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In this thesis we study a few complementary topics related to some of the open ques-
tions in the Standard Model (SM). We first consider the scalar spectrum of gauge theories
with walking dynamics. The question of whether or not a light pseudo-Nambu-Goldstone
boson associated with the spontaneous breaking of approximate dilatation symmetry ap-
pears in these theories has been long withstanding. We derive an effective action for
the scalars, including new terms not previously considered in the literature, and obtain
solutions for the lightest scalar’s momentum-dependent form factor that determines the
value of its pole mass. Our results for the lowest-lying state suggest that this scalar is
never expected to be light, but it can have some properties that closely resemble the SM
Higgs boson.

We then propose a new leptonic charge-asymmetry observable well suited for the study
of some Beyond the SM (BSM) physics objects at the LHC. New resonances decaying
to one or many leptons could constitute the first signs of BSM physics that we observe
at the LHC:; if these new objects carry QCD charge they may have an associated charge
asymmetry in their daughter leptons. Our observable can be used in events with single or
multiple leptons in the final state. We discuss this measurement in the context of coloured
scalar diquarks, as well as that of ¢t pairs. We argue that, although a fainter signal is
expected relative to other charge asymmetry observables, the low systematic uncertainties
keep this particular observable relevant, especially in cases where reconstruction of the

parent particle is not a viable strategy.
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Finally, we propose a simple dark-sector extension to the SM that communicates with
ordinary quarks and leptons only through a small kinetic mixing of the dark photon and
the photon. The dark sector is assumed to undergo a series of phase transitions such that
monopoles and strings arise. These objects form long-lived states that eventually decay
and can account for the observed cosmic-ray positron excess observed by the PAMELA
and Fermi satellites. This topological Dark Matter (DM) can account for the Universe’s

DM content if the coupling in the dark sector is strong.
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Chapter 1
Introduction

The Standard Model (SM) of particle physics has proved to be an extremely successful
description of the world at the most fundamental level as we know it. However, despite its
many successes there are several important issues that remain unsolved in the context of
our current understanding. This has led the particle physics community at large to believe
that the Standard Model as it stands can only be an effective low energy description of
a more complete theory. The hope is that this more complete theory will also shed light
into closely related problems from astrophysics and cosmology, as for example the particle
nature of Dark Matter, one of the topics that will be discussed here, and the origin of
dark energy.

One of the open questions at the core of the SM that has been the centre of attention in
recent years is the nature of Electroweak Symmetry Breaking (EWSB). On July 4, 2012,
the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) announced
that a particle resembling the SM Higgs had been discovered at a mass of 126 GeV [2,3].
Since then, both collaborations have been busy searching for discrepancies between the
properties of the observed particle and the SM Higgs. To this date, all published results
point towards the surprisingly simple, and yet theoretically troubling Higgs particle.

The SM Higgs is a fundamental scalar particle, the physical (electrically neutral)
degree of freedom predicted from adding a complex scalar SU(2); doublet to the SM,
with a potential such that minima occur at non-zero values of the scalar field, i.e, the
scalar acquires a non-zero expectation value. This scalar couples to SM matter fields
via Yukawa couplings; when the scalar obtains a non-zero expectation value, these terms
become mass terms for all SM fermions. At the same time, mass terms for the W and
Z bosons allowed by the gauge symmetries are generated, in other words electroweak
symmetry is spontaneously broken. An obvious problem with this picture appears when

we consider one-loop corrections to the Higgs mass.
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One-loop corrections to the Higgs mass in the SM are additive and proportional to the
high energy scale at which new physics is expected to appear (e.g, the GUT scale or the
Planck scale). This is in contrast with radiative corrections to fundamental fermions in
the SM, where a chiral symmetry acts as a custodial symmetry guarding the “smallness”
of the fermion masses, keeping all radiative corrections multiplicative. Even long prior
to the discovery of the 126 GeV boson at the LHC, we have known that the mass of
the Higgs should be of the order of a few hundred GeV (see e.g [4]), as dictated by
precision SM measurements. But there appears to be no fundamental reason as to why

a (fundamental) scalar should appear at the 10> GeV scale.

The most popular solution to the hierarchy problem has been that of a Supersymmet-
ric (SUSY) extension to the SM. In this picture, all SM particles have a supersymmetric
partner, of integer spin for fermions and of half-integer spin for bosons. The partners
to SM fermions have just the right couplings to exactly cancel their contributions to the
Higgs mass. More fundamentally, the chiral symmetry that protects the Higgs’s fermionic
partners is extended to protect the mass of the scalar by virtue of supersymmetry. Obvi-
ously we do not observe supersymmetric partners for SM particles in our everyday lives,
hence if supersymmetry is to be an adequate description of the world, this symmetry ty-
ing SM to their partners must be broken. Weak-scale supersymmetry predicts TeV scale
particles that should show signs of existence at the LHC. Hence, the search for SUSY
partners of SM fields has been a large part of the LHC program in recent years. At the
time of this manuscript’s writing, signs of SUSY have yet to show up at the LHC. In this
current state of affairs, it is reasonable to say that SUSY is unlikely to be responsible for

successfully solving the SM’s hierarchy problem and rendering the weak scale natural.

An alternative paradigm that has enjoyed much less popularity in the recent past is
that of Dynamical EWSB due to a new strongly interacting sector. In our view this is
quite a conservative approach to solving the hierarchy problem: the strong interactions
in the SM have already given us a working example of how one can break EW symmetry
without the need of introducing fundamental scalars, by virtue of chiral symmetry break-
ing (xSB) as triggered by fermion condensates in QQCD. There is no hierarchy problem
in QCD; the large hierarchy between Agecp and the Planck scale arises naturally from
the quantum theory itself through dimensional transmutation. The hope for a dynamical
picture of EWSB is that the lessons learned from QCD could be used to understand the

origin of the weak scale.
Before we proceed with the introduction, we would like to let the reader know that
in this thesis we shall be studying a few complementary topics in physics Beyond the

Standard Model (BSM) which are, in principle, independent of each other. However,
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there is a common thread unifying this discussion, which is the presence of strongly
interacting gauge theories and some of the different aspects of their phenomenology. We
shall now proceed along the ideas of the previous paragraph towards introducing the
background that will lead us to the discussion of the scalar spectrum of gauge theories
with strong dynamics and chiral symmetry breaking. We shall then work our way back to
introducing the other two main topics contained in this document. One involves possible
ways of measuring collider signatures of certain BSM objects that may arise in strongly
coupled extensions of the SM. The second involves a decaying DM candidate from a

non-Abelian dark sector where the gauge coupling is strong.

1.1 QCD, Walking Technicolour and the dilaton

Armed with the knowledge from QCD, theorists in the 80’s set out to find a dynamical
theory of EWSB. The idea would be to have a new confining gauge interaction, techni-
colour (TC), with QCD-like dynamics at the weak scale as well as new massless chiral
fermions carrying TC charge (but not necessarily colour charge, this depends on the par-
ticular model), the technifermions. In analogy with QCD, a condensate of technifermion

bilinears is generated

(QiLQjr) = Njcbij, (1.1)

where Ape is the scale analogous to Agep of order the weak scale, vyeqr. As a result,
techniquarks acquire a (constituent) mass of order Apc, and composite states such as
technibaryons arise. There are also a number of (composite) Nambu-Goldstone bosons
(NGB) resulting from the breaking of any global symmetries by the condensates. In
order for EW symmetry to be broken, SU(2);, x U(1)y must be a gauged subgroup
of the original global chiral symmetry of the technicolour theory. In this way, when the
gauge interactions are “turned on”, the NGBs become the longitudinal Ws and Z bosons.

TC on its own does not address the flavour problem. In order to be able to give
SM fermions their masses and mixing angles, an extension to the TC gauge group must
be considered such that the new interaction couples SM fermions (that do not carry
TC charge) to technifermions. The Extended Technicolour (ETC) gauge group must be
broken at scales below Agpc leaving only the TC and SM gauge groups unbroken. At
low energies, the exchange of heavy ETC gauge bosons gives rise to effective contact
terms between SM and TC fermions. The effective terms of greatest phenomenological

importance that arise from these contact terms are as follows (see e.g. [5]):
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1) “a” terms of the form

QT°QOT*Q

, (1.2)
Afre

a

where the T* are the ETC generators, including the relevant chiral factors, and also
including T° = 1. These terms can give masses to potentially too light pseudo Nambu-
Goldstone bosons (PNGB), “techniaxions” for example. This is a desirable consequence
as it allows the masses of these particles to be more consistent with experimental bounds.

2) “B” terms of the form

QrTQrYrT Yy, .

2
AETC’

Bab (13)

These terms will generally give the masses to (and mixing between) SM fermions v, the

main purpose of the ETC sector.

3)“y” terms of the form

VT pYrT Y, ‘

2
AETC’

Yab (14)

These terms are four fermion interactions between SM fermions and will generally give
rise to Flavour Changing Neutral Currents (FCNC). Assuming o ~  ~ =, these terms
pose a big obstacle for TC models: in order to generate the right pattern of fermion
masses, and to raise PNGB masses to avoid bounds, it appears one is also necessarily
generating dangerously large FCNC in the SM.

An elegant and enticing solution to this problem is found by modifying the dynamics
of the theory such that the running of the TC coupling is no longer QCD-like, but is
near a fixed point of the theory such that it remains strong and runs very slowly (or
“walks”) at scales higher than Arc. This was first suggested in [6]. One can look at the
ETC operators that give rise to the fermion mass terms in “3” type terms above. The
renormalization effects due to TC, between the TC and ETC scales, for these operators

can be written as [5]:

ApTC

(Q@ere) =exo ([ ) A nlals) ) (QQrc) (1.5)

where 7, is the anomalous dimension as a function of the running coupling. If TC is
QCD-like, then the coupling a(u) falls off as ~ 1/In(u) and, assuming v ~ «, we can
immediately see that the exponential factor on the right-hand side (RHS) of Eq. 1.5 goes

TYm
as <ln(/>\’5T—TC?)) . If on the other hand we consider a theory near a fixed point such that
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the coupling is almost constant between these two relevant scales, the exponential factor

instead becomes

exp ( /A jjc dn () v (0 (1) ~ const.)) — exp (ym In (AAETTCC)> - ([ZTCC)%. (1.6)

We can then see that for a walking type theory, it is in principle possible to enhance «

and [ terms by a significant amount without enhancing problematic ~ terms.

Infrared fixed points (IRFP) are known to exist in gauge theories in the perturbative
regime, where the gauge coupling is weak. One such IRFP, that we shall further discuss
in upcoming sections, is the fixed point that appears in the (two loop) § function of an
SU(N) gauge theory with N; number of flavours when the coupling a ~ —by /by, where
by and b; are the coefficients of the first and second term in the [ function, respectively.
The value of the coupling at the fixed point increases as Ny decreases, which suggests that
the fixed point will eventually reach the critical value for chiral symmetry breaking, as
is desired for applications to EWSB. Lattice simulations have shown that gauge theories
in the strongly coupled regime can indeed exhibit conformal behaviour in the IR [7,8].

A question of great phenomenological relevance now appears. Since the walking
theory is governed by the presence of a (infrared) fixed point for a significant range of
momenta, there appears to be an approximate dilatation symmetry in the theory (i.e
the theory is approximately scale invariant), which can be spontaneously broken along
with chiral symmetry and other global symmetries. In a perfectly conformal theory,
the spontaneous breaking of scale invariance should imply the presence of a massless
Nambu-Goldstone boson (NGB), the dilaton. The expectation is then that in a theory
with approximate scale invariance, a light pseudo-NGB (PNGB) should too appear, and
its mass should be somehow proportional to the small degree of explicit breaking. This is

in analogy to the pions in the SM, which are the PNGBs of approximate chiral symmetry.

The scale current for a general Lagrangian takes the following form

DI = 1,0, (1.7)

where ¥ is the (non-symmetric) energy-momentum tensor given by Coleman and Jackiw

[9]. The divergence of this current is then given by

8, D" = g 0" + 2,0,0" = 0", (1.8)

where the second term vanishes as required by Poincaré invariance. The above equation



CHAPTER 1. INTRODUCTION 6

implies that only when the energy-momentum tensor is traceless is the theory classically
scale invariant. This is true for a classical Lagrangian containing no dimensionful parame-
ters [9]. Of course in general, quantum corrections tend to spoil classical scale invariance,
as is the case in QCD for example, where the scale Agcp is dynamically generated. More
explicitly, one can write 0 = %GZVG‘”“’ where « is the renormalized coupling constant
defined at some scale i, § is its beta function, and G7,, is the (renormalized) field strength
tensor [10]. Hence, classical scale invariance is explicitly broken by this “trace anomaly”
when the coupling runs. We can see that the explicit breaking can be made small if we
can justify a small g function. Then, if a dynamical mass appears in the theory, as is the
case in theories where chiral symmetry is spontaneously broken, the approximate scale
symmetry is also spontaneously broken.

The Schwinger-Dyson (SD) equations provide an appropriate framework for the study
of non-perturbative phenomena in gauge theories. The SD equation for the fermion

propagator i(Z(p)p — X(p))~!, which is given by

4

Np)+ (1= Z(p)p = 9/%7#(;#”(17 - ’f)m

where G, is the gauge boson propagator and A" is the fermion-gauge boson vertex, must

A(p,k,p—k), (1.9

be solved self-consistently and therefore allows for non-perturbative solutions. Eq. 1.9
is also known as the gap equation, given that non-trivial solutions for the function 3(p)
indicate the appearance of a “mass gap” in the theory, i.e, the dynamical generation
of mass. In fact, ¥(p) can also be naturally understood as the order parameter for
chiral symmetry breaking. We can look at the vacuum expectation value of 11/ which is

determined by closing the (full) fermion propagator into a loop:

T — 4 d'p X(p)
(yp) = —4 Nc/ e 20— 520 (1.10)

If the LHS above is non-zero, then the QCD vacuum is not invariant under chiral trans-

formations, that is, chiral symmetry has been spontaneously broken. Then, ¥(p) will
also be non-vanishing.

The argument that walking technicolour (WTC) should have a small 5 function over
a large range of momenta as we have mentioned above, has been used since the early
days of WTC to assert that indeed a light PNGB should appear in the spectrum of
such theories, and that its presence would be an important low-energy signature of near-
conformal dynamics [11,12]. A counter argument to this idea was presented in [13], where

an integral expression for the dilaton mass was obtained involving the function X(p), by
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studying the change in the effective action when the order parameter ¥(p) undergoes
a chiral transformation'. What the authors of [13] find is that, as 3 becomes smaller
and smaller such that one approaches the IRFP, the function inside the integral tends to
peak at larger momenta. As a result, the mass integral becomes increasingly sensitive to
momentum scales where the coupling is rapidly decreasing. Hence, the explicit breaking
of scale invariance is not small.

It appears that the issue of whether a light dilaton should generally be present in
gauge theories (exhibiting spontaneous breaking of approximate scale symmetry) is far
from settled, however. Even in recent years, the debate continues [14,15]. Most notably,
in 2011 Appelquist and Bai [14] have re-sparked the debate by arguing that a dilaton
parametrically light relative to the scale of xSB does appear. In their work, they turn to
a partially conserved dilatation current (PCDC) analysis, in complete analogy with the
partially conserved axial current (PCAC) analysis used in QCD to obtain an estimate
for the mass of the pions. In their local approach, they are forced to make a subtraction
procedure in order to obtain a cutoff independent expression for the vacuum expectation
value of 0%, where the contributions from high momentum scales are removed.

Being aware that non-local contributions from high momentum scales likely play an
important role in this problem, we have been inspired to revisit the issue by taking a non-
local effective action approach in a large N¢ type theory. As a spoiler to Chapter 2, let
us state in advance that our results agree with the nay-sayers; there should not be a light
degree of freedom associated with the spontaneous breaking of scale invariance present
in the low energy spectrum. But we do also find new qualitative features that generally
apply to gauge theories with chiral symmetry breaking that could be phenomenologically

relevant at the weak scale or beyond.

1.2 Lepton based asymmetry measurements at the
LHC

Despite the very confusing state that we, as a high-energy physics (HEP) community,
appear to find ourselves in, with an unnatural looking Higgs boson and not much else
so far to light the way, we have still thought about the types of measurements one could
turn to in case that anomalies do start to appear at the LHC in the coming years. In
fact, hints of a possible excess in the lepton counts of some channels have recently made

an appearance in the ATLAS experiment [16].

L As the authors of [13] point out, this procedure is analogous to finding the pion mass by studying
how the vacuum energy varies after performing a chiral transformation on (1)).
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If some extended sector with strong dynamics is indeed responsible for generating the
weak scale, as for example in a theory where N¢ is small unlike the case that we have
discussed in the previous section, looking for signatures from the lightest states expected
to be present in such a picture would be a logical starting place. PNGBs with a wide
array of quantum numbers can arise depending on the global symmetries being broken
along with the spontaneous breaking of EW symmetry. With the model of [17] initially in
mind, we became interested in the type of signatures that coloured scalars with diquark
quantum numbers could generate. Coloured diquarks in fact should display a charge
asymmetry from QCD analogous to that of ¢¢ pairs at the LHC. We shall discuss this in
more detail later on. But unlike the case of ¢t, diquarks are also a good illustration of a
type of object that would likely be very hard to reconstruct.

Generally, diquarks will decay in complex chains often leading to final states with
many high energy leptons. Fermion based asymmetry observables are then an obvious
choice to explore as discriminating factors in any possible mysterious excesses that may
emerge in lepton counts. Observables of this type could also be of interest for weak
models of coloured scalars, that are not PNGBs and therefore even more mysterious in

origin.

1.3 Dark Matter

Dark Matter (DM), as well as Dark Energy, are essential ingredients of the current
Standard Cosmological model. This sophisticated picture of the Universe successfully
describes many key properties, from the Universe’s thermal history, to the abundance
of elements and the relic background radiation, to the observed large scale structures.
Although the role that these components play is crucial in this fundamental picture,
their specific nature remains very much a mystery. From the particle physics standpoint,
one could argue that the inability of the SM to put forth a viable DM candidate is yet
another indication for the necessity to go beyond the SM. This, along with other open
questions such as the origin of neutrino masses, as well as the source(s) of CP violation
necessary to successfully account for Baryogenesis in the early universe, are evidence
of the strong interplay between particle physics, astrophysics, and cosmology. As we
search to expand our understanding of the Universe we can ultimately hope that the
aforementioned questions may all share common answers.

Evidence for the existence of (non-baryonic) DM comes from various independent
observations across a wide range of distance scales. At the galactic scale, one key ob-

servation comes from the rotation curves of galaxies, see, e.g, [18]. Plots of the circular
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velocities of stars and gas in galaxies as a function of the distance to the galactic centre
tend to become flat at large radii, even past the edge of the visible galactic disk. This
behaviour is unexpected in the context of Newtonian dynamics, where the velocity curve
is expected to fall off as ~ 7~'/2 past the edge of the “optical disk”. Closely related to
this point is also the observation of the velocity dispersions of satellites of spiral galaxies.
In the case of the Milky Way, there are dwarf spheroidal galaxies and globular clusters
satellites that probe the outer rotation curve of the galaxy. These curves suggest the
presence of an invisible matter halo that extends well beyond the optical disk [19]. Weak
gravitational lensing observed around nearby structures also indicates the presence of

more matter than would appear from the object’s luminosity (see for example [20]).

On larger scales, the observation and analysis of the cosmic microwave background’s
(CMB) power spectrum has allowed us to estimate what percentage of the total energy
“budget” of the Universe is taken up by Dark Matter. WMAP (Wilkinson Microwave
Anisotropy Probe) data in particular places stringent constraints on the allowed relative
abundances of baryonic matter 2, and total matter Q,, (and hence, of DM) in the
Universe, where the {2s are the density ratios of baryonic matter and total matter to
the critical density p., respectively. These values, as presented in reference [21], are
O = 0.0554 + 0.0028 and Qprh? = 0.1345+5-3938.

The evidence for the existence of DM mentioned above, all pertains to its gravitational
interactions. If we are to include a DM candidate in some extension of the SM, it is both
reasonable and interesting to consider other types of interactions to SM particles. This
idea has had a surge of interest from the community in the past years in light of some
astrophysical anomalies that have arisen in charged cosmic-ray and y-ray measurements
[22-24].

In 2009, the PAMELA experiment observed that, between the energies of 10 GeV to
about 100 GeV, there was a steep increase in the energy spectrum of the positron fraction
et /(e +e™) of cosmic rays [22], a feature that is not expected in the background since
high-energy electrons and positrons traveling large distances are subject to large energy
losses. Hence, this type of observation points to local primary sources of the particles
decaying to electron-positron pairs. It is also important to note that no corresponding
excess in the anti-proton fraction was observed. The Fermi satellite later independently
confirmed the positron excess observed by PAMELA and extended the measurement to a
couple of hundred GeV [23]. In principle, these anomalies could possibly be explained by
astrophysical objects such as pulsars [25]. Nevertheless they pose an exciting challenge

to be interpreted in terms of indirect signals of Dark Matter annihilation or decay.

For a DM model to be able to explain these excesses in the local flux of charged cosmic
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rays, the DM particle must have a mass of a few TeV in order to fit the “bump” in the
positron fraction spectrum, but it must not also decay to anti-protons since, as noted,
no such excess is observed. Additionally, if we are dealing with DM annihilations, then
the DM must also have quite a large annihilation cross section in order to significantly
raise the local positron flux. This is an important challenge for traditional models where
the DM is a thermal relic, since the required annihilation cross section must be much
larger than that required in the early universe to leave behind the right DM relic density.
Several mechanisms for enhancing the DM annihilation cross section at late times have
been proposed by DM model builders. However, a possibly more attractive approach
would consist in considering a DM candidate that acts as a primary source of electron

and positron pairs, not by annihilating, but by decaying.

Reference [26] showed in a model independent analysis, that the effective lifetime of
the decaying DM particle must be of the order of 10%s if it is to yield the right flux
at current times to explain the PAMELA and Fermi excesses. If one can conjure up a
model with a DM candidate decaying with the appropriate lifetime, that by some other
independent mechanism is prevented from decaying into protons, then there are also other
advantages in the form of alleviated bounds from «-ray (and neutrino) fluxes coming from
the galactic centre. For decaying DM, the ~-ray flux coming from the galactic centre
where DM densities are generally largest goes linearly with the DM density, whereas for
the case of annihilating DM the flux is proportional to the DM density squared. Hence,
constraints that can be quite stringent on the latter scenarios become less important in

the case of a decaying DM candidate.

The model that we shall present in this document does indeed satisfy all of the
above requirements, but also takes a rather unusual form; let us briefly discuss the
main aspects of it here. We shall consider a non-Abelian dark sector that undergoes
spontaneous symmetry breaking in a pattern such that, for some period of time in the
history of the Universe, an intermediate unbroken U(1) gauge symmetry remains but
is sequentially (spontaneously) broken. As a result of these phase transitions, a series
of topological defects appear as massive degrees of freedom, which make up the dark
matter candidate. As we shall see, there are several aspects of the working theory that
will push us to consider a strong coupling in the dark sector. Initially, it is the right relic
abundance for DM that seems to require it. Coincidentally, this choice also provides us
with a mechanism to avoid Big Bang nucleosynthesis (BBN) constraints for our long-
lived hidden photon in the early universe. The symmetry breaking pattern can then be
assumed to be driven naturally by the dynamics of the theory, a feature we find just
as desirable in the hidden sector as we did in the discussion of EWSB in the SM from
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Section 1.1.

1.4 Organization of the thesis

The rest of this document shall be organized as follows. In Chapter 2 we revisit the
problem of the existence of a light dilaton associated to the spontaneous breaking of
scale invariance in gauge theories, as introduced in the end of Section 1.1. In Chapter
3 we shall shift gears and explore lepton based asymmetry measurements at the LHC,
inspired by objects that may arise in strongly interacting extensions of the SM as pre-
viously mentioned. In Chapter 4 we turn to the second open question discussed in this
introduction, namely the particle nature of Dark Matter. We propose a model of decay-
ing dark matter based on a strongly interacting hidden sector, and intended to attempt
to explain some of the astrophysical anomalies mentioned here. Finally, our concluding

remarks and future prospects can be found in Chapter 5.



Chapter 2

On the Scalar Spectrum of Walking

Gauge Theories

The work presented in this chapter was done in collaboration with Bob Holdom and is

currently being prepared for submission.

2.1 Introduction

The existence of a light, scalar degree of freedom associated with the spontaneous break-
ing of approximate dilatation symmetry or scale invariance (SI) in gauge theories has
been the topic of discussion for many decades now. This idea sparked much interest in
the context of Technicolour (TC) extensions of the Standard Model (SM) relevant for
EWSB, after early on it was realized that one of the serious shortcomings of TC, namely
the generation of Flavour Changing Neutral Currents (FCNC) in conflict with precision
SM observables, could be avoided if the dynamics of the theory were modified in such a
way that the strong coupling responsible for the generation of (techni) quark condensates
were to walk, i.e. run very slowly [27]. In this regime, the divergence of the dilatation

current, given by
B(e)

0DV = —~
K 3a

Ge e

pvo

(2.1)

where D* = 0" x,,, can become arbitrarily small such that it is partially conserved, and
the approximate symmetry spontaneously broken along with other (exact or approxi-
mate) global symmetries of the theory such as chiral symmetry.

This argument has been often used, along with a Partially Conserved Dilatation
Current (PCDC) analysis analogous to the Partially Conserved Axial Current (PCAC)

one used to estimate the pion’s mass in QCD, to ascertain that a dilaton parametrically

12



CHAPTER 2. ON THE SCALAR SPECTRUM OF WALKING GAUGE THEORIES 13

light relative to the confinement scale A is expected in theories with walking dynamics
[14], [28].

We have revisited this problem by studying the effective action for the scalar modes
that would be present in an SU(N) gauge theory with N; number of flavours, starting
from a non-local effective action derived using the auxiliary field (AF) method [29,30], and
working in the renormalization-group improved ladder approximation where the running
coupling is adopted from the two-loop perturbative result known to possess an infrared
fixed point. We are going beyond previous studies by adapting the systematic method
suggested by Fraser in [31] to determine the kinetic terms that should appear in the
scalar (and pseudo-scalar) field’s effective action, which also allows us to include effects
of the interaction term in the effective action into our solutions. As we shall see, our
results point to the fact that there are important non-local contributions to the “dilaton”
mass coming from UV physics that are naturally included in our approach, but that are
absent from (more common) purely local analyses, that lift the mass of the lightest scalar
excitation to be of order the dynamical fermion mass scale.

For theories of interest for EW physics, we require that the coupling be strong enough
to generate a quark condensate and hence trigger chiral symmetry breaking.! As we
advance towards our goal of predicting the mass for the lowest lying scalar state in the
theory, we will indeed be forced to make a series of approximations in order to obtain
useful results, and to ultimately obtain numerical solutions for the fermion and scalar
mass functions (p) and A(p). We shall present plots of our solutions pA and p3, the
quantities that appear inside of the integral equations that determine the mass spectrum
of the theory, in order to illustrate the behaviour of the solutions across a large range
of momenta. We hope that it will become clear to the reader that our results suggest a
robust qualitative picture that we expect should survive beyond the approximations we
have worked in, and that furthermore, these non-local contributions to the scalar’s mass
that we have mentioned should not tend to vanish as the theory approaches the fixed
point.

This chapter is organized as follows: in Section 2.2 we derive an effective action that
is a functional of the momentum dependent fermion mass function X, and obtain non-
trivial numerical solutions for ¥ via a differential form of the gap equation. In Section 2.3
we derive an effective action for the scalar fields, and we solve the differential equation
that determines the mass spectrum including both terms in the original effective action.

In Section 2.4 we discuss the Goldstone bosons and obtain an integral expression for the

1Strictly speaking, this is not necessarily true if one is willing to consider a particular limit, which
we shall briefly discuss towards the end of Section 2.3.
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pion’s decay constant. The idea that a strongly coupled, near-conformal theory could
be responsible for EWSB along with the AdS/CFEFT correspondence have also brought
the dilaton, which is the dual of the radion in the holographic picture, to the spotlight
in recent years, in particular in light of the 126 GeV scalar Higgs discovery. While we
have nothing to add to the holographic description from our gauge theory context, we
shall comment on some of the similarities in the equations on either side of this duality

in Section 2.5. Concluding remarks can be found in Section 2.6.

2.2 The effective action and the gap equation

In order to study the dynamical generation of mass and chiral symmetry breaking in
gauge theories, we shall now turn to the effective action formalism. This approach allows
us to derive the Schwinger-Dyson equation for the full quark propagator or the “gap
equation”, that we can solve using a series of approximations, allowing us to observe

non-perturbative phenomena.

Let us start by considering the path integral for an SU(N) gauge theory with Ng
flavours of massless fermions in the fundamental representation. We will use the auxiliary
field (AF) method to derive an effective action. This consists in adding a Gaussian term
with a bilocal auxiliary composite field to the action, such that the actual dynamics of
the theory remains unchanged. This can be achieved by inserting a constant into the

path integral of the form:

Then, by coupling a source J to this composite field T'(z,y) we can derive an expression

for the effective action, to a given order in 7" loop expansion,

eWarlll — / (o] [dap][dT) expli(ith Sy b + Ty — %Tr(T — ) G(T —np) +TrJT)]. (2.3)

Here, GG is so far an arbitrary function and I;,; includes the integration over the gauge
fields. Note that we are using matrix notation which replaces integration over space-time
coordinates. For non-Abelian gauge theories, integration over the gauge fields cannot be

performed exactly due to self-interactions. However, if we ignore self-interaction vertices,
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at least for now, we can perform the integral over the gauge fields to obtain:
—i o (A ; —j LAY i
Lint = Dy (x = y) | a2 ( 5 ) 95() | U5 (5 | ¢a(v) (2.4)
a,B d,0

where the \* are the generators of the gauge group and D" is the (tree level) gauge
boson propagator. The AF method is particularly useful when these types of quartic

interactions are involved. We can make the following choice for the function G

A\ A\
Gopso = Dz, y)7" (7) ol <7> (2.5)
a,f d,0

such that the four-fermion term in [, cancels. Then, we can proceed to integrate out

the fermions fields to obtain

eWarl/l — / [dT) exp [z’(—z‘Tr In(Sy* — DT) — %TrTDT + TrJT)] : (2.6)

where D is given in Eq. 2.11 below. We will now take the tree level approximation in

the T field. The resulting expression for the effective action I'4p[T7] is
Cap[T.) = W[J] = Tr(JT,) = —iTrIn(S; ' — DT,) — %Tr(TCDTC) (2.7)

where T, is T such that it satisfies the equation for the stationary phase condition:

0T 4p[T]

N -1 _ -1
T = J=1D(S;" — DT) iDT. (2.8)

We can now define the self energy ¥ and eliminate T’
¥ =4iDT.,. (2.9)

Fourier transforming the RHS of Eq. 2.7, where as before the integrals (now over four-

momenta) are implicit in the trace, we finally obtain:
Tar = —iTrln(y-p—3) + %Tr(zp—lx). (2.10)

Here we give the expression for the kernel D in momentum space, with the gauge

boson propagator in Landau gauge

DlWhatos = 180 Dalr by (s — 2252 211
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Our choice of gauge can be motivated as follows: while the most general expression for
the full fermion propagator (allowed by Lorentz and parity invariance) is of the form
S = ! (2.12)
Z(p)y-p—X(p)’ '

in Landau gauge we know that the wave function renormalization vanishes at lowest
order, and hence Z(p) — 1 for p > ¥(p). More importantly, however, one can show that
in the ladder approximation, that we believe is equivalent to that which we have taken
above, Z(p) is exactly equal to 1 for every X(p) [32], and will therefore not appear in our

final expression for the effective action.

As pointed out by the authors of [33] this approximation in the AF formalism is
equivalent, up to first derivatives of the effective action I'; to taking the two loop approx-
imation of the Cornwall-Jackiw-Tomboulis (CJT) effective action (which in the latter,
constitutes the lowest non-trivial order.) They have in fact shown that all chiral sym-
metry breaking, i.e. non-zero, solutions to the gap equation in the CJT formalism are in
reality at a saddle point meaning that the effective potential does not give a functional
that is bounded from below. The AF formalism solves this problem: the introduction
of the T field to the action simply has the effect of modifying Wer by adding a new
term proportional to the square of the source J, and it is this term that is responsible for
changing the boundedness properties of the effective potential V' such that all solutions

now lie in a stable local minima.

We are now ready to derive an expression for the effective potential V', that we
shall give in 4-dimensional Euclidean space, and finally the gap equation. Starting from
Eq. 2.10 above, we can simplify the first term on the RHS by using Tr(In A) = In(det A)
to remove the logarithm from inside the trace. Next, we can make use of the Cayley-

Hamilton theorem to re-write the determinant of A as:
1
det A = ﬂ[(TM)4 — 6Tr(A?)(TrA)? + 3(Tr(A?))? + 8Tr(A*)Tr(A) — 6Tr(AY)]. (2.13)
Here, A =~ -p— %, and so we find:

TrA = —4%, (2.14)
Tr(A%) = 4(p* + 32),
Tr(A®%) = —12%p* — 4%3,
Tr(A*) = 4p* + 24%%p? 4 4%*.
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Transforming all momenta to Euclidean space, and integrating over angular coordi-

nates we finally obtain an expression for the effective potential:

vz = # (—% /dpp3 In (1 + Z:f)) +%/dpdqp3q32(p)Ml(p, Q)E(Q)> , (2.15)

where p and ¢ denote the magnitudes of Euclidean 4-momenta. M (p, q) is the fermion-

antifermion scattering kernel, the inverse of which is defined as:

/7‘3drM_1(p, rYM(r,q) = ]%5(17 —q) (2.16)

following [33].

Before proceeding to deriving the gap equation, it will be useful to first find an explicit

form for the kernel M(p, q). Let us do so by considering the following expression:
1
Vp = =5 TeS(p) D(p — 9)5(q) (2.17)

where, again, the integration over momenta is implied in the trace. We can now in-
sert the expression from Eq. 2.11 into Eq. 2.17 and, assuming that the solution to the
gap equation is spherically symmetric in 4-d Euclidean momentum space such that we
can integrate over angular variables, we can replace (p — ¢).(p — ), by nu,(p — q)*/4.
Then, the term inside the parentheses of Eq. 2.11 becomes Z%mw. We will also need to
make an approximation for the gauge boson propagator. We will replace the momentum

dependence by the following expression

D(p — @)aps — D(max(p, q])aps- (2.18)

Transforming all momenta to Euclidean space, we are now able to perform the angular

portion of the 4-momentum integral to obtain

_ 1t 3 3 3 X(p) 9*(p) _ m _ X(q)
VD——22W2/dpp /dqq 872202p2+22<p)( 2 O =)+ = 0l p)) —qz;lg;(q).

This yields the desired result, up to the momentum dependence of the running coupling

g. We can now define

M(p,q) = —]2)9(29 —q) + %9(61 - D) (2.20)
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where the running coupling is included in the definition of r,

3C29%(p)  3Cha(p) ‘

8r2 27

r(p) =

(2.21)

We have also included some additional factors that appear in the integrals into this
definition for convenience. Now, in order to include the effects of the running coupling
we shall adopt a(p) from the perturbative result for two-loop SU(N.) gauge theory with

Ny number of flavours, whose beta function is given by:

d
ui = —bya? — bya® (2.22)
where
by = — (11N, —2N,)
o = 61 !
1 N2 -1
by = 247T2(34N3—101\@]\@—3 N Ny). (2.23)

The hope is that, by doing this, we are introducing some of the essential physics coming
from corrections to the gauge coupling that we have ignored through the approximations
used to derive the effective action above. This theory is known to possess an infrared
fixed point with critical Ny ~ 4N,. By treating Ny as a continuous variable we are able
to explore the walking (close to conformal) regime expected to appear as we approach

the IR fixed point from lower values of Ny towards the critical value.

Solving the Gap Equation

Having found an explicit expression for M (p, q), we can continue to taking the first
variation of Eq. 2.15 with respect to ¥. We’ve finally arrived at the gap equation:

VIS _ 1 S) - DN
_2(_19 P E20) +/P M~ (p,q)¥(q)q dq) = 0. (2.24)

0X(p) 27

Using Eq. 2.16 and the fact that M (p, q) is symmetric under p and ¢ exchange, we can
re-write Eq. 2.24 as

/M D, q 2‘*‘(22 E 5dg = 0. (2.25)

It may be interesting to the reader to note that this is the same gap equation found via
FCJT in [33]

Eq. 2.25 can of course be solved in its integral form as we have written it above. We can
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use matrix notation to turn this into a linear algebra problem, where the non-linear effect
in the denominator of the integrand can be built in by iteration, until 3(p) converges to
a solution. Alternatively, one can turn this integral equation into a differential one, with
its corresponding boundary conditions. This may seem like an unnecessary complication
at this stage, as it is not hard to verify that the first method converges after a few
iterations. However, as will become evident in the next section once we start to look at
fluctuations of the order parameter X, the expressions inside the integral analogous to
Eq. 2.25 become quite complicated and the first method stops being useful. We therefore
opt to take the second approach and transform Eq. 2.25 into a differential equation.

Inserting Eq. 2.20 into Eq. 2.25 we can write the latter as

Y(p) = % /Op dqQ3c]2f(—;]zq)2 + /poo dqr(q)q(ff<—;])(q)2. (2.26)

We now differentiate once with respect to p, which shall be indicated by primes below,

() = (D8 - 20 a2 .

p p? q* + X(q)?

where the term with a derivative of the integral in the first term of Eq. 2.26 has cancelled

to obtain

against the derivative of the second term. We now multiply all terms by p? for convenience

and differentiate once more, to obtain

P’y (p) + 3p°% (p) = (pr"(p) — ' (p)) /0 ’ dqq3q2§(—;zq)2 + (pr'(p) — 2r(p))p° 1%5229)2
(2.28)

We can make use of Eq. 2.27 to eliminate the integral from the above expression. The

resulting differential equation for ¥ becomes

PPy

_fr‘” 2 + 47’-/ J— 67‘

3/
X+
p r'p —2r

(r'p —2r) =0. (2.29)

Before we continue on to defining the boundary conditions required to solve this equa-
tion, it will be useful to define the quantity x as the value of p such that kX (k) = &2
It will be convenient also to convert to logarithmic coordinates, t = In(p/k), in order to
study the deep infrared behaviour of ¥. In ¢ coordinates, p¥ will intersect the ¢ = 0 axis
at precisely k2. For simplicity we shall, from now on, redefine ¥ and p to be dimensionless
quantities by dividing each by k, i.e p — p/k and ¥ — X /k. In this notation, X(¢ = 0)

must be equal to 1.



CHAPTER 2. ON THE SCALAR SPECTRUM OF WALKING GAUGE THEORIES 20

Boundary Conditions

In order to solve Eq. 2.29 we must specify two sets of boundary conditions: the IR
(initial) condition for both ¥ and ¥, and a UV condition for ¥. Let us first consider
the IR condition for ¥, as it can be immediately read off from Eq. 2.27: ¥/(p = 0) =0,
which becomes ¥/(t — —o0) — 0 in ¢ coordinates. The IR condition for 3 is given by
demanding that at ¢ =0, X = 1 as we have discussed above.

In the case of a running coupling, the UV condition for ¥(t¢) is simply given by
Y (t — o00) — 0. In the case of a constant coupling such that " and r” terms in Eq. 2.29
vanish, a cutoff A must be introduced at high momenta in order to obtain a solution
for 3. The UV condition for ¥ will then be given by Eq. 2.26 when p = A, which in ¢

coordinates becomes

o X(t) t
S(nA) = & / T (2.30)

Demanding that the above condition be satisfied for a given value of the cutoff A will

—00

determine the value of r.

We shall now present plots of our numerical solutions of Eq. 2.29 satisfying the bound-
ary conditions described above. Fig. 2.1 is obtained for the case of a constant coupling
for three different values of the cut-off In(A), while in Fig. 2.2 and Fig. 2.3 we use the
running coupling of Eq. 2.22 with Ny = 11.5 and Ny = 9, respectively. The procedure

whereby we obtain these solutions is described in detail below.

Solving Eq. 2.29 with a constant coupling

We begin by choosing a (large) value for the cutoff A. In theory, since we have already
determined the IR conditions for ¥ and ¥'; all that is left to adjust is the value of the
coupling r such that Eq. 2.30 is satisfied. In practice, when searching for numerical
solutions to a second order differential equation, the initial conditions for ¥ and its first
derivative must both be specified at the same value of t. If we choose to keep the simple
IR condition for ¥/ given at ¢t — —oo (in practice this will become ¢ = tq where t, takes
an arbitrary large negative value?) then the initial condition for ¥ must be translated to
t — —oo (to in practice) as well.

We will then start by fixing the IR condition for ¥’ as determined already, which now
leaves two quantities that must be adjusted in order to obtain the solution for ¥, namely

the value of the coupling r and the value of the IR condition (¢t — —oc0), such that the

2For the interested reader, we have chosen ¢y = In(0.01) and validated this approximation by com-
paring the solutions obtained this way to the solution obtained in p coordinates, where the IR condition
is enforced at exactly p = 0. We find that both solutions agree extremely well and, in fact, the solution
is not sensitive to small changes in the specific choice for .
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Figure 2.1: Numerical solution for pX (left) and ¥ (right) vs. ¢ = In(p) in the case of a
constant coupling, with cutoff In A = 15 (red line), 18 (blue dots) and 25 (green dotted
line). The corresponding values of the coupling r for these three cases are 0.517, 0.513,
and 0.507 respectively.
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Figure 2.2: Numerical solution for p¥ (left) and ¥ (right) vs. ¢ = In(p) in the case of the
running coupling of Eq. 2.22, with Ny = 11.5 and N, = 3.

conditions Eq. 2.30 and ¥(¢ = 0) = 1 are both satisfied to the desired degree of accuracy.
This must be done iteratively starting from arbitrary values until the solution converges.

This method is referred to as “shooting”.
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Figure 2.3: Numerical solution for p¥ (left) and ¥ (right) vs. t = In(p) in the case of the
running coupling of Eq. 2.22, with Ny =9 and N, = 3.

We would like to note that, given that Eq. 2.29 is nonlinear, once the first condition
is satisfied one cannot simply scale the resulting 3 such that the second condition is also
satisfied. Here the reader may be questioning why we have not chosen ¢ = 0 to be the
value of ¢ at which we impose the IR conditions for ¥ and ¥'; this would of course be a
perfectly valid choice. In that case however, the IR condition for ¥’ (now /(¢ = 0)) is
no longer vanishing and would need to be determined by satisfying the integral equation
that results from making p = 1 in Eq. 2.27; the IR condition for ¥ does become more

trivial. We would be neither winning nor losing much by making this alternative choice.

Solving Eq. 2.29 with a running coupling

Similarly to the constant coupling case, in theory the IR conditions have been deter-
mined and now only one parameter must be varied, namely the initial condition for r,
r(t — —o0), such that the boundary condition for ¥ is satisfied. In practice, in order to
obtain the numerical solutions we will again be varying two parameters, r(t = t,) and
Y(t = to) such that the two conditions X(t — oo) — 0 and (¢t = 0) = 1 are satisfied.
The two parameters are again varied iteratively until the solution converges. Notice that
in this case, every iteration requires that we solve Eq. 2.22 using the new initial condition

for r.
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2.3 The curvature of V,r and the scalar spectrum

Now that we have found non-trivial solutions for ¥, we turn to the study of local fluc-
tuations around these solutions. > is not only the dynamical fermion mass function in
our theory, but also a natural order parameter for the spontaneous breaking of Chiral
Symmetry (xSB). Local fluctuations around ¥ are in turn a natural description of the
low energy degrees of freedom remaining in the theory after having integrated out the
fermions. Our goal in this section is to obtain an effective description of the lightest scalar
degrees of freedom in the theory. We shall derive a low-energy effective action containing
both kinetic and mass terms for these scalars in order to obtain their pole masses. The
effective description of pseudo-scalar degrees of freedom, the Goldstone bosons in the

theory, will be the focus of the next section.

Let us then begin by considering fluctuations ¥ + 6% of the form 6% = %Mx),
where ¢(x) is a (up to now arbitrary) scalar field, f a dimension one decay constant, and
A is a momentum dependent form factor analogous to the momentum dependent mass
function 3. Notice that, unlike the analysis of reference [33], we have introduced explicit
x dependence in the field ¢: we demand that ¢ be a slowly varying function of x relative
to the typical momentum scale of ¥ and A such that an expansion in powers of d,,¢(x) is
justified. Following reference [31], we start by schematically writing out this expansion
as:

r(ze5e) = [ae(-vEa+ 528007 +0(00")

oV A(p) 1

V. Alp) Ag)

d%( v~ | s 5 0@ / P S s f
Z(5,8) (8,0)° + 0@@4)

I
M| = S~ S~

+

We will be using the method outlined by Fraser in [31], adapted to our particular theory,

in order to obtain an expression for the kinetic term above.

Notice that the second term on the second line of Eq. 2.31 must vanish, by definition.
An explicit expression for the third term can be obtained from taking the variation of
Eq. 2.24:

% 1

= — <p3M‘l(p, 9)q° —p

3 pQ_E(p)Z
S ()05(g)  2n? 25@‘”)' (232)

(P> + X(p)?)

We can now write an expression for the effective action of the scalar ¢ in momentum
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space, up to second order in the scalar’s momentum Q?, as

Far (Z + %925) —Tap(X) = (2.33)
4 11 A(p) 30 r—1 3 3 (p2 - Z(p)Q)
/ﬁx{—§Z§ wﬁ?i/wcuw<ﬁ@q—p6§;§53¢@—@

+QO( - ) Zo(3(0) ) 2 o

where Zp(X) is defined in relation to Z (3, A) which appears in Eq. 2.31 as

22.8) = 5 [ [ 0= 2o — o) zo(z(a) L.

The subscript “O” indicates that Zp is a differential operator. More specifically, Zp
should be of the form

2 2
Zo = Cy (z 0 0 E) +Cy (2, a_z) 9 L om? (2.35)

(2.34)

"9q 9 dq ) 0q o

The reason behind this will become clear shortly.

We now turn our attention to deriving an equation for A(p) as we did for 3(p) in
the previous section. It will be convenient to normalize A by making the choice f = f;,
where f, is the pseudo-scalar pion’s decay constant that we shall define in the next
section. Since A is always accompanied by a factor of 1/f in all expressions, here we
wish to re-define the symbol A to include this factor, that is, A will refer to % in the
definition of ¢ from now on.

From Eq. 2.34 above we can determine the inverse propagator of the scalar field,

which must vanish at the pole mass:

(p* — 2(p)?)

P a9 QP - ) Z0(@)Ae) = 0. (230)

/@WMlmwf—ﬁ
The resulting Q? here defines the pole mass squared.

Notice that so far we have referred to ¢ as an arbitrary scalar. However, the fluc-
tuations around our order parameter Y should correspond to a whole tower of states

0¥ = Ay(p)¢i(z). Allow us for a moment to rewrite Eq. 2.36 in the following form:

(p* — X(p)?)

P T opE P T DA =miZo@)Ap),  (237)

/@WM*m@f—ﬁ

where we have re-written the Q? = —m?. This has the form of a generalized eigenvalue
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equation. By solving this generalized eigenvalue problem we would then be diagonalizing
the quadratic fluctuations of the effective action and finding the mass of each eigenmode.
Before we can continue towards deriving a differential equation for A, we shall first

seek to obtain an explicit expression for Zo(p).

Determination of Zo

Let us begin by explicitly expanding our AF action Eq. 2.10 around the solution to
the gap equation, Eq. 2.29, by replacing ¥(p) by X(p) + A(p)¢(x). For the sake of clarity,
we shall treat each of the two terms that contribute to the effective action separately.
Starting with the first term on the RHS of Eq. 2.10, which we shall refer to as I'ig, we

have

Diog (2 + A¢) — Tigg(¥) = —iTrIn (1 — (v -p— %) ' Ag) . (2.38)

We can re-write the RHS of this expression as:

. vop+ X , Yop+ X ly-p+¥X, v p+X
—Tr {ln (1—mA¢)} = —iIr {_WA¢_ 2232 A¢ P2 — 32 Ag +
(2.39)

where we have also expanded the logarithm.

The main idea of Fraser’s method [31] consists on treating the different functions of p
and z inside the trace above as functions of the z and p operators. (However, we will not
continue to write the hats from now on.) With this in mind, we can see that if we attempt
to compute the functional trace in Eq. 2.39, we are faced with the difficulty that, given
the = dependence of ¢, the operators inside this trace are not diagonal in momentum
space. The same will be true of the second term in Eq. 2.10 which we will refer to as I';,;.
In order to overcome this difficulty, we must use the appropriate commutation relations
for functions of p and x to bring all functions of x to the right of all functions of p. Here

is the relation in question:

OF i? O°F i OPF

¢(x)F(p) = F(p)o(x) + Za_puauqﬁ T 2 Op,Op, %0ud 3 OpaOp,Opy

000y 0ud + ..., (2.40)

which we have derived from the familiar relations

o ) = 0,
[pi, F(Z)] = —ihaF—(x), (2.41)

8567;
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and generalized to four dimensions (in Minkowski space)®. This commutation procedure
will result in an expansion of our AF action in powers of ¢ and d,¢, exactly what we are
after. We then should be able to “match” the coefficients of this expansion to those of

Eq. 2.31 therefore giving us an explicit expression for Zg.

Here we would like to point out that we have found some sign problems in the relations
(Eq. 2.8 and 2.9) given by reference [31]. However their final result is unaffected by them
as the terms we find a problem with do not contribute to Z there; below are these

equations with the correct signs, which follow from Eq. 2.40:

[p*.¢] = O¢— 2ip"d,¢
p°,[p*, ¢]] = 0OO0¢—4ip"9,0¢ — 4p"p” 9,0, 6. (2.42)

Using the commutation relation Eq. 2.40, we now rewrite Eq. 2.39 as

. vop+ X . vop+ X
1y-p+% [y p+ 2 .0 [(v-p+ X
- = A A A
2 p2 _ 22 |:p2 _ 22 (b + Zapu p2 _ 22 aﬂ(b
i 0 v-p+ X
— A 3
" 23pu3pu(p2—22 )8“8V¢+O(a ¢)}¢+ }

We can immediately see that it is the first term on the third line of Eq. 2.43 which
will contribute to Z(3, A). It is now straightforward, albeit tedious, to write down an
explicit expression for Zp in the form of Eq. 2.35. There will be many terms involving
zeroth, first, and second derivatives of A. Here we present the first (zeroth derivative) of

such terms for illustrative purposes:

1 3
Co= - 5@25—22)4 ( = 3¢°5% — ¢ + 28! 4 25°(0%) — 2(0%)’° - 3%(9°D)¢° (244)

253(9?Y)¢* 4+ X°(0°%) ¢ + 28(0%)¢* — 1253(0%)¢* + 1252(0%)%¢* — 224(32)2q2).

The complete expression including C; and C5 can be found in the Appendix. In the

equation above, we have converted all p* derivatives coming from Eq. 2.40 to derivatives

of ¢* in Euclidean space, and we have defined 9 = a%? to avoid overcrowded notation.

We now turn our attention to the second term in the effective action for the scalar,

3 Applying our result to the case of one spatial dimension agrees with the result obtained by the
authors of [34]. (See Eq. 18 therein, with 21 = p, x5 = x, and therefore ¢ = —1).
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I'int. Proceeding similarly as we did for I'j,g let us write this as:
Tyt (2 + A@) — Dy (D) = %Tr (S(p)M'Ad + AGM'S(q) + AGM ' Ag) . (2.45)

Again using Eq. 2.40 we commute all functions of x to the right. We can see that
the term that will contribute to Z(X,A), which must have two factors of ¢ and two

derivatives, will come from the third term in Eq. 2.45, and we write this as:

d4 -2 82 d4
[ i a@or =2 [ ate [ 220 apuapy{ | G 00| 0,0.000
(2.46)

Unlike the case of I',g, the presence of M~*(p, ¢) inside the derivatives in this expression

is a major complication to our problem, as we do not have an explicit expression for the
kernel in this form except through the relation Eq. 2.16. To overcome this difficulty we

will have to get somewhat creative. In order to simplify our notation a bit, allow us to

define

A(p) = / dgM " (p, q)q*Alq), (2.47)

where we have now converted all four momenta to Euclidean space. We can write the

two derivative term in Eq. 2.46 above as

9?2 - ( N -
A= —(p?0°A + 28A> w. 2.48
000 p g (2.48)

Then, in order to include the effect of I';,; in Zp as we did for I'i,s, we must find some
kind of expression for Eq. 2.47 above. We will continue to make progress in this direction
further down in this section, but for now allow us to take a hiatus to put what we have
done to determine Zp so far in more familiar terms.

Here we would like to note that our calculation of I'i,,’s contribution to Z(X,A) as
performed above is in fact equivalent to the result one would obtain from a diagrammatic
approach, that is, that the coefficient of the kinetic term in the scalar field’s effective

action should be given by the p? term in the two point function, which we write as
2(27 A)log = _ZF1(722) (p> -D, 27 A) (249)

Looking at Fig. 2.4 we can write

@ _ / d*k_i(f+X(k) i(f—p+ (k- p))
(2m)* (k2 = X2(k)) (k — p)* + 22(k — p)

(—iA(k))(—iA(k —p)),  (2.50)
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Figure 2.4: Quadratic term in the effective action.

and taking the trace to get rid of the s in the fermion propagators, and defining ¢ = k—p,
we find

2 WA G ) - ()
We can now straightforwardly expand the integrand of Eq. 2.51 in powers of p in order
to isolate the term proportional to p?. The complete result for this expression can be
found in the Appendix, where we explicitly show that the it perfectly agrees with our
calculation of Eq. 2.45 using Fraser’s method. Note that to obtain this agreement we
have made a particular choice for the Feynman rule for the fermion-scalar vertex; rather
than for example the symmetric combination (A(k) + A(q))/2 instead. Interestingly,
this latter choice yields additional terms proportional to A’ which do not appear in our

previous calculation of Zj,s. Thus, our results have resolved this potential ambiguity.

Solving the curvature equation

We shall now proceed to derive a differential equation for A. First, it will be useful
however to transform Eq. 2.36 into one without M ~! by making use of Eq. 2.16:

_ 5 ¢ —X(q)° 2
A0 = [da|o B e - @M Zo)] a0, 252

Following a similar procedure as that used to transform Eq. 2.25 into a differential
equation for X(p) with its corresponding IR and UV conditions, we shall now derive the

differential version of Eq. 2.52. Let us first differentiate once with respect to p:

Ai(p) = (M - QT—@) /Op (q3<q2 2@, mfzo(z)) Adgydg.  (2.53)

p? P (> +%¥%(q))?

Multiplying both sides in Eq. 2.53 by a factor of p3, and once more differentiating with
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respect to p, we obtain

WA +PAG) = ) -0 [ q+?§y+w%@0&@@
+ (pr'(p) — 2r(p (p(p T )+m22 (z:)) Ai(p). (2.54)

Making use of Eq. 2.53 we can rewrite the remaining integral on the RHS as a term

proportional A’. The result is then:

3 AL 2 spr’ =1\ / Pi(p* — %) 2
AV 3p* —pP—— | Al — =2 = “Zo(X) |A; =0 (2.55
gt (3 = =)A= o - o) (0 () (255
where X, A, and r are all understood to be functions of p. Notice that, as in the deriva-
tion of Eq. 2.29, the functions of ¢ in the integrand of Eq. 2.52 do not pick up any
derivatives, and appear intact as functions of p in the differential equation above. But
more importantly here, notice that Zp acting on A; in the third term of Eq. 2.55 will

generate new terms proportional to A} and A, in addition to the linear term in A.

Boundary Conditions

In order to solve Eq. 2.55 we must specify two sets of boundary conditions: the IR
(initial) condition for both A and A’; and a UV condition for A. The IR condition for
A’ can be immediately read off from Eq. 2.53: A’(p = 0) = 0, which in ¢ coordinates
this becomes A’(t — —oc0) — 0. The initial condition for A, A(t — —o0) is determined
by the requirement that the kinetic term in the scalar’s effective action be canonical.

Inspecting Eq. 2.31, we can see that this then implies
Z(3,A)=1. (2.56)

In the case of the running coupling of Eq. 2.22 the UV condition for A is given by
A(p — 00) — 0. In the case of a constant coupling, the UV condition for A is given by
Eq. 2.52 evaluated at p = A:

_LA s ¢ —X(g)° N2
AW = 55 [ da | s - @220 M) (2.57)

Demanding that the above conditions be satisfied determines the value of m?.

We shall now present plots of our numerical solution for the lightest scalar’s pA(t)

(left) and A(t) (right), first considering only the effect of the I'j,, term in Zp, for a variety
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of cases. In Fig. 2.5 we present the case of a constant coupling r = 0.517 compatible with
the first solution for ¥ presented above; the resulting value of the mass for the scalar is
m = 1.52. Here we would like to remind the reader that all masses are given in units of
the dynamical fermion mass. Fig. 2.6 and Fig. 2.7 show the solutions for the case of the
running coupling from the previous section for two different values of Ny, Ny = 11.5 and
Ny = 9 respectively; here we obtain m = 1.53 and m = 1.45 respectively. In Fig. 2.8 we
also present plots for pA and A of a higher mass scalar in the constant coupling regime
for illustrative purposes; the value of the mass for this particular scalar is m = 6.72. This
latter mass is clearly above the scale where our effective description makes sense.

More details on how we have obtained these solutions will be provided below. We
also present plots for the solutions to pA and A considering also the effect of I';,; in
Zo for two cases: that of the constant coupling » = 0.517 from above which can be
found in Fig. 2.9, and that of the running coupling with Ny = 9 which can be found
in Fig. 2.10. The corresponding values of the lightest scalar’s mass are m = 1.46 and
m = 1.43 respectively. We have not yet explained how we have included the I';,; effect

into our equations, this will be done in detail below.

40 5+

304

rA A 3
20+

24

Figure 2.5: Numerical solution of pA (left) and A (right), considering only the effect of
I'og in the effective action, for the lightest mass scalar (mass m = 1.52) in the case of a
constant coupling = 0.517 and UV cutoff at t = In(A) = 15.

Solving Eq. 2.55

We now proceed to explain how we have obtained numerical solutions to Eq. 2.55 pre-

sented here. We shall initially concentrate on the effect of I'i,, only. The procedure that

we follow in this case closely follows that used for solving for ¥ in the previous section. In
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104

PA A

Figure 2.6: Numerical solution of pA (left) and A (right), considering only the effect
of T'og in the effective action, for the lightest mass scalar (m = 1.53) in the case of the
running coupling from Eq. 2.22, with Ny = 11.5.

7.51

2A A 4

2.5

Figure 2.7: Numerical solution of pA (left) and A (right), considering only the effect
of I'ieg in the effective action, for the lightest mass scalar (m = 1.45) in the case of the
running coupling from Eq. 2.22, with Ny = 9.

principle, the only parameter left to vary is m? such that the boundary condition for A
is satisfied. In practice, the two quantities that we shall vary are A(¢t = ) and of course
m?; the two conditions that we seek to satisfy are Eq. 2.56 and Eq. 2.57 in the case of

a constant coupling, and Eq. 2.56 along with (¢ — o0o0) — 0 in the case of a running
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204
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Figure 2.8: Numerical solution of pA (left) and A (right), considering only the effect of
['og in the effective action, for a higher mass scalar in the spectrum (m = 6.72) in the
case of a constant coupling r = 0.517 and UV cutoff at ¢t = In(A) = 15.
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Figure 2.9: Numerical solution of pA (left) and A (right), considering the effect of both
['og and 'y in the effective action, for the lightest mass scalar (m = 1.46) in the case
of a constant coupling with a cut-off at t = 15.

coupling. We shoot from small and initially arbitrary values of both parameters, and
proceed recursively until a solution for A converges. The resulting value of m determines
the physical mass of our lightest scalar, the “dilaton”. Note that, unlike the differential
equation for >, Eq. 2.55 up to this point is linear. Therefore we can focus solely on satis-

fying the second condition, Eq. 2.57, for an arbitrary value of A(¢ = t;) and then scale the
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Figure 2.10: Numerical solution of pA (left) and A (right), considering the effect of both
['og and 'y, in the effective action, for the lightest mass scalar (m = 1.43) in the case
of the running coupling from Eq. 2.22, with Ny = 9.

obtained solution by a multiplicative constant such that Eq. 2.56 is satisfied. This will

not remain true once we introduce the contribution from I';,;, as will become clear shortly.

Incorporating T';,: effects

Now that we have an idea of what our solutions should look like, we can use what we
know about M (p, q) to numerically obtain a discrete number of points for the function
A(p), which can be used to incorporate the effect of the interaction term into Zo. We

begin by defining a dimensionless, discrete version of the kernel M (p, q) as a n X n matrix:
M =pM(p,q)q (2.58)

where both p and ¢ run from 0.01 (where our solutions begin when we translate ¢y to p
coordinates) to exp(15), the cut-off for our constant coupling solution; we have chosen
n = 500. From Eq. 2.15, we can see that the dimensionless expression containing the

inverse of M(p,q) is p>M~(p, q)¢*. Hence, in matrix notation, we can invert M to find
M =p’ M (p, q)q’. (2.59)

In log coordinates where ¢, s are related to p, q respectively, we can write

A(t) = M7 (t,5)A(s) exp(—3t). (2.60)
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We can now numerically compute the first and second derivatives of A as required by
Eq. 2.48. The result may be fit to a function that yields the contribution of I';,; to ZpA,;
in Eq. 2.55.

We now proceed as follows. We include this new term as an inhomogeneous term in
Eq. 2.55, and solve for A as usual. Notice that now, the initial condition that gives the
proper normalization for A (such that the kinetic term remains canonical) must now be
input correctly from the beginning. We can iterate the above described procedure a few
times, in this way we are building in the non-linear effect of the interaction term into our
equation. Starting with the solution presented in Fig. 2.5 we iterate this procedure twice,
which is sufficient for the desired accuracy. The corresponding new resulting pA and A
can be found in Fig. 2.9. The same has been done for the solution with I';,; omitted, as
presented in Fig. 2.7, to be compared with that of Fig. 2.10. As evidenced by comparing
these two sets of figures, the effect of I';,; is not dramatic at all, but there is a slight
change in the values of the lightest scalar’s mass: m = 1.46, compared to 1.52, in the
first and m = 1.43, compared to 1.45, in the second. The interaction term clearly does

not play a leading role in our analysis.

Discussion

It has now become apparent that the lightest scalar state in our theory is not expected
to be light relative to the dynamical fermion mass scale, regardless of the near-conformal
dynamics we have considered here. This result appears to directly contradict the con-
clusion of well-read papers on the subject (see [14] and [28] for example) that predict a
parametrically light scalar associated with the spontaneous breaking of dilatation sym-

metry for gauge theories with an (approximate) infrared fixed point.

Inspired by applications to holography where the dilaton can be identified with the
radion, literature from recent years on the dilaton in the context of Conformal Field
Theory (CFT) suggests that, in general, a quasi-conformal theory will not produce a light
dilaton unless, among other conditions, there is a flat direction available in the theory,
which would correspond to fine tuning unless supersymmetry is invoked (see [35], [36] for
example). While a clear connection between a gauge theory like we have considered here
and the types of theories studied in this context is not apparent to us at this time, we
still find tension between the result (see [35], Eq. 5.12)

m B (2.61)

A2 7’

and our own analysis. We illustrate the issue by taking a special limit of our gauge theory
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in what follows.

Let us consider the beta function from Eq. 2.22

@ = —boor + ... (2.62)

We first re-write by from Eq. 2.23 in the more general form

11 4
by = —C5(G) — —N,C 2.63
0= = Co(G) — —N,C(0), (263)
where G denotes the representation of the gauge generators (the adjoint representation)
and r denotes the representation under which the fermions transform. It will be useful

to re-write C'(r) above as
d

C(r) = ==Cy(r). (2.64)
da

We consider fermions in a d, dimensional fermion representation of SU(N) such that
Cy(r) is large compared to N., and simultaneously we have a small number of flavours
Ny < Zf—j. This limit, although unphysical given that Ny is less than 1, is well defined
and has been used in the past to study xSB in Monte Carlo calculations; see e.g., [37].
Here, xSB occurs at a value of & ~ 1/Cy(r) such that it is much less than one. We
can then see that the pure gauge boson contribution to Eq. 2.62 will be dominated by
a term ~ N/Cy(r) < 1, while the fermonic term is ~ Nyd,./(N? — 1), also much less
than 1 given the condition on N;. Hence, in this limit the beta function can be made
arbitrarily small to all orders in «, and Eq. 2.61 would imply m?/A? < 1. This is not
the case for us at all however. We have found that a small (but non-zero) beta function
will allow for large contributions to the scalar’s mass coming from a large range of scales
up to high momenta, a non-local effect not captured by a local analysis. Even in the case
of a constant coupling where (3 is exactly 0, we do not expect the scalar to be light. It is
in fact the boundary condition at the cutoff, necessary to obtain a solution in this case,

which breaks the scale invariance and generates a non-zero mass for the dilaton.

Something striking about our results for the momentum dependent mass function ()
and form factor of our lightest scalar A(t), and perhaps the most interesting qualitative
result that we observe here, is how similar they are to each other away from the IR where
the terms that cut off the loop integrals become dominant. There are two reasons why
we believe this is interesting. The first is in fact related to to the nature of our scalar:
if the lightest scalar in the theory is indeed associated with the spontaneous breaking of
scale invariance, one would expect its mass function to be quite distinct from X(p). In

fact, we would expect it to be proportional to 3(p) — ¥'(p)p. This can be understood by
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performing a scale transformation of the order parameter ¥(p), as done by the authors
of [13]. This result is in direct contrast with our findings for A, which closely resembles
> throughout. The second is that in the limit where A approaches X, up to a factor
of i7°, attaching an additional scalar to a fermion loop will have an amplitude that is
the same as attaching a pion. This will become more clear in the next section when
we study pseudo-scalar excitations of the order parameter Y. Therefore, it appears that
upon integrating out the fermions, a linear sigma model remains where f (which is equal
to fr) gives both the vacuum expectation value (VEV) and the decay constant. This
suggests that the coupling of our scalar to the Goldstone bosons, and thus to the W and
Z bosons, will be similar to that of a SM Higgs doublet.

Finally, we believe it is worthwhile noting that, even as we move away from the
walking regime, we continue to find values for the pole mass of the lowest lying scalar
particle of approximately 1.5 times the value of the dynamical fermion mass. This result
is interesting when interpreted in the context of QCD, where 1.5 times ~ 330 MeV is
~ 500 MeV, the location of the o resonance.

In order to obtain concrete results, we have made quite a few approximations. The
one that we believe carries the most implications is the tree level truncation in T of the
AF action, Eq. 2.6, which should correspond to working in the large N, limit. While
we have initially dropped gauge boson self interactions, we have re-introduced the effect
through the running coupling in the kernel; we are essentialy working in the standard
renormalization-group-improved ladder approximation. We believe that the qualitative
behaviour observed in our solutions for Eq. 2.29 and Eq. 2.55 should survive beyond
our approximations and that the mass of the lightest scalar always receives important
contributions that arise from a large range of momenta. One way to understand this
is by observing that it is the scale invariance of the kernel that is responsible for the
weighting of the integral equation for ¥ in the UV, where the significant drop in the

coupling becomes a large explicit source of breaking of scale invariance (see e.g., [38]).

2.4 The pion

We now turn to study pseudo-scalar fluctuations around the order parameter 3. Much
of what we have done in the previous section to obtain an effective description of the
scalar field ¢ will follow through very similarly here. An important difference to note
here however is that, in contrast to the scalar case, there will be no separate momentum
dependent form factor analogous to A involved for pseudo-scalars; as required by chiral

symmetry, the pion fields’ form factor must be proportional to ¥. Then, having already
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solved for ¥ and determined its normalization, we can simply demand that the pion’s
kinetic term in the effective action be canonical in order to obtain an integral expression
for the constant fr. Any contributions to f, coming from terms involving M~!(p, q)
can also now be calculated in a pretty straightforward way, as will soon become clear.
Towards the end, we shall compare our results to the well known result for f, by Pagels
and Stokar [39].

Let us then begin by looking at fluctuations of the order parameter of the form
oy = E(p)(e_f%rw(:m5 —1). Here, m = \*1® where the A are the SU(3) generators with
normalization Tr(A?A?) = §¢/2. We schematically expand the effective action in terms

of the slowly varying field 7(x) as

_ I 7 4 R
I(S 4 6%) — I(%) /d [ /dp(SE( 0 1) (2.65)
_ % / dpdq(sz(i)—(svz@z(pm(q)(emms 12y %Z(Z)(@,ﬂ“(:ﬁ))z +.

Notice that now, both the first and the second term in this expansion will give rise
to w2 terms that could in principle give the pions a non-zero mass. Of course in the
chiral limit that we are studying, the Goldstone bosons should remain exactly massless;
we must verify that these contributions are indeed vanishing. Also, while it remains true
that 52(

will show that, when combined with the 72 contributions from

alone should vanish when both terms in Eq. 2.10 are considered together, we

2V

Sexg) the contribution

from each I'jog and I';,,; vanish independently of each other.

Let us first consider the contribution to the pions’ effective action coming from I'jg:

. p+X i
X+ — I'(X)=—iTr {ln (1 + ’;ﬂp—Z (ﬁv57r - 2—f27r + .. ))} (2.66)
by 2
- e (e )

Ivy-p+X i? 2 vep+ X i2
— —E — —E - —
2 (fﬂ’yw 2f2 + 02— fﬂ’yw 2f27r + ... +.

We can immediately write an expression for the (non-derivative) 72 term, let us call
it L2, as
: 1L v p+X, , # 7y p+X2
L7r2 = —iIr (Q_ﬁ—pQ — 52 Yt — 2_.]62 p2 32 X p2 32
(1 432 24 14—p2—|—22
22 =%2) 217 (P - %)
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which vanishes as promised. Note that in the second line, we have ignored the derivative
terms that arise from commuting 7 to the right as they are not relevant for us here.
We can now determine Zj,,(X), by using Eq. 2.40 to bring all pion fields in Eq. 2.67 to

the right and isolating the terms with two 7 fields and two derivatives. Here we present

the leading term containing no derivatives of >::

_ [ d'p 1 Z*(p)p* + 2% (p)
2= [ RS (2.69)

For the full expression of Z., including ¥’ and X" terms, please refer to the Appendix.
Demanding that the kinetic term for the pion effective action be canonical, we find an

expression for the decay constant

_ e [ g pZ 0 22 ()
167 (p* + X2%(p))?

fa (2.70)
Before we proceed to the discussion of the interaction term, let us first use our solu-
tions for ¥ from Section 2.1 to find the numerical values of f; in the case of a constant
and running coupling. For the first case, with » = 0.517 and cutoff at t = In A = 15, we
find fr = 0.17. For the second case, and using Ny = 11.5 we find f, = 0.16.
We can compare the above results to the calculation by Pagels and Stokar [39] ob-

tained by calculating the amplitude for the annihilation of a Goldstone through an axial-

vector current:

N, ¥2(q) — 1¢*2(q)0%
2= AP () — 39"5(q)9%(q) (2.71)
167 (> +X%(q))?
_ N 2 222 q)¢® + X (p )
IR A U ) R
where 0 = W as defined in the previous section. In the second line, we have re-written

in a similar form as our result Eq. 2.70 above. Notice that at large p, the leading term
in our result agrees with the Pagels-Stokar result. The numerical values for the decay
constant from Pagels-Stokar, corresponding to the same cases discussed by us above are:

fr = 0.14 for the constant coupling, and f, = 0.13 for the running coupling.

Let us now turn to the interaction term I';,;,

) 12 72 i2 72
Line[X + 0X] = %Tr {2 <1 — )+ 5F +. > D% (1 + 0+ EF + . )}
(2 72)

where the expansions inside the rounded parentheses correspond to ¢ 7T and et @’
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respectively.

We can immediately isolate the (non-derivative) terms that are quadratic in 7 which

can potentially contribute to a non-zero pion mass, let us call them I:

2 2 . - 2
Lo mlspsi™ s pors (s £ vl pois| e
<o e (g o) 42550y e

2

= Tr [ﬂzD-lz P Hs —i—dem} =0 (2.74)
Iz e

which also vanishes, as promised. Here, we have also ignored all the derivative terms

that arise from commuting the pion fields to the right since they are not relevant to the

mass term.

We can now comment on the effect of I';,,; in the result of f,, the pion decay constant.
Proceeding in the same way as we did for I'i,e, we can start from Eq. 2.72 above and
compute ' (X + 63) — [y (3). We again make use of Eq. 2.40 to commute all pion
fields to the right of all function of p and ¢. It is then straightforward to isolate the term

containing two pion fields and two derivatives:

f2
= ekt [ (5 -20) ([ aad v pas)) 000

[ dtegZaiay = 5T 0 (M)

5 T, 0,0, 7T:| (2.75)

where we have converted all momenta to 4 — d Euclidean space. Notice the big difference
here is that it is ¥ inside of the derivative with M ~!; while we may not have an explicit
expression for M1, we certainly know how M~! acts on ¥ in the equation above from

Eq. 2.24. We can then replace the integral in parenthesis on which the derivatives are
()

P +22( )’

expression for Z(3). The numerical results for the cases discussed above, including the

acting by It is now straightforward to add this contribution to our previous
effect of I';,+, are then f, = 0.22 for the constant coupling and f,; = 0.21 for the running

coupling.

Before closing off this section, we would like to mention that, as we did for the case
of the scalar, we have also verified our result for Z(X) here by calculating the diagram
of Fig. 2.4 with pseudo-scalars instead of scalars attached to the fermion loop. In order

to find the p? coefficient of the two point function above, we proceed as in the previous
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section

@ _ [ dk -1 —k2 4k p+ S(k)5(q)
I / (27’(’)4 fﬁ E(Q>Z<k>2(k2 — 22(1{})>(q2 — ZQ(q)) . (276)

Except for the replacement of A by ¥ and a few signs, everything else follows through in
the same way. We have expanded the above integrand in powers of p and checked that
indeed, the result exactly agrees with our result Eq. 2.70 including all derivative terms.

The full result and comparison can be found in the Appendix.

2.5 Discussion of a simple five-dimensional model

In this section we would like discuss the dynamic AdS/QCD model of walking gauge
theories of Alho, Evans, and Touminen in [1], which they use to give an example of
a holographic description of an SU(3) gauge theory which approaches the conformal
window in the walking regime. This is achieved by varying /N; as a continuous parameter
in the same way we have done above. The dynamics for the gauge field is included
through the running of ~, the anomalous dimension of the quark bilinear which, in the
holographic picture, is related to the mass of a canonical scalar in AdSs5, which suffers
an instability as it passes through what is known as the Breitenlohner-Freedman bound.
This occurs when v = 1 or holographically, when the mass of the scalar m? = —4.
Our interest in exploring this model lies in the claim by the authors of [1], that these
walking gauge theories possess a Higgs-like excitation, presumably associated with the

spontaneous breaking of dilatation symmetry.

Let us then briefly look at the model. For details please refer to the original reference
cited above. The holographic coordinate is denoted by p, and it is such that p = 0 is
the IR and p = oo is the UV. The scalar meson is described by = dependent fluctuations
around the vacuum configurations of a dimension one field X = L(p)e?™ 1" |X| = L.
Notice then that L is analogous to our momentum dependent fermion mass function,
Y. The effective radial coordinate (in the bulk) is given by r? = p? + | X|?, such that a
non-zero value of L implies that, at p = 0, » — 0 is excluded. In this way, the quark

condensate gives rise to a “soft” IR wall.
The 5 — d metric is

dp?

ds® = —————
(0 +1X?)

+ (p* + | X |*)da?, (2.77)

and the five dimensional action (Eq. 3 in [1] where we have set the Fy and Fy vector
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fields to 0) is

1 Am?
S:/d‘*;chr | ———=5 DX+ XJ? 2.78
where Am? is related to the canonical scalar’s mass?, and hence to . From this action

we can immediately find the equation of motion for L, assuming that Am? is a constant:

9,(p*9,L) — pAm*L = 0. (2.79)

Of course an r(L) dependent Am? will be used to describe the running of y, but only at
the level of the equation of motion above. The boundary conditions are L'(0) = 0 and
L(0), which is interpreted as the effective IR quark mass, such that L(co) = 0 (only in
the chiral limit).

Am? will be given by —2v, and ~ in turn comes from the one loop result

3CY, 3(N?2—-1) 2
— — c == 2.
7 2 “ 4N, 7 “ 7Ta (2:80)

where « here is the same running coupling from Eq. 2.22. Finally, the effective radial

coordinate r is identified with the RG scale pu.

Notice that v above is exactly what we have defined as r in the first section. Here,

let us now re-write Eq. 2.29 assuming r = constant:

35r 25 P’y
We can immediately see that for p > ¥(p) where ¥ can be ignored, this equation is
exactly the same as that for L above. They begin to differ significantly as we approach

the IR, where the non-linear terms that damp the loop integrals become important.

Finally, the analog of our equation for A can be obtained by looking for x dependent
excitations around L, | X| = Lo+ d(p)e 4. Eq. 2.78 then leads to an equation of motion
for 0 [1],

Am? P3
+ MR —C 5 =0. 2.82
oL |, 7+ 127 (2:82)

9,(p*0,0) — pAm?4 + pLo5a

As we did for ¢ and 7, we must normalize § such that the kinetic term for the scalar

4One can re-write L as p¢ to find the canonical form for the 5 — d action of a scalar in AdS, the mass
of which is (=3 + Am?); see Eq. 8 in [1].
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meson in Eq. 2.78 be canonical. This takes us to Eq. 11 in [1],

3
/dp(p%f—yyéz‘ =1 (2.83)
We can see by comparing this to the Pagels-Stokar (PS) relation discussed in the previous
section that, excluding the phase space factors specific to 4 dimensional space-time, this
normalization condition agrees with the dominant term of PS as well. Looking at this
equation it becomes clear that, as we approach the conformal window and the third term
from the left grows smaller, §(p) will approach the vacuum solution of Eq. 2.79 and the
value of M in the fourth term of the RHS above, the mass of the scalar, will tend to 0.
To conclude, from our discussion above we do not find that the soft-wall behaviour in
this model can reproduce some of the effects that we have observed in the gauge theory
setting studied in the previous sections. While as we have pointed out, some features are
in common between the two pictures we do not believe that, in particular, the vanishing
dilaton mass M — 0 resulting from Eq. 2.82 can be naturally realized in the gauge theory

context.

2.6 Conclusions

In this chapter we have studied the issue of the existence of a dilaton as the lightest
scalar particle in gauge theories with chiral symmetry breaking and approximate con-
formal symmetry. In the framework of a (non-local) auxiliary field effective action, we
have derived a differential equation for the dynamically generated fermion mass function
in an SU(N) gauge theory with N; number of fermions, and have shown that working
in the renormalization group improved ladder approximation, there are non-trivial solu-
tions for ¥ indicating that chiral symmetry is broken. We then studied local scalar and
pseudo-scalar fluctuations around these solutions, which describe the scalars and Gold-
stone bosons in the theory. We have adopted an interesting and not (to our knowledge)
commonly used approach from [31] to derive the correct kinetic terms in the scalar and
effective actions, and then used them to derive a differential equation, analogous to the
gap equation for X, for the momentum dependent form factor of the scalars.

The solutions that we have found to these equations, which include effects also from
the interaction term in the effective action, are indeed interesting for a few reasons. The
first thing to note is that the lightest scalar in the theory is never light relative to the
dynamical fermion mass, no matter how close we get to the fixed point of the theory. The

mass will always receive contributions from a large range of momentum scales all the way
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up to the UV; this has already been pointed out long ago in [13]. From the behaviour of
pY and pA presented in our figures, we believe this to be a robust prediction not specific
to any of the approximations we have made. Unlike previous studies that would agree
with our last statements however, we additionally find that the momentum dependent
form factor of the scalar is in fact very close to X itself. This simple fact implies that
our scalar will couple to Goldstone bosons, therefore also to the W and Z bosons, very
closely resembling a Standard Model Higgs. Of course, as we have just stated, we have
not found evidence as to why the lowest lying scalar here should be naturally light as to
be anywhere near the 126 GeV observed Higgs boson. But the prediction that a standard
gauge theory should generally have this property is we think indeed worthy of attention.
With regards to the scalar mass, our results depend on an approximation that is only
justified for large N.. It is thus conceivable that a smaller scalar mass could emerge in a
small N, or strong abelian theory.

We have also studied the pions in this theory, and obtained an integral expression for
their decay constant. Comparing to the well known result of Pagels and Stokar [39], we
find that while the dominant term agrees with our approach, there are new additional
contributions that have a small but noticeable effect on f, and that are more or less
straightforward to include using our approach.

Finally we have commented on the relationship between the equations for the mo-
mentum dependent mass functions in our theory and the equations for the radion in the
holographic technicolour model of [1]. We do not believe that the type of behaviour they
observe, where the radion becomes lighter as the theory approaches the IR fixed point is

realizable in the context of a gauge theory.
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2.7 Appendix

We begin by giving the numerator for the complete expression for Z before converting
four-momenta to Euclidean space. Here, the D represent partial derivatives with respect

to the four-momenta squared kk and pp.

Zpm = 4 (A (Kk))* (S (k)" (D () (kk))*
Ek+12 A (kk) D (A) (kk) kk*S (kk) D (2) (kk)—8 A (kk) D (A) (kk) kk? (S (kk))* D (2) (kk)
—4A(kk)D(A)(kk) (S (kk))’ D (Z) (kk) + 6 (A (kk))* S (kk) (D®) (Z) (kk) kk®

4 (A (Kk))* (S (kk))* (D@) () (kk) kk* — 2 (A (kk))* (E (kk))* (D@) () (kk) kk

4 (A (Kk))* S (Kk) D () (kk) bk — 24 (A (kk))* (S (kk))* D (X) (kk) kk
+24< (Kk))* (D (%) (kk))* k&> (S (kk))* + 2 A (kk) (D <2>) (A) (Kk) kk*
+2A(kk)D(A (kk) kk® + 4 A (k) D (A) (kk) (2 (kk))® 2( (kk))? W

+4 (A (kk))® (S (kk))" 2A(7€k> (D®) (A) (kk) &k (

)

( )

+2A (kk) (D) (A) (k) ke (5 (k) —SA(kk)D(A)(kk)W S (kk))?
F2A (k) D (A) (kk) (S (k) bk — 4 (A (k)2 (S (

+6 (A (kk))* Kk (5 (kk))* +4 (A (kk))* (D () (kk))*

The denominator is given by (kk — 32(kk))%.

From Fig. 2.4 we write

A (kk) A (qq) (kk — kp 4+ ¥ (kk) ¥ (qq))

r®.=4
(kk — (= (kk))?) (g — (2 (qq))?)

In order to expand in p given the kp factors in the above expression, we associate the

dimensionless quantity p to every factor of p. We then write

A (kk) A (kk + pp p* — 2kp p) (kk — kp p + X (kk) Z (k& + pp p° — 2kp p))

r®.=4
(kk — (S (kk))?) (kk + pp p* — 2kp p — (S (kk + pp p? — 2kp p))?)

It is now straightforward to perform an expansion in p; here is the rho® term that
will give us all p? including those coming from kp? terms once the angular integrals are

performed.

1@ . 1 (AR S (kk) (DE)) (3) (k) kp® (A (kk))2kk (k) D (2) (k) pp (A(kk))2kp2 ik (k) D (3) (k)
P2 (kh—(S(kk))? ) (—kk-+(S(kk))?)” (kh—(S(kk))?) (—kk+(S(kE))? ) (kh—(S(kk))? ) (—kk-+(S(kE))?)”




CHAPTER 2. ON THE SCALAR SPECTRUM OF WALKING GAUGE THEORIES 45

(ARK))*kp2 (S(kk)) (D () (k) )k 2A(kk)kp2D(A)(kk)(E(kk))sD( )(kk) 29 A(kk)kp2D( A) (kk) kS (kk) D (£) (k)
(Fe—(S(kk))?) (-~ kk+(2(kk))2) (kh—(S(kk))? ) (—kk+(S(kR))? ) (Fh—(S(kk))? ) (—kk-+(S(kk))?)”
(AkR)2 Rk (D () (k) kp? (A(KK))2 (S(kK))2 D () (kk) pp (A(ER))? (2 (k))B(D(Q))( ) (k) kp?
2 2\2 8 2 16 2
(Kk—(S(kk))?) (—kh+(S(kk))?) (Kk—(3(kk))?) (= kk+ (S (kk)) ) (kk—(2(kk))?) (- kk—i-(E(kk) )
6(A(kk»%p?(z(kw(D(zxkk))j 64 (A0 (SER) DE)ER) a0 ARk (S0 (D( )3 N
(kkf(z(kk))z)lgfkm(z(kf)f) (K~ (S (kk))? )( Kb+ (5K >)) (k= (S (k)2 ) (— R+ (S(h ))2)
A(kk)kp2 D (A) (kk) kk
(kh—(S(kk))? ) (—kk+(S(kE))? )
_ A(kk)kp2D(A) (k) (S (kk))* A(kE)D(A) (k) kp2 S (k1) D () (k)
5 + 16 5
(Kk—(2(kk))?) (—kh-+(2(kk))?) (Kk—(S(kk))?)
A(kk)kaDmxgk) 4 (A (Kk))* Kk pp
(kk—(S(kk))?) (Kk—(S(kk))?) (—kk+(S(k ))2)
_ (AEPEH) g ( () Qkk
(kk—(S(kk))? ) (—kk-+(S(kk))?)” (kh—(S(kk))?) (—kk-+(S(kE))?)”
_ (A(Kk))?kp? (S (kk))* L4 (A(kk)) (/C)D( )( k)pp
(Kk—(S(kk))?) (—kh+(S(kk))?) (Kk—((kk)) )
43 (A(kk))*S(kk) (D)) () (kk) kp? A(kR)D(A) (k) pp bk
(Fh—(S(kk))?)” (k= (S(kk))?)”

4 AURD@) kR (SkR)? | A(kk)(D@)) (A) (kk) kp? kk

(kh—(S(kk))?)” (kh—(S(kk))?)”
L g A6 (DD) ) kR 00
(Fh—(S(kk))?)”
We can now replace kp? by by symmetry (this is equivalent to going to Eu-

clidean space and performing the angular integrals, then introducing back a factor of 272

and going back to Minkowski space). The coefficient of the pp term is then given by:

1@ . _g AURD) (k) kA (2 (k) 19 Ak D) (BE) (SRR RE g (AR)) S (k) D) (k) 1>
2 (—kht(S(kk))?)" (—kht(S(kk)?)" (—kht(S(kk))?)"
_ 94 (AR (C0R) DE))kE | o A D(A) (k) kk?

(—kh+(S(kk))?)" (—kk+((kR))?)"
) A(kk)D(A)(kk)(E(kf))G o (A(kk))%kk? ;
(= kk+(S(kk))?) (—kk+(2(kk))?)
4 (A(/’fk))Q(E(kk))fl _4 (A(kk))* (S (kk))* D () (kk)
(—kk+(S(kR))?) (—kk+(S(kR))?)"
5 A(kk) (D)) (A) (kk) Kk (S (kk)) 5 A(kk) (D)) (A) (k) kk? (S (kk))*
(—kk+((kE))?)" (—kh+(S(kk))?)"
A ARk (D) (k) ) ki3 5 A(kk) (D@) (A) (k) (S(kk))®
+ (—kh+(S(kk))?)" * (—kh+(S(kk))?)"
(A(KE))2 Kk (S(kk))? A(kk) (D®)) (A) (k) kk*
+6 2\4 2\4
(—kk+(S(kk))?) (—kk+(S(kk))?)

(A(KR))? (S(kk))® (D<2))( JkR)EE ) A Gk) D (A) (i) o (2(050)* D () (i) (AR (S (k) (D) (kk)) bk
( kk+ 2 (—kk+(2(kE))?)" (—kk+(2(kk))?)"

) +4
(A(kk))? (D@)) %) (k) ke (A(kk))Q(E(kk))?’(D(2>)(E)(kk)kk2+12 AR D(A) (kR E3S (k) D (2) (kE)
4

-2

k))
(
—4 1
+0 (- kk—l—(E(kk))Z) (—kh+(S(kk))?) (—kh+(S(kk))?)"
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_ g AR D(@) (k) k2 (£(k0)* D () (k) 4 o4 Ak (D) (k) ) kk2 (S (kb))
(—kh+(S(kk))?)" (—kk+(S(kR))?)"

We can factor out the denominator W’ the remaining (numerator) expression

18

DM = 4 (A (KK))? (S (kK))* (D () (kk))*
kk+12 A (kk) D (A) (kk) kk*S (kk) D (3) (kk)—8 A (kk) D (A) (kk) kk* (S (kk)) D () (kk)
—4A(kk) ( )(kk) k(E( £))°D () (kk) + 6 (A (kk))* S (kk) (D®) () (kk) kk?
4 (A (KE))? (S (k&))® (DP) () (kk) k&> — 2 (A (kk))* (S (kk))° (DP) () (kk) Kk
4 (A (kk))? ( k) D (X) (kk) kk* — 24 (A (kk))* (S (kk))* D (2) (kk) kk
+24( (kk))? (D () (kk))? Kk (S (krk)) +2A (kk) (D®) (A) (kk) Kk
+2A(kk) (A) (kk) kk* + 4 A (kk)D (A )( )(Z(kk))G—Q(A(kk))Qkk2
+4 (A (kk))* (S (kk)) =2 A (kk) (D@) (A kE* (5 (kk))? =2 A (kk) (D) (A) (kk) Kk (S (kk))
+2A (kk) (DP) (A) (kk) kk (= (k ))6—8A(kk) (A) (kk) kk? (2 (kk))?
+2 A (kk) D (A) (kk) (S (kk))* Kk — 4 (A (kk))? (S (k&))" D (X) (kk)
+6 (A (kk))* Kk (S (kk))® +4 (A (kk))* (D () (kk))? kk®

which exactly agrees with the expression for Z given in the first line above.

The exact same procedure follows through in the case of the pion. We start with the

expression obtained by commuting all pion fields to the right to give

g g @2 (E02) 92 (DY) (S) (2)
! (- p2+<2<p2>>2) (- p2+<z<p2>>2)3
_ 10 (Z(p2))°D () (p2) p2 _ (Z (p2))* p2

(~p2+ (p'f)) 2 (—p2 + (£ (p2))})’

(2 (p2))* p2% (D () (p2))° +22(p2)p23( @) () (p2)

(=p2 + (2 (p2))?) (-p2 + (S (p2)))"
+22(p2) () (p2) p2

(—p2 + (= (p2))?)°

From the Fig. 2.4 where the external lines are now pseudo-scalars, we obtain the

+8

expression from Section 2.4

r@ . 4 2(99) X (kk) (—kk + kp + ¥ (qq) X (kk))
i (kk — (= (Bk))*) (g0 — (= (90))°)

Introducing p in the same manner as we did for the scalar we have
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r@ . 4 2Rk +ppp® = 2kp p) 5 (k) (=kk + kp p + 5 (kk + pp p* — 2kp p) & (k)
’ (Kk — (S (kk))?) (kk + pp p* = 2kp p — (S (kk + pp p> — 2kp p))?)

The p? coefficient of the expansion is now given by

r® ._ g (E(kk))3D(Z)(kk)pp+16 (S(kk))® (D)) () (kk) kp? 4 S D)@ kg S(kk) (D)) () (kk) kp? kk

pm (Fh—(S(kk))?)" (kh—(S(kk))?)" (kh—(S(kk))?)” (kk—(S(kk))?)”
DE) Rk S0%) | (z(kk»?kp?(D(z)(kk))Q
(kk—(S(kk))?)” (klcf(E(kk)) )’
_4 (S(kk))*pp 18 2 (kk)*D (D) (kk) pp
(Kk—(S(kk))?) (—kk+(Z(kk)) ) (Kk— (E(kk))Q)( kk+((kk))? )
416 (2(kk))% (D) () (kk) kp? 416 EE)* (D)) (S (k)2 hp?
(Kk—(2(kk))?) (—kh+(S(kk))?) (Kk—(2(kk))?) (—kh+(S(kk))?) (kk—(S(kk))? ) (= kk-+(S(kk))?)?
116 (2(kk))2 kp2D(3) (kk) 116 D(2) (k&) kp2 S (kk) kk

(lck (S(kk)?) (- kk+(2(kk)) 2)® (kh—(S(kk))? ) (—kk-+(S(kk))?)”
S(kk))? kp? )

(D
(kk: (S(kk)?) (-~ kk-‘,—(E(kk:) )

Replacing kp? as before we find

PO o SR’ D(®) (k) Bk, (E (kR) (D) () (k) ki
(= kb + (2 (h8))*)” (—hk -+ (3 (hh))*)”
o = (kk) D (X) (k )kk2+2 (kk) (D) () (k) kk*
(—kk + (S (kk))?)” (—kk + (S (kk))?)
L g Bk k))” (D(Z) (k))* kk* _ (Z<kk))2kk
(—kk + (2 (kk))?) (—kk + (2 (kk))?)”
L (B0

(—kk + (S (kk))?)”

which can be seen to agree with the expression obtained for Z above.



Chapter 3

Lepton based Charge Asymmetry

Measurements and Diquarks

In this Chapter, we propose a lepton based observable for measuring charge asymmetries
of particle pairs produced at the LHC that can be used even when only one particle in
the pair decays leptonically. The observable, which we call AL is in some sense analogous
to Al used at the Tevatron (see e.g. [40]) to study the ¢t forward-backward asymmetry.
Like the latter, our AL does not require reconstruction of the original particle’s four-
momentum; it could then be of value for studying systems where this step is not readily
achievable. As an example of one such case, we present our approach in the context
of coloured scalars carrying diquark quantum numbers, and also discuss its application
to the ¢t charge asymmetry. In the case of a scalar carrying ¢t quantum numbers, we
find that with several thousand events, a combined measurement of the different channels
(which are determined by the number of leptons in the final state) can give an interesting
deviation from the Standard Model, if the sample’s AL is as small as ~ 1%. We also
present our theory calculation of the diquark’s charge asymmetry at next-to-leading order
in QCD. The work in this chapter was done in collaboration with Bob Holdom and Melissa

Ratzlaff, and is currently being prepared for submission.

3.1 Introduction

Asymmetry measurements at particle colliders are interesting to study for many reasons.
In the past, they have been of crucial importance to help us test predictions on the
fundamental structure of the gauge theories in the Standard Model. Examples are the
use of lepton forward-backward asymmetries, pair production asymmetries, and lepton

polarization asymmetries, all at the Z pole. More recently, the tt forward-backward

48
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asymmetry (A%;) has been the focus of many efforts in the search for experimental

evidence of beyond the Standard Model (BSM) physics.

The widespread interest in A?:B from the particle physics community is well motivated:
the CDF and DO experiments at the Tevatron have performed experimental studies of
this observable and both collaborations find an effect around 20 above the expectation for
the SM. At the LHC, the charge asymmetry between the central and forward /backward
regions of the detector (A¢) originates from the same charge asymmetric contributions
to the ¢t cross section at the parton level that give rise to App at the Tevatron. These
two observables are thus closely related and it is expected that measurements at the
LHC of the relevant observables would hint in the direction of a similar anomaly. So far,
the ATLAS and CMS collaborations have measured A% [41-43], yielding results that all
agree well with the SM prediction. In order to extract a value of A% from the data, the ¢
system was reconstructed. Lepton based asymmetries have also been used to study the tf
system, both at the Tevatron and LHC (see [40] for a nice overview). These observables
have the advantage that the full reconstruction of the ¢ and #’s four momentum is not
required; leptons (us and es) are much more simple to identify and reconstruct, and

corrections due to detector effects are usually small.

We have noticed that while lepton based asymmetries in both the single lepton chan-
nel, AL, and dilepton channel, AL and A% 5, have been studied at the Tevatron, only
the dilepton channel measurement analogous to A%, A%, has been studied at the LHC.
No analog observable for A%, has been proposed. It is this type of observable that we
would like to explore in this chapter, since it could be not only useful to study the tf
system in conjunction with other asymmetry measurements, but possibly necessary if we
wish to study other systems of particle anti-particle pairs where reconstruction of the
pair’s four momentum is either highly inefficient, or impossible. This could be the case
if, for example, such pairs decay to final states with very high jet multiplicity and/or
multiple invisible states, or if each particle in the original pair has multiple decay modes.
One such example, which we will adopt for illustration purposes in this chapter, is the

production of coloured scalar diquark pairs.

These scalars carrying diquark quantum numbers can arise generically in many BSM
theories; for example, they can appear as pseudo-Goldstone bosons in certain technicolor
or other dynamical models of EWSB [17]. A possibly interesting aspect of diquarks is
that their couplings to SM states can have a variety of patterns that are not already ruled
out by existing flavour and other precision data [44], something that suggests that their
study could teach us something about flavour physics. Diquark pairs produced from qg

initial states at the LHC would exhibit a charge asymmetry in their differential cross
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section, an effect analogous to the charge asymmetry predicted by QCD for ¢t pairs at
next-to-leading order (NLO) [45]. Depending on the diquarks’ flavour quantum numbers,
final states with one, two (same-sign and opposite-sign), three, etc. leptons can arise.

The observable we shall propose provides a simple way of extracting a charge asym-
metry measurement in each of these types of events by individually adding each p or e
in the final state to the corresponding + or — lepton’s rapidity distribution and then
studying the difference between said distributions. Cuts would be imposed to select
candidate events requiring a certain number of (isolated, high pr) leptons in the final
state, this number defines the “channel”, and results from all channels can be combined
later for a more statistically significant result. We have not considered 7s as “leptons”
in our analysis. 7s are also a source of es and us and in ignoring them we are slightly
underestimating the number of events that will pass our cuts in each channel.

This chapter is organized as follows. We define and discuss the general aspects of our
method, and how to apply it to scalar diquarks in Section 3.2. In Section 3.3 we discuss
this observable in the context of the ¢t charge asymmetry. Since a complete calculation
of the charge asymmetry of a charged or coloured scalar does not seem to exist in the
literature® we also present our theory calculation for a pair of coloured diquark scalars

in Section 3.4. Concluding remarks can be found in Section 3.5.

3.2 A new charge asymmetry observable and scalar

Diquarks

In hadron-hadron colliders, a charge asymmetric contribution to the production cross
section of coloured scalar particle pairs (qba) will arise from order a? corrections to the
process q7 — ¢¢. Similarly to the case of the familiar £ (or any ¢g pair) asymmetry, this
contribution can be traced back to the interference between initial state and final state
gluon emission amplitudes, and between virtual gluon emission (box diagrams) and the
Born amplitude (See Fig. 3.1).

At a pp collider, this would result in a charge separation of the outgoing scalar pairs
between the forward and backward regions of the detectors, with a preference for pro-
ducing the ¢ (or the ¢, we will discuss the issue of which below) in the direction of

the incoming proton, and the ¢ (or the ¢) in the direction of the incoming anti-proton.

!The authors of [46] have performed a partial calculation for charged Higgs pair production, where
results for only 2 values of (y/s,my) are presented as a function of the cut on the maximum energy
of unresolved radiated photons. The radiation of hard photons must be taken into account in order to
eliminate this dependence.
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Figure 3.1: Representative diagrams contributing to ¢¢ differential charge asymmetry:
interference of a) with b) plus ¢) with d).

There, one could use the single-lepton based observable

L Ni(@n > 0) — Ni(Qn < 0)
Ars = N(Qn > 0) ¥ M(Qy < 0)° (3.1)

as used by the Tevatron experiments [47] for ¢, to study the charge asymmetry of the ¢¢
system when the final state has only one, or more, leptons. In contrast, at a pp collider
like the LHC there is a slight preference for producing the ¢ (¢) with momentum direction
in the central region (low rapidities) and its antiparticle with more forward/backward
momentum (large rapidities). Therefore, the y distribution for charged leptons coming
from the scalar being preferentially produced at low |y| is expected to be slightly more
centrally peaked than that for leptons coming from the scalar more often produced at
large |y|.

We shall then define our observable by separating events into two large (pseudo)rapidity
bins or “regions”, the 1st being at large |y|, which combines events at both ends of the
detector, and the 2nd being the central one, symmetric about y = 0. Since the parti-
cle pairs will decay into final states with different numbers of leptons, we would like to
perform statistically independent measurements for each different type of final state or

channel. The channel will then be defined by the final state lepton multiplicity 7, and
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observables measured in a given channel will carry the subscript ¢ to indicate so.

For a given sample selected from the data a raw leptonic observable, which we shall

call AL where i indicates the channel being studied, can be measured:

i, raw

L 2@V (vl > 1) — aN(lyl < 1)) (3.2)
israw Ni(ly| > t) + Ni(lyl <t) |

The quantities N/(Jy| > t) and N/(|y| < t) are the number of leptons of charge ¢ in the
1 and 2 regions respectively, ¢ = 1, and N; = ) ¢ N{. The value of ¢, which gives the
width of the central region, is crucial to the asymmetry measurement: the central bin
must end at the values of +y where the positive (negative) lepton count, in the smallest
y bins (used in the original binning of events), is expected to become smaller than the
negative (positive) lepton count, due to the predicted asymmetry. Therefore a somewhat
robust estimate of this number is necessary for this study. We comment more on this

point further in this section.

In order to extract the asymmetry of the signal and compare to a given model, we

then define the two quantities:

A 2N g [yl > 1) — N (lyl < 1))
i,signal + i,bkg MC
Ni,si nal + Ni,bk
Ai,signal = (Aé,raw - Aé,SM) ( g]\]— ] . ) (34)
i,signal MC

where the subscript “MC” indicates a necessary input from Monte Carlo simulations. In
channels with only one or two opposite-sign leptons in the final state, the SM processes
W +jets and tt production that pass our selection criteria will contribute to a non-zero
background charge asymmetry. Channels with two same-sign leptons, and 3 or more
leptons in the final state will have low SM backgrounds, none of which should contribute

L

to an asymmetry. In those channels, A%, should be 0 within uncertainties, and A} j, .,

will be more easily obtained.

Diquarks can transform as a triplet or as a sextet under SU(3)c. We shall call the
scalar which has gq content ¢, and that which has G§ content ¢. At a symmetric initial
state collider like the LHC, the scalar ¢ transforming as 6 (3) would be produced with
preference at larger (smaller) rapidities whereas the ¢ transforming as 6 (3) would do the
opposite. This difference leads to interesting effects. Triplet scalar pairs, for example,
will have a negative integrated charge asymmetry in contrast with the SM prediction for
tt, and with sextet diquarks. Additionally, when the triplets have charge 4/3 or 1/3, the

resulting integrated charge asymmetry in the daughter leptons will also be negative.
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We shall assume that diquarks have quark components with standard electric charges,
and that they decay weakly with a large mixing to heavy quarks. Then, the decay of
a scalar diquark will result in 2 down type quarks and a varying number of W bosons.
Charge 4/3 diquarks will decay to bbW W+ (W W )" where the number n (integer or 0)
of additional WV~ pairs depends on the scalars’ mass and intermediate (possibly BSM)
states mediating its decay. Similarly, charge 1/3 diquarks will decay to bbW ™ (W TW =)™,
and charge —2/3 diquarks to bb(W W ™)™, Unless we state otherwise, we will assume
by default that no extra WTW™ pairs arise in the scalars’ decay (i.e. n = 0, which
corresponds to scalars initially decaying to only 2 SM quarks, or particles that decay in
the exact same way as them).

We can now see that charge 4/3 diquarks that decay to 2 tops are particularly inter-
esting in the context of lepton based measurements since such ¢¢ pairs could produce
final states with one, two (same-sign or opposite-sign), three, or four leptons. Probabil-
ities for each of these final states can be found in Table 1 below. Let us focus on this

type of diquark for now.

Lepton content in final state | Probability

4 leptons 0.002

3 leptons 0.034

2 opposite sign leptons 0.119

2 same sign leptons 0.060

1 lepton 0.418

0 leptons 0.197

only 7’s 0.170

In channels where there are two (or more) opposite sign leptons, we of course have

an observable of the type A% [41] at our disposal

N(Aly| > 0) — N(Aly| <0)

All —
“ " N(Aly| > 0)+ N(Aly| < 0)

(3.5)

where Aly| = |yi+| — |yi-|. Events with exactly two opposite sign leptons give us one
data point on the Ay distribution each, those with 3 leptons give us 2 points, and those
with 4 leptons give us 4 points. Notice that diquark scalar pairs decay to final states
with only one lepton, or two same-sign leptons with a probability close to 50%, and such
events cannot be used in this type of approach. On the other hand, a measurement of
Alcﬂ- would be possible in all of the above mentioned channels, and each ¢¢ candidate

event in channel ¢ contributes ¢ data points to the lepton distributions.
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As in the case of tf, A% from ¢¢ is predictably smaller than the original asymmetry in
the scalars, A?fg, because the leptons’ rapidity distributions are smeared out relative to
those of the parent particles?. Our observable AL is also predictably smaller than both
Agﬁ and Al because the asymmetric part of the resulting single-lepton distributions can
overlap quite a lot. Hence, in taking the difference as defined in Eq. 3.2 some information
of the asymmetry is lost. We have used simulated events to roughly quantify these effects
and predict how much smaller our observable is expected to be relative to the other two.
Of interest is the comparison to the latter, as we are unable to reconstruct the ¢¢ to
measure the earlier directly. We estimate AL to be smaller than A% by a factor of ~ 0.8.

The procedure used can be found in the next section for the interested reader.

From the above discussion, we can roughly compare the two approaches to measuring
charge asymmetries of scalar diquarks. We will assume that detector and selection bias
effects affect the signal in all channels in a similar way, such that the relative sizes of
branching ratios between the signal in the different channels remain true to Table 1 above.
For a certain number of ¢¢ recorded events, we can estimate the statistical uncertainty
of the combined measurement from all channels for AL relative to that associated with
AL Varying the percentage of background events in the single lepton channel (relevant
only for AL) between 20 and 60%, and in the 2 opposite-sign lepton channel between 10
and 40%, we find that the statistical uncertainty in the A% approach is larger than that
in AL, by a factor of ~ 2.

The ATLAS and CMS experiments have recorded about 25 fb™! of data in 2011 and
2012 combined, ~ 4/5 of this has been at /s = 8 TeV. Based on [48] we estimate that,
only in the single lepton channel, each detector has recorded on the order of 3 x 10° tt
events that pass the selection in [48]. While so far the observed and expected number of
events agree within uncertainties, the uncertainty on the expected number of signal (¢¢)
events is close to 10% in both the e and u channels. This leaves plenty of room for NP
events that pass the same selection cuts, like our ¢¢ decays, to be hiding in the tf data.
However, if we assume we are dealing only with the ¢t type diquarks we have focused on
above, then the branching ratios imply that it is the multi-lepton channels that will place
the more stringent constrains on the total number of allowed events. For example, recent
SUSY searches [49,50] constrain the anomalous production of multiple-lepton events in
signal regions that overlap with ours to be quite small, at most ~ 1 event, in the 4-lepton

channel. This would imply that roughly 30 events could be present in the 2 same-sign

2The difference between these two distributions can be relevant as it carries information about the
polarization of the W’s; however we will not be concerned with the issue of polarization in this chapter
since we are only considering QCD contributions.
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lepton channel. In light of the recently reported hint of an excess at ATLAS in this
particular channel [16] it is not impossible to accommodate a dozen or so events coming
from tt diquarks to agree with this data. This would also suggest that there could be of
the order of 200 leptons from single-lepton events of our diquark’s decay hiding in the
data. But due to the larger SM backgrounds in this channel, this type of excess would

be much harder to discern.

If diquarks are indeed realized in nature, however, there is no reason to expect only
one carrying tt quantum numbers would be present. A whole spectrum of them could
be expected, as in the model of reference [17] for example, where the different quantum
numbers corresponds to the pseudo-Goldstone bosons of the broken, approximate global
symmetries of the underlying strongly coupled theory. Diquarks of charge 1/3 with the
quantum numbers tb or t'b (where primes denote quarks from a possible fourth family),
where the ¢’ is lighter than the &', would decay to final states with only single and two
opposite-sign leptons, bringing an enhancement to the signal in these channels without

contributing to the more constrained multi-lepton channels.

Let us now illustrate the reach of our observable with some concrete examples. Given
two “benchmark” numbers of total ¢¢ events, we combine the Alcﬂ- of all 5 channels
and estimate the combined statistical uncertainty by assuming no correlation among the
measurements in each channel. We then perform y? tests for various input values of the
AL, asymmetry versus the null hypothesis (0 asymmetry within uncertainties) in order to
obtain expected p-values. We again stress that only statistical uncertainties have been
accounted for in this section. For 2000 and 20000 events, we find an expected p-value of
~ 0.04 for an AL, of 4% and 1.3% respectively. A p-value of ~ 5 x 1077 can be expected
for AL of 10% and 3% for these same numbers of events. Except for the 1.3% figure,
all of these values are quite large compared to the expected asymmetry that diquarks

receive from QCD, as we will see in the next section.

Before we move on to discuss ¢t asymmetry measurements, we would like to note
that lepto-quarks are also interesting candidates to study through this method. While
lepto-quarks with the quantum numbers of electrons or muons are ruled out except at
very high masses, there is still room for those carrying tau quantum numbers such as 7b,
7'b etc. [51], which decay to final states containing only one or two opposite sign leptons
(this is true for the latter only in the case where it cannot decay directly to v/, otherwise

other multi-lepton channels become available).
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3.3 AL and the tf Charge Asymmetry

We now turn our attention to the ¢t charge asymmetry in the single-lepton channel. As
in the previous section, the dilepton channel measurement Alc’2 can also be obtained
through our method and combined with Alc,r For the sake of brevity we focus solely on
the latter.

A significant percentage of candidate events selected in this channel will be coming
from backgrounds.? However, with the exception of W +jets, all other backgrounds should
give rise to identical y distributions for positive and negative leptons within uncertainties.
Therefore, in taking the difference of positive and negative (lepton) rapidity distributions,
the number of such events in each bin should cancel. This is not true for the W + jets
background because the cross section for W+ production at the LHC is larger than that
for W~ production. This is due to the fact that, unlike the case of pp collisions, in pp
collisions u valence quarks are twice as abundant as d’s and so leptons coming from W’s
will be more abundant with positive charge than with negative charge. The third term
in the numerator of Alal, which we have called Aa;, will then be purely a W + jets

contribution.

For the case of tt, we then write our observable as:

L @QNi(lyl > 1) — QNi(ly| <1) — Ay
U Nyl > 1)+ Nyl < 1) = N i g

(3.6)

The denominator is just N/, the number of leptons coming from “true” ¢t decays; Nil, all bkg
is the number of events coming from all backgrounds. Aa; is the contribution to the
numerator from backgrounds.

By counting the number of positive and negative leptons (e’s and u’s) in our samples,

we can estimate the total number of such leptons which are coming from W + jets as
Niy = S [N(") = N(I), (3.7)

where ri and r' are the fractions of positive and negative Ws respectively (ri +rt =
1). N(I™) and N(I7) are the total number of positive and negative leptons. The ratio
rt/rt = N(pp = WT)/N(pp — W) is evaluated from Monte Carlo simulations. In [42],
ATLAS finds that for events selected in the electron channel r$ /r¢ = 1.56 £ 0.06, and

3In the single lepton channel ¢t analyses of CMS [43] and ATLAS [42] these percentages are about
20% and 30% respectively. The W + jets background constitutes about 58% of all background events at
ATLAS, and about 50% at CMS.
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r /rt = 1.65 £ 0.08 in the muon channel.

In order to estimate Aa; we must also know the shape of the rapidity distributions

for e’s and p’s coming from the W + jets backgrounds. We write this term as
Aa; = Ny, (rﬂrr}/w — eV —( ﬂrr;’w — L, (3.8)

w+

i

distributions of W+ and W~ 4 jets backgrounds such that 3. rV" = 3" rV" =1,

where r and r}"" are inputs which contain the information on the shape of the y

From Eq. 3.6 and Eq. 3.8 above, it is straightforward to find the associated statistical
uncertainty of Af; in terms of the fluctuations in each individual bin 5Nili ~ /NI by
varying AL ; with respect to each variable N!". Notice that both N, and N}, are NI
dependent. We used an ATLAS study on muons coming from W= decays [52] to get an
estimate of the r/V “’s from the y (normalized to 1) distributions therein. We find that
the statistical uncertainty associated with a muon sample with ~ 9000 events, as is the
case for the data collected by ATLAS and studied in [42], is approximately £0.015.

The muon (single lepton) channel uncertainties in A as measured by ATLAS are
+0.036(stat) 4 0.023(syst); this is after correcting the top and anti-top rapidity distri-
butions for detector effects and an event selection bias (unfolding). Since our approach
deals almost exclusively with leptons we expect that the unfolding procedure would not
only be simpler, but also have less of an effect on the estimate of the uncertainties.
In fact, we may even expect the statistical uncertainty to decrease by a few percent
after correcting for these effects, as is the case for the AL measurement (see Table 2
in [41]). We also expect the sources of systematic uncertainty that have the largest
impact on the Ac(muon) measurement (jet energy scale, jet efficiency and resolution,
parton shower/fragmentation, ISR/FSR, top mass, and ¢t modeling all contribute above
10.005) to be much less significant in the case of A4;. For reference, in A% these sources
(the last two are not considered in that study) are below 0.004 except for ISR/FSR which
contributes 0.006, the largest of all systematic contributions, and the total systematic
uncertainty is 0.009 [41]. Then, if we believe + < 0.015(stat.) and £0.009(syst.) to be
good estimates of the uncertainties in A;, it becomes clear that although this observable
has the disadvantage of being numerically smaller than Ao, there is much to be gained
in the reduction of uncertainties, even in this case (¢f) where the four-momentum of the
original pair can be readily reconstructed.

Relative to A" we have used simulated events to predict that here AL will be about 0.7
times smaller than AY. However, only about 5% of all ¢ events decay into two leptons,

whereas ~ 30% give a single lepton (e, u) final state. Therefore, relative to di-lepton
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channel studies, our approach yields ~ 6 times more statistics.

We can now comment on how we obtained the positive and negative lepton distribu-
tions in order to estimate the relative size factors A!/A" for tf (and ¢¢ in the previous
section). We generated t¢ events in Madgraph and used CTEQ 6.11 structure functions
at y/s = 8 TeV. Since our asymmetry arises at the o level, this first step yields identical
distributions for positive and negative leptons. We used the following method to obtain
a charge asymmetry such that it is approximately linear in Y = (y; 4+ yz)/2 in the range
—2 <Y < 2 as predicted in the SM at NLO [45] (see Figure 12 in this reference, left
panel ).

First, we demand that the ¢ decay to a lepton. When Y > 0 and y; > yz, this lepton is
considered a candidate to be added to the positive lepton distribution; if instead y; < vz,
it is considered a candidate for the negative lepton distribution. The candidate event
must satisfy the condition Y/2 > R, where R is a random number between 0 and 1,
to be allowed to populate the corresponding bin in the relevant (positive or negative)
distribution. Events not satisfying this condition are discarded. A similar procedure
follows for events where Y < 0. In this way we obtain the shape of the asymmetric

events in the lepton distributions.

From our simulated events, we have also obtained estimates of how much “fainter”
we expect AL to be relative to the original parton level asymmetry. We summarize this
effect in the ratio that we call x. In the case of t, we find k = AL /AY to be ~ 0.29. We
have explored how this value of x varies in different kinematic regimes when the particles
that we are interested in have a different mass. We have looked at the resulting positive
and negative lepton distributions coming from the decay of a 700 GeV b — Wt, where
the leptons originate from both the W boson’s decay as well as that of the daughter
top’s, and 700 GeV t' — bW where the leptons originate from the W’s. When the
lepton originates from a W we find x values of 0.19 for & and t' decays. When the
lepton originates from a top, the case of b’, we obtain k = 0.23. We expect the lepton
distributions coming from a diquark scalar that decays to tt/¢t to closely resemble this
last case. Notice that these values are not so far off from each other or the result already
mentioned for t£. However, the shapes of the distributions are different in the two cases.
The tt pair can often be produced at large Y and therefore the positive lepton distribution
exhibits 2 clear peaks at high |y| and a dip around y = 0, whereas the negative lepton
distribution is peaked at y = 0. As the decaying quark pair becomes heavier it is less
and less produced at high Y, and the two peaks in the positive lepton distribution start
getting closer to each other while the negative lepton distribution’s central peak becomes

sharper (also, distributions are smeared further due to the extra step in the decay chain,
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e.g. b — t — [). Observation of the distribution shapes can therefore give us additional
information about the original particle pair’s mass. We also found that in all cases the
cross over point between distributions, the value of y which we have called ¢ in Eq. 3.2,
happened very close to y = £1. This then appears to be a more or less robust estimate

for the type of decays we have considered.

3.4 The Diquark Charge Asymmetry

The charge asymmetric cross section from QCD for scalar diquarks can be obtained from
the QED result for charged colorless scalar production (ete”™ — HtH™) by replacing
a — a, and multiplying by the appropriate color factor: C4(R)/Co(R), where

1 Aa b

Co(R) = mTf(gg)Tf(TﬁTz%)

[

and

1 Aa Ab Ac
r

_ 4%\7361303(3). (3.10)
C5(3) = 4/3 and C3(3) = 10/9 for a triplet scalar, C5(6) = 10/3 and C3(6) = 35/9 for
a sextet, and dg is the dimension of R. The factor Cy(R) comes from the Born cross
section whereas C4(R) is the color factor for the order o contributions to the charge
asymmetric part of the cross section. The factor Ca(R)/Co(R) is 5/12 for the triplet and
7/12 for the sextet.

QFED calculation of a colourless scalar’s charge asymmetry

Soft infrared singularities are absent from the differential cross section, as they should
be, but considered separately, the virtual and real radiation amplitudes contain such
divergences which cancel in a non-trivial way. In order to show the cancelation of this
divergence we followed [53] to analytically integrate the real photon emission in the soft
limit over a thin slice at the border of phase space (using a photon mass regulator) and
combined it with virtual radiation. The latter part of this calculation was done by Melissa
Ratzlaff. This result no longer contains a soft infrared singularity. It does, however,

exhibit a (logarithmic) dependence on E.,, coming from the soft photon integration,
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which must cancel once the real, hard photon emission piece is added. In order to obtain
a F.,; independent result, integration over the rest of the phase-space was performed
numerically.

We present analytical expressions for the asymmetric contributions to real photon
radiation in the soft limit, and for virtual contributions, all in terms of g = \/Tm?/s,
the velocity of the diquark. Although we omit the use of hats (e.g. §) over our variables,
the following expressions are valid in the partonic center of mass frame. We will split the
differential asymmetric contribution to soft, real photon emission into two parts. Part 1,
which is the part that depends on photon energy cutoff E.,; is given by

d soft, pl 3.6 E2
% = % lo (4%) sin? §[— log(1 — Bcos @) + log(1 + Bcosh)].  (3.11)
T

The photon mass dependence has been cancelled with the loop calculation. The inte-

grated expression is

6

o = oo (122 ) {0 =~ tog(1 - 5) ~lou(1 + ) + 26°[- og(1 - §) + log(1 + )

A 192735 S

+ 38%[log(1 — B) +log(1 + 5)]} (3.12)

Part 2 of this same contribution, which does not depend on E.,, is given by

@S‘)ﬁ’ p2 _ Beb ot —ut) {1 2m* — 2m?t + st — Bst L 2m* — 2m?t + st + Bst
o 167353 2 2m* — 2m2t ? 2m* — 2m2t
_(2m* — 2mPu + su + Bsu _(2m* — 2mPu + su — Bsu
Li, — Lip
2m* — 2m2u 2m* — 2m2u

st

L (1 + m> + Li, (1 + ﬁ) } (3.13)

The asymmetric contribution to virtual photon emission, expressed in terms of the

Passarino-Veltmann scalar integrals Cy; (21, x2) and Cyo(21, 2, x3), is given by

do 4Vt Beb (t — u)(—2mS — 2m>2ut + stu + m*(s + 2t + 2u))

= 4_ t .C 2
do 12873s (m* —ut) { (m* — 2m2t + st + t2)(m?* — 2m2u + us + u?) 01(s,m”)
s(t — w)(m! — ut)
N 4 2 2 4 2 2 'COI(S,mg)
(m* — 2m2t + st + t2)(m* — 2m?u + us + u?)
2t(m? — t)
- Coa(t, m*,m?
* (m* — 2m2t + st + t2) ot me)
2u(m? — u)
- -G 2mg) ¢ 3.14
(m* — 2m2u + us + u?) 02(u, m 7me)} (3.14)
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The explicit expressions for the scalar integrals are

"log(71y) — log(w2(1 — y)?)
C ’ _ dy, 3.15
01(1’1 IQ) /0 Ty + .172(1 . y)Q Y ( )

and

1 /1 log(y2wy + yry — yas — yz1 + 73)
0

Cortor ) — L dy. 3.16
OQ(xl o) IE3) (nyl + yxros — yrs — yr1 + LL’3) 4 ( )

2

Finally, the integrated expression for the Born cross section is

64ﬂ3
" 487s

(3.17)

OB

We have not included an analytical expression for real hard photon (gluon) radiation;
we have not been able to express it in a compact enough form to present here. This
last piece is of crucial importance for its role in the cancellation of the unphysical .,
dependence, something which, as mentioned above, we achieved through numerical inte-
gration. However, the 6 dependence in the fully asymmetric piece of the differential cross
section can be seen almost exactly from Eq. 3.11.

In Fig. 3.2 and Fig. 3.3 we present our results for a colorless scalar’s charge asymme-
try in the partonic center of mass frame, as a function of the angle 6, and as a function
of the scalar’s pseudorapidity respectively. These predictions have some important dif-

1.0r

do A
dcos(0)

0.5¢

cos(0)

-0.5¢

—1.0F

Figure 3.2: Differential charge asymmetry (with amplitude normalized to 1) in the ¢¢
partonic center of mass frame as a function of cosf for m,/+/s of 0.2, 0.3, 0.4 and 0.49.
The green curve (curve with peak at lowest value of 6) corresponds to 0.49, the blue
curve (curve with peak at highest value of ) corresponds to 0.2.

ferences from those for the case of t¢. In particular, unlike the ¢¢ (or more generally, ¢q),
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—1.0F

Figure 3.3: Differential charge asymmetry in the ¢¢ frame as a function of pseudorapidity
for mgy/+/s of 0.2, 0.3, 0.4 and 0.49. The green curve (curve with peak at lowest value of
n) corresponds to 0.49, the blue curve (curve with peak at highest value of 1) corresponds
to 0.2.

the charge asymmetry for scalars peaks at a value of cos(f) below 1, and vanishes at
cos(f) = 1. Fig. 3.4 below shows the integrated charge asymmetry in the partonic center
of mass frame as a function of /s/2m. In contrast to the same result for ¢¢, the scalar’s

charge asymmetry is much flatter (for reference, see Fig. 5 in [45]).

0.013}
0.012}
0.011}

A o010}
0.009
0.008

0.007

Figure 3.4: Integrated charge asymmetry for ¢q initiated events in the ¢¢ frame as a
function of

2m¢
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QCD results for a scalar diquark’s charge asymmetry

The results for the charge asymmetry in ¢g initiated events of the colored diquarks
follow simply by multiplying the above results by as(x = mz)/«, and by the previously
calculated color factor, 5/12 or 7/12, for the triplet or sextet respectively. These factors
amount to quite an enhancement, a factor of ~ 50 and 70 respectively. However, folded
in with the proton’s structure functions, the resulting inclusive (gg initiated events give
a large contribution to the Born cross section) ¢¢ charge asymmetry in the lab frame is

again very small.

We have produced predictions for the triplet diquark asymmetry at the LHC at 7
TeV, for two values of the diquark mass. For my = 400 GeV we find Ac = —0.012, for
mg = 500 GeV we find Ac = —0.0073. As mentioned in the introduction, we would like
to focus on ¢ that decay to tt.*

A study of the observable A; on our triplet ¢¢ candidate events would require that
we be able to measure an A; of about —0.012 x Kk = —0.003 for m, = 400 GeV and A4,
of about —0.0073 x K = —0.002 for m, = 500 GeV, where we have assumed s ~ 0.23.
The challenge then is bringing systematic effects down to these levels. Alternatively, one
could also think of taking advantage of the features in the differential charge asymmetry
as a function of y to define a related quantity that enhances the observable asymmetry,

as for example, restricting the sample to events with large Y, = (3 + v5)/2.

We have briefly explored this possibility by selecting (simulated) pp — ¢¢ events
where one of the incoming partons is required to have a much larger fraction of the
proton’s momentum than the other, x;/xs > 1. In events where hard gluon jets are
absent, this cut on the incoming parton’s relative momenta (or the rapidity of the
incoming parton’s center of mass Yj,) is approximately equivalent to a cut on Y,
the relation given by e*Yout ~ e¥in = g, /xy. For a 400 GeV triplet scalar, we find
Ac(You = 1.39) = —0.047 and Ac(Yer = 1.04) = —0.027. For a mass of 500 GeV,
we find Ac(Yo: = 0.69) = —0.053, where Y,,; is the minimum Y;,, for allowed events.
As we do not have access to the scalars’ rapidities, a very rough implementation of this
cut would consist of adding up the y; of all reconstructed objets for the candidate event
and taking this average to be representative of Y,,;. The expected A; would now be an
effect of a few percent, and could be observable given several thousand candidate events
(in a combined measurement as discussed in Section 3.2) and systematic uncertainties of

about 1% each, as the case discussed in Section 3.3.

4Note that the masses that we consider here are too light to allow additional W+W ~ pairs in the
decay.
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3.5 Concluding Remarks

We have proposed a method for measuring charge asymmetries of particle pairs produced
at the LHC. Our suggested approach focuses on the rapidity distributions of leptons
coming from particle pair decays with one or more leptons in the final state, and does
not require reconstruction of the original pair. Some information from the backgrounds
is still needed from Monte Carlo simulations in order to obtain a measurement, such as
the value of ¢ (which determines the width of the central bin) that goes into the definition
of AL. Although the value of this observable is expected to be smaller than Ao of the
original pair, systematic uncertainties are expected to be much smaller in this lepton
based measurement, and most important, such a measurement may be the best way to
access charge asymmetry information in systems where other methods based on partial
or full reconstruction fail. Although the dilepton channel observable A" is still of use in
these cases, it can obviously only be applied when two or more opposite sign leptons are
present.

We have also presented theory predictions from QCD at NLO for the charge asymme-
try of a coloured (triplet/sextet) scalar carrying diquark quantum numbers. A scalar’s
charge asymmetry (at the parton level) as a function of § and y has marked differences
with that of ¢ pairs. Our numerical results for the integrated charge asymmetry of a
triplet diquark pair (mg = 400, 500 GeV) show that at the LHC, this would be a very
small effect, of order 1%. A; would be about 0.2% — 0.3%. If the sample is restricted to
events with high Y, this effect can be enhanced to a few percent. With a large enough
number of ¢¢ events (several thousand), we could expect to see moderately significant
signs of this asymmetry, even if A; remains at the percent level (and assuming that as
in the ¢t A; analysis the total systematic uncertainty can remain below ~ 1%). Such
measurements could turn out to be of great value in discerning the nature of possible

new coloured states to be (maybe) discovered at the LHC.



Chapter 4
Monopoles, strings and dark matter

In this chapter, we develop a scenario whereby monopoles in a hidden sector yield a
decaying dark matter candidate of interest for the PAMELA and FERMI e* excesses.
The monopoles are not completely hidden due to a very small kinetic mixing and a hidden
photon mass. The latter also causes the monopoles and anti-monopoles to be connected
by strings. The resulting long-lived objects eventually decay to hidden photons which
tend to escape galactic cores before decaying. The mass scales are those of the hidden
photon (/& 500 MeV), the monopole (=~ 3 TeV) and the mixing scale (close to the Planck
scale). A gauge coupling in the hidden sector is the only other parameter. This coupling
must be strong and this results in light point-like monopoles and light thin strings. The
text in this chapter is reproduced in [54]

4.1 Introduction

We shall describe a decaying dark matter scenario where the dark matter “particle” is
a monopole and an anti-monopole connected by one or more strings. We shall refer to
these objects as MSM’s. Both the monopoles and the strings are composed of hidden
sector fields. A nonabelian gauge symmetry of the hidden sector breaks to a U(1), to
produce monopoles and then the U(1), breaks at a lower scale to produce strings. If
the only remaining long range field to which the monopole couples is gravity then the
MSM’s can have cosmologically interesting life-times [55]. They can be considered for
dark matter since their number densities are not constrained by the Parker bound [56].
The dynamics and evolution of monopoles attached to strings in the early universe has
been quite well studied [57-61].

For the natural abundance of monopoles to be appropriate for dark matter they must

be much lighter than standard GUT monopoles. This mass can in fact be in a range of

65
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interest for a decaying dark matter interpretation of the PAMELA [22] and FERMI [23]
et excesses. A M SM survives until the M and M finally annihilate into hidden photons.
If the hidden photon 7y, experiences kinetic mixing [62] with the photon and is otherwise
stable then it decays into pairs of normal charged particles. With the appropriate mass

its stable decay products are electrons, positrons and neutrinos [63, 64].

We shall show in the next section that the kinetic mixing in combination with the
hidden photon mass implies that a MSM will pick up the normal magnetic field of a
dipole. These oscillating dipoles lose energy through normal electromagnetic radiation,
and when the mixing parameter is extremely small the lifetime of the M SM’s can be
appropriate for decaying dark matter. Thus in our scenario the kinetic mixing is setting
the lifetime for both the MSM’s and the v,’s, and it is responsible for producing an

observable signal.

We first summarize the various parameters and relations between them [65]. When
the hidden nonabelian gauge symmetry breaks to U(1), some gauge bosons receive mass

mx. If the gauge coupling is ej, then the monopoles have mass

ma ~ i—gm X (4.1)
and a size of order m)_(l. We assume that the monopoles form at a temperature Ty, ~
mx/en = myr/gn where g, = 4w /ey, is the magnetic coupling. When the surviving U (1),
gauge symmetry breaks at a lower scale this hidden photon v, develops a mass my. At
this scale the coupling may have run to a new value ¢,. In the results to follow either
e or e}, should appear depending on the context, but for simplicity we shall drop the

distinction and simply use ej,. Strings have an energy per unit length

[~ —m; (4.2)

and a thickness of order m; . We assume that the strings form at a temperature Ty ~
my/ep.

The two mass scales of the hidden sector, m,; and my,, are fairly well determined if we
are to make contact with the dark matter interpretations of PAMELA and FERMI data.
For the stable products of 7, decays to be electrons, positrons and neutrinos only, my,
could be anywhere from above the e*e™ threshold up to about a GeV. But a mass above
the p*p~ and 777w~ thresholds is preferred since it gives a broader electron/positron
spectrum to fit the FERMI data [26,66]. Given this and with the mass of the decaying
MSM close to 2my;, the PAMELA data favors a mj; in the 1 to 3 TeV range while the
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FERMI data favors a mass at the upper end of this range [26,66]. We shall adopt the
values m;, = 500 MeV and m,; = 3 TeV for illustration. Adjustments in these masses

are still possible.

The remaining parameters are the hidden sector gauge coupling e, and the kinetic
mixing parameter y. In Section 4.3 we show how the correct initial number density
of monopoles constrains e;,. Here and at other points in our discussions we shall find
that a strong coupling is required. The lifetime of the M SM’s as determined by the
emission of electromagnetic radiation must be appropriate for decaying dark matter. We
study how this is possible in Section 4.4 while in Section 4.5 we consider other energy
loss mechanisms. The M SM’s that decay today are much smaller than average and we
can determine enough about the distribution of these sizes so that we are able to fix .
The lifetime of the 5 is then also determined. We find that this lifetime tends to be
sufficiently long so that ~;’s travel out of galactic cores before decaying, and this may
have interesting consequences for the associated gamma ray signal. The lifetime of the
mediator particle in secluded models of dark matter often face a constraint from big bang
nucleosynthesis [67]. In Section 4.6 we argue that in our case the 7,’s are unstable in
the presence of a light string network. In Section 4.7 we briefly consider the late time
properties of the dark matter and its self-interactions while in Section 4.8 we look at the

possibilities (or lack thereof) for its direct detection.

Here we can comment on the origin of the mixing parameter y. It is related to the
mass scale of the physics responsible for the mixing between the hidden and standard
model sectors. If this physics respects the hidden nonabelian gauge symmetry then the

lowest dimensional operator that can give rise to the mixing is

1 v
i Y G G (4.3)
This couples the gauge bosons of hypercharge and the hidden gauge group to ¢,, a
hidden adjoint scalar field. If (¢,) signals the breakdown of the gauge symmetry then
(ha) =~ mx/en =~ mpr/gn. The induced kinetic mixing x between the photon and the ~p,,

as defined in the next section, is x &~ (@) /Mmi: and so

My 2 12 (4.4)

XYh
(The absence of a field ¢, would mean that a higher dimensional operator is necessary
which would imply a smaller mixing scale.) It would be appealing for M,,;, to be close to

the Planck scale to avoid the introduction of another mass scale. Due to the very small
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value of y required to produce a suitable M SM lifetime we shall find that M,,;, as given
by (4.4) must indeed be of this size.

The strong coupling value that we have said is required for e could also be viewed
as natural, since then the symmetry breakings that are necessary in the hidden sector
could be occurring dynamically. In this way are encouraged to find interesting results

where the parameters e;, and y are close to their “natural” values.

4.2 Mixing and monopoles

At low energies the electromagnetic U(1) and the massive U(1), gauge fields and their

mixing are described by

1 | | |
L= —ZF/“/F/M — ZF}/W«VF/Z — §XF;“/F/Z + émizzA;zuA,li: (45)
Diagonal kinetic terms can be regained while retaining the masslessness of the photon

by redefining the fields in terms of new fields A and A, as

A/h — Ah
A = A A (4.6)

This means that all fields coupling to the photon with charge e will pick up a coupling
to the hidden photon of strength —xe [62].

The U(1), has emerged from the breakdown of a larger gauge group such that
monopoles arise as regular solutions of the field equations. But the (hidden) magnetic
charge of these monopoles must be quantized according to Dirac’s quantization condi-
tion, and so there is a question of how this is compatible with particles with a hidden
charge of —xe. This is answered in [68] where it is shown that monopoles, including
't Hooft-Polyakov monopoles, can carry a combination of both magnetic charges. The
argument for two massless U(1)’s is reproduced here, but adapted to our A and Ay, basis.

If a charge e is in the presence of a magnetic monopole with magnetic charge g the

angular momentum of the fields is

L= /d3m x (E x B) = %ﬂ. (4.7)

This must be quantized,
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where n is a non-negative integer. In the case of two U(1)’s the magnetic field of a

B\ r g
(Bh>  A4nr3 (gh> ’ (4.9)

while the electric fields of normal and hidden charges are respectively

FE er 1

(2)-2 (1) o
FE epr [0

(Eh> — o <1> . (4.11)

A system consisting of an ordinary charge and a monopole gives

monopole is

|L| :M:ﬁ’ (4.12)
A7 2

while for a hidden charge and a monopole we have

€nghn m
L =—"2 = — 4.13
L) == =2 (4.13)

These two equations give two types of allowed monopoles:

Meur — <g> _ 2mn (1> , (4.14)
9n e \0
M = (g> _ zmm (X) . (4.15)
gn e \1

We shall comment on our choice g, = 47 /e, (m = 2) in Section 4.4.

and

We see that the combination of magnetic charges carried by the monopole M is
orthogonal to the combination of charges carried by a normal charge. As long as 7
remains massless these monopoles remain hidden to normal charges. However once U (1),
breaks, this hidden component of the M field becomes confined for length scales larger
than m;l. Flux tubes, or strings, of the hidden magnetic field can begin on M’s and
end on M’s. Thus after U(1), breaks the remaining long range field of M is purely
electromagnetic (the x component in (4.15)) and the hidden monopoles become visible
to normal charges. The M’s now display an apparent violation of the Dirac quantization

condition, but this is allowed due to the attached physical string(s). These strings are
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also visible to normal charges (due to the y component in (4.10)) through the Aharonov-
Bohm effect as we discuss in Sections 4.5 and 4.8.

Let us return to the point that the U(1)y of hypercharge is involved in the origin
of the mixing, as in (4.3). In the mass eigenstate basis this can be seen as a mixing
of both the photon and the Z boson separately with the hidden photon. The Z mass
defines a basis to describe its mixing, and so by the same arguments as before particles
charged under U(1);, acquire a small Z charge while the hidden monopoles do not acquire
a Z magnetic charge. In this way we see that the hidden monopoles are not affected by

electroweak symmetry breaking.

4.3 Monopole densities

The hidden monopole M number density is ny; and it is equal to the M density at all
times. For a M mass of 3 TeV we wish to investigate the conditions under which n,; could
be appropriate for dark matter. We first consider the case when the magnetic charge is
large as in the case of GUT monopoles, so that we can apply the same analysis [69].
(This is the weak gauge coupling case and we turn later to strong coupling.) The density
of monopoles when they are first formed at temperature T, can be reduced through
annihilation of M-M pairs. This occurs if there are light particles carrying the hidden
charge in the plasma. Such fields should be present in our scenario since they are needed
at a much lower energy scale to produce an order parameter for the breaking of U(1);.
A M drifting through such a plasma towards an M can experience energy loss, capture
and thus annihilation. The annihilations end when the mean free path becomes longer

than the capture distance and this occurs when the temperature has dropped to 7' [69]

where 9
my 1 3¢(3) gney,
Ty~ —— B = =] . 4.16
I~ B2 o’ 472 ; 47 (4.16)
Here ap; = g7/4m and the sum is over all spin states of relativistic hidden charged

particles. The condition Ty < Ty & myyr /gy, implies ayy 2 (47/B*)Y/3. If this is satisfied

then the annihilations reduce the value of ny;/T? to

NI

K3my 1

45
—_— h = 4.1
4t BCmp; a3, where ¢ (47r3g*) ’ (4.17)

unless ny; /T2 is already below this value. The & factor is introduced since a temperature

such as T} is a hidden sector temperature, and this may be a factor of x times the tem-

perature T' of the observable sector. g, is the usual total effective number of relativistic
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spin degrees of freedom. For the smallest o, at which this annihilation process is still
operative the remaining monopole abundance would be 3 or 4 orders of magnitude below
what is required for dark matter (for C' = .05 and x = 1). Thus a;; must be smaller to
turn off the annihilations (7 > Ty), and this puts a lower bound on ay, = 1/ 2 1/2
for B =~ 1.

We thus turn to the initial value of ny;/T3. If we still believe that ay, could be fairly
weak then the density of monopoles produced in a second order phase transition can be
related to the correlation length ¢ and the relaxation time 7 as the system passes through
the phase transition at a finite speed. The speed is determined by the Hubble parameter
H at that time. This is the Kibble-Zurek mechanism [70,71] (reviewed in [72]). In terms

of critical exponents defined from

£ = Lole[™ (4.18)
T = Tole|™ (4.19)

where € = (T — T') /T, the following result is obtained

(VAT T
§N< - ) T (4.20)

A is the coupling appearing in a Ginzburg-Landau approximation to the free energy [73].

Since nys ~ €73 this leads to

3v

N 313/2 1 my O\ e
— KA ) 4.21
T3 & (I<L2/\1/2C ghmpl) ( )

The classical values of the exponents are v = p = 1/2 which makes the exponent in
(4.21) unity. With A = k = 1 and using the upper bound on ay; = g3 /47 from above,
the monopole density would be about two orders of magnitude too small. This could be
corrected if p and v deviated from their classical values in such a way as to reduce the
exponent in (4.21) (the causality constraint is v < p). Otherwise we are pushed towards
still smaller ay; (larger ) and larger A. In fact the Kibble-Zurek mechanism becomes

irrelevant when «y, becomes larger than unity.

When «; > 1 the monopoles become lighter than the massive gauge bosons, mj; ~
mx /ay. The monopole has a size &~ 1/my which is smaller than its Compton wave-
length. These relatively light point-like monopoles can be treated like normal particles.

With their fairly weak magnetic charge they will experience pair production and annihi-
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lation through two to two processes, and in this way they will reach thermal equilibrium
with the light degrees of freedom in the dark sector. The monopoles will remain in ther-
mal equilibrium until the temperature falls sufficiently below mjy;. The final freeze-out
temperature is reached when ny;(ov) ~ H where (ov) is the annihilation cross section.
We assume that this annihilation is analogous to two charged scalars annihilating into 2

photons [64] so that
Ta’,

(ov) = : (4.22)

2
may

3

This has to be close to the usual value of 3 x 10726 cm3s~! to arrive at the correct dark

matter abundance [74]. After including the dependence on x we obtain

1

~ L _ma
an R VR (2.8 Tev> ‘ (4.23)

In other words a;, = 1/ayp; ~ 47 and we note that this agrees with the definition of
strong coupling in “naive dimensional analysis” [75]. It suggests that gauge symmetries
are breaking dynamically in the hidden sector. Here we note that e; always represents the
charge of the order parameter and so in the case that the latter is a fermion condensate
the actual gauge coupling of the fermions is €, = e;,/2 and so aj, ~ .

Thus with a monopole mass close to 3 TeV, as hinted at by PAMELA and FERMI
data, the required monopole abundance for dark matter leads us to the strong coupling
case. The relations between the various masses and couplings that we mentioned in the
introduction are assumed to extrapolate into this regime. In some sense it is not a severe
extrapolation, since when ay; &~ 1/47 or g, ~ 1 the monopole mass has only come down

to the scale of symmetry breaking as given by my; /g, = mx/ep.

4.4 Lifetimes

Below some temperature the U(1), breaks and the hidden photon develops a mass my,.
M-M pairs become connected by strings to form MSM’s. Here we need to be a little
more explicit about how the gauge symmetries are breaking to form monopoles and
strings. Let us consider the simplest example, the breakdown of SU(2) to U(1); which
then itself breaks. If the first step occurs via a scalar triplet (¢,) then m = 2 in (4.15) as
we have been assuming. A second scalar triplet with a smaller vacuum expectation value
can be used to break U(1),. In this case the flux carried by a string will be 27 /ej, and
this implies that each monopole will end up with two strings attached. (We assume that

two 2w /ey, strings are energetically favored over a single 47 /e, flux string.) If instead
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a scalar doublet is used to break the U(1), then there are only 47 /e, strings and each

monopole will have one string attached.

In the first case a “necklace” can also form where equal numbers of monopoles and
anti-monopoles are attached to one loop of string. The evolution of necklaces in the early
universe was studied in [60] where it was concluded that necklaces tend to cut themselves
up into a set of M SM'’s and pure string loops. The evolution of an isolated M SM is
similar whether it has one or two strings and so the results in the two cases will be
similar. On the other hand we have mentioned dynamical symmetry breaking where it
is natural to consider a condensate of fermions rather than a vev of a scalar field. Weyl
fermions that transform as doublets under SU(2) could develop Majorana condensates
that transform as triplets under the SU(2). This suggests that the triplets only case (the

two string case) may be more natural, and we shall assume this in the following.

The acceleration of the M caused by the two strings, assuming they are pulling in
the same direction, is @ = 2j/my;. The strings in the M.SM’s should be fairly straight
for various reasons. Strings can be fairly straight on formation, especially for the smaller
MSM’s. In the next section we look at mechanisms by which strings very slowly lose
energy. But most importantly, a M .SM with an excess amount of string can emit a loop
of string, since when a piece of string intersects itself it may pinch off to form a loop.
Thus the M SM should end up in a state where the strings remain quite straight as the
M and M move around their center of mass, with energy moving back and forth between
monopole kinetic energy and string rest mass energy. Any angular momentum of the
system will keep the M and M from colliding. We will consider the peak velocities of
the monopoles below, but they can be substantially larger than the typical monopole

velocities at the time of string formation.

We will need to determine a distribution of lifetimes of the collection of M SM’s after
they have started to evolve as isolated systems. Some will have already decayed by now,
but this is a very small fraction of the original number as is usual with decaying dark
matter. We define the probability that a randomly chosen M SM will decay between
time ¢ and ¢t + dt as P(t,7)dt, where T is the mean lifetime. Then the rate of decay per
unit volume at the present time ty = 1/H is noP(to,T) where ng is the present density.
We can write P(ty,7) = 7, where 7.g is an effective lifetime, to be distinguished from
the actual mean lifetime 7 of the M.SM’s.

For now we focus on the energy loss due to normal electromagnetic radiation; in the
next section we shall compare this to other possible energy loss mechanisms. The Larmor

formula for a charge with proper acceleration a can be used to find the power radiated
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by the M and M even in the relativistic case [59],

AEerm 2 2 (4 2\’
= 22X (ga)?= X (T
dt 67 3m\ e, my
64m2 m2
~— . 4.24
3 ez, XN (4.24)

Our choice of y will make this very small, but it is still larger than the power radi-
ated into the massive ~y,. The latter is exponentially suppressed [59] with a factor
exp(—2vmy/3a) ~ exp(—4dvapmy/3my). For fairly straight strings the total energy
to lose is &~ 2u.L where L is the maximum separation of the M and M. Then (4.24) gives

a lifetime that is simply proportional to L

(4.25)

Thus the distribution of lifetimes in the collection of M SM’s is determined by the dis-

tribution of L’s.

In this context it is useful to consider the distribution of nearest neighbor distances
for a random set of points in 3 dimensions. The nearest neighbor distribution can be

derived from the relation
Pon(r,n) = 4mnr? (1 —/ Pm(s,n)ds> , (4.26)
0

where n is the density of points. By solving this relation for P,,(r,n) one finds that the

mean r of the nearest neighbor distribution is

= ~ -1/3

where y(z) is the gamma function. Eliminating n in favor of 7, gives

Pon (7, Fom) = LIS (f%) Tg) . (4.28)

w

o 2773

This satisfies [~ Pon(r,Ton)dr = 1 and [[° 1Py, (r,Fon)dr = Tp,. The lifetime is pro-
portional to L, and if we associate L with the nearest neighbor distance r then we can

obtain a distribution of “nearest neighbor lifetimes”,

Pnn(ta ?’rm) = Pnn(ra an)'(r%t, Tn—Tnn)" (429)
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P, (t,Tsn) is not a physical distribution of lifetimes since it is not even possible for every

M to be connected to its nearest M and vice versa.

But we wish to argue that P, (t,7,,) for some 7, is a good approximation to P(t,T)
when t < 7,,. This corresponds to M-M pairs with separations that are much smaller
than 7,,,, and it is precisely for these pairs that it is very likely that they are connected
by strings. Thus for these very close pairs the distribution of L’s should be quite similar
to the distribution of nearest neighbor separations. These small M SM’s include those
that are decaying today and so we can determine 7, by setting P, (to, Tnn) = Te_ffl where
to = 1/H. A typical value of 7.z for decaying dark matter is 2 x 10%® sec, and from this
we obtain tq/7,, ~ 1073. We also have the relation Ly /Ty, = to/Tun. Lo = 10737, =
0.554 x 10‘371;41/3 is the initial size of those MSM’s that are decaying today. In the
following sections it will become clear that P, (t,7,,) will be a poor approximation to
P(t,T) for times far in the future ¢ > t.

n;j/ % is obtained by scaling the present value of n, /3 for dark matter back to its
value at string formation when the temperature is & my,/ke,. The present temperature
Ty is enhanced by 1.4 due to the annihilation of eTe™ at an intermediate temperature

and so

T ~1/3
Lo ~ 0.55 x 1073252 20 < Po ) . (4.30)

myp, 1.4 \ 2my,

Note that the explicit x dependence will cancel the x dependence of o2 in (4.25) due to
(4.23), and henceforth we set x = 1. The resulting Ly ~ 2 X 107'? cm is small in the
sense that it is only about 50 times larger than the thickness of the string ~ 1/my,. For

these small M SM’s the resulting peak velocities of the monopoles are

9 L 1/2
v%( a “) ~ 0.02. (4.31)

Much larger M SM’s can have relativistic internal motions.

We can now determine x by setting 7., from (4.25) to to = 1/H after replacing L with
Ly. We obtain y & 1.2 x 10715, From (4.4) we find that the scale of physics responsible
for the mixing can be as high as M,,;, ~ 3 x 10'® GeV ~ mp; as advertised.

When the MSM has lost sufficient energy so that the separation of the M-M pair
remains less than the string thickness, then the string dynamics no longer plays a role.
The M-M pair forms a fairly weakly bound “monopolonium” state [76]. It cascades down
to the n = 1 ground state which has binding energy R = mj;/4a;. The classical lifetime
for a starting radius of m; ' is 7 = a2m3,/8mj x2. This is much shorter than the original

MSM lifetime, and it may be even shorter still due to the emission of v,’s through
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quantum An > 1 transitions. An = 1 transitions involving ~;’s are only possible for the
lowest levels, n < (2R/m., )3 ~ 3. Only a few of these low energy v,’s are produced
since R/my, ~ 10. Once in the n = 1 state the M-M pair finally annihilates to 2,

(usually only two due to the fairly small magnetic coupling).

These final v;’s are highly relativistic and since their coupling to charged matter is
so small they can travel a long distance dj, before decaying,
™mar 2

dh:")/ThC%— 2
mp ax“mp

. (4.32)

From the values of parameters as already given this is about 15 kpc. dj, of this order
implies that the v;’s will tend to decay away from the regions where the dark matter
densities are the highest, such as galactic cores. Also the ~,’s that give rise to the
observed e*’s will originate from more distant parts of the galactic dark matter halo, but
for dj, ~ 15 kpc the e* flux is only reduced by about 30%. On the other hand d;, cannot
be much larger than this. Since dj, o e;°, due to how y is determined by (4.25) and

(4.30), we see this as another constraint that rules out small coupling.

If most v;’s originating from our galactic core have not decayed by the time they
reach earth then this also affects the associated gamma ray signal [77]. In particular this
signal should show less enhancement in the direction of the galactic core and thus be
more isotropic than expected [78]. The dominant part of the gamma ray signal arises
from the e®’s up-scattering background photons. The inter-stellar radiation field has
a harder spectrum in the galactic core, and these photons when up-scattered produce
higher energy gamma rays. Thus the typical energy of the gamma rays is also reduced
when the ~,’s decay outside the galactic core. The same effect applies to gamma ray
signals from decaying dark matter in nearby clusters of galaxies [79]; the typical gamma
ray energies are reduced. The gamma ray signal that is not affected comes from the up-
scattering of CMB photons and the observational constraint on this signal is the same

as in other decaying dark matter models.!

!This constraint keeps one from arbitrarily decreasing Teg to compensate for a larger dj,, since de-
creasing 7.g would increase the CMB gamma ray signal as well as the e* signal.
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4.5 More energy loss

The moving M and M emit gravitational radiation, and the energy loss rate as estimated

in [55] (with p replaced by 2pu) is?

A€, _ 256 GiPL

(4.33)

For the M SM’s that decay today this is insignificant compared to the electromagnetic
radiation studied in the last section. But far enough in the future and for those MSM’s

that still survive this energy loss can become dominant. Then L(t) = L;e~*/™ where

5mM

~ 2 I 4.34
97 956 G (4:34)

This is about 400 times the age of the universe and up to a logarithmic dependence on
L;, this sets the maximum lifetime of any MSM. In particular the lifetime is no longer

proportional to L on these time scales.
A string loop emits gravitational radiation at a rate [81]

S

—% ~ —50Gu* 4.35
dt e (4:35)
and so a loop with length 7L has a lifetime

s _ 7L

. 4.
T, 0G0 (4.36)

Thus a string loop will decay within the age of the universe if L < 107! cm. The lifetime
of a loop of length 7L turns out to be similar to the lifetime of a MSM with size L,
since 7, /Tem =~ 1/5. The gravitational radiation by the strings in a M SM has the effect

of causing these strings to lose excess kinetic energy and to straighten.

We now turn to frictional effects [65]. The normal magnetic fields of the M and M

will induce frictional effects through interactions with charged particles in the plasma,

dd_‘?‘ ~ —\’B'T*? (4.37)

where B’ = 2% .(e;gn/4m)?. For friction to remove the energy 2uL and for the v in

2The relativistic case is studied in [80].
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(4.31) we obtain
2,U,L ™My
~ ~ . 4.38
Tf 2B'T22 ~ \2B'T? ( )

But due to the tiny y it is easy to see that my;/x*B’ > mp; and thus 7/ is much larger
than the Hubble time. This friction can be neglected.

Normal charged particles can also scatter off a string via an Aharonov-Bohm (AB)
effect, since charged particles carry a hidden charge ee;, = —ye while the strings carry a
27 /ey, unit of hidden flux. The resulting AB cross section per unit length is [65,82,83]

dosg 2

_ 20
a5 sin®(7e) (4.39)

where p is the transverse particle momentum. One can use this to estimate the time on

which the transverse velocity of a section of string will be damped out as

Tap ~ (4.40)

M
e2B"T3’
B" ~ 23" b, where b, is 3/4 for fermions and 1 for bosons. Here again p/e*B"T > mp,
and so this effect can be neglected.

Since the hidden magnetic fields of the monopoles have been confined to strings
carrying a unit of hidden flux, particles of the hidden sector that carry a unit of hidden
charge will not contribute to the two previous frictional mechanisms. On the other hand a
particle with hidden charge ej, /2 will have AB scattering at full strength, doap/dl = 2/p.
This can be the case for the fermions that develop the U(1);, breaking condensate. Their
masses should be similar to my,, and in fact they must be greater than my,/2 to prevent
Y from decaying into them.® There can also be a direct interaction of hidden particles

with the fields of the string, which for small p/m,, has a cross section [84]

dogir 72

dl " pln(p/my)?’

(4.41)

Thus there could be a damping of transverse motions of the strings if they move in a
bath of the massive particles with which they interact with cross sections o5 and/or
ogir- In the next section we discuss why there is very little such damping.

The Aharonov-Bohm effect implies that the string interacts with electrons through

the vector electron current. This gives rise to a more interesting process where the string

3There need not be much lighter or massless particles remaining in the hidden sector. If there are
we would need to assume that the 7, does not decay into them, otherwise the decays of MSM’s are
undetectable. But then it is unlikely that such particles will interact with the string and so they are
irrelevant for the string dynamics.
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emits ete™ pairs. For a fairly smooth string loop of length 7L the rate of energy loss

estimated on dimensional grounds is [61]

de;, € 1

~—— for L < 4.42
a T Y oy (4.42)
which in turn gives a lifetime
L3
s o TORS (4.43)
3ax?

For L &~ 1/2m. ~ 2 x 107! ¢m the lifetime is 75, & 10® years. For larger L the process is
exponentially suppressed, so that loops more than about 3 times as large can last longer
than the age of the universe. In any case we see that this process removes the smaller

loops at least as effectively as gravitational radiation.

et

e~ emission can be enhanced if the string loop has kinks and/or cusps. Cusps tend
to form on featureless loops with little excitation of higher string harmonics, but such
loops are less likely when there is little damping. Kinks also inhibit cusps [85] and since
kinks readily form when strings intercommute, they are expected to dominate. Kinky
loops of any size could emit e™e™ pairs to produce an energy loss which is optimistically
of order

&,

€ ) 1
&~ —ﬁ\/ﬁmm(L, %) (4.44)

Here we have included the likely effect that the electron mass has on the results of [86],
and the extra factor compared to (4.42) is at most a factor of 70. This is an optimistic
estimate for the rate since back-reaction effects will tend to flatten out the kinks (most
of the radiation comes from the sharper kinks) and thereby reduce the rate. Thus the
presence of kinks probably does not dramatically increase the number of loops that can
decay. We also note that the kinematics of kinks on the strings of a M SM can be quite
different; on a loop the kinks move at the speed of light while on a M SM a kink can

move slowly or even be stationary (as in a triangular standing wave).

The AB electron-string interaction also implies that a photon-string interaction will
be generated through an electron loop [61]. A current involving photons that can be
induced by the vector electron current and which doesn’t vanish for on-shell photons will
involve 3 photons. The lowest dimensional current that can arise after integrating out
the electron must then involve three factors of the photon field strength and one extra

derivative. It will therefore be suppressed by a 1/m? factor. For a string loop of length
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7L, now with L larger than 1/2m,, the rate will be roughly

dgs Oé3 62
VY~
R A THALE (4.45)

So even though this rate is not exponentially suppressed for large L, it has the o sup-
pression and it still drops very quickly for increasing L. It thus has negligible effect.
There is also the production of photons through their gravitational coupling [87-89], but

this is proportional to (Gu)? instead of €? and is thus miniscule.

4.6 Strings and ~}’s

The picture of a dilute network of strings interacting with a dense bath of particles is
completely altered at strong coupling. The strong coupling has an effect on the string
forming transition similar to its effect on the monopole forming transition. In the latter
case we saw that the monopoles became point-like and light compared to the massive
elementary degrees of freedom (the massive gauge fields and other massive matter). Thus
the monopole abundance was not determined by the correlation length (the Kibble-Zurek
mechanism) but rather by thermal equilibrium. In the string forming transition it is the
string tension &~ m3 /4a; that is small relative to particle masses, and so the effective
theory is a theory of light, thin strings.* These strings also carry fermion zero modes [91].
Thus the strings tend to capture fermions and the ~;’s effectively have a decay channel
into these zero modes. For example a 7, could decay into a zero mode and a normal
fermion by interacting with the string. All this indicates that the relevant degrees of
freedom after the transition are the strings and their excitations.

Thus the energy that was in a plasma of massless 7,’s and fermions before the tran-
sition will be mostly deposited into strings and their kinetic energy after the transition.
Due to the energy available in this plasma before the transition, the initial density of
strings will be much higher than what the correlation length suggests. The string-string
interaction rate will be very high (a section of string of length characteristic of the string
spacing will collide many times in the Hubble time) and this should keep most of the
total length of string in contact with the rest of the network. Only the loops that are
very small may effectively be decoupled soon after the strings form. This should also
be the case for the MSM’s that are small enough to decay today, as we have already
discussed.

The dense network of strings persists since it is undamped and since the energy

4The strong interaction limit of Nielsen-Olesen strings was considered in the original reference [90].
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loss from radiation (gravitational and electromagnetic) is so slow. This is quite unlike
the more standard evolution of cosmic strings which involves significant damping after
formation. Due to energy considerations the strings are expected to move relativistically

(v) &~ 1. A network of strings has an effective pressure [58]

pe = 52002~ p., (1.46)
and so relativistically moving strings behave like a normal relativistic gas with p = p/3.
In this limit the energy density in the string network does not increase relative to the
total energy density. As long as p,s remains a fairly small fraction of the total p down to
temperatures of about 1 MeV then it avoids constraints from big bang nucleosynthesis.
Strings only form at a temperature of order my, /e, ~ 40 MeV and so this is not a severe
constraint.’

For weak coupling, which we have already argued is not interesting for other reasons,
the 7,’s and massive fermions would remain after the transition. Then in particular the
Vn, with its 500 MeV mass and a lifetime longer than 1 second, would not satisfy the
BBN constraints [67].°

The violent motions of the strings and their collisions could in principle produce
vn’s. But unlike the case of ete™ emission, the mass my here is larger than ,/u and
so we expect substantial exponential suppression. Any ~,’s that are produced face the
prospect of string catalyzed decay back into dark sector degrees of freedom. In the
absence of strings the proper lifetime of the ~; is about 10 years, so at that time v;’s can
decay to ordinary leptons. But we expect that ~;, production and decay only transfers a

minor amount of energy from the hidden sector to the observable sector.

4.7 Late times

As the universe expands the interaction rate between M SM’s gradually decreases, both
because their separation increases and because their momenta are being redshifted. Start-
ing from the smallest ones, the size of the M SM'’s that have a collision time larger than
the Hubble time gradually increases and eventually most M.SM’s stop colliding. Loops

free of monopoles will also be present. Loops of complicated shapes will quickly fragment

"We also note that the BBN constraints have recently weakened [92,93], and may even be in line
with indications of new relativistic degrees of freedom from CMB studies [94, 95].

SIf the ~,’s annihilated fast enough into much lighter or massless particles of the hidden sector then
presumably they would also decay into these same particles, which would make them undetectable.
Alternatively a ~y;, mass closer to a MeV and/or a small k could be considered in the weak coupling case.
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into simpler loops which no longer self-intersect [96,97]. Thus in addition to the MSM’s
there will be a population of loops which also stop interacting and which extend down in

size to where they can decay to eTe™ pairs and gravitons within the age of the universe.

The relativistic string network should also survive to late times. The typical sepa-
ration between strings in this network is much smaller than the Hubble scale, but its
growth is proportional to t. Loops, with or without monopoles, of size anywhere close to
this typical separation would be continually interacting and reconnecting with the rest
of the network. As this separation increases there is an increasing population of smaller
loops and M SM'’s that are more or less decoupled from the network. What is left of the
relativistic string network today cannot have an energy density larger than the CMB,
and so the typical separation in the string network now can be no less than about 3 x 1010

cm. This of course is much larger than the present separation between MSM’s.

For the dark matter that accumulates in halos, the increased density and speeds
of the MSM’s and loops leads to a resurgence of their interactions. Let us consider
a nontrivial interaction between two MSM’s with fairly straight strings of length L,
and Ly respectively. The cross section is ¢ = (L;Ly where ( accounts for the relative
orientations, the fact that each is oscillating, and the probability for intercommuting. We
take ¢ = 0.1. Then the cross section corresponding to L; = Ly = 1072 cm for example
would result in a rate of collisions of nov = 50H for local dark matter densities and
speeds. This is a value of interest for self-interacting dark matter models [98] and it
suggests that the average L cannot be much larger than 10~ cm. A new feature here is
that the cross section depends on the L;’s of the M SM’s being scattered. The smaller
M SM’s have a lower collision rate and so there can be a nearly collisionless subpopulation
of MSM’s. Also the collisions are not elastic since the sum of the internal energies can
change after a collision. The effect that these new features have on the dynamics of dark

matter halos remains to be explored.

Also of interest is the probability for two MSM’s to collide to form a small M SM
with a size no larger than Ly ~ 2 x 1072 cm, so that it can decay within the Hubble
time. For this to happen a M and M must be close together not only in position space
but also in momentum space, since the kinetic energies of the monopoles in their center
of mass frame cannot be larger than the rest mass of a segment of string of length L.
Also the strings must intercommute at a point which will produce the small segment.
Given the large dimensional phase space of possibilities, the production of a small M SM
is highly suppressed. In fact our previous estimate for the number of small M SM’s is
due to a phase space suppression as well (e.g. the small r behavior of (4.28)). There the

suppression is not as strong since only position space was involved; the kinetic energies
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of the monopoles at the time of string formation could be neglected. Thus the rate of
M SM'’s decaying today should not be substantially changed from our previous estimate.

Collisions among a population of loops and M SM’s also provide some probability for
producing loops a few times 1/2m, &~ 2 x 107'! cm in size or smaller. As described in
the last section these loops decay mostly into ete™ pairs. M.SM’s similarly small in size
could also emit eTe™ pairs if their strings are excited. The energies of the e*e™ pairs are
typically not far above threshold and there are up to ~ 102 such pairs produced from the
largest of the small loops which can decay. The production of these small loops need not
be very efficient to be of interest for the 511 keV photon flux observed to come from the
galactic bulge [99,100]. For example a collision can excite the strings of two MSM’s, and
even when these M SM’s are not small it is still possible that they can emit a loop that
is small enough to decay. From the analysis of [101] we estimate that this probability
would have to be smaller than about 107, assuming an average L of 107 cm.

Finally we comment on large M SM’s. When L = 1 angstrom (10~% cm ~ 5000L)
the energy in the strings is comparable to the energy in the monopoles ulL ~ my,;. For
larger L the MSM’s have relativistic monopoles and a total energy larger than 2my;.
But we don’t expect the average L to be this large due to the constraints on the self-
interactions. We note in passing that for uL > mj, the ultra-relativistic monopoles can
result in the emission of particles with energies va ~ (uL/mar)(2p/mar) [59]. For ;s
to be produced this energy must be greater than mj, and this would require a very large
L > (ma/p)?my,/2 = 0.002 cm.

4.8 Direct detection

For direct detection of MSM’s the interaction can be between the monopole and a
nucleus or the string and a nucleus through Aharonov-Bohm scattering. The differential
cross section for the classical scattering of an electric charge off the field of a magnetic

monopole for large impact parameter is given by [102]

o _ (1) wan

dQ) E ) v

where E and v are the energy and speed of the incoming charge. The differential cross

section (per unit length) for AB scattering of an electric charge off a string is given by

doap  sin*(me)

d0  2mpsin®(0/2)’

(4.48)
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where p is the transverse particle momentum.

We can write the above expressions in terms of a nucleon recoil energy Epr, which is

the physical quantity measured. The results are

dO'MN 27TZQOéOéMX2

= 4.49
dER mNE]%b ( )
and -
2 2 -
doap ~ AL mx v (2myv _q ' (4.50)
dER 3 E% Er

For the latter we account for two strings of length L, with each on average 2/3 shorter

due to the oscillations.

Among the direct detection experiments, an upper bound on the interaction cross
section for heavy dark matter (several hundred GeV to TeV masses) is given by the
CDMS experiment [103]. This experiment uses germanium or silicon crystals as the
absorber and has a sensitivity threshold Fr ~ 10 keV. We use my = 26 GeV and Z = 14
corresponding to silicon, the lighter of the two nuclei. The integrals that determine the

total cross sections are dominated by the lower limit, the minimum recoil energies. We
find

ouny ~ 107°* cm? (4.51)
L —50 2
OAB ~ (m) 10 cme, (452)

where we have set v = 1073, Thus the Aharonov-Bohm scattering will be the domi-
nant form of interaction. The current sensitivity is oe., & 1073 (mpas/1 TeV) cm?. The
relative sensitivity of the more recent XENON100 experiment [104] is similar after ac-
counting for its heavier nuclei. Thus for a typical L not much above 10~° c¢m, the AB

cross section is still orders of magnitude below the best sensitivities available today.

For monopole-nucleus scattering we should comment on the maximum recoil energy,

2. since the M and M can move at speeds ~ (uL/my)"/? which could

FERrmax = 2myv
be much greater than 1073c. But the Egrpmax is limited by another effect. Recall that in
the massless 7, limit the mutual coupling between the M’s and normal charges vanishes
according to the Dirac quantization condition. Thus for distances of approach less than
mgl the monopoles become invisible to normal charges and therefore scattering events
where ¢ 2> m3 cannot occur. This implies that Frpa & m7/2my, and at this energy a

bump could be expected in the spectrum due to a type of pile-up effect.
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4.9 OQOutlook

We have presented a dark matter candidate, the M SM, with extremely weak couplings
to the observable world (kinetic mixing parameter xy ~ 107'°). When it decays the
annihilating monopoles contribute to high energy electron/positron, neutrino and gamma
ray signals. Excited strings and string loops may also be a source of low energy ete™
pairs. The self-interactions of MSM’s can have implications for dark halo dynamics.
But there is little chance of observing M SM’s through direct detection or in collider
searches. The extremely weak coupling manifests itself as a long lifetime of the particle
that mediates the interactions with the dark sector, the ;. Only ~,’s that originate
farther from us than its typical travel distance will be observable. This travel distance
can be somewhat larger than the distance to the galactic core and this could reduce the
anisotropy of the gamma ray and neutrino signals.

Meanwhile both the monopole mass and the 7, mass will be constrained by the
characteristics of the observed e* spectra. If my, is indeed significantly larger than 1
MeV then it will produce an apparent puzzle given the constraints from BBN. This in
turn would provide indirect evidence for strong interactions in the hidden sector since,
as we have described, in this case energy is dumped into relativistic cosmic strings rather
than nonrelativistic v,’s. A determination of the =, travel distance would also fix the
mixing parameter x through (4.32). The parameters of the model are then determined.
We may then find that a “miracle” has occurred, since it could turn out that the model
gives both the right abundance and the right lifetime for the M SM’s.



Chapter 5
Conclusions and Future Prospects

The Standard Model of particle physics, as well as the Standard Cosmological model,
have provided us with an unprecedented level of understanding and predictive power
across a wide range of phenomena. These theories are indeed an outstanding achievement
resulting from the efforts of a multitude of talented individuals and groups, across many
decades of work. In some sense, we have come to a point where the theories’ incredible
degree of agreement with experiment has turned into a great difficulty we now face as a
scientific community.

The success of the current working theories by no means implies that they are com-
plete. We know that there remain many open questions that are begging to be answered.
Furthermore, it is also our hope that in attempting to answer some of these questions,
a more unified description of the Universe could arise wherein both the SM and the
Standard Cosmological Model could find a home (at least partially). But in recent years
there has been little indication from experiment as to where the right path to proceed
along this task lies. On the cosmology front, the nature of Dark Matter and Dark Energy
remain as mysterious as ever, while observational evidence for extensions to the standard
big bang model such as inflation remains elusive [105]. On the particle physics front, no
spectacular signs of Supersymmetry, Technicolour, extra dimensions, nor of any other
BSM physics model has (yet?) emerged at the LHC, to the surprise and dismay of many.
Only the single Standard Model Higgs boson has made an appearance.

In light of this last observation, it appears we are left with the following options:

1. Supersymmetry is indeed the solution to weak scale naturalness; it is realized in some
really contrived incarnation such that it has not been observed yet, but is “just around
the corner”.

2. The observed Higgs boson is not exactly a SM Higgs boson, it just looks quite a lot like
it. It is actually only the tip of the iceberg of a whole new (possibly strongly coupled)

86



CHAPTER 5. CONCLUSIONS AND FUTURE PROSPECTS 87

sector, signs of which should appear in the near future of LHC searches either in the form
of new, heavier resonances, or deviations of the coupling of the Higgs to SM particles.
3. The SM is not “natural”, or more precisely, apparently fine-tuned parameters are
actually natural in the sense that they happen to occur in nature.

In this thesis we have delved into some of the open questions left by the Standard Model,

we could say mostly in the spirit of point number 2 above.

In Chapter 2, we have turned to the issue of whether or not the long theorized
dilaton should exist as a light degree of freedom in the context of gauge theories. This
is a question that, we believe, remains interesting even as a purely theoretical exercise
regardless of whether or not gauge theories with walking-type dynamics are realized in
nature at the weak (or any other) scale. However, the prospect that such a particle
could be identified with the observed Higgs boson at the LHC brings the problem under

a whole new light.

From a CFT perspective, the authors of [35] claim that depending on how the Stan-
dard Model is embedded into the conformal sector, a dilaton emerging from a near-
conformal theory could reproduce the observed behaviour of the 125 GeV resonance
discovered at the LHC (see also [106-108]). In our work we have shown qualitatively how
this property, at least as far as the lightest scalar’s couplings to the W and Z bosons are
concerned, could in fact arise naturally out of a gauge theory. However, we have a much

harder time envisioning how the lowest lying scalar in the spectrum could be light.

We find that in a non-local approach to the problem, one is made aware of important
effects coming from the UV that give large contributions to the scalar’s mass which cannot
be accounted for in purely local analyses. Qualitatively, this conclusion also appears to
agree with the CFT side of the argument in [35], where the authors conclude that it is
not sufficient to begin with a conformal theory and to then introduce a small breaking
parameter to keep the would-be dilaton’s mass small; they can only achieve this with
fine-tuning and special dynamical assumptions that should not generally be present in
gauge theories. Going beyond considerations of the value of the “dilaton’s” mass, we
additionally find that the lowest lying scalar in the theory cannot really be identified as
the PNGB of the spontaneous breaking of approximate scale invariance once we consider
the shape of the momentum-dependent form factor that determines how the scalar couples
to the fermion loops in the theory.

Our conclusions regarding the value of the lightest scalar’s mass are only valid in the
large N, limit however. Maybe, some hope yet remains that a light scalar could emerge
if the strongly coupled sector consists of a U(1) gauge theory, for example. This type of

extension to the SM has been considered in [109].
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In Chapter 3, we have considered a lepton based charge asymmetry observable that
could become useful at the LHC in the event that anomalies in the lepton counts of
the various channels should emerge. If we remain optimistic regarding point 2 above,
PNGBs could be the first to show signs of BSM physics in these channels. Some of these
PNGBs with complex decay chains may be difficult to reconstruct. If their quantum
numbers should be such that a charge asymmetry is expected however, as in the case of
scalars carrying diquark quantum numbers that appear in the model of [109], then the
observable that we propose, AL, may be one of the few measurements fit to explore it.
We have also presented our theory calculation for the charge asymmetry coming from
QCD of diquark scalars, to use as benchmark objects for our study. Of course there is no
reason why AL, should not also be useful to study charge asymmetries in more familiar

systems such as tt for example.

Finally, in Chapter 4 we have presented a proposal for a dark matter candidate coming
from a hidden sector only very weakly coupled to the Standard Model. If we consider
the rich gauge and matter structure that exists within our own SM, which only accounts
for a small percentage of the matter inventory in the Universe as we have mentioned
in Section 1.3, it is reasonable to think that a dark sector could bear some resemblance
to this complexity. We have entertained the possibility that some of the astrophysical
anomalies that have come to light in the past years could be indirect signals of DM
decay (or annihilation) in our own Milky Way’s DM halo, hence a portal coupling the
dark and visible sectors is necessary. One interesting such portal to consider, is that
purveyed by the kinetic mixing of a dark photon with the photon. One then may think
of a dark sector with a larger gauge group that could spontaneously break leaving an
unbroken U(1). If the original gauge group in which the remaining U(1) is embedded is
semi-simple, this type of transition will generically lead to the appearance of topological

defects with quantized magnetic charge, i.e. dark magnetic monopoles.

Through the sequential breaking of the dark U(1) we have been able to obtain a
very long lived, decaying DM candidate consisting of dark monopoles tied by strings.
The parameters in the theory work out in such a way that a strong coupling in the dark
sector appears necessary to give the right DM relic density, while at the same time saving
our model from BBN constraints. The value of the mixing parameter between the two
sectors can be pinned down from the distance a hidden photon can travel before decaying,
in order to generate a positron excess in our vicinity. The resulting value ~ 1071% implies
little immediate prospect for direct detection and production at colliders, but gives the
right DM lifetime to avoid the stringent constraints coming from the isotropic gamma

ray signal in the galaxy.
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Our model may also be of interest in the context of self-interacting dark matter.
Increased density and speeds of the monopoles and strings in the galactic halo can lead
to the resurgence of their self-interactions which may occur with large cross sections
given that their origin is geometrical. The effects that these interactions may have on
the dynamics of dark matter halos remain to be explored.

While our DM model may appear rather exotic, the reader may find that the ideas
that have logically led us to consider it as such are all quite reasonable. As direct detection
experiments improve their reach towards lower scattering cross sections between atomic
nuclei and the DM particles, we expect that they may become sensitive to our model in

coming years.
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