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1. Introduction

We present a self-consistent, relativistic scattering theory for three distin-

guishable scalar particles of finite mass. From arbitrary pairwise interactions

we derive integral equations leading to the probability amplitude for scattering in

the full three-body system. The treatment satisfies several important criteria: "2
1. Relativistic invariance and four-momentum conservation —

The equations, derived in an arbitrary Lorentz frame defined by an overall
velocity, lead to an invariant probability amplitude. Four-momentum
conservation is recovered in the on-shell limit as the product of energy

conservation and velocity conservation.

2. Two- and three-particle unitarity —
The two-body input is constrained to satisfy unitarity. The form of the
off-shell continuation guarantees that three-body unitarity follows.

3. Unambiguous off-shell continuation —
A set of parameters, corresponding to asymptotic single-particle energies,
is introduced in order to write the relation between two- and three-body
off-shell variables in terms of external quantities, independent of the in-

tegration over intermediate states. Both systems are then effectively dis-

persed in terms of the same variable, the three-body total energy.
4, Proper cluster decomposition —

Clustering, in the physical sense, is satisfied. If the interaction of one
particle with each of the others vanishes, the solution decomposes into

the product of a spectator and a two particle scattering state.



5. Correct non-relativistic limit —

In the low energy limit the equations satisfy the same physical criteria as

the non-relativistic Faddeev equations.

The conditions of relativistic invariance, clustering, and unitarity place severe
restrictions on the form of a scattering theory. In the three-body problem, the
occurrence of successive pairwise interactions in different center-of-momentum
frames leads to a consideration of the Lorentz transformation properties of off-
mass-diagonal matrix elements. Clustering and unitarity point to the need for a
parametric relation between the two- and three-body off-energy-shell dispersion
variables. These considerations are treated here in the simplest possible context—

the scattering of scalar particles.

Dirac® first showed that several different forms of Poincaré invariant rela-
tivistic dynamics are possible. These dynamics are distinguished by the choice of
invariant hypersurfaces on which initial conditions are specified. The usual choice
is the “instant form” in which the hypersurface is t = constant. In this case the
generators of space translations and rotations are kinematic operators, while the
dynamics is contained in the generator of time translation and the generators of
Lorentz boosts. We utilize here the “point form” corresponding to the hyper-
surface t2 — x? = constant > 0. Then the six generators of the Lorentz group
are kinematic, while the dynamics is contained in the four-vector P. As a result,
interactions are Lorentz invariant but do not commute with the generators of
space-time translations. Since we are constructing a scattering theory that con-
nects two-body t-matrices to three-body t-matrices, without explicit reference to
the spacial form of the two-body potentials, the “point form” is the most natural

for our purposes.



The various basis states needed to develop the scattering theory are defined
in Chapter 2. Chapter 3 reviews the fundamental operator relations and the
Faddeev operator decomposition used to insure well-defined integral equations.
Chapter 4 establishes the crucial connection to the two-body input. Here velocity
conservation of the transition operator matrix elements is introduced in order to
separate Lorentz invariance from the off-shell continuation in energy. Two-body
dispersion is related parametrically to three-body dispersion. Chapter 5 presents
the resulting integral equations. The connection to physical observables is de-
scribed in Chapter 6, where the invariant probability amplitude is obtained from

the solutions of the integral equations. Chapter 7 summarizes the conclusions.



2. Covariant States

Consider a system of three distinguishable scalar particles with conserved,
non-zero real masses and no internal degrees of freedom. States within this
system transform via a unitary representation of the ten-dimensional Poincaré

group U(l, a) for Lorentz transformations [ and space-time translations a,4
U(lz,az) U(ll,al) = U(lzll,az +lza1) . (2.1)

For convenience, we write U(!) for U(l,0).

A general Lorentz transformation [ can be written in terms of a pure Lorentz
boost b and a pure rotation r. The boost is characterized by a velocity B, from

which we define a relativistic velocity

_ 1
u = ——,———1 — Iﬁlz ﬂ . (2'2)

With «0 = /1 + [u|? , we define a four-vector velocity

v = (u°,u) ‘ (2.3)

which satisfies u-u =1 .

A general quantum state |¢> can be used to define a new, boosted state

b)) = U b)) |w) - (2.4)



2.1 SINGLE PARTICLE STATES

Quantities pertaining to a particular particle are labeled with a lowercase

Roman letter or numerical subscript. A single-particle momentum eigenstate of

mass m, and velocity u, is defined from a standard rest state of the same mass

‘ma,ua> = U(b(ug)) lma,0> S
The four-momentum of this state is

ks = mgu, .

(2.5)

(2.6)

Since the individual particle masses are fixed, we adopt the convenient notation

Ica> = ‘ma,ua> .

We choose the normalization

(-

2u?

= 2g4 6%(koy — k)

and completeness

k) (ke

1— / m2 dPu,
2u0
+00

/ d kg 6(k2 — m2) 0(k0)

-0

where €4 = \/m2 + |kg|2.

o) (ke

’

2.7)

(2.8)

(2.9)



2.2 THREE PARTICLE STATES

Three particles can be grouped into a spectator a and a pair (a+,a-), with
(a,a+,a-) cyclic. The subscript 4 is used to label quantities pertaining to the
pair.

The nine degrees of freedom of the three-body system can be represented in

terms of collective variables such as the invariant mass of the system

W:\/(kl-l-kz—f-ks)'(kl + ko + k3)

the relativistic four-velocity of the system
u= (k1 + kg + k3)/W ,

the two-body invariant masses

Wy = \/(ka+ + ka_) . (ka+ + ka_) 3
and the two-body relativistic four-velocities
Uy = (ka+ + ka_)/wA .

v, is used to represent the four-vector u, as observed from the three-body center

of momentum frame. In particular,
0 __
v, =u-Uu, . (2.10)

p. is used to represent the magnitude and 5, the direction of the three-momentum
of particle a+ as observed from the center of momentum of the (a+,a-) subsys-

tem.



The specification of any nine independent variables is sufficient to select a
unique three-body momentum space configuration. The remaining variables are
then fixed as functions of these original nine variables and the three conserved
individual particle masses. This functional dependence is not shown explicitly

when it is clear from the context.

The full three-body Hamiltonian H is assumed to decompose into a non-

interacting term plus a sum over three pairwise interactions® 3
H=HO4+Y #{. (2.11)
A

This leads to the use of several different types of three-particle states in our

treatment.

An eigenstate of the non-interacting Hamiltonian H (9) is the direct product of
three non-interacting single particle states, one for each particle in the three-body

system
HO |k, by, ks ) = B |ky, o, ks )
E©) = €1+ €3 +¢e3 (2.12)

2“2 3 '
mg 5 (ua—‘ua)

3
<k15k2,k3‘k1,ak2,aké> = H
a=1
= u® ¢(w,,v0) 63(u —u’) 83(va—v?h)
X 6(wa —wy) 6*(pa — P1)
where9

g(wA,vg) = 8US(W — wAvg) .
Wiwlp,




Corresponding to each free state is the equivalent boundary state of three widely

separated, asymptotically non-interacting particles
HO |@o(ks, ks, ks) ;W) = EO) ‘Qo(kl,kz,ka) W), (2.13)

where the total four-momentum P = Wu is a convenient label *° and E(0) = w0,

The eigenstates of H, = H( + H‘SI) form a complete set of clustered channel
states. Specifying each state by its overall velocity v and the characteristics of

the interacting two-body subsystem gives

HA U,UA,¢A(W,U)> = EA

u,umda(w,n)> (2.14)

E, =wWu°

W = w0l +1/m2 + wi|v,|?.

Ya(w,n) represents a two-particle state of invariant mass w, and internal quan-
tum numbers summarized by the single parameter n,. For two-particle scattering
states the mass w is a continuous variable. For two-particle bound states w is
one of a discrete set of bound state masses u,. The two types of states are

orthogonal, with normalizations

<u,u,A,d)A(w,n)’u’,ui,z/g(w',n')> (2.15)

= y° w(wA,vS) 63(u - U.') 53(\’,4 - Vi) 5(wA,wj) 5’1,4:'7.2 ’



where

w(w ,UO) _ %pl\ g(l‘u\,v(j) bound

. =

o %(PA/WA) s‘(wA,v(A)) scattering
6 y bound

§(wa,wy) = e ! .
b(wa —wy) scattering .

The overlap of these clustered channel states with non-interacting states defines

wavefunctions

(NI

(ks klu',ulba(w',n')) = 0 [(war0d) w(w),0)))* Ea—u')  (216)

X 53(VA —Vi) ¢A(’W,ﬁ|w',77') ’
where

¥h (w, blu',n') bound

Ya(w,plw’,n') =
o , P (w, plw’,n’) scattering .

The wavefunctions are complete and orthonormal. With %fd'w a Tepresenting a
sum over the bound state masses and an integral from m, = (ma4 + Mmqa-) to 00

over the scattering state energies,

S 5f dwl! pawlu!n) il n") = 8l = wl) 82 ~ 5,
ny
e, ]
A * ol ~
/dwl’/d Al (w8 ) pa(w',p"u'n') = bupisly Onpmly
My

o0
/ dw,’ / dp!! S (w"", " |w,n) Yi(w' B lw',n') = 8(wa —w}) &y, 1
m,

10



(o]
[ awi [ ap w5 h,n) w5l 0" = 0. (2.17)
m,

Below the scattering threshold the summation over n!’ extends only over quan-

tum numbers corresponding to existing bound states.

Boundary states containing a bound pair of particles are equivalent to the

bound clustered channel states

H,

@A(U’, Ua, ¢ﬁ(u, 77)) ;W'U'> =FE,

o, (u, Uy, ¢ﬁ (&, n)) ;Wu> (2.18)

The eigenstates of the full Hamiltonian H represent the solution of the phys-

ical problem

H ‘\I/o(kl,kg,kg) ;Wu> - F ‘\Ilo(kl,kz,kg) ;Wu> (2.19)
H ‘\IIA(u,uA,zbﬁ(u,n)) ;Wu> =FE “IfA(u,uA,d),’i(u,n)) ;Wu>

E =Wu°.

Here kj, kg, and k3 are the asymptotic momenta of individual particles and u,

is the asymptotic relativistic velocity of the bound pair.

11



The symbols |<I>a ;Wu> and I\Ila ;Wu) are used to represent general boundary
and fully interacting states respectively, with asymptotic limits containing either

three free particles (o = 0) or a bound pair with a free spectator (a = 4).

12



3. Scattering Operators

To solve the physical scattering problem, the exact eigenstates of the full
three-body Hamiltonian are expressed in terms of the asymptotic boundary states

with corresponding momenta. The standard techniques of scattering theory give

\wgi)(kl, k2, ks) ;W) =lim (i) R(E % ic)

®o(ky, ka, k3) ;Wu> (3.1)

U (u, w0, 94 (w, ) s W) = lim (Fi€) R(E + ie)

o, (u; Uy, ")[’i (w, 77)) ;Wu> s

where

R(Z) = (3.2)
is the fully interacting resolvent. We also define the non-interacting resolvent

1

(0) - -
R\%Y(Z) IO (3.3)
and the channel resolvents
Ru(Z) = —— (3.4)
T H -7 '
All resolvents satisfy the Hilbert identity
R(Z1) — R(Z2) = (21 — Z2) R(Z1) R(Z,) (3.5)
and
RY(Z)=R(Z%) . (3.6)



Several relations follow directly from the resolvent definitions

R(Z) = RO(2) - RO(2) Y HY R(2) (3.7)
R(Z) = Ru(Z) — Ru(2) Y 54 HY R(2) (3.8)
R.(2) = RO(z) - RO(2) HD R.(2), (3.9)

Whel‘e SAB == 1 - 5.43'

The three-body transition operator T(Z) is defined to satisfy a Lippmann-

Schwinger 1 type equation

7(2) =Y B Y HD RO(2) T(2) . (3.10)

Then
R(Z) = R9(2) - RO(2) T(2) RO (2) (3.11)
7(2)=5 7D - S = R(2) Y HY . (3.12)

The Hilbert identity for the resolvents (3.5) leads to a unitarity relation for T'(Z)

T(Zy) — T(%) = (%2 — Z1) T(Z1) RO(Z1) RO(Z,) T(Zy) . (3.13)

As it stands, the Lippmann-Schwinger equation (3.10) for T(Z) yields an in-

tegral equation with a non-compact kernel and therefore has no unique solutions.

14



In order to proceed, T'(Z) is decomposed using Faddeev’s method? into

T(2) =) _T.s(Z) . (3.14)
The components satisfy
Ts(Z) = 615 Tu(Z) = D _ b4p Tu(2) RO(2) Tos(2) , (3.15)

where T, (Z), the transition operator for the scattering problem generated by the

Hamiltonian H, = H©® + H(D satisfies

T,(2) = HP - 7D rO(2) T,(2) (3.16)

R.(2) = RO)(2) - RO)(2) T.(2) RO (2) (3.17)
T,(2)=HY - 59 R, (2) HY (3.18)

Tu(Z1) — Tu(22) = (Z2 — Z1) Tu(Z1) RO(Z1) RO(Z2) Tu(Z5) . (3.19)

The FLN proof of unitarity13 demonstrates that the unitarity of T(Z) (3.13)

follows from the unitarity of T, (Z) (3.19).

T.(Z) expresses the scattering of two particles in the presence of a third,
non-interacting particle. The relation of T, (Z) to the purely two-body scattering

problem is the central issue of this treatment. It is discussed in the next chapter.

To obtain integral equations with fully connected kernels, Eq. (3.15) for

T.5(Z) is iterated once. Defining the operator W{Z) and its components W, (2)

15



through

= W.a(2) (3.20)
Ti5(Z) = 640 Ta(2) +Wan(2) (3.21)

gives
Was(Z) = — 840 Tu(2) RO)(2 Zéw Tu(Z) RON(Z) Wos(2) . (3.22)

The solution of this equation yields T'(Z), which then through (3.11) gives the
full resolvent R(Z). The connection to the physical probability amplitude is

discussed in Chapter 6.

16



4. Two-Body Input

The solution to the two-body problem is the input for this formalism. The

transition operator t(2), generated by a Hamiltonian h = RO + A1) acting in a

two-body space, satisfies

t(z) = A — D 7O (2) ¢(2)

r(z) = rO(2) — O (2) ¢(2) rO(2)

t(z) = RO — ) ¢(2) A

t(z1) — t(z2) = (22 — 1) t(z1) r(o)(zl) r(o)(zz) t(z2) ,

where

1

Oy = — —
r\)(2) O

(4.1)

(4.2)

(4.3)

(4.4)

The connection between t,(z) and T,(Z) cannot be written in operator form,

since these two operators act in different Hilbert spaces. Instead, a matrix ele-

ment relation is sought which satisfies covariance, unitarity, and clustering.

At the two-body level, Lorentz invariance and unitarity restrict the form of

the matrix elements of t(z).14 Lorentz invariance requires that the scattering pro-

cess not alter the velocity of the center of momentum (see Appendix). Extracting

17



phase space factors gives

<ka,+, ko- ke, k;_> (4.5)

ta(2)

= [ug]z [wAw,'l]_% [16 wij/pApi]% 53(11,4 _u,’a) TA(w,ﬁIW',ﬁ';Z) ’

where

Z,=2z/ul .

The function 7, depends on the indicated center-of-momentum variables, the

off-shell parameter Z,, and the conserved individual particle masses mgy, mq_.

Unitarity (4.4) requires

Ta(w,plw’,p';21) — 1a(w,plw’,p'; Z3) (4.6)

o8]
= (22— Z1) / dwi’/dﬁi' Ta(w,plw"’, 9" Z1)
m

A

1 1

1 atlt 1 Al
T.(w w',p ;1 Zg) .
w!'—2Z) wi'— 2, (w", " w’, 5" Z2)

X

The three-body unitarity condition (3.19) must reduce to this same restriction.

Clustering is satisfied if the exact physical solution for the case of a non-
interacting third particle decomposes into the product of a spectator plane wave

and a two-body scattering state. When T,..,(Z) and T\..,(Z) both vanish, Eqs.

18



(3.14), (3.21), and (3.22) give
T(Z) = T.(2) . (4.7)

Both clustering and unitarity require the matrix elements of T,(Z) to be
proportional to the function 7,. Lorentz invariance requires the conservation of
u. The conservation of u, is also necessary to insure the independent Lorentz
invariance of the decoupled spectator and the interacting two-body state in the

clustering limit.

In order to connect three-body unitarity with two-body unitarity a para-
metric relation must exist between Z and Z. This relation must reduce the
three-body off-shell behavior to that of the two-body problem. Defining €£*' to
be a parameter equal to the physical asymptotic energy of the spectator in the

three-body center of momentum frame, we write
Z,=(2°— ) /o0, (4.8)

where

Z¢=Z/d°.

This gives the correct on-shell limit
w, = (W — el /0 | (4.9)
The linear nature of resolvent denominator gives

(ko ko] RO(2) [kl ko k) = g (b,

T Wu -2

ki kl k! 4.10
152273

19



1
= 1 <k1,k2,k3‘k{,ké,ké> )

w00 W, — 2,

where

Ty = (W — &) /02 .

By expressing the off-diagonal dependence of the matrix elements of T,(Z) on 74
through @, instead of w,, the restriction (4.6) on 7, can be used to guarantee

three-body unitarity (3.13) through (3.19).

The three-body phase space element can be written as

m? d3u; 1 X
L= WO [pW,00)] T W du v dby (4.11)
=1 1
where
800 (Wvl — w,)
v 74 0y — A A A .
p( ’UA) prA

" The form of the matrix elements of T,(Z) which satisfied all the required condi-

tions is

<k1,k2,k3‘ T\(Z) ‘kl’,ké,ké> (4.12)

3
2

WP [WWE o, 00) oW, 0] 8%u — u') 63(va — Vi)



where

Wy = (W ~ eb*) /03
Wy = (W'~ eb*)/v}
Z, = (25— 2¥) /o0 .

Since the matrix elements conserve both u and v9, the relation between Z, and
Z is parametric. Using (4.10) and (4.12) to evaluate the matrix elements of
(3.19) reproduces the two-body unitarity condition (4.6) written in terms of the
variables #,,w,, and w,’, instead of w,, w}, and w!’. The 6 functions in (4.12)

provide the correct lower integration limit.

21



5. Integral Equations

Given the two-body inputs, (4.12) can be used in (3.22) to generate a coupled
set of integral equations for the matrix elements of the components of W(Z). In
these equations the eP?' factors are formally treated as fixed parameters. In
the next chapter we will show that the resulting matrix elements are related to
the physical probability amplitude only for a unique choice of values for these

parameters.

To simplify the calculation, define the functions W, by

<k1,k2,k3' Was(Z)

k], g, k3 (5.1)

= [u°]2 [WW']_% [p(W,v0) p(W', 02 ’)]% &u—u') §(W — &2 —m,v9)

!

x (W' — e},’ar'— mpvd) Was(W,v,plW',v',5'; Z°) .

In addition to the indicated variables, W,r depends parametrically on the indi-

par _par

vidual particle masses and the factors e}™, e}, 5™

par/
y €3 .

, and g

In order to write the integral equations satisfied by W, another phase space

element is needed. Define the functions

w(W,00,m?) = W2 — \/m? + W3((s0)? - 1) (5.2)

k(W,v%,9%,u, - u,) = m? + m? —W? +2 w(W,v0,md) w(W,v?,m?) ur-uy

22



and let W;; be the largest real root of the fourth order equation in W?2

(W,],v,,ve,u, uy) — mﬁ =0 (5.3)

k#1,7.
The phase space element can then be written as
: m du; _ 0,0\ 43
H 7'2u0 [ b/u ] ( abs Uy ’va) d u dBvA d3v3 ’ (54)
i=1 1

where

3 3
1 [W(Wabavaamg)] [W(Wabavg,mg)] aW(Vvaba vg,mﬁ)
dmgomy v v om,

Q(Wab, vO vloa) =

Ow(Wap,v2,m2) [0k(Wap,v9,v0,u, - up) -1
3mb 8Wab )

The driving terms in the integral equations have the form

DAB(W)V,ﬁlwlavlaﬁl;Zc) (5'5)

(ML

B

o3, 0%,98") (oW, o) pw P, 05 ")]

B

23



where W(g) is the largest real root of

0 2
K:ab(W(b),vA,vB ,Ur u)—ms=0

¢ #a,b,

and

i) = W) — 5™ /03

A

,u’j(f) — (W(I) _ sgarl)/vg’

o ab

w)=w' —epar')/vo'

b B

(Zc parl)/vo’ )

B

;3& ) and p( ) are specified through the four-vector
P(W,v;,v,,mi,m2) = b7 (v,) [— ek [w(W,00,m?) v, + Fw(W,v],mi) v,]] ,

where €;;; is the antisymmetric permutation symbol and b(v,) is a boost from
the center of momentum of the (i+,7-) system to the three-body center of mo-

mentum. Define

P(W)VI>VJam?$m§)

N ]

J

Then

ﬁg) = }S(W,SI,I)’VAaVz,an’mlzy)

(1 A I ! 2 2
) — P(Wib),vB,vA,mb,ma) .

24



With integration to occur over d®v!!, the kernels have the form

KAD(st3ﬁ|W”,v”aﬁ”;Zc) (5‘6)

1
= oW ", 02,v3") [p(W"",v0) p(W "', 00" 3

D

1" a 0 ] ar o'l
X (W' — eB™ —m 09) oW — el —mpol

~711 Al

X TA(ﬁ,ﬁ,w » P aZ)

where W'/ is the largest real root of

1,0 ol 7] 2
Kad(W', 03,00 u,-ull)—m2=0

e#a,d,
and
All __ B ] 1 2 2
Dy —P(W ’VAaVD’ma’md)
All A n o1t 2 2
pp =P(W yVpsVa,mg,ms)

W, = (W' — b [0 .

Thus, the integral equations generated by the matrix elements of (3.22) have

the form

wAB(W,v’ﬁIWI,VIaﬁI;ZC) (57)

25



= _5_,413 DAD(vaaﬁ|Wlav,,ﬁ,;Zc)
_ZSAD/dsvl')' [KAD(W,V,ﬂW”aV”,ﬁ”;ZC)
D
X wDB(W”,V”, Alllwl,vl,ﬁl;zc)] ,

where the dependence on the conserved single particle masses and the eP?f factors

has been suppressed.

26



6. Probability Amplitude

The physical cross section is related in a well-known manner to the invariant

probability amplitude ﬂ(+)(<I>a[<I>é ;W) defined by

!
(0O walwl" W'Y = g (@i wulog;wa’) (6.1)
+ 278 A (Wu — W'y') A(+)((I)a|‘1)[’; W)

A Wu—W'h') = [u®/W3] (W -W') 63(u—u').
From (3.1) and (3.6)
<\I/$;) ;Wu‘\ll(;)’ ;W"u.'> (6.2)

= lim lim (—ee') <<I>a;Wu‘ R(E + i€) R(E' + i¢")

€—0 ¢'—>0

@;,;W'u’> .
From (3.11) and (3.13)

R(Z1) R(Z2) = RO(21) [1 - T(Z1) RO(Z1)] [1 - RO(Z) T(Z:)] RO(2)

R(Z1) R(Z:) = RO)(z) [1+T(Z1) (5 .

— R
—7 RO)(Zy)] (6.3)

— 1
75 — 71

+ RO(2,)] T(Zz)] RO(Z,) .

27



6.1 ELASTIC AND REARRANGEMENT SCATTERING

Consider first the case of elastic and rearrangement scattering. Each bound-
ary state consists of one free particle and a bound pair. Define a set of operators

Q.p satisfying
RONZ) W,5(2) RO(Z) = R,(Z) Qun(Z) Ra(Z) . (6.4)
Then, by writing (3.5) as
R(Z) = R(Z1) [1 - (21 — Z2) R(Z:)]

and using (3.17) and (3.21), the second term on the right hand side of (6.3) can

be written as

1
2 — 241

RO(z) T(Z1) | — RO(z)] RO)(2,) (6.5)

1
= (0) ©
57 BO(2) T(2:) RO(2)

1
Zo — 71

> RO(2y) Tu(Z:) RO(2y)

1

t -7

Y Ri(%1) Quo(21) Ro(Z1)

A,B

= - gt L [Ra(2) - RO(21)]

28



+ 30 Ra(71) QualZ)) [ = Ral)] BalZa) -

A,B

With a similar manipulation on the third term, (6.3) becomes

R(Zl) R(Zz) (6.6)

= 3" [Ru(21) Ru(%)] — 2 BO)(21) RO)(22)

A

+ZRA(Z1) [QAB(ZI) [Z2 .1_ Z, Rs(21)]

A,B

1
B [Zg-Zl

+ Ro(Z2)) Quo(Z2)| BalZ2) -

Substituting this into (6.2) with Z; = E + ie and Z; = E' + i¢', and using the

- principal value relation

1 1 :
i =P (D) vireta. o0

gives

<\DS—) ;Wul\IlS3+)';W'u'> = 8y <<I>A sWu ] ;W’u'> (6.8)

—ami §(E - E') (8, ;Wu‘ ()

<I>,'3;W’u'> ,
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where
D(B) = lim QL (E +ie) .

Equation (6.4) relates Q,5 to W,,. Taking the matrix element between non-

interacting states and using completeness in clustered channel states, along with

the wavefunction definitions (2.16), gives

1 1

o <k1,k2,k3‘ Was(Z) lkl',kz',k§> — (6.9)

1.4 L
= [g(wuvg) g(w[',,vg )]2

[,
x 3 Sl dw [wlwl!,od) w(ws,08)]

T
NasNp

1 1
E'"—Z E'"_7

X wA(w,ﬁlwlI’nll) ¢;(w,,ﬁ,]wlll,nlll)

% <u,U4,¢A(w”,77”)l Qas(2) ‘u’,u;,¢3(w"’,n”')> .

Consider a scattering process characterized by a physical energy EP. The
parameters EP, u, and u, together specify a unique invariant mass uf for the
(a+,a-) system. Similarly EP, u'; and u) specify a unique invariant mass uR!
for the (b+,b-) system

P’Ij = w(Wp’v3>m§.)
(6.10)

1 1.0l 2
I :w(Wp »Up ’mb) ’
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where

WP = EP/u°

WP = Ep/uol .

In (6.9) set Z = EP + i¢, multiply both sides by (—z€)?, and take the limit
€ — 0. Since the wavefunctions and the matrix element of Q.5 are non-singular,
the right-hand side will vanish unless the invariant masses (6.10) correspond to
actual two-body bound states masses. Assume, for simplicity, that the spectrum

of two-body bound states is non-degenerate. Then

e lim (—i6)? (kR ko Wan(BP 44 [kl R BE) ot (6.10)
= [e(wa, Q) ¢(wh, 027 [@(B,00) w(u’,08)] 2
x 4 (w, pluP,nP) ¥h " (w', p'|uB’, nB")
% <”’“m¢ﬁ(up,np)’ () (EP) u,UL,tﬁZ(up',np'))-

We have chosen © = u’, since this is the only case which will contribute to the

probability amplitude.

u, u,, and u) are parameters of the particular physical process under con-
sideration. Their values restrict the range of bras and kets which can appear on
the left-hand side of (6.11). The requirement that the left-hand side of (6.11)

vanish unless u5 and ,ugl correspond to existing two-particle bound state masses
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uniquely determines the values of the eP?T factors in terms of the physical param-

eters. To see this we must consider the singularity structure of W(Z).

The “primary singularities” due to the 7 functions in the driving terms (5.5)
occur to all orders of iteration of the integral equations (5.7) for the components
of W(Z). The singularity structure of the 7 functions follows directly from (4.3).
Taking a matrix element of (4.3) between free states, using k(! = h — A(9),
and inserting completeness in terms of exact eigenstates of h shows that 7,(Z)
has poles at £ = pu,, for each two-body bound state u,, and a scattering cut
extending from Z = m, to +oo along the real axis. Due to (4.8), this means

that the matrix elements of W,;(Z) have “primary singularities” at

7¢ = Egar + /LA'UE

c __ _par 0
Z° =€ +myv,

(6.12)

ar ! of
Z°=el™" + pguy

c ar/ o'
Z° = el + myuy

These singularities must correspond to poles at Z¢ = WP for values of WP which

satisfy

pa = w(WP,v],m7)

(6.13)
Up = w(Wp,vg,,mg) .
Therefore, the left-hand side of (6.11) has the correct behavior in the € — 0 limit
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only if

par __ P _ p ,0 2 0
g]" =WP —w(WP, v/, mi) v

(6.14)

sfar' = WP — w(Wp,v?',m?) 20"

The eP¥ factors are independent of the off-diagonal integration used in the
coupled integral equations (5.7). All six eP?' factors are fixed by (6.14) because
matrix elements of each of the components of W(EP + i¢) between the same

free particle bra and ket correspond to possible physical processes in different

channels.

Having established the values of the eP?' factors in terms of the physical
problem under consideration, we return to the relation between W,z(Z) and
Q.45(Z) in the case of physically realizable asymptotic states. With % and uB’
now particular bound state masses in the outgoing and incoming channels, the
wavefunctions in (6.11) can be expressed in terms of the two-body input (4.5).
Using H,SI) =H,— HO ip (3.18), completeness in the clustered channel states,

and the wave function definitions gives

CRONAEXORWONY (6.15)

= 0 g‘(wA,vg) 53(u —u) 53(VA —V,)

X Z i dwi' l"»bA(wap‘\lw”a77”)l2
A

x [(E'" - E)—(E" - E) E"“'E:E (E" -E)] .
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Substituting (4.12), setting Z = EP + i¢, multiplying by (—1e), and taking the

limit as € — O gives

VI W3 p(W,00) lim (—ie,) 74(@, 5|, p; ub + ic,) (6.16)

€4—0

= - g(U)A,’US) (W - WP)2 |¢A(w,ﬁ|“p, ﬂp)lz 3

where

€4 = € /00
€ = ¢/u®

@y = (W —WP) /00 + w(WP, 02, m2) .

a

Similar considerations hold in the incoming channel.

Define

(M
[(SMIE

X(W,v2,pr,uP) = [v] W2 w(ul,v?)]? [- lim (—de;) (@, Pl 53 47 +1i€)]”

(6.17)

Then the comparison of (6.1) with (6.8), along with substitutions from (5.1),

(6.11), and (6.16), yields the elastic and rearrangement scattering probability
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amplitude

ﬂ(+) (QA (u, Ua, ¢i (/I'p, 77p)) !@B (’U,, u:;, ¢g (Mp’, 77p I)) 7Wp) (618)

” o
=—X(W,v2,p,,,,u,§) X(W,,vo i pl)

p *PprMp

x lim lim (—ese]) Wan(W,v,p[W', v/, p' ;WP + i) .

€4—0 €,—0

The €P?* factors needed to evaluate this expression are fixed by (6.14), with v0

determined by u, u,, W, and p,.

6.2 FREE PARTICLE SCATTERING

In the case of free particle scattering each boundary state consists of three
- free particles. Substituting (6.3) into (6.2) with Z; = E + ie and Zy = E' + i€’

gives

<\II(()-);Wu‘\II(()+)I;W'u'> = <<I>O;Wu’<I>6;W'u'> (6.19)

—2ni 6(E — E') <(I>0;Wu‘ T(4)(E) ‘@6;W’u'> .

The comparison of (6.19) with (6.1), along with substitutions from (3.14), (3.21),
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(4.12), and (5.1), gives

A (@o (1, kz, ks)|Bo (ki k3, k3) ;W) (6.20)

== [pW,9%) pW,3")]* [8u 6°(va = V1) 780w, plu, 5 50)

A,B

+ W W, v, pW,v', 5" W)] .

The eP?* factors needed to evaluate this expression are fixed by (6.14), with WP =
W. The result is that each €P?T factor is equal to the corresponding asymptotic
single particle energy, as observed from the three-body center of momentum

frame.

6.3 BREAKUP AND COALESCENCE

Breakup and coalescence involve transitions between boundary states con-
~ taining three asymptotically free particles and boundary states containing a spec-
tator and a bound pair. Define the operators K,,(Z) for breakup and K,;(Z)

for coalescence through

RO(Z) W,n(2) RO(2) =) RON(Z) K,n(Z) Ra(2) (6.21)

A

RON(2) W,s(2) RO(2) = " Ro(2) Kon(2) RO(Z) .

Then an analysis similar to that of Sections 6.1 and 6.2 gives the probability
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amplitude for breakup

A (8o (ky, ks, k3) | @5 (u', ug, ¥l (uP' nP")) s WP) (6.22)

= —Z [p(W,'US)]% X(Wl,vgl’ﬁz’u”’gl)

A

x lim (—t€)) Wap(W,v,p|W',v', 5’ ;WP + {e°)

!
€p—0

and coalescence

A(+) (QA(U', Ui, ¢3(Mp,np)) ‘@O(kl’, k2l, ké) ’WP) (6.23)

1
= - Z X(W7v2aﬁA’p‘B) [P(W’,Ugl)] 2

B

x lim (—t€,) Wap(W,v,p|W',v',p' ;WP +1ic°) .

€4—0
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7. Conclusion

We have succeeded in deriving an explicitly invariant probability amplitude
from considerations of the three-body problem in an arbitrary frame. Two ideas
were central to this treatment. The first was the use of velocity conservation in
place of momentum conservation in order to separate Lorentz invariance from the
off-shell continuation in energy. The second was the introduction of €P?* factors
into the connection between the two-body input and the three-body problem.

The resulting equations exhibit exact unitarity and physical clustering.
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APPENDIX

Poincaré invariance requires matrix elements which correspond to physical
observables to remain unchanged under the action of the unitary operator U(l, a).
Exact solutions !z/;) are eigenstates of the four-momentum operator P, which
forms four of the generators of the Poincaré group. Non-interacting states |¢>
are eigenstates of the non-interacting four-momentum operator P(%). This choice
of non-interacting basis is made to insure that the Poincaré boost generator is the
same three-vector operator for both the fully-interacting and the non-interacting

systems. Since in the point form
[P, PO)] 0,

matrix elements such as

(¢a] H |82)
do not, in general, conserve three-momentum. Instead, they must conserve three-
velocity in order that a transformation to a well-defined center-of-momentum

- frame be possible. Let U be such a transformation and A be the corresponding

Lorents matrix. Then
(1(W,0)| H |6:7",0")) = 8% —n) s, W)
transforms into
(17, 0)| U0 B U7 6", w)) = 4% (41, 0)| P* |2(W",0))
= w80 -0") g(W,W") .

In the center-of-momentum frame both the three-momentum and the three-

velocity vanish. Therefore, in this frame the conservation of one is equivalent (up
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to a Jacobian) to the conservation of the other.

In order to show a connection with the more common instant form, we con-
sider the two-body potential. We refer here specifically to the operator which
connects the generators of time translations in the interacting and the non-

interacting systems

H=HO1+v .

A general instant form potential expressed in a momentum space basis con-

serves three-momentum
(proa| VT |pliph) = 6°(P — P') ¥ (B,pE',p")
where

P =p; +ps

p=1(p1—p2) .
On-energy-shell this becomes
5(E—E") (p1, | VT |p],ps) = 64(P = P') ¥ (olp"; W),

where

W2=P.P

is an invariant.
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A general point form potential conserves velocity

<P1,P2‘ vF

p{,pé> = 63U -U") vF(W,pW',p") ,

where

U=P/W.

On-energy-shell this becomes

5(E - E") (p,m| VP

-2 ~
pl,ps) = W? [U°] 7 64(P - P") P (plp' ;W) .

Thus, the two forms of the potential give the same on-shell result in the center-

of-momentum frame (U° = 1) if
W (plp"s W) =W? 57 (plp"; W) .

The existence of different forms for the off-energy-shell extension reflects an am-
biguity in the specification of this physically unobservable quantity. Each form

preserves certain symmetries off-energy-shell and breaks others.
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