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Abstract

Non-Hermitian quantum systems exhibit many novel physical properties of quantum states. We consider a non-Her-
mtian graphene model based on the tight-binding approximation with the coupling of the graphene and the sub-
strate. We analyze the complex energy structure of this model and its exceptional points as well as relevant topologi-
cal invariants. We give the analytic complex Berry connection and Berry curvature in the Brillouin zone and investigate
numerically the relationships between the complex Berry curvature and the complex energy band structures. We find
that the behaviors of the complex Berry curvature depend on the complex energy band structures. The occurrence of
the peaks of both real and imaginary parts of the complex Berry curvature corresponds to the exceptional (gapless)
points in the Brillouin zone. In particular, the Dirac cone of the imaginary part of the Berry curvature occurs and corre-
sponding to the occurrence of the flat real energy band for the non-Hermitian parameter n = 3. These results provide
some novel insights to the relationship between the non-Hermitian graphene, geometry, and topological invariants.
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1 Introduction

The geometric and topological methods provide new
insights to quantum systems in condensed matter phys-
ics [1-4]. It has been found that the quantum Hall and
spin Hall effects can be understood in terms of the top-
ological states identified by the Chern classes, Z and Zj
[5-8]. These discoveries have attracted many attempts
to explore the topological phases in condensed matter
systems based on the symmetry group and homological
invariants [7, 8]. The concepts of the Berry connection
and curvature in quantum systems provide a geometric
approach to understand quantum states and their evo-
lutions [9, 10]. The winding number and Chern num-
ber are identified the topological phases and their phase
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transitions [4]. Recently, these concepts ware general-
ized to non-Hermitian quantum systems and its holon-
omy interpretation [11-14]. One found that the complex
energy band structures of non-Hermitian systems show
rich physics beyond Hermitian systems. Especially the
complex band gaps and their corresponding exceptional
points associate with topological phases [13]. The com-
plex Berry phase for non-Hermitian systems has been
proposed and applied to study the behaviors near the
exceptional point [15-17], dissipative behaviors [18, 19],
and quantum phase transition [20, 21]. In particular, the
Berry phase are generalized to the global Berry phase,
which play a role of the winding number to identify the
topological invariants in the non-Hermitian quantum
walk and dissipative bipartite lattice [21-23]. The robust
topological states promise potential applications in quan-
tum materials and technologies [24-26].

Quantum non-Hermitian systems exhibit unconven-
tional characteristics and potential applications [11,
24, 27-30]. In particular, non-Hermiticity of systems
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describes some dissipative phenomena, such as energy
gain or loss and non-conserved probability of electrons
appearing [31-33]. These unconventional characteristics
beyond standard quantum mechanics yield many novel
phenomena in quantum states, such as the 10-fold topo-
logical equivalent classes in Hermitian systems based on
the Altland-Zirnbauer (AZ) symmetry classification are
extended to the 38-fold topological equivalent classes due
to the additional sublattice symmetry and pseudo-Herm-
ticity in non-Hermitian systems [12, 13]. One found that
the complex energy band gap could form a point or line
gap to preserves its topological invariants under a unitary
or Hermitian flattening transformation [13]. The energy
band gaps close to form the exceptional points and lines
as the reference points or lines associated with the topo-
logical phases [12, 13]. Moreover, the non-Hermiticity
of systems deforms the Bloch-wave behavior to yield the
skin effect for lattice models [34—37]. One introduced
the biorthogonal polarization to modify the conventional
bulk-boundary correspondence to show the zero modes
[38-40], the topological edge states, and the finite-size
effects in the non-Hermitian Su-Schrieffer-Heeger (SSH)
model [41-45]. In particular, Chen and Zhai studied the
Hall conductance of a non-Hermitian Chern insulator
and found some deviations of the quantized Chern num-
ber and the quantum Hall conductance [44—46].

In particular, one found that all eigen energies of the
non-Hermitian systems are still real if the systems have
PT (Parity-Time reversal) symmetries or pseudo-Her-
mitian symmetry [31, 32]. The quantum evolution driven
by non-Hermitian Hamiltonian with the P7 symmetry is
faster than those driven by Hermitian Hamiltonian [47,
48], which provides a novel insight to quantum computa-
tion. Moreover, the time reversal symmetry and its rele-
vant topological invariants have been studied extensively
and applied in electromagnetism, compact star matter
and quantum computation [49-53].

More interestingly, the quantum Hall conductance
in the Dirac model can be generalized to quantum Hall
admittance in the non-Hermitian Dirac model. Namely
the quantum Hall susceptance emerges, such as quan-
tum Hall capacity and induction [54]. This inspires fun-
damental insights into non-Hermitian systems and lead
to potential applications [54]. One found that the edge
states in the complex energy band play an important role
in the topological invariants and the topological phase
transition in the non-Hermitian systems [55]. These top-
ological invariants are associated with the velocity field of
the Bloch electrons in the Brillouin zone and connected
to the Euler index [56].

On the other hand, as a typical two-dimensional (2D)
system, graphene promises great potential applica-
tions in nanoelectronics and nanotechnology [57, 58].
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Its honeycomb lattice structure yields the Dirac cone in
its energy band structure. Graphene provides a practical
system to explore the geometric and topological proper-
ties of the Dirac model in condensed matter systems [59].
However, most of the previous theoretical works focus on
the Hermitian graphene model [59-61]. When we con-
sider that the graphene is on a substrate in some practical
applications, there should be exist coupling between the
graphene and the substrate, which may induce the dissi-
pative effect due to asymmetric carbons in the hexagon
lattice. Thus, these dissipative effects in the graphene may
be modeled by a non-Hermitian graphene model.

In this paper, we study the geometric and topological
features of the non-Hermitian graphene model. Firstly,
we propose a non-Hermitian Hamiltonian of graphene
based on the tight-binding approximation in the Sec-
tion 2. The dissipative effects come from the coupling
of the graphene with the substrate. In Section 3, we
analyze the symmetry of this model and its relationship
with the exceptional point and topological invariants. In
Sections 4 and 5, we give analytically the complex Berry
connection and the complex Berry curvature of this non-
Hermitian graphene model. Then in Section 6, we inves-
tigate numerically the relationship between the complex
Berry curvature and the complex energy band structure.
Finally, we give the conclusions and outlook in Section 7.

2 Non-Hermitian graphene model

Let us consider a honeycomb lattice, where there are two
kinds of atoms, A and B shown in Fig. 1. The graphene can
be modeled by the tight-binding approach with the equal

(3

Fig. 1 (Color online): The honeycomb lattice, where A and B label
two different sites of the graphene
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on-site energies of A and B atoms. When the graphene
couples the substrate, in which A and B atoms will gain or
loss energy asymmetrically such that graphene becomes
a dissipative system. This dissipative mechanism can be
modeled by a non-Hermitian graphene model. Its Hamilto-
nian can be expressed as [57, 58]

H = Z eAajai + EBb;rbi — tZ(a:fbj + h.c.), (1)

(&)

where €4 is the on-site energy of A sites, while
€g = €4 — i2I" is the on-site energy of B sites, and the
imaginary part describes the dissipation. When I' = 0,
the Hamiltonian H reduces to the Hermitian graphene
Hamiltonian. Using Fourier transformation, we can
rewrite the Hamiltonian in the reciprocal space,

H = Z ‘"Illthk\pk @)
k
where \Ifli = (af(, b;r() and
_ [ €ea — ik

is the Hamiltonian in the reciprocal space with

«/§kya> _jkaa
2 )¢

fi = ek 1 9 cos ( (4)

with a being the lattice constant of the graphene. We set
h=1and a =1 for convenience in the following sec-
tions. By solving the eigenequation, we can obtain the
eigenvalues

Ex+ =€4 — il 24/ K |2 —n2. (5)

wheren = g The corresponding eigenvectors are

e~k cog Lk —e~ ik gjn 2k
|¢+):< ¢k2>§ |1ﬂ—>=< ¢k2 )

sin 5 cos 5¢
(6)

and their dual eigenvectors in the dual space are

~ e~k cog* Pk ~ —e i gin* Pk
|w+>=( 2): |w_>=< S,
2

sin* %" cos
(7)

where cos and sin are complex functions and * means
the complex conjugated operator. We define

A

tan ¢ (=——,

p (82)
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e = — in' (8b)

It should be pointed out that studying the non-Hermi-
tian graphene model will turn out the two-fold physical
meanings. (1) Graphene shows many interesting proper-
ties and potential applications due to its hexagonal lat-
tice structure. When we design a quantum device based
on the graphene, the A and B atoms in graphene couple
asymmetrically to substrate which gain or lose different
energy such that the graphene becomes a non-Hermitian
systems. To understand this non-Hermitian graphene
model will help us to further design quantum devices
based on the graphene with the dissipative phenomena
[57, 58]. (2) The non-Hermitian graphene model can be
reduced to the non-Hermitian Dirac model in the low
energy domain, which involves many fundamental issues,
such as the geometric properties and topological invari-
ants of quantum states. Actually, the non-Hermiticity of
quantum systems has attracted many attempts to under-
stand symmetry and topological invariants [13, 62].

3 Symmetries, exceptional points, and topological

invariants
In general, all energy bands are real for Hermitian sys-
tems such that the energy band gap near Fermi energy
can be regarded topologically as a point called point gap.
However, for the non-Hermitian systems, the energy
bands could be complex such that the energy band gaps
can be classified topologically to either point or line gaps
in the complex energy plane. When the energy band gap
closes, the topological phase transition between the triv-
ial and topological phases [13, 62].

Note that the diagonal elements of %y are neither equal
nor complex conjugated, we have

PT(PT)™" #hx (92)

EnfE £hy, (9b)

where P is the parity operator and 7 is the time reversal
operator. & is a unitary and Hermitian matrix [13, 32]. In
other words, both P7 and pseudo-Hermitian symmetries
do not hold for this non-Hermitian graphene model. How-
ever, with the parameters varying, the occurrence of the
exceptional points (gapless modes) at some k points in the
Brillouin zone may lead to the topological phase transition.

Let us examine the exceptional points of the
energy band structure in the Brillouin zone and their
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corresponding parameters, the energy band (5) gives that
the gapless modes satisfy equation | fi |> —1? = 0, which
yields

3k «/gky -1
—=co =

= 10
5 Cos— 2 (10)

2 V3ky
Ccos T + cos

g

In particular, for n =1, cos fy =0 infers k, = i[
with 0 < k, < 27, or cos Q + cos 3]"“ = Ovyields

3k, | 2
kx:\/_y:l:iv

3 3 (11a)

21
or ky =3k + Ned (11b)

which implies that the line gap may occur along these

two lines in the Brillouin zone, which could be mapped
to the complex energy plane. On the other hand, by
maximizing and minimizing cosine functions in (10), the
range of 1) for the exceptional points (gapless) is obtained
asl <n <3.

It should be remarked that the occurrence of the excep-
tional point implies the existence of the topological phase
for non-Hermitian systems even though the system does
not contain the P7 and pseudo-Hermitian symmetries. In
particular, the occurrence of the exceptional point is asso-
ciated with the divergence of the Berry curvature. We will
see this connection in the Section 6. Usually, the winding
number or vorticity can be identified the exceptional point
appearing inside or outside of the integral loop even for
non-Hermitian systems [62]. How to connect the topologi-
cal invariants of the quantum states to the physical observ-
ables and phenomena is worth studying further.

4 Berry connection and complex Berry phase

The Berry connection can be generalized to
Agp = i(&a|d|wﬂ) for non-Hermitian systems. The
matrix form is expressed as [21]

Vi ldy_
Vo ldy-

Yy | dyy
Vo | dyy

~.

Using the eigenvectors in (6) and (7), the Berry connec-
tion can be obtained by

1 . 1
= E(GO + 0, COs P — Oy sin Py )dO; + andqbk.
(12)
where 09 = 13> is the identity matrix, and oy, are Pau-

li’s matrices. The sine and cosine functions are defined by
(see (8a)),
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sin ¢k :=\/ﬁ’ (13a)
i
cos ¢k T Vk{z _ 7]2 ' (13b)

The Berry phase is defined by y+ = fc A4, where A4 are
the diagonal elements in (12), respectively. The loop inte-
gral means that the Berry phase depends on the cyclic
quantum evolution in the parameter (or k) space. Using
(12), we can obtain the Berry phase,
1
ra= s =5 § A cospode, (19
c 2 Jc

which is in general complex because the Ham-
iltonian is non-Hermitian. Using (8b), we have

dor = Vxarg(fi) - dk, and the Berry phase can be
expressed as

i
i= fc (1 cos ) Vic arg(fe) - dk, (15)
Note that
0 . 0 Jx
— =l 11’1 —,
ok ok Ife (162)
O .0 - f
— ={—In —,
Bky 8ky lfk’ (16b)
then we obtain
Vi arg(fic) <1a+)8> 17
k k) =i .
8 ok [fk\ (17)

5 Complex Berry curvature

The Berry curvature defined by F = dA plays a gauge
field for the Hermitian system. For the non-Hermitian
system, the Berry connection is generalized to complex
domain such that the Berry curvature is also general-
ized to complex domain. In order to give the explicit
expression of the complex Berry curvature, the Berry
connection in Eq. (12) can be rewritten as

1
A= 3 (Aodbx + Agdeyc), (18)

where

Ap =00 + 0, cos Pk — 0, sin Py,
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Ay :=0y. (20)
Using (8a), we have

oK in 0| fi |

=T A ) (21a)

0ky |fk |2 —n? Ok

dPK im0l

. 2 2 (21b)

aky | fic I* —n aky

We obtain the coordinate transformation from the (6, ¢)
-space to the (ky, ky)-space.

0 0
( doy ) _ ([ R e (dkx )
W)\ e )\

(22)
Thus, the Berry connection in Eq. (18) can be expressed
in terms of k space

A = Agdky + Aydk,, (23)
where
1 darg(fic) . 9| fil
A, =—|A P
x 2{ 0 ok, + iPy ok, (24a)
1] oarg(fi) . 0|fil
A = A P ’
x 2[ ) ok, + iPx ok, (24b)
with
1oy
Pyi=—r—.
R EoP (25)

The z-component of Berry curvature is defined by the
2-form

dA,  0A,
Q= (-2 - dky A dk.
<8kx aky> =AY (26)
The partial derivative of (24) is given by
A, _10A, darg(h) 1, Pargh) i 0PI lfl 1, 9 il
ok, ~ 20k, ok,  2°° okok, ' 20k, ok, = 2" "okok,’
(27a)
94, _104,darg(h) i, argh) i OB Ikl i, O LAl
ok, 20k, ok,  2°° okok, ' 20k, ok, 2" *okuk,
(27b)
ol Alfil _ 9Py Al _
Note thatrk::m - Tk;(m = 0and
O (0. sindi+ 0y cos i) LK (28a)
ks ‘ * ok,
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0Ay . K
ok, = — (0 sin @i + oy cos ¢k)37y' (28b)

with (21), we get

0Ap in AN
=- —2)3/2(Uz | fic | +Ux”7) k.

’

dkx (|fk 2 —n 9
(29a)
dAg in NGy
— =— —————— (02 | /i | +ouin) .
oky (|fk |2 _,72)3/2 oky
(29b)

By substituting above equations to Eq.(27), we finally
obtain the 2-form Berry curvature.

1
Q= Efzdkx A dky, (30)
where F, = (ax0oy + Bko,) with
in* nlf |
o, = LB/Z detAk ﬂk = % detAk,
(Ifii 2 —n?) (I i 12 —n?)
(31)
where
Ak = aargj(cfk) aargffk) (32)
Okx ok,
then
b 0 0 0
det Ay = |fic | darg(fi) 0 | fic| darg(fi) 33)

ok 0k, ok, ok

The complex 2-form Berry curvature can be rewritten to
the real and imaginary parts,

F. = Fl +iF, (34)
For| fic > —n* > 0,
. n |
I .ZW det(Ax)oz, (35a)
For| fi |2 _772 <0,
Fl ;:W det(Ak)oy, (36a)
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}-Zi — n |fk | =
(I fic 12 —n?)

It should be remarked that the non-Hermiticity n of
the system induces the Berry curvature. When n — 0,
F. — 0 which may be called the Berry flat. The Berry
curvature can be regarded as a 2-form non-Abelian gauge
field. Its components are represented a 2 x 2-matrix. The
real and complex components are related to the Pauli’s
matrix o, and o, in (35) and (36).

det(Ay)o,. (36b)

6 Relationships between complex Berry curvature
and complex energy band structure

In order to reveal the physical mechanism of the complex
Berry curvature, We analyze the relationship between the
complex Berry curvature and the energy band structure
of the non-Hermitian graphene model. It can be seen that
F, is in general complex. At some points | fx |= 7 in the
Brillouin zone for given 7, the real and imaginary parts of
the curvature 7 and ! diverge, which corresponds to
the energy gap closing (see Eq. (5)).

We plot numerically the complex energy bands in
the Brillouin zone in Fig. 2, where we set ¢4 = 0 with-
out lose of generality. It can be seen that the energy
band structures show quite different structures with
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the non-Hermitian parameter 7. The real and imaginary
parts of the valence and conduction bands, Re(E4) and
Im(E+), are symmetric and depend on the non-Hermi-
tian parameter 1. They show three typical structures in
the parameter space.

For the parameter n = 0.5, both of Re(E1) and Im(E+)
of the energy bands show some cave structures in the
Brillouin zone and the gaps of Re(E+) and Im(E4) close
in some k regions. There is a big cave of Re(E+) in the
center (I" point) of the Brillouin zone and six-half caves of
Re(E+) located at the corner (K,K’ points) of the Brillouin
zone. For the imaginary part of the energy band, Im(E+.),
there are six small caves appearing at the corners of the
Brillouin zone. It should be noted that the caves of Re(E+.)
are connected, but the caves of Im(E+) are separated by
the flat regions in the Brillouin zone (see in Fig. 2a and
b). As n increases and reach 2, the caves of the Re(E+)
become separated and the caves of Im(E1) become con-
nected at n = 2 shown in Fig. 2 cand d.

When the parameter 7 increases further, the real part
of the energy band Re(E+) continuously deformed into
a smaller disk and finally vanish in the Brilouin zone for
n = 3 shown in Fig. 2 e and f. The imaginary part of the
energy band Im(E4 ) forms a Dirac-like cone at the I" point
in the Brillouin zone. When the parameter increases

parts of the complex energy structure inn = 3. We seteg = 0

TN
e
(e

it

Fig. 2 (Color online): The complex energy band structures in Brillouin zone for different parameter parameters 5. a, b The real and imaginary parts
of the complex energy structure inn = 0.5. ¢, d The real and imaginary parts of the complex energy structure inn = 2. e, f The real and imaginary
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further n > 3, Re(E+) = 0, but the gap of Im(E) emerges
at the I" point of Brillouin zone [63]. What physical phe-
nomena observed from this complex energy structure are
worth studying further.

In general, the complex energy gap closing with the
parameter varying in the non-Hermitian systems occurs
at the exceptional degeneracy associated with the topo-
logical phase depending on the symmetry of systems,
such as the topological phase characterized by the Chern
number for quantum Hall systems or winding number
for Su-Schrieffer-Heeger model [13, 34].

In Figs. 3, 4, and 5, we plot the diagonal and off-diago-
nal components of the complex Berry curvature matrix
with several non-Hermitian parameters 7 in the Brillouin
zone. For n = 0.5 shown in Fig. 3 from a to d, we can see
that there are several small peaks of the curvature com-
ponents Re(F11), Im(F11), Re(Fiz), and Im(F;7) appear-
ing in the Brillouin zone. The peaks for the Re(F7;) and
Im(Fi2) are much higher than those of the Im(F71) and
Re(F12). As the parameter increases to n =2 in Fig. 4
from a to d, the peaks of the complex components of the
curvatures become sharp and high. When the parameter
increases further to n = 3 in Fig. 5 from a to d, all peaks
of the complex curvatures return to be fat and low.
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In general, the behaviors of the complex curvature
depend on the energy band structure. The peaks of the
complex curvatures appear at the exceptional (gapless)
points | fi |>— n? in the Brillouin zone for given 7. The
peak appearance should be associated with some physical
phenomena. This is still an open question for further study.

In principle, the non-Hermitian part of the Hamil-
tonian describes some dissipative or non-conserved
phenomena of systems. It can be seen that the Berry cur-
vature plays a non-Abelian gauge field. The Berry gauge
field is observable. The Berry curvature F divergence
may provide a measurable signal to detect the quantum
phase transition in non-Hermitian systems.

7 Conclusions and outlook

Graphene as a typical 2D material has been attracted
a lot of efforts for potential applications in nanoelec-
tronics and many attempts to explore the fundamental
issues, such as the quantum Hall conductance in the
graphene system, which is expressed in terms of the
Chern number [64, 65]. In particular, non-Hermitian
quantum systems describe dissipative phenomena,
which exhibit rich physics beyond Hermitian systems
due to their complex energy band structures [13, 33].

|
S
AR
NN

y -2 -2 0 kx

Fig. 3 (Color online): The complex Berry curvatures in the Brillouin zone for the parameter parametersn = 0.5.a and b are the real and imaginary
parts of the diagonal component of the complex Berry curvature F;, respectively. ¢ and d are the real and imaginary parts of the off-diagonal
complex Berry curvature Fi, respectively
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0

2 D) kx
Fig.4 (Color online): The complex Berry curvatures in the Brillouin zone for the parameter parameters n = 2.a and b are the real and imaginary
parts of the diagonal component of the complex Berry curvature F7y, respectively. ¢ and d are the real and imaginary parts of the off-diagonal
complex Berry curvature Fi,, respectively
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Fig. 5 (Color online): The complex Berry curvatures in the Brillouin zone for the parameter parameters n = 3.a and b are the real and imaginary
parts of the diagonal component of the complex Berry curvature Fiy, respectively. ¢ and d are the real and imaginary parts of the off-diagonal
complex Berry curvature Fi,, respectively
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In this paper, we have considered the non-Hermitian
graphene model to describe the asymmetric coupling
between the graphene and the substrate based on the
tight-binding approximation. We have given analyti-
cally the complex Berry connection and Berry curvature
of this non-Hermitian graphene model and numeri-
cally investigated the relationship between the com-
plex Berry curvature and the complex energy structure.
The behaviors of the complex Berry curvature depend
on the complex energy band structure and the non-
Hermitian parameter 7. In particular, we find that some
cave structures of both real and imaginary parts of the
energy bands occur in the Brillouin zone. Interestingly,
the Dirac cone of the imaginary energy band emerges
and the flat structure of the real part of the energy band
for n = 3. These imply some hints for the topological
invariants in the non-Hermitian graphene. The complex
Berry curvature and its non-analytic behaviors in the
Brillouin zone provides a way to explore quantum phase
transition [15, 20-22]. The occurence of the peaks of the
Berry curvature corresponds to the exceptional (gap-
less) points. Actually, there are still some puzzles for
studying further. For example, whether the non-analytic
behaviors of the complex Berry curvature are related to
the topological invariants like quantum Hall conduct-
ance and admittance [54].

From the mathematical point of views, the complex
curvature may be related to complex geometry and com-
plex manifold. These open a connection between theo-
retical physics and mathematics [66]. In particular, the
occurence of the Dirac cone of the energy bands involves
the Dirac equation, which implies the relativistic effect or
the Minkowski geometry appearing in condensed matter
systems. These results provide a novel insight to the rela-
tionship between the non-Hermitian quantum, geometry,
and topological invariants as well as their applications.
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