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Abstract
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2015

In this thesis we study a few complementary topics related to some of the open ques-

tions in the Standard Model (SM). We first consider the scalar spectrum of gauge theories

with walking dynamics. The question of whether or not a light pseudo-Nambu-Goldstone

boson associated with the spontaneous breaking of approximate dilatation symmetry ap-

pears in these theories has been long withstanding. We derive an effective action for

the scalars, including new terms not previously considered in the literature, and obtain

solutions for the lightest scalar’s momentum-dependent form factor that determines the

value of its pole mass. Our results for the lowest-lying state suggest that this scalar is

never expected to be light, but it can have some properties that closely resemble the SM

Higgs boson.

We then propose a new leptonic charge-asymmetry observable well suited for the study

of some Beyond the SM (BSM) physics objects at the LHC. New resonances decaying

to one or many leptons could constitute the first signs of BSM physics that we observe

at the LHC; if these new objects carry QCD charge they may have an associated charge

asymmetry in their daughter leptons. Our observable can be used in events with single or

multiple leptons in the final state. We discuss this measurement in the context of coloured

scalar diquarks, as well as that of t̄t pairs. We argue that, although a fainter signal is

expected relative to other charge asymmetry observables, the low systematic uncertainties

keep this particular observable relevant, especially in cases where reconstruction of the

parent particle is not a viable strategy.
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Finally, we propose a simple dark-sector extension to the SM that communicates with

ordinary quarks and leptons only through a small kinetic mixing of the dark photon and

the photon. The dark sector is assumed to undergo a series of phase transitions such that

monopoles and strings arise. These objects form long-lived states that eventually decay

and can account for the observed cosmic-ray positron excess observed by the PAMELA

and Fermi satellites. This topological Dark Matter (DM) can account for the Universe’s

DM content if the coupling in the dark sector is strong.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has proved to be an extremely successful

description of the world at the most fundamental level as we know it. However, despite its

many successes there are several important issues that remain unsolved in the context of

our current understanding. This has led the particle physics community at large to believe

that the Standard Model as it stands can only be an effective low energy description of

a more complete theory. The hope is that this more complete theory will also shed light

into closely related problems from astrophysics and cosmology, as for example the particle

nature of Dark Matter, one of the topics that will be discussed here, and the origin of

dark energy.

One of the open questions at the core of the SM that has been the centre of attention in

recent years is the nature of Electroweak Symmetry Breaking (EWSB). On July 4, 2012,

the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) announced

that a particle resembling the SM Higgs had been discovered at a mass of 126 GeV [2,3].

Since then, both collaborations have been busy searching for discrepancies between the

properties of the observed particle and the SM Higgs. To this date, all published results

point towards the surprisingly simple, and yet theoretically troubling Higgs particle.

The SM Higgs is a fundamental scalar particle, the physical (electrically neutral)

degree of freedom predicted from adding a complex scalar SU(2)L doublet to the SM,

with a potential such that minima occur at non-zero values of the scalar field, i.e, the

scalar acquires a non-zero expectation value. This scalar couples to SM matter fields

via Yukawa couplings; when the scalar obtains a non-zero expectation value, these terms

become mass terms for all SM fermions. At the same time, mass terms for the W and

Z bosons allowed by the gauge symmetries are generated, in other words electroweak

symmetry is spontaneously broken. An obvious problem with this picture appears when

we consider one-loop corrections to the Higgs mass.
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Chapter 1. Introduction 2

One-loop corrections to the Higgs mass in the SM are additive and proportional to the

high energy scale at which new physics is expected to appear (e.g, the GUT scale or the

Planck scale). This is in contrast with radiative corrections to fundamental fermions in

the SM, where a chiral symmetry acts as a custodial symmetry guarding the “smallness”

of the fermion masses, keeping all radiative corrections multiplicative. Even long prior

to the discovery of the 126 GeV boson at the LHC, we have known that the mass of

the Higgs should be of the order of a few hundred GeV (see e.g [4]), as dictated by

precision SM measurements. But there appears to be no fundamental reason as to why

a (fundamental) scalar should appear at the 102 GeV scale.

The most popular solution to the hierarchy problem has been that of a Supersymmet-

ric (SUSY) extension to the SM. In this picture, all SM particles have a supersymmetric

partner, of integer spin for fermions and of half-integer spin for bosons. The partners

to SM fermions have just the right couplings to exactly cancel their contributions to the

Higgs mass. More fundamentally, the chiral symmetry that protects the Higgs’s fermionic

partners is extended to protect the mass of the scalar by virtue of supersymmetry. Obvi-

ously we do not observe supersymmetric partners for SM particles in our everyday lives,

hence if supersymmetry is to be an adequate description of the world, this symmetry ty-

ing SM to their partners must be broken. Weak-scale supersymmetry predicts TeV scale

particles that should show signs of existence at the LHC. Hence, the search for SUSY

partners of SM fields has been a large part of the LHC program in recent years. At the

time of this manuscript’s writing, signs of SUSY have yet to show up at the LHC. In this

current state of affairs, it is reasonable to say that SUSY is unlikely to be responsible for

successfully solving the SM’s hierarchy problem and rendering the weak scale natural.

An alternative paradigm that has enjoyed much less popularity in the recent past is

that of Dynamical EWSB due to a new strongly interacting sector. In our view this is

quite a conservative approach to solving the hierarchy problem: the strong interactions

in the SM have already given us a working example of how one can break EW symmetry

without the need of introducing fundamental scalars, by virtue of chiral symmetry break-

ing (χSB) as triggered by fermion condensates in QCD. There is no hierarchy problem

in QCD; the large hierarchy between ΛQCD and the Planck scale arises naturally from

the quantum theory itself through dimensional transmutation. The hope for a dynamical

picture of EWSB is that the lessons learned from QCD could be used to understand the

origin of the weak scale.

Before we proceed with the introduction, we would like to let the reader know that

in this thesis we shall be studying a few complementary topics in physics Beyond the

Standard Model (BSM) which are, in principle, independent of each other. However,



Chapter 1. Introduction 3

there is a common thread unifying this discussion, which is the presence of strongly

interacting gauge theories and some of the different aspects of their phenomenology. We

shall now proceed along the ideas of the previous paragraph towards introducing the

background that will lead us to the discussion of the scalar spectrum of gauge theories

with strong dynamics and chiral symmetry breaking. We shall then work our way back to

introducing the other two main topics contained in this document. One involves possible

ways of measuring collider signatures of certain BSM objects that may arise in strongly

coupled extensions of the SM. The second involves a decaying DM candidate from a

non-Abelian dark sector where the gauge coupling is strong.

1.1 QCD, Walking Technicolour and the dilaton

Armed with the knowledge from QCD, theorists in the 80’s set out to find a dynamical

theory of EWSB. The idea would be to have a new confining gauge interaction, techni-

colour (TC), with QCD-like dynamics at the weak scale as well as new massless chiral

fermions carrying TC charge (but not necessarily colour charge, this depends on the par-

ticular model), the technifermions. In analogy with QCD, a condensate of technifermion

bilinears is generated

〈Q̄iLQjR〉 ≈ Λ3
TCδij, (1.1)

where ΛTC is the scale analogous to ΛQCD of order the weak scale, vweak. As a result,

techniquarks acquire a (constituent) mass of order ΛTC , and composite states such as

technibaryons arise. There are also a number of (composite) Nambu-Goldstone bosons

(NGB) resulting from the breaking of any global symmetries by the condensates. In

order for EW symmetry to be broken, SU(2)L × U(1)Y must be a gauged subgroup

of the original global chiral symmetry of the technicolour theory. In this way, when the

gauge interactions are “turned on”, the NGBs become the longitudinal W s and Z bosons.

TC on its own does not address the flavour problem. In order to be able to give

SM fermions their masses and mixing angles, an extension to the TC gauge group must

be considered such that the new interaction couples SM fermions (that do not carry

TC charge) to technifermions. The Extended Technicolour (ETC) gauge group must be

broken at scales below ΛETC leaving only the TC and SM gauge groups unbroken. At

low energies, the exchange of heavy ETC gauge bosons gives rise to effective contact

terms between SM and TC fermions. The effective terms of greatest phenomenological

importance that arise from these contact terms are as follows (see e.g. [5]):
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1) “α” terms of the form

αab
Q̄T aQQ̄T bQ

Λ2
ETC

, (1.2)

where the T a are the ETC generators, including the relevant chiral factors, and also

including T 0 ≡ 1. These terms can give masses to potentially too light pseudo Nambu-

Goldstone bosons (PNGB), “techniaxions” for example. This is a desirable consequence

as it allows the masses of these particles to be more consistent with experimental bounds.

2) “β” terms of the form

βab
Q̄LT

aQRψ̄RT
bψL

Λ2
ETC

. (1.3)

These terms will generally give the masses to (and mixing between) SM fermions ψ, the

main purpose of the ETC sector.

3)“γ” terms of the form

γab
ψ̄LT

aψRψ̄RT
bψL

Λ2
ETC

. (1.4)

These terms are four fermion interactions between SM fermions and will generally give

rise to Flavour Changing Neutral Currents (FCNC). Assuming α ∼ β ∼ γ, these terms

pose a big obstacle for TC models: in order to generate the right pattern of fermion

masses, and to raise PNGB masses to avoid bounds, it appears one is also necessarily

generating dangerously large FCNC in the SM.

An elegant and enticing solution to this problem is found by modifying the dynamics

of the theory such that the running of the TC coupling is no longer QCD-like, but is

near a fixed point of the theory such that it remains strong and runs very slowly (or

“walks”) at scales higher than ΛTC . This was first suggested in [6]. One can look at the

ETC operators that give rise to the fermion mass terms in “β” type terms above. The

renormalization effects due to TC, between the TC and ETC scales, for these operators

can be written as [5]:

〈Q̄QETC〉 = exp

(∫ ΛETC

ΛTC

d ln(µ)γm(α(µ))

)
〈Q̄QTC〉 (1.5)

where γm is the anomalous dimension as a function of the running coupling. If TC is

QCD-like, then the coupling α(µ) falls off as ∼ 1/ ln(µ) and, assuming γ ∼ α, we can

immediately see that the exponential factor on the right-hand side (RHS) of Eq. 1.5 goes

as
(

ln(ΛETC
ΛTC

)
)γm

. If on the other hand we consider a theory near a fixed point such that
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the coupling is almost constant between these two relevant scales, the exponential factor

instead becomes

exp

(∫ ΛETC

ΛTC

d ln(µ)γm(α(µ) ≈ const.)

)
= exp

(
γm ln

(
ΛETC

ΛTC

))
=

(
ΛETC

ΛTC

)γm
. (1.6)

We can then see that for a walking type theory, it is in principle possible to enhance α

and β terms by a significant amount without enhancing problematic γ terms.

Infrared fixed points (IRFP) are known to exist in gauge theories in the perturbative

regime, where the gauge coupling is weak. One such IRFP, that we shall further discuss

in upcoming sections, is the fixed point that appears in the (two loop) β function of an

SU(N) gauge theory with Nf number of flavours when the coupling α ∼ −b0/b1, where

b0 and b1 are the coefficients of the first and second term in the β function, respectively.

The value of the coupling at the fixed point increases as Nf decreases, which suggests that

the fixed point will eventually reach the critical value for chiral symmetry breaking, as

is desired for applications to EWSB. Lattice simulations have shown that gauge theories

in the strongly coupled regime can indeed exhibit conformal behaviour in the IR [7,8].

A question of great phenomenological relevance now appears. Since the walking

theory is governed by the presence of a (infrared) fixed point for a significant range of

momenta, there appears to be an approximate dilatation symmetry in the theory (i.e

the theory is approximately scale invariant), which can be spontaneously broken along

with chiral symmetry and other global symmetries. In a perfectly conformal theory,

the spontaneous breaking of scale invariance should imply the presence of a massless

Nambu-Goldstone boson (NGB), the dilaton. The expectation is then that in a theory

with approximate scale invariance, a light pseudo-NGB (PNGB) should too appear, and

its mass should be somehow proportional to the small degree of explicit breaking. This is

in analogy to the pions in the SM, which are the PNGBs of approximate chiral symmetry.

The scale current for a general Lagrangian takes the following form

Dµ = xνθ
µν , (1.7)

where θµν is the (non-symmetric) energy-momentum tensor given by Coleman and Jackiw

[9]. The divergence of this current is then given by

∂µDµ = gµνθ
µν + xν∂µθ

µν = θµµ, (1.8)

where the second term vanishes as required by Poincaré invariance. The above equation
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implies that only when the energy-momentum tensor is traceless is the theory classically

scale invariant. This is true for a classical Lagrangian containing no dimensionful parame-

ters [9]. Of course in general, quantum corrections tend to spoil classical scale invariance,

as is the case in QCD for example, where the scale ΛQCD is dynamically generated. More

explicitly, one can write θµµ = β(α)
4α
Ga
µνG

aµν where α is the renormalized coupling constant

defined at some scale µ, β is its beta function, and Ga
µν is the (renormalized) field strength

tensor [10]. Hence, classical scale invariance is explicitly broken by this “trace anomaly”

when the coupling runs. We can see that the explicit breaking can be made small if we

can justify a small β function. Then, if a dynamical mass appears in the theory, as is the

case in theories where chiral symmetry is spontaneously broken, the approximate scale

symmetry is also spontaneously broken.

The Schwinger-Dyson (SD) equations provide an appropriate framework for the study

of non-perturbative phenomena in gauge theories. The SD equation for the fermion

propagator i(Z(p)p/− Σ(p))−1, which is given by

Σ(p) + (1− Z(p))p/ = g

∫
d4k

(2π)4
γµGµν(p− k)

i

Z(k)k/− Σ(k)
Λν(p, k, p− k), (1.9)

where Gµν is the gauge boson propagator and Λν is the fermion-gauge boson vertex, must

be solved self-consistently and therefore allows for non-perturbative solutions. Eq. 1.9

is also known as the gap equation, given that non-trivial solutions for the function Σ(p)

indicate the appearance of a “mass gap” in the theory, i.e, the dynamical generation

of mass. In fact, Σ(p) can also be naturally understood as the order parameter for

chiral symmetry breaking. We can look at the vacuum expectation value of ψ̄ψ which is

determined by closing the (full) fermion propagator into a loop:

〈ψ̄ψ〉 = −4iNc

∫
d4p

(2π)4

Σ(p)

Z2(p)p2 − Σ2(p)
. (1.10)

If the LHS above is non-zero, then the QCD vacuum is not invariant under chiral trans-

formations, that is, chiral symmetry has been spontaneously broken. Then, Σ(p) will

also be non-vanishing.

The argument that walking technicolour (WTC) should have a small β function over

a large range of momenta as we have mentioned above, has been used since the early

days of WTC to assert that indeed a light PNGB should appear in the spectrum of

such theories, and that its presence would be an important low-energy signature of near-

conformal dynamics [11,12]. A counter argument to this idea was presented in [13], where

an integral expression for the dilaton mass was obtained involving the function Σ(p), by
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studying the change in the effective action when the order parameter Σ(p) undergoes

a chiral transformation1. What the authors of [13] find is that, as β becomes smaller

and smaller such that one approaches the IRFP, the function inside the integral tends to

peak at larger momenta. As a result, the mass integral becomes increasingly sensitive to

momentum scales where the coupling is rapidly decreasing. Hence, the explicit breaking

of scale invariance is not small.

It appears that the issue of whether a light dilaton should generally be present in

gauge theories (exhibiting spontaneous breaking of approximate scale symmetry) is far

from settled, however. Even in recent years, the debate continues [14,15]. Most notably,

in 2011 Appelquist and Bai [14] have re-sparked the debate by arguing that a dilaton

parametrically light relative to the scale of χSB does appear. In their work, they turn to

a partially conserved dilatation current (PCDC) analysis, in complete analogy with the

partially conserved axial current (PCAC) analysis used in QCD to obtain an estimate

for the mass of the pions. In their local approach, they are forced to make a subtraction

procedure in order to obtain a cutoff independent expression for the vacuum expectation

value of θµµ, where the contributions from high momentum scales are removed.

Being aware that non-local contributions from high momentum scales likely play an

important role in this problem, we have been inspired to revisit the issue by taking a non-

local effective action approach in a large NC type theory. As a spoiler to Chapter 2, let

us state in advance that our results agree with the nay-sayers; there should not be a light

degree of freedom associated with the spontaneous breaking of scale invariance present

in the low energy spectrum. But we do also find new qualitative features that generally

apply to gauge theories with chiral symmetry breaking that could be phenomenologically

relevant at the weak scale or beyond.

1.2 Lepton based asymmetry measurements at the

LHC

Despite the very confusing state that we, as a high-energy physics (HEP) community,

appear to find ourselves in, with an unnatural looking Higgs boson and not much else

so far to light the way, we have still thought about the types of measurements one could

turn to in case that anomalies do start to appear at the LHC in the coming years. In

fact, hints of a possible excess in the lepton counts of some channels have recently made

an appearance in the ATLAS experiment [16].

1As the authors of [13] point out, this procedure is analogous to finding the pion mass by studying
how the vacuum energy varies after performing a chiral transformation on 〈ψ̄ψ〉.
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If some extended sector with strong dynamics is indeed responsible for generating the

weak scale, as for example in a theory where NC is small unlike the case that we have

discussed in the previous section, looking for signatures from the lightest states expected

to be present in such a picture would be a logical starting place. PNGBs with a wide

array of quantum numbers can arise depending on the global symmetries being broken

along with the spontaneous breaking of EW symmetry. With the model of [17] initially in

mind, we became interested in the type of signatures that coloured scalars with diquark

quantum numbers could generate. Coloured diquarks in fact should display a charge

asymmetry from QCD analogous to that of tt̄ pairs at the LHC. We shall discuss this in

more detail later on. But unlike the case of t̄t, diquarks are also a good illustration of a

type of object that would likely be very hard to reconstruct.

Generally, diquarks will decay in complex chains often leading to final states with

many high energy leptons. Fermion based asymmetry observables are then an obvious

choice to explore as discriminating factors in any possible mysterious excesses that may

emerge in lepton counts. Observables of this type could also be of interest for weak

models of coloured scalars, that are not PNGBs and therefore even more mysterious in

origin.

1.3 Dark Matter

Dark Matter (DM), as well as Dark Energy, are essential ingredients of the current

Standard Cosmological model. This sophisticated picture of the Universe successfully

describes many key properties, from the Universe’s thermal history, to the abundance

of elements and the relic background radiation, to the observed large scale structures.

Although the role that these components play is crucial in this fundamental picture,

their specific nature remains very much a mystery. From the particle physics standpoint,

one could argue that the inability of the SM to put forth a viable DM candidate is yet

another indication for the necessity to go beyond the SM. This, along with other open

questions such as the origin of neutrino masses, as well as the source(s) of CP violation

necessary to successfully account for Baryogenesis in the early universe, are evidence

of the strong interplay between particle physics, astrophysics, and cosmology. As we

search to expand our understanding of the Universe we can ultimately hope that the

aforementioned questions may all share common answers.

Evidence for the existence of (non-baryonic) DM comes from various independent

observations across a wide range of distance scales. At the galactic scale, one key ob-

servation comes from the rotation curves of galaxies, see, e.g, [18]. Plots of the circular
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velocities of stars and gas in galaxies as a function of the distance to the galactic centre

tend to become flat at large radii, even past the edge of the visible galactic disk. This

behaviour is unexpected in the context of Newtonian dynamics, where the velocity curve

is expected to fall off as ∼ r−1/2 past the edge of the “optical disk”. Closely related to

this point is also the observation of the velocity dispersions of satellites of spiral galaxies.

In the case of the Milky Way, there are dwarf spheroidal galaxies and globular clusters

satellites that probe the outer rotation curve of the galaxy. These curves suggest the

presence of an invisible matter halo that extends well beyond the optical disk [19]. Weak

gravitational lensing observed around nearby structures also indicates the presence of

more matter than would appear from the object’s luminosity (see for example [20]).

On larger scales, the observation and analysis of the cosmic microwave background’s

(CMB) power spectrum has allowed us to estimate what percentage of the total energy

“budget” of the Universe is taken up by Dark Matter. WMAP (Wilkinson Microwave

Anisotropy Probe) data in particular places stringent constraints on the allowed relative

abundances of baryonic matter Ωb and total matter ΩM (and hence, of DM) in the

Universe, where the Ωs are the density ratios of baryonic matter and total matter to

the critical density ρc, respectively. These values, as presented in reference [21], are

Ωb = 0.0554± 0.0028 and ΩMh
2 = 0.1345±0.0056

0.0055.

The evidence for the existence of DM mentioned above, all pertains to its gravitational

interactions. If we are to include a DM candidate in some extension of the SM, it is both

reasonable and interesting to consider other types of interactions to SM particles. This

idea has had a surge of interest from the community in the past years in light of some

astrophysical anomalies that have arisen in charged cosmic-ray and γ-ray measurements

[22–24].

In 2009, the PAMELA experiment observed that, between the energies of 10 GeV to

about 100 GeV, there was a steep increase in the energy spectrum of the positron fraction

e+/(e− + e+) of cosmic rays [22], a feature that is not expected in the background since

high-energy electrons and positrons traveling large distances are subject to large energy

losses. Hence, this type of observation points to local primary sources of the particles

decaying to electron-positron pairs. It is also important to note that no corresponding

excess in the anti-proton fraction was observed. The Fermi satellite later independently

confirmed the positron excess observed by PAMELA and extended the measurement to a

couple of hundred GeV [23]. In principle, these anomalies could possibly be explained by

astrophysical objects such as pulsars [25]. Nevertheless they pose an exciting challenge

to be interpreted in terms of indirect signals of Dark Matter annihilation or decay.

For a DM model to be able to explain these excesses in the local flux of charged cosmic
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rays, the DM particle must have a mass of a few TeV in order to fit the “bump” in the

positron fraction spectrum, but it must not also decay to anti-protons since, as noted,

no such excess is observed. Additionally, if we are dealing with DM annihilations, then

the DM must also have quite a large annihilation cross section in order to significantly

raise the local positron flux. This is an important challenge for traditional models where

the DM is a thermal relic, since the required annihilation cross section must be much

larger than that required in the early universe to leave behind the right DM relic density.

Several mechanisms for enhancing the DM annihilation cross section at late times have

been proposed by DM model builders. However, a possibly more attractive approach

would consist in considering a DM candidate that acts as a primary source of electron

and positron pairs, not by annihilating, but by decaying.

Reference [26] showed in a model independent analysis, that the effective lifetime of

the decaying DM particle must be of the order of 1026s if it is to yield the right flux

at current times to explain the PAMELA and Fermi excesses. If one can conjure up a

model with a DM candidate decaying with the appropriate lifetime, that by some other

independent mechanism is prevented from decaying into protons, then there are also other

advantages in the form of alleviated bounds from γ-ray (and neutrino) fluxes coming from

the galactic centre. For decaying DM, the γ-ray flux coming from the galactic centre

where DM densities are generally largest goes linearly with the DM density, whereas for

the case of annihilating DM the flux is proportional to the DM density squared. Hence,

constraints that can be quite stringent on the latter scenarios become less important in

the case of a decaying DM candidate.

The model that we shall present in this document does indeed satisfy all of the

above requirements, but also takes a rather unusual form; let us briefly discuss the

main aspects of it here. We shall consider a non-Abelian dark sector that undergoes

spontaneous symmetry breaking in a pattern such that, for some period of time in the

history of the Universe, an intermediate unbroken U(1) gauge symmetry remains but

is sequentially (spontaneously) broken. As a result of these phase transitions, a series

of topological defects appear as massive degrees of freedom, which make up the dark

matter candidate. As we shall see, there are several aspects of the working theory that

will push us to consider a strong coupling in the dark sector. Initially, it is the right relic

abundance for DM that seems to require it. Coincidentally, this choice also provides us

with a mechanism to avoid Big Bang nucleosynthesis (BBN) constraints for our long-

lived hidden photon in the early universe. The symmetry breaking pattern can then be

assumed to be driven naturally by the dynamics of the theory, a feature we find just

as desirable in the hidden sector as we did in the discussion of EWSB in the SM from
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Section 1.1.

1.4 Organization of the thesis

The rest of this document shall be organized as follows. In Chapter 2 we revisit the

problem of the existence of a light dilaton associated to the spontaneous breaking of

scale invariance in gauge theories, as introduced in the end of Section 1.1. In Chapter

3 we shall shift gears and explore lepton based asymmetry measurements at the LHC,

inspired by objects that may arise in strongly interacting extensions of the SM as pre-

viously mentioned. In Chapter 4 we turn to the second open question discussed in this

introduction, namely the particle nature of Dark Matter. We propose a model of decay-

ing dark matter based on a strongly interacting hidden sector, and intended to attempt

to explain some of the astrophysical anomalies mentioned here. Finally, our concluding

remarks and future prospects can be found in Chapter 5.



Chapter 2

On the Scalar Spectrum of Walking

Gauge Theories

The work presented in this chapter was done in collaboration with Bob Holdom and is

currently being prepared for submission.

2.1 Introduction

The existence of a light, scalar degree of freedom associated with the spontaneous break-

ing of approximate dilatation symmetry or scale invariance (SI) in gauge theories has

been the topic of discussion for many decades now. This idea sparked much interest in

the context of Technicolour (TC) extensions of the Standard Model (SM) relevant for

EWSB, after early on it was realized that one of the serious shortcomings of TC, namely

the generation of Flavour Changing Neutral Currents (FCNC) in conflict with precision

SM observables, could be avoided if the dynamics of the theory were modified in such a

way that the strong coupling responsible for the generation of (techni) quark condensates

were to walk, i.e. run very slowly [27]. In this regime, the divergence of the dilatation

current, given by

∂µDµ =
β(α)

3α
Ga µνGa

µν , (2.1)

where Dµ = θµνxν , can become arbitrarily small such that it is partially conserved, and

the approximate symmetry spontaneously broken along with other (exact or approxi-

mate) global symmetries of the theory such as chiral symmetry.

This argument has been often used, along with a Partially Conserved Dilatation

Current (PCDC) analysis analogous to the Partially Conserved Axial Current (PCAC)

one used to estimate the pion’s mass in QCD, to ascertain that a dilaton parametrically

12
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light relative to the confinement scale Λ is expected in theories with walking dynamics

[14], [28].

We have revisited this problem by studying the effective action for the scalar modes

that would be present in an SU(N) gauge theory with Nf number of flavours, starting

from a non-local effective action derived using the auxiliary field (AF) method [29,30], and

working in the renormalization-group improved ladder approximation where the running

coupling is adopted from the two-loop perturbative result known to possess an infrared

fixed point. We are going beyond previous studies by adapting the systematic method

suggested by Fraser in [31] to determine the kinetic terms that should appear in the

scalar (and pseudo-scalar) field’s effective action, which also allows us to include effects

of the interaction term in the effective action into our solutions. As we shall see, our

results point to the fact that there are important non-local contributions to the “dilaton”

mass coming from UV physics that are naturally included in our approach, but that are

absent from (more common) purely local analyses, that lift the mass of the lightest scalar

excitation to be of order the dynamical fermion mass scale.

For theories of interest for EW physics, we require that the coupling be strong enough

to generate a quark condensate and hence trigger chiral symmetry breaking.1 As we

advance towards our goal of predicting the mass for the lowest lying scalar state in the

theory, we will indeed be forced to make a series of approximations in order to obtain

useful results, and to ultimately obtain numerical solutions for the fermion and scalar

mass functions Σ(p) and ∆(p). We shall present plots of our solutions p∆ and pΣ, the

quantities that appear inside of the integral equations that determine the mass spectrum

of the theory, in order to illustrate the behaviour of the solutions across a large range

of momenta. We hope that it will become clear to the reader that our results suggest a

robust qualitative picture that we expect should survive beyond the approximations we

have worked in, and that furthermore, these non-local contributions to the scalar’s mass

that we have mentioned should not tend to vanish as the theory approaches the fixed

point.

This chapter is organized as follows: in Section 2.2 we derive an effective action that

is a functional of the momentum dependent fermion mass function Σ, and obtain non-

trivial numerical solutions for Σ via a differential form of the gap equation. In Section 2.3

we derive an effective action for the scalar fields, and we solve the differential equation

that determines the mass spectrum including both terms in the original effective action.

In Section 2.4 we discuss the Goldstone bosons and obtain an integral expression for the

1Strictly speaking, this is not necessarily true if one is willing to consider a particular limit, which
we shall briefly discuss towards the end of Section 2.3.
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pion’s decay constant. The idea that a strongly coupled, near-conformal theory could

be responsible for EWSB along with the AdS/CFT correspondence have also brought

the dilaton, which is the dual of the radion in the holographic picture, to the spotlight

in recent years, in particular in light of the 126 GeV scalar Higgs discovery. While we

have nothing to add to the holographic description from our gauge theory context, we

shall comment on some of the similarities in the equations on either side of this duality

in Section 2.5. Concluding remarks can be found in Section 2.6.

2.2 The effective action and the gap equation

In order to study the dynamical generation of mass and chiral symmetry breaking in

gauge theories, we shall now turn to the effective action formalism. This approach allows

us to derive the Schwinger-Dyson equation for the full quark propagator or the “gap

equation”, that we can solve using a series of approximations, allowing us to observe

non-perturbative phenomena.

Let us start by considering the path integral for an SU(N) gauge theory with NF

flavours of massless fermions in the fundamental representation. We will use the auxiliary

field (AF) method to derive an effective action. This consists in adding a Gaussian term

with a bilocal auxiliary composite field to the action, such that the actual dynamics of

the theory remains unchanged. This can be achieved by inserting a constant into the

path integral of the form:

c =

∫
[dT ]e

1
2

Tr(T−ψψ̄)G(T−ψψ̄), (2.2)

Then, by coupling a source J to this composite field T (x, y) we can derive an expression

for the effective action, to a given order in T loop expansion,

eiWAF [J ] =

∫
[dψ][dψ̄][dT ] exp[i(iψS−1

0 ψ̄+ Iint−
i

2
Tr(T −ψψ̄)G(T −ψψ̄)+TrJT )]. (2.3)

Here, G is so far an arbitrary function and Iint includes the integration over the gauge

fields. Note that we are using matrix notation which replaces integration over space-time

coordinates. For non-Abelian gauge theories, integration over the gauge fields cannot be

performed exactly due to self-interactions. However, if we ignore self-interaction vertices,
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at least for now, we can perform the integral over the gauge fields to obtain:

Iint = Dµν(x− y)

[
ψ
i

α(x)γµ
(
λa

2

)
α,β

ψiβ(x)

][
ψ
j

δ(y)γν
(
λa

2

)
δ,σ

ψjσ(y)

]
(2.4)

where the λa are the generators of the gauge group and Dµν is the (tree level) gauge

boson propagator. The AF method is particularly useful when these types of quartic

interactions are involved. We can make the following choice for the function G

Gαβ,δσ = Dµν(x, y)γµ
(
λa

2

)
α,β

γν
(
λa

2

)
δ,σ

(2.5)

such that the four-fermion term in Iint cancels. Then, we can proceed to integrate out

the fermions fields to obtain

eiWAF [J ] =

∫
[dT ] exp

[
i(−iTr ln(S−1

0 −DT )− i

2
TrTDT + TrJT )

]
. (2.6)

where D is given in Eq. 2.11 below. We will now take the tree level approximation in

the T field. The resulting expression for the effective action ΓAF [T ] is

ΓAF [Tc] = W [J ]− Tr(JTc) = −iTr ln(S−1
0 −DTc)−

i

2
Tr(TcDTc) (2.7)

where Tc is T such that it satisfies the equation for the stationary phase condition:

δΓAF [T ]

δT
= −J = iD(S−1

0 −DT )−1 − iDT. (2.8)

We can now define the self energy Σ and eliminate T

Σ = iDTc. (2.9)

Fourier transforming the RHS of Eq. 2.7, where as before the integrals (now over four-

momenta) are implicit in the trace, we finally obtain:

ΓAF = −iTr ln(γ · p− Σ) +
i

2
Tr(ΣD−1Σ). (2.10)

Here we give the expression for the kernel D in momentum space, with the gauge

boson propagator in Landau gauge

D(k)αβ,γδ = ig2(k)(γµ)αδ(γ
ν)γβ

1

k2

(
ηµν −

kµkν
k2

)
. (2.11)
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Our choice of gauge can be motivated as follows: while the most general expression for

the full fermion propagator (allowed by Lorentz and parity invariance) is of the form

S =
i

Z(p)γ · p− Σ(p)
, (2.12)

in Landau gauge we know that the wave function renormalization vanishes at lowest

order, and hence Z(p)→ 1 for p� Σ(p). More importantly, however, one can show that

in the ladder approximation, that we believe is equivalent to that which we have taken

above, Z(p) is exactly equal to 1 for every Σ(p) [32], and will therefore not appear in our

final expression for the effective action.

As pointed out by the authors of [33] this approximation in the AF formalism is

equivalent, up to first derivatives of the effective action Γ, to taking the two loop approx-

imation of the Cornwall-Jackiw-Tomboulis (CJT) effective action (which in the latter,

constitutes the lowest non-trivial order.) They have in fact shown that all chiral sym-

metry breaking, i.e. non-zero, solutions to the gap equation in the CJT formalism are in

reality at a saddle point meaning that the effective potential does not give a functional

that is bounded from below. The AF formalism solves this problem: the introduction

of the T field to the action simply has the effect of modifying WCJT by adding a new

term proportional to the square of the source J , and it is this term that is responsible for

changing the boundedness properties of the effective potential V such that all solutions

now lie in a stable local minima.

We are now ready to derive an expression for the effective potential V , that we

shall give in 4-dimensional Euclidean space, and finally the gap equation. Starting from

Eq. 2.10 above, we can simplify the first term on the RHS by using Tr(lnA) = ln(detA)

to remove the logarithm from inside the trace. Next, we can make use of the Cayley-

Hamilton theorem to re-write the determinant of A as:

detA =
1

24
[(TrA)4 − 6Tr(A2)(TrA)2 + 3(Tr(A2))2 + 8Tr(A3)Tr(A)− 6Tr(A4)]. (2.13)

Here, A = γ · p− Σ, and so we find:

TrA = −4Σ, (2.14)

Tr(A2) = 4(p2 + Σ2),

Tr(A3) = −12Σp2 − 4Σ3,

Tr(A4) = 4p4 + 24Σ2p2 + 4Σ4.
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Transforming all momenta to Euclidean space, and integrating over angular coordi-

nates we finally obtain an expression for the effective potential:

V [Σ] =
1

2π2

(
−1

2

∫
dpp3 ln

(
1 +

Σ2(p)

p2

)
+

1

2

∫
dpdqp3q3Σ(p)M−1(p, q)Σ(q)

)
, (2.15)

where p and q denote the magnitudes of Euclidean 4-momenta. M(p, q) is the fermion-

antifermion scattering kernel, the inverse of which is defined as:

∫
r3drM−1(p, r)M(r, q) =

1

p3
δ(p− q) (2.16)

following [33].

Before proceeding to deriving the gap equation, it will be useful to first find an explicit

form for the kernel M(p, q). Let us do so by considering the following expression:

VD ≡ −
i

2
TrS(p)D(p− q)S(q) (2.17)

where, again, the integration over momenta is implied in the trace. We can now in-

sert the expression from Eq. 2.11 into Eq. 2.17 and, assuming that the solution to the

gap equation is spherically symmetric in 4-d Euclidean momentum space such that we

can integrate over angular variables, we can replace (p − q)µ(p − q)ν by ηµν(p − q)2/4.

Then, the term inside the parentheses of Eq. 2.11 becomes 3
4
ηµν . We will also need to

make an approximation for the gauge boson propagator. We will replace the momentum

dependence by the following expression

D(p− q)αβ,γδ → D(max[p, q])αβ,γδ. (2.18)

Transforming all momenta to Euclidean space, we are now able to perform the angular

portion of the 4-momentum integral to obtain

VD = −1

2

1

2π2

∫
dpp3

∫
dqq3 3

8π2
2C2

Σ(p)

p2 + Σ2(p)

(
g2(p)

p2
θ(p− q) +

g2(q)

q2
θ(q − p)

)
Σ(q)

q2 + Σ2(q)
.

(2.19)

This yields the desired result, up to the momentum dependence of the running coupling

g. We can now define

M(p, q) =
r(p)

p2
θ(p− q) +

r(q)

q2
θ(q − p) (2.20)
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where the running coupling is included in the definition of r,

r(p) =
3C2g

2(p)

8π2
=

3C2α(p)

2π
. (2.21)

We have also included some additional factors that appear in the integrals into this

definition for convenience. Now, in order to include the effects of the running coupling

we shall adopt α(p) from the perturbative result for two-loop SU(Nc) gauge theory with

Nf number of flavours, whose beta function is given by:

µ
dα

dµ
= −b0α

2 − b1α
3 (2.22)

where

b0 =
1

6π
(11Nc − 2Nf )

b1 =
1

24π2
(34N2

c − 10NcNf − 3
N2
c − 1

Nc

Nf ). (2.23)

The hope is that, by doing this, we are introducing some of the essential physics coming

from corrections to the gauge coupling that we have ignored through the approximations

used to derive the effective action above. This theory is known to possess an infrared

fixed point with critical Nf ∼ 4Nc. By treating Nf as a continuous variable we are able

to explore the walking (close to conformal) regime expected to appear as we approach

the IR fixed point from lower values of Nf towards the critical value.

Solving the Gap Equation

Having found an explicit expression for M(p, q), we can continue to taking the first

variation of Eq. 2.15 with respect to Σ. We’ve finally arrived at the gap equation:

δV [Σ]

δΣ(p)
=

1

2π2

(
− p3 Σ(p)

p2 + Σ2(p)
+

∫
p3M−1(p, q)Σ(q)q3dq

)
= 0. (2.24)

Using Eq. 2.16 and the fact that M(p, q) is symmetric under p and q exchange, we can

re-write Eq. 2.24 as

Σ(p)−
∫
M(p, q)q3 Σ(q)

q2 + Σ(q)2
dq = 0. (2.25)

It may be interesting to the reader to note that this is the same gap equation found via

ΓCJT in [33].

Eq. 2.25 can of course be solved in its integral form as we have written it above. We can
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use matrix notation to turn this into a linear algebra problem, where the non-linear effect

in the denominator of the integrand can be built in by iteration, until Σ(p) converges to

a solution. Alternatively, one can turn this integral equation into a differential one, with

its corresponding boundary conditions. This may seem like an unnecessary complication

at this stage, as it is not hard to verify that the first method converges after a few

iterations. However, as will become evident in the next section once we start to look at

fluctuations of the order parameter Σ, the expressions inside the integral analogous to

Eq. 2.25 become quite complicated and the first method stops being useful. We therefore

opt to take the second approach and transform Eq. 2.25 into a differential equation.

Inserting Eq. 2.20 into Eq. 2.25 we can write the latter as

Σ(p) =
r(p)

p2

∫ p

0

dqq3 Σ(q)

q2 + Σ(q)2
+

∫ ∞
p

dqr(q)q
Σ(q)

q2 + Σ(q)2
. (2.26)

We now differentiate once with respect to p, which shall be indicated by primes below,

to obtain

Σ′(p) =

(
r′(p)

p2
− 2r(p)

p3

)∫ p

0

dqq3 Σ(q)

q2 + Σ(q)2
(2.27)

where the term with a derivative of the integral in the first term of Eq. 2.26 has cancelled

against the derivative of the second term. We now multiply all terms by p3 for convenience

and differentiate once more, to obtain

p3Σ′′(p) + 3p2Σ′(p) = (pr′′(p)− r′(p))
∫ p

0

dqq3 Σ(q)

q2 + Σ(q)2
+ (pr′(p)− 2r(p))p3 Σ(p)

p2 + Σ(p)2

(2.28)

We can make use of Eq. 2.27 to eliminate the integral from the above expression. The

resulting differential equation for Σ becomes

p3Σ′′ +
−r′′p2 + 4r′p− 6r

r′p− 2r
p2Σ− (r′p− 2r)

p3Σ

p2 + Σ2
= 0. (2.29)

Before we continue on to defining the boundary conditions required to solve this equa-

tion, it will be useful to define the quantity κ as the value of p such that κΣ(κ) = κ2.

It will be convenient also to convert to logarithmic coordinates, t = ln(p/κ), in order to

study the deep infrared behaviour of Σ. In t coordinates, pΣ will intersect the t = 0 axis

at precisely κ2. For simplicity we shall, from now on, redefine Σ and p to be dimensionless

quantities by dividing each by κ, i.e p → p/κ and Σ → Σ/κ. In this notation, Σ(t = 0)

must be equal to 1.
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Boundary Conditions

In order to solve Eq. 2.29 we must specify two sets of boundary conditions: the IR

(initial) condition for both Σ and Σ′, and a UV condition for Σ. Let us first consider

the IR condition for Σ′, as it can be immediately read off from Eq. 2.27: Σ′(p = 0) = 0,

which becomes Σ′(t → −∞) → 0 in t coordinates. The IR condition for Σ is given by

demanding that at t = 0, Σ = 1 as we have discussed above.

In the case of a running coupling, the UV condition for Σ(t) is simply given by

Σ(t→∞)→ 0. In the case of a constant coupling such that r′ and r′′ terms in Eq. 2.29

vanish, a cutoff Λ must be introduced at high momenta in order to obtain a solution

for Σ. The UV condition for Σ will then be given by Eq. 2.26 when p = Λ, which in t

coordinates becomes

Σ(ln Λ) =
r

Λ

∫ ln Λ

−∞

Σ(t)

1 + e−4tΣ(t)2
etdt. (2.30)

Demanding that the above condition be satisfied for a given value of the cutoff Λ will

determine the value of r.

We shall now present plots of our numerical solutions of Eq. 2.29 satisfying the bound-

ary conditions described above. Fig. 2.1 is obtained for the case of a constant coupling

for three different values of the cut-off ln(Λ), while in Fig. 2.2 and Fig. 2.3 we use the

running coupling of Eq. 2.22 with Nf = 11.5 and Nf = 9, respectively. The procedure

whereby we obtain these solutions is described in detail below.

Solving Eq. 2.29 with a constant coupling

We begin by choosing a (large) value for the cutoff Λ. In theory, since we have already

determined the IR conditions for Σ and Σ′, all that is left to adjust is the value of the

coupling r such that Eq. 2.30 is satisfied. In practice, when searching for numerical

solutions to a second order differential equation, the initial conditions for Σ and its first

derivative must both be specified at the same value of t. If we choose to keep the simple

IR condition for Σ′ given at t→ −∞ (in practice this will become t = t0 where t0 takes

an arbitrary large negative value2) then the initial condition for Σ must be translated to

t→ −∞ (t0 in practice) as well.

We will then start by fixing the IR condition for Σ′ as determined already, which now

leaves two quantities that must be adjusted in order to obtain the solution for Σ, namely

the value of the coupling r and the value of the IR condition Σ(t→ −∞), such that the

2For the interested reader, we have chosen t0 = ln(0.01) and validated this approximation by com-
paring the solutions obtained this way to the solution obtained in p coordinates, where the IR condition
is enforced at exactly p = 0. We find that both solutions agree extremely well and, in fact, the solution
is not sensitive to small changes in the specific choice for t0.
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Figure 2.1: Numerical solution for pΣ (left) and Σ (right) vs. t = ln(p) in the case of a
constant coupling, with cutoff ln Λ = 15 (red line), 18 (blue dots) and 25 (green dotted
line). The corresponding values of the coupling r for these three cases are 0.517, 0.513,
and 0.507 respectively.

Figure 2.2: Numerical solution for pΣ (left) and Σ (right) vs. t = ln(p) in the case of the
running coupling of Eq. 2.22, with Nf = 11.5 and Nc = 3.

conditions Eq. 2.30 and Σ(t = 0) = 1 are both satisfied to the desired degree of accuracy.

This must be done iteratively starting from arbitrary values until the solution converges.

This method is referred to as “shooting”.
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Figure 2.3: Numerical solution for pΣ (left) and Σ (right) vs. t = ln(p) in the case of the
running coupling of Eq. 2.22, with Nf = 9 and Nc = 3.

We would like to note that, given that Eq. 2.29 is nonlinear, once the first condition

is satisfied one cannot simply scale the resulting Σ such that the second condition is also

satisfied. Here the reader may be questioning why we have not chosen t = 0 to be the

value of t at which we impose the IR conditions for Σ and Σ′; this would of course be a

perfectly valid choice. In that case however, the IR condition for Σ′ (now Σ′(t = 0)) is

no longer vanishing and would need to be determined by satisfying the integral equation

that results from making p = 1 in Eq. 2.27; the IR condition for Σ does become more

trivial. We would be neither winning nor losing much by making this alternative choice.

Solving Eq. 2.29 with a running coupling

Similarly to the constant coupling case, in theory the IR conditions have been deter-

mined and now only one parameter must be varied, namely the initial condition for r,

r(t→ −∞), such that the boundary condition for Σ is satisfied. In practice, in order to

obtain the numerical solutions we will again be varying two parameters, r(t = t0) and

Σ(t = t0) such that the two conditions Σ(t → ∞) → 0 and Σ(t = 0) = 1 are satisfied.

The two parameters are again varied iteratively until the solution converges. Notice that

in this case, every iteration requires that we solve Eq. 2.22 using the new initial condition

for r.
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2.3 The curvature of VAF and the scalar spectrum

Now that we have found non-trivial solutions for Σ, we turn to the study of local fluc-

tuations around these solutions. Σ is not only the dynamical fermion mass function in

our theory, but also a natural order parameter for the spontaneous breaking of Chiral

Symmetry (χSB). Local fluctuations around Σ are in turn a natural description of the

low energy degrees of freedom remaining in the theory after having integrated out the

fermions. Our goal in this section is to obtain an effective description of the lightest scalar

degrees of freedom in the theory. We shall derive a low-energy effective action containing

both kinetic and mass terms for these scalars in order to obtain their pole masses. The

effective description of pseudo-scalar degrees of freedom, the Goldstone bosons in the

theory, will be the focus of the next section.

Let us then begin by considering fluctuations Σ + δΣ of the form δΣ = ∆(p)
f
φ(x),

where φ(x) is a (up to now arbitrary) scalar field, f a dimension one decay constant, and

∆ is a momentum dependent form factor analogous to the momentum dependent mass

function Σ. Notice that, unlike the analysis of reference [33], we have introduced explicit

x dependence in the field φ: we demand that φ be a slowly varying function of x relative

to the typical momentum scale of Σ and ∆ such that an expansion in powers of ∂µφ(x) is

justified. Following reference [31], we start by schematically writing out this expansion

as:

Γ

(
Σ +

∆

f
φ

)
=

∫
d4x

(
−V (Σ,∆) +

1

2
Z (Σ,∆) (∂µφ)2 +O((∂µφ)4)

)
=

∫
d4x

(
− V (Σ)−

∫
dp

δV

δΣ(p)

∆(p)

f
φ(x)− 1

2!

∫
dpdq

δ2V

δΣ(p)δΣ(q)

∆(p)

f

∆(q)

f
φ(x)2

+
1

2
Z (Σ,∆) (∂µφ)2 +O(∂µφ)4

)
(2.31)

We will be using the method outlined by Fraser in [31], adapted to our particular theory,

in order to obtain an expression for the kinetic term above.

Notice that the second term on the second line of Eq. 2.31 must vanish, by definition.

An explicit expression for the third term can be obtained from taking the variation of

Eq. 2.24:

δ2V

δΣ(p)δΣ(q)
=

1

2π2

(
p3M−1(p, q)q3 − p3 p2 − Σ(p)2

(p2 + Σ(p)2)2
δ(p− q)

)
. (2.32)

We can now write an expression for the effective action of the scalar φ in momentum
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space, up to second order in the scalar’s momentum Q2, as

ΓAF

(
Σ +

∆

f
φ

)
− ΓAF (Σ) = (2.33)∫

d4x

{
− 1

2

1

2π2

∫
dp

∆(p)

f

∫
dq

(
p3M−1(p, q)q3 − p3 (p2 − Σ(p)2)

(p2 + Σ(p)2)2
δ(p− q)

+Q2δ(p− q)ZO(Σ(q))

)
∆(q)

f

}
φ2

where ZO(Σ) is defined in relation to Z(Σ,∆) which appears in Eq. 2.31 as

Z(Σ,∆) =
1

2π2

∫
dp

∫
dq

∆(p)

f
δ(p− q)ZO(Σ(q))

∆(q)

f
. (2.34)

The subscript “O” indicates that ZO is a differential operator. More specifically, ZO

should be of the form

ZO = C0

(
Σ,
∂Σ

∂q
,
∂2Σ

∂q2

)
+ C1

(
Σ,
∂Σ

∂q

)
∂

∂q
+ C2(Σ)

∂2

∂q2
. (2.35)

The reason behind this will become clear shortly.

We now turn our attention to deriving an equation for ∆(p) as we did for Σ(p) in

the previous section. It will be convenient to normalize ∆ by making the choice f = fπ,

where fπ is the pseudo-scalar pion’s decay constant that we shall define in the next

section. Since ∆ is always accompanied by a factor of 1/f in all expressions, here we

wish to re-define the symbol ∆ to include this factor, that is, ∆ will refer to ∆
f

in the

definition of δΣ from now on.

From Eq. 2.34 above we can determine the inverse propagator of the scalar field,

which must vanish at the pole mass:∫
dq(p3M−1(p, q)q3 − p3 (p2 − Σ(p)2)

(p2 + Σ(p)2)2
δ(p− q) +Q2δ(p− q)ZO(q))∆(q) = 0. (2.36)

The resulting Q2 here defines the pole mass squared.

Notice that so far we have referred to φ as an arbitrary scalar. However, the fluc-

tuations around our order parameter Σ should correspond to a whole tower of states

δΣ = ∆i(p)φi(x). Allow us for a moment to rewrite Eq. 2.36 in the following form:∫
dq(p3M−1(p, q)q3 − p3 (p2 − Σ(p)2)

(p2 + Σ(p)2)2
δ(p− q))∆i(q) = m2

iZO(p)∆i(p), (2.37)

where we have re-written the Q2
i = −m2

i . This has the form of a generalized eigenvalue
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equation. By solving this generalized eigenvalue problem we would then be diagonalizing

the quadratic fluctuations of the effective action and finding the mass of each eigenmode.

Before we can continue towards deriving a differential equation for ∆, we shall first

seek to obtain an explicit expression for ZO(p).

Determination of ZO

Let us begin by explicitly expanding our AF action Eq. 2.10 around the solution to

the gap equation, Eq. 2.29, by replacing Σ(p) by Σ(p)+∆(p)φ(x). For the sake of clarity,

we shall treat each of the two terms that contribute to the effective action separately.

Starting with the first term on the RHS of Eq. 2.10, which we shall refer to as Γlog, we

have

Γlog(Σ + ∆φ)− Γlog(Σ) = −iTr ln
(
1− (γ · p− Σ)−1∆φ

)
. (2.38)

We can re-write the RHS of this expression as:

−iTr

[
ln

(
1− γ · p+ Σ

p2 − Σ2
∆φ

)]
= −iTr

[
−γ · p+ Σ

p2 − Σ2
∆φ− 1

2

γ · p+ Σ

p2 − Σ2
∆φ

γ · p+ Σ

p2 − Σ2
∆φ+ ...

]
,

(2.39)

where we have also expanded the logarithm.

The main idea of Fraser’s method [31] consists on treating the different functions of p

and x inside the trace above as functions of the x̂ and p̂ operators. (However, we will not

continue to write the hats from now on.) With this in mind, we can see that if we attempt

to compute the functional trace in Eq. 2.39, we are faced with the difficulty that, given

the x dependence of φ, the operators inside this trace are not diagonal in momentum

space. The same will be true of the second term in Eq. 2.10 which we will refer to as Γint.

In order to overcome this difficulty, we must use the appropriate commutation relations

for functions of p and x to bring all functions of x to the right of all functions of p. Here

is the relation in question:

φ(x)F (p) = F (p)φ(x) + i
∂F

∂pµ
∂µφ+

i2

2

∂2F

∂pν∂pµ
∂ν∂µφ+

i3

3

∂3F

∂pα∂pν∂pµ
∂α∂ν∂µφ+ ..., (2.40)

which we have derived from the familiar relations

[xi, F (~p)] = i~
∂F (~p)

∂pi
,

[pi, F (~x)] = −i~∂F (~x)

∂xi
, (2.41)
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and generalized to four dimensions (in Minkowski space)3. This commutation procedure

will result in an expansion of our AF action in powers of φ and ∂µφ, exactly what we are

after. We then should be able to “match” the coefficients of this expansion to those of

Eq. 2.31 therefore giving us an explicit expression for ZO.

Here we would like to point out that we have found some sign problems in the relations

(Eq. 2.8 and 2.9) given by reference [31]. However their final result is unaffected by them

as the terms we find a problem with do not contribute to Z there; below are these

equations with the correct signs, which follow from Eq. 2.40:

[p2, φ] = 2φ− 2ipµ∂µφ

[p2, [p2, φ]] = 22φ− 4ipµ∂µ2φ− 4pµpν∂µ∂νφ. (2.42)

Using the commutation relation Eq. 2.40, we now rewrite Eq. 2.39 as

−iTr

[
ln

(
1− γ · p+ Σ

p2 − Σ2
∆φ

)]
= −iTr

[
− γ · p+ Σ

p2 − Σ2
∆φ (2.43)

− 1

2

γ · p+ Σ

p2 − Σ2
∆

[
γ · p+ Σ

p2 − Σ2
∆φ+ i

∂

∂pµ

(
γ · p+ Σ

p2 − Σ2
∆

)
∂µφ

+
i2

2

∂2

∂pµ∂pν

(
γ · p+ Σ

p2 − Σ2
∆

)
∂µ∂νφ+O(∂3φ)

]
φ+ ...

]
We can immediately see that it is the first term on the third line of Eq. 2.43 which

will contribute to Z(Σ,∆). It is now straightforward, albeit tedious, to write down an

explicit expression for ZO in the form of Eq. 2.35. There will be many terms involving

zeroth, first, and second derivatives of ∆. Here we present the first (zeroth derivative) of

such terms for illustrative purposes:

C0 = − 1

2

q3

(q2 + Σ2)4

(
− 3q2Σ2 − q4 + 2Σ4 + 2Σ5(∂Σ)− 2(∂Σ)2q6 − 3Σ(∂2Σ)q6 (2.44)

− 2Σ3(∂2Σ)q4 + Σ5(∂2Σ)q2 + 2Σ(∂Σ)q4 − 12Σ3(∂Σ)q2 + 12Σ2(∂Σ)2q4 − 2Σ4(∂Σ)2q2

)
.

The complete expression including C1 and C2 can be found in the Appendix. In the

equation above, we have converted all pµ derivatives coming from Eq. 2.40 to derivatives

of q2 in Euclidean space, and we have defined ∂ ≡ ∂
∂q2

to avoid overcrowded notation.

We now turn our attention to the second term in the effective action for the scalar,

3Applying our result to the case of one spatial dimension agrees with the result obtained by the
authors of [34]. (See Eq. 18 therein, with x1 = p, x2 = x, and therefore c = −i).
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Γint. Proceeding similarly as we did for Γlog let us write this as:

Γint (Σ + ∆φ)− Γint(Σ) =
i

2
Tr
(
Σ(p)M−1∆φ+ ∆φM−1Σ(q) + ∆φM−1∆φ

)
. (2.45)

Again using Eq. 2.40 we commute all functions of x to the right. We can see that

the term that will contribute to Z(Σ,∆), which must have two factors of φ and two

derivatives, will come from the third term in Eq. 2.45, and we write this as:∫
d4x

1

2
Z(Σ,∆)int(∂µφ)2 = 2

∫
d4x

∫
d4p

(2π)4

i2

2
∆(p)

∂2

∂pµ∂pν

[ ∫
d4q

(2π)4
M−1(p, q)∆(q)

]
(∂µ∂νφ)φ.

(2.46)

Unlike the case of Γlog, the presence of M−1(p, q) inside the derivatives in this expression

is a major complication to our problem, as we do not have an explicit expression for the

kernel in this form except through the relation Eq. 2.16. To overcome this difficulty we

will have to get somewhat creative. In order to simplify our notation a bit, allow us to

define

∆̃(p) =

∫
dqM−1(p, q)q3∆(q), (2.47)

where we have now converted all four momenta to Euclidean space. We can write the

two derivative term in Eq. 2.46 above as

∂2

∂pµ∂pν
∆̃ = −

(
p2∂2∆̃ + 2∂∆̃

)
gµν . (2.48)

Then, in order to include the effect of Γint in ZO as we did for Γlog, we must find some

kind of expression for Eq. 2.47 above. We will continue to make progress in this direction

further down in this section, but for now allow us to take a hiatus to put what we have

done to determine ZO so far in more familiar terms.

Here we would like to note that our calculation of Γlog’s contribution to Z(Σ,∆) as

performed above is in fact equivalent to the result one would obtain from a diagrammatic

approach, that is, that the coefficient of the kinetic term in the scalar field’s effective

action should be given by the p2 term in the two point function, which we write as

Z(Σ,∆)log = −iΓ(2)

p2 (p,−p,Σ,∆). (2.49)

Looking at Fig. 2.4 we can write

Γ(2) =

∫
d4k

(2π)4

i(k/+ Σ(k))

(k2 − Σ2(k))

i(k/− p/+ Σ(k − p))
(k − p)2 + Σ2(k − p)(−i∆(k))(−i∆(k − p)), (2.50)
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k

p p

Figure 2.4: Quadratic term in the effective action.

and taking the trace to get rid of the γs in the fermion propagators, and defining q = k−p,
we find

Γ(2) =

∫
d4k

(2π)4
∆(k)∆(q)4

k2 − k · p+ Σ(k)Σ(q)

(k2 − Σ2(k))(q2 − Σ2(q))
. (2.51)

We can now straightforwardly expand the integrand of Eq. 2.51 in powers of p in order

to isolate the term proportional to p2. The complete result for this expression can be

found in the Appendix, where we explicitly show that the it perfectly agrees with our

calculation of Eq. 2.45 using Fraser’s method. Note that to obtain this agreement we

have made a particular choice for the Feynman rule for the fermion-scalar vertex; rather

than for example the symmetric combination (∆(k) + ∆(q))/2 instead. Interestingly,

this latter choice yields additional terms proportional to ∆′ which do not appear in our

previous calculation of Zlog. Thus, our results have resolved this potential ambiguity.

Solving the curvature equation

We shall now proceed to derive a differential equation for ∆. First, it will be useful

however to transform Eq. 2.36 into one without M−1 by making use of Eq. 2.16:

∆(p) =

∫
dq

[
q3 q2 − Σ(q)2

(q2 + Σ(q)2)2
M(q, p)−Q2M(q, p)ZO(Σ)

]
∆(q). (2.52)

Following a similar procedure as that used to transform Eq. 2.25 into a differential

equation for Σ(p) with its corresponding IR and UV conditions, we shall now derive the

differential version of Eq. 2.52. Let us first differentiate once with respect to p:

∆′i(p) =

(
r′(p)

p2
− 2r(p)

p3

)∫ p

0

(
q3(q2 − Σ(q)2)

(q2 + Σ2(q))2
+m2

iZO(Σ)

)
∆i(q)dq. (2.53)

Multiplying both sides in Eq. 2.53 by a factor of p3, and once more differentiating with
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respect to p, we obtain

3p2∆′i(p) + p3∆′′i (p) = (pr′′(p)− r′(p))
∫ p

0

(
q3(q2 − Σ(q)2)

(q2 + Σ2(q))2
+m2

iZO(Σ)

)
∆i(q)dq

+ (pr′(p)− 2r(p))

(
p3(p2 − Σ2(p))

(p2 + Σ2(p))2
+m2

iZO(Σ)

)
∆i(p). (2.54)

Making use of Eq. 2.53 we can rewrite the remaining integral on the RHS as a term

proportional ∆′. The result is then:

p3∆′′i +

(
3p2 − p3 pr

′′ − r′
pr′ − 2r

)
∆′i − (pr′ − 2r)

(
p3(p2 − Σ2)

(p2 + Σ2)2
+m2

iZO(Σ)

)
∆i = 0 (2.55)

where Σ, ∆, and r are all understood to be functions of p. Notice that, as in the deriva-

tion of Eq. 2.29, the functions of q in the integrand of Eq. 2.52 do not pick up any

derivatives, and appear intact as functions of p in the differential equation above. But

more importantly here, notice that ZO acting on ∆i in the third term of Eq. 2.55 will

generate new terms proportional to ∆′i and ∆′′i , in addition to the linear term in ∆.

Boundary Conditions

In order to solve Eq. 2.55 we must specify two sets of boundary conditions: the IR

(initial) condition for both ∆ and ∆′, and a UV condition for ∆. The IR condition for

∆′ can be immediately read off from Eq. 2.53: ∆′(p = 0) = 0, which in t coordinates

this becomes ∆′(t→ −∞)→ 0. The initial condition for ∆, ∆(t→ −∞) is determined

by the requirement that the kinetic term in the scalar’s effective action be canonical.

Inspecting Eq. 2.31, we can see that this then implies

Z(Σ,∆) = 1. (2.56)

In the case of the running coupling of Eq. 2.22 the UV condition for ∆ is given by

∆(p→∞)→ 0. In the case of a constant coupling, the UV condition for ∆ is given by

Eq. 2.52 evaluated at p = Λ:

∆(Λ) =
r

Λ2

∫ Λ

0

dq

[
q3 q2 − Σ(q)2

(q2 + Σ(q)2)2
−Q2ZO

]
∆(q). (2.57)

Demanding that the above conditions be satisfied determines the value of m2.

We shall now present plots of our numerical solution for the lightest scalar’s p∆(t)

(left) and ∆(t) (right), first considering only the effect of the Γlog term in ZO, for a variety
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of cases. In Fig. 2.5 we present the case of a constant coupling r = 0.517 compatible with

the first solution for Σ presented above; the resulting value of the mass for the scalar is

m = 1.52. Here we would like to remind the reader that all masses are given in units of

the dynamical fermion mass. Fig. 2.6 and Fig. 2.7 show the solutions for the case of the

running coupling from the previous section for two different values of Nf , Nf = 11.5 and

Nf = 9 respectively; here we obtain m = 1.53 and m = 1.45 respectively. In Fig. 2.8 we

also present plots for p∆ and ∆ of a higher mass scalar in the constant coupling regime

for illustrative purposes; the value of the mass for this particular scalar is m = 6.72. This

latter mass is clearly above the scale where our effective description makes sense.

More details on how we have obtained these solutions will be provided below. We

also present plots for the solutions to p∆ and ∆ considering also the effect of Γint in

ZO for two cases: that of the constant coupling r = 0.517 from above which can be

found in Fig. 2.9, and that of the running coupling with Nf = 9 which can be found

in Fig. 2.10. The corresponding values of the lightest scalar’s mass are m = 1.46 and

m = 1.43 respectively. We have not yet explained how we have included the Γint effect

into our equations, this will be done in detail below.

Figure 2.5: Numerical solution of p∆ (left) and ∆ (right), considering only the effect of
Γlog in the effective action, for the lightest mass scalar (mass m = 1.52) in the case of a
constant coupling r = 0.517 and UV cutoff at t = ln(Λ) = 15.

Solving Eq. 2.55

We now proceed to explain how we have obtained numerical solutions to Eq. 2.55 pre-

sented here. We shall initially concentrate on the effect of Γlog only. The procedure that

we follow in this case closely follows that used for solving for Σ in the previous section. In
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Figure 2.6: Numerical solution of p∆ (left) and ∆ (right), considering only the effect
of Γlog in the effective action, for the lightest mass scalar (m = 1.53) in the case of the
running coupling from Eq. 2.22, with Nf = 11.5.

Figure 2.7: Numerical solution of p∆ (left) and ∆ (right), considering only the effect
of Γlog in the effective action, for the lightest mass scalar (m = 1.45) in the case of the
running coupling from Eq. 2.22, with Nf = 9.

principle, the only parameter left to vary is m2 such that the boundary condition for ∆

is satisfied. In practice, the two quantities that we shall vary are ∆(t = t0) and of course

m2; the two conditions that we seek to satisfy are Eq. 2.56 and Eq. 2.57 in the case of

a constant coupling, and Eq. 2.56 along with Σ(t → ∞) → 0 in the case of a running
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Figure 2.8: Numerical solution of p∆ (left) and ∆ (right), considering only the effect of
Γlog in the effective action, for a higher mass scalar in the spectrum (m = 6.72) in the
case of a constant coupling r = 0.517 and UV cutoff at t = ln(Λ) = 15.

Figure 2.9: Numerical solution of p∆ (left) and ∆ (right), considering the effect of both
Γlog and Γint in the effective action, for the lightest mass scalar (m = 1.46) in the case
of a constant coupling with a cut-off at t = 15.

coupling. We shoot from small and initially arbitrary values of both parameters, and

proceed recursively until a solution for ∆ converges. The resulting value of m determines

the physical mass of our lightest scalar, the “dilaton”. Note that, unlike the differential

equation for Σ, Eq. 2.55 up to this point is linear. Therefore we can focus solely on satis-

fying the second condition, Eq. 2.57, for an arbitrary value of ∆(t = t0) and then scale the
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Figure 2.10: Numerical solution of p∆ (left) and ∆ (right), considering the effect of both
Γlog and Γint in the effective action, for the lightest mass scalar (m = 1.43) in the case
of the running coupling from Eq. 2.22, with Nf = 9.

obtained solution by a multiplicative constant such that Eq. 2.56 is satisfied. This will

not remain true once we introduce the contribution from Γint, as will become clear shortly.

Incorporating Γint effects

Now that we have an idea of what our solutions should look like, we can use what we

know about M(p, q) to numerically obtain a discrete number of points for the function

∆̃(p), which can be used to incorporate the effect of the interaction term into ZO. We

begin by defining a dimensionless, discrete version of the kernel M(p, q) as a n×n matrix:

M = pM(p, q)q (2.58)

where both p and q run from 0.01 (where our solutions begin when we translate t0 to p

coordinates) to exp(15), the cut-off for our constant coupling solution; we have chosen

n = 500. From Eq. 2.15, we can see that the dimensionless expression containing the

inverse of M(p, q) is p3M−1(p, q)q3. Hence, in matrix notation, we can invert M to find

M−1 = p3M−1(p, q)q3. (2.59)

In log coordinates where t, s are related to p, q respectively, we can write

∆̃(t) =M−1(t, s)∆(s) exp(−3t). (2.60)
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We can now numerically compute the first and second derivatives of ∆̃ as required by

Eq. 2.48. The result may be fit to a function that yields the contribution of Γint to ZO∆i

in Eq. 2.55.

We now proceed as follows. We include this new term as an inhomogeneous term in

Eq. 2.55, and solve for ∆ as usual. Notice that now, the initial condition that gives the

proper normalization for ∆ (such that the kinetic term remains canonical) must now be

input correctly from the beginning. We can iterate the above described procedure a few

times, in this way we are building in the non-linear effect of the interaction term into our

equation. Starting with the solution presented in Fig. 2.5 we iterate this procedure twice,

which is sufficient for the desired accuracy. The corresponding new resulting p∆ and ∆

can be found in Fig. 2.9. The same has been done for the solution with Γint omitted, as

presented in Fig. 2.7, to be compared with that of Fig. 2.10. As evidenced by comparing

these two sets of figures, the effect of Γint is not dramatic at all, but there is a slight

change in the values of the lightest scalar’s mass: m = 1.46, compared to 1.52, in the

first and m = 1.43, compared to 1.45, in the second. The interaction term clearly does

not play a leading role in our analysis.

Discussion

It has now become apparent that the lightest scalar state in our theory is not expected

to be light relative to the dynamical fermion mass scale, regardless of the near-conformal

dynamics we have considered here. This result appears to directly contradict the con-

clusion of well-read papers on the subject (see [14] and [28] for example) that predict a

parametrically light scalar associated with the spontaneous breaking of dilatation sym-

metry for gauge theories with an (approximate) infrared fixed point.

Inspired by applications to holography where the dilaton can be identified with the

radion, literature from recent years on the dilaton in the context of Conformal Field

Theory (CFT) suggests that, in general, a quasi-conformal theory will not produce a light

dilaton unless, among other conditions, there is a flat direction available in the theory,

which would correspond to fine tuning unless supersymmetry is invoked (see [35], [36] for

example). While a clear connection between a gauge theory like we have considered here

and the types of theories studied in this context is not apparent to us at this time, we

still find tension between the result (see [35], Eq. 5.12)

m2

Λ2
∼ β

π
, (2.61)

and our own analysis. We illustrate the issue by taking a special limit of our gauge theory
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in what follows.

Let us consider the beta function from Eq. 2.22

β(α)

α
= −b0α + ... (2.62)

We first re-write b0 from Eq. 2.23 in the more general form

b0 =
11

6π
C2(G)− 4

6π
NfC(r), (2.63)

where G denotes the representation of the gauge generators (the adjoint representation)

and r denotes the representation under which the fermions transform. It will be useful

to re-write C(r) above as

C(r) =
dr
dG
C2(r). (2.64)

We consider fermions in a dr dimensional fermion representation of SU(N) such that

C2(r) is large compared to Nc, and simultaneously we have a small number of flavours

Nf � N2

dr
. This limit, although unphysical given that Nf is less than 1, is well defined

and has been used in the past to study χSB in Monte Carlo calculations; see e.g., [37].

Here, χSB occurs at a value of α ∼ 1/C2(r) such that it is much less than one. We

can then see that the pure gauge boson contribution to Eq. 2.62 will be dominated by

a term ∼ N/C2(r) � 1, while the fermonic term is ∼ Nfdr/(N
2 − 1), also much less

than 1 given the condition on Nf . Hence, in this limit the beta function can be made

arbitrarily small to all orders in α, and Eq. 2.61 would imply m2/Λ2 � 1. This is not

the case for us at all however. We have found that a small (but non-zero) beta function

will allow for large contributions to the scalar’s mass coming from a large range of scales

up to high momenta, a non-local effect not captured by a local analysis. Even in the case

of a constant coupling where β is exactly 0, we do not expect the scalar to be light. It is

in fact the boundary condition at the cutoff, necessary to obtain a solution in this case,

which breaks the scale invariance and generates a non-zero mass for the dilaton.

Something striking about our results for the momentum dependent mass function Σ(t)

and form factor of our lightest scalar ∆(t), and perhaps the most interesting qualitative

result that we observe here, is how similar they are to each other away from the IR where

the terms that cut off the loop integrals become dominant. There are two reasons why

we believe this is interesting. The first is in fact related to to the nature of our scalar:

if the lightest scalar in the theory is indeed associated with the spontaneous breaking of

scale invariance, one would expect its mass function to be quite distinct from Σ(p). In

fact, we would expect it to be proportional to Σ(p)−Σ′(p)p. This can be understood by
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performing a scale transformation of the order parameter Σ(p), as done by the authors

of [13]. This result is in direct contrast with our findings for ∆, which closely resembles

Σ throughout. The second is that in the limit where ∆ approaches Σ, up to a factor

of iγ5, attaching an additional scalar to a fermion loop will have an amplitude that is

the same as attaching a pion. This will become more clear in the next section when

we study pseudo-scalar excitations of the order parameter Σ. Therefore, it appears that

upon integrating out the fermions, a linear sigma model remains where f (which is equal

to fπ) gives both the vacuum expectation value (VEV) and the decay constant. This

suggests that the coupling of our scalar to the Goldstone bosons, and thus to the W and

Z bosons, will be similar to that of a SM Higgs doublet.

Finally, we believe it is worthwhile noting that, even as we move away from the

walking regime, we continue to find values for the pole mass of the lowest lying scalar

particle of approximately 1.5 times the value of the dynamical fermion mass. This result

is interesting when interpreted in the context of QCD, where 1.5 times ∼ 330 MeV is

∼ 500 MeV, the location of the σ resonance.

In order to obtain concrete results, we have made quite a few approximations. The

one that we believe carries the most implications is the tree level truncation in T of the

AF action, Eq. 2.6, which should correspond to working in the large Nc limit. While

we have initially dropped gauge boson self interactions, we have re-introduced the effect

through the running coupling in the kernel; we are essentialy working in the standard

renormalization-group-improved ladder approximation. We believe that the qualitative

behaviour observed in our solutions for Eq. 2.29 and Eq. 2.55 should survive beyond

our approximations and that the mass of the lightest scalar always receives important

contributions that arise from a large range of momenta. One way to understand this

is by observing that it is the scale invariance of the kernel that is responsible for the

weighting of the integral equation for Σ in the UV, where the significant drop in the

coupling becomes a large explicit source of breaking of scale invariance (see e.g., [38]).

2.4 The pion

We now turn to study pseudo-scalar fluctuations around the order parameter Σ. Much

of what we have done in the previous section to obtain an effective description of the

scalar field φ will follow through very similarly here. An important difference to note

here however is that, in contrast to the scalar case, there will be no separate momentum

dependent form factor analogous to ∆ involved for pseudo-scalars; as required by chiral

symmetry, the pion fields’ form factor must be proportional to Σ. Then, having already
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solved for Σ and determined its normalization, we can simply demand that the pion’s

kinetic term in the effective action be canonical in order to obtain an integral expression

for the constant fπ. Any contributions to fπ coming from terms involving M−1(p, q)

can also now be calculated in a pretty straightforward way, as will soon become clear.

Towards the end, we shall compare our results to the well known result for fπ by Pagels

and Stokar [39].

Let us then begin by looking at fluctuations of the order parameter of the form

δΣ = Σ(p)(e−
i
fπ
π(x)γ5 − 1). Here, π = λaπa where the λ are the SU(3) generators with

normalization Tr(λaλb) = δab/2. We schematically expand the effective action in terms

of the slowly varying field π(x) as

Γ(Σ + δΣ)− Γ(Σ) =

∫
d4x

[
−
∫
dp

δV

δΣ(p)
Σ(p)(e−

i
fπ
π(x)γ5 − 1) (2.65)

− 1

2

∫
dpdq

δ2V

δΣ(p)δΣ(q)
Σ(p)Σ(q)(e−

i
fπ
π(x)γ5 − 1)2 +

1

2
Z(Σ)(∂µπ

a(x))2 + ...

]
.

Notice that now, both the first and the second term in this expansion will give rise

to π2 terms that could in principle give the pions a non-zero mass. Of course in the

chiral limit that we are studying, the Goldstone bosons should remain exactly massless;

we must verify that these contributions are indeed vanishing. Also, while it remains true

that δV
δΣ(p)

alone should vanish when both terms in Eq. 2.10 are considered together, we

will show that, when combined with the π2 contributions from δ2V
δΣ(p)δΣ(q))

, the contribution

from each Γlog and Γint vanish independently of each other.

Let us first consider the contribution to the pions’ effective action coming from Γlog:

Γ(Σ + δΣ) − Γ(Σ) = −iTr

[
ln

(
1 +

γ · p+ Σ

p2 − Σ2
Σ

(
i

fπ
γ5π − i2

2f 2
π

π2 + ...

))]
(2.66)

= −iTr

[
γ · p+ Σ

p2 − Σ2
Σ

(
i

fπ
γ5π − i2

2f 2
π

π2 + ...

)
− 1

2

γ · p+ Σ

p2 − Σ2
Σ

(
i

fπ
γ5π − i2

2f 2
π

π2 + ...

)
γ · p+ Σ

p2 − Σ2
Σ

(
i

fπ
γ5π − i2

2f 2
π

π2 + ...

)
+ ...

]
.

We can immediately write an expression for the (non-derivative) π2 term, let us call

it Lπ2 , as

Lπ2 = −iTr

(
1

2f 2
π

γ · p+ Σ

p2 − Σ2
Σπ2 − i2

2f 2
π

γ · p+ Σ

p2 − Σ2
Σπ
−γ · p+ Σ

p2 − Σ2
Σπ

)
(2.67)

= −i
(

1

2f 2
π

4Σ2

(p2 − Σ2)
π2 +

1

2f 2
π

4
−p2 + Σ2

(p2 − Σ2)2
Σ2π2

)
+ deri. = 0, (2.68)
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which vanishes as promised. Note that in the second line, we have ignored the derivative

terms that arise from commuting π to the right as they are not relevant for us here.

We can now determine Zlog(Σ), by using Eq. 2.40 to bring all pion fields in Eq. 2.67 to

the right and isolating the terms with two π fields and two derivatives. Here we present

the leading term containing no derivatives of Σ:

Z(Σ)log =

∫
d4p

(2π)4

1

f 2
π

Σ2(p)p2 + 2Σ4(p)

(p2 + Σ2(p))3
+ ... (2.69)

For the full expression of Zlog including Σ′ and Σ′′ terms, please refer to the Appendix.

Demanding that the kinetic term for the pion effective action be canonical, we find an

expression for the decay constant

f 2
π =

Nc

16π2

∫
dq2q2 Σ2(p)p2 + 2Σ4(p)

(p2 + Σ2(p))3
+ ... (2.70)

Before we proceed to the discussion of the interaction term, let us first use our solu-

tions for Σ from Section 2.1 to find the numerical values of fπ in the case of a constant

and running coupling. For the first case, with r = 0.517 and cutoff at t = ln Λ = 15, we

find fπ = 0.17. For the second case, and using Nf = 11.5 we find fπ = 0.16.

We can compare the above results to the calculation by Pagels and Stokar [39] ob-

tained by calculating the amplitude for the annihilation of a Goldstone through an axial-

vector current:

f 2
π =

Nc

16π2

∫
dq2q2 Σ2(q)− 1

2
q2Σ(q)∂Σ(q)

(q2 + Σ2(q))2
(2.71)

=
Nc

16π2

∫
dq2q2 Σ2(q)q2 + Σ4(p)

(q2 + Σ2(p))3
+ ...,

where ∂ ≡ ∂
∂q2

as defined in the previous section. In the second line, we have re-written

in a similar form as our result Eq. 2.70 above. Notice that at large p, the leading term

in our result agrees with the Pagels-Stokar result. The numerical values for the decay

constant from Pagels-Stokar, corresponding to the same cases discussed by us above are:

fπ = 0.14 for the constant coupling, and fπ = 0.13 for the running coupling.

Let us now turn to the interaction term Γint,

Γint[Σ + δΣ] =
i

2
Tr

[
Σ

(
1− i

fπ
πγ5 +

i2

2

π2

f 2
π

+ ...

)
D−1Σ

(
1 +

i

fπ
πγ5 +

i2

2

π2

f 2
π

+ ...

)]
,

(2.72)

where the expansions inside the rounded parentheses correspond to e−
i
fπ
π(x)γ5 and e+ i

fπ
π(x)γ5
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respectively.

We can immediately isolate the (non-derivative) terms that are quadratic in π which

can potentially contribute to a non-zero pion mass, let us call them Iπ:

Iπ = Tr

[
ΣD−1Σ

i2

2

π2

f 2
π

+ Σ

(
− i

fπ
πγ5

)
D−1Σ

(
− i

fπ
πγ5

)
+ Σ

i2

2

π2

f 2
π

D−1Σ

]
(2.73)

= Tr

[
i2ΣD−1Σ

π2

f 2
π

− i2ΣD−1Σ
π2

f 2
π

+ deri.

]
= 0 (2.74)

which also vanishes, as promised. Here, we have also ignored all the derivative terms

that arise from commuting the pion fields to the right since they are not relevant to the

mass term.

We can now comment on the effect of Γint in the result of fπ, the pion decay constant.

Proceeding in the same way as we did for Γlog, we can start from Eq. 2.72 above and

compute Γint(Σ + δΣ) − Γint(Σ). We again make use of Eq. 2.40 to commute all pion

fields to the right of all function of p and q. It is then straightforward to isolate the term

containing two pion fields and two derivatives:

∫
d4x

1

2
Zint(Σ)(∂µπ

a)2 =
i

2
Tr

[
i2

2
Σ(p)

∂2

∂pµ∂pν

(
M−1Σ(q)

) i2
f 2
π

∂µπ∂νπ

]
(2.75)

= −
∫
d4x

1

f 2
π

i

23π2

∫
dpp3Σ(p)

(
−p2∂2 − 2∂

)(∫
dqq3M−1(p, q)Σ(q)

)
(∂µπ)2

where we have converted all momenta to 4−d Euclidean space. Notice the big difference

here is that it is Σ inside of the derivative with M−1; while we may not have an explicit

expression for M−1, we certainly know how M−1 acts on Σ in the equation above from

Eq. 2.24. We can then replace the integral in parenthesis on which the derivatives are

acting by Σ(p)
p2+Σ2(p)

. It is now straightforward to add this contribution to our previous

expression for Z(Σ). The numerical results for the cases discussed above, including the

effect of Γint, are then fπ = 0.22 for the constant coupling and fπ = 0.21 for the running

coupling.

Before closing off this section, we would like to mention that, as we did for the case

of the scalar, we have also verified our result for Z(Σ) here by calculating the diagram

of Fig. 2.4 with pseudo-scalars instead of scalars attached to the fermion loop. In order

to find the p2 coefficient of the two point function above, we proceed as in the previous



Chapter 2. On the Scalar Spectrum of Walking Gauge Theories 40

section

Γ(2) =

∫
d4k

(2π)4

−1

f 2
π

Σ(q)Σ(k)2
−k2 + k · p+ Σ(k)Σ(q)

(k2 − Σ2(k))(q2 − Σ2(q))
. (2.76)

Except for the replacement of ∆ by Σ and a few signs, everything else follows through in

the same way. We have expanded the above integrand in powers of p and checked that

indeed, the result exactly agrees with our result Eq. 2.70 including all derivative terms.

The full result and comparison can be found in the Appendix.

2.5 Discussion of a simple five-dimensional model

In this section we would like discuss the dynamic AdS/QCD model of walking gauge

theories of Alho, Evans, and Touminen in [1], which they use to give an example of

a holographic description of an SU(3) gauge theory which approaches the conformal

window in the walking regime. This is achieved by varying Nf as a continuous parameter

in the same way we have done above. The dynamics for the gauge field is included

through the running of γ, the anomalous dimension of the quark bilinear which, in the

holographic picture, is related to the mass of a canonical scalar in AdS5, which suffers

an instability as it passes through what is known as the Breitenlohner-Freedman bound.

This occurs when γ = 1 or holographically, when the mass of the scalar m2 = −4.

Our interest in exploring this model lies in the claim by the authors of [1], that these

walking gauge theories possess a Higgs-like excitation, presumably associated with the

spontaneous breaking of dilatation symmetry.

Let us then briefly look at the model. For details please refer to the original reference

cited above. The holographic coordinate is denoted by ρ, and it is such that ρ = 0 is

the IR and ρ =∞ is the UV. The scalar meson is described by x dependent fluctuations

around the vacuum configurations of a dimension one field X = L(ρ)e2iπaTa , |X| = L.

Notice then that L is analogous to our momentum dependent fermion mass function,

Σ. The effective radial coordinate (in the bulk) is given by r2 = ρ2 + |X|2, such that a

non-zero value of L implies that, at ρ = 0, r → 0 is excluded. In this way, the quark

condensate gives rise to a “soft” IR wall.

The 5− d metric is

ds2 =
dρ2

(ρ2 + |X|2)
+ (ρ2 + |X|2)dx2, (2.77)

and the five dimensional action (Eq. 3 in [1] where we have set the FA and FV vector



Chapter 2. On the Scalar Spectrum of Walking Gauge Theories 41

fields to 0) is

S5 =

∫
d4xdρTr

[
ρ3

(
1

ρ2 + |X|2 |DX|
2 +

∆m2

ρ2
|X|2

)]
(2.78)

where ∆m2 is related to the canonical scalar’s mass4, and hence to γ. From this action

we can immediately find the equation of motion for L, assuming that ∆m2 is a constant:

∂ρ(ρ
3∂ρL)− ρ∆m2L = 0. (2.79)

Of course an r(L) dependent ∆m2 will be used to describe the running of γ, but only at

the level of the equation of motion above. The boundary conditions are L′(0) = 0 and

L(0), which is interpreted as the effective IR quark mass, such that L(∞) = 0 (only in

the chiral limit).

∆m2 will be given by −2γ, and γ in turn comes from the one loop result

γ =
3C2

2π
α =

3(N2
c − 1)

4Ncπ
α =

2

π
α (2.80)

where α here is the same running coupling from Eq. 2.22. Finally, the effective radial

coordinate r is identified with the RG scale µ.

Notice that γ above is exactly what we have defined as r in the first section. Here,

let us now re-write Eq. 2.29 assuming r = constant:

p3Σ′′ + 3p2Σ′ + 2r
p3Σ

p2 + Σ2
= 0. (2.81)

We can immediately see that for p � Σ(p) where Σ can be ignored, this equation is

exactly the same as that for L above. They begin to differ significantly as we approach

the IR, where the non-linear terms that damp the loop integrals become important.

Finally, the analog of our equation for ∆ can be obtained by looking for x dependent

excitations around L, |X| = L0 +δ(ρ)e−iq·x. Eq. 2.78 then leads to an equation of motion

for δ [1],

∂ρ(ρ
3∂ρδ)− ρ∆m2δ + ρL0δ

∂∆m2

∂L

∣∣∣∣
L0

+M2R4 ρ3

(ρ2 + L2
0)2
δ = 0. (2.82)

As we did for φ and π, we must normalize δ such that the kinetic term for the scalar

4One can re-write L as ρφ to find the canonical form for the 5− d action of a scalar in AdS, the mass
of which is (−3 + ∆m2); see Eq. 8 in [1].
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meson in Eq. 2.78 be canonical. This takes us to Eq. 11 in [1],∫
dρ

ρ3

(ρ2 + L2)2
δ2 = 1. (2.83)

We can see by comparing this to the Pagels-Stokar (PS) relation discussed in the previous

section that, excluding the phase space factors specific to 4 dimensional space-time, this

normalization condition agrees with the dominant term of PS as well. Looking at this

equation it becomes clear that, as we approach the conformal window and the third term

from the left grows smaller, δ(ρ) will approach the vacuum solution of Eq. 2.79 and the

value of M in the fourth term of the RHS above, the mass of the scalar, will tend to 0.

To conclude, from our discussion above we do not find that the soft-wall behaviour in

this model can reproduce some of the effects that we have observed in the gauge theory

setting studied in the previous sections. While as we have pointed out, some features are

in common between the two pictures we do not believe that, in particular, the vanishing

dilaton mass M → 0 resulting from Eq. 2.82 can be naturally realized in the gauge theory

context.

2.6 Conclusions

In this chapter we have studied the issue of the existence of a dilaton as the lightest

scalar particle in gauge theories with chiral symmetry breaking and approximate con-

formal symmetry. In the framework of a (non-local) auxiliary field effective action, we

have derived a differential equation for the dynamically generated fermion mass function

in an SU(N) gauge theory with Nf number of fermions, and have shown that working

in the renormalization group improved ladder approximation, there are non-trivial solu-

tions for Σ indicating that chiral symmetry is broken. We then studied local scalar and

pseudo-scalar fluctuations around these solutions, which describe the scalars and Gold-

stone bosons in the theory. We have adopted an interesting and not (to our knowledge)

commonly used approach from [31] to derive the correct kinetic terms in the scalar and

effective actions, and then used them to derive a differential equation, analogous to the

gap equation for Σ, for the momentum dependent form factor of the scalars.

The solutions that we have found to these equations, which include effects also from

the interaction term in the effective action, are indeed interesting for a few reasons. The

first thing to note is that the lightest scalar in the theory is never light relative to the

dynamical fermion mass, no matter how close we get to the fixed point of the theory. The

mass will always receive contributions from a large range of momentum scales all the way
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up to the UV; this has already been pointed out long ago in [13]. From the behaviour of

pΣ and p∆ presented in our figures, we believe this to be a robust prediction not specific

to any of the approximations we have made. Unlike previous studies that would agree

with our last statements however, we additionally find that the momentum dependent

form factor of the scalar is in fact very close to Σ itself. This simple fact implies that

our scalar will couple to Goldstone bosons, therefore also to the W and Z bosons, very

closely resembling a Standard Model Higgs. Of course, as we have just stated, we have

not found evidence as to why the lowest lying scalar here should be naturally light as to

be anywhere near the 126 GeV observed Higgs boson. But the prediction that a standard

gauge theory should generally have this property is we think indeed worthy of attention.

With regards to the scalar mass, our results depend on an approximation that is only

justified for large Nc. It is thus conceivable that a smaller scalar mass could emerge in a

small Nc or strong abelian theory.

We have also studied the pions in this theory, and obtained an integral expression for

their decay constant. Comparing to the well known result of Pagels and Stokar [39], we

find that while the dominant term agrees with our approach, there are new additional

contributions that have a small but noticeable effect on fπ and that are more or less

straightforward to include using our approach.

Finally we have commented on the relationship between the equations for the mo-

mentum dependent mass functions in our theory and the equations for the radion in the

holographic technicolour model of [1]. We do not believe that the type of behaviour they

observe, where the radion becomes lighter as the theory approaches the IR fixed point is

realizable in the context of a gauge theory.
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2.7 Appendix

We begin by giving the numerator for the complete expression for Z before converting

four-momenta to Euclidean space. Here, the D represent partial derivatives with respect

to the four-momenta squared kk and pp.

Znum
log := 4 (∆ (kk))2 (Σ (kk))4 (D (Σ) (kk))2

kk+12 ∆ (kk) D (∆) (kk) kk 3Σ (kk) D (Σ) (kk)−8 ∆ (kk) D (∆) (kk) kk 2 (Σ (kk))3 D (Σ) (kk)

− 4 ∆ (kk) D (∆) (kk) kk (Σ (kk))5 D (Σ) (kk) + 6 (∆ (kk))2 Σ (kk)
(
D(2)

)
(Σ) (kk) kk 3

− 4 (∆ (kk))2 (Σ (kk))3 (D(2)
)

(Σ) (kk) kk 2 − 2 (∆ (kk))2 (Σ (kk))5 (D(2)
)

(Σ) (kk) kk

− 4 (∆ (kk))2 Σ (kk) D (Σ) (kk) kk 2 − 24 (∆ (kk))2 (Σ (kk))3 D (Σ) (kk) kk

+ 24 (∆ (kk))2 (D (Σ) (kk))2 kk 2 (Σ (kk))2 + 2 ∆ (kk)
(
D(2)

)
(∆) (kk) kk 4

+ 2 ∆ (kk) D (∆) (kk) kk 3 + 4 ∆ (kk) D (∆) (kk) (Σ (kk))6 − 2 (∆ (kk))2 kk 2

+4 (∆ (kk))2 (Σ (kk))4−2 ∆ (kk)
(
D(2)

)
(∆) (kk) kk 3 (Σ (kk))2−2 ∆ (kk)

(
D(2)

)
(∆) (kk) kk 2 (Σ (kk))4

+ 2 ∆ (kk)
(
D(2)

)
(∆) (kk) kk (Σ (kk))6 − 8 ∆ (kk) D (∆) (kk) kk 2 (Σ (kk))2

+ 2 ∆ (kk) D (∆) (kk) (Σ (kk))4 kk − 4 (∆ (kk))2 (Σ (kk))5 D (Σ) (kk)

+ 6 (∆ (kk))2 kk (Σ (kk))2 + 4 (∆ (kk))2 (D (Σ) (kk))2 kk 3

The denominator is given by (kk − Σ2(kk))4.

From Fig. 2.4 we write

Γ(2) := 4
∆ (kk) ∆ (qq) (kk − kp + Σ (kk) Σ (qq))(

kk − (Σ (kk))2) (qq − (Σ (qq))2)
In order to expand in p given the kp factors in the above expression, we associate the

dimensionless quantity ρ to every factor of p. We then write

Γ(2) := 4
∆ (kk) ∆ (kk + pp ρ2 − 2 kp ρ) (kk − kp ρ+ Σ (kk) Σ (kk + pp ρ2 − 2 kp ρ))(

kk − (Σ (kk))2) (kk + pp ρ2 − 2 kp ρ− (Σ (kk + pp ρ2 − 2 kp ρ))2)
It is now straightforward to perform an expansion in ρ; here is the rho2 term that

will give us all p2 including those coming from kp2 terms once the angular integrals are

performed.

Γ
(2)

p2 := 16
(∆(kk))2kk Σ(kk)(D(2))(Σ)(kk)kp2

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
2 +8 (∆(kk))2kk Σ(kk)D(Σ)(kk)pp

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
2 +64 (∆(kk))2kp2kk Σ(kk)D(Σ)(kk)

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3
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−96
(∆(kk))2kp2(Σ(kk))2(D(Σ)(kk))

2
kk

(kk−(Σ(kk))2) (−kk+(Σ(kk))2)
3 +32 ∆(kk)kp2D(∆)(kk)(Σ(kk))5D(Σ)(kk)

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3 −32 ∆(kk)kp2D(∆)(kk)kk2Σ(kk)D(Σ)(kk)

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3 +

16
(∆(kk))2kk (D(Σ)(kk))

2
kp2

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
2 +8 (∆(kk))2(Σ(kk))3D(Σ)(kk)pp

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
2 +16

(∆(kk))2(Σ(kk))3(D(2))(Σ)(kk)kp2

(kk−(Σ(kk))2) (−kk+(Σ(kk))2)
2 +

16
(∆(kk))2kp2(Σ(kk))2(D(Σ)(kk))

2

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
2 +64 (∆(kk))2kp2(Σ(kk))3D(Σ)(kk)

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3−32

(∆(kk))2kp2(Σ(kk))4(D(Σ)(kk))
2

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3 +

16 ∆(kk)kp2D(∆)(kk)kk2

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3

− 16 ∆(kk)kp2D(∆)(kk)(Σ(kk))4

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3 + 16 ∆(kk)D(∆)(kk)kp2Σ(kk)D(Σ)(kk)

(kk−(Σ(kk))2)
2

+ 8 ∆(kk)kp2D(∆)(kk)

(kk−(Σ(kk))2)
2 − 4 (∆(kk))2kk pp

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
2

− 4 (∆(kk))2(Σ(kk))2pp

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
2 − 8 (∆(kk))2kp2kk

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3

− 24 (∆(kk))2kp2(Σ(kk))2

(kk−(Σ(kk))2)(−kk+(Σ(kk))2)
3 + 4 (∆(kk))2Σ(kk)D(Σ)(kk)pp

(kk−(Σ(kk))2)
2

+ 8
(∆(kk))2Σ(kk)(D(2))(Σ)(kk)kp2
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2
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2 + 8

∆(kk)(D(2))(∆)(kk)kp2kk

(kk−(Σ(kk))2)
2

+ 8
∆(kk)(D(2))(∆)(kk)kp2(Σ(kk))2

(kk−(Σ(kk))2)
2

We can now replace kp2 by (kk)(pp)
4

by symmetry (this is equivalent to going to Eu-

clidean space and performing the angular integrals, then introducing back a factor of 2π2

and going back to Minkowski space). The coefficient of the pp term is then given by:

Γ
(2)

p2 := −8 ∆(kk)D(∆)(kk)kk2(Σ(kk))2

(−kk+(Σ(kk))2)
4 + 2 ∆(kk)D(∆)(kk)(Σ(kk))4kk

(−kk+(Σ(kk))2)
4 − 4 (∆(kk))2Σ(kk)D(Σ)(kk)kk2

(−kk+(Σ(kk))2)
4

− 24 (∆(kk))2(Σ(kk))3D(Σ)(kk)kk

(−kk+(Σ(kk))2)
4 + 2 ∆(kk)D(∆)(kk)kk3

(−kk+(Σ(kk))2)
4

+ 4 ∆(kk)D(∆)(kk)(Σ(kk))6

(−kk+(Σ(kk))2)
4 − 2 (∆(kk))2kk2

(−kk+(Σ(kk))2)
4

+ 4 (∆(kk))2(Σ(kk))4

(−kk+(Σ(kk))2)
4 − 4 (∆(kk))2(Σ(kk))5D(Σ)(kk)

(−kk+(Σ(kk))2)
4

− 2
∆(kk)(D(2))(∆)(kk)kk3(Σ(kk))2

(−kk+(Σ(kk))2)
4 − 2

∆(kk)(D(2))(∆)(kk)kk2(Σ(kk))4

(−kk+(Σ(kk))2)
4

+ 4
(∆(kk))2(D(Σ)(kk))

2
kk3

(−kk+(Σ(kk))2)
4 + 2

∆(kk)(D(2))(∆)(kk)kk (Σ(kk))6

(−kk+(Σ(kk))2)
4

+ 6 (∆(kk))2kk (Σ(kk))2

(−kk+(Σ(kk))2)
4 + 2

∆(kk)(D(2))(∆)(kk)kk4
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4
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4 +4

(∆(kk))2(Σ(kk))4(D(Σ)(kk))
2
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(−kk+(Σ(kk))2)
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− 8 ∆(kk)D(∆)(kk)kk2(Σ(kk))3D(Σ)(kk)

(−kk+(Σ(kk))2)
4 + 24

(∆(kk))2(D(Σ)(kk))
2
kk2(Σ(kk))2

(−kk+(Σ(kk))2)
4

We can factor out the denominator 1
(kk−Σ(kk)2)4

, the remaining (numerator) expression

is

Γ
(2), num

p2 := 4 (∆ (kk))2 (Σ (kk))4 (D (Σ) (kk))2

kk+12 ∆ (kk) D (∆) (kk) kk 3Σ (kk) D (Σ) (kk)−8 ∆ (kk) D (∆) (kk) kk 2 (Σ (kk))3 D (Σ) (kk)

− 4 ∆ (kk) D (∆) (kk) kk (Σ (kk))5 D (Σ) (kk) + 6 (∆ (kk))2 Σ (kk)
(
D(2)

)
(Σ) (kk) kk 3

− 4 (∆ (kk))2 (Σ (kk))3 (D(2)
)

(Σ) (kk) kk 2 − 2 (∆ (kk))2 (Σ (kk))5 (D(2)
)

(Σ) (kk) kk

− 4 (∆ (kk))2 Σ (kk) D (Σ) (kk) kk 2 − 24 (∆ (kk))2 (Σ (kk))3 D (Σ) (kk) kk

+ 24 (∆ (kk))2 (D (Σ) (kk))2 kk 2 (Σ (kk))2 + 2 ∆ (kk)
(
D(2)

)
(∆) (kk) kk 4

+ 2 ∆ (kk) D (∆) (kk) kk 3 + 4 ∆ (kk) D (∆) (kk) (Σ (kk))6 − 2 (∆ (kk))2 kk 2

+4 (∆ (kk))2 (Σ (kk))4−2 ∆ (kk)
(
D(2)

)
(∆) (kk) kk 3 (Σ (kk))2−2 ∆ (kk)

(
D(2)

)
(∆) (kk) kk 2 (Σ (kk))4

+ 2 ∆ (kk)
(
D(2)

)
(∆) (kk) kk (Σ (kk))6 − 8 ∆ (kk) D (∆) (kk) kk 2 (Σ (kk))2

+ 2 ∆ (kk) D (∆) (kk) (Σ (kk))4 kk − 4 (∆ (kk))2 (Σ (kk))5 D (Σ) (kk)

+ 6 (∆ (kk))2 kk (Σ (kk))2 + 4 (∆ (kk))2 (D (Σ) (kk))2 kk 3

which exactly agrees with the expression for Z given in the first line above.

The exact same procedure follows through in the case of the pion. We start with the

expression obtained by commuting all pion fields to the right to give

Zlog,π := 4
(Σ (p2 ))4(

−p2 + (Σ (p2 ))2)3 − 2
(Σ (p2 ))3 p2 2

(
D(2)

)
(Σ) (p2 )(

−p2 + (Σ (p2 ))2)3

− 10
(Σ (p2 ))3 D (Σ) (p2 ) p2(
−p2 + (Σ (p2 ))2)3 − 2

(Σ (p2 ))2 p2(
−p2 + (Σ (p2 ))2)3

+ 8
(Σ (p2 ))2 p2 2 (D (Σ) (p2 ))2(
−p2 + (Σ (p2 ))2)3 + 2

Σ (p2 ) p2 3
(
D(2)

)
(Σ) (p2 )(

−p2 + (Σ (p2 ))2)3

+ 2
Σ (p2 ) D (Σ) (p2 ) p2 2(
−p2 + (Σ (p2 ))2)3

From the Fig. 2.4 where the external lines are now pseudo-scalars, we obtain the

expression from Section 2.4

Γ(2)
π := 4

Σ (qq) Σ (kk) (−kk + kp + Σ (qq) Σ (kk))(
kk − (Σ (kk))2) (qq − (Σ (qq))2)

Introducing ρ in the same manner as we did for the scalar we have
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Γ(2)
π := 4

Σ (kk + pp ρ2 − 2 kp ρ) Σ (kk) (−kk + kp ρ+ Σ (kk + pp ρ2 − 2 kp ρ) Σ (kk))(
kk − (Σ (kk))2) (kk + pp ρ2 − 2 kp ρ− (Σ (kk + pp ρ2 − 2 kp ρ))2)

The ρ2 coefficient of the expansion is now given by

Γ
(2)
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2
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2

(kk−(Σ(kk))2)
2
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2
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2
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2 + 16 D(Σ)(kk)kp2Σ(kk)kk
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2
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2

Replacing kp2 as before we find

Γ
(2)

p2,π := −10
(Σ (kk))3 D (Σ) (kk) kk(
−kk + (Σ (kk))2)3 − 2

(Σ (kk))3 (D(2)
)

(Σ) (kk) kk 2(
−kk + (Σ (kk))2)3
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Σ (kk) D (Σ) (kk) kk 2(
−kk + (Σ (kk))2)3 + 2

Σ (kk)
(
D(2)
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(Σ) (kk) kk 3(

−kk + (Σ (kk))2)3
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(Σ (kk))2 (D (Σ) (kk))2 kk 2(
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which can be seen to agree with the expression obtained for Z above.



Chapter 3

Lepton based Charge Asymmetry

Measurements and Diquarks

In this Chapter, we propose a lepton based observable for measuring charge asymmetries

of particle pairs produced at the LHC that can be used even when only one particle in

the pair decays leptonically. The observable, which we call AlC is in some sense analogous

to AlFB used at the Tevatron (see e.g. [40]) to study the tt̄ forward-backward asymmetry.

Like the latter, our AlC does not require reconstruction of the original particle’s four-

momentum; it could then be of value for studying systems where this step is not readily

achievable. As an example of one such case, we present our approach in the context

of coloured scalars carrying diquark quantum numbers, and also discuss its application

to the tt̄ charge asymmetry. In the case of a scalar carrying tt quantum numbers, we

find that with several thousand events, a combined measurement of the different channels

(which are determined by the number of leptons in the final state) can give an interesting

deviation from the Standard Model, if the sample’s AlC is as small as ∼ 1%. We also

present our theory calculation of the diquark’s charge asymmetry at next-to-leading order

in QCD. The work in this chapter was done in collaboration with Bob Holdom and Melissa

Ratzlaff, and is currently being prepared for submission.

3.1 Introduction

Asymmetry measurements at particle colliders are interesting to study for many reasons.

In the past, they have been of crucial importance to help us test predictions on the

fundamental structure of the gauge theories in the Standard Model. Examples are the

use of lepton forward-backward asymmetries, pair production asymmetries, and lepton

polarization asymmetries, all at the Z pole. More recently, the tt̄ forward-backward

48
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asymmetry (Att̄FB) has been the focus of many efforts in the search for experimental

evidence of beyond the Standard Model (BSM) physics.

The widespread interest inAtt̄FB from the particle physics community is well motivated:

the CDF and D0 experiments at the Tevatron have performed experimental studies of

this observable and both collaborations find an effect around 2σ above the expectation for

the SM. At the LHC, the charge asymmetry between the central and forward/backward

regions of the detector (AC) originates from the same charge asymmetric contributions

to the tt̄ cross section at the parton level that give rise to AFB at the Tevatron. These

two observables are thus closely related and it is expected that measurements at the

LHC of the relevant observables would hint in the direction of a similar anomaly. So far,

the ATLAS and CMS collaborations have measured Att̄C [41–43], yielding results that all

agree well with the SM prediction. In order to extract a value of Att̄C from the data, the tt̄

system was reconstructed. Lepton based asymmetries have also been used to study the tt̄

system, both at the Tevatron and LHC (see [40] for a nice overview). These observables

have the advantage that the full reconstruction of the t and t̄’s four momentum is not

required; leptons (µs and es) are much more simple to identify and reconstruct, and

corrections due to detector effects are usually small.

We have noticed that while lepton based asymmetries in both the single lepton chan-

nel, AlFB, and dilepton channel, AlFB and AllFB, have been studied at the Tevatron, only

the dilepton channel measurement analogous to AllFB, AllC , has been studied at the LHC.

No analog observable for AlFB has been proposed. It is this type of observable that we

would like to explore in this chapter, since it could be not only useful to study the tt̄

system in conjunction with other asymmetry measurements, but possibly necessary if we

wish to study other systems of particle anti-particle pairs where reconstruction of the

pair’s four momentum is either highly inefficient, or impossible. This could be the case

if, for example, such pairs decay to final states with very high jet multiplicity and/or

multiple invisible states, or if each particle in the original pair has multiple decay modes.

One such example, which we will adopt for illustration purposes in this chapter, is the

production of coloured scalar diquark pairs.

These scalars carrying diquark quantum numbers can arise generically in many BSM

theories; for example, they can appear as pseudo-Goldstone bosons in certain technicolor

or other dynamical models of EWSB [17]. A possibly interesting aspect of diquarks is

that their couplings to SM states can have a variety of patterns that are not already ruled

out by existing flavour and other precision data [44], something that suggests that their

study could teach us something about flavour physics. Diquark pairs produced from qq

initial states at the LHC would exhibit a charge asymmetry in their differential cross
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section, an effect analogous to the charge asymmetry predicted by QCD for tt pairs at

next-to-leading order (NLO) [45]. Depending on the diquarks’ flavour quantum numbers,

final states with one, two (same-sign and opposite-sign), three, etc. leptons can arise.

The observable we shall propose provides a simple way of extracting a charge asym-

metry measurement in each of these types of events by individually adding each µ or e

in the final state to the corresponding + or − lepton’s rapidity distribution and then

studying the difference between said distributions. Cuts would be imposed to select

candidate events requiring a certain number of (isolated, high pT ) leptons in the final

state, this number defines the “channel”, and results from all channels can be combined

later for a more statistically significant result. We have not considered τs as “leptons”

in our analysis. τs are also a source of es and µs and in ignoring them we are slightly

underestimating the number of events that will pass our cuts in each channel.

This chapter is organized as follows. We define and discuss the general aspects of our

method, and how to apply it to scalar diquarks in Section 3.2. In Section 3.3 we discuss

this observable in the context of the tt̄ charge asymmetry. Since a complete calculation

of the charge asymmetry of a charged or coloured scalar does not seem to exist in the

literature1 we also present our theory calculation for a pair of coloured diquark scalars

in Section 3.4. Concluding remarks can be found in Section 3.5.

3.2 A new charge asymmetry observable and scalar

Diquarks

In hadron-hadron colliders, a charge asymmetric contribution to the production cross

section of coloured scalar particle pairs (φφ) will arise from order α3
s corrections to the

process qq̄ → φφ. Similarly to the case of the familiar tt (or any qq̄ pair) asymmetry, this

contribution can be traced back to the interference between initial state and final state

gluon emission amplitudes, and between virtual gluon emission (box diagrams) and the

Born amplitude (See Fig. 3.1).

At a pp̄ collider, this would result in a charge separation of the outgoing scalar pairs

between the forward and backward regions of the detectors, with a preference for pro-

ducing the φ (or the φ̄, we will discuss the issue of which below) in the direction of

the incoming proton, and the φ̄ (or the φ) in the direction of the incoming anti-proton.

1The authors of [46] have performed a partial calculation for charged Higgs pair production, where
results for only 2 values of (

√
s,mH) are presented as a function of the cut on the maximum energy

of unresolved radiated photons. The radiation of hard photons must be taken into account in order to
eliminate this dependence.
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Figure 3.1: Representative diagrams contributing to φφ differential charge asymmetry:
interference of a) with b) plus c) with d).

There, one could use the single-lepton based observable

AlFB =
Nl(Qη > 0)−Nl(Qη < 0)

Nl(Qη > 0) +Nl(Qη < 0)
, (3.1)

as used by the Tevatron experiments [47] for tt̄, to study the charge asymmetry of the φφ̄

system when the final state has only one, or more, leptons. In contrast, at a pp collider

like the LHC there is a slight preference for producing the φ (φ̄) with momentum direction

in the central region (low rapidities) and its antiparticle with more forward/backward

momentum (large rapidities). Therefore, the y distribution for charged leptons coming

from the scalar being preferentially produced at low |y| is expected to be slightly more

centrally peaked than that for leptons coming from the scalar more often produced at

large |y|.
We shall then define our observable by separating events into two large (pseudo)rapidity

bins or “regions”, the 1st being at large |y|, which combines events at both ends of the

detector, and the 2nd being the central one, symmetric about y = 0. Since the parti-

cle pairs will decay into final states with different numbers of leptons, we would like to

perform statistically independent measurements for each different type of final state or

channel. The channel will then be defined by the final state lepton multiplicity i, and
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observables measured in a given channel will carry the subscript i to indicate so.

For a given sample selected from the data a raw leptonic observable, which we shall

call Ali,raw where i indicates the channel being studied, can be measured:

Ali,raw =

∑
q(qN

q
i (|y| > t)− qN q

i (|y| < t))

Ni(|y| > t) +Ni(|y| < t)
. (3.2)

The quantities N q
i (|y| > t) and N q

i (|y| < t) are the number of leptons of charge q in the

1 and 2 regions respectively, q = ±1, and Ni ≡
∑

qN
q
i . The value of t, which gives the

width of the central region, is crucial to the asymmetry measurement: the central bin

must end at the values of ±y where the positive (negative) lepton count, in the smallest

y bins (used in the original binning of events), is expected to become smaller than the

negative (positive) lepton count, due to the predicted asymmetry. Therefore a somewhat

robust estimate of this number is necessary for this study. We comment more on this

point further in this section.

In order to extract the asymmetry of the signal and compare to a given model, we

then define the two quantities:

Ali,SM =

(∑
q(qN

q
i,bkg(|y| > t)− qN q

i,bkg(|y| < t))

Ni,signal +Ni,bkg

)
MC

, (3.3)

Ali,signal = (Ali,raw − Ali,SM)

(
Ni,signal +Ni,bkg

Ni,signal

)
MC

, (3.4)

where the subscript “MC” indicates a necessary input from Monte Carlo simulations. In

channels with only one or two opposite-sign leptons in the final state, the SM processes

W+jets and tt̄ production that pass our selection criteria will contribute to a non-zero

background charge asymmetry. Channels with two same-sign leptons, and 3 or more

leptons in the final state will have low SM backgrounds, none of which should contribute

to an asymmetry. In those channels, AlSM should be 0 within uncertainties, and Ali,signal

will be more easily obtained.

Diquarks can transform as a triplet or as a sextet under SU(3)C . We shall call the

scalar which has qq content φ, and that which has q̄q̄ content φ̄. At a symmetric initial

state collider like the LHC, the scalar φ transforming as 6 (3̄) would be produced with

preference at larger (smaller) rapidities whereas the φ̄ transforming as 6̄ (3) would do the

opposite. This difference leads to interesting effects. Triplet scalar pairs, for example,

will have a negative integrated charge asymmetry in contrast with the SM prediction for

tt̄, and with sextet diquarks. Additionally, when the triplets have charge 4/3 or 1/3, the

resulting integrated charge asymmetry in the daughter leptons will also be negative.
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We shall assume that diquarks have quark components with standard electric charges,

and that they decay weakly with a large mixing to heavy quarks. Then, the decay of

a scalar diquark will result in 2 down type quarks and a varying number of W bosons.

Charge 4/3 diquarks will decay to bbW+W+(W+W−)n, where the number n (integer or 0)

of additional W+W− pairs depends on the scalars’ mass and intermediate (possibly BSM)

states mediating its decay. Similarly, charge 1/3 diquarks will decay to bbW+(W+W−)n,

and charge −2/3 diquarks to bb(W+W−)n. Unless we state otherwise, we will assume

by default that no extra W+W− pairs arise in the scalars’ decay (i.e. n = 0, which

corresponds to scalars initially decaying to only 2 SM quarks, or particles that decay in

the exact same way as them).

We can now see that charge 4/3 diquarks that decay to 2 tops are particularly inter-

esting in the context of lepton based measurements since such φφ̄ pairs could produce

final states with one, two (same-sign or opposite-sign), three, or four leptons. Probabil-

ities for each of these final states can be found in Table 1 below. Let us focus on this

type of diquark for now.

Lepton content in final state Probability

4 leptons 0.002

3 leptons 0.034

2 opposite sign leptons 0.119

2 same sign leptons 0.060

1 lepton 0.418

0 leptons 0.197

only τ ’s 0.170

In channels where there are two (or more) opposite sign leptons, we of course have

an observable of the type AllC [41] at our disposal

AllC =
N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
(3.5)

where ∆|y| = |yl+ | − |yl− |. Events with exactly two opposite sign leptons give us one

data point on the ∆y distribution each, those with 3 leptons give us 2 points, and those

with 4 leptons give us 4 points. Notice that diquark scalar pairs decay to final states

with only one lepton, or two same-sign leptons with a probability close to 50%, and such

events cannot be used in this type of approach. On the other hand, a measurement of

AlC,i would be possible in all of the above mentioned channels, and each φφ̄ candidate

event in channel i contributes i data points to the lepton distributions.
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As in the case of tt̄, AllC from φφ̄ is predictably smaller than the original asymmetry in

the scalars, Aφφ̄C , because the leptons’ rapidity distributions are smeared out relative to

those of the parent particles2. Our observable AlC is also predictably smaller than both

Aφφ̄C and AllC because the asymmetric part of the resulting single-lepton distributions can

overlap quite a lot. Hence, in taking the difference as defined in Eq. 3.2 some information

of the asymmetry is lost. We have used simulated events to roughly quantify these effects

and predict how much smaller our observable is expected to be relative to the other two.

Of interest is the comparison to the latter, as we are unable to reconstruct the φφ̄ to

measure the earlier directly. We estimate AlC to be smaller than AllC by a factor of ∼ 0.8.

The procedure used can be found in the next section for the interested reader.

From the above discussion, we can roughly compare the two approaches to measuring

charge asymmetries of scalar diquarks. We will assume that detector and selection bias

effects affect the signal in all channels in a similar way, such that the relative sizes of

branching ratios between the signal in the different channels remain true to Table 1 above.

For a certain number of φφ̄ recorded events, we can estimate the statistical uncertainty

of the combined measurement from all channels for AlC relative to that associated with

AllC . Varying the percentage of background events in the single lepton channel (relevant

only for AlC) between 20 and 60%, and in the 2 opposite-sign lepton channel between 10

and 40%, we find that the statistical uncertainty in the AllC approach is larger than that

in AlC by a factor of ∼ 2.

The ATLAS and CMS experiments have recorded about 25 fb−1 of data in 2011 and

2012 combined, ∼ 4/5 of this has been at
√
s = 8 TeV. Based on [48] we estimate that,

only in the single lepton channel, each detector has recorded on the order of 3 × 105 tt̄

events that pass the selection in [48]. While so far the observed and expected number of

events agree within uncertainties, the uncertainty on the expected number of signal (tt̄)

events is close to 10% in both the e and µ channels. This leaves plenty of room for NP

events that pass the same selection cuts, like our φφ̄ decays, to be hiding in the tt̄ data.

However, if we assume we are dealing only with the tt type diquarks we have focused on

above, then the branching ratios imply that it is the multi-lepton channels that will place

the more stringent constrains on the total number of allowed events. For example, recent

SUSY searches [49, 50] constrain the anomalous production of multiple-lepton events in

signal regions that overlap with ours to be quite small, at most ∼ 1 event, in the 4-lepton

channel. This would imply that roughly 30 events could be present in the 2 same-sign

2The difference between these two distributions can be relevant as it carries information about the
polarization of the W’s; however we will not be concerned with the issue of polarization in this chapter
since we are only considering QCD contributions.
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lepton channel. In light of the recently reported hint of an excess at ATLAS in this

particular channel [16] it is not impossible to accommodate a dozen or so events coming

from tt diquarks to agree with this data. This would also suggest that there could be of

the order of 200 leptons from single-lepton events of our diquark’s decay hiding in the

data. But due to the larger SM backgrounds in this channel, this type of excess would

be much harder to discern.

If diquarks are indeed realized in nature, however, there is no reason to expect only

one carrying tt quantum numbers would be present. A whole spectrum of them could

be expected, as in the model of reference [17] for example, where the different quantum

numbers corresponds to the pseudo-Goldstone bosons of the broken, approximate global

symmetries of the underlying strongly coupled theory. Diquarks of charge 1/3 with the

quantum numbers tb or t′b (where primes denote quarks from a possible fourth family),

where the t′ is lighter than the b′, would decay to final states with only single and two

opposite-sign leptons, bringing an enhancement to the signal in these channels without

contributing to the more constrained multi-lepton channels.

Let us now illustrate the reach of our observable with some concrete examples. Given

two “benchmark” numbers of total φφ̄ events, we combine the AlC,i of all 5 channels

and estimate the combined statistical uncertainty by assuming no correlation among the

measurements in each channel. We then perform χ2 tests for various input values of the

AlC asymmetry versus the null hypothesis (0 asymmetry within uncertainties) in order to

obtain expected p-values. We again stress that only statistical uncertainties have been

accounted for in this section. For 2000 and 20000 events, we find an expected p-value of

∼ 0.04 for an AlC of 4% and 1.3% respectively. A p-value of ∼ 5× 10−7 can be expected

for AlC of 10% and 3% for these same numbers of events. Except for the 1.3% figure,

all of these values are quite large compared to the expected asymmetry that diquarks

receive from QCD, as we will see in the next section.

Before we move on to discuss tt̄ asymmetry measurements, we would like to note

that lepto-quarks are also interesting candidates to study through this method. While

lepto-quarks with the quantum numbers of electrons or muons are ruled out except at

very high masses, there is still room for those carrying tau quantum numbers such as τb,

τ ′b etc. [51], which decay to final states containing only one or two opposite sign leptons

(this is true for the latter only in the case where it cannot decay directly to ν ′, otherwise

other multi-lepton channels become available).



Chapter 3. Lepton based Charge Asymmetry Measurements and Diquarks56

3.3 Al
C and the tt̄ Charge Asymmetry

We now turn our attention to the tt̄ charge asymmetry in the single-lepton channel. As

in the previous section, the dilepton channel measurement AlC,2 can also be obtained

through our method and combined with AlC,1. For the sake of brevity we focus solely on

the latter.

A significant percentage of candidate events selected in this channel will be coming

from backgrounds.3 However, with the exception ofW+jets, all other backgrounds should

give rise to identical y distributions for positive and negative leptons within uncertainties.

Therefore, in taking the difference of positive and negative (lepton) rapidity distributions,

the number of such events in each bin should cancel. This is not true for the W + jets

background because the cross section for W+ production at the LHC is larger than that

for W− production. This is due to the fact that, unlike the case of pp̄ collisions, in pp

collisions u valence quarks are twice as abundant as d’s and so leptons coming from W ’s

will be more abundant with positive charge than with negative charge. The third term

in the numerator of AlC,1, which we have called ∆a1, will then be purely a W + jets

contribution.

For the case of tt̄, we then write our observable as:

AlC,1 =
QN l

1(|y| > 1)−QN l
1(|y| < 1)−∆a1

N l
1(|y| > 1) +N l

1(|y| < 1)−N l
i, all bkg

. (3.6)

The denominator is justN l
tt̄, the number of leptons coming from “true” tt̄ decays; N l

i, all bkg

is the number of events coming from all backgrounds. ∆ai is the contribution to the

numerator from backgrounds.

By counting the number of positive and negative leptons (e’s and µ’s) in our samples,

we can estimate the total number of such leptons which are coming from W + jets as

N l
W =

rl+ + rl−
rl+ − rl−

[N(l+)−N(l−)], (3.7)

where rl+ and rl− are the fractions of positive and negative W s respectively (rl+ + rl− =

1). N(l+) and N(l−) are the total number of positive and negative leptons. The ratio

rl+/r
l
− = N(pp→ W+)/N(pp→ W−) is evaluated from Monte Carlo simulations. In [42],

ATLAS finds that for events selected in the electron channel re+/r
e
− = 1.56 ± 0.06, and

3In the single lepton channel tt̄ analyses of CMS [43] and ATLAS [42] these percentages are about
20% and 30% respectively. The W + jets background constitutes about 58% of all background events at
ATLAS, and about 50% at CMS.
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rµ+/r
µ
− = 1.65± 0.08 in the muon channel.

In order to estimate ∆a1 we must also know the shape of the rapidity distributions

for e’s and µ’s coming from the W + jets backgrounds. We write this term as

∆a1 = N l
W

[
(rl+r

W+

1 − rl−rW
−

1 )− (rl+r
W+

2 − rl−rW
−

2 )

]
, (3.8)

where rW
+

i and rW
−

i are inputs which contain the information on the shape of the y

distributions of W+ and W− + jets backgrounds such that
∑

i r
W+

i =
∑

i r
W−
i = 1.

From Eq. 3.6 and Eq. 3.8 above, it is straightforward to find the associated statistical

uncertainty of AlC,i in terms of the fluctuations in each individual bin δN l±
i ≈

√
N l±
i by

varying AlC,i with respect to each variable N l±
i . Notice that both N l

W and N l
total are N l±

i

dependent. We used an ATLAS study on muons coming from W± decays [52] to get an

estimate of the rW
±

i ’s from the y (normalized to 1) distributions therein. We find that

the statistical uncertainty associated with a muon sample with ∼ 9000 events, as is the

case for the data collected by ATLAS and studied in [42], is approximately ±0.015.

The muon (single lepton) channel uncertainties in AC as measured by ATLAS are

±0.036(stat) ± 0.023(syst); this is after correcting the top and anti-top rapidity distri-

butions for detector effects and an event selection bias (unfolding). Since our approach

deals almost exclusively with leptons we expect that the unfolding procedure would not

only be simpler, but also have less of an effect on the estimate of the uncertainties.

In fact, we may even expect the statistical uncertainty to decrease by a few percent

after correcting for these effects, as is the case for the AllC measurement (see Table 2

in [41]). We also expect the sources of systematic uncertainty that have the largest

impact on the AC(muon) measurement (jet energy scale, jet efficiency and resolution,

parton shower/fragmentation, ISR/FSR, top mass, and tt̄ modeling all contribute above

±0.005) to be much less significant in the case of Al. For reference, in AllC these sources

(the last two are not considered in that study) are below 0.004 except for ISR/FSR which

contributes 0.006, the largest of all systematic contributions, and the total systematic

uncertainty is 0.009 [41]. Then, if we believe ± ≤ 0.015(stat.) and ±0.009(syst.) to be

good estimates of the uncertainties in Al, it becomes clear that although this observable

has the disadvantage of being numerically smaller than AC , there is much to be gained

in the reduction of uncertainties, even in this case (tt̄) where the four-momentum of the

original pair can be readily reconstructed.

Relative to All we have used simulated events to predict that here AlC will be about 0.7

times smaller than AllC . However, only about 5% of all tt̄ events decay into two leptons,

whereas ∼ 30% give a single lepton (e, µ) final state. Therefore, relative to di-lepton
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channel studies, our approach yields ∼ 6 times more statistics.

We can now comment on how we obtained the positive and negative lepton distribu-

tions in order to estimate the relative size factors Al/All for tt̄ (and φφ̄ in the previous

section). We generated tt̄ events in Madgraph and used CTEQ 6.1l structure functions

at
√
s = 8 TeV. Since our asymmetry arises at the α3

s level, this first step yields identical

distributions for positive and negative leptons. We used the following method to obtain

a charge asymmetry such that it is approximately linear in Y = (yt + yt̄)/2 in the range

−2 < Y < 2 as predicted in the SM at NLO [45] (see Figure 12 in this reference, left

panel ).

First, we demand that the t decay to a lepton. When Y > 0 and yt > yt̄, this lepton is

considered a candidate to be added to the positive lepton distribution; if instead yt < yt̄,

it is considered a candidate for the negative lepton distribution. The candidate event

must satisfy the condition Y/2 > R, where R is a random number between 0 and 1,

to be allowed to populate the corresponding bin in the relevant (positive or negative)

distribution. Events not satisfying this condition are discarded. A similar procedure

follows for events where Y < 0. In this way we obtain the shape of the asymmetric

events in the lepton distributions.

From our simulated events, we have also obtained estimates of how much “fainter”

we expect AlC to be relative to the original parton level asymmetry. We summarize this

effect in the ratio that we call κ. In the case of t̄t, we find κ = AlC/A
qq̄
C to be ∼ 0.29. We

have explored how this value of κ varies in different kinematic regimes when the particles

that we are interested in have a different mass. We have looked at the resulting positive

and negative lepton distributions coming from the decay of a 700 GeV b′ → Wt, where

the leptons originate from both the W boson’s decay as well as that of the daughter

top’s, and 700 GeV t′ → bW where the leptons originate from the W ’s. When the

lepton originates from a W we find κ values of 0.19 for b′ and t′ decays. When the

lepton originates from a top, the case of b′, we obtain κ = 0.23. We expect the lepton

distributions coming from a diquark scalar that decays to tt/t̄t̄ to closely resemble this

last case. Notice that these values are not so far off from each other or the result already

mentioned for tt̄. However, the shapes of the distributions are different in the two cases.

The tt̄ pair can often be produced at large Y and therefore the positive lepton distribution

exhibits 2 clear peaks at high |y| and a dip around y = 0, whereas the negative lepton

distribution is peaked at y = 0. As the decaying quark pair becomes heavier it is less

and less produced at high Y , and the two peaks in the positive lepton distribution start

getting closer to each other while the negative lepton distribution’s central peak becomes

sharper (also, distributions are smeared further due to the extra step in the decay chain,
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e.g. b′ → t→ l). Observation of the distribution shapes can therefore give us additional

information about the original particle pair’s mass. We also found that in all cases the

cross over point between distributions, the value of y which we have called t in Eq. 3.2,

happened very close to y = ±1. This then appears to be a more or less robust estimate

for the type of decays we have considered.

3.4 The Diquark Charge Asymmetry

The charge asymmetric cross section from QCD for scalar diquarks can be obtained from

the QED result for charged colorless scalar production (e+e− → H+H−) by replacing

α→ αs and multiplying by the appropriate color factor: CA(R)/C0(R), where

C0(R) =
1

N2
c

Tr(
λa
2

λb
2

)Tr(T aRT
b
R)

=
1

2N2
c

dRC2(R) (3.9)

and

CA(R) =
1

N2
c

Tr(
λa
2

λb
2

λc
2

)Tr(T aRT
b
RT

c
R)

=
1

4N2
c

dRC3(R). (3.10)

C2(3) = 4/3 and C3(3) = 10/9 for a triplet scalar, C2(6) = 10/3 and C3(6) = 35/9 for

a sextet, and dR is the dimension of R. The factor C0(R) comes from the Born cross

section whereas CA(R) is the color factor for the order α3 contributions to the charge

asymmetric part of the cross section. The factor CA(R)/C0(R) is 5/12 for the triplet and

7/12 for the sextet.

QED calculation of a colourless scalar’s charge asymmetry

Soft infrared singularities are absent from the differential cross section, as they should

be, but considered separately, the virtual and real radiation amplitudes contain such

divergences which cancel in a non-trivial way. In order to show the cancelation of this

divergence we followed [53] to analytically integrate the real photon emission in the soft

limit over a thin slice at the border of phase space (using a photon mass regulator) and

combined it with virtual radiation. The latter part of this calculation was done by Melissa

Ratzlaff. This result no longer contains a soft infrared singularity. It does, however,

exhibit a (logarithmic) dependence on Ecut, coming from the soft photon integration,
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which must cancel once the real, hard photon emission piece is added. In order to obtain

a Ecut independent result, integration over the rest of the phase-space was performed

numerically.

We present analytical expressions for the asymmetric contributions to real photon

radiation in the soft limit, and for virtual contributions, all in terms of β =
√

1− 4m2/s,

the velocity of the diquark. Although we omit the use of hats (e.g. ŝ) over our variables,

the following expressions are valid in the partonic center of mass frame. We will split the

differential asymmetric contribution to soft, real photon emission into two parts. Part 1,

which is the part that depends on photon energy cutoff Ecut is given by

dσA
dθ

soft, p1

=
β3e6

64π3s
log

(
4
E2
cut

s

)
sin2 θ[− log(1− β cos θ) + log(1 + β cos θ)]. (3.11)

The photon mass dependence has been cancelled with the loop calculation. The inte-

grated expression is

σsoft, p1
A =

e6

192π3s
log

(
4
E2
cut

s

){
− β2 − log(1− β)− log(1 + β) + 2β3[− log(1− β) + log(1 + β)]

+ 3β2[log(1− β) + log(1 + β)]

}
. (3.12)

Part 2 of this same contribution, which does not depend on Ecut, is given by

dσA
dθ

soft, p2

=
βe6

16π3s3
(m4 − ut)

{
Li2

(
2m4 − 2m2t+ st− βst

2m4 − 2m2t

)
+ Li2

(
2m4 − 2m2t+ st+ βst

2m4 − 2m2t

)
− Li2

(
2m4 − 2m2u+ su+ βsu

2m4 − 2m2u

)
− Li2

(
2m4 − 2m2u+ su− βsu

2m4 − 2m2u

)
− Li2

(
1 +

st

(m2 − t)2

)
+ Li2

(
1 +

su

(m2 − u2)

)}
. (3.13)

The asymmetric contribution to virtual photon emission, expressed in terms of the

Passarino-Veltmann scalar integrals C01(x1, x2) and C02(x1, x2, x3), is given by

dσA
dθ

virt

=
βe6

128π3s
(m4 − ut)

{
(t− u)(−2m6 − 2m2ut+ stu+m4(s+ 2t+ 2u))

(m4 − 2m2t+ st+ t2)(m4 − 2m2u+ us+ u2)
· C01(s,m2)

− s(t− u)(m4 − ut)
(m4 − 2m2t+ st+ t2)(m4 − 2m2u+ us+ u2)

· C01(s,m2
e)

+
2t(m2 − t)

(m4 − 2m2t+ st+ t2)
· C02(t,m2,m2

e)

− 2u(m2 − u)

(m4 − 2m2u+ us+ u2)
· C02(u,m2,m2

e)

}
. (3.14)



Chapter 3. Lepton based Charge Asymmetry Measurements and Diquarks61

The explicit expressions for the scalar integrals are

C01(x1, x2) =

∫ 1

0

log(x1y)− log(x2(1− y)2)

x1y + x2(1− y)2
dy, (3.15)

and

C02(x1, x2, x3) = −1

2

∫ 1

0

log(y2x1 + yx2 − yx3 − yx1 + x3)

(y2x1 + yx2 − yx3 − yx1 + x3)
dy. (3.16)

Finally, the integrated expression for the Born cross section is

σB =
e4β3

48πs
. (3.17)

We have not included an analytical expression for real hard photon (gluon) radiation;

we have not been able to express it in a compact enough form to present here. This

last piece is of crucial importance for its role in the cancellation of the unphysical Ecut

dependence, something which, as mentioned above, we achieved through numerical inte-

gration. However, the θ dependence in the fully asymmetric piece of the differential cross

section can be seen almost exactly from Eq. 3.11.

In Fig. 3.2 and Fig. 3.3 we present our results for a colorless scalar’s charge asymme-

try in the partonic center of mass frame, as a function of the angle θ, and as a function

of the scalar’s pseudorapidity respectively. These predictions have some important dif-

!1.0 !0.5 0.5 1.0

!1.0

!0.5
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cos(θ)

dσ

dcos(θ)

A

Figure 3.2: Differential charge asymmetry (with amplitude normalized to 1) in the φφ̄
partonic center of mass frame as a function of cos θ for mφ/

√
s of 0.2, 0.3, 0.4 and 0.49.

The green curve (curve with peak at lowest value of θ) corresponds to 0.49, the blue
curve (curve with peak at highest value of θ) corresponds to 0.2.

ferences from those for the case of tt̄. In particular, unlike the tt̄ (or more generally, qq̄),
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Figure 3.3: Differential charge asymmetry in the φφ̄ frame as a function of pseudorapidity
for mφ/

√
s of 0.2, 0.3, 0.4 and 0.49. The green curve (curve with peak at lowest value of

η) corresponds to 0.49, the blue curve (curve with peak at highest value of η) corresponds
to 0.2.

the charge asymmetry for scalars peaks at a value of cos(θ) below 1, and vanishes at

cos(θ) = 1. Fig. 3.4 below shows the integrated charge asymmetry in the partonic center

of mass frame as a function of
√
s/2mφ. In contrast to the same result for tt̄, the scalar’s

charge asymmetry is much flatter (for reference, see Fig. 5 in [45]).
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Figure 3.4: Integrated charge asymmetry for qq̄ initiated events in the φφ̄ frame as a
function of

√
s

2mφ
.



Chapter 3. Lepton based Charge Asymmetry Measurements and Diquarks63

QCD results for a scalar diquark’s charge asymmetry

The results for the charge asymmetry in qq̄ initiated events of the colored diquarks

follow simply by multiplying the above results by αs(µ = mZ)/α, and by the previously

calculated color factor, 5/12 or 7/12, for the triplet or sextet respectively. These factors

amount to quite an enhancement, a factor of ∼ 50 and 70 respectively. However, folded

in with the proton’s structure functions, the resulting inclusive (gg initiated events give

a large contribution to the Born cross section) φφ̄ charge asymmetry in the lab frame is

again very small.

We have produced predictions for the triplet diquark asymmetry at the LHC at 7

TeV, for two values of the diquark mass. For mφ = 400 GeV we find AC = −0.012, for

mφ = 500 GeV we find AC = −0.0073. As mentioned in the introduction, we would like

to focus on φ that decay to tt.4

A study of the observable Al on our triplet φφ̄ candidate events would require that

we be able to measure an Al of about −0.012 × κ = −0.003 for mφ = 400 GeV and Al

of about −0.0073 × κ = −0.002 for mφ = 500 GeV, where we have assumed κ ≈ 0.23.

The challenge then is bringing systematic effects down to these levels. Alternatively, one

could also think of taking advantage of the features in the differential charge asymmetry

as a function of y to define a related quantity that enhances the observable asymmetry,

as for example, restricting the sample to events with large Yout = (yφ + yφ̄)/2.

We have briefly explored this possibility by selecting (simulated) pp → φφ̄ events

where one of the incoming partons is required to have a much larger fraction of the

proton’s momentum than the other, x1/x2 > 1. In events where hard gluon jets are

absent, this cut on the incoming parton’s relative momenta (or the rapidity of the

incoming parton’s center of mass Yin) is approximately equivalent to a cut on Yout,

the relation given by e2Yout ≈ e2Yin = x1/x2. For a 400 GeV triplet scalar, we find

AC(Ycut = 1.39) = −0.047 and AC(Ycut = 1.04) = −0.027. For a mass of 500 GeV,

we find AC(Ycut = 0.69) = −0.053, where Ycut is the minimum Yin for allowed events.

As we do not have access to the scalars’ rapidities, a very rough implementation of this

cut would consist of adding up the yi of all reconstructed objets for the candidate event

and taking this average to be representative of Yout. The expected Al would now be an

effect of a few percent, and could be observable given several thousand candidate events

(in a combined measurement as discussed in Section 3.2) and systematic uncertainties of

about 1% each, as the case discussed in Section 3.3.

4Note that the masses that we consider here are too light to allow additional W+W− pairs in the
decay.
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3.5 Concluding Remarks

We have proposed a method for measuring charge asymmetries of particle pairs produced

at the LHC. Our suggested approach focuses on the rapidity distributions of leptons

coming from particle pair decays with one or more leptons in the final state, and does

not require reconstruction of the original pair. Some information from the backgrounds

is still needed from Monte Carlo simulations in order to obtain a measurement, such as

the value of t (which determines the width of the central bin) that goes into the definition

of AlC . Although the value of this observable is expected to be smaller than AC of the

original pair, systematic uncertainties are expected to be much smaller in this lepton

based measurement, and most important, such a measurement may be the best way to

access charge asymmetry information in systems where other methods based on partial

or full reconstruction fail. Although the dilepton channel observable All is still of use in

these cases, it can obviously only be applied when two or more opposite sign leptons are

present.

We have also presented theory predictions from QCD at NLO for the charge asymme-

try of a coloured (triplet/sextet) scalar carrying diquark quantum numbers. A scalar’s

charge asymmetry (at the parton level) as a function of θ and y has marked differences

with that of qq̄ pairs. Our numerical results for the integrated charge asymmetry of a

triplet diquark pair (mφ = 400, 500 GeV) show that at the LHC, this would be a very

small effect, of order 1%. Al would be about 0.2%− 0.3%. If the sample is restricted to

events with high Y , this effect can be enhanced to a few percent. With a large enough

number of φφ̄ events (several thousand), we could expect to see moderately significant

signs of this asymmetry, even if Al remains at the percent level (and assuming that as

in the tt̄ Al analysis the total systematic uncertainty can remain below ∼ 1%). Such

measurements could turn out to be of great value in discerning the nature of possible

new coloured states to be (maybe) discovered at the LHC.



Chapter 4

Monopoles, strings and dark matter

In this chapter, we develop a scenario whereby monopoles in a hidden sector yield a

decaying dark matter candidate of interest for the PAMELA and FERMI e± excesses.

The monopoles are not completely hidden due to a very small kinetic mixing and a hidden

photon mass. The latter also causes the monopoles and anti-monopoles to be connected

by strings. The resulting long-lived objects eventually decay to hidden photons which

tend to escape galactic cores before decaying. The mass scales are those of the hidden

photon (≈ 500 MeV), the monopole (≈ 3 TeV) and the mixing scale (close to the Planck

scale). A gauge coupling in the hidden sector is the only other parameter. This coupling

must be strong and this results in light point-like monopoles and light thin strings. The

text in this chapter is reproduced in [54]

4.1 Introduction

We shall describe a decaying dark matter scenario where the dark matter “particle” is

a monopole and an anti-monopole connected by one or more strings. We shall refer to

these objects as MSM ’s. Both the monopoles and the strings are composed of hidden

sector fields. A nonabelian gauge symmetry of the hidden sector breaks to a U(1)h to

produce monopoles and then the U(1)h breaks at a lower scale to produce strings. If

the only remaining long range field to which the monopole couples is gravity then the

MSM ’s can have cosmologically interesting life-times [55]. They can be considered for

dark matter since their number densities are not constrained by the Parker bound [56].

The dynamics and evolution of monopoles attached to strings in the early universe has

been quite well studied [57–61].

For the natural abundance of monopoles to be appropriate for dark matter they must

be much lighter than standard GUT monopoles. This mass can in fact be in a range of

65
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interest for a decaying dark matter interpretation of the PAMELA [22] and FERMI [23]

e± excesses. A MSM survives until the M and M finally annihilate into hidden photons.

If the hidden photon γh experiences kinetic mixing [62] with the photon and is otherwise

stable then it decays into pairs of normal charged particles. With the appropriate mass

its stable decay products are electrons, positrons and neutrinos [63,64].

We shall show in the next section that the kinetic mixing in combination with the

hidden photon mass implies that a MSM will pick up the normal magnetic field of a

dipole. These oscillating dipoles lose energy through normal electromagnetic radiation,

and when the mixing parameter is extremely small the lifetime of the MSM ’s can be

appropriate for decaying dark matter. Thus in our scenario the kinetic mixing is setting

the lifetime for both the MSM ’s and the γh’s, and it is responsible for producing an

observable signal.

We first summarize the various parameters and relations between them [65]. When

the hidden nonabelian gauge symmetry breaks to U(1)h some gauge bosons receive mass

mX . If the gauge coupling is eh then the monopoles have mass

mM ≈
4π

e2
h

mX (4.1)

and a size of order m−1
X . We assume that the monopoles form at a temperature TM ≈

mX/eh ≈ mM/gh where gh = 4π/eh is the magnetic coupling. When the surviving U(1)h

gauge symmetry breaks at a lower scale this hidden photon γh develops a mass mh. At

this scale the coupling may have run to a new value e′h. In the results to follow either

eh or e′h should appear depending on the context, but for simplicity we shall drop the

distinction and simply use eh. Strings have an energy per unit length

µ ≈ π

e2
h

m2
h (4.2)

and a thickness of order m−1
h . We assume that the strings form at a temperature TS ≈

mh/eh.

The two mass scales of the hidden sector, mM and mh, are fairly well determined if we

are to make contact with the dark matter interpretations of PAMELA and FERMI data.

For the stable products of γh decays to be electrons, positrons and neutrinos only, mh

could be anywhere from above the e+e− threshold up to about a GeV. But a mass above

the µ+µ− and π+π− thresholds is preferred since it gives a broader electron/positron

spectrum to fit the FERMI data [26, 66]. Given this and with the mass of the decaying

MSM close to 2mM , the PAMELA data favors a mM in the 1 to 3 TeV range while the
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FERMI data favors a mass at the upper end of this range [26, 66]. We shall adopt the

values mh = 500 MeV and mM = 3 TeV for illustration. Adjustments in these masses

are still possible.

The remaining parameters are the hidden sector gauge coupling eh and the kinetic

mixing parameter χ. In Section 4.3 we show how the correct initial number density

of monopoles constrains eh. Here and at other points in our discussions we shall find

that a strong coupling is required. The lifetime of the MSM ’s as determined by the

emission of electromagnetic radiation must be appropriate for decaying dark matter. We

study how this is possible in Section 4.4 while in Section 4.5 we consider other energy

loss mechanisms. The MSM ’s that decay today are much smaller than average and we

can determine enough about the distribution of these sizes so that we are able to fix χ.

The lifetime of the γh is then also determined. We find that this lifetime tends to be

sufficiently long so that γh’s travel out of galactic cores before decaying, and this may

have interesting consequences for the associated gamma ray signal. The lifetime of the

mediator particle in secluded models of dark matter often face a constraint from big bang

nucleosynthesis [67]. In Section 4.6 we argue that in our case the γh’s are unstable in

the presence of a light string network. In Section 4.7 we briefly consider the late time

properties of the dark matter and its self-interactions while in Section 4.8 we look at the

possibilities (or lack thereof) for its direct detection.

Here we can comment on the origin of the mixing parameter χ. It is related to the

mass scale of the physics responsible for the mixing between the hidden and standard

model sectors. If this physics respects the hidden nonabelian gauge symmetry then the

lowest dimensional operator that can give rise to the mixing is

1

Mmix

YµνG
µν
a φa. (4.3)

This couples the gauge bosons of hypercharge and the hidden gauge group to φa, a

hidden adjoint scalar field. If 〈φa〉 signals the breakdown of the gauge symmetry then

〈φa〉 ≈ mX/eh ≈ mM/gh. The induced kinetic mixing χ between the photon and the γh,

as defined in the next section, is χ ≈ 〈φa〉/Mmix and so

Mmix ≈
mM

χgh
. (4.4)

(The absence of a field φa would mean that a higher dimensional operator is necessary

which would imply a smaller mixing scale.) It would be appealing for Mmix to be close to

the Planck scale to avoid the introduction of another mass scale. Due to the very small
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value of χ required to produce a suitable MSM lifetime we shall find that Mmix as given

by (4.4) must indeed be of this size.

The strong coupling value that we have said is required for eh could also be viewed

as natural, since then the symmetry breakings that are necessary in the hidden sector

could be occurring dynamically. In this way are encouraged to find interesting results

where the parameters eh and χ are close to their “natural” values.

4.2 Mixing and monopoles

At low energies the electromagnetic U(1) and the massive U(1)h gauge fields and their

mixing are described by

L = −1

4
F ′µνF

′µν − 1

4
F ′hµνF

′µν
h −

1

2
χF ′µνF

′µν
h +

1

2
m2
hA
′
hµA

′µ
h. (4.5)

Diagonal kinetic terms can be regained while retaining the masslessness of the photon

by redefining the fields in terms of new fields A and Ah as

A′h → Ah

A′ → A− χAh. (4.6)

This means that all fields coupling to the photon with charge e will pick up a coupling

to the hidden photon of strength −χe [62].

The U(1)h has emerged from the breakdown of a larger gauge group such that

monopoles arise as regular solutions of the field equations. But the (hidden) magnetic

charge of these monopoles must be quantized according to Dirac’s quantization condi-

tion, and so there is a question of how this is compatible with particles with a hidden

charge of −χe. This is answered in [68] where it is shown that monopoles, including

’t Hooft-Polyakov monopoles, can carry a combination of both magnetic charges. The

argument for two massless U(1)’s is reproduced here, but adapted to our A and Ah basis.

If a charge e is in the presence of a magnetic monopole with magnetic charge g the

angular momentum of the fields is

L =

∫
d3xx× (E ×B) =

eg

4π
n̂. (4.7)

This must be quantized,

|L| = eg

4π
=
n

2
, (4.8)
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where n is a non-negative integer. In the case of two U(1)’s the magnetic field of a

monopole is (
B

Bh

)
=

r

4πr3

(
g

gh

)
, (4.9)

while the electric fields of normal and hidden charges are respectively(
E

Eh

)
=

er

4πr3

(
1

−χ

)
, (4.10)

(
E

Eh

)
=

ehr

4πr3

(
0

1

)
. (4.11)

A system consisting of an ordinary charge and a monopole gives

|L| = −χegh + eg

4π
=
n

2
, (4.12)

while for a hidden charge and a monopole we have

|L′| = ehgh
4π

=
m

2
. (4.13)

These two equations give two types of allowed monopoles:

MGUT →
(
g

gh

)
=

2πn

e

(
1

0

)
, (4.14)

and

M →
(
g

gh

)
=

2πm

eh

(
χ

1

)
. (4.15)

We shall comment on our choice gh = 4π/eh (m = 2) in Section 4.4.

We see that the combination of magnetic charges carried by the monopole M is

orthogonal to the combination of charges carried by a normal charge. As long as γh

remains massless these monopoles remain hidden to normal charges. However once U(1)h

breaks, this hidden component of the M field becomes confined for length scales larger

than m−1
h . Flux tubes, or strings, of the hidden magnetic field can begin on M ’s and

end on M ’s. Thus after U(1)h breaks the remaining long range field of M is purely

electromagnetic (the χ component in (4.15)) and the hidden monopoles become visible

to normal charges. The M ’s now display an apparent violation of the Dirac quantization

condition, but this is allowed due to the attached physical string(s). These strings are
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also visible to normal charges (due to the χ component in (4.10)) through the Aharonov-

Bohm effect as we discuss in Sections 4.5 and 4.8.

Let us return to the point that the U(1)Y of hypercharge is involved in the origin

of the mixing, as in (4.3). In the mass eigenstate basis this can be seen as a mixing

of both the photon and the Z boson separately with the hidden photon. The Z mass

defines a basis to describe its mixing, and so by the same arguments as before particles

charged under U(1)h acquire a small Z charge while the hidden monopoles do not acquire

a Z magnetic charge. In this way we see that the hidden monopoles are not affected by

electroweak symmetry breaking.

4.3 Monopole densities

The hidden monopole M number density is nM and it is equal to the M density at all

times. For a M mass of 3 TeV we wish to investigate the conditions under which nM could

be appropriate for dark matter. We first consider the case when the magnetic charge is

large as in the case of GUT monopoles, so that we can apply the same analysis [69].

(This is the weak gauge coupling case and we turn later to strong coupling.) The density

of monopoles when they are first formed at temperature TM can be reduced through

annihilation of M -M pairs. This occurs if there are light particles carrying the hidden

charge in the plasma. Such fields should be present in our scenario since they are needed

at a much lower energy scale to produce an order parameter for the breaking of U(1)h.

A M drifting through such a plasma towards an M can experience energy loss, capture

and thus annihilation. The annihilations end when the mean free path becomes longer

than the capture distance and this occurs when the temperature has dropped to Tf [69]

where

Tf ≈
mM

B2

1

α2
M

, B =
3ζ(3)

4π2

∑
i

(
ghe

i
h

4π

)2

. (4.16)

Here αM ≡ g2
h/4π and the sum is over all spin states of relativistic hidden charged

particles. The condition Tf < TM ≈ mM/gh implies αM & (4π/B4)1/3. If this is satisfied

then the annihilations reduce the value of nM/T
3 to

κ3mM

4πBCmPl

1

α3
M

where C =

(
45

4π3g∗

) 1
2

, (4.17)

unless nM/T
3 is already below this value. The κ factor is introduced since a temperature

such as Tf is a hidden sector temperature, and this may be a factor of κ times the tem-

perature T of the observable sector. g∗ is the usual total effective number of relativistic
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spin degrees of freedom. For the smallest αM at which this annihilation process is still

operative the remaining monopole abundance would be 3 or 4 orders of magnitude below

what is required for dark matter (for C = .05 and κ = 1). Thus αM must be smaller to

turn off the annihilations (Tf > TM), and this puts a lower bound on αh = 1/αM & 1/2

for B ≈ 1.

We thus turn to the initial value of nM/T
3. If we still believe that αh could be fairly

weak then the density of monopoles produced in a second order phase transition can be

related to the correlation length ξ and the relaxation time τ as the system passes through

the phase transition at a finite speed. The speed is determined by the Hubble parameter

H at that time. This is the Kibble-Zurek mechanism [70,71] (reviewed in [72]). In terms

of critical exponents defined from

ξ = ξ0|ε|−ν (4.18)

τ = τ0|ε|−µ (4.19)

where ε = (TM − T )/TM , the following result is obtained

ξ ≈
(√

λTM
H

) ν
1+µ

1√
λTM

. (4.20)

λ is the coupling appearing in a Ginzburg-Landau approximation to the free energy [73].

Since nM ≈ ξ−3 this leads to

nM
T 3
≈ κ3λ3/2

(
1

κ2λ1/2C

mM

ghmPl

) 3ν
1+µ

. (4.21)

The classical values of the exponents are ν = µ = 1/2 which makes the exponent in

(4.21) unity. With λ = κ = 1 and using the upper bound on αM = g2
h/4π from above,

the monopole density would be about two orders of magnitude too small. This could be

corrected if µ and ν deviated from their classical values in such a way as to reduce the

exponent in (4.21) (the causality constraint is ν ≤ µ). Otherwise we are pushed towards

still smaller αM (larger αh) and larger λ. In fact the Kibble-Zurek mechanism becomes

irrelevant when αh becomes larger than unity.

When αh > 1 the monopoles become lighter than the massive gauge bosons, mM ≈
mX/αh. The monopole has a size ≈ 1/mX which is smaller than its Compton wave-

length. These relatively light point-like monopoles can be treated like normal particles.

With their fairly weak magnetic charge they will experience pair production and annihi-
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lation through two to two processes, and in this way they will reach thermal equilibrium

with the light degrees of freedom in the dark sector. The monopoles will remain in ther-

mal equilibrium until the temperature falls sufficiently below mM . The final freeze-out

temperature is reached when nM〈σv〉 ≈ H where 〈σv〉 is the annihilation cross section.

We assume that this annihilation is analogous to two charged scalars annihilating into 2

photons [64] so that

〈σv〉 =
πα2

M

m2
M

. (4.22)

This has to be close to the usual value of 3× 10−26 cm3s−1 to arrive at the correct dark

matter abundance [74]. After including the dependence on κ we obtain

αM ≈
1

4π

√
κ
( mM

2.8 TeV

)
. (4.23)

In other words αh = 1/αM ∼ 4π and we note that this agrees with the definition of

strong coupling in “naive dimensional analysis” [75]. It suggests that gauge symmetries

are breaking dynamically in the hidden sector. Here we note that eh always represents the

charge of the order parameter and so in the case that the latter is a fermion condensate

the actual gauge coupling of the fermions is eh = eh/2 and so αh ∼ π.

Thus with a monopole mass close to 3 TeV, as hinted at by PAMELA and FERMI

data, the required monopole abundance for dark matter leads us to the strong coupling

case. The relations between the various masses and couplings that we mentioned in the

introduction are assumed to extrapolate into this regime. In some sense it is not a severe

extrapolation, since when αM ≈ 1/4π or gh ≈ 1 the monopole mass has only come down

to the scale of symmetry breaking as given by mM/gh ≈ mX/eh.

4.4 Lifetimes

Below some temperature the U(1)h breaks and the hidden photon develops a mass mh.

M -M pairs become connected by strings to form MSM ’s. Here we need to be a little

more explicit about how the gauge symmetries are breaking to form monopoles and

strings. Let us consider the simplest example, the breakdown of SU(2) to U(1)h which

then itself breaks. If the first step occurs via a scalar triplet 〈φa〉 then m = 2 in (4.15) as

we have been assuming. A second scalar triplet with a smaller vacuum expectation value

can be used to break U(1)h. In this case the flux carried by a string will be 2π/eh and

this implies that each monopole will end up with two strings attached. (We assume that

two 2π/eh strings are energetically favored over a single 4π/eh flux string.) If instead
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a scalar doublet is used to break the U(1)h then there are only 4π/eh strings and each

monopole will have one string attached.

In the first case a “necklace” can also form where equal numbers of monopoles and

anti-monopoles are attached to one loop of string. The evolution of necklaces in the early

universe was studied in [60] where it was concluded that necklaces tend to cut themselves

up into a set of MSM ’s and pure string loops. The evolution of an isolated MSM is

similar whether it has one or two strings and so the results in the two cases will be

similar. On the other hand we have mentioned dynamical symmetry breaking where it

is natural to consider a condensate of fermions rather than a vev of a scalar field. Weyl

fermions that transform as doublets under SU(2) could develop Majorana condensates

that transform as triplets under the SU(2). This suggests that the triplets only case (the

two string case) may be more natural, and we shall assume this in the following.

The acceleration of the M caused by the two strings, assuming they are pulling in

the same direction, is a = 2µ/mM . The strings in the MSM ’s should be fairly straight

for various reasons. Strings can be fairly straight on formation, especially for the smaller

MSM ’s. In the next section we look at mechanisms by which strings very slowly lose

energy. But most importantly, a MSM with an excess amount of string can emit a loop

of string, since when a piece of string intersects itself it may pinch off to form a loop.

Thus the MSM should end up in a state where the strings remain quite straight as the

M and M move around their center of mass, with energy moving back and forth between

monopole kinetic energy and string rest mass energy. Any angular momentum of the

system will keep the M and M from colliding. We will consider the peak velocities of

the monopoles below, but they can be substantially larger than the typical monopole

velocities at the time of string formation.

We will need to determine a distribution of lifetimes of the collection of MSM ’s after

they have started to evolve as isolated systems. Some will have already decayed by now,

but this is a very small fraction of the original number as is usual with decaying dark

matter. We define the probability that a randomly chosen MSM will decay between

time t and t + dt as P (t, τ)dt, where τ is the mean lifetime. Then the rate of decay per

unit volume at the present time t0 = 1/H is n0P (t0, τ) where n0 is the present density.

We can write P (t0, τ) = τ−1
eff where τeff is an effective lifetime, to be distinguished from

the actual mean lifetime τ of the MSM ’s.

For now we focus on the energy loss due to normal electromagnetic radiation; in the

next section we shall compare this to other possible energy loss mechanisms. The Larmor

formula for a charge with proper acceleration a can be used to find the power radiated
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by the M and M even in the relativistic case [59],

dEem
dt

= −2
χ2

6π
(gha)2 = −χ

2

3π

(
4π

eh

2µ

mM

)2

≈ −64π2

3

m2
h

e4
hm

2
M

χ2µ. (4.24)

Our choice of χ will make this very small, but it is still larger than the power radi-

ated into the massive γh. The latter is exponentially suppressed [59] with a factor

exp(−2vmh/3a) ∼ exp(−4vαhmM/3mh). For fairly straight strings the total energy

to lose is ≈ 2µL where L is the maximum separation of the M and M . Then (4.24) gives

a lifetime that is simply proportional to L

τem ≈
3

2
α2
h

m2
M

m2
h

L

χ2
. (4.25)

Thus the distribution of lifetimes in the collection of MSM ’s is determined by the dis-

tribution of L’s.

In this context it is useful to consider the distribution of nearest neighbor distances

for a random set of points in 3 dimensions. The nearest neighbor distribution can be

derived from the relation

Pnn(r, n) = 4πnr2

(
1−

∫ r

0

Pnn(s, n)ds

)
, (4.26)

where n is the density of points. By solving this relation for Pnn(r, n) one finds that the

mean r of the nearest neighbor distribution is

rnn =
γ(1

3
)

(36πn)1/3
≈ 0.554n−1/3, (4.27)

where γ(x) is the gamma function. Eliminating n in favor of rnn gives

Pnn(r, rnn) =
γ(1

3
)
3
r2

9r3
nn

exp

(
−γ(1

3
)
3
r3

27r3
nn

)
. (4.28)

This satisfies
∫∞

0
Pnn(r, rnn)dr = 1 and

∫∞
0
rPnn(r, rnn)dr = rnn. The lifetime is pro-

portional to L, and if we associate L with the nearest neighbor distance r then we can

obtain a distribution of “nearest neighbor lifetimes”,

Pnn(t, τnn) = Pnn(r, rnn)|(r→t, rnn→τnn). (4.29)
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Pnn(t, τnn) is not a physical distribution of lifetimes since it is not even possible for every

M to be connected to its nearest M and vice versa.

But we wish to argue that Pnn(t, τnn) for some τnn is a good approximation to P (t, τ)

when t � τnn. This corresponds to M -M pairs with separations that are much smaller

than rnn, and it is precisely for these pairs that it is very likely that they are connected

by strings. Thus for these very close pairs the distribution of L’s should be quite similar

to the distribution of nearest neighbor separations. These small MSM ’s include those

that are decaying today and so we can determine τnn by setting Pnn(t0, τnn) = τ−1
eff where

t0 = 1/H. A typical value of τeff for decaying dark matter is 2× 1026 sec, and from this

we obtain t0/τnn ≈ 10−3. We also have the relation L0/rnn = t0/τnn. L0 ≈ 10−3rnn =

0.554 × 10−3n
−1/3
M is the initial size of those MSM ’s that are decaying today. In the

following sections it will become clear that Pnn(t, τnn) will be a poor approximation to

P (t, τ) for times far in the future t� t0.

n
−1/3
M is obtained by scaling the present value of n

−1/3
0 for dark matter back to its

value at string formation when the temperature is ≈ mh/κeh. The present temperature

T0 is enhanced by 1.4 due to the annihilation of e+e− at an intermediate temperature

and so

L0 ≈ 0.55× 10−3κeh
mh

T0

1.4

(
ρ0

2mM

)−1/3

. (4.30)

Note that the explicit κ dependence will cancel the κ dependence of α2
h in (4.25) due to

(4.23), and henceforth we set κ = 1. The resulting L0 ≈ 2 × 10−12 cm is small in the

sense that it is only about 50 times larger than the thickness of the string ≈ 1/mh. For

these small MSM ’s the resulting peak velocities of the monopoles are

v ≈
(

2µL0

mM

)1/2

≈ 0.02. (4.31)

Much larger MSM ’s can have relativistic internal motions.

We can now determine χ by setting τem from (4.25) to t0 = 1/H after replacing L with

L0. We obtain χ ≈ 1.2× 10−15. From (4.4) we find that the scale of physics responsible

for the mixing can be as high as Mmix ≈ 3× 1018 GeV ∼ mPl as advertised.

When the MSM has lost sufficient energy so that the separation of the M -M pair

remains less than the string thickness, then the string dynamics no longer plays a role.

The M -M pair forms a fairly weakly bound “monopolonium” state [76]. It cascades down

to the n = 1 ground state which has binding energy R = mM/4α
2
h. The classical lifetime

for a starting radius of m−1
h is τ = α2

hm
2
M/8m

3
hχ

2. This is much shorter than the original

MSM lifetime, and it may be even shorter still due to the emission of γh’s through
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quantum ∆n > 1 transitions. ∆n = 1 transitions involving γh’s are only possible for the

lowest levels, n < (2R/mγh)1/3 ∼ 3. Only a few of these low energy γh’s are produced

since R/mh ≈ 10. Once in the n = 1 state the M -M pair finally annihilates to 2γh

(usually only two due to the fairly small magnetic coupling).

These final γh’s are highly relativistic and since their coupling to charged matter is

so small they can travel a long distance dh before decaying,

dh = γτhc ≈
mM

mh

2

αχ2mh

c. (4.32)

From the values of parameters as already given this is about 15 kpc. dh of this order

implies that the γh’s will tend to decay away from the regions where the dark matter

densities are the highest, such as galactic cores. Also the γh’s that give rise to the

observed e±’s will originate from more distant parts of the galactic dark matter halo, but

for dh ≈ 15 kpc the e± flux is only reduced by about 30%. On the other hand dh cannot

be much larger than this. Since dh ∝ e−5
h , due to how χ is determined by (4.25) and

(4.30), we see this as another constraint that rules out small coupling.

If most γh’s originating from our galactic core have not decayed by the time they

reach earth then this also affects the associated gamma ray signal [77]. In particular this

signal should show less enhancement in the direction of the galactic core and thus be

more isotropic than expected [78]. The dominant part of the gamma ray signal arises

from the e±’s up-scattering background photons. The inter-stellar radiation field has

a harder spectrum in the galactic core, and these photons when up-scattered produce

higher energy gamma rays. Thus the typical energy of the gamma rays is also reduced

when the γh’s decay outside the galactic core. The same effect applies to gamma ray

signals from decaying dark matter in nearby clusters of galaxies [79]; the typical gamma

ray energies are reduced. The gamma ray signal that is not affected comes from the up-

scattering of CMB photons and the observational constraint on this signal is the same

as in other decaying dark matter models.1

1This constraint keeps one from arbitrarily decreasing τeff to compensate for a larger dh, since de-
creasing τeff would increase the CMB gamma ray signal as well as the e± signal.
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4.5 More energy loss

The moving M and M emit gravitational radiation, and the energy loss rate as estimated

in [55] (with µ replaced by 2µ) is2

dEg
dt
≈ −256

5

Gµ3L

mM

. (4.33)

For the MSM ’s that decay today this is insignificant compared to the electromagnetic

radiation studied in the last section. But far enough in the future and for those MSM ’s

that still survive this energy loss can become dominant. Then L(t) = Lie
−t/τg where

τg ≈
5

256

mM

Gµ2
. (4.34)

This is about 400 times the age of the universe and up to a logarithmic dependence on

Li, this sets the maximum lifetime of any MSM . In particular the lifetime is no longer

proportional to L on these time scales.

A string loop emits gravitational radiation at a rate [81]

dEsg
dt
≈ −50Gµ2, (4.35)

and so a loop with length πL has a lifetime

τ sg ≈
πL

50Gµ
. (4.36)

Thus a string loop will decay within the age of the universe if L . 10−11 cm. The lifetime

of a loop of length πL turns out to be similar to the lifetime of a MSM with size L,

since τ sg/τem ≈ 1/5. The gravitational radiation by the strings in a MSM has the effect

of causing these strings to lose excess kinetic energy and to straighten.

We now turn to frictional effects [65]. The normal magnetic fields of the M and M

will induce frictional effects through interactions with charged particles in the plasma,

dEf
dt
≈ −χ2B′T 2v2 (4.37)

where B′ ≈ π−2
∑

i(eigh/4π)2. For friction to remove the energy 2µL and for the v in

2The relativistic case is studied in [80].
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(4.31) we obtain

τf ≈
2µL

χ2B′T 2v2
≈ mM

χ2B′T 2
. (4.38)

But due to the tiny χ it is easy to see that mM/χ
2B′ � mPl and thus τf is much larger

than the Hubble time. This friction can be neglected.

Normal charged particles can also scatter off a string via an Aharonov-Bohm (AB)

effect, since charged particles carry a hidden charge εeh ≡ −χe while the strings carry a

2π/eh unit of hidden flux. The resulting AB cross section per unit length is [65,82,83]

dσAB
dl

=
2

p
sin2(πε) (4.39)

where p is the transverse particle momentum. One can use this to estimate the time on

which the transverse velocity of a section of string will be damped out as

τAB ≈
µ

ε2B′′T 3
. (4.40)

B′′ ≈ 2
∑

a ba where ba is 3/4 for fermions and 1 for bosons. Here again µ/ε2B′′T � mPl

and so this effect can be neglected.

Since the hidden magnetic fields of the monopoles have been confined to strings

carrying a unit of hidden flux, particles of the hidden sector that carry a unit of hidden

charge will not contribute to the two previous frictional mechanisms. On the other hand a

particle with hidden charge eh/2 will have AB scattering at full strength, dσAB/dl = 2/p.

This can be the case for the fermions that develop the U(1)h breaking condensate. Their

masses should be similar to mh, and in fact they must be greater than mh/2 to prevent

γh from decaying into them.3 There can also be a direct interaction of hidden particles

with the fields of the string, which for small p/mh has a cross section [84]

dσdir

dl
≈ π2

p ln(p/mh)2
. (4.41)

Thus there could be a damping of transverse motions of the strings if they move in a

bath of the massive particles with which they interact with cross sections σAB and/or

σdir. In the next section we discuss why there is very little such damping.

The Aharonov-Bohm effect implies that the string interacts with electrons through

the vector electron current. This gives rise to a more interesting process where the string

3There need not be much lighter or massless particles remaining in the hidden sector. If there are
we would need to assume that the γh does not decay into them, otherwise the decays of MSM ’s are
undetectable. But then it is unlikely that such particles will interact with the string and so they are
irrelevant for the string dynamics.
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emits e+e− pairs. For a fairly smooth string loop of length πL the rate of energy loss

estimated on dimensional grounds is [61]

dEsee
dt
≈ − ε

2

L2
for L .

1

2me

, (4.42)

which in turn gives a lifetime

τ see ≈
παhµL

3

3αχ2
. (4.43)

For L ≈ 1/2me ≈ 2× 10−11 cm the lifetime is τ see ≈ 108 years. For larger L the process is

exponentially suppressed, so that loops more than about 3 times as large can last longer

than the age of the universe. In any case we see that this process removes the smaller

loops at least as effectively as gravitational radiation.

e+e− emission can be enhanced if the string loop has kinks and/or cusps. Cusps tend

to form on featureless loops with little excitation of higher string harmonics, but such

loops are less likely when there is little damping. Kinks also inhibit cusps [85] and since

kinks readily form when strings intercommute, they are expected to dominate. Kinky

loops of any size could emit e+e− pairs to produce an energy loss which is optimistically

of order
dEsee
dt
≈ − ε

2

L2

√
µmin(L,

1

2me

). (4.44)

Here we have included the likely effect that the electron mass has on the results of [86],

and the extra factor compared to (4.42) is at most a factor of 70. This is an optimistic

estimate for the rate since back-reaction effects will tend to flatten out the kinks (most

of the radiation comes from the sharper kinks) and thereby reduce the rate. Thus the

presence of kinks probably does not dramatically increase the number of loops that can

decay. We also note that the kinematics of kinks on the strings of a MSM can be quite

different; on a loop the kinks move at the speed of light while on a MSM a kink can

move slowly or even be stationary (as in a triangular standing wave).

The AB electron-string interaction also implies that a photon-string interaction will

be generated through an electron loop [61]. A current involving photons that can be

induced by the vector electron current and which doesn’t vanish for on-shell photons will

involve 3 photons. The lowest dimensional current that can arise after integrating out

the electron must then involve three factors of the photon field strength and one extra

derivative. It will therefore be suppressed by a 1/m4
e factor. For a string loop of length
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πL, now with L larger than 1/2me, the rate will be roughly

dEsγγγ
dt
≈ − α3

(2me)8

ε2

L10
. (4.45)

So even though this rate is not exponentially suppressed for large L, it has the α3 sup-

pression and it still drops very quickly for increasing L. It thus has negligible effect.

There is also the production of photons through their gravitational coupling [87–89], but

this is proportional to (Gµ)2 instead of ε2 and is thus miniscule.

4.6 Strings and γh’s

The picture of a dilute network of strings interacting with a dense bath of particles is

completely altered at strong coupling. The strong coupling has an effect on the string

forming transition similar to its effect on the monopole forming transition. In the latter

case we saw that the monopoles became point-like and light compared to the massive

elementary degrees of freedom (the massive gauge fields and other massive matter). Thus

the monopole abundance was not determined by the correlation length (the Kibble-Zurek

mechanism) but rather by thermal equilibrium. In the string forming transition it is the

string tension ≈ m2
h/4α

2
h that is small relative to particle masses, and so the effective

theory is a theory of light, thin strings.4 These strings also carry fermion zero modes [91].

Thus the strings tend to capture fermions and the γh’s effectively have a decay channel

into these zero modes. For example a γh could decay into a zero mode and a normal

fermion by interacting with the string. All this indicates that the relevant degrees of

freedom after the transition are the strings and their excitations.

Thus the energy that was in a plasma of massless γh’s and fermions before the tran-

sition will be mostly deposited into strings and their kinetic energy after the transition.

Due to the energy available in this plasma before the transition, the initial density of

strings will be much higher than what the correlation length suggests. The string-string

interaction rate will be very high (a section of string of length characteristic of the string

spacing will collide many times in the Hubble time) and this should keep most of the

total length of string in contact with the rest of the network. Only the loops that are

very small may effectively be decoupled soon after the strings form. This should also

be the case for the MSM ’s that are small enough to decay today, as we have already

discussed.

The dense network of strings persists since it is undamped and since the energy

4The strong interaction limit of Nielsen-Olesen strings was considered in the original reference [90].
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loss from radiation (gravitational and electromagnetic) is so slow. This is quite unlike

the more standard evolution of cosmic strings which involves significant damping after

formation. Due to energy considerations the strings are expected to move relativistically

〈v2
s〉 ≈ 1. A network of strings has an effective pressure [58]

ps =
1

3
(2〈v2

s〉 − 1)ρs, (4.46)

and so relativistically moving strings behave like a normal relativistic gas with p = ρ/3.

In this limit the energy density in the string network does not increase relative to the

total energy density. As long as ρs remains a fairly small fraction of the total ρ down to

temperatures of about 1 MeV then it avoids constraints from big bang nucleosynthesis.

Strings only form at a temperature of order mh/eh ≈ 40 MeV and so this is not a severe

constraint.5

For weak coupling, which we have already argued is not interesting for other reasons,

the γh’s and massive fermions would remain after the transition. Then in particular the

γh, with its 500 MeV mass and a lifetime longer than 1 second, would not satisfy the

BBN constraints [67].6

The violent motions of the strings and their collisions could in principle produce

γh’s. But unlike the case of e+e− emission, the mass mh here is larger than
√
µ and

so we expect substantial exponential suppression. Any γh’s that are produced face the

prospect of string catalyzed decay back into dark sector degrees of freedom. In the

absence of strings the proper lifetime of the γh is about 10 years, so at that time γh’s can

decay to ordinary leptons. But we expect that γh production and decay only transfers a

minor amount of energy from the hidden sector to the observable sector.

4.7 Late times

As the universe expands the interaction rate between MSM ’s gradually decreases, both

because their separation increases and because their momenta are being redshifted. Start-

ing from the smallest ones, the size of the MSM ’s that have a collision time larger than

the Hubble time gradually increases and eventually most MSM ’s stop colliding. Loops

free of monopoles will also be present. Loops of complicated shapes will quickly fragment

5We also note that the BBN constraints have recently weakened [92, 93], and may even be in line
with indications of new relativistic degrees of freedom from CMB studies [94,95].

6If the γh’s annihilated fast enough into much lighter or massless particles of the hidden sector then
presumably they would also decay into these same particles, which would make them undetectable.
Alternatively a γh mass closer to a MeV and/or a small κ could be considered in the weak coupling case.
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into simpler loops which no longer self-intersect [96,97]. Thus in addition to the MSM ’s

there will be a population of loops which also stop interacting and which extend down in

size to where they can decay to e+e− pairs and gravitons within the age of the universe.

The relativistic string network should also survive to late times. The typical sepa-

ration between strings in this network is much smaller than the Hubble scale, but its

growth is proportional to t. Loops, with or without monopoles, of size anywhere close to

this typical separation would be continually interacting and reconnecting with the rest

of the network. As this separation increases there is an increasing population of smaller

loops and MSM ’s that are more or less decoupled from the network. What is left of the

relativistic string network today cannot have an energy density larger than the CMB,

and so the typical separation in the string network now can be no less than about 3×1010

cm. This of course is much larger than the present separation between MSM ’s.

For the dark matter that accumulates in halos, the increased density and speeds

of the MSM ’s and loops leads to a resurgence of their interactions. Let us consider

a nontrivial interaction between two MSM ’s with fairly straight strings of length L1

and L2 respectively. The cross section is σ = ζL1L2 where ζ accounts for the relative

orientations, the fact that each is oscillating, and the probability for intercommuting. We

take ζ = 0.1. Then the cross section corresponding to L1 = L2 = 10−9 cm for example

would result in a rate of collisions of nσv ≈ 50H for local dark matter densities and

speeds. This is a value of interest for self-interacting dark matter models [98] and it

suggests that the average L cannot be much larger than 10−9 cm. A new feature here is

that the cross section depends on the Li’s of the MSM ’s being scattered. The smaller

MSM ’s have a lower collision rate and so there can be a nearly collisionless subpopulation

of MSM ’s. Also the collisions are not elastic since the sum of the internal energies can

change after a collision. The effect that these new features have on the dynamics of dark

matter halos remains to be explored.

Also of interest is the probability for two MSM ’s to collide to form a small MSM

with a size no larger than L0 ≈ 2 × 10−12 cm, so that it can decay within the Hubble

time. For this to happen a M and M must be close together not only in position space

but also in momentum space, since the kinetic energies of the monopoles in their center

of mass frame cannot be larger than the rest mass of a segment of string of length L0.

Also the strings must intercommute at a point which will produce the small segment.

Given the large dimensional phase space of possibilities, the production of a small MSM

is highly suppressed. In fact our previous estimate for the number of small MSM ’s is

due to a phase space suppression as well (e.g. the small r behavior of (4.28)). There the

suppression is not as strong since only position space was involved; the kinetic energies
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of the monopoles at the time of string formation could be neglected. Thus the rate of

MSM ’s decaying today should not be substantially changed from our previous estimate.

Collisions among a population of loops and MSM ’s also provide some probability for

producing loops a few times 1/2me ≈ 2 × 10−11 cm in size or smaller. As described in

the last section these loops decay mostly into e+e− pairs. MSM ’s similarly small in size

could also emit e+e− pairs if their strings are excited. The energies of the e+e− pairs are

typically not far above threshold and there are up to ∼ 103 such pairs produced from the

largest of the small loops which can decay. The production of these small loops need not

be very efficient to be of interest for the 511 keV photon flux observed to come from the

galactic bulge [99,100]. For example a collision can excite the strings of two MSM ’s, and

even when these MSM ’s are not small it is still possible that they can emit a loop that

is small enough to decay. From the analysis of [101] we estimate that this probability

would have to be smaller than about 10−6, assuming an average L of 10−9 cm.

Finally we comment on large MSM ’s. When L ≈ 1 angstrom (10−8 cm ≈ 5000L0)

the energy in the strings is comparable to the energy in the monopoles µL ≈ mM . For

larger L the MSM ’s have relativistic monopoles and a total energy larger than 2mM .

But we don’t expect the average L to be this large due to the constraints on the self-

interactions. We note in passing that for µL� mM the ultra-relativistic monopoles can

result in the emission of particles with energies γa ≈ (µL/mM)(2µ/mM) [59]. For γh’s

to be produced this energy must be greater than mh, and this would require a very large

L > (mM/µ)2mh/2 ≈ 0.002 cm.

4.8 Direct detection

For direct detection of MSM ’s the interaction can be between the monopole and a

nucleus or the string and a nucleus through Aharonov-Bohm scattering. The differential

cross section for the classical scattering of an electric charge off the field of a magnetic

monopole for large impact parameter is given by [102]

dσMN

dΩ
=

(
eg

E

)2
v2

θ4
, (4.47)

where E and v are the energy and speed of the incoming charge. The differential cross

section (per unit length) for AB scattering of an electric charge off a string is given by

dσAB
dθ

=
sin2(πε)

2πp sin2(θ/2)
, (4.48)
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where p is the transverse particle momentum.

We can write the above expressions in terms of a nucleon recoil energy ER, which is

the physical quantity measured. The results are

dσMN

dER
=

2πZ2ααMχ
2

mNE2
R

(4.49)

and
dσAB
dER

≈ 4L

3

πχ2v

E2
R

(
2mNv

2

ER
− 1

)−1/2

. (4.50)

For the latter we account for two strings of length L, with each on average 2/3 shorter

due to the oscillations.

Among the direct detection experiments, an upper bound on the interaction cross

section for heavy dark matter (several hundred GeV to TeV masses) is given by the

CDMS experiment [103]. This experiment uses germanium or silicon crystals as the

absorber and has a sensitivity threshold ER ≈ 10 keV. We use mN = 26 GeV and Z = 14

corresponding to silicon, the lighter of the two nuclei. The integrals that determine the

total cross sections are dominated by the lower limit, the minimum recoil energies. We

find

σMN ≈ 10−54 cm2, (4.51)

σAB ≈
(

L

10−9 cm

)
10−50 cm2, (4.52)

where we have set v = 10−3. Thus the Aharonov-Bohm scattering will be the domi-

nant form of interaction. The current sensitivity is σexp ≈ 10−43(mDM/1 TeV) cm2. The

relative sensitivity of the more recent XENON100 experiment [104] is similar after ac-

counting for its heavier nuclei. Thus for a typical L not much above 10−9 cm, the AB

cross section is still orders of magnitude below the best sensitivities available today.

For monopole-nucleus scattering we should comment on the maximum recoil energy,

ERmax = 2mNv
2, since the M and M can move at speeds ∼ (µL/mM)1/2 which could

be much greater than 10−3c. But the ERmax is limited by another effect. Recall that in

the massless γh limit the mutual coupling between the M ’s and normal charges vanishes

according to the Dirac quantization condition. Thus for distances of approach less than

m−1
h the monopoles become invisible to normal charges and therefore scattering events

where q2 & m2
h cannot occur. This implies that ERmax ≈ m2

h/2mN , and at this energy a

bump could be expected in the spectrum due to a type of pile-up effect.
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4.9 Outlook

We have presented a dark matter candidate, the MSM , with extremely weak couplings

to the observable world (kinetic mixing parameter χ ≈ 10−15). When it decays the

annihilating monopoles contribute to high energy electron/positron, neutrino and gamma

ray signals. Excited strings and string loops may also be a source of low energy e+e−

pairs. The self-interactions of MSM ’s can have implications for dark halo dynamics.

But there is little chance of observing MSM ’s through direct detection or in collider

searches. The extremely weak coupling manifests itself as a long lifetime of the particle

that mediates the interactions with the dark sector, the γh. Only γh’s that originate

farther from us than its typical travel distance will be observable. This travel distance

can be somewhat larger than the distance to the galactic core and this could reduce the

anisotropy of the gamma ray and neutrino signals.

Meanwhile both the monopole mass and the γh mass will be constrained by the

characteristics of the observed e± spectra. If mh is indeed significantly larger than 1

MeV then it will produce an apparent puzzle given the constraints from BBN. This in

turn would provide indirect evidence for strong interactions in the hidden sector since,

as we have described, in this case energy is dumped into relativistic cosmic strings rather

than nonrelativistic γh’s. A determination of the γh travel distance would also fix the

mixing parameter χ through (4.32). The parameters of the model are then determined.

We may then find that a “miracle” has occurred, since it could turn out that the model

gives both the right abundance and the right lifetime for the MSM ’s.
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Conclusions and Future Prospects

The Standard Model of particle physics, as well as the Standard Cosmological model,

have provided us with an unprecedented level of understanding and predictive power

across a wide range of phenomena. These theories are indeed an outstanding achievement

resulting from the efforts of a multitude of talented individuals and groups, across many

decades of work. In some sense, we have come to a point where the theories’ incredible

degree of agreement with experiment has turned into a great difficulty we now face as a

scientific community.

The success of the current working theories by no means implies that they are com-

plete. We know that there remain many open questions that are begging to be answered.

Furthermore, it is also our hope that in attempting to answer some of these questions,

a more unified description of the Universe could arise wherein both the SM and the

Standard Cosmological Model could find a home (at least partially). But in recent years

there has been little indication from experiment as to where the right path to proceed

along this task lies. On the cosmology front, the nature of Dark Matter and Dark Energy

remain as mysterious as ever, while observational evidence for extensions to the standard

big bang model such as inflation remains elusive [105]. On the particle physics front, no

spectacular signs of Supersymmetry, Technicolour, extra dimensions, nor of any other

BSM physics model has (yet?) emerged at the LHC, to the surprise and dismay of many.

Only the single Standard Model Higgs boson has made an appearance.

In light of this last observation, it appears we are left with the following options:

1. Supersymmetry is indeed the solution to weak scale naturalness; it is realized in some

really contrived incarnation such that it has not been observed yet, but is “just around

the corner”.

2. The observed Higgs boson is not exactly a SM Higgs boson, it just looks quite a lot like

it. It is actually only the tip of the iceberg of a whole new (possibly strongly coupled)
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sector, signs of which should appear in the near future of LHC searches either in the form

of new, heavier resonances, or deviations of the coupling of the Higgs to SM particles.

3. The SM is not “natural”, or more precisely, apparently fine-tuned parameters are

actually natural in the sense that they happen to occur in nature.

In this thesis we have delved into some of the open questions left by the Standard Model,

we could say mostly in the spirit of point number 2 above.

In Chapter 2, we have turned to the issue of whether or not the long theorized

dilaton should exist as a light degree of freedom in the context of gauge theories. This

is a question that, we believe, remains interesting even as a purely theoretical exercise

regardless of whether or not gauge theories with walking-type dynamics are realized in

nature at the weak (or any other) scale. However, the prospect that such a particle

could be identified with the observed Higgs boson at the LHC brings the problem under

a whole new light.

From a CFT perspective, the authors of [35] claim that depending on how the Stan-

dard Model is embedded into the conformal sector, a dilaton emerging from a near-

conformal theory could reproduce the observed behaviour of the 125 GeV resonance

discovered at the LHC (see also [106–108]). In our work we have shown qualitatively how

this property, at least as far as the lightest scalar’s couplings to the W and Z bosons are

concerned, could in fact arise naturally out of a gauge theory. However, we have a much

harder time envisioning how the lowest lying scalar in the spectrum could be light.

We find that in a non-local approach to the problem, one is made aware of important

effects coming from the UV that give large contributions to the scalar’s mass which cannot

be accounted for in purely local analyses. Qualitatively, this conclusion also appears to

agree with the CFT side of the argument in [35], where the authors conclude that it is

not sufficient to begin with a conformal theory and to then introduce a small breaking

parameter to keep the would-be dilaton’s mass small; they can only achieve this with

fine-tuning and special dynamical assumptions that should not generally be present in

gauge theories. Going beyond considerations of the value of the “dilaton’s” mass, we

additionally find that the lowest lying scalar in the theory cannot really be identified as

the PNGB of the spontaneous breaking of approximate scale invariance once we consider

the shape of the momentum-dependent form factor that determines how the scalar couples

to the fermion loops in the theory.

Our conclusions regarding the value of the lightest scalar’s mass are only valid in the

large Nc limit however. Maybe, some hope yet remains that a light scalar could emerge

if the strongly coupled sector consists of a U(1) gauge theory, for example. This type of

extension to the SM has been considered in [109].
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In Chapter 3, we have considered a lepton based charge asymmetry observable that

could become useful at the LHC in the event that anomalies in the lepton counts of

the various channels should emerge. If we remain optimistic regarding point 2 above,

PNGBs could be the first to show signs of BSM physics in these channels. Some of these

PNGBs with complex decay chains may be difficult to reconstruct. If their quantum

numbers should be such that a charge asymmetry is expected however, as in the case of

scalars carrying diquark quantum numbers that appear in the model of [109], then the

observable that we propose, AlC , may be one of the few measurements fit to explore it.

We have also presented our theory calculation for the charge asymmetry coming from

QCD of diquark scalars, to use as benchmark objects for our study. Of course there is no

reason why AlC should not also be useful to study charge asymmetries in more familiar

systems such as tt̄ for example.

Finally, in Chapter 4 we have presented a proposal for a dark matter candidate coming

from a hidden sector only very weakly coupled to the Standard Model. If we consider

the rich gauge and matter structure that exists within our own SM, which only accounts

for a small percentage of the matter inventory in the Universe as we have mentioned

in Section 1.3, it is reasonable to think that a dark sector could bear some resemblance

to this complexity. We have entertained the possibility that some of the astrophysical

anomalies that have come to light in the past years could be indirect signals of DM

decay (or annihilation) in our own Milky Way’s DM halo, hence a portal coupling the

dark and visible sectors is necessary. One interesting such portal to consider, is that

purveyed by the kinetic mixing of a dark photon with the photon. One then may think

of a dark sector with a larger gauge group that could spontaneously break leaving an

unbroken U(1). If the original gauge group in which the remaining U(1) is embedded is

semi-simple, this type of transition will generically lead to the appearance of topological

defects with quantized magnetic charge, i.e. dark magnetic monopoles.

Through the sequential breaking of the dark U(1) we have been able to obtain a

very long lived, decaying DM candidate consisting of dark monopoles tied by strings.

The parameters in the theory work out in such a way that a strong coupling in the dark

sector appears necessary to give the right DM relic density, while at the same time saving

our model from BBN constraints. The value of the mixing parameter between the two

sectors can be pinned down from the distance a hidden photon can travel before decaying,

in order to generate a positron excess in our vicinity. The resulting value ∼ 10−15 implies

little immediate prospect for direct detection and production at colliders, but gives the

right DM lifetime to avoid the stringent constraints coming from the isotropic gamma

ray signal in the galaxy.
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Our model may also be of interest in the context of self-interacting dark matter.

Increased density and speeds of the monopoles and strings in the galactic halo can lead

to the resurgence of their self-interactions which may occur with large cross sections

given that their origin is geometrical. The effects that these interactions may have on

the dynamics of dark matter halos remain to be explored.

While our DM model may appear rather exotic, the reader may find that the ideas

that have logically led us to consider it as such are all quite reasonable. As direct detection

experiments improve their reach towards lower scattering cross sections between atomic

nuclei and the DM particles, we expect that they may become sensitive to our model in

coming years.
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