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1. Introduction 

The breaking of continuous symmetries in Quantum Field Theory is one of 

the most important basic phenomena in modern physics. This idea originated in 

the theory of condensed matter [l] b- t u is widely used in the realm of elementary 

particles. Here symmetry breaking provides the basis for our understanding of 

two concrete areas of phenomenology: the unification of weak and electromagnetic 

forces in the Standard Model [24], and the low-energy scattering of pions and 

nucleons [5,6]. Symmetry breaking also plays a crucial role in attempts to go 

beyond the Standard Model, such as Grand Unified Theories [7] and “Technicolor” 

PI. 

The symmetry breaking phenomenon is exhibited by a non-zero expectation 

value for some non-singlet field operator known as the “order parameter.” In the 

cases where this order parameter is linear in the elementary fields the “classical 

approximation” to the action is an appropriate one, and the weak coupling (small 

tL) expansion can yield a reliable calculational scheme. This is what obtains in 

the electro-weak theory: the classical potential for the scalar Higgs fields has a 

maximum at the origin, and (in a gauge-fixed formalism) one shifts the fields 

to one of the minima. Crucially, the Higgs-Kibble mechanism [9] can be seen 

already at this level of analysis, providing masses for the W and 2’ bosons and 

the quarks. Ordinary perturbation theory then yields systematically improvable 

and quantitative predictions for the physics of the electro-weak interactions. 

However, there are important cases of symmetry breaking where the order 
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these the classical approximation fails completely. Thus, there can be no weak 

coupling expansion, and the study of ‘dynamical” symmetry breaking forces us to 

look for non-perturbative methods. This problem is extremely difficult to overcome 

in QCD and “realistic” technicolor theories. In the latter case the absence, as yet, 

of a quantitative analysis is one of the major obstacles to the approach, and one 

has to rely on analogies and extrapolations from hadron phenomenology#‘. It 

therefore seems reasonable to try to study the problem of composite operators in 

the context of simpler, and better understood models, and this is the main purpose 

of the present review. 

Nambu and Jona-Lasinio were the first to introduce the idea of dynamical 

symmetry breaking, in the context of the interactions of nucleons and pions [12]. 

Their model is defined by a 4-fermion interaction lagrangian in d = 3 + 1 

(1.1) 

where -?’ are “isospin” matrices. Classically, the lagrangian has an exact chiral 

SW>L x 37(2)R Y s mmetry, which forbids a mass for the nucleons II, to all orders 

in 9’. Nambu and Jona-Lasinio showed that if the coupling g2 is stronger than a 

certain critical value then a mass can be generated dynamically in Hartree-Fock 

approximation. When the mass is non-zero the chiral symmetry is dynamically 

broken to SU(2) v, and this produces a massless triplet of pseudo-scalars as bound 

states. (The occurrence, in general, of massless particles corresponding to the 

broken generators of a rigid symmetry group was proved by J. Goldstone [13].) 

#l The dynamical assumptions are that the QCD lagrangian does indeed reproduce hadronic 
physics, and that “similar” lagrangians behave “in the same way” up to color factors. 
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With remarkable insight Nambu and Jona-Lasinio identified these pseudo-scalars 

as “idealized” pions. Subsequent work then tried to interpret the photon as a 

dynamical Goldstone boson as well [14], with the aim of reducing the number of 

coupling constants needed to specify QED. 

This non-perturbative reasoning was motivated from the Bardeen Cooper 

Scrieffer theory of superconductivity [15]. Th ere is, however, an important physi- 

cal difference between the models of NJL and BCS, namely that the former does 

not possess a natural candidate for the cutoff A which is required to define the 

Hartree-Fock ‘gap equation.” (In BCS the cutoff corresponds to the Debye fre- 

quency, and only in this setting does the gap equation provide a relation between 

physically measurable quantities.) The cutoff cannot be removed from the scatter- 

ing amplitudes in the NJL model, but at least the dependence turns out to be only 

logarithmic [16]. Th e model can be considered as a low energy efiective theory for 

the strong interactions, which might in principle be derivable from QCO [17-191. 

The severe problems caused by ultra-violet divergences in d = 3 + 1 has made 

it natural to study field theory in lower dimensions in order to test basic ideas. A 

great variety of interesting features have been conveniently studied in the frame- 

work of exactly solvable models in d = 1 + 1 [20-251. The Gross-Neveu model 

[26] is a well-known example. The model is 0(2N) symmetric with a scalar-scalar 

4-fermion interaction 

wherej = 1,2,..., N. The model was studied by Gross and Neveu in the large N 

limit, who found that dynamical mass generation occurs just as in (1.1) breaking 
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down the discrete II, + 7514 chiral symmetry. It is of particular interest that the 

model combines both dynamical symmetry breaking and asymptotic freedom [27], 

and so resembles QCD in these two key respects. 

Though the studies in 1+ 1 dimensions have been greatly illuminating, the mod- 

els generally possess some properties which are “unrealistic” from a phenomenolog- 

ical point of view. The first unphysical property is the complete elasticity of the S- 

matrix, which makes the solvable 1 + l-dimensional models more reminiscent of the 

non-relativistic quantum field theories used in condensed matter physics 115,281. 

In the GN model, for example, the esact S-matrix of elementary fermions and 

bound states was found by Zamolodchikov and Zamolodchikov [20],and Shankar 

and Witten [24]. Th e solvability of the model followed from the assumption of 

purely elastic particle scattering, a property which was seen explicitly in the l/N 

expansion. 

The second is the impossibility of the spontaneous breakdown of continuous 

rigid symmetries. A famous theorem, due to Coleman [29] and Mermin and Wag- 

ner [30], states that all local operators which are non-singlet under a continuous 

symmetry group must have zero expectation value. This precludes the existence of 

Nambu-Goldstone bosons#2, thus to obtain a good analogy to low-energy pion- 

nucleon physics we must look to a higher dimension. We are constrained to be 

below d = 3 + 1 by the divergence problem, and above d = 1 + 1 by Coleman’s 

theorem, so the natural place to try is d = 2 + 1 ! 

This idea might appear to be bound to fail since 4-fermion theories are well 

known to be non-renormalizable in the weak coupling expansion in d = 2 + 1. 

#2 Long-range order is nevertheless still possible in 20 statistical mechanics [31]. 
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However, it was shown in refs.[32-351 that these theories are, in fact, renormaliz- 

able in the l/N expansion. Not only is this expansion renormalizable, and hence 

calculable, the l/N technique reveals a lot of non-perturbative information. This 

opens up the possibility of quantitatively studying dynamically generated (compos- 

ite) Goldstone bosons. Apart from the pedagogical value of this study, the 2 + 1 

dimensional models may also have physical application to 20 condensed matter 

systems. Non-relativistic 4-fermion models, such as the Hubbard model [36], are 

extensively used to describe anti-ferromagnets, including those become high T, 

superconductors when properly doped. The continuum (or long wavelength) limit 

can be approximated by the “relativistic” models described here, where essentially 

the velocity of light is replaced by the velocity of sound. 

This review is organized as follows. Chapter 2 contains a derivation of the 

l/N expansion for the discrete Gross-Neveu lagrangian (1.2). This explains the 

method that will be used throughout the later chapters. At first we consider 

a general spacetime dimension d, and describe the phase structure. At leading 

order in l/N the demand of non-trivial interactions in the continuum limit then 

restricts us to d = 1 + 1 and 2 + 1, and we compute the scattering amplitudes. In 

both dimensions we find a bound state a-meson at twice the induced mass of the 

fermions. An interesting difference between the two dimensions is seen in the high 

energy behavior. In d = 1 + 1 the uinvariant charge” o(E) is asymptotically free, 

as emphasized by Gross and Neveu [26], but in d = 2 + 1 the charge approaches a 

finite constant. This is similar to the behavior apparently found recently in 3 + l- 

dimensional QED [37] and we hope that 4-fermion theories in 2 + 1 dimensions 

will provide a good laboratory for studying this phenomenon. Finally, in section 
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2.6, we present the proof that the Gross-Neveu model is indeed renormalizable 

to all orders in l/N in d = 2 + 1. The reader not interested in the intricacies of 

regularization and renormalization procedures may skip this subsection, but should 

note that the proof holds similarly for a wide class of 2 + l-dimensional models. 

To conclude, we discuss the validity of the l/N expansion itself. In 1 + 1 

dimensions the method is by now firmly established by comparison with exact 

S-matrices [20-251, lattice simulations [38] and semi-classical calculations [39]. 

However in d = 2 + 1 non-perturbative information is rather fragmental. An 

exception is the O(N) y s mmetric a-model, which has been extensively studied 

recently [40,41] in connection with 2D antiferromagnets. In particular, Manousakis 

and Salvador [42] h ave found a continuum limit of the model using the Monte Carlo 

method, and their data compares well with the l/N analysis. 

Chapter 3 is devoted to the dynamical breaking of continuous chiral symmetries 

in d = 2+1. Composite Goldstone bosons are explicitly located as poles in 

2 + 2 fermion scattering amplitudes, and Goldstone’s theorem is proved to all 

orders in the l/N expansion. We calculate the low-energy interactions of fermions 

and Goldstone bosons, and verify the Goldberger-Treiman relation. The self- 

interactions of Goldstone bosons are calculated and summarized in an effective 

chiral lagrangian. 

From a ‘phenomenological” point of view it is important to understand the 

physics of an approximate chiral symmetry, as was realized in the original work 

of Nambu and Jona-Lasinio [12]. In the 4-fermion models in d = 2 + 1 we can 

explicitly break the chiral symmetry, but maintain the renormalizability, by adding 

mass terms for the fermions. In Chapter 4 we study the interplay between the two 
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mechanisms of symmetry breaking. We calculate the masses of the fermions and 

pseudo-Goldstone bosons in terms of the explicit breaking parameters, and derive 

the Gell-Mann-Okubo formula [43]. Th e b ound “cr-meson” present in the chiral 

limit becomes a resonance. 

Chapter 5 contains a discussion of the thermodynamics of chiral symmetry 

breaking. The discrete Gross-Neveu model in 2+1 dimensions undergoes a second- 

order phase transition at a finite temperature Tc. The mass gap in the high tem- 

perature phase is reduced to zero, and the transition is precisely analogous to that 

in the BCS theory of superconductivity. For the case of continuous symmetry one 

can invoke Coleman’s theorem to prove that the critical temperature must be ex- 

actly at Tc = 0. This infra-red effect is non-analytic in l/N, and so cannot be 

studied directly in the l/N expansion. However, we shall argue that many of the 

properties of the “would-be” Goldstone bosons do, in fact, survive at low enough 

temperatures, and for these properties the l/N expansion is reliable. 

In Chapter 6 we briefly describe other 2 + l-dimensional renormalizable the- 

ories. These include (1) 4-fermion models with vector-vector type interactions; 

(2) O(N) symmetric non-linear a-model; (3) supersymmetric a-model; and 

(4) CP(N - 1) model. These theories have interesting phase structures and prob- 

ably a rich spectrum of bound states. Moreover, their analogues in d = 3 + 1 are 

phenomenologically valuable despite the presence of the cutoff [44]. 



2. The l/N Expansion and its Renormalizability 

In this chapter we show in detail that 4-fermion theories in d = 2 + 1 have 

a renormalizable l/N expansion. In subsection 2.1 we give a heuristic argument 

how this can be possible, despite the non-renormalizability in the weak coupling 

expansion. This is supplemented in 2.6 by a rigorous proof (in the realm of physics) 

and in 2.7 by a discussion of RG improvement. In order to make the review self- 

contained the l/N expansion is derived in 2.2, first in a diagrammatic way, and 

then briefly in a path integral formalism. Subsections 2.3-2.5 contain discussions 

of the bound states, the phase structure and ultra-violet behavior. 

2.1. How A THEORY NONRENORMALIZABLE IN WEAK COUPLING PERTURBA- 

TION THEORY MAY NEVERTHELESS BE RENORMALIZABLE? 

It is widely believed that in quantum field theory the requirement of renormal- 

izability is very strict for spacetime dimensions d > 1 + 1, so that the possible list 

of continuum models is very short. The argument is based on a simple upower- 

counting” analysis, which we shall review here, to see how it can be transcended. 

First one notes that the lagrangians for free fields are either second order or 

first order in derivatives, according to whether the particles are bosons or fermions. 

The propagators then vary as ps2 or p- ’ for large momenta, and one defines 

the “ultraviolet dimensions” D,, of the free fields to be i(d - 2) and i(d - l), 

respectively. With this definition the kinetic energy terms have D,, = d and the 

free action is dimensionless. To obtain a (perturbatively) interacting theory, one 

may add to the lagrangian operators of total ultra-violet dimension 5 d. These are 
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the so-called “relevant” and “marginal” operators [2.1] and comprise just a finite 

number of polynomials in the fields and their derivatives, for d > 1 + 1. A key point 

in the power counting argument is that at any finite order in perturbation theory 

the interactions only change the ultra-violet scaling behavior by logarithms. Thus 

the naive power counting does indeed work, if it is understood order by order in ti 

[2.2]. 

Operators with D,, > d can, actually, be included in the action provided there 

is an ultraviolet cutoff A, but then their coupling constants must be tuned to vanish 

as powers of l/A. As a result these operators have no effect at all on the form 

of Green’s functions at a physical energy scale E << A, and in this sense they are 

‘irrelevant .t) To exemplify this reasoning, let us consider a 4-fermion interaction, 

as in the Nambu-Jona-Lasinio or Gross-Neveu models. In perturbation theory 

the connected 4-point function has the diagrammatic expansion 

7-90 6673Al 

Heuristically, each loop provides a factor s 3 N AdS2, which is controllable for 

d = 1 + 1. However, for d > 1 + 1 the only way to prevent the series from diverging 

is to give each vertex a weight g2 N l/AP with p 2 d - 2. Each term in the 

sum is then suppressed by a power of l/A, and the connected amplitude vanishes 

in the continuum limit. Thus, we say that in perturbation theory the 4-fermion 

interaction is upower-wise trivial.n 
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There have been many attempts over the years to get round the restrictions of 

perturbative renormalizability. The analytic methods #3 involve at some point 

a change in the high-momentum dependence of the propagators, so that the 

power counting is radically altered. One such approach is to truncate the Dyson- 

Schwinger equations in some way and solve the resultant system of integral equa- 

tions Uexactly.n In this fashion it was found that in QED in d = 3+ 1 the 4-fermion 

operators have large “anomalous dimensions” and can become relevant [2.3]. Un- 

fortunately, this method is not systematically improvable, and the justification for 

the truncations remains unclear. Another approach involves the ad hoc addition 

of higher-derivative kinetic energy terms to the action. This method certainly im- 

proves the renormalizability but in general suffers from a breakdown of unitarity 

or causality. The propagators either violate the Kkllen-Lehmann representation 

if the number is infinite [2.4], or develop ghost-like poles if the number of deriva- 

tives is finite [2.5]. A conjecture by Lee and Wick [2.6] was that by making the 

ghost-like poles occur as complex conjugate pairs unitarity may be restored, but 

this idea has not been substantiated to our knowledge #4 . 

The basic mechanism of the l/N expansion [2.8,2.9] is the summation of an 

infinite number of Feynman diagrams, and this can go beyond the perturbative 

power counting. Physically what is happening is that a given cutoff theory has 

more structure than the naive continuum model. One then tries to keep some of the 

new physics as the cutoff is removed, and this leads to unusual renormalisations. A 

simple example in the context of quantum mechanics is an attractive delta-function 

#3 We shall not attempt to discuss the computational methods on the lattice. 
#4 For a review see Ref. [2.7] 
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potential in a box. The boundary allows the potential to bind, and it is possible 

to preserve this bound state by adjusting the strength of the delta-function as the 

walls go off to infinity. Returning to the 4-fermion interaction, consider the subset 

of diagrams formed by the chain of “bubbles” in geometric series in Fig. 1. If l/g2 

is tuned to cancel the leading divergence N Adm2 in the bubble diagram then the 

geometric sum can become finite as A + 00, and indeed this is what happens in 

d = 2 + 1. Remarkably, the fine-tuning required here is exactly the same as in 

the Hartree-Fock approximation mentioned in the introduction, and the two sums 

can be combined. In a diagrammatic notation Hartree-Fock corresponds to the 

non-perturbative sum of “cactus graphs” [2.10], see Eq. (2.2). 

7-90 6673A2 

Figure 1. Bubble Chain 

+==++ +fL= 
7-90 6673A3 

(2.2) 

Equation (2.2) yields a “self-consistent” equation for the fermion mass, which can 

be solved in terms of g2 in the presence of a ultra-violet cutoff A. In this way, the 

leading order of l/N expansion incorporates both dynamical mass generation and 

non-trivial interactions. As we shall see in the next subsections the l/N expansion 
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can be described systematically and is renormalizable to all orders. An important 

check of the method is that it is consistent with unitarity, and this is discussed in 

detail in Appendices C and D. 

2.2. THE l/N EXPANSION 

Let us consider the simplest possible 4-fermion interaction, namely the Gross- 

Neveu model (1.2) in an as yet arbitrary spacetime dimension d. Once this case is 

understood, the method will be easily extendable to a host of more exotic theories. 

In (1.2) II, is a Dirac spinor #5 and the model has a discrete “chiral” symmetry 

$ + -y5$, which is preserved to all orders in ordinary perturbation theory. This 

#6 ensures the fermions to be perturbatively massless. 

In the l/N resummation method the leading-order contribution for any con- 

nected Green’s function is defined by the (infinite) set diagrams for which the 

power of N coming from flavor contractions, call it P, is equal to the number of 

loops L. (Note that we always have L 2 P.) For the 2-point function this set 

is just the Ucactus graphs” of Eq. (2.2) and the sum can be performed provided 

we take the coupling g2 to be O(1) in units of N. The full a-point function is 

then O(1). For th e connected 4-point function the set is the bubble chain of Fig. 

1, udressed” with all possible cacti, giving an overall weight l/N. The connected 

6-point function has two bubble chains dressed with cacti and has weight 1/N2, 

etc. 

#5 See Appendix A for a summary of notations for the case d = 2 + 1. For even dimensions 
the notation is standard [2.11]. 

#6 In d = 2 + 1 this is not really a chiral symmetry since there are no chiral fermions. Rather 
it is a Z2 symmetry which switches the upper and lower components of a Dirac spinor 
(Appendix A.) 
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The nest-to-leading-order contribution for any Green’s function is then the set 

of diagrams for which P = L - 1. In general, the nth order of the resummation has 

P = L - n, and as n --t cc we “diagonally” recover the totality of the diagrams. 

The summations here can be codified. in a convenient way using an auxiliary field 

formalism [14, 2.121. The lagrangian (1.2) can be rewritten using a scalar field a(z) 

as 

(2.3) 

where the equivalence is by the exact equation of motion for a(z). The discrete 

chiral symmetry is now written as 

We define a functional integral Z([,z) by coupling in sources for the fermionic 

fields and regularizing with a Lorentz invariant momentum cutoff A.#’ 

(2.5) 

The exponent is purely quadratic in the fermion fields, and we can formally in- 

tegrate over them. This is the essential trick of introducing a(s). We obtain an 

ueffective actionn for the auxiliary field 

SeR[a] = - J 2 
dda: 292 - ifi tr.&(ib - 6) . 

In Eq. (2.6) the N d p d e en ence is now fully explicit and Z([,c) can be estimated 

#7 The kinetic energy term Tib$ is replaced by ~i~f(u*/A*)~ for some appropriate cutoff 
function f(e). 0th er regularization schemes are discussed in Appendix B. 
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by the method of stationary phase. The fluctuations around the stationary phase 

solution then compactly express the generation of the l/N expansion. 

To investigate the vacuum structure, let us consider the leading order energy 

density Vex evaluated for constant fields a(s) = u. We have 

av,, Q ih -cm-- 
dU g2 J 

A 

= a-4fia J ddPE 1 - 
g2 

A 
(2r)d p; + CT2 - 

In Eq. (2.7) th e contour of integration has been Wick rotated in accordance with 

the Feynman (causal) boundary condition [2.11], i.e. p” = ipk. From the effective 

potential we can see a fundamental distinction between d = 1 + 1 and higher 

dimensions. Fixing g2 and A there is a logarithmic singularity as u + 0 in d = 

1 + 1 which makes V,‘lr(u) large and negative. Thus the minimizing value of (a) is 

bounded away from zero no matter how we choose the coupling, and the discrete 

chiral symmetry must be broken. 

In d > 1 + 1 there is a two phase structure. V:.(O) is positive for weak enough 

coupling, g2 < g2;it, and the chiral symmetry is manifested. The critical value of 

the coupling is 

9 
-2 
crit d>l+l. (2.8) 

If the coupling is larger than g& then V:‘(O) < 0 and the auxiliary field a gets a 

non-zero vacuum expectation value. 

Let us consider first the phase of dynamically broken chiral symmetry. In the 

large N limit (a) = M > 0 is a physical quantity, namely the induced pole mass 
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of the fermions. In order to have M << A we must fine-tune the coupling g2 in the 

following way: 

9 
-2 J ddPE 1 

=4tA (27r)d p&+MZ ’ 
P-9) 

If this is the case then the effective potentials in d = 1 + 1 and d = 2 + 1 are given 

bY 

h 02 
v1+1 = - u2en - 

2~ eM2 

v2+1 = - t $u[~-;Mu~) . 

(2.10u) 

(2.10b) 

The fluctuations about the minimum are now described by the effective Feynman 

rules in Fig. 2. A key feature of the method is that the auxiliary field u(z) has 

i jj -iGij(P) 

7-90 6673A4 

Figure 2. Feynman rules in asymmetric phase. 

an induced propagator from the double functional derivative of Set. In Fig. 2 the 

fermion and auxiliary field propagators are given respectively by 
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D(p2) = $ [ J $ - iii 
dd 

cwd (8-w(141_6-~) 1 
-1 

Qtr . (2.11b) 

- In this algorithm Z([,z) * g’ IS iven by the set of all effective Feynman diagrams with 

external fermion ((legs,” ezcept those containing ‘bubbles” and ‘tadpoles” as sub- 

graphs, see Fig. 3. The point is that these have already been summed over in Eq. 

(2.6). Thus each order in l/N is described by a finite number of effective graphs. 

7-90 
6673A5 

Figure 3. Illegal Subgraphs 

From Eq. (2.11b) th e reciprocal of D(p2) contains two divergent integrals of order 

AdS2, and the leading divergence actually cancels for all d.#” Thus D(p2) is finite 

and non-vanishing as A + 00 in d = 1 + 1 and 2 + 1, and order A4-d for d > 3 + 1. 

The analytic expressions for d = 2,3 in the continuum limit are 

D(p2)2+1 = E 
J--pTi 

N ( -p2 + 4M2) tan-l (&?/2M) 
(2.12b) 

which are real functions for p2 negative. 

#8 This crucial cancellation is not an artifact of the momentum cutoff, it also holds for a 
lattice or Pauli-Villars regulator. 
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2.3. MESONIC BOUND STATE 

Let us now consider the physics of the leading-order amplitudes, which are 

given by the ‘tree diagrams” of Fig. 2. The fermions have a dynamically-generated 

mass M, and have interactions beginning in order l/N. The 4-point function 

carries the bulk of the information and is given by 

G ijk’(~,,~2 >p3 >p4 ) = x + crossed 

P4J 6673A6 
(2.13) 

and so essentially reduces to knowing the u-propagator evaluated as a function 

of the Mandelstam variables s, t or u. Thus the fine-tuning of the coupling Eq. 

(2.9) which produced a mass scale small compared to the cutoff, M << A, has also 

produced non-trivial interactions in the cases d = 1 + 1 and 2 + l.#’ 

If we consider the kinematical region appropriate to the scattering FiF’ + FiFj 

then the momentum transfer is spacelike and the T-matrix element is real. To 

obtain the differential cross section we need the 2 + 2 phase space factor and the 

sum over spinor polarizations. In d = 2 + 1 we obtain 

1 

167&m 
(t - 4M2)2D2(t) 

-6ij a(u2+t2-s2)+4M2(s-M2) 

(2.14) 

In both dimensions there is an exchange channel pole at mass 2M coincident with 

#9 For d = 3 + 1 there is a subleading logarithmic divergence in Eq. (2.11b). and the 4- 
point function vanishes as l/hi. The significance of this “logarithmic triviality” will be 
commented on in the conclusion. 
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the two fermion threshold. Thus the auxiliary field a(z) not only has become 

“dynamical” but, in fact, interpolates for a lightly bound meson. (Note that the 

position of the pole is a pure number in units of M, and it does not need a separate 

normalisation. This is because the th.eory has truly only one parameter.) 

The meson can also be detected as a resonant contribution to FiFj -+ FiFj, 

where it appears in the s-channel. Since s is timelilce the leading order amplitude 

becomes complex, and is found by analytic continuation of Eq. (2.12). The analytic 

structure of the amplitude is discussed in Appendix C, and we have in d = 2 + 1 

1 

167r sdm 
Nbij(S - 4M2)21D(s)12 + (t - 4M2)2D2(t) 

- 6ij i (it2 - U2 + S2) + 4M2(-t + U - S) + 8M4 1 D(t) Re D(s) . 

where 

The “fate” of this bound state beyond leading order is an interesting question. In 

d = 1 + 1 an extraordinary theoretical breakthrough was made by Zamolodchikov 

and Zamolodchikov [20], who solved for the S-matrix esactly. In the exact FF + 

FF amplitude, for which Eq. (2.12a) indeed gives the large N limit [2.13], the pole 

has moved away from the 2-body threshold into the bound region, with AM/M N 

-1/N2. For N 2 3 the true a-meson mass is given by 

m2=Msin(&)/sin(&) . (2.16) 

In principle the mass formula could be checked from a direct calculation of the 
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4-point function to higher orders in l/N, but this is a very difficult task#“. 

Ind=2+1 th e exact S-matrix is not known, and we hope that future lattice 

simulations will shed light on the bound state spectrum. However, one can make 

a reasonable “analytic” guess using a non-relativistic potential approach, which 

proved to be very accurate in the 1 + 1 case [39]. In Born approximation the 

scattering amplitude Eq. (2.13) is the Fourier transform of some potential V(r) in 

an effective non-relativistic Schrodinger equation. Taking the inverse transform of 

the amplitude we get an attractive square-well-like potential with a range - l/M 

and a depth - M/N. In 1 + 1 d imensions V(r) has at least one bound state, even 

as N + 00, with a binding energy - M/N2 just as in Eq. (2.16). In 2 + 1 the 

potential is too weak to bind as N + 00 and the energy shift will be positive. For 

N small V(r) b ecomes sufficiently attractive, so heuristically it appears that there 

is a critical N = NC below which the a-meson becomes stable. 

2.4. HIGH ENERGY BEHAVIOR 

Let us now consider the “deep-euclidean” region of the 4-point function. We 

can define a dimensionless ucharge” o(E), which expresses the strength of the 

interactions between the fermions, by o(E) - NE#Gt4)(E). Here the 4-point 

function is taken at the symmetric point, (p~+pa)~ = (pl+p~)~ = (pl+~q)~ = -E2, 

andi=j=Ic=l. Thepower#iszerointhecased=l+landunityind=2+1. 

#10 Refs. 12.141 1 c aim that the l/N expansion actually gives AM/M N -l/N*, in disagreement 
with Eq. (2.16). It is not clear to us, however, that the renormalization procedures used 
are consistent with that described in subsection 2.6. 
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From Eq. (2.12) we obtain 

dm.++E 
,/,I32 + 4~2 _ E (2.17~) 

2; E2 
Q(E)2+1 = (E2 + 4M2) tan-‘(E/2M) . 

(2.17b) 

In d = 1 + 1 the charge is asymptotically free, decaying as ln-‘(E/M). This is 

analogous to the behavior in &CD, and provided the motivation for Gross and 

Neveu [26] to give a detailed study of the model. One says that the model has un- 

dergone ‘dimensional transmutation,” for the classically dimensionless coupling g2 

has been traded for the mass scale M. It is interesting that the non-perturbative 

result Eq. (2.17a) g a rees at high energy with the l-loop RG-improved weak cou- 

pling expansion. There we have 

49 = h72(/4 - F g4(p) en (E/p) + . . . 

h2(/4 
(2.18) 

I 

N 1 + (2fi/r)g2(p)en(E/p) + 2ln(E/p) ’ 

This gives us some confidence in the use of RG-improvement in &CD. The be- 

havior of cr(E) in d = 1 + 1 is expected to be qualitatively the same through all 

orders in l/N since at high enough energy the charge is arbitrarily small and the 

order-byorder corrections should be calculable “perturbatively.” 

In d = 2 + 1 we get a radically different picture. At leading order the charge 

approaches a finite constant cu(oo) = 4, providing a rare example of a non-zero 

ultra-violet fixed #ll point. But now we no longer have a perturbative argument as 

#ll The dependence of (Y(W) on the dimension d is analogous to that in scalar theories [2.15]. 
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to why l/N corrections should be automatically small, and it is a subtle question 

as to what is the true high-energy behavior of the theory. What is required is a 

kind of RG-improvement of the l/N expansion itself [2.16], and an investigation 

of this problem is presented in subsection 2.7. 

2.5. THE PHASEOF UNBROKEN CHIRAL SYMMETRY 

.--- In the 4-fermion model for d > 1 + 1 the discrete chiral symmetry Eq. (2.4) is 

dynamically broken provided the coupling g2 is sufficiently strong, as in Eq. (2.9). 

For completeness, let us consider the symmetric phase. The coupling is now tuned 

to be slightly weaker than the critical value, i.e. we set 

g-q4[$$~+$ ) d>l+l (2.19) 

where v > 0. From the “gap equation” (2.7) we must have (a(z)) = 0, so the 

fermions are massless and the chiral symmetry is indeed manifest. In d = 2 + 1 

the fermions still have non-trivial (continuum limit) interactions through scalar 

exchange and the o-propagator is given by 

&(p2) = & (v + Jq-’ . (2.20) 

The 4-point function in the symmetric phase thus has a square-root cut at zero 

momentum, which is a characteristic for massless particles in d = 2 + 1. Note that 

apparently there is a tachyon-like pole at p2 = -v2 in Eq. (2.20), but this only 

occurs on the second sheet, and so does not signify a real instability. The a-field 

no longer interpolates for a stable physical particle, and it seems reasonable to 

conjecture that there are no bound states at all in this phase. 
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2.6. RENORMALIZABILITY PROOF FOR d = 2 + 1 

At non-leading orders in the l/N expansion ultra-violet divergences arise, and 

we would like to see if these can be systematically controlled. It turns out that the 

proof of renormalizability is actually simpler for d = 2+ 1 than for d = 1 + 1, which 

was completed in Ref. [2.17].#12 We consider first the renormalization problem in 

the symmetric phase. From a “Wilsonian” point of view the result would then 

carry over automatically to the broken theory [2.1], since the specific realization of 

a given phase is purely an Uinfra-red effect.” 

The Feynman rules in Fig. 2 indicate that the propagators of the $J and CT fields 

both behave at large momentum as p-l, so their ultra-violet dimensions are both 

1. Note that for the scalar field this is a truly non-perturbative dimension, since 

an elementary scalar has D,, = f, as mentioned in subsection 2.1. Performing the 

analogue of the power standard counting, the usuperficial degree of divergence” 

DA of a Feynman diagram with E$ external fermion legs and E, external a-legs 

is 

D^=3-E4-EEa. (2.21) 

#12 One should not assume that the perturbalive renormalizability of the 1 + 1 model implies 
its renormalizability in the l/N expansion. After all, the two expansions are completely 
different. The difficulty, compared with the 2 + 1 case, comes from the possibility that a 
(&)2 counterterm is required to cancel the divergences, not just the three operators in 
Eq. (2.3). This would render the l/N expansion inconsistent: suppose the counterterm is 
induced at rth order in l/N to remove a divergence in the 1PI fermion 4-point function. 
The counterterm can then generate new graphs for the 2-point function, and then the 4- 
point function, which are still at rth order (due to a factor of N coming from loops.) Thus 
a new rth order counterterm is required, and so it goes on ad infinitum. At next-to-leading 
order, at least, this catastrophe does not happen. The 1PI graph in Fig. 5 is finite in 1 + 1 
due to the factor of l/&p2 from each of the two u-propagators. Thus the renormalizability 
in 1 + 1 depends not just on counting powers of momenta, but also on powers of logarithms! 
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Thus the only primitively A-divergent graphs are those in Fig.4. Notice that, 

e 

C 

;+% e 

W W (f) 
7-90 

6673A7 

Figure 4. Primiative Divergences 

for example, a 4-fermion graph is not superficially A-divergent so the “one-loop” 

graph in Fig. 5 is A-finite. 

7-90 6673A8 

Figure 5. Finite 4-fermion coupling in one-loop 

To circumvent a discussion concerning infrared divergences, we imagine carry- 

ing out the systematic renormalization using the “method of effective lagrangians,” 
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that is by sequentially integrating out high momentum modes [2.1]. A small adap- 

tation of the arguments in [2.2] s h ows that the uanomalous dimensions” of operators 

built out of 1c, and o are perturbatively small in l/N, so the power counting analysis 

in Eq. (2.21) is correct. Now from Fig. 4 we may expect to need counterterms for 

the renormalization of the form $$, @lc,, a$$, 6, a2, and cr3. Importantly, this 

list does not contain a kinetic energy term (a,,~)~, since this operator is dimension 

4. This has the consequence that a(s) remains an auxiliary field under all orders 

renormalization. 

Actually, we’ll only need counterterms @+, aTlC, and a2, which are precisely 

the original operators in the lagrangian Eq. (2.3). The others are forbidden by the 

chiral symmetry: Figs. 4a,f vanish identically in the symmetric phase, as does the 

momentum-independent divergence in Fig. 4b. Thus the auxiliary field retains the 

original form of the equation of motion o(x) z i?+(z), and the model can still be 

represented as a 4-fermion interaction. To discuss the broken case M # 0 is now 

easy, since this is generated by a finite shift in the o-field. As is simply proved in 

this method, this shifting has no effect at all on the ultra-violet structure [2.2,2.5] 

and this completes the proof. 

In summary, the renormalized Green’s functions depend on just three subtrac- 

tion constants, and we define c.f. Eq. (2.3) 

(2.22) 

In Eq. (2.22) Z 1 and Z2 are just overall normalizations for the fields, and will 

drop out of the S-matrix. Thus the physical amplitudes will depend on just one 

parameter and in this respect the model is like &CD. One can define a uphysicaln 
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renormalization scheme by stipulating the pole mass of the fermions, or one can 

specify instead a dimensionless interaction strength at some reference scale p (see 

subsection 2.7). 

At this point the reader may wonder whether the preceeding formal argument is 

really true, and that the three constants 21, 22 and 23 are sufficient to renormalize 

all correlators. In particular, the language of the argument was much the same as is 

used in ordinary perturbation theory, where the bare propagators are much simpler 

functions of momentum than the bare o propagator of Eq. (2.12). To allay any 

fears let us explicitly verify the renormalizability at next-to-leading order. 

It is convenient for these purposes to use a euclidean space formulation, so we 

have the Wick rotated functional integral 

NZ3Z; 2 
LE = Zl$jpE$‘j + &&j$j + 2g2~2 u . 

1 

(2.23) 

In Eq. (2.23) we have set ti = 1 and use euclidean r-matrices, see Appendix A. The 

Feynman rules from Eq. (2.23) are similar to those in Fig. 2. We keep g2 as in Eq. 

(2.9), so that we are in the broken phase #13 , and set Z; = 1 + Zi/N. Expanding 

u = g(M + -%), the only changes are that the sources have a resealing, there n 

is a l-point S-vertex of weight -Z3M/g2fl, and an extra 2-point S-vertex of 

weight -&/2g2fl. 

#13 In an explicit calculation, as opposed to a general all orders argument, it is easiest to think 
of renormalization in terms of subtractions at zero momentum. This can only be done in 
the massive case. Moreover, the analysis is directly applicable to d = 1 + 1 by just changing 
the dimension of the integrals. 
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For the renormalization it is sufficient to calculate the full vacuum expectation 

value of u(z), and the connected Green’s functions ($(o)&)), (a(z and 

(+(z)q(y)u(z)). We have at next to leading order 

2 (u(2)) = M + & (G;> 
where 

fiw = -MT3 + 

D(O) g* 

6-90 6673A31 

(2.24~) 

(2.24b) 

The inverse fermionic 2-point function is given by I”j(p) = Z~@f’(p), where 

UP) = 
1 i.@+M+z 

6673A30 (2.25) 
6-90 

and the inverse of the connected mesonic 2-point function is 

=,-’ = Z;/Z: D-‘(p2) + f&‘N + h 
P-, 

E-90 6673A29 
(2.26) 

Finally, the connected and truncated vertex function is 

8-90 corm 6673A26 
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where by truncation we mean that the connected vertex function has been mul- 

tiplied by the full inverse 2-point functions on all legs. If it is the case that Zr, 

Z2 and Za really do renormalize Eq. (2.24) through Eq. (2.27), then all Green’s 

functions will be renormalized. For example, the connected and truncated fermion 

&point function will indeed be made finite, since 

j 

8-90 

-I 
+ crossed 

1 sym (2.28) 
6673A27 

and the “box” diagrams in Eq. (2.28) are explicitly convergent. Now let us define, 

in the spirit of BPHZ renormalization, Taylor expansions of the divergent diagrams 

about zero momentum#14. First we have 

__._._._._ ?s- = a(0) + a’(O) i# + 
;Q; 

6-90 6673A26 
(2.29a) 

+- = c(o) + 4J$- (2.2gb) 
6-90 6673A25 

The subtracted loop integrals, denoted by the dotted box surrounding them, are 

explicitly finite. The renormalization conditions from (u(z)), ($(z)&)) and 

#14 The argument in this section can be repeated, with some care, using an arbifrarysubtraction 
point ~1. 
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(+mtY)+)) now read respectively 

0 z& (2, - @I + dqq 

(2.30) 

0 G 2, - a’(0) 

0 - if2 + c(0) , 

where the symbol G means equality up to finite parts. In Eq. (2.30) we have used 

the fact that the last graph in Eq. (2.27) is convergent. These four equations 

over-determine 21, 22 and 23, and are only consistent provided 

o-a(o) + MC(O). (2.31) 

The equality of the divergences in Eq. (2.31) does indeed hold, as can be seen 

by differentiating Eq. (2.29 a with respect to M, so the consistency is due (as we ) 

expect) to the underlying chiral symmetry. What we must prove now is that the 

Zi determined from Eq. (2.30) render (a(s finite also. This is not at all 

obvious, since some of the divergent contributions have a complicated momentum 

dependence. The key to the proof is to use the diagrammatic relation Eq. 2.11b 

D-‘(p*) = l/g* + 

8-90 6673A24 
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so that 

= a’(O)( D“(p*)-l/g*) + (a(O)-Ma’(O)) p-, 

+ 
8-90 6673A23 

(2.33~) 
, . . . . . . 

,... :.. : 

-9 = 2c(O)(D-‘(~2) -l/g*) ++a 
P :...:..I ; 

_..___. 

8-90 6673A22 
(2.33b) 

Substituting Eq. (2.33) into Eq. (2.26) and using Eq. (2.30) we get an expression 

for the boson propagator where the possible divergence is, at least, manifestly mo- 

mentum independent. We check in Appendix E that g3 as defined by Eqs. (2.24b) 

and (2.30) d oes cancel the remaining divergence and once again this is a conse- 

quence of chiral symmetry. This completes the somewhat lengthy demonstration 

that the 4-fermion model is renormalizable at next-to-leading order. 

2.7. RG IMPROVEMENT OF l/N EXPANSION 

Equations (2.9) and (2.17) apparently provide a rare example of a finite, non- 

zero UV fixed point with associated p-function 

ax 
%x A, = 1 (A - A,) . (2.34) 

for the coupling X = g2A. However, this result does not necessarily establish the 

UV fixed point beyond leading order in l/N, even accepting the all orders renor- 

malizability of the model. This is due to an important difference between the l/N 
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expansion, and the more familiar weak coupling expansion, concerning RG im- 

provement. The point is that in weak coupling perturbation theory the expansion 

parameter is precisely the quantity whose p-function is calculated. In the case of 

asymptotic freedom, the expansion parameter is small exactly in the ultra-violet 

region, so the p-function calculated in the first non-trivial order becomes reliable 

at a sufficiently high scale. Therefore the RG flow of the coupling near the UV 

fixed point can be firmly established. In our case however, l/N is not a running 

coupling. One calculates the p-function of the coupling X as series in l/N and 

cannot use the previous reasoning. There is no guarantee a priori that the higher 

order corrections in the ultra-violet region are less important than the leading or- 

der, since there is no connection between large momentum scales and the N -+ 00 

limit. Thus it could happen, for example, that logarithmic corrections in higher 

orders force X, to infinity analogously to the perturbative running in QED3+1. 

This would create serious doubts about the reliability of the l/N expansion, and 

indeed the existence of the phase transition 

N#15 . It is therefore of some interest to see 

point at next to leading order. 

and interacting theory for any finite 

what happens to the finite UV fixed 

The renormalisation constants Zi defined in the previous subsection are calcu- 

lated in Appendix E. In d = 2 + 1 we have 

2 [A Zl = l--?2 
37r2N p 

(2.35~) 

Z;! = 1+-n 
A 

a&t - (2.353) 
I-1 

#15 Alternatively X, could be driven to zero, as in &CD, but this seems unlikely since the 
weak coupling expansion preserves the chiral symmetry to all orders, and does not connect 
to the broken phase. 

31 



23 jT = r2 q1- $A - F (1+ &?2) . (2.35~) 

Now the question is what about the appearance of the extra parameter ~1 in Eq. 

(2.35). The exact S-matrix must depend on just one scale M&s so the bare 

invariant charge g2/2s should depend only on A and Mphys. What has happened 

is that the leading order parameter M  is no longer equal to Mphys, and should be 

#Is thought of as a function of p. Differentiating Eq. (2.35~) with respect to ~1 and 

setting ~1 = A we get 

i.e. upon integration 

M(p) - p8/3Nn2 . 

(2.36~) 

(2.363) 

Substituting Eq. (2.36b) into Eq. (2.35 ) c and exponentiating the series the p 

dependence drops out and the “improved” invariant charge is now 

23 - = $1 _ ;, _ p!p)1-8’3Nr2 . 
g2A 

(2.37) 

The finite UV fixed point still exists, albeit shifted downwards by a fraction l/N, 

and the crucial point was the absence of A.!nA divergences in Eq. (2.35~). This 

is good evidence that the structure of two phases separated by a critical theory 

survives to finite N. We notice also that the @-function slope has been reduced 

to (1 - 8/3r2N); ‘t 1 must be positive for consistency and this holds true even for 

N=l. 

#lS At leading order we had the luxury of choosing a physical normalization condition because 
the amplitudes were well-behaved for all energy scales E. At subsequent orders such a 
normalization condition can be defined, but this leads to the problem of large logarithms: 
the l/N expansion is not uniform in E, and this is “cured” by introducing p. 

32 



The deep euclidean behavior of the various Green’s functions are just power 

laws, as in the theory of critical phenomena. The powers can be obtained simply 

from knowing the renormalization constants in Eq. (2.35), so, for example, the 

fermion propagator behaves as ~/$JI!/~~~‘. The RG has exponentiated the lnp 

dependence of the “rainbow” diagram in Fig. 4b, and this corresponds to the 

summation of “nested rainbows.” We can codify this power by defining the ultra- 

violet (critical) dimension of the fermion field 

WI = 1 + j$ * (2.38) 

Similarly, the meson two-point function depends on 21 and 22, and behaves as 

p-(1+16/3Nx2). Thus 

[o] = 1 - & . (2.39) 

The high energy behavior of the connected, truncated Green’s function with n 

fermion legs and m a-legs is then N EP where P = 3 - n[+] - m[a]. 

3. Dynamical Symmetry Breaking 

In the previous chapter we studied the Gross-Neveu model [26] and the dy- 

namical breaking of its discrete chiral symmetry subgroup. The demand of strict 

renormalizability picked out two special dimensions, d = 1 + 1 and d = 2 + 1. 

Qualitatively new phenomena appear when it is a continuous symmetry group 

which is broken [13], and this is our main subject of interest. In this chapter we 

consider the simplest 4-fermion theories which have a continuous chiral symmetry, 
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namely the U( 1)~ x U(~)R model 

and its generalizations to U(n)r, x U(~)R. In the l/N expansion there is a range 

of values of g2 for which the global symmetry in (3.1) is dynamically broken to 

the subgroup U(n)v in d = 2 + 1. This produces composite Goldstone bosons 

which are exactly massless to all orders in l/N, and we compare and contrast the 

analysis to the analogous case in d = 1 + 1. Finally, we explore the interactions of 

the Goldstone bosons with themselves and the elementary fermions, and calculate 

the low energy effective chiral lagrangian. 

3.1. COMPOSITE GOLDSTONE BOSONS 

The derivation of the l/N expansion is similar to that in the discrete Gross- 

Neveu model. In the case of lagrangian (3.1) we need, however, two auxiliary 

fields: 

(3.2) 

For notational clarity we drop the “flavour” index j on the fermions. The global 

u(l)V x U(l)A invariance is given by 

+L + elffL+L 

$'R + e-$'R (3.3) 

(u + ix) -+ eitoLvaR)(u + ir) . 

For all values of the coupling g2 the effective potential can be obtained from the 

discrete case version by the simple replacement cr2 + u2 + r2. Thus for the phase 
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of dynamically broken chiral symmetry we tune g2 exactly as in (2.9) and obtain 

as the cutoff is removed 

V(U,R)= i [; pq3-+-2+x2)] . (3.4) 

The effective potential has a minimum away from the origin, so one linear 

combination of the composite fields will get a non-zero expectation value. We 

arbitrarily pick (x) = 0, hence (0) = M, and the fermions once again have mass 

M. The Feynman rules are as in Fig. 2, supplemented by a FFr vertex carrying 

a weight 75. The pseudo-scalar x has also an induced propagator from the double 

derivative of the effective action, analogously to the scalar field Q. The 75 coupling 

makes a crucial difference, however, and we have 

d3!7 
m tri7s(,i - M)-lirs(R - fi - M)-’ 1 

(3.5) 
27r 1 

\ , 
=- 

N @ tan-‘(@/2M) ’ 

Thus in the large N limit we have not only a bound-state meson of mass 2M but 

also one of mass zero. Here is a strikingly explicit example of Goldstone’s theorem 

in action. 

The composite nature of the Goldstone boson can be seen from the cut in 

Dr(p2) at the two fermion threshold. This provides a non-trivial “spectral func- 

tion,” which can be calculated from (3.5) through the use of a dispersion relation. 

We have 

I ’ 

where 
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p(s) = -A-- Mfi I en2 (3.6) 

The spectral function p(s) is real and positive and has support only for s 2 4M2. 

This is in accordance with the “asymptotic theory,” due to Kallen and Lehmann, 

describing quantum fields which interpolate stable physical particles [2.4,2.5]. 

3.2. PROOF OF GOLDSTONE'S THEOREM TO ALL ORDERS IN l/N 

To discuss the properties of the r-particles to higher orders in l/N, we must 

first renormalize all fermionic and mesonic Green’s functions consistently with 

chiral symmetry. Since the deep euclidean behavior of the x and Q propagators 

are the same, the renormalization requires the introduction of three subtraction 

constants, just as in the discrete model of Section 2. The proof of renormalizability 

goes over mutatis mutandis, and we do not repeat it. The “bare” lagrangian is 

L bare = i&@$ - z2q(a + ix75)$ - 2g2~2 
NZ3Z22 @2 + r2) , P-7) 

1 

where Zl , Z2, Z3 are written as a power series in l/N. In order to choose the O- 

direction for the breaking of the symmetry we couple in a constant, external source 

h which is later to be removed. Thus we consider the renormalized functional 

integral 

Zrt=n(C,T, Jb, Jr, h) E 
J 

D+ DFDaDrexpi 

&J +vC + (h + Jo>@ - (0)/t) + Jxr 1 . 
(3.8) 

where (~)h is the esact expectation value of the mesonic field in the presence 
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of h. Clearly (r)h vanishes identically, since it involves a Dirac trace over an odd 

number#17 of 75’s. 

We can now generate an infinite series of Ward identities which reflect the 

dynamical breaking of chiral symmetry. Consider a change of integration variables 

in (3.8) corresponding to an infinitesimal, local U(~)A rotation, (i.e. let cry = 

-a~ = a(x) in (3.3).) It is easily proved [3.1] that such a change of variables leaves 

Zre, invariant, when understood as a generator of “Feynman-like” diagrams. The 

jacobian of the transformation is unity, so the response comes purely from Lbare 

and the source terms. At linear order in o(x) we obtain the functional identity 

o = (~d~($7,75$$ + i(&,$ + $7~0~ - 2[(h + Jdr - J~~]z),,, a (3.9) 

Note that (3.9) indicates that Green’s functions with an operator insertion of 

Jpsb) = Z1g7p75+( x are already renormalized, so that the uaxial current” re- > 

quires no further subtractions [2.11]. 

The identity (3.9) contains a lot of information which is hard to derive directly 

from the Feynman diagrams. We extract the relevant equations by functionally 

differentiating with respect to the sources [, J, and Jr some number of times 

and then setting the sources to zero. The first such equation is that of current 

conservation 0 = 8‘(Jp5(x))~, which is the quantum analogue of Nother’s theorem. 

Differentiating (3.9) with respect to J, once we derive 

0 = i % (Jp5WW)~ - 2h (+) K(Y)), + 2(4d3(x - Y> , (3.10) 

and this is the equation which proves the masslessness of the pions. Multiplying 

#17 ys counting shows that all purely mesonic correlation functions with an odd number of r 
legs vanish. 
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through by the inverse of the z-propagator, and taking a Fourier transform to 

momentum space, Eq. (3.10) becomes 

0 = f VpdPwPN;~,,, - 2h + 2WhC,(P2) * (3.11) 

Provided the limit h + 0 is smooth in all Green’s functions the result is at 

hand. (This infra-red regularity is indeed expected in 2+1 dimensions.) By Lorentz 

invariance the matrix element (JPs(p)r(-p))trunc is of the form -ip,f(p2), so as 

the external field is removed we have 

iP2f(P2) 
C7r(P2) = 2 IO> * (3.12) 

Finally we must argue that f(p2) g oes to a finite constant as p2 + 0, in which case 

the r-propagator has a pole at exactly zero momentum. This is certainly the case 

at leading order in l/N, where f(p2) is calculated from the diagram in Fig. 6a. 

qxl - Q 
(a) 

r/J5 Q j - rpr!y Q j - 

(b) (c) 

7-W (d) 

Figure 6. Insertions of Axial Current. 
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This yields 

f(p2) _ NM tan-1tdT/2M) - T@ 2 p2-+o- (3.13) 

in agreement with (3.5). Th e residue-of the pole is 4wM/N so the conventionally 

normalized r-field is obtained by resealing by dm. The on-shell matrix 

element (OIJ,5lr(p)) then reduces to -ip,f,, where 

MN f=J- * 7r * 
(3.14) 

This quantity is known as the “pion decay constant” and plays a fundamental role 

in the phenomenology of the pion interactions. 

Beyond leading order f(p2) has potentially dangerous contributions from dia- 

grams with internal pion lines. (Clearly intermediate fermions and b-mesons cause 

no problem since their propagators are massive.) At O(1) we have the graphs of 

Fig. 6b,c but in fact these are infra-red finite by power-counting. The first inter- 

esting cases occur at 0(1/N), w h ere the diagrams of Fig. 6d,e separately diverge 

as en p2. At least there are no contributions with a single intermediate pion, since 

these have been removed by the truncation, so we do not have to worry about sim- 

ple poles. The key point now is that the on shell pion amplitudes x -+ 3x, 5x, . . . 

(2n + 1)x all vanish, since the pions are effectively derivatively coupled. This is 

verified explicitly at the leading order for each of these processes, i.e. order l/N”, 

in subsection 3.6. Thus the sum of the right-hand sub-diagrams of Fig. 6d,e ac- 

_ tually cancels on shell, and the 0(1/N) contribution to f(p2) is analytic at the 

origin. 
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This proves Goldstone’s theorem up to two sub-leading orders in l/N, thank- 

fully without having to calculate I’,,(p2) d irectly. To complete the argument to 

all orders in l/N is a little tricky. It is crucial that the x-fields remain derivatively 

- coupled, and a discussion of this point is deferred to Section 3.6, which describes 

the method of effective lagrangians. 

3.3. COMPARISONTO l+l: How COLEMAN'S THEOREM WORKS 

The derivation from (3.7) to (3.11) is valid order by order in l/N in both 

d = 1 + 1 and d = 2 + 1, for it is essentially a combinatoric argument. The crucial 

difference, however, between the two dimensions comes when we try to take the 

limit h + 0 in (3.11). In d = 1 + 1 th e 1 imit h + 0 is potentially infra-red 

singular. It is true that at leading order in large N the x-particle has mass zero 

and (0) # 0, but the higher-order terms are divergent and the identities from 

(3.11) are rendered invalid. As examples, the two next-to-leading order graphs in 

Fig. 7 are logarithmically divergent in the infra-red, and cause the standard l/N 

expansion to fail. (In d = 2 + 1 the diagrams are infra-red safe.) 

,C--. \ ,0--. \ , \ / \ / \ I \ I \ \ I \ I 
/ / ‘/ 

I 
7-90 I 
6673AlO I 

Figure 7. Infra-red divergent diagrams in l+l. 

As was argued by Witten [3.2], the fields ~7 and x are no longer good interpolat- 

ing fields as h + 0. In particular the x-field has a spacetime correlation function 
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which grows with distance, and this is unphysical. Witten suggested that the ap- 

propriate quantum fields are the modulus and phase of (u + ;r), so we consider 

the change of variables 

u + ir G Pp 

(3.15) 

The functional integral for the U(1) x U(1) model can then be formally rewritten 

as 

Z = 
J 

DxD~Dp~DBexpi 
J 

d3z,Q,p,B) 

(3.16) 

.C(x,p,4=F i+&P-p 
> 

x-$p2. 

In the large N limit, at least, this redefinition makes sense. The modulus field 

p(z) gets an expectation value M, but this is now in accordance with Coleman’s 

theorem [29,30] since p is neutral under U(~)A. The fermions x get an induced 

mass and are also neutral. The &-field has a propagator proportional to the old 

r-propagator, 

&gx@ 
Dsb2) = & 

G 

-27ri 
p2+o - 

= Np2 ’ 

and since its interactions in (3.16) are purely derivative the infra-red divergences 

have been “absorbed.” The o-field still has a bad spacetime correlator, but the 

physical quantum field is not 0(z), rather it is e ie(z). Since the interactions are 
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suppressed by powers of l/N we have 

e-ie(z)eie(o) 
> 

= exp (e(z)e(O)) 2! exp -1.4!n(~2) 
2N , (3.18) 

and this is now an acceptable correlation function since it decays with distance for 

any finite N. The phase field is closely related to, but is “not quite,” a Goldstone 

boson, and was first conjectured to exist in the context of the 2D XY-model in 

statistical mechanics [31]. 

Beyond leading order in l/N the above analysis is problematic, since the cor- 

relation functions from (3.16) are not manifestly renormalizable. This is due to the 

local operator products in (3.15), and one imagines that a “smeared out” version 

of the fields will define sensible amplitudes. (This is a reasonable hope, from the 

evidence that the S-matrix is factorized [3.3], and the C-field decouples exactly 

[3.4] !18) 

3.4. LOW-ENERGY THEOREMS, GOLDBERGER-TREIMAN RELATION AND 

OTHER CONSEQUENCES OF DSB 

Let us now return to d = 2 + 1 to explore the various consequences of the 

symmetry breaking. For fermion-Goldstone boson interactions the Feynman rules 

#18 The argument presented in [3.4] uses the serendipitous technique of bosonization [3.5]. The 
lagrangian (3.1) is apparently equivalent to the bosonic form 

Clearly the potential depends only on the differences of the bosons 4a, so there is a combi- 
nation ip = C 4a which is decoupled (and massless). 
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directly give the rFF coupling to be i7s when the r field is normalized as in (3.5). 

Resealing to make the pole residue unity, we get a physical coupling 

(3.19) 

For the analogue of PCAC the matrix element of J,,5 between two fermionic states 

is given by the diagrams of Fig. 8. The possible tensors are 

7-90 6673All 

Figure 8. PCAC 

(W’) I J,5 I VW) = iuP’) [sA(q2)-w5 + gb2h5q, + dq2)+pwp] UP> 

(3.20) 

and the direct calculation gives 

2M 
gA=l, fJp=-- 

q2 ’ 
gs=o. (3.21) 

Note that the cut due to the fermion/anti-fermion intermediate state cancels and 

(3.21) is correct for all q 2. This is in accordance with the Ward identities generated 

from (3.9).#” Recalling the “pion decay constant” fX from (3.14) we obtain the 

#19 The situation is a little peculiar in 1 + 1 dimensions where the RHS of (3.20) cancels 
identically for on-shell spinors [3.3]. Th is supports the contention in subsection 3.3 that 
the true physical states are massive, neutral fermions. 
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analogue of the Goldberger-Treiman relation [3.6] 

2MgA fr = - 
%FP ’ 

(3.22) 

We can now compute the on-shell scattering amplitude A for F?r t FT. This is 

given by the diagrams in Fig. 9. 

, /’ 
+ crossed 

‘\ \ 

7-90 6673A12 

Figure 9. FT + FT scattering amplitude 

(3.23) \ I 
l/7 &(l - q2/4M2) 

- (-q2 + 4M2) ’ tan-‘( m/2M) 1 ‘(” ‘) * 

For small pion momenta the amplitude goes to zero, in accordance with “low- 

energy theorems” [3.7,8]. Indeed, the spin-averaged cross-section is purely p-wave 

in this limit, and is given by 

(3.24) 



3.5. XT + mr SCATTERING 

In order to investigate the interactions of Goldstone bosons with themselves, 

we generalize the model to have a U(n)r, x U(~)R symmetry. This can be done by 

promoting u and x in (3.2) t o n x n hermitian matrices and letting the fermions 

be in the fundamental of U(n). So we consider the lagrangian 

where e = cPTa, and similarly for E, and T* are the generators of U(n)#20. The 

rigid invariance is given by 

+R--+R$R 

(C+iK) + L(a+i$R+ , 

(3.26) 

which is dynamically broken to U(n)v when the coupling is tuned as in (2.9). In 

#20 To = j$,T" = &iT" where T" are the conventionally normalized generators of N(n) 
in the fundamental representation [3.9]. 
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this phase the Feynman rules are given in Fig. 10. The propagators are essentially 

j 
i -+ j -iG ij (P) -iT .? 

I’ 
i 

a-------- p iD *,p(p 2) ----E y5Tj; 

7-90 6673A13 

Figure 10. Feynman rules in U(~)L x U(n)R model. 

the same as before, but now have color factors, 

Gij(p) = Sij(j - M)-l 

D,“qp”) = 6,/j ?I! 47 
N ( -p2 + 4M2) tan-l (@/2M) 

1 

N Gtan-‘(@/2M) ’ 

(3.27) 

The z fields interpolate the n2 Goldstone bosons corresponding to the n2 broken 

generators Of u( ?Z)A. 

The 4-point function of pions is given at leading order in l/N by the diagrams 
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7-90 
a (3.28) 

6673A14 

The amplitude is expandable in momenta, since at this order there are no interme- 

diate massless particles. At precisely zero momentum the two diagrams in (3.28) 

exactly cancel, and the matrix element for IZ + m  vanishes. This is dictated by 

the underlying chiral symmetry, and holds, in fact, for all n-point Green’s func- 

tions of pions. At second order in momenta the on-shell amplitude must be a 

linear function of the Mandelstam variables s, t, u which satisfies Bose symmetry 

and crossing. This constrains the S-matrix to vanish unless all four pions belong 

to the SU(n)A subgroup of U(n)A, in which case we have 

A(2+r” nb + xc rd) 

= 3NM 
-2?r { f”d”fbys - t) + fabefcdy~ - u) + facefyu - s)} . 

(3.29) 

The overall magnitude in (3.29) is not, of course, restricted by Bose symmetry and 

crossing, but %s determined by chiral symmetry [3.7]. The coefficient of the square 

brackets must be 2/3fi, where f% is the pion decay constant. In (3.2) we directly 

computed fir = dm, so Eq. (3.29) is in agreement with the general current 

algebra arguments [3.7]. 

With regard to continuing the Taylor expansion of the amplitude (3.28), the 

greatest “phenomenological” interest lies in the next term, i.e. fourth order in 
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derivatives [3.10]. We have 

At4) ( 
1 

ra7rb+ 7rC7rd) = - 4 -& (s2 + t2 + u2) f sabcd + ; Dabcd) 

--- 1 pbpd + f pbedcde 

n 
) + crossed} 

1 n- A(4)(r01r0 + ToTo) = - 3 NM3 (s2 + t2 + u2) - 

(3.30) 

In (3.30) the tensor D abed denotes (dabedcde + dacedbde + dadedbce) and Sabcd denotes 

(babbcd + baCSbd + badbbc). For th e cases of two U( 1)~ - two SU(n)A pions, and one 

U(~)A -three SU(TZ)A pions the amplitudes are given by (3.30), multiplied by the 

color factors 6ab and m dabc respectively. 

3.6. THE METHOD OF EFFECTIVE LAGRANGIANS 

The low energy theorems are not confined to ?r7r + XT scattering, indeed there 

is a prediction for the low energy behavior of all n-point pion amplitudes. It 

would be quite tedious to verify the predictions case by case, and so it would be 

advantageous to have a formalism which encompasses all the amplitudes at once. 

Thus we are led to the notion of an “effective lagrangian” [3.11]. 

A low energy effective lagrangian is a quasi-Zocal functional which reproduces 

the correct low energy amplitudes of a given model. The demand that the la- 

grangian be expandable in derivatives precludes us from considering I’rp1(~), the 

generator of one-particle irreducible diagrams. This is because the presence of 

multi-pion intermediate states renders I’rp~(z) to be highly non-analytic. Thus 

_ we need to construct an effective Lagrangian whose furl Feynman diagram expan- 

sion (not just “trees”) yields the S-matrix. This definition does not specify the 
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lagrangian uniquely, due to the freedom of local field redefinitions [3.12], so in 

any calculation of an effective lagrangian one must first specify the choice of field 

variables. 

One way to define an effective lagrangian for the pions in our model (3.25) is 

simply to integrate over the massive fields II, and cr. That is define 

exp i d3zLeff($ f DaD1C,DFexp i d3zL($,q,b,$ . 
J J / 

(3.31) 

Clearly L&(z) d oes yield the correct S-matrix for the Goldstone bosons, and it 

is explicitly expandable in derivatives. Moreover, it also provides renormalizable 

off-shell amplitudes to all orders in l/N. However, L.,(z) does not provide a 

non-linear realization of the chiral symmetry (3.26), and the expected properties 

of the low energy scattering amplitudes are not manifest. 

From a geometric point of view the x fields live in the “wrong” space, at 

least with regard to the manifestation of chiral symmetry. L takes values in the 

tangent to the coset space U(~)L @ U(~)R/U(~)V upon which the “canonical” 

chiral lagrangian is naturally defined [3.3,3.11]. To bring out this structure we 

need a non-linear change of variables. At least in leading order in l/N this will 

be a well-defined procedure for the pion S-matrix. However, see below for some 

comments on the nature of this step. 

First, define a unitary matrix <, and a hermitian, positive semi-definite ma- 

trix p as the “polar decomposition” of the fields cz and I [3.7,3.13] 

e+ix=[pJ. (3.32) 

On making a local, chiral rotation on the fermion fields, XL E [t+L, XR 3 s$R, 
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the lagrangian becomes 

fz = 3 B + w> - 754(J) - P> x - 2g2 N tr p2 , 

A,([) 3 -; mu - @d) - (3.33) 

The rigid U(~)L x U(~)R invariance (3.26) th en transpires to have a hidden Iocal 

form 

( + L# E UtRt (3.34u) 

x + ux 

p4Jput 

A, t UA,Ut 

vp + uvpJt + ua,ut , (3.34b) 

where the unitary matrix U is a nonlinear function of the field [ as defined by 

Eq. (3.34a). Integration over the fermions x now yields a form suitable for a large 

N analysis: 

Z= J Dp Dt( Jacobian) 

(3.35) 

x expN d3z tr p2 -tr!n(ip-p+iy-74) . 1 
The jacobian in (3.35) comes from the non-linear transformation (3.32) and is 

rather complicated. Fortunately it is independent of N, and so when exponentiated 
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it does not affect the leading-order stationary phase approximation. There is also 

in principle a jacobian from the local chiral rotation 1c, + x, but this is in fact unity, 

as can be checked explicitly using a Pauli-Villars regulator. This last corresponds 

to the statement that there is no “continuous anomaly” in 2 + 1 dimensions [3.14]. 

The canonical chiral lagrangian L&ird (0 is at last obtained by integration over 

the massive fields p in (3.35). H euristically, Eqs. (3.32)-(3.35) show that &,d(t) 

is lagrangian that (a) reproduces the S-matrix of the Goldstone bosons, (b) is 

expandable in derivatives, and (c) respects the local “gauge” symmetry (3.35). 

Thus, the only terms that appear are built out of the gauge covariant quantities 

A, and D, = L$ + [VP, 1, and this is the celebrated result of Ref. [3.11]. 

At leading order in l/N all contributions to L&rd([) are explicitly finite, 

and these conclusions about its properties are valid. (This proves the claim in 

subsection 3.2 that the pions are derivatively coupled for all processes.) Before 

presenting the results of the leading-order calculation, however, we comment on 

the difficulties involved in justifying the analysis at higher orders in l/N. 

The main problem is that the coefficients in the chiral lagrangian will be ultra- 

violet divergent, so the notion of calculating the coefficients in L&rd([) becomes 

obscure. One could perhaps avoid this “technicality” by considering a “Wilsonian” 

version of the chiral lagrangian: the definition would now include an “integration 

out” of the high momentum modes of [, leaving a finite cutoff A - fz. For this pur- 

pose we would need a gauge invariant cutoff regularization, such as that constructed 

in Ref. [3.15]. It is plausible that this modification may allow the calculation of 

systematic corrections in l/N to the leading-order result. Secondly, the non-linear 

transformation from (z, a) to the (p, <) involves nonpolynomial operator products. 
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While the off-shell correlation functions of the z-fields are renormalizable to all 

orders in l/N and are dependent (up to normalization) on only one parameter 

fr, these properties do not hold for the correlators of [ (or &t) beyond leading 

order. At each successive order in l/N more and more “unphysical” subtraction 

constants appear in L,-hird(t). Th ese constants will drop out the S-matrix of pi- 

ons (by Borcher’s theorem [3.12]) and so from this point of view do not matter. 

However, if one wishes to treat L&ird([) semi-classically and look for solitonic 

solutions, as in the Skyrme model of hadrons [3.16], then it is far from clear that 

#21 the physics is indeed independent of the extra parameters. 

Returning to Eq. (3.35), we integrate over p to obtain L,-hird([). At second 

order in derivatives of [ one can just set p to its vacuum expectation value and 

take A,,, VP to be constants, then 

(2) xchiralt5) = !j A A 

=$A; 

7-90 
6673A15 

(3.36) 

This calculation recovers the familiar action of the non-linear a-model. The prop- 

#21 One may be able to address this question in the context of the 4-fermion model due to 
Kovner and Eliezer [3.17]. Their symmetry breaking pattern is SU(N) -+ U(N - l), so the 
“low energy manifold” is CP(N - 1). This admits of solitons in 2 + 1 dimensions. 
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erly normalized Goldstone boson fields 8” are given by t = exp(iPT”/f,). At 

fourth order in derivatives the contributing diagrams are 

6673A16 

= -& tr {A2A2 + 3A,A,A,A, + (D,A,)2 - 2(D,A,)(D,A,)} . (3.37) 

It is a nice consistency check on the calculation that the 2 --f 2 scattering amplitude 

derived from (3.37) d oes agree with that found previously in Eqs. (3.29)-(3.30). 

4. Explicit Versus Dynamical Symmetry Breaking 

In Chapter 3 we studied the dynamical breaking of chiral U(~)L x U(~)R sym- 

metry down to U(n)v in the models Eqs. (3.2)-(3.25). It was shown that there 

exist exactly massless Goldstone bosons ‘or and massive bound-state mesons Q. In 

this chapter we explore the consequences of adding bare terms to the 4-fermion 
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lagrangian which break the chiral symmetry explicitly. The term which is easiest 

to interpret physically is a bare mass for the fermions 

We will find that the pions become massive and the E-mesons move away from the 

threshold. 

The system resembles QCD in the respect that the chiral symmetry is both 

broken dynamically and explicitly. The relative strength of the dynamical and 

explicit breaking mechanisms in QCD depends on the flavour of the quarks. For 

the u and d quarks the dynamical mechanism is dominant, and the physical pions 

behave as an SU(2) triplet of pseudo-Goldstone bosons [12]. For the heavy quarks, 

c and b, the dynamical breaking is negligible, and their bound states are non- 

relativistic [4.1]. For the s quark the two sources are comparable, and this makes 

the phenomenology very complicated [4.2]. I n our toy models one can investigate 

quantitatively the transition between the two extreme regimes. 

4.1. PSEUDO-GOLDSTONE BOSONS 

Let us examine first the effects of adding explicit symmetry breaking terms in 

the U(~)L x U(~)R model (3.2) in d = 2 + 1. We wish to preserve renormalizability, 

so we can only add operators of ultra-violet dimension 2 3. The allowed symmetry 

breaking operators are 

$+b, q~s$, ?(a - irrs)+, u, x, ux, (a2 - r2), 03, x3, 0~1, r20 . (4.2) 

Clearly the most general renormalizable lagrangian contains quite a lot of param- 

eters. We can simplify things a little by using the freedom of linear redefinitions 
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of the auxiliary fields, i.e. u + d = Au + B and x -+ x’ = Cx + D. This freedom 

can be used to remove the first three operators in the list (4.2), leaving only the 

“potential energy” operators depending only on u and #22 x. 

At leading order in l/N the effective potential is given by the symmetric form 

(3.4) with the b reaking terms added as classical contributions. We define the 

coupling g2 as in (2.9), so 

V(u,x) = & J&q3 - g (a2 + x2) - AV 

where 

AV = ulu + u2x + u3ux + u4(u2 - x2) + q,u3 

+ c&x3 + u$T2x + ugx2u * (4.3) 

The normalization conditions on Green’s functions now tell us that all the 

parameters al . . . a8 are finite quantities. Their physical meaning is elucidated, 

however, not from the potential directly, but from solving for the S-matrix ele- 

ments. Note that there is still one degree of freedom left, namely a rigid chiral 

rotation, so in total there are seven breaking parameters that appear in the scat- 

tering amplitudes. 

A full discussion of the physics from (4.3) would be rather complicated, but we 

can make some general statements. Firstly, the demand that V(u,x) is bounded 

from below implies that the cubic couplings cannot be too large. (This is reminis- 

cent of the qT6 coupling in O(N) scalar theories in d = 2 + 1 [4.3].) Given this 

#22 In QFT, as opposed to statistical mechanics, the VEVs of the auxiliary fields are not 
physical quantities, since they do not appear in the S-matrix. The dependence on the 
extra parameters in (4.2) is therefore irrelevant. 
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condition the breaking terms cause there to be an isolated global minimum of the 

potential. The two principle curvatures at the minimum will be both positive, so 

the former Goldstone bosons x are forced to become massive. 

A curious feature of the cubic terms is that they cause the auxiliary field 

equations of motion to be quadratic (and not linear) so the interaction in the 

model is no longer four-Fermi. In fact it becomes non-polynomial in the fermion 

bilinears. Let us leave these “exotic” cases aside, for it is in the spirit of this review 

to consider only the more basic features of explicit symmetry breaking. 

We can make a drastic reduction in the number of parameters by setting all 

the coefficients of the quadratic and cubic terms in (4.3) to zero. This restriction is 

preserved under all orders renormalization due to a general theorem of Symanzik 

[4.4]#23, and so is consistent. Using the freedom of chiral rotation to set a2 = 0 

#23 In the exact chiral limit all terms in (4.3) are zero, and can not be induced under renor- 
malization on grounds of symmetry. Insertions of the linear terms u and r do break the 
symmetry, but carry a vertex of mass dimension +2. This causes diagrams with two or 
three auxiliary field legs to be superficially convergent, so quadratic and cubic counterterms 
are not required. 

Now the ultra-violet divergences can be removed by introducing four renormalization 
constants, when we take into account the freedom of chiral rotations. The full bare la- 
grangian can be written as 

The constants Zi are formal power series in l/N depending only logarithmically on A/M. 
Integration over u,t then gives the form of the bare lagrangian in terms of the fermions 
only, 

cbare = &i@1/, + 2zjgi 3 ((511)2 - (3;r51c1)2) + m2g2 f$ (5;11) . 

Comparing with (4.1) we see the bare mass of the fermions is given by 

z4 
P = m2g2 a . 
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and al to a positive value, we end up with just one breaking parameter: the mass 

scale m where al E m2/4r. 

In this simple case the potential (4.3) then has two stationary points at 

(4 = 0 7 (o)=+ (M+&%?), (4.4) 

and V(O, 0) is sketched for various values of m/M in Fig. 11. The l/N perturbation 

series must be defined around the positive solution in (4.4), for it is the only true 

minimum. The negative solution is a saddle, and the x-fluctuations around it are 

tachyonic. 

V(u, 0) 
A \ \ \ \ \ \ \ \ \ *\ \ \ 

m/M=0 

\ \ 
‘\ 

‘. -I ----* .’ 
0’ 

7-90 6673A17 m/M >i 

Figure 11. Potential with explicit symmetry breaking. 

We note that because 2sgm2 diverges linearly with the cutoff, see (2.9), the bare mass 
must be turned to vanish as l/A. A bare mass independent of A (or only logarithmically 
dependent) would force the model into the “weak coupling regime” and the correlation 
functions would become free. This fact is of importance for lattice simulations of the model. 
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The Feynman rules for the broken theory are the same as for the exactly symmetric 

version, except that the propagators have been modified. We now have 

G(P) = (fi - Mf)-’ 

-l 
&(p2) = $ 2(Mf - M) + 

C-P2 + 4Mj) tan-l p 

Al7 2Mf 1 P-5) 
Dr(p2) = $ 2(Mf - M) + @ tan-’ 

&p -l 
2~ 

f 1 
where 

Mf = (o)~,, = f (M&m). (4.6) 

Let us now study the Green’s functions in detail. The fermion has a Dirac 

propagator with a mass given by Eq. (4.6). In the chiral limit, m/M < 1, Mf 

reduces to M and in the opposite extreme the mass approaches m. The parameter 

m is thus playing the role of a “current mass,” and Eq. (4.6) shows how the 

“dynamical” and “current” contributions to the fermion mass combine. 

The 4-point function of the fermions is given by the diagrams in Fig. 12. 

>----< + x + crossed 

7-90 6673A18 

Figure 12. Four-point function of fermions. 

The r-exchange diagram in Fig. 12 contains a real pole below the two-fermion 

threshold for all values of M and m. (See Appendix C.) This corresponds to a 



stable “pseudo-Goldstone boson.” The mass m, is conveniently measured in units 

of Mf, and becomes a natural function of the combination cy = (Mf - M)/Mf, 

where 0 5 cy 5 1. The mass ratio r E m,/2Mf is plotted as a function of the 

explicit breaking parameter cr in Fig. 13, and duly vanishes as cy + 0. The defining 

equation is 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

*a 

0 1 
6673A19 7-90 

Figure 13. Mass of Pseudo-Gold&one bosons. 

1+r 
2a=fi?n - ( > l-r . (4.7) 

In the limit of dominant explicit breaking (Mf --$ 00, Q + 1) the pion remains 

tightly bound, with a mass some 17% lower than 2Mf. This indicates that the pion 

cannot accurately be regarded as a purely two-body bound state (a non-relativistic 

concept) even when its “constituents” are heavy. 

The second contribution to the fermionic 4-point function in Fig. 12 is due to 

the u-particle, and it has an illuminating analytic structure. The continuation of 
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Db(p2) to complex values of p2 has a cut at p2 = 4Mj, with an infinite number of 

Riemann sheets. (So does DK(p2), f o course, and this corresponds to the threshold.) 

Moreover, as we show in Appendix C, there exists a unique sheet on which Db(p2) 

is analytic, with all the other sheets having a pair of conjugate complex poles. This 

structure is in accordance with S-matrix theory, for the unique analytic sheet is 

identified as the physical sheet of the 2 + 2 amplitude [4.5]. The u-particle has 

turned into a resonance, with a “mass” and “width” given by the position of the 

poles on the neighboring (second) sheet.#24 

4.2. THE GELL-MANN OKUBO FORMULA 

Let us turn to the case of U(n)r, x U(~)R dynamically broken to U(n)v. The 

symmetric lagrangian was given in (3.25), and the number of renormalizable sym- 

metry breaking parameters is now even larger than the list in (4.2). This is because 

we can take different traces over the various monomials. However, it is still true 

that we can restrict ourselves to a single term linear in a, since the argument in 

footnote (F23) is still valid. Thus we consider the lagrangian 

L = @lc, - @a + iEY5) -Ntr(e2+K2)+traa, 2g2 (4.8) 

where a can be taken to be diagonal and positive semi-definite. There are n 

breaking parameters which appear in the S-matrix, a; E mf/4r. The n-plet of 

#24 The shape of the resonance does not, however, fit a Breit-Wigner form, even in the case 
of large Mr. 
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fundamental fermions become non-degenerate and have masses, c.f. (4.6), 

The model has a unonet” of n2 pseudo-Goldstone bosons, and we can derive the 

analogue of the Gell-Mann Okubo formula [43]. It is convenient to denote the 

diagonal elements of the z(z) matrix as ri(z), and the off-diagonal elements as 

rij(z), where ~i*j(~) = rji(x). In th is non-canonical basis the real r;(z) fields 

couple only to the i th fermions, and have propagators just like (4.5): 

Dxi(p2) = $ 2(Mf(i) - M) + @tan-l 
Jq-3 -l 
- 1 2Mf(i) . 

(4.10) 

The “off-diagonal” pions are a little more complicated. Upon expanding the ef- 

fective action we see that xii(x) couples both to the i th and j th fermions, so the 

inverse propagator is given by a uhybrid” fermionic bubble containing two different 

masses: 

DXi,(p2) = ~ $ -i 1 J d39 (21r)3trix(h - Mi)-1ir5(h - j - Mj)-l 1 
=${Mi+M~-2M+(-p2+(Mi-M~)2)Iij(p2)}B1 (4.11~) 

where 1ij(p2) is 471. times the bosonic hybrid bubble, and is given by 

The 2-fermion threshold is at p2 = (Mi + Mj)2 below which the propagator is 
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purely real. For all values of the parameters there is a real pole in the range 

IMi-MjI < mxij < Mi+Mj (4.12) 

corresponding to a stable bound state; (see Appendix C.) In the chiral limit m; << 

M the poles are easily located, and we have 

2 2 
m,(i) = m; 7 

2 ‘(mf+m,2). mx(ij) = 2 (4.13) 

The mass formulae Eq. (4.13) h ave computable corrections in powers of mf/M2. 

We note that we do not get quite the same pattern familiar from QCD because 

there the 7’ is not a pseudo-Goldstone boson [4.6]. Instead, the 7’ becomes heavy 

due to the effects of instantons, so the symmetry breaking pattern is rather SU(n) x 

SU(n> x q l)v + SU(n)v x U( 1)~. This can be reproduced “phenomenologically” 

in our model by adding a term Re det(a+iE) to the lagrangian. At least for n < 3 

such a term would not destroy the property of renormalizability. 

5. Thermodynamics 

In this final section we study the thermodynamics of chiral symmetry breaking. 

In d = 2+ 1 the discrete Gross-Neveu model (2.3) undergoes a symmetry restoring 

phase transition at a finite temperature Z’,, the main features of which are similar 

to the “superconducting” to “normal” transition in metals [5.1]. 

An extra motivation for this chapter is that it would be very interesting to 

verify the method of the l/N ex p ansion for the d = 2 + 1 models on the lattice. 

The calculations at finite temperature can then be used to simulate “finite-size 
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Figure 14. Segments of l+l Gross-Neveu. 

effects.” Similar calculations have been done using various methods in the 1  + l- 

dimensional case [5.2]. 

5.1. THE FUNDAMENTAL DIFFERENCE BETWEEN THE 1+ 1 AND 2+ 1  CASES 

The thermodynamics of the discrete GN lagrangian (2.3) was first studied for 

d  = 1  + 1. At zero temperature the chiral symmetry is dynamically broken, gen- 

erating a  mass M  for the fermions. At non-zero temperatures a  naive application 

of the l/N expansion yields a  finite critical temperature for symmetry restoration, 

given in leading order by [5.3] 

Tc = 0.57 M  . (5.1) 

However, this result is wrong, as was il luminated by Ref. [5.4]. In fact, for any 

finite N the critical temperature is rigorously zero, and the situation is analogous 

to the Ising mode l in one space dimension. In both 1D mode ls “kinkn configurations 

are unsuppressed, because their cost in energy is independent of their length. At 

low temperatures the system is segmented into regions of alternating signs of the 

order parameter, and this situation is depicted in F ig. 14. 
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The net average value of the order parameter is then zero, and the symmetry 

is restored. The l/N expansion in d = 1 + 1 misses this effect because the energy 

per kink goes to infinity as N + 00. The number density of kinks is proportional 

to the Boltzman factor emNpM, so in leading order the system really is spatially 

homogeneous. The expansion in l/N just measures the effects of small fluctuations 

about this state, and cannot reproduce the Boltzman factor since it is non-analytic 

in l/N. To sum up, in one space dimension there is no finite temperature phase 

transition, but this fact is obscured in the l/N expansion. 

The situation changes, however, when we turn to the case of two space di- 

mensions. A simple energy-entropy argument now shows that “domains” wi12 be 

suppressed at low enough temperatures, so that the critical temperature will now 

be finite. This phenomenon was first calculated in the analogous case of the Ising 

model by Onsager [5.5]. Th us, we expect a large N calculation in the 4-fermion 

model to be reliable in d = 2 + 1, and our result for the critical temperature is #25 

Tc = &. (5.2) 

In the next subsection we review the finite temperature formalism and compute 

the Landau Free Energy function. This yields the critical temperature (5.2), and 

shows the transition to be second order. Next, we introduce a chemical potential 

p to probe the effects of a finite fermion density, and construct the phase diagram. 

Other thermodynamic quantities and the critical exponents are given in Ref. [5.7]. 

#25 This is in agreement with the calculations of [5.6] 
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5.2. FINITE TEMPERATURE FORMALISM AND PHASE DIAGRAM 

The quantum statistical partition function is defined by 

z(P) = 3’~ exp-(PH) , 

where the hamiltonian of the GN model is 

H= JdZI [4(?&+&&) $- &(W] . 

To calculate Z(p) t i is simpler to use the equivalent form [5.8] 

Z(P) = J Dq(x) D?(x) exp - J d3x [TP+ + 6 (UY] 
P 

(5.3) 

(5.4) 

where the fermion fields are anti-periodic functions on R2 x [0, p]. After introducing 

auxiliary field Q, the functional integral becomes quadratic in the fermion fields, and 

we can repeat the steps in section 2. The l/N expansion at finite ,B is guaranteed 

to be renormalizable by the proof for p = 00, when the coupling g2 is taken equal 

to its j3 = co value (2.9). Th is is because the temperature is acting simply as an 

infra-red cutoff, and has no effect on the ultra-violet behavior [2.1]. The effective 

action for constant configurations is, cf. (2.7) 

where Seff = NP (Area) FLY (0, P> , 

;FLm(oJ)=a -i-j -g J”’ 
n---oo (27g2 (2n + l)&& +p2 + lY2 1 * 

(5.5) 
_ Here FLY,, is the Landau’s generalized free energy function, whose value at the 

minimum gives the standard Helmholtz free energy. Using a Poisson summation 
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formula and a contour rotation we obtain (see Ref. [5.4] for details) 

aFLan J @P [ 1 1 = 4a 2 - 
da 2cw2 @Tip J/$7-7 ( 

l- 

( 
es&- +1 

> 11 
= s 

i 
lul - M + 5 ln (1 + eqptul)] . 

(5.6) 
For low temperatures the non-zero root of (5.6) gives the thermal average (P)P, 

since the origin is a m&mum. We can solve explicitly to get 

(u),=M+$ln ( 
1+ Jl -4exp(-PM) 

2 >- 
(5.7) 

The order parameter (0)~ decreases continuously with temperature, reaching zero 

at p = PC, where @,M = 2ln2. At higher temperatures (0)~ is identically zero, 

and the discrete chiral symmetry is restored. 

5.3. CHEMICAL POTENTIAL 

The effects of a chemical potential p are given by shifting the energy levels by 

p [5.4]. The identical manipulations as before now yield in correspondence to (5.6) 

% (a, p, 7) = 4 [ 161 - M + f en (1 + 2e-plal cash p/? + ._~P~uI)] . (54 

At zero temperature we see that if p < M the absolute minimum still occurs at 

Ial = M. If p > M th en there is just a unique minimum at u = 0, so ~1 = M is 

a critical value. For higher temperatures the critical value of ~1 drops and reaches 
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zero at T = Tc. Thus, we have the phase diagram of Fig. 15 and we have a line of 

“Normal” 

“Superconducting” 

7-90 6673A2 1 

Figure 15. Phase diagram of Plane Superconductor. 

second-order phase transitions given analytically by 

PM = b-42+ 2cosh/@) . 

The phase diagram is analogous to that in superconductivity, where we would plot 

applied magnetic field versus temperature [5.1]. 

5.4. CONTINUOUS SYMMETRY 

At leading order in l/N the U( 1)~ x U( 1)~ model also seems to have a symme- 

try restoring phase transition at the critical temperature (5.2). But this conclusion 

runs afoul of Coleman’s theorem [29,30], which stipulates that the (continuous) chi- 

ral symmetry must be manifested for all T > 0. 

The failure of the l/N expansion can be traced by similar reasoning to that 

in subsection 3.3. The non-leading diagrams, e.g. Fig. 7, become logarithmically 
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infra-red divergent at non-zero temperature. This is because the Feynman dia- 

grams have had energy integrals replaced by energy sums, thus making the E = 0 

terms “effectively two-dimensional.” 

However, as we saw in subsection 3.3, the l/N expansion is not entirely wrong, 

since dynamical mass generation does occur in the 1 + 1 model. The fermions are 

massive, but “dress” themselves with a coherent state of pions to become neutral 

under U(~),J. It seems reasonable to imagine that this is also what happens in the 

2 + 1 model at low temperatures. 

To understand better the Tc = O+ phase transition in d = 2+ 1, the framework 

of the l/N expansion works best in models where the number of Goldstone modes is 

O(N) rather than 0( 1) as here. For example we have studied the thermodynamics 

of the SN-~ non-linear a-model [41], where the non-analyticity in temperature 

appears already at the leading order in l/N. 

The critical temperature (5.2) then presumably corresponds to a transition be- 

tween two diRerent chirally symmetric phases: massive and massless, and this is the 

famous “vortex-condensation” transition of Kosterlitz and Thouless [31]. It would 

be of particular interest to have these speculations tested in lattice simulations. 
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6. Conclusions and Discussion 

This review describes the phenomenon of dynamical symmetry breaking in 

- the d = 2 + 1 4-fermion models. These models provide a rare “laboratory” for 

this interesting phenomenon, in that they admit a non-perturbative calculational 

scheme (the l/N expansion) which is both systematic and renormalizable. 

The low energy excitations are subject to the general theorems of current alge- 

bra, which are derived purely from symmetry considerations. While these general 

theorems are obviously of great value, especially in low energy QCD phenomenol- 

ogy [3.10], a calculable model in which these theorems are explicitly seen in action, 

has its own advantages. We have verified the following consequences of the breaking 

of continuous global symmetry: 

(1) Goldstone’s theorem to all orders in l/N. 

(2) PCAC and the Goldberger-Treiman relation. 

(3) The derivative interactions of the Goldstone bosons in the processes Fr + 

Fx and RX + ?TX. 

(4) The derivative interactions of all multiple R amplitudes, as codified by the 

chiral lagrangian. 

(5) The interplay between explicit and dynamical symmetry breaking, in partic- 

ular the Gell-Mann-Okubo mass formula for pseudo-Goldstone bosons. 

(6) The analyticity properties of the S-matrix elements consistent with unitarity. 

(7) The thermodynamics of the symmetry restoring phase transition. 
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There are many other interesting “non-perturbative” problems that may be 

addressed using the l/N expansion. In this expansion (unlike in weak coupling) 

one directly sees formation of bound states. The fact that, for example, the r- 

particle is composite rather than elementary is clearly demonstrated by its spectral 

function (3.6), and the high energy dependence of the fermion-meson scattering 

amplitude, c.f. (3.23). In the CM f rame the cross section is identically zero for 

forward scattering (8 = 0), and for backwards scattering (0 = 7r) 

$hr) = &, 

for large CM total energy E. However at a fixed angle 8 # 0, K we have 

E2(1 - co&) 
8M2 

+ (1 + co&) + 2 (1 - co&)2 
2 (1 + cosq - 4(1 + cosq 1 * 

The strong angular dependence and the l/E3 behavior should be contrasted with 

the expected l/E dependence for ‘elementary” bosons. It is this ‘softness” of the 

composite Goldstone bosons which is the key idea in technicolor models [8]. 

We have limited ourselves in this review to 4-fermion theories of the simplest 

kind: scalar-scalar interactions. However, in 2+ 1 dimensions one can construct an- 

other types of interaction terms which become renormalizable by similar methods. 

For example, the vector-vector interaction was considered briefly by Parisi [32], 

and the model achieves the old goal [14] of calculating the fine-structure constant. 

Outside the class of 4-fermion models there exist many perturbatively non- 

- renormalizable theories which become renormalizable in the l/N expansion, even 

apparently in the presence of gravity [6.1]. We will mention a few of them: 
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The SN-~ non-linear a-model 

L = f(apni)2 + a(nini - -) . ,: 

The a-model was the first non-trivial theory to be shown to be renormalizable 

in the l/N expansion in d = 2 + 1 [6.2]. At exactly zero temperature the a-model 

has a two phase structure, distinguished by the order parameter (7~‘). In the bro- 

ken phase the Goldstone bosons are “elementary,” and have high energy scattering 

amplitudes quite different from the composite Goldstone bosons of section 3. The 

theory has recently attracted attention in solid-state physics because it describes 

two-dimensional anti-ferromagnets like LaCu04. These substances, when prop- 

erly doped, become high T, superconductors [40]. Recent lattice simulations of 

this model [42] are consistent with the predictions of the l/N expansion for the 

temperature dependence of the correlation length [41], [2.16]. The evidence for 

non-trivial interactions is, however, still rather weak, and more numerical simula- 

tions are required to make it convincing. In the case of d = 1 + 1 the a-model has 

been exhaustively studied by a variety of non-perturbative methods [6.3]. Here 

the correctness of the l/N expansion has been established by comparison with the 

exact S-matrix [20]. 

SUSY a-model 

This is a coupled combination of the Gross-Neveu and the non-linear Q- 

models. The supersymmetric action is [6.4] 

s=t/d3xdle[(o~)2+s(~2-~)] , 
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where the superfields can be expanded in components 

The model has two phases: O(N) symmetric and O(N - 1) symmetric. In both 

cases supersymmetry remains unbroken. In the ordered phase quasi-Goldstone 

fermions appear together with Goldstone bosons. 

CPNml Model. 

This model is a non-linear a-model defined on the projective N-dimensional 

complex space SU(N)/SU(N - 1) X U(1). I n certain coordinates the lagrangian 

takes the form 

L = f3p7ic3pn + t (Ezpn)” + a (En - $) . 

The model has been studied in 2 + 1 by Aref’era and Azakov [6.5]. The l/N 

resummation is made a little more complicated by the existence of a hidden gauge 

symmetry, which must be gauge-fixed in order to define the expansion. Introducing 

an auxiliary vector field A,, = &(E. z,n), the lagrangian has the local U(1) 

invariance 

?Zj(S) -+ eiA(z)?Zj(Z) 
444 + A&> - %W - 

.In the O(N) y s mmetric phase, the operator A,, interpolates a massless particle. 

The strong logarithmic attraction caused by the exchange of this particle presum- 

ably results in the confinement of n and E. Only bound states will appear in the 
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spectrum, just as in the l+l case [6.6]. Th ere is also an ordered phase which is pe- 

culiar to 2 + 1. The vector particles disappear from the spectrum, the confinement 

is lost, and some of the n particles become Goldstone bosons. An interesting vari- 

ant of the model involves adding a “topological” term f&, = BepvpA,i3,A,, which 

is marginal (and not super-renormalizable) operator in l/N. There has been great 

recent interest in the topological CP*-’ model for it may describe the fractional 

quantum Hall effect [6.7]. 

It is possible to consider many more complicated theories in 2 + 1 that are 

renormalizable in the l/N expansion. The key construction is the geometric sum 

of “bubble diagrams,” which was motivated in Section 2.1. The multiplicity of 

theories comes about because the particles which “pair up” can be bosons, fermions, 

or hybrids of both. This great variety of non-trivial theories may be used not 

only as a testing ground for non-perturbative methods, but possibly as models 

describing condensed matter systems. 

Finally, let us consider the situation in d = 3 + 1. It was remarked in section 

2 that the 4-fermion theories are logarithmically trivial, i.e. the connected corre- 

lation functions vanish with the cutoff as l/&A. In fact all the examples of l/N 

resummation have this problem, due to the logarithmic divergence of the (basic) 

bosonic bubble diagram. It does no good to try to szlbtruct this divergence: the 

connected correlators become non-zero, but break unitarity. A Landau ghost is 

induced at the subtraction point, so de facto there is still a cutoff. 

This behavior is suspected also to occur for &b4, since it is not asymptotically 

free [6.8]. However, logarithmic trivialiality doesn’t necessarily mean that a theory 

is useless for phenomenology, as is testified by the Higgs sector of the Weinberg- 
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Salam model. After all, the cutoff can be taken all the way to the Planck scale, and 

Wm~l/Mw) is still only of order N 50. In this spirit, attempts have been made to 

use 4-fermion interactions in d = 3 + 1 for technicolor-type composite models [44], 

[2.12], [6.9], and this was one of the original motivations for their consideration. 
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APPENDIX A 

Spinors in 2+1 Dimensions 

In this appendix we specify notations used in this paper [Al]. The metric in 

F the 2+ l-dimensional Minkowski space is gpV = diag( 1, -1, - 1). The Dirac algebra 

{y,,, 74 = 2g,, has th e o f 11 owing two dimensional representation: 

70 = ry2 ) 71 = ig3 , y2 = ia , (A4 

where ai are the Pauli matrices. Note that there is no 2 x 2 matrix which anti- 

commutes with all the 7 p. The momentum operator i$ is real in this (Majorana) 

representation, so the fundamental spinor x can be taken to be real. The conjugate 

spinor k is then defined by xT7’, and Lorentz invariants can be formed in the usual 

way from x and x. 

The discrete operations of parity and time reversal act on the Majorana spinors 

as 

P : (&xl, 2) -+ (2, -21,2) x + 03X 

T : (z0,2,x2) + (-z0,z1,z2) x + ia2x . 

A complex spinor can be formed from two real spinors 

(A-2) 

1c, = xi + ix2 , 

and this allows a definition of charge conjugation 

c: rc)-+*. 
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The free Dirac action is then a sum of two terms with a manifest O(2) symmetry: 

L = i&i@? - m>lC, = C Fj(i@ - m)Xj e (A-5) 

j=1,2 

c There is an alternative (complex) representation for the r-matrices which obscures 

- the decomposition into Majorana spinors, but is useful for calculations: 

70 = a3 , y1 = ic2 , y2 = ia . (A.6) 

This is found by the unitary transformation II, + U$J where U = i( 1 + ial + ia:! $ 

ia3). In either representation the r-matrices have the property 

rp7” = gcIu - i~pupy, , (A*? 

The action in (A.5) is invariant under C, but the mass term breaks P and 7’. To 

restore these symmetries we must consider a doublet of complex fermions 

L = C iJ~ifM4 - m(ihh - iJ2+2) , (A.8) 
A=1,2 

where P and T are now defined to include the 22 switching $1 t) $2. The doublet 

$A can be assembled into a four component Dirac spinor, 

!P= 

for which we define the 4 x 4 Dirac matrices 

(A-9) 

(A.lO) 
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The action (A.8) then takes on the simple form 

L=G(ifl-m)Q, (A.ll) 

r where 3 = \E t 7 ‘. If there are N flavours of Dirac fermions the symmetry group 

acting on the Majorana spinors is O(2N) x 0(2N), elevated to O(4N) when m = 0. 

It is also possible to consider the mass terms qirr\II, Fiys@ and Ti;73@, where 

of which the first is also P-even and the last two P-odd. However these new 

bilinears are connected by rotations and there are really just two kinds of masses, 

which we can take to be 1 and 73. 

Finally, in Section 2.6 on renormalizability we use a euclidean space notation. 

This involves a Wick rotation t = ir [2.11], and a redefinition of the metric to 

gE = diag(l,l, 1). The euclidean r-matrices are conveniently defined from the w 

representation (A.6) 

7: = Y0 7JF = -i7j ; (A.13) 

this choice satisfies the euclideanized Dirac algebra and is hermitian. 
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APPENDIX B 

Pauli-Villars Regularization 

Throughout this review the regularization employed has been a momentum 

cutoff A. This has had the advantages of being easy to interpret physically and r 
- being close in spirit to a lattice regularization, and may be of assistance to future 

Monte Carlo simulations of the 4-fermion models. 

The purpose of this appendix is first to show that the use of a quite different 

regularization scheme, namely Pauli-Villars, does yield the same results for the 

renormalized correlation functions (in the context of the l/N expansion.) A second 

point is that some of the leading-order calculations are actually simpler with Pauli- 

Villars; these include the loop diagrams with vectorial couplings or with particles 

having different masses. 

Consider, once again, the scalar-scalar model of Section 2, this time coupled to 

a collection of massive Pauli-Villars fields x. For the case of Dirac spinors in 2 + 1 

we may choose x to have 73 masses (A.12), in order to preserve the 75 “chiral” 

symmetry. (Recall that 75 and 73 anti-commute.) 

L = F(ib - a)$ - $ + Cx(ib - 0 -AT3)X 4 

In (B.l) and the following we suppress an index on the regulator fields T. Note 

that these fields may be bosonic or fermionic, since they are not required to satisfy 

the spin-statistics theorem. The gap equations read, c.f. (2.7), 

dV u . 1 -=---f, 
da g2 J trplo -i CJ tr*-*-*T3 * (B.2) 

P P 

From (B.2) we see that for W/da to be regulated we require C 1 = -1, (where 
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this is a graded sum [3.15], counting +l for fermions and -1 for bosons.) The 

integrals can now be evaluated, and we have 

av u -= 
au p- ~+~~{(btA)lo+Alt(6--11)16--izI} . 

P-3) 

where we take all A masses to be positive. Note that in (B.3) the “dangerous” 

terms u2 and A2 cancelled. (This would not have been possible in a theory with 

an odd number of 2-component spinors.) Thus (B.3) indeed is odd under the 

reflection symmetry u + -u, and we set 

1 2 
7 + ---A=finite= -M. 

w P.4) 

This recovers Eq. (2.10b) for the potential. We can check the u-propagator also, 

c.f. (2.11), by expanding around (a) = M . 

D&(P2) 1 . 
N 

E----Z 
!12 J p %M)t;-b-M) 

-i 
tr(h-M-A~3)(;-j-M-A~3)e 

Once again we only need the condition C I = -1 for the regularisation, as can be 

seen by adding and subtracting a zero momentum “fish” of mass M to each term. 

The integrals become 

D&(P2) 
N 

=-$+D-1(p2,M)t;~(;+D-1(p2,AtM)) 

1 
+-C( 2 

A -,“” + D-‘(p2,A - M) 
) 

where D(p2, M) is the function in (2.12). W e now can recover the original expres- 

w-9 
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sion by letting A + 00 for fixed p2, M. The extra term in (B.6) reduces to 

(B-7) 

- and by (B.4) this identically vanishes. 

In summary the Pauli-Villars scheme unambiguously reproduces the low energy 

Green’s functions, provided that we require that (a) the divergences are indeed 

regularised, and (b) the chiral symmetry is not broken explicitly. 

APPENDIX C 

Analytic Structure of Mesonic Propagators 

At leading order in l/N the mesonic propagators in all the models have a non- 

trivial and illuminating analytic structure. The u-propagator in (2.12b) and (4.5) 

is, up to a constant of proportionality 

f(z) = a + + tan-l 2 , 
tw 

where z = @/2Mf and a is a real number 0 5 a 5 1. (In the chirally symmetric 

theory a = 0.) Using the identity 

1 + iz 
tan-l* E k-h - 

( > l-iz ’ (C.2) 

we see that Do(p2) h as infinitely many Riemann sheets joined by a cut along the 
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real p2 axis from 4Mj --+ 00. It is natural to define w = E G reie, so that 

f(z) = g(w) = u+ -$+ - 

I The sheets can be labelled by evaluating the logarithm function as thw = lnr + 

i0 + 2mti, where -x 5 8 2 T. The principle sheet has n = 0, for which Db(p2) is 

purely real when p2 is spacelike (i.e. z real, [WI = 1.) 

We wish to show that Do(p2) is analytic everywhere on the principle sheet away 

from the cut, i.e. g(w) has no zeroes. Consider first real, spacelike momentum. A 

zero of g(w) would correspond to the equation 

O=at&. 

Clearly (C.4) h as no solution unless a < -1, contrary to fact. This preliminary 

result means that there are no tachyons. Next we consider the region 0 5 p2 < 

4Mj, ie 0 = 0. For a zero we have 

2r 
0 = a+r2h 

and this has no solutions unless a 5 0, (where the a = 0 solution is at the branch 

point.) This implies that the u-propagator (C.l) has no bound state except pos- 

sibly at the threshold. Finally, for the rest of the complex w-plane, we note that 

if w is a zero of g(w) then so are l/w and w*. Thus we can restrict ourselves to 

r > 1 and 0 < 8 5 7r, for which we have the inequalities 

0 < argenw < ?r/2 
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and 

- whereupon 

c”. 

- 

2w 
-7r < argz < 0 9 

‘2W 
,lr < arg -enw c 742 . 

w2 - 1 F-6) 

Thus there can be no zero of g(w) unless a c 0, and this completes the proof 

of analyticity. All other sheets have isolated poles of Db(p2) coming in complex 

conjugate pairs. 

Turning now to the r-propagator in (3.5) and (4.5) we have 

&(P2) z l/h(z) 

h(z) = a + *tan-‘* , 
FJ) 

which is again an infinitely sheeted function. On the principle sheet DX(p2) has a 

real pole in the region 0 5 p2 < 4Mj, located at z = fiy where 

2a l+Y = yen- 
l-y * W.8) 

This has a solution for all a 2 0 since the RHS runs from 0 to 00. There is no zero 

of h(z) for z real, because in this region the RHS of (C.7) is positive definite, and 

in fact there are no other zeroes anywhere on the principle sheet. 

We can see this by noting that if z is a zero of h(z) then so is z*, so we can 

restrict to the lower half plane. In that case we have, if Rez > 0, 

1 +iZ 
O<=genl .c: 

( > - 
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so that 

- Similarly, if Rez < 0 then the logarithm lies in the fourth quadrant and the LHS 

of (C.9) is negative definite. In both cases, therefore, there can be no zero of h(z), 

and this proves that on the principle sheet D,(p2) is analytic everywhere away 

from the cut except for a simple pole in the bound state region. 

Finally, the hybrid propagators of section 4.2 are the most complicated. We 

can at least prove that the “off-diagonal” pions with propagator (4.11a) remain 

stable. The function in (4.11b), 

has branch points at @ = fi(Mi - Mj) and &P = fi(Mi - Mj), since this 

is where the curly brackets take on the value fi. However the propagator depends 

on 1ij(p2), which symmetrizes the above function in i and j, and this vanishes on 

the principle sheet at &? = fi(Mi - Mj). Thus we find that 1ij(p2) is real 

and positive in the range (Mi - Mj)2 5 p2 < (Mi + Mj)2, and runs from 0 t,o 

00. Following the previous reasoning for the pionic propagators, this shows that 

Drij(p2) has a simple pole in this range. 
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APPENDIX D 

Unitarity 

One of the foundational results in .Quantum Field Theory is that the weak cou- 

- pling expansion is consistent with unitarity and relativistic invariance to all orders. 

The proof has to deal with the complicated structure of “dressed” propagators and 

also problems related to renormalization. In the context of spontaneously bro- 

ken gauge theories the demonstration of perturbative unitarity was a landmark 

achievement [2.5]. 

However, the perturbative S-matrix does not contain bound states or reso- 

nances. Thus in a fully dynamical setting our understanding of unitarity is incom- 

plete. (For a review of the unitarity problems in a non-perturbative treatment of 

Bethe-Salpeter equations, see Ref. [Dl].) 

The l/N expansion differs markedly from perturbation theory in that bound 

states and resonances can occur explicitly at leading order. In the appendix we 

show that the leading order amplitudes are indeed consistent with unitarity. An 

all orders proof, which is by no means guaranteed by the perturbative theorems, 

would be very important to establish. 

Let us consider first the 4-point fermion function in the simple d = 2+ 1 scalar- 

scalar model of section 2. The 2 + 2 amplitude (2.13) is real in the euclidean 

_ kinematic region, but by analytic continuation becomes complex above a threshold 

in the Minkowski region. (See Eqs. (C.l)-(C.2) with the parameter a = 0.) In a 
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given channel we have 

&2” G 
N (-p2 + 4M2) tan-1(~/2M) 

p2 < 0 

47r d- P2 
-1 

=- 
N -p2+4M2-ic 

en &7+2M 

@-2M 
+ id3(p2 - 4M2) 1 p2 > 0 

P4 

where p2 = s, t, or u. The amplitude A is then given by D multiplied by the 

appropriate Dirac wavefunctions. Taking the imaginary part, 

2ImD(s) = N. ‘-s;-M2’ ID( . P-2) 

In (D.2) the imaginary part from the pole is killed by the logarithmic singularity 

in the denominator. (This “difficulty” of coincident pole and threshold is removed 

in the models with explicitly broken chiral symmetry, and we discuss this case 

presently.) Equation (D.2) is now of exactly the right form for A to be interpreted 

as the leading order T-matrix. The pre-factors on the RHS are given by the 

two-body phase space, 

n 1 
2+1 = g 

J 
T;3<4k4 63((ks + h) - (h,O)) = & , P.3) 

and the Dirac sum for emission of a fermion anti-fermion pair [2.5], 

Cl wavefunction I2 = tr (F3 + M)(-fi4 + M) = 2(-s + 4M2) . (D.4) 

. There is finally a factor N in (D.2) for the number of flavour channels available in 

the annihilation process. 

85 



We can also check the unitarity bounds at high energy [2.11]. As s -+ 00 the 

cross-section (2.15) becomes 

and the s-wave is not saturated, even for N as low as one. - 

Turning now to the more complicated models of section 4, the amplitude for 

a-exchange gets modified to Eq. (4.5). Th e analytic structure is described in 

Appendix C, which shows that the a-meson is now a true resonance. However, Eq. 

(D.2) still holds identically in the case, so the S-matrix is unitary just as before. 

Finally we remark that a similar analysis obtains for the r-exchange amplitudes 

of sections 3 and 4, so that unitarity is verified for all the leading order processes. 

APPENDIX E 

Next-to-Leading Order 

In this appendix we calculate the renormalisation constants 2; for the scalar- 

scalar model of section 2. This will verify the consistency of the renormalisation 

conditions as described in subsection 2.6. 

Using a momentum cutoff A the divergences in (2.29) can be obtained directly, 

sothat ind=2+1, 

Here the coefficients of enA are unambiguously determined, and are what appear 

in the RG equations of subsection 2.7. 
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The charge renormalisation 23 involves the somewhat more complicated graphs 

of (2.24b) or (2.26). W e only need to evaluate the divergences of these graphs at 

zero momentum, and it turn out that it is easier to make the estimate without 

BPHZ subtracting on the sub-graphs. First, consider the identify obtained by 

differentiating the diagrammatic (2.32) once with respect to M. 

d- 2 = - 2M tan-l p 
x P2 d- 

2M 

6-90 66 73A32 

Multiplying by a a-propagator and integrating then yields 

9-90 6673A34 

whereupon from (2.24b) the charge is computed to be 

23 

7-- 

To show consistency with (a(z 

differentiating Eq. (E.2) once more: 

S-90 

(E.2) 

P.3) 

211 8M --- 
=2 3=31nA- (E.4) 

in (2.26) we generate the relevant graphs by 
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Looping around with a a-field then gives 

and we find that (a(z is indeed made finite by the charge renormalisation 

(E.4). This analysis goes through identically in the case of 1 + 1 dimensions, and 

for completeness we provide the renormalisation constants in this case 

21 = 0 

Z2=tenen+ (E-7) 

This results are consistency with previous 2-100~ calculations in the Gross-Neveu 

model [El]. 
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