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Abstract

Limits on νµ(νµ) → νe(νe) oscillations based on a statistical sep-
aration of νeN charged current interactions in the CCFR detector
at Fermilab are presented. νe interactions are identified by the
difference in the longitudinal shower energy deposition pattern of
νeN → eX versus νµN → νµX interactions. Neutrino energies
range from 30 to 600 GeV with a mean of 140 GeV, and νµ flight
lengths vary from 0.9 km to 1.4 km. The lowest 90% confidence up-
per limit in sin2 2α of 1.1× 10−3 is obtained at ∆m2 ∼ 300 eV2. For
sin2 2α = 1, ∆m2 > 1.6 eV2 is excluded, and for ∆m2 ≫ 1000 eV2,
sin2 2α > 1.8 × 10−3 is excluded. This result is the most stringent
limit to date for ∆m2 > 25 eV2 and it excludes the high ∆m2 oscil-
lation region favoured by the LSND experiment. The νµ-to-νe cross-
section ratio was measured as a test of νµ(νµ) ↔ νe(νe) universality
to be 1.026± 0.025(stat)± 0.049(syst).
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Chapter 1

Introduction

The existence of neutrino mass and mixing would have important implications for funda-

mental problems in both particle physics and cosmology. These include violation of lepton

family number conservation, the mass of the universe, and the observed neutrino deficits

from the sun and from atmospheric sources. Neutrino oscillations are a necessary conse-

quence of non-zero neutrino mass and mixing since neutrinos are produced and detected

in the form of weak-interaction eigenstates whereas their motion, as they propagate from

the point of production to their detection, is dictated by the mass eigenstates [1]. To date,

there is no conclusive evidence for neutrino oscillations from laboratory-based experiments,

although there are hints from the low energy LSND experiment at Los Alamos. On the

other hand, there are indications of possible neutrino masses from non-laboratory experi-

ments: in particular, the solar neutrino deficit and the possibility of a hot component of

dark matter. The atmospheric neutrino anomaly, which is plagued by many uncertainties,

is also in favour of neutrino oscillations and predicts that neutrinos have mass. In this thesis

we present new limits on νµ → νe oscillations based on the isolation of νeN charged current

interactions in the CCFR detector with data taken during the 1987-88 fixed target run at

Fermilab.
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1.1 Brief Neutrino History

The existence of the neutrino (ν) was first proposed by Pauli [2] in the 1930’s to explain

an apparent non conservation of energy observed in nuclear β decays. Soon after Pauli’s

neutrino postulate, Fermi [3] proposed his theory for the β-decay in which he assumed that

neutrinos have a mass much smaller than the electron, obey the Dirac equation, and have a

distinct antiparticle. Using Fermi’s theory, Bethe and Peirles [4] showed later the same year

that an inverse β-decay process, νn→ e−p, should also be possible with a cross-section on

the order of 10−44 cm2 which, they thought, made the neutrino impossible to detect.

Direct experimental observation of the neutrino was achieved in 1956 when Cowan,

Reines and coworkers [5] detected antineutrinos from a nuclear reactor through the reaction

νep→ ne+. Soon after, Davis and coworkers showed that the neutrino and the antineutrino

are not identical particles by searching unsuccessfully for the reaction ν+ 37Cl → 37Ar+ e−

[6]. The existence of a second lepton generation was proven experimentally in 1962 by

Lederman, Schwartz, and Steinberger [7], when neutrinos produced in the decay of charged

pions interacted to produce only muons and no electrons. In 1975 at SLAC Perl et al.

discover a third generation of charged leptons, τ+ and τ− [8]. Direct observation of ντ (ντ )

hasn’t been achieved yet, but experiment E531 at Fermilab [9] has demonstrated that ντ is

different from νe and νµ. The precise measurement of the width of the Z at LEP and SLC

has shown that there are only three species of light neutrinos [10].

In the standard model, neutrinos are generally assumed to be massless, although with

minimal extensions it is possible to give neutrinos mass. Direct mass measurements in

the laboratory have confirmed that neutrinos have a very small mass. The best ντ mass

measurements were done by the ALEPH collaboration [13] which used the decay of a τ

particle into five charged pions plus a π0 and, based on 24 events, set an upper limit of

24 MeV. The measurements by the PSI group [12] of the pion decay into a muon and
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neutrino give an upper limit for the νµ mass of 170 KeV. The best method to measure the

νe mass is to study the end-point of the electron energy spectrum of tritium decay, which is

about 18570 eV. If the νe’s have a mass, mν then the end-point would be at a lower value by

mν . What is interesting about the νe mass measurements is that all the best experiments

obtain negative values for the square the measured electron neutrino mass. The current

values of the best upper limits for the mass of each neutrino species are summarized in

Table 1.1.

Flavour Mass Limit Confidence Level Experiment

νe 4.35 eV 95% Troitsk [11]

νµ 170 KeV 90% PSI [12]

ντ 24 MeV 95% ALEPH [13]

Table 1.1: Current neutrino mass limits.

To probe neutrino masses significantly lower than these direct measurements one needs

to use other techniques such as neutrino oscillations. Neutrino oscillation experiments are a

particularly sensitive way to test for non-zero neutrino mass and mixing over a broad range

of values. The existence of neutrino oscillations would imply that neutrinos have mass and

that there is mixing among the different flavours of neutrinos. No evidence for such oscil-

lations has been observed so far at accelerator based experiments, with the exception of

LSND. There is also some indications of possible neutrino oscillations coming from exper-

iments observing non-terrestrial neutrinos. The various types of neutrino experiments, as

well as the current limits on neutrino oscillations are presented in the following sections of

this chapter.

1.2 Neutrino Oscillation Experiments

Neutrino oscillation experiments can be separated into two categories depending on the type

of search performed. In exclusive (or appearance) searches, an experiment looks for the
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anomalous appearance of νβ type neutrinos in a beam of predominantly να type neutrinos.

Finding such neutrinos would constitute evidence in favour of να ↔ νβ oscillations. On the

other hand, an inclusive (or disappearance) measurement is made by examining the change

in flux of a given neutrino type, να with distance. If the measured flux of neutrinos should

turn out to be less than the flux expected in the absence of oscillations, it would constitute

evidence in favour of the να ↔ νx oscillations.

Since neutrino oscillations have not been observed, in most of the literature the exper-

imental data is analyzed under the simplest assumption, that of oscillation between two

states. We show in the following chapter that in such case the oscillation probability de-

pends on two independent parameters: a mixing angle θ and a mass square difference ∆m2,

as

P (να → νβ) = sin2 2θ sin2
(
1.27∆m2L

Eν

)
(1.1)

where ∆m2 = |m2
1 −m2

2|, with m1 and m2 being the neutrino masses, is in units of eV 2,

L is the distance between the point of creation and detection in km, and Eν ≃ p is the

neutrino energy in GeV.

It is evident from Eq. 1.1 that neutrino oscillations would not be observed in a given

experiment if the difference of the square of the neutrino masses, ∆m2 were so small that

for all L and E characteristic of the experiment the argument of the second sine function

were much smaller than unity. Neutrino oscillations may be observed in general if the values

of L and E typical of a given experiment satisfy the inequality:

∆m2 ≥ E

L
(1.2)

This inequality implies the parameter

(∆m2)0 =
E

L
(1.3)

which quantitatively characterizes the sensitivity of an experiment searching for neutrino

oscillations.
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To date, four major methods to search for neutrino oscillations have been employed:

• Accelerators: A neutrino beam is generated by decaying pions and kaons produced

when a hadron beam strikes a production target. The neutrino flux for such ex-

periments is in general very well understood. Typical experiments involve searching

for either appearance (exclusive channel) or disappearance (inclusive channel) of a

particular flavour neutrino from the beam.

• Reactors: νe are created by the β− decays of fission products in the core of a nuclear

reactor. These type of experiments search for a νe deficit some distance away from

the source.

• Atmospheric neutrinos: Cosmic rays, mostly protons or α particles, interact in

the atmosphere producing pions and kaons, some of which decay before reaching the

earth. These experiments measure the (νµ + νµ)/(νe + νe) flux ratio and compare it

to the expected ratio of two.

• Solar neutrinos: νe are produced by nuclear reactions inside the sun. The measured

flux is compared against solar model calculations.

Typical values of the parameter (∆m2)0 are given in Table 1.2. As it can be seen

from the table, the most sensitive (with respect to ∆m2) experiments with neutrinos from

terrestrial sources are the reactor experiments.

1.2.1 Exclusive (or appearance) experiments να → νβ

This type of search is limited by the number of background νβ from standard sources and the

total number of να interactions, Nα detected during the measurement. If the background

fraction is very small and the measurement yields no detected νβ interactions, then the

sensitivity of the measurement depends only on Nα, Eν , and the distance L from the source

to the detector. To see this consider the oscillation probability given in Eq. 1.1. P (να → νβ)
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Neutrino source E (MeV) L (m) (∆m2)0 (eV2)

Reactor 1 102 10−2

Meson factory 10 102 10−1

High-energy accelerator 104 103 10
Atmospheric neutrinos 103 107 10−4

Sun 1 1011 10−11

Table 1.2: Values of the parameter (∆m2)0 qualitatively characterizing the sensitivity of a
given experiment searching for neutrino oscillations. E and L are the neutrino energy and
the source-detector distance typical of the experiment.

can also be defined as:

P (να → νβ) =
Nobs

β −N back
β

Nα
(1.4)

where Nobs
β , N back

β are the number of νβ observed and background respectively. If we assume

a Poisson distribution for the number of νβ observed, then if Nobs
β = 2.3 there is a 10%

probability that Nβ = 0. Conversely, if Nobs
β > 2.3 one says that at 90% confidence level

Nβ 6= 0. With N back
β = 0, Eqs. (1.1) and (1.4) at 90% confidence level become:

sin2 2θ sin2
(
1.27∆m2L

Eν

)
>

2.3

Nα
(1.5)

The second term averages to 1/2 for large values of ∆m2. For small values of ∆m2 it can

be replaced by the argument of the sine function. The expected sensitivity range for 90%

confidence level with no background subtraction is then given by:

Small ∆m2 region ∆m2 sin 2θ >
1

1.27

(
Eν

L

)(
2.3

Nα

)1/2

∝ const. (1.6)

Large ∆m2 region sin2 2θ >
4.6

Nα
∝ L2 (1.7)

On the other hand, if there exists a significant νβ background fraction, f = N back
β /Nα in

the beam or from misidentification in the detector, then the expected background must be

subtracted to obtain the best sensitivity. The subtraction introduces additional statistical

and systematic errors to the above formula. For this case the error in the oscillation prob-

ability at 90% confidence level becomes 1.62
√
N back

β . This leads to the following sensitive
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regions:

Small ∆m2 region ∆m2 sin 2θ >

(
Eν

L

)(
f

Nα

)1/4

∝ 1√
L

(1.8)

Large ∆m2 region sin2 2θ > 3.2

(
f

Nα

)1/2

∝ L (1.9)

For all these formulae, the dependence on distance assumes that the number of detected

events, Nα, decreases as 1/L2. For small ∆m2, sensitivity can be improved slightly by

moving to larger distances at the expense of a much poorer sin2 2θ limit at large masses.

1.2.2 Inclusive (or disappearance) experiments (να → νx)

For an inclusive search, the neutrino flux seen by two detectors located at different distances

from the source is compared. This comparison can be made as a function of energy and is

interpreted in terms of the expected oscillation behaviour. The comparison is bounded by

the statistical and systematic errors of a given measurement and the data is used to restrict

the probability that να → νx is less than some limit δ at 90% confidence level. This limit on

the disappearance probability at a given energy Eν can then be used to exclude a certain

region in the ∆m2 − sin2 2θ plane bounded by:

Lower ∆m2 limit ∆m2 sin 2θ >

√
δ

1.27

E

L
(1.10)

Upper ∆m2 limit ∆m2 < 3 to 5
E

L
(1.11)

Minimum sin2 2θ limit sin2 2θ > δ (1.12)

where the large ∆m2 bound results from finite experimental resolution on energy and posi-

tion that smears the oscillation phase difference in the two detectors. This type of experi-

ments is particularly sensitive to oscillations to any type of neutrino including non-standard

sterile (non interacting) neutrinos.
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1.3 Current Status of Neutrino Oscillations

A large number of experiments have been performed to search for neutrino oscillations

using both terrestrial and extra-terrestrial sources of neutrinos. Experiments using labora-

tory neutrinos have the advantage of using a beam that is well understood in contrast to

experiments using extra-terrestrial neutrinos which rely on complex models to predict the

neutrino flux expected at the detectors. To date there is no conclusive evidence for neutrino

oscillations despite hints from the so-called atmospheric and solar neutrino deficits. Below

is a list with a brief description of the various experiments which set our current knowledge

of neutrino oscillations.

1.3.1 Accelerator Experiments

• BNL-E734 The Brookhaven E734 experiment ran during three different periods in

1981, 1983, and 1986. The main purpose of the experiment was to study neutral

and charged current elastic neutrino interactions using a total absorption calorimeter-

target with a total mass of 170 tons. At the 90% confidence level, sin2 2θ < 3.4×10−3

was excluded for large ∆m2 values. At full mixing, i.e. sin2 2θ = 1, ∆m2 > .4 eV2

was excluded [14].

• BNL-E776 The Brookhaven E776 experiment, performed in 1985, searched for νe

appearance in a narrow band νµ beam with a mean energy 〈Eν〉 = 1.4 GeV. A second

run was taken in 1986 for a search for νe(νe) above expected background in a νµ(νµ)

wide band beam. The detector was a 230 metric ton finely segmented electromagnetic

calorimeter target. At the 90% confidence level, sin2 2θ < 3.0× 10−3 was excluded for

large ∆m2 values. At full mixing, i.e. sin2 2θ = 1, ∆m2 > .075 eV2 was excluded [15].

• KARMEN The KARMEN (KArlsruhe Rutherford interMediate Energy Neutrino)

collaboration searches for the appearance of νe detected via the charged current re-
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action on the protons (hydrogen) of the scintillator in the detector. The signature

of such an interaction is the emission of a positron and up to three γ rays within

100 µs after the positron corresponding to the binding energy of the neutron. The

data sample consists of 147 events. At the 90% confidence level sin2 2θ < 5.9× 10−3

was excluded for large ∆m2 values. At full mixing, i.e. sin2 2θ = 1, ∆m2 > .1 eV2

was excluded [16]. KARMEN hopes to improve their ∆m2 sensitivity by reducing

backgrounds.

• LSND The LSND collaboration, using a liquid scintillator neutrino target has re-

ported a signal consistent with νµ → νe oscillations at sin2 2θ ≈ 10−2 at large ∆m2

with values down to 1 eV2 [17]. Most of the allowed region has been ruled out

by the above mentioned experiments and so a possible signal is only consistent if

sin2 2θ <
∼ 3 × 10−3 or ∆m2 is below 1 eV2. There are proposals to upgrade existing

detectors which will allow for a final decision in the next 2-3 years, whether neutrino

oscillations exist in the parameter area proposed by the LSND experiment.

• CCFR The CCFR collaboration has previously reported a limit on νµ → νe oscil-

lations using the ratio of neutral to charged current neutrino events in the massive

and relatively coarse grained CCFR detector comparable in sensitivity to the above

mentioned limits [18]. The lowest 90% confidence upper limit in sin2 2θ of 1.9× 10−3

is obtained at ∆m2 ≈ 350 eV2. This result is the most stringent limit to date for

250 < ∆m2 < 450 eV2, and also excludes at 90% confidence much of the high ∆m2

region favoured by the recent LSND observations.

These limits, together with the 90% and 99% confidence allowed regions from LSND are

shown in Figure 1.1.
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Figure 1.1: Current status of the excluded region of sin2 2α and ∆m2 for νµ → νe oscillations
from accelerator experiments. The shaded bands are the LSND 90% (darker) and 99%
(lighter) confidence allowed regions.
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1.3.2 Atmospheric Neutrino Experiments

• Kamiokande The Kamiokande collaboration employs a 4.5 kton water Čerenkov

detector located at about 2700 m water equivalent underground. The detector consists

of two layers, each instrumented with two dimensional arrays of photomultiplier tubes

(PMT). The inner volume detects Čerenkov photons radiated by relativistic charged

particles. The outer layer is a 4π solid angle anti-counter used to reduce background.

The ratio of muons to electron neutrinos observed in the data to that predicted by the

Monte Carlo is (νDATA
µ /νDATA

e )/(νMC
µ /νMC

e = 0.57+0.08
−0.07 ± 0.07 [19], which is smaller

than expected. This result can be construed as evidence for neutrino oscillations.

• IMB-3 A water Čerenkov detector with a 3.3 kton fiducial mass instrumented with

2048 8 inch PMT’s. The ratio of muon to electron neutrinos in the data to that pre-

dicted by the Monte Carlo is 0.54±0.05±0.12 [20] which agrees with the Kamiokande

result.

• Frejus Unlike the water-based Čerenkov experiments, the Frejus collaboration uses a

6m × 6m × 12.3m 912 ton iron calorimeter with a mean density ρavg = 1.95 g/cm3.

The detector is located 1780m underground to reduce background. The detector is

instrumented with 912 flash chamber planes and 113 Geiger tube planes. The Frejus

collaboration reports no discrepancy between data and the Monte Carlo measuring a

ratio of muon to electron neutrino events of 1.00± 0.15± 0.08 [21].

• SOUDAN-2 The Soudan-2 collaboration also uses a tracking drift calorimeter con-

sisting of 224 modules each weighing 4.3 tons. The detector was calibrated with π’s

and µ’s between 140 and 400 MeV/c and protons at 700 and 830 MeV/c. The e/µ

separation was determined to be greater than 95%. The ratio of muons in the data

to the predicted by the Monte Carlo is 0.64 ± 0.17 ± 0.09 consistent with the water

Čerenkov results [22].
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1.3.3 Solar Neutrino Experiments

• Kamiokande

The Kamiokande detector is unique among other solar neutrino experiments because

it is a real time experiment able to measure the direction of the incident neutrinos

and can provide recoil energy information. Solar neutrinos are detected through ν +

e → ν + e elastic scattering in the detector where the incident direction of neutrinos

is well kept in that of the recoil electrons within Eθ2 < 2me. The Kamiokande

detector is mainly sensitive to the high energy solar neutrinos from the 8B cycle

since the minimum energy threshold of their analysis is 7.0 MeV. Data were taken

during two runs, the first from January 1987 to April 1990 and the second from

December 28, 1990 to February 6, 1995, and the combined solar flux was measured to

be 2.80± 0.19((stat.)± 0.33(syst.)× 106 /cm2/sec [23]. The number of solar neutrino

events observed is 597+41
−40 events whereas the expected number of events the standard

solar model (SSM) of Bahcall and Pinsonneault (BP) is 1213 [24]. The flux ratio to

the SSM of BP for the combined data is 0.492+0.034
−0.033(stat.)± 0.058(syst.).

• Homestake

The oldest of the solar neutrino experiments, this experiment has been running since

1965 in the Homestake mine, South Dakota 5000 feet underground. The detector, a

tank filled with C2Cl4, responds to neutrinos via the reaction

νe +
37Cl → 37Ar + e− (1.13)

Since the threshold for this reaction is 814 KeV, the detector is sensitive to several of

the neutrinos from the neutrino-generating reactions in the Sun except for p-p fusion,

namely: 7Be electron capture, the decay of 13C, 15N, and 8B and p + e− + p. The

main advantages of this type of experiment are: (i) the availability of an inexpensive,
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non hydrogen chlorine compound, C2Cl4 which is liquid at room temperature, (ii) the

ease with which the produced argon can be removed from the liquid and measured,

and (iii) the high efficiency with which 37Ar can be identified. The solar neutrino rate

in Solar Neutrino Units (SNU) as measured from 1970 to 1993 is [25]

Σexpt = 2.55± 0.25 SNU (1.14)

which is smaller than the prediction of the standard solar model of Bahcall and Pin-

sonneault [24]

Σtheor = 8.1± 1.0 SNU (1.15)

• Gallium Experiments: SAGE, GALLEX

The Gallium experiments are the only detectors currently in operation able to detect

neutrinos produced in dominant solar processes. The neutrinos are detected through

the reaction:

71Ga + νe → 71Ge + e− (1.16)

which has a 233 KeV threshold. 71Ge decays with a lifetime of 16.49 days

71Ge + e− → 71Ga + νe +X− rays (1.17)

and the X-rays are detected at nominal energies of 10.4 KeV (K) and 1.2 KeV (L). The

GALLEX experiment operates in the Gran Sasso Underground Laboratory using 30.3

tons of gallium contained in 100 tons of concentrated GaCl3 solution, and it observes

69.7± 6.7±3.9
4.5 SNU [26] over a period of 1326 days from May 1991 to October 1995,

compared to a theoretical prediction based on the Bahcall model of 132 ± 7 SNU.

The SAGE experiment, situated at the Baksan Neutrino Observatory in the Northern

Caucasus Mountains, measures a solar flux of 72 ± 12 ± 7 [27], which is consistent

with the GALLEX measurement. Furthermore, the detector response of the GALLEX

experiment was checked with a radioactive neutrino source. Two calibration runs were
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performed using neutrinos emitted in the electron capture decay of 51Cr. The ratio

between the activity deduced from 71Ge counting and the directly measured activity

is R = 0.92± 0.08 [26], which is a strong indication that the observed neutrino deficit

is real.

The solar neutrino experimental observations relative to the prediction of Bahcall and

Pinsonneault standard solar model are shown in Figure 1.2.
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Figure 1.2: Solar neutrino experimental observations relative to the prediction of Bahcall
and Pinsonneault standard solar model. Each experiment is sensitive to a range of neutrino
energies. The values shown represent typical energies for each experiment.

1.3.4 Reactor Experiments

• Gösgen

The Caltech-SIN-TUM collaboration measured the energy spectrum of antineutrinos

at 37.9, 45.9, and 64.7 m from a 2800-MW nuclear power reactor in Gösgen (Switzer-

land). The detection of neutrinos was based on the reaction νe → e+ + n with

approximately 104 antineutrinos registered at each of the three measuring positions.
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The detector consisted of 30 cells, containing a total of 377 l of liquid scintillator

with a proton density of (6.39 ± 0.007) × 1022 cm−3, arranged in five planes which

served both as target for the incident antineutrinos and as detector for the generated

positrons. Multiwire proportional chambers filled with 95% (volume) 3He and 5%

(volume) CO2 were positioned in between the scintillation planes and were used to

detect the thermal neutrons produced by the neutrino interaction. The same detector

was used for all three measurements. The measured spectra were analyzed in terms of

a two-neutrino oscillation model, with the data being consistent with the absence of

neutrino oscillations. At 90% confidence ∆m2 < 0.019 eV2 is ruled out for maximum

mixing, and for ∆m2 > 5 eV2 sin2 2θ < 0.21 is excluded [29].

• Bugey

This experiment searched for neutrino oscillations at 15, 40, and 95 metres from a

nuclear power reactor at the Bugey nuclear power plant in France. Three identical

modules, each filled with ≈ 600 litres of liquid scintillator doped with 6Li, were used:

one (module 1) located under the reactor building, at 15 m from the core, and two

(modules 2 and 3) outside the reactor building, inside a concrete bunker 40 m away

from the core. Module 1 was also used to measure the neutrino signal from another

reactor located 95 m away when the nearest reactor was stopped. A total a 150000

events were observed, which is the highest number of νe’s ever detected. For approx-

imately 40% of the data taking period the measurement was done simultaneously at

the two locations which greatly reduces the systematics due to uncertainties in the

neutrino flux from nuclear burnup in the reactor. The neutrino spectra at the three

distances were found to be consistent with each other, with no evidence for neutrino

oscillations. The minimum excluded values for ∆m2 and sin2 2θ parameters at 90%

confidence level are 1× 10−2 eV2 and 2× 10−2 respectively [29].
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Figure 1.3: Excluded region of sin2 2α and ∆m2 for νe → νx oscillations from reactor
experiments.
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• Krasnoyarsk

The feature that distinguishes this experiment is the fact that it employs a single de-

tector located at distances of 57.0, 57.6, and 231.4 m from three practically identical

nuclear reactors. This allowed for a complete exclusion of the systematic errors as-

sociated with the efficiency of the detector, and to greatly decrease the errors arising

from insufficient knowledge of the antineutrino flux. An additional and consider-

able advantage of this method is that the background for all three measurements

is the same. Data were taken for approximately 490 hours and no evidence for os-

cillations was found. At the 90% confidence level, sin2 2θ ≤ 0.15 was excluded for

∆m2 ≥ 5.0 × 10−2 eV2. At full mixing, i.e. sin2 2θ = 1, ∆m2 ≤ 7.5 × 10−3 eV2 was

excluded [30].

These limits are shown together in Figure 1.3. By comparing the limits from accelerator

experiments and and reactor ones, we can easily see that reactor experiments are sensitive to

lower mass differences (≈ 10−2 eV2 for distances of a few tens of metres) than experiments

at accelerators primarily due to the low energy of reactor neutrinos (a few MeV). On the

other hand, accelerator experiments, which compare the oscillation probability, P , directly

to the data (appearance method) are more sensitive to small values of the mixing parameter

than the reactor experiments, where 1− P is measured.

1.4 Outline of the Thesis

This thesis presents the results of a high statistics search for νµ → νe oscillations in the small

mixing angle regime. The neutrino data was collected during the 1987-88 fixed target run at

Fermilab with the Lab E detector by the CCFR collaboration. High energy neutrinos were

provided using the Fermilab Quadrupole Triplet beamline, which focused pion and kaon

secondaries produced in the collision of 800 GeV protons on a BeO target, before allowing

them to decay in flight. Neutrino interactions were detected with a 690 ton total absorption
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target calorimeter instrumented with liquid scintillation counters and drift chambers, which

was separated from the neutrino source by approximately one kilometer of earth and steel.

The chapters of the thesis are organized as follows: Chapter 2 outlines the theory

of neutrino oscillations. Chapter 3 describes the experimental apparatus, including the

accelerator facilities at Fermilab, the neutrino beam and the CCFR detector. Chapter 4

describes the extraction of the νµ flux and the Monte Carlo simulation used to predict the

νe flux at the detector. Chapter 5 describes the analysis procedure used to measure the

νe flux, and the study of the systematic uncertainties. Finally, Chapter 6 describes the

oscillation analysis and presents the results, which are summarized below:

• We searched for νe appearance in a predominantly νµ beam, and the results are

consistent with no neutrino oscillations. We find 90% confidence level excluded regions

in the sin2 2α −∆m2 phase space. The lowest 90% confidence upper limit in sin2 2α

of 1.1 × 10−3 is obtained at ∆m2 ∼ 300 eV2. For sin2 2α = 1, ∆m2 > 1.6 eV2 is

excluded, and for ∆m2 ≫ 1000 eV2, sin2 2α > 1.8 × 10−3 is excluded. This result is

the most stringent limit to date for νµ → νe oscillation for ∆m2 > 25 eV2.

• We also tested νµ(νµ) ↔ νe(νe) universality and found the ratio of the νµ-to-νe cross-

section to be 1.026 ± 0.025(stat) ± 0.049(syst). This is currently the most stringent

test of universality at high space-like momentum transfer.
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Chapter 2

Theoretical Background

Experimentally, the neutrino is observed to participate only in the weak interactions. The

first description of weak interactions was formulated by Fermi to explain the nuclear β-decay,

n→ peν:

LF (x) = −GF√
2
[p(x)γλn(x)]

[
e(x)γλν(x)

]
+ h.c (2.1)

where the fermion field operators are denoted by their particle names, and

GF ≈ 10−5/m2
p (2.2)

is the Fermi coupling constant with mp the proton mass.

The discovery of parity non-conservation led to the eventual formulation of the V-A

theory [31]. It was suggested that the effective Lagrangian:

Leff = −GF√
2
J†
λ(x)J

λ(x) + h.c. (2.3)

describes weak interactions, with the weak current Jλ of the vector-minus-axial form:

Jλ ∼ ψγµ(1− γ5)ψ (2.4)

By invoking 1
2(1− γ5) as the left handed spin projection operator it becomes apparent that

these weak interactions only involve left handed fermions and right handed antifermions.

This is known as the principle of maximal parity violation. Although experimentally the
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neutrinos are known to be light, it is really because of observed maximal parity violation

that the neutrino is believed to be massless.

Schwinger [32] was the first to advance the idea of weak and electromagnetic unification

and Glashow [33], Weinberg [34], and Salam [35] (GWS) proposed such a model which has

the SU(2)×U(1) gauge symmetry. This theory is based on the requirement of SU(2)L×U(1)

local gauge invariance. Weak interactions between fermion currents are mediated by a

triplet of vector particles, the charged W± (MW = 80.410 ± 0.180 [36]), and the neutral

Z0 (MZ = 91.187± 0.007 [37]). When a massive virtual particle is exchanged, the effective

strength of the interaction is determined by the relationship between the four momentum

it carries (q2) and its mass. This is because the propagator is proportional to

g2

q2 −M2
W,Z

(2.5)

Historically, the weak interactions were recognized as being weak because in all processes

studied q2 ≪M2
W,Z .

The fermion currents which couple to the W± are charged while those which couple

to Z0 are neutral. These currents may consist of either leptons or quarks. The leptonic

currents have the form

J leptons
µ =





3∑

i=1

Liγµ
(1− γ5)

2
Ni charged

3∑

i=1

L(N)iγµ
(cfV − cfAγ

5)

2
L(N)i neutral

(2.6)

Here Li refers to the ith charged lepton, and Ni to the corresponding neutrino. The quark

current is of a similar form but the fields which enter represent six different quark flavours,

Jquark
µ =





3∑

i=1

U iγµ
(1− γ5)

2

3∑

j=1

VijDj charged

3∑

i=1

U(D)iγµ
(cfV − cfAγ

5)

2

3∑

j=1

VijU(D)j neutral

(2.7)

The fields represented by the Ui are the “up” quarks, u (up), c (charm), and t (top). The

other three fields, the “down” quarks, d (down), s (strange), and b(bottom) are mixed with
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f cV cA
νe, νµ, ντ
e−, µ−, τ−

u, c, t
d, s, b

1
2

−1
2 + 2 sin θW
1
2 − 4

3 sin
2 θW

−1
2 + 3

4 sin
2 θW

1
2

−1
2
1
2

−1
2

Table 2.1: Neutral vector and axial vector couplings in the GWS model.

respect to the “up” quarks. The mixing is parametrized in terms of the unitary Cabbibo,

Kobayashi and Maskawa (CKM) matrix Vij . The elements of the CKM matrix are not

predicted by theory and have to be measured experimentally. The coefficients cfV and cfA

depend on the particular quark or lepton (f) involved (see Table 2.1). In the GWS model,

all these numbers are determined by a single parameter θW , called the “weak mixing angle”.

The standard model provides no way to calculate θW ; like the CKM matrix, its value is

taken from the experiment. Using the on-shell renormalization scheme, sin2 θW , the CCFR

collaboration measured the weak mixing angle to be [38]:

sin2 θW = 0.2218± 0.0025(stat)± 0.0036(exp.syst.)± 0.0040(model) (2.8)

This is consistent with the various measurements at LEP/SLC where sin2 θon−shell
W = 0.2232±

0.0018.

There is no compelling theoretical reason, even with the GWS theory, for neutrinos

to be massless and/or not to mix. Experimentally it has been observed that particular

neutrinos (antineutrinos) appear to participate in reactions only with its corresponding

charged leptons, and that a neutrino is different from its antiparticle. These selection rules

are formalized in two empirical principles of lepton number conservation. The first principle

reflects the differentiation between particles and antiparticles. We associate to these a total

lepton “charge”, or number

LTOTAL = Σ+1 for each particle (−1 for each antiparticle) (2.9)

which is conserved in all interactions. The second principle differentiates among leptons of
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different families (i.e. electron, muon, and tau) and associates a lepton charge with each

family. Here the separate lepton numbers

Le = Σ+1 for νe, e
− (−1 for νe, e

+)

Lµ = Σ+1 for νµ, µ
− (−1 for νµ, µ

+)

Lτ = Σ+1 for ντ , e
− (−1 for ντ , τ

+) (2.10)

are conserved additively in all interactions. This conservation law would exclude for example

µ→ eγ or νµ + e− → µ−νe.

If neutrino oscillations exist it would mean that neutrinos would spontaneously trans-

form among each other with harmonic probability. If this were the case, it would be a clear

violation of the lepton number conservation, and it would mean that neutrinos have mass.

2.1 Deep Inelastic Scattering

To understand neutrino-nucleon scattering in terms of the GWS theory, with its neutrino-

quark coupling terms, one must first understand the quark content of the nucleon. For-

tunately, when the momentum squared transfered in the νN interaction is a few GeV2 or

more - the so-called deep inelastic scattering (DIS) regime - the scattering becomes well

described by incoherent scattering off quasi-free quarks inside the nucleon.

The tree level diagram for charged current neutrino-nucleon scattering is shown in Fig-

ure 2.1. A neutrino (antineutrino) with incoming four-momentum k1, scatters from a quark

or antiquark in the nucleon via exchange of a W+(W−) boson, with four-momentum q. In

the lab, the variables which can be measured in the CCFR experiment for this interaction

are the momentum and angle of the outgoing muon, Eµ and θµ, and the energy of the out-

going hadrons, Ehad. These can be used to reconstruct the energy of the incoming neutrino,

Eν = Eµ + Ehad. In terms of these experimental quantities, the four-momenta shown in
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P

q(q
–
)

x  P

W+(W–) q    k1    k2   =     –

k2

µ–(µ+)
Eµ,θµ

k1

Eννµ(ν
–

µ)

} Ehad

nucleon Hadron
Shower

Figure 2.1: Kinematic variables of deep inelastic scattering. The struck quark carries a
fraction x of the nucleon’s momentum P.

Figure 2.1 are:

k1 = (Eν , 0, 0, Eν)

k2 = (Eµ, pµ sin θµ cosφµ, pµ sin θµ sinφµ, pµ cos θµ)

P = (M, 0, 0, 0)

q = k1 − k2 (2.11)

Useful Lorenz invariant variables commonly used to describe deep inelastic scattering are

easily derived:

the centre-of-mass energy squared,

s = (P + k)2 =M2 + 2MEν (2.12)

the energy transfered to the hadronic system

ν =
P · q
M

= Eν − Eµ = Ehad, (2.13)
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the negative squared four-momentum transfer

Q2 = −q2 = −(k1 − k2)
2 = m2

µ + 2Eν(Eµ − pµ cos θµ), (2.14)

the invariant mass of the hadronic system

W 2 = (P + q)2 =M2 + 2Mν −Q2, (2.15)

the Bjorken scaling variable

x =
−q2
2P · q =

Q2

2Mν
, (2.16)

and the inelasticity

y =
P · q
P · k1

=
Ehad

Eν
. (2.17)

The laboratory frame expressions for the Lorenz-invariant scalars given above neglect the

mass of the final state lepton. In an inclusive measurement, where the specific makeup

of the final state hadrons is not considered, the kinematics of an event are specified by 3

independent variables, e.g. E, x, and y or E, x, and Q2.

2.2 Models of Neutrino Masses

There are two general ways to generate neutrino masses. First, one modifies the Higgs

sector in the standard model. For example, an additional singlet, doublet, or triplet with or

without right-handed neutrinos can be added to the original Higgs doublet in the standard

model. In this case one is forced to introduce a new mass scale in the form of the vacuum

expectation value. This, however, is not an explanation of the small neutrino mass. The

other possibility is to utilize extremely heavy right-handed neutrinos which appear in models

such as left-right symmetry models or GUTs. In the past, there have appeared numerous

papers on the theory of neutrino mass. For recent reviews one can see, for example, [39],

[40], and [41]. The major models, along with the most natural scales for the neutrino masses

are listed in Table 2.2 [42]. In the following, we list several ways to describe the neutrino

mass [43].
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Model mνe mνµ mντ

Dirac 1 - 10 MeV 100 MeV - 1 GeV 1 - 100 GeV
pure Majorana arbitrary arbitrary arbitrary
(Higgs triplet)
GUT seesaw 10−11 eV 10−6 eV 10−3 eV
(M ∼ 1014 GeV
intermediate 10−7 eV 10−2 eV 10 eV
seesaw
(M ∼ 109 GeV)
TeV seesaw 10−1 eV 10 KeV 1 MeV
(M ∼ 1 TeV)
light seesaw 1 - 10 MeV – –
(M ≪ 1 GeV)
charged Higgs < 1 eV – –

Table 2.2: Models for neutrino mass, along with their most natural scales for the light
neutrino masses.

2.2.1 Dirac Mass

The simplest way to describe the mass is to introduce right-handed neutrinos. The mass

term of the Lagrangian is:

LDirac = −(νLMνR + νRM†νL), (2.18)

where νL,R are given by

νL,R =




νe
νµ
ντ




L,R

(2.19)

In general M is a 3 × 3 complex mass matrix, and there is no guarantee that the mass

eigenstates are positive. One needs to bi-diagonalize M using two unitary matrices U and

V :

U †MV = mD =



m1 0 0
0 m2 0
0 0 m3


 , (2.20)

where U and V relate the mass eigenstates ν
(m)
L,R to the weak eigenstates νL as

νL = Uν
(m)
L

νR = V ν
(m)
R

(2.21)
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The diagonalized mass Lagrangian is:

LDirac = −ν(m)
L mDν

(m)
R + h.c. (2.22)

Since only νL is involved in the weak interactions, U is the Cabbibo, Kobayashi and Maskawa

mixing matrix. Since there is no evidence for the existence of νR we simply assume that it

couples to matter much more weakly than νL and may be very massive. A charged current

composed of these other components would have the space-time structure of a vector plus

an axial vector (V+A). The implication is that theW±
R which couple to these V+A charged

current interactions are much heavier than the observed W±. Equation 2.5 implies that

these right handed weak interactions remain weak until a much higher q2 is exchanged. The

best limits to date on the mass of the right-handed boson WR come from Tevatron searches

by the D0 and CDF collaborations. Assuming maximal mixing between the right-handed

boson and the left-handed counterpart, the Standard Model W boson, the D0 collaboration

sets a lower limit on MWR
of 720 GeV/c2 [44] which can be compared with the limit set by

CDF of 652 GeV/c2 [45].

2.2.2 Majorana Mass

The neutrino is in general assumed to be a Dirac particle, different from its antiparticle. It

is possible for the neutrino to be its own antiparticle, or a Majorana particle [46]. In this

case, the neutrino is a single particle, and its two states can just be the two helicity states

of a massive fermion. The Majorana neutrino mass can be described by the use of νL alone:

LMajorana = −1

2
νCLMνL + h.c. (2.23)

where νCL is a right-handed neutrino. For this case M is symmetric and diagonalization can

be done by a single unitary matrix U with

νL = Uν
(m)
L (2.24)
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Equation 2.23 becomes

LMajorana = −1

2

[
νCLmDνL + νLmDν

C
L

]
. (2.25)

Defining

νMaj ≡ νL + νCL (2.26)

which is clearly a Majorana neutrino, we can rewrite

LMajorana = −1

2
νMajmDνMaj (2.27)

Although this expression looks similar to that of Eq. 2.18 the oscillations of the two types of

neutrinos posses a somewhat different phenomenology. In the case of a Dirac neutrino, the

oscillations violate the separate lepton flavour conservation rules. For a Majorana neutrino

it is also possible to violate the total lepton number.

2.2.3 Dirac-Majorana Mass

In a one generation case , the Lagrangian of interest is

LD−M = −MνLνR − 1

2

(
mLν

C
LνL +mRν

C
LνR

)
+ h.c. (2.28)

where M is the Dirac mass and mL(mR) are Majorana masses. If we define a left-handed

neutrino state ν as

ν ≡
(
νL
νCR

)
, (2.29)

the Dirac-Majorana Lagrangian looks like that for the Majorana case:

L = −1

2
νCMν + h.c. (2.30)

where the mass matrix M is

M =

(
mL M
M mR

)
. (2.31)
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Diagonalizing M yields

m1 =
1

2

√
4M2 + (mR −mL)2 −

mL +mR

2
(2.32)

m2 =
1

2

√
4M2 + (mR −mL)2 +

mL +mR

2

Now, the mass eigenstate ν(m) can be defined as

ν(m) =

(
ν1
ν2

)
= Uν (2.33)

=

(
cos θ νL − sin θ νCR
sin θ νL + cos θ νCR

)
,

where the mixing angle is given by tan 2θ = 2M
mR−mL

. We can distinguish between two

different cases:

1. Case with M ≫ mL,mR. In this case m1 and m2 are almost degenerate in mass

(Eq. 2.32 implies m1 ≃ m2 ≃ M) and ν1 and ν2 have opposite CP phase. This case

is called special pseudo-Dirac neutrino [47] and we have a half active νL and a half

sterile νR.

2. Case with mR ≫M,mL. If we assume for simplicity that mL = 0, then we have

m1 ≃ M2

mR
(2.34)

m2 ≃ mR

implying that m1 is naturally small and m2 is large. Since θ ≃ 0, νL and νCR are

practically decoupled. This is the seesaw mechanism [48].

2.2.4 Seesaw Mechanism

We can extend the above to the three generation case by writing

m1 =
M2

mR
→ m1 =M

1

mR
M

T
(2.35)
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where all barred objects are 3× 3 matrices and as before we assume |(mR)ij | ≫ |M ij |. The

matrix analogous to Eq. 2.31 is a 6× 6 mass matrix M given by

M =

(
0 M
M mR

)
. (2.36)

One can consider two possible cases:

1. There is no mass hierarchy among the right-handed neutrinos, i.e.

mR ≃ mR




1 0 0
0 1 0
0 0 1


 , (2.37)

implying

m(ν1) : m(ν2) : m(ν3) =
m2

u

mR
:
m2

c

mR
:
m2

t

mR
. (2.38)

this is called the quadratic seesaw mechanism.

2. The right-handed neutrinos have a mass hierarchy similar to that of the quarks, i.e.

mR ≃ mR




mu

m 0 0
0 mc

m 0
0 0 mt

m


 . (2.39)

In this case we have:

m(ν1) : m(ν2) : m(ν3) =
mu

mR
:
mc

mR
:
mt

mR
(2.40)

which is called the linear seesaw mechanism.

The above relations as give by Eqs. 2.38 and 2.40 are valid at the GUT scales which means

that one has to bring them down to the low energy region using the Renormalization Group

Equations (RGE). If, for example, we consider only the running of the mass in one-loop

calculations then Eq. 2.38 is modified as [49]

m(ν1) : m(ν2) : m(ν3) =





0.05m2
u

mR
: 0.09m2

c

mR
: 0.38

m2
t

mR
SUSY SU(5)

0.05m2
u

mR
: 0.07m2

c

mR
: 0.18

m2
t

mR
SO(10)

(2.41)

As we can see from the above, the corrections due to the RGE depend on the choice of

the model. In general, the actual size of the neutrino masses will be determined by the
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mass scale for mR which depends on the Yukawa coupling, the GUT vacuum expectation

value, and the gauge coupling constant. mR is in general expected to be in the range of

1010 − 1015 GeV which would explain the (possibly) small neutrino mass.

2.3 Theory of Neutrino Oscillations

Neutrino oscillations are an example of a common quantum phenomenon, namely that if

one starts at time t = 0 in a state that is not an energy eigenstate then at later times the

state can evolve (oscillate) into another orthogonal state. From this point of view neutrino

oscillations are analogous to K0 ⇀↽ K
0
mixing.

If neutrinos have mass, then in general the mass eigenstates need not be the same as the

weak interaction eigenstates. If the weak eigenstates are mixtures of mass eigenstates, then

separate electron, muon, and tau numbers will not be conserved; however, the sum of the

three, the lepton number, will be conserved just as the baryon number is conserved in the

quark sector. Suppose the state vectors of the neutrinos taking part in the weak interaction

are superpositions of the state vectors of neutrinos with different masses. In this case, the

neutrino associated with the αth charged lepton να can be expressed as:

|να〉 =
∑

i

Uαi|νi〉 (2.42)

where νi is the field of a Dirac neutrino with mass mi, and U is a unitary “neutrino mass

mixing matrix” that transforms between the weak interaction (flavour) eigenstates (να) and

the mass eigenstates (νi). For antineutrinos there is an equation analogous to Eq. 2.42 with

the replacements ν → ν and U → U∗.

The time evolution of a state is controlled by its energy eigenvalues. We assume that all

neutrinos in the beam have a common fixed momentum p; then the mass eigenstates have

energy eigenvalue

E2
i = p2 +m2

i (2.43)
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If at the initial moment t = 0 the flavour neutrinos are described by the state vector |να〉,

at the moment t they will be described by

|να(t)〉 = e−iH0t|να(0)〉 (2.44)

where H0 is the free Hamiltonian, with

H0|νi〉 = Ei|νi〉 (2.45)

From Eqs. 2.42, 2.44, and 2.45 we get:

|να(t)〉 =
3∑

k=1

Uαke
−iEkt|νk〉 (2.46)

To obtain the probability amplitude of finding a neutrino in a given flavour state we have

to decompose |να(t)〉 over the complete set of neutrino flavour state vectors. Using the

unitarity of the transformation matrix U we can expand the mass eigenstates |νk〉 into

flavour eigenstates

|νk〉 =
∑

β=e,µ,τ

U∗
βk|νβ〉 (2.47)

Thus, we may write the flavour eigenstates at time t as:

|να(t)〉 =
∑

β=e,µ,τ

|νβ〉
3∑

k=1

Uαke
−iEktU∗

βk (2.48)

If a flavour state α is produced at time t = 0, the amplitude for finding a state of flavour β

at a later time t is:

A(να → νβ) =< 〈νβ(t)|να(0)〉 =
3∑

k=1

Uβke
−iEktU∗

αk (2.49)

The transition probability P is the absolute square of this amplitude:

P (να → νβ) = |< 〈nuβ(t)|να(0)〉|2 =
∣∣∣∣∣

3∑

k=1

Uβke
−iEktU∗

αk

∣∣∣∣∣

2

(2.50)

If we assume that mk ≪ p, and keep only terms linear in m2
k/p

2, we have

Ek ≃ p+
m2

k

2p
(2.51)
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Substituting back into the probability equation, one obtains:

P (να → νβ) =
3∑

k=1

|Uαk|2 + |Uβk|2 +Re
∑

i 6=j

UβiU
∗
αiU

∗
βjUαje

−i(m2
i
−m2

j
)L

2p (2.52)

where L is the pathlength of the neutrino. From Eq. (2.52) it is easy to see that neutrinos of

a given type may undergo transition in vacuum into neutrinos of a different type only if (i)

there exist at least two neutrinos that are nondegenerate in mass; (ii) neutrino mixing does

take place (i.e. at least some non-diagonal elements of the lepton mixing matrix are different

from zero). If we assume that p/L ≫ |m2
j −m2

k|, j 6= k, j, k = 1, 2, 3 then Pνα→νβ = δαβ .

Thus the effects of neutrino oscillations are observable only if at least one difference of the

square of neutrino masses is of the order of or greater than p/L.

2.3.1 Oscillations between two types of neutrinos

Let us begin with the simplest possibility of oscillations involving two types of neutrinos:

να ↔ νβ , α 6= β (2.53)

If the neutrinos with definite masses ν1 and ν2 are Dirac particles, the mixing matrix U is

a real unitary 2× 2 matrix. It has the following general form:

U =

(
cos θ sin θ

− sin θ cos θ

)
(2.54)

The angle θ is the leptonic mixing angle (leptonic equivalent of the Cabibbo angle). It

follows from Eqs. 2.54 and 2.42 that the flavour states να and νβ can be expressed in terms

of the neutrino states with definite masses ν1 and ν2 by the relations:

να = ν1 cos θ + ν2 sin θ,
νβ = −ν1 sin θ + ν2 cos θ.

(2.55)

From the general expression 2.52 for the transition probability we obtain for the case under

consideration:

P (να → νβ) = sin2 2θ sin2
(
1.27∆m2L

Eν

)
(2.56)
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where ∆m2 = |m2
1−m2

2|, with m1 and m2 being the neutrino masses, is in units of eV 2, L is

the distance between the point of creation and detection in km, and Eν ≃ p is the neutrino

energy. In practice, this expression must always be integrated over the energy distribution

of the incoming neutrinos.

2.3.2 Oscillations involving three types of neutrinos

Since there are three generations of neutrinos, it is possible to consider effects of mixing

among the three species of neutrinos in the analysis of oscillation results.

In a massive three Dirac neutrino (real?) world, with the three charged leptons equal

to their mass eigenstates we have for the mass part of the Lagrangian:

LDirac
Mass =

3∑

li=1

mli lili +
3∑

li=1

3∑

lj=1

mνli,lj
νliνlj (2.57)

where li refer to the three charged leptons e, µ, and τ . The neutrino mass matrix has seven

independent real elements. It is diagonalized by Uij , the unitary 3× 3 mixing matrix. The

oscillation phenomenon will then be described by the three mass eigenvalues m1, m2, and

m3 and the four independent elements of Uij , taken to be the three angles θ1, θ2, θ3 and

a phase δ. This is analogous to the Kobayashi-Maskawa three quark mixing scheme. The

matrix Uij then takes the form:

U =




c1 s1c3 s1s3
−s1c2 c1c2c3 − s2s3e

iδ c1c2s3 + s2c3e
iδ

−s1s2 c1s1c3 + c2s3e
iδ c1s2s3 − c2c3s3 − c2c3e

iδ


 (2.58)

here, ci = cos θi, si = sin θi i = 1, 2, 3), and δ is the phase characterizing the violation of

CP invariance. The indices i = 1, 2, 3 can be assigned arbitrarily to the mass eigenstates

νi, as far as θi ∈ [0, π/2].

The three generations case can be better understood in a less general but more man-

ageable framework obtained in the limit [50]

∣∣∣m2
2 −m2

1

∣∣∣≪
∣∣∣m2

3 −m2
1,2

∣∣∣ ≡ m2 (2.59)
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sometimes called “one mass-scale dominance”. This equation can hold both for m2
3 < m2

1 ≃

m2
2 and for m2

1 ≃ m2
2 < m2

3, although only the latter case (corresponding to a natural

mass hierarchy) is theoretically appealing, being motivated by the seesaw mechanism and

by analogy with the charged fermion masses.

The probability of oscillation P , defined as P = P (να → νβ) ≡ Pαβ for appearance

experiments, and as P = 1−P (να → να) ≡ 1−Pαα for disappearance experiments (α, β =

e, µ, τ), is then given by:

P = 4U2
α3U

2
β2S (appearance)

P = 4U2
α3(1− U2

α3)S (disappearance)
(2.60)

where S is the oscillation factor S = sin2(1.27m2L/E). As far as a single experiment

is concerned, the oscillation probability P reduces to the simple two-generation form of

Eq. 2.56 through the replacements:

sin2 2θ ⇔ 4U2
α3U

2
β3 (appearance)

sin2 2θ ⇔ 4U2
α3(1− U2

α3) (disappearance)
(2.61)

and the obvious identification ∆m2 ≡ m2. Thus the one mass-scale dominance can be

considered as the simplest three-flavour extension of the two-flavour scenario but with os-

cillation allowed between all three flavours.

In general, it is not possible to place stringent limits on oscillations in the three gener-

ation formalism from the results of one experiment. A positive result for νµ → νe need not

imply a direct oscillation between these flavours, it might instead result from the sequence

νµ → ντ → νe. In the “one mass-scale dominance” scheme, the above sequence could ac-

tually proceed more rapidly than a direct oscillation. Conversely, a negative result in the

three generation case, when interpreted in terms of two generations could overestimate the

significance of the experiment. For example, if an experiment were just sensitive enough

to detect νµ → νe, but this oscillation was followed rapidly by νe → ντ and ντ → νµ, a

null experiment result would be obtained. Thus oscillation limits calculated for the two

generation case are too restrictive in the more general case of three generations. For these
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reasons, the interpretation of oscillation parameters in the three generation formalism is

usually made from data combined from different experiments. For this analysis we restrict

ourselves to the two generation formalism.
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Chapter 3

The Neutrino Beam and Detector

The CCFR detector [51, 52] consists of an 18 m long, 690 ton total absorption target

calorimeter with a mean density of 4.2 g/cm3, followed by a 10 m long iron toroidal spec-

trometer (see Figure 3.1).

ν

Calorimeter-Target

Toroid
Blue Cart

Figure 3.1: Schematic representation of the CCFR detector. The neutrino beam enters
from the left. The target-calorimeter is on the left and the muon spectrometer (toroid) is
on the right. The two rightmost banks of drift chambers are known as the blue cart.

3.1 Neutrino Beam

The experiment was carried out at the Fermilab Tevatron which, at least for now (1996), is

the highest energy accelerator in the world. For the fixed target run protons were accelerated

in the Tevatron in a series of discrete steps to 800 GeV. A schematic diagram of the Fermilab

accelerator complex is show in Figure 3.2. Below is a description of the various stages used
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Figure 3.2: The Fermilab Tevatron and neutrino-beamline.
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to accelerate the proton beam:

• ION SOURCE: H− ions are produced by a cesium cathode immersed in a hydrogen

gas.

• COCKROFT-WALTON ACCELERATOR: Collects H− ions from the source through

multiple electrostatically induced potential drops and accelerates them to 750 KeV.

• LINAC: A linear accelerator which increases the energy of the H− ions to 200 MeV.

As the ions exit the LINAC, they pass through a carbon foil which strips them of

their two electrons.

• BOOSTER: The Booster ring is a 140 m diameter synchrotron which accelerates the

protons to 8 GeV. A synchrotron is a cyclic machine in which the particle beam is

confined to a closed orbit by a series of bending magnets. On each pass around the

ring the particles’ momenta are increased by acceleration in a synchronized rf cavity.

As the momentum increases, the magnetic field in the bending magnets has to be

increased to keep the radius of curvature constant.

• MAIN RING: The main ring is a 1 km radius synchrotron which accelerates the

protons to 150 GeV. Prior to the construction of the Tevatron, the main ring served

as Fermilab’s primary accelerator.

• TEVATRON RING The Tevatron is a superconducting proton synchrotron. It shares

the tunnel with the main ring and it is situated immediately below it. The accelerator

was designed to accelerate particles to 1 TeV. For this experiment, the protons were

accelerated only to 800 GeV.

During each 60 second acceleration cycle, the accelerator delivered three 2 ms bursts of pro-

tons (pings) to the neutrino beamline over a 20 s interval. The acceleration and extraction

cycles are shown in Figure 3.3, where the times listed are with respect to an accelerator
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reference time T1; P1, P2, and P3 indicate the ping times. The experiment took neutrino

data only during the pings to minimize the background from cosmic rays. Data were also

taken during beam off period for a pedestal gate (PED), and a cosmic ray gate (CR) for

subtraction of cosmic ray background taken during the fast spill. The cosmic ray gate was

approximately one third the length of the data gate.

SLOW1 SLOW2

PED T2 CR P1T1

10 sec 10 sec 23 sec 10 sec

P2 P3

ENSPLBESPL

T5 T6

Figure 3.3: Tevatron magnet current versus time during fixed target operation. P1, P2,
and P3 are the ping extraction times. BESPL and ENSPL are the beginning and the end
of the spill respectively.

The Tevatron Quadrupole Triplet neutrino beam is created when 800 GeV protons hit a

30.5 cm thick beryllium oxide target producing a secondary beam of pions, kaons and other

hadrons. A wide band of secondary energies is accepted by focusing magnets. The E770

beam-line consists of seven quadrupole magnets. These magnets focus in one transverse

direction and defocus in the orthogonal direction. A train of quadrupoles with alternating

focusing direction provides net focusing for particles of both charge signs. The beam-line

was configured to optimally focus 300 GeV secondaries without sign or momentum selection

such that the acceptance is maximal; this configuration gives a wide-band beam. A schematic

of the Fermilab neutrino beamline is shown in Figure 3.4.
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NC1W3

NC1DE NC1Q6

NC1W1 NC1Q5

BeO Target

NC1TG

NC1DENC1Q1

NC1Q7

NC1Q2

H O Cooled

Collimator

Passive

2

NC1W2

NC1Q3 NC1Q4

Monitor

Beam Timing

NC1TOR

Figure 3.4: The E770 quadrupole-triplet beam-line. Dipole magnets are indicated by prisms
and quadrupole magnets are indicated by concave and convex lenses.

After focusing, the pions and the kaons enter a 541 m long decay pipe, where they decay

in flight with dominant decay modes:

π+ → µ+νµ BR = 99.99%
K+ → µ+νµ BR = 63.5%

(3.1)

with νµ being produced by the decays of K− and π−. The maximum neutrino energy is

governed by the mass ratio of the muon and the decaying particle:

Emax
ν = Eπ,K


1−

(
mµ

mπ,K

)2

 (3.2)

such that the neutrino beam exhibits a dichromatic spectrum, with the more energetic

neutrinos coming from the kaon decays:

(Emax
ν )K = 0.95EK

(Emax
ν )π = 0.43Eπ

(3.3)

Approximately 3% of the mesons decay in the decay region and the remainder of the

beam is dumped into a 6m block of aluminum. The muons range out in a 241m of steel

shielding and 582m of earth berm. The amount of material in front of the detector is

sufficient to range out all the muons produced in the decay of the mesons, allowing only the

neutrinos to penetrate to the experimental area. Unfortunately neutrinos may interact in

the berm, and a small number of berm muons also enter the experimental hall. Events due
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to muons are identified in the veto wall, a set of scintillation counters positioned upstream

of the target-calorimeter.

Figure 3.5: Neutrino energy spectra for νµ, νµ, νe, and νe at the CCFR detector for the
FNAL wideband neutrino beam (Monte Carlo based on measure relative νµ and νµ fluxes).

The resulting neutrino energy spectra for interacting νµ, νµ, νe, and νe are shown in

Figure 3.5. Approximately 86.4% of the E770 final event sample came from νµ interactions,

and 11.3% from νµ. Antineutrino-induced events were suppressed relative to neutrinos by

lower negatively charged secondary production rates and a factor of two supression in the

νµ to νµ total cross-section. The neutrino beam also contains a 2.3% fraction of electron

neutrinos from K0(K
0
, K± decays and a negligible fraction of tau neutrinos (less than

10−5) which result primarily from Ds decay. Eighty percent of the produced νe’s came from

the three body decay mode of the charged kaons:

K+ → π0 + e+ + νe (3.4)
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(with a branching ratio of 4.8%), 16% from neutral kaons:

K0 → π− + e+ + νe (3.5)

and the remaining 4% from the decays of charmed mesons, µ’s, π’s, Λ’s, and Σ−’s. The

procedure used to determine the neutrino flux is described in more detail in chapter 4.

3.2 The Calorimeter Target

The target calorimeter is 17.7 m long, measures 3 m by 3 m transversally, has a mean

density of 4.2 g/cm3, and is centred on the neutrino beam axis. It consists of 674 tonnes

of iron instrumented with 84 liquid scintillation counters and 42 drift chambers, each with

an x and y plane. The iron provides the target mass required to produced a large sample

of neutrino interactions; the counters and the drift chambers provide event energy and

position measurements respectively. The target is segmented longitudinally into six identical

modules which can be moved sideways independent of each other. Each module contains

28 iron plates, 14 liquid scintillation counters spaced every two plates and 7 drift chambers

spaced every four plates. Each iron plate is 5.1 cm thick. The scintillation counters and drift

chambers cover the whole transverse area of the target; along the beam axis each scintillation

counter and drift chamber occupies 6.48 cm and 8.87 cm respectively. A schematic view of

one target module is shown in Figure 3.6.

When a neutrino interacts with a quark in the target, the struck quark “hadronizes” on

a microscopic scale of ≃ 10−15 m producing several hadrons, predominantly charged and

neutral pions. The charged pions interact to produce further pions, with a mean interaction

length of approximately 20 cm of iron (≃ 2 counters). This cascade continues for several

interaction lengths, until the energy of the pions is below the threshold energy to produce

further pions. The pions are then stopped and their energy absorbed in the calorimeter. The

neutral pions produced in the shower all decay immediately to γγ which interact producing
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Figure 3.6: Layout of a CCFR target module. A scintillation counter is positioned after
every two steel plates and a drift chamber is found after every four.

e+e− pairs. These electrons initiate short electromagnetic showers with a radiation length

of 1.76 cm of iron (≃ 0.18 counters).

The energy of the struck quark after the interaction is measured by sampling the flux of

charged particles produced in the shower every 10 cm of iron in the scintillation counters.

The active medium of the counters is mineral oil doped with scintillating fluors. A charged

particle passing through the counter excites the primary fluors in the oil, which radiate

ultraviolet light. The ultraviolet light is absorbed by secondary fluors, which in turn emit

visible blue light. This light propagates through internal reflection to the edges of the

counter where it is absorbed by half inch thick BBQ doped plastic bars. The bars re-emit

green light and guide it to the end where phototubes are positioned. The total light output

is approximately proportional to the total energy of the hadron shower and the fraction of

the energy sampled in the calorimeter is approximately 3%. Figure 3.7 is a diagram of a

scintillation counter.

The calibration of the calorimeter is described in detail in reference [51]. It involves

a relative calibration using the energy deposition of muons, and an absolute calibration
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Figure 3.7: CCFR liquid scintillation counter.
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determined from the measured energy depositions of momentum analyzed electrons and

pions.

The ionization energy deposited in any material by a high energy charged particle is

largely independent of particle type and energy, and is referred to as the minimum ionizing

energy. We measure this energy using a muon’s energy deposition profile. The muon energy

loss is well understood: it consists of a pronounced peak due to ionization loss and a long

tail due to less frequent catastrophic energy loss. The muon energy loss distribution as

measured for one of the counters is plotted in Figure 3.8.

Figure 3.8: Muon energy loss distribution in a scintillation counter.

For this measurement, “straight-through” muons were used. These are muons produced

by neutrino interactions in the berm upstream of the detector and are identified by the veto

wall situated upstream of the calorimeter. The most probable energy loss per counter for

these muons was calculated using a “truncated mean” of the distribution. The truncated

mean was calculated in an iterative procedure of repeatedly calculating the mean of the dis-

tribution lying between 20% and 200% of the previous mean until the calculation converged.

This truncation procedure minimizes the effect of the muon energy on the determination of
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the mean. The truncated mean of the high channel distribution is taken to be one MIP in

that counter and is denoted by the variable ∆Ei(x, y, t), indicating the position and time

dependence of this quantity.

The distributions of the truncated mean for each counter were then binned according

to either: (i) transverse coordinate or (ii) time period during the E770 run. The counter

response differs over the active area of the counter due to attenuation of light within a

counter and differences in its phototubes gains. Counter response is time dependent pri-

marily because phototube gains tend to drift, and because there is slight degradation in

the scintillator oil caused by ageing. The response with respect to position was typically

about 20% higher at the edge of the fiducial volume (50 inches from the centre) and for the

time dependence the average response fell by about 10% during the course of the E770 run

[51]. All counter measurements were corrected to correspond to t = 0 and (x, y) = (0, 0). A

counter map, which shows the muon response relative to the centre of the counter is shown

in Figure 3.9.

Figure 3.9: Relative muon response for counter number 37.
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The calculation of the truncated mean establishes a relative calibration for the counters,

i.e. an energy deposition anywhere in the counter can be converted to a measurement

independent of the counter response by dividing the pulse height measured in ADC counts

by the truncated mean:

ADC pulse height

truncated mean (x,y,t)
= energy deposit (in MIPs) (3.6)

where the truncated mean is for the appropriate time and position on the counter.

The absolute calibration of the detector involves establishing the relationship between

the number of MIPs and the absolute energy of the incoming particles for each of the par-

ticles analyzed in the calorimeter. The target-calorimeter was absolutely calibrated twice

with a test-beam of momentum-analyzed hadrons, muons and electrons with energies rang-

ing from 15 to 450 GeV. These calibration runs took place before and after the experiment

run. The total energy response of the calorimeter is obtained from runs where the test

beam is centred on target. The calibration constants for the different types of particles are

summarized in Table 3.1 [51]. Furthermore it was shown that the response of the calorime-

ter is linear to better than 1%, and that there is no difference in the response of identical

target carts at the 1% level.

Type of signal calibration

π 4.73± 0.02 MIPs/GeV
e 5.25± 0.10 MIPs/GeV
µ 6.33± 0.17 MIPs/GeV

Table 3.1: CCFR calorimeter calibration constants.

The test beam also provided measurements of the calorimeter resolution. For hadronic

showers the resolution function is Poisson-like and is parameterized by the function:

f(x, x) =
xxe−x

Γ(x+ 1)
(3.7)

where x = E/s, s is a scaling parameter and x is the mean. Figure 3.10 shows the 25

and 200 GeV total energy distributions from the 1987 centred-beam calibration. By fitting

47



for s and x we obtain the standard deviation, σ = s(x)1/2 and the energy of the incoming

particles, E = sx which are used to determine the fractional sampling resolution σ/E. The

resolution is characterized by the statistical fluctuations of the N particles sampled in the

shower, therefore the resolution is dominated by the sampling fluctuations. The resolution

is found to be:

σ

E
=

0.847± 0.015√
E

+
(0.297± 0.115)

E
(3.8)

where E is in GeV, and is plotted in Figure 3.11. The 1/E term is a noise term and is

consistent with independently measured beam-related noise in the scintillation counters.

The calorimeter response to electromagnetic showers was calibrated using the electron

component of the 25 and 50 GeV test beams. The electrons were identified by requiring

R3, the ratio of the energy deposited in the three most upstream counters to the total

observed energy to be greater than 0.96. With this requirement, it was estimated that the

electron sample had about a 10% hadron contamination. The electromagnetic resolution

was determined to be σe/E = 0.60/
√
E.

Further calibration studies were done in 1991 using cart 5 of the calorimeter during

its temporary use as a “backing” calorimeter for FNAL E790, the Zeus calorimeter test

beam program. The total useful event sample consisted of 36200 electrons and 85100 pions

ranging with energies ranging from 7.8 to 91.1 GEV for electrons, and 19.8 to 108.8 for pions.

The average response for the pion beam is (E/p) = 4.7407± 0.0021 MIPs/GeV , which is

consistent with the value measured during the CCFR test beam calibrations. Of special

interest to this analysis is the electromagnetic calibration of the detector. Unlike the CCFR

calibration runs, the e− identification using a transition radiation detector in the 1991 run

produced an unbiased electron sample. Further cuts using R3 were made to enhance the

purity of the sample. The resolution was fitted to the form ∆E/E = A/
√
p + B. The fit

yields A = (46.1 ± 1.0)% and B = (3.5 ± 0.2)%, with a χ2 of 3.6 per degree of freedom

[53]. The stochastic term is considerably better than the 60%/
√
E obtained during the
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Figure 3.10: The total energy distributions of 25 and 200 GeV hadrons from the centred-
beam calibration. The solid curves are the Poisson-like parameterizations of the distribu-
tions.

Figure 3.11: The hadron shower energy resolution of the CCFR calorimeter from 25 to
450 GeV centred-beam calibration. The curve is the parametrization given in Eq. 3.8.
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CCFR calibrations runs. This can at least be partially attributed to the higher purity of

the electron beam.

More important for this analysis is the electron-to-pion response, e/π, of the detector.

Using data taken at 30, 70, and 90 GeV where both electron and pion data exists, one

obtains e/π = 1.062 ± 0.003, 1.041 ± 0.002, and 1.038 ± 0.003 respectively. An average of

these results gives an e/π ratio of 1.05 which is considerably lower than the value of 1.11

obtained during the earlier calibration run. Since the purity of the electron test beam taken

during the CCFR calibration run was poor, we decided to use e/π = 1.05 for this analysis.

The drift chambers, shown in figure 3.12, record the passage of charged particles through

the detector. Each drift chamber station has an active area of 10×10 square feet and consists

of an x and y plane. Each plane is divided into 24 cells, with each cell being 5 inches across

and containing three wires used to shape the electric field within the cell. The central

field wire is held at +350 volts, while the two sense wires spaced 2 mm from the field wire

are held at +1750 volts. The cells are defined by parallel aluminum I-beams which are

maintained at -4500 volts. Inside the front and back side of each cell there are 19 copper

cathode strips, each of which is held at a particular voltage such that an uniform electric

field of 690 volts/cm is created.

The chambers are filled with an equal mix of argon and ethane. A charged particle

passing through a cell produces ionization electrons which drift towards the sense wires and

are registered as an electrical pulse. The drift velocity of electrons in the drift chamber is

50 µm/ns, so that the total drift time to cross 2.5 in inside a cell is 1.3 µs. The time delay

between the passage of the particle and the arrival of the pulse may be interpreted as the

drift distance to the wire and allows for the determination of either the x or y coordinate of

the charged particle, up to the ambiguity of determining which side of the wire the particle

passed. Having two sense wires per cell resolves the ambiguity, as the sense wire closest

to the particle receives the ionization. The intrinsic position resolution of the target drift
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10 feet

b.

5 inches

drift strip

-4500 V

sense wire +1750 V
field wire -350 V

10 feet

Figure 3.12: (a) CCFR target drift chamber station. There are two orthogonally oriented
planes per station consisting of three-wire cells. (b) A three wire drift chamber cell.
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chambers is 225 µm.

The drift chambers were used in this analysis only for the determination of the transverse

coordinates of the interaction vertex.

3.3 The Muon Spectrometer

Although the main analysis of this thesis doesn’t directly use muon momentum determina-

tion from the muon spectrometer, the muon momentum is used to determine the structure

functions and incident flux.

The muon spectrometer consists of three large toroidal iron magnets instrumented with

acrylic counters and 10 ft by 10 ft drift chambers. Each toroid cart is segmented into eight

8 inch thick cylinders, called washers, each 3.6 m in diameter with a 25 cm diameter hole

for the magnetic coil. The magnetic field is generated by four copper coils of 12 turns each,

which encircle the magnets at 90 deg intervals and returning through the hole at the centre

of the cylinders. The coils carry a DC current of 1250 A which produces a magnetic field in

the iron ranging from 1.9 T near the centre of the toroid to 1.55 T near the outer edge. The

field was found to be azimuthal throughout the magnets except for a small radial component

at the iron legs supporting the magnets. A muon traveling the length of the spectrometer

receives an additional 2.4 GeV/c transverse momentum.

The momentum of each muon is determined using an iterative fitting procedure starting

from an initial trial momentum estimated from a crude circular arc fit to the observed

trajectory. For each trial momentum the predicted muon track is extrapolated through the

magnets in 4 inch steps taking into account the energy loss due to ionization in each step.

The predicted muon track is compared against the observed hits by forming the χ2 function:

χ2(Pµ) =
∑

x,y

Nchambers∑

i,j=1

(xmeasured
i −xpredictedi (Pµ))M

−1
ij (pµ)(x

measured
j −xpredictedj (Pµ)) (3.9)

where xi, xj are the transverse measured or predicted track positions in the ith and jth
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chambers respectively andNchamber is the number of chambers with hits from the muon. The

matrix Mij is the error matrix determined from the average multiple Coulomb scattering

in the steel combined with the position measurement errors from the diagonal elements.

Equation 3.9 is minimized by varying the momentum. This procedure continues until the

momentum differs by less than 0.5% of the previous iteration.

Figure 3.13: Experimental resolution function of the muon spectrometer for 120 GeV/c
muons. The points are measurements of test beam muons, the solid line is an independent
Monte Carlo prediction. The tail on the negative side is due to hard single scatters, and
the tail on the positive side is due to catastrophic energy losses.

The calibration and resolution of the muon spectrometer was determined using test-

beams of momentum analyzed muons. Figure 3.13 shows the experimental resolution func-

tion obtained from the test beam muons as compared to the Monte Carlo prediction. The

central region is approximately Gaussian with a 10.1% r.m.s.; the small tails due to muons

with large single scatters or catastrophic energy losses is also well modeled by the Monte

Carlo. The muon absolute energy scale was calibrated using the test beam muons to a 1%

accuracy.
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3.4 Data Acquisition

Every charged particle passing through the detector will cause some form of response from

each of the sub-systems affected: from the collected charge pulse on the drift chamber wires

to the output pulse of the photomultiplier tubes on the scintillation counter. These “raw”

signals need to be digitized in order to be able to store them to tape. The overall detector

response is analyzed in an attempt to identify only the events of interest, while discarding

events due to background or noise. Later, these signals – the pulse heights from scintillation

counters, the drift chamber hits – will be converted to physical quantities like hadron and

muon energy, vertex position and so on, and will enable us to do a physics analysis.

3.4.1 Event Triggers

The purpose of the trigger system is to identify in a very short period of time after a given

event only events of interest and initiate storage to tape. As such, scintillator signals which

can be processed quickly were used to generate the triggers. Each trigger rigorously defines

an event signature which can be used to discriminate among different types of events. In

order to minimize the cosmic ray contamination, the event triggers were gated to be active

only during the three few ms bursts of neutrinos occurring during each cycle of the Tevatron.

Gates were also set for the collection of pedestal, cosmic ray, and test beam events used for

detector calibration and background subtraction.

In addition to the detector scintillators, two 17.5× 4.5 feet acrylic scintillation counters

are positioned immediately upstream of the first calorimeter cart to form a veto wall. The

main purpose of the veto wall is to identify beam related backgrounds caused by charged

particles produced by neutrino interactions in the berm. A one metre thick concrete wall is

used to shield the veto wall from a flux of low energy hadrons and photons, and lead sheets

are mounted between the two planes of the veto wall which are required to be in coincidence

with each other in order to generate a veto.
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Neutrino events were identified and classified using six separate triggers, with each

recorded event firing one or more of the following triggers:

• Trigger 1 (Charged Current): selects events in which a muon originates in the target

and penetrates into the toroid. It requires at least two of the last four counters

(counters 1 through 4) fire their s-bits, and both T2 (toroid gap 1) and T3 (gap 2)

to measure at least a minimum ionizing signal. An alternate definition of the trigger

does not require the muon to penetrate as far as T3, but instead demands two out of

four s-bits in counters 9 thorough 12 together with a signal in T2 and two out of four

s-bits in counters 1 through 4. Additionally we require no signal in the veto.

• Trigger 2 (Neutral Current): selects events which deposit more than 8 GeV of en-

ergy shared between any eight adjacent scintillation counters coincident with twice

minimum-ionizing energy deposited in two out of the four most downstream counters

in the group of eight and no veto signal.

• Trigger 3 (Penetrating Muon): requires 16 counters in the target (not necessarily

consecutive) to fire their s-bits with no veto signal plus at least 4 GeV of energy

deposited in any 8 consecutive counters (not necessarily the same ones that fired their

s-bits).

• Trigger 4 (Redundant Charged Current): used to study trigger 1 efficiency. It is

similar to trigger 1 in as much that it selects events with a muon originating in the

target and penetrating into the toroid but with somewhat stricter requirements. It

requires at least 2 out of 4 s-bits in counters 5 through 8 and counters 13 through 16

in coincidence with no veto signal and it demands that at least two out of the four

acrylic counters in the same quadrant for each of the eight half-toroid carts fire their

s-bits (i.e. muon stays in the same quadrant throughout the toroid).

55



• Trigger 5 (Test Beam): used for test beam running when muon and hadron beams

are incident directly onto the detector.

• Trigger 6 (Straight Through Muon): selects muons produced upstream of Lab E

which traverse the whole detector. It requires at least one s-bit in each of the target

carts and at at least 2 out of each set of 4 toroid counters within the same quadrant

of each half-toroid plus veto (s-bits 81 and 82).

3.4.2 Data Readout

The receipt of a trigger initiates the collection and read-out of the detector response through

the TDC (time-to-digital convertor) and FERA systems. The TDC system is composed of

an s-bit branch and a drift chamber branch. The readout was coordinated by the data

acquisition system which kept the 2 TDC and 1 FERA branches synchronized and wrote

the data to tape. Each of the three systems is described in more detail below.

The pulse heights from the counters were integrated and digitized by a LeCroy 4300

FERA, a fast, buffered readout system with analog-to-digital converters with 11 bits of

dynamic range and sensitivity of about 1/4 picocoulomb per count. The gate width of the

ADC’s is 240 ns, beginning 25 ns before the leading edge of the phototube signal, for an

integration time of 215 ns. During this time the phototube signals charge the capacitors in

the FERA’s. The digitization is accomplished by measuring the time required to discharge

the capacitor through a resistor. Digitizing the signals requires 8.5 µs and another 3.2 µs

is needed to buffer the data because each pair of FERA modules generates 2 × 16 words

which are transfered to the FERA memories at a rate of 100 ns/word. This leads to a total

dead time of 11.7 µs for the FERA electronics.

The analog phototube outputs from each counter are fanned out and digitized by seven

ADC channels of different sensitivity:

1. There are four low channels, one for each of the phototubes in the counter. A muon
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passing through the centre of a counter will produce typically 2 ADC counts in each

low channel.

2. The combination-low channel is the sum of the four low channels for each counter. A

muon yields 8 ADC counts in this channel.

3. The high channel is the combination-low channel amplified by a factor of 10. The

signal of a typical muon in this channel is 80 counts.

4. The super-low channel is the low channel attenuated by a factor of 10. The typical

muon signal in this channel is 0.2 ADC counts.

In addition to the analog outputs there was also a logical output (NIM pulse). This output

was created from the combination-low signal after it was amplified by a factor of a hundred

and then passed through a discriminator. The discriminator threshold was set at 150 mV

which is equivalent to 0.25 MIPs. The NIM output signals from the discriminators were

converted to ECL and then input into TDCs which record the s-bit time relative to the

trigger. The TDC system is described in more detail below. One counter’s readout is

shown in Figure 3.14.

Even in the absence of any particles the FERAs record a small signal of about 50 ADC

counts called pedestal. This signal is due to random electronic noise originating from various

electronic components (phototubes, fan-in/outs, cables, etc.) and during data taking it is

superimposed with the real data pulses. This pedestal is measured by taking twenty fake

events each cycle before the first ping when there was no input signal to the FERAs.

This data is later subtracted in the software from the scintillator pulse heights in order to

determine the real energy deposited by the particle in the scintillators.

The FERA system was read out using CAMAC connected to a PDP-11 computer.

There were five CAMAC crates with ten 4300 FERAs, one 4301 FERA driver and five 4302
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Figure 3.14: Readout electronics for a scintillation counter. Each counter is digitized by
seven ADC channels. The threshold of the s-bit discriminator is set at one quarter minimum
ionizing level.
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memory units each. Fifteen microseconds after the ADC gate a clear pulse resets all the

FERA bits to zero and the system was ready to write another event.

The signal from each sense wire in the drift chambers was digitized using the TDC’s. A

TDC board takes inputs from 16 channels on two 8-pair ribbon cable headers at the front

of the board. The data is received as ECL differential signals, so the usual method is to

transport the signals over twisted-pair wire. The input impedance is 100 Ω to match the

characteristic impedance of the twisted pair lines. Each channel records the time history

of the input signal (high/low) into two 16 bit circular buffers. The buffers are clocked 180

degrees out of phase with each other at 125 MHz providing a sampling resolution of the

input signal of 4 ns for a total buffer length of 512 words. The total time window is thus

4 ns
word × 512words = 2µs. The write clock is provided externally by a clock generator

module and it is fanned out in equal time to all modules thus ensuring that all modules will

record the event synchronously.

The clock module responds to a system trigger by stopping the clock at a high level.

The stopping of the clock signals the TDC to transfer the data from the circular buffer into

a global buffer memory which is shared by all 16 channels on one TDC card. Since the TDC

stores only the last 2µs of data, one can change the position of this window with respect

to the system trigger by adjusting the post-trigger delay in the clock generator/trigger

module. The transfer into buffer memories takes place at 50 MHz, so the total transfer

time is 512 words/50 MHz = 10.2 µs, during which time the TDC will not accept another

trigger. During the transfer the leading and trailing edges of each pulse are identified by

comparing consecutive time bins. The transition times from the 16 independent circular

buffers, each corresponding to one input channel, are then formed into one word for each

time interval. Each word in this buffer contains the transition time stamp (1-511) and one

bit for each channel that was on.

The last word transferred into the buffer contains a special “complete” marker indicating
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the last word of the event. Multiple event histories are allowed in the buffer memory and

can be read out separately. The maximum word count per event can be set by switches

to prevent overflowing of the buffer memories. There are two versions of the TDC board:

“regular” and “deep-memory”. A regular TDC has a buffer size of 256 words, while a

deep-memory TDC has a buffer size of 1024 words.

The data readout of the TDC is initiated by a READ command sent by the data

acquisition (DAQ). The readout continues until the number of words read out is equal to

the number of words written in the main buffer. If at any time during the read out another

trigger occurs, the readout is suspended and more data is transferred into the main buffer.

The data being read out is transfered onto the backplane bus to the data link which then

sends out the data to the DAQ. Typically, it will take several clock cycles for the data link

to push out one cycle worth of data. To keep the TDC in sync, the data link will assert the

hold line on the back plane while it processes one word. This will disable the read counter

from incrementing.
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Chapter 4

Neutrino Flux

The νµ and νµ were produced predominantly from two-body decays in the secondary beam

of pions and kaons upstream of the detector. The integrated νµ and νµ fluxes reaching the

detector were measured using the low hadron energy CC event samples, normalized to the

total neutrino cross section [54, 55]. Approximately 86.4% of the event sample came from

νµ interactions, 11.3% from νµ, and 2.3% from νe or νe interactions. The integrated νe flux

measured directly in this thesis was also modeled using a Monte Carlo simulation of the

neutrino beam-line for comparison.

4.1 Flux Model

We can understand the important features of the neutrino energy spectrum by looking at a

simple idealized model of the secondary beam. We start by assuming that the all particles

in the secondary beam propagate along the z-axis with a common momentum p. For the

two body decays

K,π → µ+ ν, (4.1)

the neutrino energy and angle with respect to the direction of the parent particle are con-

strained by the kinematic relation:

P = Pν + Pµ (4.2)

61



P
K,π

ν

µ
µP

νP

µ

νθ

θ

Figure 4.1: Definition of kinematical variables for a two body decay.

where P = (mπ,K ,p), Pν(0,pν), and Pµ(mµ,pµ) are the 4-momenta for the parent particle,

the neutrino, and the muon defined as shown in Fig. 4.1. The energy of the outgoing

neutrino in the LAB frame is:

ELAB
ν =

m2
K,π −m2

µ

2EK,π (1− β cos θν)
(4.3)

where γ =
EK,π

mK,π
and β =

√
1− 1

γ . Let

Emax
ν = EK,π


1−

(
mµ

mK,π

)2

 . (4.4)

be the maximum energy the outgoing neutrino can have; then Eq. 4.3 can be written as:

Eν =
Emax

ν

2γ2(1− β cos θν)
(4.5)

For parent kaons, Emax
ν = 0.95EK , and for parent pions Emax

ν = 0.43Eπ such that the

neutrino flux would exhibit a dichromatic spectrum which corresponds to decays from either

pions or kaons.

In the centre-of-mass reference system the parent mesons decay isotropically, so the

number of neutrinos produced in a solid angle dΩ is:

dNν =
NdBdΩcm

4π
(4.6)

where Nd is the number of secondaries which decay and B is the two body branching ratio.

The centre-of-mass and lab solid angles are related by:

dΩcm =
d(cos θ′)

d(cos θ)
dΩlab (4.7)
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where θ′ and θ are the centre of mass and lab decay angles respectively. The two angles are

related by the Lorenz boost:

cos θ′ =
cos θ − β

1− β cos θ
(4.8)

such that

d(cos θ′)

d(cos θ)
=

1− β2

(1− β cos θ)2
(4.9)

If mK,π ≪ Ek,π and sin θν ≃ θν then

1− β cos θ ≃ 1−
(
1− 1

2γ2

)(
1− θ2

2

)
≃ 1

2

(
θ2 +

1

γ2

)
(4.10)

Substituting back in Eq. 4.3 we get

Eν =
Emax

ν

1 + γ2θ2ν
(4.11)

If z is the distance from the decay point to the detector and R is the radius of impact at

the detector, then

Eν =
Emax

ν

1 + γ2R2

z2

(4.12)

The number of neutrinos into some annular ring (R,R+∆R) at the detector is then given

by:

Nν(R,R+∆R) =
2NdBγ

2

z2

∫ R+∆R

R

RdR
(
1 + γ2R2

z2

)2 (4.13)

The number of neutrino interactions N int
ν in a detector of density NTGT nucleons per cm2

due to the incident flux Nν is:

N int
ν = NνσNTGT (4.14)

where σ is the neutrino interaction cross section which increases linearly with energy. If

σν/Eν , the cross section slope, is constant then the number of interactions in the detector

region between R and R+∆R is:

N int
ν (R,R+∆R) =

2NdBγ
2Emax

ν NTGT
σ
Eν

z2

∫ R+∆R

R

RdR
(
1 + γ2R2

z2

)3 . (4.15)
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The secondary particles decay over a distance of 320 m (see Figure 3.2) with a distribu-

tion falling exponentially with the lifetime:

dNν

dz
=
e
− z

L0

L0
(4.16)

where L0 = βγcτ , and τ is the meson’s lifetime. If L1 and L2 are the distances from the

beginning, end of the decay region to the detector respectively, then Eq. 4.15 becomes

N int
ν (R,R+∆R) =

2NsBγ
2Emax

ν NTGT

(
σ
Eν

)

L0

∫ L2

L1

e
−

z−L1
L0 dz

z2

∫ R+∆R

R

RdR
(
1 + γ2R2

z2

)3 (4.17)

where Ns is the number of secondaries.

In principle, to obtain the neutrino flux at the detector we would integrate Eq. 4.17 over

the parent energy, angle, flight length, species of the secondary particle, branching ratio,

etc. In practice we used a beam Monte Carlo to perform the integration using the following

steps:

• Randomly pick a species of a secondary particle produced by the proton beam striking

the beryllium target. Choose the energy, production angle and position according

to the respective distributions. The modeling of the production position assumes a

proton interaction length of 31 cm of beryllium oxide and a Gaussian transverse profile

with r.m.s. widths of 0.35 mm (horizontal) and 0.65 mm (vertical). The secondary

species that contributed the most to the neutrino flux were generated more frequently

and the secondaries were weighted by their production cross section.

• Choose the z coordinate for the decay point randomly between the point of creation

and the decay pipe with a distribution falling exponentially with the secondary’s

lifetime. Every secondary was forced to decay before the end of the decay pipe to

efficiently use CPU time; each event was then weighted by the probability of decay.

The secondary was traced through the magnet train and the event was discarded if the
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particle hit a magnet or a collimator before the decay point. For a detailed description

of the program used to trace the secondaries see Appendix B of reference [56].

• Choose the decay mode according to the branching ratio for the given secondary.

Project the neutrino to the detector and increment the flux histograms for this neu-

trino species at this position and energy.

4.2 Production and Decay of Secondaries

The production of pions, kaons and other secondaries from the 800 GeV protons incident

on the 1 interaction length beryllium oxide target was modeled, whenever possible, using

experimentally measured cross sections for protons. The laboratory differential cross section

is

d2N

dp dΩ
=

p2

Eσ
≃ p

σ
I (at high energies) (4.18)

where I is the invariant cross section, p is the laboratory momentum of the produced

particle, E is the energy of the produced particle, and σ is the total inelastic cross section.

To convert data taken at energies other than 800 GeV to our energy we used a scaling

law proposed by Feynman [57] which assumes that the invariant cross section, I, can be

represented as the product of a function of the transverse momentum of the secondary, pT ,

and a function of the momentum fraction transferred to the secondary, xF = p/Ebeam,

I = f(xF )g(pT ) (4.19)

The available production data is shown in Figure 4.2. It comes from measurements made

by Atherton et al. [58] for π+, π−, K+, and K− from a 400 GeV proton beam incident on

4, 10, 30, and 50 cm Be targets, and by Skubic et al. [59] for KS from a 300 GeV proton

beam on a 15 cm Be target. Since the production angle of secondaries produced in E770 is

restricted by the magnet aperture, θapert = 1.5 mrad, only data below pmax
T = p sin(θapert) =

xFEbeam sin(θapert) was fitted to an empirical cross section parameterization from Malensek
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sec. ref. E0 (GeV) L (cm) A B D M2 (GeV2)

π+

π−

K+

K+

K−

K−

KS

[58]
[58]
[58]
[58]
[58]
[58]
[59]

400
400
400
400
400
400
300

50
50
10
50
10
50
15.3

3.598
4.122
2.7705
2.924
6.1068
6.107
3.6133

177.2
70.60
5.6924
14.15
5.6001
12.33
2.7970

27.00
11.29
20.844
19.89
24.361
17.78
10.671

0.7077
0.8932
1.1490
1.164
1.0422
1.098
0.76941

Table 4.1: Secondary production cross section fits to Malensek parametrization. The KS

fits were performed by C. Arroyo (CCFR); all other fits were by Malensek [60].

[60]:

d2N

dp dΩ
= BxF

(1− xF )(1 + 5e−DxF )

(1 + p2T /M
2)4

E0

Ebeam
(4.20)

where dΩ is an element of solid angle, E0 is the energy at which the production cross section

was measured, Ebeam = 800 GeV is the proton energy for E770. The values for parameters

A, B, D, and M2 were obtained by fitting Equation 4.20 to the available data and are

shown in Table 4.1.

Most of the production measurements were performed on targets of various lengths

made of Be while the E770 target was BeO. Differences in target composition and thickness

were accounted for by taking ratios of target production efficiencies. If we assume that the

produced secondaries are reabsorbed in the target without producing additional particles,

then the production efficiency is given by [60]

f(L) =
e−L/λ(s) − e−L/λ(p)

1− λ(p)/λ(s)
(4.21)

where L is the target length, λ(s) is the absorption length for the produced secondaries,

and λ(p) is the absorption length for protons. The particle absorption lengths we assumed

for Be and Be0 targets are listed in Table 4.2.

The beam Monte Carlo generates secondaries flat in Feynman x and pT up to 3 GeV

with a radial cutoff of θ = 10 mrad (20 mrad for D mesons). The production weights were

obtained from the Malensek parametrization given by Equation 4.20 using the transforma-
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Figure 4.2: Available data for the parametrization of the secondary production cross section
from Atherton et al. [58] for π+, π−, K+, and K− from a 400 GeV proton beam incident on
4, 10, 30, and 50 cm Be targets, and from Skubic et al. [59] for KS from a 300 GeV proton
beam on a 15 cm Be target. Only the points for which pT < xFEbeam sin(θaper) were used,
where for E770, Ebeam = 800 GeV, and θaper = 1.5 mrad.
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particle λ for Be (cm) λ for BeO (cm)

proton
π+, π−

K+, K−

KS

Λ0, Σ
−

43.26
57.83
65.24
65.24
43.26

30.99
41.76
46.80
46.80
30.99

Table 4.2: Assumed particle absorption lengths in Be and BeO targets.

tion

d2N

dxF dpT
= 2π tan θ

Ebeam

psec

d2N

dp dΩ
(4.22)

The production cross section and flux modeling for each major species of secondaries

produced in the target (K±, K0, π, charm mesons) are described in more detail in the

following sub-sections. Small sources of neutrinos (contributing more than 0.1% of the νe’s

or νµ’s in the final event sample) were also modeled and included in the final Monte Carlo

flux.

4.2.1 Charged Kaons and Pions

The beam MC used charged K and π spectra from the Malensek fits to the Atherton et al.

[58] production measurements from 400 GeV protons striking a 50 cm long beryllium target

at the CERN SPS. Figure 4.3 shows the predicted event-weighted energy distribution of

charged K and π secondaries contributing neutrinos which hit the detector. The QTB cuts

off the low energy secondaries and only transmits particles with momenta above 100 GeV.

Kaons and pions decay predominantly via 2-body decays for which the kinematics are

completely determined and simple to model.

K± → π±
(−)
ν µ B.R. 63.51%

π± → µ±
(−)
ν µ B.R. 99.99%

(4.23)

Charged kaons and pions also decay via 3-body decays,

K± → π0µ±
(−)
ν µ B.R. 3.18%

K± → π0e±
(−)
ν e B.R. 4.82%

(4.24)
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Figure 4.3: Event-weighted energy distribution of charged K and pi secondaries contributing
neutrinos which hit the detector (Monte Carlo prediction).
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decay mode ξ(0) λ+
K+ → π0µ+νµ
K+ → π0e+νe
K0 → π−µ+νµ
K0 → π−e+νe

−0.35
0.

0.11
0.

0.033
0.0286
0.034
0.0300

Table 4.3: Matrix coefficients for 3-body K decays.

which we modeled using the following formula for Dalitz plot density and experimental

decay matrix coefficients from a particle data group analysis [61]:

ρ(Eπ, Eν) ∝ f2+(t)
[
A+Bξ(t) + Cξ(t)2

]
(4.25)

with

t = m2
K +m2

π − 2mKmπ

f+ = 1 +
λ+t

m2
π

ξ(t) =
ξ(0)

f+

A = mK(2EµEν −mKE
′) +m2

µ(E
′/4− Eν)

B = m2
µ(Eν − E′/2)

C =
E′m2

µ

4

E′ =
m2

K +m2
π −m2

µ

2mK
− Eπ (4.26)

(for electron neutrinos replace Eµ by Ee, etc.). The 4 types of 3-body decays and the values

of the experimentally determined matrix parameters ξ(0) and λ+ are given in table 4.3.

The events were generated using the following steps:

• Randomly generate the centre-of-mass energies of the decay products in the allowed

phase space. The pion and muon (electron) energies were each generated uniformly

within their kinematic limits. The choice was rejected if (i) the sum of the two energies

was greater than the parent energy, (ii) the magnitude of any one of the momenta

(pπ, pµ or pν) was larger than the sum of the other two momenta.
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• Use the acceptance-rejection method to keep or discard this choice of energies with

probability given by the Dalitz plot density.

• Choose the z-position of the decay according to the lifetime.

• Randomly pick the neutrino direction in the kaon centre-of-mass frame such that the

distribution of the cosine of the angle it makes with the z direction is flat.

• Boost the neutrino to the laboratory frame.

Figure 4.4 shows the predicted Monte Carlo energy distributions at the CCFR detector

for muon neutrinos and antineutrino events from K’s and π’s.

4.2.2 Neutral Kaons

The modeling of neutral kaons is complicated by the phenomena of strangeness oscillations

(analogous to neutrino oscillations): the quark eigenstates, K0 and K
0
which are produced

by the strong interactions when protons strike the target change into each other by the

mechanism shown in Figure 4.5. The objects which decay by weak interactions, KS and KL

are not eigenstates of strangeness, and can be expressed in term of the quark eigenstates

as:

|KS〉 =
1√
2

(
|K0〉+ |K0〉

)

|KL〉 =
1√
2

(
|K0〉 − |K0〉

)
(4.27)

The CP-even KS decays essentially 100% of the time vis KS → π+π− and KS → π0π0,

with a lifetime of 0.9 × 10−10 s. These modes are forbidden to the CP-odd KL, which

consequently has a much longer lifetime of 0.5× 10−7 s. Here we have ignored CP-violation

because the effect is very small. Some of the physical parameters of the neutral kaon system

are given in Table 4.4.

The decay products in semi-leptonic decay modes are not CP eigenstates, so both KS

and KL can decay to them with the branching ratio for KS reduced by the ratio of the KS
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Figure 4.4: Energy distribution at the CCFR detector of events from (a) muon neutrinos,
and (b) muon antineutrinos from K’s and π’s (Monte Carlo prediction).
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to KL lifetimes. The quark eigenstates determine whether a neutrino or an antineutrino is

produced in the decay:

K0 → π− + µ+ + νµ (4.28)

K0 → π− + e+ + νe (4.29)

K
0 → π+ + µ− + νµ (4.30)

K
0 → π+ + e−+νe (4.31)

We can treat the time evolution of the kaon system the same way as for neutrino

oscillations. If at time t = 0 we start with an initially pure |K0(K
0
)〉 state, then at time t

the system is in the same state with a probability given by:

∣∣∣〈K0(K
0
)|ψ(t)〉

∣∣∣
2
=

1

4

[
e−

ΓSt

2 + e−
ΓLt

2 ± 2 cos(∆mt)e−
(ΓL+ΓS)t

2

]
(4.32)
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parameter symbol value

BR: KL → π±µ∓νµ
BR: KL → π±e∓νe
KL decay rate
KS decay rate
neutral K mass
KL −KS mass diff.

(BR)νµ
(BR)νe
ΓL

ΓS

mK0

∆m

(27.0± 0.4) %
(38.7± 0.5) %

1/15.50 m
1/0.02675 m
0.497671 GeV

0.4774 · ΓS

Table 4.4: Parameters of the neutral kaon system. Natural units are used with h̄ = c = 1.

The decay rates to neutrinos and antineutrinos are proportional to the probability of the

system to be in a given quark eigenstate. The proportionality factor is the KL decay rate,

ΓL, multiplied by the branching ratio of the KL to the particular neutrino species:

Decay rate to νµ,e = ΓL × (BR)νµ,e

∣∣∣〈K0|ψ(t)〉
∣∣∣
2

(4.33)

Decay rate to νµ,e = ΓL × (BR)νµ,e

∣∣∣〈K0|ψ(t)〉
∣∣∣
2

(4.34)

The total probability of a K0 (K
0
) produced in the target to decay to a particular

neutrino before it reaches the beam dump is obtained by integrating the decay probability

at a given time t over the time of flight, T :

Decay rate to νµ,e + νµ,e = (BR)νµ,e × ΓL

∫ T

0

∣∣∣〈K0|ψ(t)〉
∣∣∣
2
+
∣∣∣〈K0|ψ(t)〉

∣∣∣
2
dt

= (BR)νµ,e ×
1

2

[
1− e−ΓLT +

ΓL

ΓS

(
1− e−ΓST

)]
(4.35)

where

T =
∆zmK0

cEK
(4.36)

for a relativistic kaon produced in the target a distance ∆z upstream of the beam dump.

The neutral kaon production spectrum was modeled using fits to measurements of KS

production near our energy range [59]. These measurements were made with a 300 GeV/c

proton beam on Be and Pb targets. KS production was measured at angles from .25 to

8.8 mrad and momenta from 65 to 250 GeV/c. The data most relevant to our experiment,

taken with the Be target at 8.8 mrad, were used for the cross section fits to Malensek
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parametrization (see Table 4.1). The K0 and K
0
production spectra were assumed to be

equal to the measured KS spectrum. The 3-body decay modes for neutrinos were modeled

using the same method as that described for the charged kaons.

The production of neutrinos from neutral kaons proceeded as for the production from

any other secondary (as itemized on page 70) except that (i) the probability of decay before

the dump was given by Equation 4.35, and (ii) the z position of the decay and the choice

whether the decay was a neutrino or an antineutrino were picked using the acceptance-

rejection method with probabilities given by Equations 4.33 and 4.34.

4.2.3 Charm Production

The charm mesons, D± and D0, and ΛC contribute 2% of the electron neutrino flux at the

detector. As an adequate approximation, only the following 3-body semi-leptonic decays

were considered:

D+ → K0e+νe (B.R. 6.7%) (4.37)

D0 → K−e+νe (B.R. 3.48%) (4.38)

Λ+
C → Λe+νe (B.R. 2.3%) (4.39)

and were modeled in the same way as the 3-body decays of kaons, but with the kaon mass

replaced by the D mass and the pion mass by the kaon mass.

The production spectra and the pp total cross section of 38 ± 3 ± 13 µb for D0 and

38± 9± 14 µb for D+ were measured by Kodama et al. using 800 GeV protons incident on

emulsion [62]. The LEBC-MPS hydrogen bubble chamber experiment of Ammar et al. [63],

also at 800 GeV, gives lower total cross sections of 22±4±6 µb (D0) and 26±8±7 µb (D+).

Neither of these experiments measure ΛC production, but the beam dump experiment of

Duffy et al. [64] indicates that ΛC ’s are responsible for as many νe’s as D mesons. For

this reason, we used the larger of the two measured D production spectra, the one from

Kodama et al..
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Since the decay length for D’s is shorter than the interaction length in aluminum, the

protons that were not absorbed in the BeO target were allowed to interact and produce

neutrinos in the beam dump following the decay pipe. This contributed approximately half

of the total production of νe’s from D’s.

4.2.4 Other Small Sources of Neutrinos

The beamline Monte Carlo modeled all secondary species expected to contribute more than

0.1% of the νe or νµ flux in the final event sample, so in addition to the neutrino production

from the secondaries listed above we also modeled µ decay, Λ decay and Σ− decay.

Neutrinos from the decay of muons

µ+ → e+ + νe + νµ (4.40)

account for 0.7% of the νe’s at the detector. The muons were produced in the decays of

pions and kaons. In the muon rest frame the νe distribution was modeled as [65]

d2N

dx d cos θ
∝ x2(1− x)(1 + cos θ) (4.41)

where x ≡ Eν/Emax, where Emax = (M2
µ −M2

e )/2Mµ is the maximum energy the electron

neutrino can have.

The decay of the Λ particle,

Λ → p+ + e− + νe (4.42)

generates about 0.4% of the electron neutrinos in the final sample. The production cross

section was measured by Skubic et al. [59]. The formula for the differential decay density

and experimental values for the decay matrix coefficients were obtained from Dworkin et

al. [66].

The final, and smallest source of neutrinos modeled was the Σ− decay,

Σ− → n+ e− + νe (4.43)

76



which accounts for 0.2% of the νe’s at the detector. The Σ− production spectrum was

parametrized as a fraction of π− production by Cardello et al. [67]. As an adequate ap-

proximation, the decay was thrown flat in phase space.

4.3 Electron Neutrino Flux

Electron neutrinos are produced in the beam predominantly from decays of kaons: 80%

of the νe’s come from the decay of charged kaons, 16% from the decay of neutral kaons,

and 2% each from the decay of charm particles and from the decay of π, µ, Λ and Σ−

particles as presented in the previous section. Since the main result of this thesis is a direct

measurement of the electron neutrino flux which we compare to the beamline simulation in

order to look for neutrino oscillations, it is very important to understand the Monte Carlo

flux prediction and the systematic uncertainties associated with that prediction.

As stated, 80% of the νe flux comes from charged kaon decays. The QTB cuts off low

energy charged secondaries (pions and kaons) and only transmits particles with momenta

above 100 GeV with the maximum transmission at 300 GeV tune of the train. These high

energy kaons decay into neutrinos that have a fairly narrow energy distribution that peaks

around 260 GeV and is mainly above 200 GeV. Therefore, the beam flux normalization can

be checked and corrected by comparing the observed νµ CC events for the Monte Carlo

prediction for Eν > 200 GeV.

The beam Monte Carlo produces flux histograms for each of the four neutrino species,

νµ, νµ, νe, and νe, binned in energy and in x and y coordinates at the detector using the

same energy and position binning as the data-based νµ and νµ flux files. The νµ and νµ

contributions from K’s and π’s were binned in separate histograms and the separate pion

and kaon-induced components of the neutrino and antineutrino flux files were normalized

separately to the data-based muon neutrino files. The normalization was chosen such that

the fraction of νµ flux above 200 GeV, which is produced predominantly from the decay
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νµ νµ
π 0.951 1.056

K 1.000 1.136

Table 4.5: Normalization factors for the π and K contributions to the νµ and νµ flux files
from the beam Monte Carlo. The normalization factor for the K-induced νµ flux files was
set to 1.

of kaons agreed with the data based files. The normalization factors required in the beam

Monte Carlo is listed in Table 4.5. The overall normalization of Monte Carlo relative to the

data is made by forcing the number of νµ CC events above 200 GeV in the Monte Carlo to

be equal to the corresponding events in the data. Figure 4.6 shows comparisons between

the beam Monte Carlo and data-based νµ and νµ flux files after applying the normalization

factors.

The good agreement between the beamline Monte Carlo and the measured νµ flux files

in the K-induced part of the νµ spectrum above 200 GeV constrains the uncertainty in the

νe flux from charged kaons. We assign a 2.5% uncertainty in the νe flux due to the modeling

of the νe spectra. An additional systematic uncertainty comes from a 1.2% uncertainty in

the branching ratio for K decays into νe’s (4.82 ± 0.06%) and estimated contribution of

approximately 1% in the normalization of the π/K ratio which corresponds to a typical

variation in the normalization for reasonable changes in the normalization procedure.

The νe’s produced by the decay of neutral kaons are not constrained by the νµ data and

unfortunately we have to rely on outside measurements. Consequently the largest single

uncertainty in the number of νe’s from neutral kaons comes from the relative normalization

of the neutral K spectrum to the charge secondary spectrum. The Skubic et al. experiment

[59] quotes an overall normalization uncertainty of 10%. Atherton et al.’s [58] normalization

uncertainty is not clearly stated. Further uncertainties come from the parametrization of

the Skubic et al. data and from conversion to the E770 conditions of 800 GeV protons

and a 30.5 cm Be target. We estimate that the largest source of uncertainty in the νe
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Figure 4.6: Comparison of beam Monte Carlo and data-based flux files for (a) muon neu-
trinos, and (b) muon antineutrinos. The overall normalization of Monte Carlo relative to
data is made by forcing the number of νµ CC events above 200 GeV in the Monte Carlo to
be equal to corresponding events in the data.
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production from neutral kaons probably comes from the normalization uncertainties in

these two experiments which we assign to be twice the normalization uncertainty of Skubic

et al. , giving a 20% fractional uncertainty.

The 2% component of νe’s from charm production was assigned a 50% fractional un-

certainty due to poor knowledge of the production rates and spectra. The νe’s from the

remainder of the small sources were better modeled and were assigned a 10% fractional un-

certainty. Table 4.6 itemizes the contributions to the νe uncertainty from the various species

of secondary particles producing neutrinos at the detector, totaling a 4.1% uncertainty in

νe production.

The number of events predicted by the Monte Carlo beamline simulation for νµ, νµ, νe,

and νe as a function of neutrino energy is listed in Table 4.7.

4.4 Muon Neutrino Flux

Since a muon neutrino beam cannot be monitored directly the flux of neutrinos had to be

determined indirectly from a measurement of the number of interactions in the detector

itself. The extraction is done using the subset of the data sample with low hadron energy.

This is called the fixed-ν method because it counts the number of neutrino interactions

with ν = Ehad less than a fixed-ν cut, ν0. This method yields the relative flux, the ratio

of fluxes at different energies, Φ(Ei)/Φ(Ej), and the ratio of fluxes of the different species,

Φν/Φν . The absolute flux is found by normalizing the measured total neutrino cross section

for Eν < 230 GeV to the world average, σνN = (0.676± 0.014)× 10−38 cm2 Eν .

The general formula of the differential charged current neutrino-nucleon cross section is:

dσ

dν
=
G2M

π

∫
dxF2

[
1− ν

E

(
1∓

∫
xF3∫
F2

)
+

ν2

2E2

(
1∓

∫
xF3∫
F2

+

∫
R
)]

(4.44)

where the +(−) is for neutrino (antineutrino) interactions. The integrals are over all x and

R =
ν + 2Mx

ν(1 +R)
− Mx

ν
− 1 (4.45)
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species % of total fract. uncert. uncert. contrib

charged K’s
neutral K’s
charm (D)
π,µ,Λ,Σ−

80%
16%
2%
2%

3%
20%
50%
10%

2.4%
3.2%
1.0%
0.2%

TOTAL 100% 4.1%

Table 4.6: Hadron species producing the νe(νe) flux and their contributions to the electron
neutrino flux uncertainty.

Eν (GeV) νµ events νµ events νe events νe events

15- 30
30- 40
40- 50
50- 60
60- 70
70- 80
80- 90
90-100
100-120
120-140
140-160
160-180
180-200
200-230
230-260
260-290
290-320
320-360
360-400
400-450
450-500
500-550
550-600

387083
407835
632695
857109
922474

1146633
1056141
1232275
1828506
1071222
708132
440118
438312
633510
906345
868357
510598
396645
267702
212254
124888
68490
21222

159456
247162
383544
463208
468615
453635
527724
442214
791184
373849
244743
142543
103548
168160
184154
142599
91938
32442
19913
9106
3562
1144
499

1837
2198
3950
6369
7461
9928
11517
12294
26553
27565
26808
26630
23891
28689
17438
10365
6029
3717
1650
963
268
68
9

1193
1791
2791
3417
4385
4556
6011
5366
10487
9928
9145
7528
7031
5351
3100
1692
792
536
186
84
17
3
0

Table 4.7: Number of νµ, νµ, νe, νe events as a function of neutrino energy (Monte Carlo
prediction).
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is the longitudinal structure function. F2 and xF3 are the structure functions of neutrino

interactions defined in terms of the quark and antiquark distributions:

F2 = xq(x) + xq(x) (4.46)

xF3 = xq(x)− xq(x) (4.47)

The leading term of the differential cross section with respect to ν is a constant,
(
G2M
π

∫
F2

)
,

and ν dependent corrections are of the order
(ν0
E

)
and

(
ν20
E2

)
. These corrections are small

and depend only on the ratio

∫
xF3∫
F2

and
∫
R. The number of events with ν < ν0 is found

by multiplying the differential cross section by the flux and integrating up to ν0

N(E, ν < ν0) = Φ(E)
G2M

π

∫
F2ν0

[
1− ν0

2E

(
1∓

∫
xF3∫
F2

)

+
ν20
6E2

(
1∓

∫
xF3∫
F2

+

∫
R
)]

(4.48)

Thus by simply counting the number of events with Ehad < ν0 and applying corrections of

order
(ν0
E

)
and

(ν0
E

)2
, one can determine the flux to an overall normalization.

The term that depends on R is determined by using measurements of the longitudinal

structure function made by charged-lepton scattering experiments [68]. The ratio

∫
xF3∫
F2

can

be calculated by fitting the low Ehad data to a quadratic polynomial of the form

dN

dν
= A+B

(
ν

E

)
+ C

(
ν2

2E2

)
(4.49)

where

A(E) =
G2M

π

∫
F2Φ(E) (4.50)

B(E) = −G
2M

π

∫
F2

(
1−

∫
xF3∫
F2

)
Φ(E) (4.51)

C(E) = B +A

∫
R (4.52)

The ratio of coefficients is independent of the neutrino flux Φ(E) and determines the ratio

of the integrated structure functions

B

A
= −

(
1∓

∫
xF3∫
F2

)
(4.53)
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The ratio B(E)
A(E) is approximately constant with energy because although the structure func-

tions depend on Q2 = 2Mxν by imposing a fixed ν cut means that the same Q2 range is

used at all energies. The average of B
A from fits in all energy bins determines

〈
B
A

〉
to high

statistical precision. The relative flux is then obtained by integrating the observed event

distribution, dN
dν , to the fixed ν cutoff:

Φ(E) ∝
∫ ν0

0
dν

dN

dν

[
1− ν

E

〈
B

A

〉
+

ν2

2E2

(〈
B

A

〉
+

∫
R
)]−1

(4.54)

The fixed-ν cut is chosen at ν0 = 20 GeV to ensure sufficient statistics in the higher energy

bins while minimizing the systematic correlations with the data sample. The other cuts

imposed are Eµ > 15 GeV and θµ < 0.150. A total of 407,000 neutrino and 140,000

antineutrino events are used for the flux extraction.

The values of B
A are shown in Figure 4.7. The values show no energy dependence and

the averages are
〈
B
A

〉
ν
= −0.50±0.04 and

〈
B
A

〉
ν
= −1.70±0.05. The relative neutrino and

antineutrino fluxes are shown in Figure 4.8.
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Figure 4.7: Energy dependence of B/A = −(1∓
∫
xF3/F2) for events with ν < 20 GeV, for

neutrinos (x) and antineutrinos (diamonds). A and B are the coefficients of the (ν0/E)0

and (ν0/E)1 terms of dN/dν.

Figure 4.8: The relative neutrino (x) and antineutrino (diamonds) fluxes determined using
the fixed-ν method.
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Chapter 5

Data Analysis

The neutrino interactions observed in the detector can be divided into three categories

depending on the type of the incoming neutrino and on the type of interaction:

1. νµN → µ−X (νµ charged current (CC) events).

2. νµ,eN → νµ,eX (νµ,e neutral current (NC) events).

3. νeN → eX (νe CC events).

All three types of neutrino interactions initiate a cascade of hadrons that is registered

by the drift chambers and scintillation counters. The νµ CC events are characterized by the

presence of a muon produced in the final state which penetrates well beyond the end of the

hadron shower, depositing energy characteristic of a minimum ionizing particle (mip) [51]

in a large number of consecutive scintillation counters. Conversely, the electron produced in

a νe CC event deposits energy in a few counters immediately downstream of the interaction

vertex which changes the energy deposition profile of the shower. The electromagnetic

shower is typically much shorter than the hadron shower and the two cannot be separated

for an individual νe CC event. In this analysis four experimental quantities are calculated

for each event: the length, the transverse vertex position, the visible energy and the shower

energy deposition profile. The three sections of this chapter describe (i) the algorithm used

to obtain the event parameters, (ii) the analysis cuts, and (iii) the analysis procedure.
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5.1 Event Reconstruction

The characteristics of the neutrino interaction are determined by the energy deposited in

the scintillation counters. The downstream end of the region is defined to be the first

counter of two consecutive counters with more than a 1/4 MIP, and the upstream end,

ISTRT, as the last counter followed by three counters with less than 1/4 MIP. Of the

approximately one million events used in this analysis, 29.3% were found to have more than

one interaction region, mostly due to inefficiencies in the scintillation counters. For these

events we combine the longest interaction region with the adjacent regions if the number of

counters separating the two regions is smaller than the length of the shorter region. If at the

end of the combination process we still have multiple regions, the region with the highest

energy deposition is assumed to be the neutrino interaction region, which was required only

for 0.7% of the events.

We define PLACE to be ideally the counter immediately downstream from the event’s

real interaction vertex. The “44 PLACE” is the more upstream of two consecutive counters

with more than 4 MIPs immediately downstream of ISTRT. The end of the shower, SHEND,

is assigned to be the last counter upstream of three consecutive counters each with less than

4 MIPs and immediately downstream of PLACE.

The visible energy deposited in the calorimeter, Evis, is calculated by summing the

energy deposited in the scintillation counters from ISTRT to five counters downstream of

SHEND. This definition was chosen to include the energy deposited upstream of the interac-

tion vertex by both particles traveling backwards in the detector and particles penetrating

past SHEND, while minimizing the difference between CC and NC showers due to the muon

track present in CC interactions.

Studies based on Lund/GEANT [69] generated showers indicate that at high energies

the 44 PLACE is not a good estimator of the “true” interaction place. Figure 5.1 shows the

86



0

500

1000

1500

2000

-5 -2.5 0 2.5 5

50-60 GeV

Entries
Mean
Rms

2500
0.5744

0.392001

0

500

1000

1500

2000

-5 -2.5 0 2.5 5

70-80 GeV

Entries
Mean
Rms

2500
0.6036

0.355622

0

500

1000

-5 -2.5 0 2.5 5

90-105 GeV

Entries
Mean
Rms

1569
0.640854
0.394247

0

500

1000

1500

2000

-5 -2.5 0 2.5 5

120-135 GeV

Entries
Mean
Rms

2500
0.6688

0.402376

0

500

1000

1500

2000

-5 -2.5 0 2.5 5

175-200 GeV

Entries
Mean
Rms

2500
0.7332

0.45301

0

200

400

600

800

-5 -2.5 0 2.5 5

300-600 GeV

Entries
Mean
Rms

1267
0.850434
0.536297

44 Place - True Place (counters)

N
um

be
r 

of
 e

ve
nt

s

Figure 5.1: The difference between the 44 PLACE and the true place for a neutrino neutral
current interaction. At high energies the 44 PLACE is not a good estimator of the true
interaction place (based on Monte Carlo studies).
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difference between the generated place and the 44 PLACE in six of the Evis bins studied.

Similar to the 44 PLACE, we define the NN PLACE to be the more upstream of two

consecutive counters with more than N MIPs, where N varied from 4 to 25 MIPs. For each

energy bin N was chosen such that the rms of the difference between the generated place

and the NN PLACE was the smallest. Table 5.1 shows the value of N for each energy bin.

Energy (GeV) N (MIP’s)

20 - 30
50 - 60
70 - 80
90 - 105
120 - 135
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

4
6
7
8
10
12
11
14
16
19

Table 5.1: The value of the minimum energy in MIP’s which when deposited in each of
two consecutive scintillation counters signals the start of a neutrino interaction. The more
upstream of the two counters is assigned to be the interaction place (based on Monte Carlo
studies).

We parameterize the value of N as a function of energy by fitting to the values in

Table 5.1 a function of the form:

N = −1.0679 + 0.9660×
√
Evis (5.1)

where, as before, N is in MIP’s and Evis, the energy deposited in calorimeter from ISTRT to

SHEND-5, is in GeV. Figure 5.2 shows the difference between estimated and true interaction

place for six energy bins.

The Monte Carlo prediction for the NN PLACE was checked by studying the shift from

the 44 PLACE to the NN PLACE in the Monte Carlo and comparing it against that in the

data. This value depends on quantities measured directly in both the data and the MC.

The good agreement between the data and the MC shown in Figure 5.3 gives us confidence
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Figure 5.2: The difference between the NN PLACE and the true place for a neutrino neutral
current interaction. At high energies the NN PLACE is a much better estimator of the true
interaction place than the 44 PLACE (based on Monte Carlo studies).
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Figure 5.3: Data and Monte Carlo difference between the NN PLACE and the 44 PLACE
for neutrino neutral current interactions. The solid (dashed) histogram is the MC (data).
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that the measured shift in the MC between the NN PLACE and the true interaction place

is a good indicator of the shift in the data.

The event length, L, is defined to be the number of scintillation counters spanned by

the event:

L = PLACE− CEXIT + 1 (5.2)

where PLACE is the experimental determination of the interaction vertex, calculated as the

NN PLACE, and CEXIT is the most downstream counter with energy deposited from the

products of the neutrino interaction. CEXIT is the first counter downstream of SHEND

followed by three consecutive counters with less than 1/4 MIP. CEXIT occurs at the end

of the hadron shower for neutral current events, but is determined by the muon track for

most charged current events.

The mean position of the hits in the drift chamber immediately downstream of PLACE

determines the transverse vertex position.

The shower energy deposition profile is characterized by the ratio of the sum of the

energy deposited in the first three scintillation counters to the total visible energy. The

electron produced in a νe CC interaction deposits all of its energy in counters immediately

downstream of the interaction place. A νe CC interaction will appear in the calorimeter just

like a νµ NC interaction, but, on average, it will deposit more energy in the first scintillation

counters than a νµ NC interaction with the same visible energy. Accordingly, we define

η3 = 1− E1 + E2 + E3

Evis
(5.3)

where Ei is the energy deposited in the ith scintillation counter downstream of the interac-

tion place (see Fig. 5.4), to describe the energy deposition profile of the shower produced

by the neutrino interaction.
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Figure 5.4: Definition of the event shape variable η3.
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5.2 Event Classification

Since νe CC events have no muon track, we isolate these events by partitioning the event

sample into events with a muon track and events without one. Typical event displays from

νµ NC and CC interactions are shown in Figure 5.5. The muon produced in CC interactions

is clearly visible in the event display pictures as both hits in the drift chambers and, more

important for this analysis, as small energy deposits in the scintillation counters. The

presence of this penetrating muon allows us to isolate the events without a muon track

simply by partitioning the event sample of neutrino interactions by length.

The simplest partition scheme employed by previous CCFR analyses uses a fixed number

of counters, LNC , as cut off where LNC = 30 counters. The neutrino events are divided into

two classes: “short” if the event length is shorter than LNC , and “long” otherwise . This

cut off was chosen to include all the NC events in the “short” category. Accordingly, the

“long” events consist almost exclusively of class 1 events, while the short ones are a mixture

of class 2, class 3, and class 1 events which cannot be separated on an event by event basis.

The main drawback of this method is that, especially at low energy, the fraction of CC

events with a low energy muon contained in the short sample is on the order of 30%.

For this analysis, we attempt to reduce the short CC contamination by making the length

cut energy dependent. We attempt to identify events with a muon track by studying the

SHEND−CEXIT distribution. For events with a muon track CEXIT will be in general far

downstream of SHEND, while for events without a muon track CEXIT will be approximately

equal to SHEND. Based on the distributions such as that shown in Figure 5.6, we isolate

events without a muon track by requiring CEXIT to be less than 11 counters downstream

of SHEND. We then parameterize the event length which contains 99% of such events for

each Evis bin as:

LNC = 4.+ 3.81× log(Evis) (5.4)
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Figure 5.5: Event displays of typical “short” and “long” neutrino events in the CCFR
detector.
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Energy (GeV) Long Evts. Short CC Evts. Frac. (%)

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 105
105 - 120
120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

168852.8
137987.2
116427.4
96174.6
77691.2
64549.5
77888.1
62092.6
50738.2
42199.3
57353.9
44866.5
56233.5
25527.7
20599.5

19828.4
18643.5
18026.0
15802.5
13095.2
10500.4
11968.0
8458.7
6000.7
4701.8
6463.3
5793.3
9053.1
4357.6
3556.8

23.9
26.4
28.7
29.8
29.9
29.0
27.4
24.7
21.9
20.6
20.7
22.7
26.9
28.4
29.5

Table 5.2: Fraction of νµ CC events with a length shorter than 30 counters. These are
mostly events with a low energy muon in the final state (Monte Carlo prediction).

and use this as our new energy dependent cut off length.

In order to compare the number of events predicted by the Monte Carlo and in the

data we need to normalize the Monte Carlo sample to the data. We use the long events to

normalize the Monte Carlo to the data since their length distribution is much better under-

stood than for short events: PLACE is uniformly distributed in the detector smeared by the

NN PLACE distribution, and CEXIT involves tracking the muon through the calorimeter.

Conversely, the length of short events is determined by the end of the hadron shower which

is harder to simulate. Figure 5.7 shows a good agreement between the length distribution of

long events from the data which exit in the calorimeter (CEXIT > 3) and the corresponding

Monte Carlo prediction. The Monte Carlo is normalized to the data using the total number

of long events with Evis > 30 GeV. Any variation as a function of energy is taken as a

systematic error.
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Figure 5.6: SHEND − CEXIT distribution for events longer than 30 counters (solid) and
shorter (dashed) with Evis > 30 GeV. We isolate events without a muon track by requiring
SHEND− CEXIT ≤ 10.

5.3 Cuts

During the running of the E770 experiment, 5,166,884 events were written to tape. The

data were divided into runs by inserting end of file markers onto the tape to mark significant

changes in run conditions such as a change in toroid polarity, beam intensity or a stoppage

caused by malfunction in the detector electronics. For this analysis, the full data sample

is reduced by a series of cuts. The cuts impose precisely defined requirements on the data

and are designed to remove backgrounds, poorly reconstructed events, overlaid or multiple

interaction events and other anomalies.

The cuts applied to the data and the number of events passing each cut are given in

Table 5.3. The cuts are:

• Bad Runs.

Examination of the E770 run log books resulted in the removal of some runs from the

analysis because of detector malfunctions or problems with the neutrino beam.
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Figure 5.7: Event length distribution for long events for which the muon exits in the
calorimeter (CEXIT > 3) for various Evis bins. Data (bars) compared to Monte Carlo
prediction (solid line).
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Cut Events passing cut (failing cut)

bad runs
phantom events
data + cosmic gate
event time
trigger 6
radial vertex pos.
adc noise
interaction region
deep mu
long. vertex pos.
trigger 6 inefficiency
trigger requirement
Evis

5166884
5078655
5068964
4745431
4534293
3445559
2298016
2296270
2295277
2189202
1538601
1538245
1530872
926493

(88229; 1.7%)
(9691; 0.2%)
(323533; 6.4%)
(211138; 4.4%)
(1088734; 24.0%)
(1146543; 33.3%)
(1746; 0.1%)
(993; 0.0 %)
(106075; 4.6%)
(650601; 29.7%)
(356; 0.0%)
(7373; 0.4%)
(604379; 39.5%)

Table 5.3: The cuts which reduce the raw data sample to the final sample.

• Data Gate.

Events from gates other than the neutrino (fast spill) gate (gate 1-4) or cosmic gate

(gate 7) were discarded. Events taken during the cosmic gate were analyzed the same

as neutrino events and were used for background subtraction.

• Event Time. The event time is measured at each counter using the same time-to-

digital converters used for the drift chambers. The s-bit pulse is fed to the TDC

providing a time resolution of 4 ns. When information from all active counters is

combined, the overall event time resolution has an rms of 2.4 ns. “Out of time”

events and events with more than one “in time” interactions were removed from the

final data sample. A neutrino interaction is classified as being “in time” if the event

time as measured from the s-bits (see page 57) agrees to within 36 ns to the one

predicted from the trigger. Figures 5.8 (a) and (b) show that the timing resolution is

good enough such that this cut doesn’t remove too many legitimate events.

• Straight through muon cut.
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Figure 5.8: Event trigger time distribution for (a) short events (require trigger 2 or 3) and
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The analysis cut requires a trigger time in the range 241 to 259 clock counts, inclusive.

99



All the events which fired trigger 6 were removed from the final sample. To account

for trigger 6 inefficiency events for which the start of the interaction region was less

than five counters away from the upstream end of the detector and any three of the

first five counters had more than .25 MIPs were also removed.

• Fiducial volume cut.

We require SHEND to be more than five counters upstream of the downstream end

of the detector (i.e. SHEND ≥ 6). This ensures an unbiased calculation of Evis for all

hadron showers. Additionally, we require PLACE to be more than 5 counters from the

downstream end of the target and five counters plus the separation length from the

downstream end (i.e. 5 + LNC ≤ PLACE ≤ 78). This allows for (i) an unambiguous

partition of the neutrino interactions by event length, and (ii) full containment of the

hadron shower.

The transverse interaction vertex is required to be less than 50 inches from the detector

centre-line. The algorithm for finding the transverse vertex position failed for a small

fraction of events(.31% for a 20 GeV Evis cut). It was assumed that some of these

events are cosmic rays at the edges of the detector. This cut was chosen such that

it maximizes the event sample while making sure the hadron shower is still fully

contained in the target calorimeter.

• Phantom Events

The digitized detector information for up to 32 events, stored in the TDC’s for the

drift chamber hits and the s-bits and in the FERAs for the pulse heights, was read

out all at once at the end of each ping. The three data branches were read out in

parallel independent of each other and were matched by the data acquisition pro-

gram. Readout problems with any one of the branches caused a mismatch of the

data where information from different events in a readout cycle was matched together
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in one event. We identify such events by determining the interaction region based

on information from the scintillation counters, and from information from the s-bits

which are equivalent to 1/4 MIP. We require the upstream and downstream end of the

interaction region for the two methods to agree to within 3 counters for each method.

Additionally, a visual inspection of all the events in a cycle which contains an event

which failed the cut was performed, and the whole cycle was thrown out if it looked

like there was a readout problem.

• Deep-mu events

Muons passing through the detector deposit, on average, one MIP per scintillation

counter due to ionization losses. It is also possible for muons to lose energy catastroph-

ically as a result of interactions in the detector. These showers are electromagnetic

in nature. For a low y neutrino event with a muon track (νµCC) the place finding

algorithm will fail to find the start of the neutrino interaction at the event vertex but

will instead identify the deep µ interaction as the vertex. Figure 5.9 shows an example

of such an event.

Deep-mu events have a muon track, and as such, most of these events will end up in the

long sample1 which is assumed to be purely hadronic. The presence of electromagnetic

showers will cancel the signature of νe CC interactions present in the short sample,

so it is important to remove them.

To identify a cut for removing deep-mu events without introducing a strong bias in the

neutrino event sample, we studied the distribution of the number of counters between

the beginning of the neutrino interaction region, ISTRT, and PLACE.

We require:

ISTRT− PLACE ≤ 5 (5.5)

1For a definition of long events see page 93
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Figure 5.9: An event which failed the deep-mu cut (ISTRT− PLACE ≤ 5). This event is
most likely a neutrino induced deep-mu event.

to eliminate as many of the deep-mu events as possible. To study the events removed

by the cut, we look at the energy deposition profile distribution of such events. If

the events removed are indeed deep-mu events, then the energy deposition profile

distribution should be comparable to that of electromagnetic showers.

• Energy.

A minimum Evis cut of 30 GeV (i) ensures complete efficiency of the energy trigger, (ii)

rejects low energy events spanning too few counters for an accurate measurement of

the energy deposition profile, and (iii) reduces cosmic ray and deep-mu contamination.

• Trigger requirement

This cut removed long events which didn’t fire trigger 1 or 3, and short events which
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didn’t fire trigger 2 or 3.

5.4 Analysis Procedure

The analysis assumes that hadron showers produced in NC and CC interactions have the

same energy deposition profile (characterized by the η3 distribution) and calibration in the

calorimeter. It is possible for the calibration and η3 to differ because the two shower types

have different mean electromagnetic components. A Lund Monte Carlo simulation2 provided

the conservative estimate that the energy calibration for CC and NC hadron showers differ

by no more than 0.4%. The Lund generated showers were input into a GEANT simulation

and tracked in the calorimeter. We used a Kolmogorov test to compare the shape of the η3

distributions for neutral and charged current showers, and the distributions were found to

be statistically the same. For a more detailed description see Section 5.5. To measure the

number of νe CC events we compare the η distributions of “long” and “short” events. Any

difference is attributed to the presence of νe CC interactions in the short sample.

5.4.1 η3 Distribution for “short” Events

To compare directly the long and short events we need to compensate for the absence of a

muon in NC and νe CC events. The muon energy loss distribution consists of a pronounced

peak due to ionization loss and a long tail due to less frequent catastrophic energy losses,

with the most probable energy loss being one MIP (see page 46). This has the effect of

smearing the energy distribution of the hadron shower. Three different approaches for

making this correction were considered:

1. Subtract in software one MIP for each counter of the hadron shower. Although it

corrects for the most probable muon energy loss, this method lacks proper treatment

of the catastrophic loss which in the lower energy bins can be a significant fraction of

the total energy deposited in each scintillation counter.

2Lund is a hadron shower MC which is used widely in high energy physics
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2. Modify CC events by subtracting in software the random pulse heights correspond-

ing to a muon track from the data. This method attempts to correct for the muon

catastrophic energy loss by unsmearing the hadron shower energy distribution. Un-

fortunately, this correction is made on a statistical basis so for any pulse height it can

be wrong by as much as twice the spread of the distribution since the subtraction does

not mimic the actual muon energy loss. To understand this, consider the example of

one counter in which the muon deposits 1+σ MIPs of energy total where sigma is the

spread of the distribution characterizing the muon energy loss (we cannot measure

this in the data but we can assume it for the sake of the argument). Let’s also assume

that the pulse height of the muon track we subtract is 1 − σ MIPs. Subtracting the

two values one can easily see that we end up adding a 2σ MIPs to the CC hadron

shower pulse height which is not in the NC hadron shower. Of course, we are just as

likely to end up subtracting 2σ MIPs from the CC hadron shower pulse height, and

on average the discrepancy will be zero, but this method has the effect of introducing

a noise term in the CC hadron shower energy distribution which is not present in the

equivalent NC showers.

3. Modify NC events by adding in software the pulse heights corresponding to a muon

track from the data. Adding a µ track to the NC hadron showers properly takes

into account the energy fluctuations of the muon energy loss and it has the effect of

smearing the NC hadron shower energy distribution in a manner similar to that of

CC hadron showers. The effect of this correction on the η3 for the short events is

shown in Figure 5.10. As expected the correction is significant for the lower energy

events and negligible at higher energy where the muon energy loss is only a very small

fraction of the total energy deposited in each scintillation counter.
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Figure 5.10: The effect on the η3 distribution when adding a muon track to the short events
sample. The solid line is the corrected distribution and the dashed line is the uncorrected
one.
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For this analysis we choose method 3 to correct for the absence of a muon track in

NC νµ events. The muon tracks are obtained from the data by using the pulse heights

of muons in long events for each of the Evis bins separately. We ensure that the muon is

uncontaminated in two ways: (i) the sampled pulse heights begin 10 counters downstream

of the hadron shower, (ii) the first two consecutive pulse heights used must be < 3 MIPs

to eliminate the case where the muon track starts in the middle of a deep-mu shower which

would be unphysical.

5.4.2 Other Corrections to the η3 Distribution

Since short events contain CC events with a low energy muon track which doesn’t exit the

shower, the short sample now contains a fraction of events with two muon tracks: a short

one, the result of the muon coming from the CC neutrino interaction, and a long one added

in the software. This category of events is not present in the long sample and we need to

correct for it. The fraction f of νµ CC events with a low energy muon was estimated from

the Monte Carlo (see Table 5.4), together with the Evis distribution. A simulated sample

of such events was obtained by choosing long events with the right energy distribution from

the data to which a second muon track was added in the software. The pulse heights of

the muon track were corrected by 1/ cos θ, where θ is the angle of the muon track with

respect to the direction of the incident neutrino. The length of the short track and the

angular distribution were obtained from a Monte Carlo of νµ CC events and are shown in

Figures 5.11 and 5.12 respectively.

We correct the η3 distribution of short events for background short νµ CC events by

subtracting the η3 distribution of the simulated sample of short νµ CC events for each Evis

bin separately. The total number of simulated short νν CC events in each Evis bin was

normalized to the number of such events in the short sample predicted by the Monte Carlo.

Additionally, we also have to correct the η3 distribution for both long and short events
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Figure 5.11: Length distribution of the muon track produced in short charged current
interactions, where “short” is defined in the text (Monte Carlo prediction).
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Figure 5.12: Angular distribution for short charged current events as predicted by the
Monte Carlo. This distribution is used to correct by 1/ cos θ the short muon track added
in software to a fraction f of long events.
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for background cosmic ray events. The cosmic ray background was estimated from the event

sample collected during the cosmic ray gate using an identical event selection algorithm as

for the data gates. The cosmic ray gate collected a total of 2911 events which pass all the

analysis cuts. Of these events 2871 are short and 40 are long. Table 5.5 lists the number of

cosmic ray events in each of the 15 Evis studied. Unfortunately, the collaboration neglected

to determine the exact ratio of live-times of the data and cosmic ray gates. The cosmic ray

gate was estimated to be approximately 3 times longer than the sum of the data gates (gates

of approximately 2 µs for each of the three bursts of neutrinos in a cycle of the Tevatron

accelerator). Accordingly, we scale the cosmic ray η3 distribution by 1/3. The cosmic ray

correction affects mostly the short event sample at low energies. For the long events this is

a negligible effect since, as shown by Table 5.5 there are very few long cosmic ray events.

The correction is applied to the long events only for the sake of completeness.

The corrected η3 distributions for short, long events, and νe events for various energy

bins are shown in Figure 5.13.

5.4.3 Electron Neutrino Sample

To simulate νe interactions in the detector we assume νµ − νe universality. The electron

neutrino events were generated by convoluting hadron showers taken from the long sample

with electromagnetic showers generated by a GEANT simulation. In this way, the electron

events also included an extra muon track. The interaction point for the GEANT showers

was distributed uniformly in the steel plate, the same as for neutrino interactions. In order

to be able to add GEANT generated showers to hadron showers from the data we need to

convert the electron energy loss in the scintillation counters from the GEANT simulation to

the equivalent energy of the incoming electron in GeV. The equivalent energy scale of the

GEANT generated showers was calculated by dividing the energy of the incoming electron

in GeV to the total energy loss in the scintillation counters. Table 5.6 lists the calibration
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Energy (GeV) Long Evts. Short νµ CC Frac. (%)

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90

90 - 105
105 - 120
120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

280403.2
232427.1
187263.5
155872.1
127349.1
101615.4
83360.1
98898.2
77474.3
62312.4
51702.5
68976.8
53814.9
66543.8
29485.0

8521.9
11778.5
11873.9
12149.2
11023.4
9436.9
7678.3
8955.9
6243.9
4544.0
3442.8
4955.5
4602.4
7560.7
3743.5

12.6
15.2
17.8
19.1
20.0
19.5
19.0
16.9
15.2
13.9
14.7
16.9
21.3
23.5
25.4

Table 5.4: Fraction of νµ CC events contained in the “short” sample. These are mostly
events with a low energy muon in the final state (Monte Carlo prediction).

Energy (GeV) Short CR Long CR

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 105
105 - 120
120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

1344
569
325
189
91
87
75
61
35
23
21
5
24
7
15

21
7
4
3
0
1
1
2
0
0
1
0
0
0
0

TOTAL 2871 40

Table 5.5: Number of cosmic ray events as a function of energy. The majority of such events
are classified as low energy short events.
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Figure 5.13: Eta distributions for short, long and νe events in 4 different energy bins.

constants for each of the energy bins studied. The overall calibration constant is equal to

41.95 GeV, and it was calculated for incoming electron energies greater than 30 GeV.

The energy distribution of the electron neutrinos and the fractional energy transfer y

were generated using the Monte Carlo simulation of the experiment. The hadron shower

energy was smeared by the hadron energy resolution calculated from the CCFR test beam

calibration run to be 0.89
√
E. The electromagnetic showers were smeared by the GEANT

electron shower simulation, i.e. we look up an electromagnetic shower generated by an

electron of the same energy as the requested energy, and multiply the pulse heights by the

above-described calibration scale factor. The resolution functions for some of the energy

bins studied are shown in Figure 5.14. For energies greater than 30 GeV the resolution is

Gaussian and agrees with the resolution measured from the CCFR test beam calibration

run of 0.6
√
E. The high tails at low energies are due to the coarse granularity of the detector
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Figure 5.14: Resolution function for GEANT generated electromagnetic showers. The
curves are Gaussian parametrizations of the data.
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Energy (GeV) Calib. Fact. Variance Energy (GeV) Calib. Fact. Variance

0 - 2
2 - 5
5 - 10
10 - 20
20 - 30
30 - 40
40 - 50
50 - 60
60 - 70
70 - 80

136.7
44.4
42.8
42.4
42.2
42.1
42.0
42.0
42.0
41.9

859.4
14.8
9.3
6.6
5.1
4.4
3.8
3.5
3.2
3.0

80 - 90
90 - 105
105 - 120
120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

42.0
41.9
41.9
41.9
41.9
41.8
41.8
41.9
41.8
41.7

2.8
2.6
2.4
2.3
2.1
2.1
1.9
1.7
1.6
1.2

Table 5.6: Equivalent energy scale calibration factor for electromagnetic showers in GEANT.

with scintillation counters only every 6 radiation lengths. Since the hadron showers used to

generate νe CC events already have a muon track, the νe sample can be compared directly

with the short and long events.

5.4.4 Extraction of νe events

Electron neutrino charged current interactions initiate a cascade of hadrons that is registered

by the drift chambers and the scintillation counters. Additionally, the electron produced in

the final state deposits energy in the counters immediately downstream of the interaction

place. The electromagnetic shower is typically much shorter than the hadron shower and

the two cannot be separated for an individual νe CC event. Since νe events don’t have a

muon in the final state they appear short in the target-calorimeter, just like νµ NC events.

Accordingly, the “short” sample consists of νµ NC and νe CC events (after we correct for

background short νµ CC and cosmic ray events as described in Section 5.4.2), while the

“long” sample consists only of νµ CC events.

The η3 distribution for “short” events is a combination of distributions for purely

hadronic events (νµ NC and νe NC) and events with a hadron shower and an electro-

magnetic shower, while the η3 distribution for the “long” sample is determined only by

hadronic events. As discussed previously, the electromagnetic shower present in νe CC in-
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teractions changes the energy deposition profile for such events. Since we believe that the

energy deposition profiles of hadron showers produced in NC or CC neutrino interactions

are the same, we can use the “long” sample to fix the η3 distribution for hadronic events.

Consequently, any difference in the η3 distribution of the “short” sample from the reference

distribution given by the “long” sample is attributed to the presence of νe CC interactions

in the “short” sample.

We can extract the number of νe CC events in each Evis bin by fitting the corrected

shape of the observed η3 distribution for the “short” sample to a combination of “long” and

νe CC distributions with appropriate short muon additions:

Short events = α(Long events) + β νeCC(+µ) (5.6)

The χ2 function is given by:

χ2 =
∑

i ∈ bins

(
(η3)

Short
i − α[(η3)

Long
i ]− β[(η3)

νe
i ]

σstat

)2

(5.7)

where each η3 distribution is divided into 120 bins from -0.1 to 1.1, and σstat is the statistical

error

σ2stat = (σShort)2 + α2
0(σ

Long)2 + β20(σ
νe)2 (5.8)

α0 and β0 are our initial estimation of α and β respectively, and σShort, σLong, and σνe are

equal to the square root of the number of entries in each bin of the respective distributions.

For each Evis bin we minimize this χ2 by letting α and β float. Since χ2 depends on the

values of α and β, we use an iterative procedure with α0 and β0 being equal to the values

from the previous fit. We repeat the fit until the values of α0 and β0 converge (typically 3

to 4 iterations).

Table 5.7 lists the values of α, β, the statistical error and the χ2 from the fit in each of

the 15 Evis bins. The number of νe’s in each Evis bin is equal to the number of νe events

in the simulated sample multiplied by β, and is listed in Table 5.8. For electron neutrinos,
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Evis (GeV) α δα β δβ χ2/DoF

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 105
105 - 120
120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

0.33294
0.33932
0.33916
0.34755
0.34355
0.34592
0.35307
0.35940
0.35327
0.34808
0.34507
0.35206
0.36242
0.35012
0.36477

0.00281
0.00313
0.00346
0.00394
0.00435
0.00485
0.00451
0.00530
0.00578
0.00632
0.00563
0.00642
0.00606
0.00877
0.01006

0.01685
0.04712
0.07870
0.05957
0.09479
0.11246
0.17271
0.19524
0.19702
0.18440
0.30205
0.22879
0.25413
0.11673
0.07158

0.01855
0.01635
0.01473
0.01368
0.01241
0.01158
0.01286
0.01223
0.01098
0.01041
0.01267
0.01057
0.01190
0.00763
0.00625

0.8
0.8
0.9
0.6
1.0
1.3
1.4
1.0
1.2
2.0
1.4
1.1
1.8
1.3
0.8

Table 5.7: The values of the parameters α and β from the fit for each Evis bin. δα and δβ
are the respective errors from the fit.

Evis (GeV) νe sample νe measured νe error

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 105
105 - 120
120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

9992
10050
10028
9997
10025
10016
10031
10014
10016
10002
10022
10005
10023
10000
10010

168.4
473.5
789.2
595.5
950.3
1126.4
1732.4
1955.2
1973.4
1844.3
3027.2
2289.0
2547.2
1167.3
716.5

185.4
164.3
147.7
136.8
124.4
116.0
129.0
122.5
110.0
104.1
127.0
105.7
119.3
76.3
62.5

Table 5.8: The number of electron neutrinos measured from the fit and the error for each
Evis bin. The column labeled “νe sample” lists the number of νe’s in the simulated sample
we used to extract the number of νe’s in the data.
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Figure 5.15: Number of electron neutrinos as a function of visible energy. For electron
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Monte Carlo prediction.
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Evis is equal to the incoming neutrino energy. Figure 5.15 shows that the measured number

of νe CC’s agrees with the Monte Carlo prediction in each energy bin. The χ2 for the

comparison of the number of νe events to the Monte Carlo prediction is 9.97/15 degrees of

freedom which has a probability of 80%.

5.5 Systematic Uncertainties

The major sources of uncertainties in the comparison of the electron flux extracted from the

data to that predicted by the Monte Carlo are: the statistical error from the fit in extracting

the νe events, the error in the shower shape modeling, the absolute energy calibration of the

detector, and the uncertainty in the calculation of the incident flux of νe’s on the detector.

Other sources of systematic errors were also investigated and were found to be small.

5.5.1 Shower shape modeling

We estimate the error in the shower shape modeling by extracting the νe events using two

definitions of η. Analogous to the definition of η3 given in Equation 5.3, we define η4 as:

η4 = 1− E1 + E2 + E3 + E4

Evis
(5.9)

If the modeling of the showers were correct, the difference in the number of electron neutrinos

measured by the two methods should be small, any difference is used as an estimate of the

systematic error. Since this error can be shown not to be correlated among energy bins, we

add it in quadrature to the statistical error from the fit and take this to be the combined

basic error. Table 5.9 lists the number of νe’s extracted using the two methods, and compares

the difference to the statistical error from the fit.

We study the correlation among energy bins by extracting the νe events in one bin above

80 GeV using the same procedure described in the previous section. Using the original

binning, the measured number of electron neutrinos above 80 GeV is 18378.9 using η3 and

19160.6 using η4 for a difference of 781.7 events. The number of electron neutrino extracted
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Energy (GeV) # νe’s (η3) # νe’s (η4) νe(η3)− νe(eta4) fit error combined

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 105
105 - 120
120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

168.4
473.5
789.2
595.5
950.3
1126.4
1732.4
1955.2
1973.4
1844.3
3027.2
2289.0
2547.2
1167.3
716.5

433.7
666.7
850.5
520.3
888.8
1189.5
1846.2
1984.8
2037.7
1968.6
3149.8
2382.9
2627.3
1193.0
780.8

-265.3
-193.2
-61.3
75.3
61.5
-63.2
-113.8
-29.6
-64.3
-124.2
-122.7
-93.9
-80.2
-25.6
-64.2

185.4
164.3
147.7
136.8
124.4
116.0
129.0
122.5
110.0
104.1
127.0
105.7
119.3
76.3
62.5

323.7
253.6
159.9
156.1
138.8
132.1
172.0
126.0
127.4
162.1
176.6
141.4
143.7
80.5
89.6

Table 5.9: Number of CC νe’s extracted using the η3 and η4 methods. The difference
between the two methods is used to estimate the systematic error in the shower shape
modeling.

in one single bin above 80 GeV is 18322.8 ± 354.8 using η3, and 18663.7 ± 366.0 using η4

for a difference of 340.9 events which is within the statistical error from the fit. From this

we conclude that: (i) the number of measured νe’s is not correlated among energy bins. (ii)

the difference in the number of events measured by the η3 and η4 methods is an estimate

of the systematic uncertainty in the shower modeling.

The shower modeling depends strongly on the experimental determination of the longi-

tudinal vertex. A shift of one counter in PLACE would change: (i) The amount of energy

deposited in the first three scintillation counters. We studied this effect by changing the

value of PLACE by one counter downstream for all the showers and then recalculating the

η3 distribution. For each type of shower, we form a new η3 distribution:

ηnew3 (x) = (1− x)(ηorig3 ) + x(ηshift3 ) (5.10)

where x is the fraction of events for which PLACE was shifted downstream by one counter.

We vary x from 0 to 0.1 in steps of 0.01, and measure the change in the number of νe’s. This
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Energy misid. Energy misid. Energy misid.
(GeV) frac. (%) (GeV) frac. (%) (GeV) frac. (%)

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80

5.15
5.15
5.15
4.16
4.16

80 - 90
90 - 105
105 - 120
120 - 135
135 - 150

4.07
4.07
3.91
3.91
2.75

150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

2.75
2.73
2.99
3.19
2.80

Table 5.10: Fraction of events for which the place finding algorithm misidentifies the inter-
action vertex by 1 counter (Monte Carlo prediction).

is used to extract the systematic error due to the presence of a fraction x of events for which

PLACE is misidentified. The fraction of such events is estimated from the NN PLACE

distributions shown in Figure 5.2 and is listed in Table 5.10. The overall change in the

number of νe’s measured as a function of Evis due to uncertainties in the determination of

the NN PLACE is listed in Table 5.11. (ii) The muon track correction applied to the short

events. We studied this effect by adding the muon track pulse heights starting one counter

downstream from the NN PLACE. The η3 distribution is calculated from the NN PLACE.

Using the same procedure described above we calculate the change in the number of νe’s

measured which is listed in Table 5.12. (iii) The simulation of νe CC interactions. For this

we assume the NN PLACE of the νe shower is known but that the electromagnetic shower

was added one counter downstream from it. The change in the number of measured νe’s

due to this uncertainty is listed in Table 5.13.

5.5.2 Energy Calibration

The uncertainties in the energy calibration of the detector come from both the muon and

hadron energy calibrations. The uncertainty in the muon energy calibration changes the

energy scale of the relative flux extracted using low hadron energy CC events (events for

which the muon carries most of the neutrino energy). On the other hand, an uncertainty in

the hadron energy calibration directly affects the measurement of Evis, the visible energy
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Evis (GeV) ∆νe Evis (GeV) ∆νe Evis (GeV) ∆νe
30 - 40
40 - 50
50 - 60
60 - 70
70 - 80

1.0
5.8
0.7
7.9
10.0

80 - 90
90 - 105
105 - 120
120 - 135
135 - 150

3.5
10.5
12.2
24.1
17.2

150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

40.9
24.3
10.9
0.6
7.1

Table 5.11: Change in the number of νe’s measured due to events for which the interaction
place was misidentified

Evis (GeV) ∆νe Evis (GeV) ∆νe Evis (GeV) ∆νe
30 - 40
40 - 50
50 - 60
60 - 70
70 - 80

-44.3
-20.5
1.8
-4.6
-10.7

80 - 90
90 - 105
105 - 120
120 - 135
135 - 150

-3.3
13.0
-8.3
-6.4
8.3

150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

-6.0
2.5
-5.8
-1.1
0.7

Table 5.12: Change in the number of νe’s measured due to short events for which the muon
track correction was applied 1 counter downstream of the true interaction vertex.

Evis (GeV) ∆νe Evis (GeV) ∆νe Evis (GeV) ∆νe
30 - 40
40 - 50
50 - 60
60 - 70
70 - 80

9.9
7.4
13.0
7.9
20.4

80 - 90
90 - 105
105 - 120
120 - 135
135 - 150

20.2
39.7
39.4
44.3
24.3

150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

45.8
35.3
44.0
24.6
15.3

Table 5.13: Change in the number of νe’s measured due to adding the electron shower 1
counter downstream of the interaction vertex when simulating νe events.
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Evis (GeV) ∆νe(mu) ∆νe(had) Evis (GeV) ∆νe(mu) ∆νe(had)

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 105
105 - 120

-14.7
9.6
1.8
2.5
4.3
8.0

-21.2
-18.5

-0.1
-11.9
1.2
20.0
36.5
-3.9
41.4
-3.0

120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

16.8
-87.5
-72.8
-8.9
44.7
30.3
55.0

10.4
39.3
-51.3
-32.5
17.8
-16.2
-22.2

Table 5.14: Effect on the number of νe’s predicted by the Monte Carlo from the 1%uncer-
tainty on the calibration for the muon and hadron energy.

deposited in the calorimeter, and hence the neutrino flux. The calibration for the muon

and hadron energy is known with an uncertainty of 1% [51]. The effect of the detector

calibration on the predicted νe flux is listed in Table 5.14.

5.5.3 Electron Neutrino Flux

The error in the predicted νe flux was estimated to be 4.1% [56]. This error is dominated

by a 20% production uncertainty in the KL content of the secondary beam which produces

16% of the νe flux. The majority of the νe flux comes from K±
e3 decays, which are well-

constrained by the observed νµ spectrum from K±
µ2

decays [56]. For a detailed description

of the systematic uncertainties affecting the electron neutrino flux see section 4.3.

5.5.4 Ratio of Short to Long Events

The error in the ratio of short to long events is dominated by the uncertainty in the on-

shell mixing angle from outside measurements. It has a large effect on the number of νe’s

because we extract the number of νe’s as a fraction of short events, whereas the data and

the Monte Carlo are normalized to a sample of long events with a well determined muon

momentum. The sin2 θW value in the on-shell renormalization scheme is 0.2232 ± 0.0018.

This value is obtained using the world average value MW measurement [70], the prediction

from the measured MZ , and the average of all LEP and SLD Z-pole measurements from
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Energy (GeV) ∆νe’s Energy (GeV) ∆νe’s

30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 105
105 - 120

-0.31
-2.16
-4.13
-3.02
-4.84
-5.89
-8.89
-9.60

120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

-9.48
-9.31
-14.14
-10.87
-11.13
-5.27
-3.39

Table 5.15: Change in the number of electron neutrinos due to +1σ change in the value of
sin2 θW .

[71]. The MZ extraction is corrected for the re-evaluation of αEM by Swartz [72]. A top

mass of 180± 12 GeV [73] and 60 < MHiggs < 1000 GeV are used to convert from the MS

and MZ schemes to the on-shell scheme used in this analysis. Table 5.15 lists the change

in the νe flux in each of the energy bins studied due to the uncertainty in the measurement

of sin2 θW .

5.5.5 NC/CC Shower Differences

This analysis assumes that NC and CC hadron showers have the same energy deposition

profile and energy calibration in the calorimeter. It is possible for the calibration and η3

to differ because the two shower types have different mean electromagnetic components. A

Lund Monte Carlo simulation provided the conservative estimate that the energy calibra-

tion for CC and NC hadron showers differ by no more than 0.4%. The Lund generated

showers were input into a GEANT simulation and tracked in the calorimeter. The energy

deposition profile of hadron showers generated in NC and CC interactions was compared.

The muon track pulse heights for the CC events were not included in the comparison. We

used a Kolmogorov test to compare the shape of the NC and CC η distributions by cal-

culating a probability PROB as a number between zero and one, which is a measure of

the likelihood that the two distribution were the same. A PROB near one indicates very
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similar histograms, and PROB near zero means that it is very unlikely that the two arose

from the same parent distribution. For all energy bins studied the two shapes were found

to be similar with probabilities greater than 0.9. As a further test, we used our νe anal-

ysis method to extract the number of “fake” νe events mixed in with NC events from the

Monte Carlo. The “fake” νe events were generated by convoluting electromagnetic and CC

GEANT generated showers appropriate for the νe energy spectrum. For all cases studied

the extracted number of electron neutrinos was equal within errors with the input value.

Consequently, we believe that any differences in the CC and NC shower energy deposition

profiles does not affect the νe extraction. The η3 distributions for NC and CC showers in

some of the energy bins studied are plotted in Figure 5.16.
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Figure 5.16: Comparison of the η distribution for Lund/GEANT simulated NC (solid line)
and CC events (dashed line).
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Chapter 6

Results

6.1 Oscillation Analysis

For this oscillation search we compare the absolute flux of νe’s measured at the detector to

the flux predicted by a detailed beamline simulation. Any excess could be interpreted as a

signal of νµ → νe oscillations. The νµ flux was determined directly from low hadron energy

CC event sample, normalized to the total neutrino cross-section (see chapter 4). The same

beamline simulation is used to tag the creation point of each simulated interacting νµ along

the decay pipe. As it can be seen from Figure 6.1, the neutrino flight length distribution is

almost flat over the length of the decay pipe.

The probability for a muon neutrino of energy Eν having traveled a distance L to

oscillate to an electron neutrino is given by:

P (νµ → νe) = sin2 2θ sin2
(
1.27∆m2L

Eν

)
(6.1)

If we take the average flight length to be on the order of 1 km, and using the neutrino

average energy 〈E〉 ≈ 160 GeV, we find that

q =
1.27L

E
∼ 1

100
eV−2 (6.2)

The oscillation probability, given by Eq. 6.1, is maximal when ∆m2 is approximately equal

to 1/q. Therefore, we can expect the maximum sensitivity for this experiment to be at

∼ 100 eV2.
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Figure 6.1: Neutrino flight length distribution. The mesons decay over a region between
1.5 and .9 km away from the detector.

The oscillation probability for all neutrinos is calculated by integrating Eq. (6.1) over the

Eν and flight length distributions for each species of neutrinos. To do this we use the beam

Monte Carlo which also incorporates the detector acceptance. Given the flux of incoming

muon neutrinos, for a given ∆m2 and sin2 2θ we can calculate the flux of electron neutrinos

resulting from oscillations since the neutrino energy and the decay point are available for

every generated event. The resulting fluxes are shown in Figure 6.2.

The number of νµ’s at the detector predicted by the beam Monte Carlo is normalized

to the number observed at the detector divided by 1−P (νµ → νe) where P (νµ → νe) is the

oscillation probability determined from Equation 6.1. We assume CP invariance because

we cannot distinguish between neutrinos and anti-neutrinos so P (νµ → νe) = P (νµ → νe).

The predicted electron neutrino flux is normalized to the produced number of νµ’s. The νe
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sin2 2α = 0.01 (dashed line) and for ∆m2 = 70 eV2 and sin2 2α = 0.01 (dotted line).
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flux from neutrino oscillations is calculated by multiplying the produced number of νµ’s by

P (νµ → νe).

Figure 6.3 shows the measured number of νe’s as a function of neutrino energy compared

to the Monte Carlo prediction assuming no oscillations. The χ2 for the no-oscillation case

is 9.97/15 degrees of freedom which is consistent with the no oscillation hypothesis with a

probability of 80%. The νe flux if we assume νµ → νe oscillations with sin2 2α = 0.01 and

∆m2 = 2000 eV2 and ∆m2 = 100 eV2 is also plotted and it is clearly highly unlikely.

To set the oscillation limits on the allowed ∆m2− sin2 2α region at 90% confidence level

we fit the data by forming a χ2 which incorporates the Monte Carlo generated effect of

oscillations, the basic error, and terms with coefficients accounting for systematic uncer-

tainties. In order to include the systematic uncertainties with the correlation between the

data points, one introduces a weighting factor, Ci, for each uncertainty that modulates the

correlated changes in the data - Monte Carlo difference. The Ci factors are set up so that

a value of 1 corresponds to a correlated one sigma shift in each of the data points. The

contribution to the χ2 from the given systematic uncertainty is then equal to C2
i divided

by its standard error which is 1. Accordingly, we define the χ2 function to be:

χ2 =
∑

energy bins

(
Data(Evis)−MC(Evis; ∆m

2, sin2 2θ, Ci)

σbasic

)2

+
∑

i∈{systematics}

C2
i (6.3)

where Ci are the coefficients of the nine systematic errors discussed in the previous section

and listed in Table 6.1, and σbasic is the basic error. This procedure can be shown to be

equivalent to a full error matrix with all correlations between the set of data points taken

into account.

At each ∆m2 we minimize this χ2 letting all the Ci’s float along with sin2 2α. This

assumes a linear effect in the number of νe’s from oscillations with sin2 2α such that:

∆νosce (Eν) = f∆m2(Eν) sin
2 2α (6.4)

where f∆m2 is the νe oscillation spectrum from oscillations at a given ∆m2 assuming full
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Energy (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
(GeV)
30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90

90 - 105
105 - 120
120 - 135
135 - 150
150 - 175
175 - 200
200 - 250
250 - 300
300 - 600

10.5
18.0
26.0
32.7
38.7
45.0
73.5
76.4
79.5
74.9

108.7
89.6

106.3
46.1
30.9

-0.7
-6.5
-5.2
1.0

-24.0
-21.1
-28.6
25.8
19.2
-1.6
52.8
94.4

129.8
19.1
35.6

16.8
6.5

19.9
21.0
15.8
10.6
21.6
8.8

24.3
-7.4

-22.1
-20.0
-78.0
-50.1
-42.6

0.9
1.4
1.8
1.9
2.2
2.4
2.9
2.8
1.8
1.0
0.7
-0.5
-2.0
-1.3
-1.4

9.9
7.4

12.9
8.0

20.4
20.8
39.7
39.4
44.3
24.3
45.8
35.4
44.0
24.6
15.3

-44.3
-20.5
1.8
-4.6

-10.7
-3.3
13.0
-8.3
-6.4
8.3
-6.0
2.5
-5.8
-1.1
0.7

1.0
5.8
0.7
7.9

10.0
3.5

10.5
12.2
24.1
17.2
40.9
24.3
10.9
0.6
7.1

-0.1
-11.9
1.2

20.0
36.5
-3.9
41.4
-3.0
10.4
39.3
-51.3
-32.5
17.8
-16.2
-22.2

-14.7
9.6
1.8
2.5
4.3
8.0

-21.2
-18.5
16.8
-87.5
-72.8
-8.9
44.7
30.3
55.0

Table 6.1: Systematic uncertainties in the number of νe events from (i) νe Monte Carlo
prediction (±4.1%), (ii) normalization factor, (iii) e/π detector response (1.05 ± 0.015),
(iv) charm mass (1.32± 0.24), (v) νe shower convolution, (vi) moun track correction, (vii)
longitudinal vertex position, (viii) hadron energy calibration (±1%), and (ix) muon energy
calibration (±1%).

mixing (i.e. sin2 2α = 1). The dependence of P (νµ → νe) with ∆m2 is shown in Figure 6.4.

For low values of ∆m2 we are sensitive only to the low end of the energy spectrum. As the

value of ∆m2 increases, so does the sensitivity at high neutrino energies.

Table 6.2 lists the best fit value of sin2 2α and the 1σ error from the fit for the 38 ∆m2

values used. The same values are shown in Figure 6.5, where we plot the best fit sin2 2α in

units of σ as a function of ∆m2. It can be easily seen that although the the best fit sin2 2α

values are slightly negative, they are well within the errors and consistent with zero.

The values of the systematic coefficients Ci are a measure of the information contained

in the data on that particular systematic. A small value for any coefficient means that

the data has no information on that particular systematic. An advantage of letting the

systematic errors float in the fit is that it automatically includes the correlated error in

sin2 2α from all the systematic errors which were assumed to be uncorrelated. Figure 6.6

shows the pull from the systematic errors listed in Table 6.1, where the pull is defined as the

fit value of the Ci for the given systematic uncertainty. The major source of uncertainties in
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Figure 6.4: The oscillation probability for various ∆m2. For low ∆m2 values sensitivity
comes only from the low energy end of the spectrum. As ∆m2 increases, so does the
sensitivity to the high end of the energy spectrum.
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∆m2 (eV 2) sin2 2α 1σ 90% C.L.

1.0
2.0
3.0
4.0
5.0
7.0
9.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
125.0
150.0
175.0
200.0
225.0
250.0
275.0
300.0
350.0
400.0
450.0
500.0
600.0
700.0
800.0
1000.0
1500.0
2000.0
5000.0
10000.0
20000.0

-0.1741
-0.0501
-0.0153
-0.0112
-0.0051
-0.0036
-0.0021
-0.0023
-0.0004
-0.0003
-0.0002
-0.0002
-0.0002
-0.0002
-0.0003
-0.0003
-0.0002
0.0004
0.0005
0.0000
-0.0002
-0.0003
-0.0004
-0.0004
-0.0004
-0.0004
-0.0003
-0.0003
-0.0004
-0.0005
-0.0003
-0.0002
-0.0004
-0.0003
-0.0004
-0.0003
-0.0004
-0.0004

1.6501
0.4107
0.1852
0.1041
0.0671
0.0345
0.0213
0.0173
0.0048
0.0026
0.0018
0.0015
0.0014
0.0014
0.0014
0.0015
0.0015
0.0018
0.0019
0.0016
0.0014
0.0013
0.0012
0.0012
0.0012
0.0012
0.0013
0.0015
0.0016
0.0019
0.0018
0.0018
0.0017
0.0017
0.0017
0.0018
0.0017
0.0017

1.9380
0.4756
0.2218
0.1220
0.0808
0.0405
0.0252
0.0198
0.0057
0.0030
0.0022
0.0017
0.0015
0.0015
0.0015
0.0016
0.0018
0.0027
0.0028
0.0021
0.0016
0.0013
0.0012
0.0011
0.0011
0.0012
0.0013
0.0016
0.0017
0.0020
0.0020
0.0020
0.0018
0.0019
0.0019
0.0019
0.0018
0.0018

Table 6.2: The result for sin2 2α from the fit at each ∆m2 for νµ → νe oscillations. The
90% confidence level limit is equal to the best fit sin2 2α+ 1.28σ.
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Figure 6.5: Best fit sin2 2α with 1σ errors as a function of ∆m2 (top), and sin2 2α divided
by the 1σ error for each ∆m2 (bottom). The results are consistent with the no oscillation
hypothesis (sin2 2α = 0).
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the extraction of sin2 2α is the basic error which is dominated by the statistical error. Other

important uncertainties are: (i) the uncertainty in the incident flux of νe’s at the detector.

(ii) The uncertainty in the absolute energy calibration of the detector as measured by the

muon and hadron scales. (iii) shower shape modeling of the νe sample. The effect these

systematic errors have on sin2 2α is listed in Table 6.3. Figure 6.7 shows the correlation

between each systematic error studied and sin2 2α.

Source of Error ∆m2 = 2000 eV2 350 eV2 70 eV2

basic error 1.7× 10−3 1.2× 10−3 1.4× 10−3

shower shape modeling 3.5× 10−4 2.4× 10−4 1.5× 10−4

νe beam content 6.1× 10−4 4.1× 10−4 4.3× 10−4

norm. fraction 3.6× 10−6 4.3× 10−6 1.6× 10−5

e/π 8.2× 10−6 2.1× 10−5 1.1× 10−5

charm mass 1.4× 10−7 3.7× 10−8 3.4× 10−7

νe shower convolution 1.3 ×10−4 8.4× 10−5 8.3× 10−5

µ correction 2.3× 10−6 8.9× 10−7 2.1× 10−6

long vertex position 2.1× 10−5 9.4× 10−6 1.5× 10−5

hadron scale 6.2× 10−5 1.9× 10−5 1.8× 10−4

muon scale 3.8× 10−4 3.0× 10−4 1.0× 10−4

total 1.8× 10−3 1.3× 10−3 1.5× 10−3

Table 6.3: The change in sin2 2α from a one sigma shift in the uncertainties studied. The
row labeled “total” includes all the uncertainties added in quadrature.

Setting a 90% confidence upper limit means that for a given αtrue we find a lower limit

αlimit such that 90% of αexp measurements lie above the this value of αlimit, where αexp

are the experimental measured values of α if we were to repeat the experiment many times.

Consequently, we can say that the value of αtrue lies below the 90% confidence limit αlimit

with a 90% probability. In real life it is not possible (or at least not practical) to repeat

an experiment like CCFR many times, so we have to determine this limit using statistical

means.

In general, given a probability density function (p.d.f.) with known parameters we can

predict the frequency with which a continuous variable lies in a given range. When we

make a measurement we have the opposite problem of estimating the parameters of the
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Figure 6.6: The effect of the systematics on the measurement of sin2 2α as a function of the
mass squared difference ∆m2. (a) νe incident MC flux, (b) normalization fraction (c) the
ratio of the hadron to the electromagnetic response of the detector, (d) charm mass, (e) νe
CC shower simulation, (f) µ track correction, (g) longitudinal vertex position uncertainty,
(h) hadron scale, and (i) µ scale.
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Figure 6.7: Systematic errors correlation to sin2 2α as a function of the mass squared
difference ∆m2. (a) νe incident MC flux, (b) normalization fraction (c) the ratio of the
hadron to the electromagnetic response of the detector, (d) charm mass, (e) νe CC shower
simulation, (f) µ track correction, (g) longitudinal vertex position uncertainty, (h) hadron
scale, and (i) µ scale.
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p.d.f. from a set of actual observations. We define an estimator α̂ as any function of the

data, plus known constants, which does not depend upon any of the unknown parameters

and whose value is intended as a meaningful guess of the unknown parameters.

The measurement of a physical constant α results in an estimator α̂, together with some

knowledge of the experimental error and therefore knowledge of the parametrized p.d.f. that

allows us to state the probability with which repeated experiments would produce results in

a given range. The measurement is made assuming that a “true answer” α exists and that

the estimator α̂ samples a distribution with p.d.f. f(α̂;α). Therefore we assume that for

every value of α we can find two values γ1(α, ǫ) and γ2(α, ǫ) such that repeated experiments

would produce results in the interval γ1 < α̂ < γ2 a fraction 1− ǫ of the time, where

1− ǫ =

∫ γ2

γ1
f(α̂;α) dα̂ (6.5)

where the choice of γ1 and γ2 can be made in an infinite number of ways. Our measurement

does not permit us to comment about α itself, which in this language is a constant, instead

we can say that with a given probability the unknown parameter lies between c1 and c2.

The situation is shown in Fig. 6.8.

If the data are such that the distribution of the estimator satisfies the central limit

theorem, the Gaussian distribution is the basis of the error analysis. The central limit

theorem states that if a continuous random variable x is distributed according to any p.d.f

with finite mean and variance, then the sample mean, xn, of n observations of x will have

a p.d.f. that approaches a Gaussian as n increases. For this measurement, although we are

not able to repeat it many times, we take the distribution of the estimator to be Gaussian.

Consequently,

1− ǫ =

∫ µ̂+δ

µ̂−δ
f(x; µ̂, σ2) dx = erf

(
δ√
2σ

)
, (6.6)

where erf(x) is the error function available in computer math libraries and σ is the rms

deviation, is the probability that the true value of µ will fall within ±δ (δ > 0) of the
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Figure 6.8: The confidence level method. The curves γ1 and γ2 represent fixed values for
the experimental estimate α̂. The domain D(ǫ) contains a fraction 1− ǫ of the area under
each of these functions.

measured µ̂. This interval will cover µ in a fraction 1 − ǫ of all similar measurements.

Confidence coefficients ǫ for frequently used choices of δ are given in Table 6.4. From these

coefficients we can say that given a measurement µ̂ the region of values above µ̂ + 1.64σ

and below µ̂− 1.64σ is excluded at 90% confidence level. For a one-sided (upper or lower)

limit we exclude the region above µ̂ + δ (or below µ̂ − δ). The values of the confidence

coefficients ǫ for such limits are 1/2 of the values listed in Table 6.4. Since sin2 2α can have

only positive physical values, being given a measurement of sin2 2α consistent with zero,

then at 90% confidence level the region above sin2 2α+ 1.28σ is excluded.

The question of how to extend the concept of confidence limit when a measurement is

made near a physical boundary is one of the most divisive in high energy physics. If we

assume, for simplicity, that α must be positive and that the true value is a small number

close to the physical boundary, then a significant fraction of repetitions of the experiment
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ǫ (%) δ

20
10
5
2
1
0.1
0.01

1.28σ
1.64σ
1.96σ
2.33σ
2.58σ
3.29σ
3.89σ

Table 6.4: Area of the tails ǫ outside ±δ from the mean of a Gaussian distribution.

would produce negative α̂. The frequentist approach [74] states that there are several ad

hoc ways to set confidence limits in such a case:

1. If α̂exp > γ1(0, ǫ) then use c2 for the upper limit, whether or not α̂exp > 0.

2. If α̂exp < 0 and α̂exp < γ1(0, ǫ) use the c2 corresponding to α̂exp = 0.

3. If c1 is not defined, “lift up” α̂ to γ2(0, ǫ), where c1 = 0. Use the corresponding c2 as

the upper limit.

One should note that there are regions where more than one of the previous options can be

used, with option 3 being the most conservative. For this analysis we choose to use option 1

since all measured values of sin2 2α lie above γ1(ǫ), i.e. sin
2 2α+ 1.28σ > 0.

Using the measured values of sin2 2α and the error, σ, for each ∆m2 value listed in

Table 6.2 we can calculate for each ∆m2, at various confidence levels, the values of sin22α

excluded by this measurement. Since the real value of sin2 2α is always positive or zero,

we set a one-sided upper limit. For example, at ∆m2 = 100 we measure sin2 2α to be

−1.6×10−4 with an error σ = 1.54×10−3. Then, at 90% confidence level sin2 2α > 1.8×10−3

is excluded by this measurement. Figure 6.9 shows the 90%, 95%, and 99% upper limits for

this measurement. The region in the (sin2 2α,∆m2) phase space to the right of the curve

excludes neutrino oscillations at the corresponding confidence level.
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Figure 6.9: Upper limits for νµ ↔ νe oscillations from this analysis at 90%, 95% and 99%
confidence level. The excluded region of sin2 2α and ∆m2 at a given confidence level is the
area to the right of the corresponding curve.
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6.2 Comparison to the R30 Method

The CCFR collaboration has previously reported a limit on νµ → νe oscillations using the

ratio of neutral to charged current events [18]. Accordingly we define R30 to be the number

of “short” events divided by the number of “long” events [38, 56]. For this measurement

“short” events were defined to be those events which deposit energy over an interval of 30

or fewer scintillation counters. This ratio is strongly dependent on the ratio of neutral to

charged current events which is a function of the electroweak mixing angle, sin2 θW ,

Rν(ν) =
σ
ν(ν)
NC

σ
ν(ν)
CC

= ρ2
[
1

2
− sin2 θW +

5

9
sin4 θW

(
1 +

σ
ν(ν)
CC

σ
ν(ν)
CC

)]
(6.7)

Assuming the validity of the Standard Model, and using a value for sin2 θW measured in

other processes we can predict the ratio of neutral to charged current events in the CCFR

detector, and thus R30. The presence of ντ or additional νe in the neutrino beam would

cause the measured R30 to be larger than the expected value because most charged current

tau and electron neutrino interactions do not produce a muon in the final state and will

thus appear in the “short” event sample. We attribute any deviation in our measured R30

from the predicted value to νµ → ντ or νµ → νe oscillations. This technique, which has

been discussed previously [75, 76, 77], assumes that only one of the two types of flavour

oscillation contributes to a change in R30, and is therefore conservative since both types of

oscillations would increase the measured R30.

We used a detailed Monte Carlo to relate a given νµ → ντ or νµ → νe oscillation

probability to the quantity R30. A sin2 θW value, from other experiments converted to

the on-shell renormalization scheme, of 0.2232 ± 0.0018 is input to the Monte Carlo [18].

The other inputs to the Monte Carlo are parametrizations of the measured CCFR detector

responses [51], nuclear structure functions [78], and relative neutrino beam fluxes extracted

from the charged current data sample [55, 54]. The νe flux used is the beamline simulation

prediction described in section 5.5.3 which is normalized by the observed νµ flux.
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To simulate ντ,e interactions in our detector we assumed the ντ,e neutral current cross

section is the same as for νµ interactions. The ντ charged current cross section was calcu-

lated including mass suppression terms. Following [79] we used the approximation that the

structure functions F4 = 0, and xF5 = 2xF1. The kinematic suppression for the massive

tau production was also taken into account. The Monte Carlo program TAUOLA [80] was

used to simulate tau decays.

For each ∆m2, the Monte Carlo prediction for R30(Ecal, sin
2 2α) is compared with

R30(Ecal) from the data, where Ecal is the energy deposited in the calorimeter in the first

twenty counters following the event vertex. Figure 6.10 shows the R30 distribution as a

function of Ecal for the data and for the Monte Carlo simulation. The detailed shape of

R30(Ecal) depends on many competing effects which are put in the Monte Carlo, but is dom-

inated by the variation of short charged current events with Ecal and by the contribution

from the predicted νe flux.

There are four major uncertainties in the comparison of R30(Ecal) from the Monte Carlo

to the data: the statistical error in the data, the uncertainty in the effective charm quark

mass for charged current production, the uncertainty in the incident flux of νe’s on the

detector, and the uncertainty in the on-shell mixing angle from outside measurements. The

charm mass error comes from the uncertainty in modeling the turn-on of the charm quark

production cross section. The Monte Carlo uses a slow-rescaling model with the parameters

extracted using events with two oppositely charged muons in this experiment [81]. Other

sources of systematic uncertainties were also investigated [56].

The data are fit by forming a χ2 which incorporates the Monte Carlo generated effects of

oscillations, and statistical and systematic uncertainties. A best fit sin2 2α is determined for

each ∆m2 by minimizing the χ2 as a function of sin2 2α and the 33 systematic coefficients.

The frequentist approach is used to set a 90% confidence upper limit for each ∆m2. The

90% confidence upper limits are plotted in Figure 6.11 for each case.
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Figure 6.10: R30 as a function of Ecal for the data (points). The filled band shows the Monte
Carlo prediction assuming no oscillations with 1σ systematic errors added in quadrature.
Data points show statistical errors only. The dotted and dashed curves show the effect of
νµ → νe oscillations.

Figure 6.12 shows the 90% confidence upper limits using the R30 method and the η

analysis method from νµ → νe oscillations. The eta analysis method, which is the principal

measurement of this thesis, shows an improvement in the limit for all ∆m2 values. The two

methods use the same data sample; however, the η measurement uses additional information

from the event shape. The two methods share the large systematic uncertainty from the

predicted νe flux, but the R30 method has additional large contributions from external

parameters such as the charm mass, and the world average value of the on-shell weak

mixing angle, sin2 θW . The charm mass parameter comes into the charged current cross

section, but does not affect the neutral current cross section, therefore the ratio R30 is

affected by the uncertainty in this value. The η method is not sensitive to the charm mass
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Figure 6.11: Excluded region of sin2 2α and ∆m2 for νµ → ντ,e oscillations from the R30

analysis at 90% confidence is shown as dark, solid curves.
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since the charm mass comes into the cross section for both the predicted νe CC events, and

the νµ CC events to which they are normalized. Consequently, the number of νe’s predicted

is not affected by this uncertainty. Additionally, the η measurement which can detect only

CC νe interactions is independent of the weak mixing angle. Furthermore, the η method

is far less dependent on Monte Carlo modeling. All these effects make the η method more

sensitive in the search for neutrino oscillations than the R30 method and lead to the better

limit shown in Figure 6.12.

6.3 Comparison with Other Oscillation Experiments

The results of this experiment can be compared with other oscillation experiments. Prior

to the completion of this analysis, the regions in the ∆m2 − sin2 2α phase space for which

νµ(νµ) → νe(νe) oscillations were excluded from accelerator experiments are shown in Fig-

ure 1.1. These experiments used either fine-grained calorimetric detectors (e.g. Brookhaven

National Laboratory (BNL) E734, BNL E776), or fully active detectors (e.g. KARMEN,

LSND), searching for quasielastic charged-current production of electrons. The LSND ex-

periment, using a liquid scintillation neutrino target, has recently reported a signal consis-

tent with νµ → νe oscillations at a sin2 2α of ∼ 10−2 and a ∆m2 <
∼ 1 eV2. The results

presented in this thesis from data taken with a massive and relatively coarse-grained detec-

tor establishes such detectors as a viable option for future neutrino experiments searching

for neutrino oscillations. The main advantages of this type of detector are increased inter-

action rate which will be particularly important in a low flux, long base line neutrino beam

[82], and reduced cost.

Figure 6.13 shows the excluded region of sin2 2α and ∆m2 for νµ → νe oscillations from

this analysis at 90% confidence level compared with the previous measurements. Using

the difference in the longitudinal shower energy deposition pattern of νeN versus νµN

charged current interactions we set the most stringent limit to date for νµ → νe interactions
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Figure 6.12: Comparison of νµ → νe confidence upper limits using the R30 method (dashed)
and the η analysis method (solid).
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for ∆m2 > 25 eV2. The CCFR experiment is also unique among the other accelerator

experiments searching for neutrino oscillations because of our high energy neutrino beam

averaging 160 GeV. All other experiments were performed with low energy (a few GeV)

beams, and consequently probe lower values of ∆m2.

6.4 Tests of νµ/νe Universality

Universality is the hypothesis that the fermionic structures of the electromagnetic and weak

interactions are the same for each generation. There are a number of theoretical models

which predict violations of universality. Some examples are super-symmetry, theories with

heavy leptons or heavy, neutral generation-changing gauge bosons, mirror-fermion models,

and theories which view the observed fermion universality as accidental. Some of these lead

to a violation of neutrino universality without a violation of charged-lepton universality.

The experimental detection of a breakdown in universality might indicate the existence of

one of these phenomena. Alternatively, confirmations of universality provide constraints on

various theories.

Under the assumption that there are no oscillations, this data can also be used to test

νµ(νµ) ↔ νe(νe) universality by comparing the observed νe flux to that predicted by the

Monte Carlo. For this comparison we determine the ratio of the cross sections averaged

over our flux by comparing the predicted number of electron neutrinos with the number

measured. The prediction assumes the same coupling and the same form for νe CC and

νµ CC interactions. Deviations from this assumption would appear as a discrepancy in the

number of νe’s measured from that predicted.

To measure the ratio of the νµ to νe cross sections we fit the measured νe flux to the

shape of the predicted νe flux allowing the normalization to float. The χ2 function is given

by:

χ2 =
∑

energy bins

(
MC(Evis;Ci)− U ×Data(Evis)

σbasic

)2

+
∑

i∈{systematics}

C2
i (6.8)
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Figure 6.13: Excluded region of sin2 2α and ∆m2 for νµ → νe oscillations from this analysis
at 90% confidence is the area to the right of the dark, solid curve.
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where Ci are the coefficients to the systematic error discussed previously, and σbasic is the

basic error. We minimize this χ2 letting all the Ci float with the normalization factor, U ,

as the only free parameter. From this we measure

σCC(νµ)

σCC(νe)
=
νe events predicted

νe events observed

∫
Eνe(νe flux predicted) dE∫
Eνe(νe flux observed) dE

= 1.026±0.025(stat)±0.049(syst)

(6.9)

The result is consistent with the universality hypothesis and is currently the most stringent

test of universality at high space-like momentum transfer.

The same method was also used to study a linear dependence on energy of the νµ to νe

cross section ratio by taking the normalization factor to be of the form

U1 + U2〈E〉i, (6.10)

where 〈E〉i is the flux weighted average for each of the 15 Evis bins studied. From the fit

we obtain U1 = 1.044± 0.090 and U2 = −0.0001± 0.0004. From this we conclude that the

ratio of the cross sections doesn’t exhibit any linear dependence on energy.

6.5 Summary and Conclusions

The next several years promise many new oscillation measurements and perhaps some of

the hints for neutrino oscillations will either be confirmed or finally excluded beyond any

doubt. Fermilab continues the rich tradition of neutrino experiments. The NuTeV ex-

periment, a successor of the CCFR experiment, is currently taking data with a new sign

selected quad triplet (SSQT) beam. One can reasonably expect an improvement of the

current CCFR oscillation limits, since one of the main advantages of the SSQT beam is

a reduced νe contamination, and also the detector is being continuously calibrated which

will result in lower systematic uncertainties. The MINOS (Minn.-Ill.-ν-Osc.-Search.) long

baseline experiment which will use the new Main Injector beam, is expected to run in

approximately 2002. CHORUS and NOMAD are running at CERN looking for νµ → νe
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oscillations at large ∆m2 > 10 eV2 but small sin2 2α ≈ 10−4−10−5. The Sudbury Neutrino

Observatory (SNO) and Super-Kamiokande will continue the long history of Solar neutrino

experiments. Figure 6.14 shows the region of phase space currently excluded, and expected

future limits for νµ → νe oscillations together with regions of possible hints of oscillations

from atmospheric and solar neutrino experiments.

For the measurement presented in this thesis, we have used the difference in the longitu-

dinal shower energy deposition pattern of νeN versus νµN interactions to search for νµ → νe

oscillations with a coarse-grained calorimetric detector. We see a result consistent with no

neutrino oscillations and find 90% confidence level excluded regions in the sin2 2α −∆m2

phase space. This result is the most stringent limit to date for νµ → νe oscillation for

∆m2 > 25 eV2, which excludes the high ∆m2 region favoured by the LSND experiment.

This measurement alone cannot constrain the possible values of a particular neutrino mass

since oscillation measurements are sensitive only to mass differences. However, there are

various constraints upon single masses from decay experiments and from cosmological ar-

guments. It is in fact in the high ∆m2 region in which we might expect to find the effects of

cosmologically useful neutrinos. As such, the region in the ∆m2 − sin2 2α plane for which

neutrino oscillations are excluded by this measurement further constrains the mass of a

massive neutrino with the possible implication that neutrinos alone cannot be responsible

for the missing dark matter.

We also tested νµ(νµ) ↔ νe(νe) universality and found the ratio of the νµ-to-νe cross-

section to be 1.026± 0.055.
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Figure 6.14: Current status of νµ → νe oscillations and expected limits from future experi-
ments.
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Appendix B

Journal Publication

The existence of neutrino mass and mixing would have important implications for funda-

mental problems in both particle physics and cosmology. These include violation of lepton

family number conservation, the mass of the universe, and the observed neutrino deficits

from the sun and from atmospheric sources. Neutrino oscillations are a necessary conse-

quence of non-zero neutrino mass and mixing since neutrinos are produced and detected

in the form of weak-interaction eigenstates whereas their motion as they propagate from

the point of production to their detection is dictated by the mass eigenstates [1]. In the

two-generation formalism, the mixing probability is:

P (ν1 → ν2) = sin2 2α sin2
(
1.27∆m2L

Eν

)
(B.1)

where ∆m2 is the mass squared difference of the mass eigenstates in eV2, α is the mixing

angle, Eν is the incoming neutrino energy in GeV, and L is the distance between the point

of creation and detection in km.

To date the best limits from accelerator experiments for νµ → νe oscillations come from

fine-grained calorimetric (e.g.: BNL-E734 [14], BNL-E776 [15]) or fully active detectors

(e.g. KARMEN [16], LSND [17]) searching for quasi-elastic charged current production of

electrons. The LSND experiment, using a liquid scintillator neutrino target, has reported

a signal consistent with νµ → νe oscillations at a sin2 2α ≈ 10−2 and ∆m2 >
∼ 1 eV2 [17].

1Published in Phys. Rev. Lett., 78, 2912 (1997)
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The CCFR collaboration has previously reported a limit on νµ → νe oscillations using the

ratio of neutral to charged current neutrino events comparable in sensitivity to the above

mentioned limits [18].

In this report we present new limits on νµ → νe oscillations based on the statistical

separation of νeN charged current interactions.

The CCFR detector [51, 52] consists of an 18 m long, 690 ton total absorption target

calorimeter with a mean density of 4.2g/cm3, followed by a 10 m long iron toroidal spec-

trometer. The target consists of 168 steel plates, each 3m× 3m× 5.15cm, instrumented

with liquid scintillation counters placed every two steel plates and drift chambers spaced

every four plates. The separation between scintillation counters corresponds to 6 radiation

lengths, and the ratio of electromagnetic to hadronic response of the calorimeter is 1.05.

The toroid spectrometer is not directly used in this analysis which is based on the shower

profiles in the target-calorimeter.

The Fermilab Tevatron Quadrupole Triplet neutrino beam is a high-intensity, non-sign-

selected wideband beam with a ν : ν flux ratio of about 2.5 : 1 and usable neutrino energies

up to 600 GeV. The production target is located 1.4 km upstream of the neutrino detector

and is followed by a 0.5 km decay region. The resulting neutrino energy spectra for νµ, νµ,

νe, and νe induced events are shown in Figure B.1. The beam contains a 2.3% fraction of

electron neutrinos, 82% of which are produced from K± → π0e±
(−)
νe .

The neutrino interactions observed in the detector can be divided into three classes

depending on the type of the incoming neutrino and on the interaction type:

1. νµN → µ−X (νµ charged current (CC) events).

2. νµ,eN → νµ,eX (νµ,e neutral current (NC) events).

3. νeN → eX (νe CC events).

All three types of neutrino interactions initiate a cascade of hadrons that is registered
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Figure B.1: Neutrino energy spectra for νµ, νµ, νe, and νe at the CCFR detector for the
FNAL wideband neutrino beam (Monte Carlo based on relative νµ and νµ fluxes).

by the drift chambers and scintillation counters. The νµ CC events are characterized by

the presence of a muon produced in the final state which penetrates beyond the end of the

hadron shower, depositing energy characteristic of a minimum ionizing particle [51] in a

large number of consecutive scintillation counters. Conversely, the electron produced in a

νe CC event deposits energy in a few counters immediately downstream of the interaction

vertex which changes the energy deposition profile of the shower. The electromagnetic

shower is typically much shorter than the hadron shower and the two cannot be separated

for a νe CC event.

In this analysis four experimental quantities are calculated for each event: the length,

the transverse vertex position, the visible energy and the shower energy deposition profile.

The event length is determined to be the number of scintillation counters spanned from

the event vertex to the last counter with a minimum-ionizing pulse height. The mean

position of the hits in the drift chamber immediately downstream of the interaction vertex
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determines the transverse vertex position. The visible energy in the calorimeter, Evis is

obtained by summing the energy deposited in the scintillation counters from the interaction

vertex to five counters beyond the end of the shower. The shower energy deposition profile

is characterized by the ratio of the sum of the energy deposited in the first three scintillation

counters to the total visible energy. Accordingly, we define

η3 = 1− E1 + E2 + E3

Evis
(B.2)

where Ei is the energy deposited in the ith scintillation counter downstream of the interac-

tion place.

The most downstream counter with energy deposited from the products of the neutrino

interaction (CEXIT) occurs at the end of the hadron shower for νµ NC and νe CC events

but is determined by the muon track for most νµ CC events. We isolate the events without

a muon track by requiring CEXIT to be no more than 10 counters downstream from the

end of the hadron shower. We parametrize the event length which contains 99% of such

events as:

LNC = 4.+ 3.81× log(Evis) (B.3)

In order to measure the number of νe CC events we divide the neutrino events into

two classes: “short” if they deposit energy over an interval shorter than LNC , and “long”

otherwise. The long events consist almost exclusively of class 1 events, while the short ones

are a mixture of class 2, class 3 and class 1 events with a low energy muon which cannot

be separated on an event-by-event basis.

Based on Lund studies, we assume that for the same shower energy, the hadron showers

produced in NC and CC interactions are the same. Any difference in the shower energy

deposition profile of long and short events is attributed to the presence of νe CC interactions

in the short sample. To compare directly the long and short events a muon track from the

data was added to the short events to compensate for the absence of a muon in NC events.
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The fraction, f, of νµ CC events with a low energy muon contained in the short sample which

now have two muon tracks was estimated from a detailed Monte Carlo of the experiment in

the range of 20%. A simulated sample of such events was obtained by choosing long events

with the appropriate energy distribution from the data to which a second short muon track

was added in software. The length of the short track and the angular distribution were

obtained from a Monte Carlo of νµ CC events.

To simulate νe interactions in our detector we assume νµ− νe universality. The electron

neutrino showers were generated by adding a GEANT [69] generated electromagnetic shower

of the appropriate energy to events in the long data sample. The energy distribution of

the electron neutrinos and the fractional energy transfer y were generated using a detailed

Monte Carlo simulation of the experiment. Since the hadron showers in the long sample

already have a muon track, the νe sample can be compared directly with the short and long

events.

The long and short η3 distributions were further corrected by subtracting the contami-

nation due to cosmic ray events. The cosmic ray background was estimated from the event

sample collected during a beam off gate using an identical analysis procedure as for the data

gates. Additionally, the η3 distribution of short νµ CC events, normalized to the predicted

fraction f, was subtracted from the short event sample. The η3 distributions for short, long,

and νe events for various energy bins are shown in Figure B.2.

For this oscillation search we measure the absolute flux of νe’s at the detector and

compare it to the flux predicted by a detailed beamline simulation [56]. Any excess could

be interpreted as a signal of νµ → νe oscillations. The νµ flux was determined directly from

the low hadron energy CC event sample, normalized to the total neutrino cross-section [55].

The same beamline simulation is used to tag the creation point of each simulated νµ along

the decay pipe, and give the number of predicted νµ’s at the detector normalized to the

number observed at the detector divided by 1 − P (νµ → νe). P (νµ → νe) = P (νµ → νe)
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Figure B.2: Eta distributions for short (solid line), long (dashed line) and νe (dotted line)
events in four of the energy bins studied. The νe and long distributions are normalized to
the respective number of events predicted by the fit.

is the oscillation probability determined from eq. (B.1), assuming CP invariance. The

predicted electron neutrino flux is normalized to the produced number of νµ’s. The νe

flux from neutrino oscillations is calculated by multiplying the produced number of νµ’s by

P (νµ → νe).

The events selected are required to deposit a minimum of 30 GeV in the target calorime-

ter to ensure complete efficiency of the energy deposition trigger. Additionally, we require

the event vertex to be more than 5 counters from the upstream end of the target and five

counters plus the separation length from the downstream end and less than 50” from the

detector centre-line. The resulting data sample consists of 632338 long events and 291354

short ones.

To extract the number of νe CC events in each of 15 Evis bins, we fit the corrected shape

of the observed η3 distribution for the short sample to a combination of νµ CC and νe CC
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distributions with appropriate muon additions:

νµNC(+µ) = α νµCC+ β νeCC(+µ) (B.4)

The χ2 of the fit in each of the 15 Evis bins ranges from 33.2 to 77.7 for 41 degrees of

freedom (DoF) with a mean value of 48.4. Figure B.3 shows that the measured number of

νe CC’s agrees with the Monte Carlo prediction in each energy bin. The χ2 value with a

no-oscillations assumption is 9.97/15 DoF.

The major sources of uncertainties in the comparison of the electron flux extracted from

the data to that predicted by the Monte Carlo are: (i) The statistical error from the fit in

the extraction of the νe flux. (ii) The error in the shower shape modeling, estimated by

extracting the νe flux using two definitions of η. Analogous to the definition of η3 given in

eq. (B.2), we define η4 to be the ratio of the sum of the energy deposited outside the first

four scintillation counters to the total visible energy. If the modeling of the showers were

correct, the difference in the number of electron neutrinos measured by the two methods

should be small, any difference is used to estimate the systematic error. Since this error was

shown not to be correlated among energy bins, we add it in quadrature to the statistical

error from the fit and take this to be the combined basic error. The error bars on the data

points in Fig. B.3 show the size of this error which is dominated by the statistical error

from the fit. (iii) The 1% uncertainty in the absolute energy calibration of the detector

changes the relative neutrino flux which is extracted using the subset of the data sample

with low hadron energy [55] by 0.4% on average. (iv) The uncertainty in the incident flux

of νe’s on the detector is estimated to be 4.1% [56]. This error is dominated by a 20%

production uncertainty in the KL content of the secondary beam which produces 16% of

the νe flux. The majority of the νe flux comes from K±
e3 decays, which are well-constrained

by the observed νµ spectrum from K±
µ2

decays [56]. Other sources of systematic errors were

also investigated and found to be small.
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∆m2 (eV2) Best fit σ ∆m2 (eV2) Best fit σ

1.0
2.0
3.0
4.0
5.0
7.0
9.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
125.0
150.0

-0.1741
-0.0501
-0.0153
-0.0112
-0.0051
-0.0036
-0.0021
-0.0023
-0.0004
-0.0003
-0.0002
-0.0002
-0.0002
-0.0002
-0.0003
-0.0003
-0.0002
0.0004
0.0005

1.6501
0.4107
0.1852
0.1041
0.0671
0.0345
0.0213
0.0173
0.0048
0.0026
0.0018
0.0015
0.0014
0.0014
0.0014
0.0015
0.0015
0.0018
0.0019

175.0
200.0
225.0
250.0
275.0
300.0
350.0
400.0
450.0
500.0
600.0
700.0
800.0
1000.0
1500.0
2000.0
5000.0
10000.0
20000.0

0.0000
-0.0002
-0.0003
-0.0004
-0.0004
-0.0004
-0.0004
-0.0003
-0.0003
-0.0004
-0.0005
-0.0003
-0.0002
-0.0004
-0.0003
-0.0004
-0.0003
-0.0004
-0.0004

0.0016
0.0014
0.0013
0.0012
0.0012
0.0012
0.0012
0.0013
0.0015
0.0016
0.0019
0.0018
0.0018
0.0017
0.0017
0.0017
0.0018
0.0017
0.0017

Table B.1: The result for sin2 2α from the fit at each ∆m2 for νµ → νe oscillations. The
90% C.L. upper limit is equal to the best fit sin2 2α+ 1.28σ.

The data are fit by forming a χ2 which incorporates the Monte Carlo generated effect

of oscillations, the basic error, and terms with coefficients accounting for systematic uncer-

tainties. A best fit sin2 2α is determined for each ∆m2 by minimizing the χ2 as a function

of sin2 2α and these systematic coefficients. At all ∆m2, the data are consistent with no

observed νµ → νe oscillations. The statistical significance of the best-fit oscillation at any

∆m2 is at most 0.3σ.

The frequentist approach [74] is used to set a 90% confidence upper limit for each ∆m2.

The limit in sin2 2α corresponds to a shift of 1.64 units in χ2 from the minimum χ2 (at the

best fit value in Table B.1). The 90% confidence upper limit is plotted in Figure B.4 for

νµ → νe. The best limit of sin2 2α < 1.1 × 10−3 is at ∆m2 = 300 eV2. For sin2 2α = 1,

∆m2 > 1.6 eV2 is excluded, and for ∆m2 ≫ 1000 eV2, sin2 2α > 1.8× 10−3.

Under the assumption that there are no oscillations, this data can also be used to test
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Figure B.4: Excluded region of sin2 2α and ∆m2 for νµ → νe oscillations from this analysis
at 90% confidence is the area to the right of the dark, solid curve.
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νµ(νµ) ↔ νe(νe) universality by comparing the observed νe flux to that predicted by the

Monte Carlo. From this comparison we determine the ratio of the cross sections averaged

over our flux to be σCC(νµ)/σCC(νe) = 1.026± 0.025(stat)± 0.049(syst). This is currently

the most stringent test of universality at high space-like momentum transfer.

In conclusion, we have used the difference in the longitudinal shower energy deposition

pattern of νeN versus νµN interactions to search for νµ → νe oscillations with a coarse-

grained calorimetric detector. We see a result consistent with no neutrino oscillations and

find 90% confidence level excluded regions in the sin2 2α − ∆m2 phase space. This result

is the most stringent limit to date for νµ → νe oscillation for ∆m2 > 25 eV2. We also

tested νµ(νµ) ↔ νe(νe) universality and found the ratio of the νµ-to-νe cross-section to be

1.026± 0.025(stat)± 0.049(syst).
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