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Abstract

The interplay between many-body interactions and the kinetic energy gives rise to rich phase
diagrams hosting, among others, interaction-induced topological phases. These phases are
characterized by both a local order parameter and a global topological invariant, and can exhibit
exotic ground states such as self-trapped polarons and interaction-induced edge states. In this
work, we investigate a realistic scenario for the quantum simulation of such systems using cold
Rydberg-dressed atoms in optical lattices. We consider spinless fermions on a checkerboard lattice,
interacting via the tunable-range effective potential induced by the Rydberg dressing. We perform a
detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field
approximation. We furthermore study the stability of the phases with respect to temperature within
the mean-field approximation and with respect to quantum fluctuations using the density matrix
renormalization group method. Finally, we propose an implementation protocol, and in particular
identify attainable regimes of experimental parameters in which the topological properties of the
model become accessible. Our work thereby opens a realistic pathway to the outstanding
experimental observation of this predicted phase in state-of-the-art cold atom quantum
simulators.

1. Introduction

Quantum simulators offer a powerful avenue for the study of many-body physics. These quantum systems
mimic the dynamics of complex quantum matter in a highly controllable environment. They are in fact ideal
candidates to solve many-body problems whose computational cost on classical computers scales
exponentially with the system size. Theoretically proposed in the 80 s [1], they are nowadays a reality and can
be realized in various physical systems such as photonics, superconducting qubits, and cold ions or neutral
atoms [2—4]. Here, we focus on cold atomic simulators based on atoms excited to Rydberg states [5-7],
which offer rich opportunities for quantum information processing, owing to their long-lived nature and
strong long-range interactions leading to the paradigmatic Rydberg blockade effect [8]. Furthermore,
individually controlled Rydberg atoms in optical tweezers [9] have emerged as a powerful platform for
quantum computation [10-15], and for the simulation of quantum spin models [16-21], as highlighted by
recent observations of 2D spin liquid phases [22, 23].

While the strong interactions in Rydberg arrays are typically well captured by spin Hamiltonians, in
which kinetic terms accounting for the itinerant nature of the particles can effectively be neglected, one of
the challenges in the field is to achieve comparable kinetic and interaction energy scales in order to observe
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the interplay of interaction and motional effects. This can be achieved in a variety of platforms that feature
long-range interactions, such as dipolar quantum gases [24—29], or polar molecules [30, 31], and in the
presence of an optical lattice this allows one to simulate extended Hubbard Hamiltonians with both
non-local interactions and tunneling terms [32—37]. Rydberg dressing [38—40] has emerged as a powerful
alternative in this context. In this approach, instead of exciting the atoms resonantly to a highly excited
Rydberg state, in which the energy scale of the strong dipole—dipole interactions dominates over the itinerant
dynamics, the atomic gas in the ground state is coupled off-resonantly to the Rydberg state, thereby admixing
a reduced amount of Rydberg character to the electronic ground state. Compared to other techniques,
Rydberg dressing offers the possibility to tune the strength and shape of interactions, which can be highly
adjusted by a proper choice of the atomic and laser parameters of the underlying dressing protocol. Such
degree of control has allowed to generate Bell pairs in optical tweezers [41], to engineer long-range [42—-44]
or even distance-selective [45] interactions in Ising Hamiltonians, and to realize extended Fermi—Hubbard
Hamiltonians [46] with interaction strengths and kinetic terms of the same order of magnitude. The latter
has led to the observation of quench dynamics of a Fermi gas with long-range interactions [46], paving the
way for the simulation of other novel phases of quantum matter resulting from the interplay between
non-local interactions and the kinetic energy. In particular, this Rydberg dressing toolbox is perfectly suited
for the simulation of interaction-induced topological insulators [47], which requires a high control over the
ratio of interactions in the presence of a finite tunneling term.

Topological insulators constitute a new paradigm of quantum matter [48, 49]: characterized by a global
topological invariant, they escape the standard classification of phases of matter and are very robust against
local perturbations such as disorder or interactions. While these phases have been realized in quantum
simulators [50-55], they generally require the engineering of an external gauge field [56, 57]. Alternatively,
topological insulators can also arise solely from interactions through a symmetry breaking mechanism. In a
seminal work [58], it was shown that such an interaction-induced topological insulator, also called
topological Mott insulator (TMI), can arise for fermions on a hexagonal lattice, with sufficiently strong
inter-site interactions. In particular, next-nearest neighbor interactions can give rise to a ground state which
breaks the time-reversal symmetry and is characterized by a non-zero topological invariant, the Chern
number. Subsequent studies also found TMIs in other lattice geometries [59—64]. Interaction-induced
topological phases are quite different from externally induced topological phases [47]. One of the most
striking differences is the ground-state degeneracy. In the case of externally induced topological phases, the
ground state is non-degenerate, whereas the ground state of the TMI is two-fold degenerate, with each of its
two sectors being characterized by opposite-valued Chern numbers. These two degenerate ground states with
opposite Chern numbers can give rise to interesting effects around half filling such as the appearance of
self-trapped polarons or interaction-induced topologically protected edge states, discussed in a previous
work by some of us [65].

In this work, we address the timely question of whether the TMI phase can be accessed in quantum
simulators based on dressed Rydberg atoms in an optical lattice, under realistic experimental conditions. To
this end, we go beyond previous models [62—65] relying on the simplified assumption of only nearest and
next-nearest neighbors interactions, and for the first time properly account for the long-range nature of the
Rydberg potential up to fourth order neighbors. Furthermore, we examine the sensitivity of the TMI phase
with regard to finite temperature. Our extensive numerical analysis combines mean-field and density-
matrix-renormalization group (DMRG) techniques, and is complemented by a thorough discussion of an
experimental implementation proposal. Thereby, our study clearly establishes this phase in a robust
parameter window, and furthermore provides a clear and experimentally feasible route towards the
quantum simulation of the considered TMI phase.

The article is organized as follows. In section 2, we review the phase diagram of the model featuring
interactions up to next-nearest neighbors, and we introduce the different order parameters characterizing the
charge orders and the quantum anomalous Hall (QAH) phase. In section 3, we present a scheme based on
dressed Rydberg atoms for the quantum simulation of the model. We review the ingredients required,
crucially observing that all such elements have been demonstrated in state-of-the-art setups. We then
perform an in-depth study of the phase diagram in section 4. We discuss the impact of longer-range
interactions, present in the Rydberg dressing scheme, on the interaction-induced QAH phase. In
particular, we show that these can stabilize the QAH phase. We then study how this interaction profile
affects the phases at incommensurate fillings around half filling. We additionally probe the stability of the
phases at finite temperature. Furthermore, we confirm the stability of the phases with respect to quantum
fluctuations with the help of a DMRG analysis. Finally, in section 5, we discuss possible parameter
regimes, accessible in state-of-the-art experiments, where the QAH phase can realistically be
observed.
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2. TMI in quadratic band touching (QBT) systems

2.1. Model
The emergence of a TMI phase has been extensively studied [58—66] in lattice systems of spinless fermions
described by the extended Fermi—Hubbard Hamiltonian,

I:IEFH = Z [(tij?:;ffj JrH.C.) + ~ijﬁiflj] . (1)
)

The first term of the equation describes spinless fermions hopping on a two-dimensional lattice, with Ej ()
being the fermionic creation (annihilation) operator at lattice site i. The second term represents repulsive
interactions, \7,»]' > 0, between fermions on different lattice sites, with local particle number operators
i=cle.

In the original proposal, Raghu ef al [58] considered the honeycomb lattice at half filling, for which the
non-interacting band structure obtained from the hopping matrix t; is topologically trivial and exhibits a
linear band touching, i.e. Dirac cones. The authors showed that, in the mean-field approximation, the
repulsive interactions open a topological gap, leading therefore to an interaction-induced topological phase
that they termed TMI. Subsequent exact diagonalization and DMRG studies of Dirac semimetals, including
the semimetallic model of the initial proposal, showed that, beyond the mean-field approximation,
interactions favor trivial charge orders with lower energy than the TMI phase [67-73].

In parallel, the appearance of a TMI phase [59, 74—76] was also suggested in models for which the non-
interacting fermionic band of Hgpy exhibits instead a QBT; for such models, clues of TMI can be observed by
performing perturbative analyses at small interactions. In this perturbative limit, the TMI phase of such QBT
systems was shown to be more stable than in Dirac semimetals, which are instead more robust with respect
to instabilities driven by small symmetry-preserving interactions [59]. More recently, researchers have
confirmed, using non-perturbative numerical methods such as DMRG or exact diagonalization, the
existence of the TMI phase in many of these QBT systems both for weak and intermediate values of the
interactions. This is for example the case for the kagome lattice at 1/3 filling [60, 64], or the checkerboard
lattice at 1/2 filling [62—64].

In this work, we focus on this latter case, that is, we consider a checkerboard lattice with a Hamiltonian

I:I = I:IO + I:Iinta (2)

where H, is the non-interacting Hamiltonian [62—65] and reads:

Hy=—tY (e, gp+He)—pd i+ > (2 tiana+He). (3)

(i) i i a=A,B

n=x,y

Here, y is the chemical potential and fixes the particle number in the grand-canonical ensemble at
temperature T, ¢ is the nearest-neighbors (NN) hopping amplitude, and J;; is the next-nearest-neighbors
(NNNs) hopping amplitude, which depends on the sub-lattice « € (A, B) and hopping direction 7 € (x,y)
(see figure 1(a)). The non-interacting band structure exhibits a QBT for the choice of NNN hopping
JA = ]f =0.5tand ]}’f = JB = —0.5¢, corresponding to a 27r-flux through the unit cell of both sub-lattices. For
more general designs, especially in the case of homogeneous and isotropic NNN hopping, the dispersion is
linear, as shown in appendix B. For the interaction, we consider a general Hamiltonian with repulsive
interactions of the density-density type, which reads

Hiy= > Vuhtify. (4)

m<M (if)

Here the second sum is performed over the m-th order neighbors (ij),, of the checkerboard lattice, e.g. (ij);
corresponds to NN terms. The isotropic repulsive interaction between m-th neighbors is then parametrized
by the potential V,, > 0. As will be discussed in section 3, in this work we consider the Hamiltonian in
equation (4) with interactions up to M =4, which faithfully describes the repulsive interactions experienced
by dressed Rydberg atoms in an optical checkerboard lattice. To provide background, we begin our analysis
by first reviewing some known results [62—65] for M = 2.

5 We hereafter set 1 = 1.
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Figure 1. Topological Mott insulator in an extended Fermi—Hubbard model. (a) Checkerboard optical lattice. The Hamiltonian
comprises a NN interaction V; and hopping amplitude #, and a NNN interaction V; and hopping amplitudes JA/t= ]f /t (dashed
arrows) and J4 /t = J¥ /t = —J4 /t (straight arrows). (b) Mean-field phase diagram of model (6) with 4 /t = 0.5 and M =2, at
half-filling and at zero temperature. The Chern number v is 0 for trivial Mott insulating phases and v = =£1 in the TMI phase,
indicating a ground-state double degeneracy; brighter blue/green corresponds to larger stripe/site-nematic charge order, darker
red to larger current loop order. (c)—(e) Instances of ordered states with spontaneously broken symmetry: (c) site-nematic order,
imbalanced density between A and B (two configurations); (d) stripe order, alignment of the particles along S; or S, or along
their orthogonal axes (four configurations); (e) QAH order: average half-filling and current loops with chirality €;; = +1 on
square plaquettes of nearest-neighbors, see equation (7); for €;; = —1, the loops has opposite chirality.

2.2. Half-filling interacting phases
The TMI phase is captured already at the mean-field level. By means of a standard Hartree—Fock decoupling,
the repulsive density—density interactions of amplitude V; and V, are approximated as

ity = fighy + i — i+ | €| — €l — &5, (5)
with & = < ¢j) and #; = (71;), leading to the Hartree—Fock Hamiltonian

. ) ~ . A o 2 AT A kAT A
Hyr = Hy + Z ZVm (ninj+”j”i — niftj + |§IJ| _glijTC" —f,-jC:-er) ©

m=1,2 (ij},,

The Hartree—Fock values &;; and 7; are found by solving iteratively the resulting self-consistent quadratic
Hamiltonian with periodic boundary conditions, as described in appendix A. Figure 1(b) shows the
half-filling phase diagram of Hyy zero temperature [63, 65]. In the limit of vanishing hopping t — 0, the
phase diagram hosts two insulating phases which spontaneously break the lattice translational symmetry, as
can be seen in figures 1(c) and (d). The state resulting from the symmetry breaking is determined by the
competition between V) and V,. Consequence of the repulsive density—density interaction is an energy cost
of V| on pairs of particles occupying nearest-neighboring sites, and of V, for NNNs. For dominant V;,
low-energy states are characterized by a minimal number of nearest-neighboring pairs, conjoined with a
maximal density imbalance p, = n14 — 7ig between the two sub-lattices, thereby giving rise to the so-called
site-nematic order. By the same argument, for dominant V, the energy penalty of NNN pairs favors states
with stripe density order, characterized by a finite value of the density imbalance p; = 715, — 715, between,
e.g. the stripes S and S, in figure 1(d). As shown in figure 1(b), the transition between these two charge-
ordered phases happens along the line V, = V; /2, when interactions dominate over the tunneling amplitude.
However, when the kinetic energy becomes comparable to the interactions, quantum fluctuations lead to
frustration between the two competing charge orders close to the phase transition. In this scenario of charge

4
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homogeneity (translational symmetry), the ground state can still be insulating due to the appearance of a
current loop order across nearest neighbors which spontaneously breaks time-reversal symmetry (see

figure 1(e)). The local order parameter is defined as the staggered sum of currents in a closed loop of NNs
bonds,

1
Soan = 4 > eImg, (7)
<ij>¢€ loop
where ¢;; = +1 if the bond i — j follows the red arrow convention of figure 1(e), and €;; = —1 otherwise. This

phase is known as TMI or interaction-induced QAH phase, as each of its two symmetry-breaking ground
states with opposite current chiralities is characterized by a global topological invariant, the Chern
number [77],

v=o / Pk (D |04 ) — (9 12 Dy ) (8)
i Jpz

Here |u) is the lowest single-particle Hartree-Fock band of the Hamiltonian in equation (6), which includes
the effect of interactions at the mean-field level. The integral is performed over the first Brillouin zone of the
checkerboard lattice, assuming translational invariance of the two-site unit cell. The Chern number is
quantized to integer values in systems with a band gap and is related to the Hall conductivity by
on = ve*/h [77, 78]. For the TMI it assumes one of the two non-trivial values v = 41 corresponding to the
two sectors of the spontaneous symmetry breaking. For the two other insulating phases present in the phase
diagram, the topological invariant takes the value v = 0, indicating that these phases are topologically trivial.
In the next sections, we show that this QAH phase remains present also in the scenario of the realistic
long-range interaction potential that describes the interaction between laser-dressed Rydberg atom pairs.

3. Quantum simulation using Rydberg atoms

Numerical analyses aiming at unveiling the presence of a topological phase in quantum models are typically
carried out in the thermodynamic limit in the mean-field approximation or, when including interactions,
using exact or quasi-exact methods but considering systems of limited size. In general, it is computationally
hard to study the ground-state properties of interacting two-dimensional systems in the thermodynamic
limit and observe its phenomena, such as a spontaneous symmetry breaking and the emergence of a
quantized Chern number. When direct observation in, e.g. quantum materials is not practicable, quantum
simulation offers an alternative way to reveal theoretically predicted physical properties. In this context,
ultracold gases trapped in optical lattices represent a pre-eminent platform for the quantum simulation of
interacting Hubbard models [79, 80] such as the one given by equation (2). The platform enjoys a high level
of experimental tunability, allowing for the control on tunnelling and on-site interaction [81]. Furthermore,
various detection methods are available for state inspection, from time-of-flight measurements to quantum
gas microscopy [82], or magnification [83] techniques.

In this section we discuss how cold Rydberg gases in suitable lattice geometries represent an ideal platform
for the engineering of the interacting Hamiltonians that give rise to the discussed TMI phase. In particular,
we will show how the phase can be realized in a checkerboard lattice with a 27-flux and with the required
long-range interaction terms. Remarkably, the demonstration of all essential elements of the Hamiltonian (2)
has been reported in currently available experimental setups for the parameters of our concern.

3.1. Free Hamiltonian

The TMI has been numerically identified in various lattices with a QBT, including the kagome [60, 64] and
the checkerboard lattice [62—64]. In this work we are interested in the latter case, where the checkerboard is
obtained from a square lattice in which a sub-lattice-dependent 27-flux on NNN plaquettes is introduced
(equation (3)). Regarding the lattice, the design of a wide variety of optical lattice geometries, including the
square, has been demonstrated experimentally [84, 85] and can be realized by properly adjusting the
interference pattern of the standing laser beams. The injection of an artificial flux on NNN plaquettes
generates the checkerboard lattice with a QBT; this can be resolved via band mapping techniques, already
used to certify the presence of Dirac points in a free Fermi gas on a tunable honeycomb lattice [85]. The flux
insertion has been demonstrated experimentally in cold gases quantum simulators [56, 57, 86] and requires
control over the magnitude, sign and complex phase of the hopping amplitude ¢. The dynamics of cold gases
in lattices, a tight-binding system, occurs via hopping between NNs and, marginally, NNNs. Coherent
control of the hopping amplitude can be attained with several methods. Periodic perturbations of the optical
lattice (Floquet techniques) [87] make it possible to reduce, suppress and eventually change the sign of the

5
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tunnelling amplitude [88]. Combining a strong lattice tilting with assisted tunnelling allows to exert selective
control on hopping terms. The tilting inhibits the tunnelling by introducing inter-site energy barriers larger
than the hopping amplitude. Then, the hopping can be activated again in a selective manner and with
control on the hopping amplitude, using lattice amplitude modulation [89], or Raman-assisted tunnelling
[86]. In particular, Raman-assisted tunnelling allows one to engineer hopping terms with complex
amplitudes ™2™ 6;5 ¢j» which can result in finite effective magnetic fluxes on closed paths [56]. The
engineering of artificial fluxes was a crucial step for the experimental simulation of static Abelian gauge
fields [50, 90]. The method can be readily adapted to the 27-flux case ¢ = 1/2 discussed in this paper, which
induces the QBT present in the checkerboard lattice. It is worth stressing that the 27-flux does not break
explicitly the time-reversal symmetry, as opposed to generic finite fluxes ¢ # 1/2. As discussed, the
symmetry breaking in TMIs occurs by effect of the interactions.

3.2. Interacting Hamiltonian

Let us next discuss how a density—density inter-particle interaction as in equation (4) can be engineered in
cold gases experiments. We consider a scheme based on effective interactions between Rydberg-dressed
atoms. Rydberg states are electronically excited atomic states with a large principal quantum number

[9, 91-93]. The laser-driven (single- or two-photon) transition that couples the electronic ground-state or
low-lying (meta-)stable state |¢) and an excited Rydberg state |r) [93], in rotating-wave approximation and in
the co-rotating frame, is described by the single-particle Hamiltonian H, = (Q|r)(g| + H.c.) 4+ Alr){(r, with
effective Rabi frequency 2 and detuning A. In this work, we consider the repulsive two-body van der Waals
interactions experienced between two atoms in the same Rydberg state |r), described by the van der Waals
potential Uyqw (r) = Cg/r°, where r is the inter-atomic distance and Cs depends on the Rydberg state

[92, 93]. The van der Waals interaction between Rydberg atoms is long-ranged and strong at short distances;
as an example, Uyqw (r1) = 90 MHz for the |28P) Rydberg state of °Li at r; = 752 nm (in this case attractive)
[46]. A characteristic effect of the strong Rydberg potential at short distances is the dipole blockade: the laser
excitation to the Rydberg state of multiple atoms within a certain exclusion volume is inhibited, as the strong
interaction shifts the energy level of a state with multiple Rydberg atoms by more than the line width [92].
The Rydberg blockade has been observed in numerous experiments (see e.g. [10, 94—100]) and lies at the
heart of Rydberg-based analog quantum simulation, e.g. of quantum spin models [9]. Also, the
implementation of entangling gates based on the blockade has been demonstrated [10, 11], and represents
the basis for potential applications in quantum computations [101], under rapid development in recent
years [12-15, 102].

The strong interaction within the blockade radius can also be advantageously used in a Rydberg-dressing
scheme [61] for the quantum simulation of extended Hubbard-type models. In the limit of far off-resonant
laser coupling, i.e. for small values of the parameter 5 = /A < 1, the transition between |g) and |r) are
energetically suppressed. The laser induces a weak hybridization of the electronic ground state with the
Rydberg state; the strong van der Waals interaction occurring in the marginal Rydberg component of the
admixture results in a finite and attenuated spatial-dependent soft-core potential [92]. One can understand
the two-body interaction and derive the resulting effective potential surface by looking at a two-atom system.

The ground-state energy of a laser-dressed two-atom system can be obtained as a power series of the
perturbation parameter /3 using, e.g. van Vleck’s perturbation theory [61, 103]. The spatial-dependent
correction to the unperturbed electronic ground state energy up to fourth order in /A reads (see
appendix C for the derivation):

V() _, [Uv‘iww ] (9)

- E 2A+Uvdw(r)

Here, we have not included the interaction-independent single-particle AC Stark shift
2(92%/A)[1 — (£2/A)?]. We can conveniently fix E, = 2Q* /A’ as an energy scale for the effective interaction
and define in the usual way the critical length, or blockade radius,

r¢62 = Cﬁ/(ZA)v (10)
at the full width at half maximum of V(r). Also, we express the discrete inter-site distances in the lattice in

units of the lattice spacing r1, r; = d;r;, where d; : {1, V2,2,4/5, 2\@} and i is an index labelling neighbors
radii (see figure 2). As a result, the inter-site density—density effective interaction reads

VieE, |— L (11)
o ”[H(dm/n)ﬁ]

6
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Figure 2. Amplitude of the interactions between Rydberg-dressed atom pairs, in a checkerboard lattice. The continuous curve
shows the effective interaction potential V(r) from equation (9) including only distance-dependent terms to fourth order in

Q/ A—see section 3.2. At large inter-particle distances, V(r) decays as 3*r~¢, consistently with the repulsive van der Waals
interaction in the doubly-excited component of the two-atom dressed state (dashed line). Within the blockade radius, r < ., V(r)
converges to an energy plateau. The colored slabs show the ranges of V' and V', for which a topological QAH phase emerges, as
presented in figures 5 and 10. The inset shows an excerpt of the lattice, illustrating the succession of inter-site distances r;: e.g.
nearest-neighboring atoms sit on the cyan circle of radius ;. The proximity of r3 and r4 and the comparable magnitude of V3 and
V4 require the inclusion of both terms in an analysis beyond V. Here, r1 /7. = 0.67.

Figure 2 shows the plot of V(r) as well as the discrete V; values. At large distances, the effective potential
decays as

V(r>r.) ~ B Usaw (7); (12)

this shows the suppression of the bare van der Waals interaction by the small prefactor 3%, that is the
probability to find the dressed two-atom system in a doubly excited Rydberg state. At short interatomic
distances, the strong enhancement of the van der Waals interaction is accompanied by a vanishing
population of the Rydberg—Rydberg component of the admixture, resulting in a soft-core potential,

V(r<r;) ~E,. (13)

The energy plateau picture does not hold at very short distances, where the overlap of the electronic wave
functions becomes more relevant and the van der Waals interaction ceases to correctly describe the
interparticle interaction [91].

It should be emphasized at this point that the effective interaction potential V; is a particular case of the
interaction Hamiltonian (4), i.e. V; is a constrained parametrization of the more general V,n, and depends on
a range of controllable independent laser and atomic parameters: the Rabi frequency €2, the detuning A, the
lattice spacing aju, and the van der Waals interaction coefficient Cg. Below, in section 5, we show how these
parameters can be adequately tuned to adjust V; and access QAH states in a quantum simulation. Here, we
note that fixing V; and V5, or any other pair of V;, uniquely determines E, and r, /r., and thereby determines
the value of the remaining V;. We also remark that the ratio between two interaction amplitudes V;/V;, with
i< j, is a monotonically increasing function of ry /r, with a lower bound set by V;/V; — (d;/d;) in the limit
r1 > 1. In particular, V,/V] has a lower bound of 1/8. The other limit r; < r, corresponds to an unphysical
regime where equation (11) is no longer valid, as all long-distance V; would be comparable in magnitude to
V] .

Since we are interested in studying how the physical properties of model (2) with M =2 change when we
include a finite number of sub-leading long-distance interaction terms, we limit our investigation to a regime
in which a truncation of the effective Rydberg potential to V4 represents a meaningful approximation of the
entire effective potential, including the tail. To this aim, we chose to set the condition of V; always being at
least an order of magnitude larger than the largest discarded interaction term, i.e. V; > 10V, corresponding
tor /r. > 0.51.

Having comprehensively introduced the model Hamiltonian, we can now proceed to presenting the
results of our numerical study of this model.

4. Phase diagram with Rydberg interactions

In this section, we present an extended numerical analysis of the Hamiltonian in equation (2) in the presence
of long-range interactions beyond NNNs, motivated by the long-range character of the effective Rydberg

7
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(a) (b) (c)

Figure 3. Lattice unit cell adopted in the mean-field numerical analysis (a). The interaction between third neighbors V3 favors two
types of charge order: squares (b) and zig-zag (c).

i/t

Figure 4. Effect of V3 /t on the topological phase. Red areas represent the regions of QAH phase in the mean-field ground-state
phase diagrams, at T =0 and for V3 € {0, 0.5, 1}. The color gradient indicates the magnitude of the current loop order, larger
for darker red. For increasing V3, the topological phase is energetically favored over phases with trivial charge order (string and
site-nematic) on larger regions of { Vi, V»}. The V3 = 0 layer corresponds to the QAH phase in figure 1.

potential, equation (11). After showing the effect of adding an arbitrary V; interaction in the ground-state
phase diagram at half filling, we focus on the particular shape of interactions given by the effective Rydberg
potential. For the latter, we study the presence of the QAH phase in the phase diagram with the mean-field
Hartree—Fock method, and we also discuss the effects of incommensurate fillings on finite-sized systems.
Then, in the prospect of a quantum simulation, we examine the robustness of the QAH phase against
thermal fluctuations with the finite-temperature Hartree—Fock method. Furthermore, we analyze the
stability of the phase beyond the Hartree—Fock ansatz using the DMRG method at zero temperature, which
accurately describes the ground states of gapped two-dimensional systems in cylinder geometries with finite
widths [104].

4.1. Hartree—Fock phase diagram

4.1.1. Half filling

To inspect the ground-state phase diagram, we perform a Hartree—Fock study in a large unit cell containing
eight sites, illustrated in figure 3(a), which can host long-range correlators and capture charge orders with a
large spatial periodicity.

First, we survey the phase diagram for various, unconstrained V1. As seen in section 2.2, for V; (V)
much larger than any other energy scale in the Hamiltonian, the system is in a gapped site-nematic (stripe)
phase. For dominant V; interactions, the density distribution presents two types of charge orders, depicted
in figures 3(b) and (c). A first observation to make is that these two orders favored by V; are incompatible
with the density orders generated by V; and V,. The consequence of this is an enhanced competition
between charge orders as V5 becomes larger. Figure 4 shows the size of the QAH region in the V; — V; plane
for different values of V5. One can observe that a finite V3 augments the area of the QAH phase in parameter
space. The QAH phase benefits, indeed, from the frustration between competing charge orders: V; supports
a different charge order than that of the site-nematic or the stripe phases, ultimately favoring the
topologically ordered phase.
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Figure 5. Ground-state phase diagram for effective Rydberg interactions at T = 0. We retrieve the three insulating phases observed
in the M =2 case and shown in figure 1: site-nematic in green, stripe in blue and topological QAH phase in red. The QAH phase
has a larger order parameter at large V1 /t and V5 /1. The diagram is bounded below by the largest ratio V1 /V, = 8 attainable
within the Rydberg-dressed potential and above by the truncation condition Vi > 10 V5.

Let us now come to the Hamiltonian describing dressed Rydberg atoms,

4
I:IRZI:IO—I—ZZVmﬁiﬁ]‘, (14)

m=1 (i) m

where we emphasize that V,, is constrained by equation (11) and by our truncation condition V; > 10Vs.
Notice that the Hamiltonian includes a finite V3 term which promotes the stabilization of the QAH phase, as
discussed above, but also a finite V4 term, which favors the site-nematic order generated by V;.
Notwithstanding, since V4 is a subleading term, we expect the appearance of the QAH for Hy, also. This is
indeed what we observe in the phase diagram of Hy, shown in figure 5. The site-nematic phase prevails in a
large part of the phase diagram, owing to the predominance of V; over the other interactions. A QAH phase
emerges as V,/ V) increases, and it can approximately be located in the window of V, /t € {2,6} and

V,/ Vi € {0.9,0.5}. This latter corresponds to r1/r. € {0.51,0.74}, as can be easily verified using

equation (11). This interval of r; is indicated in figure 2 by a cyan slab; the orange slab shows the
corresponding range of r, /r.. Note that r, /r; is determined by the lattice geometry; consequently, V, does
not span the orange slab independently from V. These slabs illustrate, for the checkerboard model and in
the presence of dressed van der Waals interactions, where the QAH is to be found on the soft-core potential
curve. A first-neighbors distance r; too close to the critical distance . leads the system into a deep
site-nematic phase, because all ratios V; /V; increase for increasing r; /r.; this determines the right limit of the
cyan band, r; = 0.74. On the opposite end, the slab is limited by the criterion of V being an order of
magnitude larger than V5, which we impose to work with a potential truncated to V4. The current loop order
parameter {qap takes larger values at larger V /tand V, /t, as indicated by the darker red color. For V; /t < 2
(not shown) we find no presence of either orders, as the system enters a metallic phase. The behavior of {qan
in both limits is congruent with what we observed for the Vi — V, model, in figure 1, and reaffirms the
emergence of the current loop order from an interplay between kinetic energy and interactions. As compared
to the V; — V, model (6), however, we can appreciate a considerably larger QAH region with the Rydberg
dressing, as effect of the frustration introduced by the competition between multiple charge orders.

4.1.2. Incommensurate fillings

The interaction-induced QAH phase presents several differences in contrast to a non-interacting fermionic
Chern insulator. On the one hand, it exhibits a twofold degeneracy of the ground state at half filling,
corresponding to the two sectors of the spontaneous time-reversal symmetry breaking. On the other hand,
the rigid band picture around half-filling breaks down due to the presence of correlations, and localized
states can appear inside the topological gap. These properties lead to exotic solutions at incommensurate
fillings, such as self-trapped polarons or domain walls interpolating between the two sectors of the
spontaneous symmetry breaking [65].

We find these solutions also in the presence of the effective Rydberg potential, as shown in figure 6, with
the unrestricted Hartree—Fock method described in appendix A. The quantity § counts the number of
particles added to the half-filled state. In the case § = 1, figure 6(a) shows that the added particle does not
populate the conducting band but instead occupies a midgap localized state induced by interactions, a
self-trapped polaron. In this solution, the local current loop order gan changes its sign inside the polaron
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Figure 6. Incommensurate solutions at zero temperature in a 24 X 24 unit cells lattice. Here we choose the Rydberg potential such
that V; = 4¢, and V, = 2.5¢, leading to V3 = 0.63t, and V4 = 0.34¢ (corresponding to the full circles in figure 2). The number of
added particlesis § = 1, 3, 5in (a), (b), and (c), respectively. (upper panels) Real-space profiles of {qan. (lower panels)
Hartree—Fock single-particle spectra corresponding to the solutions shown in the upper panels. Yellow (dark purple) points
represent empty (occupied) sites.
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Figure 7. Gap in the energy band structure at finite temperatures, for effective Rydberg interactions with V5 /t = 3, corresponding
to the yellow cut in the inset (clip of the phase diagram in figure 5). At V; /t =~ 5 we observe the transition between two insulating
phases with a finite gap, from QAH to site-nematic. No evident effects to the zero-temperature gap Eg,p (T = 0) (not shown) are
observed for kgT/t < 0.2. At higher temperatures, the gap begins to close, affecting first and mostly the QAH phase.

region, which can be understood as a collapsed domain wall. As § increases, the number of mid-gap states
and the polaron size increases (see figure 6(b)). Eventually, we observe the formation of a ring-shaped
domain wall separating an inner and outer region with opposite current chiralities (see figure 6(c)) which
correspond to opposite Chern numbers inside and outside the ring.

4.1.3. Finite temperature analysis

We have seen above that, at zero temperature, the QAH phase appears within the Rydberg potential for a
wide range of interactions. Let us now study the stability of the phase with respect to temperature by means
of the finite-temperature Hartree—Fock method (see appendix A). Here, the occupations of the Hartree—Fock
single-particle states with energies E; are given by the Fermi—Dirac distribution,

1
RE) = T =7 (15)
Moreover, we study the typical temperatures needed in order to resolve the spatial structures around half
filling, shown in figure 6.

4.1.3.1. Homogeneous phase at half filling
Figure 7 presents the energy band gap Eg,, along a cut in the phase diagram, indicated by the yellow line in
the inset. The gap refers to the Hartree—Fock single-particle band structure, at half-filling and for different

10



10P Publishing

Quantum Sci. Technol. 8 (2023) 025018 L Cardarelli et al

0.77 1 ,
ksT/t
0.50 1 ,
0.20
4
3
2
-1 |4
Wt g N T
i/t

Figure 8. Mean-field phase diagrams at finite temperature. Darker red indicates larger current loop order, as in figure 5. All phases
stand thermal excitations up to kgT/f ~ 0.2. Higher temperatures progressively break the topological phase until it is no longer
observed, above kg T/t ~ 1. For a realistic value of the hopping t/h = 1.7 kHz [46], the temperatures in the z-axis correspond to
T € {16, 40, 63} nK.

temperatures. While the traditional notion of topology is typically defined at zero temperature, one can still
use the notion of a topological invariant at finite temperature for the density matrix [105-109], provided
that the thermal energy scale kgT is lower than this insulating gap Eg,p.

As a first remark, we note that the zero-temperature gap Eg,, (T = 0), not shown, is indistinguishable
from the gap at kgT/t = 0.2. The sharp discontinuity at V; ~ 5¢ pins the phase transition between the QAH
and the site-nematic phase. This jump in the value of the gap, in agreement with the first-order nature of the
transition, can be understood from the fact that this quantity is correlated with the value of the order
parameter of the respective phase: when approaching the transition from the QAH side, both the current
loop order as well as the gap are enhanced, whereas when approaching it from the site-nematic phase both
the charge order and the gap vanish. With regards to the QAH phase, the gap E,,, is of the order of the
hopping rate ¢ in most of the QAH region, taking the maximum value of about 4 ¢ around V; = 5¢, V, = 3t.
From the zero temperature gap analysis, one would estimate that the topological QAH phase is robust for
temperatures up to a few t/kz. However, given the interacting nature of the Hartree—Fock band structure, a
finite temperature calculation of the gap is required in order to establish the critical temperature of the QAH
phase. As shown in figure 7, the gap decreases non-linearly with increasing temperature, affecting most
rapidly states with smaller gap at T = 0. Ultimately, we can roughly estimate a critical temperature for the
appearance of the QAH phase of about T, = t/kg, well below the temperature T ~ 4t/kp suggested by the gap
structure at T = 0. Using t = 1.7 kHz, a value on the scale of current experimental realizations [46], we
obtain a critical temperature of T. = 82 nK around V; = 5tand V, = 3.

It is also worth to visualize the effect of the temperature without restrictions to a point or a line of the
phase diagram. To this end, in figure 8, we show the whole phase diagram of Hy, at three different finite
temperatures. Up to a temperature of kg T/t = 0.2 no appreciable alteration to the phase diagram is observed.
The QAH phase emerges from the competition between kinetic energy and the frustrated charge order
driven by the interaction. As such, it results to be most fragile against thermal fluctuations. As the
temperature increases, the valence-conduction gap of all insulating phases progressively reduces, with a
major impact on the QAH phase. The QAH gap closes first in the region of lower V' and V,, where the
zero-temperature current loop is smaller, leading to a gapless semi-metallic phase.

4.1.3.2. Defects around half filling

Along with a closing gap, at rising temperatures, the mid-gap states progressively disappear, as they mix with
the lower bulk band. As an example of such behavior, we study the effect of finite temperature for the case

0 =5, which at zero temperature corresponds to a ring-shaped domain wall (figure 9(a)). In figure 9(b) we
show the results for a finite temperature kg T/t = 0.05; while there is no appreciable difference of the order
parameter in real space compared to the zero temperature case, the conducting band starts to be populated.
For an even higher temperature ks T/t = 0.2 the spatially homogeneous QAH phase without mid-gap states
is recovered, as seen in figure 9(c). However, notice that in this homogeneous solution the excess particles are
distributed in the upper band, destroying the gap insulating nature of the phase.
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Figure 9. Temperature behavior of the ring solution obtained for § = 5. Here we consider the same lattice size and interactions
used in figure 6. The temperature in (a), (b), and (c) is ks T/t = 0, 0.05, 0.2, respectively. (upper panels) Real-space profile of
€qan for different temperatures. (lower panels) Hartree—Fock single-particle spectrum corresponding to the upper panels. The
color code indicates the Fermi occupation f(E) of each state.
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Figure 10. iDMRG study of the QAH phase considering the Rydberg potential. (a) QAH and site-nematic order parameters as a
function of V; for a fixed V; /r = 4. (b) QAH order parameter as a function of V; /t along the line V, = V; /2.

4.2. DMRG phase diagram

In order to corroborate the stability of the QAH phase beyond the mean-field approach used in the previous
section, in the case of Rydberg interactions, we perform a DMRG study in its matrix-product-state (MPS)
formulation [104, 110, 111]. We consider a cylindrical geometry of the checkerboard lattice with an infinite
size along the longitudinal direction (iDMRG). Due to the one-dimensional nature of the DMRG algorithm,
the cylinder is mapped to a one-dimensional chain in a snake-like folding along the radial direction, at the
cost of introducing effective long-range couplings. The latter limits us to cylinder widths up to L, = 6 unit
cells (12 physical sites). By using a maximum bond dimension Ymax = 3000, we get truncation errors of the
infinite MPS of the order 10~ at most. As shown in figure 10(a), the DMRG calculation confirms the
site-nematic to QAH phase transition when varying V, /1 for a fixed V; /t = 4, which determines the value of
V3/tand V,/t according to the dressed Rydberg potential of equation (11). One observes a shift of the QAH
boundary compared to the Hartree—Fock phase diagram of figure 5, which is expected since mean-field
methods are known to be less accurate in the vicinity of a quantum phase transition. Specifically, at V; /t = 4
with DMRG the QAH phase appears at V, /¢ ~ 1.5 and disappears for V,/t > 2.5. In contrast, with a
Hartree—Fock ansatz the QAH phase is not present until V,/t > 2 and disappears for V,/t > 3.5. The shift
points in a direction advantageous from an experimental point of view; the realization of coherent systems
with strong long-range interactions is difficult, therefore the possible appearance of the QAH phase at lower
V,, already smaller than V7, is a favorable sign. We also establish the existence of the QAH phase for a wide
range of V) /t ratios, as shown in figure 10(b). As hinted by the previous Hartree—Fock calculations, the
Rydberg potential stabilizes the phase in a larger window of interaction strengths compared to the simplified
Vi — V, model [63].

5. Experimental parameters analysis

In this section we study the relevant experimental parameter regimes to simulate the model of equation (14)
with Rydberg dressed atoms [5, 6, 38—40] in an optical lattice. Notice that this dressing technique has been
already widely used in several recent experiments [41-46], which have succeeded in engineering tunable
long-range interactions in two-dimensional systems. Of particular interest for the simulation of the TMI
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phase is the experiment of [46], which has allowed for the observation of a long coherence time in a
two-dimensional Fermi lattice gas, in the presence of tunnelling and inducing strong non-local
interactions [46]. Such a system paves the way towards the quantum simulation of other Fermi—Hubbard
Hamiltonians with long-range interactions, including models with topological properties.

Motivated by this prospect, we investigated and identified parametric regions for which a similar
experimental system would well approximate the model of (14) and allow one to reach the interaction-
induced topological phase. To begin the analysis, we consider the coherence time as a crucial figure of merit
in the context of many-body quantum simulations. In a Rydberg-dressed cold gas, coherence is affected by
spontaneous decay of atoms from the Rydberg state, which limits the time scale up to which the effective
Hamiltonian (14) faithfully describes the system; in a simple single-particle picture, the time scale is given by
the effective Rydberg decay rate

Q 2
Lefe = (A) Lo, (16)

where Iy is the bare decay rate of the Rydberg state. Thus, I sets a lower limit for both the hopping and the
interaction rates, namely that t, V; > T

We now show that the experimental conditions allowing one to engineer and observe the topological
phase can be attained by a suitable choice of atomic and laser system parameters. The choice of the atomic
species and the target Rydberg state determines the van der Waals interaction strength Cs, the bare decay rate
Ty, the lattice spacing aja at which the species can be trapped, and the order of magnitude of the tunneling
amplitude ¢°. The remaining free parameters are the detuning A and the Rabi frequency 2 of the dressing
laser fields.

We envision the quantum simulation being based on a light atomic species in order to favor the itinerant
character of the TMI phase. An example would be the fermionic isotope °Li of Lithium. This species can be
trapped in optical lattices with a lattice spacing aj,x = 752 nm [46], and is accompanied by a fast tunneling
which we assume to be ¢ ~ 3 kHz in the following. A repulsive and isotropic van der Waals interaction can be
found between atoms in |nS) Rydberg states, for which the series of Cs values can be calculated using, e.g. the
library from [112]. Here we consider a Rydberg coefficient Cs ~ 100 MHz a ., which can be attained for
principal quantum numbers roughly above n = 33. For these states, the radiative lifetime is estimated to be
approximately 1/T'y ~ 30 s [113]. We fix the parameters mentioned so far and leave out 2 and A as
independent variables.

Figure 11(a) shows the figure of merit /T, i.e. the ratio between the tunneling rate and the effective
Rydberg decay rate, as a function of the free parameters €2 and A, as given by equation (16). An important
remark here is that, for each point of this figure 11(a), the values of the interactions V; are determined by the
rest of the fixed experimental parameters discussed above. In particular, we only show ¢/ in the region
comprised between the equipotential lines V; = tand V; = 10¢ given by the condition

4
% = % (1+2af, A/Cs). (17)
Notice that, for this range of interaction strengths, relevant for the simulation of the TMI phase, the hopping
rate is always larger than the decay rate, i.e. t/Teg > 1.

We now discuss a specific region of A and (2 that allows one to reach the TMI phase. In particular, we
consider the yellow line at a fixed A = 6 MHz in figure 11(a), which corresponds to fixing the ratio
V1/V, = 0.62, as can be inferred from equations (10) and (11). The interaction parameters spanned by this
yellow line are mapped into the phase diagram of Rydberg dressed atoms in figure 11(b). The current loop
order parameter {gay along this cut is also shown in figure 11(c): within this parametric span one can access
the topological phase. As an example, we can choose to pin V; = 4t, which corresponds to V, = 2.5¢,

V3 = 0.63t, V4 = 0.34t; this specific set of V; is illustrated by the circles shown in figure 2. For this example,
we obtain a large current loop order £qap ~ 0.08, a moderate decay rate leading to #/T e ~ 4, and the
ground state is relatively robust to thermal fluctuations with a critical temperature of kg T =~ 50 nK, obtained
from the finite-temperature gap analysis of figure 7. This analysis indicates that the scheme proposed here is
a valid pathway towards the quantum simulation of a TMI. Clearly, this is only one example. Other atomic
species or states presenting repulsive interactions could be equally suited, or present characteristics that can
better cope with intrinsic and experimental limitations.

Finally, we remark that the observation of collective phenomena in the quantum simulation set-up
considered here hinges on the validity of equation (16) to describe the effective decay rate for

6 The tunneling amplitude depends on the atomic mass but can be further fine-tuned by changing the lattice depth.
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Figure 11. QAH phase in laser parameters space. Relevant parameters are fixed to plausible values for this type of experiments:
7o = 30 s, Co = 100 MHz af, , t = 3 kHz. The color map in (a) refers to the hopping rate in units of the effective decay rate,
t/Ter. The QAH phase emerges for Vy /t € {2,6} and V,/V; € {0.5,0.9}, the latter corresponding to A € {8,1} (see

section 4.1.1). In this region, the hopping is always larger than the effective Rydberg decay rate. The yellow line indicates a
possible trajectory to cross the QAH phase: A = 6 MHz, V,/V; = 0.62, r1 /r. = 0.68. Subplots (b), a clip of figure 5, and

(c) present the corresponding path in the phase diagram and the amplitude of the QAH order parameter along the oriented line.

Rydberg-dressed atoms. Previous experiments have observed a rather large decay rate, scaling with the
number of particles. This phenomenon is modelled as a blackbody-driven collective resonant decay from the
dressed state, an avalanche mechanism triggered by the first individual atom decay that drives the entire
system out of its simulation task. The suppression of this avalanche mechanism will be crucial in order to
scale the system size and was to a good extent achieved by the authors of [46], thereby opening the door to
quantum simulating the extended Fermi—Hubbard model and topological Mott insulating phase discussed in
our present work.

6. Conclusions and outlook

In this work, we investigated a topological Mott insulating model and addressed the question regarding its
quantum simulation with state-of-the art experimental methods. Precisely, we considered a Fermi—Hubbard
Hamiltonian on a checkerboard lattice with inter-site density—density interactions, a model which is known
in the literature to host a QAH phase in the V; — V; case, i.e. when featuring interactions up to NNNs
[62—65]. Here, we studied the impact of longer-range interactions on the V; — V, model and observed that
the interaction between third-neighbors stabilize and enlarge the QAH region in the ground-state phase
diagram. This result eases the requirements for an experimental realization, given that realistic long-range
interaction potential profiles generally comprise a non-vanishing coupling beyond second-neighbors. We
focused on the Hamiltonian modelling a lattice gas of Rydberg-dressed Fermi atoms, exhibiting a long-range
two-body effective interaction potential, and we studied the physical properties of this model. The choice of
the effective Rydberg potential is motivated by the technological progress reached in the field of optically
trapped cold Rydberg atoms [9], as highlighted by recent experiments [46].

Interestingly, we observed that the Rydberg-dressed model Hamiltonian hosts a larger QAH phase in the
ground-state phase diagram, as compared to the V; — V, model. This constitutes an encouraging result for
the purpose of quantum simulations, since realistic long-range interactions generically present finite
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beyond-second-neighbors coupling. We substantiated our analysis addressing real-system effects that can
arise under ordinary conditions in a laboratory: we studied the fate of self-trapped polarons and
interaction-induced domain walls at incommensurate fillings, we analyzed the stability of the QAH phase
with respect to temperature with a mean-field approach and with respect to quantum fluctuations with
DMRG. Furthermore, we discussed realistic ranges of the experimental parameters in a cold gases setup,
which allow to access a TMI state of matter.

This work provides a clear route towards the experimental realization of an interaction-induced
topological phase in cold-atom quantum simulators. In this context, it is important to better understand how
to bring the quantum state into the interaction-induced topological phase. The task requires finding paths in
the phase diagram to cross from, e.g. an initial state in the charge ordered phase, which can be prepared in
experiments, to the QAH phase via a continuous phase transition. One route could be an adiabatic state
preparation through a ramping protocol [114, 115]. Advancements in the stability of Rydberg gases, leading
to longer lifetimes, would be desirable for this method. The lifetime of emergent phenomena is primarily
influenced by spontaneous decay from the Rydberg state, which result in the destruction of coherence in a
localized area around the decayed atom. Crucially, this means that only a region is affected and not the entire
lattice. An increase in the size of the two-dimensional lattice, including more atoms, would increase the
amount of regions that maintain coherence during the adiabatic preparation and over some periods of
coherent dynamics, within a single experiment. Another interesting question concerns the detection of the
QAH phase. For this, detection schemes developed for non-interacting topological phases in cold atom
quantum simulators exist [51, 54, 116—120] which require to be generalized and adapted to interacting
systems. Finally, as the system also exhibits topological defects, it would be interesting to study the dynamics
of the formation of defects [19, 121, 122] when changing the speed of a ramping protocol for state
preparation, and by means of that characterize the topological nature of the interaction-induced QAH phase.
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Appendix A. Hartree—-Fock method

A.1. Hartree—Fock expansion and self-consistent loop

Here we discuss how we find the mean-field parameters of the Hamiltonian in equation (6) of the main text,

which results from the Hartree—Fock decoupling,
B~ R 4 R — T I Al
ninj = n;it; + Nnjn; — Nin; + ’51]‘ gl]cj Ci gi] GG, (A1)

with 7; = (71;), and & = <EITE]> Such Hamiltonian can be brought into the convenient form

d
Hip =Y [s(7,€)¢5 + He.| + C(7,), (A2)

ij=1

where the sum is over a finite number d of lattice sites, C is a scalar term resulting from the Hartree—Fock
decoupling, and (7,¢) refers to the set of Hartree—Fock parameters, on which the Hamiltonian matrix
elements h;; depend self-consistently. The general case in which no constraints are imposed on the
mean-field parameters is commonly known as the unrestricted Hartree—Fock method. Below we outline this
method, which we have used in this work to study inhomogeneous solutions in real space, shown in
figures 6 and 9. In the next subsection we also discuss the restricted Hartree—Fock method in which one
constrains the Hartree—Fock values to be periodic within a certain unit cell, resulting in a numerical
simplification of the algorithm.

Starting from an initial guess for the value of these Hartree—Fock parameters, the Hamiltonian matrix
hij can be diagonalized by means of a Bogoliubov transformation U defined by (;‘IT Sisee ,f; J)T=
U(EJ{, Cly e ey E};, ¢4)7, such that the Hamiltonian takes a diagonal form:

d
Hyr =Y Efifi+C. (A3)
i=1
Notice that, in the mean-field approximation, it is feasible to consider large system sizes d because the
numerical complexity scales polynomially in d (diagonalization of a d x d matrix h;;) in contrast with the
exponential scaling of the general many-body case. Finally, in the equilibrium state at temperature T, the
occupation number of the Bogoliubov modes f; is given by the Fermi distribution

Tt expl(E — )k ]’

15) = 04f(Es . T) (A4)
where p is the chemical potential that is used to fix the total particle number trough the condition

> :f(Ei, b, T) = N. At half filling and T = 0 one gets (ﬁ},) =1 for the N/2 lower energy states, and 0 for the
other ones.

Therefore, any expectation value in the original fermionic basis can be computed using equation (A4)
together with the Bogoliubov transformation U. In particular, one can compute the new values of the
Hartree—Fock parameters 7; and &;;, which give a new Hamiltonian matrix h;; that can be diagonalized again
following the procedure described above. This process is iterated until convergence of the Hartree—Fock
parameters is achieved. In order to avoid metastable solutions, one needs to compare the free energies Fyp of
different converged solutions. The free energy is defined as

o Ei—p ’
Fp=S"0——# Tl _ 1] b4, A5
HF Z{l+exp(EiB#) B n{exp( kT ) ]} (A5)

i

which, at T = 0, is simply given by the expectation value of Hy. Importantly, in order to converge to
solutions that break Hamiltonian symmetries, it is crucial that the initial Hartree—Fock parameters already
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Figure 12. Eight-site cells. The square lattice unit vectors are [e;, e;]. The eight-sites unit-cell Bravais vectors are [4ey, 4ey]. The
green segments identify the first-neighboring pairs, composed of inter- and intra-cells entries. The sites labelling, arbitrary, helps
to keep track of all the terms in the derivation of H; in k-space, presented in equation (A11).

break them. For instance, the QAH phase requires initial complex values of {;; to break time-reversal
symmetry, that is {;; should be initialized to numbers with a finite imaginary part, and charge ordered phases
require spatially inhomogeneous distributions of 7;.

A.2. Restricted Hartree—Fock with eight-site unit cell

The checkerboard lattice is a bipartite two-dimensional Bravais lattice that can be uniquely defined with a
two-site unit-cell coordinate, accounting for sub-lattices A and B, and two unit vectors. The Fourier-
transformed free Hamiltonian Hy of equation (3) has thus a two-dimensional matrix form in k-space,
accounting for hopping and interactions between the two sites A and B of the unit cell.

The inclusion of density—density interactions in Hip of equation (4) breaks the block diagonal structure
of Hy in k-space, as interactions represent scattering processes which couple modes with different ks.
However, when working with the Hartree—Fock Hamiltonian Hyr described in the previous section, one can
artificially impose a certain spatial periodicity of the Hartree—Fock parameters, and recover a block diagonal
structure of Hyy in k-space.

This is known as the restricted Hartree—Fock method, and is typically used at particle fillings
commensurate with the lattice size, where one expects that interactions preserve a certain translational
symmetry. In this method, it is important to do a proper choice of the unit cell size. A too small cell size may
lead to constrictions: in k-space, two-body energy terms acting on a distance larger than the extent of the
cell become identical to existing shorter-range terms and renormalize them. Also, charge orders with a
periodicity on larger length scales can not be captured. In particular, in order to resolve the charge density
distribution associated to dominant V; interactions, shown in figure 3 of the main text, a four-site square cell
is not sufficient. Therefore, in this work, we consider the eight-site cell depicted in figure 12. In what follows,
we use this unit cell to express Hyy in k-space and also to derive the Hartree—Fock parameters.

The Fourier transform of the real-space annihilation operator is defined as

b1 e = exp(ik (K], (86

1

where N, is the total number of unit cells, in this case corresponding to the number of sites, and r,, is a
linear combination of the Bravais vectors [e;, e;] spanning over the lattice sites:

I, = me, +ney, with mnée_Z. (A7)

In model (14), we include inter-site interactions up to fourth-neighbors, each one yielding a hopping term
of the same neighboring order in Hartree—Fock approximation. The eight-sites lattice cell in figure 12
accommodates all hopping terms distinctly. The geometry of the cell correctly allows for a complete tiling
of the lattice via [a;,a,], the two unit-cell Bravais vectors:

a; =4de,, a,=de,. (A8)
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In the unit-cell framework, one can map the spatial coordinates r,,, onto a combined coordinate of the cell
index mn and an additional index « that identify the cell sites, as indicated by the enumeration in figure 12:

Yn — Romn = ma; + nap + Ta, (A9)

with m,n € Z. Ultimately, we can rewrite the Fourier transform as:

=
Nuce kEFBZ

Ci — Comn = exp(ik - Romn ) €a (k). (A10)

A.2.1. Bare hopping t, first-neighbors
Let us now expressly illustrate, as an example, the mathematical steps yielding the NNs hopping in k-space;
the procedure is identical for other elements in the Hamiltonian. Expanding the kinetic energy term H; =

—l‘Z<i,j> (E:r&] + H.c.) , we have:

. 1 1
H,=—t —_— exp(—ip - Romn E}; p exp(iq - Rgmrnr)cs(q) + H.c.

<amn,fm’'n’> uc qEFBZ

=—t

N1 >3 D (Ewiea(@pd @I Rme s ), (A11)

uc P.q€FBZ <a,3> mn

where <, > symbolizes the restriction over all first-neighboring pairs and rgo = Rgun — Ramy is the
associated vector, also illustrated by the green segments in figure 12; here, R,,,, points at cell mn, whose
origin coordinate we arbitrarily fixed to the bottom-left site &« = 1. The sum over mn gives a Dirac delta
function in q — p, which reduces the k-dependency to q only:

H=-t3 Y (d(@ea(@e @™ +He). (A12)

qEFBZ <o, B>

Ultimately, dropping the explicit q-dependency of the operators to ease readability and following the

labelling in figure 12, we obtain

H=-1Y [e—iq'el (a;es e+l +) +emiae (z-;as vilede 4+ ) +H.c.] . (A13)
qEFBZ

A.2.2. Expectation values, first-neighbors

In real-space coordinates, the Hartree—Fock parameters §;; could be in principle different from one another.
Assuming translational invariance over the unit cells, the number of first-neighboring pairs reduces to the
sixteen elements shown in figure 12. The expectation values are calculated as follows:

FBZ

Cap =Y (Ehes) = %ZZ (e (p)ea(q)) el a P Rimemiaras — N (Gl (q)eg(q)) e ™7, (Al4)

cells p.q mn qEFBZ

A.2.3. First-neighbors interaction
Lastly, using equation (A1), we can derive the k-space form of the first-neighbors density—density
interaction, in the mean-field approximation. The operator in real-space coordinate reads:
- - . 2
HVI =V Z (ninj + njn; — n;n; + ‘51‘]‘|
<ij>

- gl — €52l (A15)

The mean-field approximation introduces constant and diagonal on-site terms and renormalizes the bare
hopping. After Fourier transformation, we obtain:

H=—t Z {e—iq‘el [2;25(1 + Vi&s7) +} +e iae [egasu + Viés3) +} +H.c.}.
qEFBZ
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0 17:/4 /2 311:/4 ™
k.’c

Figure 13. Single-particle band structure. (a) Valence and conduction bands of the free Fermi—Hubbard model with bare hopping
t. Left panel: cut of the right panel at k, = 0, evidencing a linear dispersion at the touching point. (b) The quadratic band
touching appears when a 27-flux is introduced. Left panel: cut at k, = 7/2.

Appendix B. QBT

As discussed in section 2, numerical evidences [58—76] suggest that a topological Mott insulating phase
emerges in the presence of a QBT. The free Fermi—Hubbard model on a checkerboard lattice with only NNs
hopping does not possess this property in the band structure. In fact, conduction and valence bands touch
but present a linear dispersion; this can be changed by introducing a bipartite second-neighbors hopping on
the two sub-lattices A and B, J2 /t = ]f/t = +40.5and ]}‘:‘/t =JB/t = —0.5, as shown in figure 1 in the main
text. This specific design of the hopping introduces a so-called 27-flux on square second-neighbors
plaquettes of both sub-lattices, which gives the QBT. We can see this analytically by studying the model
Hamiltonian H, (equation (3)) on a two-site unit cell. In this case, one can show that the dispersion relation
reads

Ei k, = — [Sxcos(2ky) + S, cos(2k, )| & { [Dycos(2ky) + D, cos(Zky)]2 + 16t cos(kx)zcos(ky)z}l/2 (B1)

where S, = ];? —l—]ff, D, = ]? —]f and likewise for S,, D), and where k., = k- e, ,. For Iﬁ = Iﬁ =0,
S, = D,, = 0 (see figure 13(a)) the system reverts to the bare Fermi—Hubbard gas with a linear dispersion,
around the points where conduction and valence bands touch:

Ey, x, = 4tcos(ky) cos(k, ). (B2)

The particular case considered in the article, J4 = ]f =0.5t=— ])/} = —JB, gives S,=0,D, ==t

5 ) N2
Eix, = it{ [cos(2ky) — cos(2ky)] " + 16 cos(ky)* cos(k,) } .

In this case, the bands touch at a zero energy point in ky, k, = =7 /2. The quadratic behavior, shown in
figure 13(b), is easily derived, for instance fixing k, = 7 /2:

By ky=r /2 = V2K (B3)
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Appendix C. Van VlecKk’s perturbation theory for effective Rydberg potential

Here we outline the derivation of the effective Rydberg potential, equation (9). Given a Hamiltonian

H= I:IO + BHI, where HO is diagonal, BI:II is the interaction and 8 < 1, the Van Vleck’s formalism [61, 103]
provides an analytical expression of the Hamiltonian matrix in a block-diagonal form up to a desired order
in the parameter 5. The method requires a bipartition of the Hilbert space onto a model space P and its
orthogonal complement Q. The model space includes the subset of Hy eigenstates of which one wants to
study the interaction-induced hybridization and obtain the energy level corrections. We define the associated
projection operators

P=3"1p)pl. Q=) la)dl (Ch

pPEP qeQ
and use them to split operators, in particular the Hamiltonian, onto a block-diagonal part,
HP = PHP + QHQ = H, + BHP, (C2)
and a block-anti-diagonal term,
H* = PHQ+ QHP = BHY. (C3)

The task is to find the decoupling operator U that block-diagonalizes the Hamiltonian: Hyy = U~'HU. The
specificity of the Van Vleck’s method, among other quasi-degenerate perturbation theories, consists in
assuming that U = ¢, where G = GXisa block-anti-diagonal anti-Hermitian matrix. A series expansion of
G in increasing powers of 3 can be obtained recursively:

GO — 0,

G = RHY,

G =R [AP.6],

&0 — i ([H?,G(z)] +% HH;(’@(U} ,@(1)}) ,
% +

GO R <[A?,@<S>] + L ar.ce) ,@w]) | (Ca)

Here R is the resolvent operator,

™
=
|

™
S

2 P
S SIS 1) )
q P

and ¢; are the eigenenergies of H,. The equivalences in equation (C4) are obtained using the rule
UX‘O‘> = 7§a [H07 UX]|O‘>7 (C6)

which also applies to G thanks to its anti-diagonal form. Finally, one can rearrange the resulting Hyy terms in
a convenient form, Hyy = Hy + ; BiVV(i), where

w = fP, (C7)
we) = 2 [, 60
we) = 2 [5G
w4 .60 [ 6.6

Ultimately, the hybridized states of subspace 7 are found by diagonalizing the P-block of Hyy.
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In this work, we consider a many-body system of cold atoms dressed to a Rydberg state. The single-
particle physics is well captured by the Hamiltonian H. = (|r)(g| + H.c.) + A|r){(r|. The Hamiltonian for a
two laser-driven atoms pair in the basis [|gg), |rg), |gr), |rr)] is:

0 QO 0 0

o a o 0

H=1qg o a Q (C9)
0 O QO 2A+ Uaw(r)

The regime of far off-resonance is defined in the limit of frequency detuning much larger than the Rabi
frequency, /A < 1. In this regime, the off-diagonal part of the Hamiltonian becomes perturbatively small.
If we rewrite the Hamiltonian matrix in energy units of A and in terms of the perturbation parameter

B =Q/A, we obtain:

00 0 0
H, 010 0
Al oo 1 0 ’
0 0 0 2+ %u®
01 1 0
o | 1001
K_ﬁ1001
01 1 0

At this point, we can apply van Vleck’s method to derive the corrections to the eigen-energies of the
unperturbed system, defining the spaces P and Q. Since we are interested in obtaining the corrections to
eigen-energy E|q, of the two-atom ground-state |gg), we define P : [|gg)]  Q: [|rg),|gr), |rr)], and split
accordingly the Hamiltonian onto its block-diagonal and block-anti-diagonal parts:

0 0 0 0

HP 010 1

Ao o1 1 ’
0 1 1 24 Y%w®d
01 10

s 1 00 0

K‘ﬂ 1 000
00 0 0

Applying the formalism introduced above, we can derive the corrections to E|g to fourth order in 3 = Q/A:

2 4 4
Vi) _ o8 2,8 Uaw(r)

_ 1
A A AT TR e () + 2 (C10)

The spatial dependence is given by the last term.
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