. For instance, if the third element of o is 03 = (L3, Ly, L), then 03(2) = L;.
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perhaps prudent to reiterate that we have very specifically not taken the microscopic proper-

ties of the boundary into account as we are interested in the bulk properties away from the

boundary.
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Chapter 11

Thermodynamic expressions, first
and third laws of thermodynamics,
statistical fluctuations, and
nonextensivity

In this section we 1) examine how the First Law of Thermodynamics is altered by the com-
pactified directions, in particular showing how the pressure is no longer a scalar but depends
on direction, 2) provide some formal manipulations to arrive at the formulae for the usual
thermodynamic quantities such as the EoS that we ultimately evaluate numerically in chap-
ter 12, 3) comment on the effects of geometric confinement on the Third Law of Thermo-
dynamics, 4) quantify the thermal fluctuations of our geometrically confined system, and 5)

show explicitly that a thermal system between parallel plates is not extensive.

11.1 Modification of the first law

Recall that the fundamental object that is computed when using the canonical ensemble is the
partition function, Z(7, {L;}). The partition function is indeed fundamental in the sense that
it allows one to compute any thermodynamic potential, and therefore any thermodynamic
quantity of interest. Recall also that the natural potential to use in the canonical ensemble is

the Helmholtz free energy F (T, {L;}), as previously derived inchapter 10.

Besides being related to the partition function, the free energy is also defined as the Legendre

transform [258] of the total energy E (S , {L;}) with respect to the total entropy S

F(T,{L})) = E(S, {L}}) - TS, (11.1)
where SE(S. L))
T=——c— (11.2)
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fluctuations, and nonextensivity

provides a generalization of the definition for the usual Stefan-Boltzmann thermodynamic
temperature [259, 260]. Recall also that the Legendre transform in eq. (11.1) is well defined
only if E is a convex function of §, at constant lengths L;, i.e. E”(S , .. ) > 0. We will see
below that E is convex for our geometrically confined systems. Furthermore, the total energy
as a function of the total entropy S and the lengths L;, i.e. the entropy as a function of only
extensive parameters,' is a thermodynamically complete function: S (E, L;) contains the full
thermodynamic information. Other relations such as, e.g., the pressure as a function of T
and L;, p(T, L;), are equations of state, which may only contain partial information about
the thermodynamics of the system. See, e.g., [259, 260] for more details on these general

concepts.

From both the variable dependence of the total energy and eq. (11.2), we can readily write

dE—TdS—I—ZS: 9F dL; (11.3)
B S\ OLils 1,.9) 1 '

Let us then comment on the subsequent modification of the first law of thermodynamics,

recalling that for infinitesimal changes the most general form [259, 260] of the First Law is
dE = dQ + dw, (11.4)

where dQ and dW are respectively the infinitesimal transfers of heat and work. Considering
quasistatic processes, without any loss of generality, and since the only work which can be
done is the one coming from a displacement of the boundaries in any of the three directions,
we obtain a generalization of the First Law of Thermodynamics to include the possibility of

asymmetric pressures:

3
P;
dE = TdS —VZ[f dLl-], (11.5)
i=1 L™

where the P; are the pressures along each (i) of the three directions and are defined as

P
TV aL

(11.6)

S Lk j}

The tensor-like structure of the pressure here is not unusual in the context of heavy-ion phe-
nomenology. For instance, the differences in pressure gradients in hydrodynamical simula-
tions with asymmetric initial conditions gives rise to the flow described in section 1.3. The
implication here is that the pressure (or force) depends on the compactification length and
may differ in different directions.

Equation (11.6) shows explicitly that for asymmetric systems, the pressure may be anisotropic.
The above manipulations also allow us to make the temperature and pressure functions of the
entropy, S, and the system side lengths, L;: T = T(S, {L;}) and P; = P;(S, {L;}). Note that
in the thermodynamic limit, in which all lengths L; become asymptotically large, the second

I'The concept of extensivity being meaningful only in the large size, thermodynamic limit [261].
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fluctuations, and nonextensivity

term of eq. (11.5) reduces to the usual —PdV. Thus, in the thermodynamic limit, we recover
that the pressure P is thermodynamically complete, an obvious consequence of the relation

PV = —F, which holds in the thermodynamic limit.

11.2 Thermodynamic expressions

Let us now give some details concerning the practical computation of various thermodynamic

quantities. We start from the free energy as derived inchapter 10.

Starting from eq. (11.1), we already have that

OF (T, {Ly})
S(T, {Li}) = - ————+—| (11.7)
( ) or {Li}
and thus OF(T. (L
E(T,{L}}) = F(T,{L})-T (a’T{ i) . (11.8)
{Li}

In addition, given the proof inappendix A.2.2, we know that eq. (11.6) is equivalent to

_ Ly 0F(T, (L)

_ 1.
=TV T e (11.9)

T {Lkzj}

Furthermore, using eqgs. (11.8) and (11.9), we obtain the trace of the energy-momentum ten-

Sor
3

TH(T, (L)) = &(T, (L)) = > P;(T, (L), (11.10)

j=1
where £ = E/V is the energy density. Not surprisingly, given that our noninteracting model
is indeed conformal, this quantity clearly vanishes. Notice further that it is indeed a general-
ization of the Stefan-Boltzmann limit result, T,ﬁ' = &— 3P, and encodes the aforementioned

system anisotropy.

Coming back now to eq. (11.4), and using the explicit form for the total amount of infinites-
imal work that can be done from eq. (11.5), we obtain a heat function Q which admits an

exact differential, when all the lengths L; are kept fixed”. More precisely, we have
dQ = dE|;, , (11.11)

which leads to the following definition of the heat capacity at constant sizes (hence volume):
C(T, {Li}) = ————=| . (11.12)
{L;}

We keep the usual V index on our heat capacity to emphasize the connection with the usual

heat capacity at fixed volume. It is worth noting that given eqs. (11.7) and (11.8), the heat

2Hence when the volume is fixed too, even if the latter constraint does not imply the former.
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capacity can be re-written as

. (11.13)
{L;}

We will see inchapter 12 that our finite-size heat capacity is always positive.

The positivity of the finite size heat capacity means the connection between the pressure,
temperature, and entropy is straightforward: the relation 7 = T(S, {L;}) is invertible and
hence equivalent to S = S (T, {L;}). Thus we may equivalently use P;(7, {L;}) in place
of P;(S, {L;}). Further, this statement together with eq. (11.13) imply that E” (S, ...) =
T/C, > 0, thus making the Legendre transform connecting the free energy with the total

energy well defined.

11.3 On the third law

The Third Law of Thermodynamics states that the entropy reduces to a constant value (usu-
ally 0) as the temperature of a system goes to 0 [259, 260]. Some implementations of the
Lifschitz theory of the Casimir effect in QED claim that in their system the Third Law of
Thermodynamics is violated [262]. We first recall that in our system the spatial compactifica-
tion(s) required for establishing a geometric confinement lead to a zero temperature Casimir-
type geometrical contribution to the free energy F (T, {L;}). However, given the definition
of the entropy eq. (11.7), we expect that this temperature independent contribution vanishes
from the expression of the entropy. The numerical value of the entropy can then be assessed

by appropriately rescaling S by the dimensionless combination 7V. Numerical evaluation
s

3V

We refer to [263] for another study of the Third Law in the context of QED Casimir systems.

of this quantity (see chapter 12) clearly shows that § = — 0 as the temperature vanishes.

11.4 Fluctuations of the energy

Recall that in the micro-canonical ensemble the total energy is fixed. However, in the canoni-
cal ensemble the system is in contact with a heat bath of infinite heat capacity and all energies
of the system are accessible through a probability distribution. For the canonical ensemble,
then, there is a mean total energy together with a standard deviation (the square root of the
statistical variance AE? = E2 — Ez). It is precisely the variance of the energy of the system
that we take to provide us with insight into the energy fluctuations of our canonical ensemble

system.

One may compute the mean total energy E = E in the usual way with partition functions

B 1 0Z

E=(A)_,, = Zog)" (11.14)
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where the angular brackets denote the usual ensemble average

R — e [ exp {—ﬁfd’)—lxﬁ”. (11.15)
Z v

The standard deviation, o = \AEZ, is then

op = \/<ﬁ2>ew _ (H)ZM =, /%. (11.16)

Therefore, after a little manipulation, the standard deviation may be simply written as

oceg =T+C,, (11.17)

where we recall that the heat capacity C, is defined in eq. (11.12).

Recall that both the heat capacity and the total energy of a system scale with the volume V of
the system. Therefore as the system volume increases, the relative size of the energy fluctu-
ations decreases, cog/E ~ 1/ v’z 0. Systems that are not compactified in all directions,
such as the case of two infinite parallel plates or a rectangular tube of infinite length, have
infinite volume and therefore experience no fluctuations in their total energy. Crucially, then,
for these systems with no fluctuations in total system energy, we conclude that the canonical
ensemble must exactly reproduce the results of the microcanonical ensemble. We will ex-
ploit this equivalence of ensembles later to demonstrate a phase transition at a critical length
(instead of temperature) for isolated systems of finite extent in some (but not all directions)

in chapter 13.

In fig. 11.1, we plot the mean total energy and its standard deviation as a function of temper-
ature T (in units of 1/L) for the case of a massless, noninteracting scalar field geometrically
confined in a finite-sized box. The upper left panel shows the results for a symmetric box,
with side ratios 1:1:1; the upper right panel shows the same for an asymmetric box of side
ratios 1:1:3, a finite volume symmetric tube; the lower panel shows the same for an asymmet-
ric box of side ratios 1:3:3, a set of two finite area parallel plates. One can see that as T X L
grows large, the system approaches the thermodynamic limit, which we denote by “SB,” for
Stefan-Boltzmann. Even out to relatively large 7 X L ~ 20, energy fluctuations are on the
order of 10%. In the limit that 7 x L — 0 the energy density becomes negative, which is the

usual case for Casimir-like systems”.

11.5 Nonextensivity of finite size systems

We show in figure (11.2) the deviation from extensivity for the parallel plates case. The plot

shows the difference between the entropy for a massless, noninteracting scalar field between

3The negative energy density implies that at some 7' x L the energy density is 0. Hence it is not very enlight-
ening to plot the relative fluctuations in energy og/E (as opposed to og / Esp for small T x L.



Chapter 11. Thermodynamic expressions, first and third laws of thermodynamics, statistic6371

fluctuations, and nonextensivity

(Exo.)/E,

(Exo.)/E,

1.5

1.0

SB Limit
—

1.5

0.5

0.0

Symmetric Box
-0.5

(Ly=Llp=Lz=L)

-0.5

SB Limit

Asymmetric Box,
Finite Tube-Like
(Li=Ly=L3/3=L)

10
T [in units of 1/L]

15

20

10
T [in units of 1/L]

15

SB Limit

Asymmetric Box,
Finite Plates-Like
(L1=Ly/3=L3/3=L)

10 15

T [in units of 1/L]

20

20

Ficure 11.1: The mean total energy (solid thick colored lines) with corresponding standard de-
viation bands describing the fluctuations (whose edges are the solid thin black lines), in differ-
ent cases of finite volume symmetric and asymmetric boxes, and rescaled to the usual Stefan-
Boltzmann limit as a function of the temperature 7 in units of 1/L, where L measures the length
of the compactified direction(s) for a massless, noninteracting scalar field. The upper left panel
accounts for a symmetric box of side ratios 1:1:1, while the upper right panel accounts for an
asymmetric box of side ratios 1:1:3, and the lower panel for an asymmetric box of side ratios

1:3:3.
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two parallel plates a distance 2L apart and twice the entropy for plates a distance L apart
scaled by T3V. For an extensive system, this difference is 0. The nonextensivity goes to zero
as T — 0 trivially: the entropy for the parallel plates case falls faster than 73V for small T,
which we show in detail below in the left panel of fig. 12.5. A system with all lengths infinite
is extensive. Hence we may understand why the system approaches extensivity as 7' increases
in the figure as follows. As T increases, the thermal de Broglie wavelength decreases, and

the effective size of the system becomes larger.

[Sevy-2Smv ]/ T3V

0.3

0.2

0.1

0.0 SB Limit —)
0 5 10 15 20

T [in units of 1/L]

Ficure 11.2: The difference in entropy for a massless, noninteracting scalar field between parallel
plates a distance 2L apart and twice the entropy for a system with plates a distance L apart at a
temperature 7 measured in units of 1/L scaled by the quantity 73 V.

11.6 On the second law

Recalling that from eqs. (11.2), (11.5) and (11.6), the T and all P; appear to be functions of §

and the L;, as functions of state should be, and that there exists a one-to-one correspondence
T(S, {L,-}) & S(T, {L,-}), (11.18)
for reasons mentioned in section 11.1, we then have the following crucial identity
P,-(S, {L,-}) = P,-(T, {Li}), (11.19)

from which we obtain, albeit differentiating both sides, a set of chain rules which will be

computationally very convenient in the following.

Being now equipped from the previous section and the above remark, we will probe the
second law of thermodynamics. In doing so, we closely follow [260], and rely on the fact
that it may be proven (see, e.g., [259]) that the principle of the maximization of the entropy
in an adiabatic process is equivalent to the principle of the minimization of the energy in
an isentropic process (see, in particular, [264, Chapter 2.8]). In the light of eq. (11.5), the
usual two dimensional study of the energy as a function of the entropy and the volume is

here extended to a four dimensional study of the total energy E(S, {L;}) as a function of the
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entropy and the three lengths — albeit at present, for probing the second law, the entropy will
be kept fixed.

Thus, we are interested in the curvature of the hyper-surface described by the total energy
at constant entropy. And the second law amounts to requiring that the Hessian matrix of the

function E = E({L;}) be positive semi-definite, which is to say that we require the matrix

LiL;  8E(S.{L})

& =
% OLils 1.y OL

, (11.20)
Y |s,{Lk¢j}

to have positive semi-definite eigenvalues, each partial derivative being understood to be
performed while keeping the entropy and all non-relevant lengths constant. We notice that
the above matrix elements are scaled conveniently, which amounts to rescale each of the L;
directions in the curvature study of E({L;}), yet leaving unaffected the positivity requirement
on the corresponding Hessian. One may then compute the matrix elements eq. (11.20) (see

appendix A.2.3 for more details)

95 1 5 8
&ij =|5+ (TLi) . )7[§+(TL/‘) . ]+f(1—6i-)
f [ O(TL) |y y1,.0) & OTL) ly 0., :
8 oF
+(TLi) _ + (TLj) ,
a(TLl) T {Ly+i} a(TL‘]) T,{qutj}
-
4 (TLi)(TL)) o7 (11.21)

d(TLi) |{Lk¢i)6(TLj) l(Lis) '

Given the particular cases of interest, the relevant expressions for the free energy may be
substituted into eq. (11.21), and the eigenvalues may be evaluated numerically. A numerical
root finding algorithm can then be applied in order to determine the 7 Li-range in which the
eigenvalues of & are positive semi-definite, for each of the parallel planes, infinite tube, and
fully compactified box cases. This process allows us to put, for now, a lower limit on the
region of validity for our present calculations, as is shown in fig. 11.3 for the L;-symmetric

cases.

We claim only a lower limit on the region of validity since, although the second law is vio-
lated when the entropy is no longer a concave hypersurface, the problem of computing the
entropy when one is only able to derive the free energy becomes a question of ensemble
equivalence and the validity of the Legendre or Legendre-Fenchel transform (whichever is
applicable). It is known that if the determinant of the Hessian of a hypersurface becomes
singular [265, Chapter 7] then the hypersurface contains a change of curvature, but the point
at which the Hessian becomes singular is not necessarily the point at which the hypersurface
deviates from its convex (or concave) hull [266]. However, determining the breakdown point
of the Legendre transform (which requires global convexity or concavity in the variable to
be transformed) is not trivial as it requires the determination of the convex hull of the free
energy. It is not clear how such a hull may be computed in our case since the free energy

diverges at small L;. A possible solution may be to employ a carefully chosen truncation:
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Ficure 11.3: The regions of instability of the present calculations for the infinite parallel planes,
infinite rectangular tube and finite volume box cases.

considering only the plates case, if one restricts oneself to the region in which the determi-
nant of the Hessian matrix of free energy has the proper sign, i.e., truncates the free energy
so that it is only defined on a domain in which it has the correct curvature (a saddle in 7 — L;
space), then the convex hull of the (truncated) free energy is trivial because there is no longer
a divergence at small L;. Therefore, the Legendre-Fenchel transform is equivalent to the
Legendre transform and one may compute any thermodynamic function more easily. It is not
clear from a large deviation theory point of view that such a truncation is strictly speaking a
valid solution to the problem of determining the convex hull. At the very least the region in

which the free energy does not respect the second law should not be considered physical.

We refer to [267-269] for somewhat related studies, relevant to the actual QED Casimir

effects. In the next section, an interpretation for the “breakdown” of the second-law is offered.
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Chapter 12

Thermodynamic properties of a
geometrically confined scalar field

In this section, we present a number of thermodynamic quantities, ranging from the free
energy to the specific heat capacity at constant lengths, relevant to various geometrically
confined systems (infinite parallel plates, infinite tube, and finite volume box). The results
are all computed from the canonical ensemble, which is to say for systems in contact with
an infinite heat bath held at constant temperature 7, for a massless, noninteracting scalar
field. Each of the plots has been rescaled by the Stefan-Boltzmann result. Recall that in
the Stefan-Boltzmann limit of zero coupling and infinite size in all directions, various ther-
modynamic expressions we wish to evaluate in the finite size case are Fsp = —n>T*V /90,
psp = 12T*/90, Esp = i2T*V /30, Sgp = 2n°T3V /45, Cy55 = 20°T3V / 15.

F/Fy EY/E,
1.0 SB Limit—{ 1.0 SB Limit—
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
0 5 10 15 20 0 5 10 15 20
T [in units of 1/L] T [in units of 1/L]

Ficure 12.1: The free energy (left) and the total energy (right) for a massless, noninteracting

scalar field between two infinite parallel plates and rescaled to their Stefan-Boltzmann limits as

a function of temperature T in units of 1/L, where L is the distance between the sides of the
system that are of finite length.

In fig. 12.1, we show the free and total internal energies in the case of two infinite parallel
plates as a function of the temperature 7' in units of 1/L, where L is the distance between
plates. Recall that for a plasma of temperature ~ 400 MeV and width of ~ 2 fm, relevant for
a high multiplicity pp or pA collision at RHIC or LHC, T x L ~ 4. For a mid-central AA
collision resulting in a plasma of temperature 7 ~ 400 MeV and width ~ 10 fm, T X L ~ 20.

One can see in the figure that both results tend towards the thermodynamic limit as 7' X L —



Chapter 12. Thermodynamic properties of a geometrically confined scalar field 72

F/F, E" | Eg
1.0 SB Limit—y| 1.0 SB Limit—|
Plat
0.8 Tube
Bo;
0.6
0.4
0.2
0.0 0.0
0 5 10 15 20 0 5 10 15 20
T [in units of 1/L] T [in units of 1/L]

Ficure 12.2: The free energy (left) and the total energy (right) for a massless, noninteracting

scalar field between two infinite parallel plates (blue lines), in an infinite symmetric tube (yellow

lines), and in a finite volume symmetric box (red lines) rescaled by the Stefan-Boltzmann limits

as a function of temperature 7 in units of 1/L, where L is the distance between the sides of the
system that are of finite length.

co. However, both the energy and the free energy are > 5% different from their Stefan-
Boltzmann limits even at the relatively large value of T X L ~ 20. The total energy of a
system geometrically confined in between two infinite parallel plates separated by a distance
L, and in contact with a thermal bath at temperature 7', is thus noticeably affected by its finite

size.

In fig. 12.2, we display the free and total energies in the three cases of infinite parallel plates
(blue lines), infinite tube (yellow lines), and finite volume box (red lines). All results tend
towards the Stefan-Boltzmann ones as T x L — co. We see again the large finite size correc-
tions to the Stefan-Boltzmann limits, even for 7 X L ~ 20, with the size of the corrections
increasing with increasing number of compactified directions. Thus the total and free ener-
gies of a system geometrically confined is noticeably affected by its finite sized directions.
We note that the peculiar behavior of the tube case, that its total energy reaches a 7 = 0 limit
which is positive unlike the plates and box cases, is not a surprise. It is indeed due to the

dimensionality of the space-time [270].

We now turn towards the different pressures. In fig. 12.3 we plot the perpendicular (left)
and parallel (right) pressures as a function of the temperature 7' in units of length 1/L for
a massless, noninteracting scalar gas held between two infinite parallel plates that are a per-
pendicular distance L apart. The plots have a number of interesting properties. First, the
pressure in the perpendicular direction (pi, left panel), i.e. between the plates, is different
from the pressure in the parallel direction (p, or ps, right panel), i.e. along the plates. Thus
no single scalar pressure can be used to describe the finite sized parallel plates case: there is
an intrinsic anisotropy due to the compactification. Furthermore, the compactification of one
direction appears to have a greater effect on the pressure in the noncompactified parallel di-
rection than on the pressure in the compactified perpendicular direction: the parallel pressure
is nonmonotonic, unlike in the perpendicular case, and approaches the Stefan-Boltzmann

limit much slower than the perpendicular pressure.
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Ficure 12.3: The pressures, perpendicular (left, p) and parallel (right, p» or p3), for a massless,

noninteracting scalar field restricted between two infinite parallel plates as a function of tem-

perature T in units of the perpendicular distance L between the two plates. Both quantities are
relative to the usual Stefan-Boltzmann pressure.

Note that the pressure for our geometrically confined system dimensionally reduces in the
correct way. For our infinite parallel plates case in 4D spacetime

0 Tan 4 .
pi(B. L) = ((')V” 27rﬁ3 Z 7£L1 _”ﬁ[/L) +L13(e ”ﬁf/L)] + vacuum, (12.1)

where vacuum depends only on L. One can see that in the limit 7 X L <« 1 eq. 12.1 reproduces
the pressure of a massive, noninteracting scalar theory in 3 spacetime dimensions in the

Stefan-Boltzmann limit

pap (B, m) =

1 -mB/L . -mpB/L
g (mﬁ Lip(e ) + Lis(e )) (12.2)
for m = n/ L, where we have dropped the temperature independent, infinite zero point pres-
sure from the last expression. One sees then that the inverse of the compactified length L in

4D acts as an effective mass in the 3D theory.

We show in fig. 12.4 the pressure in one of the compactified directions for the two infinite
parallel plates, the infinite (symmetric) tube and the finite volume (symmetric) box cases,
respectively represented by the blue, yellow, and red lines. The pressures are rescaled by
their Stefan-Boltzmann limits and are plotted as a function of the temperature 7 in units of
1/L, where L is the length of the compactified direction.

Notice that the effect of further compactifications on the pressure is drastic. In the finite box
case, for T X L ~ 4, which is relevant for a pp collision resulting in a ~ 400 MeV QGP, the
pressure sees a ~ 40% correction. Even for T x L ~ 20, there are ~ 10% corrections to the
pressure of the finite volume box. Note that while it might appear that the pressures diverge
at low T, this apparent divergence is an artifact of plotting the ratio of our finite sized results
with the Stefan-Boltzmann limit; recall that the Stefan-Boltzmann case scales as T*. One
may use the un-rescaled expression eq. (10.11) to investigate the asymptotic 7 = 0 behavior,

in which case one recovers the usual Casimir pressure in the longitudinal direction in each
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Ficure 12.4: Longitudinal pressure of a massless, noninteracting scalar field in between two

infinite parallel plates (blue line), in an infinite symmetric tube (yellow line), and in a finite

volume symmetric box (red line). All results are rescaled to the Stefan-Boltzmann limit. The

pressures are plotted as a function of the system temperature 7 in units of 1/ L, where L measures
the length of the compactified direction(s).

compactification case. (This comment also applies to the other pressures, and the free and

total energies.)

We plot in fig. 12.5 the entropy (left) and specific heat (right) for the infinite plates case
as a function of the temperature 7 in units of 1/L, where L measures the length of the
finite direction(s) of the systems, and scaled by the Stefan-Boltzmann limit. The inset in
the left plot shows that the entropy of our finite sized system indeed goes to zero as the
temperature vanishes, as dictated by the Third Law of Thermodynamics, and as opposed to
some implementations of Lifschitz’s theory for the QED Casimir effect [262]. The inset in

the right plot shows that the specific heat for our finite sized system always remains positive.

We plot in fig. 12.6 the entropy (left) and specific heat (right) for the infinite plates (blue),
infinite tube (yellow), and finite box (red) cases as a function of the temperature 7 in units of
1/L, where L measures the length of the finite direction(s) of the systems, and scaled by the
Stefan-Boltzmann limit. Although we do not provide insets in these plots, the entropy for all
our cases again goes to 0 as T — 0, in accordance with the Third Law of Thermodynamics
and the specific heat remains strictly positive. Notice again that the size of the deviations from
the Stefan-Boltzmann limit increases as the number of compactified dimensions increases. In
particular the deviation from the Stefan-Boltzmann limit is significant (~ 10 — 15%) for the

finite box case even out to 7' X L ~ 20.

We would like to understand a bit better the importance of the type of boundary condition
imposed on our systems on the size of the finite size corrections to the Stefan-Boltzmann
limit. Intuitively, one might expect that periodic boundary conditions cause the least differ-
ence since the system has a finite size but is boundaryless. We show in fig. 12.7 the free
energy of a massless, noninteracting scalar field between two infinite parallel plates rescaled

to its Stefan-Boltzmann limit as a function of the temperature 7 in units of 1/L, where L is
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Ficure 12.5: The total entropy (left) and specific heat at constant lengths (right) for a massless,
noninteracting scalar field between two infinite parallel plates separated by a distance L as a
function of temperature 7 measured in units of 1/L. Both quantities are rescaled to their Stefan-
Boltzmann limits. The insets show the small temperature limits of the quantities.
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Ficure 12.6: (Left) The entropy and (right) the specific heat for a massless, noninteracting scalar
field for the cases of two infinite parallel plates (blue lines), the infinite symmetric tube (yellow
lines), and the finite volume symmetric box (red lines). The quantities are plotted as a function
of the temperature 7T in units of 1/L, where L is the compactification length for the system, and
the quantities are rescaled to their Stefan-Boltzmann limits.
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Ficure 12.7: The free energy of a massless, noninteracting scalar field in between two infi-
nite parallel plates rescaled to its Stefan-Boltzmann limit for Dirichlet (blue), Neumann (dotted
brown), and periodic (dashed purple) boundary conditions.

the distance between the plates. The plot shows the results for Dirichlet (solid blue), Neu-
mann (dotted brown), and periodic (dashed purple) boundary conditions, computed using a
simple adjustment of the techniques described for the DBC case. One can clearly see from
the figure that the system with periodic boundary conditions reaches the Stefan-Boltzmann
limit at much smaller 7 X L than either the Neumann or Dirichlet cases. One should per-
haps then hesitate to conclude that small finite sized corrections computed for a system with

periodic BCs [214-222] will remain small for heavy ion phenomenology.

Let us now come back to our geometric confinement boundary conditions. Since our nonin-
teracting scalar field theory is conformal, the trace of the energy momentum tensor should
vanish identically. We performed a nontrivial check of our numerics and confirmed that our

results do respect Tﬁ =e¢—(p1+p2+p3)=0.
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Chapter 13

A novel geometric phase transition

In this section we consider how our results depend on the physical setup of our system.
In the previous section we considered our system to be in contact with an infinite thermal
heat bath. We now focus in particular on the infinite parallel plates case and consider the
possibility of the system existing in isolation: instead of a system at constant temperature T
we rather consider a system with constant energy E£. Although constant energy calculations
pertain to the microcanonical ensemble, all results shown in this section are derived from
the partition function calculated in the canonical ensemble. We are justified in this approach
as argued in section 11.4: the ratio of the energy fluctuations away from the mean energy
divided by the mean energy computed in the canonical ensemble for the Stefan-Boltzmann
parallel plates case is zero; hence we will have ensemble equivalence between the canonical
and microcanonical ensembles. Thus the canonical ensemble provides exact results for all
thermodynamic quantities for a set of parallel plates kept in isolation, i.e. with fixed energy
E.

As we explore the different physics associated with a noninteracting scalar field between
two infinite parallel plates, it is worth keeping in mind two related thermodynamic concepts.
First, a system is thermodynamically stable if, when squeezed and all other parameters are
held fixed, the pressure increases. l.e. our parallel plates system separated by a length L is
thermodynamically stable so long as

dp

= 13.1
(9L<0 (13.1)

for fixed E and plate area V;, which is to say that the pressure in the system decreases with
increasing system size; see, e.g., [213]. Second, a system undergoes a second order phase
transition should a susceptibility diverge; see, e.g., [271]. Recall that the susceptibility is the
derivative of an extensive parameter with respect to its conjugate intensive parameter. The
susceptibility is then nothing more than the multiplicative inverse of the second derivative of
the entropy with respect to some parameter. For our case of two parallel plates separated by

a distance L, the susceptibility is the length-scaled negative of the compressibility:

Y= — =Lk (13.2)
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Comparing the condition for stability, eq. (13.1)), to the definition of susceptibility above,
one can see that a second order phase transition occurs when the system goes from being
thermodynamically stable to unstable'. Further, the order parameter associated with the com-

pressibility is the size of the system L.

We can further understand physically what happens at a phase transition by examining the
relationship between the entropy and an intensive variable such as the pressure. There are

three common, and equivalent, definitions of pressure:

oF

_OE zlaan
E oVlg —

s B AV ‘ﬁ'

(13.3)

The first expression is the quantity that must be equal for two systems in thermodynamic
equilibrium separated by a moveable wall. The second expression is the generalized force
conjugate to the volume. And the third is the generalized thermodynamic intensive variable
conjugate to the extensive volume variable. In the parallel plates case of current interest, the
derivatives with respect to volume V become derivatives with respect to separation length L.
One can then see that a phase transition occurs precisely when the second derivative of the
entropy changes sign; i.e. when the entropy goes from a convex function of L to a concave

function of L.

While all three expressions of the pressure in eeq. (13.3) are equivalent, the different expres-
sions are naturally a function of different variables: p(E, L), p(S, L), and p(B, L), respec-
tively, where we have already switched over to using the plate separation distance L instead of
the volume V for our system. One may freely switch between different definitions of pressure
by using relations between the various independent variables. For example, equipped with an
expression that relates the energy to the entropy and volume, one can equivalently use the first

definition of pressure in the same way as the second definition with p(E (S,L), L) = p(S,L).

In fig. 13.1 we compare the pressure of a massless, noninteracting scalar field between par-
allel plates of area V as a function of the plate separation length L for fixed temperature T
(left) and for fixed energy E (right); i.e. the left plot shows the pressure as a function of L for
a system in contact with a heat bath whereas the right plot shows the pressure as a function
of L for an isolated system. We computed p(L) from the partition function eq. (10.11) by
numerically inverting E(T, V,, L) to find p(T(E, Va, L), Va, L). It is perhaps not so easy to
see in the figure, but for the system in contact with a heat bath, the pressure always decreases
for decreasing L; i.e. dp/JL > 0 and the system is always unstable: the system always wants
to collapse. The isolated system, however, resists collapse as the system size is decreased—
i.e. dp/ 0L < 0 and the system is thermodynamically stable—so long as the system starts off
large enough, which is to say the length L is greater than some critical length L.. As soon
as L < L, the system is unstable and will collapse, shrinking until the plates are no longer

separated at all. We show explicitly the susceptibilities as a function of plate separation L for

"Note that, at this stage of the discussion of the phase transition, we are assuming that we are allowed to
employ the truncation discussed in section 11.6 so that the Legendre transform from the free energy to the
entropy is valid and that the canonical and microcanonical ensembles are, therefore, equivalent in the region of
L, where the phase transition occurs.
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Ficure 13.1: (Left) Pressure p as a function of L for a massless, noninteracting scalar field

between two parallel plates separated by a distance L in contact with a thermal heat bath at a

temperature 7 = 1 GeV. (Right) Same but for an isolated system at constant energy £ = 10°
GeV and with parallel plates area V, = 10° fm?.

k" (T, L) [cev?] Ke” (E, Vo, L) [Gev]
0 1500 - - - .

~5000 1000 1
~10000 500 /

-15000 0 j

-20000 -500
E = 10° GeV
-25000 T=1GeV -1000 V2 - (103 fm)Z
~30008 5 0.5 1.0 15 2.0 25 3.0 1% 0.5 1.0 1.5 2.0 25 3.0
L [fm] L [fm]

Figure 13.2: (Left) Isothermal compressibility k7 = (1/L)AL/dplr as a function of plate

separation L for a noninteracting, scalar field between two parallel plates a distance L apart and

held at a temperature 7 = 1 GeV. (Right) Isoenergetic compressibility kg = (1/L)dL/dpl|g for

the same scalar field system with constant energy E = 10° GeV and with parallel plates area
V, = 10% fm?.

these two systems in fig. 13.2. As claimed, the isothermal compressibility is purely negative
while the isoenergetic compressibility clearly exhibits a divergence.

We thus conclude that our massless, noninteracting scalar field theory constrained between
two parallel plates exhibits a phase transition at a critical length L.. This novel phase tran-
sition length is interesting for two main reasons. First, we believe this is the first example
of the explicit derivation of a phase transition induced by changing the size of the system,
as opposed to the usual means of inducing a phase transition by changing the temperature of
the system”. Second, in the derivation shown above, the phase transition is due to changing
an extensive variable, as opposed to the usual description of a phase transition due to chang-
ing an intensive variable. To be clear: we envision the (somewhat artificial) construct of a

pair of (approximately infinitely large) parallel plates of fixed separation length L. The space

2 Although the van der Waal’s gas exhibits a phase transition below a critical temperature by changing the
volume, we stress that, in our case, no such critical temperature exists and there exists a phase transition at any
temperature. Furthermore, our investigation concerns a non-interacting gas while the phase transition in the van
der Waal’s gas is interpreted as being due to self-interactions.



Chapter 13. A novel geometric phase transition 80

E=10° GeV
08
S(«)63 LTS 06
— 4% L7 ~/ 710 L [fm]
T ~ 0y ay
100 0 Rl TS 04
-. - T
0% . N 4
0 . i 0-5L [fm] 0.2
500000
;0”1°6 Tl / 0% 500000 1.0x10° 15x10°
Vy [fm?] 15x10° "~ Vy [fm2]

Ficure 13.3: (Left) The entropy S of a massless, noninteracting scalar field between two parallel

plates of area V, in fm? separated by a distance L in fm for energy E = 10° GeV. (Right)

The region of (V,, L) space for which one of the eigenvalues of the Hessian of the entropy

S is positive is shaded in gray. The edge of the region is given by the equation L.(V», E =
100 GeV, Tx L =1).

between the plates is filled with a noninteracting, massless scalar field, and one measures
the pressure on the plates. Since the separation length is fixed, the system cannot actually
collapse. However, one is tempted to interpret the right plot of fig. 13.1 as follows. Consider
a system of two (approximately infinitely large) parallel plates filled with a noninteracting,
massless scalar field. One plate is fixed, but the other plate is freely allowed to move and
is exposed to a constant external pressure p; at equilibrium, the parallel plates settle down
to an average separation distance (L) set by p. As one slowly dials up the external pressure
p, L decreases but the system continues to find a new, smaller (L) at which the plates are
in equilibrium with the external pressure p>. At a certain large enough critical pressure p..,
the scalar field inside the plates can no longer resist the external pressure, and the system
collapses. One would very much like to confirm this extrapolated interpretation from the
canonical ensemble; to do so would require going to the higher ensemble in which the sys-
tem is in contact with a hypothetical thermal pressure bath. It is perhaps not so easy to see
from fig. 13.1 or fig. 13.2, but we will show below that the phase transition occurs at a length
of order the thermal wavelength, L. ~ 1/T, a fact which does not come as a surprise as it is
the only scale in the problem. Since the phase transition seen from the canonical ensemble
calculation occurs at a length of order the thermal wavelength, it is possible that fluctuations
in the separation distance L from the mean distance (L) that one would necessarily observe
in a system exposed to a thermal pressure bath spoil the observation of a phase transition.
A quantitative derivation of the properties of a massless, noninteracting scalar field between
two parallel plates of variable separation distance and exposed to a thermal pressure bath via
a higher ensemble is left for future work.

Since we observe this phase transition for a massless, noninteracting scalar field theory in a
small enough geometric confinement, a natural question to ask is: is this transition one of
Bose-FEinstein condensation? One can see an indication of an answer in the negative from

fig. 13.3. On the left, we plot the entropy S as a function of the area of the parallel plates, V>,

3To really match in principle the right plot of fig. 13.1 one would have to keep the total energy constant by
continuing to remove the energy put into the system by the work of the external pressure squeezing the plates
together.
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and the separation of the plates, L, for our isolated scalar field theory system with constant
total energy E. For small enough L one can explicitly see how the entropy transitions from a
convex to a concave function. We further quantify this phase transition by examining the most
positive eigenvalue of the Hessian of S (V, L), i.e. with E fixed. For a concave function, all
eigenvalues of the Hessian are negative. The plot on the right of fig. 13.3 shows in gray the
region of (V,, L) space for which the most positive eigenvalue of the Hessian is greater than
zero, which is to say the region for which the entropy is no longer a convex function of V; and
L*. The critical length that forms the phase transition boundary of this region is a function
of the parameters V,, E, and T X L. In the right hand plot of fig. 13.3, the edge of the region
for which the entropy is no longer concave is given by a function L.(E, V,, T X L) where
T X L ~ 1; i.e. the phase transition occurs when L ~ 1/T. Therefore this geometrical phase
transition can occur for a Bose system at arbitrarily large temperature. We can conclude then

that the phase transition is not one of Bose-Einstein condensation.

One may then naturally next ask if the phase transition can be found in a massless, noninter-
acting Fermi field. We will show below that, yes, the phase transition persists for a massless,
noninteracting Fermi field. In order to repeat the above analysis for a Fermi field, we must
slightly alter our quantization condition [194, 195]. In order to prevent any Dirac current

from leaking through the plates confining our system, we require that, on the boundary”

"y = 0, = (0, ). (13.4)

In order to satisfy eq. (13.4), one must take the momentum modes of our Dirac field to satisfy

1.7

= =)= =0,1,2,... 13.
ke (€+2)L, t=0,1,2, (13.5)

Following the methods of appendix A.1.1 the Fermion partition function for a massless, non-
interacting Dirac field constrained between two parallel plates of area V5 and kept a distance

L apart evaluates to

& dk TR
anp:ZVQZf<2ﬂ)2[B‘/k2+kf7+21n(1+eﬁ e (13.6)
=0
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where § = n/(TL). Note that the overall factor of 2 in eq. (13.6) is due to the spin-1/2
nature of the Dirac field. The results of repeating the scalar field theory analysis are shown in
figs. 13.4 to 13.6. Qualitatively the picture is the same for the Dirac theory as for the scalar
theory; quantitatively, one finds that the critical length separating the concave from convex
region of the entropy S as a function of plate area V, and separation length L is related to a

slightly higher temperature of the gas, L. = 0.8/T.

4Note that since we are using formulae formally derived in the V, — oo limit, we restrict our plot to large
values of V5.
SWe stress that this is not the MIT bag model as we introduce no confining constant.
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Ficure 13.4: (Left) Pressure p as a function of L for a massless, noninteracting Dirac field

between two parallel plates separated by a distance L in contact with a thermal heat bath at a

temperature T = 1 GeV. (Right) Same but for an isolated system at constant energy E = 10°
GeV and with parallel plates area V, = 10° fm?.
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Ficure 13.5:  (Left) Isothermal compressibility k7 = (1/L)8L/dply as a function of plate

separation L for a noninteracting, Dirac field between two parallel plates a distance L apart and

held at a temperature T = 1 GeV. (Right) [soenergetic compressibility kg = (1/L)dL/dp|g for

the same scalar field system with constant energg/ E = 10° GeV and with parallel plates area
Vs = 10° fm?.
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Ficure 13.6: (Left) The entropy S of a massless, noninteracting Dirac field between two parallel

plates of area V» in fm? separated by a distance L in fm for energy E = 10° GeV. (Right) The

region of (V,, L) space for which one of the eigenvalues of the Hessian of the entropy S is

positive is shaded in gray. The edge of the Fermion region is given by the equation L.(V,, E =
10® GeV, T x L =0.8).
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One can even go so far as to show that the phase transition exists for massive, nonrelativistic

Bosons and Fermions, too, although we leave the details for a future publication.
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Chapter 14

Summary and prospects

In this work we implemented the first step of a strategy designed to investigate the thermo-
dynamics of small QGP systems, focusing on the finite size corrections to the usual Stefan-
Boltzmann thermodynamic properties computed in thermal field theory and also demonstrat-
ing the emergence of a new geometric phase transition. In particular, we set up a framework
for probing relevant finite size effects by means of an actual spatial boundary for a geometric
confinement, imposing Dirichlet boundary conditions. We argued in section 9.2 that Dirich-
let BCs are the most appropriate for capturing the relevant finite size effects for heavy ion
collisions and quark-gluon plasma phenomenology because these BCs prevent the weakly
coupled quantum fields, supposed to account for the relevant degrees of freedom inside a
QGP, from propagating outside of the geometric region defining this QGP system. For the
sake of simplicity, we considered D — 1 spatial dimensions with ¢ < D — 1 dimensions of
finite length L; arranged in standard rectilinear coordinates. We then filled the space inside
our geometrically confined region with a massless, noninteracting scalar field. In order to
best make contact with lattice QCD results and also for simplicity we computed the thermo-
dynamic quantities in the canonical ensemble, in the process extending standard thermal field
theory techniques.

We presented the main results of the detailed analytic calculations in Appendix A.1. The
results were computed by two independent methods, resulting in two different infinite sums
for each geometrically confined system. The two different sums have very different numerical
convergence properties: one converges exponentially fast for 7 x L; < 1 while the other

converges exponentially fast for 7 x L; > 1.

In chapter 11 we discussed some important qualitative consequences of our derivation of
the statistical mechanics of our system. In particular, we saw that the First Law of Ther-
modynamics is generalized by the presence of different pressures: instead of a single scalar
pressure as in the case of all spatial dimensions having infinite extent, the pressure in the
i" direction may be different from the pressure in the j direction depending on the various
lengths L. On the other hand, we found that the limited spatial extent of our system did not
affect the Third Law of Thermodynamics. Of critical importance, we computed the size of
the fluctuations in energy away from the mean energy dictated by the contact of our system

with a thermal heat bath. Even though the systems of parallel plates or a tube have some but
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not all direction(s) of finite size, the volume of these systems is infinite. Therefore the relative
size of the energy fluctuations compared to the mean energy is 0. As a result, the canonical
ensemble can be used to compute the thermodynamic properties for isolated, constant energy
parallel plates or infinite tube systems. At the same time, the energy fluctuations in a finite
volume box are not zero, and there must be corrections in the application of the canonical

ensemble to an isolated, finite volume box system.

In chapter 12 we presented a number of quantitative plots of the free energy, entropy, energy,
pressure, and heat capacity for a massless, noninteracting scalar field contained inside infinite
parallel plates, an infinite rectangular tube, and a finite-sized box. Of particular note was the
surprisingly large finite size corrections for the pressure. For a system of the approximate
size and temperature of a high multiplicity proton-proton collision at LHC, which has been
argued to exhibit hydrodynamic behavior based on thermodynamic quantities computed in
the Stefan-Boltzmann limit [272], we found ~ 20% corrections for an infinite tube and ~ 40%
corrections for a symmetric, finite box. Even for systems of the size of mid-central nucleus-
nucleus collisions at LHC the corrections are of order ~ 10%. Since the size of the azimuthal
anisotropy measured in such collisions at LHC are of order ~ 10% [273], these corrections
to the equation of state due to the finite size of the system may have important implications

for heavy ion phenomenology.

In chapter 13 we discovered that an isolated system of noninteracting particles confined
within parallel plates at temperature 7" undergoes a phase transition at a critical length L. ~
1/T: for L > L, the system is stable and resists compression; for L < L. the system col-
lapses. The phase transition is not one of Bose-Einstein condensation as we showed that a
noninteracting Dirac field also experiences such a phase transition. Nor is the transition a
relativistic effect as it is also experienced by massive, nonrelativistic Bosons and Fermions.
It is tempting to interpret our results as follows: a system of fixed energy can only resist so
much external pressure before collapsing. One can see that figs. 13.1 and 13.4 support this
interpretation: the system energy density is on the same order as the pressure, with p < E/V,
when the system undergoes the phase transition at the critical length. Further clarity on this
interpretation requires the use of a higher order ensemble in which the system is put in con-
tact with a thermal pressure bath. Such an investigation would also provide insight into the
importance of the fluctuations in the separation distance between the parallel plates about the
average, equilibrium length. Should this higher ensemble show that a pressure driven phase
transition exists, one could use the higher ensemble to calculate the critical exponent for this
second order transition. Other work that has claimed the observation of a first order phase
transition in small systems [213] performed the calculation in a finite volume box in the
canonical ensemble; it is not clear that the energy fluctuations inherent in using the canonical
ensemble invalidates the conclusions reached in that work. In the only other work that we are
aware of that examines finite size driven phase transitions [274], the phase transition is due to
self interactions of the system; since our system is noninteracting, the phase transition we see
is due purely to geometric confinement effects. Future work includes determining whether or

not a similar phase transition exists for an isolated system with periodic boundary conditions
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in one direction or for a tube system.

It is important for us to point out that geometrically confining a thermal quantum field into
a certain region of space with Dirichlet boundary conditions (even with an infinite volume)
appears to provide a solution to the infrared Linde problem [220, 275, 276]. The origin of
the Linde problem is the existence of the zero mode in systems with, e.g., periodic boundary
conditions: a momentum mode with zero energy. Imposing Dirichlet boundary conditions
naturally provides an infrared cut-off for the momentum modes p > pmin ~ 1/L dictated by
the system size L. We explicitly showed in this work that the Matsubara zero mode disappears
from the leading order thermal field theory calculations. It would be interesting to quantita-
tively check that in fact Dirichlet boundary conditions cure the zero mode Linde problem at
higher orders in perturbation theory, too, and see that the perturbative series becomes analytic

in the coupling.
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Chapter 15

Postlude

"It is always possible to do better."”

- Adv. Thulisile Madonsela,
Former public protector of the Republic of South Africa

The aim of the present thesis was to determine the extent to which a reasonably sound the-
oretical answer could be given to the question: Can we systematically and rigorously either
rule out or realize the possibility that the energy loss in small systems is simply too small to

measure?

As a starting point, a brute-force small system correction to a standard pQCD energy loss
model was investigated numerically in order to understand the way in which the usual large
system pQCD energy loss results may be affected when considering small systems. The
main result of that investigation was that, not only are all of the major pQCD energy loss
formalisms inapplicable to small systems, but it is also clear that the early time and short
separation distance dynamics of the medium play a crucial role in the determination of the
energy loss in small systems. Therefore, a serious investigation into small system corrections

to the properties of the medium is sorely needed.

As a first step to remedying this deficiency, a thorough thermodynamical investigation into
the nature of a geometrically confined quantum field theory was presented, and substantial
corrections to the usual Stefan-Boltzmann results were found. Furthermore, a geometrical
phase transition was discovered at the characteristic scale (the inverse of the temperature)
of the field. Although the bulk of the present investigation relates to a single, massless,
scalar field, the results strongly suggest that a quantum field is subjected to large corrections
when confined to a spatial region that is similar in size to its characteristic scale. A future
investigation might compute the small system corrections to the Debye screening length and

apply such a — possibly L-dependent — result to an energy loss model.

On the one hand, this work shows that the investigation of small systems is a technically com-
pelling endeavor: From a radiative pQCD energy loss perspective there is, in particular, much

to be learned still about the formation time of the radiated gluon and the importance of the
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large formation time assumption. Thermally we have shown that the basic thermodynamic
quantities associated with a spatially confined quantum field are significantly altered, but that
such a treatment still provides a natural tensor-like structure to the pressure, and might solve

the infra-red Linde problem.

On the other hand we have shown that it is, as yet, impossible to presume to know much about
the energy loss in small systems; we have shown that radiative pQCD energy loss, although
successful in central AA-collisions, is heavily reliant on the early time and short separation
distance behavior of the medium, while all indications, albeit from a toy model, are that the
medium is significantly modified when spatially confined.

However, we can, and we must, do better. Although the modification of jets in central AA
collisions has long been considered a probe of the properties of the medium, it is perhaps
time to start asking how the medium itself is modified in small systems. The study of small
systems appears to be wide open and fascinating. A particularly promising area of investi-
gation is jet sub-structure and the medium response to the presence of a jet [277] - perhaps
the theory community has here a real opportunity to investigate the question of whether or
not a particular colliding system produces a QGP. Closely related to the medium response to
the presence of a jet is the response of the spectator nucleons in a peripheral AA collision to
the presence of the QGP. It appears as though the QGP formed in small colliding systems,
if indeed there is a QGP, must be fundamentally very different to the QGP formed in AA

collisions.

Nevertheless, in attempting to formulate a standard model of QGP in small systems, one may
start by refining the techniques presented in this thesis. From a pQCD perspective, it is clear
that the inclusion of effects from the early times of the evolution of the QGP is essential. To
this end, one might consider developing other scattering center distributions whose forms are
derived from knowledge of the early times by, for instance, incorporating medium sizes and
thermalization times, as well as perhaps including effects developed from an understanding
of the pre-equilibrium dynamics of the medium [186, 187]. Analytically there remain a
number of model assumptions that still need to be relaxed, in particular the soft radiation and
the collinear radiation assumptions. Some progress along these lines has already been made
[175,278, 279] Relaxing the large formation time assumption in DGLV might go a long way
toward realizing the relaxation of the collinear assumption. From the thermal field theoretic
side the calculation of the Debye screening length in finite systems remains an important next
step, but much work needs to be done to ensure that a consistent understanding of ensemble

equivalence and potential phase transitions is developed.

Small colliding systems have placed the heavy-ion community in the extraordinarily privi-
leged position of having an entirely unexpected and exhilarating problem to solve, may it

keep us busy for decades to come.
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Appendix A

Appendix to Part 111

A.1 Details of calculations

In this section, we detail two different methods of computing the free energy density for a
single neutral noninteracting massless scalar field in ¢ geometrically confined dimensions by
deriving the logarithm of the partition function. It is important to note that the usual method
for computing such a logarithm cannot be applied in a way that is necessarily straightforward
since the compactification of any number of spatial dimensions leads to summations that are

formally divergent.

For both methods we employ dimensional regularization [280] within the modified minimal
subtraction (ﬁ) scheme [281] in order to regulate the divergences, but we also complement
this regularization procedure through the use of zeta type of regularization whenever neces-
sary. In the present massless case of interest, the usual (power like) divergences, if any, are
set to zero by Dim. Reg. so that there are no divergences that would need to be cured by

means of renormalizing the vacuum [282].

Inappendix A.1.1 we follow the usual method as described by [253, 255]. Inappendix A.1.2
we present an alternative calculation. Naturally, the two methods yield analytically equivalent
results which then of course agree numerically—even though their different convergence
properties, when the summations are truncated at some finite orders, make them conveniently

suitable in different regimes.

It is important to note that we will make significant use of Epstein zeta functions and their
various analytic representations. The derivation of these representations often exploits the

Poisson summation formula,
S —X(ZYz T S —ﬁ 92
(e = —XZ(e ) (A1)
§=—00 xa §=—00

We will not go into the detail of these derivations, but rather point the interested reader to the
extensive literature [256, 283-290] that is the result of three decades of intensive work on

these special functions.
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A.1.1 Usual computation

In this section, we compute the canonical representations for the free energy density in dif-
ferent scenarios, following and adapting the general methods of [253, 255]. For pedagogical
reasons, we present the case of ¢ = 1 in detail, but the result will then be easy to extend to
arbitrary ¢ < D — 1. Our starting point is then either eq. (10.8) or eq. (10.9), leading to

an(l):—%ZZ Z 1n[ﬁ2(w§+w§1+w,§+m2)}. (A2)
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We then consider the following two identities
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and after substituting eq. (A.3) into eq. (A.2), defining for brevity w” = w? + m?, dropping

an infinite 7'- and L;-independent term, and employing eq. (A.4), we obtain
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where we again dropped infinite 7- and L;-independent terms.

Assessing the case ¢ = 1, it is time to release the momentary (periodic) compactifications
of the D — 2 other spatial dimensions, sending each of the R compactification lengths to its

B

appropriate value (presently L, or L3) each being asymptotically large, and get
2 2
+w2+ln{ ’ w[1+w}

2.y D-2
nzt =S5 s
71'
(A7)

where w? — k* + m?. Since we will shortly be taking D = 4 — 2¢ (e will be set to zero at the

end), we introduced an arbitrary regularization scale (A> = AZ%e” /47) in order to keep the

proper dimensionality when D # 4, since we will employ Dim. Reg. within the MS scheme.

We now focus on the computation of the second term of eq. (A.7). To do so, recall that the
volume of an N-dimensional unit sphere is given by Qy = 27V/?/T (N/2), and consider
the fully general integral

N
J(a,N) = f éﬂ;’N 1n{1—e-ﬂ‘VP2+”2}. (A.8)
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Following [255], we make the substitutions p — Tx and @ = T'b in the above integral, Taylor

expand the logarithm, and rewrite the integration measure, obtaining

_ QN N l * -1 —s\/m
J(a,N) = —(Zﬂ/T)N;[sj(; dxx¥ e . (A.9)

Then, the substitution z = VxZ + b? leads to an integral representation of the modified

Bessel function of the second kind, namely K, and we get, for general a and N

27TN/2 N 1 * 2 g 1 —5Z
J(@.N) = ~ S T Z;fb dzz(2-0%)" e (A.10)
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Therefore, in order to compute the second term of eq. (A.7), we need the following result

[2 +m2 2702 & |y S [H_ 5
2 _ _ 2
J( wy, +m ,D 2) = (271-)[’2" E T KDzl(T wy, +m ) . (A12)

We further notice that the above result is indeed finite, as the second term of eq. (A.7) contains
neither Ultra-Violet (UV) nor Infra-Red (IR) divergences.

We focus now on the computation of the first term of eq. (A.7), which obviously contains a
UV divergence. In order to regularize this divergence, we will have to employ both Dim. Reg.
and Epstein-Zeta regularization. However, we will be able to derive a general formula for
the free energy density if we only partially perform Dim. Reg. until such a time as one needs
to compute the free energy density for a particular value of c. Which is to say that we will
start by transforming the D — 1 — ¢ - dimensional momentum integral as is the usual first
step in Dim. Reg. within the MS scheme. We will then apply Epstein-Zeta regularization
to the remaining ¢ - dimensional summations. The final result, eq. (A.19), may then be
used to compute the free energy density for a given value of ¢ by writing D = 4 -1 -
¢ — 2¢, expanding around € = 0 and then taking ¢ — 0. This process ensures that all the
regularization processes are not applied far outside the convergence regions of the integrals

in question. It should also be noted that no counter terms are required.

To now continue our example of the ¢ = 1 case, we therefore begin with the transformation

P2k P(-22) [z, |7
IW,/wﬁwumz g rz( )(LT) +ml . (A13)

We notice an important point related to the above calculation: the integral does not feature

any IR divergences in the massless limit as long as L; is finite, because £ never vanishes.
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Combining eq. (A.7) with eqgs. (A.12) and (A.13), we may write the free energy density,

f (e=1) (T,Ly), of a system with one geometrically confined dimension as

D-1 — _D D-1
o r(-5) (Asz”)2 'y ’T_fl]
2(4”)%4L1F(—%) an el R
D D-1
27D (R2e7E\T2 & nly \ 7 n
- ( 7 ) > ( - ) Ko l(ﬁ s{f]) (A.14)
(27T)TL1 i s=16,eIN § 1 1

where, of course, we took the massless limit. It is then straightforward to extend the above

procedure to an arbitrary number ¢ of compactified dimensions, and obtain the result

F(—%) A2eve % nt; B
19 = — ( ) ( ) (A.15)
2(4rm) 2 ic—](Ll) % telNe | i=1 L,
277" C(AZEYE)ZH S i= 1(%) s | <& (n6)
T o | e o Z(f)]

for which we notice that Dim. Reg. took care of the non logarithmic UV divergence, and that

the above result will not need to be renormalized’.

Computing the summand in the first term of eq. (A.15) will then require some Epstein-Zeta

regularization. Note the present Epstein-Zeta function of interest is defined [286] as

2 _ 2 2 2\"* 2
EY (s;ai,...,an) = Z (aln1+---+aNnN+m Yai,...,an,m- > 0.

(A.16)
We reproduce now the result for the analytic continuation of the above function (see [286]

for more details), in which the following recursion relation is useful

1

2 2
EY (s;ai,...,an) = —EEI"\}_I(s;al,...,aN_l)
1 [wI(s—3)
+5 ETS;Ef\”,z_l(s—l/z;al,...,azv-l)
215 (541 1 1(1os
+r(7r)aN2(s+2) Z n;\[Z(aln%_F'.._FaN_ln}zv_] +m2)2(2 ))(
s

ain} +---+aynk_| + mZ), (A.17)

with

INote that for certain values of D — ¢ the gamma function in the numerator of eq. (A.15) will have a pole.
For precisely those values of D — ¢ the Epstein zeta function will multiply these infinities by trivial zeros thus
rendering the divergences harmless.
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S

NS D 1 ai 2bm
EY (sia) = 2m2s+(a) 2m>=1T(s) [F(s 2)*'4{;\I (ﬂfm)é_sKs_é( Va )D
(A.18)

which reduces to E(s;a) = a™*{(2s) in the limit m — 0, providing Re (s) < 1/2. We may
now use the eqs. (A.17) and (A.18) in order to rewrite eq. (A.15) as

f(C) —

r(i)%)(%)z_z Eg(_D—C;( Vs )2"”’(1)2) (A.19)
2(471') 2 ?_1<Ll')r(—%) Lc
2 TD- c( eVE 2-

o Zi 2| "o KDZ(%

i= 1 x 1 £eN¢

which is our canonical result for the free energy density with ¢ geometrically compactified
dimensions. Notice that the first line in eq. (A.19) may now be explicitly computed using
egs. (A.17) and (A.18), for any number of compactified dimensions, and we refer the reader

to section 10.2 for the corresponding final, and furthermore refined, results.

A.1.2 Alternative computation

In this section, we compute the alternative representations for the free energy density in dif-
ferent scenarios. We generally follow the methods of [253, 255] but take great care with
the regularization procedure; given the spatial compactification(s), we avoid the formal ma-
nipulation of divergences. Moreover, we notice that certain massive results will be given as

byproducts, even though these are of no interest for the present work.

In fact, straightforwardly taking the asymptotically large R limits in eq. (10.9) could appear
problematic for some values of c. Indeed, the subsequent integral and the remaining infinite
sums may not have a common strip of convergence. To show that this would not be a prob-
lem, we could make use of the monotone convergence (or Beppo-Levi) theorem. Given the
asymptotically large R limits and since the infinite summation kernel of eq. (10.9) would then
still be positive definite and monotonically increasing”, one could take the infinite series as
a set of partial summations under a limit and exchange the order between the limit and the
integral. This could allow for an analytic continuation without spoiling the convergence of
the expression, thereby asserting the existence of the dimensionally regularized free energy
density for all c. However, we could, instead, proceed with a convenient trick, making use of

the following identity

2The 82 normalization of the logarithm argument could be changed without modifying the final result, so to
keep this statement true for all values of 7 and L;.
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, (A.20)
a—0

In (A) = -%(ﬁ)

where A is positive definite and « is real. 1/A% can serve the purpose of defining a master
expression that can be analytically continued as a function of the dimension D, before apply-
ing eq. (A.20) to find the log. Doing so and momentarily assuming a convenient range for «,
allows us to work with convergent expressions. Using this identity, and sending all R to their

asymptotically large values, we define the following master sum-integral®

1

W+ Ty 0 + K )]
(A.21)

related to the free energy density in D dimensions, after analytic continuation in terms of the

(0 _ _ T'* (Aze“/b“) de =k
Ia 21_1?:1 (Ll) Z Z 2 \P-1-¢

neZ teIN¢

complex D variable, via the following identity

£ = i[lff)] (A22)
o

a—0

We will then first focus on the evaluation of eq. (A.21). Prior to setting the number of com-
pactified spatial dimensions ¢ to some value in order to do so, and thus to compute the free
energy density, let us perform the continuous momentum integration. By doing so, we will
be able to analytically continue the expression as a function of the dimensional parameter
D, and evaluate the infinite summations outside of their original radii of convergence when
needed. For now, we shall assume that there exists some strip (to be specified below) for the
complex variable D, in which eq. (A.21) is convergent. We then proceed to rescale the con-
tinuous momentum k, in order to factorize all the frequencies and the mass. We then obtain

the following expression

_ D
T1+20 (AzeVE )2‘ 2
Vs

(C) _ dD 1 Ck @
fe 2 (4m)> 2 15, (L) f(Zﬂ)D“‘C (1+#)
D-l=c_,
x> Z(a} +Zwé,+m) o (A.23)
neZ teN¢

In order to assure the existence of the strip we take @ > 0. Then the integral above is
clearly convergent in the D-strip such that Re (D) — 1 —c¢ € (0,2a). The set of infinite
summations, being some Epstein zeta type of function, naturally converges in a D-strip such
that 2a + 1 + ¢ — Re (D) > ¢. Consequently, all we need to assume for now is that @ and
D satisfy the following conditions: 2 > Re (D) =1 > Re (D) — 1 — ¢ > 0, the middle one

3We recall that we use Dim. Reg. within the MS scheme, and refer to the beginning ofappendix A.1.1 for
more details on this scheme and the induced modifications on the dimensionality of the expressions.
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being automatically satisfied. We shall then work under this assumption, until we are able
to perform an analytic continuation in the dimensional parameter D. Then, the constraint
on a will be released, and we will be able to compute the free energy density according to

eq. (A.22), in all the possible spatial compactification cases.

Next, we use standard techniques [253, 255] to perform the continuous momentum integra-

tion in eq. (A.23), and we get

71420 (%)2% r(

SO _ z a+e-3)
: 24-¢ 15 1S, (L) (a)
D-l-c_,,
xZZ(m —l—Za)f—l—m) 2 , (A.24)
neZ. teIN¢

being left with the evaluation of the following (1 + ¢)-dimensional Epstein zeta function

D-1-c

-

Z1+C(a—|—1+c_ ) ZZ(“’ +Zw€+m] o (A.25)

neZ £eIN¢

for which we need to set ¢ to some particular value prior to any evaluation.

A.1.2.0.1 Two infinite parallel plates
In this subsection, we shall analytically continue eq. (A.25) in order to analytically con-
tinue eq. (A.24). Taking ¢ =1

Z(1+a=-p2)= 3 3 (0} 2 of 4m?) (A.26)

neZ 1N

We then split the Matsubara sum into a zero and a nonzero mode contribution, following

+o0 +o0
Gisl = Z Z g(n.6}) = Z g(0.63)+2 Z g(n.63). (A.27)
neZ (1N =1 nt1=1

and make use of the two-dimensional Epstein zeta function representation [285]

+o00 -s| b~* \/7_1. b1/2—s F(S—l/Z)
n; (al® + bn?) ]——7{(2s)+7 o T (2s—1)

ot (b/a)V* S

TR (@)

s—1/2
(S) K‘Y_1/2(27r \/g nf)} s (A28)

for the second term, the first one being the usual Riemann zeta function. Analytic continua-

n,t=1

tion of the above formula readily follows from the straightforward continuation of the Euler
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gamma function, the Riemann zeta and modified Bessel functions, or simply using the func-

tional equation for the corresponding Epstein zeta function [285].

As it turns out, given a certain choice for a and b, the limit of vanishing 7" or asymptotically
high L; appears explicitly. Note also the change in the argument of the Bessel function, upon
an exchange between a and b. This gives the possibility to slightly enhance the convergence
of the remaining two-fold sum, as depending on the choice for a and b, a factor of Vb/a or
Va/b (giving either a 2TL; or its inverse) appears in the argument of the Bessel function.
And given that the larger the argument the better the convergence, we choose the former
possibility in order to easily reach the thermodynamic, Stefan-Boltzmann limit. Therefore,
the asymptotically high L limit (that is the usual Stefan-Boltzmann finite temperature result)
will appear explicitly in the analytically continued result. Using then eq. (A.28) with a =
(m/Ly)?* and b = (27T)?, we further analytically continue eq. (A.26) and can finally extend
it together with eq. (A.24) for ¢ = 1, as functions of D from the original D-strip to the whole
complex plane. Gathering all together, we get the following result

D
71420 ([\2675)2_7 D202
= ;) A Jr(i+e-3)
Iy = - — 2+2a-D|T(1 _=Z
@ 87TL1T(a) X{(Ll) 24 2a I'({l+«a >
2R TL 1 D
— V1 A1+2¢-D|T|=+a-=
(22T)2 20D i e ) (2+“ 2)
— (2aT)P7272 ((2+2a—D)r(1+a__)
D-1 D-1
A2 L (T/L)) 7T 7 % bl -a
+ V2 1(11 _li > {(;) Ko, (4nTLint1) } (A.29)
(27[) ¢ 2 I’l,f]zl 1

for the corresponding eq. (A.24) with ¢ = 1 and m = 0, valid on the whole D-complex plane.
This means that we can actually probe the above result for any value of @. We then apply
eq. (A.22), and since there is no pole around D = 4 (i.e., no logarithmic UV divergence), we
readily set the dimension to four and get the renormalized* result

(;)ZIQ (47TTL1n€1)}, (A.30)
1 2

2T T3§’(3) TZ(3) V2152
90 4nly  16zL] L2

f(l) - _

nt1=1

for the corresponding free energy density. We notice indeed that the first term is the usual
Stefan-Boltzmann finite temperature result, relevant to a massless scalar field in a noncom-
pactified space. In addition, we see that the above result reduces to the Stefan-Boltzmann
one when sending L; to infinity. Note however, that the zero temperature result relevant to
the usual Casimir effect, and equal to —7>/ 1440L‘11 [285], appears only explicitly when using
the same analytical representation for the two-dimensional Epstein zeta function, but done

4No counter term was needed, yet Dim. Reg. set the non logarithmic type of divergence to zero which makes
the result formally renormalized.
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with a = (22T)? and b = (n/L;)? instead of the present choice. Our result contains a
two-fold infinite summation which is of course convergent. And in fact, one can also get a
closed form when performing one (or the other) summation, with once again two different
looking yet equivalent representations, depending on which summation is explicitly done.
We choose to explicitly perform the summation over the ¢ variable, for convenience when
further enhancing the convergence as we are going to explain below.” Doing so, we end up

with the following one-fold representation

n Lis (6747rTL1n) ] + T3§(3) Tg Z Lis 4nTL1n) ,

4nLy 167rL3 8nL§ —

(A.31)
involving, again, two polylogarithm functions. With the above representation, one would
need to change the remaining infinite summations by the corresponding integrals, in order to
probe the asymptotic 7 = 0 limit where the n variable becomes then continuous. Note that
this representation, when truncated to some finite order, is relatively well behaved in terms
of convergence. However, the situation can easily be further improved. Indeed, making
use of a contour integral representation for the polylogarithm functions, one can replace the
summations above with another set of summations with much better convergence properties.
This new one-fold representation happens to be exponentially enhanced, as can be easily
checked. Relabeling the dummy variables, our final result for the free energy density of one

neutral massless noninteracting scalar field is

A0 — 2T (3T T2 S[esch® (2nTLi¢)
90 4rL, SL% 02
=1
3T coth (2nTL€) — 1
{()3 32 (7r31) } (A.32)
1677L 167rL1 = 4
As a matter of fact, this new representation allows for both the 7 = 0 and L; = oo limits

to be carried out, which is relevant to the corresponding quantum field when coupled to a
heat bath at temperature 7', and geometrically confined in between two infinite parallel plates
separated by a distance L;. We notice that the term proportional to TL1‘3 actually cancels the
573 term in the second sum, but it is preferable to keep the result as such. The above second

sum indeed converges more rapidly.

A.1.2.0.2 Infinite rectangular tube
We shall now analytically continue eq. (A.25) with ¢ = 2, that is

SNotice that both the Matsubara and the spatial summations have been done. Even though we keep the same
dummy variables n and ¢, they do not correspond anymore to the original modes which have been summed over.
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( —|—a/——) Z Z Z w;, —l—wfl—i—w[z—l—m)?_a_%, (A.33)

neZ 1N t,eIN

which will allow us to investigate the free energy density of a neutral noninteracting scalar
field coupled to a heat bath at temperature 7', and geometrically confined inside an infinite
tube of rectangular section with two sides of respective finite lengths L; and L. For compu-

tational convenience, let us keep the mass nonzero for a little longer.

We then notice that we can use the following identity

G1+2_Z Z Z n f%,fz, )

neZ 1N t,eIN

:_ZZZ n?, 6., Gim) ZZ n?, €3,0;m)

neZ t\eZ treZ neZ 6 eZ
1 2
__ZZ n,0,6;m +ZZg(n,0,0,m), (A.34)
neZ teZ nez

in order to rewrite the multifold summation, in eq. (A.33), in a more convenient way. For the
sake of analytically continuing the corresponding Epstein zeta function, let us make use of

the following representation [256]

> )

ET .= Z (a(z)n2 + a4 . atl + mz)
(n,b)ez+e
ﬂ%lﬂ(s - %) (m?) s

N apa...a.l (s)

w2 b 2
27 (m? )% 3 K s(zﬂm\/a(z)+ %4‘ + (2)
m > Ttc_s s (A.35)
o .. 4 R
(B4 d+-+5)

noticing the difference of definition for the a; coefficients, with respect to eq. (A.17). Thus,
with the help of this above representation, together with the identity eq. (A.34), we can obtain
an analytic and symmetric representation for the corresponding master sum-integral I((,z), and
further apply eq. (A.22) for obtaining the free energy density. Finally, given that D = 4 — 2¢,
we expand the resulting expression around € = 0. After a few more steps, which we will
avoid here for the sake of brevity, we finally obtain

4 2 4
@___™m m ™ 141 (
/ 64l e  3oalilre 1282 "
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n T
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- o m(l o In? + +(2TLy) 252)7
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(n.61)€Z2\{0} (n2 + (2TL1)2£])
L 3/2
8 Y ne)ez2\(0) (n2+ (2TL2)2£§)

K (g 2+ CTLE + (2TL)%6)

+0(e').  (A36)
(n.61,62)€Z3\(0) (n2 + (2TLy )23 + (2TL2)2€§)

Let us now simply comment on the massless limit, given the unusual UV structure of the
above expression whose renormalization techniques, if necessary, can be found at [193, 291]
by means of background field methods. However, we notice that under the limit m — 0,
the above result becomes convergent. Applying this limit, and performing the summations

whenever it is possible to get a closed form, we obtain the following massless finite result

lim (F@) = - _T" 2 | (0TI e + (0TI 2
m‘i“o(f )__24L1L2_2712 2 (” +(2TL)°6 + (2T1Ly) 2)
(n,61,62)€Z3\{0}

T’ 2 2 0\7?
+ ok Z (n + (2TLy) 51)
(n.t1)€Z2\{0)
T3 ) 5o -3/2
E 2TL . A.37
+ 8rLy (n +(27L) 52) (A-3D)

(n,62)€Z2\{0}

In addition, the first set of summations can be conveniently rewritten in a symmetric fashion
with

T4 -2
S3=-7- Z (n2 + (2T Ly )63 + (2TL2)2€§)
(n {1, €2)€Z3\{0}

2 -2
— X Zx > (n2—|— (2TLy )28 + (2TL2)2£§)
27T 2 O=1 (nt,)eZ?
n,ty

2 Z D ( + (2TLy )28 + (2TLy)*E Big)™
0O=1 (nt,)ez?

—ooxsx Y (nP 4 (2TL)%E -
272 2 2"
(n,62)€Z2\{0}

—ooxsx Y (R4 @rL)e - (A.38)
22 "2 ) ‘
(n,61)eZ2\{0}

While the above expressions are finite, as we just mentioned, their convergence is rather
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slow, but can be enhanced using some Poisson resummation formulas such as in eq. (A.1).
Thus, let us first use eq. (A.28) in order to improve the convergence properties of the two-
fold summations, once properly re-expressed using eq. (A.34). Then, we can proceed in

implementing a specific resummation to the remaining three-fold summations, following

too _
(i) =- ;Z Z (v + @716 + (2TL)%€¢) ’
t=1 (n,t;)ez?
_ _T_ +:t t§<e—t(2TL,-)2€i2) f (e-mZ) f (e—t(2TLj)2f§)
- 272 0 fi=1 Nn=——oo {j=—0c0
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0> + (2TL;)?n?
J J 27TL,' 0 2 5
7 Kl( I i /6 + (2TL;)*n

nT

, A39
~96L;12 (A3

where from the second to the third line, we used eq. (A.1) for the n- and ¢;-summations,
and singled out the £; = n = 0 term. From the third to the last line, we used the integral

representation of the modified Bessel function of the second kind.

Bringing all the results together, performing some of the summations to get closed forms

when it is possible, and relabeling some of the variables, we finally arrive to the following

2T (BT Li+ L) aT? aT(Li+ L) ((B)T(L+L5)

2 —
/ 90 4rLiLy 24LiLy 961213 32nL3L3
3 ( 4TL€) Tzf ( 4TL€)
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62+ (2TLy)*n?
K, (

8L2L2 Z Z %3

2L
T2 O+ (2TL1)2n2) :
Lo=1 (nt))ezZ2\{0}

Ly

which is the symmetrized and renormalized result for the free energy density of a noninter-
acting massless neutral scalar field coupled to a heat bath at temperature 7', and geometrically
confined inside an infinite tube of rectangular section with two sides of respective lengths L;
and L,.

A.1.2.0.3 Finite volume box Let us finally take care of the last case, analytically contin-
uing eq. (A.25) with ¢ = 3, that is

Z (2+a— g) => > D D (e +wp + o}, + o, L) (A

neZ 1N 6elN (3€IN

in order to investigate the free energy density of a neutral noninteracting scalar field coupled
to a heat bath at temperature 7', and geometrically confined inside a finite volume box with

sides of respective finite lengths L;, L, and Lj.

As previously, notice again that we can use a convenient identity, which in this case reads

Gra=y, > 3 Y &R B B Gm) =SS NS o, 6.5 i)

neZ €1eN ;€N £3€IN neZ \eZ treZ t3€Z
EDDIDNICEENTIEEDIPIPIACXNET
neZ 61eZ 6reZ neZ 61eZ (:eZ
——ZZ > g(n20.63, B m) 822 n?,63,0,0:m)
neZ. teZ. t3eZ. neZ. €7
+ - ZZ n,O,f%,O;m ZZ n,0,0,K%;m)
neZ t,eZ. neZ (zeZ
__Z n%,0,0,0:m), (A.42)
nezZ

in order to rewrite the multifold summation in eq. (A.41), and make use of an appropriate
representation for computing the free energy density with the help of eq. (A.35). Doing so
allows us to obtain an analytic and symmetric representation for corresponding master sum-
integral Ic(f) , which we do not display here for the sake of brevity. Further applying eq. (A.22),
in order to get the free energy density, we Laurent expand the resulting expression around
€ = 0. Again, skipping some minor technical details, we finally obtain

4 2 4
(3):_ m m L1+L2+L3 m 41 ( ) 3
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+O(el).

Unlike in the case of the tube geometry, we cannot here simply come back to an earlier
version of the massive result such as eq. (A.43). Indeed, even though there is no infrared
(or even UV) divergence, and the application of the massless limit upon eq. (A.43) would
leave an expression which is overall finite, each of the summations therein produces, in fact,
a divergence. And only the sum of all of these divergences actually vanishes. The reason is
that when m = 0, each of the sums in eq. (A.43) can be represented by a certain zeta function,
and we hit the corresponding pole in the € — 0 limit. Therefore, we will implement the limit

m — 0, keeping € nonzero for the sake of regularizing intermediate stage divergences. Doing

so, we find
€( A 2e
. (3) _ QYE (A/T) T l_ _
i,l_%(f )_( 23+2e51/2 LiL,Ls I 2 € éV(l 26)
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(n,61,62.63)
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where the structure of the intermediate divergences, which we mentioned previously, is now
obvious. Notice further that as the sum of all the poles in € identically vanishes, the finite
part which is by construction A-dependent will also vanish, leaving the overall result not

only finite but also thankfully renormalization scale independent.

Following the massless result of the infinite rectangular tube case, we can again use the
Poisson resummation formula eq. (A.1), together with expressions such as eq. (A.28) and
eq. (A.34) in order to compute the above two-fold summations while singling out the in-
termediate stage divergences. In addition, we can use eq. (A.38) in order to deal with the
three-fold summations, including those which will appear in the decomposition of the four-
fold summation. In the end, we are only left with the computation of the last term in the

above expression, and to do so we define

€2
Se= Y (PHQEILPE+QILPE+TLYE) L (A49)
(n,f1 ,[2,[3)624\{0}
in order to give more details on this last technical step. The above expression can be decom-

posed and symmetrized following
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e-2

1 e-2
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[

(n,61,62)€Z3\{0}

And while the last three terms can be handled via the procedure which we used for the
three-fold summations in the previous subsection, the first three terms need to be computed
separately. We then define another set of summations, namely S 1.3, which denotes the first
of the above terms. Analytically continuing this set of sums, using for example eq. (A.35),

leads to the following result

S 713/2(TL1)25_1T(% - e)((l - 26) N a2 €(TLy) 2
143 =
! 3x 41 T2, L5 T(2 - ) X3 LI T(2-¢))
1_¢€
) 2 2 372
(7 + i + i)
X

L2 (nody)ez\ o) 4

(N1

(A.47)

{2 £2
xKi__\4nTLi6;[n2 + —2 4+ 3 .
3o (TL)? " (2TL;)?

Finally bringing all the results together, and expanding around € = 0, we see that all the
e- intermediate stage divergences indeed cancel. In addition, the renormalization scale de-
pendence disappears as a consequence of the fact that there is no overall logarithmic UV
divergence in the present case. We further perform some of the summations, in order to
get closed forms whenever it is possible. Then, relabeling some of the variables, we finally

obtain

3
ars T log (8T L1L2L3) LB (LiLs + LiLs + LoLy)
90 241, L, L 4anL,L>Ls
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which is the symmetrized and renormalized free energy density of a noninteracting massless
neutral scalar field coupled to a heat bath at temperature 7', and geometrically confined inside
a box with sides of respective finite lengths L;, L, and L3. We refer to eq. (10.16) for a

conveniently much more compact form of this result.

A.2 Various proofs

A.2.1 Fourier decomposition

In this section, we first describe the derivation of the form and normalization of the Fourier
decomposition of a massless scalar field (adding a mass does not modify the argument), along
the direction of a compactified dimension with DBCs. To this end, we apply the method of
separation of variables to the scalar field, and consider only, for the sake of argument, the
part relevant to one of the DBCs which must also obey the Klein-Gordon equation

32
W] + = | (&) =0, (A.49)
0&
where we recall that w, = 7£/ L. Compactifying this direction onto a finite length [0, L], and

imposing DBCs, implies that

¢¢(0) = ¢¢(L) = 0. (A.50)

We then remember that the general solution to a differential equation such as eq. (A.49) is

de(€) = Asin (we€) + Beos (wef) . (A.51)

Thus, by applying the boundary conditions eq. (A.50) to the above, we obtain

B=0, wr=—, (A.52)

We may then obtain a convenient prefactor by normalizing the field to unity
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L L f
f ¢ ¢e(&)¢e(é) = f d¢ Azsinz(”—f)il, (A.53)
0 0 L

= A RE \/Z (A.54)

Therefore, we obtain the Fourier decomposition along a compactified dimension with DBCs

2 ¢
be (€) = \/; sin (%f) . (A.55)

We now give some useful identities: It should be noted, indeed, that in order to go from
eq. (10.4) to eq. (10.5), the following integral identities, defining the usual Kronecker delta

function, are needed

/T ) )
fo drelOntonlt =6, /T, fR Py flonton)x < gPl=es, | (A56)
Li
f dz; sin (wy, zi) sin (wg, 2i) = Lidy, 0, /2, (A.57)
0

the last equation holding only for all ¢; strictly positive integers, which is presently the case.

A.2.2 Length derivatives

We present a short derivation of an important result, i.e. the length derivatives of the internal
and free energies, which allows us to compute the pressures directly from the free energy.

Consider eq. (11.1) which we differentiate following

dF (T, {L;}) + SdT = dE(S, {L;}) - TdS. (A.58)

On both sides of the above equation, fixing all variables but one length L; (preferably the

same on both sides) gives us the following important equation

6F(T, {Li})
oL,

OE(S, {L;})

dLj= —>
J

dL;. (A.59)
S Lz j}

T {Lyzj}

The above result indicates that both partial differential expressions are equal, namely that

OF (T, {L;})
oL,

OE(S, {L})
oL,

) (A.60)
S L j}

T {Lkxj}

allowing to probe the pressure P; from either of the two functions E(S, {L;}) or F(T, {L})
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_Lj OF(T, (L) _ (A.61)

4 aLj T {Lizj}

P; =
4 OL; S Lk}
A.2.3 Hessian of the energy
In order to compute the matrix elements in eq. (11.20), that is

LiL;, &*E(S.{L
14 j (S, {Ls}) ’ (A.62)
TV OLils i1, 8L.i|s,{Lk¢_,}

81']‘

consider first that from eq. (11.7) we obtain

oF 0 (.4 ~} 3 ~
= —| =--—={T'V =-T°V(4f +T0
T lizy 3T{ / (L) 47 /)
N of
=-T3V|4f + (TLi) , ” (A.63)
Ll_ze;) d(TLi) (L)
and therefore that
S - of
§= —— = —4f - (TLi) _ l (A.64)
T3V LZE_;) A(TLi) |y,
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(TLi) o5 — -5(TLi) of
O(TLi) |, O(TLi) I (1,
-
- Z (TLj)(TLi) , ) , ] (A.65)
L0 9 (TLj)| ) 0 (TLl)|T,{Lk¢i}

Furthermore, given eq. (11.6), we also have

P; = _Lior _ L i{T“vf} S (f+ (TLi) af' ]
V OLilrj.y V0L T ALisi) O(TLi) |71,
(A.66)
so that
P; . Of
pi= — = —f - (TLi) : , (A.67)
T4 d(TLi) (T Lisi)

and
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iy 6(TLj)|{ & (TLi) |T Lo

(A.68)

we may now write eq. (11.20) as

LL;  &E(S.{L})
T4V OLis 1., OL; |s (Lisi)

eq. (A.60) LL; 0 (0F
T4V OL; \ OLilr 1.

o LL 0 [V,
- TV L L
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Tv|L oL,

Further notice that, due to eq. (11.19), and the subsequent set of chain rules, we have

OP;

or i
Liej) (9L]

aL

OP;
6L

__OP;

— A7
= a7 ; (A.70)

T {Lisj)

J1S {Liz j}

each term of which we may evaluate individually
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Bigg]]

eq. (A.65)
eq. (A.65)

-73 (s + (TLi)



Appendix A. Appendix to Part II1 110

eq. (A.67) 9%
= OTLjl,
oT T S as| \!
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Finally, combining all these expressions gives us
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