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Abstract

We briefly review the most popular supersymmetric extensions of the
"standard" model, insisting on the arbitrariness left in the phenomenological
effective Langrangian. We also discuss the possibility of building
completely finite theories based on N=2 supersymmetry.
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1. Motivation for Supersymmetry.

The motivation for supersymmetry remains fairly theoretical. The
initial image of a new symmetry relating known fermions to known bosons does
not withstand the analysis.

While supersymmetry establishes some connections between gauge bosons
and scalars, this connection is relatively loose and rather accidental in the
N=1 theories. Indeed, while the masses of scalars and gauge bosons are
related for unbroken SUSYl), the choice of the group representations is left
arbitrary (e.g.: in the "standard" model, supersymmetry does not explain why
scalars should lie in doublets rather than triplets). Such relations become,
however, much more compelling in N»>2 supersymmetric theories.

The most economical solution would identify the scalar partners €&, v
of the e and v with the scalars* responsible for breaking SU(2) x U(1).

This, however, would violate lepton number conservation. Also, another
"Higgs" doublet Hy is necessary in SUSY models to give mass to the charge 2/3
quarks, and the cancellation of anomalies then requires a similar particle Hp
with opposite hypercharge - nothing is saved in terms of particle content!
(see below for more discussion of <v>),

The motivation which may be considered closest to the preoccupations of

a phenomenologist is provided by an attempt at solving the “"hierarchy

problem." This problem arises very generally from the assumption that the
presently known interactions may be unified into a single gauge group at some
scale. An estimate of the scale at which this would happen is then provided
by the study of the renormalization group equations, as established from the
currently known particle spectrum (of from some assumed spectrum if SUSY is
considered). The unification of the electromagnetic and strong coupling then
suggest a very high mass scale (> 1015 Gev).

The simultaneous presence of such a large mass scale and of fundamental

*Also known as BEGHZK bosons or "Higgs" bosons.
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light scalars leads to some difficulties in perturbation theory, where
quadratic divergences appear which destroy the initially assumed potential.
Formally there is nothing here which cannot be blamed on the perturbation
expansion or cured by an appropriate order by order renormalization.

However, the very fact that the low energy theory is so sensitive to
minute fluctuations of the couplings associated with the high energy
structure is disturbing in itself, and may prove a real problem when gravity
is eventually coupled to the model. This is usually referred to as the
"hierarchy" problem. Supersymmetry can cure this difficulty: adding up
fermionic and bosonic contributions kills the troubling quadratic

divergencies. If the effective breaking of SUSY sppears at some scale u, one
2),

expects then the corrections to the Higgs masses squared to be of O(au
Asking that such corrections be no larger than the typical v.e.v.'s then
gives some estimate of the expected scale, u ~ 300GeV/Va -in other words, and
depending upon which amount of tuning is judged acceptable, u ~ several
TeV's.

There are other, more theoretical justifications for the extension of
the present models to SUSY, such as the unification of gravity in the
framework of supersymmetry, or the desire to build a perturbatively finite
model. These do not demand in any way that SUSY be broken at low energy, and
the scale of the breaking is anybody's guess.

In practice, we must thus accept that extending the "standard model" to
supersymmetry involves the association of at least one unobserved
SUSY-partner to each known particle. The separation in mass between SUSY
partners may be expected to be of the same order as the effective
SUSY-breaking scale which is only limited in practice by our desire to avoid

the "hierarchy" problem. The following abbreviations will be used.
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Particle SUSY Partner
Scalars Spinors
e S. election e
&R R
YL S. neutrino GL
wh W wino
gH B bino
H h  higgino
g" g gluino

Although the couplings of those SUSY partners are similar to the
corresponding vertices in the standard model, they can escape detection, due
to their mass and the fact that they need to be pair produced [this latter
feature, while usually implemented in models suffers some exceptions, see
below].
In the following sections we will
- quickly review the existing patterns of SUSY breaking, and some of
their phenomenological implications.

- present the framework for finite, N=2, softly broken SUSY models.

2. Softly Broken SUSY.

Since the anticommutator of the SUSY charges is related to the
4-momentum the supersymmetric vacuum if it exists, has automatically the
lowest possible energy:

Tey = oM pH
{Q,, 0 = zaaép (1)
In order to break SUSY spontaneously one
is led to look for situations where no
possible SUSY vacuum exists. Such
models, although somewhat difficult to

build are possib1e2). They require



111

either the introduction of extra scalar multiplets or of an extra U(1) gauge
group. The phenomenological consequences of earlier versions of these models
have been reviewed, e.g., in ref.3; some significant progress has been made
recently in models using the extra U(1)4). The main problem of that extra
gauge symmetry consisted in the presence of anomalies, which can be removed
at the cost of parity doubling; it is interesting to note that this

operation can lead quite naturally to N=2 theories.

An obviously easier solution consists in the explicit breaking of
supersymmetry. Of course, introducing explicit breakings by hand cannot be a
fundamental solution to the problem. A suitable set of breaking parameters
which do not reintroduce quadratic divergences, could, however, constitute a
technical solution to the "hierarchy" problem. Such terms, usually referred
to as "soft breaking" terms have been enumerated in ref.5 -they involve mass
terms for the scalar partners of quarks and leptons, or even for the
fermionic partners of gauge bosons (gauginos).

This "technical" solution happily received some comfort from the
consideration of local SUSY models (including gravity). These models are
considered at the lowest order in the gravitational interaction, and provide
an effective Lagrangian for low-energy supersymmetry6).

0f course, even in the presence of gravity, some SUSY-breaking
mechanism is still needed, and can be implemented by the use of a "hidden
sector," where one of the usualZ)spontaneous symmetry breaking schemes is
used. Since that "hidden" sector is only coupled to ordinary matter via
gravity, the news of SUSY breaking is transferred to the visible sector in a

perfectly universal way (irrespective of colour, flavour ...)
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nobserved sector., | _Physical sector
gravity |
SUSY spontaneously|---=--===-====-=--o—--=ooomoooo-o oo + | explicit soft
broken. (only Tink) breakings.
!
I
+
Goldstone fermion = goldstino
[-===mmmmm e > massive gravitino
absorbed by gravitino (mass = m3/2)

As a consequence of this universal character of the relations between
the hidden and the observed sector, the effective SUSY breaking parameters
depend only upon the spin of the particles.

As a typical example, we have:

o broken =‘[globa1 susy ~ '“g/z KA - B‘“g/z zm; jA5A
2 (2)

= Am3sp 295 5k AR Ak

where Aj are the scalar components of the various superfields (e.g., higgs
scalar, scalar neutrino, scalar quarks), while mi j and gj jk are respectively
the ordinary mass terms and Yukawa couplings. A and B are in principle
calculable constants, but model dependent. This scheme, with the
justification arising from Supergravity itself seems both simple and
predictive, in view of the few parameters involved.

At first sight, it could be applied as such, using the bilinear coupling
to induce gauge symmetry breaking without putting any mass scale by hand,
m3/2 being then the only dimensional parameter. It is not difficult
however to check that such a scheme, which would indeed break the gauge
symmetry is unacceptable phenomenologically , as it would lead, e.g., to the
non-conservation of electric charge7). Other less restrictive models are
however possib1e3).

Alternative mechanisms have been suggested, which assume that the
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coefficient of the trilinear term is small enough that it does not play an
important role in the symmetry breaking process.

While it would be impossible to give a negative mass to all the scalars
without making the potential unbounded from below, it it conceivable that
radiative corrections push one of these masses down, thereby allowing the
familiar gauge symmetry breaking mechanism to take place. The leading
logarithm corrections to the n point vertices associated to (2) can be
evaluated by a renormalization group -improved calculation based on the
relevant 1-loop diagrams.

When it comes to writing the corresponding renormalized Langrangian, one
is obviously free to choose the most convenient renormalization point -the
one which minimizes further radiative corrections. Since we want to use a
grand unified theory, it is natural to use the "grand unification scale" as a
substraction point, and to impose the values of the soft breaking terms at
that scale. This defines the theory once and for all.

This choice of renormalization constants guaranties that, e.g., the
3-point function associated to éRHéL has value m3/2.A.ge when evaluated at a
momentum transfer -p2 = ”EUT' This, however, does not tell us directly what
the value of that function is for low energy scattering! This value can be
computed by summing the perturbation series, according to the renormalization
procedure presented above. Alternatively, one may find it convenient to
rewrite the Lagrangian in terms of another substraction point, using the
renormalization group equations, so as to minimize the value of further
radiative corrections evaluated at low energy. The same is true for
the coefficient of, say, H*H in (2). While its value is fixed to +m§/2 when
the theory 1is renormalized at the GUT scale, this does not imply that the
vacuum is stable. One possible test for the stability of the vacuum is the
presence of Tachyons: the low-energy behavior of the 2 point function
associated to H™H must, therefore, be calculated by summing the corresponding
diagrams at low energy. In other terms, the renormalized Lagrangian does not

tel11l us the whole story without calculation, and what matters is in fact



114

the effective potential. While the two substraction points lead to strictly
equivalent theories, according to a re-parameterization associated to the
renormalization group equations, one minimizes the radiative corrections at
high energies and is, therefore, useful in establishing symmetrical boundary
conditions, while the other, which minimizes the radiative corrections at low
energy, is closer to the effective potential, and therefore indicative of the
(in)stability of the trivial vacuum.

The renormalization group equations for the various parameters appearing
in (2) are at present well-known. We list the most relevant ones,
following the notations of ref.9b) (G is the Higgs doublet coupled to ug, H

is coupled to dg)

an?
2 G _ 2 t 2.t 2
revy 6[Mg Tra z, + T Mry * Tra Mu u
(3.a)
+ Trnznu] -8z ¢ (G)zuzg
a=1,2 a aa
2
dd
2 Q _ 1t t 2 2 t
4r e Z[Z{Auxu + Aprps MQ} + Mg Trany
2 t 1,2 1,2
My TrapAy + A ML+ AgMpAp (3.b)
t t 2 2
+nn+nn] -8 3 C(Quc g
u'u DD «=1,2,3 © a o
42dM—2£-[ A w1l At afu
T dann Gl DALMY M TR A g M
(3.c)
+ o - 8 =§ C (Lu'g
dn
2 u _ 1 1 1 _ w2
i denn nu[5>‘u)‘u 3Tt Aprp anga] (3.4)
t t, ot u 2 ]
+ zxu[zxunu + 3Trn A, + Apnp + an“aga]
da
o’ d}L_:A = 2,300, + Tl + a2l ] (3.e)
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where Q , L represent quarks and lepton doublets, Ay, Ap are the Yukawa
couplings which provide the quark masses and mixing angles, n, is the
coefficient of the trilinear coupling GR G aL’ and obeys n, = Am3/2Au at the
G.U. scale. C, (X) are the Casimir coefficients for the representation X of
the gauge subgroup SU(a) (the charges squared for o=1); G is the "Higgs"
field coupled to the up quarks. [Mg, Au’ ... are matrices in generation
spacel. €2 = C_(Q) + C_(U) +C_(6); C%=c (@) +C_(D) +C_(H).

It is easy to check from eq.(3) that the mass of the scalar fields is
"pushed" down by the Yukawa couplings when A decreases. On the

other hand, gaugino masses u seem to increase Mé. As a result we expect that
the particle with the largest Yukawa couplings and the smallest gauge
couplings will be the first to develop a negative "mass" term. This points
immediately to the Higgs field coupled to the top quark, whose Yukawa
couplings are further enhanced by a color factor which the top s-quark does
not enjoy. Furthermore, the top squark is protected by its gauge interaction
if the gaugino masses turn out to be large.

This far the model seems to remain quite predictive, since eq.(3) only
depends on the physical Yukawa couplings and on the parameters A,B, m3/2
appearing in (2). (no gaugino mass is present in (2).) Several models have
been suggested along this 1ine, usually requesting a fairly heavy top quark.

It should be remarked, however, that the hypothesis of vanishing gaugino
masses is not justified. It is indeed simple to check that (2) generates
such masses at the one-loop level; furthermore, they become logarithmically
divergent at the 2-1oop 1eve1,7) which imposes some renormalization. It is
therefore fair to say that the gaugino masses uy appearing in (3) should be
treated as arbitrary parameters; the number of those parameters being only

reduced by the requirement of grand unification. (see ref.10)
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As a conseguence of this, the various models become almost

unconstrained, with predicted gluino and top masses varying between 0 and 200

GeV (see e.g., ref.11). The reason why the solution of eq.(3) is so
sensitive to gaugino masses (more specifically gluino masses) is somewhat
indirect: while u3 does not appear in (3.a), it enters in (3.6) where it

pushes up the s-quark masses, which in turn enter (3.a) to push down Mé.

Lepton Number Violation

We will have more to extract from equations (3), specially when we will
deal with quark mixings. One intriguing possibility deserves to be examined;
namely, the question of lepton number conservation.

As is well-known the scalar partners of the lepton doublets have the
same quantum numbers under SU(3) x SU(2) x SU(1) or SU(5) as the "higgs"
bosons. For this reason, some discrete symmetry is used to avoid explicit
non-conservation of lepton number at the Lagrangian level (one can e.g.
require invariance under a transformation where all lepton fields change
sign, while "higgses" stay unchanged). Such a symmetry is usually
inplemented as part of the susy R. symmetry [it is interesting to note that
such precautions are unnecessary in other gauge groups, like SO0(10) where
Higgses and leptons occur in different representations].

Even if the bare Lagrangian conserves lepton number, the possibility
still exists that spontaneous symmetry breakdown violates it. This can
indeed be the case in the present approach: there is a zero direction of the
quadratic term of the potential corresponding to <[0>2 = <G0>2 - <H°>2; the
issue of spontaneous lepton number violation then depends on the evolution of
the scalar masses, according to eq.(3). The situation has been studied in
detail in ref.12, which showed that a necessary condition would be m, > 5mi.

In view of the present limits on mg this seems unlikely; it should
nevertheless, be kept in mind that most limits are still conditional, and

that, on the other hand, the presence of a 4th generation could satisfy these
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bounds. It is interesting to mention some of the particular consequences of
such lepton number violations.
First, if the violation is indeed spontaneous, a Goldstone boson - the

13). This causes some trouble with the

Majoron - is expected to appear
stability of red giant stars, but can be avoided at the cost of an explicit
breaking of lepton numbers, which is easily realized by introducing right-
handed neutrinos and Majorana masses (the phenomenological consequences of
such breaking can be minimized by the use of large Majorana masses and small
couplings between left and right handed neutrinos). More interestingly,
<GT> would mix wino's and leptons, leading to neutrino masses, departures

from lepton universality and, last but not least, production of odd numbers

of supersymmetric partnersl4).

Looking for Sypersymmetry.

With the exception of an (unlikely) violation of lepton number, the yet
unseen spectrum of the above models consists at least, in heavy scalar

leptons and quarks (left and right handed partners slightly mixed), heavy

T I
gluinos, two Dirac Fermions made out of the 4 Weyl spinors (w , w, i, h),

0 TO

and 4 Majorana spinors which are linear combinations of (ﬁo, bY, h-, n°)

h™). We
will use (vl...Y4) to label those neutral mass eigenstates. In any case,

there is no fundamental reason why any of these particles should be light;

their masses are related to the effective scale of SUSY breaking, which can
be several TeV's. This is essential to keep in mind when experimental data
are examined, as should be remembered that only correlated limits can be
given (see an example below).

Not only can the masses be large, but the actual eigenstates depend
strongly on the type of model chosen. For a discussion of the gaugino masses
and mixing, see e.g., ref.15. In two extreme cases, we may form Dirac
spinors out of (ww') and (ﬁ:ﬁ+) on one hand, or (W , F*) and (h°, at) on the
other hand. The first case provides for a vectorlike theory (no

forward-backward asymmetry in the production), with the first fermion more
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strongly coupled to W and Z than the second, while the other case provides
for 2 particles with similar couplings to W, Z and a forward-backward
asymmetry in e*e~production somewhat smaller than a standard lepton pair.
These particles will decay into standard leptons or quarks, plus some

neutral "photino" (;1,... §4). Since the neutral particle is massive, less
energy will be available for the outgoing leptons (hadrons) than in a typical

lepton sequential decay, which may hamper their detection.

Flavour Changing Transitions and CP Violation

Since susy particles are assumed to be produced in pairs, the simplest
process where to look for them is where O pairs are produced. It is
readily apparent from (2) and (3) that the scalar quarks will not be mass
degenerate; therefore, they can mediate flavor changing transitions.16).
Contributions to the K°K® mass differences and CP violation parameters arise,

e.g., from the graphs

< 1 — %:‘- 1 5& d
t R j i, .
d; i 32 A\ U . 9r A3

The scalar quarks and the quarks themselves cannot in general be
diagonalized simultaneously, and more mixing parameters should thus be
introduced. Ref.9 has shown that only mild constraints on the squark masses
can be extracted from the KK mass difference.

As far as the CP violation parameters are concerned, only simplified
cases have been considered so far, where the squark mixing was identified to
the usual Kobayashi-Mashkawa matrix, and the extra phases associated with
susY18) have been neglected. It is noteworthy that already in this
approximation19)20) ~ the squarks/gluino contribution can flip the sign of
€'/e with respect to the standard model; small or negative values can be

fitted. The low experimental value quoted for e'/e (these proceedings)
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could be the only experimental hint in favor of supersymmetry. However, the
uncertainities associated with the prediction of €'/e in the standard model
do not allow such a conclusion; also, several other schemes could account for

the value of ¢'/e (e.g., L.R. models).

SUSY Pair Production

This has certainly been the most investigated topic in SUSY searches.
For a general review, see e.g. ref.21. The associated production of gluinos
and/or squarks will be dealt with in great detail by M. Barnett (these
proceedings), in order to illustrate the difficulty to give model-independent
Timits I will focus on the simplest possible system of SUSY particles, and
deal with scalar electrons e, ey and neutralinos v;...v, (all neutral SUSY
fermions are denoted y below; the index refers to the mass, ?1 being the
lighest; while ?1 is often assumed to be "the" photino, there is no
compulsory reason for this). Several processes have been suggested to

observe those partic]eszz). The following graphs summarize them:

"Tagged" Production Heavy Photino Production Selectron Production
- o
- S 5 7 e e
la® ~ b 24 € N 2
' et 4 7 * + T ~ 3a e
RS S f‘;+ ______ 72 et
Y . s
o~ ~ i 1 oy
er 7:'/’ z //”./,72 3k et 27 E
b z -7 2.b :::2;2“\,\( 2
P N7 T vl o 5
£ s~ ) s
Y * l’ L

e,
A, e,: ny ot

Which of these processes is most favorable for observation depeﬁds strongl}

on the model. In the case of photino production, e exchange (1, a, 2, a) is
important; if ;1 is a higgino these graphs are negligible. On the other hand
1b vanishes for a pure photino but not for a higgino. The processes

described in 1 are further suppressed by the electromagnetic coupling;
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therefore, the processes in (2) (where 91*;2 + quarks, or leptons and §1
escapes, which gives a "one sided event") can be competitive if M + m;(2 < Vs
and the mixing is not negligible, or if 2m§2 < Ys. The relative interest of
(3) and (4) depends upon the ratio m;/mé, but also on the nature of the
involved photino, since a higgino would be very lightly coupled.

Experimental bounds will be presented by several groups at this meeting
(see e.g., talks by Bohn, Hollebeek, Prepost). While the experimental
results are usually formulated in terms of massless photinos, degenerate
scalar electrons, and assume no mixing, this should be considered a
convenient way of presenting the data rather than a real discussion of the
excluded region in parameter space. Such an enterprise, as we have tried to
show, would involve dealing with at least a 4 or 5 parameter space and seems
somewhat premature at the present stage.

More subtle differences may arise; e.g., in the "one-sided" process (2),
the threshold for }2 }2 is always P-wave while, if 91 ?2 are produced, the
nature of the threshold behavior depends upon the relative sign of their
Majorana masses. Intermediary situations are possible if CP is vio]ated23).
These peculiarities of Majorana particles,
while a potential challenge for

experimentalists, would be very

interesting to observe.

As a conclusion for this section,

possible SUSY signatures are many, but

no one can be pointed at as the crucial

permitted SUSY effective breaking scale,

negative searches even conducted at

the next generation of accelerators would not

completely exclude the existence of SUSY partners.

But a positive evidence for SUSY may appear every day.
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3. Finite Models'

The infinities related to the perturbative expansion of gauge theories
are adequately dealt with by the renormalization procedure. As we have seen
when dealing with the "hierarchy" problem this, however, mixes the various
scales of the model and often results in the introduction of more
phenomenological parameters.

It has been shown recent1y24) that a large class of finite theories
could be built. They rest on the N = 2 extension of supersymmetry 25)
(hypersymmetry), and are fairly restrictive in terms of the particle contents
and couplings. The basic structure of such a theory contains the following

physical fields:

group
vectors spinors scalars [ representation
gauge multiplet v A M adjoint
A2
scalar multiplet wl Al r
i) i i -
( ¥2 ) r

With respect to N = 1 SUSY, the number of fermions for each multiplet is
doubled; for each scalar multiplet, W{ and w; are left handed fermions
transforming respectively under the representation r and r of the gauge grouaﬁ
The "gauge scalar" M transforms according to the adjoint representation ofég.
The Lagrangian of such theories is severely constrained. Let us first

mention the finiteness condition which states the vanishing of the 1-loop 8
function:

g Co(Ry) = g Cladd) (4)

tThis work was done in collaboration with Y.-P. Yao
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where n and Cy respectively stand for the dimension and Casimir coefficient
of the representation. As we will see below, this condition strongly limits
the number of possible matter representations for a given group (SU(5) is
excluded).

The only Yukawa couplings permitted are determined by the gauge

interactionze) and read

Sig/g(TX M + DXy b] + pdoug + oMy - AKX RD) + hec. (5)
(notice that A; acts diagonally on the indices 1,2, while M and Ap mix
fermions carrying the index 1 with their "mirror partner" carrying index 2.)

An explicit mass term for the matter fields is also allowed for each

multiplet i:
i
+ mivog (6)
This far we have only dealt with unbroken N = 2 SUSY. As was the case

with N = 1, we may now ask what are this time the "soft breaking terms,"

which, while breaking SUSY, preserve finiteness.

This question has been dealt with for various group527)’28). Are these
soft breaking terms sufficiently general to allow a realistic breaking
pattern for the gauge group? Can they also help us get rid of the unobserved
mirror symmetry implied by N = 2?

We will consider here the special case where the soft breakings are
diagonal in the matter representations (full expressions can be found in

ref.28). In addition to N = 1 terms, we may introduce:

2 4 2 1,2 2 .22
Smy MMT + smiz A [ sm,2 (A7 (7.a)
mlZ M2 + h.c. (7.5)
52 piypd
smij ALUAS (7.c)
mn
i +,3 1 i
> 8Py 5 Ay E'mijk A + h.c. (7.d)

mn
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where ATUAJ §s only permitted for real or pseudoreal representations, and U
is the matrix which projects out the singlet out of A A (e.g., ekg N
the case of SU(2)). The Majorana-like terms (7.b) and (7.c) appear totally

unrestricted by perturbative finiteness, while the terms (4.a) and (4.d) have

to obey:
smﬁ - %-[(Smi)xl + (6mg)zz] = mijiﬁj (8.a)
(smf + 5m§)2" - ;11— (6me + om3), Koen" (8.b)
GPU. = -7 mijg(smn (8.c)
mn

where n is the number of matter representations. As appears readily from (7)
and (8), the mirror symmetry which relates Ay and Ay inel can be easily
broken by choosing Gmi # Gmg, since only the sum of those quantities is fixed .
for each matter representation by (8.a).

This breaking of the 1 » 2 symmetry only applies this far to the bosonic
sector, and the real concern we have is about the fermionic sector. Before
dealing with this we should attract attention to the fact that, while
conditions (8) guarantee the perturbative finiteness of the theory, they say
nothing of the stability of the vacuum. Introducing negative mass terms, as
is customary in spontaneously broken gauge theories may prove dangerous. The
danger is quite general in view of the existence of numerous flat directions
in the quadratic part of the potential, leading to unboundedness from below.
While a general study seems extremely difficult, a few interesting no-go
theorems can be found in ref.28. There is, however, a breaking mechanism
which is safe with respect to those flat directions. Indeed, the quartic
potential has no flat direction where <MA> is vanishing, which is also the
condition for a (negative) contribution to arise from the trilinear terms.

It is easy to check (27) that such a breaking is indeed both safe and

possible.
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Which Group?

A general review of the possible grand unification groups can be found
in ref.29. An interesting mechanism for the breaking of mirror symmetry has
been suggested recent1y30) but unfortunately not in the framework of a grand
unified theory-and such a theory is essential to ensure finiteness, since
small groups and a fortiori U(1) factors cannot satisfy eq.(4), which has to
be true for each factor group.

This is a biased review of groups suitable for the construction of a
grand unified finite model. The bias comes from the fact that we give
special importance to the breaking scheme in which the trilinear coupling
plays a central role, as exemplified in the previous section. In general,
both the adjoint and at least one matter representation will then develop
v.e.v.'s <M> and <A1%> respectively.

As a consequence of the presence of the only allowed Yakawa coupling,
giptMy12, "Dirac" mass terms will be induced, Tinking 1% and y22%, where a
is an index in group space. Since under the unbroken little group g3 <M>
necessarily transforms as a singlet while y; and Y2 transform under reducible
conjugate representations R; and ﬁi we would get massive Dirac fermions
interacting in a vector-like way with the gauge boson representing gj. (This
picture would be modified for the "generation" directly linked to <A1%>,
since we have the further entry ¢22xp<A1%> + y1A<A1*2>, but would still
obtain for most of the fermions involved).

As a typical example, let us imagine a toy model based on SU(5) [a
realistic model is impossible, since all observed particles cannot be
included]. The usual breaking along the adjoint (24) leaves SU(3)XSU(2)XU(1)
invariant; however, it joins the 10 + 10, 5 + 5 into Dirac fermions;

in the 5 representation we have:
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2
o 2
Yoy <M> - (dddev) 2
-3
-3

< o alalal

This may prove a major drawback in the way to construct models. There are,
of course, several ways around. We will list them briefly, and concentrate
on the direction which seems most promising.

-If the group G is large enough that the physically interesting particles are
not affected by <M>, one may avoid the above trouble. However, the
difficulty will pop up again at the level of the unbroken subgroup gj. The
breakdown of that group will then have to proceed via the matter
representation alone. Such breaking schemes are usually not very promising,
however, because the defining representation above breaks SU(5) into SU(4),
SU(3), SU(2)... assuming that enough independent sets of scalars are
available.

Notice, however, that for each matter representation, one subset of the
particles appearing in (9) can be made massless by introducing suitable mass
for the matter multiplet, resulting here in a cancellation betwen (6) and (9)
for either the "quarks" or "leptons". This means that in such a scheme,
physical leptons and quarks cannot be found in the same multiplet (as a very
long shot, this can be seen as an argument for an extended proton lifetime).
-By adjusting mi, mg, émz in eq.(1.4) one can tune the ratio <M>/<A>; if <M>
is made neglibible, one finds directly the above situation, where the matter
representations above are to be held responsible for the whole breaking
pattern. We must keep in mind, however, that only a very limited set of
matter representations is available due to the finiteness conditions.

-A more expedient way would consist in giving ab initio a large (Majorana)
mass to the fermions corresponding to, say wp®. The presence of <M> would

then only induce a slight perturbation in the diagonalization of the mass
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matrix of (y1%, yo%, A1, A2), and leave a state close to y; essentially
massless. Such a Majorana mass u y2% yp% is usually forbidden, for it would
break the gauge symmetry. The necessary condition to allow it is obviously
that RxR>4 , namely that the representation R be real or pseudoreal. Such a
mass term is always allowed if included in an N = 1 soft term

$12U¢%p, where ¢7 stands for the superfield (A;, yj, F1). This solution
seems to be leading from bad to worse! Instead of having a "reality" problem
associated to the presence of R + R for any representation R in use, we
further demand that R itself be (pseudo) real!

The advantage, however, is that such a doubling allows us to completely
eliminate R from the observable spectrum, and liberates us from the
unique but unwanted Yukawa coupling yjMyp. A corollary of this is that the
light fermion masses will have to be generated beyond the tree level. The
loop diagrams involved may prove considerably less transparent to evaluate;
on the other hand, they constitute very "soft" effective mass terms for the
fermions, which may be an interesting property.

With the above motivation in mind, we now turn to a 1ist of the groups
suitable for grand unification, paying special attention to the real or
pseudoreal representations.

For each group, the tables below list the representations which are
permitted by the finiteness condition (1.2), their real/complex character,
nR . CG(R)

their indices ( ). We have examined successively the groups*

n_,.
adj
SU(N), SO(2N), SO(2N=1) and the exceptional groups E7, ES8.
While SO(9) comes close to the correct particle content, using the 16
representation, it is known not to have the correct charge assignments (the

-
right handed leptons transform like doublets under the SU(2)yeak 9roup). We

therefore do not consider it here.
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Real Max Real Max
Pseudo- Number Pseudo- Number
Complex Index Allowed Complex Index Allowed
S0(9) | 16 R 4 3 * S0(10)] 16 ¢ 4 4
(84) 9 R 2 (D5) 10 R 2
36 adj 14 45 adj 16
So{11)}] 32 P 8 2 So(i2)} 32 P 8 2
(85) 11 R 2 (D6 12 R 2
55 adj 18 66 adj 20
50713 764 P 16 1 SO(IATT 84 ¢ 16 T
(86) | 13 R 2 (D7) 14 R 2
78 adj 22 91 adj 24
S0(15 [128 R 32 NO So(18)] 128 R 32 forbidden
(87) | 15 R 2 (D8) 16 R 2
105 adj 26 120  adj 28
BT 56 R 12 3 SU(5) 5 C T
133  adj 36 10 C 3
£8 248 60 {N=4) 24 adj 10
SUT6) 200 R 4 3*
*wrong particle content (A5) 35 adj 12
SU(8) 70 R 20 WO.
(A7) 63  adj 16

If we insist on having 3 equivalent "generations" included within the

matter fields we see that none of the SU or SO groups can satisfy the
finiteness conditions, while retaining an acceptable particle content. (We
exclude a priori the real N representations of SO(N), in view of the familiar
problems associated with charge-2 exchanges and have not considered here the
symplectic groups.) The only groups accepting a triplicate matter generation
structure with real or pseudoreal representation are E; and Eg. For Ey,
taking 3 times the spinorial representation 56 exactly satisfies the
finiteness condition: this group, therefore, appears as a very strong
candidate. Eg is a special example; since one cannot distinguish between the
gauge and matter fermions, its more natural framework is N=4 supersymmetric

theory.
The constraint to have equivalent triplication of the matter generations

as a unique solution is obviously very attractive. We may nonetheless think

of relaxing it, and take into account the gauge fermions as was done for the

*Same additional solutions can be found in the case of pss¥?orea1
representations for a different realization of N = 2 SUSY .
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case of Eg. The smallest group then turns out to ge given by SO(11) [as the
16 representation of S0(10) is not reall. (Of course, larger groups than
SO0(11) may also satisfy our criteria, but we should note that the index of
the spinoidal representation grows geormetrically, while that of the adjoint
only linearly. Therefore, groups larger than SO(16) must be excluded from
our analysis.) Focusing on SO(11), we may satisfy the vanishing beta
function criteria (1.2) by including 2(32) + 1(11) as matter representations.
When decomposed under SU(5), this gives:

32=5+10+1+1+T0+5

11 =F+5+1

55 =24 +1 + 10 +T0+5+5
and we, therefore, obtain the required 3(5+10) fermionic content. We have
checked that a satisfactory breaking patterm down to SU(5) was indeed
possible; in view of the many parameters still present, study of the further

breaking steps proves difficult.
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