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Abstract

We explore different scenarios of electroweak symmetry breaking by studying the phe-
nomenology of several models that extend the scalar sector of the Standard Model (SM).
We investigate resonant multiscalar production in a singlet extension of the SM. The
resulting benchmark scenarios illustrate many previously unstudied signatures of Higgs-
to-Higgs decays that could serve as discovery channels for additional scalars. While many
properties of the 125 GeV Higgs boson (h1a5) are precisely measured, it could nevertheless
be a CP-mixed state with a sizeable CP-odd admixture. We investigate this possibility
in the CP-violating two-Higgs-doublet model (2HDM) and discuss the impact of bounds
from fermionic electric dipole moments. We find that maximally CP-violating Yukawa
couplings of hi95 are compatible with current measurements. The Higgs sector could also
contain CP violation that is confined to a dark sector. In the minimal model that allows
this possibility, we find that the CP violation is in principle observable through loop-
induced anomalous triple gauge couplings. However, the CP-violating form factor and
the resulting asymmetries are strongly suppressed, making them challenging to observe
even for maximally CP-violating scenarios. In many beyond the SM (BSM) models with
extended scalar sectors — for example in this dark sector model — the scalar potential is
so complicated that its vacuum structure can only be studied numerically. We present a
novel approach to vacuum stability constraints that aims at an efficient and reliable eval-
uation for use in large parameter scans of BSM models. We study the vacuum structure
of the next-to 2HDM (N2HDM) — an extension of the 2HDM by a real scalar singlet.
We show analytically that — in contrast to the 2HDM — the electroweak vacuum of the
N2HDM is not necessarily stable against charge- or CP-breaking vacua. Using our nu-
merical approach, we study the phenomenological consequences of the intricate N2HDM
vacuum structure and find a direct constraint from vacuum stability on the predictions
for the decay of hiss into two photons. We finally derive vacuum stability constraints on
benchmark scenarios in the minimal supersymmetric extension of the SM. We validate
our approach against results in the literature and find good agreement. In particular,
we show that the better numerical stability of our approach can lead to more reliable
results in a fraction of the runtime of alternative methods. The phenomenological studies
carried out in this thesis aim to contribute to a better understanding of electroweak
symmetry breaking and facilitate the exploration of models with extended scalar sectors
using future experimental results.
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Zusammenfassung

In dieser Arbeit werden unterschiedliche Szenarien fiir die elektroschwache Symmetrie-
brechung untersucht. Dazu werden Modelle betrachtet, in denen der Skalarsektor des
Standardmodells (SM) um zusétzliche Felder erweitert wird. In einer Erweiterung des SM
um skalare Singletfelder wird die resonante Produktion von mehreren Skalaren analysiert.
Die daraus resultierenden Beispielszenarien veranschaulichen viele bisher ungepriifte
Signaturen mit Higgs-nach-Higgs-Zerféllen, die zur Entdeckung zusétzlicher Skalare
beitragen kénnten. Obwohl viele Eigenschaften des 125 GeV Higgs-Bosons (hia5) bereits
prézise gemessen sind, konnte es sich bei hi95 dennoch um einen CP-Mischzustand mit
erheblicher Beimischung einer pseudoskalaren Komponente handeln. Im Kontext des
CP-verletzenden zwei Higgs Doublet Modells (2HDM) wird diese Méglichkeit sowie die
Auswirkungen von Obergrenzen an elektrische Dipolmomente von Fermionen diskutiert.
Die Yukawa-Kopplungen von his5 konnen im 2HDM maximal CP-verletzend sein, ohne
dass sich Widerspriiche zu aktuellen Messungen zeigen. Der Higgs-Sektor konnte auch
CP-Verletzung enthalten, die auf einen dunklen Sektor beschrénkt ist. In dem minimalen
Modell, das dieses Szenario ermdoglicht, kann die CP-Verletzung prinzipiell durch anomale
Triple-Eich-Kopplungen beobachtet werden. Der CP-verletzende Formfaktor dieser Kopp-
lungen sowie die daraus resultierenden Asymmetrien sind jedoch selbst bei maximaler
CP-Verletzung so klein, dass es schwierig sein wird, CP-verletzende Effekte zu beobach-
ten. In diesem und vielen anderen Modellen ist der Skalarsektor so kompliziert, dass
dessen Vakuumstruktur nur numerisch untersucht werden kann. Mit einem neuartigen
Ansatz konnen Einschrankungen aus der Vakuumstabilitdt auf effiziente und zuverlassige
Weise bestimmt werden, sodass sie auch fiir den Einsatz in groflen Parameterscans von
BSM-Modellen zur Verfiigung stehen. Diese Methode wird, in Kombination mit einer
analytischen Untersuchung, auf das N2HDM angewandt, in welchem das 2HDM um ein
reelles Singletfeld erweitert wird. Im Gegensatz zum 2HDM gibt es im N2HDM Para-
meterbereiche, in denen das elektroschwache Vakuum instabil gegeniiber Ladungs- oder
CP-brechenden Minima ist. Bei der Untersuchung der vollstindigen Vakuumstruktur
des N2HDM mit unserer numerischen Methode ergeben sich direkte Einschrankungen
aus der Vakuumstabilitdt an die Modellvorhersage fiir die Zerfallsrate des hyo5 in zwei
Photonen. Schliellich werden Einschrankungen aus der Vakuumstabilitiat in einigen Bei-
spielszenarien der minimalen supersymmetrischen Erweiterung des SM bestimmt und
fiir einen Vergleich unserer Methode zu Ergebnissen in der Literatur genutzt. Dabei
zeigt sich eine gute Ubereinstimmung und, dass die bessere numerische Stabilitiat unseres
Ansatzes zu verlasslicheren Ergebnissen bei deutlich reduzierter Laufzeit fithren kann. Die
phanomenologischen Studien, die in dieser Arbeit durchgefiihrt werden, haben das Ziel,
zu einem besseren Verstandnis der elektroschwachen Symmetriebrechung beizutragen
und die Erforschung von Modellen mit erweiterten Skalarsektoren mithilfe kommender
experimenteller Resultate zu erleichtern.

v



List of Publications

This thesis is based on the following publications:

1]

2]

3]

[4]

[5]

D. Fontes, M. Miihlleitner, J. C. Romao, R. Santos, J. P. Silva and J. Wittbrodt,

‘The C2HDM revisited’, JHEP 02 (2018) 073, 1711.09419

D. Azevedo, P. M. Ferreira, M. M. Mihlleitner, S. Patel, R. Santos and J. Wittbrodt,

‘CP in the dark’, JHEP 11 (2018) 091, 1807.10322

W. G. Hollik, G. Weiglein and J. Wittbrodt, ‘Impact of Vacuum Stability Con-
straints on the Phenomenology of Supersymmetric Models’, JHEP 03 (2019) 109,
1812.04644

P. M. Ferreira, R. Santos, M. Miihlleitner, G. Weiglein and J. Wittbrodt, ‘Vacuum
Instabilities in the N2HDM’, (2019), 1905.10234

T. Robens, T. Stefaniak and J. Wittbrodt, ‘Two-real-scalar-singlet extension of the
SM: LHC phenomenology and benchmark scenarios’, (2019), 1908.08554

The following additional publications were completed during the time of the thesis, but
will not be discussed in detail in this manuscript:

6]

[7]

P. Basler, M. Krause, M. Miihlleitner, J. Wittbrodt and A. Wlotzka, ‘Strong First
Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited’, JHEP
02 (2017) 121, 1612.04086

M. Miihlleitner, M. O. P. Sampaio, R. Santos and J. Wittbrodt, ‘The N2HDM
under Theoretical and Experimental Scrutiny’, JHEP 03 (2017) 094, 1612.01309

P. Basler, M. Miihlleitner and J. Wittbrodt, ‘The CP-Violating 2HDM in Light of
a Strong First Order Electroweak Phase Transition and Implications for Higgs Pair
Production’, JHEP 03 (2018) 061, 1711.04097

M. Miihlleitner, M. O. P. Sampaio, R. Santos and J. Wittbrodt, ‘Phenomenological
Comparison of Models with Extended Higgs Sectors’, JHEP 08 (2017) 132, 1703.
07750

P. M. Ferreira, S. Liebler and J. Wittbrodt, ‘pp — A — Zh and the wrong-sign
limit of the two-Higgs-doublet model’, Phys. Rev. D97 (2018) 055008, 1711.00024

I. Engeln, M. Miihlleitner and J. Wittbrodt, ‘N2HDECAY: Higgs Boson Decays in
the Different Phases of the N2HDM’, Comput. Phys. Commun. 234 (2018) 256,
1805.00966


http://dx.doi.org/10.1007/JHEP02(2018)073
https://arxiv.org/abs/1711.09419
http://dx.doi.org/10.1007/JHEP11(2018)091
https://arxiv.org/abs/1807.10322
http://dx.doi.org/10.1007/JHEP03(2019)109
https://arxiv.org/abs/1812.04644
https://arxiv.org/abs/1905.10234
https://arxiv.org/abs/1908.08554
http://dx.doi.org/10.1007/JHEP02(2017)121
http://dx.doi.org/10.1007/JHEP02(2017)121
https://arxiv.org/abs/1612.04086
http://dx.doi.org/10.1007/JHEP03(2017)094
https://arxiv.org/abs/1612.01309
http://dx.doi.org/10.1007/JHEP03(2018)061
https://arxiv.org/abs/1711.04097
http://dx.doi.org/10.1007/JHEP08(2017)132
https://arxiv.org/abs/1703.07750
https://arxiv.org/abs/1703.07750
http://dx.doi.org/10.1103/PhysRevD.97.055008
https://arxiv.org/abs/1711.00024
http://dx.doi.org/10.1016/j.cpc.2018.07.020
https://arxiv.org/abs/1805.00966

[12] D. Azevedo, P. M. Ferreira, M. M. Miihlleitner, R. Santos and J. Wittbrodt, ‘Models
with Extended Higgs Sectors at Future ete™ Colliders’, Phys. Rev. D99 (2019)
055013, 1808.00755

Some of the results of this thesis contributed to the following CERN report:
[13] J. de Blas et al., ‘The CLIC Potential for New Physics’, (2018), 1812.02093

vi


http://dx.doi.org/10.1103/PhysRevD.99.055013
http://dx.doi.org/10.1103/PhysRevD.99.055013
https://arxiv.org/abs/1808.00755
http://dx.doi.org/10.23731/CYRM-2018-003
https://arxiv.org/abs/1812.02093

List of Acronyms

2HDM
BR
BSM
C2HDM
CCB
CMB
DM
EDM
EFT
EW
EWSB
FCNC
ggF
hias
hsm
IDM
LHC
MDM
MFV
MSSM

two-Higgs-doublet model
branching ratio

beyond the SM

CP-violating 2HDM

charge or colour breaking
cosmic microwave background
dark matter

electric dipole moment
effective field theory
electroweak

electroweak symmetry breaking
flavour changing neutral current
gluon fusion

the 125 GeV Higgs boson
SM-like Higgs boson
inert-doublet model

Large Hadron Collider

most dangerous minimum
minimal flavour violation

minimal supersymmetric
extension of the SM

N2HDM
NFC
NMSSM

NP
PHC

QCD
QED
QFT
R2HDM
RGE
SM

STXS

SUSY
TRSM

vev

WIMP

next-to 2HDM
natural flavour conservation

next-to-minimal
supersymmetric extension of
the SM

new physics

polynomial homotopy
continuation

quantum chromodynamics
quantum electrodynamics
quantum field theory

real (CP-conserving) 2HDM
renormalisation group equation

Standard Model of particle
physics

simplified template cross
sections

supersymmetry
two-real-singlet model
vacuum expectation value

weakly interacting massive
particle

vii






Contents

1 Introduction
1.1 The Standard Model of Particle Physics . . . . .. ... ... ... ...
1.1.1 Kinetic Terms and Gauge Invariance . . . . . . .. .. ... ...
1.1.2 The BEH Mechanism and Electroweak Symmetry Breaking . . .
1.2 Open Questions inthe SM . . . . . . ... .. ... .. ... .......
1.2.1  Dark Matter . . . .. . .. .. ..
1.2.2  Baryogenesis . . . . . . . ...
1.2.3  Vacuum Stability in the SM . . . . . .. .. ... ... ...

2 Constraints on Models with Extended Higgs Sectors
2.1 Guiding Principles in Extending the SM . . . . . .. .. ... ... ...
2.2 Unitarity . . . . . o
2.3 Other Theoretical Constraints . . . . . . . . ... ... ... ... ....
2.4 Experimental Constraints . . . . . . . . . ... ... L.
2.4.1 FElectroweak Precision Constraints . . . . . . .. ... ... ...
2.4.2 Constraints from Flavour Physics . . . . . . ... ... ... ...
2.4.3 FElectric Dipole Moments and CP violation . . . . . . . ... ...
2.4.4  Searches for Additional Higgs Bosons . . . . . .. ... ... ...
2.4.5 Properties of the Observed Higgs Boson . . . . . ... ... ...
2.5 Basic Models Beyond the SM . . . . . . . ... ... ... L.
2.5.1 Models with Two Higgs Doublets . . . . . . ... ... ... ...
2.5.2  Supersymmetry . . . ... ..o

3 Vacuum Stability
3.1 Vacua in Extended Scalar Sectors . . . . . . . ... ... ... .. ....
3.1.1 Calculation of the Bounce Action . . . . . .. ... ... ... ..
3.1.2  Lifetime, Metastability, and Instability . . . . . . ... ... ...
3.1.3 Beyond Leading Order Calculations of the Decay Rate . . . . . .
3.2 Boundedness — Existence of a Global Minimum . . . . . . .. ... ...
3.3 Stability of the EW Vacuum . . . . . . . .. ... ... ... .......
3.3.1 Additional Minima of the Scalar Potential . . . . . . . ... ...
3.3.2 Parameter Scans and Vacuum Stability Calculations . . . . . ..

4 Singlet Extensions and Higgs-to-Higgs Decays
4.1 Pure Singlet Extensions of the SM . . . . . . . ... ... ...

13
13
18
22
23
23
24
26
27
28
30
30
31

33
33
35
37
39
40
41
42
43

45
45

X



Contents

4.2 The TRSM . . . . . . 46
4.2.1 Collider Phenomenology . . . . . .. .. ... ... ... ..... 49

4.3 Constraints and Parameter Scan. . . . . . . . . . ... ... ... ... 51
4.3.1 Parameter Scan . . . . . . . .. ... 53

4.4 TImplications of Collider Searches . . . . . . . . ... ... ... ..... 54
4.5 Benchmark Scenarios . . . . . . . . ... ... 57
45.1 BPl1— h125 — hlhg ......................... 58
4.5.2 BP2 — h3 — h1h125 ......................... 61
453 BP3—hz = hiosha . . . . .. 62
4.54 BP4— hy — hihy with hiogs =hg . . . . . . . ... ... ... .. 64
455 BP5— h3 — hlhl with h125 = hg .................. 65
45.6 BP6 — h3 — hghg with ]’L125 = hl .................. 67

4.6 Conclusions . . . . . . ... 69
5 CP Violation in Visible and Invisible Higgs Sectors 73
5.1 CP Violation in the 2HDM . . . . . . . . . ... ... ... ... .... 73
5.1.1 Constraints and Parameter Scan . . . . . . ... ... ...... 76
5.1.2 A CP-Mixed h125 ........................... 78
5.1.3  Summary . . . ... 84

5.2 CP Violation in a Dark Sector . . . . . . . . . .. ... ... ... .... 85
5.2.1 Constraints and Parameter Scan . . . . . . ... .. .. ... .. 87
5.2.2  Observing CP Violation in a Dark Sector . . . . ... ... ... 90

5.2.3  Summary . . .o ... 94

5.3 Conclusions . . . . . . . . 95
6 Vacuum Structure of the N2HDM 97
6.1 The N2HDM . . . . . . . . . . 97
6.1.1 The Bilinear Formalism . . . . . ... ... ... ... ...... 99

6.2 Stability of the EW Phases . . . . .. .. .. ... ... ......... 101
6.2.1  Stability Against Charge and CP Breaking . . . . . .. ... ... 102
6.2.2  Other Coexisting Minima . . . . . ... ... ... ... ..... 104
6.2.3  Summary . . ... ..o 104

6.3 Phenomenological Impact of Vacuum Stability . . . . . . ... ... ... 105
6.3.1 Parameter Scan . . . . . . .. ... ... 106
6.3.2 Discussion . . . . . . ... 108

6.4 Conclusions . . . . . . . . . 115
7 Vacuum Stability in the MSSM 117
7.1 The Scalar Sector of the MSSM . . . . . . . ... .. ... .. ...... 117
7.1.1 Supersymmetry Breaking in the MSSM . . . . . . ... ... ... 118

7.1.2 Resummed Yukawa Couplings . . . . . . .. ... ... ... ... 119

7.2 Vacuum Stability in the MSSM . . . . . .. ... ... 120
7.3 Numerical Results . . . . . . . ... .. 124
7.3.1  Vacuum Stability in the M? Scenario . . . . . . ... ... ... 125



Contents

7.3.2  Vacuum Stability in the M}?*(7) Scenario . . . ... .. ... .. 133

7.3.3  Vacuum Stability in the M;*(alignment) Scenario . . .. .. .. 135

7.3.4 Vacuum Stability in the Remaining Benchmark Scenarios. . . . . 138

74 Conclusions . . . . . . .. 138

8 Summary and Conclusions 141
Acknowledgements 145
Bibliography 147

pal






1 Introduction

In 2012 the ATLAS and CMS collaborations at the Large Hadron Collider (LHC)
discovered a new scalar boson with a mass of about 125 GeV [14, 15]. The existence of a
scalar Higgs boson had been predicted almost 50 years before [16-18], and it was certain
that the LHC would either discover a Higgs boson or observe substantial deviations
from the Standard Model (SM). Within the current uncertainties, the properties of the
discovered particle were found to be in good agreement with the Higgs boson predicted
in the SM [19]. At the same time, the properties of the observed Higgs boson also fit the
predictions of many alternative theories of electroweak symmetry breaking (EWSB).

While it is well known that the SM is not a complete theory of nature — as it does not
include gravitational interactions and cannot account for most of the energy density of
the universe — there is no prediction for the energy scale at which these issues have to be
addressed. Alternative models of EWSB, however, typically feature new particles with
masses around the electroweak (EW) scale in reach of current experiments. Searching
for these beyond the SM (BSM) particles is one facet of distinguishing different models
of EWSB. The phenomenological exploration of the signatures such BSM theories could
produce provides crucial input to the experimental search for new physics (NP).

The dynamics of EWSB can also be probed experimentally by studying the 125 GeV
Higgs boson (hj25). Through the Brout-Englert-Higgs mechanism [16-18] all fermions
and gauge bosons acquire masses and related couplings to the Higgs boson when the
Higgs vacuum expectation value (vev) spontaneously breaks the EW symmetry. Precision
measurements of these couplings are essential to test whether EWSB proceeds as predicted
in the SM. Observing deviations from the SM expectations would be a clear indication of
NP and might hint that there is not a single Higgs boson, but an extended Higgs sector
with multiple scalars.

Even within the constrained framework of renormalisable and gauge-invariant quantum
field theory (QFT), there is an infinite number of possible BSM models. In the past,
theoretically appealing theories such as supersymmetry (SUSY) have been a focus
of phenomenological studies. In the absence of any experimental results pointing to
such a specific model, it is useful to explore BSM models that cover a wide range of
possible experimental signatures. Phenomenological studies of the new particles or
modified couplings predicted in these models can initiate experimental investigations.
The experimental results, together with theoretical consistency constraints on the model

parameter space, can then be used to judge whether such a model is a viable theory of
EWSB.



1 Introduction

In this work, we focus on the broad category of BSM models with extended scalar sectors.
These models add scalar particles to the SM that may mix and interact with the SM
Higgs boson. As a result, they both modify the predicted couplings of his5 and allow
direct searches for the additional neutral and potentially charged scalars predicted by
the model.

Additional scalar fields also modify the scalar potential that governs EWSB. This may
lead to scenarios where the scalar potential has multiple local minima in addition to the
EW minimum that results in the correct EWSB. If the EW vacuum is not the global
minimum of the scalar potential, the universe could obtain an energetically favourable
state through vacuum decay [20, 21]. While not inconsistent from a theoretical point of
view, such a decay would lead to a vacuum bubble that expands through the universe.
The requirement that a theory does not predict a lifetime of the EW vacuum shorter
than the age of the universe can provide an important constraint — especially on models
with large BSM scalar sectors.

Directly probing the structure of the scalar sector is possible by measuring couplings
between multiple scalars. In the SM, the Higgs self couplings are so small that they are
challenging to observe even at the high luminosity LHC [22]. BSM models can feature
considerably larger couplings that may be probed more easily. Of particular interest
are processes of resonant multiscalar production, where a resonantly produced heavy
scalar decays into two or more lighter scalars. Observing these processes could provide
substantial insight into the structure of the scalar sector. These processes are also the
most promising discovery channels for additional scalars that dominantly decay into
other scalars.

Extended scalar sectors may also introduce new sources of CP violation to the theory.
If the parameters of the scalar potential or the vacuum state lead to a mixing of CP-
eigenstates with different CP-quantum numbers, the resulting scalar mass eigenstates
will have CP-violating interactions. While it is known that hjo5 is not a pure CP-odd
state [23, 24], it could be a CP-mixed state with a substantial CP-odd admixture without
violating current constraints. However, models with CP-violating Yukawa couplings face
strong constraints from bounds on fermionic electric dipole moments (EDMs). If the CP
violation does not enter the Yukawa sector, loop-induced anomalous gauge couplings
may reveal the CP-nature of the Higgs sector.

Supersymmetric theories are far more elaborate than pure extensions of the SM Higgs
sector. However, they share numerous features with the simpler models as they also add
many scalar fields to the SM. It is particularly interesting to study vacuum decay in
supersymmetric theories. Due to the many degrees of freedom in the scalar sector, the
constraints from vacuum stability can become extremely important in some regions of
parameter space. These constraints can be complementary to experimental results in
probing supersymmetric models.



Structure of this Thesis

In the remainder of this chapter, we introduce the SM of particle physics and discuss
some of the open questions that cannot be addressed within the SM.

In chapter 2, we present the guiding principles in constructing BSM models with extended
scalar sectors and discuss theoretical and experimental constraints applied to the models
considered in this work. At the end of chapter 2, we introduce the basic features of the
two-Higgs-doublet model (2HDM) and the minimal supersymmetric extension of the
SM (MSSM) — two BSM models that we will refer to throughout this work.

Chapter 3 describes our numerical approach to vacuum stability in models with extended
scalar sectors based on our ref. [3]. We discuss how to calculate the lifetime of the EW
vacuum in models with complicated scalar sectors, and obtain vacuum stability constraints
with the efficiency and stability required for BSM parameter scans. We also discuss
unbounded scalar potentials, which form a special case among the scalar potentials with
unstable EW vacua.

Chapter 4 presents phenomenological results in the two-real-singlet model (TRSM) that
we obtained in ref. [5]. We discuss current constraints on the model from measurements
of hio5 and searches for additional Higgs bosons and present benchmark scenarios for

resonant multiscalar production that feature signatures that are not currently investigated
at the LHC.

CP violation in the Higgs sector is the topic of chapter 5, which contains results from
our refs. [2, 25]. We first discuss the phenomenology of a CP-mixed h95 in the CP-
violating 2HDM (C2HDM). We show that hq25 can have maximally CP-violating Yukawa
couplings to some fermions and discuss the impact of EDM constraints on this conclusion.
The second part of chapter 5 introduces a model with a minimal CP-violating dark sector
where the CP violation can only be probed through anomalous gauge couplings.

In chapter 6, we study the vacuum structure of the next-to 2HDM (N2HDM), an extension
of the SM by both a second Higgs doublet and a real scalar singlet. Based on our ref. [4],
we systematically categorise the different phases of the models and establish analytical
relations between the depths of different kinds of vacua. In particular, we show that an
EW vacuum in the N2HDM is not necessarily safe against vacuum decay into deeper CP
or charge breaking minima. We illustrate the phenomenological relevance of this analysis
by using our approach of chapter 3 to study the vacuum structure of a large sample of
phenomenologically viable parameter points.

Chapter 7 contains a detailed application of our vacuum stability results from chapter 3
to the MSSM. We have published this discussion in ref. [3]. We obtain vacuum stability
constraints on recently proposed MSSM benchmark scenarios for Higgs physics [26], and
use these results to validate our approach against existing results and methods in the
literature.

We conclude in chapter 8.



1 Introduction
1.1 The Standard Model of Particle Physics

The SM of particle physics is a quantum field theoretical description of the elementary
particles observed in nature, and their interactions mediated by the electroweak force [27—
31] and strong force [32-36]. Gravitational interactions are not included in the SM. In
the following, we give a short overview of the SM that is loosely based on refs. [37-39].

The SM is the most general renormalisable QFT with a field content corresponding to
the observed particles that is invariant under the gauge symmetry

SU(3), ® SU(2), ® U(1)y . (1.1)

SU(3), is the gauge group of quantum chromodynamics (QCD) operating on fields with
colour charge, while SU(2); ® U(1), is the EW gauge group operating on left chiral
fields and fields carrying hypercharge (Y).! The field content of the SM consists of
fermions (spin 1/2), gauge bosons (spin 1), and a scalar boson (spin 0). There is one
gauge field corresponding to each of the above gauge symmetries: the gluon field G}, of
QCD, the SU(2), gauge field W and the U(1),  gauge field B, where a is the index of
the gauge representation. The SM includes two categories of fermion fields: the quark
fields, which are triplets under SU(3),, and leptons, which carry no colour charge. All
of the SM fermions are Dirac fermions with two chiralities, left- and right-handed. The
left-handed fields are doublets under SU(2),, and the right-handed fields are singlets.
The SM treats neutrinos — which are known to be massive — as massless particles and
does not introduce right-handed neutrinos. However, the neutrino masses are constrained
to be so small that treating them as massless particles is sufficient for our purposes.
Table 1.1 shows this structure of the fermionic fields. Finally, fermions come in three
generations with identical quantum numbers but different masses.

1.1.1 Kinetic Terms and Gauge Invariance

In a generic QFT, the kinetic terms of a fermion ¢, a gauge boson Aj, and a scalar ¢
are determined by Poincaré symmetry to be

s 1 a 1rapv
Ciin = Vi) — L Fo, F +(8,0)'(09) (1.2)
where 1 = ¥4 and @ = v,0". The field strength tensor F 1 for a gauge field is given
by
Fi, = 0,A, — 0,A; + gf“bCAZA,CJ , (1.3)
where ¢ is the gauge coupling, and %€ are the structure constants of the corresponding
gauge group. In order for the eq. (1.2) to be invariant under a gauge symmetry is has to

IThere are different conventions for the hypercharge. We use the convention where the electric charge
is Q = Is +Y, where I3 is the third component of the SU(2), isospin. The value of Y is then the
average electric charge of an SU(2), multiplet.



1.1 The Standard Model of Particle Physics

Table 1.1: One generation of chiral fermions in the SM.

quarks leptons
u v
SU(Q)L Qr = ((i) UR dr L= (62) €Rr
colour triplet triplet triplet singlet singlet
Y 1/6 2/3 —1/3 —1/2 -1

respect the corresponding gauge transformations. In infinitesimal form these are given
by

b (1 n Zmat“) b, (1.4)
1
Al A B0+ [ A (1.5)

6 — <1+Ziaat“>(b, (1.6)

where the sum runs over the different gauge groups and their generators t* and struc-
ture constants fo¢ carry indices of the gauge representation. The transformations are
parametrised by a which in general depends on the spacetime. In the special case where
O*a = 0 the corresponding transformations are called global. To restore gauge invariance
with respect to the SM gauge groups the derivatives 9, in the fermionic and scalar kinetic
terms need to be replaced by covariant derivatives

B Y <A
D# = (9# - nggG“ - ZQQEWM - ZglgBu- (1-7>

The gs, g2, and g; are the coupling constants, and Gj;, Wy, and B, are the corresponding
gauge fields. The generators of the gauge groups are expressed through the Gell-Mann
matrices \,, the Pauli matrices o, and the hypercharge Y. In the SM eq. (1.2) therefore
becomes

-1
Lan =D Vil — 7 (Gu,G" + Wi, W™ + B, B") + (D,®)'(D'®),  (L8)

fermions

While all kinetic terms are gauge invariant by the use of covariant derivatives, the same
is not possible for all the mass terms we might want to write, e.g.

—m, for a fermion 1
Linass O +m?A, A", for a gauge boson A, (1.9)
—m?2|¢|?,  for a scalar boson ¢.

The fermion and gauge boson mass terms are forbidden by the gauge symmetry of
the standard model, only the scalar mass term is allowed. Therefore, all fermions and
gauge bosons of the SM would be massless (up to quantum effects) which is in clear
contradiction to observations.
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Vip, n)

Figure 1.1: A sketch of the scalar potential of the SM, eq. (1.14), as a function of
the neutral components p and n of the Higgs field. The potential rises
monotonically for larger values of p? + n?.

1.1.2 The BEH Mechanism and Electroweak Symmetry Breaking

The BEH mechanism [16-18] solves this issue through spontaneous EWSB. In the SM, a

single scalar field
¢* )
o = . 1.10
(%5 (p+in) (110)

that is a colour singlet, SU(2),-doublet with Y = 1/2 is introduced into the Lagrangian
Litiges = (D"®)' (D, ®) — V(®) + Ly - (1.11)

The numerical prefactors in eq. (1.10) are chosen such that both the charged field ¢ and
the neutral fields p and 1 have canonically normalised kinetic terms. For a real scalar
field p this convention requires the kinetic and mass terms to have the form

1 1
L2 5(0"p)(Oup) = 5mp" (1.12)

Complex scalar fields — such as ¢t — are conventionally written as

Re(¢") +ilm(¢™)
V2

and their real and imaginary parts are normalised according to eq. (1.12).

ot — (1.13)



1.1 The Standard Model of Particle Physics

For the SM case of a single Higgs doublet ®, the most general gauge-invariant scalar
potential V(@) in a renormalisable QFT is

V(®) = — 12010 + \(D1d)° . (1.14)

If 42, )\ > 0 this potential has a minimum not at the origin but for a finite value of
the Higgs field ®. In fig. 1.1 the shape of the potential is shown as a function of the
neutral components of the Higgs field. In the vacuum state, ® will take the energetically
favourable value in this minimum and thus acquire a vev

(@) = = (O) , (1.15)

with )
o = £

2\
The vev v is a classical background field with a globally uniform value. Choosing this
vev to lie in the real, neutral component of ® spontaneously breaks EW symmetry by
selecting one specific point out of an orbit of physically equivalent vacua related by global
transformations under the SM gauge groups. We expand the Higgs field around the vev

i o (i) e

Since we can, without loss of generality, choose the vev to lie in the neutral component,
the residual U(1),, symmetry of quantum electrodynamics (QED) is left intact.

(1.16)

If the EW symmetries were purely global, the theory would — according to the Goldstone
theorem [40-42] — contain three massless Nambu-Goldstone bosons after the expansion
of eq. (1.17). However, since the symmetries are gauged, the would-be Nambu-Goldstone
bosons are related to the EW gauge bosons. In particular, the remaining freedom to
perform local SU(2), ® U(1), transformations can be used to transform these bosons
into longitudinal components of the gauge fields, thus giving masses to the gauge bosons.
This gauge is called the unitary gauge and results in bosonic mass terms of the form
2
meaD%-ﬁ@ﬁf+ﬂiwﬂ2+@dh—gﬂﬁf — ?p. (1.18)

After mass diagonalisation this yields the physical gauge bosons

_WaFW

W — : 1.19
- = (1.19)
W3 — g,
Z# — w = COS QWWS — sin HWB#, (120>
91+ 95
W3+ 928

N



1 Introduction

with the weak mixing angle 6y defined through
g2

NCEY

cos by = (1.22)

The corresponding masses are

v v
mW:92§, Mg = \/9%4'9%57 (1-23)

the photon field A* is massless, and the Higgs boson h = p has a mass of
mp = V2 \? = /2u2 . (1.24)

The mass of the W* can also be expressed through the Fermi constant, which is the
effective interaction strength of the weak interaction in the low energy Fermi theory.
They are related at lowest order as m?, = v/2¢2/8Gr leading to

1

v = <¢§GF>_§;3246G6V. (1.25)
The Higgs mass my, is a free parameter of the SM. The parameters of the scalar potential,
A and p, can be expressed through v and my, via egs. (1.16) and (1.24).

The fermions interact with the Higgs field through the Yukawa couplings. In unitary
gauge, these are given by

v+ h
V2

'CYukawa = - Z yfz/}{z/_){{ (126)
f

and yield fermion masses of

v
mr=—=yr, 1.27
f \/§yf ( )

where y is the corresponding Yukawa coupling. Note that in the SM the Yukawa couplings
(which are in general a matrix) are diagonalised simultaneously with the fermion masses.
Therefore, there are no tree-level flavour changing neutral currents in the SM. Starting
from a manifestly gauge invariant Lagrangian, eq. (1.11), the BEH mechanism thus
generated the required mass terms of the form eq. (1.9) for all the massive particles of
the SM.

Since it is the combination v 4 h that leads to the gauge boson and fermion mass terms
of the SM the couplings of the Higgs boson A to fermions and gauge bosons are directly
linked to their masses. The Feynman rules for these vertices are

m M
9nff = _ZTfa gnvv = QZTV, ghnvv = gh;/v . (1.28)

The scalar potential eq. (1.14) additionally leads to triple and quartic Higgs self-couplings
with Feynman rules

2
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1.2 Open Questions in the SM

1.2 Open Questions in the SM

While the SM agrees very well with a large number of experimental observations, there
are many indications that there must be physics beyond the SM. We have already
mentioned neutrino masses and gravity that are not part of the SM. In this section, we
will give short overviews of some of the open questions of particle physics that cannot be
addressed within the SM.

1.2.1 Dark Matter

The existence of a gravitationally interacting but invisible kind of matter — called
dark matter (DM) — was first postulated by Zwicky [43, 44]. Astrophysical evidence
for DM has since been established e.g. in rotation curves of galaxies [45, 46|, galaxy
cluster mergers [47], and through precision measurements of the cosmic microwave
background (CMB) [48]. The following short overview of the subject is based on refs. [39,
49].

The most recent CMB measurements by the Planck collaboration [48] obtain a dark
matter density ). normalised to the total energy density of the universe of

Q.h* = 0.120 +0.001, (1.30)

where h is the reduced Hubble parameter. Within current constraints, DM is allowed
to interact with SM particles with couplings comparable to the weak interaction. This
makes the inclusion of DM candidates an interesting extension of the SM.? Any particle
that is electrically neutral, a singlet of SU(3)_, and stable on cosmological time scales
is a candidate for DM. In this work, we consider only weakly interacting massive
particle (WIMP) dark matter candidates will. These have masses around the EW scale
and interact with the SM with comparable strength to the weak interaction. WIMPs can
be produced in the early universe as thermal relics, and their density is naturally rather
close to the observed DM density — this coincidence is called the WIMP-miracle.

There are ongoing experimental efforts in the search for DM particles. Most of the WIMP
searches rely on scattering processes between two DM particles y and two SM particles
s through a vertex

X s (1.31)

2There are also non-particle DM candidates such as primordial black holes.
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Figure 1.2: Bound on the spin-independent dark matter nucleon scattering cross section at
90 % confidence level as a function of the DM mass. Result by the XENON1T
experiment from [50]. The blue and red curves indicate previous bounds by
different experiments and the inset shows a normalisation of the plot the
expected XENONIT limit.

where the content of the blob depends on the specific dark matter model. The annihilation
of two x into two s can be looked for in cosmic rays and is called indirect detection. Pair
production of dark matter particles can be studied at colliders through searches for initial
state radiation plus missing energy — called mono-X searches, where X € {j, h,~,...}
depending on the radiated particle. The third possibility — scattering a dark matter
particle off a SM particle — is called direct detection. Direct detection experiments
typically look for scattering of DM against heavy nucleons, where Xenon is currently the
most prominent scattering medium for WIMPs.

Direct detection experiments currently provide the strongest bounds for WIMPs. These
constraints are also straightforward to apply as they put a bound on the DM nucleon
scattering cross section which can be calculated in many models using public tools like
MicrOMEGAs [51-57]. The currently strongest direct detection bound by the XENONI1T
experiment on the spin-independent scattering cross section is shown in fig. 1.2.

1.2.2 Baryogenesis

The matter-antimatter asymmetry in the universe can be estimated from the baryon to
photon ratio 1 by assuming that all CMB photons are the result of thermal annihilations
of baryons

N, — Nj N,
U ~p= =2 ~6x1071, (1.32)
Nb + Nl; T>1GeV N’V today
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1.2 Open Questions in the SM

The numerical value is obtained from CMB measurements [48]. Without a theory of
baryogenesis that leads to a matter-antimatter asymmetry, no matter is expected to
remain after thermal annihilations.

Explaining this ratio requires a theory of baryogenesis in which the three Sakharov
criteria [58] — baryon number violation, C and CP violation, and departure from thermal
equilibrium — are fulfilled in the early universe. Two classes of baryogenesis have been
studied in detail. In leptogenesis [59, 60], the baryon asymmetry is generated through CP-
violating scattering processes involving heavy neutrinos. In electroweak baryogenesis [61-
64], the baryon asymmetry is generated during a strong first-order EW phase transition.
Leptogenesis can be realised at a high scale with little observable consequences. However,
electroweak baryogenesis requires new physics at the EW scale, making it an interesting
possibility to consider when studying BSM models with extended Higgs sectors.

In the SM, a first-order EW phase transition would require m;, < 60 GeV [65, 66] which
does not match the observed mass of his5. However, in models with extended Higgs
sectors a strong first-order EW phase transition can be realised (see e.g. refs. [6, 8, 67-69]
for applications to the two-Higgs-doublet model). Such a phase transition will progress
through an expanding vacuum bubble which is out of thermal equilibrium and satisfies
the third Sakharov criterion. During the phase transition, baryon number violating EW
sphaleron processes [70, 71] will occur and satisfy the first Sakharov criterion. If the
BSM model also introduces new sources of CP violation — to satisfy the second criterion
— this can generate a baryon asymmetry of the required size [72, 73].

1.2.3 Vacuum Stability in the SM

At tree-level, the scalar potential of the SM, eq. (1.14), has exactly one minimum —
up to physically equivalent minima related by gauge transformations. However, when
extrapolating the model to high scales this behaviour can change as a consequence of the
running of the quartic Higgs coupling A [74-92]. Based on current theoretical predictions
and the experimental inputs of the top-quark mass, Higgs boson mass, and the strong
coupling constant the EW vacuum of the SM is no longer the global minimum of the
scalar potential for energy scales > 10* GeV.

If the EW vacuum is not the global minimum of the scalar potential, the vacuum
may decay through a tunnelling process into a minimum where the Higgs vev takes
an energetically favourable value. The lifetime of such a tunnelling process was first
calculated in [20, 21] with the most recent calculations for the SM finding lifetimes
around ~ 10" yr [90].

This lifetime is enormous compared to the age of the universe. The EW vacuum of the
SM is thus metastable at these energy scales — it is not the global minimum, but with a
lifetime large enough to be viable. This result is very sensitive to parametric uncertainties
from the top-quark mass, the Higgs mass, and the strong coupling constant as shown in
fig. 1.3. Within the 30 bands for these uncertainties, the current observations are still

11
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Figure 1.3: Stability of the SM in the plane of the top-quark and Higgs masses,

from ref. [92]. The blue ellipses give the 1o, 20, and 3¢ regions around

the currently measured values. The labelled dashed lines approximately

indicate the log;, of the ratio between the lifetime of the EW vacuum and
the age of the universe.

compatible with the SM being absolutely stable, i.e. the EW vacuum being the global
minimum of the scalar potential up to the Planck scale. On the other hand, a short-lived
instability of the SM is incompatible with current measurements. Note that this analysis
is performed at such high energy scales that threshold corrections from a Planck-scale
theory of quantum gravity may impact the result [88, 93].

Vacuum stability is, therefore, not a critical issue of the SM. From an observational
point of view, metastability is perfectly acceptable. However, these conclusions only hold
if there is no NP at all below the Planck scale. In BSM theories that introduce NP at
lower scales, the vacuum stability behaviour may be completely different.

12



2 Constraints on Models with
Extended Higgs Sectors

This chapter first reviews the guiding principles used to extend the SM scalar sector.
Subsequently, we present and discuss the constraints from theoretical consistency and
experimental observations that we impose on the resulting models of physics BSM. We
also aim to provide some simple understanding regarding the expected impact of the
individual constraints. This chapter is inspired by refs. [38, 94].

2.1 Guiding Principles in Extending the SM

In order to address some of the issues of the SM discussed in section 1.2 or to explore the
possible phenomenology at current and future colliders, it is of interest to study BSM
models. There is a multitude of possible directions to extend the SM in. Most approaches
add additional particle content of some kind to the SM — this may be additional gauge
bosons of an enlarged gauge group, fermions, or additional scalars. We focus on the
effects of extending the Higgs sector by adding new scalar fields that couple to the Higgs
doublet of the SM. In this section, we will present some of the considerations necessary
when extending the SM.

Renormalisability

When categorising extensions of the SM, the first distinction is between renormalisable
models and effective field theorys (EFTs). In an EFT (e.g. the SMEFT [95]) heavy
particles are integrated out leading to non-renormalisable higher-dimensional operators
of light fields. EFTs are agnostic regarding the details of the additional particles making
them a very generic approach to studying extensions of the SM. However, for practical
reasons, it is usually necessary to make additional symmetry assumptions (e.g. regarding
flavour symmetries, see section 2.1) to reduce the number of operators under consideration.
The main issue with EFTs is their limited range of validity. The EFT is only a valid
description of the underlying theory if the scale of the new particles — set by the ratio
of their masses and couplings — is sufficiently large compared to the energy at which
the theory is probed.

13



2 Constraints on Models with Extended Higgs Sectors

Phenomenological studies of new particles with masses around the electroweak (EW)
scale at present colliders require a renormalisable model of these new particles. Such
a model is constructed by adding renormalisable terms involving the new fields to the
Lagrangian.! Renormalisable terms are those that do not involve prefactors of negative
mass dimensions — or equivalently have operators of mass dimension no higher than
four.

For the theory to be renormalisable, all terms that respect the imposed symmetries
must be added to the Lagrangian. Otherwise, higher-order corrections will induce the
corresponding operators and eventually lead to divergencies. If these operators are
not present in the Lagrangian, there are no counterterms to cancel these divergencies
rendering the theory non-renormalisable. Soft breaking terms may be added up to some
fixed operator mass dimension d < 3 without spoiling renormalisability [96].

Gauge Invariance

The gauge structure of the SM is well established and any BSM model should have
a gauge structure that is equivalent to the SM or larger (i.e. contains the SM gauge
groups as subgroups, e.g. in grand unified theories [97-99]). For pure extensions of the
Higgs sector — without additional gauge symmetries — all additional scalars need to
be grouped into complete representations of SU(3), ® SU(2), ® U(1),, and the whole
Lagrangian has to be invariant under the gauge transformations eqs. (1.4) to (1.6). This
constrains the interactions of scalars to gauge bosons to originate entirely from the
covariant derivatives of the scalar kinetic terms. The doublet nature of the left-handed
SM fermions also constrains possible scalar-fermion interactions.

One consequence of gauge invariance is the requirement to reproduce the correct elec-
troweak symmetry breaking (EWSB). This includes both breaking SU(2), x U(1), in
a way that gives masses to the W and Z bosons and preserving the U(1),, symmetry
and thus the conservation of electric charge. In particular, only electrically neutral scalar
fields may acquire a vacuum expectation value (vev).

The p-Parameter and Custodial Symmetry

The p-Parameter [100, 101] was originally defined as an observable to measure the relative
strength of neutral and charged current processes in neutrino scattering experiments. Its
current experimental value is obtained from a fit to EW precision measurements and
given by [39]

p = 1.00039 £+ 0.00019. (2.1)

Tt is possible to extend the SM by both additional field content and higher-dimensional operators. How-
ever, this approach has no strong motivation until new particles have been experimentally established.

14
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In the SM its theoretical value at lowest order is

miy
p=—

_. 2.2
ms, cos Oy (2:2)

Using the relations egs. (1.22) and (1.23), this is identical to unity. This is the result of
the accidental custodial symmetry of the SM. The Higgs potential eq. (1.14) preserves
an accidental global SU(2), ® SU(2)y symmetry. The Higgs vev breaks this down to its
diagonal subgroup — the SU(2),,, custodial symmetry. The remainder of the Lagrangian
approximately preserves this symmetry. It is broken by the U(1),- gauge interaction and
by the difference in Yukawa couplings between up- and down-type quarks. However, one
consequence of this symmetry is that in the limit g; — 0 the masses of W* and Z would
be equal in accordance with eq. (2.2).

When extending the SM the custodial symmetry — being an accidental symmetry — can
easily be completely removed. In generic gauge-invariant and renormalisable extensions
the p-Parameter at tree-level becomes [39]

2+ —Y?)e?

> 2Y 202 ’ (2:3)

where the sum runs over all scalar multiplets and their corresponding weak isospin t,
hypercharge Y and neutral vev v. Without relying on cancellations between different
multiplets the simplest representations where this is equal to unity are

(3,3)  doublet, like in the SM,
(1Y) =14(3,2)  septet, (2.4)
(2,12)  26-plet.

It is also trivially fulfilled for SU(2), singlets with ¥ = 0 which do not contribute to the
p-Parameter at all. Out of these multiplets that naturally fulfil p = 1 at lowest order the
singlet and doublet extensions are by far the most studied? and all of the models treated
in this work only add singlets and/or doublets to the SM.

Additional scalars only contribute to the tree-level value of the p-Parameter if they
acquire a vev. Therefore, arbitrary scalar multiplets can be added to the SM provided
they have vanishing vevs. This possibility is mainly interesting in the context of certain
dark matter models where additional scalars without a vev are required (see e.g. ref. [104]).
Additionally, it is possible to add different multiplets provided that their vevs are
sufficiently small, and the predicted value of p still agrees with the observed one. In
particular, it is possible to impose an (approximate or exact) SU(2), ® SU(2), symmetry
on the extended Higgs sector. In this case, the custodial symmetry will remain after
EWSB just like in the SM. Georgi-Machacek [105] or left-right-symmetric models [106—
108] which include scalar triplets take this approach.

?Recently minimal septet extensions have also been subject to phenomenological studies [102, 103].
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2 Constraints on Models with Extended Higgs Sectors

Higher-order corrections to the p-Parameter provide an important constraint on BSM
models, even if p = 1 at tree-level. These will be discussed in section 2.4.1. Finally,
the considered multiplets directly relate to the maximal electric charge a scalar can
have. Standard doublets can only contain singly charged scalars, triplets contain double
charged, and septets with p = 1 allow charges of up to five.

Flavour Changing Neutral Currents

One prominent feature of the SM is the absence of tree-level flavour changing neutral
currents (FCNCs). This is not due to some flavour symmetry of the SM but rather
an accidental consequence of SU(2), ® U(1), gauge invariance. Processes mediated by
FCNCs are loop-induced processes in the SM, and many of them have been observed at
colliders. Due to their loop-induced nature, the rates for these processes are typically
tiny and therefore very sensitive to BSM contributions.

Consider a generic BSM model that adds at least a second scalar doublet ®5 to the SM.
The quark Yukawa Lagrangian becomes

— Ly D QL (X1 ®1 + Xgo®o)dg + Q' (X P + X2 @)ty (2.5)

with generic flavour space matrices X. The quark fields denoted with the prime are
the gauge eigenstates. After electroweak symmetry breaking this leads to quarks mass
matrices (¢ € {u,d})

Mq X (Uqul + UQXqQ) (26)

which — for general X — cannot be diagonalised simultaneously with the Yukawa
interactions. This will lead to FCNC interactions mediated by some of the physical
neutral Higgs bosons. The lepton sector can be treated equivalently.

Several approaches have been developed to ensure that such BSM contributions to FCNC
observables remain small [109]. In natural flavour conservation (NFC) the absence of
FCNCs is ensured by requiring each fermion multiplet to couple to exactly one scalar
multiplet. For the Yukawa Lagrangian eq. (2.5) this would correspond to either X, =0
or X, = 0 for each ¢ € {u,d}. In this case, Yukawa interactions and quark masses
are simultaneously diagonalised, and tree-level FCNCs are absent. The NFC condition
can be easily enforced by imposing discrete or continuous symmetries on the Higgs and
Yukawa sectors. The resulting absence of FCNCs in NFC is related to an accidental
flavour symmetry in analogy to SM.

The hypothesis of minimal flavour violation (MFV) is a more general framework postulat-
ing that the accidental flavour symmetry of the SM is only broken by terms proportional
to SM Yukawa couplings. As such, the X matrices of eq. (2.5) are given by

qu = CqIY:z, qu = C(IQ)/qv (27)

where Y, are the SM Yukawa matrices, and ¢ are numerical prefactors. This can be
realised by explicitly imposing an appropriate flavour symmetry.
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2.1 Guiding Principles in FExtending the SM

Table 2.1: Fermionic Z, charge assignments (first three columns) and the resulting coup-
ling structure (last two columns) of the four Yukawa types of 2HDM-like models
with a Zs symmetry. The coupling structure is denoted by the Higgs doublet
that has Yukawa couplings to the respective kind of fermion. The up-type
quarks always couple to @, with the charge assignment given in eq. (2.9).

dr L g d-type leptons
type 1 — + - (132 (I)g
typell + + + & o,
lepton-specific — + + ) D,
flipped + + — O ®,

Since we are mostly interested in scalar phenomenology, we only consider models with
NFC, which offers a simple way to avoid tree-level FCNCs. In many models, it is
appealing to impose discrete symmetries on the scalar potential to reduce the number of
free parameters. These symmetries can often be extended to the Yukawa sector in order
to realise NFC.

The most frequently used NFC symmetry leads to the four Yukawa types of the two-
Higgs-doublet model (2HDM) and similar models. In a theory with two SU(2), doublets
®; and P, a (possibly softly broken) Z, symmetry on the scalar potential

b, — Py s by — —Py (28)

can be used to realise NFC. Without loss of generality, it can be assumed that up-type
quarks only couple to &3 — i.e. X5 = 0. The corresponding Z, charge assignment is

QrL—QL, ur— —ug. (2.9)

This leaves four possible cases for coupling the down-type quarks and leptons to the
Higgs doublets. The corresponding charge assignments and resulting coupling structures
are given in table 2.1. Type I and type II are the most frequently studied Yukawa
types. In type I models, all fermions couple to ®, resulting in a fermion-universal
rescaling of the Yukawa couplings for each Higgs boson. In type II up-type quarks
couple to ¢, while down-type quarks and leptons couple to ®,. The resulting coupling
structure is equivalent to that obtained in supersymmetric theories such as the minimal
supersymmetric extension of the SM (MSSM) (see section 2.5.2 and section 7.1).

Summary

As model building guidelines, we choose to respect renormalisability, gauge invariance,
p =1 at tree-level, and NFC to prevent tree-level FCNCs. The class of BSM models
fulfilling these prerequisites includes all theories with a scalar potential of at most quartic
terms that are composed of SU(2); singlets and doublets in a gauge-invariant way. The
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2 Constraints on Models with Extended Higgs Sectors

Yukawa terms have the same form as in the SM where only one scalar doublet couples
to each kind of fermions to preserve NFC. The kinetic terms for all additional scalars
are given by the covariant derivatives that also induce the appropriately gauge-invariant
scalar-gauge couplings. Adding fermions in a renormalisable and gauge-invariant way is
also possible.

This class of models covers all pure extensions of the Higgs sector (e.g. the 2HDM [110],
next-to 2HDM (N2HDM) [7], or singlet extensions [111]) as well as supersymmetric
models (e.g. the MSSM [112] or the next-to-minimal supersymmetric extension of the
SM (NMSSM) [113, 114]) that introduce many scalars and some additional fermions.
However, simply following these guidelines does not ensure that the resulting models
agree with observations. In general, there will be only some part of their parameter
space that is phenomenologically viable. In order to find this region of parameter space,
we need to impose additional constraints coming from theoretical self-consistency or
experimental results. The rest of the chapter is dedicated to the discussion of these
constraints.

2.2 Unitarity

Unitarity of scattering processes in the limit of very high energies was one of the guiding
principles in establishing the SU(2), gauge structure and the Higgs mechanism of the
SM [115-120]. There are intricate links between renormalisability, gauge invariance, and
unitarity in model building (see e.g. ref. [119]). Tt is even possible to derive EW theory by
postulating only unitarity and renormalisability and obtain the SU(2), gauge structure
as an accidental consequence [121].

In order for a theory to be well defined its S-matrix has to be unitary,
SST=1. (2.10)

Violating this condition would imply violations of probability conservation, i.e. the
probability for X — anything scattering processes (where X is any fixed initial state)
could become larger than unity. If eq. (2.10) is violated in perturbation theory this
implies that the perturbative expansion is not valid as the theory is strongly coupled.
Unitarity constraints can easily be derived from the optical theorem

o= éIm(Mgzo) , (2.11)

which follows from eq. (2.10). It relates the total cross section at a center of mass energy
s to the imaginary part of the matrix element My_ for forward scattering. In the partial
wave decomposition the scatter matrix element M can be decomposed into partial wave
amplitudes a; of wave number J as

M(s,0) =167 Y (2] + 1)a;(s)P;(cosb) (2.12)
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where P; are Legendre polynomials, and 6 is the scattering angle. In case of two particle
scattering the differential cross section can be expressed through M as

do 1 2

— — 2.13
dQ2 647r2$| ( )

Combining egs. (2.12) and (2.13) and using the orthogonality of the Legendre polynomials
to perform the angular integral yields the total cross section for 2 — 2 scattering expressed
through the partial wave amplitudes

16
= TN QT 4+ 1)|ay?. (2.14)

g
J

Applying the optical theorem (2.11) to this cross section then yields the unitarity bound
las|? = Im(ay;) VJ. (2.15)

Since the a; are in general matrices, this should be interpreted as a bound on their
eigenvalues a’. Furthermore, the unitarity bound eq. (2.15) is only saturated for purely
elastic scattering. The resulting unitarity constraint on the a’, for partially inelastic
scattering is

la%|? < Im(a) VJ. (2.16)
This bound is displayed in fig. 2.1. It can be easily shown — or seen from fig. 2.1 — that
this in particular implies

[Re(a})] < = (2.17)

N | —

The above discussion holds at the level of the S-matrix for which all perturbative
calculations can only be an approximation. In particular, a’, will always be real at
the tree-level and therefore necessarily lie outside the unitarity circle for non-trivial
scattering processes. Loop corrections are expected to move the a’, back into the circle.
However, for perturbation theory to be valid the loop corrections to Re(a;) must be
small compared to the tree-level contribution, while Im(a;) is loop-induced, and higher-
order contributions may be large without invalidating perturbation theory (see e.g. the
discussion in ref. [122]). Therefore, a leading-order estimate of the unitarity bound in
perturbation theory — called perturbative unitarity — can be obtained by applying
eq. (2.17) to the tree-level scattering amplitude a'5*.

The High Energy Limit and LQT Bounds

In order to use eq. (2.17), it is necessary to calculate and diagonalise the relevant part
of a; in the model of interest. This is most straight forward in the high energy limit
s — 00, where the condition can be split into two parts.
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Figure 2.1: The unitarity constraint, eq. (2.15), in the complex plane of a partial wave
amplitude a;. All a; for all unitary scattering process lie inside or — for
purely elastic scattering — on the blue circle. The orange lines indicate the
projection to the real axis of eq. (2.17)

Since eq. (2.17) states that the eigenvalues of the scattering matrix are bounded by a
constant, necessarily

lim (a*)) s constant . (2.18)

S5§—00

Therefore, no element of the scattering matrix may grow with s in the high energy limit.
It has been shown that all renormalisable spontaneously broken gauge theories — so in
particular all extensions of the SM Higgs sector — have this correct scaling behaviour of
the scattering matrix [119].

The second part involves calculating lim, ., (a) and verifying eq. (2.17) explicitly. This
condition was first used by Lee, Quigg and Thacker [120] to put an upper bound of
my S 1TeV on the Higgs mass of the SM. Their approach is known as LQT bound
and is the simplest method to apply unitarity constraints to BSM models (e.g. in the
2HDM [122-124], N2HDM [7], or in singlet extensions [5, 125]).

The scattering processes that are potentially relevant for unitarity are those that are not
of typical electroweak strength ~ ., at all energies. This leaves scattering among all the
Higgs bosons and the longitudinal gauge bosons Wf and Z;.% In the high energy limit,
this is equivalent to scattering among Higgs and Goldstone bosons by the Goldstone
equivalence theorem [117, 119, 120]. All pure scalar scattering processes involving a
propagator are suppressed by !/s in the high energy limit. Therefore, including only
contact interactions in the derivation of a; is a good approximation in which a; is
independent of the energy. As a result, perturbative unitarity of 2 — 2 scalar scattering

3We do not consider processes involving top quarks which may also be relevant due to their large Yukawa
couplings [126-128].
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2.2 Unitarity

processes can be used to constrain the contact interactions between Higgs and Goldstone
bosons — the quartic Higgs couplings.

There is no angular dependence in 2 — 2 scattering through contact interactions of
scalars such that the only contributing mode is ag. We can use eq. (2.12) for J =0 to
rewrite eq. (2.17) into

| M, | < 8, (2.19)

where M? are the eigenvalues of the scattering matrix elements.

In models with extended Higgs sectors, the matrix Ms_,5 in the mass basis can be too
complicated for an analytic diagonalisation even with these approximations. However,
since basis transformations are unitary transformations, the eigenvalues of My _,, are
independent of the basis [122], and the most convenient basis — usually the gauge basis
— can be used for the calculation.

With an appropriately normalised set of two scalar states
1
V1+04p

where A and B run over all the scalar states of the model, Ms_,5 can be derived directly
from the scalar potential through

|AB) = AB, (2.20)

1 oV
V(1 +6a5)(1+ 6cp) OAOBICOD -

The resulting matrix is typically a block matrix according to the symmetries of the scalar
sector, i.e. there are blocks for each possible value of the conserved charges. This allows
most if not all of the eigenvalues to be calculated analytically while only small remaining
submatrices require numerical diagonalisation. The perturbative unitarity bound can
then be obtained by applying eq. (2.19).

(AB|M|CD) = (2.21)

Impact of Perturbative Unitarity Constraints

From eqgs. (2.19) and (2.21) it is clear that perturbative unitarity puts upper bounds
on some combinations of the dimensionless quartic couplings of the scalar potential. If
the masses of the scalar particles are purely given by the quartic couplings and the vev,
e.g. in the SM, perturbative unitarity constraints directly translate to upper bounds on
the scalar masses. In the presence of other constraints, this is often true even in models
with explicit mass scales (e.g. m2, in the 2HDM).

A constraint similar to perturbative unitarity is the so called perturbativity constraint

which is usually given as
|Ai| < 4m, (2.22)

where \; are the quartic scalar couplings of the scalar potential. This is motivated by the
loop factors oc (47)™" that suppress n-loop diagrams. If eq. (2.22) was violated, the loop
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2 Constraints on Models with Extended Higgs Sectors

contributions could become larger than the tree-level and thus invalidate perturbation
theory. However, eq. (2.22) is no firm bound. For example, it depends on arbitrary choices
of prefactor and basis when defining the \;. We prefer to use perturbative unitarity
constraints since they provide better-defined and often equivalent or stronger constraints
than perturbativity while being neither hard to derive nor numerically complicated.

Beyond High Energy LQT Bounds

Improvements over the LQT bounds have been proposed by weakening either the tree-
level or the high energy approximation. One of the most straightforward approaches is
to apply the LQT perturbative unitarity bounds not to the tree-level parameters of the
scalar potential but instead to their renormalisation group equation (RGE) improved
values [129] (see e.g. ref. [130] for a recent application to the 2HDM).

Recently, numerical studies of unitarity constraints beyond the high energy limit have been
performed in BSM models [131-133]. In this case Feynman diagrams with propagators
are no longer neglected, leading to unitarity constraints on triple Higgs couplings. In
this case, eq. (2.17) is applied for the value of s, where it gives the strongest constraint.
This necessitates a scan of s and a careful treatment of the poles that may appear as
propagators go on-shell. This approach can provide substantially stronger constraints in
some regions of the parameter space.

These approaches provide interesting ways to improve upon the LQT perturbative
unitarity bounds. It may be useful to account for possible strengthened unitarity
constraints through higher-order or finite-s effects already at the tree level. One possibility
is replacing the 87 in eq. (2.19) with a smaller value leading to more stringent LQT
bounds on the tree-level parameters. Since smaller tree-level parameters tend to lead
to even smaller loop effects, this can reduce the impact of RGE running. In theories
without explicit trilinear couplings in the Higgs potential, this will also reduce the finite
s contributions to ag. It can,therefore, be a worthwhile approach in models with a large
number of free parameters that are hard to sample efficiently, while accommodating
interesting phenomenology even with this stronger cut.

2.3 Other Theoretical Constraints

Stability of the EW vacuum is an essential source of additional constraints. It is discussed
separately in the dedicated chapter 3.

Another possible source of theoretical constraints are Landau poles — divergences in
the running couplings — that may appear when using RGE running to study physics at
different scales. This signals a breakdown of perturbation theory. Requiring the absence
of Landau poles up to a given energy scale leads to constraints on the parameter space.
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2.4 Fxperimental Constraints

We do not apply these constraints in this work as we only consider models at fixed energy
scales.

2.4 Experimental Constraints

In addition to the constraints from theoretical consistency, we also need to impose
agreement with experimental observations and the limits from experimental searches for
new particles or new production and decay modes. In this section, we will give a short
overview of the different kinds of experimental constraints we use. We aim to apply all
experimental constraints at the 2o level consistently.

2.4.1 Electroweak Precision Constraints

In section 2.1 we introduced the p-Parameter. We discussed the resulting model building
constraints on scalar SU(2), representations that can be added to the SM while retaining
the correct value of the p = 1 at tree-level.

However, higher-order effects will always contribute to the p-Parameter and will differ
between BSM models even if only scalar singlets and doublets — which give the correct
tree-level value — are added to the SM. The oblique parameters S, T', and U were
introduced by Peskin and Takeuchi [134] as a framework to study one-loop contributions
of BSM physics to EW precision observables relative to the SM. As long as BSM effects
only contribute through gauge boson self energies — which holds in all of the models
considered in this work — these variables parametrise the W mass my, as well as several
Z-pole observables. In particular

Txp—1 (2.23)

directly parametrises the deviation of the p parameter from its tree-level value of one.

The experimental values for the oblique parameters can be extracted from a global fit to
EW precision measurements. We use the fit results from ref. [135]

S=0.04+£011, T=009+0.14, U=-0.02+0.11. (2.24)

More technical information on the fitting procedure can be found in ref. [136]. Since
the parameters are defined relative to the SM reference values of my,,, = 125 GeV and
my = 172.5 GeV are assumed [135].

Predictions for the oblique parameters have been calculated in a wide class of BSM
models with extended scalar sectors encompassing any number of added SU(2); doublets,
Y = 0 singlets, and Y = 1 singlets [137, 138]. We use these results to obtain the theory
predictions for the oblique parameters and compare these to the fit results of eq. (2.24).
Including the correlation matrix given in ref. [135] we obtain a x? value and apply a cut
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2 Constraints on Models with Extended Higgs Sectors

of x* < 7.81 corresponding to a 20 limit in the three-dimensional space of S, T, and
U.

The parametrisation of BSM effects through the oblique parameters is only valid as long
as the new particles are sufficiently heavy that they cannot go on-shell in the loops of
the self-energy diagrams. This allows individual BSM particles to be lighter than the
gauge boson masses as long as BSM decays of W* and Z are kinematically forbidden.
Extensions to the S, T', and U framework have been proposed to capture subleading
effects in the s/m3q,, expansion by including observables that are probed at a higher
center of mass energy s > m?,, m%. These three additional parameters are called V, W,
and X [139].

AnEW precision observable that cannot be parametrised through the oblique parameters
is the g — 2 of the muon. There is a long-standing discrepancy between its measured
value and the SM prediction [39]. It is possible to address this discrepancy in some of
the models studied in this work such as the 2HDM [140] and the MSSM [141]. However,
there can be significant tension between the regions of parameter space favoured by the
muon g — 2 and the regions favoured by other constraints. The measurement of the muon
g — 2 is so precise, that model predictions including higher-order effects are essential to
match the experimental precision. For simplicity, we do not impose constraints from the
muon g — 2 in this work.

Impact of EW Precision Constraints

The constraints from oblique parameter directly constrain the possible mass spectra of
theories. In models with additional doublets, the T" parameter puts a very stringent upper
bound on the mass difference between the charged scalars and the corresponding closest-
in-mass neutral scalars. The S parameter constrains large mass differences between
scalar states that are considerably mixed. However, its impact on phenomenology is
less pronounced compared to the T parameter. The U parameter is only rarely relevant.
However, since the fit results for the three parameters are strongly correlated, including .S
and even U can lead to substantially stronger constraints. Since the oblique parameters
are inherently related to EW gauge symmetries, they are small in pure singlet extensions
where they are often not competitive with other constraints.

2.4.2 Constraints from Flavour Physics

Even in models that do not introduce tree-level FCNCs (see section 2.1) BSM particles
may still contribute to the loop-induced FCNC processes. Additionally, charged BSM
scalars may contribute at tree-level to charged current interactions in the flavour sector.
Precise measurements for many of these processes are available and can be used to
constrain BSM models. These observables are mainly sensitive to charged Higgs effects
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Figure 2.2: Constraints from flavour physics in the 2HDM in the plane of the charged
Higgs mass my+ and the parameter tan 5 for a Yukawa sector of type I (a)
and type IT (b). Figure taken from ref. [135].

which can both mediate tree-level charged current processes and contribute to loop-
induced FCNCs. With these assumptions, we expect precision flavour observables to
mainly put constraints on the charged Higgs boson mass and its couplings to fermions.

A fit to flavour observables within the 2HDM was performed in ref. [135]. Figure 2.2
shows the resulting limits in the plane of the charged Higgs mass my+ and the parameter
tan § which governs the Yukawa couplings of the charged Higgs boson. Figure 2.2 shows
the results for the two most commonly studied Yukawa types (see section 2.1). These
results generalise to all models where one additional SU(2), scalar doublet is added to
the SM and the appropriate Yukawa type is realised — irrespective of the number of
additional singlets. The Yukawa couplings of the charged Higgs boson are given by [110]

2V, 2
\/_U L (Mo Pr, + ma€?Pg) dH* — \fvml EoglgHT —He.,  (2.25)

EYukawa D

where V4 is the CKM matrix, m,, q; are the quark masses, v? = v} + v is the Higgs
vev, and P, g are projection operators for left- and right-handed fermions. The factors &
depend on the Yukawa type and tan 8 = vy /v, as given in table 2.2.

Flavour constraints on flavour conserving models mainly arise from precision B-physics
measurements. The most important of these are the FCNC process B — X,y [142]
with theory-predictions from refs. [143, 144] and the leptonic decays By — ptp~ and
By — ptp~ [145, 146] with theory predictions from refs. [147-149]. The neutral Higgs
bosons contribute to the B — pu*u~ observables at NLO. However, their contribution
was found to be subdominant compared to the charged Higgs boson and was marginalised
to obtain limits independent of the neutral Higgs masses [135].

4In general 2HDMs tan 8 cannot be defined without relying on an arbitrary basis choice. However, in
the 2HDM with a Zs symmetry that ensures NFC tan 5 can be uniquely defined in the basis where
the Zy symmetry is manifest.
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2 Constraints on Models with Extended Higgs Sectors

Table 2.2: Scaling factors of the charged Higgs boson Yukawa couplings in the different
Yukawa types of 2HDM-like models as a function of the parameter (.

'3 ¢ 3
typel cotf —cotfS —cotf
type I cots tanp tan 3
lepton-specific cotfS —cotf tanpg
flipped cotf tanf —cotp

Recently, anomalies in some flavour observables reported by the BaBar, Belle, CMS, and
LHCb experiments have received considerable attention (for a recent review see ref. [150]
and references therein). None of the models considered in this work are designed to
reproduce those anomalies, and we will not comment on them any further.

Impact of Flavor Constraints

Since the flavour constraints are available as fit results in planes of a physical mass and an
easily interpretable coupling parameter, they relate very clearly to phenomenology. The
most important effect in the context of this work is the lower bound of my+ 2 600 GeV
which can be derived from B — X,v irrespective of tan 8 in NFC realisations where
up- and down-type quarks couple to different Higgs doublets (see fig. 2.2b). In type II
Yukawa, sectors the constraints from B, — p"p~ also lead to an upper limit on tan f3.
Additionally, flavour constraints impose a lower bound on the parameter tan 8 (with a
value depending on the Yukawa type) which rules out substantially enhanced top Yukawa
couplings in 2HDM-like models.

2.4.3 Electric Dipole Moments and CP violation

In models that introduce additional sources of CP violation to the scalar sector the
fermionic electric dipole moments (EDMs) provide important constraints. These CP-
violating quantities are expected to be very small within the SM where they only appear
at the multi-loop level (e.g. for the electron EDM the leading SM contribution is of
four-loop order [151, 152]).° Their smallness in the SM makes EDMs very sensitive to
new physics contributions.

The most precise measurement of an EDM is that of the electron by the ACME collabor-
ation [156]:
d. < 1.1x10%ecm (2.26)

at 95% confidence level, where e is the electric charge of the electron. Theoretical
predictions have been calculated in many models (e.g. in the CP-violating 2HDM [157]).

This is only true if the strong CP-problem is resolved, e.g. by the Pecci-Quinn mechanism [153-155].
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Precise limits on the neutron EDM have also been obtained [158]. However, due to the
composite nature of the neutron, it is considerably more complex to obtain a precise
theoretical prediction for this quantity. Different approaches exist [159, 160] but their
results can differ by orders of magnitude depending on the used parametrisation of non-
perturbative effects.

Impact of EDM Constraints

The upper bound on the electron EDM severely constrains CP violation in the Yukawa
sectors. However, cancellations between different diagrams and (potentially) several Higgs
bosons can lead to a small electron EDM even for large CP-violating phases. In this case,
the EDM constraints instead impose complicated correlations between Higgs masses and
couplings to ensure these cancellations. The inclusion of several EDM observables can
then forbid these cancellations and lead to substantially stronger constraints [161, 162].
Note that CP-violating Higgs sectors only induce EDMs if they lead to CP-violating
Yukawa couplings in the mass basis. If there are no couplings between the CP-violating
sector and the SM fermions all EDMs vanish.

2.4.4 Searches for Additional Higgs Bosons

A crucial constraint when studying BSM models with extended Higgs sectors are the limits
from direct collider searches for additional scalars. The ATLAS and CMS experiments
at the LHC as well as the experiments at the Tevatron and LEP colliders have searched
for additional BSM particles in a large variety of decay channels. It is imperative in
phenomenological studies to make sure that the signature or phenomenology under
consideration it not already excluded by one of these searches. However, due to the
large number of experimental results, it is necessary to ensure a correct statistical
interpretation.’

For this reason the code HiggsBounds [163-168] has been developed. The code takes the
theory predictions for all Higgs production processes and decay rates of the model and
checks whether the considered parameter point is excluded. It uses the narrow width
approximation to assemble the supplied production cross sections and branching ratios
into signal rates with corresponding experimental limits.

The experimental results are supplied as expected and observed limits at 20 or 95 %
confidence level as a function of one or more model parameters — typically the masses
of the involved scalars. Figure 2.3 shows a limit by the ATLAS collaboration on a heavy
Higgs decaying into 77. This is a comparatively simple, fairly model-independent result
depending only on the mass of the heavy Higgs boson. When considering multiple limits,
the naive approach of applying all limits simultaneously leads to an overestimated total

6Also, it would be very time consuming and error-prone to apply the limits individually.
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Figure 2.3: Exemplary result of a search for an additional Higgs boson ¢ of mass my.
Limit at 95 % confidence level on its production cross section through gg — ¢
times its branching ratio into 77. Result by the ATLAS collaboration from
ref. [169].

limit that is considerably stronger than a properly combined limit at 95% confidence
level.” For this reason, HiggsBounds uses the expected limits (dashed line and coloured
confidence intervals in fig. 2.3) to select the most sensitive experimental search for each
Higgs boson of the model. Only for these searches are the observed limits (solid line of
fig. 2.3) then applied. This leads to an approximate combined 20 limit from searches for
additional Higgs bosons.

Impact of Constraints from Higgs Searches

The constraints derived from Higgs searches immediately impact the phenomenology
of additional Higgs bosons by limiting their allowed production times decay rate as a
function of their mass.

2.4.5 Properties of the Observed Higgs Boson

Any BSM model needs to reproduce the properties of the observed Higgs boson. The
tool HiggsSignals [170-173] has been developed to compare the model predictions to
the Higgs measurements. The code interfaces with HiggsBounds to use the same input

"For example, when applying 20 limits at 95 % confidence level one of them is statistically expected to
show a significant fluctuation which could lead to an erroneous exclusion of the parameter point. For
more applied limits this becomes ever more likely.
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data. It then calculates a x? value quantifying the agreement between model predictions
and observations for each parameter point.

HiggsSignals includes a large number of LHC results from the ATLAS and CMS
experiments. It combines mass measurements and rate measurements for all currently
observed processes. For the results at 7 TeV and 8 TeV the experimental collaborations
have released combined results for the mass [174] and signal rates [19] of the observed
Higgs boson. The newest included 13 TeV results are given in the simplified template cross
sections (STXS) [175] framework by the ATLAS [176] and CMS [177-186] collaborations
based on up to ~ 137 fb~! of data collected at the 13 TeV LHC. From these experimental
results, HiggsSignals calculates x? values, which can be combined to check the agreement
of the model prediction with the Higgs measurements.

There are different ways to interpret the x? value returned by HiggsSignals. In our
parameter scans, we use a profiled likelihood ratio test with the SM as the alternative
hypothesis. In practice, we calculate the likelihood ratio test statistic in the gaussian
approximation as

AX2 = Xilodel - X%M ) (2-27)

where both X314 and x2,; are obtained from HiggsSignals. We use this test statistic
— instead of e.g. constructing a goodness-of-fit test using x%;,4q/d.0.f. — as it allows a
much easier statistical interpretation. Additionally, all effects related to the number of

experimental observables cancel in the normalisation such that Ay? directly compares
the model to the SM.

The resulting Ax? approximately describes the best-fit region of the model parameter
space. The upper bound Y2, to impose on Ax? depends on the desired confidence level
and on the number v of degrees of freedom. As stated above, we always aim to impose
20 constraints in the gaussian limit and thus Ax? < x2, (20, 7). When presenting results
where all but n model parameters and all nuisance parameters are profiled over, the set
of allowed parameter points are those with Ay? < x2.(20,n). We choose n = 2, which
is appropriate for presenting results as scatter plots and in benchmark planes. This leads
to the criterion

Ax? < 6.18, (2.28)

which corresponds to the region allowed at 20 under the assumption of gaussian errors.

Impact of Constraints from Higgs Measurements

So far, no significant deviation from the SM has been observed in the properties of the
discovered Higgs boson. Therefore, imposing agreement with these observations forces
most models to have one scalar that behaves similarly to the SM Higgs boson. In many
models, this is an alignment limit — where the couplings of one scalar to SM particles
become SM-like. Deviations from such a limit — while certainly not excluded — are
strongly constrained by the Higgs measurements.
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Note that this behaviour changes when there is more than one Higgs boson around
125 GeV. If these scalars cannot be distinguished due to limited mass resolution they
can all contribute to the observed Higgs signal. This case allows for larger deviations
from the alignment limit compared to what is possible for a single the 125 GeV Higgs
boson (hya5). For simplicity, we mostly focus on the case of only one Higgs boson around

125 GeV.

2.5 Basic Models Beyond the SM

In this section we will give short overviews on two classes of BSM extensions. We will
first discuss the consequences of having two instead of only one scalar SU(2); doublet
and then introduce supersymmetry.

2.5.1 Models with Two Higgs Doublets

The 2HDM [187] extends the SM Higgs sector by a second SU(2), scalar doublet (see
e.g. ref. [110] for a detailed review). The most general renormalisable and gauge invariant
potential of two SU(2); doublets ®; and @, is

V = m2,®1d; + m2,ohd, (m§2 Bid, + H.c.) (2.29)

A 2 A 2
+ 71@1‘1’1) + 72(‘1’;‘1’2) + A3(D1D1) (BI Do) + My (B]D,) (D)D)

A 2
+ [ (@122)" + Ao(@]21)(D[B) + Ar(®]22) (02) + Hec.

The parameters m?, and As5,6,7 can in general be complex and may lead to CP violation.
During EW symmetry breaking the two scalar doublets acquire (in general complex)
vevs v; and vy that have to fulfil

[o1|? + Jva]? = v = (246 GeV)? (2.30)

to reproduce the correct gauge boson masses. The parameter tan § — that already
appeared in section 2.4.2 — is defined through

tanf = 2. (2.31)
U1

However, the values of vy, vy, and tan 8 depend on the basis chosen for ®; and ®, and
are not invariant under a basis transformation

(i;) - S @;) (2.32)
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that redefines the two doublets through a unitary 2 x 2 matrix S. The parameter tan 3
is therefore not useful when studying the most general potential, eq. (2.29).

The terms involving A\¢ and A; will induce FCNCs for any possible coupling of ®; and
®, to the fermion sector. For this reason it is appealing to impose a softly broken Z,
symmetry,

P — Py s by — —(I)Q, (233)

on the scalar potential of the 2HDM. This symmetry forces A = A\; = 0 resulting in the
scalar potential

V = m2,|01)% + mZy|0of? — (m§2 Oidy + H.c.) (2.34)
A 2 A 2
A @10 1 2 @len)” 4+ (@] ))(@]0,)

A 2
+ A (D1 D,) (@S D) + {55@1@2) +H.C} .

In this scalar potential, the basis where the Z, symmetry is manifest is special and tan 3
can be uniquely defined in this basis. Extending this symmetry to the Yukawa sector
to realise NFC as described in section 2.1 leads to the four 2HDM Yukawa types of
table 2.1.

After electroweak symmetry breaking three of the eight degrees of freedom in the two
doublets become the would-be Goldstone bosons that get absorbed by the EW gauge
bosons. These would-be Goldstone bosons are separated from the physical degrees of
freedom through a rotation into the so-called Higgs basis through eq. (2.32) with

g_ ( cos [ Sinﬁ) . (2.35)

—sinf8 cos 3

This rotation diagonalises the charged Higgs sector leading to a pair of charged Higgs boson
mass eigenstates H*. The mixing between the neutral scalar degrees of freedom depends
on the pattern of EWSB and if CP violation occurs in the Higgs sector. In the most
commonly considered case — eq. (2.34) with vy, v # 0 and imposing CP-conservation
— the neutral mass eigenstates of the model are two CP-even scalars h and H, and a
CP-odd scalar A. We call this case the real (CP-conserving) 2HDM (R2HDM).

2.5.2 Supersymmetry

A popular symmetry to impose on BSM models is supersymmetry (SUSY). It introduces
a fundamental symmetry between fermionic and bosonic fields. As such it predicts a
bosonic (fermionic) superpartner for every fermion (boson) of the SM. The bosonic
superpartners are called sfermions — e.g. the stop t— and an “-ino” is appended to the
names of the fermionic superpartners — e.g. the gluino g.
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The MSSM [188-190] is probably the most studied BSM model overall. For a more
complete introduction to supersymmetry and the MSSM see ref. [112] on which the
overview presented in this section is based.

SUSY requires an extended Higgs sector that contains at least two SU(2), Higgs doublets.
They are conventionally called ®, and ®; as one of them couples to up-type quarks and
the other one to down-type quarks and leptons similar to a type II 2HDM. Just like in a
2HDM, these acquire vevs v, and v, during EWSB which have to fulfil

02 402 = 0% & (246 GeV)? (2.36)
and the parameter tan 3 is defined through®

tan § = Yu, (2.37)
Vg

At tree-level the MSSM Higgs sector conserves CP and thus contains two neutral CP-even
scalars h and H with m;, < myg, a CP-odd scalar A, and a pair of charged Higgs bosons
H* just like the R2HDM. SUSY imposes strong symmetry requirements on the scalar
potential. In particular, the quartic Higgs couplings are given in terms of the U(1), and
SU(2), gauge couplings, and the Higgs boson masses are related to the gauge boson
masses. The tree-level Higgs sector of the MSSM is fully parametrised through myz, myy,
tan [ and either my or mpy=+. In contrast to all the non-supersymmetric models discussed

in this work, the neutral CP-even Higgs masses cannot be chosen as free parameters of
the MSSM.

At tree-level in the MSSM the relation
mp < myz|cos(26)] < my (2.38)

holds. This mass range was already excluded at LEP for a SM-like Higgs boson [191] and
cannot fit the mass of hio5. However, loop corrections to my, can make it substantially
heavier and allow the MSSM to fit observations. At the same time, they make my
dependent on many of the other parameters of the theory leading to considerable
complexity in determining the phenomenologically viable regions of parameter space. See
e.g. ref. [192] for a recent review on Higgs-mass calculations in the MSSM. In the case
H = hy95 the Higgs mass at tree-level can reproduce the observed value. However, this
scenario requires A and H* to be rather light and faces strong constraints from searches
for additional Higgs bosons, see e.g. refs. [193-196].

8The basis invariance of the 2HDM is broken by SUSY such that tan 8 can be uniquely defined.
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3 Vacuum Stability

This chapter discusses vacuum stability and the resulting constraints on BSM models.
We present in detail the method to obtain vacuum stability constraints that was developed
within this thesis. We have published large parts of this discussion in ref. [3].

3.1 Vacua in Extended Scalar Sectors

In section 1.2.3 we discussed vacuum stability when extrapolating the SM to very high
energies. In BSM models with additional scalar fields constraints from vacuum stability
can already become relevant at tree-level and for fixed scale. While this shares a name
with the SM analysis the method and the encountered issues are very different. The
SM discussion relies on high precision to run parameters over many orders of magnitude
in energy, while for the resulting potential the tunnelling calculation is of the simplest
possible form. In BSM scalar extensions, on the other hand, the analysis is confined
to the electroweak (EW) scale but the multidimensional scalar potential can be much
more complicated with potentially many different coexisting vacua. The main issue is to
efficiently find all minima of the multifield scalar potential, to identify the vacua relevant
for vacuum decay, and to calculate the decay rates of the possible decays to obtain a
vacuum stability constraint.!

The vacuum state of a (quantum) field is a minimum of the potential energy. This
potential energy is given by the (effective) potential V' (¢) which describes the potential
energy density as a function of the scalar fields? in the theory. Formally, the effective
potential is defined for classical field values ¢, that minimise the effective action. For
our purpose and at lowest order, the field theoretical potential and the effective potential
are the same when replacing field operators ¢ by classical commuting field values ¢, and
defining the effective potential V(¢ = ¢q) as a function of ¢ = ¢ [199].

! Another related but separate issue is vacuum decay at finite temperature [197]. It is best studied in
the context EW baryogenesis (see section 1.2.2) but can also be used to obtain vacuum stability con-
straints [198]. Vacuum stability constraints at zero temperature — which we exclusively consider —
and at finite temperature are complementary as they stem from very different cosmic time scales. Con-
straints derived at finite temperature necessarily rely on additional assumptions about the cosmological
history of the universe.

2Only scalar fields can acquire classical background field values as fermionic or higher spin background
fields would break Lorentz invariance.
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3 Vacuum Stability

Consider the most general renormalisable scalar potential of n real scalar fields ¢, with
a€{l,...,n} at tree-level

V(&) = >\abcd¢a¢b¢c¢d + Aabc¢a¢b¢c + m2b¢a¢b + ta¢a +c, (31)

where the sum over repeated indices is implied. The totally symmetric coefficient tensors
Aabeds Aaves mgb and t, as well as the constant ¢ contain all possible real coefficients
with non-negative mass dimension. Any scalar potential can be expanded into this form
by splitting all complex fields and coefficients into their real and imaginary parts and
appropriately symmetrising the coefficient tensors.

This potential has up to 3" complex stationary points. Since we have defined the ¢ to
be real only the real stationary points are of interest to us. We select a (local) minimum

out of these stationary points to be the initial vacuum gv which — by construction —

fulfils
ov

=0, 3.2
a¢a (ZZ(EU ( )
and the mass matrix )
o0“V
My = ——— 3.3
" 00,00 |55, (3:3)

is positive definite. After expanding eq. (3.1) around the vacuum as qg = qgv + ¢, with

&= (p1,... ,QOn)T, we obtain

V(@) = NypeaPatfpPefd + AnpetfaPbPe + Mg PatPs (3.4)

where ¢/, vanishes due to eq. (3.2), and we have normalised the potential energy at @ = 0
to zero. For particle physics applications this normalisation is irrelevant but it could be
related to a non-vanishing cosmological constant [200].

We rewrite the field-space vector as ¢ — p¢ with a unit vector ¢ and its absolute value
© =/t + -+ 2 and obtain

Vip,¢) = M@)¢" — A(@)* + m*(@)¢? (3.5)

where all the dependence on the normalised direction in field space ¢ has been absorbed
into the coefficients A\(¢), A(p) and m?(¢). For convenience, we allow ¢ to take negative
values which corresponds to the absolute value in the opposite direction —p. Since we
constructed this potential to have a minimum at ¢ = 0 the condition m?() > 0 has to
be satisfied for all ¢. We can use the symmetry

o= —p, A——-A (3.6)

to set A > 0 without loss of generality. Finally, for the potential to be bounded from
below A(¢) > 0 is necessary for all .
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3.1 Vacua in Extended Scalar Sectors
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Figure 3.1: Behaviour of the generic quartic potential as given in eq. (3.5) for different
relations between the coefficients A(p), m?(¢) and A(p) as indicated in the
legend for arbitrary units on both axes. Figure from our ref. [3].

Figure 3.1 shows the possible shapes of the potential in eq. (3.5). Since it is a quartic
polynomial in one variable it can have at most two minima, one of which we have chosen
to lie at the origin. The second minimum exists if

(A@))" > = m*(@)A(P) (3.7)
and is deeper than the minimum at the origin if

(A(2))? > 4m*(@)\ (@) - (3.8)

This implies that large cubic terms A compared to the mass parameters and self-couplings
are potentially dangerous for the stability of the initial vacuum at the origin. We call
the directions ¢ fulfilling eq. (3.8) deep directions.

3.1.1 Calculation of the Bounce Action

The semi-classical tunnelling and first quantum corrections in a theory of one scalar field
were calculated in refs. [20, 21]. It was found that the decay rate I' of a metastable
vacuum state per (spatial) volume Vg is given by the exponential decay law

r

— =Ke B 3.9
=K ?, (3.9)
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3 Vacuum Stability

where K is a dimensionful parameter that will be specified below, and B denotes
the bounce action which gives the dominant contribution to I'. The O(4)-symmetric
bounce [201] ¢p(p) is the solution of the Euclidean equation of motion

%  3d¢ 9U

- = 3.10
" odp 9 (310
with the boundary conditions
d¢
() =¢,, — =0. 3.11
(o) o, (3.11)

U is the Euclidean scalar potential, p is the radius in Euclidean space,s and ¢, is the
location of the metastable minimum. The bounce action B is the stationary point of the
Euclidean action given by the integral

1

B=2 [ [5 (dip¢3<p>)2 + U<¢B<p>>] . (312

In the one field case, egs. (3.10) and (3.12) can be solved numerically by the under-
shoot/overshoot method (see e.g. ref. [202] for a detailed explanation of the method).
While all of the above equations generalise trivially to the multi-field case ¢ — qg, the
determination of B becomes considerably more involved. In order to judge the stability of
the EW vacuum we need to obtain the minimal bounce action for tunnelling into a deeper
point in the scalar potential. There exist methods for solving eq. (3.10) numerically in
multiple field dimensions [203-213] using optimisation, discretisation, path-deformation
or multiple shooting. For our purposes a fast evaluation of the bounce action is more
important than an extremely precise result (see section 3.3.2). For this reason, we ap-
proximate the path of the bounce by the straight line in a given deep direction.

Figure 3.2 illustrates this approximation. While the green path solves eq. (3.10) we
instead use the bounce action calculated along the straight, blue path. The potential
along this straight path is a simple quartic polynomial as given by eq. (3.5). For this
form of the potential a semi-analytic result exists for the bounce action [214]

2

B= %(2 —5)7* (13.8325 — 10.8196 + 2.0765 6°) (3.13)
with 2
8Am

5= =5 (3.14)

The expression in brackets was obtained in ref. [214] by fitting a cubic polynomial in ¢
to the numerical result. The coefficients do not depend on any model parameters, and
the polynomial approximation agrees with the numerical result within a 0.004 absolute
tolerance for all values of 6. We use this formula to calculate B for all deep directions
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3.1 Vacua in Extended Scalar Sectors

Figure 3.2: Straight path (blue) and correct bounce path (green) connecting two minima
in a two-dimensional scalar potential. Sketch from ref. [211].

from the initial vacuum. The deep direction with the smallest bounce action is the
dominant decay path.

The value of B is not invariant under rescaling of the field ¢ of eq. (3.5)

po—=np=>A—=n'h, A=nPA, m? s nPm?, § =6 (3.15)
= B—n'B. (3.16)

This dependence on the field normalisation arises from the equation of motion, where
eq. (3.10) only applies to fields with canonically normalised kinetic terms. A consistent
expansion of the form of eq. (3.5) therefore requires all real field components ¢; to have
canonically normalised kinetic terms. If || = 1 this ensures that ¢ is appropriately
normalised. It is crucial to ensure that the parametrisation of the scalar potential fulfils
this requirement.

3.1.2 Lifetime, Metastability, and Instability

The vacuum decay rate eq. (3.9) also depends on the quantity /K. The value of K is both
challenging to calculate and a subdominant effect towards the tunnelling rate as it does
not enter in the exponent. Since it is a dimensionful parameter, [K] = GeV*, it can be
estimated from a typical scale M of the theory as

K=M". (3.17)

Comparing the vacuum decay time Tgey to the age of the universe ¢,,; [48] yields [90]

_1
Tdecay r 1 1 B/4
fdecay [ = ) 3.18
tuni < VS ) ZL'uni tuniM ‘ ( )
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Figure 3.3: The instantaneous lifetime of the metastable vacuum Tyec.y relative to the age
of the universe t,,; (as defined in eq. (3.18)) is given in the plane of the scale
M and the bounce action B. The contour lines denote a 50 probability for
decay and survival, respectively.

Figure 3.3 shows the relative lifetime Tyecay/tun as a function of B and M. As expected,
the threshold of instability where Tyecay ~ tuni is highly sensitive to B and only mildly
sensitive to M.

Note that properly defining Tyecay is non-trivial. Here we use a definition for an instantan-
eous decay time corresponding to the typical lifetime of unit volume in space. Another
possibility would be to define the decay time for the whole universe

T —1 T —1
Tdecay, alt = (VSVS) ~ (VSHS) 5 (319)

which is numerically similar but assumes a static universe of fixed size. This ambiguity
is resolved for the survival probability P given by

r ~ _
P = exXp <_VS‘/lightc0ne> = €Xp <_M4‘/light—conee B) ) (320)

where the (spacetime) volume of the past light-cone is f/hght_cone ~ 0.15/H} [83], and H,
is the current value of the Hubble parameter [48]. The contours corresponding to a 5o
expected decay or a 5o expected survival of the vacuum during the evolution of the
universe are also show in fig. 3.3.

The points in the green region of fig. 3.3 are definitely long-lived — 7.e. have a survival
probability extremely close to one — while the red points are definitely short-lived

38



3.1 Vacua in Extended Scalar Sectors

— having a survival probability extremely close to zero. Varying the scale M over a
generous range from 10 GeV to 100 TeV shifts the border between metastability and
instability by less than 10% in B. We consider points where B > 440 as long-lived and
points where B < 390 as short-lived. We treat the intermediate range 390 < B < 440 as
an uncertainty on the stability threshold from the unknown M.

3.1.3 Beyond Leading Order Calculations of the Decay Rate

The calculation presented here is a leading order computation of the decay rate.® This
includes the estimation of K on dimensional grounds as K is formally a higher order
effect in the h expansion [93].

The calculation could be improved in several directions. The easiest improvement would
be to perform the calculation not at a fixed input scale but to use a scale where the
higher order corrections to the decay rate are minimised. In the SM this is typically
used with NNLO matching and three loop beta functions to reach the highest possible
precision for the input parameters [87]. In models with only one scalar degree of freedom
in the vacuum stability calculation (e.g. the SM) this scale has been shown to be the px
for which [93]

Balpx) =0, (3.21)

where [3)(u) is the beta function of the quartic self coupling corresponding to the scalar
degree of freedom. This condition is hard to generalise to the multi-field case. One
possibility would be to choose the scale where

B (x) =0 (3.22)

using the beta function for A(¢) corresponding to the deep direction under consideration.
However, this would explicitly rely on the straight path approximation. We instead
choose to neglect the scale dependence of the parameters, which is justified as long as all
vacua are approximately at the EW scale.

Full NLO calculations of the decay rate have recently been performed in the SM [90-92].
The NLO correction to the decay rate is obtained by evaluating the prefactor K instead
of estimating it. There are different approaches to handle the calculation of the required
functional determinants, and we refer to refs. [90, 91] for the details of the calculation.
Note that, in these approaches, the NLO contributions to the decay rate exclusively
involve the prefactor K. Corrections to the shape of the bounce and thus to the bounce
action only enter at NNLO. It is currently unknown how to generalise these methods to
multi-field cases.

One method that could be used as an attempt to take into account NLO contributions to
decay rates in BSM models is to numerically find bounce solutions in the loop corrected

3In addition, we use the straight path approximation of the bounce, which is a further approximation on
top of the perturbative expansion.
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3 Vacuum Stability

effective potential. This is the approach taken in the public code Vevacious [198, 215]
using the one-loop Coleman—Weinberg potential. However, it has been argued that it is
in general insufficient to use the loop-corrected effective potential to calculate vacuum
decay rates [93] as this only captures part of the NLO contributions. This happens
because the effective action is a perturbative expansion both in powers of h and the
momentum transfer, where the effective potential corresponds to the zeroth order term of
the momentum expansion. While the full one-loop effective action could in principle be
used to calculate NLO corrections to the decay rate, truncating the momentum expansion
does not result in a consistent perturbative approximation. Therefore, higher momentum
terms of the full one-loop effective action contain contributions to the bounce action
comparable to those from the effective potential. Since it seems unfeasible to calculate
even the leading higher momentum terms of the effective action in general BSM models
it appears questionable whether using the one-loop effective potential for decay rate
calculations systematically improves upon the LO result.*

3.2 Boundedness — Existence of a Global Minimum

If a scalar potential is not bounded from below it tends to —oo as the fields tend to co
for some directions in field space. In terms of eq. (3.5) these directions in fieldspace are
those ¢ for which A(¢) < 0 since as ¢ > A(p), m(p)

V(e, ) = Mp)e', (3.23)

which is clearly unbounded from below if A is negative for any ¢. If A(¢) > 0 for all ¢
the scalar potential is called bounded from below in the strong sense. If directions exist
where A\(¢) = 0 the potential may still be bounded if A(®) = 0 and m?($) > 0 for these
directions.” This boundedness in the weak sense can lead to constraints on the cubic
and quadratic coefficients. We do not include this possibility in our models and require
boundedness in the strong sense constraining only A(¢).

Tunnelling from any — necessarily local — minimum into an unbounded direction is
always possible. Usually, this process involves large field values such that the structure of
the scalar potential around the initial vacuum can be neglected as a first approximation,
and it is sufficient to study eq. (3.23). The initial state is the local mazimum at ¢ = 0.
For small |\| corresponding to a flat region around ¢ = 0 this state will dominantly
decay through tunnelling even though classical rolling is possible [217]. Equation (3.23)
with A < 0 is one of the few scalar potentials for which analytic solutions for the bounce
¢ and the bounce action
872

=3 (3.24)

4This is in contrast to tests for absolute stability, where finding the global minimum of the effective
potential is a method that is superior to a leading-order analysis [84, 216].

5The trilinear term A(() has to vanish in this case because it would make either ¢ — 0o (A(¢) > 0) or
@ — —oo (A(¢) < 0) unbounded.
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exist [217]. Using this result and the discussion of section 3.1.2 we impose B > 440 as a
condition for metastability and obtain

7]_2

—— = —0.06 < A\(¢). 3.25
= <) (3.25)
This means that the EW vacuum would still be metastable if eq. (3.25) is fulfilled for all

unbounded directions ¢.

In most cases, the phenomenological difference between requiring A(¢) > —0.06 and
A(p) > 0 is negligible.5 Therefore, we do not allow metastability when considering
boundedness of the scalar potential. In our notation, the question of boundedness is
thus reduced to establishing A(¢) > 0 for all ¢. Finding closed form analytic solutions
to this condition is a technically difficult endeavour, and such conditions have only been
found for rather simple or highly symmetric scalar potentials (e.g. the two-Higgs-doublet
model (2HDM) [219, 220], the N2HDM [221], and several pure singlet extensions [125,
222, 223]).

In more complicated scalar potentials the algorithmic approaches often do not lead to
closed form analytic solutions and have to be evaluated numerically. In this case it may
be more efficient to employ a fully numerical approach — e.g. by minimising A(¢) —
and checking that the minimal value is positive (see e.g. ref. [224]). A recent overview
over the different methods and their applications can be found in ref. [225].

Effect of Boundedness Constraints

Boundedness places constraints on the coefficients of the scalar potential. In the case of
boundedness in the strong sense — as discussed above — only the quartic coefficients are
constrained. The clearest consequence of enforcing boundedness is that the coefficients
of ¢! terms must be positive as otherwise the ¢, direction would be unbounded. A
combination of boundedness and unitarity constraints (see section 2.2) can often be used
to derive absolute upper and lower bounds on some of the quartic coefficients of the
scalar potential (see section 5.2.1 for an example).

3.3 Stability of the EW Vacuum

In unbounded scalar potentials the most severe instabilities appear at arbitrarily large
field values. We will now assume that the potential is bounded from below and turn
towards vacuum decay between different minima at finite field values. In this case ¢ is
of similar size as the dimensionful parameters of eq. (3.5), and the full scalar potential

6 Additionally, it can be argued that it would be highly unlikely in most inflationary models for the
universe to end up in a local minimum while unbounded directions are present [218].
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is relevant. Calculating decay rates will establish three categories of stability in our
analysis.

o Absolute stability: the EW vacuum is the global minimum of the scalar potential,
no tunnelling is possible.

o Long-lived metastability: the EW vacuum is a local minimum, but tunnelling into
all deeper minima is long-lived with B > 440.

o Short-lived instability: the EW vacuum is a local minimum, and tunnelling into at
least one deeper minimum is short-lived with B < 390.

We use the definitions of long-lived and short-lived vacuum decay as well as the uncertainty
band in between, 390 < B < 440, as defined in section 3.1.2.

3.3.1 Additional Minima of the Scalar Potential

As mentioned above, the most general scalar potential of n scalar fields, eq. (3.1), has
up to 3" isolated complex stationary points. However, if the scalar potential — or its
first derivative — is invariant under any continuous global symmetries none of these
stationary points will be isolated and instead span multidimensional surfaces in field
space related by these symmetries. While all points on such a surface are physically
equivalent vacua it is nevertheless crucial to isolate the stationary points in order to
reduce the complexity of the minimisation problem and to allow for better numerical
convergence.

In BSM theories with the SM gauge groups at the very least the SU(2), and U(1),
gauge symmetries give rise to corresponding global continuous symmetries of the scalar
potential.” These symmetries can be used to remove up to four degrees of freedom.
Through a global SU(2), transformation one of the doublets of the theory can be brought

into the form .
o = (q;o) S, (Reé)¢,0)) . (3.26)

The Re(¢") indicates that this component is made real as a result of the transformation
and thus three degrees of freedom have been removed. If this leaves any complex Y-
charged degrees of freedom in the theory (e.g. in models with a second SU(2); doublet)
the global U(1), symmetry can be used to render one Y-charged degree of freedom real,

e.q.
+ 1 I+

for a Y =1 doublet. If the model under consideration has additional continuous BSM
symmetries — either gauged or global — even more degrees of freedom can be removed.

"Since we treat all fields as classical background fields, only global transformations are relevant and we fo
not need to distinguish between gauged and non-gauged continuous symmetries.
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This reduces the number of degrees of freedom that have to be considered in the numerical
solution and prevents convergence problems for non-isolated solutions.

We use the numerical method of polynomial homotopy continuation (PHC) (see ref. [226]
for a physics based introduction or e.g. ref. [227] for technical details) to find all solutions
of eq. (3.2). PHC efficiently finds all isolated and complex solutions of systems of
polynomial equations. Since — as all ¢, are real by definition — only real solutions are
of interest to us, the main source of missed or erroneously included stationary points lies
in judging whether a solution is real or complex. This can be ameliorated by a careful
preconditioning of the system of equations [227]. Another subtlety is that PHC only
finds point-like, isolated solutions. If any continuous symmetries are left in the model
the stationary points cannot be found by the algorithm. For this reason it is essential to
remove all continuous symmetries as described above.

Finally, stationary points of the scalar potential always come in sets of physically
equivalent stationary points related by any remaining discrete symmetries of eq. (3.2).%
In particular, in general multiple degenerate vacua with the correct pattern of EW
symmetry breaking exist that are related by some discrete symmetry S. We need to pick
one of these to be the EW vacuum which is possible without loss of generality. The EW
vacuum then spontaneously breaks S. As a result, other sets of stationary points related
by S are no longer equivalent regarding vacuum stability constraints and the tunnelling
time into these minima can be different [3, 228].

In the presence of many local and global minima the tunnelling from the EW vacuum to
the global minimum of the scalar potential may not provide the most stringent constraint.
Therefore, we calculate the decay rates into all deep directions and select the most
dangerous minimum (MDM) as the deeper minimum with the largest decay rate. This
is often, but not always, the deeper minimum which is closest in field space to the EW
vacuum.

3.3.2 Parameter Scans and Vacuum Stability Calculations

Typical BSM parameter scans consider millions of different parameter points which
places strong requirements on evaluation time and reliability of any numerical method to
evaluate vacuum stability constraints.

The first trade-off between speed and precision is in the calculation of the bounce action
described in section 3.1.1. Using one of the available sophisticated solvers [211-213] may
take a lot of runtime and could encounter numerical problems. As described above, we
instead approximate the tunnelling path with a straight line in field space and use the
semi-analytic solution eq. (3.13) [214]. A comparison between such simple approximations
and the multiple-shooting method of ref. [212] has been performed in ref. [229] where

8This includes both explicitly imposed discrete symmetries and accidental discrete remainders of the
removed continuous symmetries.
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agreement within O(10%) for polynomial potentials has been found. The approximation
according to eq. (3.13) is evaluated instantaneously while the available solvers typically
take between a few seconds and several minutes per tunnelling calculation.

This approximation, as well as the discussion at the beginning of chapter 3, relies on
the potential being a quartic polynomial — which is only true at tree-level. This is
sufficient to obtain a LO calculation of the decay rate when estimating the prefactor
K on dimensional grounds. As discussed in section 3.1.3 there is currently no method
available to calculate the NLO decay rate in models with multiple scalar degrees of
freedom. For this reason we stick to the LO calculation instead of using the Coleman—
Weinberg potential to obtain a partial NLO result for the decay rate which may or may
not be more accurate than the LO result. This also allows us to employ the very concise
formulation presented in this section and considerably increases the speed and numerical
stability of our calculation.

The tunnelling time with respect to the age of the universe as given in eq. (3.18) depends
exponentially on the value of the bounce action B. For any given parameter point, small
uncertainties on B are therefore amplified to large uncertainties on the tunnelling time.
While this makes precise predictions for the lifetime of individual parameter points very
challenging, it is less problematic for constraining the parameter space of BSM models
since the bounce action B is also very sensitive to the values of the model parameters.
Therefore, a small shift in parameter space typically leads to a change in the bounce
action substantially larger than the uncertainties described above. For this reason the
resulting constraints on the model parameter space depend only mildly on the precise
way B is calculated. This dependence can be estimated from the width of the uncertainty
band 390 < B < 440 (see section 3.1.2) in parameter space.

Impact of EW-Scale Vacuum Stability Constraints

The constraints obtained in this way depend on all parameters of the scalar potential and
are obtained fully numerically in most models. Based on eq. (3.8) it can be argued that
if the trilinear coefficients for some directions are substantially larger than the quadratic
coefficients, vacuum stability constraints are expected to be relevant.
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4 Singlet Extensions and
Higgs-to-Higgs Decays

In this chapter we study the collider phenomenology of a singlet extension of the SM in

detail. In particular, we focus on novel signatures in resonant multiscalar production for

which we provide benchmark scenarios. The results in this chapter have been published in
our ref. [5].

4.1 Pure Singlet Extensions of the SM

Extensions of the SM by scalar singlets are among the simplest possible BSM models.
According to the criteria established in section 2.1, the most general extension of the SM

by n real scalar singlet fields ¢; (i € [1,...,n]) has a scalar potential of the form
V(gi, @) = aihi + mijdidj + Tijrdididn + Nijrididj rdn
+ T di(®1®) + Nijn dich; (DTP) (4.1)
+ Vau(®)

with real coefficient tensors and V' (®)g,, of eq. (1.14). An extension by complex singlets
can always be brought into this form by expanding fields and coefficients into real and
imaginary parts. Since the ¢; are pure gauge singlets they have trivial kinetic terms that
do not induce any gauge interactions. Additionally, it is not possible to write down gauge
invariant and renormalisable interactions between a scalar singlet and any of the SM
fermions. The singlets will therefore only interact with the SM Higgs boson through the
couplings of the scalar potential and — if they acquire a vacuum expectation value (vev)
— mix with the SM Higgs boson and inherit some of its gauge and Yukawa couplings.

This is also the reason why there is no physical difference between a parametrisation
in terms of n complex or 2n real scalar singlet fields. Naively, one would expect that
imaginary parts of complex scalar fields are CP-odd, and mixing them with the real
parts or the SM Higgs boson would lead to CP violation. However, since the singlets
have no gauge or Yukawa couplings it is always possible to find a CP-transformation
under which all of them are CP-even [94, 230]. Thus any pure singlet extension of the
SM is a theory of only CP-even scalars.!

'This is no longer true in the presence of additional doublets (e.g. in the 2HDMS [231-233] or the
NMSSM [113, 114]) or vector-like fermions which couple to the singlets [234, 235].
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Singlet extensions of the SM have been subject to detailed phenomenological studies
before. This includes both extensions by a single real singlet [236-240] (see refs. [241-245]
for recent phenomenological studies) and by a complex singlet or two real singlets [9,
111, 125, 246-251]. The models are also interesting in the context of scalar singlet dark
matter [252-260] and a strong first-order electroweak phase transition [256, 258, 260—-264].
We will focus on a specific extension of the SM by two real singlets that has not been
previously considered in the literature.

Experimentally, singlet extensions can be explored in two complementary ways at the
LHC. First, precisely measuring the signal rates of the 125 GeV Higgs boson (hj25)
probes the structure of the doublet-singlet mixing, as well as possible new decay modes
of hio5 to new light scalar states. Second, direct searches for new scalars may reveal the
existence of mostly singlet-like Higgs bosons. The discovery prospects for direct searches
depend on the singlet-doublet mixing and the mass of the new scalars (both governing
the production rates), and on the decay pattern of the produced scalar state. In general,
decays directly to SM particle final states as well as to two lighter scalar states (“Higgs-to-
Higgs decays”) are possible. While some of the former decays are already searched for by
the LHC experiments, current searches for Higgs-to-Higgs decays focus almost exclusively
on the signatures hg — hiashiss (where hg denotes a new Higgs state with mass above
250 GeV) [265-276], or hios — hghg (with the hg mass below 62.5 GeV) [277-283]. The
model considered in the following, however, features also Higgs decays to unidentical
scalar bosons (“asymmetric decays”), Higgs decays involving only non-SM-like Higgs
bosons, as well as the possibility of successive Higgs-to-Higgs cascade decays. All of
these decay signatures have not been experimentally explored in detail.? We will discuss
them in detail in this chapter and show that they lead to novel collider signatures with
sizeable signal rates that are experimentally interesting for the analysis of Run-II data as
well as the upcoming LHC runs. We provide six dedicated two-dimensional benchmark
scenarios, each highlighting a different Higgs-to-Higgs decay signature that has not been
probed experimentally so far. We strongly encourage the experimental collaborations to
investigate these novel signatures using current and future collider data.

4.2 The TRSM

The two-real-singlet model (TRSM) adds two real singlet degrees of freedom to the SM.
These are written as two real singlet fields S and X. In order to reduce the number of
free parameters two discrete Z, symmetries

Z,": S — -8, (4.2)

Zy*: X —» —X (4.3)

(4.4)

2A first search result for a symmetric Higgs-to-Higgs decay involving only non-SM Higgs states has been
presented by ATLAS in the W W ~WTW ™ final state [266].
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are introduced. The most general renormalisable scalar potential invariant under the
Z5° ® Zy* symmetry is

V = 120D + Ap(DTD) + p2S% + AgS* + 2 X% + Ay X2

4.5
+ AogPTDS? + Mo x PTPX? + g S2X2. (4.5)

All coefficients in eq. (4.5) are real resulting in a total of nine model parameters. A trans-
lation of these coefficients to the parameters of the complex scalar singlet parametrisation
is given in the appendix of ref. [5].

Depending on the vevs acquired by the scalars different phases of the model can be
realised. We decompose the fields (in unitary gauge) as

0 s + vs Ox +vx
b = v, S= , X =" 4.6
(s3) V3 v o

leading to the tadpole equations

U'UQ UUZ
—vpg = v A + TS)\CDS + —2X Aox (4.7)
U2U v Uz
—Uslu% = Ug)\s + TS)NI)S + SQX)\SX (48)
U2U U2U
_UX,U_QX :U_:;()\X—i- QX)\q)X—i- SQX)\S)(. (49)

These have solutions for any values of v, vg, vx. However, in order to achieve electroweak
symmetry breaking (EWSB) v = wvgy & 246 GeV is required. If vg,vx # 0 the Z
symmetries are spontaneously broken, and the fields ¢; ¢ x mix into three physical scalar
states. This is called the broken phase.

If vx = 0 the field ¢x does not mix with ¢ g, does not acquire any couplings to SM
fermions and gauge bosons, and is stabilised by the Z,* symmetry.? This makes it a
candidate particle for dark matter (DM). The phenomenology of the two other scalar
states is very similar to the real singlet extension [241-245]. If both singlet vevs vanish,
o, is the SM Higgs boson, and the two singlets both form separate dark sectors stabilised
by their respective Z, symmetries. In this case collider phenomenology is (at tree-level)
only impacted by possible invisible decays of his5 to the DM particles.

In this chapter we focus on the broken phase featuring to the most interesting collider
phenomenology. The mass eigenstates hy 23 are related to the fields ¢, g x through the
3 x 3 orthogonal mixing matrix R

hy O
he | =R | ¢s | - (4.10)
hs dx

3The case of vg = 0 is equivalent by renaming S < X.
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4 Singlet Extensions and Higgs-to-Higgs Decays

We assume the mass eigenstates to be ordered by their masses
My < My < Mj (4.11)

and parametrise the mixing matrix R by three mixing angles 05, 05 x, 0sx. Using the
short-hand notations

s1 =sinfhg, sy =sinf,x, s3=sinflgx, ¢ =cosbs, ... (4.12)

it is given by
C1C2 —381C2 —S2
R = | s1c3 — 18983 c1c3 + $15983 —CaS3 | . (4.13)
C189C3 + S183 €183 — 81S82C3  CaC3

The angles 6 can be chosen to lie in

— g < 0hS7QthQSX < g (414)

without loss of generality. In the TRSM it is possible to express the nine parameters of
the scalar potential through the three physical Higgs masses, the three mixing angles,
and the three vevs. These relations are given by

1 2 p2 1 2 P2 1 2 2
Ao = ﬁmi Ry, As = %mi R, Ax = ﬂml R, (4.15)
1 1 '
Aos = _m?RilRQ , Aox = _m?RileBa Asx = m?RiQRiS )
VUg VUx VsUx

where a sum over i is implied. Fixing one of the Higgs masses to the mass of the observed
Higgs boson, M, ~ 125GeV, and setting v to its SM value leaves seven free input
parameters of the TRSM:

My, M., Ons, Onx, Osx, vs, vx, (4.16)
with a # b # c € {1,2,3}.

This is an important practical difference between the TRSM and another well-studied
extension of the SM by two real singlet degrees of freedom, the CxSM [125, 249]. The
CxSM is expressed in terms of a complex singlet with a softly broken U(1) symmetry
of the singlet phase imposed on the scalar potential. This more stringent symmetry
leaves only seven model parameters such that one of the physical scalar masses and
one of the singlet vevs are dependent parameters. In contrast, the TRSM is consistent
for any combination of masses, mixing angles, and vevs. Therefore, it can cover the
full kinematic phase space of Higgs-to-Higgs decay signatures for all parameters except
the two non-hqo5 Higgs masses fixed. This property allows us to define two-dimensional
benchmark scenarios in section 4.5.

As in all pure singlet extensions the couplings of the scalar boson h, (a € {1,2,3}) to all
SM fermions and gauge bosons are given by the SM value rescaled by

Ko = Ra1 . (4.17)
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4.2 The TRSM

The scaling factor k, denotes the doublet admixture of the mass eigenstate h,. Due to
the orthogonality of the mixing matrix these obey the important sum rule

> kr=1. (4.18)

4.2.1 Collider Phenomenology

The triple Higgs couplings are of special phenomenological interest in the TRSM. Using
eq. (4.15) they can be expressed directly through the input parameters of eq. (4.16). The
coupling Ay of hgohyhy is defined through

2 [~ Raj R,
v;% (ZZ}—J”J) (M7 +2M]) =

J

Aasphah? . (4.19)

N —

Similarly, the coupling of three different scalars is given by

VS hahohe (Z @) (Z Mf) = Kusclialshe (4.20)
7 X

J i

and the triple Higgs self coupling A\gqq is defined through

ha Ry oo ls s
VoL (Z ) M; = idaaahy (4.21)

2 —
F j

With these definitions the tree-level partial decay width of a scalar h, into two scalars hy,
and h. (where b = ¢ is allowed) is then given by
12

_ /\abc 2 2 2
F(l‘)bc - MW—W\/)\(MQ’ Mb ) Mc)

O(M, — M, — M.,), 4.22
with

Mz, g, x3) = fo - Z T . (4.23)

,J71

With this information, the phenomenology of a TRSM Higgs boson h, can be fully ob-
tained from the predictions for a SM-like Higgs boson (hgyr) of the same mass. Through-
out this work we employ the narrow width approximation to factorise production cross
sections and branching ratios (BRs).

Production cross sections for h, can be obtained from the corresponding hgy; cross section
by simply rescaling
o(ha) = K2+ o(hsa)ay, - (4.24)
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Figure 4.1: Branching ratios of a SM-like Higgs boson hgy; into SM final states Fgy as a
function of its mass, M, from 1 GeV to 1 TeV, in the low mass region (left
panel) and high mass region (right panel). The numerical values are taken
from ref. [175], see text for further details.

Since k, rescales all couplings of h, to SM fermions and gauge bosons, eq. (4.24) is exact
up to electroweak (EW) corrections involving multi-Higgs vertices. In particular, this
holds to all orders in QCD.

The scaling factor k, also universally rescales the partial widths of h, into SM particles
which leads to a rescaling of the hgy total width as

[(he = SM) = k2 - Dioe(hsu)lyy, - (4.25)

Note that this alone can never change the BRs of h, into SM particles. Using the results
of eq. (4.22) we can obtain the BRs of h, — hyh,:

Fa—>bc
BR(hy — hph.) = . 4.26
R( o ) ffg Ftot(hSM) + ny Fa—)xy ( )

Denoting the sum of these new physics (NP) decay rates to multiscalar final states as

BR(hs — NP) = Y " BR(hq — hohe), (4.27)

b,c

the BRs of h, into any final state Fsy composed entirely of SM fermions and gauge
bosons are given by

BR(h, — Fsu) = (1 — BR(h, — NP)) BR(hsu — Fiur) - (4.28)

One important special case is that in the absence of BSM decay modes — which is always
the case for the lightest Higgs bosons h; — h, has BRs identical to an hgy of the same
mass.
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Figure 4.1 shows the BRs of a hgy as a function of its mass. As long as BR(h, — NP) =0
— 4.e. if no Higgs-to-Higgs decays are possible — the scalar h, has exactly the BRs
shown in fig. 4.1. The numerical values are taken from [175], based on state-of-the-art
evaluations using HDECAY [284-286] and Profecy4F [287-289).

4.3 Constraints and Parameter Scan

In order to assess the phenomenologically viable regions of the parameter space we apply
all relevant theoretical and experimental constraints described in chapter 2.

Unitarity constraints were discussed in detail in section 2.2. In the TRSM we have derived
perturbative unitarity bounds in the high energy limit by requiring the eigenvalues M?*
of the scatter matrix M defined through eq. (2.21) to fulfil

M| < 8. (4.29)

The resulting constraints on the parameters of the scalar potential are

[Ao| < dm (4.30)
[Aas|, [Aex], [Asx| < 8 (4.31)
|ai], |azs|, [as| < 167 (4.32)

where a; 23 are the three real roots of the cubic polynomial

2+ 2%(=12)\p — 6Ag — 6Ay)
+ 2 (7200 (As + Ax) — 4(Mos + Apx) + 36AsAx — Aix) (4.33)
+ 12X A%y + 243 A x + 24M3 v A — 8hasdaxAsx — 432 A5\ x -

Closed form conditions for boundedness (see section 3.2) of the scalar potential, eq. (4.5),
have been derived in [222; 223]. In our notation they read

Ao, As, Ax >0,
Aas = Aaos + 2/ Aads > 0,
Xq;x = )\<I>X + 24/ )\q:.)\X > O, (434)

XSX = Asx +2v/AsAx >0,

\/ )\5>\q>x + \/ )\X/\<I>S + >\<I>)\SX + v )\@)\5>\X + 1/ Xq>sXq>XX5X > 0.

It has been proven [250] that a vacuum of the form of eq. (4.6) with v,vg,vx # 0 is
always the global minimum of the scalar potential at tree-level. Therefore, no additional
constraints from vacuum decay need to be considered.
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Figure 4.2: Constraints from Higgs measurements on the parameters r95 and BR(h125 —
NP) as obtained from HiggsSignals-2.3.0. The green and yellow regions are
allowed at 95 % and 68 % confidence level, respectively.

We use the oblique parameters S, T" and U descried in section 2.4.1 to parametrise
constraints from EW precision measurements. The results of refs. [137, 138] are applicable
to the TRSM to obtain model predictions for S, 7" and U which are compared to the fit
results of [135]. Flavour constraints are not relevant as the singlets neither change the
Yukawa sector. We use HiggsBounds-5.4.0 [163-168] to check for agreement with the
bounds from searches for additional Higgs bosons (see section 2.4.4).

Important constraints on the model parameter space arise from the signal rate meas-
urements of the hjps. We use HiggsSignals-2.3.0 [170-173] to test for agreement with
the observations at the 20 level as described in section 2.4.5, i.e. we require Ay? < 6.18.
These constraints are especially relevant in singlet extensions as there are effectively
only two BSM parameters that enter the phenomenology of his5 — its coupling scaling
factor k195 and its BR(h125 — NP) into new particles (see section 4.2.1). A complication
may arise in case that two or even all three scalar bosons have a mass around 125 GeV.
HiggsSignals then automatically takes into account a possible superposition of their
signals in the test against the Higgs rate measurements, see ref. [171] for details.

Assuming that only one scalar boson is responsible for the observed signal at 125 GeV,
we show the constraints from Higgs signal rate measurements in the two-dimensional
parameter plane k195-BR(h125 — NP) in fig. 4.2.* If no BSM decay modes of hia5 exist,
a lower bound on k195 > 0.963 at 95 % confidence level is obtained. For the other limiting
case of exactly SM-like couplings, k125 = 1, we find a limit of BR(h25 — NP) < 7.3 %.
The 20 limit between these two limiting cases approximately follows a linear slope. The

“The expected sensitivity of Higgs rate measurements at the high-luminosity (HL)-LHC in this parameter
plane has been presented in section 6 of ref. [22].
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region x > 1 is only included for completeness in fig. 4.2 but cannot be realised in the
TRSM, see eq. (4.18).

4.3.1 Parameter Scan

Based on these constraints we performed a large scan of the TRSM parameter space
using an updated private version of the code ScannerS [7, 125, 249, 290], including
all of the constraints described in the previous section. Note that bounds from signal
strength measurements are evaluated with HiggsSignals for each point individually.
This guarantees that the possibility that two or even all three Higgs bosons may have
masses close to 125 GeV and therefore contribute to the observed hio5 signal is correctly
accounted for.

We parametrise the model via the input parameters given in eq. (4.16). For the numerical
results presented in section 4.4 we sample the parameter space by independently drawing
from uniform distributions for each parameter. We allow for the non-h;95 Higgs masses
and the singlet vevs to lie within

1GeV < My, M., vx,vs < 1TeV (4.35)

and vary the mixing angles throughout their allowed range, eq. (4.14). In the parameter
scan, we only keep parameter points that pass all constraints. For the benchmark scenarios
in section 4.5, we instead fix all parameters apart from the non-his5 scalar masses,
and scan the two-dimensional parameter space in a grid within the defined parameter
ranges.

For the reference hgy production cross sections and BRs, we use the predictions from
refs. [175, 291]. The hgy production cross sections and total width are rescaled according
to eqs. (4.24) and (4.25) and combined with leading-order decay widths for the Higgs-
to-Higgs decays from eq. (4.22). For the hjg5 production rates, we use the results of
the N®LO calculation in the gluon fusion (ggF) channel [292]. This calculation uses an
effective description of the top-induced contributions. For scalar bosons with masses
M, # 125GeV we instead employ results from the NNLO+NNLL calculation [291]
that accounts for top-quark mass induced effects up to NLO. Indeed, we find that the
predictions of these calculations differ sizeably for masses M 2 2m,, for instance
ONNLO-+NNLL

~3. (4.36)

ON3LO M=400 GeV

In the following discussion of collider signatures we assume the production of a single
scalar state via the dominant ggF process. In some cases, it might be worthwhile to
investigate the subdominant Higgs production processes of vector boson fusion or Higgs-
Strahlung, pp — V¢ (V = W, Z), as these give additional trigger options and may help
to reduce the background. We leave the detailed exploration of the prospects for various
production modes to future studies.
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4 Singlet Extensions and Higgs-to-Higgs Decays
4.4 Implications of Collider Searches

The additional scalar bosons h, # his; can decay directly to SM particles. The branching
ratios of the various SM particle final states (Fgy) are obtained according to eq. (4.28),
and their relative rates (i.e. the ratios of branching ratios for different Fsy; decay modes)
are identical to the corresponding SM predictions for hgy with mass M,. The rate
for h, — Fg\ signal processes normalised to the corresponding SM prediction can be
expressed as

O'(pp — ha(+X)) X BR(ha — FSM)

= k2 (1 —BR(hy — NP)) . 4.37
oom(pp = hsw(+X)) X BR(hgy = Foy) "¢ ( ) (4.37)

This quantity is shown in fig. 4.3 as a function of M, in the low mass region (left)
and high mass region (right) for the sampled parameter points that pass all relevant
constraints (see section 4.3). For M, roughly between 12 and 85 GeV LEP searches for
ete™ — hoZ — bbZ [293] lead to an upper limit on the possible signal rate, as shown
by the red lines in fig. 4.3 (left). The whole parameter region shown in this plot could
be probed at a future ILC [294]. At larger mass values 2 190 GeV, the upper limit
originates from LHC searches for pp — h, — WTW ™ and ZZ. The latest ATLAS [295]
and CMS [296] limits are overlaid as green and orange lines, respectively, in fig. 4.3 (right).
For very large mass values 2 700 GeV direct LHC searches are not yet sensitive to probe
the parameter space. In addition, we include in fig. 4.3 the upper limit inferred indirectly
via the sum rule, eq. (4.18), from the rate measurements of hi95. These lead to an upper
limit of k2 < 7.3% (see section 2.4), except in the mass region around 125 GeV where h,
potentially contributes to the observed Higgs signal.

The model allows for resonant scalar pair-production at the LHC, or, in other words,
the direct production of a single scalar h, followed by the “symmetric” or “asymmetric”
decay into identical or different scalar states, respectively. Specifically,

pp = he (+X) = hphy (+X), (4.38)
pp — hs (+X) = hihy (+X), (4.39)

where, in the symmetric case, eq. (4.38), a = 2, b=1ora =3,b € {1,2}, and X
denotes not further defined objects that may be produced in association with the scalar
state (e.g., jets, vector bosons, etc.). The hjo5 can be either of the three scalar states h,

(a € {1,2,3}).

Processes of the symmetric type, eq. (4.38), leading to pair production of hjs5 are already
being investigated, see e.g. refs. [265-276] for recent LHC Run-II searches. Figure 4.4 (left)
shows the 13 TeV LHC cross section for the resonant scalar pair production process
pp — ha — hisshios (a € {2,3}) as a function of the M,. Overlaid are the most recent
experimental limits on this process from the ATLAS [276] and CMS [273] collaborations.
Figure 4.4 (left) illustrates that experimental searches in this channel are beginning to
directly constrain the TRSM for resonance masses between around 380 GeV and 550 GeV.
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Figure 4.3: SM-normalised signal strength for an additional Higgs boson decaying to SM

particle final states as a function of its mass, M,, for all parameter points
passing all relevant constraints. In the low mass region (left panel) we include
the observed and expected limit from LEP searches in the ee — h,Z — bbZ
channel [293]. In the high mass region (right) the ATLAS [295] and CMS [296]
observed and expected limits from the latest pp — h, — ZZ /W W searches
are displayed. The dotted grey line indicates the indirect limit on x? from
Higgs rate measurements.
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Figure 4.4: Left panel: Cross section for the process pp — h, — hia5hi25 at the 13 TeV

LHC as a function of the h, mass, M,, for all parameter points passing all
relevant constraints. The current expected and observed upper limits on this
process from ATLAS [276] and CMS [273] are overlaid.

Right panel: Total width over mass, I',/M, in the plane of M, and the decay
rate BR(h, — NP). Parameter points with larger I', /M, are plotted on top.
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Figure 4.5: Possible Higgs-to-Higgs decay signatures involving three neutral (mass
ordered) scalars h; (i € {1,2,3}): (a) h; = hjhy (with ¢ > j, k) with success-
ive decay of h; and hy to SM particles; (b) hs — hohy, (with k£ € {1,2}) with
successive decay ho — hihy and hy as well as all h; decaying to SM particles;
(¢) hs — hohy — hihihihy and all h; decaying to SM particles.

In contrast, LHC searches [277-283] for the inverted signature of single-production
of hyas which then decays into a pair of light h, (a € {1,2}) are not yet sensitive,
as the indirect constraint from Higgs signal rates on the possible new decay modes,
BR(hi25 — NP) < 7.3% (see fig. 4.2), are much stronger than the direct limits from these
searches. Currently, the strongest limit from hyo5 — hyh, searches is obtained in the
bbr 7~ final state [278] at M, ~ 35 GeV, amounting to around BR(hios — haha) < 25 %
(assuming h, to decay exclusively to SM particles) in the TRSM. Both of these processes
are under active experimental investigation and we expect the sensitivity to improve in
the future.

Figure 4.4 (right) shows the ratio of the total width over the mass, T';,/M,, in the plane
of M, and the sum of the h, decays to scalar states, BR(h, — NP). Parameter points
with larger values of I, / M, overlay parameter points with smaller values. We can clearly
see that parameter points with larger I, /M, only appear for sizeable decay rates to
scalar states. However, overall, ', /M, never exceeds values greater than around 18 % in
the considered mass range up to 1 TeV. In the discussion of the benchmark scenarios
below we will comment on cases where I', /M, 2 1%.

We will now turn to the more exotic signatures resulting from eqs. (4.38) and (4.39) that
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are not yet under active investigation. Following the processes in egs. (4.38) and (4.39),
the two produced scalar states may decay directly to SM particles. Alternatively, an
hy final state particle may decay into the two lightest scalars, hy — hyhy. This can
lead to interesting cascade decays resulting in three or four scalar states that eventually
decay to SM particles. The possible decay patterns within our model are depicted in
a generic form in fig. 4.5. Here and in the following we denote final states from Higgs
decays composed of SM particles (i.e. gauge bosons or fermions) generically as Fgy,
unless otherwise specified. For the more complicated final states we will use Fg; to
denote an n-particle SM final state, where we count the SM particles before their decay
(i.e. W%, Z, and t are counted as one particle). We find that all possible Higgs-to-Higgs
decay signatures, fig. 4.5, can appear at sizeable rates in the allowed TRSM parameter
space. In the next section we therefore present six two-dimensional benchmark scenarios
that highlight these signatures, and are tailored to initiate dedicated experimental studies
and facilitate the design of corresponding searches.

4.5 Benchmark Scenarios

In this section we define six benchmark scenarios in order to motivate and enable dedicated
experimental studies of Higgs-to-Higgs decay signatures. Each scenario focusses on one (or
more) novel signatures and features a (close-to) maximal signal yield that can be expected
within the model while obeying the constraints described in section 4.3. The benchmark
scenarios are defined as two-dimensional planes where all model parameters except for
the two non-ha5 scalar masses are fixed. A brief overview of the benchmark scenarios is
given in table 4.1. For each benchmark scenario, BP1-BP6, it specifies the Higgs state
h, that is identified with his5, the target Higgs-to-Higgs decay signature, as well as the
possibilities of phenomenologically relevant® successive Higgs decays, potentially leading
to single or double cascade decay signatures (see fig. 4.5).

We employ a factorised approach relying on the narrow width approximation. For each
benchmark scenario we will show both the BR(h, — hyh.) (a,b,c € {1,2,3}, a # b, ¢)
and the cross section

o(pp — he — hyhe) = K2 o(gg — hsm)l g, - BR(ha — hphe) - (4.40)

In all scenarios where either b = c or hy . = h9s there is only one unknown BSM mass in
the final state hyh.. In this case we will employ a further factorisation where we present
the decay rate of hyh. — Fs\ as a function of the remaining mass parameter. For this
decay rate, we use the short-hand notation

BR(hyhe — Fsu) = ¢ > BR(hy, — Fi)BR(he — Fy), (4.41)

F&?M—FFSJM:FSM

For instance, in BP2, the successive decay ha — hihi could in principle occur for the case that
My < 62.5GeV, however, Higgs signal rate measurements strongly constrain the possible BR and we
do not consider this possibility further.
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Table 4.1: Overview of the benchmark scenarios: The second column denotes the Higgs
mass eigenstate that we identify with hq95, the third column names the targeted
decay mode of the resonantly produced Higgs state, and the fourth column
lists possible, relevant cascade decays of the resulting Higgs states.

hio5 target signature possible cascade decays

BP1 hs  hiss — hihe ho — hyhy if My > 2M,

BP2 hy hs — hihias —

BP3 Iy hs — hiashs he = hiashigs if My > 250 GeV
BP4 hs ha — hihy —

BP5 hs hs — hihy —

BP6 Ny hs — haho ho = hiashigs if My > 250 GeV

where c is the appropriate combinatorial factor. The full cross section into a given SM
final state can be obtained by

U(pp — ha — hbhc — FSM) = J(pp — ha — hbhc) . BR(hbhc — FSM) R (442)

where potential cascades, fig. 4.5, are included in the BR(hyh, — Fyy) for FS and F§,;.

The model parameters for the selected benchmark scenarios as well as the coupling scale
factors k, are given in table 4.2. All cross section values given in the following refer to
production of the initial scalar through ggF at the 13 TeV LHC. All of the benchmark
scenarios presented in the following are exemplary for the corresponding signature within
the TRSM. Similar signatures are possible with different parameter choices and may also
appear in different models. As such, the regions of parameter space that are excluded in
a benchmark scenario should under no circumstances discourage experimental searches
for the corresponding signatures.

4.5.1 BP1 — h125 — hlhg

In the first benchmark scenario, BP1, we identify the heaviest scalar state hs with hjas,
and focus on the asymmetric decay hios — hihs. The parameter values (see table 4.2a)
are chosen such that the couplings of h3 to SM particles are nearly identical to the SM
predictions, k3 >~ 1. At the same time, the parameter choice maximizes — within the
experimentally allowed range — the branching ratio BR(h125 — hihs), which is shown
in fig. 4.6 (top left) as a function of M; and M. In fig. 4.6 (top right) we show the
corresponding cross section for inclusive production via ggF. We find that the BR
for hs — hihy reaches up to 7 — 8 % which translates into a signal cross section of
around 3pb. These maximal branching ratios are reached in the intermediate mass
range for hy, My ~ 60 — 80 GeV. This feature is caused by the proportionality of the
triple Higgs couplings to the masses (see eq. (4.20)). Therefore, although phase space
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4.5 Benchmark Scenarios

Table 4.2: Input parameter values (a) and coupling scale factors k, (b) for the six
benchmark planes. The doublet vev is set to v ~ 246 GeV and the mass
indicated by hqo5 is set to 125.09 GeV for all BPs.

(a) Input parameters

M, M, M; Ons Onx Osx Ug vx
GeV GeV GeV GeV  GeV
BP1 1-62 1-124 hi2s 1.435 —0.908 —1.456 630 700

BP2 1-124 hi2s 126 — 500 1.352 1.175 —-0.407 120 890
BP3 Do 126 — 500 255 - 650 —0.129 0.226 —0.899 140 100
BP4 1-62 1-124 hi2s —1.284 1.309 —1.519 990 310
BP5 1-124 hi2s 126 — 500  —1.498 0.251 0.271 50 720
BP6  hiss 126 — 500 255 — 1000 0.207  0.146 0.782 220 150

(b) Coupling scale factors

K1 %) K3
BP1 0.083 0.007 —0.997
BP2 0.084 0.976 —0.203
BP3 0.966 0.094 0.239
BP4 0.073 0.223 0.972
BP5 0.070 —0.966 —0.250
BP6 0.968 0.045 0.246

opens up significantly for light decay products, the branching ratios become smaller for
M, < 40 GeV. In the hatched region in fig. 4.6 the decay rate slightly exceeds the 20
upper limit inferred from the LHC Higgs rate measurements (using HiggsSignals). For
very lows masses, M; o S 5 GeV, the scenario is also constrained by boundedness. We
stress again that this excluded area is dependent on our parameter choices and strongly
encourage experimental searches to cover the whole mass range.

Due to the sum rule, eq. (4.18), the couplings 1 5 have to be very close to zero in order to
achieve k3 ~ 1. This means that the couplings of h; and hy to SM particles are strongly
suppressed. As a result, if the decay channel hy — hqh, is kinematically open, My > 2M;,
it is the dominant decay mode leading to a significant rate for the hihih, final state. In
BP1 we find that BR(hy — hih;y) ~ 100 % in this kinematic regime (i.e. above the red
line in fig. 4.6) with a very sharp transition at the threshold. If in addition M; 2 10 GeV
the h; decays dominantly into bb leading to a sizeable rate for the bbbbbb final state as
shown in fig. 4.6 (bottom right).

If the ho — hih; decay is kinematically closed, My < 2M;, both scalars h; and ho
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Figure 4.6: Benchmark plane BP1 for the decay signature hio5 — hiho with hio5 = hs,

60

defined in the (M;, M5) plane. The colour code shows BR(h125 — hihs) (top
left panel) and the 13 TeV-LHC cross section for pp — hios — hihs (top
right panel). The red line separates the region My > 2M;, where BR(hy —
hihy) = 100%, from the region My < 2M;, where BR(hy — Fgy) =~ 100%.
The decay rates of hihs into bbbb and — through a hy — hihy cascade —
bbbbbb final states are shown in the bottom left and right panels, respectively.
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Figure 4.7: Benchmark plane BP2 for the decay signature hg — hyhis5 with hios = ho,
defined in the (M, M3) plane. The colour code shows BR(hs — hyhies) (left
panel) and the cross section for pp — hg — hihqas (right panel).

decay directly to SM particles, with BRs identical to a SM-like Higgs boson with the
corresponding mass (see fig. 4.1). Therefore, for masses My, My > 10 GeV, the bbbb final
state dominates, as shown in fig. 4.6 (bottom left), while at smaller masses, combinations
with 7-leptons and eventually final states containing charm quarks, muons, and photons
become relevant.

4.5.2 BP2 — h3 — h1h125

In the second benchmark scenario, BP2, we identify his5 = hy and consider the pro-
duction of hs followed by the asymmetric decay hs — hihio5. The scenario is defined
in the (M, M3) parameter plane, and the remaining parameters are fixed to the values
given in table 4.2a. The mixing angles are chosen such that the production rate of hs is
maximised, while the hy properties remain consistent with the measured Higgs signal
rates. This results in a hs production rate of roughly 4% of the production cross section
for a hgy at the same mass.

The phenomenology of BP2 is illustrated by fig. 4.7. The BR(hs — hihs) shown in
fig. 4.7 (left) mostly stays above 20 % for M; < 350 GeV, reaching maximal values of
around 50 — 55% in the low mass region, M3z ~ 150 — 170 GeV. In this region, the
corresponding cross section in fig. 4.7 (right) is about 0.6 pb. It remains above 50 fb
as long as M3 < 450 GeV. The shaded region in fig. 4.7 is excluded by boundedness
of the scalar potential. Again, this constraint depends strongly on the values of the
model parameters and should not discourage experimental efforts to perform model-

independent searches in this mass range. The total width of h3 can reach maximal values
of I's/ M3 ~ 1.1 % in this benchmark scenario for Mz 2> 480 GeV.
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Figure 4.8: Decay rates of hihy into selected SM final states as a function of M; in BP2.

The decay rates of hihi95 into SM final states are shown in fig. 4.8 for BP2 as a function
of M;. In most of the mass range, the bbbb final state dominates, followed by bbW W~
and bbrt7~ final states. The cascade decay hio5 = hy — hihq is in principle possible if
kinematically allowed and in compliance with the observed hio5 properties. However,
we chose 3 small in order to maximize x2 within the experimental constraints. From
fig. 4.2 we see that, at the corresponding value of k9, BR(h125 — NP) must not exceed

2.5%. In BP2 this decay rate is always below 1 %g.

Besides the asymmetric decay hs — hihs the symmetric decays hg — hih; and hy — hohs
are also present in this scenario. The BR(hs — hihy) is 2 25% in the mass range
M3 < 250GeV. The decay mode hy — hshy only becomes kinematically open for
M3 2 2M, = 250 GeV, and reaches BRs up to ~ 28 %. Although these rates are not
negligible in BP2, we shall define dedicated benchmark scenarios BP5 and BP6 below,
where these decay modes clearly dominate.

4.5.3 BP3 — h3 — h125h2

In benchmark scenario BP3 we identify hio5 = h; and consider the production of hg
followed by the asymmetric decay hs — hissho. Similar to the BP2 scenario the mixing
angles are chosen to maximize k3 ~ 5.7 % and BR(hs — hihy). The benchmark plane
corresponding to the parameters given in table 4.2a is shown in fig. 4.9.

The BR(hs — hiashs) shown in fig. 4.9 (left) is 2 35% throughout the benchmark
plane except for the region very close to threshold. It reaches values around 50 %
in the parameter region Mz < 2M,. The signal cross section, o(pp — hs — hihs)

shown in fig. 4.9 (right), reaches up to 0.3pb while M3 < 500GeV. At large values
of M3 2z 500 — 600 GeV the parameter space is partly constrained by perturbative

Y
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Figure 4.9: Benchmark plane BP3 for the decay signature hy — hyo5hs with hios = hq,
defined in the (M, M3) plane. The colour code shows BR(hs — hiasha) (left
panel) and the cross section for pp — hs — hygsho (right panel). The shaded
regions are excluded by boundedness from below, perturbative unitarity, and
searches for heavy scalar resonances in diboson final states [295, 296].

unitarity, and if simultaneously M; < 150 GeV the potential can become unbounded
from below, as indicated by the shaded regions. Very close to its kinematic threshold,
My ~ M, 4+ 125 GeV, the decay hs — hisshy is strongly suppressed. In this case,
constraints can be derived from current LHC searches for heavy resonances, in particular
for the process pp — hgy — ZZ [295, 296]. The total width of hs is maximal for the
largest allowed values of M3 and reaches I's/ Mz ~ 4% for M3 2 600 GeV.

If My < 250GeV, BSM decay modes of hy are forbidden and its BRs are identical
to an hgy of the same mass (see fig. 4.1). In this region the dominant final states of
hia5ho — Fsy involve b-quarks and heavy gauge bosons as shown in fig. 4.10. As soon
as My > 250 GeV the decay hy — hio5hi95 becomes dominant, quickly reaching BRs of
~ 70 %. Above threshold this BR remains largely independent of M,. The decay rates
of the resulting his5hi25h125 into the most important six particle SM final states, FSM,
are given in table 4.3. The first row lists the direct decay rates of hisshio5h125 Wwhile the
second row includes the factor BR(hy — hig5hi25) =~ 68 %, which is an approximation
averaged over the mass region 260 GeV < M, < 500 GeV. The resulting values can
thus be compared directly to decay rates of the four particle Fg; in fig. 4.10. For
instance, rates for bbbbbb, bbbbW W~ and bbWW W~ final states are of comparable size
for M2 Z 270 GeV.

In BP3, the competing symmetric decay hs — hyhy reaches BRs of ~ 20 % if kinemat-
ically allowed. Otherwise the decay hs — hiashies reaches similar values (and becomes
dominant in the threshold region, M3 ~ M; + M,).
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Figure 4.10: Branching ratios of the hqs5ho state as a function of M, for BP3. Included
are a selection of the decay modes into SM particles as well as the cascade
decay to h125h125h125.

Table 4.3: Decay rates of hisshioshios — FSGM in BP3. The second row gives the corres-
ponding rates originating from hohqss, assuming BR(hy — hiashiass) =~ 68 %.

BR(X — FS,)in % 6b 402W 2b4W 4621 4b2Z A4b2y

hioshiashias 20 22 78 66 28 0.24
hohigs 14 15 53 45 19 0.16

4.5.4 BP4 — hy — hih; with hjo5 = hg

We now turn to the symmetric Higgs-to-Higgs decay signatures. In benchmark scenario
BP4 we identify hio5 = hs and focus on the production of hy followed by its decay
hy — hihy. In order to avoid constraints from the Higgs rate measurements on the
possible decays hios — hohy (a,b € {1,2}), the relevant couplings must be tuned to
rather small values while keeping k3 relatively large to ensure sizeable direct production
of hy. The parameter choices for BP4 are listed in table 4.2.

Figure 4.11 shows the collider phenomenology of BP4. The branching ratio BR(hy —
hihy) is larger than 40 % throughout the allowed parameter plane, as shown in fig. 4.11
(left). For My 2 40 GeV it is by far the dominant decay mode of hy with a BR of more
than 90 %. As the produced scalar boson is light, the cross sections shown in fig. 4.11
(right) are enhanced by the large ggF' cross section for light scalars. Even though hs is only
produced with a rate of about x2 ~ 5% of the hgy; cross section at the same mass we still
obtain cross sections of @(100pb) in the low mass region My < 20 GeV. However, this
parameter region is partly constrained by LEP searches for ete™ — Zhy — Z(bb) [293].
For My > 20 GeV this limit becomes insensitive as BR(hy — hqh) increases when the
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Figure 4.11: Benchmark plane BP4 for the decay signature hy — hihy with hiss = hs,
defined in the (M7, M5) plane. The colour code shows BR(hy — hqihy) (left
panel) and the cross section for pp — hy — hihy (right panel). The shaded
region is excluded by LEP searches for ete™ — Zhy, — Z(bb) [293].

corresponding coupling is no longer suppressed by small Higgs masses (see section 4.2.1).
The cross section in this region can still reach 60 pb. However, the signature remains
experimentally challenging as the decay products for these low M; will be very soft.

The rates for the decay modes of hih; into SM particles are shown in fig. 4.12. For
M; 2 10 GeV the decay into bbbb is dominant followed by bbr"7~. For even lighter M;
the predominant decay is into charm quarks.

4.5.5 BP5 — h3 — hlhl with h125 = hQ

In the benchmark plane BP5 we identify his5 = ho and consider the production of the
heavier scalar hsz followed by its symmetric decay to the lightest scalar, hs — hihy. In
our parameter scan of the TRSM (see section 4.3.1) we found that parameter points
exhibiting a sizeable pp — hsy — hih; rate also tend to be strongly constrained by the
Higgs signal strength measurements if 2M; < 125GeV. In addition, if kinematically
accessible, the decay modes hy — hiashias and/or hs — hihias tend to dominate
over the decay hs — hihy. In order to define a suitable benchmark scenario for the
pp — hs — hihy process it is therefore necessary that all triple Higgs couplings except
for Ai13 are small while not overly suppressing k3. The chosen parameter values of BP5
are given in table 4.2.

The phenomenology of BP5 is shown in fig. 4.13. Throughout the parameter plane
BR(h3 — hihy) — shown in fig. 4.13 (left) — exceeds 85 % and approaches 100 % for
low values of M. The heavy scalar hs is produced at a rate of around 3 ~ 6 % of the
corresponding prediction for hgy. Figure 4.13 (right) shows the resulting signal cross
sections of O(0.1 — 1 pb) with maximal values around 3 pb for light M3 < 150 GeV. The
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Figure 4.12: Decay rates of hih; — Fg; in BP4 and BP5 for selected SM decay modes
as a function of M;.

1.00

M3 [GeV]
o
©
S
BR(h3—h1h1)
Ms [GeV]
o(pp—~h3~h1h1) [pb]

150 /’/// HiggsBounds " 777/ HiggsBounds
T T T T T T 0.80 -
20 40 60 80 100 120 20 40 60 80 100 120
M, [GeV] M, [GeV]

Figure 4.13: Benchmark plane BP5 for the decay signature hy — hihy with hio5 = hao,
defined in the (M;, M3) plane. The colour code shows BR(hs — hihy) (a)
and the cross section for pp — hz — hihy (b). The shaded region is excluded
by searches for resonant double Higgs production [270, 273] via HiggsBounds.
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Figure 4.14: Benchmark plane BP6 for the decay signature hs — hohsy with hios = hq,
defined in the (My, M3) plane. The colour code shows BR(hs — haohs)
(left panel) and the cross section for pp — hg — hohy (right panel). The
shaded region at large M3 is excluded by perturbative unitarity. The shaded
region at My ~ 125 GeV is excluded by searches for resonant double Higgs
production [273], and the shaded parameter region around M; ~ 160 GeV,
M3 ~ 330 GeV by an ATLAS search for hy — hohy — WHW =WV~ [266]
via HiggsBounds.

parameter region at M; = 120 GeV and M3 2 350 GeV is constrained by LHC Higgs
searches for resonant double Higgs production [270, 273]. These are applied under the
assumption that h; cannot be experimentally distinguished from hio5 = hs if they are

close in mass and thus contributes to the predicted signal rate for this process.

The decay rates of hihy — F§, can again be found in fig. 4.12. They are identical to
those discussed for BP4 since the BRs of h; are always identical to those of hgy at
the same mass (see section 4.2.1). However, now the scenario extends to M; values
up to 125 GeV, and with increasing M; the final state bbW W~ becomes sizeable. In
contrast to BP4, the two h; may be boosted if M3 > 2M;, leading to collimated h;
decay products. This may provide an additional experimental handle by enabling the use
of jet-substructure techniques and reducing combinatorial background. Boosted decay
products may also lead to an increased trigger sensitivity.

4.5.6 BP6 — hg — hghg with h125 = hl

In benchmark plane BP6 we identify hiss = hy; and consider the production of the
heaviest scalar hg followed by its symmetric decay hsy — hohs. This constrains the mass
range for hz to values M3 > 250 GeV. In combination with the suppression of k3 due
to the sum rule, eq. (4.18), the resulting production cross sections are rather low. The
input parameters for BP6 are listed in table 4.2.

67



4 Singlet Extensions and Higgs-to-Higgs Decays

10°
_ bbbbW W=
_ 10714 - —————
3 'fr—— bEW W+ W= W
& —  —— bbbbzZ —
- ] bbbbtt —
0 2 ) ‘ bbW W - tt —
E: cﬂ 10-2 4
= <
& L
<
<
o
@ 10-3
1074 T T T T 1 7 T 107 T T T T
150 200 250 300 350 400 450 500 250 300 350 400 450 500
M, [GeV] M, [GeV]

Figure 4.15: Branching ratios of the hyhs state of BP6. The left panel contains a
selection of final states from direct decays of hy — Fgy and (inclusive)
decays involving hs — hiashias (both single and double cascade). The
right panel shows the most important six particle SM final states, Fg,;, that
originate from a single cascade hoho — hiashios Fsn.

Figure 4.14 shows the resulting (M, M3) parameter plane. The decay channel hy — hoho
— shown in fig. 4.14 (left) — is the dominant decay mode of hs over the entire accessible
parameter range with a BR 2 75% except close to the kinematic threshold. The
heavy scalar hy is produced with about k3 = 6 % of the corresponding hgy rate. The
resulting cross section in fig. 4.14 (right) reaches ~ 0.5pb in the low mass range,
M3 < 400 GeV, where hy decays directly to SM particles. The cross sections in the mass
range M3 2 600 GeV, which is interesting for cascade decays, can reach up to 100 fb for
pp — hg — haohy. In BP6 the total width of h3 can reach up to I's/ M3 ~ 14 % without
violating the perturbative unitarity constraint. Therefore, it may be important to include
finite width effects in experimental analyses of this scenario.

The shaded region at large masses, M3 = 800 GeV, indicates that the parameter region
is in conflict with perturbative unitarity. Additionally, experimental searches [273] are
beginning to probe the region My ~ 125 GeV. Similar to the discussion of BP5, this is a
limit on hs — his5h105 which is sensitive under the assumption that hy and hy = hqas
cannot be experimentally distinguished from each other if they are close in mass. Moreover,
a first ATLAS search for the signature pp — hz — hohy — WTW-WTW ™ [266]
constrains a small region around My ~ 160 GeV, M3 ~ 330 GeV, as shown in fig. 4.14. We
expect this analysis to sensitively probe the BP6 scenario in the future provided that the
currently considered mass range is extended. The ATLAS search only considers hs masses
up to the ¢t threshold, M3 < 340 GeV. However, in our scenario the WTW W~
final state remains the dominant SM final state of h3 even beyond the ¢t threshold.

Figure 4.15 shows the decay rates of hohy — Fgy in BP6. At low M < 250 GeV only
hy — Fgy decays are kinematically allowed. As shown in fig. 4.15 (left), the dominant
final state is WTW-WTW~ followed by bbW W~ at low masses and WTW~ZZ at
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Table 4.4: Rates for some decay modes of hio5hio5h125h125 — FSBM in BP6. The second
row includes a factor of BR(thQ — h125h125h125h125) ~ 14 %

BR(X — F8,)in % 6b2W 8  4b4W 6b2r 462W2Z 6b2Z 6b2y

hi2shi25h125h125 170 120 92 52 2.3 22 019
haha 2.5 1.7 1.3 0.75 0.33 0.31 0.027

larger mass values.

For My 2 250 GeV all three classes of decay chains from fig. 4.5 can occur in BP6: direct
decays of hohy — F§, single cascade decays hohy — hisshisshe — F&, and double
cascade decays hohg — hisshioshia5h125 — FSSI\,I, where the latter leads to a spectacular
final state composed of four his5. The rates for direct decays of hohy — Fgﬁw are given in
fig. 4.15 (left). The dominant final states of this class are WW-WHW~ and WTW~ZZ,
with WTW~tt becoming comparable at high M,. Figure 4.15 (left) also shows the
“inclusive” branching ratio for the single cascade hioshi25Fsy (summed over all possible
ho — Fsy) and the double cascade decay rate to the hisshioshiashias final state.

The decay rates of hohs into various six-particle SM final states via the single cascade
decay are shown in the right panel of fig. 4.15. The most important decay modes involve
b quarks and W bosons and — due to combinatorial enhancement — have decay rates
comparable to the four-particle final states. The decay hohy — hi2shiashe — bObBW TV~
is the third most likely decay mode of hoho for 250 GeV < M, < 350 GeV.

The decay rates of hisshiashioshiss — FSSM following a double cascade decay are in-
dependent of the model parameters. They are given in table 4.4. Since the double
cascade decay indicated in fig. 4.15 (left) is almost independent of M5 we include in the
second row of table 4.4 an approximate rate for the decay of hyhs into an eight-particle
SM final state through the double cascade. For this we use the averaged BR(hahy —
]’L125h125h125h125) = 14.5% evaluated in the mass range 260 GeV < My < 500 GeV. The
most important eight-particle final states are all combinations of decays into b quarks
and W bosons — the most likely decay products of his5. Due to combinatorial factors
their overall branching fractions are, again, in some cases comparable to the four- and
six-particle final states. For example, the bbbbbbW W~ final state has rates similar to
the ZZZ Z final state for masses M3 ~ 300 — 350 GeV.

4.6 Conclusions

In this chapter, we have presented the collider phenomenology of a simple extension of
the SM Higgs sector — the TRSM — where two real scalar singlet fields are added to the
particle content. We have imposed a discrete Z, symmetry for each scalar singlet field
that is spontaneously broken by the the vevs. Consequently, all scalar fields mix with
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each other, leading to three neutral CP-even Higgs mass eigenstates h, (a = 1,2,3). Any
of these states can be identified with the hA;95 observed at the LHC. We have discussed
current collider constraints on the model in detail and have illustrated the impact of the
most constraining searches for additional Higgs bosons on the TRSM parameter space.

The model leads to an interesting collider phenomenology for searches for the additional
Higgs states. Following the single production of one of the Higgs states, h,, this state
can either decay directly to SM particles, or it can decay into two lighter Higgs states,
hqe = hyhe, where the lighter states can either be identical (“symmetric” Higgs-to-Higgs
decays with b = ¢ = 1,2), or different (“asymmetric” Higgs-to-Higgs decays with b = 1,
¢ = 2). Successive decays of the second-lightest Higgs state to the lightest Higgs state,
ho — hihy may be possible if kinematically allowed. This leads to interesting Higgs-to-
Higgs cascade decay signatures, in particular, hs — hy2hs — hy2hihy (“single cascade”)
and hy — hohy — hihihihy (“double cascade”), as shown in fig. 4.5. We find that rates
for all these possible Higgs-to-Higgs decays can in general be sizeable, easily dominating
the direct decay modes to SM particles.

Many of these Higgs-to-Higgs decay signatures have not been investigated experimentally
to date. We have therefore presented six two-dimensional benchmark scenarios to facilitate
the design of dedicated experimental searches. Each scenario is defined such that one of
the novel signatures has a nearly-maximal signal rate, while still obeying all theoretical
and experimental constraints on the model. Moreover, as the model can be parametrised
conveniently in terms of the relevant physical parameters, i.e. the three Higgs masses,
three mixing angles (governing the Higgs coupling strengths to SM particles) and the
three vevs, the benchmark scenarios can cover the entire kinematical phase space for the
decay signatures, thus rendering them as ideal references for experimental searches.

For each benchmark scenario, we discussed in detail the rates of the relevant decays, as
well as the expected cross sections in the TRSM at the 13 TeV LHC. We furthermore
provided an overview of the most relevant SM particle final states, as a function of the
relevant mass parameters. This should provide a first step for experimental analyses
to estimate the discovery potential of corresponding searches. We expect that some of
the presented signatures can already be probed sensitively at the LHC with the data of
~ 150fb~! per experiment collected during Run-II.

It should be kept in mind that the Higgs-to-Higgs decay signatures (and potentially also
the cascade decays) discussed here can generically appear also in other BSM models
that feature three (or more) Higgs states. In that case, however, the Higgs coupling
properties do not necessarily agree with those of the TRSM. This may result in different
production rates of the resonantly-produced Higgs state, as well as different decay rates,
in particular concerning the Higgs decays to SM particles. It is therefore important that
future experimental searches present their results as limits — or ideally measurements
— of the approximately model-independent signal rate, as a function of the relevant
kinematical quantities (Higgs masses and, possibly, total widths). Furthermore, Higgs-to-
Higgs decays to possible SM particle final states that are not dominant in the TRSM
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may still be worthwhile to probe experimentally, as the anticipated rates may be different
in other models.

The exploration of the scalar sector — leading to a better understanding of the mechanism
of electroweak symmetry breaking — is one of the most important scientific goals
of the LHC programme. This endeavour requires an open-minded and unbiased view
on the potential collider signatures of new scalars. Our discussion of the TRSM and
the presented benchmark scenarios demonstrate that there is a plethora of currently
unexplored collider signatures involving Higgs-to-Higgs decays, and we hope that this
work will initiate and facilitate the design of corresponding LHC searches in the near
future.

In the next chapter, we turn to BSM models that introduce new sources of CP violation
into the scalar sector. The CP-violating 2HDM discussed there also features three neutral
Higgs bosons that mix with each other and can produce Higgs-to-Higgs decay signatures
— similar to those discussed in this chapter — which we have studied in ref. [1]. However,
in the next chapter we will instead focus on the consequences of CP-violating extended
Higgs sectors for measurements of his5 couplings and CP-violating observables.
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5 CP Violation in Visible and Invisible
Higgs Sectors

In this chapter, we discuss the phenomenology of two minimal models with CP-violating
scalar sectors — one where CP wviolation is strongly constrained and one where it is
hidden in a dark sector. We have published the results in the first section in ref. [1] and
those discussed in the second section in ref. [2].

5.1 CP Violation in the 2HDM

We have introduced the two-Higgs-doublet model (2HDM) in section 2.5.1. In this section
we study the phenomenology of the CP-violating 2HDM with a focus on the possibilities
for a CP-odd admixture to the 125 GeV Higgs boson (hi25). The 2HDM scalar potential
with a softly broken Zy symmetry, ®; — —®,, is given by

V=m0 4 m| @2 — (3, @]®; + Hee.) (5.1)

A 2 A\ 2
+ é(@{@l) 1 ?2(<1>§c1>2) + 25 (@] D) (0]D,)

A 2
+ A (DT D) (DLDy) + E(@{@g) +H.c.] .

As discussed in section 2.5.1, this Zy symmetry is extended to the Yukawa sector in
order to realise natural flavour conservation (NFC) leading to the four Yukawa types (see
section 2.1). All couplings except for m?%, and \; are required to be real by hermiticity
of the Lagrangian. This scalar potential has six real and two complex parameters for
a total of ten real parameters. This softly broken Z, symmetric 2HDM is the minimal
scalar extension of the SM that allows for CP violation.

Expanding each of the doublets ®; (i = 1,2) around the (in general complex) vacuum
expectation values (vevs) v; and vy in terms of the complex charged fields (¢;) and the
real neutral fields (p; and 7;) yields

A N
(I>1 — | vitpit+im ) <I>2 — | vatp2+ing . (5-2)
V2 V2
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The corresponding stationarity conditions, eq. (3.2), for the potential are

Re(miy)vy = mijv; + %vi” + %vlfug : (5.3)
Re(m?2,)vy = miavs + %vg’ + %v%vg : (5.4)
2Im(mi,) = vivelm(As), (5.5)
with
X345 = A3 + Ay + Re(Xs5) . (5.6)
We define the phases ¢(m?,) and ¢()s) of the complex parameters as
miy = |m%2|€i¢(m%2) ) As = |As|e' ) (5.7)

It is always possible to absorb any phase of v; and vy into these phases of the parameters
through a field redefinition. Assuming v; and vy to be real the condition [297]

$(Xs) # 2¢(miy) (5-8)

ensures that the two phases cannot be removed simultaneously and CP violation in
the Higgs sector occurs. We call the region of parameter space where the inequality,
eq. (5.8), is satisfied the CP-violating 2HDM (C2HDM) (see e.g. refs. [1, 25, 297-300]). If
d(X5) = 2¢(m3,) for real v; and vy the model can be expressed as a real (CP-conserving)
2HDM (R2HDM) through a rephasing of the SU(2), doublets.

It is useful to introduce the Higgs basis {H;, Hs} through the field rotation

Hi\ [ cosB  sinf) [Py (5.9)

Hy)  \—sinf cosfB) \ P,y '
with tan = v/v9, to separate the would-be goldstone bosons from the physical degrees
of freedom. The resulting doublets in the Higgs basis are given by

G* H*
Hl:(\%(v—&-ﬂo—{—iGo))’ 7‘[2:(%(}%2_'_”2)) . (5.10)

The electroweak (EW) vev v = /v? + v3 &~ 246 GeV along with the Goldstone bosons
G* and GV is now separated into H;, while the charged Higgs mass eigenstates H* are
in Hy. The neutral Higgs mass eigenstates H; (i = 1,2,3) can then obtained from the
three neutral fields p;, ps and I via the rotation

H, P1
Hj I

which diagonalises their 3 x 3 mass matrix M? through

RM?R" = diag(mj, , mj,,my,) . (5.12)
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5.1 CP Violation in the 2HDM

We parametrise the orthogonal mixing matrix R through three mixing angles ;23 as

C1C2 S1C2 52
R = —(618283 + 8103) C1C3 — S159S83 C9S3 s (513)
—c159c3 + 5153 —(C183 + S152C3)  Cacy

with s; = sinq; and ¢; = coso; (i = 1,2,3). Without loss of generality, these angles can
be chosen to lie in the range
_ g < ags < g (5.14)
The Higgs mass eigenstates resulting from these diagonalisation are by definition ordered
as
me, < mp, < mg, . (5.15)

Out of the ten real parameters of eq. (5.1) one is removed by the relation eq. (5.5). We
express the remaining nine parameters through

mpg,, Mmg,, Mgt, v=/vi+03, tanf, o, az, az, Re(mly), (5.16)

using eqgs. (5.3), (5.4) and (5.12). In this parametrisation the mass of the third scalar —

mp, where a,b,c € {1,2,3} with a # b # ¢ — is not independent but given through the

other two scalar masses and the mixing matrix R as

m¥, Re3(Raatan 8 — Rap) + qub Rys(Ry2 tan f — Ry )
Rc?)(Rcl - R02 tan B) ’

2 _
my, =

(5.17)

where no summation over repeated indices is implied.

Since both doublets have direct gauge couplings and can also couple to fermions, the
C2HDM has a considerably more complicated coupling structure compared to the pure
singlet extension discussed in chapter 4. The Higgs couplings to massive gauge bosons
Ve {W,Z} are

C(Hivv)ghsMVV ) (518>

where gp,vv is the corresponding coupling of a SM-like Higgs boson (hgy) of the same
mass. The effective coupling is given by

c(H;VV) = cos fR;; + sin SR;s . (5.19)

Note that this coupling is identical to the one in the R2ZHDM. The CP violation in
the C2HDM occurs through mixing between CP-even states — with standard gauge
couplings — and CP-odd states — with no gauge couplings at all. Therefore, the gauge
couplings of the H; are simply the gauge coupling of the CP-even admixture to H;. CP-
violating anomalous gauge couplings for the H; are only generated at the loop level and
are usually too small to be currently observed.?

'This convention relates to the one used in eq. (4.13) through 05 = —ay, Ox = —az, fsx = —as.
2We will discuss anomalous triple gauge couplings in more detail in the next section where they turn out
to be the only possibility to observe CP violation.
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5 CP Violation in Visible and Invisible Higgs Sectors

Table 5.1: Effective Yukawa couplings of the Higgs bosons H; in the C2HDM. The
expressions correspond to ¢¢(H,; f f) + ic’(H; f f)vs from eq. (5.20).

u-type d-type leptons
Typel 2 —iffiyy 224 ifiy, M2y gdig,
Type 1I }E—;‘; — 2%7 }E—;l — itﬁRi3’y5 12»;1 — ithi3’75
Lepton-Specific f—: — if—?% f—:’f + i}f—?% f—;l — 1tgRizys
Flipped f—? — ilf;?’ s 12”;1 — 1tgRizys IE;Q + i}f—[i;’%

The Yukawa couplings depend on the Yukawa type that is realised to ensure NFC. The
Yukawa Lagrangian in the mass basis has the form

£r 2 _%@Zf [ (Hif f) + ic®(Hof f)ys) v H (5.20)

where 1); denotes a SM fermion of mass my. The effective fermion coupling contains a
CP-even and a CP-odd part with coefficients ¢¢(H,f f) and ¢°(H;f f). The expressions
for these coefficient in the four Yukawa types can be found in table 5.1. These Yukawa
couplings are clearly CP-violating if ¢, ¢® # 0. They are the source of most of the
CP-violating phenomenology in the C2HDM — for example by inducing non-vanishing
fermionic electric dipole moments (EDMs). There have also been proposals to probe the
CP-nature of the top-quark [301-304] or 7 [305-309] Yukawa coupling directly at the
LHC or a future collider. However, no experimental results are available at this point.
The remaining Higgs couplings in the C2HDM can be found in the appendix of ref. [1].

5.1.1 Constraints and Parameter Scan

In order to obtain a sample of phenomenologically viable parameter points we performed
a parameter scan of the C2HDM taking into account all of the applicable constraints
from chapter 2.

Closed-form conditions for boundedness from below [219] and perturbative unitarity [122,
310, 311] in the 2HDM are well known and take the same form in the CP-violating
and CP-conserving case. In order to completely avoid the possibility of an unstable
EW vacuum we employed the discriminant obtained in ref. [312] to ensure that the EW
vacuum is the global minimum of the model.

We require agreement with EW precision measurements at the 2o level using the oblique
parameters S, T and U as discussed in section 2.4.1 using the results of the EW fit
presented in ref. [135] and the model predictions from refs. [137, 138]. The addition of CP
violation in the C2HDM does not impact the charged sector of the 2HDM. Therefore the
flavour constraints in the charged Higgs mass and tan § plane [135] that were discussed in
section 2.4.2 are immediately applicable to the C2HDM. In the C2HDM the constraint
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5.1 CP Violation in the 2HDM

on the CP-violating EDM of the electron is highly relevant. The main contribution in
the C2HDM comes from the so-called Barr-Zee type two-loop diagrams [157]. We require
the resulting model prediction to agree with the upper limit obtained by the ACME
collaboration [313]. This is an older bound than discussed in section 2.4.3 reflecting the
experimental status at the time this analysis was performed. We will comment on the
impact of the updated constraint below.

We employ HiggsBounds-4.3.1 [163, 164, 166] to check for 20 compatibility with searches
for additional scalars (see section 2.4.4). The CP-violating coupling structure can lead to
large deviations from the SM-like behaviour of hi95. For simplicity, we exclude parameter
points for which more than one scalar contributes to his5 by forcing the other scalar
masses to be outside the mass window my,,,. =5 GeV. We obtain branching ratios and
decay widths of all Higgs bosons with the C2HDM_HDECAY code [1]. The single Higgs
boson production cross sections via gluon fusion (ggF) are calculated with SusHi [314,
315] at NNLO QCD. As the neutral scalars have no definite CP, we approximate the
prediction for the CP-mixed state by summing the CP-odd and the CP-even contributions
incoherently. That is, the signal strength of the fermionic single Higgs production modes,
[, is in our analysis given by

fp R o&stinn (99 — Hi) + 083w (99 — Hi)
od' (99 — H;) !

(5.21)

where we have not written the small b-quark fusion cross section for simplicity. The
production modes involving gauge bosons define the signal strength py. Since there is
no coupling of the CP-odd components to gauge bosons this is simply given by

py = E(H;VV), (5.22)

which is correct up to NLO in QCD. The effective couplings are defined in eq. (5.18).

We ensure compatibility with the measurements of the hjo5 by requiring 20 agreement of
all signal strengths with the results of ref. [19]. That is, the observables

re

’ M’Y’Y ’ Hzz, Hww , Hrr Hbb (523)
Ky

with p,, defined as

BR,(]’L125 — JIZE)

. Hr BR(hSM — .TJI) ( )

are within 20 of the fitted experimental values. We use this method for simplicity. Note
that performing a fit to up-to-date Higgs data using HiggsSignals is likely to give a
stronger bound than this approach. All of the above constraints have been implemented

in the code Scanners$ [7, 125, 249, 290] that we use to perform parameter scans in the
C2HDM.

The constraints from Higgs searches and measurements discussed above only include
results from the 7 and 8 TeV runs of the LHC. At the time of this analysis, these were
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5 CP Violation in Visible and Invisible Higgs Sectors

Table 5.2: Input parameter ranges for the C2HDM parameter scan. One of the neutral
Higgs masses mpy, (a,b,c € {1,2,3} with a # b # ¢) is fixed to the measured
value of 125.09 GeV. The three mixing angles o 23 are scanned through their
whole allowed range.

mpy, mp+ tanB Re(m3,)

GeV  GeV GeV?

min 30 80 0.8 1073
max 1500 1500 20 5% 10°

still the most relevant constraints. We have verified that the phenomenology discussed
in the following is still qualitatively possible even with up to date constraints (using
HiggsBounds 5.4.0 and HiggsSignals 2.3.0) and will comment on their impact below.

Using ScannersS, we generate phenomenologically viable parameter points in all four
Yukawa types in the parameter ranges given in table 5.2. We fix one of the neutral scalar
masses to

mpy, = 125.09 GeV , (5.25)

randomly generate a second mass mp, within the range given in table 5.2, and require
the third mass my, calculated according to eq. (5.17) to lie within the same mass range
as mpy,. We also fix the EW vev v to its SM value, eq. (1.25). All parameter points
shown in the following are results of this parameter scan and fulfil all of the mentioned
constraints (unless otherwise noted).

5.1.2 A CP-Mixed hj;

In this section we study the phenomenological consequences of CP violation in the scalar
sector. In particular, we want to study the CP nature of hqo5, encoded in the couplings
¢S = c*(hias ff) and ¢§ = c®(higs f f) of eq. (5.20). We know that hip5 must have some
CP-even content because of its observed couplings to ZZ and W+W~. However, in a
theory with CP violation in the scalar sector (such as the C2HDM), hjs5 could have a
mixed CP nature. This possibility can be probed in the couplings to fermions in a variety
of ways. Two scenarios are of special interest to us:

o ¢4 ~ ¢p ~ 0: In this case hizs couples as a pure scalar to f and as a pure
pseudoscalar to f’. This indicates maximal CP violation between two Yukawa
couplings of hqas.

o |¢§| ~[c]: The Yukawa coupling to one kind of fermion has CP-even and CP-odd
components of similar size. This indicates maximal CP violation in one Yukawa
coupling of hjss.
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no EDM
LOTl = Typel

o _ L0
¢ =c=c
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cf =cp=c;
Figure 5.1: Effective CP-even and CP-odd Yukawa couplings of hqo5 in the C2HDM type
I. The dark points (plotted on top) fulfil all constraints while the light points

fulfil all except for the EDM constraints. Figure from our ref. [1].

We stress that maximal CP violation in the Yukawa couplings does not necessarily mean
that the hio5 has a large pseudoscalar admixture of the CP-odd component [, defined
as

qjh125 = (Rh1253)2' (526)

In ref. [9] we found that this quantity is constrained by Higgs measurements to Wj,,,. <
20 %, which holds for all parameter points considered here. However, the enhancement
of ¢f and/or ¢ with tan 5 depending on the Yukawa type (see table 5.1) can lead to
large ¢ even for moderate values of Ry, ,.3.

For most inclusive observables the incoherent sum of CP-even and CP-odd contributions
leads to a factorisation of the Yukawa couplings at leading order such that the observable
is only sensitive to

= (c5)* + (c5)*. (5.27)
This is not the case for the loop induced processes of Higgs production through ggF and
the decay of his5 to vy where the CP-even and CP-odd contributions enter with very

different form factors. For this reason, even inclusive Higgs measurements can be used to
constrain the CP nature of the hio95 Yukawa couplings.

Figure 5.1 shows the possible CP-even and CP-odd Yukawa couplings of hi95 for Yukawa
type I where the couplings to all kinds of fermions are equal. We see that in type I
c® and ¢° are strongly constrained to be close to the SM-like point ¢® = 1 and ¢® = 0.
The Higgs measurements constrain these parameters to the region populated by the
light points while the EDM constraints strengthen the constraint even more. As shown
previously [290, 316], fig. 5.1 again demonstrates that the wrong-sign regime ¢§ < 0 cannot
be realised in type I because the Yukawa couplings cannot be varied independently.

In Yukawa type II, shown in fig. 5.2, the results are very different. The left panel of
fig. 5.2 shows ¢ and ¢° for the bottom quarks and tau leptons. The Higgs data alone
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Figure 5.2: Effective CP-even and CP-odd Yukawa couplings of hjo5; in the C2HDM type
II. The couplings to down-type quarks and leptons are shown on the left and
the coupling to up-type quarks on the right. The dark points (plotted on
top) fulfil all constraints while the light points fulfil all except for the EDM
constraints. Figure as published in ref. [1].

(i.e. without the EDM constraint) still allows for vanishing scalar couplings to down-type
quarks ¢ = 0 as discussed in ref. [299]. The wrong-sign regime (¢ < 0) is possible in
the type II C2HDM but faces stronger constraints than the correct sign regime from
measurements of hygs — vy [290, 316] resulting in the sparser light points for ¢f < 0.
The inclusion of the EDM constraints, however, clearly forces |¢f| < |¢§|.?

The couplings to top quarks shown in fig. 5.2 (right) are constrained to (c§)* 4 (¢f)* ~ 1
and |cf| > |¢f|. This is similar to the behaviour observed in type I though the allowed
region in type II is somewhat larger. The reason for the very different behaviour of the ¢,
compared to the ¢, - in type II is that the top coupling is the dominant Yukawa coupling
in both ggF and his5 — 77, which, as discussed above, are the two main inclusive
observables that are sensitive to the CP nature of the Yukawa couplings. The right plot
of fig. 5.2 also shows that the EDM constraint has no discernible effect on the allowed
coupling to up-type quarks.

The situation is even more striking in the other two Yukawa types. Figure 5.3 (left)
displays the lepton Yukawa couplings for the lepton-specific model with and without
the EDM constraints. These can still be mostly or even entirely CP-odd, despite the
EDM constraints. Similarly, in the flipped model shown in fig. 5.3 (right) the bottom
quark can couple to hio5 in a fully CP-odd fashion or with comparable CP-even and
CP-odd couplings even after applying the EDM constraints. In both cases, the up-type
Yukawa couplings (which are equal to the down-type coupling in the lepton-specific and
the lepton coupling in the flipped case) are constrained to lie close to the fully CP-even

*In ref. [1] we found that ¢y ~ 1 remains possible if hio5s = Hy. However, we have been unable to verify
this possibility when considering updated constraints from Higgs measurements.
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Figure 5.3: Effective CP-even and CP-odd Yukawa couplings of hio5 in the lepton-specific
and flipped C2HDM. The left plot shows the lepton Yukawa couplings in the
lepton-specific C2HDM while the right plot shows the down-type Yukawa
couplings for a flipped Yukawa sector. The dark points (plotted on top) fulfil
all constraints while the light points fulfil all except for the EDM constraint.
Figures as published in ref. [1].

SM value. Therefore, both scenarios for maximally CP-violating Yukawa couplings can
be realised in lepton-specific and flipped C2HDM.

Comparing figs. 5.2 and 5.3, the constraints from Higgs measurements on ¢, in the lepton-
specific and on ¢, in the flipped Yukawa type are weaker than in type II. As can be seen
from tab. 15 of ref. [19] the measurements of p,, and uy are both not very precise, but
have very different central values. This results in a considerably stronger constraint in
type II, where ¢, = ¢,. Additionally, for lepton-specific Yukawa couplings, the wrong-
sign regime ¢, < 0 is less constrained than the wrong sign regime af a flipped Yukawa
sector, ¢, < 0. As discussed for type II, the wrong sign limit is mainly constrained by
the contribution of the wrong-sign fermion to the his5 — vy decay. Since m, < my, this
effect is more pronounced for a wrong-sign c¢f than for a wrong sign cf.

As we have seen from the previous discussion, there are undoubtedly strong constraints
on CP violation in the Yukawa sector. However, it is still possible to realise scenarios
where his5 has maximally CP-violating couplings to heavy fermions. This possibility
remains even though in a simplified model of a single hi95 with global Yukawa modifiers
¢ and ¢° the electron EDM constraint alone forces ¢® < 0.01 [317]. We can understand
this difference by studying the model prediction for the electron EDM d, in more detail.

As mentioned above, the main contribution to electric dipole moments in the C2HDM
comes from the so-called Barr-Zee type two-loop diagrams [157] shown in fig. 5.4. At the
two loop level the blobs in the first diagram can contain fermions, W bosons and charged
Higgs bosons. We call the resulting contributions to the EDM of the electron d.(ff),
d.(WEWT), and d.(H*HT) respectively. The second diagram contains a complicated
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Figure 5.4: Barr-Zee type Feynman diagrams contributing to the EDM of the electron in
the C2HDM.

effective vertex (see the appendix of ref. [157]) and we call its contribution d.(H*W ).
The EDM is defined at the diagram level and given by the direct sum

do = do(ff) +d.(WEWF) + do(HEHT) + d (HWTF). (5.28)

Within these individual contributions, there is always a sum over the three Higgs bosons
H; and in case of d.(ff) also a sum over the relevant fermions where we include ¢ and b
quarks as well as 7 leptons. There may be cancellations between different contributions,
cancellations between different H;, and cancellations between different kinds of fermions.
For example, the dominant top contribution to d,(ff) is schematically given by

de(tt) o< Z c“(H;ee) c°(H;tt) Iy + ¢°(H;ee) ¢ (H;tt) Iy, (5.29)

where the form factors 7 5 are of comparable size. From table 5.1 we see that in type I
and flipped Yukawa sectors there is always a relative sign between these two terms which
naturally leads to a cancellation.

In fig. 5.5 we show individual contributions to the EDM of the electron. For each
C2HDM type, we have grouped the contributions to d. according to their relative sign.
For example, in Type II the contributions of the W-loops (y-axis) and the sum of the
contributions of the fermion loops, charged Higgs loops and d.(H*WT) (x-axis) tend to
have opposite signs. The grey shaded region represents the parameter space excluded by
the EDM constraint [313]

d, < 87x10*ecm, (5.30)

and the colour code indicates the value of the phase ¢(\s) projected into [0, 7/2]. The
first notable difference between the Yukawa types is that the maximum values of the
contributions with opposite signs are around two orders of magnitude smaller in type
I and flipped models than in type II and lepton-specific models. The reason for this
behaviour is the natural cancellation in eq. (5.29) for type I and flipped Yukawa sectors.
As a result, EDM constraints on type I and flipped models are considerably less severe.
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Figure 5.5: Contributions to the electron EDM d, grouped according to their relative
sign in the four different Yukawa types. In each plot, the model prediction
for d. is obtained as the sum of the x and y values for each point. The colour
code indicates the phase ¢(\5) projected into [0, 7/2]. They grey regions are
excluded by the EDM constraint. Figure as published in ref. [1].
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In Type II large values of ¢()A5) can be found in regions where either the EDM contribu-
tions are tiny — which requires cancellation between different H; — or rely on substantial
cancellations between different contributions. The cancellations between different scalars
require them to have similar masses [161, 318] in which case they are related to the
orthogonality of the mixing matrix R [25]. However, since flavour constraints in type
I demand my+ 2 600 GeV (see section 2.4.2, specifically fig. 2.2) and the 7" parameter
forces one H; to be close in mass to H* (see section 2.4.1), these cancellations typically
require that one of the neutral scalars — H; if my, ~mpg, (i #j# k€ {1,2,3}) —is
almost purely CP-even. Lepton specific models behave similarly, however, since all Higgs
bosons can be light (see fig. 2.2), cancellations between different H; can happen more
naturally than in type II.

5.1.3 Summary

In this section, we have discussed the minimal model with a CP-violating scalar sector,
the C2HDM. In particular, we have focussed on the possibility of CP-violating Yukawa
couplings of his5. We have shown that in lepton-specific and flipped Yukawa sectors, it is
still possible for hyo5 to couple like a pure scalar to some fermions and like a pseudoscalar
to others. It is also possible for the CP-even and CP-odd Yukawa couplings to a single
kind of fermion to be of similar size. In Yukawa type II this behaviour would have been
allowed by Higgs measurements but is excluded by the bound on the EDM of the electron
while in type I — where the effective couplings to all fermions are equal — inclusive
Higgs measurements alone force hjo5 to have SM-like, CP-even Yukawa couplings.

Overall, we have found that the large CP-violating Yukawa couplings are possible without
violating the constraints from the electron EDM. We have also investigated the different
impact of this constraint in the Yukawa types. The results have shown that — regardless
of the Yukawa type — it is possible to remain in agreement with the electron EDM
bound even for a maximal CP-violating phase ¢(\5). However, this requires cancellations
between different contributions to the EDM.

The constraints used in the parameters scan of the C2HDM have since become stronger
with experimental progress. We have verified that all of the conclusions presented here
qualitatively hold even for updated constraints. In particular, since fulfilling the EDM
bound relies on large cancellations the impact of the updated electron EDM bounds [156]
on the phenomenology of the C2HDM is surprisingly small. However, including other
EDM measurements, like the limit on the neutron EDM [158] could have an important
impact on the model as the necessary cancellations to satisfy both bounds may be in
conflict with each other [152, 162].
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5.2 CP Violation in a Dark Sector

After discussing the phenomenology of a CP-admixture to his5 in the previous section,
we now turn to a very different model with a CP-violating Higgs sector. In this model —
a variant of the next-to 2HDM (N2HDM) [7, 319] — CP violation occurs exclusively in
a dark sector.

We consider an extension of the 2HDM by an additional real scalar singlet field 5. We
extend the Zy symmetry of the 2HDM to include the singlet field as
(1)1 — <I>1 , ¢’2 — —@2, (I)S — —(Ds, (531)

and — in contrast to the 2HDM scalar potentials of eqs. (2.29), (2.34) and (5.1) —
require this symmetry to be unbroken in the scalar potential. The resulting most general
scalar potential is

V = m?, 0% + mZ, |0 + [A OIDyDg + H.c.} (5.32)

A 2 A 2
S (@101) + T (@122) + Ma(B]81)(B]D,)

A 2
+ A (DID,) (DID,) + E(qﬁ%) + H.c.]

+

+ %mgcp@ + éAﬁ@é + %A7|<I>1|2<I>§ + %A8|<I>2|2<I>2 :
where all parameters except for A5 and the trilinear parameter A are required to be real
by hermiticity. We consider all fermions to be uncharged under the Z, symmetry which
forbids all couplings of ®, to fermions. Therefore, only ®; can couple to SM fermions
which ensures NFC. Since only ®; has Yukawa interactions, it must have a vev to give
mass to all SM fermions. This forces the Yukawa sector to be identical to the one of the
SM with &, playing the role of the SM Higgs doublet. The Z; symmetry eliminates many
of the possible terms in the potential but still allows A5 and A to a priori take complex
values. However, we can absorb one of the phases through a basis transformation. We
choose, without loss of generality, A5 to be real and keep A complex. Therefore, the
model contains a total of thirteen real parameters.

The trilinear term involving A is not invariant under the CP transformation?
Oy(t,2) = (¢, —7), Po(t, @) — O3(t,—2), Ps(t, @) — Ps(t,—7). (5.33)

The breaking of this specific CP-symmetry does not yet prove that the model is indeed
CP-violating. A model is CP-conserving as long as it is invariant under any generalised
CP transformation even if irreducible complex coefficients exist in its scalar potential [320].
Instead of trying to prove the existence of CP violation formally, we will construct an
observable that is known to be CP-violating and show that it has a non-vanishing value

4Notice that the CP transformation of the singlet field is trivial as discussed in section 4.1.
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5 CP Violation in Visible and Invisible Higgs Sectors

within the model. As long as the vacuum preserves CP, this proves that the model is
explicitly CP-violating.

We choose the simplest possible vacuum where only ®; acquires a neutral vev

(®)) = (0> (5.34)

of the same form as in the SM. This vacuum clearly preserves both CP and the Z,
symmetry eq. (5.31). The stationarity conditions, eq. (3.2), for eq. (5.32) imply that this
vacuum exists as long as

1
mi, + 5)\1@2 =0. (5.35)

Since all fermion and gauge boson masses are necessarily generated by &4, its vev has to
take the same value as in the SM, eq. (1.25). At this vacuum, the doublets are expanded

as
Gt H*

where — just like in the Higgs basis eq. (5.10) — the goldstone bosons Gt and G° are
components of ;. However, in contrast to the C2HDM any mixing between the field h
and p, n and ®g is forbidden by the unbroken Z, symmetry, and h will therefore obtain
couplings to SM gauge bosons and fermions that are identical to hgy. Its mass is given
by

mpy = Av* (5.37)

which we fix to 125 GeV.

The charged Higgs component of ®, is a charged Higgs mass eigenstate with a mass of

A
Mie = My + ?31)2 : (5.38)

In the basis (p,n, g) the mass matrix of the remaining neutral states is given by

m3y + 33450 0 —Im(A)v
M3 = 0 m3, + 33507 Re(A)v : (5.39)
—Im(A)v Re(A)v m% + A0?

where A3y5 = A3 + Ay + A5 and A34_5 = A3 + Ay — \5. These fields mix into three BSM
neutral scalar states Hy, Hy, and H3. We use the parametrisation of eq. (5.13) for the
3 x 3 mixing matrix R that diagonalises M% and assume the masses of these three scalar
states to be ordered as

muy, < mmy, < mpg, . (540)

The thirteen real parameters of the scalar potential can be expressed through a more

convenient set of input parameters. Using eq. (5.35) and eq. (5.37) we express m?; and
A; through v and my,. We use eq. (5.38) to express A3 as a function of my+ and m3,.
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5.2 CP Violation in a Dark Sector

We can then use the diagonalisation of My to express Ay, A5, A7 as well as Re(A) and
Im(A) through the three mixing angles a2 3 and the three Higgs masses my, ,,. This
leads to one condition on the Higgs masses and the mixing matrix

that can be used to express one of the masses through the other ones. We fix
mp, = 125GeV, v~ 246 GeV, (5.42)
and the remaining eleven input parameters (with a,b € {1,2,3} and a # b) are

2 2
mp+, mg, , mg, , ay, a2, asg, Mg mg, )‘2 ’ )‘6 ) )\8 . (543)

Both the scalar potential and the vacuum preserve the Z, symmetry eq. (5.31). As a
result, the physical eigenstates emerging from ®y and ®5 — H* and H; 53 — carry a
conserved dark charge of —1 that is preserved in all interactions to all orders. We will
refer to these four states as dark particles. On the other hand all SM particles and h
have a dark charge of +1. As a consequence, dark particles can only be produced in pairs
while their decays must always produce at least one other dark particle. In particular, the
lightest of these dark particles is stable and a candidate particle for dark matter (DM)
(see section 1.2.1).

This feature of the model is similar to the inert version of the 2HDM, the so-called inert-
doublet model (IDM) [219, 321-323] (recently studied in e.g. refs. [245, 324, 325]). The
main difference between our model and the IDM is the mixing between the three states
p, n and ®g in our model whereas p and 1 would be mass eigenstates in the IDM (and
®5 would be absent). The mass matrix, eq. (5.39), clearly shows that this mixing is a
direct consequence of the trilinear parameter A. However, regarding the phenomenology
of the dark-charged scalar, this model is equivalent to the IDM.

5.2.1 Constraints and Parameter Scan

In order to study the phenomenology of the model we created a sample of phenomen-
ologically viable parameter points by implementing the model and its constraints in a
private updated version of ScannerS [7, 125, 249, 290].

As discussed in sections 2.2 and 3.2, constraints on the parameters of the scalar potential
can be obtained from perturbative unitarity and boundedness from below. These
constraints only depend on the quartic terms of the scalar potential, which are identical
between the N2HDM and our model. Therefore, the known constraints from the N2HDM
on perturbative unitarity in the high energy limit [7] and boundedness from below [221]
are applicable. These will be discussed in more detail when we study the N2HDM in
section 6.3.1.
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5 CP Violation in Visible and Invisible Higgs Sectors

Table 5.3: Input parameter ranges for the parameter scan of the CP-violating dark sector
model. The three mixing angles o 23 are scanned through their whole allowed
range and a # b € {1,2,3}.

2 2
mHa’b, mmg+ /\2 )\6 )\8 Moo, Myg

GeV GeV?
min 70 0 0 —26 1073
max 1000 9 17 26 106

We use the approach of chapter 3 to numerically check for vacuum stability constraints in
the model. As discussed in section 3.1.2, parameter points with a bounce action B < 390
for tunnelling to the most dangerous minimum (MDM) are short lived and excluded by
the vacuum stability constraint. For simplicity, we do not include the uncertainty region
390 < B < 440 and use this very conservative constraint where only parameter points
with a survival probability < 5 x 10~7 through the age of the universe are excluded.

Since by construction all tree-level interactions and vertices of h are identical to hgy
and the interactions of the dark particles are limited by their dark charge, many of the
experimental constraints discussed in section 2.4 are trivially fulfilled in the model. An
exception are the EW precision constraints through the oblique parameters S, T, and
U discussed in section 2.4.1. We calculate model predictions using refs. [137, 138] and
compare to the limits from ref. [135]. Since the charged Higgs boson H* does not couple
to fermions, the flavour constraints from section 2.1 do not constrain the model. Since
none of the CP-mixed scalars couple to fermions they also cannot induce EDMs even
though the model is CP-violating.

One possibility to constrain the model through Higgs measurements would be in invisible
decays of hjas [326, 327]. For simplicity, we require 2mpy, > my, such that this decay is
kinematically forbidden and the bounds are trivially satisfied. The only remaining ho5
observable that can be used to constrain the model is the decay h — v7.5 This decay is
sensitive to a BSM coupling of h — the coupling of h to a pair of charged Higgs bosons
H* which is allowed by the dark Z, symmetry. The effect is identical to the IDM, and
we may use [328]

Gra*m} 4m7 4m?,
D(h =)= ——F—+ 3Q2A1/2 — | + A
128+/273 J;b ! m} m? -
N 302 A <4m§{i) 2
om2,. C\ m2
H=* h

to calculate the decay width in our model.® The sum runs over the relevant heavy quarks
(of electric charge Qf), and Ay, A/ and A; are known form factors [329, 330]. The

>The decay h — Z~ could also but has not yet been observed.
0The corresponding diagrams are shown in eq. (6.65).
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third term contains the contribution of the charged Higgs and depends on the hH* HT
coupling o< A\3. Since the partial width of hgy into v is tiny compared to the decay
widths into bb or WW, we can neglect the effect of the charged Higgs contribution to
h — ~7 in the total width and the remaining branching ratios. However, the charged
Higgs contribution can substantially modify the BR(h — 7). We compare the model
prediction to a recent measurement of pp — hy95 — 77y [331] to obtain a constraint.

Finally, since the model contains a dark-matter candidate, it must fulfil some dark-matter
specific constraints. A rather trivial one is that dark matter must not be charged which
requires

mpg, < Mg+ . (545)

Additionally, the relic density (see section 1.2.1) of H; must not exceed the observed
DM density, and H; as a DM candidate must not be ruled out by existing DM searches.
We use the code MicrOMEGAs [51-57] to calculate the relic density €2, and the spin
independent scattering cross section between dark matter and nucleons. We then require
(2. to be at most 20 larger than the observed dark matter density [48]

(Qeh®)py = 0.120 £ 0.001 . (5.46)

The spin independent dark matter scattering cross section as a function of the DM mass
is constrained by direct detection experiments (see section 1.2.1). We use the strongest
available bound from XENONIT [50, 332]. Since H; is a typical weakly interacting
massive particle (WIMP) where direct detection is known to give the strongest bounds,
we neglect constraints from indirect detection and searches for DM pair production at
colliders.

Using these constraints, we perform a random scan using the input parameter ranges
given in table 5.3. The mass of one of the neutral dark scalars is determined through
eq. (5.41), but is required to lie in the same interval as the other masses. The lower bound
on the masses ensures that decays of h — H{H; or h — H*H* are always forbidden.
The ranges for Ay, A\g and Ag are chosen to cover the whole parameter space possible
without violating boundedness or perturbative unitarity.

Before examining CP violation, we first discuss the impact of the h — ~~ signal strength
observable on the model. Figure 5.6 shows the value of the observable

o(pp = hizs) BR(hi25 = 77)
a(pp — hsu) BR(hsy — 77)
['(hias — 77)

L(hsm — v7)

gy = (5.47)

~ (5.48)
The second line holds since the production cross section of hjs5 is identical to hgy, and
we have neglected the impact of the modified decay width into v, eq. (5.44), on the
total width. For low charged Higgs masses mpy=+ large deviations of ji,, from one can
appear. If i, is reduced — which happens for large negative values of A3 — the model is
constrained by the measurement [331]. The upper limit obtained from the measurement
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Figure 5.6: The observable (., as a function of the charged Higgs mass mpy=. The grey
region is excluded at 95 % confidence level by the results of ref. [331]. The
corresponding upper bound is outside of the range of the plot. The colour code
indicates the stability of the EW vacuum distinguishing between absolutely
stable (green), long-lived (blue), and short-lived (red). The more unstable
points are plotted on top, green points exist throughout the parameter range.

is outside the range of the plot and does not constrain our model, which can reach values
of at most fi,, ~ 1.2. This constraint directly impacts A3, which governs the coupling of
hH*H~, leading to a lower limit of about A3 > —1.03 while the maximal value of 8.89 is
only constrained by perturbative unitarity.

Figure 5.6 also shows the impact of the vacuum stability constraints through the colour
code. The absolutely stable (green) and long-lived (blue) points feature sufficiently stable
EW vacua, while the short-lived (red) points are excluded by vacuum stability constraints.
Parameter points with stable or long-lived EW vacua exist behind the whole red region
in fig. 5.6. Therefore, vacuum stability does not directly constrain the phenomenology of
this observable.

Throughout the considered mass range for H; in table 5.3, it is possible to saturate
the observed value of the relic density 2. without violating limits from direct detection
experiments. However, for most parameter points considered in the following, H; is only
a subdominant contribution to (2. such that additional sources of DM are required.

5.2.2 Observing CP Violation in a Dark Sector

We will now construct a CP-violating observable in our model. This will both prove that
CP is indeed explicitly violated, and indicate an avenue towards experimentally probing
this CP violation.
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5.2 CP Violation in a Dark Sector

Several observables could be sensitive to CP violation. Most rely on the fact that all
vertices of the form Zh,hy, for a # b € {1,2,3} exist in the model. These arise from the
covariant derivative in the kinetic term of ®5 which includes a term involving the neutral
component fields p and n as

9
2 cos Oy

where ¢ is the SU(2), coupling constant and 6y is the weak mixing angle. In the mass
basis, this leads to couplings of the form

|D,®s)* D

Zy (nd"p — pd'n) (5.49)

g
LD Z,hshy—"———
2 Ly bQCo

(P — Ph) [Ra2Ren — RarRio] - (5.50)
S QW

For a # b # ¢ (a,b,c € {1,2,3}) the expression in brackets reduces to R. by the
orthogonality of R. The simultaneous existence of these vertices is a clear signal of
CP violation. If all h, were CP eigenstates — like in the RZHDM where h and H are
CP-even while A is CP-odd — then the vertices ZAh and ZAH could exist but ZHh
would be forbidden by CP-invariance. Since all of these vertices exist in our model the
h, cannot be eigenstates of CP. Notice that no vertices of the form Zhh, are possible as
they are forbidden by the dark Z, symmetry.

In principle, observation of all three Zh,h;, vertices — either through a decay h, — Zh;, or
a production process Z — hyh, — could be used to establish CP violation experimentally.
However, since the h, are dark particles and the lightest of them is stable, they are only
accessible through mono-Z or mono-Higgs searches in channels like ff — Z* — hohy —
hohoZ or ff — Z* — hghy — hohgh. Since these final states occur in many dark matter
models regardless of the CP nature of the involved particles, they are not a good probe
of CP violation in the dark sector.

Instead, we study the anomalous triple gauge coupling induced by these vertices. The
Lorentz structure of the ZZZ vertex [333-336] can be expressed through two form factors
by assuming that two Z bosons are on-shell and neglecting fermion masses. The resulting

vertex function is
P> —m?
ey =i 2 (7 (99" + plg™) + FEe P (pa —py), | (5.51)
Z

where p; is the momentum of the off-shell Z boson and p; and p3 are the momenta of
the on-shell Z bosons. The form factor fZ violates C and P but conserves CP, while f7
is CP-violating. In our model there is only a single one-loop diagram contributing to
this form factor:

Z3
he ;;
Zy ~rra Ty (5.52)
hy Lﬂ
Zy
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Figure 5.7: The CP-violating fZ(p?) form factor, normalised to fio3, for my, = 80.5GeV,
mpy, = 162.9GeV and mpy, = 256.9GeV, as a function of the squared off-
shell Z boson 4-momentum p?, normalised to m%. Figure from ref. [2].

In ref. [337] these form factors were studied in the C2HDM where also diagrams with
internal Z bosons or neutral goldstone bosons contribute. These are absent in our model
as the h,ZZ and h,ZG° vertices are forbidden by the dark Z, symmetry. We adapt the
expression for fZ in the C2HDM [337] to our model and find

200 m>
Z(, 2 A 2 2 2 2 2 2
fi(p) = R —— fr23 Y €iuCoor (pF, m, m%, m?,m3, my) (5.53)
20, P1 — M7y

i?j’k

with the LoopTools [338] definition of the function Cyp;. The fio3 factor denotes a
normalised product of the couplings at the vertices in eq. (5.52) indicated by red dots.
Using eq. (5.50) this is given by

3
1\ 2
Ji2s = Ri3Ro3R33 < (—) : (5.54)

3
The upper bound is a consequence of the orthogonality of R and is saturated when
all R;3 are equal. Notice that the third column of the mixing matrix corresponds to
the admixture of g — not of the imaginary component  — into the respective mass
eigenstate. This means that fio3 is maximised if the singlet component is evenly split
between the mass eigenstates.

In fig. 5.7 we show — for a typical combination of dark scalar masses (my, ~ 80 GeV,
mp, ~ 163 GeV and my, ~ 257 GeV) — the evolution of fZ normalised to fio3 with p?,
the squared 4-momentum of the off-shell Z boson. This illustrates the highly non-linear
dependence of fZ on the external momentum p?. Figure 5.7 can be compared to fig. 2
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Figure 5.8: The imaginary part of fZ versus the coupling f23 normalised to its maximum
value (see eq. (5.54)) for a centre of mass energy of p? = (450 GeV)”.

of ref. [337], where somewhat larger magnitudes for the real and imaginary parts of f#
were observed in the C2HDM.

Figure 5.8 shows the imaginary part of fZ — which contributes directly to asymmetry
observables — versus fi93 that is normalised to its maximum value. We choose a value
of p? = (450 Ge\/)2 corresponding to a possible collision energy at a future linear collider.
Figure 5.8 illustrates that the model indeed allows maximum mixing between the neutral,
dark scalars and the theoretically maximal value of fio3 is reachable. The values of
Im(f#) can reach values of O(107%) for the maximum mixing scenarios. We have found
that larger masses — and larger mass splittings — seem to be required for larger [Im(f7)].
This can be understood by considering the form of the mass matrix when the mass
splittings between H; 53 are small. In the limiting case of three degenerate dark scalars,
the mass matrix eq. (5.39) would be proportional to the identity matrix, and no mixing
— and no CP violation — would occur. Therefore, regions of parameter space with
small mass splittings between the dark neutral scalars tend to produce smaller values
of [Im(f#)|. This argument has been formalised in the 2HDM [337] through the use of
basis invariant quantities that signal CP violation [339, 340].

Anomalous couplings, such as those responsible for a ZZZ vertex, can be probed in
Z-pair production. The search for anomalous triple gauge couplings in those analyses
uses an effective Lagrangian for triple neutral vertices parametrised as [333]

Lyzz = =g ([ OuF") + f7 (9,2")] Z (0° 2.
z i (5.55)
— [ (0" Fua) + 17 (0"Za)) 2725 |

where vZ Z vertices were also considered. In this equation, F),, is the electromagnetic
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tensor, 2, = 0,4, — 0,Z,, and ZW = €upeZ"7 /2. The fZ coupling above is assumed
to be a constant, and as such it represents at most an approximation to the f7(p?) of
eq. (5.53). Furthermore, the analyses take this coupling to be real, whereas it is in general
— and in our model in particular — complex. With all that under consideration, the
latest results from the LHC [341-344] probe the fZ coupling of eq. (5.55) to order ~ 1073,
whereas the typical magnitude of fZ(p?) in our model (for both real and imaginary parts)
is ~ 10~7. We stress, however, that the two quantities cannot be directly compared, as
they represent very different approaches to the ZZZ vertex.

An observable that might be used to probe anomalous ZZZ interactions in the future is
the asymmetry AZZ [337, 345]. At a future linear collider with a centre of mass energy
/s the process ete™ — ZZ could be used to determine the cross section 0,5 for the
production of two Z bosons of helicities A and A. This can be used to construct an
asymmetry
Oi0— 00—

A?Z — a.tsz_ o Im(f7(s)). (5.56)
This asymmetry was not constrained by LEP as the helicities of pair produced Z-
bosons could not be reconstructed. The direct proportionality of this asymmetry to
the CP-violating form factor Im(f#) means that if Im(f{) is non-zero there is always a
corresponding non-zero prediction for a CP-violating observable, the asymmetry AZZ.
Thus we have finally proven that CP is explicitly violated in our model. However, we find
this asymmetry to be at most ~ 107° making it challenging to observe experimentally.
We have discussed this asymmetry in more detail and have also presented an analysis of
the CP-violating ZW*W ™~ vertex in ref. [2].

5.2.3 Summary

In this section, we have presented another minimal model with a CP-violating Higgs
sector — this time, the minimal model with a CP-violating dark scalar sector. The model
adds a dark sector to the SM that is characterised by a Zs symmetry and contains a
SU(2); doublet and a real singlet. The lightest dark sector particle is stabilised by the
Zo symmetry and thus a candidate for DM. The Zs symmetry allows a trilinear coupling
between the two different doublets and the singlet, which introduces a CP-violating
phase. The CP violation is entirely confined to the three CP-mixed dark neutral scalars
and can neither enter the fermion sector nor the interactions of hjas.

We have discussed how to constrain such a model and found dark matter constraints
and constraints on the dark-charged Higgs boson through ji,, to be the most important.
Since the CP-mixed scalars do not couple to fermions, it is highly non-trivial to observe
the CP violation in the model. However, we have shown that the CP violation in this
model leads to anomalous triple gauge couplings. These triple gauge couplings contain
the CP-violating form factor f7, which takes non-zero values in our model.
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Direct measurements of ZZ production cross sections at the LHC are being used to
constrain anomalous ZZZ vertex form factors. However, these analyses assume constant
and real form factors, whereas fZ in our model can have a sizeable imaginary part and
is highly dependent on the external momentum. Thus a direct comparison with current
experimental analyses is not conclusive. We have also considered a specific asymmetry,
AZZ built with ZZ production cross sections, that could be probed at a future linear
collider. This asymmetry observable is directly proportional to the form factor Im(f7).
Therefore, we have constructed a CP-violating observable that takes non-zero values,
which proves that CP is explicitly violated in our model. However, we found the
model prediction for this asymmetry to be very small, making it challenging to observe
experimentally.

5.3 Conclusions

The two CP-violating models studied in this section exhibit a completely different phe-
nomenology. On the one hand, the C2HDM is highly constrained by Higgs measurements
and bounds on EDMs. The CP violation in the model is directly accessible through the
Yukawa couplings of the hjo;, which may have sizeable CP-odd components. Within
current constraints, even the possibility that his5 couples to some fermions as a pure
pseudoscalar remains and may be probed in the future. On the other hand, for the model
with a CP-violating dark sector it is challenging to establish that CP violation even
occurs. Since the CP-mixed states have no couplings to fermions and the hyo5 is not one
of them, the magnitude of the CP violation is unconstrained by current measurements
and may only be probed through anomalous triple gauge couplings in the future.”

This difference is especially remarkable, considering how little difference there is between
the two models from a theoretical perspective. From a symmetry point of view, the only
difference is that the Zy symmetry — which is broken both softly and by the vacuum
in the C2HDM — remains unbroken in the dark sector model. If this were the only
change, the result would be the IDM — a model where CP violation in the scalar sector
is impossible [346, 347]. The addition of a simple real singlet field, which is charged
under the Zy symmetry, completely changes this picture. Now the model contains explicit
CP violation, and the two scalar states of the IDM mix with the singlet field into three
CP-mixed scalars. Even the coupling fi3 that enters the only CP-violating anomalous
triple gauge couplings turned out to be maximised if the singlet field mixes maximally
into each mass eigenstate.

In the next chapter, we will discuss another example of an additional real singlet field
completely changing the properties of a well known BSM model when we study the
vacuum structure of the N2HDM.

"The presence of CP-violating Yukawa couplings is also a prerequisite for generating a matter-antimatter
asymmetry through EW baryogenesis (see section 1.2.2). This is a possibility in the C2HDM (see
e.g. refs. [67, 68, 72, 73]) but cannot be achieved in the dark sector model.
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6 Vacuum Structure of the N2HDM

In this chapter, we present a detailed analysis of the vacuum structure of a BSM model
and its consequences on phenomenology. We combine an analytical analysis with o
numerical study based on chapter 3 to explore the phenomenological impact of the vacuum
stability constraints. We demonstrate direct links between vacuum stability and collider
observables. Our ref. [4] contains the results presented in this chapter.

6.1 The N2HDM

The next-to 2HDM (N2HDM) [7, 319] extends the SM by a second scalar SU(2); doublet
and a real scalar singlet field ®5. Two Z, symmetries are imposed on the scalars to
reduce the number of free parameters, enable natural flavour conservation (NFC) (see
section 2.1), and (potentially) allow for dark matter (DM) (see section 1.2.1). The first
Zo symmetry

D - Py, Py —Py, Pg— Dy (6.1)

can be extended to the fermion sector leading to four distinct Yukawa types in full
analogy to the two-Higgs-doublet model (2HDM) (see section 2.5.1). We allow a bilinear
soft breaking term of this symmetry. The second Zs symmetry

(I)LQ — (131’2 , CI)S — —q)s (62)

leads to a dark singlet if it remains unbroken. The most general renormalisable scalar
potential with this field content and symmetry structure is

V = m2| @12 + my |y — <m§2q>{q>2 + h.c.) (6.3)
1 1 1 2
+ 5A1|<1>1|4 I 5A2|<1>2|4 gD 2| a2 + M| DIy + 5 [A5 (cp{@z) + h.c.]
+ e+ Dy o+ Ly |12 ®% + 1y |Dy|? D2
s®g 6%5 7|P1" Py 8| P2 Py .
2 8 2 2
Two of the coefficients — m?, and A5 — could be complex parameters and — just like
in the CP-violating 2HDM (C2HDM) of section 5.1 — lead to CP violation if eq. (5.8)

holds. However, we only consider the CP-conserving version of this scalar potential.
Imposing the standard CP symmetry

(1)172 — (I)iQ? (I)S — (I)S (64)
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6 Vacuum Structure of the N2HDM

forces both m?, and A5 to be real up to field rephasings. The model has twelve real
parameters and — after mass diagonalisation — three CP-even, one CP-odd, and a pair
of charged Higgs bosons.

The most general classical field configuration of the N2HDM is

L /0 1 vcB
P, — E (U1) , Py — ﬁ (Ug n iUCP) , by — Vs, (65)

where we have used global SU(2), and U(1),  transformations to eliminate four degrees
of freedom (see section 3.3.1). Non-zero values of the vacuum expectation value (vev)
vep lead to spontaneous CP violation, while a non-zero vcg spontaneously breaks electric
charge. The numerical prefactors have been chosen such that all of the classical fields v
have canonically normalised kinetic terms. The stationarity conditions for these field
configurations are

oV 1
aT =0= —v2m52 + vlmi + 51]1 (U%)\l + Ug)\345 + U%BAg + U%P/\34_5 + Ugv/\7) y (66)
1
a—v—O——va—l—va%—lv(vQ)\ + 3y + ViAo + vEp A + VEAS) (6.7)
vy 2Mgp T 5 V2\V1A345 T Ua A2 cBA2 T UcpA2 T UgAg) , .
OV _ _ 2 1 2 2 2 2 2
Do = 0 = vepmsy + 51}@3(2}1 A3 + V3 + VEgAa + UipAa + UGAs) (6.8)
CB
ov e 2 1 2 2 2 2 2
81} =0= VepMigy + §Ucp(’l}1 )\34_5 + 'U2>\2 + UCB)\Q + ’UCP>\2 + US)\g) s (69)
CP
8_V N 2 1 2 2 2 2 2
av — 0 — /Usms + 21}8(/01)\7 + UQ)\S _|_ UCB)\S + /UCP>\8 + ’Us)\ﬁ) 5 (610)
S

where A3y5 = A3+ Ay + A5 and A34_5 = A3 + Ay — A5. These conditions allow for many
different phases of the model [7].! The two phases with the correct pattern of electroweak
symmetry breaking (EWSB) are

N v, v #0,  wvs,ves, vep =0, (6.11)
Ns:vp,v9,0v5 #0, wvep,vep = 0. (6.12)
In phase N the singlet Z, symmetry is unbroken leading to a 2HDM-like visible sector

with a dark singlet [348]. In phase N's all Zy symmetries are broken by the vevs, and all
three CP-even scalar states mix with each other [7].

Equations (6.6) to (6.10) also allow for phases where the vacuum spontaneously breaks
either electric charge or CP. The charge breaking phases are

CB: w,v,veg#0, wvg,vep =0, (6.13)
CBs: wy,v,vs,09c8#0, vep =0 (6.14)

!Throughout this chapter and in contrast to the previous chapter, the term phase refers to a vacuum
configuration in analogy to thermodynamics, and never to a complex model parameter.
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6.1 The N2HDM

and the CP-breaking phases are

CP: wy,vg,vcp #0, wvg,vcg =0, (6.15)
CPs: wy,vg,vg,0cp #0, wveg=0. (6.16)

However, the stationarity conditions imply that vcg and vep cannot be non-zero simul-
taneously. In other words, the minimisation of the potential implies that, if veg # 0 then
vep = 0, and vice-versa. Another phase exists, where only the singlet Z, symmetry is
broken and EWSB does not occur

S: wg#0, wy,v,vep,vcp =0. (6.17)

The final possibility is the trivial unbroken phase where all vevs are zero.

This list does not include the phase we considered for the dark sector model in section 5.2,
where only ®; has a non-vanishing vev. Such a phase is forbidden in the N2HDM for
m2, # 0 as a result of eqs. (6.6) and (6.7). In the dark sector model, the exact Zy
symmetry eq. (5.31) forces m%, = 0 and allows this phase to exist. Additionally, the
following analysis relies on a decomposition of the scalar potential into field bilinears,
which is impossible if trilinear terms — such as the A®{®,dg term of eq. (5.32) — are
present. Therefore, even though the scalar potentials of the two models — eq. (5.32) and
eq. (6.3) — are very similar, the following analysis does not generalise to the dark sector
model. We will discuss the phenomenological consequences of this behaviour below.

6.1.1 The Bilinear Formalism

In the 2HDM it has been shown that if a normal vacuum N exists any stationary point
that is charge or CP breaking is necessarily a saddle point that lies above the normal
minimum [220, 349-351]. Already in ref. [7] we showed through numerical counterexamples
that this conclusion no longer holds in the N2HDM.

In order to substantiate this discussion with a detailed analytical analysis we make use
of a bilinear formalism, similar to what has been developed for the 2HDM [220, 347,
349-360]. We define the real, five-component vector X as

T |(I)1|2
) ’¢2|2
X =|2z3| = | Re(@ld,) (6.18)
4 Im (P ®,)
Zs5 %CD%
and rewrite the scalar potential as
1
V=XTA+ 5XTBX (6.19)
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with the vector A and the symmetric matrix B given by

m%l )\1 )\3 0 0 )\7
ma, Az Ao 0 0 Mg
A=|=2m3 |, B=[0 0 20\ +X5) 0 01. (6.20)
0 0 0 0 2\ s —2X5) O
m% )\7 )\8 0 0 >\6
The derivative? of the scalar potential is given by
oV
"= =A+ BX. 21
V e + (6.21)

At a stationary point where the fields acquire expectation values of the form eq. (6.5)
the expectation value of the vector X becomes

v}
L | V3 +vép + vl
<X> = 5 V1U2 . (622)
V1Ucp
v§

Using the stationarity conditions

<gvvi> - 8&? (V=0 (6.23)

with v; € {v1,v2,vcp, vep} as well as eq. (6.19) it can be shown that [220]

(Vy = (X)TA = —%(X)TB(X> : (6.24)

In the following (X) and (V') will be needed at each kind of stationary point. The
value of (X) can be trivially deduced from egs. (6.11) to (6.17) and (6.22). The value of

(V') can be simplified using the stationarity conditions and the eigenvalues of the mass
matrices. This leads to [4]

v%mgﬁ 022
vim v
/ ! Hi2 / m%—li '
(Vin = o2 —2vvomps |, (V)ns = 7 —201 U9 (6.25)
0 0
v*m?% 0

for the minima of the phases with correct EWSB. With the parameter v? = v? 4+ v the
squared charged Higgs mass is

2

2 o U 1 2
= — — —(A A 2
Mg+ 7’”122]11}2 2( 4+ X507, (6.26)

2Since X is a vector of bilinears this is the first derivative in terms of X but the second derivative in
terms of the fields.
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6.2 Stability of the EW Phases
and the squared dark singlet mass is given by
1
m3, =m% + 5 (A7} + Asv3) . (6.27)

The charge-breaking phases yield

0 0
0 0
(Ves=1| 0 , (Vess =101, (6.28)
0 0
még 0
where )
meg = mg + 3 (Arof + As(v3 + vEp)) (6.29)
and the CP-breaking minima lead to
0 0
0 0
<V,>C77 = 0 ) <V/>C733 - 0 , (630)
0 (A4 — As)vivep
mip 0
where .
mép = mz + 5 ()\71;% + As(v3 + vép)) ) (6.31)

6.2 Stability of the EW Phases

With this information, we can study the relative depth of the different stationary points
of the N2HDM. We assume that the model parameters are such that the stationarity
conditions permit solutions of at least one of the phases with viable EWSB — N or Ns
— and another kind of stationary point. We call such a scenario coezisting stationary
points of the corresponding phases.

If a secondary stationary point coexists with the electroweak (EW) vacuum, the secondary
stationary point could be a deeper minimum and vacuum tunnelling would be possible.
Therefore vacuum stability constraints as discussed in chapter 3 need to be applied in this
case. The bilinear formalism allows us to establish analytically which kinds of minima
can coexist in the scalar potential and lead to vacuum stability constraints.

Consider two stationary points of different phases ¢ and j. All quantities are expectation
values, and we drop the brackets for a cleaner notation. We can explicitly calculate the
product X'V but also express it through eq. (6.21) as

X[V =X/ (A+ BX;) = X' A+ X BX;. (6.32)
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6 Vacuum Structure of the N2HDM

From eq. (6.24) we know that
X[A=2y (6.33)

and obtain
X/BX; = X]'V] —2V;. (6.34)

Since the matrix B is symmetric we obtain the same right-hand side when ¢ < j.
Equating these leads to a formula for the depth difference of the two stationary points

Vv =ty xv) (059

N —

6.2.1 Stability Against Charge and CP Breaking

We will begin by considering scenarios where a vacuum with viable EWSB coexists with
a charge- or CP-breaking stationary point. In the following, we add a secondary subscript
to the vacua v 2 g denoting in which phase they are evaluated.

Stability of A/ Vacua Against Charge Breaking

Applying eq. (6.35) to the case of an N and a CB vacuum leads to

2
mHi
2
v |y

Veg — Vv = [(U2NU1(ZB — UlNU2CB)2 + U%N—U%B} . (636)

Both the quantity in brackets and v? are always positive. Therefore, if the N stationary
point is a minimum and thus m7,. > 0, it will always be deeper than any CB stationary
point and therefore stable against vacuum decay.

In the case of N and CBs, the results are similar with

mi s 2, .2 2 mi, 2
[(UQNUlCBS — VinVacss) + UINUCB} + —| Vgeps- (6.37)

%BS_VN:
4o? | 4 |y

Again, the right-hand side is positive as long as N is a minimum. Therefore, a vacuum
of type N is also stable against vacuum decay into a CBs stationary point.

Stability of /s Vacua Against Charge Breaking

The analysis for the N's case is analogous but leads to different conclusions. Starting
with the case of an A's and a CBs stationary point we obtain

2
m
HE [(UQNSUICBS - Uwsvzczss)2 + /U%.N’SU%B} ) (6-38)

VCBS - VNS =
2
4% |,
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6.2 Stability of the EW Phases

which is always positive as long as N's is a minimum. N's vacua are thus stable against
vacuum decay into CBs stationary points.

However, the depth difference between an N's and a CB stationary point is

qui 1

Ves — Vivs = [(vansvies — vinsvacs)” + vinvip) — ngﬁ/\/’sm?’l?‘ (6.39)

? |y,
The sign of the right-hand side now cannot be established, and there is no clear relationship
between the depths of the two vacua. As such, N's vacua can coexist with potentially
deeper CB minima.

Stability of A/ Vacua Against CP Breaking

The analysis for the CP-breaking phases is analogous. The depth difference between an
N and CP vacuum is

2
m
Vep — Vv = 2 [(vanvier — vinvacp)? + vipvEp) (6.40)
N
and for N/ and CBs it is
m> m2
Veps — Vv = 4—';1 [(varrvieps — ViNVaeps)” vinVEp] + —L21 vEeps - (6.41)
Gl Ve 4 N

The pseudo scalar mass at N (and N's) stationary points is given by
1
m% = mi. + 5()\4 S e (6.42)

As long as AV is a vacuum and thus m? > 0, both right-hand sides are positive, and A is
therefore stable against tunnelling into CP and CPs stationary points.

Stability of A/'s Vacua Against CP Breaking

The results for N's EW vacua is, again, more interesting. For an NV's and a CPs stationary
point we obtain

mi

2 [(vanrsvierps — Vinsvacps)” + Vi, vép] (6.43)

Ns
which is positive when As is a minimum. Vacua of phase N's are thus stable against
vacuum decay into CPs stationary points.

VCPS - VNS =

The depth difference between an N's and a CP stationary point is

1
[(UstUu:P - U1N5U2C7>)2 + U%NSU%P] - ngNsmgP . (6.44)

mi

402

VCP - st =

Ns
Again, the sign of the right-hand side is not fixed and N's vacua can coexist with
potentially deeper CP minima.
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6 Vacuum Structure of the N2HDM

6.2.2 Other Coexisting Minima

Vacuum instabilities may also arise if N, s, or even S minima coexist. This can
happen either if minima of different phases coexist or if the stationarity conditions admit
multiple stationary points of the same phase but with different depths. If an N and an
N's stationary point coexist we obtain

1

m2
1 ) (VA VaN's — VinsVan)” + Zm%ﬂf?/\/s . (6.45)
Ns

2
N 4v

for their depth difference. No definite sign can be established, and if N/ and A's minima
coexist either of them may be deeper. Therefore, though N is stable against charge
breaking or CP breaking minima, it is not guaranteed to be stable against a deeper N's
vacuum. Likewise, an N's minimum may not only be unstable against deeper CB or CP
minima but also against a deeper A/ minimum. Similarly, stability between A/ and S as
well as N's and S minima cannot be established analytically.

The final possibility for instability of vacua of types N (or N's) is that the stationarity
conditions eqgs. (6.6) to (6.10) yield more than one solution of a given phase. This means
that e.g. a solution

1

ﬂ{vl’ vo } (6.46)

N = (@), (@)} =

exists as well as another one with
1
N = E{Ui, vh} (6.47)

and different vevs vy # v}, vy # v} and values of the scalar potential Vy # V.

This possibility already arises in the 2HDM [220, 351, 355, 361, 362] — therein dubbed
“panic vacua” — and it remains in the N2HDM as an avenue for instability of the N/
vacuum (and also of the N's one, since the minimisation equations of the potential may
yield more than one solution of type N's). We do not study this possibility analytically
but include it in the numerical analysis of section 6.3.

6.2.3 Summary

The results of the previous sections show how the addition of the real singlet field to
the 2HDM qualitatively changes the vacuum structure of the model. In the N2HDM
normal EW-breaking minima are no longer necessarily the global minima of the model.
We summarise the results we obtained in table 6.1. If a minimum of type N exists, it is
certainly deeper than any charge or CP-breaking stationary points that the potential
might have — the model guarantees the stability of N against CP or charge breaking.
However, this does not hold for minima of type N's. These can coexist with charge-
breaking CB or CP-breaking CP minima. Additionally, there is no fixed ordering of
depths between N, N's, and S minima.
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6.3 Phenomenological Impact of Vacuum Stability

Table 6.1: Stability of EW-breaking NV and N's vacua in the N2HDM. An EW-breaking
vacuum (i.e. a local minimum) in the given phase is necessarily deeper than
all stationary points marked as “stable”. For the stationary points marked
with x either of the two extrema may be the deeper minimum depending on
the model parameters.

EW vacuum N Ns CB CBs CP CPs S

N X x  stable stable stable stable X
Ns X X X stable X stable x

These results underline the curiously unique nature of the vacuum structure in the 2HDM,
where the existence of a minimum of a given nature automatically implies that no minima
of different types may exist. Models with a different scalar content do not share this
property (this has previously been shown for singlet extensions of the SM [250] and
models with more than two doublets [363]). We have shown that the mere addition of
a real singlet to the 2HDM is enough to qualitatively change the vacuum structure of
the model. The N2HDM preserves some of the properties of the 2HDM — wherein the
N minimum mimics the stability behaviour of the normal minima of the 2HDM — but
when N's minima are considered, tunnelling to deeper minima of different types become
possible.

6.3 Phenomenological Impact of Vacuum Stability

We perform a numerical study to illustrate the impact of the N2HDM vacuum structure on
the phenomenologically relevant regions of the parameter space. We focus on parameter
points where the EW vacuum is of type N's since — following the analytical analysis —
this is the most interesting case for vacuum stability constraints. We have studied the
phenomenology of this phase — called broken phase — in detail in ref. [7].

The pseudoscalar and charged sector of the N2HDM are — identically to the 2HDM —
diagonalised with the mixing angle S defined through

tan § = %2 (6.48)
U1

separating the would-be Goldstone bosons from the physical pseudoscalar A with mass
given in eq. (6.42) and the charged Higgs bosons H* with mass given by eq. (6.26). For
an N's EW-vacuum all three neutral, CP-even scalar fields mix into three physical Higgs
bosons Hjo3. Their 3 x 3 mixing matrix is parametrised as eq. (5.13) in terms of the
mixing angles a; to ag that can be chosen to lie in the range

T

< Q123 < 5 . (649)

| N
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The CP-even scalars are assumed to be mass-ordered such that
mpg, <My, < My, - (650)

Using the mass diagonalisation and the minimum conditions of the phase Ns it is possible
to express the twelve real parameters of the N2HDM Lagrangian through the parameters

.2 2 2
a1, g, a3, tanfl, v=v{4+vy, Vs, MuL,,, Ma, Mmyx, miy,. (6.51)

The relations between these and the parameters of eq. (6.3) can be found in the appendix
of ref. [7].

6.3.1 Parameter Scan

We performed a scan of the N2HDM parameter space using an improved private version
of ScannerS$ [7, 125, 249, 290]. All of the resulting parameter points fulfil the applied
theoretical constraints and are compatible with the applied current experimental con-
straints at the 20 level (see below). We focus on the Yukawa type I but occasionally
comment on type II. The Yukawa type has no direct impact on vacuum stability at
the tree-level. However, since the regions of parameter space favoured by the experi-
mental constraints strongly depend on the Yukawa type, there will be visible differences
regarding the impact of vacuum stability constraints.

The tree-level perturbative unitarity bounds in the high-energy limit as described in
section 2.2 were derived in ref. [7]. Closed-form conditions for boundedness from below
(see section 3.2) were first derived in ref. [221]. In our notation the parameter region
allowed by boundedness is

QU (6.52)
with
0<>\1,2,6§ 0< \//\1)\6“‘)\7; 0< \/)\1/\2+)\3+D;
0 < VXA +Ag; 0< A7+,/A—1A8
2
and
A
0<Ai2g; VAAg > —A7 >4/ s
Q, = A2 (6.54)
0 < Xodg — A3 \/()@ — M) (A2 — XaXg) > Mg — (D + A3) g
depending on the discriminant

In contrast to earlier works [7, 9], we do not impose absolute stability of the EW
vacuum as a theoretical constraint since we want to study the vacuum structure in detail
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Table 6.2: Input parameter ranges for the N2HDM parameter scan (y, z € {1,2,3}). The
three mixing angles o 23 in the CP-even scalar sector vary through their
whole allowed range.

mu,, Mg, Mma  mp tanf m2, Vg
GeV GeV GeV?  GeV
min 30 150 0.8 1073 1
max 1500 1500 20 5 x 10° 3000

and take into account that long-lived, metastable regions of the parameter space are
phenomenologically viable.

We include all applicable experimental constraints described in section 2.4. We use the
oblique parameters to parametrise EW precision constraints as described in section 2.4.1.
The predictions for S, T" and U from refs. [137, 138] are compared against the results of
ref. [135]. The flavour constraints in the my+—tan 8 plane [135] that were discussed in
section 2.4.2 are directly applicable to the N2HDM. In type I the strongest constraint is
obtained from By — ptp~ (see fig. 2.2). We check for agreement with the collider Higgs
data using HiggsBounds-5.3.2beta [163-167] and HiggsSignals-2.2.3beta [165, 170-172].
HiggsBounds checks for 20 compatibility with all searches for additional scalars (see
section 2.4.4). With HiggsSignals we employ a cut on Ax? = xZoupy — Xau < 6.18
corresponding approximately to a 2o region around the SM expectation — see section 2.4.5
for a more detailed discussion. The required model predictions for branching ratios and
total widths are obtained from N2HDECAY [7, 11] and the hadron collider production cross
sections from SusHi [314, 315].

We generate a sample of valid parameter points on which to study the vacuum structure
and vacuum stability. One of the three CP-even, neutral Higgs masses is fixed to

My, = Mp,,, = 125.09 GeV | (6.56)
and the EW vev is set to its SM value
v~ 246 GeV . (6.57)

Random values for the remaining input parameters are independently drawn from uniform
distributions with the ranges given in table 6.2. The three mixing angles in the CP-even
scalar sector vary through their whole allowed range. Note that we do not specify a mass
ordering for mpg, ,. — the 125 GeV Higgs boson (hi25) can be the lightest or heaviest
state as well as the one in between.

For each of these parameter points, we use the method described in chapter 3 to find all
minima of the tree-level scalar potential and calculate the lifetime of the EW vacuum if
it is not absolutely stable. We call those vacua short-lived, where

B < 390 (6.58)
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Table 6.3: Percentage of phenomenologically viable points in our scan that have a second
minimum in addition to an EW vacuum of type N's. The first row contains
the percentage of coexisting minima, the second line the ones that are deeper
and the third line the dangerous, short-lived, ones. The minima of type N's’
have vevs like those of N's but v # 246 GeV and differ from the EW vacuum
in depth.

Ns N CB CP

prevalence in %

exists 0.05 23.3 449 2.80
deep 0.0015 20.9 4.11 2.55
dangerous 0.0 6.89 1.12 0.678

holds for tunnelling to any other minimum. This is a very conservative estimate where
only vacua with a survival probability P through the age of the universe

P<1—-50~573x107" (6.59)

are considered short lived. We have verified that our results remain qualitatively un-
changed when varying the bound in eq. (6.58) by 20%. This accounts for the uncertainties
discussed in section 3.3.2.

6.3.2 Discussion

In this section, we present a numerical and phenomenological analysis of the N2HDM
vacuum structure and vacuum stability based on a sample of ~ 10° phenomenologically
viable parameter points generated according to section 6.3.1. We aim to investigate
whether the possible coexistence of minima discussed analytically in section 6.1

« is found in a substantial region of the N2HDM parameter space that is compatible
with current theoretical and experimental constraints,

« can be directly related to phenomenological observations at colliders.

Since we assume the EW vacuum to be of type N's the potentially dangerous minima
are CB, CP, N, and a second different minimum of type N's (see below for a discussion
of minima of type 5). We will distinguish three cases for these potentially dangerous
vacua:

o they coezist with the EW vacuum,
o they are also deeper than the EW vacuum,

o they are additionally dangerous, i.e. tunnelling from the EW vacuum is fast as
defined in eq. (6.58).
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Figure 6.1: The distribution of secondary charge and CP breaking minima. The left
plot shows the plane of the CP-odd Higgs mass m 4 and charged Higgs mass
my+. The right plot shows the plane of the scalar potential parameters \4
and As. In grey, we show all parameter points fulfilling the theoretical and
experimental constraints. On top, we show the points where a secondary
minimum of type CB (dark green) or CP (light green) exists. Figure as
published in ref. [4].

Table 6.3 shows the prevalence of these cases for the different possible secondary minima
in our sample. The precise numbers in table 6.3 have no physical significance as they
depend on the sampling method of the parameter space. However, the displayed results
clearly show that the possibilities discussed in section 6.1 remain relevant even after
considering all other applicable constraints. Especially, dangerous minima of type N
occur frequently. Table 6.3 also shows that the requirement of absolute stability would
be a substantially stronger constraint on the parameter space compared to the condition
that the EW vacuum should be sufficiently long-lived. Important regions of parameter
space with metastable vacua could be left out if absolute stability was imposed.

The only case missing in table 6.3 that is allowed by the analytical analysis are secondary
minima of type S. We have not found a single parameter point in our sample where
a stationary point of type S is a minimum. This could mean that minima of type S
cannot coexist with an N's vacuum, that all points where this is possible are ruled out by
current constraints, or that these minima are exceedingly rare. Either way, this means
that secondary minima of type S are of limited phenomenological interest and we will
not discuss them further here.

Figure 6.1, left, shows the distribution of charge- and CP-breaking secondary minima in
the plane of the pseudoscalar Higgs mass my4 and charged Higgs mass my+ at the EW
vacuum. The overall distribution of the phenomenologically viable parameter points is
primarily driven by the EW precision constraints, which force the neutral Higgs bosons
to be relatively close in mass to the charged Higgs boson (see section 2.4.1). Parameter
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points without any secondary minima, as well as parameter points with secondary N
minima, exist throughout the allowed region. In contrast, secondary CB minima only
exist as long as my4 > mpyg+ while CP minima only exist when mg+ > myu. This
happens because the pseudoscalar and charged masses in an N's minimum are such that
(see eq. (6.42))

1
2

At the same time, in a CB stationary point one of the eigenvalues of the scalar mass
matrix is

(Mg — As)v2. (6.60)

2 2
My — Mp+ =

1
m?| o = 50‘4 — As)[v] + 03 + v (6.61)

while at the C'P stationary point one eigenvalue is
1
m2|c7> = 5()\5 — M) [V + 03+ o). (6.62)

The quantities in square brackets are always positive and the squared masses are positive
if the corresponding stationary points are minima. Therefore, for the CB stationary point
to be a minimum A\; > A5 which requires m4 > mpy=+ at the N's vacuum. Similarly, a
CP minimum requires \y < A5 which implies m4 < mpy=.

Figure 6.1, right, illustrates the same behaviour in the plane of A\; and A\5. The points
without secondary minima or with secondary N minima are again scattered throughout
the allowed parameter space while the CP and CB minima can only occur in sharply
defined regions. From the previous discussion \y = A5 is the expected border between
the regions where CP and CB can exist. However, fig. 6.1, right, shows that there is an
additional region

As <OA XM < =5 (663)

where neither CP nor CB minima can exist. The analytical explanation for this behaviour
is given in the appendix of ref. [4].

In fig. 6.2, we compare analytical and numerical results for the relative depth of NV and
N's vacua. The relative depth of an A's and A/ vacuum — as given by eq. (6.45) — is
shown as a function of tan 8 at the N's EW vacuum. The plot only includes parameter
points where a secondary N minimum exists and shows its depth relative to the depth
of the N's EW vacuum. As expected, in all parameter points where Vs — Vir > 0 the
N minimum is classified as either deep (blue points) or dangerous (red points). The
parameter points with dangerous N only begin to appear if Vi, — Vv 2 107, and their
distribution shows some dependence on tan 3. For small tan 8 < 2 the N vacuum is only
unstable if the depth difference is > 10° while for large tan 8 2> 12 the majority of deep
N vacua in our sample is dangerous.?

So far, we have illustrated how the analytical results of section 6.1 are reflected in the
phenomenologically viable parameter space. We will now discuss the vacuum stability

3This is more clearly visible when reversing the plotting order of fig. 6.2 and plotting the parameter
points with deep but not dangerous N vacua on top.
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Figure 6.2: The difference in the value of the scalar potential between the EW A s vacuum
and a secondary A minimum according to eq. (6.45) as a function of tan /3
at the EW vacuum. Only parameter points where a secondary A/ vacuum
exists are shown. The colour code represents the results of the numerical
analysis. The green parameter points have a secondary N minimum, but
tunnelling from the EW vacuum is not possible. For the blue parameter
points tunnelling is possible but slow while at the red points (plotted on top)
the EW vacuum is short-lived (see eq. (6.58)). Figure as published in ref. [4].
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Figure 6.3: The signal strength p,, of pp — hiss — 77 as a function of the charged
Higgs mass. The parameter points without any secondary minima (grey)
are plotted on top, followed by the absolutely stable (green), and long-lived
(blue) parameter points. Below these, the points with dangerous secondary
minima are shown in different shades of red denoting the type of dangerous
minimum present (N — light red, CB — red, CP — dark red). Figure as
published in ref. [4].

constraints arising from these secondary vacua. In imposing vacuum stability constraints,
we distinguish the following cases:

o parameter points where the EW vacuum is the only vacuum,

o absolutely stable parameter points where secondary minima exist but are never
deep,

o long-lived parameter points where secondary vacua are deep but never dangerous,
o short-lived parameter points that have dangerous secondary minima.

Figure 6.3 demonstrates the phenomenological impact of vacuum stability constraints. It
shows the signal strength of hi95 in the 4y channel defined as

. o(pp — hi2s)BR(h125 — 77)

_ 6.64
a(pp — hsv) BR(hsyi — v7) ( )

Hoyy

as a function of the charged Higgs mass. The short-lived (different shades of red)
parameter points are plotted below the grey points, for which no secondary minima exist.
Therefore, vacuum stability excludes any region of parameter space where only the red
parameter points are visible. One can see that significant parts of the parameter space
corresponding to an enhanced signal strength, p.,, > 1, are excluded because they have a
dangerous N, CP, or CB minimum below the EW vacuum. If, for instance, a charged
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6.3 Phenomenological Impact of Vacuum Stability

Higgs with a mass of 500 GeV is discovered, fig. 6.3 implies a bound of about p,, < 1.03
in the N2HDM of type L. If on the other hand myg+ could be constrained to be larger
than 250 GeV (e.g. by a 500 GeV ete -collider) enhancements of ji, 2 1.1 would be
excluded in the N2HDM of type I by the vacuum stability constraint. One can also see
from fig. 6.3 that imposing the constraint of an absolutely stable EW vacuum would
exclude the blue points in fig. 6.3 — which indicate a long-lived EW vacuum — with
possibly misleading conclusions.

The behaviour observed in fig. 6.3 stems from the BR(hjo5 — 7). The three kinds of
diagrams contributing to this loop-induced decay are

,y f}/ //'I(\/\/\/\/\/\,’y
****** {&t e L
vy y \\\‘I'\/\/V\N\/’}/

For hia5 the first diagram with the W* loop is the dominant contribution. The second
diagram involving heavy fermion loops interferes destructively with it. We have verified
that vacuum stability is not sensitive to the Yukawa or gauge couplings that enter the first
two diagrams. The third diagram describes the contribution of a charged Higgs boson
and is sensitive to its mass mpy+ and its coupling gy ,.g+n- (defined in the appendix
of ref. [7]). The mass and trilinear scalar coupling are directly related to the scalar
potential and may be impacted by vacuum stability constraints. Figure 6.4 shows the
impact of vacuum stability on the allowed values of the hios H*H~ coupling. Dangerous
vacua exclude large negative values of this coupling. Negative values, however, lead to
an enhancement of y., through constructive interference with the W= loop.*

The large impact of the vacuum stability constraint on f.,., is specific to the N2HDM
of type I. This is due to the fact that in type I all Yukawa couplings are rescaled

by the same factor c(hiosff). In the approximation T (hias) = I'(hias — bb) and
o(pp — higs) = ?(hyastt)o(pp — hsu) a cancellation

F(h125 — ’Y’Y) Ftot(hSM)
~ *(hastl = 6.66
oy % € (azsth) T(hias — bb) T(hsy — v7) (6.66)
F(h125 — ’Y’Y)
~ *(hastl = 6.67
(nzs 3c2(h125bb)r(hSM ) (6.67)
_ F(h125 — /7’7) (6 68)

['(hsm = vy)

occurs in type L. This allows for a direct sensitivity to I'(hi25 — ) and thus to g, g+ -
In contrast, for Yukawa types where c(hostt) # c(hiasbb) (e.g. type II) the effect of
vacuum stability constraints on p. is no longer visible as the ratio of Yukawa couplings
has a much stronger impact on the signal rate than the charged Higgs contribution to

4We use the coupling convention employed by HDECAY where there is a relative sign between the spin-zero
and the spin-one form factor in the h — 7 decay.
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Figure 6.4: The normalised coupling g,,.y+pr- as a function of the charged Higgs mass.
Colour code as in fig. 6.3. Figure as published in ref. [4].

I'(h1g5s — 7). It is interesting to note that although the allowed range for p.,., is very
similar in the type I 2HDM [9] and in the type I N2HDM, a measurement of p.,, > 1
for certain charged Higgs masses could exclude the N2HDM but be compatible with the
2HDM due to the different vacuum stability constraints.

This behaviour is different from what we observed for the dark sector model in section 5.2.
In fig. 5.6 we showed that vacuum stability does not lead to direct constraints on ji,, in
that model. This difference may seem surprising since the scalar potential eq. (5.32) of
that model is very similar to the N2HDM. However, the different symmetry structure
and the different phase of the EW vacuum lead to entirely different behaviour of the
vacuum stability constraints. In particular, we repeat that the analytic analysis of
section 6.1 does not generalise to the dark sector model (see the discussion right before
section 6.1.1).

Figure 6.5 shows vacuum stability constraints in the plane of the mass mpy, of the second
lightest Higgs boson (assuming here that H; = his5) and the signal strength p,, of
hi2s (defined analogously to eq. (6.64)). In this case, there are hardly any regions in
this projection, which can be excluded due to the existence of a dangerous secondary
vacuum. There are regions where only points with a non-stable vacuum exist, which
can be either dangerous or long-lived. However, in contrast to fig. 6.3, these regions
are always populated by long-lived metastable vacua, so that allowed parameter points
exist in these regions. Therefore, no direct bounds can be derived from the experimental
measurements of p.,. This is not unexpected, as p,, has no sensitivity to triple scalar
couplings. Still, fig. 6.5 clearly shows the phenomenological difference between requiring
an absolutely stable EW vacuum (keeping only the grey and green parameter points)
and a long-lived EW vacuum (additionally keeping the blue parameter points). As
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Figure 6.5: The signal strength p,, of hi95 — 77 as a function of the second lightest
neutral scalar mass mg,. The parameter points without any secondary minima
(grey) are plotted on top, followed by the absolutely stable (green), and
long-lived (blue) parameter points. Below these, the points with dangerous
secondary minima are shown in different shades of red denoting the type of
dangerous minimum present (N — light red, CB — red, CP — dark red).
Figure as published in ref. [4].

discussed above, enforcing absolute stability could result in misleading phenomenological
conclusions.

6.4 Conclusions

In this chapter, we have presented a detailed analysis of the N2HDM vacuum structure
and its phenomenological consequences. We have derived analytical expressions for the
depth differences of minima of different phases. As long as the singlet field does not
acquire a vev, the conclusions are identical to the 2HDM: minima of different nature —
N, CB, CP— never coexist [349]. However, stability of an N's minimum — which has a
non-vanishing singlet vev — against charge and CP breaking vacua is not ensured. An
N's vacuum is stable against CBs and CPs minima, but charge and CP-breaking minima
without singlet vevs may be deeper and vacuum decay a possibility. Additionally, the
more intricate vacuum structure compared to the 2HDM allows for more cases of panic
vacua [220, 351, 355, 361, 362] where a second normal minimum exists below the EW
vacuum. In the N2HDM, panic vacua of types N and N's can appear for EW vacua
of either type. Finally, minima of type S with only a singlet VEV could, in principle,
appear as panic vacua. However, we have found this case to be numerically irrelevant.
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Based on this analytical analysis, we have numerically studied the impact of the intricate
vacuum structure on the phenomenology of the N2HDM. We have generated a large
sample of parameter points with an EW vacuum in the A's phase that fulfil all applicable
theoretical and experimental constraints. Using this sample we have compared minima
of different nature and distinguished regions of parameter space where the EW vacuum
is the global minimum, where deeper minima exist but the EW vacuum is long-lived,
and regions that are excluded because the EW vacuum has a short lifetime.

We have found panic vacua of type N, as well as charge-breaking CB, and CP-breaking
CP minima deeper than the EW vacuum in a significant portion of the (otherwise)
phenomenologically viable parameter space. We have also studied the distribution of
secondary CB and CP minima and established the boundaries of the disjunct parameter
regions where these minima can exist.

We have then turned towards the impact of vacuum stability constraints on collider
observables and found that vacuum stability puts direct limits on the values of p.,
reachable in the type I N2HDM. An observed value of p.., significantly above 1 could
exclude the model on the grounds of vacuum stability alone unless the charged Higgs is very
light. This is due to the sensitivity of p.. to the triple Higgs coupling gy, ,. g+ m—, which
is constrained by vacuum stability. If the Yukawa sector is of type I this effect is clearly
visible in .., because of an approximate cancellation. For other collider observables,
such as p,,, large regions of parameter space exist where EW vacua are never absolutely
stable, but always metastable. This illustrates the difference between enforcing absolute
stability and accepting metastability. Neglecting parameter regions with a long-lived,
metastable vacuum may lead to incorrect phenomenological conclusions.

In the next chapter, we will continue to study vacuum stability but with a focus on
validating our approach from chapter 3. We will derive vacuum stability constraints on
benchmark scenarios in the minimal supersymmetric extension of the SM (MSSM) and
compare our method to results in the literature.
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7 Vacuum Stability in the MSSM

In this chapter, we apply our approach to vacuum stability from chapter 3 to the MSSM.
We validate our approach against existing results and present constraints from vacuum
We have published the results in this chapter in ref. [3].

7.1 The Scalar Sector of the MSSM

The minimal supersymmetric extension of the SM (MSSM) [188-190] probably is the most
studied BSM model overall. Due to its supersymmetric structure, it features a greatly
enlarged scalar sector with very interesting vacuum-stability behaviour. In the following,
we introduce the scalar sector of the MSSM and establish the notation necessary to
derive the scalar potential. We refer to ref. [112] for a more detailed introduction to the
model.

As discussed in section 2.5.2, the MSSM Higgs sector consists of two scalar SU(2),
doublets H, and Hy, with vacuum expectation values (vevs) v, and v, that define the
parameter

Uy
t = —. 1
an =2 (r.1)

The supersymmetric part of the MSSM is described through the superpotential

W =uH, - Hqg+ Z yuQr - Hyug + Zded - Qrdg + ZyZHd - Lplg. (7.2)

generations gens. gens.

This is written in terms of the chiral SU(2), doublet Higgs superfields H,, = (HY, H})
with Y = —1 and Hy = (H;, HY) with Y = 1, the left-chiral superfields containing
the SM quark and lepton doublets Q; = (ur,dy) and Ly = (vg,l), respectively, as
well as the superfields containing the SU(2), singlets @g, dg and lg. The parameters of
the superpotential are the Yukawa couplings y and the parameter . The dot product
denotes SU(2), invariant multiplication of SU(2), doublets

D; - Dj = e PIPY (7.3)

where €4, is the totally antisymmetric tensor with ¢;5 = —1. In the following expressions,
we only include third-generation SM fermions and their superpartners for conciseness.
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The superpotential contributes to the scalar potential through the F-terms

F=>10.W[", &€ {hd,ht b hy iy by, 71,00,y b 7} (7.4)
@

where ¢ runs over all scalar components of the superfields in eq. (7.2). The F-terms give
rise to quadratic, cubic and quartic terms in the scalar potential.

Additional supersymmetric contributions to the scalar potential arise from the gauge
structure of the model. These D-terms are

D = Dy, + Dsu(2), + Dsu) (7.5)

c !

2
2
g
Dyqy, = gl (Z Y¢|¢|2> ; (7.6)
é

2

Do, = 2 3. " 2(0]0;)(@}0;) - (2}e))(@fe;), (7.7)
o, B,
9 [\ > 22 r2)?

Dsus), = g(w — [trl” + |bz|” — |bR] ) : (7.8)
where ®; ; € {hy, hq, Qr, L} runs over the scalar SU(2) ; doublets, and ¢ runs over all
scalar components as defined in eq. (7.4). The different prefactor of Ssy(s) follows from
the sum over SU(3), generators. The D terms contribute only quartic terms to the scalar
potential.

7.1.1 Supersymmetry Breaking in the MSSM

In nature, supersymmetry (SUSY) has to be broken at some high scale. Otherwise,
all superpartners would have identical masses, and we would surely have observed
e.g. selectrons — the superpartners of the electron — in QED and nuclear physics
experiments. Most of the theoretically appealing properties of supersymmetric models
are preserved as long as the effects that break supersymmetry only lead to soft breaking
terms with dimensionful coupling (see also section 2.1) at the low scale. The possible
soft SUSY-breaking terms of the MSSM scalar potential are given by [364]

Vi = m3y hihy +m3 hiha + (Buhy, - hg + h.c.)
+m3,Q8Qp +m? LY Ly, + m?,|ig|> + m3, [ba|* + m%, |7a|? (7.9)
+ (ytAtf*RQL oy 4 Yy Abha - QL + yr ArTiha - Ly + h.c.) .

In the most general case, all of the m? and A parameters in the second and third

line of eq. (7.9) could be (complex) matrices in flavour space leading to more than
100 free parameters. Assumptions about the high-scale physics of supersymmetry
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breaking can reduce this huge number of parameters. An alternative is to employ
low-scale, phenomenological arguments leading to the so-called pMSSM models. For
example, many soft SUSY-breaking parameters lead to tree-level flavour changing neutral
currents (FCNCs) and are thus strongly disfavoured. The soft SUSY-breaking terms
may also introduce additional sources of CP violation, which are strongly constrained by
electric dipole moment (EDM) measurements (see also section 5.1).

For our analysis of vacuum stability, we impose CP-conservation and assume flavour
diagonal A;; .. This ensures flavour conservation by forbidding the flavour violating
off-diagonal elements in the A;; ;. For most of the analysis, we will furthermore neglect
all first and second generation sfermions, in which case all the m? and A parameters are
real numbers. We express the soft breaking parameter B,, through the (tree-level) mass
m 4 of the CP-odd Higgs boson,

B, = m?®sin 3 cos 3. (7.10)

At tree-level, the minimum conditions for the electroweak (EW) vacuum can also be
used to express the soft Higgs masses quu and m%{d through v and . The full scalar
potential of the MSSM including all Higgs and third generation sfermion fields is given

through eqgs. (7.4), (7.5) and (7.9) as

V=F+D-+ V. (7.11)

7.1.2 Resummed Yukawa Couplings

The third generation Yukawa couplings v:, v, ¥, are the largest Yukawa couplings. Their
value is determined via the quark masses and the vev of the Higgs doublet coupling to
them at the tree level (SUSY results in the Yukawa structure of a type II two-Higgs-
doublet model (2HDM), see section 2.1):

tree \/§mt - \/ﬁmt

= = 7.12
Yt Uy vsin 3’ (7.12)
b Vg veos 3’ '
wee  V2mr  V2m,
yiree = - . (7.14)
Vg vcos 3

We treat the quark masses as running masses at the SUSY scale

Mgsysy = /mzm;, (7.15)

2

where mj , are the masses of the two stop mass eigenstates. To this end we use

RunDec [365-367] to run the MS quark masses to Mgsysy assuming SM running. The
numerical values of the Yukawa couplings depend sensitively on tan 8 already at the tree
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level. For small tan 3, the value of the bottom and 7 Yukawa couplings are suppressed
with respect to the top Yukawa coupling, while for large tan § they are enhanced. This
results in y;™ &~ y;" at tan 8 ~ 60 for Mgysy = 1 TeV.

For large tan 3, the bottom Yukawa coupling is very sensitive to SUSY loop corrections.
The leading corrections can be resummed [368-371]. They effectively change the value of
the bottom Yukawa coupling, and it is advantageous to include them even though the
scalar potential is evaluated at the tree level. The impact of the resummed corrections

tree

on the Yukawa coupling can be included by replacing y;"* in eq. (7.13) by

res __ \/§mb

_ , 7.16
Yy ’Ud(l + Ab) ( )

where A, contains SUSY loop corrections. The dominant contributions arise from the
gluino-shbottom and higgsino-stop loops yielding

Ay = Ag + Al}} ) (7.17)
- 204
A} = guMgtanﬁC(mgl,m,i,Mgz), (7.18)
2
; Y
Al = 16;2 pAgtan 8 C(m2  m? | 1?) (7.19)

where my, ,, m;  are the masses of the tree-level ¢ and b mass eigenstates, M3z denotes

the gluino mass, and p is the higgsino mass parameter. The function C(z,y, z) is given
by
ryln? —|—yz1n§ +xzln

(z —y)(y —2)(x = 2)

Clz,y,2) = (7.20)

These A, corrections lead to an enhancement of y, especially for large u < 0 and
Ay, M3 > 0 as both contributions are negative in this case and reduce the denominator
of eq. (7.16). For A, — —1 the bottom Yukawa coupling gets pushed into the non-
perturbative regime. Taking eq. (7.16) into account significantly impacts vacua with b
vevs in the MSSM as will be visible in our numerical analysis below (see also ref. [372]).
We furthermore take into account a similar but numerically smaller effect for the Yukawa
coupling of the 7 lepton, y, [373].

7.2 Vacuum Stability in the MSSM

Vacuum stability constraints in the MSSM have been actively studied in the literature [3,
198, 203, 218, 372, 374-397]. The so-called charge or colour breaking (CCB) vacua
provide the most important vacuum stability constraints in the MSSM. These are
minima where some of the charged sfermions obtain vevs, thus breaking electric charge
and possibly colour. The existing results include both analytic and semi-analytic studies
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of specific directions in field space as well as fully numeric approaches. The public code
Vevacious [198, 215] can be used to check the stability of the EW vacuum including
one-loop and finite temperature effects. To our knowledge, it is the only dedicated public
tool that is applicable to a variety of BSM models. Vevacious has been applied to the
MSSM in different contexts in the literature [198, 391, 392].

We apply our method described in chapter 3 to the MSSM in a numerical study of CCB
vacua. We use this very well studied model to illustrate the reliability of our approach
and compare to existing results. As a first step, the complex fields in eq. (7.11) must be
expressed through real fields with canonically normalised kinetic terms as discussed in
section 3.1.1. We expand

¢ — —Re(¢) + —=Im(¢). (7.21)

In this convention, the correct normalisation for ¢ from eq. (3.5) is ensured as long as
|¢] = 1. The EW vacuum in this notation is given by

(Re(hy)) =vsinfB, (Re(h))) =vcosp, (7.22)

where v = \/v2 4+ v3 &~ 246 GeV is the EW vev.

The MSSM contains a large number of scalar fields. The total number of real, scalar,
classical degrees of freedom is
3 3 4 3 2
— A
({ir,lr, v} + colour X up, @g,dy,dr) X generations X complex
4

(7.23)
—N—
+ Higgs bosons = 94 ,

where we have already used global SU(2); and U(1), transformations to eliminate four
degrees of freedom from the Higgs doublets (see section 3.3.1). It is unfeasible to vary all
of these simultaneously, as the complexity of finding stationary points scales exponentially
with the dimensionality of the field-space.! For our studies of the MSSM we combine all
stationary points found by varying the three sets of fields

{Re(h3>, Re(hY), Re(f1), Re(ir), Re(by), Re(zBR)} , (7.24)
{Re(hg), Re(h0), Re(i1), Re(ir), Re(71), Re(%R)} : (7.25)
{Re(hg), Re(h0), Re(by), Re(bg), Re(7r), Re@)} . (7.26)

All sets contain the real parts of the neutral Higgs fields that participate in EW symmetry
breaking. The first set additionally contains the real ¢t and b fields, the second set the

'For example, considering the set of fields in eq. (7.24) yields ~ 10 times longer runtimes than varying
the two sets of four fields {Re(h%), Re(h9), Re(fr), Re(tr)} and {Re(h?),Re(hy),Re(br), Re(br)}
separately.
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{ and 7 fields and the third set the b and 7 fields. Therefore, this method will find all
stationary points where any two kinds of third generation sfermions acquire vevs but
cannot find stationary points for which , b and 7 vevs are simultaneously non-zero. This
is a valid approximation as the distance in field space between the EW vacuum and
another minimum is expected to increase as more fields take non-zero values at this
second minimum. Since the tunnelling time increases with the fieldspace distance the
stationary points with many non-zero vevs tend to be less dangerous.

We initially also included field sets with 7 vevs and vevs of the first and second generation
sfermions. However, we found that they had no impact on the observed constraints and
will not include them in the plots shown below. We will, however, comment on their
behaviour where appropriate.

We neglect charged and CP-odd Higgs directions motivated by the absence of any
dangerous CP or charge breaking vacua in the Higgs sector of the 2HDM [220, 349-351]
and thus the MSSM at lowest order. As discussed in detail in chapter 6, this argument
breaks down in the presence of an additional singlet. Non-vanishing sfermion vevs lead to
trilinear terms in the scalar potential (see eq. (7.29) below) which may spoil these results
in a similar way. To test this, we initially included field sets with charge and CP-breaking
Higgs vevs in our analysis. We did not encounter any regions of parameter space where
they appear and we will not comment on them further. This conclusion is specific to
the MSSM. In the next-to-minimal supersymmetric extension of the SM (NMSSM), for
example, the different kinds of Higgs vevs are more relevant [398]. Since the NMSSM also
adds a scalar singlet to the MSSM Higgs sector, this is much in line with the discussion
of chapter 6.

We ignore the imaginary parts of the sfermions as they are not expected to add new
features in the absence of additional sources of CP violation. Finally, we ignore the
different colours of the squarks, where it is equivalent to either assume that only one
colour participates or to set all three coloured vevs to the same value with an appropriate
normalisation factor. This is justified as the scalar potential is completely agnostic toward
the different colours.

The resulting scalar potential of the MSSM as a function of the classical fields that
appear in eqs. (7.24) to (7.26) is given by

V=Vot Vs + Vi, (7.27)
consisting of a quadratic part
M o mh L mb
V= = (Re(bL)2 + Re(tL)2> + = Re(f)? + —L2Re(br)’ (7.28)

2

M, o MEs 2 \2 2 0 0y o
5 Re(71)" + 5 Re(7r)” — m5Re(hy)Re(h,,) sin(B) cos(5)

1 1
+ ERe(hg)2 (m, + 1) + éRe(hg)2 (m3, +17) |

+
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a cubic part

= y—fRe@L)Re(BR) (AsRe(hS) — uRe(hS)) (7.29)

+ YZRe(#1)Re(7r) (A,Re(h)) — yRe(h2))

75

+ Y_Re(i1)Re(ir) (ARe(h)) — uRe(hD)) ,

V2
and a quartic part
2 2
Vi= 913% (Re(h?)? — Re(h9)?)? (7.30)
—3¢2 +12 32 — g? .
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3 )
+ 9248 392 — 91 p o (492 Re(7,)? +%Re(h2)2Re(tR)2
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Figure 7.1: The M}?*(7) scenario from ref. [26] in the m4—tan § plane as an example of
a MSSM benchmark scenario. The blue region is excluded by searches for
additional Higgs bosons, making use of HiggsBounds (see section 2.4.4). The
grey slashed region cannot reproduce the observed properties of the 125 GeV
Higgs boson (hi25) and is thus excluded, making use of HiggsSignals (see
section 2.4.5). The annotated green contours indicate the mass of the light
Higgs bosons h. Figure from ref. [26].

7.3 Numerical Results

Even when only CP and flavour conserving soft breaking terms are considered, the
number of free parameters in the MSSM remains high. For phenomenological studies,
this is commonly reduced by assuming universality — setting some related parameters
to have identical values. Depending on the assumptions, this leads to different variants
of the pMSSM named according to the remaining number of free parameters — e.g. the
pMSSM11 [141]. However, even these simplified models remain too complicated for
presenting model interpretations of experimental results. For this reason benchmark
planes — that fix all but two of the model parameters and are designed to highlight a
particular phenomenology — have been established in the MSSM [26, 399-403].

In the following, we consider the recent benchmark scenarios from ref. [26]. Figure 7.1
shows an example of one of the benchmark scenarios we consider — the so-called M}%(7)
scenario that features a light 7. Unitarity and experimental constraints from Higgs
physics have been included in the definition of the benchmark scenarios. Constraints from
flavour physics, dark matter and EW precision observables were not imposed as they
largely depend on parameters that do not strongly impact Higgs boson phenomenology.

We will apply our method for obtaining vacuum stability constraints from chapter 3 to
these scenarios. We use the results to both illustrate the impact of the constraints and to
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Figure 7.2: Constraints from vacuum stability in the M;*> scenario defined in ref. [26].
The colour code in the left panel indicates the lifetime of the EW vacuum,
while the centre and right panels illustrate which fields have non-zero vevs
at the most dangerous and the global minimum, respectively. The black X
marks the same point shown in fig. 7.3. Figure as published in ref. [3].

compare our method to previous approaches. As such, this application is an important
validation of our approach in a well-studied model and also provides complementary
information to ref. [26] through a detailed study of vacuum stability in the benchmark
scenarios.

7.3.1 Vacuum Stability in the 1/}** Scenario

The first benchmark scenario defined in ref. [26] is the M}?® scenario. It features rather
heavy SUSY particles with hi95 = h and can be used to present results from searches for
additional Higgs bosons at the LHC. Its parameters are

mg, = my, = mp, = 1.5TeV, mp, =mpg, =2TeV, p=1TeV,

X, = A — ta’;ﬁ —28TeV, Ay=A, =A, (7.31)

MlegleeV M3:2.5TGV,

while m4 and tan S are varied in order to span the considered parameter plane. The
soft SUSY-breaking parameters A;; . vary as a function of tan 3 for fixed X;. Note
that the gaugino mass parameters M; 5 3 only enter our analysis through the A, and A
corrections. Figure 7.2 shows the vacuum stability analysis in this benchmark plane.

In the left panel of fig. 7.2, the colour code indicates the lifetime of the EW vacuum at
each point in the parameter plane. In the dark green region the EW vacuum is the global
minimum of the theory, and the EW vacuum is stable in this parameter region. The
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light green area depicts regions where deeper minima exist, but the lifetime of the false
EW vacuum is large compared to the age of the universe (see section 3.1.2). For these
parameter points, the EW vacuum is metastable, and the parameter points are allowed.
For points in the red region, on the other hand, the tunnelling process is fast, and they are
excluded as the EW vacuum is short-lived. The small yellow region contains all points in
the intermediate region discussed in section 3.1.2 where the estimated uncertainties allow
no decisive conclusion on the longevity of the false vacuum. This plot of fig. 7.2 (left)
shows that the requirement of vacuum stability hardly constrains the M}'*> benchmark
plane. Only a parameter region with small values of tan § < 1 can be excluded.

The middle panel of fig. 7.2 shows the character of the most dangerous minimum (MDM),
i.e. it displays which fields acquire non-vanishing vevs at this vacuum. The MDM is
defined as the minimum with the lowest bounce action for tunnelling from the EW
vacuum. One can see that for small values of tan 5 or both moderate tan 5 and m4 the
MDM is a CCB minimum with ¢ vevs (yellow). For larger values of tan 8 and m, a
minimum with b vevs takes over (blue). This behaviour is expected as for higher tan 3
the couplings of the Higgs sector to d-type (s)quarks are enhanced which also increases
the impact of b vevs on our vacuum stability analysis.

The right panel of fig. 7.2 displays the character of the global minimum for the M;*
benchmark plane. As noted in section 3.3.1, the MDM and the global minimum of the
scalar potential can, in general, differ from each other.? We see that the global minimum
has only b vevs for most of the parameter space, while there is a large region where the
MDM involves ¢ vevs.

Impact of the Trilinear Terms

We noted based on eq. (3.8) that the parameters entering the cubic terms, eq. (7.29), of
the potential are expected to be especially relevant for the stability of the EW vacuum.
Since m4 is related to a bilinear term in the potential, and tan § mostly affects the
quartic Yukawa couplings, we switch to a different slice of the parameter space which is
more relevant for vacuum stability studies. We start from a point in the m—tan 3 plane
of the M}?> scenario that is absolutely stable and given by

tan 3 =20, my =1.5TeV. (7.32)

This point is indicated with a X in figs. 7.2 and 7.3. It features a Higgs mass of
mp, ~ 125 GeV and is allowed by all the constraints considered in ref. [26]. Among these,
a search for heavy Higgs bosons decaying into 7 pairs [169, 404] (see fig. 2.3) is the most
relevant constraint. In contrast to the ma—tan 8 plane of the M}?® scenario, we now vary
the parameters p and A = A; = A, = A, starting from this point. These parameters

20ut of the minima that are deeper than the EW vacuum, the MDM is in most cases the one that is
closest to the EW vacuum in field space. However, this is not always the case, see fig. 7.5 below for a
counterexample.
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Figure 7.3: Constraints from vacuum stability in the plane of p and A containing the
selected point from the M;!?»® benchmark scenario. The starting point in the
M% plane of fig. 7.2 with tan 8 = 20 and m4 = 1.5TeV is indicated by
the black X. The colour code is the same as in fig. 7.2. The dashed line
corresponds to constant X; = 2.8 TeV. Figure as published in ref. [3].

appear exclusively in V3, see eq. (7.29). Figure 7.3 shows the vacuum stability analysis
in this new parameter plane.

The left panel of fig. 7.3 indicates the lifetime of the EW vacuum. The colour coding
is the same as in the corresponding plot of fig. 7.2, i.e. red points depict short-lived
configurations, while the EW vacuum for light green points is metastable, and the EW
vacuum in the dark green area is stable. The thin yellow band indicates the uncertainty
band of 390 < B < 440 discussed in section 3.1.2. The EW vacuum becomes more and
more unstable for larger absolute values of ;4 and A. For small values of these parameters,
the potential is absolutely stable with a region of long-lived metastability in between.
Note that also in this parameter plane the yellow uncertainty region of 390 < B < 440
corresponds to only a thin band between long- and short-lived regions. The point marked
by the X is the starting point in the M}? plane depicted in fig. 7.2. One can see that in
the plane of fig. 7.3 this point is close to a region of metastability, but quite far from any
dangerously short-lived parameter regions. The missing points in the top-left corner of
the plot are points with tachyonic tree-level b masses where the EW vacuum is a saddle
point.

The character of the MDM, i.e. the fields that acquire non-zero vevs in this vacuum, is
shown in the middle panel of fig. 7.3. It is dominated by yellow ¢ vevs in this plane, but
blue b vevs are also important for large negative values of p. The Ay corrections described
in section 7.1.2 are enhanced in this parameter region and have a large impact. They
are also the cause of the tachyonic region for large negative p and positive A. Between
the i-vev and b-vev regime a region appears (shown in green) where # and b vevs occur
simultaneously. The small blue region for u > 0 is visible because the more dangerous
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minima with t vevs only appear for slightly higher values of A and . Therefore, only the
global b-vev minimum coexists with the EW vacuum in this region of parameter space.

The right panel of fig. 7.3 indicates the fields which acquire non-zero vevs at the global
minimum. In this parameter plane, there are large regions with simultancous ¢ and 7
vevs at the global minimum. Through most of the plane, the fields acquiring vevs differ
between the MDM and the global minimum. The green region of simultaneous ¢ and b
vevs, which is visible in the middle panel of fig. 7.3, does not correspond to the global
minimum of the theory. This is expected as additional large quartic /' and D-term
contributions appear if multiple kinds of squarks take on non-zero vevs simultaneously.
These are positive contributions to the scalar potential that lift these regions of field
space. No such contributions appear in the case of simultaneous squark and slepton
vevs which is why the orange regions of simultaneous t and 7 vevs are present in the
right panel of fig. 7.3. Note that the quartic F' and D-term contributions do not prevent
the minima with mixed # and b vevs from being the MDM as fig. 7.3 (centre) shows.
However, for the parameter plane considered here these minima featuring simultaneous
and 7 vevs have no impact on the stability constraints of fig. 7.3 (left).

We finally comment on the impact of additional field content — in particular, the first
and second generation sfermions and the 7 vevs — on these results. The small Yukawa
couplings of these particles tend to push any additional minima to very large field values,
which renders these configurations long-lived. As a consequence, the metastability bound
(yellow region in fig. 7.3, left) and the character of the MDM (fig. 7.3, centre) are
insensitive to those fields. On the other hand, the character of the global minimum
may be significantly affected by fields with relatively small couplings to the Higgs sector.
Indeed, if we were to include ¢ and § vevs they would dominate the global minimum
(fig. 7.3, right) through most of the parameter plane. They would even cut slightly into
the edges of the stable dark green region, rendering it long-lived. Therefore, our analysis
shows that neither the investigation of just the region of absolute stability nor of the
character of the global minimum yields reliable bounds from vacuum stability. This is
because both of these quantities sensitively depend on the considered field content, where
even very weakly coupled scalar degrees of freedom can have a significant impact. Instead,
the correct determination of the boundary between the short-lived and the long-lived
region crucially relies on the correct identification of the MDM, which in general can be
very different from the global minimum. This boundary, and accordingly the constraint
on the parameter space from vacuum stability, is governed by the fields with the largest
Yukawa couplings and is insensitive to effects from particles with a small coupling to the
Higgs sector.

Comparison to Semi-Analytic Bounds and Existing Codes

We now compare our results shown in fig. 7.3 with results from the literature. An
approximate bound for MSSM CCB instabilities including vacuum tunnelling is given
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Figure 7.4: Constraints from vacuum stability in the plane of ;1 and A containing the
selected point (black X) from the M;*® benchmark scenario. The results from
fig. 7.3 are shown with superimposed contours indicating the approximate
absolute and metastability bounds of eq. (7.33) and the heuristic bound of
eq. (7.34). Figure as published in ref. [3].

by [203, 380]
3 stable
A7+ 3p < (mZ 4+ m? ) - ’ 7.33
! H (mtR th) 7.5 long-lived. ( )
Furthermore, a “heuristic” bound of

min(sz,Us)

is sometimes used to judge whether a parameter point might be sufficiently long-lived
(see e.g. the discussion in ref. [195]).

The public code Vevacious [198, 215] can calculate the lifetime of the EW vacuum in
BSM models using the tree-level or Coleman—Weinberg one-loop potential, optionally
including finite temperature effects, see e.g. ref. [392].

Figure 7.4 displays our results in comparison to the approximate bounds given in eqs. (7.33)
and (7.34), where the contours arising from egs. (7.33) and (7.34) are superimposed on our
results. The solid black contour arising from eq. (7.33) should be compared with the edge
of the dark green region where the vacuum is stable. This comparison shows significant
deviations. This is in particular because the absolute stability bound from eq. (7.33)
considers only the D-flat direction. The dashed black contour should be compared with
the yellow region at the border between the long-lived (light green) and short-lived
(red) regions and shows similar deviations. One source of these deviations is that the
metastability bound in eq. (7.33) becomes less reliable for values of mthqutgL > 1200 GeV?

and large (A? +3p?) (see Fig. 4 in ref. [203]). Moreover, the dependence on tan 3 [394] is
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Figure 7.5: Constraints from vacuum stability in the plane of u and A containing the
selected point (black X) from the M;'*> benchmark scenario. The results from
fig. 7.3 are shown in the left panel. The other two plots show results of the
code Vevacious for the tree-level (centre) and one-loop effective potential at
zero temperature (right) for the same parameter plane. Figure as published
in ref. [3].

not included in the approximate bound. Another reason is that only t-related parameters
enter eq. (7.33), while our analysis shows that also b vevs have important effects in this
case.

The heuristic bound eq. (7.34) (dotted black contour in fig. 7.4) should also be compared
to the yellow region. While there are clear differences in shape, the size of the long-lived
region in our result roughly matches the heuristic bound. This can be qualitatively
understood from eq. (3.8). For A ~ O(1) this yields A/m > 2 as a bound for absolute
stability. Therefore, A/m > 3 as a bound for metastability appears to be a reasonable
estimate. While we only show these comparisons for one parameter plane they hold
very similarly for every plane we have studied. Our comparison shows that all of these
approximate bounds have deficiencies in determining the allowed parameter region, and
dedicated analyses are necessary to obtain more reliable conclusions.

Next we compare our results (fig. 7.5, left) to the tree-level (fig. 7.5, centre) and one loop
(right) results of Vevacious. In the Vevacious runs we have taken into account only
the fields from eq. (7.24) since we found no relevant constraints from 7 vevs in this plane.
Vevacious by default considers tunnelling to the minimum which is closest in field space
to the EW vacuum. In the newest version (1.2.03+ [405]) one can optionally consider
tunnelling to the global minimum instead. In generating fig. 7.5 we combined the results
from both of these approaches by choosing the option giving the stronger bound at each
individual point. One obvious difference between our results and Vevacious are the
metastable regions that Vevacious finds for pr ~ 3TeV and |A| ~ 5TeV. In this region
Vevacious considers the wrong minimum to be the MDM. The global minimum (with b
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vevs, see fig. 7.3, right) is closest to the EW vacuum in field space. Therefore, Vevacious
can only consider tunnelling into this minimum instead of a slightly further and shallower
minimum with ¢ vevs, which gives the stronger constraints shown in our results. A
similar issue is responsible for the edge in the Vevacious result around p ~ —2.5TeV
and A ~ 4TeV. Another visible difference is the absence in the Vevacious result of
the bumps in the long-lived region in our result around |u| ~ 2TeV and |A| ~ 5TeV.
The optimisation of the bounce action by CosmoTransitions [211], which is used by
Vevacious, leads to a slightly stronger and more reliable metastability bound in this
region.® Apart from these deviations, our results are in good agreement with the tree-
level results of Vevacious. The deviations for individual points and the rugged edges of
the light green region in the Vevacious result are likely signs of numerical instability.
This especially includes the isolated red points in the light green region, which result
from numerical problems in the calculation of the tunnelling time.

The comparison with the Vevacious results using the Coleman—Weinberg one-loop
effective potential at zero temperature (fig. 7.5, right) shows that the one-loop effects
on the allowed parameter space are small for this scenario. The one-loop result from
Vevacious clearly suffers from numerical instabilities. However, the stable region is
nearly identical to the tree-level results, and the long-lived region is similarly sized as the
tree-level Vevacious result with differences in shape. The long-lived region appearing
around A ~ 5TeV and pu ~ 4TeV as well as the missing region around A ~ —5TeV and
the spikes around p ~ —2.5TeV are consequences of the same MDM misidentification
as in the Vevacious tree-level result (see previous paragraph). Comparing the runtime
of our code to the runtime of Vevacious in this parameter plane including only the field
set of eq. (7.24) we find our tree-level code to be ~ 5 times faster than the tree-level and
~ 200 times faster than the one-loop Vevacious run.

Parameter Dependence of the Vacuum Structure and Degenerate Vacua

The dashed line in fig. 7.3 is the line where X; has the same value as in the benchmark
plane, fig. 7.2. The mass m;, of his5 depends dominantly on the parameters tan 3, X,
and the stop masses. We, therefore, expect the Higgs mass to stay close to 125 GeV when
moving away from the point X along this line.* We use this as motivation to further
investigate the vacuum structure along this line.

Figure 7.6 shows the depth of the stationary points of the scalar potential as a function
of p along this line. The constant depth of the EW vacuum is shown in grey while the
other colours indicate the CCB stationary points. Note that not only local minima, but
all stationary points including saddle points and local maxima are shown in fig. 7.6. The
dashed line indicates the MDM for each value of pu.

3As a cross check, forcing Vevacious to use the direct path approximation yields the same lifetimes as
our approach.

4We have verified using FeynHiggs 2.14.3 [406-412] that 124 GeV < my, < 126 GeV indeed holds along
this line as long as |u| < 3TeV.
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Figure 7.6: Depth of the different types of stationary points along the line of constant
Xy = 2.8TeV from fig. 7.3. The colour code indicates which fields acquire
vevs at the stationary point. The dashed line indicates which of the stationary
points is the MDM. The grey line is the EW vacuum. Figure as published in
ref. [3].

It can be seen from fig. 7.6 that for large negative u simultaneous £ and 7 vevs (orange)
dominate the global minimum for the considered field content until the 7 vevs at these
stationary points approach zero around p = —2.2 TeV, and pure ¢ vevs take over. From
p ~ —1.8 TeV onwards the EW vacuum is the global minimum until a CCB vacuum with
b vevs appears at ;4 ~ 1.6 TeV. The MDM, on the other hand, is the second deepest b-vev
minimum for p < —3.5TeV, before sw1tch1ng to the {-vev minimum, followed by the
window of absolute stability u € [-1.8 TeV, 1.5 TeV]. For positive values of y > 1.5 TeV
the instability first develops towards the global b-vev minimum until the #-vev minimum
takes over at p ~ 2TeV.

In fig. 7.6 several stationary points with multiple kinds of sfermion vevs appear. Stationary
points with mixed squark and slepton vevs can be deeper than the corresponding
stationary points with only one type of vev (this can be seen for instance by comparing
the deepest stationary point with orange ¢ and 7 vevs to the ones with yellow ¢ vevs and
red 7 vevs). A stationary point with multiple kinds of squark vevs, however, is always
higher than one with only one kind of the involved vevs. This is due to the additional
positive quartic contributions to the potential for stationary points with both kinds of
squark vevs.

Another feature visible in fig. 7.6 is the b-vev stationary point approaching the EW
vacuum at p < 0 from above. In this regime the A, corrections significantly enhance the
bottom Yukawa coupling giving rise to a large mixing in the b sector and a corresponding
decrease of one of the b masses. The depth of this stationary point becomes degenerate
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with the EW vacuum. For even larger negative u, one b squark becomes tachyonic,
and the EW vacuum turns into a saddle point. The plot ends before this happens
(corresponding to the white region in fig. 7.3) as we require the existence of an EW
vacuum.

The scalar potential eq. (7.27) has two accidental Z, symmetries that illustrate the
behaviour discussed in section 3.3.1. The potential is symmetric under simultaneous sign
flips of the left- and right-handed sfermions of a kind

Re(fr), Re(fr) — —Re(fr), —Re(fr) with f € {f,b,7} (7.35)
and under simultaneous sign flips of all doublet components

Re(hY), Re(hY), Re(iL), Re(br), Re(7L)

) ) ) (7.36)
—  —Re(R%), —Re(RY), —Re(tr), —Re(br), —Re(71).

This results in sets of degenerate and physically equivalent stationary points related by
these symmetries.” Since the EW vacuum is also invariant under eq. (7.35) the tunnelling
time to minima related by this symmetry is always identical. However, since the EW
vacuum breaks eq. (7.36)° the tunnelling time into two stationary points related through
this transformation can differ. In most cases, whichever of these two points is closer in
field space to the EW vacuum gives the lower value for B. Note that this is not a small
effect. The values of B for stationary points related by eq. (7.36) can differ by more than
an order of magnitude. This effect has recently been studied for the simpler case of a
2HDM in ref. [228].

7.3.2 Vacuum Stability in the M}?°(7) Scenario

A benchmark scenario with light 7 has been proposed in ref. [26] under the name M;?*(7).

It is defined by
mg, = My, = mp, = 1.5TeV, mp, =mg, =350GeV, p=1TeV,

X, = A, — taﬁ 5=28TeV, A=A, A =800GeV, (7.37)

M1:M2:1T6V, M3:2.5TeV,

and was shown in fig. 7.1 as an example.

The scenario differs from the M}!* scenario of eq. (7.31) only in greatly reduced soft
7 masses with a correspondingly reduced A;. However, u is not reduced and is now
p ~ 3msz. According to eq. (7.34) we would therefore expect vacuum stability constraints
to be relevant in the M}?5(7) benchmark plane. The authors of ref. [26] used Vevacious
to check for vacuum instabilities in this scenario and found a short-lived region in the
parameter space for large tan § and small m 4.

5Since these minima are degenerate they cannot be distinguished in fig. 7.6.
0We can, without loss of generality, choose the EW vacuum with Re(h?), Re(h9) > 0.
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Figure 7.7: Constraints from vacuum stability in the M}?*(7) scenario. The colour code
in the left plot indicates the lifetime of the EW vacuum, while the centre and
right plots illustrate which fields have non-zero vevs at the MDM and the
global minimum, respectively. Figure as published in ref. [3].

Our results shown in fig. 7.7 confirm these observations. Figure 7.7 (left) shows a short-
lived region for large tan 5. This region extends towards smaller values of tan S in the
low my4 regime as noted in ref. [26] but also in the region of large m4. Also visible is
the small region of instability for tan < 1 noted in fig. 7.2. Comparing the red region
excluded by vacuum stability to the reach of the experimental constraints as shown in
fig. 7.1 shows a clear complementarity at large tan 5. While Higgs searches provide the
strongest constraint at m4 < 1.5 TeV, vacuum stability constraints are stronger than
the constraints from Higgs searches for larger m 4.

The MDM for the instability at large tan § is a vacuum with 7 vevs as can bee seen from
fig. 7.7 (centre). Compared to fig. 7.2 the absolutely stable region is additionally reduced
by a t-7-vev minimum appearing around m, ~ 1 TeV and tan 8 < 30. The minima with
b vevs, which were the MDM for large regions of the M}?® scenario, are entirely replaced
by minima with 7 vevs. Only a very small purple region with simultaneous b and 7 vevs
at the MDM exists. In fig. 7.7 (right) the global minimum with b vevs is very similar
to fig. 7.2 (right). Only at larger m4 — where the EW vacuum in the M}?® scenario
was absolutely stable — global minima with 7 vevs are now present. Our results in the
M'*5(7) scenario compared to the M}?® scenario illustrate that constraints from vacuum
stability indeed become relevant when the cubic terms in the scalar potential become
larger than the quadratic terms. Since p ~ 3m; in this scenario, a further increase of p
or a decrease of m; could render the M}*(7) scenario entirely short-lived. In the region
of i ~ 3msz chosen in the M!*(7) scenario, the vacuum stability constraints show a
significant dependence on the parameters m4 and tan (.
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7.3.3 Vacuum Stability in the 1/}?°(alignment) Scenario

In this section, we turn to another scenario from ref. [26], the M}?®(alignment) scenario,
where constraints from vacuum stability turn out to have a very large impact. The
scenario is defined by

mg, = my, = mp, = 2.5TeV, mp, =mpg, =2TeV,
w="175TeV, A, =A,=A,=6.25TeV, (7.38)
M1 = 500 GeV, M2 = 1T€V, M3 =25 TeV,

with my € [100 GeV,1TeV] and tan 5 € [1,20]. It is chosen to accommodate light addi-
tional Higgs bosons through the so-called alignment without decoupling behaviour [195,
196, 413-419]. Alignment without decoupling in the phenomenologically interesting re-
gion of relatively small tan 5 requires p, A; > my;. This requirement — according to
eq. (7.34) — has already been noted to be problematic for vacuum stability in ref. [26].
Indeed we find that the EW vacuum in this scenario is short-lived through all of its
parameter space. The MDM is characterised by ¢ vevs throughout the parameter plane,
while the global minimum has b vevs for tan 8 > 5.5 and -7 vevs for smaller values of
tan (3.7

In order to assess how far away this scenario is from a region of metastability we again
select a phenomenologically interesting point in its parameter plane,

ma =500GeV, tanf =6, (7.39)

and vary A = A, = A, = A, and p starting from this point. The resulting plane is shown
in fig. 7.8. The colour code and the quantities shown in the sub-plots are the same as in
figs. 7.2 and 7.3. In the left panel, we have superimposed the contours for the mass of
the light Higgs boson calculated with FeynHiggs 2.14.3 [406—412]. This shows that in
order to obtain a long-lived scenario while keeping the correct Higgs mass one could for
example change

pw="75TeV—4TeV and A=06.25TeV — 5TeV. (7.40)

Other choices are possible within the theoretical uncertainty of the Higgs-mass prediction.
The alignment-without-decoupling behaviour implies that his5 has SM-like properties.
In the MSSM this behaviour arises from a cancellation between tree-level mixing con-
tributions and higher-order corrections in the Higgs-boson mass matrix. Shifting the
parameters towards the region where the vacuum is metastable like it is done in eq. (7.40)
could affect these cancellations and therefore spoil the alignment properties. Indeed, with
FeynHiggs we obtain ~ 10% enhanced couplings of h to bottom and tau pairs leading to
a ~ 10% reduced BR(h — ) compared to the SM for the parameter point of eq. (7.40).
While the change in the couplings indicates that the cancellation that is present in the
alignment without decoupling regime does not fully occur for the shifted point, this

"The corresponding plots are omitted as they do not add any information.
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Figure 7.8: Constraints from vacuum stability in the plane of 1 and A containing the
selected point from the M}?(alignment) scenario marked with the black X.
The selected point in the m4-tan 3 plane of the M}?°(alignment) scenario has
tan § = 6 and m4 = 500 GeV. The colour code in the left plot indicates the
lifetime of the EW vacuum, while the centre and right plots illustrate which
fields have non-zero vevs at the MDM and the global minimum, respectively.
The contours in the left plot indicate the mass of the Higgs boson h, and the
dashed line shown in the centre and right panels indicates the line of constant

X, =5 TeV. Figure as published in ref. [3].

parameter point is nevertheless still compatible with the LHC Higgs measurements within
the present uncertainties [420].

In the middle panel of fig. 7.8 one can see that the MDM directions through most of
the parameter space are directions with ¢ vevs. If the instabilities were in directions
with b or 7 vevs, the lifetime of the EW vacuum could have been increased by increasing
Mp,.Ls, B OF decreasing Ay, while keeping 1 and the t sector unchanged such that the
phenomenology would not be much affected. However, our analysis shows that the
parameter region associated with the alignment-without-decoupling behaviour gives rise
to minima with ¢ vevs that render the electroweak vacuum short-lived. Accordingly, the
behaviour of alignment without decoupling and the requirement of a long-lived vacuum
are in some tension with each other, since adjusting mq, vy, and A; to ensure vacuum
stability in the stop directions would change the mass and phenomenology of the light
Higgs boson h. The right plot of fig. 7.8 illustrates that the global minimum has non-
vanishing 7 vevs through significant parts of the parameter plane, while for large values
of A, 2 5TeV b vevs take over. However, the deepest minima appear to be nearly
degenerate as can be seen from fig. 7.9.

The depth of the stationary points of the scalar potential along the line of constant
X; = 5TeV (which is indicated in fig. 7.8 centre and right) is shown in fig. 7.9. It includes
all stationary points in the selected field sets that are at least as deep as the EW vacuum.
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Figure 7.9: Depth of the different types of stationary points along the line of constant
Xy =5TeV from fig. 7.8. The colour code indicates which fields have non-
zero vevs at the stationary point. The dashed line indicates which of the
stationary points is the MDM. The EW vacuum is shown in grey. Figure as
published in ref. [3].

The EW vacuum is shown in grey, and the other colours distinguish the CCB stationary
points. The plot illustrates that there is no stable region along this slice of parameter
space, in accordance with fig. 7.8. As already pointed out, the MDM along this line is a
minimum with ¢ vevs through most of the parameter range, except for the region with
small values of y where the MDM has 7 vevs. There exist stationary points that are
deeper than the MDM with b vevs®, -7 vevs and 7 vevs with the 7-vev minimum being
the global minimum until the b-vev minimum takes over for p > 5.5 TeV. These deeper
minima are however very far from the EW vacuum in field space with high barriers and
have no impact on the tunnelling rate. For large values of y stationary points with both
¢ and b vevs develop. In agreement with the previous discussions these stationary points
are less deep than the stationary points with only one kind of squark vev. All points
along this line of constant X; = 5 TeV would be long-lived if the MDM with £ vevs was
absent.

A detailed analysis of the question whether adjustments of the proposed scenarios for
alignment without decoupling could bring these scenarios into better agreement with the
constraints from vacuum stability while retaining their alignment properties goes beyond
the scope of this work. We leave this issue for future studies.

8The b-vev stationary point is almost degenerate with the deepest ¢-7-vev stationary point for most of
the parameter range and therefore hidden behind the orange points.
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7.3.4 Vacuum Stability in the Remaining Benchmark Scenarios
The remaining (CP-conserving) benchmark scenarios from ref. [26] are either entirely
stable or unstable. We will describe these results in short in this section.

The light neutralino scenario M}?5(y) is defined through

mg, = My, = mp, = 1.5TeV, mp, =mg, =2TeV, pn=180GeV,

W
Xim A= g = 25TV, A=A = A, (7.41)

M, =160GeV, M, =180GeV, M;=25TeV.

The entire benchmark plane features an absolutely stable EW vacuum.” This is unsur-
prising since p is very small and the soft sfermion masses relatively large while the A
parameter is not much larger than the soft masses. The small gaugino mass parameters
do not lead to instabilities as they only enter the scalar potential through the A, and A,
corrections.

Finally, the heavy Higgs alignment scenario M}?° is defined through

mq, = my, = 750 GeV — 2(my+ — 150 GeV) ,
p = (5800 GeV + 20(m g+ — 150 GeV)) mq, /(750 GeV) ,
At = Ab = AT = O.65TTLQ3 i Mmps; =M, = MEp; = ZTGV,
My =mg, —75GeV, My;=1TeV, M;=25TeV.

(7.42)

In this scenario, the heavy Higgs boson is identified with hqo5 = H. Since the scenario has
small soft SUSY-breaking squark mass parameters and a very large u it is unsurprising
that the entire benchmark plane has a short-lived EW vacuum. Throughout the plane,
the MDM has non-vanishing ¢ vevs while the global minimum has #-7 vevs.” Considering
how constrained the region of phenomenologically viable parameter space for this scenario
is (see fig. 10 of ref. [26]) we do not expect that a heavy Higgs alignment scenario with a
long-lived vacuum exists in the MSSM. However, a detailed assessment of this possibility
would require a dedicated study.

We have omitted the CP-violating scenario that was proposed in ref. [26] for simplicity
only. Our approach is fully applicable also to models containing CP-violating phases.

7.4 Conclusions

In this chapter, we have applied our fast and efficient approach for evaluating vacuum
stability constraints presented in chapter 3 to the MSSM. In order to evaluate the
constraints from vacuum stability, it is in principle desirable to simultaneously take into

9The corresponding plots are omitted as they do not add any information.
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account all possible vevs of all the scalar fields in the considered model. However, this
often becomes impractical in models with large scalar sectors. Our efficient approach
has allowed us to consider up to six real degrees of freedom simultaneously. We have
included the possible vevs of the particles with the largest Yukawa couplings (namely
¢, b and 7) in addition to the Higgs vevs when searching for unstable directions. We
have observed that this yields robust vacuum stability constraints — especially when
including multiple kinds of sfermions simultaneously. However, for the studied scenarios,
we would have obtained very similar vacuum stability constraints if we had considered
each kind of sfermion separately as an approximation.

We have found the sfermions of the first and second generation as well as the sneutrinos
to have a minor impact on vacuum stability constraints. Their small Yukawa couplings
lead to additional minima at very large field values, which renders these configurations
long-lived. On the other hand, the global minimum — and to some extent, the region
of absolute stability — shows a significant dependence on additional field content that
couples only weakly to the Higgs sector. We have also found several parameter regions
where vevs of different sfermions are simultaneously non-zero at the global minimum.

As a result, our analysis shows that neither the investigation of just the region of absolute
stability nor of the character of the global minimum is sufficient to obtain reliable bounds
from vacuum stability. Instead, determining the boundary between short-lived and
long-lived regions crucially relies on the correct identification of the MDM. This is the
minimum with the shortest tunnelling time from the EW vacuum, which in general differs
from the global minimum.

For the considered M}'*> MSSM benchmark scenario from ref. [26] we have found that the
impact of vacuum stability constraints is small in the m 4—tan [ parameter plane defining
the scenario. However, a variation of the parameters 1 and A around their values chosen
in the benchmark scenario shows an important impact of vacuum stability constraints.
In this plane, we have illustrated that the most dangerous and the global minimum are
in general different. We have furthermore stressed the importance of corrections to the
relation between the bottom-quark mass and the bottom Yukawa coupling in certain
regions of parameter space. These A, corrections can significantly enhance the value of
the bottom Yukawa coupling and thus trigger b-vev instabilities.

We have also used this parameter plane to compare our results with existing studies
and codes. Comparing our results to approximate analytic vacuum stability bounds,
we have seen that those approximations can serve as a rough estimate of the effect of
vacuum stability constraints. However, they cannot capture the complexity of a detailed
numerical analysis. Furthermore, we have compared the results of our method to the
public code Vevacious. The tree-level results of the codes show some notable differences.
The most significant differences arise from the determination of the MDM. By default,
Vevacious uses the closest minimum in field space — and optionally the global minimum.
In contrast, by the use of an analytic expression for the bounce action, we can calculate all
tunnelling times to deeper minima and select the one with the shortest time as the MDM.
In the benchmark plane under consideration, we have found regions where the MDM is
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neither the global minimum nor the minimum closest to the EW vacuum in field space.
We have also seen that the impact of the more sophisticated tunnelling path calculation
in Vevacious (using the path deformation of CosmoTransitions) is visible but does not
substantially change the boundary between parameter regions with long- and short-lived
EW vacuum. Calculating the vacuum stability bounds with Vevacious using the one-
loop effective potential leads to results qualitatively similar to the tree-level results. The
one-loop calculation showed strong indications of numerical instability in addition to
the problems in the identification of the MDM. Even ignoring the latter problem, we
have found the improvement by the one-loop effective potential on the vacuum stability
constraints to be small given the significantly increased amount of numerical instabilities
and the much longer runtime. Furthermore, as discussed in section 3.1.3, it is unclear
whether the use of a loop-corrected effective potential yields a systematic improvement of
vacuum stability constraints compared to a tree-level analysis. The tree-level constraints
of our approach using the straight tunnelling path approximation yield numerically stable
results in a fraction of the runtime of Vevacious and CosmoTransitions.

We have exemplarily studied the depths of the different stationary points along a line
of my, ~ 125GeV through the parameter space. This has shown the typical number
of stationary points appearing in an analysis of vacuum stability and illustrated the
importance of the different scalar degrees of freedom. The MDM was found to coincide
with the global minimum only within a small part of the parameter range. We have
also discussed the impact of degenerate stationary points that are related to each other
by a discrete symmetry and found that — in agreement with recent results in the
literature [228] — if such a symmetry is broken by the EW vacuum the tunnelling times
into the degenerate vacua can be vastly different.

In a benchmark scenario with light 7, we have shown important constraints from vacuum
stability in the ms—tan 8 plane defining the scenario. In ref. [26] a parameter region
with high tan f and low m4 of this benchmark plane was identified as being excluded
by vacuum stability constraints. Our results provide a more detailed study of these
constraints and show that the excluded region extends to high m,.

A further scenario that we have studied in detail is a benchmark scenario in the alignment
without decoupling regime. Since all parameter points in the benchmark plane yield
short-lived EW vacua we have discussed what kind of shift in parameter space could lead
to a long-lived vacuum while preserving the correct value of the Higgs mass. We found
that this naive approach would not obviously spoil the alignment without decouplings
behaviour. The question to what extent the alignment without decoupling behaviour can
be realised in phenomenologically viable scenarios including vacuum stability constraints
would require a detailed study that is beyond the scope of the present work. Finally, we
evaluated the vacuum stability constraints in the remaining CP-conserving benchmark
scenarios of ref. [26]. We found that the M}*5(Y) scenario with light neutralinos yields
absolutely stable EW vacua, while the vacua of the heavy Higgs alignment scenario M}#°
are entirely short-lived.
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Unravelling the nature of electroweak symmetry breaking (EWSB) is one of the most
important goals of current particle physics. The study of different BSM models with
extended Higgs sectors in comparison with the SM provides crucial insights into the
theoretical possibilities for EWSB and the related experimental signatures.

Measuring the parameters of the scalar potential that governs EWSB requires observing
interactions between several Higgs bosons. Within the SM, this requires measuring the
Higgs self-couplings, which are challenging to observe directly at the LHC. However,
models with extended Higgs sectors also include interactions between different scalars that
could be probed at the LHC and even serve as a discovery channel for additional Higgs
bosons. We have explored this possibility in detail in chapter 4, where we studied the two-
real-singlet model (TRSM), a simple extension of the SM by two scalar singlet fields. We
have shown that the “classical” searches for new scalars, e.g. in pp - H - WW~/ZZ
channels, probe the model. However, we have also found large regions of parameter
space where constraining the model or, preferably, discovering new particles would
require searches in multiscalar final states, possibly not even involving the 125 GeV Higgs
boson (hi95). In chapter 4, we presented two-dimensional benchmark scenarios for all
possible Higgs-to-Higgs decay signatures involving two different non-hq95 scalars. These
scenarios illustrate the relevance of these currently unexplored signatures and could serve
to facilitate experimental studies at the LHC or future colliders.

The CP-properties of the Higgs sector are not only phenomenologically interesting, but
additional sources of CP violation are also a requirement for explaining baryogenesis.
At the same time, experimentally establishing the CP-nature of hqo5 beyond the fact
that it is not a pure CP-odd state is very challenging. In chapter 5, we first discussed
the CP-violating 2HDM (C2HDM), which is the minimal model with a CP-violating
Higgs sector. It introduces a single CP-violating phase that induces a mixing between
the CP-even and CP-odd states of the two-Higgs-doublet model (2HDM). We have
studied the phenomenological consequences of a CP-odd admixture to hqs5 and found
that large CP-violating Yukawa couplings are compatible with current measurements. In
particular, we showed that the Yukawa couplings of hqo5 to down-type quarks or leptons
could be maximally CP-violating with CP-even and CP-odd parts of similar size. It is
also possible that some Yukawa couplings of hi95 are CP-even and some are CP-odd. We
hope that such scenarios can be studied experimentally in the future. These scenarios
face strong constraints from bounds on fermionic electric dipole moments (EDMs). We
discussed how the bounds from the electron EDM can be evaded through cancellations
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between different contributions. It should, however, be noted that the viability of these
cancellations has not been demonstrated if different EDM bounds are simultaneously
considered.

In the second half of chapter 5, we introduced a model with a minimal CP-violating
dark sector. The Zy symmetry that makes the lightest dark sector particle a stable dark
matter (DM) candidate also forbids the appearance of CP-violating Yukawa couplings. As
a result, it is challenging to experimentally establish that the model is indeed CP-violating.
We studied the ZZZ anomalous triple gauge coupling induced by the dark sector particles
and found non-vanishing values for the CP-violating form factor fZ. The imaginary part
of this form factor is directly proportional to a potentially observable asymmetry, A%%,
which establishes that CP is violated in the model. The model prediction for both fZ
and AZZ is tiny, however, making it challenging to probe this model even at a future
linear collider. The form factor fZ is also being constrained at the LHC through fits to
the Z-pair production process. However, these analyses assume a real and constant form
factor, while the model predicts a complex and highly momentum dependent value.

In models with extended scalar sectors, the scalar potential can, in general, have multiple
different minima. After EWSB, some of these additional minima could be energetically
favourable compared to the electroweak (EW) vacuum. In this case, the EW vacuum
would not be stable as it could decay through a tunnelling process. If this tunnelling is
slow compared to the age of the universe, the EW vacuum is metastable and phenomen-
ologically viable. A short-lived, unstable EW vacuum, however, is in contradiction to
observations and parameter regions predicting such a scenario must be excluded. These
vacuum stability constraints can have a significant impact on models with extended scalar
sectors as scalar potentials with many degrees of freedom typically have many minima in
addition to the EW vacuum. In such scalar potentials, vacuum decay is often possible at
the EW scale — in contrast to the SM where the vacuum only becomes metastable at
very high energy scales. We have presented a novel numerical approach to obtain vacuum
stability constraints in chapter 3 that is designed to be efficient and reliable for use in
parameter scans of BSM models. The method relies on the tree-level scalar potential
and uses a straight path approximation to efficiently evaluate the tunnelling time into all
possible minima.

In some simpler extensions of the Higgs sector, vacuum stability at the tree-level can be
studied analytically. For example, the vacuum of the TRSM of chapter 4 is known to be
absolutely stable [250]. Another case is the 2HDM where is has been proven that the EW
vacuum is stable against CP- or charge-breaking minima [220, 349-351]. In chapter 6, we
have shown that this no longer holds when adding another real scalar singlet to obtain
the next-to 2HDM (N2HDM). We have analytically categorised the different kinds of
vacua that can appear in the N2HDM. We then applied the approach of chapter 3 in a
large scan of the phenomenologically viable parameter space of the N2HDM to study the
impact of vacuum stability constraints on the relevant regions of parameter space. We
have found that vacuum instabilities can appear in a substantial fraction of the otherwise
viable parameter space and stress the importance of treating metastable regions as viable.
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We furthermore showed that vacuum stability constraints may even directly limit the
value of a collider observable — the signal strength of hio5 — vy — by constraining the
possible values of the coupling between hio5 and the charged Higgs boson.

Supersymmetric models, such as the minimal supersymmetric extension of the SM
(MSSM) have been subject to detailed studies during the last decades. These models are
also especially interesting with respect to vacuum stability constraints as they introduce a
huge number of new scalars — additional Higgs bosons and scalar superpartners for each
SM fermion — that could all obtain vacuum expectation value. In chapter 7 we have used
the MSSM to validate our approach to vacuum stability of chapter 3 and derive vacuum
stability constraints on recently proposed benchmark scenarios [26]. In comparing our
results to the literature, we have found good agreement even when comparing the straight
path approximation to more elaborate methods. In particular, we have shown that the
reduced numerical complexity of our approach can lead to more reliable results as we can
consider tunnelling into all possible deeper minima and are not prone to the danger of
misidentifying the most dangerous minimum. The obtained vacuum stability constraints
on the benchmark scenarios especially impact scenarios with large trilinear parameters.
We have pointed out possible complementarities with experimental searches and show
that alignment-without-decoupling scenarios are severely constrained by vacuum stability
— even more so when the heavy Higgs boson is identified with Ajss.

The phenomenological studies presented in this thesis have been carried out to facilitate
the experimental investigation of BSM models of EWSB. With the continued analyses of
the run II LHC dataset and the upcoming run III, we expect many scenarios of EWSB
and models with extended Higgs sectors to be probed in the near future. We hope that
these investigations will lead to a better understanding of EWSB — ideally through the
discovery of an extended scalar sector.
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