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Complex Berry curvature and complex 
energy band structures in non‑Hermitian 
graphene model
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Abstract 

Non-Hermitian quantum systems exhibit many novel physical properties of quantum states. We consider a non-Her‑
mtian graphene model based on the tight-binding approximation with the coupling of the graphene and the sub‑
strate. We analyze the complex energy structure of this model and its exceptional points as well as relevant topologi‑
cal invariants. We give the analytic complex Berry connection and Berry curvature in the Brillouin zone and investigate 
numerically the relationships between the complex Berry curvature and the complex energy band structures. We find 
that the behaviors of the complex Berry curvature depend on the complex energy band structures. The occurrence of 
the peaks of both real and imaginary parts of the complex Berry curvature corresponds to the exceptional (gapless) 
points in the Brillouin zone. In particular, the Dirac cone of the imaginary part of the Berry curvature occurs and corre‑
sponding to the occurrence of the flat real energy band for the non-Hermitian parameter η = 3 . These results provide 
some novel insights to the relationship between the non-Hermitian graphene, geometry, and topological invariants.
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1  Introduction
The geometric and topological methods provide new 
insights to quantum systems in condensed matter phys-
ics [1–4]. It has been found that the quantum Hall and 
spin Hall effects can be understood in terms of the top-
ological states identified by the Chern classes, Z and Z2 
[5–8]. These discoveries have attracted many attempts 
to explore the topological phases in condensed matter 
systems based on the symmetry group and homological 
invariants [7, 8]. The concepts of the Berry connection 
and curvature in quantum systems provide a geometric 
approach to understand quantum states and their evo-
lutions [9, 10]. The winding number and Chern num-
ber are identified the topological phases and their phase 

transitions [4]. Recently, these concepts ware general-
ized to non-Hermitian quantum systems and its holon-
omy interpretation [11–14]. One found that the complex 
energy band structures of non-Hermitian systems show 
rich physics beyond Hermitian systems. Especially the 
complex band gaps and their corresponding exceptional 
points associate with topological phases [13]. The com-
plex Berry phase for non-Hermitian systems has been 
proposed and applied to study the behaviors near the 
exceptional point [15–17], dissipative behaviors [18, 19], 
and quantum phase transition [20, 21]. In particular, the 
Berry phase are generalized to the global Berry phase, 
which play a role of the winding number to identify the 
topological invariants in the non-Hermitian quantum 
walk and dissipative bipartite lattice [21–23]. The robust 
topological states promise potential applications in quan-
tum materials and technologies [24–26].

Quantum non-Hermitian systems exhibit unconven-
tional characteristics and potential applications [11, 
24, 27–30]. In particular, non-Hermiticity of systems 
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describes some dissipative phenomena, such as energy 
gain or loss and non-conserved probability of electrons 
appearing [31–33]. These unconventional characteristics 
beyond standard quantum mechanics yield many novel 
phenomena in quantum states, such as the 10-fold topo-
logical equivalent classes in Hermitian systems based on 
the Altland-Zirnbauer (AZ) symmetry classification are 
extended to the 38-fold topological equivalent classes due 
to the additional sublattice symmetry and pseudo-Herm-
ticity in non-Hermitian systems [12, 13]. One found that 
the complex energy band gap could form a point or line 
gap to preserves its topological invariants under a unitary 
or Hermitian flattening transformation [13]. The energy 
band gaps close to form the exceptional points and lines 
as the reference points or lines associated with the topo-
logical phases [12, 13]. Moreover, the non-Hermiticity 
of systems deforms the Bloch-wave behavior to yield the 
skin effect for lattice models [34–37]. One introduced 
the biorthogonal polarization to modify the conventional 
bulk-boundary correspondence to show the zero modes 
[38–40], the topological edge states, and the finite-size 
effects in the non-Hermitian Su-Schrieffer-Heeger (SSH) 
model [41–45]. In particular, Chen and Zhai studied the 
Hall conductance of a non-Hermitian Chern insulator 
and found some deviations of the quantized Chern num-
ber and the quantum Hall conductance [44–46].

In particular, one found that all eigen energies of the 
non-Hermitian systems are still real if the systems have 
PT  (Parity-Time reversal) symmetries or pseudo-Her-
mitian symmetry [31, 32]. The quantum evolution driven 
by non-Hermitian Hamiltonian with the PT  symmetry is 
faster than those driven by Hermitian Hamiltonian [47, 
48], which provides a novel insight to quantum computa-
tion. Moreover, the time reversal symmetry and its rele-
vant topological invariants have been studied extensively 
and applied in electromagnetism, compact star matter 
and quantum computation [49–53].

More interestingly, the quantum Hall conductance 
in the Dirac model can be generalized to quantum Hall 
admittance in the non-Hermitian Dirac model. Namely 
the quantum Hall susceptance emerges, such as quan-
tum Hall capacity and induction [54]. This inspires fun-
damental insights into non-Hermitian systems and lead 
to potential applications [54]. One found that the edge 
states in the complex energy band play an important role 
in the topological invariants and the topological phase 
transition in the non-Hermitian systems [55]. These top-
ological invariants are associated with the velocity field of 
the Bloch electrons in the Brillouin zone and connected 
to the Euler index [56].

On the other hand, as a typical two-dimensional (2D) 
system, graphene promises great potential applica-
tions in nanoelectronics and nanotechnology [57, 58]. 

Its honeycomb lattice structure yields the Dirac cone in 
its energy band structure. Graphene provides a practical 
system to explore the geometric and topological proper-
ties of the Dirac model in condensed matter systems [59]. 
However, most of the previous theoretical works focus on 
the Hermitian graphene model [59–61]. When we con-
sider that the graphene is on a substrate in some practical 
applications, there should be exist coupling between the 
graphene and the substrate, which may induce the dissi-
pative effect due to asymmetric carbons in the hexagon 
lattice. Thus, these dissipative effects in the graphene may 
be modeled by a non-Hermitian graphene model.

In this paper, we study the geometric and topological 
features of the non-Hermitian graphene model. Firstly, 
we propose a non-Hermitian Hamiltonian of graphene 
based on the tight-binding approximation in the Sec-
tion  2. The dissipative effects come from the coupling 
of the graphene with the substrate. In Section  3, we 
analyze the symmetry of this model and its relationship 
with the exceptional point and topological invariants. In 
Sections 4 and 5, we give analytically the complex Berry 
connection and the complex Berry curvature of this non-
Hermitian graphene model. Then in Section 6, we inves-
tigate numerically the relationship between the complex 
Berry curvature and the complex energy band structure. 
Finally, we give the conclusions and outlook in Section 7.

2 � Non‑Hermitian graphene model
Let us consider a honeycomb lattice, where there are two 
kinds of atoms, A and B shown in Fig. 1. The graphene can 
be modeled by the tight-binding approach with the equal 

Fig. 1  (Color online): The honeycomb lattice, where A and B label 
two different sites of the graphene
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on-site energies of A and B atoms. When the graphene 
couples the substrate, in which A and B atoms will gain or 
loss energy asymmetrically such that graphene becomes 
a dissipative system. This dissipative mechanism can be 
modeled by a non-Hermitian graphene model. Its Hamilto-
nian can be expressed as [57, 58]

where ǫA is the on-site energy of A sites, while 
ǫB = ǫA − i2Ŵ is the on-site energy of B sites, and the 
imaginary part describes the dissipation. When Ŵ = 0 , 
the Hamiltonian H reduces to the Hermitian graphene 
Hamiltonian. Using Fourier transformation, we can 
rewrite the Hamiltonian in the reciprocal space,

where �†
k = a†k , b

†
k  and

is the Hamiltonian in the reciprocal space with

with a being the lattice constant of the graphene. We set 
� = 1 and a = 1 for convenience in the following sec-
tions. By solving the eigenequation, we can obtain the 
eigenvalues

where η = Ŵ

t  . The corresponding eigenvectors are

and their dual eigenvectors in the dual space are

where cos and sin are complex functions and  * means 
the complex conjugated operator. We define 

(1)H =
∑

i

ǫAa
†
i ai + ǫBb

†
i bi − t

∑

�i,j�
(a†i bj + h.c.),

(2)H =
∑

k

�
†
k
hk�k

(3)hk =
(

ǫA − tfk
−tf ∗k ǫB

)

(4)fk = eikxa + 2 cos

(√
3kya

2

)
e−i kxa2

(5)Ek,± = ǫA − iŴ ± t

√
| fk |2 −η2.

(6)

| ψ+� =
(
e−iθk cos φk

2

sin φk
2

)
; | ψ−� =

(
−e−iθk sin φk

2

cos φk
2

)
,

(7)

| ψ̃+� =
(
e−iθk cos∗ φk

2

sin∗ φk
2

)
; | ψ̃−� =

(
−e−iθk sin∗ φk

2

cos∗ φk
2

)
,

(8a)tan φk :=
| fk |
iη

,

It should be pointed out that studying the non-Hermi-
tian graphene model will turn out the two-fold physical 
meanings. (1) Graphene shows many interesting proper-
ties and potential applications due to its hexagonal lat-
tice structure. When we design a quantum device based 
on the graphene, the A and B atoms in graphene couple 
asymmetrically to substrate which gain or lose different 
energy such that the graphene becomes a non-Hermitian 
systems. To understand this non-Hermitian graphene 
model will help us to further design quantum devices 
based on the graphene with the dissipative phenomena 
[57, 58]. (2) The non-Hermitian graphene model can be 
reduced to the non-Hermitian Dirac model in the low 
energy domain, which involves many fundamental issues, 
such as the geometric properties and topological invari-
ants of  quantum states. Actually, the non-Hermiticity of 
quantum systems has attracted many attempts to under-
stand symmetry and topological invariants [13, 62].

3 � Symmetries, exceptional points, and topological 
invariants

In general, all energy bands are real for Hermitian sys-
tems such that the energy band gap near Fermi energy 
can be regarded topologically as a point called point gap. 
However, for the non-Hermitian systems, the energy 
bands could be complex such that the energy band gaps 
can be classified topologically to either point or line gaps 
in the complex energy plane. When the energy band gap 
closes, the topological phase transition between the triv-
ial and topological phases [13, 62].

Note that the diagonal elements of hk are neither equal 
nor complex conjugated, we have 

 where P is the parity operator and T  is the time reversal 
operator. ξ is a unitary and Hermitian matrix [13, 32]. In 
other words, both PT  and pseudo-Hermitian symmetries 
do not hold for this non-Hermitian graphene model. How-
ever, with the parameters varying, the occurrence of the 
exceptional points (gapless modes) at some k points in the 
Brillouin zone may lead to the topological phase transition.

Let us examine the exceptional points of the 
energy band structure in the Brillouin zone and their 

(8b)e−iθk := −
fk

| fk |
.

(9a)(PT )hk(PT )
−1 �=hk

(9b)ξh†kξ
−1 �=hk ,
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corresponding parameters, the energy band (5) gives that 
the gapless modes satisfy equation | fk |2 −η

2 = 0 , which 
yields

In particular, for η = 1 , cos
√
3ky
2 = 0 infers ky = ± π√

3
 

with 0 ≤ kx ≤ 2π , or cos
√
3ky
2 + cos 3kx

2 = 0 yields 

 which implies that the line gap may occur along these 
two lines in the Brillouin zone, which could be mapped 
to the complex energy plane. On the other hand, by 
maximizing and minimizing cosine functions in (10), the 
range of η for the exceptional points (gapless) is obtained 
as 1 ≤ η ≤ 3.

It should be remarked that the occurrence of the excep-
tional point implies the existence of the topological phase 
for non-Hermitian systems even though the system does 
not contain the PT  and pseudo-Hermitian symmetries. In 
particular, the occurrence of the exceptional point is asso-
ciated with the divergence of the Berry curvature. We will 
see this connection in the Section 6. Usually, the winding 
number or vorticity can be identified the exceptional point 
appearing inside or outside of the integral loop even for 
non-Hermitian systems [62]. How to connect the topologi-
cal invariants of the quantum states to the physical observ-
ables and phenomena is worth studying further.

4 � Berry connection and complex Berry phase
The Berry connection can be generalized to 
Aαβ := i�ψ̃α|d|ψβ� for non-Hermitian systems. The 
matrix form is expressed as [21]

Using the eigenvectors in (6) and (7), the Berry connec-
tion can be obtained by

where σ0 = 12×2 is the identity matrix, and σx,y,z are Pau-
li’s matrices. The sine and cosine functions are defined by 
(see (8a)), 

(10)cos2
√
3ky

2
+ cos

3kx

2
cos

√
3ky

2
=

η
2 − 1

4

(11a)kx =
√
3ky

3
±

2π

3
,

(11b)or ky =
√
3kx ±

2π
√
3
,

A = i




�
�ψ+ | dψ+

� �
�ψ+ | dψ−

�
�
�ψ− | dψ+

� �
�ψ− | dψ−

�



(12)
A =

1

2
(σ0 + σz cosφk − σx sin φk)dθk +

1

2
σydφk .

 The Berry phase is defined by γ± =
∮
C A± , where A± are 

the diagonal elements in (12), respectively. The loop inte-
gral means that the Berry phase depends on the cyclic 
quantum evolution in the parameter (or k ) space. Using 
(12), we can obtain the Berry phase,

which is in general complex because the Ham-
iltonian is non-Hermitian. Using (8b), we have 
dθk = ∇k arg(fk) · dk , and the Berry phase can be 
expressed as

Note that 

 then we obtain

5 � Complex Berry curvature
The Berry curvature defined by F = dA plays a gauge 
field for the Hermitian system. For the non-Hermitian 
system, the Berry connection is generalized to complex 
domain such that the Berry curvature is also general-
ized to complex domain. In order to give the explicit 
expression of the complex Berry curvature, the Berry 
connection in Eq. (12) can be rewritten as

where

(13a)sin φk :=
∣∣fk

∣∣
√∣∣fk

∣∣2 − η2

,

(13b)cosφk :=
iη√∣∣fk
∣∣2 − η2

.

(14)γ± =
∮

C
A± =

1

2

∮

C
(1± cosφk)dθk ,

(15)γ± =
i

2

∮

C
(1± cosφk)∇k arg(fk) · dk,

(16a)
∂θk

∂kx
=i

∂

∂kx
ln

fk∣∣fk
∣∣ ,

(16b)
∂θk

∂ky
=i

∂

∂ky
ln

fk∣∣fk
∣∣ ,

(17)∇k arg(fk) = i

(
i
∂

∂kx
+ j

∂

∂ky

)
ln

fk∣∣fk
∣∣ .

(18)A =
1

2

(
Aθdθk + Aφdφk

)
,

(19)Aθ :=σ0 + σz cosφk − σx sin φk ,
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Using (8a), we have 

 We obtain the coordinate transformation from the (θk ,φ)
-space to the (kx, ky)-space.

Thus, the Berry connection in Eq. (18) can be expressed 
in terms of k space

where 

 with

The z-component of Berry curvature is defined by the 
2-form

The partial derivative of (24) is given by 

 Note that ∂Pk
∂kx

∂|fk |
∂ky

− ∂Pk
∂ky

∂|fk |
∂kx

= 0 and 

(20)Aφ :=σy.

(21a)
∂φk

∂kx
=

iη

| fk |2 −η2

∂ | fk |
∂kx

,

(21b)
∂φk

∂ky
=

iη

| fk |2 −η2

∂ | fk |
∂ky

(22)

�
dθk
dφk

�
=




∂ arg(fk)
∂kx

∂ arg(fk)
∂ky

iη
|fk |2−η2

∂|fk |
∂kx

iη
|fk |2−η2

∂|fk |
∂kx



�
dkx
dky

�
.

(23)A = Axdkx + Aydky,

(24a)Ax =
1

2

[
Aθ

∂ arg(fk)

∂kx
+ iPk

∂ | fk |
∂kx

]

(24b)Ax =
1

2

[
Aθ

∂ arg(fk)

∂ky
+ iPk

∂ | fk |
∂ky

]
,

(25)Pk :=
ησy

| fk |2 −η2
.

(26)� =
(
∂Ay

∂kx
−

∂Ax

∂ky

)
dkx ∧ dky.

(27a)

�Ax

�ky
=
1

2

�A�

�ky

� arg(f
�
)

�kx
+

1

2
A�

�2 arg(f
�
)

�ky�kx
+

i

2

�P
�

�ky

� ∣ f
�
∣

�kx
+

1

2
P
�

�2 ∣ f
�
∣

�ky�kx
,

(27b)

�Ay

�kx
=
1

2

�A�

�kx

� arg(f
�
)

�ky
+

i

2
A�

�2 arg(f
�
)

�kx�ky
+

i

2

�P
�

�kx

� ∣ f
�
∣

�ky
+

i

2
P
�

�2 ∣ f
�
∣

�kx�ky
.

(28a)
∂Aθ

∂kx
=− (σz sin φk + σx cosφk)

∂φk

∂kx
,

 with (21), we get 

 By substituting above equations to Eq.(27), we finally 
obtain the 2-form Berry curvature.

where Fz = (αkσx + βkσz) with

where

then

The complex 2-form Berry curvature can be rewritten to 
the real and imaginary parts,

For | fk |2 −η
2
> 0 , 

 For | fk |2 −η
2
< 0 , 

(28b)
∂Aθ

∂ky
=− (σz sin φk + σx cosφk)

∂φk

∂ky
.

(29a)

∂Aθ

∂kx
=−

iη
(
| fk |2 −η2

)3/2
(
σz | fk | +σxiη

)∂ | fk |
∂kx

,

(29b)

∂Aθ

∂ky
=−

iη
(
| fk |2 −η2

)3/2
(
σz | fk | +σxiη

)∂ | fk |
∂ky

.

(30)� =
1

2
Fzdkx ∧ dky,

(31)

�
�
=

i�2

(

∣ f
�
∣2 −�2

)3∕2
detΛ

�
�
�
=

� ∣ f
�
∣

(

∣ f
�
∣2 −�2

)3∕2
detΛ

�
,

(32)�k =




∂|fk |
∂kx

∂|fk |
∂ky

∂ arg(fk)
∂kx

∂ arg(fk)
∂ky




(33)det�k =
∂ | fk |
∂kx

∂ arg(fk)

∂ky
−

∂ | fk |
∂ky

∂ arg(fk)

∂kx
.

(34)Fz = F
r
z + iF i

z ,

(35a)F
r
z :=

η | fk |
(
| fk |2 −η2

)3/2 det(�k)σz ,

(35b)F
i
z :=

η
2

(
| fk |2 −η2

)3/2 det(�k)σx.

(36a)F
r
z :=

−η
2

(
| fk |2 −η2

)3/2 det(�k)σx,
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It should be remarked that the non-Hermiticity η of 
the system induces the Berry curvature. When η → 0 , 
Fz → 0 which may be called the Berry flat. The Berry 
curvature can be regarded as a 2-form non-Abelian gauge 
field. Its components are represented a 2× 2-matrix. The 
real and complex components are related to the Pauli’s 
matrix σx and σz in (35) and (36).

6 � Relationships between complex Berry curvature 
and complex energy band structure

In order to reveal the physical mechanism of the complex 
Berry curvature, We analyze the relationship between the 
complex Berry curvature and the energy band structure 
of the non-Hermitian graphene model. It can be seen that 
Fz is in general complex. At some points | fk |= η in the 
Brillouin zone for given η , the real and imaginary parts of 
the curvature F r

z  and F i
z diverge, which corresponds to 

the energy gap closing (see Eq. (5)).
We plot numerically the complex energy bands in 

the Brillouin zone in Fig.  2, where we set ǫA = 0 with-
out lose of generality. It can be seen that the energy 
band structures show quite different structures with 

(36b)F
i
z :=

η | fk |
(
| fk |2 −η2

)3/2 det(�k)σz .
the non-Hermitian parameter η . The real and imaginary 
parts of the valence and conduction bands, Re(E±) and 
Im(E±) , are symmetric and depend on the non-Hermi-
tian parameter η . They show three typical structures in 
the parameter space.

For the parameter η = 0.5 , both of Re(E±) and Im(E±) 
of the energy bands show some cave structures in the 
Brillouin zone and the gaps of Re(E±) and Im(E±) close 
in some k regions. There is a big cave of Re(E±) in the 
center ( Ŵ point) of the Brillouin zone and six-half caves of 
Re(E±) located at the corner (K,K’ points) of the Brillouin 
zone. For the imaginary part of the energy band, Im(E±) , 
there are six small caves appearing at the corners of the 
Brillouin zone. It should be noted that the caves of Re(E±) 
are connected, but the caves of Im(E±) are separated by 
the flat regions in the Brillouin zone (see in Fig. 2a and 
b). As η increases and reach 2, the caves of the Re(E±) 
become separated and the caves of Im(E±) become con-
nected at η = 2 shown in Fig. 2 c and d.

When the parameter η increases further, the real part 
of the energy band Re(E±) continuously deformed into 
a smaller disk and finally vanish in the Brilouin zone for 
η = 3 shown in Fig. 2 e and f. The imaginary part of the 
energy band Im(E±) forms a Dirac-like cone at the Ŵ point 
in the Brillouin zone. When the parameter increases 

Fig. 2  (Color online): The complex energy band structures in Brillouin zone for different parameter parameters η . a, b The real and imaginary parts 
of the complex energy structure in η = 0.5 . c, d The real and imaginary parts of the complex energy structure in η = 2 . e, f The real and imaginary 
parts of the complex energy structure in η = 3 . We set ǫA = 0
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further η ≥ 3 , Re(E±) = 0 , but the gap of Im(E±) emerges 
at the Ŵ point of Brillouin zone [63]. What physical phe-
nomena observed from this complex energy structure are 
worth studying further.

In general, the complex energy gap closing with the 
parameter varying in the non-Hermitian systems occurs 
at the exceptional degeneracy associated with the topo-
logical phase depending on the symmetry of systems, 
such as the topological phase characterized by the Chern 
number for quantum Hall systems or winding number 
for Su-Schrieffer-Heeger model [13, 34].

In Figs. 3, 4, and 5, we plot the diagonal and off-diago-
nal components of the complex Berry curvature matrix 
with several non-Hermitian parameters η in the Brillouin 
zone. For η = 0.5 shown in Fig. 3 from a to d, we can see 
that there are several small peaks of the curvature com-
ponents Re(F11), Im(F11) , Re(F12) , and Im(F12) appear-
ing in the Brillouin zone. The peaks for the Re(F11) and 
Im(F12) are much higher than those of the Im(F11) and 
Re(F12) . As the parameter increases to η = 2 in Fig.  4 
from a to d, the peaks of the complex components of the 
curvatures become sharp and high. When the parameter 
increases further to η = 3 in Fig. 5 from a to d, all peaks 
of the complex curvatures return to be fat and low.

In general, the behaviors of the complex curvature 
depend on the energy band structure. The peaks of the 
complex curvatures appear at the exceptional (gapless) 
points | fk |2→ η

2 in the Brillouin zone for given η . The 
peak appearance should be associated with some physical 
phenomena. This is still an open question for further study.

In principle, the non-Hermitian part of the Hamil-
tonian describes some dissipative or non-conserved 
phenomena of systems. It can be seen that the Berry cur-
vature plays a non-Abelian gauge field. The Berry gauge 
field is observable. The Berry curvature F  divergence 
may provide a measurable signal to detect the quantum 
phase transition in non-Hermitian systems.

7 � Conclusions and outlook
Graphene as a typical 2D material has been attracted 
a lot of efforts for potential applications in nanoelec-
tronics and many attempts to explore the fundamental 
issues, such as the quantum Hall conductance in the 
graphene system, which is expressed in terms of the 
Chern number [64, 65]. In particular, non-Hermitian 
quantum systems describe dissipative phenomena, 
which exhibit rich physics beyond Hermitian systems 
due to their complex energy band structures [13, 33].

Fig. 3  (Color online): The complex Berry curvatures in the Brillouin zone for the parameter parameters η = 0.5 . a and b are the real and imaginary 
parts of the diagonal component of the complex Berry curvature F11 , respectively. c and d are the real and imaginary parts of the off-diagonal 
complex Berry curvature   F12 , respectively
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Fig. 4  (Color online): The complex Berry curvatures in the Brillouin zone for the parameter parameters η = 2 . a and b are the real and imaginary 
parts of the diagonal component of the complex Berry curvature   F11 , respectively. c and d are the real and imaginary parts of the off-diagonal 
complex Berry curvature  F12 , respectively

Fig. 5  (Color online): The complex Berry curvatures in the Brillouin zone for the parameter parameters η = 3 . a and b are the real and imaginary 
parts of the diagonal component of the complex Berry curvature   F11 , respectively. c and d are the real and imaginary parts of the off-diagonal 
complex Berry curvature  F12 , respectively
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In this paper, we have considered the non-Hermitian 
graphene model to describe the asymmetric coupling 
between the graphene and the substrate based on the 
tight-binding approximation. We have given analyti-
cally the complex Berry connection and Berry curvature 
of this non-Hermitian graphene model and numeri-
cally investigated the relationship between the com-
plex Berry curvature and the complex energy structure. 
The behaviors of the complex Berry curvature depend 
on the complex energy band structure and the non-
Hermitian parameter η . In particular, we find that some 
cave structures of both real and imaginary parts of the 
energy bands occur in the Brillouin zone. Interestingly, 
the Dirac cone of the imaginary energy band emerges 
and the flat structure of the real part of the energy band 
for η = 3 . These imply some hints for the topological 
invariants in the non-Hermitian graphene. The complex 
Berry curvature and its non-analytic behaviors in the 
Brillouin zone provides a way to explore quantum phase 
transition [15, 20–22]. The occurence of the peaks of the 
Berry curvature corresponds to the exceptional (gap-
less) points. Actually, there are still some puzzles for 
studying further. For example, whether the non-analytic 
behaviors of the complex Berry curvature are related to 
the topological invariants like quantum Hall conduct-
ance and admittance [54].

From the mathematical point of views, the complex 
curvature may be related to complex geometry and com-
plex manifold. These open a connection between theo-
retical physics and mathematics [66]. In particular, the 
occurence of the Dirac cone of the energy bands involves 
the Dirac equation, which implies the relativistic effect or 
the Minkowski geometry appearing in condensed matter 
systems. These results provide a novel insight to the rela-
tionship between the non-Hermitian quantum, geometry, 
and topological invariants as well as their applications.
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