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Abstract: We demonstrate a scheme for the generation of bipartite and tripartite entanglement,
as well as he implementation of stable and controllable long-distance one-way and asymmetric
two-way steering in a cavity-magnon hybrid system. This system consists of a magnon mode and
two coupled microwave cavities. The first cavity is driven by a flux-driven Josephson parametric
amplifier, which generates squeezed vacuum fields, and is coupled to the other cavity through
optical tunneling interaction. The second cavity and magnon mode are coupled through magnetic
dipole interaction. We find that under weak coupling between the two cavities, and strong
coupling between the second cavity and magnon mode, remote controllable one-way steering and
tripartite entanglement can be achieved. Our scheme may have potential applications in quantum
information.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In 1935, Einstein, Podolsky, and Rosen (EPR) made a famous argument-whether quantum
mechanics is complete. To make an end of the argument, Schrödinger introduced the term
"entanglement" [1–3]. With consideration of complexity, many researchers mainly focus on
bipartite and tripartite entanglement. It is known that bipartite ones refer to the states shared by
two parties which cannot be described separately, while tripartite ones refer to the states shared
by three or more parties can also not be described individually but only through the collective
state [4–7]. Up to now, quantum entanglement is proved to be significant because it offers a new
way to describe the connection and interaction between bi/multi-body quantum systems [8,9].
Different from entanglement, quantum steering is the process of acquiring information about an
unmeasurable quantum system by measuring a single quantum system [10,11]. These concepts
have numerous applications in the field of quantum science and technology, including Bell
inequality testing [12,13], quantum information processing [14], quantum precision measurement
[15], quantum key distribution [16,17], and quantum teleportation [18,19]. However, despite
extensive research and experimental demonstration of quantum entanglement and quantum
steering between continuous-variable states or between discrete-variable ones are proposed
[20–27], achieving unidirectional quantum steering with flexibility and controllability remains
challenging. Consequently, researchers are investigating directional quantum steering, with a
particular focus on unidirectional quantum steering, to enhance its capabilities.
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For the realization of quantum entanglement and quantum steering, we know that mixed
quantum systems such as cavity optomechanical systems and cavity-magnetic hybrid systems
attract a lot of attention [28–33]. Among them, the cavity magnetic hybrid system is particularly
attractive [34–36]. The reason is that the Kittel mode, a spatially uniform mode of spin waves
within magnetic materials can be strongly coupled to microwave photons [36–41]. Among
these structures, the cavity-magnon hybrid system, which mainly studies the interaction between
microwave photons and ferromagnetic materials such as Yttrium Iron Garnet (YIG) crystals, has
become a focus. Because YIG crystals that are easy to magnetize [42,43] have low dissipation
rates and are therefore more desirable for various ferromagnetic materials. Additionally, both
optical and microwave cavities can confine photons to enhance the coupling rate between photons
and matter, providing a wider range of experimental applications for quantum information science
[39,44,45]. Furthermore, Josephson Parametric Amplifier (JPA) driven by flux can be used
for signal compression, effectively reducing the signal bandwidth, and improving the signal
transmission efficiency [46,47]. The compression principle of the JPA is based on the principle
of quantum measurement, which converts the frequency information of the signal into amplitude
information by interfering the signal with a reference signal, achieving signal compression.

In this study, we demonstrate the bipartite and tripartite entanglement and directional remote
controllable steering of the cavity-magnon hybrid system. To enhance operational flexibility,
we utilized two separate cavities. The controllability of the system is achieved by modifying
various parameters, such as adjusting the distance between the microwave cavities to alter the
cavity-cavity coupling rate J, and changing the coupling strength gma by manipulating the bias
magnetic field direction and the position of the YIG sphere [43]. Our research illustrates that a
remote tripartite entanglement can be generated and a remote controllable unidirectional steering
can be realized. They are steady and robust, leading them to have many potential applications for
remote quantum information science.

This paper is organized as follows: In Sec. II, we present our model and the corresponding
Hamiltonian, and then analyze quantum correlations in Sec. III; numerical simulations are
conducted in the fourth section; and, finally, the conclusion of this paper is presented in the fifth
section.

2. Model and Hamiltonian

We consider a hybrid system consisting of two microwave cavities and a YIG sphere, as depicted
in Fig. 1. Cavity 1 (marked as a1) is driven by a weak squeezed vacuum field using a JPA with a
flux, while cavity 2 (marked as a2) is directly coupled to the Kittel mode confined in YIG sphere
which is trapped in the cavity 2 through a magnetic dipole interaction, and the two microwave
cavities interact with each other through a microwave wire. It is assumed that YIG sphere’s
size is much smaller than the microwave wavelength, rendering the effect of radiation pressure
negligible [48–50]. Thus, the Hamiltonian of the entire system can be presented below by

H/ℏ =
2∑︂

j=1
ωja†j aj + ωmm†m + J

(︁
a†1a2 + a1a†2

)︁
+ gma

(︁
a†2m + a2m†

)︁ (1)

where a†j , m†(aj, m) are the creation (annihilation) operators of the jth cavity mode and magnon
mode, respectively, satisfying the standard bosonic commutation relations. Without loss of
generlization, frequencies of the jth cavity mode and magnon mode are denoted by ωj and ωm,
respectively. It is known that ωm can be significantly altered by varying the strength of the bias
magnetic field in the z direction, and their methematical relationship is ωm = γH with H the
strength of the bias magnetic field and γ representing the gyromagnetic ratio of YIG material
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and its value being γ/2π = 28 GHz/T. In addition, J denotes the interaction rate between the two
cavities, which can be adjusted by changing the wire length, while gma is the coupling strength
between cavity 2 and the magnon, which can be tuned by varying the direction of the bias
magnetic field and the position of the YIG sphere [43]. Moreover, the weak squeezed vacuum
field has a frequency ωs when a pump frequency of 2ωs acting on JPA [46,51–60]. In the rotating
frame with the frequency ωs, the rotating Hamiltonian for the system is

Heff /ℏ =
2∑︂

j=1
∆ja†j aj + ∆mm†m + J

(︂
a†1a2 + a1a†2

)︂
+ gma

(︂
a†2m + a2m†

)︂ (2)

with ∆j = ωj − ωs, ∆m = ωm − ωs. In this case, the corresponding quantized Langevin equations
can be obtained and described by

ȧ1 = −i∆1a1 − iJa2 − κ1a1 +
√︁

2κ1ain
1 ,

ȧ2 = −i∆2a2 − iJa1 − igmam − κ2a2 +
√︁

2κ2ain
2 ,

ṁ = −i∆mm − igmaa2 − κmm +
√︁

2κmmin,

(3)

where κ1, κ2, and κm (ain
1 , ain

2 and min) are the dissipation rates (input noise operators) of the jth
cavity and magnon mode, respectively. In this scheme, JPA is utilized to manipulate the noise
characteristics of the quantum fluctuations in the cavity field, leading to a squeezed cavity field. As
a result, the input noise operators have a zero mean and are defined by the subsequent correlation
functions [61]:⟨ain†

1 (t)ain
1 (t

′)⟩ = Nδ(t−t′), ⟨ain
1 (t)a

in†
1 (t′)⟩ = (N+1)δ(t−t′), ⟨ain

1 (t)a
in
1 (t

′)⟩ = Mδ(t−

Fig. 1. Sketch of cavity-magnon hybrid system. (a) The YIG sphere is positioned within
cavity 2 on the right, while the microwave field in cavity 1 on the left is stimulated by a weak
squeezed vacuum field generated by a Josephson parametric amplifier, which is driven by a
flux. The bias magnetic field that produces the Kittel mode is along the z-axis, whereas the
magnetic field that generates the cavity mode is along the ±y-axis. (b) The figure below
depicts the coupling between the magnon mode and two cavity modes. The two cavities
are directly coupled through optical tunneling with a coupling strength of J. The cavity
2 and magnon are directly coupled through magnetic dipole interaction with a coupling
strength of gma. The jth cavity mode and magnon mode have dissipation rates κ1, κ2, and
κm, respectively.
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t′), ⟨ain†
1 (t)ain†

1 (t′)⟩ = M∗δ(t − t′), ⟨ain†
2 (t)ain

2 (t
′)⟩ = n2δ(t − t′), ⟨ain

2 (t)a
in†
2 (t′)⟩ = (n2 + 1)δ(t − t′),

⟨min†(t)min(t′)⟩ = nmδ(t− t′), ⟨min(t)min†(t′)⟩ = (nm+1)δ(t− t′), N =
(︁
n1+1

)︁
sinh2 r+n1 cosh2 r,

M = (2n1 + 1)eiθ sinh r cosh r, and no = 1/[exp
(︂
ℏωo
kBT

)︂
− 1] (o = 1, 2, m), where r is the

squeezing parameter and θ is the phase of the squeezed field.

3. Entanglement and steering

To quantify the system, three sets of orthogonal components are introduced, i.e. Xin
1 =

(ain†
1 + ain

1 )/
√

2, Y in
1 = i(ain†

1 − ain
1 )/

√
2, Xin

2 = (ain†
2 + ain

2 )/
√

2, Y in
2 = i(ain†

2 − ain
2 )/

√
2, Xin

m =

(min† + min)/
√

2, Y in
m = i(min† − min)/

√
2. In this case, the linear quantum Langevin equations

can be rewritten in a matrix form expressed by

σ̇(t) = Aσ(t) + µ(t), (4)

where σ(t) =
[︁
Xin

1 (t), Y
in
1 (t), Xin

2 (t), Y
in
2 (t), Xin

m (t), Y in
m (t)

]︁T , µ(t) = [
√

2κ1Xin
1 (t),√

2κ1Y in
1 (t),

√
2κ2Xin

2 (t),
√

2κ2Y in
2 (t),

√
2κmXin

m (t),
√

2κmY in
m (t)]T are vectors of quantum fluctua-

tions and quantum noise, respectively and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−κ1 ∆1 0 J 0 0

−∆1 −κ1 −J 0 0 0

0 J −κ2 ∆2 0 gma

−J 0 ∆2 −κ2 −gma 0

0 0 0 gma −κm ∆m

0 0 −gma 0 −∆m −κm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

is the drift matrix of the system.
Due to the linearity of the Langevin equation and the Gaussian nature of quantum noise, the

system will decay to a stationary Gaussian state, which can be fully characterized by the 6 × 6
covariance matrix (CM) V in phase space: Vij = [⟨σi(t)σj(t′) + σj(t′)σi(t)⟩]/2, (i, j = 1,2, . . . .6).
In this manuscript, we focus on the stationary CM V which can be directly obtained by solving
the Lyapunov equation [62],

AV +VAT = −D, (6)

with

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κa1 κa2 0 0 0 0

κa2 κa3 0 0 0 0

0 0 κa4 0 0 0

0 0 0 κa4 0 0

0 0 0 0 κa5 0

0 0 0 0 0 κa5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where κa1 = κ1(2N+1+M+M∗), κa2 = iκ1(M∗−M), κa3 = κ1(2N+1−M−M∗), κa4 = (2n2+1)κ2,
κa5 = (2nm + 1)κm.

It is known that the Lyapunov equation can be solved to obtain V, and then to quantify quantum
entanglement for the system or subsystems. For this end, it is convenient to use logarithmic
negativity (LN) ENij and minimum residual entanglement (MRE) Rmin

τ to separately quantify
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bipartite and tripartite entanglement for the subsystem (denoted as i, j = 1, 2, m and i ≠ j) and the
whole system [63–65], whose mathematical equations are defined as [48,66,67]

ENij = max
[︁
0,− ln(2νij)

]︁
(8)

and
Rmin
τ = min

[︂
R1 |2m
τ , R2 |1m

τ , Rm |12
τ

]︂
, (9)

where Ri |jk
τ ≡ Ci |jk − Ci |j − Ci |k ≥ 0 (i ≠ j ≠ k, i ≠ k), Ci |j = EN2

ij is the contangle of subsystems i

and j with vij =
√︂

Eij − (E2
ij − 4Rij)1/2, Eij = Rij

1+Rij
2−2Rij

3 , Rij
1 = det V ij

1 , Rij
2 = det V ij

2 , Rij
3 = det V ij

3 ,

Rij = det V ij
m, with

Vm
ij =

⎡⎢⎢⎢⎢⎣
V1

ij V3
ij

V3
ijT V2

ij

⎤⎥⎥⎥⎥⎦ , (10)

V1
ij, V2

ij, V3
ij are submatrices of Vm

ij with the dimension 2 × 2, and Ci |jk = EN2
i |jk, ENi |jk =

max
[︁
0,− ln 2νi |jk

]︁
with νi |jk = min eig |

[︁
⊕3

s=1(−σy)
]︁
Pi |jkVPi |jk | in which P1 |2m = σz ⊕ I ⊕ I,

P2 |1m = I ⊕ σz ⊕ I and Pm |12 = I ⊕ I ⊕ σz are the matrices for partial transposition at the level of
CMs [66]. A nonzero minimum residual contangle Rmin

τ >0 indicates the presence of genuine
tripartite entanglement in the system. Ri |jk

τ >0 is analogous to the Coffman-Kundu-Wootters
monogamy inequality for three qubits [68].

Similarly, quantum steering for a bipartite subsystem is given as follows by [69]

Gi→j = max
[︂
0, 1

2 ln R1
ij

4Rij

]︂
,

Gj→i = max
[︂
0, 1

2 ln R2
ij

4Rij

]︂
,

G = |Gi→j − Gj→i |.

(11)

Here, Gi→j(i ≠ j) represents the steering direction from i to j, and G denotes the differences for
these two cases.

4. Numerical results and analysis

In the study of the cavity-magnon hybrid system, it is necessary to select optimal detunings
to ensure the realization of entanglement and steering. At a low temperature of T = 20 mK,
we set frequency detunings with respect to the squeezed light for cavity 1 and cavity 2 to be
equal for convenience, i.e. ∆1 = ∆2 = ∆. The YIG sphere used in the study has a diameter
of 250 microns, a spin density of ρ ≈ 4.22 × 1027 m−3, and a total number of spins given
by NYIG = Vρ ≈ 3.45 × 1016, where V is the volume of the sphere. Additionally, we choose
experimentally accessible parameters [42,43]: ω1/2π = ω2/2π = 10 GHz, ωm/2π = 10 GHz,
κ1/2π = κ2/2π = 5 MHz, κm/2π = 1 MHz. To obtain optimal detuning, we draw a graph
illustrating the entanglement between the distant entangled cavity 1 and the magnon mode, as
depicted in Fig. 2. Our findings indicate that the highest level of entanglement is achieved at
∆ ≈ 0 and ∆m ≈ 0. Therefore, in the following passages, we only take ∆ = 0 and ∆m = 0 into
account for the sake of simplicity.

In addition to the frequency detunings, let us further confirm optimal values of the cavity-
magnon coupling rate gma and cavity-cavity coupling rate J, we draw Fig. 3 which illustrates that
distant and controllable one-way steering can be achieved when the ratio of the magnon-cavity
coupling rate to the cavity-cavity coupling rate increases (supposed that the cavity-cavity coupling
rate J and the input of JPA are fixed). We can achieve distant and controllable one-way steering,
the applicable range is relatively large (gma/J ∈ [4.824 9.447]). As the ratio continues to increase
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Fig. 2. Sketch of the indirect entanglement between cavity 1 and the magnon, with
corresponding detunings ∆m and ∆. Here, we set J = κ1, gma = 7κ1, r = 2, θ = 0.

beyond gma/J>9.447, distant and controllable asymmetric two-way steering can also be achieved.
This finding has significant implications in unidirectional secure and device-independent quantum
key distribution, where only one party’s measurement apparatus is untrusted. Consequently, this
process plays a vital role in quantum information.

Fig. 3. Sketch of the indirect entanglement between cavity 1 and the magnon (solid black
line), as well as the one-way steering from cavity 1 to the magnon (blue dashed line), the
one-way steering from the magnon to cavity 1 (green dashed line), and the asymmetric
steering (red dashed line). We choose ∆ = ∆m = 0, J = κ1, r = 2, θ = 0, T = 20 mK.

Next, let us consider the effect of squeezed parameter r and cavity-magnon (cavity) coupling
rate gma(J) on bipartite entanglement, we draw Fig. 4, where we have set (a) J = κ1, r = 0.66;
(b) J = κ1, r = 2; (c) gma = 7κ1, r = 0.66; (d) gma = 7κ1, r = 2, and the other parameters
∆ = 0κ1, ∆m = 0.65κ1, T = 20 mK, θ = 0. Our objective is to achieve the entanglement between
cavity 1 and the magnon mode, so as to gain more precise control and utilization of this remote
entanglement, thereby achieving more efficient quantum computation and more secure quantum
communication. From Fig. 4 (a), we can see that when the cavity-magnon coupling coefficient
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is 0, only entanglement between cavity 1 and cavity 2 appears. This is because we have fixed
the cavity-cavity coupling to be non-zero, so in the case where cavity 2 is decoupled from the
magnon, entanglement between cavity 1 and cavity 2 appears. As the cavity-magnon coupling
coefficient increases, entanglement between cavity 2 and the magnon appears, and we find that
entanglement between cavity 1 and cavity 2 also increases. This indicates that the magnon has
a gain on cavity 2, and this gain will be transferred to cavity 1 as the cavity-magnon coupling
coefficient continues to increase, leading to entanglement between cavity 1 and the magnon. In
Fig. 4 (b), only entanglement between cavity 1 and the magnon appears when r = 2, and the
maximum entanglement value is much larger than that at r = 0.66. In Fig. 4 (c), we have chosen
a cavity-magnon coupling rate in the strong coupling region, so the dominant entanglement is
between cavity 1 and the magnon. Similarly, as the cavity-cavity coupling coefficient increases,
the dominant entanglement is the entanglement between cavity 1 and the magnon. Figure 4
(d) shows that when cavity 1 and cavity 2 are far apart (with a small cavity-cavity coupling
coefficient), we can obtain the desired entanglement. As the cavity-cavity and cavity-magnon
coupling rates continue to increase, the entanglement will eventually disappear. This is because
within a certain range, the strength of the coupling is positively correlated with the entanglement,
but when the coupling strength is too large, the quantum system will undergo degradation, leading
to a decrease in entanglement.

Fig. 4. Bipartite entanglement as a function of cavity-magnon coupling rate gma and cavity-
cavity coupling coefficient J, (a) J = κ1, r = 0.66; (b)J = κ1, r = 2;(c)gma = 7κ1, r = 0.66;
(d)gma = 7κ1, r = 2, and the other parameters are chosen as ∆ = 0κ1, ∆m = 0.65κ1, T =
20mK, θ = 0.
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Now, let us turn to study controllable one-way quantum steering. We demonstrate the steering
as a function of coupling coefficients, which is depicted in Fig. 5. Within our selected parameter
range, we observe only remote steering, which is one-way steering between cavity 1 and the
magnon. In Fig. 5 (a), if we choose weak coupling rate J between the cavities, then one-way
and asymmetric bidirectional steering occur at a greater distance as the cavity-magnon coupling
coefficient increases. With increasing cavity-cavity coupling strength in Fig. 5 (b), asymmetric
bidirectional steering and one-way steering from the magnon to cavity 1 appears, and we find
that the best coupling coefficient is in the weak coupling region between the cavities, indicating
the achievement of distant one-way steering. This demonstrates that the primary factor in our
system is the distant steering between the magnon and cavity 1. We also found that unidirectional
steering occurs even at very low (long distance) cavity 1 - cavity 2 coupling rates, which aligns
with our objective. This design simplifies system structure and management, reduces complexity
and unnecessary repetition, and enhances system stability and efficiency in practical applications.

Fig. 5. Sketch of steering lines: steering from cavity 1 to the magnon (solid red line),
steering from the magnon to cavity 1 (dashed red line), steering from cavity 1 to cavity 2
(solid green line), steering from cavity 2 to cavity 1 (dashed green line), steering from cavity
2 to the magnon (solid blue line), and steering from the magnon to cavity 2 (dashed blue
line). We choose (a) J = κ1, (b) gma = 7κ1. Other parameters are ∆ = ∆m = 0, r = 2, θ = 0,
and T = 20 mK.

It should be noted that in Fig. 4, we have already observed the impact of the squeezing
coefficient r on entanglement. In order to demonstrate the effect of the squeezing coefficient r
on entanglement and steering more comprehensively, we depict Fig. 6, where the entanglement
and steering of the distant steering cavity 1 and magnon particles were plotted, as shown
in Fig. 6. The plot in Fig. 6 (a) illustrates that as the squeezing parameter r increased, the
entanglement first increased and then decreased. Moreover, when 1.173<r<2.829, indirect
(distant) entanglement was the only type present, indicating that the squeezing parameter r can be
controlled to obtain the desired indirect (distant) entanglement. The graph in Fig. 6 (b) shows that
as the squeezing parameter r increased, an increase in the distant magnon to cavity 1 asymmetric
bidirectional steering and unidirectional steering were observed. The maximum steering position
was observed at r = 2, this is easily available experimentally. It is noted that the only resource
for the entanglement and steering is cavity photons squeezed from JPA. According to Ref. [70],
interference can occur between two two-photon quantum source. Thus, the squeezed phase θ for
JPA can scarcely affect the entanglement and steering in our proposal.

We should note that many previous scheme for the preparation of entanglement is sensitive to
environmental temperature, limiting the application of entanglement for quantum communications.
Thus, in order to verify how robust our scheme is against environmental temeprature, we depict
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Fig. 6. Bipartite entanglement and the distant steering as a function of squeezing parameter
r. (a) ∆ = 0κ1, ∆m = 0.65κ1, T = 20 mK, θ = 0, gma = 7κ1, J = κ1. (b) ∆ = ∆m = 0, θ = 0,
T = 20 mK, gma = 7κ1, J = κ1.

Fig. 7, where we have illustrated the entanglement between the distant entanglement cavity 1 and
magnon, along with the corresponding time graph for controllable unidirectional steering of the
distant magnon to cavity 1. Our findings indicate that the practical range of entanglement for our
system is T ∈ [0, 0.344] K, whereas the practical range of the distant steering corresponds to
T ∈ [0, 0.152] K. It is noteworthy that steering is more sensitive to environmental temperature
than entanglement. Nonetheless, our model can be realized within the experimental parameter
range.

Fig. 7. Sketch of the entanglement between the distant entanglement cavity 1 and magnon,
as well the graph of the corresponding temperature for unidirectional steering of the distant
magnon to cavity 1. We selected ∆ = ∆m = 0, θ = 0, gma = 7κ1, J = κ1, r = 2.

Finally, let us consider the entanglement for the whole system, i.e. tripartite entanglement.
Figure 8 displays the graph of tripartite entanglement as a function of the squeezing parameter r in
Fig. 8 (a) and detuning in Fig. 8 (b). The graph in Fig. 8 (a) demonstrates that our system exhibits
tripartite entanglement, with the peak position occurring at r = 1.239. Substituting r = 1.239
into the graph of Fig. 8 (b), we observed that the maximum entanglement position is in proximity
to the resonance position between the cavity and magnon. This result is consistent with the
initial bipartite entanglement and verifies the validity of our approach. The presence of tripartite
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entanglement in our system suggests its potential application in quantum key distribution, which
exploits the unique properties of quantum entanglement for secure communication. In other
word, by leveraging tripartite entanglement, parties involved in communication can establish a
highly secure key to ensure the confidentiality of information transmission [71].

Fig. 8. Graph of the entanglement of the tripartite entanglement corresponding to squeezing
parameter r and detuning. We selected∆ = 0κ1, ∆m = 0.65κ1, T = 20 mK, θ = 0, gma = 7κ1,
J = 1κ1.

The parameters we have selected are within the feasible range of experimental parameters
[42,43]. Our system is flexible and controllable, allowing us to adjust the distance between the
two cavities to vary the strength of the coupling J. We can also achieve the desired entanglement
and steering under weak coupling between the cavities. The coupling strength gma between cavity
2 and the magnon can be adjusted by changing the direction of the bias magnetic field and the
position of the YIG sphere [43]. The compression introduced by the JPA is also within the scope
of our experimental capabilities.

5. Conclusion

In summary, the presented cavity-magnon system consisting of two microwave cavities and a
magnon mode can achieve tripartite entanglement, as well as distant controllable one-way and
asymmetric two-way steering. Our scheme introduces noise to the subsystem through JPA,
which enables the manipulation of unidirectional and asymmetric quantum steering through
JPA or coupling parameters. The entanglement and steering exhibit high stability with respect
to temperature. Thus, the cavity-magnon system can achieve tripartite entanglement, one-way
steering, and asymmetric two-way steering. Our system has significant potential for application
in the field of quantum information.
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